
The M-TEX Graphics 
Companion 

Second Edition 

Michel Goossens 
Frank Mittelbach 
Sebastian Rahtz 

Denis Roegel 
HerbertVoB 

IT'' Addison-Wesley 
Upper Saddle River, NJ • Boston • Indianapolis • San Francisco 

New York • Toronto • Montreal • London • Munich • Paris • Madrid 
Capetown • Sydney • Tokyo • Singapore • Mexico City 



Many of the designations used by manufacturers and sellers to distinguish their products are claimed 

as trademarks. Where those designations appear in this book, and Addison -Wesley was aware of a 

trademark claim, the designations have been printed with initial capital letters or in all capitals. 

The authors and publisher have taken care in the preparation of this book, but make no expressed or 

implied warranty of any kind and assume no responsibility for errors or omissions. No liability is 

assumed for incidental or consequential damages in connection with or arising out of the use of the 

information or programs contained herein. 

The publisher offers discounts on this book when ordered in quantity for bulk purchases and special 

sales. For more information, please contact: 

u.s. Corporate and Government Sales 

(800) 382-3419 
corpsales@pearsontechgroup.com 

For sales outside of the United States, please contact: 

International Sales 

international@pearsoned.com 

Visit Addison-Wesley on the Web: www . awprof e s s i onal . c om 

Library of Congress Cataloging-in-Publication Data 

The LaTeX Graphics c ompanion / Mi chel Goossens . . .  [et al . ] . -- 2nd ed . 
p .  cm . 

Includes bibl iographical ref erences and index . 
I SBN 978-0-321-50892-8 (pbk . : alk . paper) 

1 .  LaTeX (Computer f i l e )  2 .  Computerized typesett ing . 3 .  PostScript 
(Computer program l anguage ) 4 .  S c i ent i f i c  i l lustrat ion--Computer programs . 
5 .  Mathemat i c s  print ing--Computer programs . 6 .  Techni cal 
publi shing--Computer programs . I .  Goossens , Mi chel . 

Z253 . 4 . L38G663 2008 
686 . 2 ' 2544536-dc22 20070 1 0278 

Copyright © 2008 by Pearson Education, Inc. 

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or 

transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or 

otherwise, without the prior consent of the publisher. 

The foregoing notwithstanding, the examples contained in this book and obtainable online on 

CTAN are made available under the :8\TEX Project Public License (for information on the LPPL, 

see www.latex-project.org/lppl). 

For information on obtaining permission for use of material from this work, please submit a written 

request to: 

Pearson Education, Inc. 

Rights and Contracts Department 

75 Arlington Street, Suite 300 
Boston, MA 02116 
Fax: (617) 848-7047 

ISBN 10: 0-321-50892-0 
ISBN 13: 978-0-321-50892-8 
Text printed in the United States on recycled paper at Courier in Westford, Massachusetts. 

First printing, July 2007 



We dedicate this book to the hundreds of L4'EX developers 
whose contributions are showcased in it, 
and we salute their enthusiasm and hard work. 

We would also like to remember with affection and thanks 
Daniel Taupin, whose MusiX1EX system is described in 
Chapter 9, and who passed away in 2003, a great loss to our community. 



1 

Rhapsodie 
]Jour piano 

Compose partidkmcnt Yen; HJ75, tcrlIlill(� en aout 2002 

0 � fe' --;., IT iT II' 

loJ 
IT_- F'f.l iT_- F'f.l Ir�_ F'f.l 

v�_' 
� .�, 

: 

:\:QQ. * :\:QQ. * :\:QQ. * :\:QQ. I 

@] fe' fi1.j fe' 
7l 

-= -=-� --

loJ -� 
u __ ' 

-
U !!<" 

I I 
rit. 

� -
: 

* "'" �4' .. �� , '" * '" �. �. 

§] 
7l IT 

loJ 
IT 

: 

'" �, 

v__.____-' 
ff'j ",.� 

ffi * �, 

RJ1ajJ8odic - ;!6 mitTS 20(M - (D. 1i1l1jJin) 

� fe' 

t:;--.-----, 

1--.,." -

I II ffi * �, 

Daniel TAPPIN 

� 
- v�_' 
- -

* II :\:QQ. 
a. lempo 

tl'�� 

ff
U ,*" 

iT "'" 

lY 
* '" �. * 

� fe' 

.. 

I * P 

p 

* 

Music composed by Daniel Taupin and typeset with MusiX1EX 



List of Figures 

List of Tables 

Preface 

Why �EX, and why PostScript? 

Contents 

xvii 

xxi 

xxv 

xxvi 

How this book is arranged . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvii 

Typographic conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xxix 

Using the examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xxxi 

Finding all those packages and programs . . . . . . . . . . . . . . . . . . . . . . .  xxxiii 

1 Graphics with �EX 

1 . 1 Graphics systems and typesetting 

1 

2 

1 . 2 Drawing types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

1 . 3 TEX's interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 
1 . 3. 1  Methods of integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 
1 . 3. 2  Methods of manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
1 . 3. 3  TEX's graphics hooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 

1 . 4 Graphics languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10 

1 . 4 . 1 Generic graphics languages . . . . . . . . . . . . . . . . . . . . . . . . . .  10 

1 . 4 . 2 TEX-based graphics languages . . . . . . . . . . . . . . . . . . . . . . . .  1 3  

1 . 4 . 3 External graphics languages and drawing programs . . . . . . . . . .  1 7  

1 . 5 Choosing a package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 1  



viii CONTENTS 

2 Standard �EX Interfaces 23 

2. 1 Inclusion of graphics files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 3  

2. 1 . 1 Options for graphics and graphicx . . . . . . . . . . . . . . . . . . . . . .  2 4  

2. 1 . 2 The \includegraphics syntax in the graphics package . . . . . . .  2 5  
2. 1 . 3 The \includegraphics syntax in the graphicx package . . . . . .  28 
2. 1 . 4 Setting default key values for the graphicx package . . . . . . . . . . .  3 2  

2. 1 . 5 Declarations guiding the inclusion of images . . . . . . . . . . . . . . .  3 3  

2. 1 . 6 A caveat: encapsulation is important . . . . . . . . . . . . . . . . . . . .  3 5  

2. 2 Manipulating graphical objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 6  

2. 2. 1 Scaling a �EX box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 7  

2. 2. 2  Resizing to a given size . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38 
2. 2. 3 Rotating a �EX box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39 

2. 2. 4 The epsfig and rotating packages . . . . . . . . . . . . . . . . . . . . . .  4 2  

2. 3 Line graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 2  

2. 3. 1 Options for pict 2e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 3  

2. 3. 2 Standard �EX and pict 2e compared . . . . . . . . . . . . . . . . . . . .  4 4  

2 . 3. 3  Slightly beyond standard graphics: curve 2e . . . . . . . . . . . . . . . .  4 7  

3 M(;TRFONT and M(;TRPO�T: TEX's Mates S1 

3. 1 The META language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 2  

3. 1 . 1 First examples of META programs . . . . . . . . . . . . . . . . . . . . .  5 3  
3. 1 . 2 Defining macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 7  

3. 2 Differences between METAP05T and METAFONT . . . . . . . . . . . . . . .  60 

3. 2. 1 Color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  60 
3. 2. 2 Adding text to pictures. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 1  

3. 2. 3 Adding text-some gory details . . . . . . . . . . . . . . . . . . . . . . .  6 2  
3. 2. 4 Internal structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 5  

3. 2. 5 File input and output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 7  

3. 3 Running the META programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  68 
3. 3. 1 Running METAFONT. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  68 

3. 3. 2 Running METAP05T. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 1  

3. 3. 3 Previewing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 3  

3. 4 Some basic METAP05T libraries . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 4  

3. 4 . 1 The metafun package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 4  

3. 4 . 2 The boxes package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 5  

3. 5 The METAOBJ package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  80 
3. 5 . 1 Underlying principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  80 

3. 5 . 2 METAOBJ concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 1  

3. 5 . 3 B asic objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 2  
3. 5 . 4 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 4  

3. 5 . 5 Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . .  9 5  
3. 5 . 6 B ox alignment constructors . . . . . . . . . . . . . . . . . . . . . . . . . .  100 
3. 5 . 7  Recursive objects and fractals . . . . . . . . . . . . . . . . . . . . . . . .  10 4 



CONTENTS 

3.5.8 Trees ........................................ 10 5 
3.5.9 Matrices................................. . . . .. 1 1 5  

3.5.10 Tree and matrix connection variants . . . . . . . . . . . . . . . . . . .. 1 1 7 

3.5.1 1 Labels ....................................... 1 1 8 

3.6 TEX interfaces: getting the best of both worlds. . . . . . . . . . . . . . . . . . .. 1 20 
3.6.1 The emp package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1 20 

3.6.2 The mfpic package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1 2 2 

3.6.3 The mft and mpt pretty-printers . . . . . . . . . . . . . . . . . . . . . .. 1 3 7 

3.7 From METAPOST and to METAPOST . . . . . . . . . . . . . . . . . . . . . .. 1 3 7 

3.8 The future of METAPOST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1 38 

4 METAPOST Applications 1 41 

4.1 A drawing toolkit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1 4 1  

4.1.1 Text along a curve ................................ 1 4 2  

4.1.2 Gradients ..................................... 1 4 3  
4.1.3 Hidden lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1 4 5  

4.1.4 Multipaths and advanced clipping . . . . . . . . . . . . . . . . . . . .. 1 4 5  

4.1.5 Patterns, hatchings, and tilings. . . . . . . . . . . . . . . . . . . . . . .. 1 4 7 
4.1.6 Transparency................................... 1 5 0 
4.1.7 Blurred effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1 5 2 

4.1.8 Morphing ..................................... 1 5 2  

4.1.9 Turtle graphics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1 5 3  
4.1.10 Using literal PostScript . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1 5 5  

4.1.1 1 Animations .................................... 1 5 6  

4.2 Representing data with graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1 5 7 

4.2.1 The graph package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1 5 7 
4.2.2 Curve drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1 68 

4.2.3 Pie charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1 70 

4.3 Diagrams........................................... 1 7 6  
4.3.1 Graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1 7 6  

4.3.2 Flowcharts .................................... 1 7 7 

4.3.3 Block drawing and Bond graphs . . . . . . . . . . . . . . . . . . . . . .. 1 7 7 
4.3.4 Box-line diagrams: the expressg package . . . . . . . . . . . . . . . .. 1 78 
4.3.5 UML diagrams-MetaUML . . . . . . . . . . . . . . . . . . . . . . . . .. 1 8 1 

4.3.6 CM arrows utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1 88 

4.4 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1 8 9  
4.4.1 Plane geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1 90 
4.4.2 Space geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1 9 2  

4.4.3 Fractals and other complex objects . . . . . . . . . . . . . . . . . . . .. 1 9 4  

4.4.4 Art ......................................... 1 9 5  

4.5 Science and engineering applications . . . . . . . . . . . . . . . . . . . . . . . .. 1 9 6  

4.5.1 Electrical circuits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1 9 6  

4.5.2 Mechanics and engineering. . . . . . . . . . . . . . . . . . . . . . . . .. 20 3 

ix 



x CONTENTS 

4 . 5 . 3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20 3 
4 . 5 . 4 Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20 4 

4 . 6 3-D extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20 7 
4 . 6. 1  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20 7 
4 . 6. 2  Requirements for a 3-D extension . . . . . . . . . . . . . . . . . . . . . .  20 7 
4 . 6. 3  Overview of 3-D packages . . . . . . . . . . . . . . . . . . . . . . . . . . .  208 

5 Harnessing PostScript Inside �EX: PSTricks 213 

5 . 1 The components of PSTricks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 1 4 
5 . 1 . 1  The kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 1 4 

5 . 1 . 2 Loading the basic packages . . . . . . . . . . . . . . . . . . . . . . . . . .  2 1 5 
5 . 1 . 3 Using colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 1 6 

5 . 2 Setting keywords, lengths, and coordinates . . . . . . . . . . . . . . . . . . . . .  2 1 7  

5 . 2. 1  Lengths and units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 1 7  
5 . 2. 2  Angles . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . .  2 1 8 
5 . 2. 3  Coordinates . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 1 9  

5 . 2. 4  Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . .  2 1 9  

5 . 3 The pspicture environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 20 
5 . 3. 1  Keywords for the pspicture environment . . . . . . . . . . . . . . . .  2 2 1 
5 . 3. 2  White space between commands . . . . . . . . . . . . . . . . . . . . . .  2 2 3  

5 . 4 The coordinate system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 2 3  

5 . 5 Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 2 4  
5 . 5 . 1  Keywords of the \psgrid command . . . . . . . . . . . . . . . . . . . .  2 2 6  

5 . 5 . 2 Defining and using new grid commands . . . . . . . . . . . . . . . . . .  2 28 
5 . 5 . 3 Embellishing pictures with the help of grids . . . . . . . . . . . . . . . .  2 29 

5 . 6 Lines and polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 3 1 
5 . 6. 1  Extensions to lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 3 4  
5 . 6. 2  Keywords for lines and polygons . . . . . . . . . . . . . . . . . . . . . . .  2 3 4  

5 . 7  Circles, ellipses, and curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 40 
5 . 7 . 1 General curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 4 4 
5 . 7 . 2 Keywords for curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 4 7  

5 .8 Dots and symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 4 9 
5 .8 . 1 Dot keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 5 1 

5 . 9  Filling areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 5 3 

5 . 9. 1  Filling keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 5 3 
5 . 9. 2 More fill styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 5 7  

5 . 10 Arrows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 5 9  
5 . 10 . 1 Keywords for arrows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 60 
5 . 10 . 2 Creating your own arrow types . . . . . . . . . . . . . . . . . . . . . . . .  2 6 4  

5 . 1 1  Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 6 5 
5 . 1 1 . 1 Reference points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 6 6  

5 . 1 1 . 2  Rotation angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 6 6  
5 . 1 1 . 3  Commands to set labels or objects . . . . . . . . . . . . . . . . . . . . .  2 6 7 



CONTENTS 

5 . 1 2 Boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 69 

5 . 1 2. 1 Keywords for box commands . . . . . . . . . . . . . . . . . . . . . . . . .  2 70 

5 . 1 2. 2  Commands for setting boxes . . . . . . . . . . . . . . . . . . . . . . . . .  2 7 1 

5 . 1 2. 3  Box size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 7 3 

5 . 1 2. 4  Clipping commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 7 4 

5 . 1 2. 5  Rotating and scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 7 6 

5 . 1 2. 6  Math and verbatim boxes . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 78 

5 . 1 3  User styles and objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 7 9  

5 . 1 3. 1  Customizations with \pscustom. . . . . . . . . . . . . . . . . . . . . .  280 

5 . 1 4 Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29 6 

5 . 1 4 . 1 Polar coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29 6 

5 . 1 4 . 2 Coordinates calculated with PostScript . . . . . . . . . . . . . . . . . . .  29 6 

5 . 1 4 . 3  Double coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  298 

5 . 1 4 . 4  Relative translations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  299 

5 . 1 4 . 5 Angle specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30 2 

5 . 1 5  The PSTricks core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30 2 

5 . 1 5 . 1  Header files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30 2 

5 . 1 5 . 2  Special macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30 3 

5 . 1 5 . 3  "Low-level" macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30 7 
5 . 1 5 . 4  "High-level" macros. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30 9 

5 . 1 5 . 5  The "key/value" interface . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 10 

6 The Main PSTricks Packages 313 

6. 1 pst-plot-Plotting functions and data . . . . . . . . . . . . . . . . . . . . . . . . .  3 1 3 

6. 1 . 1 The coordinate system-ticks and labels . . . . . . . . . . . . . . . . .  3 1 4 

6. 1 . 2 Plotting mathematical fu nctions and data files . . . . . . . . . . . . . .  3 2 3  

6. 2 pst-node-Nodes and connections . . . . . . . . . . . . . . . . . . . . . . . . . .  3 3 4  

6. 2. 1 Setting nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 3 5 

6. 2. 2 \nc connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 40 

6. 2. 3 \pc connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 4 7  

6. 2. 4 Node keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 4 8 

6. 2. 5 Putting labels on node connections . . . . . . . . . . . . . . . . . . . . .  3 5 7  

6. 2. 6 Multiple connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 60 

6. 2. 7 The psmatrix environment . . . . . . . . . . . . . . . . . . . . . . . . .  3 6 1  

6. 2.8 TEX and PostScript: a one-way ticket . . . . . . . . . . . . . . . . . . . . .  3 6 5  

6. 3 pst-tree-Typesetting trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 6 6  

6. 3. 1 Tree nodes, predecessors, and successors . . . . . . . . . . . . . . . . .  3 6 7 

6. 3. 2  Keywords for tree nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 70 

6. 3. 3  Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 7 9  

6. 3. 4  Skip tree levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38 2 

6. 4 pst-fill-Filling and tiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38 3 

6. 4 . 1 Keywords for filling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38 3 

xi 



xii CONTENTS 

6. 5 pst- 3d-Shadows, tilting, and three-dimensional representations . . . . . . .  388 
6. 5 . 1 Shadows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  388 
6. 5 . 2  Tilting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  389 
6. 5 . 3 Three-dimensional representations . . . . . . . . . . . . . . . . . . . . .  392 

6. 6 pst- 3dplot- 3-D parallel projections of functions and data . . . . . . . . . . . .  400 
6. 6. 1 Commands for 3-D drawings . . . . . . . . . . . . . . . . . . . . . . . . .  40 1 

6. 6. 2 Plotting mathematical functions and data . . . . . . . . . . . . . . . . .  40 6 
6. 6. 3 Keywords for pst- 3dplot . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 10 

6. 7 Short overview of other PSTricks packages . . . . . . . . . . . . . . . . . . . . . .  4 1 7 
6. 7. 1 The pstricks-add package . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 1 8 
6. 7 . 2 Linguistics . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 2 4  
6. 7. 3 Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 2 6  
6. 7 . 4 Sciences . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 3 1 
6. 7 . 5 Information theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 38 

6. 7 . 6 UML and ER diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 4 2 
6. 7 . 7  3-D views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 4 5 
6 . 7.8 Shapes and color gradients . . . . . . . . . . . . . . . . . . . . . . . . . .  4 4 8 

6. 7 .9 Miscellaneous packages . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 5 0 

6.8 Summary of PSTricks commands and keywords . . . . . . . . . . . . . . . . . . .  4 5 9 

7 The XV-pic Package 467 

7. 1 Introducing XV-pic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 6 7 

7 . 2 Basic constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 69 
7 . 2 . 1 Initial positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 69 

7. 2 . 2 Making connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 70 
7 . 2 . 3 Dropping objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 7 1  
7 . 2 . 4 Entering text in your pictures . . . . . . . . . . . . . . . . . . . . . . . . .  4 7 3 

7 . 3 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 7 4  

7. 3. 1 Curves and splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 7 5  
7 . 3. 2  Frames and brackets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 7 6  

7 . 4 Featu res . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 78 

7. 4 . 1 Arrows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 78 
7. 4 . 2  Matrix-like diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 80 
7 . 4 . 3 Graphs . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . .  4 8 7  
7 . 4 . 4 Two-cell diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 9 3  

7 . 4 . 5 Polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 9 5 
7. 4 . 6 Arcs, circles, and ellipses . . . . . . . . . . . . . . . . . . . . . . . . . . . .  500 
7 . 4 . 7  Lattices and web structures . . . . . . . . . . . . . . . . . . . . . . . . . .  5 0 2 
7. 4 .8 Links and knots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50 3 

7 . 5 Further examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 0 9  

8 Applications in Science, Technology, and Medicine 511 

8. 1 Typographical rules for scientific texts . . . . . . . . . . . . . . . . . . . . . . . . .  5 1 2 
8. 1 . 1 Getting the units right . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 1 3  



CONTENTS xiii 

8 . 1. 2  Typesetting chemical symbols . . . . . . . . . . . . . . . . . . . . . . . .  517 
8 . 2 Typesetting chemical formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 18 

8 . 2 . 1 The XlivrrEX system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  52 0 
8 . 2 . 2 The ppchtex package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  54 1 

8 . 3 Alignment and topology plots in bioinformatics . . . . . . . . . . . . . . . . . . .  547 
8 . 3 . 1 Aligning and shading nucleotide and peptide sequences . . . . . . .  5 4 8  
8 . 3 . 2 Membrane protein topology plots . . . . . . . . . . . . . . . . . . . . . .  551 

8 . 4 Drawing Feynman diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  55 5 
8 . 4 . 1 A special font for drawing Feynman diagrams . . . . . . . . . . . . . .  555 
8 . 4 . 2 PostScript for drawing Feynman diagrams . . . . . . . . . . . . . . . . .  558 
8 . 4 . 3 METRFONT and METRP05T for drawing Feynman diagrams . . .  56 1 
8 . 4 . 4 E xtending FeynMF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  572 

8 . 5 Typesetting timing diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  572 
8 . 5 . 1 Commands in the timing environment . . . . . . . . . . . . . . . . . .  573 
8 . 5 . 2 Customization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  576 

8 .6 E lectronics and optics circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  576 
8 .6. 1 A special font for drawing electronics and optics diagrams . . . . . .  576 
8 .6. 2 Using the m 4  macro processor for electronics diagrams . . . . . . . .  58 3 
8 .6. 3 Interactive diagram generation . . . . . . . . . . . . . . . . . . . . . . .  5 8 6 

9 Preparing Music Scores 587 

9 . 1 Using TEX for scores-An overview . . . . . . . . . . . . . . . . . . . . . . . . . . .  58 9 
9 . 2 Using MusiXTEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 9 0  

9 . 2 . 1 The structure of a MusiXTEX source . . . . . . . . . . . . . . . . . . . . .  59 1 
9 . 2 . 2 Writing notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  591 
9 . 2 . 3 Note spacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 9 5  
9 . 2 . 4 A moderately complete example . . . . . . . . . . . . . . . . . . . . . .  59 6 
9 . 2 . 5 Running MusiXTEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 97 

9 . 3 abc 2mtex-Easy writing of tunes . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 00 
9 . 3 . 1 Writing an abc source . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 01 
9 . 3 . 2 The abcPlus extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 09 
9 . 3 . 3 Easy inclusion of abc files in �EX documents . . . . . . . . . . . . . . .  6 12 

9 . 4 Preprocessors for MusiXTEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 15 
9 . 5 The PMX preprocessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 18 

9 . 5. 1  General structure of a PMX score . . . . . . . . . . . . . . . . . . . . . . .  6 19 
9 . 5 . 2 The preamble of a PMX file . . . . . . . . . . . . . . . . . . . . . . . . . .  6 19 
9 . 5 . 3 The body of a PMX file . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 2 1 
9 . 5. 4  Notation to describe a stave . . . . . . . . . . . . . . . . . . . . . . . . .  6 2 2 
9 . 5 . 5 Notation that affects all voices . . . . . . . . . . . . . . . . . . . . . . . .  6 3 9  
9 . 5.6 Some general options and technical adjustments . . . . . . . . . . . .  6 4 2 
9 . 5 .7 Two complete examples . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 4 4 
9 . 5. 8  Inline TEX commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 4 6 
9 . 5 . 9 Lyrics . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 47 



civ CONTENTS 

9. 5 . 1 0  Creating parts from a score . . . . . . . . . . . . . . . . . . . . . . . . . .  6 4 7  
9. 5 . 1 1  Making MIDI files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 4 7  

9. 6 M-Tx-Music from TeXt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 5 1  

9. 6. 1 The M-Tx preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 5 2 
9. 6. 2 The body of an M-Tx input file . . . . . . . . . . . . . . . . . . . . . . . .  6 5 4 
9. 6. 3 Lyrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 5 9  

9. 7 The music engraver LilyPond. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 6 1  
9. 7. 1 The LilyPond source language . . . . . . . . . . . . . . . . . . . . . . . .  6 6 1  
9. 7 . 2 Running LilyPond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 6 5  

9.8 TEXmuse-TEX and METAFONT working together . . . . . . . . . . . . . . . . .  6 6 6  

10 Playing Games 667 

10 . 1 Chess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 68 

1 0 . 1 . 1 chessboard-Coloring your boards . . . . . . . . . . . . . . . . . . . . .  6 68 
10 . 1 . 2 chessfss-A generic font mechanism for chess . . . . . . . . . . . . . .  6 69 
10 . 1 . 3  skak-The successor to the chess package . . . . . . . . . . . . . . . .  6 7 3 
10 . 1 . 4 texmate-The power of three . . . . . . . . . . . . . . . . . . . . . . . .  680 

10 . 1 . 5 Online resources for chess . . . . . . . . . . . . . . . . . . . . . . . . . . .  68 7 

10 . 2 Xiangqi-Chinese chess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  68 7 

10 . 3 Go . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  690 

10 . 4 Backgammon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  69 6 

1 0 . 5 Card games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  698 
10 . 5 . 1 Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  699 

1 0 . 6 Crosswords in various forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  70 2 

10 . 6. 1 Classical puzzles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  70 5 
10 . 6. 2 Fill-in puzzles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  70 7 
10 . 6. 3 Number puzzles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  70 7 

10 . 6. 4 General adjustments to the layout. . . . . . . . . . . . . . . . . . . . . .  708 
10 . 6. 5 External puzzle generation . . . . . . . . . . . . . . . . . . . . . . . . . .  70 9 

10 . 7  Sudokus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  70 9 
1 0 . 7. 1 sudoku-Typesetting Sudokus. . . . . . . . . . . . . . . . . . . . . . . .  70 9 
1 0 . 7 . 2 sudokubundle-Solving and generating Sudokus . . . . . . . . . . . .  7 10 

11 The World of Color 713 

1 1 . 1  An introduction to color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 1 4 

1 1 . 1 . 1  Color theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 1 4 
1 1 . 1 . 2 Color systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 1 5 
1 1 . 1 . 3  Symbolic values of color . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 1 6 
1 1 . 1 . 4  Color harmonies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 1 7  
1 1 . 1 . 5  Color and readability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 1 8 

1 1 . 2  Colors with �EX - The color and xcolor packages . . . . . . . . . . . . . . . . .  7 1 9 

1 1 . 2. 1  Options supported by color and xcolor . . . . . . . . . . . . . . . . . . .  7 20 
1 1 . 2. 2  Using colors within the document . . . . . . . . . . . . . . . . . . . . . .  7 2 2  



CONTENTS 

1 1 . 2. 3  Defining colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 2 6 
1 1 . 2. 4  Color models with xcolor . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 28 
1 1 . 2. 5  Extended color specification with xcolor . . . . . . . . . . . . . . . . . .  7 30 
1 1 . 2. 6  Support for color series . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 3 4  
1 1 . 2. 7  Color blending and masking . . . . . . . . . . . . . . . . . . . . . . . . .  7 3 7 

1 1 . 3  Coloring tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 3 7 

1 1 . 3. 1  The colortbl package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 3 7 
1 1 . 3. 2  Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 4 2 

1 1 . 4  Color slides with �EX - The beamer class . . . . . . . . . . . . . . . . . . . . . .  7 5 2 
1 1 . 4 . 1  Using the beamer class . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 5 2 
1 1 . 4 . 2  Your first slides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 5 4 
1 1 . 4 . 3  The structure of a presentation . . . . . . . . . . . . . . . . . . . . . . . .  7 5 8 
1 1 . 4 . 4  Hiding and showing material on slides - overlays . . . . . . . . . . .  7 6 2  
1 1 . 4 . 5  Additional facilities in beamer . . . . . . . . . . . . . . . . . . . . . . . .  7 7 2 

1 1 . 4 . 6  Using �EX structural components in beamer . . . . . . . . . . . . . . .  7 7 9 
1 1 . 4 . 7  Using �EX inline components in beamer . . . . . . . . . . . . . . . . . .  78 3 
1 1 . 4 .8 Managing your templates . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 9 2 

1 1 . 4 . 9  Backgrounds and colors . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 9 4 

1 1 . 4 . 10 Document modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 9 6  
1 1 . 4 . 1 1 The beamer project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 9 6  

A Producing PDF from Various Sources 797 

A . l dvipdfm and dvipdfmx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 98 

A . 2 pst-pdf-From PostScript to PDF . . . . . . . . . . . . . . . . . . . . . . . . . . . .  800 
A . 2. 1  Package options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  800 
A . 2. 2  Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  800 

A . 3 Generating PDF from �EX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  80 3 

B �EX Software and User Group Information 809 

B . l Getting help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  80 9 

B . 2 How to get those TEX files? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 10 

B . 3 Using CTAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 10 
B . 3. 1  Using the TEX file catalogue . . . . . . . . . . . . . . . . . . . . . . . . . .  8 1 1 
B . 3. 2  Finding files on the archive and transferring them . . . . . . . . . . . .  8 1 3 
B . 3. 3  Getting files from the command line . . . . . . . . . . . . . . . . . . . .  8 1 4 

B . 4 Finding the documentation on your TEX system . . . . . . . . . . . . . . . . . . .  8 1 5 
B . 4 . 1 texdoc-Command-line interface for a search by name . . . . . . . .  8 1 5  
B . 4 . 2 texdoctk-Panel interface for a search by subject . . . . . . . . . . . .  8 1 6 

B . 5 TEX user groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 1 7  

Bibliography 819 

Indexes 835 

General Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 3 7 

xv 



xvi CONTENTS 

METAFONT and METAP05T . . . . . . . . . . . . . . . . . . . . . . . . . . . .  879 

PSTricks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  897 

Xy-pic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 1 9  

People . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 2 4  



List of Figures 

Music composed by Daniel Taupin and typeset with MusiX1EX . . . . . . . . . . VI 

Lunar orbit on the celestial sphere with METAPOST . . . . . . . . . . . . . . . .  xx 

A Lissajous example with PSTricks. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  XXIV 

1. 1 Pen and ink drawing of a bead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 
1.2 Bitmap drawing output created with GIMP . . . . . . . . . . . . . . . . . . . . . . . 4 
1.3 Digitally transformed image (vertically stretched) .  . . . . . . . . . . . . . . . . . . 5 
1.4 Object-oriented drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
1. 5 Scanned cartoon converted to font . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
1.6 Example of flow language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16 
1.7 AutoCAD plotter output converted to METAFONT. . . . . . . . . . . . . . . . . .  18 
1.8 Graph generated by gnuplot using MTEX picture commands . . . . . . . . . . . .  18 
1. 9 Example of ePiX program (source and result) . . . . . . . . . . . . . . . . . . . . . .  20 

2. 1 The contents of the file w . eps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26 
2.2 A MTEX box and possible origin reference points . . . . . . . . . . . . . . . . . .  4 1  

3 . 1 META picture after Naum Gabo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  58 
3 .2 Cardinal points in boxi t and circlei t . . . . . . . . . . . . . . . . . . . . . . . .  76 
3.3 A complex example produced by METAOBJ . . . . . . . . . . . . . . . . . . . . . .  80 
3.4 AutoCA D  map converted to METAFONT . . . . . . . . . . . . . . . . . . . . . . . .  138 
3. 5 METAFONT drawing enhanced using Corel Draw . . . . . . . . . . . . . . . . . .  1 38  

4. 1 A Cayley graph drawn with M ETA POST . . . . . . . . . . . . . . . . . . . . . . . .  177 
4.2 An example of Bond graph done with the bondgraph package . . . . . . . . . .  178 
4.3 A complex diagram drawn with the expressg package . . . . . . . . . . . . . . . .  1 82 



xviii LIST OF FIGURES 

4.4 Pipping's construction for the golden number . . . . . . . . . . . . . . . . . . . . .  193 
4. 5 The Apollonian gasket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  193 
4.6 A drawing in mechanical engineering . . . . . . . . . . . . . . . . . . . . . . . . . .  203 

5. 1 Dimensions of an arrow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  260 
5.2 Reference point specification of a box. . . . . . . . . . . . . . . . . . . . . . . . . . .  266 

6. 1 Reference points for plotting coordinate axes . . . . . . . . . . . . . . . . . . . . . .  3 1 4  
6.2 The difference between \pstil t and \psTil t. . . . . . . . . . . . . . . . . . . .  3 90 
6.3 viewpoint definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 9 5  

8. 1 Periodic table typeset with M-JEX and chemsym . . . . . . . . . . . . . . . . . . . .  5 19 
8.2 Timing diagram of a memory read followed by a memory write . . . . . . . . . .  574 

9. 1 Sequence of score pieces coded in MusiXTEX. . . . . . . . . . . . . . . . . . . . . . .  5 9 1  
9.2 Using the abc package for typesetting abc code. . . . . . . . . . . . . . . . . . . . .  6 14 
9 .3 Individual voices created by scor 2prt from a PMX score . . . . . . . . . . . . . . .  648 

10. 1 Initial setup of Chinese chess game (xiangqi) . . . . . . . . . . . . . . . . . . . . . .  68 9 
10.2 A sample crossword for you to fill in (done with crosswrd) . .  . . . . . . . . . . .  703 

11. 1  Table of contents in presentation and article display. . . . . . . . . . . . . . . . . .  760 
11.2 The default navigation bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  772 

A. l Four ways to generate PDF from M-TFX . . . . . . . . . . . . . . . . . . . . . . . . . .  806 
A.2 Hypertext document generated with pdflatex. . . . . . . . . . . . . . . . . . . . . .  807 

B. l The TUG Web home page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  811 
B.2 CTAN home page and 1EX catalogue entry . . . . . . . . . . . . . . . . . . . . . . .  8 12 
B.3 Using the CTAN Web interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 13 
B.4 Finding documentation with the texdoctk program . . . . . . . . . . . . . . . . . .  8 16  



Color Plates 

I METAPOST examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I 
II METAPOST examples: the m3d package (Anthony Phan) . . . . . . . . . . . . . II 
III METAPOST examples: optical illusions. . . . . . . . . . . . . . . . . . . . . . . . .  III 
IV METAPOST examples: turtle drawing and meta objects . . . . . . . . . . . . . .  IV 
V PSTricks examples: lines, grids, and 3 -D views . . . . . . . . . . . . . . . . . . . . . V 
VI PSTricks examples: rotating text, using basic macros, and spheres . . . . . . . . .  VI 
VII PSTricks examples: math and physics . . . . . . . . . . . . . . . . . . . . . . . . . . .  VII 
VIII PSTricks examples: analysis and geometry . . . . . . . . . . . . . . . . . . . . . . . .  VIII 
IX PSTricks examples: 3-D views, oscilloscopes, and color gradients . . . . . . . . . .  IX 
X Examples of the texshade and textopo packages . . . . . . . . . . . . . . . . . . . . X 
XI Color models and color harmonies . . . . . . . . . . . . . . . . . . . . . . . . . . . .  XI 
XII Color contrasts for optimizing visibility and readability . . . . . . . . . . . . . . .  XII 
XIII Examples of colored text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  XIII 
XIV Color expressions and color definitions with xcolor. . . . . . . . . . . . . . . . .  XIV 
XV Color series and more color definitions with xcolor. . . . . . . . . . . . . . . . .  XV 
XVI Examples of colored tables and the beamer class . . . . . . . . . . . . . . . . . . . .  XVI 



1 
I 
I 
, 
1 

I 
I 

I 
I 

I 

/ 
/ 

1 1 ...... -
1 ...... 1 

/1 I 
\ I 
\ \ 
\ \ 

I 

'I 
I 

I 

\ ..... 
\ ..... 

\ ..... ..... ..... ..... 
..... ..... 

..... ..... 

..... 

,/ 
,/ 

,/ 

..... 

,/ 
,/ 

,/ 

,/ 
,/ 

..... 1 ..... ..... 1 

�t" 

1 
I 
I 

..... ..... ..... ..... ..... ..... 

1 S* ............ I _ -- - -1- - ___ - -- .-

............ - 'S ---� ------

lunar orbit 

equator 

Lunar orbit on the celestial sphere with METAP05T 



List of Tables 

2. 1 Overview of color and graphics capabilities of device drivers . . . . . . . . . . . .  24 

3 . 1  Options for EmptyBox and RandomBox . . . . . . . . . . . . . . . . . . . . . . . . .  82 
3 .2 Options for connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 5  
3.3 Options for connection labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 5  
3.4 Options for Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  96 
3 . 5 Options for Polygon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  97 
3.6 Options for Ellipse and Cir cle . . . . . . . . . . . . . . . . . . . . . . . . . . . .  98 
3.7 Options forDBox andDEllipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 9  
3 .8 Options for HBox , VBox , and Container . . . . . . . . . . . . . . . . . . . . . . . .  1 0 1  
3 . 9 Options for Recur si veBox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 0 5 
3 . 1 0  Options for Tr ee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 06 
3 . 1 1  Options for HFan and VFan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 1 5 
3 . 1 2  Options for Matr ix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 1 6 
3 . 1 3  Options for labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 1 9  

4. 1 eM arrow styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 8 9  
4.2 Elements and their abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 97 
4.3 The main components of a circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 97 
4.4 Possible types, pins, and positioning pins for each element . . . . . . . . . . . . .  200 

5. 1 The predefined gray and color names of PSTricks. . . . . . . . . . . . . . . . . . . .  2 1 6  
5.2 Lengths and their register names in PSTricks . . . . . . . . . . . . . . . . . . . . . .  2 1 8  
5.3 Meaning of the starred form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  220 
5.4 Summary of keywords for setting grids . . . . . . . . . . . . . . . . . . . . . . . . .  227 
5. 5 Summary of keywords for lines and polygons. . . . . . . . . . . . . . . . . . . . . .  23 5 
5.6 Possible values for 1 inet ype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  240 



xxii LIST OF TABLES 

5 .7 Summary of keywords for circles, ellipses and curves . . . . . . . . . . . . . . . . .  247 
5.8 Summary of keywords for dot display . . . . . . . . . . . . . . . . . . . . . . . . . .  2 5 1  
5. 9 Summary of dot styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 52 
5. 10 Summary of the keywords used to fill areas . . . . . . . . . . . . . . . . . . . . . . .  2 53 
5. 11  Summary of keywords for arrows . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  260 
5. 12 List of arrow tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26 1 
5. 13 Defined short forms for the rotation angles . . . . . . . . . . . . . . . . . . . . . . .  266 
5. 14 Defined short forms for directions . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26 9 
5. 15 Summary of keywords for boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  270 
5. 16 Meaning of the l if tpen keyword . . . . . . . . . . . . . . . . . . . . . . . . . . . .  282 
5. 17 Possible coordinate forms with enabled \SpecialCoor . . . . . . . . . . . . . .  2 97 
5. 18 Possible angle specifications with enabled \SpecialCoor. . . . . . . . . . . . .  2 97 
5. 19 Relative point translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30 1 
5.20 Relative point translation with angle specification . . . . . . . . . . . . . . . . . . .  30 1 
5 .2 1 Relative point translation with reference to a third point . . . . . . . . . . . . . . .  30 1 
5.22 Some basic PostScript procedures from pstricks. pro . . . . . . . . . . . . . .  307 

6. 1 Plot macros included in the base package pstricks . . . . . . . . . . . . . . . . . . .  3 14 
6.2 Keywords for \psaxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 15 
6.3 Keywords for pst-node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34 9 
6.4 Comparison of different node connections . . . . . . . . . . . . . . . . . . . . . . .  3 5 5  
6. 5 The short forms for nab. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 56 
6.6 The short forms for tablr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 56 
6.7 Keywords for psmatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  362 
6.8 The keyword values for mnode and the corresponding commands. . . . . . . . .  363 
6. 9 Keywords for pst-tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  370 
6. 10 Label keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  380 
6. 11  Keywords forpst-fill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  384 
6. 12 Summary of 3-D packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  388 
6. 13 Summary of 3-D keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 9 5  
6. 14 Keywords for the package pst-3dplot. . . . . . . . . . . . . . . . . . . . . . . . .  4 10 
6. 15 List of PST ricks packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 17 
6. 16 Additional keywords of the package pstricks-add. . . . . . . . . . . . . . . . .  4 18 
6. 17 Additional arrows defined by pstricks-add . . . . . . . . . . . . . . . . . . . . . . . .  4 19 
6. 18 Examples of multiple arrows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  420 
6. 19 PostScript math functions, supported by the pst-math package . . . . . . . . . .  42 9 
6.20 Alphabetical list of all environments of the basic PsTricks package . . . . . . . . .  4 5 9 
6.2 1 Alphabetical list of all commands of the basic PST ricks package. . . . . . . . . . .  4 5 9 
6.22 Alphabetical list of all keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  462 

8. 1 The importance of typographic rules in scientific texts . . . . . . . . . . . . . . . .  5 13 
8.2 SI base units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  514 
8.3 Examples of SI -derived units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 14 
8.4 SI prefixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 15 
8. 5 Aromatic carbocycles commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  52 5 



LIST OF TABLES 

8.6 Carbocyclic compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  527 
8.7 Heterocyclic compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  52 9 
8.8 Application commands of the hetarom package . . . . . . . . . . . . . . . . . . . .  530 
8 . 9 Heterocycles containing nitrogen . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53 1 
8 . 1 0  Fusing skeleton commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  537 
8. 1 1  Polymethylene commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  538 
8. 12  Bond identifiers for ppchtex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  544 
8. 1 3  The f eyn font: available symbols, with their names and descriptions . . . . . . .  5 56 
8. 14  FeynMF vertex and fill styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  564 
8. 1 5 FeynMF line styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56 5 
8. 16  FeynMF line-drawing keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  566 
8. 1 7  FeynMF vertex-drawing keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  567 
8. 1 8  FeynMF polygon keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  568 
8. 1 9  Symbol combinations in all font variants of the timing package . . . . . . . . . .  57 5 
8.20 Electronic circuit symbols (basic option) . . . . . . . . . . . . . . . . . . . . . . .  577 
8.2 1 Gate and trigger symbols (gate option) . . . . . . . . . . . . . . . . . . . . . . . . .  578 
8.22 Electronic box symbols (box option) . . . . . . . . . . . . . . . . . . . . . . . . . . .  578 
8.23 Integrated circuit symbols (ic option) . . . . . . . . . . . . . . . . . . . . . . . . . .  57 9 
8.24 Optical symbols (opt ics option) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  580 
8.2 5 Newtonian mechanics symbols (physics option) . . . . . . . . . . . . . . . . . .  580 

9. 1 Overview of MusiXTEX commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 92 
9.2 Variant forms of the \notes command . . . . . . . . . . . . . . . . . . . . . . . . .  5 9 5 
9 .3 Overview of information fields in abc language tune files . . . . . . . . . . . . . .  602 
9.4 Note parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62 5 
9. 5 List of ornaments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63 1 
9.6 PMX global A options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  643 
9 .7 MIDI mnemonics and identifiers for instruments recognized by PMX . . . . . . .  64 9 
9 .8 Overview of PMX commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 50 
9 . 9 M-Tx preamble elements with examples . . . . . . . . . . . . . . . . . . . . . . . . .  6 52 

10 . 1 Informational symbols for chess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  674 
10.2 Coding for xiangqi pieces in the cchess46 font . . . . . . . . . . . . . . . . . . . .  688 

1 1 . 1  Symbolic connotation of colors in different countries . . . . . . . . . . . . . . . . .  7 16  
1 1 .2 Color models supported by xcolor . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  728 
1 1 .3 beamer class options and modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 53 
1 1 .4 Predefined themes and layouts in beamer . . . . . . . . . . . . . . . . . . . . . . . .  7 5 5  
1 1 . 5 Keywords for the frame environment ofbeamer . . . . . . . . . . . . . . . . . . .  7 5 9 
1 1 .6 Keywords for \ transdissol ve . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  77 5 
1 1 .7 Keywords for the beamercolorbox environment . . . . . . . . . . . . . . . . . .  777 
1 1 .8 Keywords for the beamerboxesrounded environment . . . . . . . . . . . . . . .  778 
1 1 . 9  Keywords for the columns environment . . . . . . . . . . . . . . . . . . . . . . . .  78 1 
1 1 . 1 0  Keywords for the \ tableof contents command . . . . . . . . . . . . . . . . . .  783 
1 1 . 1 1  Hyperlink commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  786 
1 1 . 1 2  Font attributes for beamer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 93 

xxiii 



2/10 

8/16 
___ -,--�- - - - - - - ---r-!I!�-----------------"r,...r, 

1/9 7/15 

2wt 6/14 - q'�7:� ��i f�·.� 

: ,\.:!"��ii1"(�!11Ili:i!ji;i0;:::"�� 
I 

------
,
--

3/11 ��--- JQ � - --�I 
__ ����������--� 

4/12 
1f y(wt) == 2 . cos(2wt + 4") 

9 

I 
I 
I 
I 
I 
I 
I 
I 7 
I 
I 

I I 

8 I 

11 

5 

13 

x(wt) == 3.5 . cos(wt) 

A Lissajous example with PSTricks (idea by Jiirgen Gilg) 

3 

15 

1 



Preface 

More than a decade has passed since the publication of the first edition of The MTEX Graphics 
Companion, and there have been many changes and new developments since 1 9 96. 

The second edition has seen a major change in the authorship: Prank, Michel and Se
bastian have been joined by Denis and Herbert as authors, enriching the book with their 
knowledge and experience in individual subject areas. 

As in the first edition, this book describes techniques and tricks of extended �TEX type
setting in the area of graphics and fonts. We examine how to draw pictures with MTEX and 
how to incorporate graphics files into a �TEX document. We explain how to program pic
tures using METRFONT and METRP05T, as well as how to achieve special effects with 
small fragments of embedded PostScript. We look in detail at a whole range of tools for build
ing graphics in 1EX itself. 

1EX is the world's premiere markup-based typesetting system, and PostScript (on 
which PDP is based) is the leading language for describing the printed page. We describe 
how they can produce even more beautiful results when they work together. 1EX's mathemat
ical capability, its paragraph building, its hyphenation, and its programmable extensibility 
can cooperate with the graphical flexibility and font-handling capabilities of PostScript and 
PDP to provide a rich partnership for both author and typesetter. 

To be able to do justice to the graphics packages that have been further developed since 
the first edition, we decided to omit a description of PostScript and PDP tools, and of font 
technologies, from the printed version of this book. This material, which was covered in 
Chapters 10 and 1 1  of the first edition, has been substantially expanded and is now freely 
available (see http : //xml . cern . ch/lgc2 ) . 1t covers DVI-to-PostScript drivers, the free 
program ghostscript to view PostScript and PDP files, tools for manipulating PostScript and 
PDP files, and suggestions on how to combine the latest font technologies (PostScript Type 1 
and OpenType) with �TEX. 



xxvi PREFACE 

This volume is not a complete consumer guide to packages. In trying to teach by ex
ample, we present hundreds of self-contained code samples of the most useful types of solu
tions, based on proven and well-known implementations. But, given the space available, we 
cannot provide a full manual for every package. Our aim is simply to show how easy it is to 
use a given package and to indicate whether it seems to do what is required-not to dwell 
on the precise details of syntax or options. Nevertheless, we have described in more detail a 
few selected tools that we consider especially important. 

We assume you know some MTEX; you cannot read this book by itself if you have never 
used 1EX before. We recommend that you start with YTEX: A Document Preparation Sys
tem, Second Edition [78 ] ,  or the Guide to YTEX, Fourth Edition [76 ] ,  and continue with The 
YTEX Companion, Second Edition [83 ] ,  to explore some of the many (non-graphical) pack
ages available. 

Why I!\TEX, and why PostScript? 

This book is about E'-TEX, graphics, PostScript, and its child PDP. We believe that the struc
tured approach of a system like E'-TEX is the best way to use 1EX, and E'-TEX is by far the 
most widely used 1EX format. This means that it attracts contributors who develop new pack
ages, and thus some of what we describe works only in E'-TEX. We apologize in advance for 
our E'-TEX bias to those who appreciate the elegance of the original plain 1EX format and its 
derivatives, and we promise them that most of the packages will work well with any 1EX di
alect: the delights of systems such as METAPOST, PSTricks, XV-pic, and MusiXTEX are open 
to all. 

We also want to explain why we talk about PostScript so much. This language has been 
well established for almost two decades as an extremely flexible page-description language, 
and it remains the tool of choice for professional typesetters. Among the features that make 
it so attractive are these: 

• The quantity, quality, and flexibility of Type 1 fonts 

• The device-independence and portability of files 

• The quality of graphics and the quantity of drawing packages that generate it 

• The facilities for manipulating text 

• The mature color-printing technology 

• The encapsulation conventions that make it easy to embed PostScript graphics 

• The availability of screen-based implementations (e.g., ghostscript/ghostview) 

PostScript has spawned an enterprising child, the PDP (Portable Document Format) 
language, used by Adobe Acrobat and now well established as an exchange format for doc
uments on the Web. Designed for screen display with hypertext features, PDP offers a new 
degree of portability and efficiency. Although not the main subject of this book, we neverthe
less mention that E'-T]3X can also produce "rich" PDP documents, and versions of 1EX (e.g., 
pdflatex) that produce PDP directly are available. 



PREFACE 

Again, we apologize to those of you who are disappointed not to read about �TEX's 
association with Mac's QuickDraw, or the Windows GDI, HPGL, PCL, etc ., but with so many 
packages available, we had to make a choice. 

Please note that the absence of a given package or tool in this book in no way implies 
that we consider it less useful or of inferior quality. We do think, though, that we have in
cluded a representative set of tools and packages, and we sincerely hope that you will find 
here one or more subjects to entertain you. 

How this book is arranged 

This book is subdivided in two basic ways: by application area and by technique. We suggest 

xxvii 

that all readers look at Chapter 1 before going any further, because it introduces how we Basic information in 

think about graphics and summarizes some techniques developed in later chapters. We also Chapters 1 and 2 

suggest that you read Chapter 2, which covers the �TEX standard graphics package, since the 
tools for including graphics files will be needed often. Chapter 2 also covers pict 2e, a package 
that reimplements �TEX)S pi cture environment using PostScript, and a further extension 
curve 2e . Together these packages not only do away with most of the limitations inherent 
in the standard version of �TEX)s picture, but also offer new and powerful commands to 
draw arcs and curves with mininal effort. 

We have tried to make it possible to read each of the other chapters separately; you may 
prefer to go straight to the chapters that cover your subject area or look at those that describe 
a particular tool. Two chapters each are dedicated to the generic systems M ETA POST and 
PSTricks . 

3 M ETA FONT and M ETA POST: 'lEX's Mates shows how to exploit the power of lEX's 
META languages (Knuth's METAFONT and its PostScript-based extension META
POST). After introducing the basic functions, the basic M ETAPOST libraries are de
scribed, as well as available lEX interfaces and miscellaneous tools and utilities. 

4 M ETA POST Applications introduces the M ETAPOST toolkit, and explains how to 
use METAPOST's unparalleled expressive power for describing many types of graphs, 
diagrams, and geometric constructs. Applications in the areas of science and engineer
ing, 3-D representations, posters, etc. conclude the overview. 

S Harnessing PostScript Inside �1FX: PSTricks walks the reader through the various com
ponents of the PSTricks language, looking at such things as defining the coordinate sys
tem, lines and polygons, circles, ellipses and curves, arrows, labels, fill areas, and much 
more. 

6 The Main PSTricks Packages takes you even deeper into the world of PSTricks . Armed 
with the knowledge gained in Chapter 5, the reader will find here detailed descriptions 
of the most common PSTricks packages-in particular, pst-plot for plotting functions 
and data; pst-node for mastering nodes and their connections; pst-tree for creating tree 
diagrams; pst-fill for filling and tiling areas; pst- 3d for creating 3-D effects, such as shad
ows and tilting; and pst- 3dplot for handling 3-D functions and data sets. The chapter 
ends with a summary of PSTricks commands and keywords. 



xxviii PREFACE 

The next four chapters discuss problems in special application areas and survey more 
packages: 

7 The XV-pic Package introduces a package that goes to great lengths to define a notation 
for many kinds of mathematics diagrams and implements it in a generic and portable 
way. 

S Applications in Science, Technology, and Medicine looks at chemical formulae and 
bonds, applications in bioinformatics, Feynman diagrams, timing diagrams, and elec
tronic and optics circuits. 

9 Preparing Music Scores first describes the principles of the powerful MusiXTEX package. 
Then several preprocessors providing a more convenient interface are introduced: abc 
for folk tunes, PMX for entering polyphonic music, and M-Tx (an offspring of PMX) for 
dealing with multi-voice lyrics in scores. We also take a short look at LilyPond, a modern 
music typesetter written in C++, and say a few words about lEXmuse. 

10 Playing Games is for those who use �TEX for play as well as for work. It shows you how 
to describe chess games and typeset chess boards (the usual and oriental variants). This 
chapter also describes how to handle Go, backgammon, and card games. We conclude 
with crosswords in various forms and Sudokus, including how to typeset, solve, and 
generate them. 

Our last chapter addresses an area of general interest: color, and some of its common 
uses in �TEX. 

1 1  The World of Color starts with a short general introduction to color. Next comes an 
overview of the xcolor package and the colortbl package, that is based on xcolor. The 
final part discusses the beamer class for producing color slides with �TEX. 

Appendix A describes ways to generate PDF from �TEX. Appendix B introduces CTAN 
and explains how to download the �TEX packages described in this book. 

As mentioned earlier, material about PostScript and PDF tools, as well as information 
about how to use PostScript and Open Type fonts with �TEX, is available as supplementary 
material (see http : / /xml. cern. ch/lgc2), which covers the following subjects: 

PostScript Fonts and Beyond describes the ins and outs of using PostScript fonts with 
�lEX. It also looks at the latest developments on how to integrate Open Type fonts by 
creating lEX -specific auxiliary files (lEX metrics, virtual fonts, etc.) or by reading the 
font's characteristics directly in the Open Type source. 

PostScript and PDF Tools starts with a short introduction to the PostScript, PDF, and 
SVG languages. It then describes some freely available programs, in particular dvips 
and pdflatex to generate PostScript and PDF, ghostscript and ghostview to manipulate 
and view PostScript and PDF, plus a set of other tools that facilitate handling PostScript 
and PDF files and conversions. 



PREFACE 

Typog ra phic conventions 

I t  i s  essential that the presentation of the material conveys immediately its function in the 
framework of the text. Therefore, we present below the typographic conventions used in this 
book. 

Throughout the text, �1EX command and environment names are set in mono-spaced Commands, 

type (e.g., \includegraphics , sidewaystable, \begin{ tabular}) ,  while names of environments, 

package and class files are in sans serif type (e.g., graphicx) . Commands to be typed by packages, . . .  

the user on a computer terminal are shown in monospaced type and are underlined (e.g., 
This is user input). 

xxix 

The syntax of the more complex �1EX commands is presented inside a rectangular box. Syntax descriptions 

Command arguments are shown in italic type: 

\includegraphics* [llx , IIyJ [urx ,  uryJ {file} 

In �1EX, optional arguments are denoted with square brackets and the star indicates a vari
ant form ( i.e., is also optional), so the above box means that the \includegraphics com
mand can come in six different incarnations: 

\ includegraphic s {file} 
\includegraphics [llx , lIy] {file} 
\inc ludegraphics [llx , lIy] [urx ,  ury] {jile} 
\inc ludegraphi cs * {jile} 

\ incl udegraphics * [IIx , lIy] {file} 
\includegraphic s *  [IIx , lIy] [urx ,  ury] {file} 

In case of PST ricks the syntax is not as straight forward and optional arguments may 
have other delimiters than brackets. For this reason they are shown with a gray background 
as in the following example: 

\pstriangle �� 

Lines containing examples with E\1EX commands are indented and are typeset in a Code examples . . .  

monospaced type at a size somewhat smaller than that of the main text: 
\fmfdotn{v}{4} 
\fmfv{decor . shape=circle , decor . f illed=full , 

decor . s ize=2thick}{v l , v2 , v3 , v4} 

However, in the majority of cases we provide complete examples together with the output . . .  with output  . . .  

they produce side by side: 

\us epackage {f eyn} 

$\f eyn{fglf }$ \qquad $\Feyn{fglf}$ 

Note that the preamble commands are always shown in blue in the example source. 

I E��mpleJ 
�-O-l 



xxx PREFACE 

. . .  with several pages In case several pages need to be shown to prove a particular point, these are usually 
framed to indicate that we are showing material from several pages (this setup is repeat
edly used in Section 1 1 .4, where the beamer class for producing color slides with M-JEX, is 
described), as shown here. 

r he Declaration of I ndependence of the Thi rteen 

Colonies 

b y  T h o m a s  Jefferson e t  a l  

J u l y  4 1776 

Self E'vldpnt t rut hs 

We hold these truths to be self-evident 

.. that all men are created eq u a l ,  

.. that they a r e  endowed b y  their Creator w i t h  certa in 

I n a l ienable rights, 

.. that among these are Life, Liberty and the Pursuit of 

Happ iness 

.. That, to secure these rights, Governments are instituted 

among Men,  denvlng their Just powers from the consent of 

the governed 

.. That, when any form of government becomes destructive of 

these ends, It IS the Right of the People to alter or abolish It 

\do cument clas s {beamer} 

\title{The Declaration of Independence of 
the Thirteen Colonie s . }  

\ author{by Thomas Jeff erson et al . }  
\date{July 4 ,  1776} 
\frame{\maketitle} 

\section{The unanimous Declarat i on} 
\begin{frame} 

\f ramet itle{Self-evident truths . }  
We hold the se truths t o  be self-evident , 
\begin{ itemize} 

\ item \textbf {that } all men are created equal , 
\item \t extbf {that} they are endowed by the ir 

Creator with cert ain inal ienable right s ,  
\item \textbf {that} among the se are Lif e , 

Liberty and the Pursuit of Happine s s  . 
\item \t extbf {That} , to secure the se right s , 

Government s are instituted among Men , deriving 
the ir j ust powers from the cons ent of the governed . 

\item \textbf {That} , when any form of government 
becomes destruct ive of the se ends , it is the Right 

. . .  further code omitted . . .  

. . .  with large output . . . For large examples, where the input and output cannot be shown conveniently along-
side each other, the following layout is used: 

\usepackage {feyn} 

\begin{eqnarray} 
\f eyn{f cf} &=& \f eyn{faf} + \f eyn{fpf } + \cdot s \\  

&=& \sum_{n=O} A \ infty \f eyn{f saf s  ( pfsaf s ) }An 

\end{eqnarray} 

----... --+ --@-- + . . .  (1) 

(2) 

Depending on the example content, some additional explanation might appear between 
input and output. 

Example i 
�-O-� 

! Example I , I 
: 0-0-3 I 1... ......................... J 



PREFACE 

All of these examples are " complete" if, for the �TEX examples, you mentally add a 
\documentclass line (with the article class1 as an argument) and surround the body of 
the example with a document environment. In fact, this is how all the examples in this 
book were produced. When processing the book, special �TEX commands take the source 
lines for an example and write them to an external file, thereby automatically adding the 
\documentclass or the relevant lines needed to run the example. This turns each exam
ple into a small but complete source document, which can then be externally processed (us
ing a mechanism that runs each example as often as necessary; see also the next section on 
how to use the examples) .  The result is converted into small EPS graphics, which are then 
loaded in the appropriate place the next time �TEX is run on the whole book. The imple
mentation is based on the fancyvrb package, and is described in more details in The YTEX 
Companion [83]  (Section 3.4.3, in particular pages 1 62- 163). 

In some cases input for the examples may get very lengthy without providing additional 
insight to the reader. In that case some of it is replaced by the line " . . .  further code 
omi tted . . .  " to save space, as shown in Example 0-0-2. Technically this is achieved by 
placing the command \ empt y on a line by itself into the example code (where you will find 
it in the online version of the examples). When the example is processed to produce the 
output graphic this command is ignored, but when the code is read verbatim to show the 
input in the book, it serves as marker to end the code display. 

Throughout the book, blue notes are sprinkled in the margin to help you easily find 
certain information that would otherwise be hard to locate. In a few cases these notes exhibit 
a warning sign, indicating that you should probably read this information even if you are 
otherwise only skimming through the particular section. 

Using the exa m ples 

Our aim when producing this book was to make it  as useful as possible for our readers. For 
this reason the book contains nearly 1 200 complete, self-contained examples illustrating the 
main aspects of the packages and programs covered in the book. 

We have put the source of the examples on CTAN (Comprehensive 1FX Archive 

xxxi 

Omitting example code 

� Watch out 

Y for these 

Network-see Appendix B) in the directory inf 0/ examples /lgc2. The examples are Online example sources 

numbered per section, and each number is shown in a small box in the inner margin (e.g., 
2- 1 - 1  for the Example 2- 1 - 1  on page 26). These numbers are also used for the external file 
names by appending a filetype that corresponds to the source. Most files are in �TEX source 
format (with an extension of . 1  tx for a single page, or . 1  txb for generating several pages 
when giving examples of the use of the beamer class) .  There are also plain 1FX files (exten-
sion . ptx), METRPOST source files (extension . mp) , MusiXTEX preprocessor source files 
(extensions . abc, . abcplus, . pmx, . mtx, and . ly), pic files (extension . piC) ,  and m4 
sources (extension . m4). For each of these types of sources there is a corresponding Unix 
script (runabc, runabcpl, runl tx, runl txb, runly, runm4, runmp, runmtx, runpic, 
runpmx, runptx) ,  which can be used as an example of how to run the given source file on a 
system where all the needed packages and software, as described in this book, are available. 

1 Except for examples in Chapter 1 1  that require the beamer class. 



xxxii PREFACE 

To reuse any of the examples it is usually sufficient to copy the preamble code (typeset 
in blue) into the preamble of your document and, if necessary, adjust the document text as 
shown. In some cases it might be more convenient to place the preamble code into your own 
package (or class file) ,  thus allowing you to load this package in multiple documents using 
\ usepackage . If you want to do the latter, there are two points to observe: 

• Any use of the \usepackage command in the preamble code should be replaced by 
\RequirePackage , which is the equivalent command for use in package and class 
files (see e.g. , Section A.4.S of The YTEX Companion [83] ) .  

• Any occurrence of \makeatletter and \makeatother must be removed from the 
preamble code. This is very important because the \makeatother would stop correct 
reading of such a file. 

So let us assume you wish to reuse the code from the following (rather complex) example: 

\us epackage {pstri cks , pst -xkey} 

\make at letter % ' @ '  now normal " letter " 

\new i f \ i f HRlnner 

\de f \p s s e t @HRlnner# l {\@nameuse {HRlnner# l } }  

\psset@HRlnner{false} 

\def \psHexagon{ \pst @obj ect{psHexagon}} 

\def \psHexagon@ i { \ @ ifnext char ( { \psHexagon@ i i }% 

{\psHexagon@ i i ( O , O ) } } 

\def \psHexagon@ i i (# 1 ) #2{% 

\begin@ClosedObj % closed obj ect 

\pst @@get coor{#l}% get cent er 

\ps setlength\pst@dimc {#2}% set radius t o  pt 

\addt o@ps code{% PostS cr ipt 

}% 

\pst@coor T % xM yM new origin 

\psk@dimen CLW mul % set l ine width 

jRadius \pst @number\pst @dimc \ space % save radius 

\ifHRlnner\ space 3 sqrt 2 div div \f i def % inner? 

jangle \ i f HRlnner 30 \ e l s e  0 \f i def  % start ing angle 

Radius angl e  PtoC moveto % 

6 { % 

j angle angle 60 add def % 

Radius angle PtoC L % 

} repeat 

closepath % 

go t o  f irst point 

6 iterat i ons 

alpha = alpha+60 

l ine to next po int 

closed obj ect 

\def \pst@l inet ype{3}% 

\ showpo int s f alse% 

set l inetype 

do not show base po int s 

end \ end@Clo s edObj % 

\ ignor e spaces}% 

\makeat other 

swallow spac e s  

% ' @ '  i s  re stored a s  " non-Ietter " 



PREFACE 

\psset {unit=7mm} 

\begin{pspicture} ( -3 , -3) (3 , 3)  
\psHexagon [l inewidth=3pt , l inecolor=red] { 2 . 5} 
\ps circle [l inestyle=dashed , l ine color=red] {2 . 5} 

% 

\psHexagon [linewidth=3pt , l inecolor=blue , HRlnner=true] {2 . 5} 
\ps circle [linestyle=dashed , l ine color=blue] {2 . 17} 

\end{pspicture} 

You have two alternatives: You can copy the preamble code (i.e., code colored blue) into your 
own document preamble or you can place that code-but without the \makeatletter and 
\makeatother and with \usepackage replaced by \RequirePackage-in a package 
file (e.g., my hexagon. sty) and afterwards load this "package" in the preamble of your own 
documents with \usepackage{myhexagon}. 

Finding a l l  those packages and prog ra ms 

All of  the packages and programs described in  this book are freely available in public soft
ware archives; a few are in the public domain, but most are protected by copyright and 
available to you under an open-source license. Some programs are available only in source 
form or work only on certain computer platforms, and you should be prepared for a certain 
amount of "getting your hands dirty" in some cases. We also cannot guarantee that later ver
sions of packages or programs will give results identical to those in our book. Many of these 
packages and programs remain under active development, and new or changed versions ap
pear several times a year; we completed this book in spring 2007, and tested the examples 
with the versions current at that time. 

In Appendix B we give full details on how to access CTAN sites and how to download 
files using the Internet. You can also purchase the 1E;X Collection DVD from one of the lEX 
Users Groups. This DVD contains implementations of lEX for various systems, many pack
ages and fonts, in particular it provides you with all the �TEX packages described in this 
book and The M1E;X Companion, Second Edition.  Some programs (such as the ones described 
in the music chapter) are not available on CTAN (or the DVD) and must be downloaded 
from the location indicated in the text. 

xxxiii 

I 
Exampi;l 

I 0-0-4 : 



xxxiv PREFACE 

Acknowledg ments 

We gratefully recognize all of our many colleagues in the 1FX world who develop M-TFX 
packages-not only those described here, but also the hundreds of others that help users 
typeset their documents faster and better. Without the continuous effort of all these enthusi
asts, 1FX would not be the magnificent and flexible tool it is today. 

We have many people to thank. Our primary debt, of course, is to the authors of the 
programs and packages we describe. Every author whom we contacted to discuss problems 
provided us with practical help in the spirit of the 1FX community, and often gave us permis
sion to reuse examples from their documentation. 

We are greatly indebted to Eric Beitz, Ulrich Dirr, Ulrike Fischer, Federico Garcia, Uwe 
Kern, Claudia Krysztofiak, Aaron Lauda, Susan Leech O'Neale, Ross Moore, Janice Navarria, 
Han-Wen Nienhuys, Ralf Vogel, and Damien Wyart, for their careful reading of sections of 
the manuscript. Their numerous comments, suggestions, corrections, and hints have sub
stantially improved the quality of the text. Special thanks go to Hubert GaBlein, who greatly 
helped us at all stages of preparation, verification, and typesetting. 

As he did with The YTEX Companion, Second Edition, Richard Evans of Infodex Index
ing Services in Raleigh, North Carolina, undertook the groundwork for the comprehensive 
indexes in the back of the book-thank you, Dick. 

On the publishing side, we wish to thank Peter Gordon, our editor at Addison-Wesley, 
who gave us much-needed support and encouragement over the three years duration of this 
project. When it came to production, Elizabeth Ryan was unfailingly patient with our id
iosyncrasies and steered us safely to completion. Jill Hobbs edited our dubious prose into 
real English; we greatly appreciate their work. 

* * * 

Our families and friends have lived through the preparation of this book over several 
years, and we thank them for their patience and moral support. 

Feedback 

We would like to ask you, dear reader, for your collaboration. We kindly invite you to  send 
your comments, suggestions, or remarks to any of the authors. We shall be glad to correct 

To Err is Human any mistakes or oversights in a future edition, and are open to suggestions for improve
ments or the inclusion of important developments we may have overlooked. Any mistake 
or oversight found in this book and reported represents a gain for all readers. The latest 
version of the errata file (with contact details) can be found on the B\TEX project site at 
http : //www . latex-proj ect . org/ guides /lgc2. err where you will also find an on
line version of the index and other extracts from the book. 

Michel Goossens 
Frank Mittelbach 

Sebastian Rahtz 
Denis Roegel 
Herbert VoB 

June 2007 



C H A P T E R  1 

Gra phics with It\TEX 

1 .1  Graphics systems and typesetting . .  
1 .2 Drawing types . . . .  . 
1.3 TEX's interfaces . . . .  . 
1.4 Graphics languages . .  
1.5 Choosing a package . .  

2 
3 
6 

. 1 0 

. 21 

The phrase ''A picture paints a thousand words" seems to have entered the English lan
guage thanks to Frederick R. Barnard in Printer's Ink, 8 December 1921, retelling a Chinese 
proverb.] However, while �1EX is quite good at typesetting words in a beautiful manner, 
IHEX manuals usually tell you little or nothing about how to handle graphics. This book at
tempts to fill that gap by describing tools and Tt,Xniques that let you generate, manipulate, 
and integrate graphics with your text. 

In these days of the multimedia PC. graphics appear in various places. With many prod
ucts we get ready-to-use collections of clipart graphics; in shops we can buy CD-ROMs with 
"the best photos" of important places; and so forth. As we shall see. all such graphics can be 
included in a t'TF,X document as long as they are available in a suitable format. Fortunately, 
many popular graphic formats either are directly supported or can be converted via a pro
gram that allows transformation into a supported representation. 

If you want to become your own graphic artist. you can use stand-alone dedicated 
drawing tools, such as the freely avaiJable dia (www . gnome . org/pro jects/dia) and 
xfig (www . xfig . org/userman) on Linux. or the commerciaJ products Adobe Illustrator 
(www . adobe . comlillustrator) or Corel Draw (www . corel . com/coreldraw) on a 
Mac or Pc. Spreadsheet programs, or one of the modern calculation tools like Mathematica 

1 Paul Martin Lester (commfaculty. fullerton. edu/lester/writings/letters .html) states that 
the literal translation of the "phony" Chinese proverb should rather be "A picture's meaning can express len thou
sand words". He, rightly, emphasizes that pictures cannot and should not replace words, but both are comple
mentary and contribute equally to the understanding of the meaning of a work. 



2 GRAPHICS WITH IttTEX 

(01 ....... . wolfram. com/mathematical, Maple (www . maplesoft . com/maple). and MAT
LAB (w ... w . mathworks . com/matlab), or their freely available GNU variant Octave (www . 
octave . org) and its plotting complements Octaviz (octaviz . sourceforge . net) and 
Octplot (octplot . sourceforge . net), can also produce graphics by using one of their 
many graphical output representations. With the help of a scanner or a digital camera you 
can produce digital photos, images of hand-drawn pictures, or other graphics that can be 
manipulated with their accompanying softw"are. in all these cases it is easy to generate files 
that can be directly referenced in the MTEX source through the commands of the graphics 
package described in Chapter 2. 

If needed, M-TfX can also offer a closer integration with the typesetting system than that 
possible by such programs. Such integration is necessary if you want to use the same fonts 
in text and graphics, or more generally if the "style" of the graphics should depend on the 
overall style of the document. Close integration of graphics with the surrounding text clearly 
requires generation of the graphic by the typesetting system itself, because otherwise any 
change in the document layout style requires extensive manual labor and the whole process 
becomes very error-prone. 

* * * 

This chapter considers graphic objects from different angles. First. we look at the require
ments that various applications impose on graphic objects. Next, we analyze the types of 
drawings that appear in documents and the strategies typically employed to generate, in
tegrate, and manipulate such graphics. Then, we discuss the interfaces offered by 1tx for 
dealing with graphic objects. Armed with this knowledge, we end the chapter with a short 
survey of graphics languages built within and around TEX. This overview will help you se
lect the right tool for the job at hand. In fact, the current chapter also gives some examples 
of languages and approaches not covered in detail elsewhere in the book. Thus this survey 
should provide you with enough information to decide whether or not to follow the pointers 
and obtain such a package for a particular application. 

1 .1 Graphics systems and typesetting 

When speaking about "graphic objects", we should first define the term. One extreme posi
tion is to view everything put on paper as a graphic object, including the characters of the 
fonts used. This quite revolutionary view was, in fact, adopted in the design of the page de
scription language PostScript, in which characters can be composed and manipulated by 
exactly the same functions as other graphic objects (we will see some examples of this in 
Chapters 5 and 6, which describe PSTricks and its support packages). 

Most typesetting systems, including TEX, do not try to deploy such a general model but 
instead restrict their functional domain to a subset of general graphic objects-for exam
ple, by providing very sophisticated functions to place characters, resolve ligatures, etc., but 
omitting operators to produce arbitrary lines, construct and fill regions, and so forth. As a 
result the term "graphics" for most M-TEX users is a synonym for "artwork", thereby ignoring 
the fact that �1'£X already has a graphics language-the picture mode. 



'.2 Drawing types 

When discussing the graphical capabilities of an ideal typesetting system. we must re
member that different applications have different. sometimes conAicting requirements: 

• One extreme is the need for complete portability between platforms; another is to take 
into account even differences in the way printers put ink onto paper. 

• A graphic might need to be correctly scaled to a certain size depending on factors of the 
visual environment created by the typesetting system. e.g., the measure ofthe text. 

• It is also possible that parts of the graphic should not scale linearly. For example, it 
might be important for readability to ensure that textual parts of a graphic do not be
come smaller or larger than some limit. It might also be required that, when a graphic 
is scaled by. say, 10% to fit the line. any included text must stay the same, so as to avoid 
making it larger than the characters in the main document body. 

• It might be required that the graphical object be closely integrated with the surrounding 
text, such as by using the same fonts as in other parts of the document or more gener
ally by containing objects that should change their appearance if the overall style of the 
document is changed. (The latter is especially important if the document is described 
by its logical content rather than by its visual appearance. with the intention of reusing 
it in various contexts and forms.) 

As eTEX is a general-purpose typesetting system used for all types of applications, the pre
ceding requirements and more might arise in various situations. As we will see throughout 
this book. a large number of them can be handled with grace, if not to perfection. In some 
cases an appropriate solution was anything but obvious and developing the mature macro 
packages and programs we now have took a decade or more of work. 

1 .2 Drawing types 

The typology of graphics at the beginning of this chapter focused on the question of the 
integration with the �TEX system. and divided the graphics into externally and internally 
generated ones. A different perspective would be to start from the types of graphics we might 
encounter in documents and discuss possible ways to generate and incorporate them. 

A first class of graphics to be included are treated by �TEX as a single object. a "black 
box". without an accessible inner structure. �TEX. via its graphics package (described in 
Chapter 2), is interested only in the rectangular dimensions ofthegraphic image, its "bound
ing box". The graphics will be included in the output "as is", possibly after some simple ma
nipulation, such as scaling or rotation. On top of that LATEX can also produce a caption and 
legend to allow proper referencing from within the document. The main categories are as 
follows: 

I .  Free-hand pictures drawn without a computer. such as the drawing of a glass bead in 
Figure 1 . 1 .  For use in mfX" such a graphic must to be transformed into a digital image, 
using, for example. a scanner. 

3 



4 

••• 
. �. - .:�' -: . . ;-

n 

u 

Figure 1 . 1 :  Pen and ink drawing of a bead 

GRAPHICS WITH IttTEX 

Figure 1.2: Bitmap drawing output 
created with GIMP 

2. ':4.rt" graphics drawn with bitmap lools on a computer, such as the example in Figure 1.2, 
which are to some extent the computer equivalents of pen and ink drawings. This draw
ing was created with GIMP, the GNU Image Manipulation Program (www . gimp. org), 
using a deliberately crude technique. The distinctive characteristic of this type of draw
ing is that the resolution chosen in the generation process cannot easily be changed 
without loss of quality (or alternatively without a lot of manual labor), In other respects 
su(;h a pictun: is like a free-hand drawing: then: is gmt:rally no desire [0 inlegrate Lhe 
drawing with the text or to worry about conformity of typefaces. 

3. Photographs either created directly using a digital camera or scanned like hand-drawn 
pictures. In the latter case the continuous tones of the photograph are converted into 
a distinct range of colors or gray levels (black-and-white photographs treated in this 
way are known as half-tones). Full-color reproduction requires sophisticated printing 
techniques, but this issue arises at the printing stage and does not normally affect the 
typesetting. Figure 1 .3 shows how �TEX can distort the image. 

A second class of graphics is the "object -oriented" type, where the information is stored 
in the form of abstract objects that incorporate no device-dependent information (unlike 
bitmap graphics, where the storage format just contains information about whether a cer
tain spot is black or white, making them resolution-dependent). This device independence 
makes it easy to reuse the graphic with different output devices and allows us to manipulate 
individual aspects of the graphic during the design process. 

There are essentially three types of such graphics systems: one in which �l'£X mainly 
remains passive (it just takes into account the bounding box of the picture), and two others 
that relate to graphics that contain more complex text, in particular formulae. For the latter 
types it is important to use I§IEX to typeset text within the graphic because the symbols in 
formulae and their typeset form carry a precise semantic meaning. Therefore one must take 
great care to ensure that their visual representation is identical in both text and associated 
graphics. 

1 .  Self-contained object-oriented graphics. The ducks of  Figure 1.4, which was produced 
with Adobe Illustrator, were created by drawing one object in terms of curves and then 



1.2 Drawing types 

Figure 1.3: Digitally transformed image 
(vertically stretched) 

2?�v � HUMANIST � 
rules 

R;;;'� 
Figure 1 .4: Object-oriented drawing 

copying and rotating it many times. This type of drawing often also contains textual 
annotations comparable to typeset text. Although it is usually possible to add text to 
the graphic with external tools such Illustrator, it is not in general possible to use �lEX 
to typeset this text (although psfrag provides a solution in some circumstances). 

2. Algorithmic display graphics (e.g., histograms, graphs), These drawings are created with
out human interaction but often contain text that should match the document text. The 
scale and distance between elements is an essential characteristic of the drawing. 
Extensive plotting and diagram facilities are provided by many �1f,X packages building 
on the picture mode, by generic lEX packages such as PIGEX [ 1 39[, DraTex [39[, and 
tikz [ 1 151; and by PSTricks (see Chapters 5 and 6). All these solutions let us deploy the 
full power of �TEX's typesetting functions within textual parts of the graphic and thus 
integrate it perfectly with surrounding document elements. 

3. Algorithmic structural graphics, which can be derived from a textual representation. Un
like with the previous category, often merely the spatial relationship between elements 
is important with these graphics, not the elements' exact position or size. Examples are 
category diagrams, chemical formulae, trees, and flowcharts. Such graphics are natu
ral candidates for generation by graphics languages internal to �TEX that provide high
level interfaces which focus on objects and relationships and decide final placement and 
layout automatically. 
Of the general-purpose languages, the METAPOST system (Chapters 3 and 4) is per
haps the most flexible one for this type of graphics, although PiGEX, XV-pic (Chapter 7), 
PSTricks (Chapters 5 and 6), and DraTex are also suitable. They are based on different 
paradigms, and differ greatly in approach, focus, and user interface, but they all have 
found their place in the �TEX world. We describe small specialized languages tailored 
for specific application domains such as physics, chemistry or electronics diagrams 
(Chapter 8), music (Chapter 9), and games (Chapter 10). For special applications such 
as tree drawing, many other �TEX languages are available as well (see [ 1 31 ,  for instance). 

5 



6 GRAPHICS WITH IttTEX 

As we see, many types of graphics exist, each with its own requirements. The first three 
types essentially present themselves as black boxes to tHEX and thus their use within a LA'JEX 
document involves no morc than their inclusion and in some cases their manipulation as a 
whole. The necessary functionality is discussed in detail in Chapter 2. 

In scientific texts, the other types of graphics are by far the morc common. Examples in
clude maps [ 1 191,  chemical structures, or commutative diagrams. They are for the most part 
based on an object-oriented approach, specifying objects and their relations in an abstract 
way using a suitable language. Close integration with the surrounding text can be achieved. 
if needed, by choosing one of the graphics languages described in this book. 

In some cases interactive drawing programs can be instructed to output their results in 
one ofthe graphics languages built directly on top of�TEX's picture mode. Widely used ex
amples under Linux are dia and xfig, whose pictures, although externally produced, can be 
influenced by layout decisions within the document. Note, however, that such mechanically 
produced �TEX code is normally not suitable for further manual editing and manipulation 
is practically limited to layout facilities implemented by the chosen graphics language. Nev
ertheless, in certain situations this approach can offer the best of two worlds. 

1 .3 lEX'S interfaces 

To understand the merits of the different approaches to graphics as implemented by vari
ous packages, it is helpful to consider yet another point of view: the interfaces provided by 
l'EX for dealing with them. Describing the methods by which graphics can be generated, in
cluded, or manipulated will give you some feeling for such important issues as portability, 
quality, and resource requirements of individual solutions. We assume that the reader has a 
reasonable understanding of how lEX works-that is, the progression from source file to a 
DVI file that is processed by a driver to produce printed pages. Of course, the DVI stage can 
be skipped when using pdflatex, but the various ways of including the graphics material are 
still identical. 

In the foJlowing we first look at ways of including externally generated graphics (i.e., 
those that appear as black boxes to lEX) and methods to manipulate them. Then we consider 
interfaces provided to build graphics languages within lEX. 

1 .3.1 Methods of integration 

lEX offers two major facilities for integrating graphics as a whole: one involving the 
\special command, and the other using the font interface. 

Using \special commands 

The TEXbook [70] does not describe ways to directly include externally generated graphjcs. 
The only command available is the \special command, which by itself does nothing, but 
does enable us to access capabilities that might be present in the post-processor (OVI driver 
or pdflatex). To quote Knuth [70, page 229]: 

The \special command enables you to make use of special equipment that might 
be available to you, e.g., for printing books in glorious lEXnicolor. 



1 .3 TEX's interfaces 

Saying it differently, Knuth saw that there might be a need to enrich the 1EX language but 
was reluctant to provide primitives for further graphical operators and data structures or, in 
case of the inclusion of external graphics, a well-defined interface. 

Thus \spe c i al allows us to access special features of a driver program that translates 
the DVI output of 1EX into a language understood by the output device. If this driver has 
mechanisms to include external graphics, then we can import such graphics. 1 In principle, 
the price that must be paid is non-portability, since source files will contain calls to a non
standard interface-and, indeed, originally, authors of different drivers had implemented 
different conventions. However, in 1 993 Leslie Lamport, Frank Mittelbach, and Chris Row
ley designed a high-level interface for �TEX that abstracts from the underlying low-level syn
tax understood by the individual drivers. This interface was implemented in 1 994 by David 
Carlisle and Sebastian Rahtz in �TEX 2E 's g raph ics package [ 1 5] , which is discussed in detail 
in Chapter 2. That chapter also introduces the pict2e package, which reimplements �1EX's 
pi cture environment and eliminates many of its limitations. In a similar manner the use 
of \spe c i al commands to address the color capabilities of some drivers was made trans
parent with the high-level interface provided by the xcolor package described in Chapter 1 1 . 

By offering a set of high -level commands, the dependency on the idiosyncrasies of the 
driver used is effectively eliminated from the document. The only place where one has to 
change a document using such commands is a single line in the preamble that controls how 
the commands are implemented (by loading a driver-specific control file) .  

Using fonts or  ha lf-tones 

External graphics can also be included using 1EX's font mechanism. A font is described to 
1EX by its external name and by a TFM file that contains the metric ��" It 

• 

information about the glyphs in the font. The shape of the character " � ..  � 

is irrelevant as far as 1EX is concerned since the actual printing of the . '  . 

PK font format. This technique is effective and portable but it has � � . \ . 
the drawback that scaling cannot easily be performed without going :.. ........ . I"" .. 

back to the original artwork to produce a font at a different resolution. ;igur�: Scanned car-

Moreover, 1EX has a limit on the number of fonts it can load. toon converted to font 

Figure 1 .5 is a cartoon by Duane Bibby that was scanned, saved as a bitmap graphic 
file, converted into PBM,2 and finally turned into a single character PK font, called 
1 i on, with the help of Angus Duggan's pbmtopk.3 It was included with a declaration like 
\font\li on=l ion to load the font followed by {\l i on A} at the point where it should 
appear. 

1 When using pdflatex the DVI intermediate step is skipped, since the pdflatex processor itself handles the 
inclusion of the graphics in the PDF output file. In this case PNG, JPEG, and PDF files can be included natively, 
but EPS cannot. 

2 The PBM (portable bitmap) format is an intermediate graphic format for transforming one format into an
other. The netpbm Project (netpbm . sourcef orge . net /do c / index . html ) has more than 200 programs to 
convert between graphics formats. The ImageMagick Project (www . imagemagi ck . org) also supports more than 
90 different formats and allows conversions between them. 

3 See CTAN: graphics /pbmt opk. FriedheIm Sowa has developed a more sophisticated program, bm2font, 
that also accepts other graphics formats, such as PCX, GIF, and TIFF, and produces one or more PK and their 
corresponding TFM files. See gnuwin32 . sourcef orge . net /package s/bm2f ont . htm for more details. 

7 



8 GRAPHICS WITH INEX 

Half-tone drawings can be included by making up a font that consists of gray-level 
blocks and combining them together in the normal 1FX way. Both Donald Knuth [ 75 ]  and 
Adrian Clark [ 1 7] (see also CTAN: font s /halft one ) have demonstrated this technique. 
The drawing can be scaled, but it is not easy to put text within the picture boundary, and 
one is dependent on the original resolution. 

Half-toning can also be achieved directly in PostScript, a rather less cumbersome 
method than 1FX half-toning, albeit at the cost of device independence and ft.exibility. 

1 .3 .2 Methods of manipu lation 
The facilities in 1FX for manipulating graphics (e.g., scaling or rotating) provided by one of 
the previously mentioned methods appear at first glance to be relatively poor. If the graphic 
is included as one or more font characters, then scaling is in principle possible, since 1FX 
can load fonts at any size. At the printing stage, however, the driver program will probably 
complain that it cannot find the font at the appropriate size, which means that one has to 
regenerate it at the size requested, a task that is (to say the least) time-consuming. 

The only alternative is to resort to the \spe c i al capabilities of the driver via the 
g raph ics package interface mentioned earlier and include the image as a bitmap. 

The situation is slightly different when the half-tone approach is chosen, as then the 
fonts in question are M ETA FONT fonts and can be generated automatically at the requested 
size by a modern driver, assuming that their sources are available. 

1 .3 .3 TEX's graph ics hooks 
Graphics are not always around in some form just waiting to be included-often we have to 
produce them in the first place. In the following sections we explore the facilities available in 
the 1FX world for generating graphics. 

Usi ng TEX's built- in com mands 

As already observed, 1FX does not provide a rich set of graphic primitives. What we find are 
built-in functions that let us draw horizontal or vertical lines of arbitrary thickness-even 
sloped lines are lacking. In addition, 1FX allows us to position objects with high accuracy 
anywhere on the page. The only other functions offered are primitives for placing objects in 
matrix structures where the exact placement is determined automatically by the size of the 
objects (e.g. ,  the tabular and array environments in �TFX). 

But even with this minimal set it is possible to define powerful graphics languages, es
pecially if we consider the character «." as a building block, since arbitrary lines and curves 
can be drawn by placing hundreds of tiny dots next to each other. 

Using fonts 

Instead of using a " . " character as an individual graphic object, Leslie Lamport provided 
�TFX with a basic set of picture-drawing macros that use special fonts containing line seg
ments at various angles and circle and curve fragments at various sizes. 



1 .3 TEX's interfaces 

These macros have allowed programmers to produce surprisingly sophisticated output, 
beyond the quite respectable uses to which the pi cture environment of basic �TEX can be 
put. The XV-pic package (see Chapter 7) follows a similar approach and has its own set of 
fonts for arrowhead styles. 

The approach of using fonts is not limited to working with technical drawing fragment 
fonts created with METR FONT. Music, chess, and Go fonts, which allow you to typeset mu
sical scores, chessboards, and Go boards using 1FX as a layout engine, are available as well; 
these are described in Chapters 9 and 10. 

Using \spe c i al com ma nd s  

We have already seen that the \ spe c i al  command can be  used to  access graphics inclusion 
capabilities provided by DVI drivers. Drivers' extended drawing capabilities can be accessed 
in the same way. 

To understand how the \ spe c i al command works, you can think of it as producing an 
invisible space annotated in some way with the text of its argument. Depending on where in 
the source the \spe c i al command was encountered, this «invisible space" appears some
where on the typeset page, just as a word in the source finally appears somewhere in a para
graph. Thus, after typesetting a document with 1FX, each \spe c i al command is associated 
with a position on a page. 

When a driver encounters such an «invisible space" produced by a \spe c i al, it knows 
its position on the current page. It then reads the annotation (i.e., the argument of the 
\spe c i al command) and ( if it understands it) carries out the action requested. Therefore, 
if the driver offers such capabilities, it is possible to denote points and regions for special 
treatment, ranging from drawing a line between two points to rotating an area after type
setting by 1FX. This is the mechanism by which some of the more complicated graphic 
functions of some packages described in this book are implemented. Back in 1 982 Knuth 
wrote about using the \spe c i al command and conventions for the syntax within its argu
ment [ 70, page 229] : 

[ . . .  ] the author anticipates that certain standards for common graphic operations 
will emerge in the 1FX user community, after careful experiments have been made 
by different groups of people; then there will be a chance for some uniformity in 
the use of the \spe c i al extensions. 

Unfortunately, such a standard never emerged despite various efforts. Today, for graphics 
inclusion, we have a high-level interface that abstracts from the underlying driver facili
ties. The situation with respect to other drawing capabilities of driver programs via the 
\spe c i al command is less satisfactory, as there exists neither a standard nor a high-level 
interface that hides the capabilities of different drivers. However, as these capabilities de
pend so strongly on the target language of the driver, it may be that useful standardization 
cannot be achieved. Given the dominance of PostScript in the printer and typesetting mar
ket, standardization of \ spe c i al primitives for PostScript drivers is probably the most use
ful thing to do. In effect, this is the route taken by PSTricks (see Chapters 5 and 6) .  

9 



10 GRAPHICS WITH �TEX 

1 .4 Graph ics languages 
A number of distinct ways of producing graphics exist, each with its own advantages and 
disadvantages in terms of ease of generation, flexibility, device independence, and ability 
to include arbitrary lEX text. With the help of �TFX's graphics package it is possible to ma
nipulate a graphic object as a whole using a variety of standard operations, such as scaling, 
rotation, and so forth. However, to manipulate individual parts of a graphic these parts need 
to be addressable in a suitable manner-Le., the source of the graphic must be in some ab
stract graphic language. 

After a short description of the general-purpose device- and resolution-independent 
graphics languages PostScript, PDF, SVG, and CGM, the remainder of this section presents a 

"roadshow" of graphics languages, explaining how they make use of the interfaces provided 
by lEX or, in the case of external graphics languages, how they can interact with the �lEX 
system to produce impressive documents. Several of these languages are discussed in detail 
in later chapters; the others are included here to provide a first-level introduction. 

1 .4. 1 Generic graphics lang uages 

The current section describes important features of generic languages that are most often 
used to store graphics information today. On medium- and high-volume printers most �TEX 
output is nowadays translated into PostScript or PDF for high-quality printing or view
ing. On the Web, SVG has become an important player for all kinds of graphics, especially 
graphic arts applications while WebCGM is available for more technical applications. 

PostScript 

PostScript [5 ]  is a device- and resolution-independent, general-purpose, programming 
language. PostScript programs describe a complete "output page" and are written in the 
form of ASCII source that can be viewed on a computer display with a previewer, such as 
ghostview (www . es . wi s e . edu/ -ghost / gv), and printed on a small laser printer or a 
high-resolution phototypesetter. 

In the PostScript language the following can be freely combined [ 1 , 2, 16 ] : 

• Arbitrary shapes, which can be constructed from lines, arcs, and cubic curves. The 
shapes may self-intersect and contain disconnected sections and holes. 

• Painting primitives, which permit shapes to be outlined with lines of any thickness, 
filled with any color, or used as a clipping path to crop any other graphic. 

• A general coordinate system, which supports all combinations of linear transforma
tions, including scaling, rotation, reflection, and skewing. These transformations apply 
uniformly to all page elements, including text, graphical images, and sampled images. 

• Text characters, which are treated as graphical shapes that may be operated on by any 
of the language's graphics operators. This is fully true for PostScript Type 3 fonts, where 
character shapes are defined as ordinary PostScript language procedures. In contrast, 
Adobe's PostScript Type 1 format defines a special smaller language where character 
shapes are defined by using specially encoded procedures for efficiency of rendering. 



1 .4 Graphics languages 

• Images (such as photographs or synthetically generated images) ,  which can be sampled 
at any resolution and with a variety of dynamic ranges, so that their rendering on the 
output device can be closely controlled. 

• Several color models (device-based: RGB, HSB, CMYK; standard-based: CIE) and con
version functions from one model to another. 

• Compression filters, such as JPEG and LZW. 

All current implementations of1FX include a DVI -to-PostScript driver or generate Post
Script or PDF directly. Commercial or shareware solutions include Textures (www . blue sky . 
com/product s /t extures . html) on Macintosh and Personal 1EX's PCTeX (www . pctex . 
com) and Michael Vulis's VTeX ( Visual 1EX; see www . mi cropre s s - inc . com).  In addition, 
for more than a decade Tom Rokicki's dvips driver has been rightly regarded as the standard 
by which other drivers are measured, and nowadays dvips is part of almost all 1FX distribu
tions. It is highly configurable and lets the user specify almost all settings to control output 
devices in configuration files or on the command line. dvips will also automatically generate 
missing fonts, if needed. 

To view PostScript files, one can use Aladdin ghostscript (www . c s . w i s e . edu/ 

,.., gho s t )  a freely available PostScript interpreter written by L. Peter Deutsch. It can be used 
to prepare output for various printing devices, to convert PostScript into raster formats, and 
to manipulate PostScript (e.g., calculating the bounding box of an EPS file) .  The program 
also handles PDF (see below) . 

The Portable Document Format 

Adobe's Portable Document Format (PDF) [6] is a direct descendant of the PostScript 
language. Whereas PostScript is a full-blown programming language, PDF is a second
generation, more light-weight graphics language optimized for faster download and display. 
Most of the advantages of PostScript remain: PDF guarantees page fidelity, down to the small
est glyph or piece of white space, while being portable across different computer platforms. 
For these reasons, PDF is being used ever more frequently in the professional printing world 
as a replacement for PostScript. Moreover, all present -day browsers will embed or display 
PDF material, alongside HTML, using plug-in technology. The latest versions of PDF ( 1 .4 
and later) have added many new features that are especially useful for multimedia applica
tions. However, to ensure that files can be handled with minimal problems by different ap
plications and printers, it is advisable to limit functions to those offered by PDF 1 .4, or even 
PDF 1 .3 .  

The main characteristics of PDF, as compared to PostScript, are: 

• PDF offers full page independence by clearly separating resources from page objects . 

• PDF, in contrast to PostScript, is not a programming language, i.e., PDF cannot calcu
late values, although a small set of function objects allow for some simple arithmetic. 

• PDF files are compact and fully searchable. Markup annotations and interactive hyper
links make PDF files easy to navigate. 

1 1  



1 2  GRAPHICS WITH �EX 

• PDF's security features allow PDF documents to have special access rights and digital 
signatures applied. 

• Font outlines can be subsetted or font substitution can even completely eliminate the 
need for font inclusion (although this feature should be handled with great care, espe
cially with 1FX fonts, which use many nonstandard characters, for example, in its math
ematics fonts) .  

• PDF has advanced compression features to keep the size of PDF files small. PNG and 
JPEG images can be inserted directly. 

• PDF offers a transparent imaging model (PostScript uses an opaque model) and fea
tures multimedia support. 

• Tagged PDF-a stylized form of PDF that contains information on content and struc
ture, lets applications extract and reuse page data (text, graphics, images) .  For instance, 
tagged PDF allows text to refiow for display on handheld devices, such as Palm OS or 
Pocket PC systems or portable phones. 

PDF can be viewed and printed on many different computer platforms by download
ing and installing Adobe Reader. l Other free PDF viewers are ghostscript (www . es  . wi s e . 
edu/ -ghost ) , evince (www . gnome . org/proj e et s/ evinee ) , and xpdf (www . foolabs . 
eom/xpdf /home . html) .  Various ways of generating PDF from �TEX are described in Sec
tion A. 

Sca lable Vector Graphics 

As the Web grew popularity and complexity, users and content providers sought ever bet
ter, more precise, and, above all, scalable graphical rendering. As a complement to PDF, 
which provides a mostly static and high-quality page image, the World Wide Web Con
sortium developed SVG,2 an open-standard vector graphics language for describing two
dimensional graphics using XML syntax, which lets you produce Web pages containing high
resolution computer graphics. Tim Berners-Lee, the inventor of the World Wide Web, wrote 
(www . w3 . org/Graphies /SVG/ About . html) :  

[ . . .  ] SVG: at last, graphics which can be rendered optimally on all sizes of device. 

As an XML instance, SVG consists of Unicode text enclosed in graphics elements: 

• Graphics paths consisting of polylines, Bezier curves, which can be simple or com
pound, closed or open, (gradient) filled or stroked; they can be used for clipping and 
for building common geometric shapes. 

• Patterns, markers, templates, and symbol libraries. 

• Transformations, which can be nested. 

• Direct inclusion of bitmap or raster images (PNG, JPEG).  

1 Freely downloadable from www . adobe . com/product s/ acrobat/readermain . html . 

2SVG stands for Scalable Vector Graphics. The W3C Web site (www . w3 . org/Graphi cs /SVG) is a good first 
source of information on SVG and has a lot of pointers to other sites. The current specification (version 1 . 1 )  of the 
SVG language is available at www . w3 . org/TR/SVG1 1 .  



1 .4 Graphics languages 

• Clipping, filter, and raster effects; alpha masks. 

• Animations, scripts, groupings and styles. 

• SVG fonts, which can be independent from the fonts installed on the system [36] . 

To fully exploit the possibilities of �TFX on the Web, several DVI drivers can generate 
SVG: Adrian Frischaufs dvi2svg (www . act i vemath . org/ -adrianf /dvi2svg), Rudolf 
Sabo's dvisvg (dvi svg . sourcef orge . net ) ,  and Martin Gieseking's dvisvgm (dvi svgm . 

sourceforge . net ) .  

CGM and WebCGM 

CGM (Computer Graphics Metafile) is an ISO standard [54] for defining vector and com
posite vector and raster pictures. CGM is important in the fields of technical illustration, in
teractive electronic documentation, geophysical data visualization, automotive engineering, 
aeronautics, and the defense industry. It is specifically optimized for technical graphics with 
long life cycles, very complex illustrations needing large file sizes, re-authoring capabilities, 
interoperability (lots of data exchange) ,  and compliance with industry standards. 

As a complement to the more general-purpose SVG language the W3C, together with 
the CGM-Open Consortium (www . cgmopen . org), developed WebCGM (www . cgmopen . 
org/te chni cal /webcgm_svg . htm) . Technically speaking, WebCGM is a reasonably full 
profile of CGM optimized for use on the Web. It features a rich set of graphics elements, 
text strings defined as Unicode UTF-8 or UTF- 1 6, complex paths, poly-symbols, smooth 
curves defined as piecewise cubic Bezier elements, and a large set of color models. In addi
tion WebCGM can integrate PNG and JPEG elements inside vector components. 

Many commercial graphics tools provide CGM output; xfig (www . xf ig . org) is a free 
tool where CGM can be obtained with the help of Brian Smith's transfig (CTAN: graphi cs / 

transf ig) . 

1 .4.2 lEX-based g raph ics languages 

Several graphics languages that use the hooks provided by 1FX have been developed over 
the years. They differ in their approach and focus and thus offer a wide range in portability, 
resource usage, and flexibility. 

Character-based diagrams and pictures 

Pictures built from fonts with fixed-width characters can be produced on any machine with 
nearly every editor and are easily incorporated into �TFX using the verbat im environment. 
However, they have the disadvantage of being crude, very limited, and rather cumbersome 
to generate. 

PICTEX 

A hybrid approach to drawing pictures without any new fonts is available through Michael 
Wichura's brilliant PlaEX [ 1 38, 1 39] , which implements a complete plotting language mainly 
by setting a myriad of dots taken from a standard 1FX font. Its main drawback is the large 
computation and memory overhead (pictures can take several minutes to process on smaller 

1 3  



1 4  

No. 
of 

burials 

GRAPHICS WITH �EX 

machines, and it is not at all easy to use PlaEX with other packages without running out of 
1EX "dimension" variables 1 ). It has the advantage of scalability and ease of inserting plain 
1EX text, and the complexity of the drawing language is more a design feature than a neces
sary concomitant to the approach. 

\usepackage{rawf ont s , p i ct ex} 

\beginpi cture \normalgraphs \l ongt icklength=3pt 

\setcoordinate syst em units < . 02in , . 0 1 in> 

\ setplot area x from 1780 to 1 990 , y from 0 to 220 

\axis bottom label {de cade } t i cks numbered from 1780 to 1980 by 20 / 

\ axi s left label {\stack {No . , of , burials}} 

t i cks withvalue s 20 40 60 80 1 00 1 20 140 160 180 200 / 

from 0 to  200 by 40 / 
\setbars <-2pt , Opt > breadth <Opt > baseline at y = 0 

\l inethi ckne ss=4pt \plot " decade . wom " 

\setbars < 2pt , Opt > bre adth <4pt > basel ine at y = 0 

\l inethi ckne ss= . 25pt \pl ot " decade . men " 

\endpi cture 

1 20 -

1 00 -

80 -

60 -

40 -

20 oil 11 I I 
1 780 1 800 1 820 1 840 1 860 1 880 1 900 1 920 1 940 1 960 1 980 

decade 

This example shows a histogram with the number of burials for men (white entries) 
and women (black entries) per decade in the Protestant Cemetery in Rome [95] ; the authors' 
input is shown above the picture. 

Advantages of a system like PlaEX are that annotations (e.g., the title, the labels on the 
axes) are typeset by �TEX, and can thus include maths formulae, and that parts of the graphic 
can be shaded, rotated, and colored using standard �TEX packages. This flexibility gives the 
user considerable power to improve the graphic's appearance while retaining compatibility 
with 1EX fonts. 

1 This should no longer be a problem when using etex or pdftex. You can also try Andreas Schnell's pictexwd 
package, which reimplements PIGEX with fewer dimension registers. 

Example 
1 -4- 1 



Example 
1 -4-2 

1 .4 Graphics la nguages 

The DraTex and AIDraTex packages 

A later addition to the 1FX-based graphic languages was a drawing package developed by 
Eitan M. Gurari [39] that allows one to draw most common diagrams in a convenient way. 
It has two levels: one for basic drawing commands (in the DraTex package) and another for 
higher-level constructs (in the AIDraTex package) .  Both are implemented largely using 1FX 
primitives, but do use the �TEX circle fonts on occasion. A simple example of a piechart 
follows: 

30 

Bui lding on the picture environment 

\us epackage{DraTex , AIDraTex} 

\Draw 

\Scal e ( 1 , 0 . 6 ) 

\PieChart Spe c ( 1 , 50 , 25 ) ( )  

\PieChart ( 1 0 & 30 & 1 5  & 5 )  

\Move (O , -6 )  

\DrawOvalArc ( 50 , 50) ( 1 80 , 360 ) 

\EndDraw 

�TEX's pi cture mode provides a basic graphics language that is fully portable among differ
ent installations. Although not always easy to use, it has allowed generations of �TEX users 
to produce diagrams of surprising complexity. 

Various extensions to the �TEX picture macros exist; the most widely used is Sunil Po
dar's epic [94] , whose commands enhance the graphic capabilities of �TEX and provide a 
friendlier and more powerful user interface by reducing the calculations needed to specify 
the layout of objects. The epic package, Joachim Bleser's ba r macros for drawing bar charts, 
and Ian Maclaine-cross's curves package are described in [83] . 

The disadvantages of the limited facilities of the �TEX picture fonts are clear, even when 
the enhancements in epic are used. Circle sizes and line angles are in a fixed range or appear 
jagged (because they are built from small line segments) ,  and there is no facility for shading 
or coloring areas. On the positive side, the method is very portable and is well integrated 
with the rest of the text. 

One important addition to �TEX'S pi cture mode is the pict2e package, which reimple
ments the pi cture macros to be device-dependent by mapping them directly to PostScript 
\spe c i als, thus doing away with the limited range of circle sizes and line angles . The pict2e 
package is considered part of the standard �TEX, although it is currently packaged and dis
tributed separately. Paul Gastin's gastex package (http : //www . lsv . ens - c achan . fr / 

-gast in/ gastex/ gastex . html)  is an extension to �TEX's pi cture environment using 
PostScript \spe c ials that offers a simplified way of drawing nets and automata diagrams. 

Several approaches to building higher-level interfaces to the picture mode are possi
ble. The first approach is typified by some of the board-game packages described in Chap
ter 10. Here each symbol needed (e.g., a chess piece) is defined with a �TEX command. 

The second and by far the most common approach is to define a little language en
tirely in �1FX. For instance, Johannes Braams's nassflow package for drawing flowcharts 
and Nassi-Shneiderman diagrams is implemented using the pi cture environment. Several 
other examples of such an approach appear in later chapters of this book. 

1 5  



1 6  

Do you like No Do you like No 
So go hungry 

chocolate? peanuts? 

Yes Yes 

Try Lindt Watch the 
salt 

Figure 1 .6: Example of flow language 

GRAPH ICS WITH �EX 

Right 

Cho i ce . . No Yes 

Do you l ike 

chocolate? 

Tag 

Cho i ce . . No Yes 

Do you like 

peanut s? 

Tag 

Right 

Oval 

So go hungry 

ToTag 

Down 

Box 

Try Lindt 

ToTag 

Down 

Box 

Watch the salt 

A third approach is to define a specialized external language together with a preproces
sor program that converts input in that language to 1FX primitives. A sophisticated example 
is the gpic program described below. Many smaller examples also exist, e.g., the flow pro
gram by Terry Brown that translates simple flowchart description files into commands of 
the �TEX pi cture environment. The language allows variously framed boxes to be joined 
together with arrows, with a choice of direction. Multiple directions are supported by setting 
«tags" on a stack and reverting to them. An example is shown in Figure 1 .6. 

XV-pic 

XV-pic is a language for typesetting graphs and diagrams with 1FX originally developed by 
Kristoffer H. Rose, with the help of Ross Moore. The system in its default setup uses stan
dard 1FX and M ETA FONT, i.e., it makes use of the font approach by supplying its own 
arrow fonts, etc. , but output for a specific driver (like dvips) can be generated. It can type
set complicated diagrams in several application areas, including category theory, automata 
theory, algebra, neural networks, and database theory. The system is built around an object
oriented kernel drawing language. Each « object" in a picture has a « method" describing how 
it should be typeset, stretched, etc. A set of enhancements to the kernel have also been built, 
called extensions. XV-pic is reviewed in detail in Chapter 7. 

PSTricks 

PSTricks takes advantage of the extremely powerful PostScript page-description language 
used to drive most printers and typesetters. It uses \spe c i al commands to embed frag-



1 .4 Graphics languages 

ments of PostScript in 1EX's DVI output, which are passed on by conforming drivers ( in
cluding dvips, dvipsone, and Textures) .  This allows for effects ranging from line drawing 
through color, shading, and character transformation (such as setting text on a curve) and 
right up to pseudo-3-D pictures. PSTricks offers most of the power of PostScript in the famil
iar 1EX syntax and extends the low-level functionality with a range of high-level packages 
for trees and graphs, for example. PSTricks is reviewed in detail in Chapters 5 and 6. 

1 .4.3 Externa l graphics la ng uages a nd drawing prog rams 

There are many commonly used graphics languages and interactive packages, ranging 
from the very low-level to the extremely specialized. Translators have been written to con
vert some of them to forms 1EX can handle, whether a �TFX picture, commonly used 
\spe c i al sets, or even METR FONT. We look at a selection of them here, but our cata
log is by no means exhaustive. Many ad hoc programs exist for converting between for
mats. Figure 1 .7, for example, was generated by converting plotter output from AutoCAD 
(www . autode sk . com) into M ETR FONT; the detailed contour lines on this plan of the 
Comoran island of Moheli consist of about 10,000 line segments. The widely used draw
ing or drafting packages all come with a range of output formats, some of which can be 
converted to 1EX -compatible forms, so the possibilities are numerous. Programs such as 
Adobe Photoshop (www . adobe . com/photoshop) .  GIMP, and the ImageMag ick library 
(www . imagemagi ck . org) provide a huge range of conversions (largely but not exclusively 
to do with bitmaps) . 

g nuplot-A plotting package 

gnuplot (by Thomas Williams, Colin Kelley, and others; see www . gnuplot . inf 0)  is a 
general-purpose 2-D (and 3-D) plotting program that has its own language for describing 
graphs and plots. It comes with drivers for many output devices, including pic, �TFX (using 
em1EX \spec i al commands) ,  M ETR FONT, PostScript, PSTricks, 1EXdraw, and eepic. A 
typical graph, again using the data introduced with Example 1 -4- 1 ,  is presented in Figure 1 .8, 
with the simple gnuplot commands that generated it shown above. 

The pic language 

Those who used to typeset in traditional Unix will be familiar with the troff program and 
Brian Kernighan's low-level picture language pic with its preprocessor (pic) to translate 
files written in that language into statements understood by troff. The pic and troff pro
grams were reimplemented by James Clark as part of work for the Free Software Foundation. 
Within this suite of programs, gpic, unlike the original pic, can be instructed to output 1EX 
code containing \spe c i al commands using the "tpic" syntax (gpic should be called with 
the option -t or - c  in this case) .  

The gpic program reads a 1EX file and leaves all lines unchanged until i t  encounters a 
line containing only the statement . PS. From that point on, it assumes that statements in 
the pic language follow, and translates them until it finds a line containing a . PE statement. 

The pic language defines basic graphics objects such as l ine, box, arc,  arrow, 

ell ipse, c ircle, spl ine, and text strings. Named blocks can be created for a higher-

1 7  



1 8  GRAPHICS WITH �TEX 

Figure 1 .7: AutoCAD plotter output converted to METR FONT 

set terminal latex 

set xlabel " Protestant Cemetery decade s "  

set ylabe l " Number \\ of \\burials " 

plot ' decade . wom ' with lines , ' decade . men ' with l inespoints 

220 

200 <> 'decade .wo 

1 80 
'decade .m 

1 60 
0 <> 

1 40 

Number <> <> <> 1 20 <> <> 
of "<> <> 

burials 1 00 <> <> 
80 <> 

60 � 

40 

20 0 
0 
1 800 1 820 1 840 1 860 1 880 1 900 1 920 1 940 

Protestant Cemetery decades 
1 960 

Figure 1 .8: Graph generated by gnuplot using M-TEX picture commands 

<> 

1 980 



---, 
Example : 

1 -4-3 ! 

1 .4 Graphics languages 

level construct than the simpler objects. Looping, conditionals, variables, and elementary 
functions (e.g. , s in, cos, atan, sqrt, and rand) are also part of the language. The posi
tion of an object can be given by absolute location or relative to previously specified objects 
or locations. A current location and drawing direction are defined at all times. To demon
strate the effect, consider the following lines of code: 

Ready! 

Steady! !  

Go !!! 

. PS 

ellipse " \text it{Ready ! } " 

spline right 1 i  then down O . 7i \ 

left 3i then right 2i  

ellipse " \textbf{St e ady ! ! } " 

spline right 1 i  then down O . 7i \ 

left 3i then right 2 i  

ellipse " \textbf {\itshape Go ! !  ! } " 

. PE 

The ellipses are drawn at the current default position, but the lines joining them are 
given an explicit direction and size; the text can contain arbitrary �1EX code. A second ex
ample builds a graph through relations between its objects . 

. PS 

1 9  

def ine re ct X box width O . 5 i he ight O . 3i X 
A :  rect " Class " ; move down right from A . se 

B :  rect " Obj ect " ; move down left 

Object 

" 
" 

Caller 

C :  rect " Person " ; move down left 

D :  re ct " Male " move down right from C . c  

E :  rect " Caller " ; move down left 

G:  rect " Lesley " ; move down left from D . c  

F :  rect " John " 

line from 2/3 <A . sw , A . se> to  B . n  

line from 1/3 <A . sw , A . se> \ 

to  1/3  <C . nw , C . ne> 

line dashed from B . sw \ 

to 2/3 <C . nw , C . ne> 

line dashed from C . sw to  D . ne 

line dashed from C . se to  E . nw 

line from D . sw to  F . n  

line from E . sw to G . n  

. PE 

The pic language has an intuitive way of expressing simple graphic relationships and 
in this respect is superior to using, say, the pi cture environment. However, the problems 
with the gpic approach are threefold. First, it requires a preprocessing stage, i.e., a separate 



20 GRAPHICS WITH I!'TEX 

#include " epix . h" 
us ing namespace eP iX ; 

double MAX=2*M_P I ;  
double f (double t ) 

{ 
return t *Sin ( t ) ; 

} 

int main ( ) 

{ 
unitlength ( l lpt " ) ; 

pi cture ( 240 , 1 20 ) ; 

I 

J' (x) , .. -.. , , , , , 
I , 

I ' , 

' .... __ .. ' , '  
, , 

off set ( 80 , 0 ) ; - 27r 
bounding_box ( P ( -MAX , -MAX ) , P (MAX , MAX) ) ; 

begin ( ) ; 

II  Coordinate axes and labels 

h_axi s ( 8 ) ; v_axi s (4 ) ; 

, , " , 

f ( X ) == X sin X 

,-- I 
I 

I 

I 
I 

I 

I 
I 

, , 

label (P ( 0 , y_max ) , P ( -4 , 0 ) , 1 $2\\pi $ " , l ) ; label (P (0 , y_min) , P ( -4 , 0 ) , 1 $-2\\pi $ " , l ) ; 

label (P (x_min , 0 ) , P ( 0 , 2 ) , 1 $-2\\pi $ " , t ) ; label ( P (x_max , 0 ) , P ( 0 , 2 ) , 1 $2\\pi $ " , t ) ; 

II Title 

label (P ( 0 , y_max ) , P ( 1 2 , -4 ) , " \\boldmath$f (x) = x\\ s in x$ " , r ) ; 

II Original funct i on x s in ( x) as full black line 

bold ( ) ; plot (f , x_min , x_max , 90 ) ; label ( P ( - 2 , 2 . 6 ) , P ( 1 2 , -6 ) , " $f (x) $ " , r) ; 

II Derivat ive as dashed black l ine 

dashed ( ) ; plot (D ( f ) , x_min , x_max , 90 ) ; label ( P ( -4 , 4 . 6 ) , P ( 1 2 , -2 ) , " $f ' (x ) $ " , r) ; 

II Integral between ° and x as blue solid l ine 

solid ( ) ; blue ( ) ; plot ( I ( f , 0 ) , x_min , x_max , 90 ) ; 

label (P ( -6 , 6 ) , P ( 8 , 0 ) , " $\\ int _O .... x f (X) $ " , r) ; 

end ( ) ; 

} 
Figure 1 .9: Example of ePiX program (source and result) 

compiled program for the computer platform where it is used. Second, it uses the "tpic" 
\spe c i als, which not all drivers support; and third, the preprocessor knows nothing about 
how text is typeset and so cannot, for example, fit boxes accurately around formulae. 

e PiX: a structured d rawing language 

Another example of a small application -specific language is Andrew D. Hwang's ePiX [ 5 1 ]  
(see also CTAN: graphi c s /  epix) .  It comprises a collection of command-line utilities for 
creating mathematically accurate, two- and three-dimensional figures and animations in 
MTEX and provides a bridge between the powerful numerical capabilities of c++ and high
quality typesetting. A logically structured input file is prepared with a text editor, then com
piled into eepic code that can be included into a �TFX document. 

As the program is closely integrated with �TFX's pi cture environment (via the eepic 
package) ,  it is easy to annotate parts of the graphics with �TEX commands. Figure 1 .9 shows 
an example of an ePiX program written in the c++ language. One can see how �TEX labels 
and annotations are defined (the backslash for the �TFX commands has to be doubled so 
that it is transmitted to the output file by the c++ processor) . 



, .5 Choosing a package 

M ETA FONT and M ETA POST 
1EX has a companion font-creation program, M ETA FONT. While M ETA FONT was de
signed for producing beautiful character shapes in fonts, it can also be used very successfully 
to create drawings for 1EX. It offers very powerful techniques and data structures well suited 
to many types of drawing, and has the advantages that it is available anywhere that 1EX is 
and that its output (PK fonts after conversion) is understood by practically all DVI drivers. 
It has two disadvantages, but both have solutions: 

1 .  The syntax of M ETA FONT is completely different from 1EX, and some users find it 
hard to learn. An ingenious "wrapper" solution is available in the mfpic �TEX package, 
which lets you describe your picture in familiar �TEX syntax and have it written out in 
M ETA FONT form to generate the picture. 

2. The bitmap font output of M ETA FONT is awkward to handle in some drivers and re
quires regeneration for each different output device; it renders very badly in the pop
ular Adobe Acrobat program. META FONT also lacks support for some basic building 
blocks like color. A nice solution is M ETA P 05T, a reimplementation by John Hobby of 
META FONT to produce device-independent PostScript output. Hobby's version also 
added support for color and provided some high-level graph-drawing support. 

META FONT, mfpic, and META P 05T are explored in Chapters 3 and 4. 

1 .5 Choosing a package 
Most people do not choose a graphics program or  macro package on the basis of  the method 
1EX adopts to handle the output. Usually the type of picture to be produced is a more impor
tant consideration than the way it is created. Excellent, often commercial, interactive tools 
exist to address the particular needs of a user in a given subject area. Examples include Au
toCAD for architects and engineers, ChemDraw (www . cambridge soft . com/ software/ 

ChemDraw) for chemists, Adobe I l lustrator for graphic artists, SPSS (www . spss . c om) for 
statisticians, Mathematica for mathematicians, GRASS (Geographic Resources Analysis Sup
port System; see gr as s . it c . it )  for geographers, xfig for computer scientists, and Ex
cel (www . mi crosoft . com/ excel)  and ca lc (www . openoff i c e . org/product/ c al c . 

html ), its free openoffice counterpart, for business people. However, sometimes creating 
graphics by describing them in a special notation comes more naturally. 

If you can make a completely free choice about which package to use, you might con
sider the following points: 

• The basic decision you make depends on the relationship between the picture and the 
text. If the picture is a "black box", then generate it separately and include it at the print
ing stage. If its contents should have the same style as the text, then investigate drawing 
packages integrated with 1EX. 

• How important is total portability in the 1EX world to you? If it is vital, use the packages 
that draw pictures using tiny dots or 1EX fonts. You could also choose the portability 

2 1  



22 GRAPHICS WITH I!\TEX 

provided by common (but not standard) \spe c i al primitives, portability provided 
by PostScript, or portability using black-box bitmap graphics. The future use intended 
affects your choice of package. 

• If you want to do "art" graphics, which need interactive drawing or painting, then 
choose a package that suits your subject area and that can drive the printer of your 
choice. If you have a 1EX driver for a printer, then it will probably allow you to automati
cally include files destined for the same printer. In practice, the most flexibility is offered 
by the huge array of software written for the Macintosh and Microsoft Windows, but it 
is sensible to choose a package that can write encapsulated PostScript or PDF, because 
these are the most widely portable formats for publishing. 

• If you want to include PostScript pictures, use the standard graphics package discussed 
in Chapter 2, so that your documents are not dependent on the vagaries and syntax of 
a particular driver. 

• If you have non digital photographs to reproduce, you can easily scan them and include 
them in 1EX. Scan them at the highest resolution you can afford (in terms of equip
ment and disk storage) ,  but be sure that you understand the issues of scaling bitmaps
scanning at 1 200 dpi and then printing at 1 270 dpi can produce unpleasant results due 
to the tiny scaling that has to be performed. 

• If you want to plot data in relatively simple ways, the choice of software will depend on 
your normal working environment. If your data is in a spreadsheet, then you probably 
have adequate facilities there. If you use a database, it might be easier to write retrieval 
programs that generate pictures in a 1EX-world plotting language such as PSTricks or 
M ETA P OST. 

• If you are creating algorithmic pictures in which the layout is determined by your data 
rather than the contents, and if the output includes a lot of textual material (particularly 
mathematics or non-Roman scripts) ,  then you need to look at the macro packages that 
implement drawing directly in 1EX, so that your text is processed by 1EX. 

In this book we will show you the good points of many programs and E\TFX macro pack
ages, but we cannot tell you which one is right for your needs. We hope that the variety and 
quantity of pictures in the following chapters demonstrate that graphics in E\TFX is alive and 
well and can meet almost any need. 



C H A P T E R  2 

Standard (t\TEX I nterfaces 

2.1 Inclusion of graphics files . . . . . . . . . • . . . . • . . . . • . . . . . . . • . . . . . . 23 
2.2 Manipulating graphical objects . . .  , . . . . • . . • . . . . • . . . . • . . • . . . . . . 36 
2.3 Line graphics . . . . . . . . . . . . . . . . • . • • . • • . . • . • . • • • • • • • •  , . . . .  42 

Since the introduction ofIHEX 2e in 1994, �1EX has offered a uniform syntax for including 
every kind of graphics file that can be handled by the different drivers. I n addition, all kinds 
of graphic operations (such as resizing and rotating) as well as color support are available. 

These features are not part of the �1fX. 2c kernel, but rather are loaded by the standard, 
fully supported color, graphics, and graphicx extension packages. Because the lEX program 
does not have any direct methods for graphic manipulation, the packages must rely on fea
tures supplied by the "driver" used to print the dvi file. Unfortunately, not all drivers sup
port the same features, and even the internal method of accessing these extensions varies 
among drivers. Consequently, all of these packages take options, such as dvips, to specify 
which external driver is being used. Through this method, unavoidable device-dependent 
information is localized in a single place, the preamble of the document. 

In this chapter we start by looking at graphics file inclusion. �TEX offers both a simple in
terface (graphics), which can be combined with the separate rotation and scaling commands, 
and a more complex interface (graphicx), which features a powerful set of manipulation op
tions. The chapter concludes with a discussion of the pict2e package, which implements the 
driver encapsulation concept for line graphics and with a brief description of the curvele 
package, which is not part of the "standard �TEX interface" but nevertheless represents an 
interesting extension to pictle. Color support is covered in Chapter 1 1 .  

2.1 Inclusion of graphics files 

The packages graphics and graphicx can both be used to scale, rotate, and reflect �lFX ma
terial or to include graphics files prepared with other programs. The difference between 



24 STANDARD IM"EX INTERFACES 

Table 2.1: Overview of color and graphics capabilities of device drivers 

Option Autllor of Driver Featllres 
dvips T. Rokicki All functions (reference driver; option also used by xdvi) 
dvipdf s. Lesenko All functions 
dvipdfm S. Lesenko All functions 
dvipsone y&y All functions 
dviwin H. Sendoukas File inclusion 
emtex E. Mattes File inclusion only, but no scaling 
pdftex Han Th� Thanh All functions for pdftex program 
pctexps PCTeX File inclusion, color, rotation 
pctexwin PCTeX File inclusion, color, rotation 
pctex32 PCTeX All functions 
pctexhp PCTeX File inclusion only 
truetex Kinch Graphics inclusion and some color 
tcidvi Kinch TrueTeX with extra support for Scientific Word 
textures Blue Sky All functions for Textures program 
vtex Micropress All functions for VTeX program 

the two is that graphics uses a combination of macros with a "standard" or lEX-like syn
tax, while the "extended" or "enhanced" graphicx package presents a key/value interface for 
specifying optional parameters to the \includegraphics and \rotatebox commands. 

2.1 .1 Options for graphics and graphicx 
When using �TEX's graphics packages. the necessary space for the typeset material after per
forming a file inclusion or applying some geometric transformation is reserved on the out
put page. It is, however, the task of the device driver (e.g., dvips, xdvi, dvipsone) to perform 
the actual inclusion or transformation in question and to show the correct result. Given that 
different drivers may require different code to carry out an action. such as rotation, one 
has to specify the target driver as an option to the graphics packages-for example, option 
dvips if you use one of the graphics packages with Tom Rokicki's dvips program, or option 
textures if you use one of the graphics packages and work on a Macintosh using Blue Sky's 
Textures program. 

Some drivers, such as previewers, are incapable of performing certain functions. Hence 
they may display the typeset material so that it overlaps with the surrounding text. Table 2.1 

gives an overview of the more important drivers currently supported and their possible lim
itations. Support for older driver programs exists usually as well-you can search for it on 
CTAN. 

The driver-specific code is stored in files with the extension . def-for example. 
dvips . def for the PostScript driver dvips. As most of these files are maintained by third 
parties, the standard LATEX distribution contains only a subset of the available files and not 
necessarily the latest versions. While there is usually no problem if �1EX is installed as part 
of a full TEX installation, you should watch out for incompatibilities if you update the �1EX 
graphics packages manually. 



2.1 Inclusion of graphics files 

It is also possible to specify a default driver using the \ExecuteOptions declaration 

25 

in the configuration file graphics . cfg. For example. \ExecuteOptions{dvips} makes Settillg a default driver 

the dvips drivers become the default. In this case the graphics packages pick up the driver 
code for the dvips 1tx system on a PC if the package is called without a driver option. Most 
current lEX installations are distributed with a ready-to-use graphics . cfg file. 

In addition to the driver options. the packages support some options controlling which 
features are enabled (or disabled); 

draft Suppress all "special" features. such as including external graphics files in the final 
output. The layout of the page will not be affected, because LKfFX still reads the size in
formation concerning the bounding box of the external material. This option is of par
ticular interest when a document is under development and you do not want to down
load the (often huge) graphics files each time you print the typeset result. When draft 
mode is activated, the picture is replaced by a box of the correct size containing the 
name of the external file. 

final The opposite of draft. This option can be useful when. for instance. "draft" mode 
was specified as a global option with the \documentclass command (e.g .• for show
ing overfull boxes), but you do not want to suppress the graphics as well. 

hiresbb In PostScript files. look for bounding box comments that are of the form 
%%HiResBoundingBox (which typically have real values) instead of the standard 
%%BoundingBox (which should have integer values). 

hiderotate Do not show the rotated material (for instance, when the previewer cannot 
rotate material and produces error messages).  

hidescale Do not show the scaled material (for instance. when the previewer does not 
support scaling). 

With the graphicx package. the options draft. final. and hiresbb are also available lo
cally for individual \includegraphics commands, that is, they can be selected for indi
vidual graphics. 

2.1 .2 The \includegraphics syntax in the graphics package 
With the graphics package, you can include an image file by using the following command: 

\includegraphics* [llx, Ily] [urx, ury] {file} 

If the [urx, ury] argument is present. it specifies the coordinates ofthe upper-right corner 
of the image as a pair oflEX dimensions. The default units are big (PostScript) points; thus 
[lin, lin] and [72, 72] are equivalent. If only one optional argument is given, the lower
left corner of the image is assumed to be located at [0 ,0] . Otherwise, [lIx , Ily] specifies 
the coordinates of that point. Without optional arguments, the size of the graphic is deter
mined by reading the external file (containing the graphics itself or a description thereof, as 
discussed later). 



26 STANDARD IM"EX INTERFACES 

% ! PS-Adobe-2 . 0 
'l.Y.Bounding8ox : l00 100 150 150 
100 100 translate % put origin at 100 100 

o 0 
50 50 

moveto 
rlineto 

50 neg 0 rlineto 
50 50 neg rlineto 

stroke 
o 0 moveto 

/Times-Roman findfont 
50 scalefont 

set font 
(W) shoW' 

% define current point 
% trace diagonal line 
% trace horizontal line 
% trace other diagonal line 
% draw (stroke) the lines 
% redefine current pOint 
i. get Times-Roman font 
% scale it to 50 big points 
% make it the current font 
% draw an uppercase W 

Figure 2.1: The contents of the file w . eps 

The starred form of the \includegraphics command "dips" the graphics image 
to the size of the specified bounding box. In the normal form (without the *), any part of 
the graphics image that falls outside the specified bounding box overprints the surrounding 
It:xt. 

The examples in the current and next sections use a small PostScript program (in a 
file w .  eps) that paints a large uppercase letter "w" and a few lines. Its source is shown in 
Figure 2.1.  Note the BoundingBox declaration, which stipulates that the image starts at the 
point 100 , 100 (in big points), and goes up to 150 , 150; that is, its natural size is 50 big 
points by 50 big points. 

In the examples we always embed the \includegraphics command in an \fbox 
(with a blue frame and zero \fboxsep) to show the space that LKfE,X reserves for the in
cluded image. In addition, the baseline is indicated by the horizontal rules produced by the 
\HR command. defined as an abbreviation for \rule{lem}{O . 4pt}. 

The first example shows the inclusion of the w . eps graphic at its natural size. Here the 
picture and its bounding box coincide nicely. 

lefL-"'--L-L-''-right 

\usepackage{graphics, color} 
\newcommand\HR{\rule{lem}{O.4pt}} 
\newcommand\bluefbox [1] {\textcolor{blue}{% 

\setlength\fboxsep{Opt}\fbox{\textcolor{black}{#l}}}} 

left\HR \bluefbox{\includegraphics{w. eps}}\HR right 

Next, we specify a box that corresponds to a part of the picture (and an area outside 
it) so that some parts fall outside its boundaries. overlaying the material surrounding the 
picture. If the starred form of the command is used, then the picture is clipped to the box 
(specified as optional arguments), as shown on the right. 



I 

Example 
I 

2-1-4 

2.1 Inclusion of graphics files 

\usepackage{graphics , color} 
% \bluefbox and \HR as before 

left\HR 
\bluefbox{\includegraphics 

[120, 120] [150, 180] {w . eps}}% 
\HR middle\HR 

' __ �L.l-Irighl \bluefbox{\includegraphics* 
[120, 120] [150, 180] {w . eps}}% 

\HR right 

In the remaining examples we combine the \includegraphics command with 
other commands of the graphics package to show various methods of manipulating an in� 
eluded image. (Their exact syntax is discussed in detail in Section 2.2.) We start with the 
\scalebox and \resizebox commands. In both cases we can either specify a change in 
one dimension and have the other scale proportionally, or specify both dimensions to distort 
the image. 

lef�ll1iddleJW:1 right 

\usepackage{graphic s , color} 
% \bluefbox and \HR as before 

left\HR 
\bluefbox{\scalebox{ . 5}{% 

\includegraphics{w. eps}}}% 
\HR middle\HR 

\bluefbox{\scalebox{ . 5} [ 1 . 5] {% 
\includegraphics{w. eps}}}% 

\HR right 

\usepackage{graphics, color} 
% \bluefbox and \HR as before 

left\HR 
\bluefbox{\resizebox{lOmm}{ !}{% 

\includegraphics{w. eps}}}'l. 
\HR middle\HR 

\bluefbox{\resizebox{20mm}{10mm}{'l. 
\includegraphics{w. eps}}}% 

\HR right 

Adding rotations makes things even more interesting. Note that in comparison to Ex� 
ample 2�1�1 on the facing page the space reserved by IHFX is far bigger. IHFX "thinks" in 
rectangular boxes. so it selects the smallest size that can hold the rotated image. 

lef'-L----'-___ �ighl 

\usepackage{graphics , color} 
% \bluefbox and \HR as before 

left\HR 
\bluefbox{\rotatebox{25}{'l. 

\includegraphics{w eps}}}% 
\HR right 

27 



28 STANDARD IM"EX INTERFACES 

2.1.3 The \includegraphics syntax in the graphicx package 

The extended graphics package graphicx also implements \includegraphics but offers 
a syntax for including external graphics files that is somewhat more transparent and uscr
friendly. With taday's TtX implementations, the resultant processing overhead is negligible, 
so we suggest using this interface. 

'incl udegraphi cs* [key/val-list] {fife} 

The starred form of this command exists only for compatibility with the standard version of 
\includegraphics, as described in Section 2.1.2. It is equivalent to specifying the clip 
key. 

The key/val-list is a comma-separated list of key=value pairs for keys that take a value. 
For Boolean keys, specifying just the key is equivalent to key=true; not specifying the key 
is equivalent to key=false. Possible keys are listed below: 

bb The bounding box of the graphics image. Its value field must contain four dimen
sions, separated by spaces. This specification will overwrite the bounding box in
formation that might be present in the external file.' 

hiresbb Makes MlfX search for %%HiResBoundingBox comments. which specify the 
bounding box information with decimal precision, as used by some applications. 
In contrast, the normal %%BoundingBox comment can take only integer values. 
It is a Boolean value. either "true" or "false". 

vie'Wport Defines the area of the graphic for which MlEX reserves space. Material outside 
this will still be print unless trim is used. The key takes four dimension argu
ments (like bb), but the origin is with respect to the bounding box specified in 
the file or with the bb keyword. For example, to describe a 20 bp square IO bp to 
the right and 15  bp above the lower-left corner of the picture you would specify 
vie'Wport=10 15 30 35. 

trim Same functionality as the vie'Wport key, but this time the four dimensions cor
respond to the amount of space to be trimmed (cut off) at the left-hand side. bot
tom, right-hand side, and top of the included graphics. 

natheight,nat'Widtb The natural height and width of the figure, respectively.2 

angle The rotation angle (in degrees. counterclockwise). 

origin The origin for the rotation, similar to the origin parameter of the \rotatebox 
command described on page 40. 

'Width The required width (the width of the image is scaled to that value). 

lThere also exists an obsolete form kept for backward compatibility only; [bbllx=a, bblly"'b, 
bburx=c ,  bbury=d] is equivalent to Ebb .. a b c  d], so the latter form should be used. 

2These arguments can be used for setting the lower-left coordinate to (0 0) and the upper-right coordinate 
to (natwidth natheight) and are thus equivalent to bb�O 0 w h, where w and h are the values specified for 
these two parameters. 



2.1 Inclusion of graphics files 

he igh t The required height (the height of the image is scaled to that value). 

totalhe ight The required total height (height + depth of the image is scaled to that 
value). This key should be used instead of height if images are rotated more 
than 90 degrees, because the height can disappear (and become the depth) and 
El-T£X may have difficulties satisfying the user's request. 

keepaspectrat io A Boolean variable that can have a value of either "true" or "f alse"  
(see above for defaults ) .  When it i s  true, specifying both the width and height 
parameters does not distort the picture, but the image is scaled so that neither the 
width nor height exceeds the given dimensions. 

scale The scale factor. 

clip Clip the graphic to the bounding box or the rectangle specified by the keys trim 
or viewport . It is a Boolean value, either "true" or "f alse". 

draft Locally switch to draft mode. A Boolean-value key, like cl ip. 

type The graphics type; see Section 2. 1 .5. 

ext The file extension of the file containing the image data. 

read The file extension of the file that is "read" by El-T£X to determine the image size, if 
necessary. 

command Any command to be applied to the file. 

If the size is given without units for the first four keys (bb through trim), then TEX's 
"big points" (equal to PostScript points) are assumed. 

The first six keys (bb through natwidth) specify the size of the image. This informa
tion needs to be given in case the graphic is in a format that the TEX engine cannot read (this 
can differ for different TEX variants) ,  the file contains incorrect size information, or you wish 
to clip the image to a certain rectangle. 

The next seven keys (angle through s cale )  deal with scaling or rotation of 
the included material. Similar effects can be obtained with the graphics package and 
the \ includegraphics command by placing the latter inside the argument of a 
\re s izebox , \rot atebox , or \scalebox command (see the examples in Section 2. 1 .2  
and the in-depth discussion of these commands in Section 2.2) .  

It is important to note that keys are read from left to right, so that [angle=90 , 
totalhe ight=2cm] means rotate by 90 degrees and then scale to a height of2 cm, whereas 
[t otalhe ight=2cm ,  angle=90] would result in a final width of 2 cm. 

By default, El-TEX reserves for the image the space specified either in the file or in the 
key/val-list. If any part of the image falls outside this area, it will overprint the surrounding 
text. If the starred form is used or the c 1 i P option is specified, any part of the image outside 
this area is not printed. 

The last four keys (type , ext , read, command) suppress the parsing of the file name. 
When they are used, the main file argument should have no file extension (see the descrip
tion of the \De clareGraphicsRule command on page 34) .  

29 



30 STANDARD IN"EX I NTERFACES 

Next, we repeat some of the examples from Section 2. 1 .2 using the syntax of the 
graph icx package, showing the extra facilities offered by the extended package. In most cases 
the new form is easier to understand than the earlier version. In the simplest case without 
any optional arguments, the syntax for the \ includegraphics  command is identical in 
both packages. 

Ifwe use the draft key, only a frame showing the bounding box is typeset. This feature 
is not available in the graphics package on the level of individual graphics. 

w . eps 

\usepackage {graphicx} 

% \HR as bef ore 

left \HR 

leftl---'-___ ----'---'-righ t 
\ includegraphics [draftJ {w . eps}% 

\HR right 

The effects of the bb, cl ip, vi ewport , and trim keys are seen in the following exam
ples. Compare them with Example 2- 1 -2 on page 27. 

\usepackage {graphicx , color} 

% \bluefbox and \HR as bef ore 

left\HR\bluefbox{\ includegraphics 

[bb= 120 120 150 180J {w . eps}}% 

\HR middle\HR 

\bluefbox{\includegraphics 

[bb= 120 120 150 180 , cl ipJ {w . eps}}% 
\HR right 

Using viewport or trim allows us to specify the desired result in yet another way. 
Notice that trimming by a negative amount effectively enlarges the space reserved for the 
picture. 

\usepackage {graphicx , color} 
% \bluefbox and \HR as bef ore 

left \HR\bluefbox{\ includegraphics 

[viewport=20 20 50 80J % 

{w . eps}}% 
\HR middle\HR 

\bluefbox{\ includegraphics 

[trim= 20 20 0 -30 , cl ipJ {w . eps}}% 
\HR right 

The scale key applies a scale factor to the image. With this key, however, you can only 
scale the picture equally in both directions. 

\usepackage {graphicx , color} 

% \bluefbox and \HR as bef ore 

left \HR \bluefbox{\ includegraphi cs [ s cale= . 5J {w . eps}}\HR right 

r--'--, , Example : 
2 - 1 -7  

, Example 
2 - 1 -9 . .. . . ... -' 



I Example I I 2- 1 - 1 0  
L_. __ � 

Example 
2- 1 - 1 1  

2.1 I nclusion of graphics files 

To make the dimensions of an image equal to a given value, use the width or height 
key (the other dimension is then scaled accordingly) . If you use both keys simultaneously, 
you can distort the image to fit a specified rectangle, as shown in the following example: 

\usepackage {graphicx , color} 
% \bluefbox and \HR as bef ore 

left \HR \bluefbox{\ includegraphi c s  

[width= 15mm] {w . eps}}% 

\HR middle \HR 
\bluefbox{\ includegraphics  

[he ight=1 5mm , width=25mm] {w . eps}}% 

\HR right 

To ensure that the aspect ratio of the image itself remains intact, use the 
keepaspectrat i o  key. E'-TE!( then fits the image as best it can to the rectangle you 
specified with the height and width keys. 

\usepackage{graphicx , color} 

% \bluefbox and \HR as bef ore 

left \HR \bluefbox{\ includegraphics  

3 1  

left'----J.o!I��----1--""'--1 middle�� ight 

[he ight = 1 5mm , width=25mm] {w . eps}}% 
\HR middle \HR 

\bluefbox{\ includegraphi c s [he ight = 1 5mm ,  

width=25mm , keepaspectrat i o] {w . eps}}% 
\HR right 

Rotations using the angle key add another level of complexity. The reference point 
for the rotation is the reference point of the original graphic-Le., the lower-left corner if 
the graphic has no depth. By rotating around that point, the height and depth change, so the 
graphic moves up and down with respect to the baseline, as can be seen in the next examples. 

'---'----''--___ -'--'"iddle 

\usepackage{graphicx , color} 

% \bluefbox and \HR as bef ore 

left \HR 

\bluefbox{\ includegraphics 

[angle=10]  {w . eps}}% 

--���-.l-'"ight \HR middle \HR 

\bluefbox{\ includegraphics  

[angle=125] {w . eps }}% 
\HR right 

The real fun starts when you specify both a dimension and a rotation angle for an image, 
since the order in which they are given matters. The graphicx package interprets the keys 
from left to right. You should pay special attention to the keys' order if you plan to rotate 
images and want to set them to a certain height. The next example shows the difference 
between specifying an angle of rotation before and after a scale command. In the first case, 



32 

lef------r __ 

STANDARD I!ITEX INTERFACES 

the picture is rotated and then the result is scaled. In the second case, the picture is scaled 
and then rotated. 

\usepackage{graphi cx , color} 

% \bluefbox and \HR as before 

left\HR\bluefbox{\ includegraphi c s  

[angle=45 , width= 10mm] {w . eps}}% 

\HR middle\HR 
\bluefbox{\includegraphics 

[width= 10mm , angle=45] {w . eps}}% 

\HR right 

�TEX considers the height and the depth of the rotated bounding box separately. The 
height key refers only to the height; that is, it does not include the depth. In general, 
the total height of a (rotated) image should fit in a given space, so you should use the 
t ot alhe ight key (see Figure 2.2 on page 4 1  for a description of the various dimensions 
defining a �TEX box). Of course, to obtain special effects you can manipulate rotations and 
combinations of the height and width parameters at will. Here we show some key combi
nations and their results: 

ight 

ight 

\usepackage {graphi cx , color} 

% \bluefbox and \HR as before 

left \HR\bluefbox{% 

\ includegraphics [angle=-60 , %  
he ight= 1 5mm] % 

{w . eps}}\HR 

\bluefbox{% 

\ includegraphi cs  [angle=-60 , %  
totalhe ight=15mm] %  

{w . eps}}\HR right 

\usepackage{graphi cx , color} 

% \bluefbox and \HR as before 

left \HR\bluefbox{\ includegraphics 

[angle=-60 , totalhe ight=20mm , %  

width=30mm] {w . eps}}\HR 

\bluefbox{\ includegraphics 
[angle=-60 , totalhe ight=20mm , %  

width=30mm , keepaspectratio] % 

{w . eps}} \HR right 

2.1 .4 Setting default  key va lues for the graph icx package 

Instead of specifying the same set of key/value pairs over and over again on individual 
\ includegraphi c s  commands, you can specify global default values for keys associated 

i Example 
2- 1 - 1 3 

i Example 
2- 1 - 1 5  



2.1 I nclusion of graphics files 

with such commands. To do so, you use the \s etkeys declaration provided by the keyva l 
package, which is automatically included when graph icx is used. 

\ setkeys{identifier Hkey/val-list} 

The identifier is an arbitrary string defined by the macro designer. For example, for 
\ includegraphics the string Gin was chosen. The key/val-list is a comma-separated list 
of key/value pairs. 

As an example, consider the case where graph icx is used and all figures are to be scaled 
to the width of the line. Then you would specify the following: 

\ setkeys{Gin}{width=\l inewi dth} 

All images included with the \ includegraphics  command will then be automatically 
scaled to the current line width. (Using \l inewidth in such a case is generally preferable 
to using \columnwidth ,  as the former changes its value depending on the surrounding 
environment, such as quote. )  

You can specify defaults in  a similar way for any key used with the \rotatebox com
mand (the other command that has a key/value syntax when graph icx is used; see Sec
tion 2.2.3 ) .  It has the identifier Grot .  Thus 

\setkeys {Grot }{origin=ct} 

specifies that ct should be used for the origin key on all \rotat ebox commands unless 
locally overwritten. 

2.1 .5 Declarations guiding the i nclusion of i mages 
While key/value pairs can be set only when the graph icx package is used, the declarations 
described in this section can be used with both the graph ics and the graph icx packages. 

By default, E\TP)( looks for graphics files in the same directories where it looks for other 
files. For larger projects, however, it might be preferable to keep the image files together in Where to find 
a single directory or in a set of directories. A list of directories where E\TEX should search image files 
for graphics files can be specified with the command \graphic spath ;  its argument is a 
list of directories, with each directory being placed inside a pair of braces {} (even if the list 
contains only one directory) .  For example, 

\graphicspath{{ . /eps/}{ . /t if f / } }  

causes mp,x to look in  the subdirectories eps and t iff  of the current directory. 
The \De clareGraphicsExt ens ions command lets you specify the behavior of the 

33 

system when no file extension is given in the argument of the \ includegraphics  com- Defining the file 
mand. Its argument {ext-list} is a comma-separated list offile extensions. Full file names are extension search order 
constructed by appending each extension of the list ext-list in turn until a file corresponding 
to the generated full file name is found. 



34 STAN DARD NEX INTERFACES 

When the \ includegraphics  command is used with a file name without an exten
sion, the algorithm tests for the existence of a graphics file to determine which extension to 
use. Hence the graphics file must exist at the time �1EX is run. However, if a file extension 
is specified, such as \ includegraphics{gr . eps} instead of \ includegraphics{gr}, 
then the graphics file need not exist at the time of the �TEX run. !  �TEX needs to know the size 
of the image, however, so it must be specified in the arguments of the \ includegraphics 
command or  in  a file that i s  actually read by �TEX. (This file can be  either the graphics file it
self or another file specified with the read key or constructed from the list of file extensions. 
In the latter case the file must exist at the time �TFX is run.)  

With the declaration shown below, the \ includegraphics command will first look 
for the file f i le . ps and then, if no such file exists, for the file f ile . ps . gz: 

\De clareGraphicsExtens ions { . ps , . ps . gz} 

\ includegraphics{file} 

If  you want to make sure that a full file name must always be specified, then you should 
use the following declaration. In the cases shown below, the size of the (bitmap) image is 
specified explicitly on the \ includegraphics  command each time. 

\DeclareGraphic sExt ensions{{}} 

\ includegraphi cs [ l in , l in] {file . pcx} 

\ includegraphics [75pt , 545pt] [50pt , 530pt] {file . pcx} 
\ includegraphi cs [bb=75 545 50 530] {file . pcx} 

The action that has to take place when a file with a given extension is encountered is 
controlled by the following command: 

\De clareGraphicsRule{ext}{type}{read-jile}{cmd} 

Any number of these declarations is allowed. The meaning of the arguments is as follows: 

ext The extension of the image file. It can be specified explicitly or, if the argument to 
\ includegraphics  does not have an extension, it can be determined from the list of 
extensions specified in the argument ext-list of the \De clareGraphicsExtens ions 
command. A star (* ) can be used to specify the default behavior for all extensions that 
are not explicitly declared. For example, 

\De clareGraphi c sRule{*}{eps}{*}{} 

causes all undeclared extensions to be treated as  EPS files, and the respective graphics 
files are read to search for a %%BoundingBox comment. 

type The "type" of the file involved. All files of the same type are input with the same in
ternal command (which must be defined in the corresponding driver file) .  For example, 

1 For instance, it can be created on the fiy with a suitable \DeclareGraphicsRule declaration. 



2.1 Inclusion of graphics files 

all files with an extension of . ps,  . eps, or . ps . gz should be classified as being of type 
eps.  

read-file The extension of the file that should be read to determine the size of the graph
ics image. It can be identical to ext but, in the case of compressed or binary images, 
which cannot be interpreted easily by �TFX-, the size information (the bounding box) 
is normally put in a separate file. For example, for compressed gzipped PostScript files 
characterized by the extension . ps . gz, the corresponding readable files could have an 
extension of . ps . bb. If the read-file argument is empty (i.e., {}) ,  then the system does 
not look for an external file to determine the size, and the size must be specified in the ar
guments of the command \ includegraphics. If the driver file specifies a procedure 
for reading size files for type, then that procedure is used; otherwise, the procedure for 
reading . eps files is used. Therefore, in the absence of any other specific format, you 
can select the size of a bitmap picture by using the syntax for PostScript images (i.e., 
with a %%BoundingBox line) .  

cmd The command to b e  inserted i n  the \ spe c i al argument instead o f  the file name. In 
general cmd is empty, but for compressed files you might want to un compress the image 
file before including it in the file to be printed if the driver supports such an operation. 
For instance, with the dvips driver, you could use 

\DeclareGraphicsRule{ . ps . gz}{eps}{ . ps . bb}{ ' gunz ip # 1 }  

where the argument # 1  denotes the full file name. In  this case the final argument causes 
dvips to use the gunzip command to uncompress the file before inserting it into the 
PostScript output. 

The system described so far can present some problems if the extension ext does not cor
respond to the type argument. One could, for instance, have a series of PostScript files called 
f ile . 1, f ile . 2, . . . .  Neither the graphics nor the graph icx package can automatically de
tect that these are PostScript files. With the graph icx package, this situation can be handled 
by using a type=eps key setting on each \ includegraphics  command. As explained 
earlier, you can also define a default type by using a \De clareGraphi csRule declaration 
for a type * .  

2.1 .6 A caveat: encapsu lation is i m porta nt 

It is important at this point to emphasize that PostScript is a page description language that 
deals with the appearance of a complete printed page. This makes it difficult for authors to in
clude smaller PostScript pictures created by external tools into their electronic (�TFX-) docu
ments. To solve this problem Adobe has defined the Encapsulated PostScript file format (EPS 
or EPSF) ,  which complies with the PostScript Document Structuring Conventions Specifica
tion [4] and the Encapsulated PostScript File Format Specification [ 3 ] .  

The EPS format defines standard rules for importing PostScript-language files into dif
ferent environments. In particular, so as not to interfere destructively with the PostScript 

35 



36 STAN DARD I!ITEX INTERFACES 

page being built, EPS files should be "well behaved". For instance, they must not contain cer
tain PostScript operators, such as those manipulating the graphics state, interpreter stack, 
and global dictionaries. 

Most modern graphics applications generate an EPS-compliant file that can be used 
without difficulty by �TEX. Sometimes, however, you may be confronted with a bare Post
Script file that does not contain the necessary information. For use with �TEX, a PostScript 
file does not have to conform strictly to the structuring conventions mentioned previously. 
If the file is "well behaved" (see above) ,  it is enough that the PostScript file contains the 
dimensions of the box occupied by the picture. These dimensions are provided to �TEX via 
the PostScript comment line %%BoundingBox, as shown below: 

% !  
%%BoundingBox : LLx LLy URx URy 

The first line indicates that we are dealing with a nonconforming EPS file. Note that the 
% !  characters must occupy the first two columns of the line. The second line, which is the 
more important one for our purpose, specifies the size of the included picture in PostScript 
"big" points, of which there are 72 to an inch. Its four parameters are the x and y coordinates 
of the lower-left corner (LLx and LLy) and the upper-right corner (URx and URy ) of the 
picture. For instance, a full A4 page ( 2 10  mm by 297 mm) with zero at the lower-left corner 
would need the following declaration: 

% !  
%%BoundingBox : 0 0 595 842 

If your picture starts at ( 1 00 ,  200) and is enclosed 'in a square of 4 inches (288 points) ,  
the statement would be 

% !  
%%BoundingBox : 100 200 388 488 

A PostScript display program, such as ghostview, lets you easily determine the bound
ing box of a picture by moving the cursor on its extremities and reading off the correspond
ing coordinates. In general, it is good practice to add one or two points to make sure that the 
complete picture will be included, because of the potential for rounding errors during the 
computations done in the interpreter. 

2.2 Manipu lating graph ica l objects 
In addition to the \ includegraphics  command, the graphics and graphicx packages im
plement a number of graphical manipulation commands. 

With the exception of the \rot at e box command, which also supports a key/value pair 
syntax in the graph icx package, the syntax for these commands is identical in both packages. 



Example 
2-2- 1 

Example 
2-2-2 

Example 
2-2-3 

2.2 Manipulating graphical  objects 

2.2 . 1  Scal ing a !!'lEX box 

The \scalebox command lets you magnify or reduce text or other �TEX material by a scale 
factor. 

\scalebox{h-scale} [v-scaleJ {material} 

The first two arguments (h-scale and v-scale) specify the factors by which the material is to 
be scaled in the horizontal and vertical dimensions, respectively. However, if the optional 
second argument is omitted, the first one applies to both dimensions, as demonstrated in 
the following example. 

This text is normal . 

This text is  large . 
Thl� text 1\ t i lly 

\usepackage {graphi c s }  % or graphi cx 

\no indent Thi s text is normal . \\ 
\ s c alebox{2}{This text is large . } \\  

\ s c alebox{O . 5}{Thi s text i s  t iny . }  

The effect of the optional argument is demonstrated in the following example, which 
also shows how multiple lines can be scaled by using the standard �TEX \parbox command. 

America 
& 
Europe 

l \ref lectbox{maUri�} 1 

AIllerica 
& 
Europe 

\usepackage {graphics}  % or graphicx 

\fbox{ \ s c alebox{ 1 . 5}{% 

\parbox{ . 5in}{America \&\\Europe}}} 

\fbox{ \ s calebox{ 1 . 5} [ 1] {% 
\parbox{ . 5in}{America \&\\Europe }}} 

This command is a convenient abbreviation for \scalebox{ - 1 }  [ l J  {material}, as seen in 
the following example: 

America?r: £oi1�mA 
America?r: £oi1�mA 

\usepackage{graphics} % or graphicx 

\no indent Ameri ca?\ref le ctbox{America?} \ \  

Amer ica?\scalebox{ - l }  [ 1 ]  {Ameri ca?} 

More interesting special effects are also possible. Note, in particular, the use of the zero
width \make box commands, which hide their contents from �TEX and thus offer the possi
bility of fine-tuning the positioning of the typeset material. 

Amert" ca? . " B;)l1gW� (, " v 
A " ?  menca . VWGLICg . . .) 
M\%WN 
�mHt8�� 

\usepackage {graphics} % or graphicx 

\no indent America?\scalebox{- l}{Amer i c a?} \\ 

America?\scalebox{ l }  [- 1 ]  {Ameri ca?}\\ 
America?\makebox [Omm] [r] {% 

\ s c alebox{ - l }{Amer i ca?}}\\ 

\makebox [Omm] [1]  {Amer ica?}% 

\ s c alebox{ l} [-1]  {Ameri ca?} 

37 



38 STAN DARD I!ITEX I NTERFACES 

2.2.2 Resizi ng to a g iven size 

It is possible to specify that ]}TEX material should be typeset to a fixed horizontal or vertical 
dimension: 

\resize box*{h-dim}{ v-dim} {material} 

When the aspect ratio of the material should be maintained, then it is enough to specify one 
of the dimensions, replacing the other dimension with a « ! " sign. 

London, \usepackage{graphi cs} % or graphicx 

\fbox{\re s i zebox{5mm} { ! }{% 
\parbox{ 14mm}{London , \ \ Berlin \&\\ Paris}}} 

\fbox{\res izebox{ ! } { 1 0mm}{% 

\parbox{14mm}{London , \\ Berlin \&\\ Paris}}} 

I �;::':�'� I Berlin & 
Paris 

K6ln 
Rhein 

KOIn Lyon 

When explicit dimensions for both h-dim and v-dim are supplied, then the contents can 
be distorted. In the following example the baseline is indicated by a horizontal rule drawn 
with the \HR command. 

Lyon Oxford 
Rhone Thames 

Oxford 

\usepackage{graphi cs} % or graphicx 

\HR\begin{tabul ar}{lll} 
K\ " oln & Lyon & Oxford \ \  

Rhe in & Rh\ �one & Thame s 

\end{tabular}\HR\par\bigskip 
\HR\resizebox{2cm}{ . 5cm}{% 

\begin{tabular}{lll} 

K\ " oln & Lyon & Oxford \ \  

- Rhein Rhone Thames -
Rhe in & Rh\ �one & Thame s 

\end{tabular}}\HR 

London,  
- Berl i n  & 

Paris 

As usual with ]}TEX commands involving box dimensions, you can refer to the natural 
lengths \depth , \he ight , \ totalhe ight , and \ width as dimensional parameters: 

London, 
'-- Berlin & 

Paris 
r--

\usepackage {graphi c s }  % or graphicx 

\HR\fbox{\re sizebox{\width}{ . 7 \he ight}{% 

\parbox{ 14mm}{London , \\ Berl in \&\\Paris}}}\HR 

\fbox{\res izebox{\width}{ . 7\totalhe ight}{% 

\parbox{ 14mm}{London , \\ Berlin \&\\Paris}}} \HR 

The unstarred form \re s izebox bases its calculations on the height of the ]}TEX ma
terial, while the starred \res izebox* command takes into account the total height (the 

: Example I 2-2-5 

I 
Exam;l� i 

! 2-2-6 



, 1 I Example I 
2-2-9 I 

2.2 Manipu lating graphical objects 

depth plus the height) of the �TEX box. The next tabular examples, which have a large 
depth, show the difference. 

2.2.3 Rotating a INEX box 

\usepackage{graphicx} 

\HR\res izebox{20mm}{30mm}{% 
\begin{tabular}{lll} 

K\ " oln & Lyon & Oxf ord \ \  

Rhe in & Rh\ A one & Thames 
\ end{tabular}}\HR 

\HR\res izebox*{20mm}{30mm}{% 

\begin{tabular}{lll} 

K\ " o1n & Lyon & Oxf ord \\  

Rhe in & Rh\ A one & Thames 
\end{tabular}}\HR 

�TEX material can be rotated through an angle with the \rotatebox command. An alter
native technique that is useful with environments is described in Section 2.2.4. 

I \rotatebox{angle}{material} I 
The material argument is typeset inside a �TEX box and rotated through angle degrees coun
terclockwise around the reference point. 

-
0 ° 0 
0) 

39 

� (\) 
�CJ ..... 

c::l 

I rotate 0° I �� ..... 
,0 0 ;.., -

0.p, 
(Ill' u,I. � 0.., I 008 1  glBlOl I 0'" 4"" 1'/)"" 

\usepackage{graphi c s }  % or graphicx 
\newcommand\MyRot [1]  {\fbox 

{\rotat ebox{# l }{rotat e  

$ # l A \circ$}}} 

'\.,'l, � \MyRot{O} \MyRot{45} \MyRot{90} 
\MyRot{ 135} \MyRot { 1 80} \MyRot{225} 

To understand where the rotated material is placed on the page, we need to look at 
the algorithm employed. Below we show the individual steps carried out when rotating The rotation algorithm 
\fbox{ text} by 75 degrees. 

� text I 
1 

m 
� 

2 

rm 
� 

3 

rm rm p 
_ _  -f!!J -

4 5 6 

Step 1 shows the unrotated text; the horizontal line at the left marks the baseline. First the 
material (in this case, \fbox{ text} )  is placed into a box. This box has a reference point 
around which, by default, the rotation is carried out. This is shown in step 2 (the original 
position of the unrotated material is shown as well for reference purposes) .  Then the algo
rithm calculates a new bounding box (i.e., the space reserved for the rotated material) ,  as 



40 

Strange result with 0 
optional argument Y 

STANDARD �EX INTERFACES 

shown in step 3. Next the material is moved horizontally so that the left edges of the new and 
the old bounding boxes are in the same position (step 4) .  1F,X's typesetting position is then 
advanced so that additional material is typeset to the right of the bounding box in its new 
position, as shown by the line denoting the baseline in step 5. Step 6 shows the final result, 
again with the baseline on both sides of the rotated material. 

For more complex material it is important to keep the location of the reference point of 
the resulting box in mind. The following example shows how it can be shifted by using the 
placement parameter of the \par box command. 

\usepackage { c olor , graphi c s }  % or graphicx 

\HR\bluefbox{\rotat ebox{45}{% 
\fbox{\parbox{3em}{Red\\Green\\Blue}}}}% 

\HR\bluefbox{\rotat ebox{45}{% 

\fbox{\parbox [t] {3em}{Red\\Green\\Blue}}}}% 

\HR\bluefbox{\rotat ebox{45}{% 
\fbox{\parbox [b] {3em}{Red\\Green\ \Blue}}}}\HR 

The extended graphics package graph icx offers more flexibility in specifying the point 
around which the rotation is to take place by using key/val pairs. 

\rotat e  box [key/val-list] {angleHmaterial} 

The four possible keys are origin, x, y, and uni t s. The possible values for the origin key 
are shown in Figure 2.2 on the next page (one value can be chosen for each of the horizontal 
and vertical alignments) ,  as are the actual positions of these combinations with respect to 
the �TEX box produced from material. 

Note that without an optional argument, the rotation is carried out around the refer
ence point, whereas the center point is used by default as soon as an optional argument is 
present. This somewhat idiosyncratic behavior can lead to unexpected results, e.g., when 
only uni t s=-360 is specified to achieve clockwise rotation. 

Possible combinations for the origin key when applied to an actual �1EX box are 
shown below, where two matrices of the results are shown for 90-degree and 45-degree ro
tated boxes. To better appreciate the effects, the unrotated text is shown against a grey back
ground. 

c 

r 

1 

t b B t b B 

-L � � � �- �- .- .
� � � � �- �- .- .-
1r � -r 1r �- • �- �-
jk A � � �- �- �- A-

I 
Example 

. 2-2- 1 0  



2.2 Manipulating graphical objects 

[It] .----__ -=[c..:..c...:.,;t]
::.....,:..;

or:......:...;[ t...::.] __ -----,�.�9 . . . . . . . . . . . . .  . 
I 
I 
I 

/: 
centerline : height 

[lc] or [1] r-- _ _  \ _ �cl _ _ _ _  [rc] r [r] 

I �  totalheight reference 
point 

� . . 
[lB] 

center 
I point . . . . . . . . . . . . . . . .  j . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . j : [CB] or [B] [rB] 

baseline I depth 

: . . . . . . . 1 . . . . . . . . . . 
[ lb] [cb] or [b] [rb] 

1+--- width ------.I 
Horizontal alignment 1 
Vertical alignment t 

left r right 
top b bottom 

c 
B 

center 
baseline 

Figure 2.2: A �TEX- box and possible origin reference points 

If the specification of the origin is not enough, you also can supply the x and y coordi
nates (relative to the reference point) for the point around which the rotation is to take place. 
For this purpose, use the keys x and y and the format x=dim , y=dim. A matrix showing 
some sample values and their effect on a box rotated by 70 degrees follows. 

x=Omm x=5mm x=10mm x=1 5mm 

y=Omm 

I 

1<1 
y= 10mm -iood liye!1 

4 1  



42 STANDARD INEX INTERFACES 

The interpretation of the angle argument of \rotatebox can be controlled by the 
uni ts keyword, which specifies the number of units counterclockwise in a full circle. The 
default is 360, so using uni ts=-360 would mean that angles are specified clockwise. Sim
ilarly, a setting of uni t s=6 . 283 185 changes the degree specification to radians. Rather 
than changing the uni ts  key on individual \rotatebox commands, you should probably 
set up a default interpretation using the \setkeys declaration as described in Section 2. l .4. 

2.2.4 The epsfig and rotati ng packages 

Sebastian Rahtz's E\1F)C 2.09 packages epsfig and rotating have been rewritten as interfaces 
to the graphicx package, so that users of those packages can continue to use the syntax with 
which they are familiar. For new documents, it is normally advisable to use E\Tp)C's native 
graphics commands directly as described in this chapter. Nevertheless, the rotating pack
age offers some supplementary high-level functionality, such as the sidewaystable and 
sidewaysf igure environments, that are not provided in the standard graphics packages. 

The functionality of rotating is implemented in this package through the environments 
turn and rotat e; the latter environment generates an object that occupies no space. Using 
environments has the advantage that the rotated material can contain \ verb commands. 
The extended syntax of the \rotat ebox command is not supported, however, so in most 
cases the latter command is preferable. 

�e1-. 
Turning � a bit. 

� 
� 

\usepackage{rotat ing} 

Turning \begin{rotate}{-90}\Huge\LaTeX\end{rotat e }% 

\begin{rotat e}{-20}\Large\LaTeX\end{rotate}% 
\begin{turn}{20}\verb=\LaTeX=\end{turn} a bit . 

The rotating package lets the user control the direction of rotation with the package 
options clockwise  (the default) and counterclockwise. 

2.3 Line g raph ics 
As part of its kernel, E\TEX offers the picture environment, which allows for the creation 
of line graphics from a number of fairly basic constructs. Surprisingly complex graphics can 
be produced, as can be seen in Chapter 8, which covers a number of "languages" that have 
been built using the picture environment as a basis. 

Nevertheless, as the building blocks for generating lines, vectors, and circles in the 
picture environment are effectively tiny characters in specially designed fonts, this ap
proach has naturally severe limitations. There are only a finite (and, in fact, small) number of 
different characters in these fonts and thus only a small number of different slopes for lines, 

: Example : 
���=�-j 



Example I 2-3- 1  

2.3 Line graphics 

a smallest circle and a largest circle, and so on. For instance, the next example generates two 
warnings and three errors and shows the defects quite drastically. 

\begin{pi cture} (O , O) 

\put (O , O ) { \ c ir cle{80}} \put (O , O ) { \ c ircle*{24}} 

\put (30 , O ) { \ c irc le{40}} \put (30 , O ) {\circle*{ 16}} 

\put ( 1 5 , O ) {\ oval (90 , 60) } 

43 

\put (O , 12) {\line ( 1 5 , -2) {30}} \put ( O , - 1 2 ) { \ l ine ( 1 5 , 2 ) {30} } 
\thickl ines 

\put (-5 , -40) {\vector ( 2 , 6 ) {25}} 

\ end{pi cture} 

These restrictions were supposed to be lifted by the pict2e package described in the 
second edition of Lamport's «�1EX: A Document Preparation System" [78] . But until its real 
release in 2004 by Hubert GaBiein and Rolf Niepraschk [28] , the package merely produced 
an apologetic error message. 

Applying this package to our previous example, we can clearly identify some of the lim
itations of the font-based solution. 

\usepackage{pi ct2e} 

\begin{pi cture} ( O , O) 
\put (O , O ) {\circle{80}} \put (O , O) {\circle*{24}} 

\put (30 , O) {\circle{40}} \put (30 , O) {\circle*{16}}  

\put ( 15 , O) {\oval ( 90 , 60) } 

\put ( O , 12) { \ l ine ( 15 , -2) {30}} \put ( O , - 1 2) { \line ( 1 5 , 2 ) {30}} 
\thicklines 

\put ( - 5 , -40) { \vector (2 , 6 ) {25}} 
\ end{pi cture} 

2.3 .1  Options for pict2e 
Similar to the packages from the graphics bundle, the pict2e package supports a number of 
different output devices. Thus it is not surprising that the majority of the package options are 
options to select the back-end driver-dvipdfm, dvips, ozt ex, pdft ex, vtex, and xdvi 
at the time of this book's writing. In comparison to the graphics bundle, a smaller number 
of output drivers are supported, although that may change in the future. Like a lot of other 
packages (e.g., graphics and color), pict2e tries to detect which driver is needed; only in 
some special cases must an explicit option be given on the \ usepackage command. 

If supplied with an unknown option name, the package automatically uses the option 
original instead. This default is mainly intended to handle driver option names that are 
not yet implemented for pict2e. Unfortunately, however, it also means that misspelling an 
option name has the surprising effect of turning off all features instead of producing an error 
message. 

� The danger of 
':it misspelled options 



44 STANDARD NEX INTERFACES 

The options 1 txarrows and pst arrows determine the arrow style used by the 
Setting the arrow style \ ve ct or command. There is no document-level declaration that would allow to mix both 

styles in one document. The default form used by �TEX has a more or less triangular tip: 

\usepackage [lt xarrows] {pict2e}  

\begin{pi cture } ( 1 70 , 50)  

\put ( 0 , 25) {\vector ( 2 , 1 ) { 100}} � \ linethi ckne s s { 10\unitlength} 
\put ( 0 , 25) {\vector ( 1 , 0) { 100}} 

\end{pi cture} 

\put ( 1 70 , 25) {\vector ( 1 , 0 ) {0}} 

In contrast, the arrows modeled after those in PSTricks are much more like barbed 
hooks, with their tips also pointing backwards. To better show the different forms both ex
amples display the arrows at normal size as well as 10 times magnified. 

\usepackage [pst arrows] {pict2e} 

\begin{pi cture} ( 170 , 50) 

\put ( 0 , 25 ) {\vector ( 2 , 1 ) { 100}} � \ l inethickne s s { 10\unitlength} 

\put ( 0 , 25) {\vector ( 1 , O ) { 100}} 

\end{pi cture} 

\put ( 1 70 , 25) {\vector ( 1 , 0) {0}} 

2.3.2 Sta ndard !!\lEX and pict2e com pared 

Looking more closely at pict2e, we find the following features in comparison to the �TEX's 
standard picture environment and the commands used therein: 

• The enhanced commands can draw lines and arrows at any slope (no limitation on the 
allowed values for slopes) and with an arbitrary line thickness (Le_, not limited to two 
values) and produce circles with any diameter. 

• It is possible to specify the radius used in ovals. In standard picture, this value is 
calculated automatically. 

• Support for cubic Bezier curves is implemented as part of the package. 

\line (.6.x,  .6.y) { length} \vector ( .6.x,  .6.y) {length} 

In standard �TEX, the slope arguments ( .6.x, .6. y) are severely restricted ( integers in a very 
small range with no common divisors) .  With pict2e, this restriction has been more or less 
lifted: one has to satisfy only the condition ( - 1000, - 1 000) � (.6.x, .6.y) � ( 1 000, 1000) 
to avoid arithmetic overflow. Due to the font-based implemention in standard �TEX, there 
was a minimal line segment and thus a minimal length for a line or vector. With pict2e, lines 
and vectors can be drawn at any length. Furthermore, the \l inethi ckness  declaration 
now affects lines and vectors at any slope and arrowheads can be drawn at any size. 

Example 
: 2-3-3 

Example 
2-3-4 



Example , 
2-3-5 ' 

EXdmple 
2-3-6 

2.3 Line graphics 

\ circle{diameter} \ c ircle *{diameter} 

The standard �TEX \c ircle macro has restrictions on the values of the possible diameters: 
only a fixed set of sizes are available, with the largest value being approximately 40 points 
for circles and 15 points for filled disks. With pict2e, a circle or disk of any positive size 
can be drawn. Obviously, specifying negative values is still impossible and will be flagged 
as an error. Furthermore, the circle lines are now affected by \l inethi ckne s s , while in 
standard �TEX only two values (\ thinl ines and \ thi ckl ines) are supported. 

\usepackage{mult ido , pi ct2e} 

\begin{pi ctur e} ( 1 1S , 60)  ( -45 , -30)  
\l inethickne s s { 1 . 6pt} 
\multido{\ iA=-30+ 10 , \ iB= 1 5+5}{S} 

{\put ( \iA , O ) { \ c ircle{\iB}}} 

\put ( 50 , 0 ) { \ c ircle*{50}} 
\ end{pi cture} 

The amount of improvement provided by pict2e can be clearly seen by comparing the 
above example with the result produced by standard �TEX: 

\oval [radius] (.6.:]:,  .6.y) [part] 

\usepackage {mult ido} 

\begin{picture } ( 1 1S , 60 )  ( -45 , -30) 
\ linethi ckne s s { 1 . 6pt } 

\mult ido{\ i A=-30+ 10 , \iB= 1 5+5}{S} 

{\put ( \ iA , O ) { \ c ircle{\iB}}} 

\put (50 , 0 ) {\circle*{50}} 
\ end{pi cture} 

\maxovalrad 

Without using the package pict2e, the user can control only the size of an oval but not its 
shape, since its corners would always consist of the "quarter circles of the largest possible 
radius less than or equal to radius" [78, page 223 ) .  The original definition therefore has only 
one optional argument (for specifying which part of the oval to typeset) .  

With pict2e, an additional optional argument for specfying the radius is available. Its 
default value is the command \maxovalrad , which defaults to 20 pt. The pict2e pack
age will "auto-detect" whether its argument is a length value or a number (in which case 
\uni tlength is used as the unit) . 

In the following example, the oval halves on the left are specified without the optional 
radius argument, thus using the default of20 pt for the maximum. Consequentially, the inner 
halves show half-circles that turn into ovals once the size exceeds 20 pt. This more or less 
would be the result one gets without the pict2e package, except that the font-based solution 
can render only a limited number of quarter-circles. Thus even the inner lines may not be 

45 



46 STANDARD NEl( INTERFACES 

perfect half-circles in that case. On the right side, an explicit value of 5 is used, so that real 
ovals appear from the third \oval on (which has a vertical size of 15 ) .  

\usepackage{mult ido , pict2e} 

\begin{pi cture} ( 100 , 80) 
\ thicklines 

\mult ido{\ iA=25+5 , \iB=5+5}{10} 
{\put (45 , 40) {\oval ( \ iA , \iB)  [l] }}  

\mult ido{\ iA=25+5 , \ iB=5+5}{10} 

{\put ( 55 , 40) {\ oval [5] ( \iA , \iB)  [r] } }  

\ end{pi cture} 

The next example experiments with different values for \maxovalrad . On the left we 
decrease it from 10  to 1 ( inside to outside), so that the rounded corners get smaller and 
smaller. Of course, we could have used those values directly in the optional radius argument; 
in real life \maxovalrad will normally be used to set the default once. On the right we 
increase the radius as we move outwards (this time using the optional argument) :  for the top 
corners by 1 pt each time and on the bottom corners by 1 (\  uni tlength) . As our picture is 
typeset with a \ uni tlength of 2 pt, the quarter-circles grow faster than the top ones. The 
example also proves that \oval obeys changes to the \l inethi ckne s s . 

\usepackage{mult ido , pict2e} 

\ s etlength\unitlength{2pt} 
\l inethi cknes s {2pt} 

\begin{pi cture} ( 1 00 , 80)  

\mult ido{\iA=25+5 , \ iB=5+5 , \ iM= 10+- 1}{ 10} 

{\renewcommand\maxovalrad{ \ iM} 

\put (45 , 40) {\oval ( \ iA , \iB)  [l] }} 
\mult ido{\ iA=25+5 , \ iB=5+5 , \dM=2pt+ 1pt , \ iM=2+ 1}{ 10} 

{\put (55 , 40 ) { \oval [\dM] ( \ iA , \iB)  [rt] } 

\put ( 55 , 40) {\ oval [\iM] ( \ iA , \iB)  [rb] }} 
\ end{pi cture} 

\qbez ier [n] ( ax , ay )  ( bx , by ) (cx , cy )  
\qbeziermax 
\cbez ier [n] ( ax , ay )  ( bx , by )  (Cx , Cy )  (dx , dy )  

The \qbezier  command draws a quadratic Bezier curve using the three control points 
given as mandatory picture arguments. In the standard �TEX implementation, the curve 
is plotted using a number of small square dots (less or equal to \qbeziermax or specified 
explicitly in the optional argument) .  As those dots are implemented in 'lEX and not as font 

Example 
2-3-7 

Example 
2-3-8 



Example 
2-3- 10  

2.3 Line graphics 

characters, this is one of the few commands in the basic implementation that obeys changes 
to \l inethi ckne ss . The example shows the middle control point as a small circle. 

......... i. ...... 
...... I ..... . . -. 

\begin{pi cture } ( 100 , 40 )  

\put (50 , 42) { \ c ircle*{2}} \put ( 5 1 , 43) {\tiny l }  
\put (50 , 52) {\circle*{2}} \put ( 5 1 , 53 ) {\t iny2} 

\qbezier ( 0 , 0 ) (50 , 42) ( 100 , 20) \qbez ier [ 10] ( 0 , 20) (50 , 52 ) ( 100 , 30) 

\l inethi cknes s {3pt } 

\put (50 , 62) {\circle*{2}} \put ( 5 1 , 63 ) {\t iny3} 

\qbezier [30] ( 0 , 40) ( 50 , 62) ( 1 00 , 40)  
\end{pi cture} 

With the pict2e package, the optional argument is ignored and the curve is always plot
ted in a smooth manner using the graphics capability of the back-end output driver. In the 
standard implementation, that would be possible only by plotting with a large number of 
dots, which may exceed 1E,X's internal memory. The next example first repeats the curves in 
the previous example but this time using pict2e. In addition, we added a cubic Bezier curve 
with four control points, not available with standard �TEX. 

• .1 

\usepackage{pict2e} 

\begin{pi cture} ( 100 , 80) 

\put ( 50 , 42) {\circl e *{2}} \put ( 5 1 , 43) {\tiny 1 }  
\put ( 50 , 52) {\circle*{2}} \put ( 5 1 , 53) {\t iny2} 

\qbezier ( O , O) ( 50 , 42) ( 100 , 20) \ qbez ier [ 10] (0 , 20 ) (50 , 52) ( 1 00 , 30)  
\l inethickne s s{3pt} 

\put ( 50 , 62) {\circle*{2}} \put ( 5 1 , 63) {\t iny3} 

\qbezier [30] (0 , 40) (50 , 62) ( 100 , 40 )  
% cub i c  bezier 

\put (30 , 80) {\circle*{2}} \put ( 3 1 , 8 1 ) {\t iny4} 
\put (70 , 0) {\circle*{2}} \put (7 1 , 1 ) {\t iny5} 

\ cbezier ( O , O) (30 , 80) (70 , 0) ( 1 00 , 20) 

\end{pi cture} 

2.3.3 Sl ig htly beyond standard graphics: cu rve2e 
Claudio Beccari developed the package curve2e. This extension to pict2e includes ideas 
from David Carlisle's pspicture and Ian Maclaine-cross's curves packages. Compared to 
pict2e, cu rve2e enhances the syntax of the \l ine command and introduces two new com
mands: \L ine, which allows the user to specify the relative x and y displacements from 
the current point, and \LINE, which has two absolute coordinates as its arguments. Simi
larly, \ Vector and \ VECTOR are defined and extend the \ vector command. Claudio also 
defines a \polyl ine command for drawing polylines between two (minimum) or more ver
tices that are specified as arguments, as well as a \Curve command for drawing third-order 
Bezier curves. This macro needs a series of nodes on the curve together with the tangent at 
each node. Finally, he introduces an \Arc command and some variants for drawing circular 
arcs of any radius and any angular aperture. 

47 



48 

sin f} 

o 

STANDARD INEX INTERFACES 

The first example shows sine and cosine-like functions that are defined as Bezier curves 
whose values and tangents are specified at four points between 0 and 27r. Note how we use 
�TEX's standard \ vector command to draw the vertical axis and the extension command 
\ Vector to draw the horizontal axis. 

/ / 

\usepackage{xcolor , pict2e , curve2e} 

\ s etlength\unitlength{ 1 cm} 

\begin{pi cture } ( 6 . 6 , 3) ( 0 , - 1 . 5 ) 

\put ( 0 , - 1 . 5 ) {\vector (0 , 3) {3}} 

\put (0 , 0 ) { \Vector ( 6 . 6 , 0 ) }  

\put ( 6 . 3 , 0 . 1 ) {$ \theta$} 
\put ( 0 . 05 , -0 . 3) {$0$}% ° 
\put ( 2 . 9 , -0 . 3) {$\pi$}% pi 

\put ( 6 . 23 , -0 . 3) {$2\pi$}% 2 pi 
\color{red}\put ( O . 1 , 1 . 1 ) {$\cos\theta$} 

\Curve ( 0 , 1 ) < 1 , 0> ( 1 . 570796 , 0) < 1 , - 1>% 
( 3 . 1 4 1 5924 , - 1 ) < 1 , 0> ( 6 . 283 185 , 1 ) < 1 , 0>% 

\color{blue}\put ( 1 . 65 , 1 . 1 ) {$\s in\theta$} 

\Curve ( 0 , 0 ) < 1 , 1 > ( 1 . 570796 , 1 ) < 1 , 0>% 

(4 . 7 12389 , - 1 ) < 1 , 0> ( 6 . 283185 , 0 ) < 1 , 1>% 
\end{pi cture} 

A more complex example of the use of the \Curve command is the following heart 
figure. Note how we make use of the variants \l ine, \Line, and \LINE for drawing the 
sides of the square. 

\usepackage{xcolor , pict2e , curve2e} 

\ s etlength\unitlength{ 1 cm} 

\begin{pi cture} ( 5 , 5 ) (0 . , 0 . ) 

\Curve ( 2 . 5 , 0 ) <0 , 1> ( 5 , 3 . 5) <0 , 1>% 
( 2 . 5 , 3 . 5) <- . 5 , - 1> [- . 5 , 1 ] %  

(0 , 3 . 5 ) <0 , - 1> ( 2 . 5 , 0) <0 , - 1 >  
\color{blue} 
\thinl ines 

\put ( 0 , O ) {\line (0 , 5 ) {5}} 

\put ( 0 , O ) {\line ( 5 , 0 ) {5}} 

\put ( 5 , O ) {\Line ( 0 , 5 ) }  
\LINE ( 0 , 5 ) ( 5 , 5 ) 

\end{pi cture} 

The following example shows in more detail how we can control the tangent on the in
coming (triangular brackets) and outgoing sides, if different (square brackets) .  For instance, 
for the rightmost node ( 5 . 0 , 2 . 5 ) ,  the tangent of the curve arriving at the node, < 1 , 0> ,  

, Example ' 
2-3- 12  



Example 
2-3- 1 3  

Example 
2-3- 14 

2.3 Line graphics 

points along the positive x direction, whereas the tangent of the curve leaving the node, 
[- 1 , OJ , points along the negative x direction. 

\us epackage {xcolor , p ict2e , curve2e} 

\setlength\unit length{ 1 cm} 
\begin{pi cture} (5 , 5 ) (0 . , 0 . ) 

\Curve ( 2 . 5 , 0 . 0 ) <0 , 1 > ( 3 . 0 , 1 . 5) < 1 , 1 >% 

( 5 . 0 , 2 . 5) < 1 , 0> [- 1 , 0] ( 3 . 0 , 3 . 5 ) < - 1 , 1 >% 
( 2 . 5 , 5 . 0) <0 , 1 > [0 , - 1 ] ( 2 . , 3 . 5) <- 1 , - 1 >% 
(0 . 0 , 2 . 5) < - 1 , 0> [ 1 , 0] (2 . , 1 . 5) < 1 , - 1 >% 

( 2 . 5 , 0 . 0) <0 , - 1 >  
\color{blue} 

49 

\thinline s 
\put (0 , 0) {\line (0 , 5) {5}}\put (0 , 0 ) {\l ine ( 5 , 0 ) {5}} 

\put ( 5 , 0 ) {\Line ( 0 , 5) }  \LINE ( 0 , 5 ) ( 5 , 5 ) 
\end{pi cture} 

The curve2e package implements vector calculus in the two-dimensional plane, which 
is useful to represent complex numbers. The following example of a five-pointed star shows 
some of the advantages of this approach. The \Di vidE command implements long division 
and lets us define an angle of 72 degrees, which the \DirFromAngle command translates 
into a vector direction. We first move to the top node of the graph at the point (0 , 2 . 5 )  , 
to which we assign the vector coordinates \ Vone. We then define the vector coordinates 
\ Vtwo, \ Vthree, \ Vi our, and \ Vi i ve of the other nodes as the previous vector multipled 
by \Dir (i.e., rotated by 72 degrees) .  Finally, the first \polyl ine command draws the sides 
of the pentagon, while the second \polyl ine command draws the sides of the five-pointed 
star. For completeness we add the circumscribing circle. 

\usepackage{xcolor , pict2e , curve2e} 

\set length\unitlength{ 1 cm} 

\begin{pi cture} ( 5 , 5 ) ( -2 . 5 , -2 . 5 ) 
\DividE 360pt by 5pt to\Fifth 

\DirFromAngle\Fifth to\Dir 

\CopyVect 0 , 2 . 5  t o\Vone 

\MultVect\Vone by\Dir t o\Vtwo 

\MultVect\Vtwo by\Dir t o\Vthree 
\MultVect \Vthree by\Dir to\Vf our 

\MultVect \Vf our by\Dir to\Vf ive 

\polyline ( \Vone ) ( \Vtwo) ( \Vthre e ) % 
( \Vf our) ( \Vf ive ) ( \Vone ) 

\color{blue} 

\polyl ine ( \Vone ) ( \Vf our ) ( \Vtwo ) %  

( \Vf ive ) ( \Vthree)  ( \Vone ) 
\color{green}\thinl ine s 

\put ( 0 , 0 ) { \ c ircle{5 . }} 

\end{picture }  



50 STAN DARD ItITEX I NTERFACES 

We end our short overview of the curve2e package with instances of commands for 
drawing circular arcs. If we want an arc with an opening angle of 30 degrees, we first de
fine that angle (\ Twelfth) and turn it into a vector direction (\Dir) .  Using \Dir , the 
\Mul tVect command lets us construct several circular arcs, that are 30 degrees apart: two 
in the positive (counterclockwise) direction (\Vone and Wtwo) and two in the negative 
(clockwise) direction (\  Vmone and \ Vmtwo). l The arcs are drawn with the \Arc command, 
where the first point specifies the center of the arc, the second the start point on the arc, 
and the third the opening angle (in degrees, positive means counterclockwise) .  The variants 
\ Vect orArc and \ VectorARC draw an arrow at the end point, and at both start and end 
points of the arc, respectively. The \ VECTOR command, in analogy with the \LINE com
mand, draws a vector by specifying the absolute coordinates of its start and end points. 

\usepackage{xcolor , pict2e , curve2e} 

\setlength\unitlength{ l cm} 

\begin{pi cture } ( 2 . 5 , 5 ) ( -2 . 5 , -2 . 5 ) 
\DividE 360pt by 1 2pt t o\Twelfth 
\DirFromAngle \Twelfth to\Dir 

\CopyVect -2 . 5 , 0  to\Vzero 

\MultVect \Vzero by\Dir to\Vone 
\MultVe ct \Vone by\Dir to\Vtwo 

\Arc ( O . O , o . O) ( \Vzero) {30} 

\Arc ( O . O , o . O) ( \Vone ) {30} 

\Vect orArc (O . O , o . O) ( \Vtwo) {-30} 
\color{blue}\MultVe ct\Vzero by*\Dir to\Vmone 

\MultVe ct\Vmone by*\Dir to\Vmtwo 

\Arc ( O . O , o . O) ( \Vzero) {-30} 

\Arc ( O . O , o . O ) ( \Vmone ) {-30} 

\VectorARC ( O . O , O . O ) ( \Vmtwo ) {30} 
\color{green}\thinl ine s 

\VECTOR (O , O ) ( \Vzero) 

\end{pi cture} 

\VECTOR ( O , O ) ( \Vone ) \VECTOR ( O , 0)  ( \Vmone ) 
\VECTOR (O , O) ( \Vtwo)  \VECTOR ( O , 0) ( \Vmtwo )  

1 I f  the keyword "by" of the \MultVect command i s  followed by a star, the complex conjugate of the specified 
direction is used to define the resulting vector. 



C H A P T E R  3 

M �TR�ONT a nd 
M �TR PO£T: TEX's Mates 

3.1 The META language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . 52 
3.2 Differences between META POST and META FONT . . . . . . . . . . • . . . . . .  60 
3.3 Running the META programs . . . . . . . . . . . . . . . . . . • • • • • • . • . . . . . 68 
3.4 Some basic METAPQST libraries . . . . . . . . . . . . . . . . . . . . . . • . . . . . .  74 
3.5 The METAOBJ package . . . . . . . . . . . . . . . . . . . • • . • . . • . • • . . . . . . 80 
3.6 TEX interfaces: getting the best of both worlds . . . .  , . • . . . . . . . • , . . . .  '20 
3.7 From METAPQST and to METRPQST . . . . . . . . . . . . . . . . . . • . . . . .  137 
3.8 The future of METRPOST . . . . . . . . . . . .  , , . . . • • . • . . • . • • . . . . .  138 

In designing the TfX. typesetting system, Donald Knuth soon realized that he would also 
have to write his own font design program. He devised META FONT, a language for describ
ing shapes, and a program to interpret that language and turn the shapes into a pattern of 
dots for a printing or viewing device. The result of Knuth's work was lEX, META FONT, and 
the extensive Computer Modern font family written in META FONT. META FONT has also 
been used to create special-purpose symbol fonts and some other font families. 

The development of META FONT as a font description language paralleled to some 
extent that of the PostScript language, which also describes character shapes very elegantly. 
PostScript's strategy, however, is to leave the rendering of the shape until the final printing 
stage, whereas METAFONT seeks to precompute the bitmap output and print it on a fairly 
dumb printing device. 

Font design is a decidedly specialist art, and one that most of us are ill equipped to 
tackle. META FONT, however, defines a very powerful language that can cope with most 
graphical tasks. A sibling program, METAPOST, was developed that uses essentially the 
same language but generates PostScript instead of bitmaps. Together, the two provide an 



52 METRFONT AND METRPOST: 1E)('S MATES 

excellent companion facility with which (LA)1E,X users can illustrate their documents, partic
ularlywhen they want pictures that graphically express some mathematical construct; this is 
not surprising, given that Knuth's aim was to describe font shapes mathematically. Applica
tions vary from drawing Hilbert or Sierpinski curves (described in Section 4.4.3) to plotting 
data in graphs and expressing relationships in graphical form. 

In this chapter we consider how to use both METAFONT and METAPQST (hence
forth we use META to mean "both META FONT and METAPOST") to draw pictures and 
shapes other than characters in fonts. 

OUf coverage of META is divided into six parts. We start with a brieflook at the META 
language basics; our aim is to give readers new to META some ideas of its facilities and the 
level at which pictures can be designed. We try to explain commands as they are used, but 
some examples may contain META code that is not explicitly described. 

We next consider in some detail the extra facilities of the META POST language, in 
particular the inclusion of text and color in figures. 

The third section examines how the META programs are run and how resulting figures 
can be included in a �lEX document. The following section describes the general-purpose 
METAPOsT libraries, covering in particular boxing macros and the METAOBJ package. 

We then look at programs that write META commands for you, concentrating on the 
mfpic (1f.)1}:X package. We conclude with an overview of miscellaneous tools and utilities 
related to METAPOsT. 

For some applications, such as drawing of graphs, diagrams, geometrical figures, and 
3-D objects, higher-level macro packages have been developed, which define their own lan
guages for the user. These packages are described in Chapter 4. 

3.1 The META language 

The full intricacies of METAFONT are described in loving detail in [72]; the manual for 
META POST [471 not only describes the differences between the two systems, but is itself 
a good introduction to META. Alan Hoenig's book 'f}jX Unbound [491 provides a wealth of 
material on META FONT techniques. Articles over many years in the journal TUGboat are 
also vital reading for those who want to delve deeply into META FONT and METAPOsT. 

The job of the META language is to describe shapes; these shapes can then be filled, 
scaled, rotated, reflected, skewed, and shifted, among other complex transformations. In
deed, META programs can be regarded as specialized equation-solving systems that have 
the side effect of producing pictures. 

META offers all the facilities of a conventional programming language. Program flow 
control, for example, is provided by a for . . .  endfor construct, with the usual condition
als. You can write parameterized macros or subroutines, and there are facil ities for local 
variables and grouping to limit the scope of value changes. Some of these features are de
scribed with more detail in the METAPosT section, although they are also available in 
METAFONT. 

Because a lot of the work in writing META programs deals with describing geomet
rical shapes, the numeric support is extensive. For instance, Pythagorean addition (++) 
and subtraction (+-+) are directly supported. Useful numeric functions include length x 



3.1 The META language 

(absolute value of x). sqrt x (square root of x). sind x (sine of x degrees). cosd x 
(cosine of x degrees), angle (x, y) (arctangent of y/x). floor x (largest integer � 
x). uniformdeviate x (uniformly distributed random number between 0 and x). and 
normal deviate (normally distributed random number with mean 0 and standard devia
tion 1). 

A variety of complex data types are defined, including boolean, numeric, pair, 
path, pen, picture. string, and transform. Here we can look at some of these in more 
detail: 

pair "Points" in two-dimensional space are represented in META with the type pair. Con
stants of type pair have the form (x, V), where x and y are both numeric constants. 
A variable p of type pair is equal to the pair expression (xpart p, ypart pl. 

path A path is a continuous curve, which is composed of a chain of segments. Each seg
ment has a shape determined by four control points. Two of the control points, the key 
points, are the segment's end points; very often we let META determine the other two 
control points. 

pen Pens, a distinctive feature of META, are fiJled convex shapes that are moved along 
paths and affect the way lines are drawn in the result. Two pens are initially present 
in META: nullpen and pencircle. null pen is the single point (0,0); it contains 
no pixels and can be used to fill a region without changing its boundary. By contrast. 
pencircle is circular, with the points (±0.5, 0) and (0, ±O.5) on its circumference. 
Other pens are constructed as convex polygons via makepen c, where c is a closed path; 
the key points of c become the vertices of the pen. Pens themselves can be transformed. 

picture A picture is a data type that can be used to store a sequence of META drawing 
commands; the result of a complete META program is often built up from the interac
tion of a set of pictures. The meaning ofv +w in META FONT. for example, is a picture 
in which each pixel is the sum of the two pixels occupying the same position in pictures 
v and w, respectively. 

transform Affine transforms are the natural transformations of Euclidean geometry
that is, the linear transformations augmented by translation. META can construct any 
affine transform and provides seven primitive ones [72. p. 141 1 :  shifted. scaled. xscaled, 
yscafed, slanted, rotated, and zscafed. The effect of most of the operations is self-evident; 
the last one. zscaled, uses a pair of numbers. interpreted as a complex number in Carte
sian coordinates (i.e., complex multiplication). 

FinaJly. META is famous for its ability to solve linear equations. including equations 
that involve points. In particular, you can define a point in terms of other points. For exam
ple, z3=1/2 [zl ,  z2] defines z3 as the point in the middle of the line from zl  to z2. 

3.1.1  First examples of META programs 

Let us first look at some examples of META code, all drawn using METAPOST. You should 
have little difficulty making these examples run under META FONT as well, except that 

53 



54 METRFONT AND METRPOST: 1E)('S MATES 

you may encounter problems with high-resolution output devices, as META FONT can run 
out of memory when composing large pictures-remember that META FONT generates a 
bitmap output. This book was typeset at 2400 dpi, and some META FONT examples were 
impossible to run at this resolution. Your only recourse is to work at a lower resolution (e.g .• 
300 dpi) or to break your picture into separate "characters" in a font and join them together 
in LKJEX. It is almost certainly easier to use METAPOST, as it generates PostScript that can 
be rendered directly by many printers or turned into PDF. 

We do not show the "wrapper" code that is always necessary to turn these examples into 
a self-contained document. See the notes in Section 3.3.1 on page 68 for information on how 
META FONT creates a character and Section 3.3.2 on page 71 for more on how METAPOST 
creates a figure. 

The simplest statement in META is dra'<1. which takes a sequence of points separated 
by . .  and connects them with curves: 

draw (0,0) . .  (50,20) . .  (40,30) . .  (30,20) ; 

The default unit here is a PostScript point (1/72 inch, lEX's "big point" ). To close a object 
smoothly between its last and first points, the sequence can be terminated by cycle: 

draw (0,  50) . .  (0,0) . .  
(60,40) . .  (60,10) . .  cycle; 

Straight lines are drawn by putting -- instead of . .  between the points (the lines are 
actually implemented as specially constrained curves): 

draw (0,0)--(50,20)--(40,60)--(30 ,20) ; 

There are several ways of controlling curves: one can vary the angles at the start and 
end of the curve with dir, the points that are to be the extremes (the upmost, the leftmost, 
and so forth), and the inflection of the curve (with tension and curl). Thus the following 



I 

Enmple 
I 

3-\-6 

3.1 The META language 

code draws a crude coil by judicious use of dir. Instead ofthe default units, we express all 
dimensions in terms of a unit of2.5 em, defined at the start: 

u=2 .5cm; 
path p; 
p= (0,0) {dir 130} . .  

{dir -130}( 0 . 25u,0){dir 130} . .  
{dir -130} (0.5u,0){dir 130} . .  
{dir -130} ( 0 . 75u,0){dir 130} . .  
{dir -130}(u,0) ; 

draw p rotated -90; 

The next example shows the effect of curl. Here a straight line is drawn between three 
points and then a eurve is drawn between the same points, with curl values: 

path p,q;  
u=. 5cm; 
q=(Ou,Ou)--C6u,Ou)-- C4u,3u) ; 
draw q;  
p=CQu, Ou) {curl 4000} . .  (6u,Ou) 

. .  {cur1 4000}(4u.3u) ; 
draw p;  

To demonstrate META's unusual "pens", we approximate a spiral drawn with a strange 
"nib". A colored version of this drawing appears in Color Plate I(a). 

pickup pencircle scaled 3pt 
yscaled . 2pt rotated 60; 

n : =5 ;  
for i ; =  Cn*20) step -Cn) until Cn) : 
draw «i,O) . .  (O , i) . .  (-i,O) 

. .  (O ,- Ci-n)) . .  (i-n,O))  scaled 0 . 7 ;  
endfor 

A very characteristic technique with META is creating a path and then using it several 
times with different transformations. The following code is an extract from a drawing of a 

55 



56 METRFONT AND METRPOST: 1E)('S MATES 

kite's tail. Note that shapes can be made solid by using fill instead of draw: 

u=lcm; 
path p[] ; 
pl : = ( . 5u • .  5u)--(1 . 5u, . 5u)-- C .5u. l . 5u) 

-- ( 1 . 5u, 1 . 5u)-- ( . 5u , . 5u)--cycle; 
fill (pi shifted (O . 2 . 5u» 

rotatedaround « u, 3 . 5u) ,90) ; 
draw pi shifted (u,4u) ; 
fill pi shifted (3 . 5u , 3u) j 
p2 = (2u.2u) . .  (u. 3 . 5u) . .  (2u. 5u) 

. .  (4 .5u,4u) . .  (7u,5u) ; 
pickup pencircle scaled 4pt; 
draw p2; 

A more complicated picture, courtesy of Alan Hoenig from his book 7bX Unbound [491. 
demonstrates looping commands. Boxes of gradually decreasing size are drawn alternately 
white and black, with each one being rotated slightly with respect to the previous box, 

boolean timetofillbox; timetofillbox : =  true; 
partway : =  0 . 9 ;  I : =  .45in; u : =  1 . 0Sin; 
n : =  4; theta : =  360/n; zl = (O,u) ; 
for i : =  2 upto n :  

z[i] = zl rotated « i-1) *theta) ; 
endfor 
forever: 

path Pi p : = zl 
for j := 2 upto n:  --z(j] endfor --cycle; 
if timetofillbox: 

fill p ;  timetofillbox : =  false; 
else: 

unfill p; timetofillbox : =  true; 
fi 
pair Z[J ; 
for j : =  1 upto n:  

Z[j] : =  partway [z[j-1) ,z[jJ J ; 
endfor 
Zl : =  partway [z [n] ,zl] ; 
for j : =  1 upto n:  

x[j] : =  xpart Z [j) ; y[j) : =  ypart Z [j] ; 
endfor 
if not timetofillbox: 1 : =  abs(zl) ; fi 
exitif I < .05u; 

endfor 



3.1 The M ETA language 

Finally, a pleasing side effect of META's curve-drawing abilities is it makes for a nice 
artist's tool. Kees van der Laan demonstratesl in Figure 3 . 1  how METAPOST lends itself 
to moving into 3-D description on the one hand, and art on the other hand, with a picture 
modeled on Naum Gabo's constructivist art. 

3 . 1 .2 Defining macros 

M ETA supports the definition of macros, the full intricacies of which are described in [ 72 ] .  
Here we give only a brief overview of  their definition. Macros 

Essentially two kinds of macros exist. The first kind is defined with def , the second with 
vardef . The latter makes it possible to define macros with variable names. Here we will give 
an insight into only the first kind. In its simplest form, a macro is merely an abbreviation. For 
example, 

def c ircle= 

fullcircle scaled l crn 
enddef ; 

defines circle as a new METAPOST abreviation for a circle centered at the origin with a 
diameter of 1 cm. A more useful definition would make use of parameters. For example, 

def c ircle (expr c , r ) =  
fullcircle s caled 2r shifted c 

enddef ; 

defines circle {c,r) as a circle with radius r and centered on c. It can be used with a call 
such as draw circle ( (3cm , 2cm) , 2cm) ; , which draws a circle with a diameter of 2 cm, 
offset from the origin 3 cm in the x-axis and 2 cm in the y-axis. 

Macros can have any of three kinds of parameters, each of which is identified by a spe
cific keyword. The expr keyword denotes parameters that are evaluated, such as numerical 
values, points, colors, and strings. The suff ix keyword denotes a type that represents a 
name, rather than a value. Suffixes are used, for instance, in packages such as boxes. In the 
next example, b 1 is a suffix representing a box around the letter A: 

boxit . b l (btex $A$ etex) ; 

The third and last keyword is text. It represents non-evaluated text, similar to macro pa
rameters in 'lEX. 

Another important feature of METAPOST is its ability to evaluate strings with 
scantokens. Strings can be constructed, and these strings can represent macros or other 
pieces of code. The METAPOST code can therefore be dynamically modified, depending 
on the values of some parameters, for instance. 

1 The code for this picture can be found on CTAN with the other examples from this book. 

57 



58 M (;TR !=ONT AND M (;TR POST: TEX'S MATES 

Figure 3 . 1 :  M ETA picture after Naum Gabo, by Kees van der Laan 

Example 
3 - 1 -9 



3.1 The M ETA language 

It is sometimes desirable to have macros with default behaviors and optional argu-

59 

ments. The easiest way to achieve this is to use a trailing t ext parameter, as in the following Options mechllnisms 

example: 

def optarg text arg= 
f or i=arg : 

message " arg= " & i ;  

endf or ; 

enddef ; 

optarg " a " , " b " , " e " ; 

optarg 

whose sole output is 

arg=a 
arg=b 

arg=e 

This is a very simple example, meant only to convey the basic idea. arg is a possibly empty 
comma-separated list of arguments. In our example, all the parameters are strings, but, in 
fact, the parameters could be of different types. The loop traverses the list and does some 
action. The last call to optarg doesn't produce any output, because the f or loop is never 
entered. 

A more elaborate scheme is the use of a "key/value" syntax. The METAOBJ package 
was among the first METAPOST packages to provide such a syntax. It did so by enclosing 
each key/value pair in a string, as in the following example: 

neline (a)  (b) " l inewidth ( 1mm) " ,  " l inestyle (dashed evenly) " ;  

Many MTEX packages follow the well-known "key=value" syntax; Jens-Uwe Morawski 
showed how such a syntax can be used in METAPOST. His latexMP package defines a 
macro for coping with lists of "key=value" pairs. As it seems to us a good idea for package 
writers to use this syntax, we give here a complete example showing how short and simple 
its usage is: 

vardef exe eut ekeyval (text k) = 

save _equals ; 
let _equals= = ;  
tert iarydef 1 1  _ass ign _rr 

hide ( _ll _ _  equals _rr_ ) 1 

enddef ; 

save = ;  
let = _equals _ass ign 

f or _xx _ _  equals k : endf or ; 

enddef ; 



60 M �T R � O NT AND M �TR POST: TEX'S MATES 

vardef te stkv text kv= 

s ave a , b , c , s , t ;  %key names 

pair c ; str ing s , t ;  
executekeyval (kv) ; 

A : =a ; B : =b ;  
me s s age " a= "  & dec imal a ;  

me ssage "b= " & de c imal b ;  

if known t : message " t = "  & t ; f i ;  

enddef ; 

te stkv a=8*4 , b=a+7 , c= ( 1 , 2 ) , s= " hello " , t= ( s&"  8ob ! " ) ;  
me s s age " A = "  & dec imal A ;  

me ssage " 8= "  & de c imal B ;  

te stkv b=a+7 , a=8*4 ; 
me s s age " A = "  & de c imal A ;  

me ssage " 8 = "  & dec imal 8 ;  

This code produces the following output: 

a=32 

b=39 

t=hello 8ob ! 
A=32 
8=39 

a=32 

b=39 
A=32 

8=39 

The user macro, called testkv, takes an optional list of comma-separated arguments. 
The evaluation of this list is performed by the executekeyval macro, which is adapted 
from Jens-Uwe Morawski's code. The user macro defines variables a, b, c, s, and t for the 
keys. These variables are local, but in cases where the parameters need to be saved, they can 
be assigned to global variables (A and B in the previous example) .  This example shows that 
certain equations between arguments are possible. 

3.2 Differences between M ETA P OST and M ETA FONT 

3.2 . 1  Color 
Color in METAP05T is  represented by a triple defining a color in terms of red, green, and 
blue or, alternatively, in terms of one of the constants black, whi te, red, green, or blue. 
The color triple is three real numbers between 0 and 1 for each of the red, green, and blue 
values. It can be used in expressions just like pair, which makes possible color specifica
tions like . 3blue and ( . 4 ,  . 2 ,  . 5 ) - ( . 9 ,  . 7 ,  . 3 ) . If the resulting color component ex
ceeds 1 or becomes less than 0, it is automatically brought back to a legal value. 



, Example 
3-2- 1 

3.2 Differences between M ETA P05T and M ETAFONT 

Some METAPOST packages, such as metafu n, provide other color models, including 
CMYK. 

3.2.2 Adding text to pictu res 
One of the great advantages of METAPOST relative to META FONT is that you can anno
tate your pictures with text. That is, METAPOST can typeset text with ordinary PostScript 
fonts, or you can tell it to use lEX to handle the formatting. This text handling can be quite 
intricate, so we delay discussing some of it to the next section. 

The most common way to add text is the label command. 

label .suffix (string expression, pair expression ) 

The string expression is printed at the position specified by the pair expression (i .e. , a coordi
nate) .  The suffix is optional and can be one of lft ( left), rt ( right), top ( top) ,  bot (bottom), 
ulft (upper left), urt (upper right), llft ( lower left), or lrt ( lower right); it specifies the 
relative position of the label to the pair expression. The distance from the point to the label 
is set by the variable labeloff set. 

The string expression can take either of two forms: 

1 .  Ifit i s  a META string (i.e., delimited by double quotes in  the simplest case), then META
POST sets the text directly in PostScript using the font specified by the def aul tf ont 
variable (usually set to be cmrl0 ) .  This font must have a lEX font metric available; note 
that ligatures and kerning in the . tfm file are not used. 

2. If you surround the text (but do not put it in quotes) with bt ex . . .  et ex, it is passed to 
lEX for typesetting. This approach lets you use any lEX or E\TE,X commands, enter math 
mode, and so on. 

In either form, the variable default scale (default 1 )  is applied to the basic font size (nor
mally 10 pt) .  There is also a special form of label that prints a dot at the coordinate as well 
as the label. 

dotlabel SUffix (string expression, pair expression) 

We demonstrate these commands with the following example: 

upper left upper right 

lower left Xl , YI 

u= 1 . 5pt ; 

labeloffset : = 10pt ; 

def aultf ont : = "ptmbSr " ; 

dotlabel . ulft ( " upper lef t " , ( t OOu , 100u) ) ; 
label . urt (btex upper right etex , ( 1 00u , 100u) ) ;  

label . 11ft ( " lower left " , ( t OOu , 1 00u) ) ;  

label . lrt (btex $x_ l , y_ l $  etex , ( 1 00u , 1 00u) ) ;  

draw ( 50u , 1 00u) -- ( 150u , 100u) ; 
draw ( 1 00u , 1 25u) -- ( 100u , 75u) ; 

Two of the labels are M ETA strings and are set in the font "ptmb8r" (converted to Times
Bold), and the other two are passed to lEX and set in the default Computer Modern. 

61  



62 M �TRFONT AND M �TR POST: TEX'S MATES 

There is also a command dot labels  that can be used to label a set of points which you 
have just created. 

I dotlabels '.suJ1:i;x (pairl ,' " ,pairn ) I 
In this case a dot is printed at each point in the list, labeled with the name of the point vari
able, and placed according to the suffix. This command is used in the next example. 

A label defined by a string has a default font and size; however, the label can also be 
passed to TEX for typesetting with the format btex typesetting commands etex. If the latter 
form is used, the output is no longer completely portable, as it relies on a special structured 
comment in the PostScript output that only a few dvi drivers understand (dvips is the refer
ence implementation for this support) . 

To save the label in a M ETA "picture" variable, you can use the command the label; 
it lets you use the same label several times, with different transformations. Another useful 
technique is to apply the bbox command to a saved label, which returns the rectangular path 
enclosing a META picture. The following example uses this method to draw white text on a 
green box and shows some of the other transformations you might need; it also shows how 
to apply bbox to the picture we are drawing, as an easy way of framing it: 

Poly1}y,( 
1 

1 0  PolyJEX 

bOJ1ffix 

def ault s cale : = 1 . 4 ;  

picture p , q ; 

for i : =  ° upto 6 :  

u= lpt ; 

gap : = 1 8u ;  

z [ i] = ( Ou , i  * gap * u) ; 
endf or ; 

draw zO--z6 ; 
dot labels . lft (0 , 1 , 2 , 3 , 4 , 5 , 6 ) ;  
q=thelabel . urt (btex Poly\TeX etex , zO ) ; 

draw q ;  

draw q ref lect edabout (zO , zO+ ( 2u , 0 ) ) ; 
draw q shifted ( O , gap) withcolor red ; 

f ill bbox q shifted ( 0 , 2*gap*u) 
withcolor green ; 

draw q shifted (0 , 2*gap*u) 

withcolor white ; 
draw q s c aled 2 shifted ( 0 , 5*gap*u) ; 

p=q rotatedabout (zO , 45) ; 

draw p shifted ( 1 0u , 3*gap*u) ; 
draw bbox currentpi cture 

withcolor green ; 

3 .2.3 Add ing text-some gory detai ls  
In  the previous section we passed text to TEX using btex . . .  etex. "TEX" in this case was 
plain TEX, not IHEX. In this section we examine the process in more detail and see how to 
use �TEX; we also look carefully at font handling. 

Example i 
3-2-2 



3.2 Differences between M ETR P05T and M ETR FONT 63 

When METAP05T first meets btex, it calls a script makempx. This script runs a pro
gram called mptotex that scans the . mp file and extracts all the btex . . .  etex fragments into 
a temporary file, surrounding them by appropriate macros, so that each fragment is a "page" 
in this 'lEX file. It then calls 'lEX to typeset the material and passes the . dvi file to another 
program (dvitomp) that rewrites it into an . mpx file, which METAP05T can read back in. 
When METAP05T continues after makempx has finished, it inserts a picture expression 
read from the . mpx file for each btex . . .  etex fragment. 

Any text between the commands verbat imtex and etex is written to the external 
file, but not used to generate a picture; this lets you define macros, set up J:'.TEX document Macros 

class or package loading, or change defaults. In particular, if the first 'lEX environment of a 
METAP05T file starts with "%&latex", it tells METAP05T to call J:'.TEX and not 'lEX. 

When the script runs behind the scenes, it looks for an environment variable 
called rEX to work out which program to run (e.g., tex, latex, amstex) ;  you must Environment 

set this appropriately if, for instance, you have used verbat imtex . . .  etex to write 
\documentclass{art icle} to the file. Generally it is a better idea to write explicitly in 
your code (with "%&latex") which format is used, as the resulting code is more portable. 
Certain users use only the J:'.TEX format and forget to specify the format, making it difficult 
for others to use 1EX sometimes and J:'.TEX at other times. 

As an example, suppose you want to typeset some complex equations, which need the 
AMS-J:'.TEX math package, as a METAP05T "label"; l  the following picture shows what to 
do. When the fragment is run through J:'.TEX, it is in horizontal mode, so we cannot simply 
type in the displayed equation. Instead we put it inside a mini page: 

verbat imt ex 
\documentclass{art icle} 

\us epackage{t ime s , amsmath} 

\begin{document } 
etex ; 
pi cture p ;  path q ;  

p : =thelabel (btex \Large 

\begin{minipage}{4in} 

\begin{gather} 
\ i int\limits_A f (x , y) \ , dx\ , dy\qquad 

\ i i int \limits_A f ( x , y , z ) \ , dx\ , dy\ , dz\\ 

\ i i i int \limits_A f (w , x , y , z ) \ , dw\ , dx\ , dy\ , dz 
\qquad\ idot sint\limits_A f ( x _ l , \dot s , x_k) 
\end{gather} 

\end{minipage} 

etex , ( 0 , 0 ) ) ; 
q : =fullc ircle scaled 2 . 5in ; 
draw q ;  

clip p to q ;  

draw p rotated 90 ; 

This example also demonstrates how the shape of one picture can be used as a clipping path 
for another (we see only the portion of the equation that falls within the circle) .  

I Of course, the equation numbers and labels are not visible from the main 1;\1EX file that includes this picture. 



64 M �TR FONT AND M �TR POST: TEX'S MATES 

You do not need to add \end{document }, as METAPOST takes care of this task for 
you. Before running METAPOST, the environment variable IEX must be set to "latex" or 
the special "%&latex" comment must be added as explained earlier. 

The small package TEX provides a IEX command that, when called on a string, returns 
The TEX package a picture containing the application of 'lEX to this string. 

For M-TP)( labels, there are two packages based on the same principles. Both packages are 
much faster than TEX because they store all labels in one 11TEX file-there is not a separate 
�TEX file for each label. In both cases the METAPOST file needs to be run twice to produce 
the correct results. 

• The latexMP package, by Jens-Uwe Morawski, provides a flexible interface for �TEX la-
The latexMP package bels. It defines a setupLaIeXMP command that can be used, among other things, to 

set the M-TEX class, its options, and additional packages to be loaded. latexMP also has 
special provisions for the handling of color and transparency in METAPOST labels, 
but these features are accessible only with PDFM-Tp)(. The following minimal example 
uses the textext function: 

i = 5 
i = 4 
i = 3 
i = 2 
i = 1 

input latexmp ; 

f or i=l  upto 5 :  

label Ctext ext ( " $ i = "  & (dec imal i )  & " $ " ) , (0 , 1 0 * i ) ) ;  

endf or 

The next example includes color labels: 

input latexmp ; 

beginf ig ( l ) ; 
setupLaTeXMP (textextlabel=enable , mult icolor=enable) ; 

color Qcolor ; Qcolor : = ( O . 8 , 0 . 4 , 0 . 7 ) ; 

color Lcolor ; Lcolor : = ( O . 2 , 0 . 9 , 0 . 2 ) ;  
label ( 

The ' i i i  hr()WH fox jumps over 

" \parbox{5cm}{\color{blue}The \text color{Qcolor}{qui ck} " 

& " \text color [rgb] {0 . 6 , 0 . 4 , 0}{brown f ox} " 
& " j umps over \text color [Hsv] {30 , 0 . 5 , 0 . 9}{the " 

& " \ textco lor{Lcolor }{lazy} dog} . } " ,  (200 , 100) ) ; 1 / \  

• A similar, but simpler, package latex, by Jose Luis Diaz, requires a first call to 
The latex.mp package initlatex for setting up the �TP)( packages to load (even if no M-'JEX package is 

loaded) .  

You can set a META POST variable prologues to determine how fonts are handled. 
The prol ogues With the value 0, the output is dependent on an application (e.g., dvips) that can resolve 

variable references to 'lEX fonts that have to be downloaded and included in the output file. If the 
value is greater than 0, METAPOST tries to generate free-standing PostScript output using 
either troff ( 1 )  or 'lEX (any value greater than 1 ) .  

Example 
3-2-4 



3.2 Differences between M ETR POST and M ETR FONT 

When prologues is set to 0, METAPosT does not try to write self-contained Post
Script, but inserts special comments for each font in the output that give the name and size 
needed, like this: 

%*Font : ptmr8r 9 . 96265 9 . 96265 28 : c06 

%*Font : cmsy10 9 . 96265 9 . 96265 0 1 : 8  

%*Font : cmr7 6 . 97385 6 . 97385 3 1 : 8  

When the picture is included in a �TfX. document, the . dVi-to-PostScript program needs 
to read these commands and supply the fonts requested, either as bitmaps or in PostScript 
Type 1 form. Currently, only Tom Rokicki's dvips understands this convention. 

To ask METAPosT to write PostScript that can be included by any application or 
edited by programs such as Adobe I l l ustrator, set prologues to 2 (avoid 1; this value is 
for troff) . Now each time you use a font (either as a META string or in a 'lEX fragment) ,  
METAPosT looks i t  up in dvips's psfant s . map control file to find the real PostScript font 
name and writes the PostScript file accordingly. It does not embed the font in the output, 
so unless your fonts are built into your printer, you will have to supply them explicitly with 
your job. If you use Type 1 Computer Modern fonts, you must ensure that they are listed in 
psf ants . map and downloaded to the printer. 

The drawback of this approach is that you cannot control the font encoding when using 
PostScript fonts. For instance, the entry for "ptmb8r" in psf ont s . map has instructions for 
re-encoding it differently from the standard encoding. The METAPosT setup currently ig
nores these instructions, however, so any characters outside the standard ASCII range are 
likely to be wrong. If you want the METAPosT output to work with non-ASCII charac
ters, we recommend that you use font names and 'lEX font metrics that are set up to use 
Adobe Standard Encoding for text fonts. For mathematics, you have to make sure that no 
re-encoding is required. Using Alan Jeffrey's �TfX. package mathptm helps, but it still uses 
Computer Modern (e.g., for square root signs) . As a last resort, you can create genuinely 
free-standing PostScript files by including the picture in a �TfX. document that is otherwise 
empty and running that document to PostScript. 

3.2.4 I nternal structu res 
Introductions to METAPosT often present it as a technical drawing tool. In reality its 
power goes beyond the ability to define points and draw curves, fill surfaces, or label objects. 

Of course, the ability to use equations as a geometrical aid is very convenient, but the 
great strength of META POST is that it keeps its current drawing in memory until the figure 
is closed with endf ig. As a consequence, it becomes possible to reflect on past drawing 
instructions, either for introspection or as a basis for new drawings. 

We give here a flavor of the latent power under the hood. When drawing commands 
are issued, they are actually stored in the special picture variable currentpicture. This 
variable, like any pi cture variable, has a tree-like structure, where nodes are operators that 
apply to leaves. 

The currentpicture can at any time be saved or even reset. The following example 
first draws a circle, saves it in a pi cture variable, and then produces two reduced copies of 

65 



66 

C) 

M ETRFONT AND M ETR POST: TEX'S MATES 

the same drawing, after having reset it (using nullpi cture): 

o 

draw fullcircle s caled 2cm ;  

pi cture savepi c ;  
savep ic=currentpi cture ; 
currentpi cture : =nullpi cture ; 

draw savepic  scaled . 5 ;  

draw savepi c  s c aled . 5 shifted (3cm , O) ; 

A picture is usually made of paths, and paths can be manipulated. New pictures can be 
created by applying changes to a path's components. For instance, we can remove one end 
point of a path: 

path p , q ; 

p= (O , O ) . .  ( l cm , O) . .  (2cm , l cm) . .  ( 3 cm , 3cm) ; 
q=subpath ( 1 , 3) of p ;  

It is also possible to traverse a picture using the for . .  w i  thin construction and iden
tify its components. In the following example, two paths are drawn, but only the longest is 
overdrawn in blue: 

draw (O , O ) . .  ( l cm , O) . .  (2cm , l cm) . .  (3cm , 3cm) ; 

draw (O , O ) -- (3cm , 3cm) ; 
pi cture p ;  

p=currentpi cture ; 

f or i within p :  

if stroked i :  

if length (pathpart i » 2 :  
draw pathpart i withcolor blue ; 

f i  

f i  
endf or ; 

The fact that METAPOST keeps the drawing structure at hand, and doesn't output 
it immediately, makes it possible to maintain firm control over the drawing. Intersections 
can be computed within METAPOST and the results of those computations can be used to 
influence other parts of the figure, without the need to run METAPOST several times. 

A very interesting application of the introspection f or .. wi thin loop are Anthony 
Phan's macros implementing transparency in META POST (see Section 4. 1 .6) .  

Another interesting application is a macro that determines when two pictures are clos
est. It is, for instance, fairly easy to write a macro that puts two paths in tangent contact, 
assuming one path is fixed and the other rotates around a point, no matter how the paths are 
shaped, because M ETAPOST has access to the paths. By contrast, if the paths were output 
immediately, extra calculations-either in METAPOST or in another language-would be 
needed to achieve the same result. Only METAPOST's intersection capabilities are used in 
the straightforward solution. 

[hamPl;I' 
L�2-7 



3.2 Differences between M ETA P05T and M ETA FONT 

The following macro summarizes all the introspection capabilities available using 
wi thin. Each object is tested with the functions stroked, f i lled, textual, bounded, 
and cli  pped to see what type it is. The macro can be used on any picture variable. It merely 
traverses the variable and performs the draw, fill, or clip, and sets bounds as needed. This 
should produce a copy of the picture given as an argument. 

vardef reconstruct (expr p) = 

for i within p :  

if  stroked i :  
draw pathpart i withpen penpart i 

withcolor (redpart i , gre enpart i , bluepart i )  

dashed dashpart i ;  

elseif f illed i :  
f i ll pathpart i withcolor (redpart i , greenpart i , bluepart i ) ; 

else if textual i :  

s ave T ;  

transform T ;  
xpart T=xpart i ; ypart T=ypart i ;  

xxpart T=xxpart i ; xypart T=xypart i ;  
yxpart T=yxpart i ; yypart T=yypart i ;  
draw (textpart i inf ont f ontpart i )  transformed T 

withcolor (redpart i , greenpart i , bluepart i ) ; 

else if bounded i :  

reconstruct ( i ) ; 
setbounds currentpi cture to pathpart i ;  

else if clipped i :  

reconstruct ( i ) ; 

clip currentpicture to pathpart i ;  
f i ; 

endfor ; 

if length (p) = l : % special case 

% (bounded and cl ipped are ignored above when 

% the picture contains only one component ) 

if bounded p : setbounds currentpi cture to pathpart p ; f i ;  

i f  clipped p : clip currentpicture t o  pathpart p ; f i ;  
f i ; 

enddef ; 

3.2.5 Fi le input and output 
METAPOST files can be organized as modules and loaded with the familiar input com
mand. 

It is also possible to read individual lines from a file by using readfrom. However, a file 
read with this command stays open unless the end of file has been reached. As this can some
times be a problem, Ulrik Vieth wrote a short macro called closefrm (CTAN: graphics/  
metapost/ contrib/macros/misc )  that attempts to  close a file by  reading until its end. 

6i 



68 M ETR FONT AND M ETR POST: TEX'S MATES 

The readfrom command reads a whole line and returns a string. This string can then 
be analyzed by the user. Suppose a file dat a .  txt contains two lines: one with the numerical 
value 3, and the other with the pair (7,2) .  These two lines can be read into METAP05T 
variables as follows: 

numeric  val ; 

pair p ;  

val=scantokens readfrom " data . txt " ; 
p=scantokens readfrom " data . txt " ; 

where scantokens is used to convert a string into the data it represents. 
METAP05T can also be used to write output either to the terminal or to a file. Writing 

to the terminal can be done with message, which is useful for debugging. For instance, the 
following example shows how the value of the t ime variable can be output on the terminal: 

me s s age " The current value of t ime i s : "  & de c imal t ime ; 

In general, writing to a file is done with the wr i t e command, as shown in the following 
examples: 

write "hello " to " tmp l " ; 

write " How are you? " to " tmp l " ; 

write EOF t o  " tmp l " ; % close the tmp l  file 
write " a= 1 7 ; "  to  " tmp2 " ; 
write EOF to " tmp2 " ; % close the tmp2 f ile 

input tmp2 ; 

me s s age " a= "  & de c imal a ;  
end 

Several packages use this feature-for instance, the 3d package when it outputs a shell script. 

3 .3 Running the M ETA programs 

3 .3 . 1  Runn ing  M ETA FONT 
To some extent M ETAFONT is like 'lEX; it has a low-level language on top of which you can 
write user-level macros. Most users do not start from scratch but rather load a prebuilt li
brary of useful commands ("base" files), such as the "plain" base written by Donald Knuth. 
When a system implements "METAFONT", you can normally assume that the "plain" li
brary is installed. 

Each character, or object, in a M ETAFONT file is created by enclosing the code in a 
beginchar . . .  endchar group. The beginchar has four parameters: the name of the letter 
being produced, the width, the height, and the depth. The following code, which consists of 
a very simple line, creates a "letter" at position "X" in the font: 

beginchar ( " X " , 50 , 50 , 0) ; 

draw (0 , 0) . .  (50 , 50) . .  ( 50 , 0 ) ; 



3.3 Running the M ETA programs 

endchar ; 

end 

You write a font source simply by creating a METAFoNT file with a set of characters 
defined. You must then run the program on it to create the bitmap . gf format output. An 
interactive session with METAFoNT to run a font file might look like this (on a Unix ma
chine) :  

> mf 
This is METAFONT , Vers i on 2 . 7 1828 (Web2C 7 . 5 . 3 ) 

* *\mode=qms ; input logo 10 

(/local/tex2004/t exmf -dist / f ont s / s ource/publ i c /mf logo/logo 10 . mf 
(/local/tex2004/t exmf -dist/font s / s ource/publ i c/mf logo/logo . mf [77J [69J 

[84J [65J [70J [80J [83J [79J [78J ) ) 
Font metrics  wr itten on logo 10 . tfm . 

Output written on logo 1 0 . 300gf ( 9  charact ers , 1 1 24 byt es ) . 

Transcript written on logo 1 0 . log . 

The line with the " * * " prompt tells us that METAFoNT is waiting for input. At that 
point we indicate the device for which we want to generate bitmapped fonts by using the 
mode command, and we ask M ETAFoNT to read a font source file and generate a bitmap 
font. Now the resulting . gf file is transformed to . pk format for use with a previewer or 
printer driver (although it is possible to use it directly) : 

> gft opk -verbose logo 1 0 . 300gf 

This is GFtoPK , Version 2 . 3  (Web2C 7 . 5 . 3) 

' METAFONT output 2006 . 05 . 0 1 : 1 4 1 2 ' 

1 1 24 bytes packed to 5 1 2  byte s .  

You can also ask META FoNT to preview the character it is creating on the screen as it goes 
along. 

The mode is very important; it is here that you tell METAFoNT about your printer or 
screen. Because the software is creating bitmaps, it needs to know how many pixels there 
are to an inch and how they are made. There is, for instance, a considerable difference be
tween printers that (conceptually! ) start with a white sheet of paper and put black dots on it 
and printers that start with a black sheet and remove the areas that should be white. Mode 
descriptions for a large number of devices are available in a special METAFoNT file called 
modes . mf that is maintained by Karl Berry (available with most META FONT distributions 
and on CTAN). Typical names are "cx" (the Canon 300 dpi laser printer engine used in many 
machines), "ljfour" (HP LaserJet IV at 600 dpi) ,  and "linoone" (Linotronic typesetter at 1270 
dpi) .  The setup for each device provides values for a number of META FONT internal vari
ables, as this example for a LaserJet IV shows: 

mode_def l j f our = 

mode_param (pixels_per_ inch , 600) ; 
mode_param (blacker , . 25 ) ; 

69 



70 M ET R F ONT AND M ETR POST: TEX'S MATES 

mode_param ( f i l l in , 0 ) ; 

mode_param ( o _corre ction , 1 ) ; 

mode_common_ setup_ ; 

enddef ; 

This is explained in [72, pages 90-93 ] .  After setting the mode, you should normally execute 
the command mode_setup, which initializes the internal setup appropriately for the mode. 

The dpi (dots per inch) parameter in the mode description is used to name the output 
file in conjunction with the magnification. META FONT's bitmap output is a . gf (generic 
font) file, which can be compressed into an equivalent . pk (packed) format by the auxiliary 
program gftopk. If users specify an unknown mode or no mode at all, they will obtain file 
names with the extension . 2602gf . This behavior invokes METAFONT's "proof" mode, 
used by font designers to get a magnified view of their fonts at a resolution of 2601 .72 dpi-
36 pixels per point (hence the 2602 file extension) .  

If we run METAFONT again, this time with the mode for a Linotronic typesetter at 
medium resolution, the output file has a different name and the . gf file is three times larger: 

> mf 

Thi s  i s  METAFONT , Version 2 . 7 1 828 (Web2C 7 . 5 . 3 ) 

* * \mode=l inoone ; input logo 10 
(/local/tex2004/texmf -di st/fonts/s ource /publi c/mflogo/logo 1 0 . mf 

( / l ocal/t ex2004/texmf -dist/font s / s ource /publi c/mf l ogo/l ogo . mf [77] [69] 

[84] [65] [70] [80] [83] [79] [78] ) ) 
Font metr i c s  written on logo 10 . tfm . 

Output written on logo 1 0 . 1270gf ( 9  charact ers , 3900 byte s ) . 

Transcript written on logo 1 0 . log . 
> gftopk -verbose logo 10 . 1 270gf 

Thi s  is GFtoPK , Version 2 . 3  (Web2C 7 . 5 . 3) 

' METAFONT output 2006 . 05 . 0 1 : 1415 ' 

3900 bytes  packed to 1552 byte s .  

Besides the . gf file, METAFONT usually creates a metric file (extension . tfm). The 
metric file should always be the same, regardless of the mode or magnification selected. Al
though 'lEX can scale the information in the . tfm files, the glyphs in the bitmap files cannot 
be scaled. If you need a bigger character, you must run METAFONT again to generate the 
bitmap images at the correct size and resolution. 

Because 'lEX font sizes increase in geometric ratios ("magsteps", which go in steps of 
1 . 2 ) ,  you can specify values for those magsteps to METAFONT and create larger characters. 
For example: 

> mf 

Thi s  is METAFONT , Vers ion 2 . 71 828 ( Web2C 7 . 5 . 3) 
* * \mode=cx ; mag=magstep ( 1 ) ; input logo 1 0 ; 

C / l o c al/tex2004/texmf-dist/font s / s ource /public/mf logo/l ogo 10 . mf 

Ulocal/tex2004/texmf-dist/font s / s ource/public/mf logo/log0 . mf [77] [69] 

[84] [65] [70] [80] [83] [79] [78] ) ) 



3.3 Running the M ETA programs 

Font metrics written on logo 1 0 . tfm . 

Output written on logo 1 0 . 360gf (9 characters , 1 280 byte s ) . 
Transcr ipt written on logo 1 0 . 1og . 

The mag=magstep ( 1 )  means that, starting from the resolution defined in the mode (300 
dpi in this case), a font of 1 . 2  x 300 dpi is created (i.e., . 360gf ) .  

There i s  a difference between a font of letters 10  points high (e.g., cmr 1 0) run through 
METRFONT with a magnification of 1 .2 so as to create letters 1 2  points high, and a font of 
letters 1 2  points high (e.g., cmr 12 )  run through METRFONT without magnification. In the 
former case, the lO-point design is simply scaled up, while the latter has a real design for the 
larger size. In the context of drawing pictures, however, rather than fonts, this distinction 
is seldom made; pictures are usually created at the "right" size by specifying the scale in 
METRFONT. 

way: 
A picture created with METRFONT can be included as a font character in the following 

\font \test=drawing 
{\test A} 

In this example, drawing is the name of a font containing METRFONT characters, and the 
font is loaded under the name \test .  The character at position 65 (A) in this font is then 
selected, assuming there is such a character in the font. 

3.3.2 Running M ETA POST 
Derived by John Hobby from the source of METRFONT, METRPOST understands a lan
guage almost identical to that of METRFONT but generates PostScript files instead of . gf 
files. These output files can be included as figures in a E\TEX document with the standard 
graphics package. METRPOST is designed not for creating fonts, but rather for drawing 
general pictures and graphs. It differs from METRFONT in some important ways: 

1 .  Since the output is not a bitmap but PostScript code, it is not device-dependent and you 
need not be concerned with modes. 

2. The program is intended as a general tool, so it allows incorporation of normal E\TEX 
code in the picture for labels, captions, and so forth. 

3 .  Color support has been added. 

The METRPOST manual [47] details the differences between the METRFONT and M ETR
POST languages. Almost all drawing commands that work in METRFONT also work in 
METRPOST, but the latter has extra commands. 

METRPOST does not create high-quality PostScript Type 1 fonts from METRFONT 
sources, unfortunately, although it can be used to create the less sophisticated Type 3 font 
format (see, for instance, [ 1 4 ] ) .  

71 



72 M �TRf=ONT AND M �TR POST: TEX'S MATES 

Unlike METRFONT programs, which usually consist of begin char . . .  endchar pairs, 
Input s tructure a METRP05T file usually consists of pairs ofbeginf ig and endf ig and an end statement 

after the final pair. The be g inf i g has a parameter that is the extension of the output file cor
responding to each figure. You need not specify the size of the picture: METRP05T works 
that out and inserts the correct %%BoundingBox line in the output. The default units are 
PostScript points (what 1FX calls "big points"-72 to the inch rather than 72.27), though 
explicit lengths can of course be given. The following very simple METRP05T program 
draws a one-inch square: 

beginf ig ( l ) ; 

draw ( 0 , 0) -- ( 0 , 72) -- (72 , 72) -- (72 , 0 ) --cycle ; 

endf ig ; 
end 

If this program is named test . mp and run through METRP05T, it produces the Post
Script file test . 1 ,  which looks like this: 

% ! PS 

%%BoundingBox : - 1  - 1  73 73 

%%Creator : Met aPost 
%%Creat ionDate : 2005 . 1 1 . 2 1 : 2 155  
%%Pages : 1 
%%EndProlog 
%%Page : 1 1 

o 0 . 5  dtransf orm truncate idtransf orm setl inewidth pop [] 0 setdash 

1 setlinej o in 10 setmiterl imit 
newpath 0 0 moveto 

o 72 l ineto 

72 72 l ineto 

72 0 l inet o 
closepath stroke 

showpage 

%%EOF 

This output is a normal EPS file ! that can be included in your �1FX document with the 
Graphics inclusion with graph ics package or any other application. If you use text labels, however, matters can be

J!TEX and PDFJ!TEX come more complicated (see Section 3.2.3 ) .  
When creating a PDF file with PDF�TFX, it  is necessary to tell PDF�TFX that the file is 

a METRP05T file. Otherwise, one runs into an error message like this: 

! LaTeX Error : Unknown graphics extension : . 1 .  

One solution is to rename the METRP05T EPS files with the extension . mps. In that 
case, PDF�1EX knows that the files are METRP05T files and processes them correctly. 

1 Notice that the bounding box is larger than you might expect, due to the width of the line drawing the box. 



3.3 Running the M ETA programs 

Another possibility is to tell PDF�TEX that graphics files are METAPOST by default. 
This is done by writing 

\DeclareGraphicsRule{* }{mps}{*}{} 

in the preamble of the mEX file. 

3.3.3 Previewing 
When preparing a drawing, there is  often a trial-and-error phase in which the drawing is 
designed incrementally. It is therefore useful to be able to preview such a drawing, which 
can be done in several ways. For example, a drawing can be included in a �TEX file and the 
file can be converted into a PostScript or PDF file. But there are at least three other ways to 
do previewing, which make it much simpler to see the drawings being produced. 

mptopdf (by Hans Hagen) is a Perl script that is part of ConlEXt. When called on a 

73 

METAPOST file, it produces a PDF file for each beginf iglendf ig environment. These The mptopdfprogram 

files are useful for previewing or can be included as PDF graphics in a PDF�TFX run. There 
are certain METAPOST constructions-for instance, those in metafu n-that are under-
stood only by mptopdf, but the result can nevertheless be included in �TEX documents. 

mproof is a set oflEX macros providing a minimal wrapper around a META POST file. The mproof package 

It is used as follows, on one or more METAPOST outputs: 

$ tex mproof lens . 1  
Thi s  i s  TeX , Vers ion 3 . 141592 (Web2C 7 . 5 . 4) 
(/usr/share/texmf -tetex/t ex/pl ain/mproof /mpro of . tex 

(/usr/share/texmf -tetex/tex/generic/epsf /epsf . t ex 

Thi s  is ' epsf . tex ' v2 . 7k < 1 0  July 1997> 

) )  
lens . 1 :  BoundingBox : llx = 4 1 3  lly = -317 urx = 823 ury = 142 

lens . 1 :  scaled width = 4 1 1 . 53275pt scaled he ight = 460 . 7 1593pt 

[ 1 J  

Output written o n  mproof . dvi ( 1  page , 400 byt es ) . 
Transcript written on mproof . l og . 

The DVI file can be converted to PostScript and previewed or printed. mproof has several 
minor limitations: it cannot be used with PDFlEX, and the input file names cannot contain 
underscores. These two problems are solved when using the mpsproof macros. 

mpsproof (by Daniel H. Luecking) is based on mproof. 1t is used as follows, with lEX or The mpsproof package 

PDFlEX: 

$ pdftex mpsproof diopter . 1  diopter . 2  

This i s  pdfeTeX , Version 3 . 14 1592- 1 . 2 1 a-2 . 2  (Web2C 7 . 5 . 4) 

entering extended mode 

( . /mpsproof . tex (/usr/ share/texmf-tetex/tex/context /base/ supp-pdf . t ex 
( /usr/ share/texmf -tetex/tex/ cont ext/base/supp-mi s . t ex 

loading : Context Support Macros / Miscellaneous ( 2004 . 1 0 . 26)  

) 



74 M ETRf=ONT AND M ETR PO ST: TEX'S MATES 

loading : Cont ext Support Macros / PDF (2004 . 03 . 26 ) 

) )  [MP to PDF] ( . /di opt er . 1 ) [MP to PDF] ( . /diopter . 2) [ 1 {/var/lib/texm 
f/font s/map/pdf tex/updmap/pdftex . map}] [2] </usr/ share/texmf -tetex/fonts 

/type 1 /blue sky/cm/cmr 1 0 . pfb></usr/ share/texmf -tetex/font s/type 1/blue sky 
/ cm/ cmr7 . pfb></usr/ share/t exmf -tetex/f ont s/type 1/blue sky/cm/ cmt ex 10 . pfb> 

Output written on mpsproof . pdf (2 pages , 13626 bytes ) . 

Transcript written on mpsproof . log . 

mpsproof also improves upon mproof by allowing file names to contain underscores and by 
allowing the syntax: tex mpsproof \ \noheaders pic . 1 ,  which omits all added text. 
This is useful when creating an EPS or PDF file containing just the figure. 

3 .4 Some basic M ETA P OST l i braries 

3 .4.1 The metafu n package 
Only a few general packages other than the plain macros are supplied with M ETRP05T. 
The metafun package is a good supplement to plain that offers a variety of useful construc
tions. It is primarily designed for use with Con1EXt, but a number of its features can also be 
used in plain M ETRP05T and �TEX. We give here a few examples of interesting features 
that metafu n adds to the plain macros. The metafun package is loaded with 

input met afun 

In addition to fullcircle and uni tsquare, metafun provides uni tc ircle, 
fullsquare, unitdiamon� and fulldiamon� 

o input met afun 

draw fulldi amond scaled 1 cm withcolor blue ; 

There are also macros for quartercircles: llcircle, lrcircle, urcircle, and 
ulcircle. Half-circles are obtained with tc ircle, bcircle, l c ircle, and rcircle. 
Four triangle corners are also provided: Iltriangle, lrtriangle, ultriangle, and 
urtriangle. 

There are several operators in metafun for changing paths. randomized and 
squeezed produce the following results: 

0 1:=:1  
input metafun 

draw unitsquare scaled 1 . 5cm 
randomized ( 1mm , 2mm) ; 

draw unitsquare scaled 1 . 5cm 

sque ezed ( 1mm , 5mm) 
shifted (3cm , 0) ; 



r Example 
L 3-4-4 

3.4 Some basic M ETA POST l ibraries 

The smoothed operator introduces round corners: 

o input met afun 

draw unit square scaled 1 . 5cm smoothed 2mm ; 

Paths can also be simplified, with s impl ified: 

input met afun 

draw s implif ied 

( ( ( 0 , 0 ) -- ( 1 , 0 ) -- (2 , 0) -

( 2 , 1 ) -- (0 , 1 ) --cycle) 
scaled 1 . 5cm) ; 

metafu n extends the color capabilities of plain and allows the use ofCMYK colors, trans
parency, and various operations such as greying. Most of these features will work properly 
only when Con'lEXt is used as the 'lEX engine. If you want to use them in a IHEX document, 
the META POST files can be converted to PDP files with mptopdf and then included in �TEX 
using the standard graphics package. 

For more details on metafu n, consult its excellent manual [43 ] .  

3.4.2 The boxes package 
When METAPOST was first made public, only two general-purpose macro libraries were 
available: the boxes and graph packages, both written by John Hobby. Since then, many 
other packages have been introduced-some of them very general, others more specialized. 

In this section, we describe the boxes package; in the next section, we examine M ETA
OBJ, which extends boxes. The main application packages, some of them with boxing capa
bilities, are described in Chapter 4. 

One motivation for developing METAPOST was to provide tools comparable to those 
available to troff users. One of the best troff tools is the pic language (see Section 1 .4.3 on 
page 1 7, and [67] ) ,  which is often used for drawing and linking boxes. John Hobby's boxes 
library of METAPOST macros combined with standard METAPOST facilities can do a 
similar job. 

The boxes package is loaded with the following command: 

input boxe s 

The idea behind the package is that drawings consist of four types of statements: 

1 .  Creating named boxes (M ETA pictures) 

2. Expressing relationships among boxes 

3. Asking the system to place the boxes 

4. Joining the boxes with lines and arrows 

75 



76 M �TR FONT AND M �TR POST: TEX/S MATES 

n 
n nw ne dy dy 1 - - - - - - - - - - -...- - - - - - - - - - - - - -

1 
1 1 C dX I C I dx • w • e 

1 
- - - - - - _ _ _ _ _  1 

sw 

- - - - - - -

s 

- - - - - _  .... 

dy 

boxi t variables 

dy 
se 

s 
circlei  t variables 

Figure 3.2: Cardinal points in boxi t and circlei t 

This means that you need not specify exact positions for objects, but only their relationship 
to other objects. 

There are two basic boxes commands to create boxes and circles: 

boxi t.name(picture) circlei  t.name(picture) 

These commands draw rectangular and circular frames around the picture. An additional 
package, rboxes, provides another command, rboxi t, that draws a rectangular frame with 
rounded corners. The result of these commands is an object name, and you have access to 
a set of variables name.c, name.e, name.n, and so forth, which are the coordinates of the 
object's cardinal points (see Figure 3 .2) .  The variables dx and dy are the gap between the 
picture and the surrounding box; you can either set these explicitly or allow METAPOST 
to use the values def aul tdx and def aul tdy, respectively. The circmargin variable (de
fault 2 points) determines the minimum gap around the text in circlei t. 

The relationships between boxes are specified as a set of equation statements: 

I boxj o in(equations) I 
Within the equations, you describe the relationships between notional boxes a and b by ref
erence to their cardinal points; these are applied to successive calls of boxi t. You can also 
explicitly write equations to specify the relationship between any boxes. 

Once you have created a series of boxes, you can commit them to the page with the 
following commands: 

drawboxed(boxl >bOX2 , . . .  boxn ) 
drawboxes(boxl >boX2 , . . .  boxn ) 

drawunboxed(boXl ,bOX2 , . . .  boxn ) 
pic (box) 

These commands simply require a list of objects defined with boxi t or circlei  t. The first 
draws the boxes and their contents, the second draws just the contents, and the third draws 
just the boxes. The fourth command returns the drawn box as a META "picture" that can be 
rendered with draw or f ill  in the usual way. 



Example I 
, 

3-4-5 I 

Example 
3-4-6 

3.4 Some basic M ETA POST l ibraries 

You can now join the boxes with normal META lines or curves. Two useful standard 
META POST macros make lines with arrowheads at one or both ends: 

I drawarrow path drawdblarrow path I 
The path specifications can use the special coordinates available for each box. For example, 
drawarrow one . n--two . s draws a line between the top of box "one" and the bottom of 
box "two". The dir qualifier is useful for drawing curved lines to connect boxes, as these 
examples demonstrate: 

� � 

o� 
Two 

input boxes 

boxj oin ( a . se=b . nw) ; 
boxit . one ( I One " ) ; boxit . twO ( I TwO " ) ; 

drawboxed ( one , two ) ; 
drawarrow one . n{up} . .  two . n ;  

input boxes 

boxj o in ( a . se=b . nw- ( 10 , - 1 0 ) ) ; 

boxit . one ( I One " ) ; boxit . twO ( I Two " ) ; 

drawunboxe d ( one , two ) ; 
drawarrow one . n{dir 45} . .  two . n ;  

Often one wants to draw lines that conceptually link the center points of two boxes but 
stop at their boundaries. This can be accomplished with three useful standard META PoST 
macros: 

bpath box name cutafter path cutbef ore path 

bpath produces the bounding rectangle of a box as a path. When cutafter and 
cutbefore follow a drawing command, they control its interaction with their following 
path. Thus, in the next example, we say that the line joining the center of two boxes should 
start upon leaving the bounding rectangle of the first box and stop when it reaches the 
bounding rectangle of the second. 

input boxes 

boxj oin ( a . n=b . s- (20 , 60 ) ) ; 
boxit . one ( I One l ) ; circleit . two ( I Two " ) ; 
drawboxes ( one , two ) ; 

drawarrow one . c--two . c  

cutbefore bpath one cut after bpath two ; 
boxj o in O ; 

boxit . three ( I Three " ) ; three . w=one . e+ ( 20 , O ) ; 

f i l l  bpath three withcolor blue ; 

draw bpath three ; draw pic (thre e )  withc olor white ;  

We also show here how to specify the position of the third box in absolute relation to the first 
box: the default rules are turned off with an empty boxj oin equation. 

77 



78 M ETR FONT AND M ETR POST: TEX'S MATES 

Labeling the boxes is usually easy; but what about labeling the lines joining the boxes? 
Here we can use the po int macro: 

I point distance of path I 
This macro returns a coordinate of a point distance along path. It can be used, with the macro 
length to compute the length of a path, as the parameter for label: 

a .  1 . �2. 

input boxes 

boxj oin ( a . e=b . w- ( 30 , O » ; 

boxit . one ( " One " ) ; 
circleit . two ( " Two " ) ; 

drawboxed ( one , two ) ; 

label . lft ( " 1 . " , one . w) ;  

label . rt ( " 2 . " , two . e ) ;  
label . t op ( " a . " ,  

po int . 5* length ( one . c{dir 45} . .  two . c ) 

of ( one . c{dir 45} . .  two . c ) ) ;  

draw one . c{dir 45} . .  two . c  
cutbefore bpath one 

cutafter bpath two ; 

A more elegant version of this example puts both tasks-drawing the line and calculat
ing the label coordinate-into a META vardef macro (borrowed from the META POST 
graph documentation) .  This contains two statements, separated by ; .  The first draws the 
connecting line, and the second generates a coordinate that is returned as the value of the 
overall macro. Judicious use of tens i on and variations in direction make the joining curve 
a little more interesting. 

input boxe s 

vardef labelarrow 

( suff ix BoxA , BoxB ) expr Line 
drawarrow Line 
cutbefore bpath BoxA 

cut after bpath BoxB ; 
po int ( . 5* length Line ) of Line 

enddef ; 

defaults cale : =2 ;  
boxj o in ( a . e=b . w- ( . 75in , 1 . 5in» ; 

boxit . one ( " One " ) ; circleit . two ( " Two " ) ; 

drawboxed ( one , two ) ; 
label . lft ( " l . " , one . w) ; 
label . rt ( " 2 . " , two . e ) ;  

label . top ( " a . " , labelarrow ( one , two ) 

one . c{dir90} . .  tens ionO . 8  . .  {dir90}two . s ) ; 

r;- -I Example , 
I 3-4-8 ' 
L __ _ 

r·· Example 
I 3-4-9 I 



: E��;"PI� "I 
3-4- 1 0  

3.4 Some basic M ETA POST l ibraries 

We conclude this section with an extended example showing how to use the boxes pack
age for typical computer science diagrams. This output is also printed in (rather arbitrary) 
color in Color Plate I(b) to show some of the ways to use color with the boxes package. The 
same diagram is drawn with the Xy-pic 'lEX package on page 485; comparison of the code is 
interesting for those who need to produce this sort of picture. 

a 

a 

. 
In 

input boxes 

def aultf ont : = "ptmbSr " ; 
vardef labelarrow 

( suffix BoxA , BoxB) expr Line 

draw arrow Line 

cutbefore bpath BoxA 
cutafter bpath BoxB ; 

point ( . 5* length Line ) of Line 
enddef ; 

color yellow , orange ; 
yellow : =red+green ; orange : =red+ (green/2 ) ;  
boxj oin ( a . n=b . s- ( O ,  . 5in) ) ; 

default scale : = 1 . 5 ;  circmargin : =4pt ; 

circleit . In ( " in " ) ; circleit . One ( " l " ) ; circleit . Two ( " 2 " ) ; 
circleit . Three ( " 3 " ) ; circleit . Four ( " 4 " ) ; 

boxj oin ( ) ; circmargin : = 1 6pt ; circleit . X ( " " ) ; X . c=Four . c ;  
drawunboxed ( One , Two , Three , Four , In , X) ; 

drawarrow In . n--One . s ;  

label . rt ( " a " , labelarrow ( One , Two ) One . c--Two . c ) 
withc olor red ; 

label . rt ( " b " , labelarrow (Two , Three) Two . c--Three . c ) 

withcolor green ; 
label . rt ( " b " , labelarrow (Three , Four ) Three . c --Four . c ) 

withcolor green ; 

label . rt ( "  a "  , 1abelarrow (Four , Two ) Four . c{dir335} . .  

{dir205}Two . c ) withcolor red ; 
labe l . 1ft ( " a" , labelarrow (Three , Two ) Three . c{dir205} . .  

{dir335}Two . c ) withcolor red ; 

label . 1ft ( " b "  , labelarrow (Four , One ) Four . c{dir 1S0} . .  

tensi on2 . .  One . c ) withcolor green ; 

labe l . rt ( " b "  , 1abelarrow ( One , One) One . c{dir45} . .  One . c+ (40 , 0 ) 
. .  {dir120}One . c ) withc olor green ; 

label . rt ( " a" , labelarrow (Two , Two ) Two . c{dir65} . .  Two . c+ (40 , 0 )  

. .  {dir 100}Two . c ) withcolor red ; 
f i ll bpath One withcolor blue ; 
f ill bpath Two withcolor yellow ; 

f i l l  bpath Three withcolor orange ; 

draw bpath Four ; draw pic Two ; 
draw pic One withcolor whit e ; 
draw pic  Three withc olor whit e ; 

pickup penc ircle scaled 2pt ; 

draw bpath X dashed evenly withcolor ( 1  , . 75 ,  . S ) ; 

79 



80 M �TR �ONT AND M �TR POST: TEX'S MATES 

3.5 The M ETAO B J  package 
M ETAoBJ (Denis Roegel, [40, 100, 102] ) is a system for high-level object-oriented drawing 
based on META POST. The name METAoBJ is short for "METAPoST Objects". 

METAoBJ can be viewed as an approximate extension of the boxes package, but one in 
which structured objects can easily be built and manipulated. A standard library of objects 
is provided: basic objects, basic containers, box alignment constructors, recursive objects, 
trees, proof trees, and matrices. In addition, M ETRoBJ can connect objects with links in
spired by those found in the PSTricks package. 

METRoBJ is normally available in standard installations of METAPoST and is 
loaded using input metaobj . It can be a very resource-intensive package and may require 
you to increase the resources defined in the METAPoST configuration file. 

A complex drawing created by METAoBJ is given in Figure 3.3 and reproduced 
in Color Plate IV(b) .  The source code for this example goes beyond the scope of this book 
but can be found in the documentation of the package [ 1 02 ] .  

Loading M ETR O B J  All of the following examples assume that M ETAoBJ has been properly loaded and 
that each figure is given in a beginf ig/endf ig pair. 

3 .5 . 1  U nderlying principles 
METRoBJ was created with some important principles in mind, following John Hobby's 
boxes package, but also other 'lEX-related packages such as PSTricks: 

• An object should be a structure with a shape and possibly a contents. 

• Objects should be created with constructors. 



Example 
3-5- 1 : 

3.5 The M ETRO B J  package 

• It should be possible to have "floating" objects as it makes their positioning as easy as 
in the boxes package. 

• It should be possible to transform objects-for instance, by rotations. 

• There should be a simple mechanism that allows specification of default behaviors, 
which can be overriden. 

• It should be possible to make composite objects-for instance, to put a square within a 
circle. 

METROBJ meets all of these requirements, and it also provides means to define new classes 
of objects. 

However, METROBJ also has its limits. It is not fully object-oriented, there is, for in
stance, no inheritance mechanism. Another limitation is the syntax, which is not as flexible 
as a 'lEX syntax. 

3.5.2 M ETAOB J concepts 
Objects have names, like boxes in the boxes package. Internally, an integer is associated with 
an object, and this number is used to access the object in certain circumstances. The Db j Object names 

command can be used to find out the object name from the object number, as discussed 
later. 

Objects are created with constructors, such as newBox. Constructor variants, such as 
new_Box and new_Box_, are available for special purposes that are not covered here, al
though they may be used in certain examples. Once an object has been created, it cannot 
normally be reassigned, except by clearing it beforehand with clearDbj . 

Both objects and connection commands can have options. These options are usually 
given as a comma-separated list of strings, where each string has the syntax key(value}. The Options 

following command, for instance, has two options with values "s" for both keys posA and 
posB. 

ncline (a)  (b)  "posA ( s ) " , "posB ( s ) " ; 

METROBJ provides linear transformations on objects. The next example shows how 

8 1  

a double ellipse i s  scaled and rotated. The frames, contents, and cardinal points follow the Operations 011 objects 

operations. 

input met aobj 

newDEllipse . a (btex some text etex) ; 

scaleObj ( a , 1 .  7) ; 
rotateObj ( a , 45 ) ; 

a . c=origin ; 

drawObj (a) ; 



82 M ETR FONT AND M ETR POST: TEX'S MATES 

Table 3 . 1 :  Options for EmptyBox and RandomBox 

Option Type Default Description 

filled boolean f alse whether filled 

fillcolor color black the fill color 

framed boolean false default for EmptyBox 

true default for RandomBox 

framewidth numeric . 5bp the frame thickness 

framecolor color black the color of the frame 

framestyle string I I I P  the style of the frame 

shadow boolean false whether there is  a shadow 

shadowcolor color black the color of the shadow 

3 .5.3 Basic objects 
METROBJ defines a set of basic objects that are not containers of other objects, but appear 
at the leaves of a structure hierarchy. 

I newEmptyBox.name( wd, ht) IfRil l 
An empty box is a rectangle with a given size. Its options are shown in Table 3 . 1 .  It can be 
framed or not. However, the frame is visible only when show_empty _boxes is set to true . 
An empty box cannot contain anything-it is simply a frame. The bounding box is as ex
pected, with nw at the upper-left corner, sw at the lower-left corner, ne at the upper-right 
corner, and se at the lower right corner. 

input met aobj 

show_empty_boxe s : =true ; 

newEmptyBox . a ( 2cm , l cm) " framed (true ) " ;  
a . c=origin ; 

drawObj (a) ; 

METROBJ defines Tn as a shortcut for new_EmptyBox ( 0 , 0 ) for compatibility with 
EmptyBox shortcut PST ricks. 

newHRazor.name( wd) ifill'. newVRazor.name(ht) ,��� 

An HRazor object is a degenerated empty box, where the height is o. There is, therefore, only 
one size parameter. An HRazor is really an EmptyBox. The object can be framed or not, 
and the frame is visible only when show_empty _boxes is set to true. When not visible, 
an HRazor can be used as an horizontal strut in a variety of contexts. The width can also 
be negative. The bounding box is like the one for EmptyBox, except that the left corners are 



Example 
, 3-5-4 i L-------.-J 

Example : 
3-5-5 ' 

�. _____ .J 

3.5 The M ETR O B J  package 

located at the same place, and the right corners are also located at the same place. 

input met aobj ; 

show_empty_boxe s : =true ; 

show_empty_boxes : =true ; 

newHRazor . a ( 3cm) " f ramed (true ) " ;  
a . c=origin ; drawObj (a) ; 

There is also a similar newVRazor constructor. A VRazor is also a EmptyBox. 

newRandomBox.name( wd,ht,dx,dy ) c,pl911S 

A RandomBox is also an empty object, but the frame is slightly random. There are four pa
rameters . The first two are the normal frame and are similar to the parameters of Empty Box. 
The last two parameters are the maximum horizontal and vertical deviations. The deviations 
are computed randomly using a uniform random generator. The options and defaults are 
the same as those for EmptyBox ( see Table 3 . 1  on the facing page), except that the framed 
option is t rue by default. 

input met aobj ; 

show_empty_boxe s : =true ; 

newRandomBox . a (2cm , l cm , 2mm , - lmm) " framed (true ) " ;  

a . c=origin ; drawObj (a) ; 

The cardinal points are now no longer identical to a rectangular bounding box and 
coincide with the corners of the visible box. 

The thickness of the frame can be modified as follows: 

input met aobj 

newRandomBox . a (2cm , l cm , 2mm , - lmm) 

" framed (true ) " .  " framewidth ( 1mm) " ;  
a . c=origin ; drawObj (a) ; 

A random box can also be filled with a given color: 

input metaobj 

newRandomBox . a ( l cm , 5mm , 2mm , - lmm) 

" framed (true ) " ,  " framewidth ( 1mm) " ,  
" f ramecolor (green) " ,  

" f i lled (true) " ,  
" f illcolor (red) " ;  

a . c=origin ; drawObj (a) ; 

83 



84 M �TRFONT AND M �TR POST: TEX'S MATES 

3 .5 .4 Connections 

META08J provides extensive support for connections. A connection is  a high-level means 
to connect several objects or points of an object. META08J implements connections sim
ilar (but not identical) to those available in PSTricks. The PSTricks connection commands 
are \ncline, \nccurve, and so forth, and META08J uses exactly the same names. In 
addition to these standard connection commands, META08J provides special variants of 
ncline, such as tcline and mcl ine . 

All of the connection commands except ncc ircle connect two points or two objects. 
They can take as parameters either objects or points. Points must be given as pair variables. 
Objects can be given by their name or by a shortcut given to an object with the name option. 
If an object is given by its number and not its name, the Db j command can be used. For 
instance, if a and b are objects, we can write either ncline ( a) (b)  or 

an=a ; % st ore the obj ect number in ' an '  

bn=b ; % st ore the obj ect number in ' bn '  
ncl ine ( Obj ( an» ( Obj (bn» ; 

Moreover, a connection is either immediate or deferred. An immediate connection is 
not part of an object and is drawn immediately. A deferred connection is stored in an object 
and drawn later. The syntax for both cases is the same, except that the object name, when 
present, is given as a suffix to the connection command. For instance, nel ine . A ( a) (b)  is a 
deferred connection command connecting the objects a and b (assuming these are objects) 
and the connection is stored as part of the object A. If we write ncl ine (a) (b) , we get an 
immediate connection between a and b. 

Each of the connection commands has many options-for example, to change the style 
of the connection, the thickness of the line, and the point where the line starts. The options 
have types and default values. The main options are listed in Table 3 .2 on the next page. 

The default values can be changed with setCurveDef aul tDpt ion: 

I setCurveDef aul tDpt ion(key, value) I 
For instance, the default value for arrows is " drawarrow " ,  but it can be changed to " draw " 
using: 

setCurveDef aultOpt ion ( " arrows " , " draw" ) ;  

We might also have written setCurveDef aul tDpt ion ( "  arrows " , " - " ) j because 
META08J provides several shortcuts for the kind of arrows. Currently the following short
cuts are implemented: CC_" produces draw, CC_>" stands for drawarrow, and CC <_" stands 
for rdrawarrow. Any other sequence of symbols is equivalent to cc _ " .  

Several of the options come in two flavors, one for each end of the connection. This is 
the case for posA and posB; special shortcuts are provided, so that pos is a shortcut option 
setting both posA and posB. For instance, 

ncl ine (a)  (b)  "pas ( s ) " ; 



3.5 The M ETAOB J package 

Table 3.2: Options for connections (shortcuts are not shown) 

Option 

posA 
posB 
name 
linestyle 

linewidth 
linecolor 
arrows 

angleA 
angleB 
a rca ngleA 
a rca ngleB 
border 
bordereolor 
nodesepA 
nodesepB 
loopsize 
boxsize 
boxheight 
boxdepth 
lineare 
linetensionA 
linetensionB 

armA 
armB 
doubleline 
doublesep 
visible 
offsetA 
offsetB 
eoilarmA 
eoilarmB 
eoilwidth 
eoilheight 
eoilaspeet 

eoiline 
pathfilled 

pathfilleolor 

is equivalent to 

ncline (a) (b) 

Type Default 

string l I i c lt 

string " i c "  
string 
string 1 1 1 1  

numeric . 5bp 
color black 
string " drawarrow" 

numeric 
numeric 

numeric 10  

numeric 10  
boolean Opt 

color white 
numeric Opt 

numeric Opt 
numeric 0 . 25cm 

numeric 5rnrn 
numeric - 1pt 

numeric - 1pt 

numer ic Ocm 
numeric 1 

numeric 1 

numeric 5rnrn 
numeric 5rnrn 
boolean false 

numeric 1pt 

boolean true 

pair (0 , 0) 
pair (0 , 0) 
numeric 5rnrn 

numeric 5rnrn 
numeric 1 cm 
numeric 1 

numeric 45 

numeric 90 
boolean false 

color black 

"posA ( s ) " , "posB ( s ) " ;  

Description 

where the connection starts 
where the connection ends 
connection name 
connection style; this can take values such as "dashed 

evenly" or "dashed wi thdot s"  

line thickness 
line color 
name of a draw command such as draw, or drawarrow, or the 

shortcut of such a command 
angle 
angle 

angle 

angle 
whether there is a border around the connection 
color of the border 
node separation at start (except for ncb ox and ncarcbox ) 

node separation at end (except for ncbox and ncarcbox ) 
parameter for ncloop 

parameter for ncbox and ncarcbox 
parameter for ncbox and ncarcbox 

parameter for ncbox and ncarcbox 

rounding of corners in connections 
line tension used by nc curve 

line tension used by nc curve 

connection arm at start 
connection arm at end 
whether the line is doubled 

separation between the two lines if doubleline is true 

whether the connection is visible 
offset at the start of a connection 
offset at the end of a connection 
parameter for coils and zigzags 
parameter for coils and zigzags 

parameter for coils and zigzags 
parameter for coils and zigzags 

parameter for coils and zigzags 

parameter for coils and zigzags 
whether the path must be filled (none of the standard connec
tions uses this option) 

path fill color 

85 



86 M ETR�ONT AND M ETR POST: TEX'S MATES 

These shortcuts can also be used with setCurveDefault Opt ion and passed to a Tree 
constructor. The shortcuts currently supported are pos, coilarm, linetension, offset, arm, an
gle, arcangle, and nodesep. 

I ncl ine(pol , po2) OB'tii!j�� I 
neline is the simplest of all connection commands. It connects either two points or two 
objects by a straight line. If two objects are connected, the line is cut before the bounding 
path of the first object and after the bounding path of the second object. 

input metaobj 

newCircle . a (btex st art etex) ; 
newCircle . b (btex end etex) ; 

a . c=origin ; 

b . c-a . c= (3cm , 1 cm) ; 

ncline ( a) (b) ; drawObj ( a , b) ; 

In Example 3-5-7, the two circled objects are produced with the commands listed in 
blue. The first commands create circle objects "a" and "b", each framing the labels "start" 
and "end". The first object is centered at the origin, and the second is shifted from the first 
by (3cm, lcm) . This code is used in most of the following examples. 

If neline is used to connect two object points (such as a .  e and b .  e) ,  the bounding 
paths of the objects are not taken into account: 

input metaobj 

% Circles produced as bef ore 

drawObj ( a , b ) ; 

ncline ( a . c ) (b . c ) ; 

The thickness and the style of the line can easily be changed with the linewidth and 
linestyle options: 

input met aobj 

% Circles produced as before 

ncl ine (a)  (b) 
" linewidth ( 1mm) " , 

" linestyle (dashed evenly) " ;  

drawObj ( a , b ) ; 

The position where the line starts can be set with the posA option. Similarly, the po
sition where the line ends can be set with the posB option. It must be one of the cardinal 
points of the object. The default positions are the ie  points-that is, the centers of the inter
nal interface (see the METAOBJ manual for more details) .  In the next example, posA (n) 

, Example ' 
3-5-7 

Example 
3-5-9 



Example 
3-5- 1 1  

Example 
3-5- 1 3  

3.S The M ETAOB J  package 

causes the line to start at a .  n. In addition, we have changed the direction of the arrow with 
arrows « - ) .  

input met aobj 
% Circles produced as before 

ncl ine (a) (b)  " posA (n) " , " arrows « -)  " ;  

drawObj ( a ,  b )  ; 

The starting point can also be offset by a vector with the offsetA option, and the end 
point by a similar offsetB option. These options differ from those found in PSTricks, where 
offsetA and offsetB are numerical values, not vectors. 

8 
input met aobj 
% Circles produced as before 

ncline (a)  (b) " offsetA ( ( t ern ,  0 » " ;  

drawObj ( a , b ) ; 

A line can be doubled with doubleline, and the arrow style of the line can be changed 
with the arrows option. This option takes a name of a draw function such as draw or 
drawarrow as a parameter. A gap can be introduced at either end of the connection with 
the nodesepA and nodesepB options. 

[ nccurve(pol ,  po2) ()ptions [ 

input met aobj 
% Circles produced as before 

ncl ine (a)  (b)  " doublel ine (true ) " ,  

" nodesepB ( 10mm) " , " arrows (draw) " ; 
drawObj ( a ,  b) ; 

nccurve draws a Bezier curve between the nodes. The default angles at which the curve 
leaves or reaches the nodes are those obtained when a straight line connects the nodes. 
Hence, without options, nccurve behaves like ncline. The two angles can be changed 
with the angleA and angleB options. 

input met aobj 

% Circles produced as bef ore 

nccurve (a) (b)  " angleA (O ) " ;  

drawObj ( a , b ) ; 

87 



88 M �TR �ONT AND M �TRPOST: TEX'S MATES 

In the next example, more parameters are modified-namely, the linecolor, the 
linewidth, and linestyle-and the line is drawn double with doubleline. 

input met aobj 
% Circles  produced as bef ore 

nc curve (a) (b) " angleA ( -30) 
I I  

, " angleB (80)  
I I  , 

" l inecolor (blue ) II , " l inewidth ( lmm) 
II 

, 
" doublel ine (true ) " ,  " l inestyle (dashed withdot S ) " ;  

drawObj ( a , b ) ; 

The tension of the line (in METAPOST's sense) can be modified with the linetensionA 
and linetensionB options (or with the linetension shortcut) .  This allows for control similar to 
that provided by PSTricks' ncurvA and ncurvB parameters. The default tensions are 1 .  

input met aobj 
% Circles  produced as before 

nccurve (a)  (b) 
I I  

angleA ( -30) 
I I  

, " angleB (80)  
I I  , 

• • 
• • 

start • • • • • • • 8 .. S " l inecolor (blue ) 
II 

, " l inewidth ( 3pt ) 
II 

, 

" l inestyle (dashed withdot S ) " ,  

" l inetens ion ( 2 ) " ;  
drawObj ( a , b ) ; 

I 
I 

I 

/ 
/' 

" 

I ncarc(pol , po2) �Pti�.g� I 
ncarc connects the two nodes with an arc. The angle between the arc and the line between 
the two nodes is arcangleA at the beginning and -arcangleB at the end. Default values draw 
a curved connection, as shown below in red and green. 

" " 
, 

\ 

input met aobj 

% Circles  produced as before 

ncarc (a) (b)  " linecolor (blue ) " ;  
ncarc (b) (a)  " l inecolor (blue ) " ;  

ncarc (a) (b)  " arcangleA (50) " ;  

ncarc (b) ( a) " arcangleA ( -90) " ,  " arcangleB ( - 1 10 ) " ,  
" linestyle (dashed evenly) " ;  

drawObj ( a , b ) ; 

I ncbar(pol , po2) �ptiops I 
ncbar draws a line from the first node leaving at angle angleA. The line reaches the second 
node with the same angle (angleB is ignored) .  These two lines are connected with a line at 

Example 
3-5- 1 4  

Example 
3-5- 1 5  

Example , 
3- 5 - 1 6  



Example 
3-5- 1 7  

, Example : 
3-5- 1 8  . 

IE;a��I-� 
i 3-5- 1 9 
--� 

3.5 The M ETAOB J  package 

right angles, and each end line is at least as long as armA or armB (the length being measured 
to the center of the objects) .  In this example, we also set the color with linecolor. 

I ncangle(pol , po2) options I 

input met aobj 
% Circles produced as before 

ncbar (a)  (b)  " angleA (-50)  " , " linecolor (blue ) " , 

" l inewidth ( 1pt ) " , " armB ( 2cm) " ; 

drawObj ( a , b ) ; 

ncangle draws three segments, though in certain cases the third segment has no length. 
The two extreme segments are at angles defined by the angleA and angleB options. The point 
on the last segment at a distance armB from the node is connected to node A with a right 
angle. armA is not taken into account. 

8 
I ncangles(pol , po2) options I 

input met aobj 

% Circles produced as bef ore 

ncangle (a) (b) " angleA (-90) " ,  " angleB (80) " ,  
" l inecolor (blue ) " ,  " l inewidth ( 1pt ) " ,  " armB ( 2 cm) " ; 

drawObj ( a ,  b) ; 

ncangles is similar to ncangle, but the length of arm A (measured from the node) is 
fixed by the armA option. Arm A is connected to arm B by two line segments that meet arm 
A and each other at right angles. The angle at which they join arm B, and the length of the 
connecting segments, depend on the positions of the two arms. ncangles generally draws 
a total of four line segments. 

P 8r------z-+----.1 

input met aobj 

% Circles produced as before 

ncangle s ( a) (b)  " angleA ( O) " ,  " angleB (50)  " , 
" l inecolor (blue ) " , " l inewidth ( lpt ) " , 

" armA (3cm) " , " armB ( 2cm) " ; 

drawObj ( a , b ) ; 

89 



90 

8 

start 

M ETRFONT AND M ETR POST: TEX'S MATES 

In the next example, the start of the line is offset by (0 ,  lcm) , resulting in the line pass
ing behind one of the objects because the objects are here drawn last. 

input met aobj 
% Circles  produced as bef ore 

ncangle s (a) (b)  " angleA (O ) " ,  " angleB (50)  " , 

" l inecolor (blue ) " , " l inewidth ( 1pt ) " ,  
" armA (3cm) " , " armB (2cm) " , " off setA « O , l cm) ) " ;  

drawObj ( a ,  b)  ; 

[ ncdiag(pOl , po2) 9ptions [ 

ncdiag draws an arm from each node at angle angleA or angleB, and with a length of armA 
or armB (from the centers of the nodes) .  Then the two arms are connected by a straight line, 
so that the whole line has three line segments. 

input met aobj 
% Circles produced as before 

ncdiag ( a) (b)  " angleA (90) " ,  " angleB (50) " ,  
" l ine color (blue ) " , " l inewidth ( 1pt ) " , 

" armA (3cm) " , " armB ( 2cm) " ;  

drawObj ( a , b ) ; 

[ ncdiagg(pO l , P02) Of'ti(f)11.S [ 

ncdiagg is similar to ncdiag, but only the arm for node A is drawn. The end of this arm is 
then connected directly to node B. armB is not used. 

input met aobj 
% Circles  produced as before 

ncdiagg (a) (b) " angleA (90)  " , " angleB (50) " , 
" l ine color (blue ) " ,  " l inewidth ( 1pt ) " ,  

" armA (3 cm) " ;  

drawObj ( a , b) ; 

[ ncloop(pOl ' P02) �PtiM$, [ 

ncloop is in the same family as ncangle and ncangles, but now typically five line seg
ments are drawn. Hence ncloop can reach around to opposite sides of the nodes. The 

. Example 
3-5-20 



I Example 
3-5-24 I 

Example ! 
3-5-25 

3.5 The M ETAO B J  package 

lengths of the arms (from the centers of the nodes) are fixed by armA and armB. Starting 
at arm A, ncloop makes a 90-degree turn to the left, drawing a segment of length loopsize. 
This segment connects to arm B in the same way arm A connects to arm B with ncangles; 
that is ,  two more segments are drawn, which join the first segment and each other at right 
angles, and then join arm B. 

8f------' 

input met aobj 

% Circles produc ed as before 

ncloop (a) (b) " angleA ( O ) " ,  " armA ( 2 cm) " ,  

" angleB ( 1 8 0 ) " ,  " armB ( 1 cm) " ,  
" l inecolor (blue ) " ,  " l inewidth ( 1pt ) " ;  

drawObj ( a , b) ; 

input met aobj 
% Circles  produced as bef ore 

ncloop (a) (b)  " angleA ( O ) " ,  " armA (2cm) " ,  

" angleB ( - 100) " , " armB ( 1 cm) " , 
" l ine color (blue ) " ,  " linewidth ( 1pt ) " ;  

drawObj ( a , b) ; 

The two last examples have only one node. Notice that the parameters for the b node 
are set up but not used. 

input met aobj 
% Circles  produced as before 

ncloop (a)  (a)  " angleA (O ) " ,  " armA ( 1 cm) " ,  

" angleB (O ) " ,  " armB ( 1 cm) " ,  
" l inecolor (blue ) " ,  " l inewidth ( 1pt ) " ,  

" loopsize ( 1 cm) " ; 

drawObj ( a , b ) ; 

input met aobj 

% Circle produced as before 

ncloop (a)  (a)  

" angleA ( O ) " ,  " armA ( 1 cm) " ,  " off setA « O , 2mm) ) " ,  
" angleB ( O ) " ,  " armB ( 1 cm) " ,  " off setB « O , -3mm) ) " ,  
" l inecolor (blue ) " , " l inewidth ( 1pt ) " ,  

" loopsize ( 1 cm) " ;  

drawObj (a) ; 

91  



92 M �TR�ONT AND M �TRPOST: TEX'S MATES 

I ncc ircle(po) :111.11 I 
nccircle draws a circle, or part of a circle, that if complete, would pass through the center 
of the node counterclockwise, at an angle of angleA. The angleB option is not used. 

input met aobj 
% Circle produced as before 

nccircle (a)  " angleA ( O )  " , 

" l inecolor (blue ) " , " l inewidth C 1pt ) " ;  
drawObj (a) ; 

I ncbox(pol , p02) ;��!�i� I 
ncbox and ncarcbox do not connect the nodes with an open curve, but rather enclose the 
nodes in a box or curved box. The depth of the box is determined by the size of the objects 
within it, or twice boxsize. The dimensions of the box can also be set explicitly with the box
height and boxdepth options. The ends of the boxes extend beyond the nodes by nodes epA 
and nodesepB. 

Two of the sides of the ncbox box are parallel to the line connecting the two node cen
ters. No angle is taken into account by ncbox. 

input met aobj 

% Circles  produced as before 

ncbox (a)  (b)  

" l inecolor (blue ) " , " l inewidth ( lpt ) " ;  

drawObj ( a , b ) ; 

input met aobj 

% Circles produced as bef ore 

ncbox (a)  (b) 

" linecolor (blue ) " , " linewidth C 1pt ) " ,  

" nodesepA C 1 cm) " , " nodesepB ( l cm) " ; 
drawObj ( a , b) ; 

, I i Example I 
3-5-27 

Example 
3-5-28 ' 



Example 
3-5-3 1  

Example 
3-5-32 

3.5 The M ETROB J  package 

The corners can be rounded with the linearc option, as shown below: 

I ncarcbox(pol , po2) options I 

input met aobj 
% Circles  produced as before 

ncbox ( a) (b) 

" l inecolor (blue ) " , " linewidth ( 1pt ) " ,  

" nodesepA ( 1 cm) " ,  " node sepB ( 1 cm) " , 

" boxsize ( 1 cm) " ; 
ncbox (a)  (b)  

" l inecolor (blue ) " , " linewidth ( 1pt ) " , 

" node sepA ( 1 . 3cm) " , "node s epB ( 1 . 1 cm) " , 

"boxsize ( 1 . 5cm) " , " l inearc (3mm) " ; 

drawObj ( a , b ) ; 

ncarcbox is similar to ncbox. It encloses the nodes in a curved box that is arcangleA 
away from the line connecting the two nodes. PSTricks seems to count that angle clockwise, 
whereas it is counted counterclockwise in ncarc. We decided for consistency to count the 
angle counterclockwise in both cases. The arcangleB option is not used. 

input met aobj 
% Circles produced as before 

ncarcbox (a) (b)  " arcangleA ( O ) " ,  
" l inecolor (blue ) " , " l inewidth ( 1pt ) " , 
" node s epA ( 5mm) " , " nodesepB ( 5mm ) " ;  

drawObj ( a , b ) ; 

The second example shows the effect of changing the angle of the box. The value of 
the arcangleA option is used symmetrically for both objects. The box is made parallel to an 
imaginary arc drawn here with dashes. 

input met aobj 
% Circles produced as before 

ncarcbox (a) (b)  " arcangleA ( -30)  " , 
" l ine eolor (blue ) " , " l inewidth ( 1pt ) " ,  

" node sepA ( 5mm) " , "nodes epB ( 5mm ) " , 

" boxsize ( 1 em) " ; 

nearc (a)  (b)  
" arcangleA ( -30)  " , " areangleB ( -30) " ,  
" l inestyle (dashed evenly) " ;  

drawObj ( a , b ) ; 

93 



94 M �TRf=ONT AND M �TR POST: TEX'S MATES 

nczigzag(po l ,  po2) ijptioJ:t$ nccoil (pol , po2) QPHCJlls 

These connections draw a coil or zigzag whose width (diameter) is coilwidth, with the dis
tance along the axes for each period (360 degrees) being equal to coilheight x coilwidth. 
nccoil draws a "3-D" coil, which is projected onto the xz-axes. The center of the "3-D" 
coil lies on the yz-plane at angle coilaspect to the z-axis. The coil is drawn by joining points 
that lie at angle coilinc from each other along the coil. The coil is drawn as a Bezier curve 
(not as a succession of segments, as with PSTricks) ,  and it should always be smooth. How
ever, decreasing coilinc may produce a better-looking coil, especially when coilaspect is near 
o. 

nczigzag does not use the coilaspect and coilinc parameters. 
nczigzag and nccoil connect two points or two objects starting and ending with 

straight-line segments of length coilarmA and coilarmB. 
All the usual connection modifiers can be used on coils or zigzags. However, in certain 

cases, strange effects can be produced-for instance, if coilwidth is too small with respect to 
linearc. 

The path_s ize parameter of METAP05T might potentially overflow if coilinc is 
small and the coils have many turns. In that case, you should increase coilinc or enlarge 
the dimensions of the coil. 

input met aobj 

% Circles produced as before 

nczigzag ( a) (b) ; 
nczigzag (a)  (b)  

" angleA (-90)  " , " angleB ( 1 20) " , 

" l inetension (0 . 8 ) " ,  " c oilwidth (2mm) " , 
" l inearc ( . imm) " ;  

drawObj ( a , b ) ; 

input metaobj 

% Circles  produced as before 

nccoil (a)  (b) " co i lwidth ( 5mm) " ;  

drawObj ( a , b ) ; 

The next example shows various combinations of options, including the use of sym
bolic shortcuts for the kind of arrow. 

input met aobj 

% Circles produced as bef ore 

ncco il ( a) (b) 

" doublel ine (true ) " ,  " co i lwidth ( 2mm) " , 

" angleA ( O ) " ,  " arrows ( - ) " ,  " l inewidth ( 1pt ) " ;  
drawObj ( a , b) ; 

Example : 
3-5-33 

Example
, 

3-5-34 



'E�;:;;'� 
3-5-36 I ...... � .• .l 

, 
Exa-;;;�ll 

' 3-5-37 c __ 

.............. .......... , 
: Example I 
�� 

3.S The M ETAO B J  package 

Table 3.3: Options for connection labels ("I" means that there are no default values) 

Option name Type Default Description 

labpic picture / a picture variable 

labdir string / direction of a label 
labpos numeric 0 . 5  position on a path 

labangle numeric 0 rotation angle of a label with respect to the path tangent 

labdist numeric  1 distance ratio for the label 

Connections can also have labels, but those labels must be stored in a pi cture variable 
and you may have to give the location of the labels on the connection. The main recognized Connection labels 

options are listed in Table 3.3. The simplest case is the following: 

3 .S.S Containers 

input met aobj 

% Circles produced as before 

pi cture lab ;  

lab=bt ex $x$ etex ; 

ncline (a) (b)  " labpi c ( lab )  " , " labdir (top) " ;  
drawObj ( a , b ) ; 

All of the basic containers take a picture or an object and provide a frame for it. A picture can 
be given in the lEX notation (btex . . . etex) or obtained in other ways-for instance, with 
the image command of META POST. 

newBox.name( contents) 'Opd(i)n:6 

Box is the simplest of the containers. It is similar to EmptyBox but is a container. By default, 
the frame is visible. The size of the box is adapted to its contents. The options of this class 
are given in Table 3.4 on the next page. 

I some text I 

input metaobj 

newBox . a (btex some t ext etex) ; 
a . c=origin ; 

drawObj (a) ; 

By default, the frame fits the contents . With the f it ( false ) option, it is no longer 
required to do so. The frame is then a square. 

some text 

input metaobj 

newBox . a (btex some t ext etex) 
" f it (false) " ; 

a . c=origin ; 

drawObj (a) ; 

95 



96 M �TR FONT AND M �TR POST: TEX'S MATES 

Table 3.4: Options for Box 

Option Type Default Description 

dx numeri c  3bp horizontal clearance left and right of the box 
dy numeri c  3bp vertical clearance above and below the box 
filled boolean false whether filled 

fillcolor color black fill color 

fit boolean true whether the box fits its contents 
framed boolean true whether framed 
framewidth numeric  . 5bp the width of the frame 
framecolor color bl ack the color of the frame 

framestyle string " "  the style of the frame 
picturecolor color bl ack the color that will override the color of the contents 
shadow boolean f alse  whether there is a shadow 
shadowcolor color black the shadow color 

rbox_radius numeri c 0 radius of round corners 

In addition, we can specify horizontal and vertical margins to the contents with the dx 
and dy options. If the content is empty and we want a solid 4 mm x 4 mm square, we can 
write the following code: 

• 

input met aobj 

newBox . a ( " " )  " f illed (true ) " , 
" dx ( 2mm) " ,  " dy ( 2mm) " ;  

a . c=origin ; 

drawObj (a) ; 

We can obtain round corners by specifying a radius. If the radius is too large, the clear
ance (dx and dy) may have to be increased (it is also possible to call the newRBoxconstructor, 
which creates a Box with a default value of 1 mm for rboxJadius). 

input met aobj 

newBox . a (btex Thi s  is an ovalbox etex) 

" rbox_radius ( 2mm) " ;  

(This is an ovalbox) a . c=origin ; 
drawObj (a) ; 

Box shortcuts METAOBJ defines a few shortcuts for PSTricks compatibility: 

• Tr _ (name ) is equivalent to new_Box_ (name) ( " framed (false) " ) ;  
• Tf is equivalent to new_Box_ ( " " )  ( " f illed (true ) " ) .  

new Po 1 ygon.name( contents,n ) options 

The newPolygon constructor builds polygons. The options of this class are given in 
Table 3 .5 on the facing page. Polygons are containers. The number of sides is specified with 

Example 

3-5-39 

Example 
3 -5-40 



[ Example 
3-5-4 1 

Example 
3-5-42 

3.5 The M ETAO B J  package 

Table 3.5: Options for Polygon 

Option Type Default Description 

polymargin numeric 2mm clearance 

angle numeric 0 angle of the first vertex 
filled boolean false whether filled 

fillcolor color black fill color 
fit boolean true whether the polygon fits its contents 

framed boolean true whether framed 
framewidth numeric . 5bp the width of the frame 
framecolor color black the color of the frame 

framestyle string " "  the style of the frame 

picturecolor color black the color that will override the color of the contents 
shadow boolean f al s e  whether there i s  a shadow 
shadowcolor color black the shadow color 

n, and we can decide if the polygon fits the contents. By default, it does. Here is a pentagon: 

input metaobj 

newPolygon . a (btex s ome text etex , 5 ) ; 

a . c=origin ; 
drawObj (a) ; 

Some clearance can be added by changing the polymargin option: 

input metaobj 

newPolygon . a (btex s ome t ext etex , 5 ) 

Ipolymargin (3mm) " ;  
a . c=origin ; 

drawObj (a) ; 

The cardinal points are those of the rectangle bounding the ellipse on which the vertices are 
located. 

A heptagon that does not fit its contents is shown here: 

8 
A Polygon can also be rotated. 

input met aobj 

newPolygon . a (btex s ome t ext etex , 7 ) 

" f it ( f al s e ) " ,  " polymargin ( 3mm) " ;  
a . c=origin ; 

drawObj (a) ; 

97 



98 M ETR FONT AND M ETR POST: TEX'S MATES 

Table 3.6: Options for Ellipse and Circle 

Option Type Default Description 

circmargin numeric 2bp clearance 
filled boolean f alse whether filled 

fillcolor color black fill color 

fit boolean true whether the Ellipse fits its contents 

framed boolean true whether framed 
framewidth numeric . 5bp the width of the frame 

framecolor color black the color of the frame 

framestyle string 1 1 1 1  the style of the frame 

picturecolor color black the color that will override the color of the contents 

shadow boolean false whether there is  a shadow 

shadowcolor color black the shadow color 

I newEllipse.name(contents) � ... , I 
The newEll ipse constructor builds an ellipse that is a container. This ellipse can contain 
text, by default, it fits the text. The options are given in Table 3.6. 

input met aobj 

newEl lipse . a (btex s ome text etex) ; 
a . c=origin ; 
drawObj (a) ; 

When the option " f it (f  al se )  " is given, the ellipse doesn't fit the contents vertically, 
but only horizontally. Thus we get a circle: 

8 
input met aobj 

newEl lipse . a (btex s ome t ext etex) 
" f it (false)  " ;  

a . c=origin ; 

drawObj (a) ; 

It is possible to build an ellipse with no content and to specify a "margin" with the circ
margin option. Moreover, the ellipse can be filled with the f i lled (true ) option. The fol
lowing example shows a disk with a 2-mm radius: 

• 

input metaobj 

newEllipse . a ( " " )  

" f illed (true ) " , " c ircmargin ( 2mm) " ;  
a . c=origin ; 

drawObj (a) ; 

Ellipse shortcuts METAOBJ provides Toval_ as a shortcut for new_Ellipse for compatibility with 
PSTricks. 

I Example ! 
3-5-44 ' 

Example i 
3-5-45 i 

Example i 
3-5-46 



I Example I 
I 3-5-47 I 

3.5 The M ETA O B J  package 

Table 3.7 : Options for DBox and DEllipse 

Option Type Default Description 

dx numeric 3bp horizontal clearance on each side of the content and inside 
the inner frame (only for DBox) 

dy numeric 3bp vertical clearance on each side of the content and inside 
the inner frame (only for DBox) 

eiremargin numeric 2bp circular clearance (only for DEllipse)  

filled boolean f alse whether the object i s  filled ( in which case the double frame 

is not very useful) 

filleolor color black fill color 

framed boolean true whether the object is framed 

fit boolean true whether the box fits its content, both horizontally and ver-
tically; if false, the contents fits only horizontally 

fromewidth numeric . 5bp width of the frame 

frameeolor color black color of the frame 

framestyle string 1 1 1 1  style of the frame (e.g., dashed) 

pictureeolor color bl ack color of the picture if there is a picture inside the object 

hsep numeric 1mm horizontal separation between the two frames 

vsep numeric 1mm vertical separation between the two frames 

shadow boolean false whether there is  a shadow (framed too must be true) 

shadoweolor color black shadow color 

I newCircle.name(contents) �B.1 1 
The newCircle constructor produces a circle. The options are given in Table 3.6 on the 
facing page. The circmargin option can be used to change its size. 

8 
I newDBox.name(contents) qll_ 

input metaobj 

newCircle . a (btex s ome text etex) ; 

a . c=origin ; 

drawObj (a) ; 

A DBox is similar to a Box (see Table 3 .7 for a table of its options), but the frame is doubled. 
By default, it fits its contents. For instance: 

I I some text I I 
input metaobj 

newDBox . a (btex s ome text etex) ; 

a . c=origin ; 
drawObj (a) ; 

The cardinal points are located on the outside frame. As usual, we can specify that the box 

99 



100 M �TR f=ONT AND M �T R POST: TEX/S MATES 

should not fit its contents with the fit option: 

B 
input met aobj 

newDBox . a (btex s ome t ext etex) 

" f it (false) " ;  

a . c=origin ; 

drawObj (a) ; 

Empty double boxes can also be defined, and the dimensions can be specified with the 
dx and dy options. To have a box with internal dimensions of 2 cm x 2 cm, for example, we 
can write the following code: 

input met aobj 

newDBox . a ( " " )  " dx ( l cm) " , " dy ( l cm) " ;  

a . c=origin ; 

drawObj (a) ; 

I newDEllipse.name(contents) 9P��qnsi 

The newDEllipse constructor is to newEllipse as the newDBox constructor is to 
newBox. See Table 3 .7  on the preceding page for a list of its options. The following exam
ple shows three objects built with newDEllipse. The first is an ellipse with a double frame, 
the second is a circle, and the third is a filled circle. 

• 
input metaobj 

newDEll ipse . a (btex s ome text etex) ; 

newDEllipse . b (btex other text etex) " f it ( f al s e ) " ;  

newDEllipse . c ( " " )  
" f illed (true ) " , " circmargin (2mm) " ;  

a . c=origin ; 

a . c-b . c= ( O , 2cm) ; 
c . c-a . c= ( 2 cm , O ) ; 
drawObj ( a , b , c ) ; 

3 .5 .6 Box a l ign ment constructors 
Two constructors to align other objects exist: HBox and VBox. Their names have been cho
sen with analogy to the \hbox and \ vbox primitives ofTp)C, respectively. 

newHBox.name( obj 1 ,obj2, . . .  ,objn ) ppti��� 

The newHBox constructor provides horizontal alignment of objects. Its options are given in 
Table 3.8 on the next page. By default, the objects are aligned on the bottom and they appear 

,.."...... .., , Example ' 
li:�� 



i E�ampJe 
< 3-5-52 

3.S The M ETAO B J  package 101  

Table 3 .8 :  Options for HBox, VBox, and Container 

Option Type Default Description 

dx numeric 0 horizontal clearance around the object 

dy numeric 0 vertical clearance around the object 
hbsep numeric lmm horizontal separation between elements in HBox 

vbsep numeric lmm vertical separation between elements in VBox 

elementsize numeric - lpt if non-negative, all the objects are assumed to have this width (for 
HBox) or height (for VBox) 

align str ing " bot " (only for HBox) "top"  and " center"  are the other possible values 
" left " (only for VBox) " right " and " center"  are the other possible values 

framed boolean f alse whether the object i s  framed 

filled boolean f alse whether the box is  filled 

filleolor color black fill color 

framewidth numeric . 5bp width of the frame 

frameeolor color black color of the frame 

framestyle string 1 1 1 1  style of the frame (e.g., dashed) 

flip boolean f alse whether to reverse the order of the components (only HBox and VBox) 

shadow boolean f alse whether there is  a shadow (framed too must be  true) 

shadoweolor color black shadow color 

from left to right. The following example shows three boxes (created with newBox) of differ
ent sizes and contents. The boxes are put in one larger box, which can then be manipulated 
like a simple object. 

I Box A I I Box B I I Box c i  

input metaobj 

newBox . a (btex Box 

newBox . b (btex Box 
newBox . c (btex Box 

newHBox . h ( a , b , c ) ; 

h . c=origin ; 
drawObj (h) ; 

A etex) ; 

B etex s c aled 
C etex s c aled 

The cardinal points may lie outside the contained object. In Example 3-5-52, they hap
pen to coincide with the bottom left and right corners of two boxes, but that is only because 
the boxes are aligned on the bottom and because the component objects are rectangular 
boxes. 

To change the alignment, the align option can be given as either bot, top, or center.  
Here is  an alignment at  the top, with the same objects: 

I Box A I I Box B I I Box c l  

input met aobj 

newBox . a (btex Box A etex) ; 

newBox . b (btex Box B etex s c aled 

newBox . c (btex Box C etex scaled 
newHBox . h ( a , b , c ) " align ( top ) " ;  

h . c=origin ; 

drawObj (h) ; 

\magstep3 ) ;  
\magstep2 ) ;  

\magstep3) ; 
\magstep2) ; 



lO2 M ETR FONT AND M ETR POST: TEX'S MATES 

The next example shows objects that are centered vertically: 

I Box A I I Box B I I Box c i  

input metaobj 

newBox . a ( btex Box A etex) ; 

newBox . b (btex Box B etex scaled \magstep3 ) ; 
newBox . c (btex Box C etex scaled \magstep2) ; 

newHBox . h ( a , b , c ) " align ( center) " ;  
h . c=origin ; 
drawObj (h) ; 

A default horizontal separation appears between objects, which we can change with the 
hbsep option: 

I Box A I I Box B I I Box c l  

input met aobj 

newBox . a (btex Box A etex) ; 

newBox . b (btex Box B etex scaled \magstep3 ) ; 

newBox . c (btex Box C etex scaled \magstep2 ) ;  
newHBox . h ( a , b , c ) 

" align ( cent er) " , " hbsep ( 3mm) " ;  
h . c=origin ; 

drawObj (h) ; 

In the following example, not all of the components are boxes, but rather are polygons, 
a box, and a razor. The razor's function is to create a wide horizontal gap. It is similar to 
\kern in 'lEX. 

input met aobj 

newPolygon . a (btex Box A etex , 5 ) 

" f it ( f alse) " , "polymargin ( 5mm) " ;  
newBox . b (btex Box B etex 

scaled \magstep3) ; 

newHRazor . ba ( l cm) ; 
newPolygon . c (btex Box C etex 

scaled \magstep2 , 1 1 )  

"polymargin ( 3mm) " ;  

newHBox . h ( a , b , ba , c ) 

" align ( center) " , " hsep (3mm) " ;  

h . c=origin ; 

drawObj (h) ; 

newVBox.name( obj 1 ,obj2, . . .  ,objn ) options 

A VBox is the vertical equivalent of an HBox. Its options are given in Table 3.8 on the preced
ing page. The boxes are piled up from bottom to top, which is unlike the behavior of \vbox 

I ..... " ' ,  
j Example i 
; 3-5-54 

' 

Example 
3-5-56 



Example 
3-5-57 

Example 
3-5-58 

3.S The M ETRO B J  package 

in lEX, where the components would start at the top. By default, the components are aligned 
to the left, as in \vbox. A right alignment is obtained with the align (right ) option: 

I Box cI I  
I Box B I I 
I Box Al l 

I Box c2 1 
I Box B2 1  

I Box A2 1 

input met aobj 

newBox . a1 (btex Box A1 etex) ; 
newBox . b 1 (btex Box B 1  etex s c aled \magstep3 ) ;  

newBox . c 1 (btex Box C 1  etex s c aled \magstep2 ) ;  

newVBox . v1 ( a1 , b 1 , c 1 ) ; 
newBox . a2 (btex Box A2 etex) ; 

newBox . b2 (btex Box B2 etex s c aled \magstep3 ) ;  
newBox . c2 (btex Box C2 etex s c aled \magstep2 ) ;  

newVBox . v2 ( a2 , b2 , c2 )  " align (right ) " ;  

v1 . c=origin ; 

v2 . c-v1 . c= ( 3 cm , O ) ; 
drawObj (v1 , v2 ) ; 

The components can be centered, and the separation between components can be 
changed with the vbsep option: 

I Box c I I 
I Box B I I 

I Box Al l 

I Box c2 1 
I Box B2 1  

I Box A2 1 

input met aobj 

newBox . a1 (btex Box A 1  etex) ; 
newBox . b 1 (btex Box B1 etex s c aled \magstep3) ; 

newBox . c 1 (btex Box C 1  etex s c aled \magstep2 ) ; 

newVBox . v1 ( a 1 , b 1 , c 1 )  " align (center ) " ; 
newBox . a2 (btex Box A2 etex) ; 
newBox . b2 (btex Box B2 etex s c aled \magstep3 ) ;  

newBox . c2 (btex Box C2 etex s caled \magstep2 ) ;  

newVBox . v2 ( a2 , b2 , c2)  " align ( cent er) " ;  

v 1 . c=origin ; 
v2 . c-vl . c= (3cm , O ) ; 

drawObj (v1 , v2 ) ; 

We can potentially use any kind of object, not just boxes: 

I Box B I 

8 

input metaobj 

newPolygon . a (btex Box A etex , 5 ) 

" f it (false) " , "polymargin ( 5mm) " ;  
newBox . b (btex Box B etex s c aled \magstep3 ) ;  
newVRazor . ba ( 1 cm) ; 

newPolygon . c (btex Box C etex s c aled \magstep2 , 1 1 )  

" polymargin (3mm) " ;  

newVBox . v ( a , b , ba , c ) 
" align ( center) " , " vbsep ( 3mm) " ;  

v . c=origin ; 

drawObj (v) ; 

103 



104 M ETR FONT AND M ETR POST: TEX'S MATES 

newCon tainer.name( obj 1 ,obj2, . . .  ,objn ) pl'tiQUS 

Finally, a special Container class creates a new object by enclosing a list of objects in a 
frame. The options recognized by this class are given in Table 3.8 on page 1 0 1 .  

input met aobj 

numeric u ;  

u= l cm ; 

newEllipse . A (btex Ellipse etex) ; 
newCircle . B (btex Circle etex) ; 

scaleObj ( B , 2 ) ; 

newBox . C (btex Box etex) ; 
scaleObj ( C , 3) ; 
newRBox . D (btex RBox etex) ; 

A . c=origin ; 

B . c-A . c= ( 2u , O ) ; 
C . c-B . c= ( O , 3u) ; 

D . c-C . c= ( -u , u) ; 

newCont ainer . ct ( A , B , C , D) 

" framed (true ) " ,  " f ramecolor (blue ) " ,  

" f illed (true ) " ,  " f illcolor ( (  . 8 ,  . 8 ,  . 8 » " ,  
" dx ( 1mm) " ,  " dy ( 1mm) " ;  

drawObj ( c t ) ; 

3 .5.7 Recu rsive objects and fracta ls 
METAOBJ provides several standard objects to define recursive objects. 

I newRecursi  veBox.name(n) �l'tiQn$ I 
This is one of the simplest kinds of recursive objects. Such a box contains a box slightly 
rotated, which itself contains such a box, and so on. The depth of the recursion is a parame
ter of the constructor. The options recognized by the Recursi  veBox objects are shown in 
Table 3 .9 on the facing page. 

input met aobj 

newRe curs iveBox . a (8) ; 

s c aleObj ( a ,  . 3) ; 
a . c=origin ; 
drawObj (a) ; 

, Example 
3-5-61  



3.5 The M ETAO B J  package 

Table 3.9: Options for Recursi veBox 

Option Type Default Description 

filled boolean f alse whether the object i s  filled 
filleolor color black fill color 
framed boolean true whether the object is framed 
framewidth numeric . 5bp thickness of the frame 
frameeolor color black frame color 

framestyle string 1 1 1 1  frame style 

dx numeric 5 cm object width 
dy numeric 5 cm object height 

rotangle numeric 1 0  angle by which a n  internal object i s  rotated before insert-

ing it into an outer object 
shadow boolean f alse whether there is  a shadow (framed too must be  true) 
shadoweolor color black shadow color 

[ newvonKoChFlake.name(n) [ 

The Von Koch flake is a well-known fractal curve that is obtained by recursively replacing a 
side of a triangle by four smaller segments. A Von Koch flake of a given depth can easily be 
obtained with the VonKochFlake object. This class does not take any options. 

3.5.8 Trees 

input met aobj 

newVonKochFlake . a ( 3 ) ; 
scaleObj ( a ,  . 4) ; 
a . c=origin ; 

drawObj (a) ; 

The standard library provides a general tree constructor, newTree, and a more specialized 
one for proof trees, newPTree. 

newTree.name(root) ( leafl ,leaf2, . . . ,leafn) 

Trees are generic, and the constructor takes a root and a list of subtrees. The root and the 
subtrees can be any objects having a standard interface. The tree is built recursively, so that 

105 



lO6 

Option 

treemode 

treeflip 

treenodehsize 

treenodevsize 

dx 

dy 

hsep 

vsep 

hbsep 

vbsep 

hideleaves 

edge 

framed 

filled 

fillcolor 

framewidth 

framecolor 

framestyle 

Dalign 

Ualign 

Lalign 

Ralign 

shadow 

shadowcolor 

M �TR �ONT AND M �TR POST: TEX'S MATES 

Table 3 . 1 0: Options for Tree 

Type Default Description 

string " D "  direction in which the tree develops; there are four possible values: " D "  (de-
fault) ,  " U " ,  " L " , and " R "  

boolean f alse whether to  reverse the order of  the subtrees 

numeri c  - 1pt if non-negative, all nodes are assumed to have this width 

numeri c  - 1pt if non-negative, all nodes are assumed to have this height 

numeri c  0 horizontal clearance around the tree 

numeri c  0 vertical clearance around the tree 

numeric 1 crn for a horizontal tree, this is the separation between the root and the subtrees 

numer ic 1 crn for a vertical tree, this is the separation between the root and the subtrees 

numeric 1 crn for a vertical tree, this is the horizontal separation between subtrees; the sub-

trees are actually put in an HBox and the value of this option is passed to the 
HBox constructor 

numeric 1 crn for an horizontal tree, this is the vertical separation between subtrees; the 
subtrees are actually put in a VBox and the value of this option is passed to 

the VBox constructor 

boolean false whether to  take the subtrees into account in  the bounding box 

string "ncl ine " name of a connection command 

boolean false whether the tree is  framed 

boolean false true if  the tree is  filled 

color black fill color 

numeri c  . 5bp thickness of the frame 

color black color of the frame 

string I t t l  style of the frame 

string " top"  vertical alignment of  subtrees for trees that go down (the root on the top); 
the other possible values are " center"  and " bot " 

string " bot " vertical alignment of subtrees for trees that go up (the root on the bottom); 

the other possible values are " center " and "top"  

string " right " horizontal alignment of subtrees for trees that go left (the root on the right);  
the other possible values are " center " and " left " 

string " left " horizontal alignment of subtrees for trees that go right (the root on the left);  

the other possible values are " center"  and " right " 

boolean false whether there is  a shadow (framed too must be true) 

color black shadow color 

the root and the subtrees given as arguments are not changed, but merely assembled by the 
Tree constructor. This, of course, is not always adequate and can leave a lot of unnecessary 
blank space, but it is the default behavior. Because the whole Tree object is memorized and 
can be traversed, it is actually possible to reformat such an object completely and implement 
any tree layout algorithm. The reader who is interested in pursuing such an endeavor is en
couraged to consult the METAOBJ manual for further details. Trees support a large number 
of options, which are summarized in Table 3 . 1 0. 



3.5 The M ETR O B J  package 107 

We start with a first tree. By default, a tree is constructed with the root at the top. 

food 

input metaobj 

newBox . a (btex apples etex) ; 
newBox . b (btex oranges etex) ; 
newBox . c (btex bananas etex) ; 

newBox . d (btex potatoes  etex) ; 

newBox . e (btex peas etex) ; 
newBox . f (btex fruits  etex) ; 
newBox . v (btex vegetables etex) ; 

newBox . f o (btex f ood etex) ; 

newTree . fruits ( f )  ( a , b , c ) ; 
newTree . veget ables (v)  (d , e ) ; 

newTree . f ood ( f o )  (fruits , veget able s ) ; 
scaleObj (food , . 7 ) ;  
food . c=origin ; drawObj ( f ood) ; 

In this example, the leaves are aligned on the top, and the baselines of the labels are not 
aligned, because the labels have different heights. 

In the next example, the left subtree is aligned on the bottom with the Dalign option. 
This was not sufficient to align all the baselines, because the word "bananas" has no descen
ders. We therefore added a \strut in the 'lEX part of the labels; this command adds an 
invisible vertical line that forces the box to have the size of ascenders and descenders. The 
right subtree is aligned on the center. 

These new box definitions are also used in later examples. 

input metaobj 

newBox . a (btex apples\strut etex) ; 
newBox . b (btex oranges\strut etex) ; 

newBox . c (btex bananas \strut etex) ; 

newBox . f (btex fruit s\strut etex) ; 

newBox . d (btex potatoes\ strut etex) ; 
newBox . e (btex peas \strut etex) ; 

newBox . v (btex vegetable s \ strut etex) ; 

newBox . f o (btex f ood\ strut etex) ; 

newTree . fruit s ( f )  ( a , b , c )  " Dalign (bot ) " ;  

newTree . vegetables (v)  (d , e ) 

" Dalign ( center) " ;  

newTree . f ood ( f o )  ( f ruit s , vegetables)  
I hbsep ( l cm) " ;  

scaleObj (food , . 7 ) ;  

f ood . c=origin ; drawObj (f ood) ; 



108 M ETR FONT AND M ETR POST: TEX'S MATES 

The next example shows how the tree can be drawn toward the left with the treemode 
option. The fruits are aligned on the left edge and the vegetables are centered. 

food 

input metaobj 
% Boxes as previously def ined 

newTree . f ruit s ( f )  ( a , b , c ) 

" Lalign ( left ) " ,  " t reemode (L) " ;  
newTree . vegetables (v)  (d , e) 

" Lalign ( center) " , " treemode (L) " ; 

newTree . f ood ( f o )  ( f ruits , veget able s )  

"hsep ( l cm) " ,  " treemode (L) " ;  
s c aleObj ( f ood , . 7 ) ; 

food . c=origin ; drawObj (f ood) ; 

This tree is not very pleasing, because the fruits and vegetables are not aligned. This 
problem is solved in the next tree. Here, all five boxes on the left are extended to the right so 
that their width is 3 cm. This is done with extendOb j Right, but it is not sufficient to align 
the five boxes. We also need to make sure that the "fruits" are as large as the "vegetables". 
Therefore, the "fruits" box is extended to the left with rebindrelat iveObj so that its 
width is exactly that of the "vegetables" box. We might also have called extendObj Left 
with the appropriate value. 

food 

input metaobj 

% Boxes as previously def ined 

ext endObj Right . a ( 3 cm) ; extendObj Right . b ( 3cm) ; 
extendObj Right . c ( 3 cm) ; extendObj Right . d ( 3cm) ; 
extendObj Right . e ( 3cm) ; 

oranges 14----------1 ---._-----' 

rebindrelat iveDbj ( f )  

(O , O , O , -xpart (v . e-v . w-f . e+f . w) ) ; 
newTree . fruit s ( f )  ( a , b , c ) 

" Lalign ( left ) " , " t reemode (L) " ; 

newTree . veget ables (v)  (d , e ) 

" Lalign ( c ent er) " , " treemode (L) " ; 
newTree . f ood ( f o )  ( f ruits , vegetables)  

"hsep C i cm) " ,  " treemode (L) " ;  

scaleObj (food , . 7 ) ;  
food . c=origin ; drawObj ( f ood) ; 

Example 
! 3-5-65 



Example I 
3-5-67 ! 

I Example I 
3-S-?8 I 

3.5 The M ETAO B J  package 

A tree can also be drawn toward the right: 

food 

input met aobj 
% Boxes as previously def ined 

newTree . fruit s ( f )  ( a , b , e ) 
" Ralign (right ) " ,  "treemode (R) " ;  

newTree . vegetables (v) (d , e ) 

" Ral ign ( eenter ) " ,  " treemode (R) " ;  

newTree . f ood ( f o )  (fruit s , veget able s )  

"hsep ( 1 em) " ,  "treemode (R) " ;  
s e aleObj ( f ood , . 7 ) ; 
food . e=origin ; drawObj (f ood) ; 

For the next tree, the "fruits" box is extended to the right with rebindrelat i veObj; 
its width now matches the width of the "vegetables" box. We could also have used 
extendObj Right. This is sufficient to align the five leaves on the left. 

f---, oranges I 
--, 

We now develop the tree toward the top: 

food 

input metaobj 

% Boxes as previously def ined 

rebindrelat iveObj ( f )  
( O , O , xpart (v . e-v . w-f . e+f . w) , O) ; 

newTree . fruit s ( f )  ( a , b , e ) 

" Ralign ( left ) " ,  " treemode (R) " ;  
newTree . veget ables (v)  ( d , e )  

" Ral ign ( left ) " ,  " treemode (R) " ;  

newTree . f ood ( f o )  (fruit s , veget able s )  

" hsep ( l em) " ,  " treemode (R) " ;  
sealeObj ( f o od , . 7) ;  
food . e=origin ; drawObj ( f ood) ; 

input met aobj 

% Boxe s as previously def ined 

newTree . fruit s ( f )  ( a , b , e )  
" Ual ign (bot ) " ,  " treemode (U) " ;  

newTree . vegetables (v) (d , e) 

" Ualign ( eenter) " ,  "treemode (U) " ;  
newTree . food ( f o )  ( f ruit s , veget able s )  

"hsep ( 1 em) " ,  " treemode (U) " ; 

sealeObj (food , . 7 ) ;  

food . e=origin ; drawObj (food) ; 

109 



l lO M �TR FONT AND M �TR POST: TEX'S MATES 

In the following example, the tree flip option is set to true and the order of subtrees is 
reversed. 

food 

input metaobj 

% Boxes as prev iously def ined 

setObj e ctDefaultOpt i on 

( " Tree " )  ( " treef lip " ) (true ) ; 

newTree . fruit s ( f )  ( a , b , c ) 
" Ualign (bot ) " , " treemode (U) " ; 

newTree . vegetable s (v) (d , e ) 
"Ualign ( c enter) " , " treemode (U) " ; 

newTree . f ood ( f o )  (fruits , vegetable s )  

"hsep ( l cm) " ,  "treemode (U) " ;  

scaleObj ( f ood , . 7 ) ; 

food . c=origin ; drawObj (f ood) ; 

Two different directions can be mixed. In this case, we have decided to ignore the space 
used by the subtrees by using the hide leaves option. 

input met aobj 

% Boxe s as previously def ined 

newTree . fruit s ( f )  ( a , b , c ) 
" Dalign (bot ) " , " hideleaves (true ) " ; 

newTree . vegetables (v) ( d , e )  

" Ral ign ( center) " , " hideleaves (true) " , 

" t reemode (R) " ;  
newTree . f ood (f o )  (fruits , vegetable s )  

" hbsep ( l cm) " ;  

scaleObj (food , . 7) ;  

f ood . c=origin ; drawObj (f ood) ; 

We can even mix three different directions: 

input metaobj 
% Boxes as previously def ined 

newTree . fruit s (f )  ( a , b , c )  

" Lal ign ( left ) " ,  " hideleaves (true ) " ,  

" t reemode (L)  " , " vs ep (3mm) " ; 
newTree . vegetables (v) (d , e ) 

" Ral ign ( center) " , " hideleave s (true) " , 

" t reemode (R) " ;  
newTree . f ood ( f o )  ( f ruits , vegetable s )  

" hbsep ( 1 cm) " ; 

scaleObj ( f o od , . 7 ) ;  

food . c=origin ; drawObj (f ood) ; 

Example , 
3-5-70 

Example ! 
I 3-5-72 



J 
Example i 
3-5-73 

Example 
3-5-75 

3.5 The M ETR O B J  package 1 1 1  

In the next tree, the two subtrees overlap because the hideleaves option is set to true. 
The "potatoes" cover the "bananas". 

input met aobj 

% Boxe s as previously def ined 

newTree . fruit s ( f )  ( a , b , c ) 
" Dal ign (bot ) " ,  " hideleave s (true ) " ;  

newTree . vegetable s (v) (d , e ) " Dalign ( center ) " ;  

newTree . f ood ( f o )  ( f ruit s , vegetable s )  

" hsep ( 1 cm) " ; 
scaleObj (food , . 7 ) ;  f ood . c=origin ; drawObj ( f ood) ; 

Trees can be separated even when the leaves are hidden using hbsep: 

food 

input met aobj 
% Boxe s as previously def ined 

newTree . f ruit s ( f )  ( a , b , c ) 

" Dal ign (bot ) " ,  " hideleaves ( true ) " ;  
newTree . vegetables (v)  ( d , e )  

" Dal ign ( center ) " ,  " hideleaves (true ) " ;  

newTree . f ood ( f o )  ( f ruit s , vegetables )  
" hbsep ( 5 cm) " ;  

scaleObj ( f o od , . 7 ) ;  

food . c=origin ; drawObj (f ood) ; 

The same constructions can be made with different types of objects. First the tree is 
built with the following code: 

input met aobj 

newPolygon . a (btex apple s \ strut etex , 5 ) ; 

newPolygon . b (btex orange s\strut etex , 6 ) ; 

newPolygon . c (btex bananas\strut etex , 7) ; 

newPolygon . f (btex fruit s\ strut etex , 8 ) ; 

newEllipse . d (btex potatoes\ strut etex) ; 
newDEll ipse . e (btex peas\strut etex) ; 

newDBox . v (btex vegetables\strut etex) ; 

newPolygon . f o (btex f ood\ strut etex , 1 2 ) ; 

newTree . fruit s ( f )  ( a , b , c ) 

" Lal ign C left ) " ,  " hideleave s (true ) " ,  

" treemode (L) " ,  " vsep (3mm) " ;  
newTree . vegetable s (v) (d , e ) 

" Ral ign ( cent er) " ,  " hideleaves (true ) " ,  

" t reemode (R) " ;  

newTree . f ood ( f o )  ( f ruit s , vegetabl e s )  
"hsep ( 1 cm) " ; 

scaleObj (food , . 7 ) ;  

food . c=origin ; drawObj (f ood) ; 



1 12 M ETR FONT AND M ETRPOST: TEX'S MATES 

If we frame the tree, we get a frame that extends only to the root and the two leaves of 
the root, but not to the other nodes, because the bounding box of the tree was changed by 
the use of the hideleaves option. 

input met aobj 
% Polygons etc . as previously def ined 

newTree . f ruits ( f )  ( a , b , c ) 

" Lalign ( left)  " , " hideleave s (true ) " , 

" treemode (L) " ,  " vsep (3mm) " ;  
newTree . vegetables (v) (d , e ) 

" Ralign ( center) " , " hideleave s ( true ) " , 

" treemode ( R) " ;  
newTree . f ood ( f o )  ( f ruits , vegetable s )  

"hsep ( 1 cm) " ; 

scaleObj ( f ood , . 7 ) ; food . c=origin ; 

newDEllips e . ff (f ood) ; 
f f . c=origin ; drawObj ( f f ) ; 

To frame the whole tree, we can change the bounding box and set it to the visible part 
of the tree with rebindVisibleObj:  

input met aobj 

% Polygons et c . as previously def ined 

newTree . fruit s ( f )  ( a , b , c) 
" Lal ign ( left ) " ,  " hideleaves (true) " ,  " treemode (L) " ,  " vsep ( 3mm) " ;  

newTree . veget able s (v)  ( d , e ) 

" Ralign ( c enter) " ,  " hideleaves (true ) " ,  " treemode (R) " ;  
newTree . f ood ( f o )  (fruit s ,  vegetable s )  "hsep ( 1 cm) " ; 

s c aleObj (food , . 7) ; f ood . c=origin ; 
rebindVis ibleObj ( f ood) ; 

newDEllips e . f f (f ood) ; drawObj (ff ) ; 

Example 

L 3-5-76 

Example 1 
3-5-77 i 



Example 
3-5-78 

� _ _ __ _  -.. -_ 1 

3.S The M ETAOB J package 

The next example shows that we can build a new tree having as a leaf the object with a 
double elliptic frame. The root of the tree is typeset larger because it is not in the scope of 
scaleObj . 

input metaobj 
% Polygons et c .  as previously def ined 

newTree . fruits ( f )  ( a , b , c ) 

" Lal ign C left ) " ,  "hideleaves (true ) " ,  " t reemode (L) " ,  "vsep (3mm) " j 
newTree . vegetables (v)  (d , e ) 

"Ral ign (center) " ,  " hideleave s (true ) " ,  " treemode (R) " j  

newTree .  food (fo)  ( f ruit s , vegetables )  "hsep ( 1 cm) " j 
scaleObj (food , . 7 ) j f ood . c=origin j 

rebindVis ibleObj (f ood) j newDEllipse . ff ( f ood) j 
newEllipse . xx (btex This  i s  a new root etex) " c ircmargin ( 2mm) " j  

newTree . x ( xx) ( f f )  " vsep ( 6mm) " j drawObj (x) j 

This is a new root 

A Tree constructor also accepts connection options ( see Section 3.5 .4 for an example), 
which are useful to modify the way standard tree connections are displayed. 

M ETAOB J defines a few useful shortcuts for trees: _ T , T , and T _ stand for new _ Tree , Tree shortcuts 

newTree , and new _ Tree_ , respectively. 
When we introduced the Tree class, we said that the root and the subtrees can be any 

objects. Most of these objects can also be used in a non-tree context. For instance, we can HFan and VFan 

use a circle not just as a leaf of a tree, but also elsewhere, outside a tree. Two objects, however, 
are meant to be used only as part of a Tree structure: the HFan and VFan objects. These 
objects were borrowed from PSTricks. HFan represents an horizontal fan, where one of the 
fan segments is horizontal. VFan represents a vertical fan. 

1 13 



1 14 M �TRFONT AND M �TR POST: TEX'S MATES 

new HF an.name( wd,ht) newVFan.name( wd,ht) 'IPliili 

Both HFan and VFan objects take a width and a height, as well as options. The height of an 
HFan (and the width of a VFan) will usually be small, often o. These two classes are quite 
similar to HRazor and VRazor, but they are classes in their own right. They differ from 
ordinary boxes in the way they are connected to the root node. The connection takes the 
appearance of a fan. The following example is inspired by a PSTricks example: 

input rnetaobj 

set Obj e etDef aultOpt i on ( I Tree " )  

( " hideleaves " )  (true ) j 

t : =T_ (new_Cirele (btex f o o  etex ) ) 
(new_HFan_ ( t ern , 0 )  ( " f i lled (true ) " )  , 

Tf , 

_T (new_RBox (btex bar etex) ) 

(new_HFan ( l em , O ) ) 
) 

( I I Dalign ( eenter) lI ) j  

Obj ( t ) . e=origin ; 

draw_Obj e t ) ; 

Here we build a tree with a Circle root node and three subtrees. The first subtree is 
an HFan of width 1 cm and height 0; this fan is filled. The second subtree is a black square 
obtained with Tf , which is a shortcut for newBox with certain options. The third subtree is 
a tree with a rounded-corner box (newRBox) at its root and with one leaf, which is an HFan. 
All of the leaves of the main tree are vertically centered, which creates the nice alignment; the 
leaf of the third subtree is actually hidden, because hideleaves is set to true. The two fans 
are "pointed", which means that the top end reaches the bounding path. If the pointedfan 
option is set to false ,  the top end of the fan is at the center of the root node. 

The color of a fan can be changed with the fillcolor option, its style can be changed with 
the fanlinestyle option, and the rounding of its corners can be modified with the fanlinearc 
option. 

, 

A root node can also be a fan, as demonstrated in the following example: 

, 
, 

, 

input rnet aobj 

t : =_T (new_Cirele (btex f o o  etex) ) 

( _T (new_HFan_ ( l em , O) 

( " f i lled (true) " ,  

) 

" f illeolor (blue ) II , 
" f anlineare ( lmm) I I  

(TC , new_HFan_ ( l em , O ) 
( " f anl inestyle (dashed evenly) I I ) ) ) ; 

Obj ( t ) . e=origin ; 

draw_Obj ( t ) j 



Example 
3-S-S 1 , 

3.5 The M ETAOB J package 

Table 3. 1 1 : Options for HFan and VFan 

Option Type Default Description 

filled boolean false whether filled 

fillcolor color black fill color 
edge string " yes " " ye s " or " none " ,  depending on 

whether edges should be drawn 

pointedfan boolean true whether the fan is "pointed" 
fanlinestyle string 1 1 1 1  style of the fan frame 

fanlinearc numeric  0 radius of round corners 

Here the red fan is the root of a subtree. The top of the black disk is aligned with the 
bottom of the fan, because descending trees are by default aligned on the top, and the fan is 
considered an horizontal line and its top is the same as its bottom. This wouldn't have been 
the case if the second parameter of new _HFan _ had not been set to O. 

The two classes have exactly the same options (Table 3. 1 1 ) .  Most of these options have 
been explained earlier. The edge option is a string, which by default is " yes " ,  meaning that 
the fan edges must be drawn. In certain cases we may want fans to skip levels; one way of 
achieving this effect is to set edge to " none " . 

3.5.9 Matrices 
A special Matrix class provides a combination of horizontal and vertical boxes. A matrix is 
constructed with newMatrix by specifying a number n of rows and a number m of columns, 
and then a list of n x m objects, given row by row. Table 3 . 1 2  on the next page shows all 
options supported by the Matrix class. 

newMatrix.name(nrows,ncolumns) (matrix elements) 

Here is a first matrix with one row and one column. The matrix contains the object m 1, which 
is a framed box. 

input metaobj 

newBox . m l (btex A etex) ; 

newMatrix . mat ( l , l ) (m l ) ; 
mat . c=origin ; 
drawObj (mat ) ; 

The second matrix contains two rows and one column: 

B 

c 

input metaobj 

newBox . m2 (btex B etex) " dx ( 1 cm) " ;  

newBox . m3 (btex C etex) " dy ( l cm) " ;  
newMatrix . mata (2 , 1 ) (m2 , m3) ; 

mata . c=origin ; 

drawObj (mata) ; 

1 15 



1 16 M ETRFONT AND M ETR POST: TEX'S MATES 

Table 3 . 1 2: Options for Matrix 

Option Type Default Description 

dx numeric  0 horizontal clearance around the matrix 
dy numeri c  0 vertical clearance around the matrix 
hsep numeri c  lmm horizontal separation between columns 

vsep numeric lmm vertical separation between rows 

matrixnodehsize numeric  - lpt if non-negative, all the nodes are assumed to have this 
width 

matrixnodevsize numeric  - lpt if non-negative, all the nodes are assumed to have this 
height 

halign string l i e " 
a string where each character corresponds to one column 

and specifies the horizontal alignment within that column 
valign string 

" e " 
a string where each character corresponds to one row and 
specifies the vertical alignment within that row 

framed boolean false whether the matrix is  framed 

filled boolean false whether the matrix is  filled 
fillcolor color black fill color 

framewidth numeric  . 5bp frame thickness 

framecolor color black frame color 
framestyle string 1 1 1 1  frame style 
shadow boolean f alse  whether there i s  a shadow (framed too must b e  true) 

shadowcolor color black shadow color 

The next matrix has three rows and two columns, but only five elements. The last ele
ment of the first line is empty. This is shown in the newMatrix call with an nb value-a 
special value meaning "null box". 

I Element 4 1  
1= 1 I Bb l D 2 dx 

o l + x 

input met aobj 

newBox . m4 (btex Element 4 etex) ; 

newBox . m5 
(btex D$\di splaystyle\int_O�\ infty 

{ l \ over 1+x�2}dx$ etex) ; 

newBox . m6 (btex Bb etex) ; 

newBox . m7 (btex C etex) ; 
newBox . m8 (btex D etex) ; 
newMatrix . mat c ( 3 , 2 ) 

(m4 , nb , m5 , m6 , m7 , m8 )  

" halign ( ew) " ,  " valign ( sns ) " ;  
mat c . c=origin- ( O , 1 0cm) ; 
drawObj (mat c ) ; 

By default, matrix elements are centered, both horizontally and vertically. It is possible 
to specify different alignments for each column and each line with the halign and valign op
tions. In the preceding example, halign has a string of two letters as arguments and specifies 
that the left column is aligned to the right (e = east) and the right column is aligned to the 
left (w = west) .  valign has a string of three letters as parameters. The first and third letters 



, 
Example 
3-5-84 i 

,�" ___ �.J 

3.S The M ETRO B J  package 

are "s" (south) and mean that the first (top) and last lines are aligned to the bottom; the 
second letter is "n" (north) and means that the second line is aligned to the top. 

The whole matrix can be duplicated, and we can see that the empty slot is duplicated, 
too. The matrix object can be scaled as well. 

input met aobj 

newBox . m4 (btex Element 4 etex) ; 

newBox . m5 

(btex D$\displaystyle \int _O � \ infty 

1 17 

I Element 
{ l \over 1+x�2}dx$ etex) ; 

newBox . m6 (btex Bb etex) ; 

newBox . m7 (btex C etex) ; 

newBox . m8 (btex D etex) ; 
newMatrix . mat c (3 , 2 ) 

(m4 , nb , m5 , m6 , m7 , m8 )  

" halign (ew) " , " valign ( sns ) " ;  
matc . c=origin- ( O , 1 0 cm) ; 
duplicateObj (matd , mat c ) ; 

scaleObj (matd , 2 ) ; 

matd . c=origin- ( O , 1 5cm) ; 
drawObj (matd) ; 

Multispan columns are not implemented. However, it is possible to obtain multispan
like results by changing the bounding box of a component, as explained in the METAOBJ 
manual. 

3.5 .1 0 Tree and matrix connection va ria nts 
When tree nodes or matrix nodes have to be connected, it is cumbersome to access the nodes, 
even though they are accessible. Therefore, we provide variants of all the connection com
mands for trees and matrices. The variants have a "t" and an "m" instead of the leading "n" 
in the names of the connection commands. Instead of an object, they take as parameters 
the position of the object within the tree or within the matrix. For instance, a curve connec
tion between the roots of the second and third subtrees of tree gt can be drawn with the 
following code: 

tccurve . gt ( 2 ) (3)  "posA (e)  " , " posB (n) " , " angleA ( O )  " ,  " angleB (-90)  " , 
" linecolor (blue ) " ,  " l inetension ( 1 . 75 ) " ;  

The second and third parameters (after gt , the name of the tree) are lists of integers. If we 
had written 

t ccurve . gt ( 2 , 1 ) (3 , 2 ) "posA ( e ) " , " posB (n) " , " angleA ( O )  " , " angleB ( -90 ) " , 

" l inecolor (blue ) " ,  " l inetens i on ( 1 .  75 ) " ;  

we would have connected the node at position 2, 1 (first subtree of second subtree of gt ) with 
the node at position 3,2 (second subtree of third subtree of gt ) .  



1 18 M �TRFONT AND M �TR POST: TEX'S MATES 

All other connection commands are similarly adapted: teEne, teangle, teangles, 
teare, t eeurve, t ediag, t ediagg, teloop, t e e irele, t ebox, and tearebox. 

Variants for matrices are also available with the names mel ine, meare, meeurve, 
meangle, meangles, mediag, mediagg, meloop, meeirele, mebox, mearebox, 
mezigzag, and meeoil .  Instead of an object identification, these commands take a pair 
of integers representing the position of the object within the matrix. For instance, a dashed 
line can be drawn between the objects at positions ( 1 ,  1 )  and ( 2 , 2 ) in matrix mat2 with the 
following code: 

mcl ine . mat2 ( 1 , 1 ) ( 2 , 2 ) " l inestyle ( dashed evenly) " ;  

If a component of a matrix is itself a matrix, this notation cannot be used. Instead, special ac
cess commands must be used, such as matpos (or mpos) ,  which are described in the META
OBJ manual. 

There are also "reverse" variants of certain connection commands. These reverse vari
ants can be useful for tree connections. The reverse connections are rnel ine, rneeurve, 
rneangle, rneangles, rneare, rnediag, rnediagg, rnebar, rneloop, rnebox, 
rnearebox, rnezigzag, and rneeoil. 

There are no "reverse" variants of the tree and matrix variants of the connection com
mands. 

3 .5 . 1 1 Labels 
Labels can be added to an object. The main command is  Dbj Label. This command has as 
parameters an object, a label, and a list of options. 

abov 

below 

input met aobj 

t : =T_ (Tc)  (TC , TC , Tc )  

( " treemode (R) " , " arrows (draw) " ,  

"hsep ( 2cm) " ) ; 
Obj ( t ) . c=origin ; 
Obj Label . Obj ( t )  (btex below etex) 

" l abpathid ( 1 ) " ,  " l abdir (bot ) " ;  

Obj Label . Obj ( t ) (btex above etex) 
" labpathid ( 2 ) " ,  " labdir (top) " ;  

Obj Label . Obj ( t )  (btex above etex) 

" l abpathid ( 3 ) " ,  " l abdir (top) " ;  

draw_Obj e t ) ; 

In this example, three labels have been added to the tree t .  This tree is given by a num
ber, and the real tree object is obtained when Db j is called on t . Db j Label takes Db j ( t )  as 
its first ( suffix) parameter; the labels are given as lEX pictures. The options indicate where 
the labels will be put. The labpathid option determines on which connection the label goes. 
In a tree, each standard connection has a number ranging from 1 to n, the number of sub
trees. This value can be given as parameter to labpathid. If it had been the only option, the 



3.S The M ETA O B J  package 

Table 3 . 1 3 : Options for labels ("/" means that there are no default values) 

Option name Type Default Description 

labpathid numeric / path identifier 
labdir string / direction of a label 
labrotate numeric 0 rotation angle of a label with respect to its normal position 
labangle numeric / rotation angle of a label with respect to the path tangent 
labpos numeric 0 . 5  position on a path 
labshift pair (0 , 0) shift of a label 
labcolor color black label color 
laberase boolean f alse true if  the label erases what lies below it 

labpoint string " i c "  object point 

labcard string / object point 
labpathname string / name of a path 

labels in the preceding example would have come out over the connections. The labdir op
tion is used to shift the label with respect to the normal point where it would have been 
positioned. labdir takes options similar to those taken by the standard METAPOST label 
command. 

Table 3 . 1 3  shows the list of all options recognized by the Dbj Label command. 
Db j Labe 1 puts a label either somewhere along a path or somewhere near a point of an 

object. Two options help specifying the relevant path: 

labpathid: This option takes a path number as parameter. It is seldom used, except in cases 
where the path numbers are well known-for instance, in the example given previously. 

labpathname: When a path is created (with a connection command such as nel ine), the 
path can be given a name (with the name option); this name can be given as parameter 
to labpathname. 

On a given path, a position can be specified with labpos. This option is a numerical 
value between 0 and 1 ,  where 0 represents the beginning of the path (if the path starts at the 
bounding path of an object, this is also the 0 position) and 1 represents the end of the path. 
The default value is 0 .5 .  

By default, a label is set horizontally, no matter what the slope of  the path at the label 
position. The label can be set parallel to the path direction by specifying the labangle option 
with the value o. Other values rotate the label with respect to the path tangent. 

A label can also be set with respect to an object point with the labpoint option. For 
instance, 

Obj Label . g (btex hello ! etex) " labpo int (po l ) " ;  

writes "hello!" over point po 1 of object g. 
A label can also be set in an object, with respect to a cardinal point with the labcard 

option. Like labpoint, labcard takes an object point as parameter; however, the label is not 
put over the point but rather beyond the label point, in a direction determined by the line 

1 19 



120 M ETR FONT AND M ETRPOST: TEX'S MATES 

joining the center of the object and the point. For instance, to put the label ( - 1  0 ,  10 .  - 10 )  
below (south) of  the object at position (2 , 1 ,  1 )  of  the tree Db j ( t )  , we can write 

Obj Label . ntreepos ( Obj (t ) ) ( 2 , 1 , 1 ) (btex $ ( - 1 0 , 10 . - 1 0 ) $ etex) 
" l abcard ( s ) " ;  

The ntreepos command used above takes an object and a tree position as parameters, and 
returns the node at that position. 

Four additional options apply in both cases (labels on a path or next to a point): 

labrotate: With this option, a label can be rotated with respect to its normal position. 

labshift: With this option, a label can be shifted in a way similar to the offsetA and offsetB 
connection options. 

labcolor: This option determines the color of the label. 

laberase: This option determines whether the label erases what lies beneath it. 

3.6 lEX i nterfaces: getti ng the best of both worlds 

Although M ETA produces beautiful pictures, i t  is not an easy language for a casual user who 
wants relatively simple diagrams. There are three ways to deal with this complexity: 

1 .  Use of high-level libraries of M ETA code, as described in Chapter 4 

2. Use of an interactive drawing package that can generate META output 

3. Use of a IHEX package that generates the necessary META code 

One of the most sophisticated IHEX packages that writes METAFoNT is Thorsten OhI's 
feynmf, discussed in detail in Section 8.4 on page 555. feynmf was designed to create the 
Feynman diagrams used by high-energy physicists and is a good example of a very spe
cialized language that was carefully designed to solve one problem well. Its sibling package, 
feynmp, uses M ETAPo5T instead of META FONT. 

The following sections describe other ways to use METAPo5T within TEX. The most 
straightforward method is to use the emp package, which provides one environment for ev
ery picture but stays with the METAPo5T syntax. Alternatively, mfpic is a package that 
hides METAPo5T and provides �1EX macros for specific tasks. Finally, a seamless integra
tion of TEX and METAPo5T is achieved in ConTEXt, but a description of that package is 
beyond the scope of this book. 

3 .6. 1 The emp package 
The emp package by Thorsten Ohl is a simple package for embedding METAPo5T di
agrams within a �1EX source document. This approach offers several benefits. For in
stance, the code for figures appear with the text, and there is no need to devise names 



3.6 lEX interfaces: getting the best of both worlds 

for META POST files. Moreover, an emp environment can be included in other graphical 
environments, in particular within a pi cture environment. Here is an example mixing 
\includegraphics and the emp and the pi cture environments: 

\begin{empf ile} 
\begin{figure} [htbp] 

\begin{pi cture} ( 5 , 8 . 25 )  
\put ( . . .  ) {\ includegraphics{ . . .  } }  
\begin{emp} ( 10 ,  1 0 )  

s = 1 ;  

for d : =  36 step -2 unt i l  0 :  

draw orlgln withpen pencircle scaled d withcolor s *white ; 

s : =  1 - s ;  
endf or 

\end{emp} 

\end{pi cture} 

\end{f igure} 
\end{empfile} 

The emp package provides the following environments: 

\begin{empf ile} [file] \end{empf ile} 

The empf ile environment is used to contain METAPOST code that will go into one 
METAPOST file. It normally contains other environments such as emp, as in the preced
ing example, and merely indicates the scope of the META POST file. If no file is given, the 
default name for the METAPOST file is \j obname.mp. 

\begin{emp} [name] (width,height) \end{emp} 

The emp environment contains the code of a figure that will be placed where the environment 
appears. The width and height are mandatory. They are expressed in units of \ uni t length 
and are available within METAPOST as w and h, respectively. The optional name argument 
can be used to give a name to the drawing for future reuse with \empuse. 

\begin{empdef } [name] (width,height) \end{empdef } 

The empdef environment is similar to emp, but the figure is not drawn immediately. It can 
be drawn later using its name. 

\begin{empcmds} METAP05T commands \end{empcmds} 

The empcmds environment writes METAPOST commands to the current file (defined by 
empf ile)  outside of a figure. 

121  



122 M ETR FONT AND M ETR POST: TEX'S MATES 

\begin{empgraph} [name] (width,height) \end{empgraph} 

The empgraph environment contains the description of a graph. The user must include the 
graph package using \empprelude. 

An example of code for such an inline graph follows: 

\usepackage{ emp} 

\empprelude{ input graph ; }  
\begin{empf ile} 

\begin{ empgraph} (250 , 150) 

pi ckup penc ircle scaled 1pt ; 
path p ;  

f or x=-20 step 0 . 2  unt il -0 . 2 :  

augment . p  (x , s ind (x* 180/3 . 14 1 5 9 ) /x) ; 

endfor ; 
augment . p  ( 0 , 1 ) ; 

f or x=0 . 2  step 0 . 2  unt il 20 : 

augment . p  (x , s ind (x* 180/3 . 14 1 5 9 ) /x) ; 

endfor ; 
glabel . lrt (btex $\di splaystyle\frac { \ s in (x) }{x}$ etex , (-20 , 1 » ; 

gdraw p ;  
\end{empgraph} 
\end{empf ile} 

1 

0 . 8  

0 . 6  

0 . 4  

0 . 2  

o 

-0 .2  

sin(x) 

x 

-20 -10  

3 .6.2 The mfpic package 

o 10 20 

The mfpic package was designed and implemented by Thomas E. Leathrum and is now main
tained and enhanced by Geoffrey Tobin and Daniel H. Luecking. It consists of a lEX package 
(usable with �TE,X) and a supporting library of META FONT and METAPo5T macros. This 



3.6 lEX interfaces: getting the best of both worlds 

section details the use of mfpic with �T.EX and describes the version current in July 2006. As 
mfpic provides equivalent methods to many METAPOST constructions, their complete de
scription would amount to much repetition. For this reason, only a survey of the package is 
given here. 

How a drawing is processed 

mfpic's �T.EX macros write code to an external file and read in the resulting drawing either as 
a character in a special font (this requires two passes ofI�TEX when the picture dimensions 
change and a run of METAFONT if the picture contents change at all) or as a METAPOST 
drawing. When the output is processed with METAFONT, each picture is a single META
FONT character. When it is processed with METAPOST, each picture is a stand-alone EPS 
file. 

The advantage of this system is that the �1EX user has access to all the power of META
FONT or METAPOST as a drawing package without having to learn a new language. Type
setting of labels and text is handled transparently by the �T.EX macros, solving a major prob
lem associated with using METAFONT (METAPOST is an easier system to use for this 
reason) .  

M ETA FONT mode 

This mode is the default. A simple example of function plotting shows the clarity of mfpic 
markup: 

\usepackage{mfpic} 

\opengraphsfile{tmpO} 
\begin{mfpi c }  [ 1 5] {-3}{3}{-3}{3} 

\ axes 

\funct ion{-2 , 2 , O . 1}{ ( (x**3) -x) /2} 

\end{mfpic} 
\closegraphsfile 

One of the main drawbacks of mfpic in METAFONT mode is that you must be confi
dent about running METAFONT on the "font" file that is generated and putting the results 
where 1F.X can find them. You also have to worry about METAFONT capacity, which can 
easily be exceeded at high resolution. Likewise, you must keep track of whether the pictures 
have changed and whether the font needs rerunning after each pass of �TEX; this is compara
ble, however, to running BIB1F.X or makeindex as part of the �T.EX process and can be hidden 
in intelligent batch files. 

When using mfpic in M ETAFONT mode, you must remember that you are dealing with 
a font. Thus you cannot have more than 255 pictures in a single font. In addition, you must 
watch your 1F.X implementation, which usually has a limit on how many fonts it can load. If 
you have several thousand pictures to create, you have to open a series of font files and keep 
a sharp eye on the font memory. 

123 



124 M ETR FONT AND M ETR POST: TEX'S MATES 

M ETA POST mode 

This mode is selected by loading mfpic with the option "meta post" or by writing 
\usemetapost in the IH£,X preamble. 

The options of the package 

\usepackage [metapost] {mfpic} 

\opengraphsfile{tmp} 

\begin{mfpic} [ 1 5] {-5}{6}{-2}{2} 

\ axes 
\funct ion{-4 , 5 , O . 0 1 1} 

{ s in (x ) *cos ( 1 / (2x» +cos (x*x/2 ) } 

\end{mfpic} 

\closegraphsfile 

The mfpic package can be loaded with several options: 

metapost, \usemetapost: This option selects META P05T as the figure processor. The 
command must appear before the \opengraphsf ile  command; if the babel package 
is used, mfpic should be loaded and \usemet apost (if used) declared before babel is 
loaded. There is also a (default) metafont option. 

mplabels, \usemplabels, \nomplabels: This option causes all label creation com
mands to write their contents to the output file. In this case, labels are handled 
by M ETA P05T and can be rotated. The user is responsible for adding the appro
priate verbat imtex header to the output file if necessary. This can be done with 
\mfpverbtex, but is usually necessary only when �TEX macros are called. Care must 
also be taken that �T£,X, and not 'lEX, is called in this case. 

overlaylabels, \overlaylabels, \nooverlaylabels: With this option (or after the 
command \overlaylabels), text labels are saved in a separate place from the rest 
of a picture. When a picture is completed, the labels that were saved are added on top 
of it. 

truebbox, \usetruebbox, \notruebbox: This option causes mfpic to use the normal 
M ETAP05T bounding box instead of the bounding box given in the mfpic  environ
ment. 

clip, \clipmfpic, \noclipmfpic: This option removes all parts of the figure outside the 
rectangle specified by the \mfpic command. 

centeredcaptions, \usecenteredcapt ions, \nocenteredcapt ions: this 
causes multiline captions created by \ tcapt ion to have all lines centered. 

option 

debug, \mfpi cdebugtrue, \mfpicdebugf alse: This option causes mfpic to write de
bug information to the . log file. 

clearsymbols, \clearsymbols, \noclearsymbols: mfpic has two commands, \point 
and \plot symbol, that place a small symbol at each of a list of points. 

Example 
3-6-3 



3.6 lEX interfaces: getting the best of both worlds 

The first command can place either a small filled disk or an open disk, with the choice 
being dictated by the setting of the Boolean \pointf ill  true or \pointfillfalse. 
The behavior of \point in the case of \pointfillfalse  is to erase the interior of 
the disk in addition to drawing its circumference. 
The command \plotsymbol can place a variety of shapes-some open, some not. Its 
behavior until now was simply to draw the shape without erasing the interior. Two other 
commands that placed these symbols, \plotnodes and \plot, had the same behavior. 
If you use the clearsymbols option, \plotsymbol and \plotnodes will erase the inte
rior of the open symbols before drawing them. Thus \plot symbol {SolidCircle} 
still works just like \pointfill  true\point, and now with this option 
\plot symbol{Circle} behaves the same as \pointf illfalse\point. The 
\plot command is unaffected by this option. 

draft, final, nowrite, \mfpicdraft, \mfpicf  inal, \mfpi cnowri te: These options are 
useful when you are debugging figures that contain errors and you want to continue 
with the processing of correct figures. Refer to the mfpic manual for more information 
on these options. 

The syntax of d rawings 

The section of a document that is to use mfpic must be surrounded by macros to open and 
close a META file containing the pictures to be included: 

\opengraphsf ile{file} \closegraphsfile  

The name of the file will b e  (file) . mf o r  (file) . mp; the extension should not b e  specified. A 
typical input file, with several drawings, would appear like this: 

\opengraphsfile{tmp} 

\begin{mfpic} . . .  

\end{mfpic} 

\begin{mfpic} . . .  

\end{mfpic} 

\begin{mfpic} . . .  

\end{mfpic} 
\closegraphsfile 

You would normally have just one file per document. If you are using METAFONT and 
there are more than 255 pictures, however, you must start a new file. You may prefer to have 
a separate drawing file for each section. 

Normally, \mfpic assigns the number 1 to the first mfpic  environment, after which 
the number is increased by one for each new mfpic  environment. This number is used in-

125 



126 M �TRFONT AND M �TR POST: TEX'S MATES 

ternally to include the picture. In METAFONT this number becomes the position of the 
character in the font file; in METAPOST it is the extension of the graphics file that is output. 
The command 

! \mfpicnumber{num} ! 
tells mfpic to ignore this sequence and number the next mfpic  picture with num (and the 
one after that num+ 1 ,  and so forth) .  

All picture drawing takes place inside an mfpic  environment: 

\end{mfpic} 

The parameters give the picture's coordinate system and size: 

Xscale x-scale of the coordinate system, in multiples of the length \mfpi cuni t (the de
fault value of which is 1 pt) . 

Yscale y-scale of coordinate system. If no Yscale is given, it is the same as the Xscale . 

Xa Lower bound for x-axis coordinates. 

Xb Upper bound for x-axis coordinates. 

Ya Lower bound for y-axis coordinates. 

Yb Upper bound for y-axis coordinates. 

The four mandatory parameters set the size of the picture, and the two optional arguments 
allow it to be scaled. Like �TEX's pi cture environment, the mfpic package does not verify 
whether elements of the drawing fall within the limits specified; they may well overlap the 
surrounding text. 

mfpic supports a number of primitive drawing commands, a set of object modifiers, 
and some higher-level macros for drawing functions and performing special transforma
tions. By default, each of the simple drawing commands draws a self-contained line or shape, 
but these elements can be combined to make more complex shapes: 

! \begin{conne ct} \end{ connect} ! 
Inside a connect environment you can join objects together; extra line segments are drawn 
from the end point of one object to the start of the next. Even if the objects are closed, like 
circles, the joining lines are still (unfortunately) drawn. 

The default is to render objects with lines. You can change this behavior with the 
\setrender command: 

! \setrender{commands} I 
This is a switch; all objects within the (�TEX scope) of this command will be rendered using 
commands. This allows a more succinct notation. For instance, to draw a series of shapes in 



r Example I 
: 3-6-4 I 

3.6 TEX interfaces: getting the best of both worlds 

the same style, the single command \setrender{\gf ill}  causes all subsequent closed 
objects to be filled. 

All coordinates and distances are normally expressed in TEX point dimensions; angles 
are expressed in degrees counterclockwise. The behavior of the drawing primitives depends 
on a set of variables that you can set globally; these are mostly length commands, which are 
changed with \setlength. mfpic also has a set of commands that can be used at any point 
in a drawing to affect subsequent commands. 

Many of mfpic's simple drawing commands and some of the modifiers are demon
strated in the following example. The last line has multiple modifiers (\gf ill  and 
\bclosed). 

Color 

\usepackage [met apost] {mfpic} 

\opengraphsf ile{tmp} 

\begin{mfpic} [ 1 ]  {-20}{80}{-20}{80} 

\pen{ . 3pt }\axes 

\lines { ( 1 , 1 ) , ( 1 0 , 1 0 ) , (30 , 1 0 ) , ( 50 , 60 ) , (70 , 80 ) }  
\pen{3pt} 
\arc [p] { (O , O ) , 1 0 , 80 , 80} 

\pen{ 1pt} 

\shade\circle{ (40 , 40 ) , 10} 
\arrow\dotted 

\curve{ ( - 1 0 , - 1 0 ) , ( 5 , 10 ) , (20 , 40 ) , ( -20 , 60) } 

\gf ill\bclosed\line s { (60 , - 1 0 ) , ( 5 , -5)  , (30 , 1 0) } 

\end{mfpic} 
\closegraphsf ile 

When METAPOST is used, drawings can be colored. mfpic adds some support for color in 
the form of two main commands: 

\drawcolor [model] {colorspec} 
This command sets the default color for drawing elements. 

\f illcolor [model] {colorspec} 
This command sets the default color for filling. 

The optional model may be one of rgb, RGB, cmyk, gray, and named: 

rgb Three numbers in the range 0 to 1 separated by commas. 

RGB Three numbers in the range 0 to 255 separated by commas. 

cmyk Four numbers in the range 0 to 1 separated by commas. 

gray One number in the range 0 to 1, with 1 for white and 0 for black. 

named A METAPOST color variable name either predefined by mfpic or defined by the 
user. 

New color names may be defined as follows: 

127 



128 M ETRFONT AND M ETR POST: TEX'S MATES 

\mfpdef inecolor{nameHmodeIHcolorspec} 
This command defines a new color name. 

M ETAFONT offers only limited support for color, and colored areas are approximated 
by gray areas. 

Basic d rawing com mands 

\arc [c] { (x, y), (XI, YI ),B} 
Draw an arc with center at (x, y), starting at point (XI , YI Y, over B degrees. 

\arc [a] { (x, y),r,Ba,Bb} 
Draw an arc with center at (x, y) and a radius r, between the angles B a and Bb • 

\arc [s] { (xo, YO), (XI , YI ),B} 
Draw an arc from the point (xo, YO) to the point (Xl , YI ), at an angle of B degrees. 

\arc [ t] { (xo, Yo), (Xl >  YI ), (X2, Y2)} 
Draw an arc that passes through the three points. 

\axis  [hlen] {one-axis} 
Draw an axis. The parameter one-axis can be X or Y to produce an x- or y-axis; or it can 
be I, b, r, or t to produce an axis on the border of the picture. 

\doaxis  [hlen] {axis-list} 
This command is like \ ax i s, but takes a list of any or all of the six letters. 

\axes 
Draw axes to span the current picture. An arrowhead of length \axisheadlen i s  drawn 
at the end of each axis. There are also \xaxis  and \yaxis commands. These three com
mands are retained only for compatibility. 

\circle [format] {specification} 
\circle [p] { (x, y),r} 
\circle  [c] { (x, y), (XI ,  YI)} 
\circle [t] { (XI , YI), (X2, Y2), (X3, Y3)} 
\circle [s] { (X l, YI ), (X2, Y2),B} 

Draw a circle. The circle can be specified in four different ways: by its center and radius 
(case p) ,  by its center and a point (case c) ,  by three points (case t), or by two points and 
an angle (case s) .  

\ curve [ tension] { ( Xo, Yo), (X2, Y2), . . .  , ( xn, Yn)} 
Draw a Bezier path through the points. The optional parameter influences how smooth 
the path is. It should be greater than 0.75; its default value is l .  

\cyclic{ (xo, Yo), (X l ,  YI ), . . .  , (xn> Yn)} 
Draw a Bezier curve through the points, and join the last and first points to create a closed 
object. 

\ellipse [B] { (x, y),rx,ry } 
Draw a centered ellipse (x, y) with a "width" of r x and a "height" of r y .  If B is given, rotate 
the ellipse by that amount. 

\f cncurve [tension] { ( Xo, yo), (X2, Y2), . . .  , (xn> Yn)} 
Draw a curve through the specified points. If the points are listed with increasing (or de-



3.6 lEX interfaces: getting the best of both worlds 

creasing) x coordinates, the curve will also have increasing (or decreasing) x coordinates. 
The tension should be greater or equal to 1 .  

\grid [ptsize] {xsep,ysep} 
Draw a dot at every point for which the first coordinate is an integer multiple of xsep and 
the second coordinate is an integer multiple of ysep. 

\lines{ (xo, YO), (Xb YI), . . .  , (xn, Yn)} 
Draw line segments between points. \polylines is an alias for \line s. 

\point [ptsize] { (xo, Yo), (X l , YI), . . .  , (Xn, Yn)} 
Draw small filled circles centered at the points. If the optional argument ptsize is present, 
it determines the diameter of the disks, which otherwise equals the 1EX dimension 
\point size. 

\plot symbol [size] {symbolH (xo, Yo), (Xl ,  YI), . . .  , (Xn, Yn)} 
Draw small symbols centered at the points (XO , Yo ) ,  (X I , YI ) ,  and so on. The symbols must 
be given by name, and the available symbols are Asteri sk, Circle ,  Diamond, Square, 
Triangle, Star, SolidCircle , SolidDiamond, SolidSquare, Solid Triangle, 
SolidStar, Cross ,  and Plus. 

\pointdei{name}(x, y)  
Define a symbolic name \name for (x, y) .  \namex is defined to be x and \namey i s  de
fined to be y. 

\polygon{ (xo, yo), (Xl ,  YI), . . .  ' (Xn> Yn)} 
Draw a closed polygon with vertices at the points. 

\regpolygon{num}{name}{eqnl }{eqn2} 
Draw a regular polygon with num sides. The second argument is a symbolic name that 
can be used to refer to the vertices later. The last two arguments should be equations that 
position two of the vertices or one vertex and the center. The center is refered to by nameO 
and the vertices by name 1 ,  name2, and so forth, going anticlockwise. name itself will be a 
variable assigned the value of num. 

\rect{ (xo, YO), (Xb YI)} 
Draw a rectangle with corners at (xo , Yo ) and (xI , yd .  

\ turtle{ (x, y), (Xl >  YI), (X2, Y2), . . .  } 
Draw a line segment starting at (x,  y) ,  and then draw line segments (x, y) to (x + Xl , Y + 
YI ) , (x + Xl , Y + YI ) to (x + Xl  + X2 ,  Y + YI + Y2 ) , and so forth. 

\sector{ (x, y),r,81 ,82 } 
Draw a wedge of a circle from 81 to 82 centered at (x, Y) with radius r. 

\xmarks [len] {numberlist} 
\ymarks [len] {numberlist} 
\ tmarks [len] {numberlist} 
\bmarks [len] {numberlist} 
\lmarks [len] {numberlist} 
\rmarks [len] {numberlist} 
\axismarks{axis} [len] {numberlist} 

Place marks on x, y, top, bottom, left, or right axes at the coordinates specified in the list. 
The length of the marks is is len and defaults to \hashlen. \axismarks{x} is equivalent 

129 



1 30 M �TRFONT AND M �TR POST: TEX'S MATES 

to \xmarks, and so on. numberlist can also be replaced by the sequence "-2 step 1 until 
2", which is equivalent to "-2,- 1 ,0, 1 ,2". 

Bar charts and pie charts 

mfpic also provides a command to draw bar or pie charts: 

\ barchart [start,sep, rJ {h-or-v Hlist} 

The macro \ barchart computes a bar chart or a Gantt chart. It does not draw the bars, 
but merely defines their rectangular paths, which the user may then draw or fill, or both, 
using the \ chart bar macros. h-or-v should be v if the ends of the bars should be measured 
vertically from the x-axis, or h if they should be measured horizontally from the y-axis. list 
should be a comma-separated list of numbers and/or pairs giving the coordinates of the 
end(s) of each bar. A number c is interpreted as the pair (0 ,  c) ; a pair (a , b) is interpreted as 
an interval giving the ends of the bar. The parameters start, sep, and r affect how the bars are 
positioned and make it easy to superimpose several series of bars. 

I \chartbar{n} I 
This command draws bar n, where n is an element in the list given as an argument to 
\barchart. 

The following example shows how \barchart and \chartbar can be used with two 
sets of adjoining and differently colored bars. 

\us epackage [met apost]  {mfpic}  
\newcommand{\greenbar} [ 1 ] {% 

\gf ill [green] \ chartbar{# 1 } \ chartbar{# 1}}  
\newcommand{\redbar } [ 1 ] {% 

\gf ill  [red] \chartbar{# 1 } \ chartbar{# 1}}  

\opengraphsfile{tmp} 

\begin{mfpic} [ 1 0] [ 1 0] {0}{ 1 1 }{0}{7} 

\axes 
\barchart [ 1 , 1 , - . 4] {v}{ 1 , 2 , 3 , 4 , 5 , 4 , 3 , 2 , 1 } 
\redbar { 1 } \redbar{2}\redbar{3} 

\redbar{4}\redbar{5}\redbar{6} 

\redbar{7}\redbar{8}\redbar{9} 

\bar chart [ 1 , 1 , . 4] {v}{2 , 1 , 5 , 3 , 6 , 3 , 6 , 4 , 3} 

\greenbar { 1 } \greenbar{2}\greenbar{3} 

\greenbar{4}\greenb ar{5}\greenbar{6} 
\greenbar{7}\greenbar{8}\greenbar{9} 

\end{mfpic} 

\clos egraphsf i le 
l . .  E .. . X. a. ffi. P.· .. l.e .. 

' 

... 

: 

3-6-5 



i Example 
: 3-6-6 

3.6 lEX interfaces: getting the best of both worlds 

I \piechart [dir angle] {c, r }{list} I 
Like \barchart, this command doesn't draw anything, but computes the \piewedge re
gions described next. The first part of the optional parameter, dir, is a single letter that may 
be either c or a, which stand for clockwise and anticlockwise, respectively. angle is the start
ing angle (90 degrees by default) .  The data is entered as a comma-separated list of positive 
numbers. c is the center, and r is the radius of the pie chart. 

I \piewedge [spec trans] {num} I 
This command draws the wedge corresponding to data num. spec can be x (exploded), s 
( shifted) ,  or m (move to) and allows the wedge to be drawn at a different position. x is fol
lowed by a distance in graph units, s by a pair of relative coordinates, and m by a pair of 
absolute coordinates. 

An example of the use of \piechart and \piewedge is given below. 

Drawing parameters 

\dashlen (default 4pt) 
Length of dashes. 

\dashspace (default 4pt) 
Gap between dashes. 

\hashlen (default 4pt) 
Length of hash marks on the axes. 

\shadespace (default Ipt) 
Gap between dots drawn by \shade. 

\hatchspace (default 3pt) 
Gap between lines drawn by \hatch. 

\us epackage [met apost] {mfpic}  
\opengraphsf ile{tmp} 

\begin{mfpi c} [ 1 0] [ 1 0] {-7}{7}{-7}{7} 
\ axes 
\pie chart [c O] { ( 0 , 0) , 5} { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 30} 

\gf ill  [red] \piewedge { l } \piewedge { l }  

\piewedge{2} 
\piewedge{3} 

\piewedge{4} 

\gf ill [blue] \piewedge [x 3] {5}\piewedge [x 3] {5} 

\piewedge{6} 
\gf ill [green] \piewedge [x 2] {7}\pi ewedge [x 2] {7} 

\piewedge{8} 
\piewedge{9} 

\end{mfpic} 

\closegraphsf ile 

l31  



1 32 

\mfpicunit (default Ipt) 
Basic unit length for pictures. 

\po ints ize (default 2pt) 

M ETRFONT AND M ETRPOST: TEX'S MATES 

Diameter of circle for \po int macro. 

pointf illed (default true) 
Boolean variable determining whether circles drawn by \po int are filled. 

\headlen (default 3pt) 
Length of arrowhead. 

\axisheadlen (default 5pt) 
Length of arrowhead on \axes. 

Global modifier com mands 

\he adshape{ ratio} { tension} {jilled} 
Set the arrowheads shape. The arguments are: the ratio of the width of the arrowhead to 
its length (default 1 ) ;  the tension of the Bezier curves used to draw the arrowhead (default 
1 ) ;  and filled is a Boolean that determines whether arrowheads are filled (default true) .  

\pen{pensize} 
Set the width of the drawing pen (the default is 5pt) . 

\dashlineset 
Set \dashlen and \dashspace to 4pt. 

\dotlineset 
Set \dashlen to 1 pt and \dashspace to 2pt. 

\darkershade 
Make shading denser by multiplying \shade space by a factor of 5/6. 

\lightershade 
Make shading lighter by multiplying \shadespace by a factor of6/5. 

Figure modifier com mands 

Any object drawn with one of the simple commands, or a composite object created using 
conne ct, can be modified with one or more prefix commands. These commands apply just 
to the next object and are mostly used for closed objects such as circles, ellipses, and so on. 
The filling commands do not draw an outline for the object and must come first if there is 
more than one modifier. 

\arrow [llength] ere] [bdistance] 
Draw an arrowhead at the last specified point of an object. The three optional param
eters let you change the shape: the length of the arrowhead is set by length (default is 
\headlen),  the angle by e, and the distance from the end point by distance ( this lets you 
draw double arrowheads) .  The optional parameters can occur in any order but must be 
preceded by the special key characters. 

\bclos ed, \lclosed, \s closed, \cbclosed 
Close an open object by joining the end points; \lclo sed draws a straight line, 
\bclosed draws a Bezier curve, \s closed draws a smooth curve, and \cbclosed 
draws a cubic B-spline. 



3.6 lEX interfaces: getting the best of both worlds 

\dotted [dash] [gap] 
Draw dotted or dashed object lines. The length of dashes is set by \dashIen, but it can be 
overridden by dash. Similarly, the space between dashes can be set with gap (the default 
is \dashspace). 

\draw 
Draw an outline for an object; this is needed if you want to draw and fill a object. 

\gclear 
Erase everything inside a closed object. 

\gf ill 
Fill a closed object. 

\hat ch [distance] 
Draw cross-hatched shading to fill a closed object. The default gap between lines is 
\hat chspace, but it can be overridden with the optional distance parameter. A variety 
of other hatching commands are also defined. 

\reverse 
Reverse the orientation of  an object. This command i s  useful in changing the sequence of 
points inside a connect environment so that a different end point is used. 

\rotatepath{ (x, y),()} 
Rotate an object by () degrees around (x, y). 

\shade [distance] 
Fill a closed object with dots. The default gap between dots is \shadespace, but it can 
be overridden with the optional distance parameter. 

Ana lytica l cu rves and fu nctions 

A common requirement in scientific data analysis is plottting functions and parametric 
curves. METAFONT and METAPOST are very suitable for this sort of work, and mfpic 
has five general commands. Each of them has an optional first parameter that can have the 
value s, meaning that the plot is drawn with a smooth Bezier curve, or p, meaning that it is 
drawn with straight lines. The default is s except for \ btwnf cn and \pIrregion. 

Each command has a mandatory parameter to express the minimum and maximum 
values for the function and the step. The other parameters are function(s) passed to M ETA
FONT or METAPOST to evaluate. 

\funct ion Uype] {minimum, maximum,stepHexpr} 
Plot expr. 

\paraf cn [type] {minimumt >maximumt >step}{ (exprl> eXpr2)} 
Plot the parametric path (:1; ( t ) , y ( t ) ) = (exprl , expr2 ) .  

\pIrf c n  [type] {minimum, maximum, step Hexpr} 
Plot the polar function expr. 

\ bt wnf cn [type] {minimum, maximum,step} {exprl } {e:rpr2 } 
Draw the region between functions f (x) = exprl , and g (x) = expr2 , where the region 
is bounded also by the vertical lines at minimum and maximum. By default, the function 
is drawn as a set of line segments. 

133 



1 34 M ETR FONT AND M ETR PO ST: TEX'S MATES 

\p1rregion [typeJ {minimum,maximum,step}{expr} 
Plot the polar region determined by r =expr(B) .  The B values are angles (measured in 
degrees) between minimum and maximum. By default, the function is drawn as a set of 
line segments. 

Annotating d rawings 

Two commands for annotating drawings are processed entirely in �TEX and pass nothing to 
the META FONT or META POST file. 

I \ t1abe1 [posJ ex, y ) { text} I 
This command labels a graph with text at (x , y ) .  By default, the text is positioned with its 
lower-left corner at (x , y) ,  but the optional position parameter pos can also be used. pos is 
similar to the placing parameters for boxes in the picture environment. It specifies the 
relative placement of the label with respect to the reference point: the first character is for 
the vertical placement (t for top, c for center, and b for bottom), and the second character 
is for the horizontal placement (1 for left, c for center, and r for right). 

\ t capt ion [maxwidth, linewidthJ { text} 

This command centers a caption underneath your drawing. You can specify how a long cap
tion will be broken into lines with the optional parameters. If the caption is wider than 
maxwidth x the width of the drawing, then the text is typeset in a paragraph with a line 
length of linewidth x the width of the drawing. The default is [ 1 .2, 1 .  OJ . 

Exa m ples 

We conclude our description of mfpic with some examples; these are designed not to show 
all the features of the package but rather to demonstrate some typical applications. 

A repetitive drawing can take advantage of �1EX's programmability. Below we define 
a macro to draw a flower petal and then call it several times with different modifiers. This 
example uses an affine transformation (see Section 3.6.2) to allow cumulative rotation. 

\usepackage [metapost]  {mf p i c }  

\opengraphsfile{tmp} 

\begin{mfpic} [ 1 . 2] {-50}{50}{-50}{50} 
\pen{ . 3pt} 

\newcommand\petal{\bclosed\line s { (30 , 1 0 ) , ( O , O ) , ( 1 0 , 30 ) }}  

\newcommand\half f lower 

{\begin{coords} 
\gf ill\pet al \turn{45}\petal\turn{45} 

\ shade\draw\petal\turn{45}\hatch\draw\petal 

\end{coords}} 
\halfflower\turn{ 180}\halfflower 
\gclear\draw\ circle{ ( O , O ) , 10} 

\end{mfpic} 
\closegraphsf i le 

Example 
3-6-7 



Example 

I 3-6-8 

3.6 TEX interfaces: getting the best of both worlds 

Our next picture, a simple data plot, demonstrates the use of labels; again, we use a 
E'-1EX macro to parameterize how these are drawn. Because the values in the :r direction 
have a much greater range than those in the y direction, the optional y scaling of the mfpic  
environment i s  convenient. This also shows how a drawing a s  a whole can be  manipulated 
with the standard rotation macros. 

o o 00 

\usepackage [metapo st] {mfpic}  

\usepackage{graphicx} 

\opengraphsfile{tmp} 
\rotatebox{90}{\fbox{% 
\begin{mfpi c }  [1 _ 7] [4] { - 1 0}{200}{-5}{35} 

\newcommand\XmyLabel [2] {% 
\tlabel [bc] ( # 1 , -5) {{\script si ze#2}} 

\line s { ( # 1 , 0 ) , ( # 1 , -2) } }  

\newcommand\YmyLabel [ l] {% 
\tlabel [br] ( -5 , # 1 ) {{\s cript s ize# 1 } }  

\line s { (0 , # 1 ) , (-2 , # 1 ) }} 

\XmyLabel{0} { 1 800}\XmyLabel{50 } { 1 850} 

\XmyLabel { 1 0 0 } { 1 900}\XmyLabel { 1 5 0 } { 1 950} 
\YmyLabe l{5}\YmyLabel{ 10} 

\YmyLabe l{ 15}\YmyLabel{20} 
\arrow\l ine s{ ( 0 , 30 ) , ( 0 , 0 ) , ( 200 , 0 ) }  

\line s { (03 , 3) , ( 1 7 , 2 ) , ( 1 9 , 1 0 ) , ( 2 1 , 14) , 

(23 , 6 ) , ( 26 , 6) , ( 28 , 5) , (30 , 14) , (32 , 9 ) , 
( 34 , 9) , (36 , 1 0 ) , (38 , 7 ) , (40 , 7) , ( 42 , 1 3 ) , 

(44 , 1 3 ) , (46 , 14) , (48 , 13) , ( 50 , 1 ! ) ,  

( 52 , 1 3 ) , ( 54 , 5 ) , ( 56 , 1 3 ) , ( 58 , 1 0 ) , 

(60 , 14) , (62 , 17) , (64 , 14) , (66 , 1 0 ) , 
(68 , 23) , (70 , 1 6 ) , (72 , 27) , (74 , 22) , 
(76 , 28) , (78 , 22) , ( 80 , 1 7 ) , (82 , 29) , 

( 84 , 13 ) , ( 86 , 1 1 ) , ( 88 , 1 2 ) , ( 90 , 7 ) , 

( 92 , 6) , (94 , 6 ) , (96 , 3 ) , ( 98 , 8) , ( 1 00 , 1 2 ) , 
( 1 02 , 9 ) , ( 1 04 , 14) , ( 1 06 , 6 ) , ( 1 08 , 1 9 ) , 

( 1 1 0 , 6 ) , ( 1 1 2 , 1 2 ) , ( 1 14 , 1 1 ) , ( 1 16 , 1 1 ) , 

( 1 18 , 6 ) , ( 1 20 , 5 ) , ( 1 22 , 14) , ( 1 24 , 1 3 ) , 

( 1 26 , 1 7 ) , ( 1 28 , 20 ) , ( 130 , 9 ) , ( 1 32 , 1 6 ) , 
( 134 , 1 1 ) , ( 136 , 1 1 ) , ( 138 , 1 1 ) , ( 140 , 1 2 ) , 

( 142 , 1 1 ) , ( 144 , 1 2 ) , ( 146 , 1 3 ) , ( 148 , 7 ) , 

( 150 , 5 ) , ( 1 52 , 1 1 ) , ( 1 54 , 1 0 ) , ( 1 56 , 18) , 

( 1 58 , 13) , ( 1 60 , 1 6 ) , ( 1 62 , 26) , ( 1 64 , 25 ) , 
( 1 66 , 18) , ( 1 68 , 18) , ( 1 70 , 1 2 ) , ( 1 72 , 13) , 

( 174 , 1 6 ) , ( 1 76 , 1 1 ) , ( 178 , 14) , ( 1 80 , 1 1 ) , 

( 1 82 , 5 ) , ( 1 84 , 1 5 ) , ( 186 , 3) }  
\tcaption [ . 8 , . 75] {Burials per year in the 
Prot estant Cemetery , Rome . }  

\end{mfpic}}} 

\closegraphsfile 

135 



136 M ETR FONT AND M ETR PO ST: TEX'S MATES 

A useful tool in these circumstances is the standard M-TEX if then package, which lets us 
perform routine looping: 

\usepackage [metapost]  {mfpi c }  
\usepackage{ i fthen} 

\opengraphsfile{tmp} 

\newcount er{mf cntA} 

\begin{mfpic} [ 1 . 5] {-30}{40}{-25}{25} 
\setcounter{mf cntA}{-30} 

\whiledo{\themf cntA<3 1}{% 

\ellipse [\themf cntA] { ( O , O ) , 40 , 12} 

\ addt o counter{mf cntA}{6}}% 
\end{mfpic} 

\closegraphsfile 

Another use of looping is to draw a spiral, using the same technique as on page 55.  This 
is not necessarily the "correct" way to draw such a shape, which might be better expressed 
using the \paraf en command: 

Going further 

\usepackage [metapost]  {mfpi c }  
\usepackage { i fthen} 

\opengraphsfile{tmp} 

\begin{mfpic} [ 1 . 5] {-40}{50}{-48}{50} 
\newcounter{mf cntA} 

\newcounter{mf cntB} 

\setcounter{mf cntA}{50} 
\setcount er{mf cntB}{48} 

\whiledo{\themf cntA> l }{% 

} 

\expandafter\curve { ( \themf cnt A , O ) , 

(O , \themf cntA) , 

( -\themf cntA , O ) , 
( O , -\themf cntB) , 

( \themf cntB , O ) }  

\addt ocounter{mf cntA}{-2}% 
\ addt o count er{mf cntB}{-2}% 

\end{mfpi c }  

\clo segraphsfile 

mfpic defines a set of affine transformations (rotation, reflection, translation, scaling, and 
skewing) described in detail in the package documentation. We used one of these (\ turn) 
in the "flower" example given earlier, to keep turning the current drawing state. All the trans
formations are cumulative, but their effect can be conveniently limited with the eoords en
vironment (as demonstrated in the "flower" example) .  

Example 
3-6- 1 0  



3.7 From M ETR POST and to M ETR POST 

Users who want to build new facilities can use commands to write M ETA FONT or 
METAPOST directly to the output file, to store and use META FONT or META POST paths 
directly, and to develop sophisticated fill patterns for objects. 

3 .6.3 The mft and mpt pretty-printers 
METAFONT and M ETAPOST sources can be pretty-printed with mft and mpt. Donald 
Knuth's mft is a program for pretty-printing METAFONT programs. Ulrik Vieth's mpt 
(CTAN: graphics/metapost /contrib/misc )  is a script that processes METAPOST 
sources with mft. 

Other 1EX formats, such as Con1EXt, also provide means to pretty-print METAPOST 
sources within a document [42 ] .  

3.7  From M ETA POST and to M ETA P O ST 

A variety of command-line and interactive drawing tools are available that produce M ETA
POST, and a variety of ways to manipulate its output. 

gnuplot Can generate META POST output. 

pstoedit Can generate METAPOST from PostScript or PDF vector graphics. It can also 
generate a variety of outputs, such as SVG, from the PostScript output of M ETA POST. 

xfig Can export its drawings to META POST. 

In general, graphical editors that can open PostScript files (such as Adobe I l l ustrator) 
should be able to cope with METAPOST output. Figure 3.4 shows a map drawn in Auto
CAD and converted to META FONT; Figure 3.5 shows the same map converted to Adobe 
I l lustrator from METAPOST output and colored using Corel Draw. While it would be possi
ble to do the coloring with METAPOST, it is often more convenient to work on a map such 
as this in an interactive program. 

Unfortunately, because most interactive drawing packages keep a rather simplistic inter
nal representation of their pictures, META versions of their output are of limited use. Thus 
we could use gnu plot or AutoCAD, save the result as HPGL, and convert it to META, but the 
code would hardly be editable. A map of East Africa (Figure 3.4) drawn with AutoCAD and 
converted to M ETAFONT creates lines of code like this: 

pickup penc ircle s caled O . lmm ; 
draw ( 1 0 . 732mm , 1 1 . 563mm) -- ( 1 0 . 65 1mm , 1 1 . 5 17mm) -- ( 1 0 . 592mm , 1 1 . 505mm) - 

( 1 0 . 545mm , 1 1 . 493mm) -- ( 10 . 487mm , 1 1 . 493mm) -- ( 1 0 . 440mm , 1 1 . 505mm) - 

( 1 0 . 405mm , 1 1 . 540mm) -- ( 10 . 346mm , 1 1 . 563mm) -- ( 1 0 . 299mm , 1 1 . 599mm) -
( 1 0 . 264mm , 1 1 . 622mm) -- ( 1 0 . 2 1 7mm , 1 1 . 645mm) ; draw ( 1 0 . 217mm , 1 1 . 645mm) -
( 10 . 159mm , 1 1 . 680mm) -- ( 1 0 . 100mm , 1 1 . 727mm) -- ( 1 0 . 065mm , 1 1 . 75 1mm) - 

( 1 0 . 007mm , 1 1 . 786mm) -- ( 9 . 960mm , 1 1 . 798mm) - - ( 9 . 9 1 3mm , 1 1 . 821mm) -
( 9 . 7 14mm , 1 1 . 868mm) -- ( 9 . 667mm , 1 1 . 868mm) ; 

137 



138 M ETR FONT AND M ETR POST: TEX'S MATES 

Figure 3.4: AutoCAD map converted to 
META FONT 

Figure 3.5: METAFONT drawing en
hanced using Corel Draw 

This sort of code could hardly be edited by hand to shade the countries with different colors, 
as we have done in Figure 3 .5 .  

A better result can be achieved with an elegant package called mftoeps, written by Bo
guslaw Jackowski, Piotr Pianowski, and Marek Rycko [ 58] . This METAFONT program in
tercepts drawing commands and rewrites them to the log file as Encapsulated PostScript; 
utility programs are provided to extract this code, and the result can be directly edited by 
Corel Draw and Adobe I l lustrator. 

3 .8 The futu re of M ETA P OST 

Most M ETA drawings are rather self-contained and don't interact much with the surround
ing text. Drawings may use text labels and other fragments, but then these labels and frag
ments are usually quasi-autonomous. They will influence the drawing in only one way. 

In some cases, however, a drawing may have to interact with text in subtler ways-for 
instance, if text elements are supposed to belong at the same time to a flow of text (a para
graph) and be elements in a drawing. For such examples, a more elaborate communication 
between TEX and METAPOST is needed, such that a drawing can use positioning informa
tion from TEX while TEX uses the drawing. Post-processing the METAPOST output appro
priately and using multiple TEX runs provide a solution. For an elaborate implementation of 
such a scheme, the reader should consult the manual for metafu n by Hans Hagen. 

Currently, M ETAPOST has a relatively small base of packages, whereas PSTricks comes 
equipped with packages for many applications. This doesn't mean, of course, that META
POST cannot achieve some of the results achieved by packages like PSTricks.  It is therefore 



3.8 The future of M ETA POST 

important to distinguish what is easy in METAP05T, what can be added to METAP05T 
without much trouble, and what is more difficult to achieve. 

The most important feature of METAP05T, in our view, is not the ability to solve lin
ear equations, but rather the flexibility and the ability to manipulate complex objects and 
to take them apart. For instance, one can compute the intersections of curves within META
P05T and use those intersections to build new curves. Curves can also be split into their 
control points, which can then be used to build new objects. The fact that a picture can be 
viewed as a tree of simple objects allows for a great variety of operations, most of which 
have not yet been explored. However, this advantage is also a drawback: the whole drawing 
remains in memory until the drawing is finished, which imposes some limits to the complex
ity of a drawing. 

The main disadvantages of METAP05T lie in the deferment of certain operations
not only the memory problem just mentioned, but also the fact that operations such as 
clipping are not done at the METAP05T level but rather at the PostScript level. It is some
times useful to manipulate a clipped path within M ETAP05T, but this isn't easily achieved. 
PSTricks has the same problem. This does not mean that there is no solution, but rather that 
more elaborate schemes must involve either macros (or extensions to METAP05T) that 
clip paths before outputting them to PostScript or an advanced communication between the 
METAP05T source and the PostScript output, so that during a second run METAP05T 
can use some of the information collected during the first run. 

A lesser disadvantage of METAP05T is its syntax, which is not as flexible as lEX's 
syntax. Many complex packages still have a cumbersome way of dealing with optional ar
guments, but fortunately it is possible to rewrite or extend these packages to make use of a 
natural and lEX-friendly key=value syntax. lEX interfaces (which can be written for META
P05T) alleviate such problems. Such a lEX interface does exist -namely, the mfpic package 
described in this chapter-but it does not cover the full range of METAP05T's applica
tions. 

139 





C H A P T E R  4 

M ETA POST Appl ications 

4.1 A drawing toolkit . . . . . . . . . . . . . . • . • . . • . . . . • . . . . . . . • . . . . .  141 
4.2 Representing data with graphs . . . . . • . • • . • • • . • . • . • • • • • • • • . . . .  157 
4.3 Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . • . . . . . . . .  '76 
4.4 Geometry . . . . . . . . . . . . . . • . .  , . . . . . . . . . • . . . . . '89 

Science and engineering applications . . . . . . . • . .  , . • . . • . . . . • . . . . .  196 4.5 
4.6 3-D extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  207 

Chapter 3 gave a general overview of META FONT and META POST, as well as an extensive 
description of two multipurpose structuring packages, boxes and METAOBJ. However, as 
is the case for e-1EX, solutions to many problems can often be found by using existing high
level packages. Sometimes several different METAPOST packages are aimed at the same 
tasks, and these packages come with both advantages and drawbacks. 

Unfortunately, the perfect package is seldom at hand. It is therefore useful to have a 
general idea of what can be achieved in METAPOST, and to have some kind of toolbox 
for problem solving. Understanding a number of basic tricks will enable the beginner to 
supplement existing packages and achieve the desired results. 

In this chapter, we start with a review of a number of basic problems and show how 
these problems can be solved. Then we describe some standard applications of META
POST, ranging from geometry to physics. 

4.1 A drawing toolkit 

This section is devoted to a number of advanced features, which are located somewhere be
tween low-level METAPOST code and full application packages. We like to consider all 
these features as a kind of toolkit, which can be used with benefit in wider applications. 



142 M ETA P 0 5T APPLICATIONS 

4.1 . 1  Text along a cu rve 

It is sometimes necessary to write text along curves, and more generally along a META
POST path. This is possible, but achieving the desired results is rather more complex than 
writing text on an horizontal line. 

The main problem is that the text characters must be appropriately spaced from each 
other, must be correctly rotated, and must align well. This is especially true when text is 
written in lowercase, as many letters go below the baseline. 

Santiago Muelas defined a general macro txp ( text on path) [86] , which provides a good 
solution. It is available from CTAN: graphics/metapost/ contrib/macros/txp. 

For proper positioning of each character of a string, Muelas stores metric information 
obtained from the TFM files in M ETA POST libraries, and loads this metric information 
when necessary. 

We give here a simplified version ofMuelas's code, which works properly only for upper
case text, but may nevertheless prove useful. The stxp (simple text to path) macro takes a 
string and a path, then writes the text along the curve, centering each character on the curve. 
The macro spaces or compresses the text as necessary to fit the path length. An example of 
use of this macro is given below. For more complex text, the full macro by Santiago Muelas 
should be used. 

vardef stxp ( expr s , p) = 
save len , pref ix , car , lab , xpos , cpos , rat i o ; 
numeri c  len [] ; 
string pref ix , car ; 
pi cture lab ;  
lenO=O ; 
for i : =l ength s step - 1  unt il 1 :  

pref ix : =substring ( O , i )  of s ;  
lab : =the label (pref ix , ( O , O » ; 
len [i] =2* (xpart (urcorner lab» ; 

endfor ; 
rat i o=arclength (p) /len [length s] ; 

for i=O upto ( l ength s ) - 1 : 
car : =substring ( i , i+ 1 )  of s ;  
if car< > "  " :  

xpo s : = « len [i] +len [i+1] ) /2) *ratio ; 
cpos : =arct ime xpo s  of p ;  
lab : =the l abel ( c ar , ( O , O » ; 
draw l ab rotated ( angl e ( direct ion cpos of p»  

shifted (po int cpo s  of p) ; 
f i ; 

endfor ; 
enddef ; 

path p ;  
p= « O , O ) . .  (4cm , 7cm) . .  (5cm , 3cm) . .  ( 3cm , 2cm» yscaled . 5 ;  
draw p withcolor red ; 

stxp ( " IN PRINCIPIO CREAVIT DEUS ClELUM ET TERRAM . "  , p) ; 



Example 
4- 1 - 1 

4.1 A drawing toolkit 

4. 1 .2 Gradients 

Gradients are areas where the color changes gradually, according to some specified rule. An 
easy way to produce such gradients is to draw a number of lines or curves with varying 
color. The code below provides two such kinds of gradients, circular and parallel. Circular 
gradients are obtained by drawing a number of concentric circles. Parallel gradients use a 
number of parallel lines with different colors. 

Such an approach is rather resource-consuming, but still sufficient for most cases. For 
more elaborate applications, the gradient features of PostScript could be used through the 
metafun package (see Section 3.4. 1 ) . Some of metafun's facilities for gradients are used by 
other packages, such as piechartMP. 

def PARALLEL = 0 enddef ; 
def CIRCULAR = 1 enddef ; 
def max (expr a , b ) =  ( if a>b : a else : b f i )  enddef ; 
def f ( expr x) = « 1+s ind ( 2x*360) ) /2)  enddef ; 
def g ( expr x ) = (x*x) enddef ; 

% f :  gradient funct ion ; a , b :  int erval for f 
% n :  steps ; ca , cb :  colors 1 and 2 
% p :  path 
% c :  center of gradient (CIRCULAR) or dire ction (PARALLEL) 
vardef gradient (t ext f )  (expr a , b , n , ca , cb , type)  (expr p , c ) =  

save A , B , C , D , pi c , rp , r ;  
pair A , B , C , D ; pi cture pic ; path rp ; 
if type=PARALLEL : rp=p rot ated (-angle ( c ) ) ; el se : rp=p ; f i ;  
A=llc orner (rp) ; C=urcorner (rp) ; 
B= (xpart C , ypart A) ; D= (xpart A , ypart C) ; 
if type=PARALLEL : 

A : =A rot ated angle ( c ) ; B : =B rotated angle ( c ) ; 
C : =C rot ated angle ( c ) ; D : =D rotated angle ( c ) ; 

f i ; 
if type=CIRCULAR : 

r=max ( arclength (c--A) , ar clength ( c--B) ) ;  
r : =max ( r , arclength ( c--C) ) ; r : =max ( r , arcl ength ( c--D) ) ;  

143 



144 M ETA P 0 5T APPLICATI ONS 

f i ; 
pic=nullpi cture ; 
if type=PARALLEL : 

for i : =O upt o  n- 1 :  
addt o pic 

cont our « i/n) [A , B] -- « i + 1 ) /n) [A , B] 
-- « i + 1 ) /n) [D , C] - - ( i /n) [D , C] ) - - cycle 

withcolor « f ( i/n) ) [ca , cb] ) ;  
endf or ; 

elseif  type=CIRCULAR : 
for i : =n step - 1  unt il 1 :  

addt o pic 
cont our fullcircle scaled (2* ( i /n) *r) shifted c 
withcolor « f ( i/n) ) [c a , cb] ) ;  

endfor ; 
f i ; 
clip pic t o  p ; draw pic ; 

enddef ; 

def parallelgradient (t ext f )  (expr a , b , n , ca , cb) (expr p , d ) =  
gradi ent ( f )  ( a , b , n , ca , cb , PARALLEL ) (p , d) ; 

enddef ; 

def cir culargradi ent (t ext f )  (expr a , b , n , ca , cb) (expr p , c ) =  
gradient (f ) ( a , b , n , ca , cb , C IRCULAR ) (p , c ) ; 

enddef ; 

% parallelgradient as def ined above 

numeri c  u ;  

u= 1 cm ; 
path p ;  
p=fullcircle scaled 3u ; 

paral lelgradient (f ) ( O , 1 , 100 , red , blue ) (p , ( 1 , 1 ) ) ; 

% circulargradient as def ined above 

numeri c  u ;  
u= 1cm ;  
path p ;  
p=fullc ircle xscaled 4u 

yscaled 2u 
shif ted (O , -4u) ; 

circulargradient (g) ( O , 1 , 1 00 , green , red) 
(p , cent er p+ ( 2u , O ) ) ; 

Example 
4- 1 -2 ; 

4- 1 -3 , 



4.1 A drawing toolkit 

4. 1 .3 H idden l ines 

It is sometimes useful to hide parts of a path, but achieving proper results can be cumber
some. The macro hiddenpath, while not absolutely general, provides a very simple means 
to achieve this purpose in most cases. The macro works as follows: A path that should be 
partly hidden is first drawn completely in the usual way. This will take care of all the non
hidden parts. Next, for every part of a path hidden by another one, the hiddenpath macro 
first erases the hidden part and then redraws it with dashed lines. This works even if some 
paths are hidden by several other paths, as in the example below. 

vardef hiddenpath ( expr under , over) = 
save p , q ; 

pi cture p , q ; 
p= image (draw under ) ; c lip p t o  over ; 
undraw p ;  
q= image (draw under dashed evenly) ; 
clip q to over ; 
draw q ;  

enddef ; 

path p [] ; 

p 1 =fullcircle scaled 3 cm ; 
p2=fullcircle scaled 2 cm shifted ( 2 cm , O ) ; 
p3=fullc ircle scaled 4cm shifted ( 1 . 5cm , 2 cm) ; 
draw p 1 ; % we draw the three circles tot ally 
draw p2 ; 
draw p3 ; 
hiddenpath (p1 , p2 ) ; % p 1  hidden by p2 
hiddenpath (p1 , p3) ; % p 1  p3 
hiddenpath (p3 , p2 ) ; % p3 p2 

In certain cases, the order of operations will be meaningful. Nevertheless, the previous 
macro should, with minor alterations, fit almost all hidden line problems. A more complex 
example using this technique is given in Section 4.5.2. 

The hiddenpath command in Example 4- 1 -4 illustrates METAPoST's clip com
mand. With this command, a picture can be clipped with a path. However, contrary to 
appearances, METAPOST does not go to the trouble of actually cutting the various com
ponents of a picture; rather, it simply issues the appropriate PostScript orders. As a conse
quence, it is not easy to obtain the contours of the clipped paths within META POST, if for 
some reason these paths are needed. 

META POST does not provide such advanced clipping features, but they could never
theless be added on the macro level, using the following representation for multi paths. 

4. 1 .4 Multipaths and advanced cl ipping 

A multipath is an "interrupted path" -that is, a path that cannot be drawn with a single 
stroke. Such paths can be represented as lists of paths. It is not necessary to introduce a 
new data structure, as META PoST already provides a most appropriate option-namely, 

145 



146 

\ 

M ETA P 0 5T APPLICATIONS 

picture. A pi cture can store any sequence of drawings, and in particular all the strokes 
that make up a multipath. However, it is up to us to define how such a multipath is used. For 
instance, if a picture contains a list of closed paths, those closed paths with a positive turning 
number could be considered as holes in the other closed paths. A useful feature would then 
be to produce a set of closed paths covering the original closed paths, minus their holes. To 
our knowledge, this work has not yet been tackled in METAPOST, but as an incentive for 
future work, we show here how basic multipaths could be manipulated. 

We define two macros: one for drawing a multipath, and another to build a multipath 
by adding a path. In both cases, the p parameter is of type picture. An example of the use 
of these macros is given below. 

% p=picture 
def draw_mult ipath ( expr p) text opt ions= 

for i within p :  
draw i opt ions ; 

endf or ; 
enddef ; 

vardef addt o_mult ipath (text p) ( expr pa , thi ckness)  text opt ions= 
save savepen ; 
pen savepen ; 
savepen=currentpen ; 
pi ckup penc ircle scaled thickness ; 
addt o p al so image (draw pa opt ions ; ) ; 
currentpen : =savepen ; 

enddef ; 

numeri c  u ; u= 1 0mm ; 
path p [] ; pi cture pic ; 
pO=origin . .  ( 2u , O) . .  (4u , u) . .  (3u , 2u) 

. . .  ( 2u , -u) . .  tens ion2 . .  (u , 3u) ; 
n=20 ; 
f or i=1  upto n :  

p [i] =subpath ( ( ( i - 1 ) /n) *length (pO) , 
( i /n) *length (pO ) ) of pO ; 

endf or ; 
pic=nullpi cture ; 
f or i=1  upto n :  

if odd i :  
addto_mult ipath(pic)  (p [i]  , 2pt * i /n) 

withcolor ( ( i/n) *red+ ( 1 -i /n) *blue ) ; 
else : 

addto_multipath (pi c )  (p [i]  , 3pt * ( 1 - i /n) ) 
withcolor ( ( i/n) *green+ ( 1 - i /n) *blue ) ; 

f i ; 
endfor ; 
draw_multipath (pi c ) ; 



Example 

4- 1 -6 .................... i 

Example i 
4- [ -8  

4.1 A drawing toolkit 

4. 1 .5 Patterns, hatchings, and t i l i ngs 

Hatching and tiling are special cases of more general repeating patterns. Such drawings are 
based on a pattern that is repeated a number of times and then usually constrained to some 
area. 

A grid is also this kind of drawing. Moreover, it serves as a good illustration of the many 
ways such a drawing can be created. For example, a grid can be produced either by repeating 
the horizontal and vertical lines: 

or by replicating squares: 

D D D D D  
D D D D D  
D D D D D  
D D D D D  
D D D D D  

f or i=O upt o  5 :  
draw ( O , i * 6mm) -- ( 3 cm , i *6mm) ; 

endf or ; 
f or i=O upt o 5 :  

draw ( i *6mm , O ) -- ( i * 6mm , 3cm) ; 
endf or ; 

def square= (unitsquare s c aled 5mm) enddef ; 

f or i=O upt o  4 :  
f or j =O upt o  4 :  

draw square shifted ( i *6mm , j *6mm ) ; 
endf or ; 

endf or ; 

Sometimes there are several base patterns-for instance, a square and a circle: 

e o e o e  
o e o e o  
e o e o e  
o e o e o  
e o e o e  

def square= (unit s quare 

shifted ( - . 5 , - . 5 ) s c aled 3mm) 

enddef ; 

def c ircle= ( fullcircle scaled 3mm) enddef ; 

f or i=O upt o  4 :  
for j =O upto 4 :  

if odd ( i+j ) :  

draw square shifted ( i *6mm , j *6mm) ; 
else : f i ll c ircle shifted ( i * 6mm , j *6mm) ; 
f i  

endf or ; 
endf or ; 

Numerous applications of these ideas are possible. We refer the reader especially to ar
ticles on tilings, such as those by Kees van der Laan [ 125] (who compares many tiling ex
amples in PostScript and METAFONT), and works on the Truchet tiling [2 1 ] .  The Web site 

147 



148 M ETA P05T APPLICATIONS 

http : //melus ine . eu . org/syracuse/metapost has several good tiling examples, in 
particular on Escher's tilings. 

Celtic artwork can also be viewed as a tiling problem, and Alun Moon has written 
M ETA POST macros to produce such drawings [84] . He deals in particular with knots and 
defines a macro producing the list of intersections that a path has with a list of other paths; 
"keypatterns" ( tilings) and spirals are also considered. 

The mpattern package by Piotr Bolek provides macros to define and fill patterns [ 12 ] .  

Hatching 

Hatching can be obtained by a combination of regular patterns and clipping to a specific 
area. The following macro, which is adapted from one written by Christophe Poulain, shows 
a straightforward example. The hat ch macro takes a closed path and three parameters used 
to define the hatching style. The background hatching is drawn, but only insofar that the 
lines intersect with the path to fill. Once all the lines have been drawn, they are clipped to the 
argument path. 

vardef hat ch ( expr pth , angle ,  shift , trace ) =  

save p i c , support , st ;  

p i cture p i c ; 

path support ; 

pair st ; 

st=shift*dir (angle+90 ) ;  

support= « 37cm* left ) - - ( 37cm*right ) ) rotated angle ; 

if trace= 1 : drawopt i ons ( dashed evenly) ; f i ;  

pic= image ( 

for  j =-200 upto 200 : 

if « support shi fted ( j * st ) ) 

intersectiont imes pth) < >  ( - 1 , - 1 ) : 

draw support shifted ( j * st ) ; 

f i  

endfor ; 

) ; 

clip p i c  t o  pth ; 

drawopt ions 0 ; 

p i C  

enddef ; 

path p , q , r ;  
p=ful l c ircle s c aled 3cm ; 
draw hat ch (p , 45 , 2mm , 0 )  withcolor red ; 
draw p ;  

q= (p s c aled . 75 )  shifted ( 1 . 5 cm , 5cm) ; 
draw hat ch C q , 10 , 2mm , 1 ) ; 
draw q ;  
r= ( 0 , 1 00 )  . .  ( 0 , 50 )  . .  (60 , 90) . .  (60 , 60 )  . .  cycle ; 
draw hat c h ( r , 1 50 , 1mm , 1 ) withcolor blue ; 
draw r ;  

Example 

4 - 1 - 9  



4.1 A drawing toolkit 

Boguslaw Jackowski's hatching package provides a more elaborate way to achieve hatch
ing patterns, by redefining the wi thcolor primitive in such a way that it represents hatch
ing parameters when the blue component of the color is negative. The following examples 
illustrate this principle. 

input hatching; 

path p ;  
p : =unitsquare xscaled 30mm yscaled 15mm; 
hatchfill p withcolor red 

withcolor (45.2mm . - . 5bp) 
withcolor (-45.2mm , - . 5bp) ; 

The next three examples use a special closed path shaped as a star, defined by the star 
macro: 

input hatching; 
vardef star (expr n) = 

for i_ :=O upto 2n-1 : 
if odd i_ : 1/2 fi (right rotated (180*(i_/n» ) -

endfor cycle 
enddef; 

interim hatch_match: =0; 
path p; 
p : =star(10) xscaled 30mm 

yscaled 20mm 
rotated 20; 

hatchfill p withcolor (0 ,1 , . 5) ; 
draw imageChatchfill p 

withcolor C45.3bp , - . 5bp) 
withcolor C-45,3bp , - . 5bp) ;  

) withcolor red dashed evenly; 

input hatching; 
t. star macro defined as above 

path p; 
p : =star(10) xscaled 30mm 

yscaled 20mm 
rotated 20; 

interim hatch_match: =0; 
hatchoptions(withcolor blue 

dashed evenly scaled 2) ; 
hatchfill p withcolor . 75white 

withcolor (20.6bp , - . 5bp) ; 
hatchoptions (withcolor (blue+green) 

dashed evenly 
shifted (3/2bp,O» ; 

hatchfill p withcolor (110 ,6bp, - . 5bp) ; 

149 



1 50 M ETR P05T APPLICATIONS 

The last example illustrates special effects obtained by redefining the macro 
draw_hat ched_band that is normally responsible for drawing a strip component of a 
hatched line. 

input hat ching ; 
% star macro def ined as above 

path p ;  
p : =star ( 10 )  xscaled 20mm yscaled 20mm ; 
save draw_hat ched_band ; 
vardef draw_hat ched_band (expr za , zb , a , l , d) 

save n_ ; n_ : =l ength ( za-zb ) /l ;  
for i _ : =O upto ceil ing n_ : 

f ill  star ( 10 )  xscaled 2/51 yscaled 2/51 
shif ted ( i _/n_ ) [za , zb] 
withcolor ( i _/n_ ) [green , blue] ; 

endf or 
enddef ; 
hat chf ill p withcolor (red+green) 

withcolor (45 , 1 0bp , - lbp) ; 

4.1 .6 Tra nsparency 
Understanding transparency 

The normal f ill  operation is opaque in METAPOST, with one color overriding the ones 
drawn before. It is, however, possible to find out which parts of a picture are below a given 
path and to change the color of the new area in accordance with the underlying parts and a 
transparency factor. The keys to the solution are the iterator for . . .  wi thin and the operators 
redpart, greenpart, bluepart, and pathpart. (See Section 3.2.4 for another example 
of use of these commands. )  We give below the slightly adapted code written by Anthony 
Phan. 

pi cture alphapict_ ; alphapict_=nul lpi cture ; 
vardef alphaf ill ( expr c , col , transparency) = 

alphapict_ : =nullpi cture ; 
alphaf ill_ ( currentp i cture , c , col , transparency) ; 
addt o currentpi cture al so alphapict_ ; 

endde f ; 

def alphaf ill_ ( expr p , c , col , transparency ) =  
begingroup 

save p_ , xmax_ , xmin_ , ymax_ , ymin_ ; pi cture p_ ; 
p_=nullpi cture ; 

(xmin_ , ymin_ ) =l l c orner c ; ( xmax_ , ymax_) =urcorner c ;  
addt o p_ contour c withcolor transparency [background , col] ; 
f or p __ within p :  

numer i c  xmin __  , xmax __ , ymin __ , ymax __ ; 
(xmin __ , ymin __ ) =l l corner p __ ; 
(xmax __ , ymax __ ) =urcorner p __ ; 

Example 

4- 1 - 1 3  



4.1 A drawing toolkit 

if (xmax __ <=xmin_ ) or (xmin __ >=xmax_ ) :  

else : 

if (ymax __ <=ymin_ ) or ( ymin __ >=ymax_ ) :  

else : 

f i  

f i  

endf or 

if (not cl ipped p __ ) and (not bounded p _ _  ) :  

addt o p_ also p __ withcolor 

transparency [ (redpart p __  , greenpart p __  , bluepart p _ _  ) , col] ; 

else : 

begingroup save alphap i ct _ ; 

pi cture alphap i ct _ ; alphapict_  = nul lpi cture ; 

alphaf i ll_ (p __ , pathpart p __ , col , transparency) ; 

addt o p_ also alphapi ct _ ;  

endgroup ; 

f i  

clip p _  t o  c ;  addt o alphapict_  also p_ ; 

endgroup ; 

enddef ; 

An example of this macro's usage follows: 

Transparent labels the easy way 

% alphaf ill  as def ined above 

numeri c  u ;  

u=4cm ; 

f i l l  unitsquare s c aled u 
shifted (u , . 5u+2u) 
withcolor blue ; 

unf ill unitsquare 
scaled . 8u 

shifted ( . 1u+u , . 1u+ . 5u+2u) ; 
alphaf ill (unitsquare scaled u 

shif ted (u- . 2u , 2u) , ( . 8 , O ,  . 5 ) ,  . 5 ) ;  

alphaf ill (full circle shifted ( . 5 , . 5 ) 
xscaled . 75u yscaled 1 . 5u 
shifted (u+ . 5u , 1 . 75u+ . 5u) , ( 1 , 1 , O ) , . 5 ) ;  

f ill  unitsquare scaled . 5u 
shifted ( . 25u+u , . 25u+ . 5u+2u) 
withcolor green ; 

alphaf ill (unit square scaled . 5u 
shifted ( . 1 5u+u , . 35u+ . 5u+2u) , ( O , . 4 , . 5 ) , . 5 ) ;  

An easy way to use transparent colors in labels is to use the latexMP package in conjunction 
with the metafun package. In this case, a PDF file should be produced and later included 
with \ includegraphics .  

1 5 1  



1 52 M ETR P05T APPLICATIONS 

4. 1 .7 B lu rred effects 

Blurred lines can be obtained by overlaying several versions of the line with slightly different 
positions and lighter or darker shades. If a path must be blurred, it is a straightforward mat
ter to draw the path with different thicknesses, where the thickest is the palest. The example 
below illustrates a square, a star, and a circle with blurred edges. 

.IEX/4- 1 - 1 S  

4.1 .8 Morph ing 

vardef star ( expr n) = 
for i_ : =O upt o 2n- l : 

i f  odd i_ : 1/2  f i  (right rotated ( 1 80* ( i_/n) ) )  - 

endfor cycle 

enddef j 

vardef blur ( expr p , w , col) = 
f or i : = 1 0  downt o 1 :  

pi ckup penc ircle s caled « i * i / l00) *w) j 
draw p withcolor « i / l 0 )  [col , white] ) j  

endf or j 

enddef j 

blur (unitsquare s c aled 3 cm , . 5mm , red) j 
blur (fullcircle scaled 4cm , lmm , blue ) j 
blur ( st ar ( 10 )  xscaled 30mm yscaled 20mm 

rotated 20 , 2mm , black) j 

A path can be transformed into another path using the interpath command from the 
standard library. This command simply interpolates the control points of the paths to create 
a new intermediate path. An example is given below: 

numer i c  U j  
u=5mm j 
path p [] j 
p l =fullcircle s c aled 5u j 
p2=unit square scaled 3u shifted (O , 5u) ; 
draw p2 j 
draw p l  withcolor red ; 
draw interpath ( . 1 , p l , p2 )  withcolor . 25 [red , green] j 
draw int erpath ( . 25 , p l , p2 )  withcolor . 5 [red , green] j 

draw interpath ( . 5 , p l , p2 )  withcolor green j 
draw int erpath ( . 75 , p l , p2 )  withcolor . 5  [green , black] j 
draw interpath ( . 9 , p l , p2 )  withcolor . 7 [green , black] j 

The metafun package has a macro interpolate  for the same purpose. 

Example 

4- 1 - 1 5  

Example 

4- 1 - 1 6 



Example 

,
.

4- 1 - 1 7  , 

, Example , 

4· 1 · 1 8  

4 . 1  A drawing toolkit 

4. 1 .9 Turtle g ra phics 
Even within the realm of M ETA POST, drawings can be done in different ways or in different 
styles. Depending on the application, some approaches may be more suitable than others. 

Classical style 

The normal approach is first to define points and then to join these points. For instance, we 
can draw a rectangle using this approach: 

numer i c  u ;  
u= l cm ; 
zO=origin ; z l -z0= ( 2u , 0 ) ; 
z2-z 1=z3-z0= ( 0 , u) ; 
draw zO--z l --z2--z3-- cycle ; 

Equations can be given differently, and sometimes more elaborate operations such as 
intersections will be used to obtain new points. Nevertheless, the basic idea remains the 
same: Define points explicitly and then to use them for a drawing. Of course, in the preceding 
example, the uni t square macro could have been used, but this is not true in general. 

Turtle style 

In certain cases, it is extremely cumbersome to define dozens of points, and a more natural 
way to produce these drawings is to use a "turtle style", as in the Logo language. For instance, 
suppose we write the following code: 

pair _cp ; _cp= ( O , O ) ; % current po int 

numeric  _tdir ; _tdir=O ; % turt le direction 

def tdraw ( expr d) text opt i ons= 

draw _cp-- ( _ cp+d*dir ( _tdir» opt ions ; 

_cp : =_cp+d*dir ( _tdir) ; 

enddef ; 

def trotate ( expr a) = _tdir : =_tdir+a ; enddef ; 

We then have at our disposal two commands: tdraw, which draws a segment of some length 
in the current direction, and trotate ,  which changes the current direction. Other com
mands could be added straightforwardly. 

Using only these two commands, we can produce complex drawings in a very simple 
manner: 

% tdraw and trotate as def ined above 

numer i c  u ;  u=4cm ; 
for i=l  upto 10 : 

tdraw ( . lu) ; trotate ( 1 8 ) ; 
endf or ; 

trotate ( 9 0 ) ; tdraw ( . 5u) ; trotat e (90) ; tdraw ( . 5u ) ; 
trotate (45) ; tdraw ( . 5u) ; trotate ( 135) ; tdraw ( lu) ; 

153 



1 54 M ETR POST APPLICATIONS 

This approach can be combined with a stack of positions, and possibly paths can be 
memorized on the fly, in case they are needed later. The following example illustrates how 
PUSH/POP operations can be defined. They can easily be adapted for some 3-D drawings 
(e.g., axonometric drawings) .  However, more elaborate examples have to take care of such 
complex features as dashed lines. 

pair _ cp ;  

pair _ cps [] ; 

numer i c  _ncps ; _ncps=O ; 

% current po int 

% stack of current po int s 

def PUSH = _ cps [_ncps] : =_ cp ;  _ncps : =_ncps+ l ;  enddef ; 

def POP = 

if _ncps >O : _ncps : =_ncps - l ; _cp : =_cps [_ncps] ; 

else : me ssage " YOU CAN ' T  POP HERE " ; st ophere 

f i ; 

enddef ; 

def initdrawing=_cp : =origin ; enddef ; 

def mv ( expr d , a) =_cp : =_cp+d*dir ( a) ; enddef ; 

def l inet o ( expr d , a) t ext opt i ons= 

draw _ cp-- ( _ cp+d*dir ( a »  opt i ons ; mv (d , a) ; enddef ; 

def mvright ( expr d) =mv (d , O ) ; enddef ; 

def mvleft ( expr d) =mvright ( -d) ; enddef ; 

def mvup ( expr d) =mv ( d , 90 ) ; enddef ; 

def mvdown ( expr d) =mvup (-d) ; enddef ; 

def l ineright ( expr d) text opt i ons=l inet o (d , O ) opt i ons ; enddef ; 

def l ineleft ( expr d) t ext opt i ons=lineright ( -d) opt i ons ; enddef ; 

def l ineup ( expr d) t ext opt i ons=l inet o ( d , 90 )  opt i ons ; enddef ; 

def linedown ( expr d) text opt i ons=l ineup ( -d)  opt ions ; enddef ; 

numeri c u ;  u= l cm ;  
initdrawing ; 
l ineright ( 3u) ; l ineup ( 2u ) ; 
PUSH 

l ineto ( 1 . 5u/cosd (30) , 1 50) ; 
l ineto ( 1 . 5u/cosd ( 30 ) , 2 1 0 ) ; 

POP 

l ineleft ( 3u) ; l inedown ( 2u) ; 
mvright (u) ; 
l ineup ( 1 . 5u) ; l ineright (u) ; l inedown ( 1 . 5u) ; 

The same ideas can be used to display L-systems and other fractals ( see Section 4.4.3 

for more examples of fractals and Color Plate IV(a) ) .  An L-system, or Lindenmayer (after 
Aristid Lindenmayer) system, is a set of rules that can be used to model the growth of plants 
and other similar structures. 

Example 

4- 1 - 1 9  



Example 

j 4 - 1 -20 

Example ' 

4- 1 - 2 1  ' 

4.1 A drawing toolkit 

4. 1 . 1 0 Using l itera l PostScript 

Literal PostScript commands can be issued from within M ETAPOST with the spe cial 
command. This command takes a string and outputs its value in the PostScript file. However, 
all special commands appear together before the code produced by the usual M ETA POST 

commands. This structure somewhat restricts the application of special, but it can still be 
useful for matters of postprocessing or if the entire output is produced with specials. 

The next simple examples demonstrate that the normal M ETA POST output can be 
obtained by using only spe c ial commands, plus a command for setting the bounding box. 
The two examples are identical, and the PostScript output differs by only the three additional 
comments of the first figure. 

numer i c  u ;  
u=3cm ; 
spe c i al ( " (thi s i s  a PostScript c omment ! ) " ) ;  
zO=origin ; 
z l -z0= (u , u) ; 
z2-z 1 = ( -u , - . 5u) ; 
draw zO o . z l {dir-50} . .  z2 ; 
spe c i al ( " (thi s i s  another PostScript comment ! ) " ) ;  
spec i al ( " (z2 will be located at ( "  

& dec imal x2 & " , "  & dec imal y2 & " ) ) " ) ; 

numeric  u ;  
u=3cm ; 
spe c i al ( " O 0 . 5  dtransf orm truncat e  " & 

" idtransform setl inewidth pop [] " ) ; 
spec i al ( " O  s etdash " ) ; 
spe c i al ( " l  setlinec ap 1 setlinej oin " ) ; 
spec i al ( " 1 0 s etmiterlimit " ) ; 
spec i al ( " newpath 0 0 moveto " ) ; 

special ( " -67 . 28128 56 . 4566 28 . 58275 " & 
" 1 52 . 32063 85 . 03935 85 . 03935 curveto " ) ; 

spe c i al ( " 1 38 . 1 1453 2 1 . 78784 1 8 . 756 1 2  " & 

" -37 . 89137 0 42 . 5 1967 " ) ; 
special ( " curveto stroke " ) ; 
set bounds currentpi cture 

to ( ( -24 , - 1 ) -- ( 256 , - 1 )  
-- (256 , 1 09 ) -- ( -24 , 109) --cycle) ; 

The exteps package written by Paile J0rgensen (CTAN: graphics/metapost/ 
contrib/macros/exteps) i s  a module for inclusion of external EPS figures into M ETA

POST figures. It is written solely in M ETAP OST and does not require any post -processing 

1 55 



1 56 M ETA P05T APPLICATIONS 

of the M ETA PoST output. An example is given below: 

input exteps 

begineps " gradient . eps " ; 
base : =  (25 , 25 ) ; 
cl ipping : =true ; 
grid : =true ; 

epsdrawdot ( 10pct , 40pct ) 
withpen penc ircle scaled 1 0pct 
withcolor blue ; 

epsdrawdot (60pct , 20pct ) 
withpen pencircle scaled 10pct 
withcolor red ; 

endeps ; 
draw origin withpen pencircle s caled 30 

withcolor blue+green ; 

This package makes use of M ETA POST's special command, with the problem noted 
earlier that the PostScript code must appear at the beginning of the PostScript figure code. It 
is therefore difficult to overlay normal M ETA PoST parts with included figures or to have a 
tighter interaction between them. 

4.1 . 1 1 Animations 

Drawings can be parameterized and an animation obtained by producing a series of draw
ings with varying values for the parameters. A simple example is given below, where a square 
is rotated in 90 steps of one degree. 

def square ( expr i ) =  
beginf i g ( 100+ i ) ; 

draw unitsquare shifted ( - . 5 , - . 5) scaled 2cm rotated i ;  
set bounds currentpicture 

endf ig ; 
enddef ; 

t o  (unit square shifted ( - . 5 , - . 5 ) scaled 4cm) ; 

for a : =O upto 90 : square (a) ; endf or ; 

end 

In this example, the parameter is the argument to beginf ig. When M ETA PoST is 
applied to the source file, 9 1  files are produced having extensions 100 to 1 90. We chose to 
start the numbering at 100, so that all extensions are properly sorted, something that is es
sential if the files are to be post-processed. These 91 files could, for instance, be transformed 
into bitmaps, and then combined to obtain a small MPEG film. 



Example 

4-2- 1 

4.2 Representing data with graphs 

When proceeding this way, the bounding box must be very carefully set. In the previous 
example, the rotation of the square would normally cause the bounding box to change, and 
the center of the square of one figure would not coincide with the center of another square. 
This is why we have explicitly set the bounding box to a square containing all the rotated 
squares. In principle, it would suffice to find the maximal bounding box, but this may neces
sitate a first run through all the figures. 

Some presentation packages, such as beamer, allow the user to include a sequence of 
METAPOST files and then to use those files as overlays. 

PDF files with real animations based on METAPOST can also be produced. Such ani
mations are self-standing and not advanced by the user. This is discussed in detail in [50 ] .  

4.2 Representing data with g ra phs 

4.2 . 1  The g raph  package 

M ETAPOST's author, John Hobby, wrote a high-level library of METAPOST macros [48] 
to provide a sophisticated package for drawing graphs, comparable to grap [ see 1 1 ] .  We 
can draw a simple graph (using data from the Protestant Cemetery, Rome-see [95] ) with 
METAPOST's graph package: 

30 (dashed) .Men (solid) Women 

20 

10  

o 

1800 1850 1900 1950 
Number of burials per year (n ;::;j 4300) 

input graph 

draw begingraph ( 2 . 5 in , 1 . 75 in) ; 

gdraw " yearm . dat " dashed evenly ; 
gdraw " yearw . dat " ; 
glabel . lft 

(btex ( solid) Women etex , 1960 , 30 ) ; 
glabel . lft 

(btex (dashed) Men etex , 1 870 , 30 ) ; 
glabel . bot 

(btex Number o f  burials per year 
( $n \approx 4300$ ) etex , OUT) ; 

endgraph ; 

The graph package provides the commands for plotting data from external data files 
and labeling that you would expect. It also offers the following features: 

• Automatic scaling of data 

• Automatic generation and labeling of tick marks or grid lines 

• Multiple coordinate systems in the same picture 

• Linear and logarithmic scales 

1 57 



1 58 

... 
(j) 

..D 
S 

30 -

20 -

• Plotting with arbitrary symbols 

M ETA P05T APPLICATIONS 

• Handling multiple columns in the same data file, with user-specified procedures 

You start by inputting the graph macro package. Next you surround each plot with a 
begingraph . . .  endgraph pair; this returns a picture that you can render with draw (and 
on which you can perform other transformations such as rotation) .  begingraph takes pa
rameters (x and y dimensions separated by a comma) giving the size of the graph; the data 
is scaled to fit automatically with special "g" -prefixed forms of draw and f i ll. gdraw has 
the extra characteristic that, when followed by a file name, it draws the path created by read
ing coordinate pairs from the file. It can be followed by normal META qualifiers such as 
wi thpen or META POST's wi thcolor and dashed. There are also "g" variants of other 
commands: glabel, gdotlabel, gdrawarrow, and gdrawdblarrow. 

gdraw can also be followed by a plot command with a parameter of a META POST 

"picture" to be plotted at each coordinate. This can be typeset by 'lEX, as the following varia
tion shows: 

input graph 

draw begingraph (2 . 5 in , 1 . 75 in) ; 
gdraw " yearm . dat " 

;:J Z 10 -
plot bt ex $\bullet$ etex ; 

gdraw " yearw . dat " 

O -L,--------.-------.-------.-------� I I I I 
1 800 1 850 1 900 1950 

Burials 

plot bt ex $ \ c irc$ etex ; 
glabel . bot 

(btex Burials etex , OUT) ; 
glabel . lft 

(btex Number etex rotated 90 , OUT) ; 
endgraph ; 

Notice that the glabel command has a special form of the position parameter, OUT, mean
ing that the text is to be placed outside the graph (it is normally used to place axis labels) .  
For this graph we also added a label to the y-axis, rotated by 90 degrees. 

Frames, ticks, grids, and sca les 

By default, graphs have a frame on all sides, no grid, and tick marks on the bottom and 
left. The frame can be altered with the frame command, which has the same set of optional 
suffixes as label (see page 6 1 ) .  Grid lines and ticks are controlled with aut ogrid: 

aut ogrid(x specification,y specification) 

The specifications can have the value grid, i t i ck, or otick, which produce grid lines, in
ner ticks, or outer ticks, respectively. They can be suffixed with . top or . bot for the :J;-axis 

Example 

4-2-2 



Example i 
4-2-4 ' 

4.2 Representing data with graphs 

and . 1ft and . rt for the y-axis, as the following example shows: 

-- 30 

25 

20 

1 5  

1 0  

- 5  

input graph 

draw begingraph ( 2 . 5in , 1 . 75in) ; 
gf i11 " yearw . dat " withco1or red ; 
autogrid (grid . bot , it ick . rt )  

withco1or . 5whit e ; 
frame . 1lft ; 
endgraph ; 

To override graph's choice of where to put tick marks and how to write labels, you can 
add explicit ticks with i t i ck or ot ick and grid lines with grid. These have the same suf
fixes as autogrid and are followed by a M ETA POsT picture variable containing a label 
or a format command, plus a coordinate. The f ormat command is used to control how 
numbers are printed: 

format (specification,number) 

The specification consists of an optional initial string, a percent sign, an optional num
ber indicating precision (default 3), a conversion letter ( e ,  f, or g), and an optional final 
string. The conversion letter determines whether scientific notation is used; %g will use dec
imal format for most numbers. How the scientific notation used by format is typeset de
pends on a META POST macro called ini t_numbers (see the manual) ;  since this uses 
the btex . . .  etex system, you may need to look at it carefully if you are concerned about 
precisely which fonts are used. 

The following graph shows both types of explicit labeling. Remember to turn off the 
normal marks at the end! 

30 

20 

10  

1 9th century 
I 

20th century 
I 

input graph 

draw begingraph ( 2 . 5in , 1 . 75 in) ; 

gf i11 " yearw . dat " withco1or red ; 
for y= 1 0 , 20 , 30 :  

i t i ck . lft ( f ormat ( " %g "  , y) , y) ; 

endfor 
ot i ck . top ( " 19th c entury " , 1850) ; 
ot i ck . t op ( " 20th c entury " , 1950) ; 
frame . 1lft ; 
aut ogrid ( , )  ; 
endgraph ; 

159 



1 60 

1 5  

1 0  

5 

o 

o 

M ETR P05T APPLICATIONS 

I set coords{x style,y style) I 
The labeling can be changed by setcoords. The parameters for x and y can be set to log, 
-log, linear, or -linear. 

I setrange(min,max) I 
While the program's scaling of data to fit the graph usually gives the right results, it can 
be overridden with setrange. To do so, you need to supply the minimum and maximum 
coordinates. The special constant origin is a useful shorthand for (O,O) .  To leave any value 
to be figured out by META POST, specify whatever. If you specify no range at all, META

POST works it out from the data values and adds a small border. 

Reading data files 

Although the gdraw and gf ill  commands are often sufficient, we can get more control 
over the data read from a file by using gdata: 

I gdata(filename, variable, commands) I 
The commands are executed for every line of data in filename, with the values for each col
umn available as, e.g., c 1 ,  c2, . . .  , cn for the variable name c. filename is a M ETA string, so 
simple names should be enclosed in quotes (file names can also be computed from META 

variables) . Using some more data from the Protestant Cemetery, in which each line consists 
of a person's age at death, we can show the distribution of mortality by age by accumulating 
data in an array and using it to create a path: 

input graph 

draw begingraph ( 2 . 5in , 1 . 5 in) ; 
numeri c  p C] ; 

path r ;  
for j : =  0 upt o  100 : 

p [j ] : =0 ; 
endf or 
gdat a ( " ages . dat " , y ,  age : = ( s cant okens y 1 ) ; 

p [age] : =p [age] + 1 ; ) ; 

20 40 60 80 100 

r : = ( O , O ) 
for j : =  1 upto 100 : -- (j , p [j ] ) endf or ; 

gdraw r ;  
frame . 1lft ; 
endgraph ; 

The only complications are the need to initialize the array and the conversion of the 
string representation read from the data file into a numeric value with scantokens. 

In the preceding example, the path created has straight edges. Sometimes it is desirable 
to have a smooth path connecting the different values; in such a case the definition of the 
path can readily be changed [ l O9] . 

EXdffiple 

: 4-2-5 



Example 

4-2-6 

4.2 Representing data with graphs 

For every line in the data file, gdata actually separates the line into tokens using the 
space as a delimiter. Different lines need not have the same number of tokens. If a data file 
has different types of lines, however, the commands in gdata should take that fact into ac
count, either by using a special token (for instance the first) as a selector for the others or by 
checking whether a given token has been defined. gdata can therefore be used for reading 
files in a flexible way, without outputting any graph. 

When gdata reads data files, it stops when it reaches a blank line or end of file; if you 
start gdata again with the same file name, it carries on reading another set of data. This al
lows you to put all your data sets in one file-but use this command with care. One problem 
is that data files remain open if there is a blank line at the end, since M ETA POST thinks 
some more data might follow. If you have many small data files, this situation can cause a 
M ETA POST error-check the end of your files. 

The display in Example 4-2-5 is not very readable; it might be better to accumulate 
data per decade of death from the file. As this gets a little more complicated, we abstract the 
job into a M ETA POST macro called by the gdat a command, as demonstrated in the next 
example: 

1 00 

input graph 

draw begingraph ( 2 . 5 in , 1 . 75in) ; 
setrange ( origin , ( 1 00 , 100 ) ) ; 
numer i c  p [] ;  path r ;  

1 6 1  

80 
for j : =  0 step 1 0  unt i l  100 : p [j ]  : =0 ;  endf or 
def check ( expr age )  = 

60 

40 

20 

0 

a 20 40 60 80 

if  age < 1 00 : xage : =round ( age / 1 0 )  * 1 0 ;  
p [xage] : =p [xage] + 1 ;  f i  

enddef ; 
gdat a ( O I ages . dat Ol , y ,  che ck ( ( s cant okens y 1 ) ) ; ) ; 
r : = ( O , O ) for j : =  0 step 10 unt i l  100 : 

-- ( j , p [j ] ) endf or -- ( 1 00 , 0 ) ; 
gf ill r -- cycle withcolor blue ; 

frame . llft ; 
100 endgraph ; 

It is often useful to accumulate points on a path for each line read from the data file; the 
macro augment is provided for this purpose. Given a suffix of a variable name of type "path" 
and a parameter of a coordinate, augment creates the path if it does not exist or adds the 
point to an existing path. We use this command to show the gravestone data again, this time 
processed to provide separate figures of deaths per decade for women (column 2) and men 
(column 3) :  

1 800 3 6 
1 8 1 0  9 1 5  
1820 2 6  64 

1830 31 88 



1 62 

200 

150  

1 00 

50 

o 

M ETA P05T APPLICATIONS 

For each decade, we keep track of the last point reached and augment separate paths for 
male and female deaths; these are then shaded in different colors (this drawing also appears 
as Color Plate I(c» to show how the male and female patterns vary over time. We need to 
know the last decade to establish a sensible corner for the filled shape. The female pattern 
appears as a dotted line on top of the male shading. 

1 800 1 850 1900 1950 

input graph 

path m , w , last ; 
draw begingraph ( 2 . 5in , 1 . 75in) ; 
setrange « 1800 , 0) , (whatever , what ever) ) ;  
gdata ( " decade . dat " , y ,  

last : = « scantokens y 1 ) , 0) ; 
augment . w (y 1 , y2) ; augment . m (y1 , y3 ) ; ) ;  

gf i l l  ( 1 800 , 0 ) --w--last-- cycle 
withcolor red ; 

gf ill ( 1 800 , 0 ) --m--last--cycle 
withcolor green ; 

pickup penc ircle scaled 3pt ; 
gdraw w dashed withdot s ;  
pi ckup penc ircle scaled . 75pt ; 
glabel . bot (btex Number of burials per 

N umber of burials per decade (n :::::: 4300) 
decade ( $n \approx 4300 $ )  etex , OUT) ; 

endgraph ; 

20 

1 0  

o 

- 10  

1 0  

The example demonstrates that the graph macros return a M ETA picture that can then 
be drawn and possibly transformed (for instance, rotated) .  

Different graph types 

With a little effort, graph can draw bar charts. To demonstrate this ability, we copy a chart 
from [83]  that was made with the �TEX bar package. Our technique is to make a single path 
out of all the bars and fill the result at the end: 

20 30 40 50 

input graph 

path s ;  numeric x , y ;  
draw begingraph ( 2 . 5 in , 1 . 75in) ; 
gdata ( "  student s . dat II , c ,  

x : = ( s cant okens c 1 )  * 12 ; 
y : = ( s cant okens c2) ; 

augment . s « x-5 , 0) -
(x-5 , y) -- (x+5 , y ) -
( x+5 , 0) ) ; 

if y < 0 :  glabel . top ( c2 , (x , 0) ) ; f i  
i f  Y > 0 :  glabel . bot ( c2 , (x , 0) ) ; f i  

) ; 
gf ill  s--cycle withcolor . 5whit e ; 

frame . 11ft ; 
endgraph ; 

Example 

4-2-8 



4.2 Representing data with graphs 

We explicitly work out the corners of each bar and allow for their width by multiplying the x 
values by 1 2. The bars themselves span 5 units on either side of the data point, so there is a 
gap of 2 units between each one. 

A similar technique is used in the next chart (also printed in Color Plate I(d» , which 
shows the number of pages in each chapter of the first edition of this book at one stage in its 
production. This time we draw each bar separately, so that the bars can be shaded according 
to their values. The work is delegated to a macro, which also prints a rotated label for each 
bar. Because explicit x labels are supplied, labeling of the x-axis is suppressed. 

input graph 

path m ;  numeric n , width ; 
width : =20 ; def ault scal e : =0 . 6 ;  n : =O ;  
def bar ( expr name , value ) = 

gf ill (n , O ) - - (n , value ) - - (n+wi dth , value ) - - (n+width , O ) --cycle 
withcolor (value / 1 00 , value / 100 , value / 1 00 ) ; 

pi cture p ;  
p = name inf ont def aultf ont scaled def ault scale rotated 90 ; 
glabel . rt ( image (unf ill bbox p ;  draw p) , (n , 1 0 » ; 
n : =n+width ; 

enddef ; 

draw begingraph ( 2 . 5in , 1 . 75in) ; 
setrange ( (0 , 0 ) , ( 1 1 *width , 100» ; 
aut ogrid ( , ot i ck . l f t ) ; 
gdat a (  " chap . dat " , c ,  bar ( c 1 , ( s cantokens c2» ; ) ; 
endgraph ; 

The string value read from the first data column is put into a M ETAPOST picture vari
able by using the low-level command inf ant. This lets us use the bbax technique to give 
the extent of the text, which is made white with unf ill .  image is a useful macro that yields 
the picture resulting from a sequence of drawing commands; we use that as a label. The data 
for this graph starts as follows: 

graphics 28 
stdgraph 26 

1 63 



1 64 M ETA P05T APPLICATIONS 

xypic 28 
mf 26 
pstri cks 80 
s c i ence 54 

We can also present our earlier "decade" data as a dual bar chart, with male and female 
figures side by side. To do this, we maintain two separate paths; we fill one and leave the 
other as an outline: 

input graph 
path m [] , w [] ; 

def wcheck ( expr decade , value ) = 

augment . w 1 (decade , 0 ) ; augment . w 1 (de c ade , value ) ; 
augment . w 1 (decade+5 , value ) ; augment . w1 (decade+5 , 0 ) ; 

enddef ; 
def mche ck ( expr decade , value ) = 

augment . m1 (decade+5 , 0 ) ; augment . m1 (decade+5 , value ) ; 
augment . m1 (decade+ 10 , value ) ; augment . m 1 (decade+ 10 , 0) ; 

enddef ; 

draw begingraph ( 3 . 75in , 2 in) ; 
gdat a ( " decade . dat " , y ,  

wche ck « scantokens y 1 ) , ( scant okens y2 ) ) ; 
mcheck « s c ant okens y 1 ) , ( scant okens y3 ) ) ; ) ; 

gf ill  m 1 - - cycle ; 

gdraw w1 ; 
glabel . bot (btex Number of burials per decade 

( $n \approx 4300$ ) etex , OUT) ; 
frame . 11ft ; 
endgraph ; 

200 

1 50 

1 00 

50 
r-

o � 
1 800 1 850 1900 

, 

1950 

Number of burials per decade (n :::::; 4300) 

, 

r-

2000 
Example 

4-2- I O  



, Example 

4-2- 1 1  

4.2 Representing data with graphs 

With care, we can even draw pie charts using similar ideas. The following example reads 
data about gravestones in the Protestant Cemetery in the following form: 

Romanian 1 0 . 02796420582 
Czech 2 0 . 05592841 163 

Italian 39 1 1 0 . 93400447 
German 508 14 . 2058 1655 
unknown 599 16 . 75055928 
English 1462 40 . 8836689 

Here the second column is the number of gravestones per nationality and, to make the code 
less complicated, the third column is the percentage of the total. For each pie wedge, we use 
the buildcycle macro to find the smallest enclosed shape from the union of a whole circle 
and two lines extending from the center at the starting and closing angles of the segment. 
The fill color of the wedge is derived from the percentage. 

input graph 
numeric r , last ; path c , w ; 

r : =5 ;  c : =ful l c ircle s c aled 2r ; last : =O . O ;  
def wedge (expr lang , value , perc)  = 

numeri c  current , n , half , xo f f , yoff ; pi cture p ;  
n : =perc*3 . 6 ;  
current : =last+n ; half : =last+ (n/2) ; 

1 65 

w :  =bui ldcycle « 0 , 0 ) -- ( 2r , 0 ) rotated last , c ,  (2r , 0 ) -- ( 0  , 0 ) 
rotated current ) 

gfill w withcolor ( 0 , 0 . 8- (per c / 1 0 0 )  , 0 ) ; 
gdraw w ;  
i f  perc > 5 :  p=lang inf ont defaultf ont scaled default scale 

glabe l ( image (unf ill bbox p ;  draw p) , 3/4r*dir (half ) ) ;  
f i ;  
last : =current ; 

enddef ; 

draw begingraph ( 3 in , 3in) ; 
default scale : =0 . 7 ;  
gdat a ( " langs . dat " , c ,  wedge ( c 1 , ( s cantokens c2) , 

( s cantokens c3 ) ) ; ) ; 
autogrid ( , ) ; 
f rame withcolor whit e ;  

endgraph scaled 0 . 7 ;  

The placement of the labels in the pie chart bears a little examination; they are placed in 
the center of each wedge, three quarters of the way along the radius. An alternative algorithm 
to work out these coordinates would be 

« r*3*cosd (half ) ) /4 , (r*3* s ind (half ) ) /4) ) 

using META's sine and cosine functions. 



166 M ETA P05T APPLICATIONS 

Another type of graph has a linear x-scale and uses the y-axis simply to compare sets 
of data. The next graph uses our cemetery data to show the first and last occurrences of 
each type of gravestone. The code is straightforward, except that we draw the lines with a 
different-sized pen {with square ends} and revert to a thin line to draw the scale and frame 
(only on the bottom, since the y-axis is not linear) . 

Column-an-base -
Tree -

Urns -
Rock --

Arch -
Boo2==:::: 

Kerb 
Ossuary 

Urn 
Statue 

Wreath 
Other 

Obelisk 

input graph 

draw begingraph ( 2 . 5in , 2 . 5 in) ; 
n : = 1 0 ;  
defaultscale : =0 . 7 ;  

Scroll 
Coped-stone 

Plaque-an-wall 
Building 

pickup pensquare s caled 3pt ; 
setrange ( ( 1700 , 0 ) , (whatever , what ever) ) ;  
gdata ( " stones . dat " , s ,  
gdraw ( ( scantokens s 2 ) , n) --

Ledger 
Cross 

Plaque-in ground 

( ( s cantokens s3) , n) ; 

glabel . lft ( s l , ( scantokens s2) -3 , n) ; 
n : =n+ 1 6 ; ) ;  Pedestal 

Plaque on-base 
Column 

Head 
Chest 

I 
1 700 

I 
1 800 

I 
1 900 

I 
2000 

pickup pensquare scaled . 5pt ; 
frame . bot ; 

aut ogrid ( ot i ck . bot , ) ; 
endgraph ; 

The data, ranked in order of first occurence, starts like this: 

Che st 1738 1966 
Head 1765 1986 
Column 1766 1960 
Plaque -on-bas e 1 775 1986 

Pede stal 1786 1 967 
Plaque-in-ground 1794 1 985 

Our last example is more unusual: we want to plot data from a survey grid and shade 
each grid square according to its data value. In the data file, the first two columns are the 
coordinates of the lower-left corner of the grid square, the third column is the absolute data 
value, and the fourth column is a percentage version: 

2 1 1 02 85 
2 2 10  98 
2 3 1 10 84 
2 4 1 1 2  83 
2 5 1 14 83 



---, 
Example i 
4-2- 1 3  

4.2 Representing data with graphs 

The text is printed in white or black depending on the percentage. 

input graph 
def sq( expr x , y , num , perc) = 

gf ill (x , y) -- (x+ l 0 , y) -- (x+ l 0 , y+ l 0 ) - - (x , y+ l 0 ) --cycle 
withcolor (perc/ l00 , per c / l 00 , perc/ l 00 ) ; 

glabe l (num , (x+5 , y+5) ) if perc < 50 : withcolor whit e  f i ; 
enddef ; 

defaults cale : =0 . 7 ;  
draw begingraph (70mm , 24mm) ; 

setrange ( ( 20 , 10) , ( 1 1 0 , 40 ) ) ; 
autogrid ( , ) ; 
gdat a ( "pot . dat " , c ,  

sq( ( s cant okens c l ) * 10 , ( s cant okens c 2 ) * 10 ,  c3 , ( s c ant okens c4) ) ; ) ;  
endgraph ; 

Additional util ities 

Two small packages by Ulrik Vieth provide useful additional functionality to the graph pack
age: 

• gpdata (CTAN: graphics/metapost/contrib/macros/misc ) .  This file modifies 
the Grdln_ routine of the META POST graph package, so that it can parse and ignore 
comment lines in data files starting with a "#" sign, similar to the conventions in Gnu
plot. 

• interpol (CTAN: graphics/metapost/  contrib/macros/misc ) .  This file declares 
a new internal quantity interpolat ing and modifies the augment and Mreadpath 
routines of the METAPOST graph package to construct a path from data points using 
Bezier curves instead of polygons (line segments) when interpolat ing is set posi
tive. 
Andreas Scherer has also shown how paths created with the augment macro can be 
made smoother [ 1 09] . 

Finally, graphs can also be inserted inline in �TEX, using the emp package ( see Sec
tion 3.6. 1 ) .  

The matlab (CTAN: graphics/metapost/ contrib/macros/mat lab) package by matlab package 

Yang Yang is a M ETAPOST package for plotting 2-D data. It extends the graph package 
(which it loads) by providing a Matlab-like syntax, making it easier to use for Matlab users. 

1 67 



1 68 M ETR POST APPLICATIONS 

4.2.2 Curve d rawi ng 
Given M ETA POST's arithmetic limitations, and since M ETAPOST is not a specialized 
plotting program, it is not surprising that METAPOST does not provide facilities for au
tomatic function drawing. However, if a function has been tabulated and is given by a set of 
points, we can use the graph package to draw the set of points in different ways. 

If we want to use M ETA P OST with the function itself, we can either draw each point 
separately or join points of the curve. Depending on the drawing mode, we may have to 
take care of overflows and the way in which points should (or should not) be joined. If the 
function is simple, this is easy; if the function has idiosyncrasies, however, plotting it may 
take more work. 

We will show several examples-one where the function is drawn as a set of points, and 
others where the points are linked. 

First, the sine curve is a typical example of a curve drawn point by point. The only prob
lem that can happen with such an approach is an arithmetic overflow. 

numeric u ;  u=5mm ; 
pi ckup pencircle scaled 1pt ; 
f or i : =O step 1 0  unt il 360 : 

draw ( ( i/360) * 1 0u , 3u* s ind ( i » ; 

endf or ; 
pickup penc ircle scaled . 5 ;  

The same sine curve can also be drawn with segments. The curve here is made of 36 
segments, which are quite noticeable. 

numeric u ;  u=5mm ; 
f or i : =O step 1 0  unt il 350 : 

draw ( ( i/360 ) * 1 0u , 3u*sind ( i » -
( ( ( i + 1 0 ) /360) * 1 0u , 3u* s ind ( i+ 1 0 » ; 

endf or ; 

The same sine curve can also be drawn by by smoothly joining 1 7  of its points: 

def f ( expr a) =sind ( a) enddef ; 
numeric u ·  , u=5mm ; 
path p ;  

numeric n ;  n= 16 ; 
p= ( O , f ( O »  
f o r  i : = 1 upt o  n :  

. .  ( ( i /n) * 1 0u , 3u*f ( i * ( 360/n» ) 
endf or ; 
draw p ;  

Example 

4-2- 1 4  

Example 

4-2- 1 5  



i Example 

4-2- 1 7  

4.2 Representing data with graphs 

Such curves can also easily be produced using the graph package, as shown below and 
in Section 3.6. 1 .  

20 x 

2 + sin (x) 
10 

o 

verbat imt ex 
%&lat ex 
\do cument class{art icle}  

\begin{document } 
etex 
input graph 

draw begingraph ( 2 . 5 in , 1 . 75in) ; 

pi ckup penc ircle scaled lpt ; 
path p ;  
f or x=-20 step 0 . 1 unt il 20 : 

1 69 

augment . p  (x , x/ ( 2+s ind (x* 180/3 . 14 1 5 9 ) ) ) ;  
endfor ; 

- 1 0  

-20 

-20 - 1 0  o 10  20  

glabe l . lrt (btex $\di splaystyle 
\frac{x}{2+\sin (x) } $  etex , 

(-20 , 20 ) ) ;  
gdraw p ;  
endgraph ; 

Curves in polar coordinates can be drawn with the following custom definition of 
polcurve.  The polar equation of the curve is given by the r definition. 

def r ( expr theta) = 
(theta/ 1 0 )  

enddef ; 

vardef polcurve ( t ext f )  ( expr c , a , b , n) =  
save delta , _r , _a ;  
delta= (b-a) /n ; 
draw ( c+f (a) *dir (a) ) 
f or i : =O upto n- l :  

hide ( 
_a : =a+i *delta ;  
_r : =f Ca) ; )  
. .  ( c+f ( _a+delta) *dir ( _a+delta) ) 

endf or ; 
enddef ; 

polcurve (r)  ( origin , 0 , 1 1 50 , 1000) ; 

Curves in space are also rather easy to achieve using these ideas, provided hidden lines 
are not removed. 3-D surfaces based on curves can also be contemplated, and it is not too 
difficult to extend curve drawings to surface drawings for functions such as z = f (x,  y) . 



1 70 

Tigers 

M ETR P05T APPLICATIONS 

4.2.3 Pie charts 

The piechartMP package by Jens-Uwe Morawski is an easy way to draw pie charts with 
Introduction M ETAPOST [ 85 ] .  With this package, a pie chart is a graphical representation of sets of 

data called "segments". We start with a typical pie chart. Each segment is defined with the 
Segment command, of which there are five in this example: 

Warthogs 

Monkeys 

input pie chartmp 

SetupPercent (thi s , " % " ) ; 
Segment ( 1 5 , " Lions " , aut o) ; 
Segment ( 6 , I Tigers " , aut o ) ; 
Segment ( 1 0 ,  " Hyaena " , auto )  ; 

Segment ( 7 , " Monkeys " , auto ) ; 
Segment ( 5 , " Warthogs " , aut o ) ; 
PieChart ( 2 . 5cm , 0 . 1 , 65 , 0 , 0 ) ; 
Label ( 0 )  (percent ) ( inwards , 0 )  

withcolor whit e ;  
Label . aut o (O) (name ) ( outwards , O ) ; 

The SetupPercent command specifies that the values are appended with "%:' The 
two Label commands specify where the segment labels and value labels are located. Finally, 
the PieChart command draws the pie chart. 

I Segment(  value�i'�I�;1ills't}i�i��tr:��ij� ) I 
A segment is declared with four arguments: 

value is the numerical data represented by the segment. 

name is a string representing the name that will appear next to a segment. 

jillstyle can be either a numerical value representing a pattern for filling, a color, or the 
value aut o, which lets piechartMP calculate the segment color. 

altvalue is an alternative value that will be displayed. It is useful if the value had to be scaled 
down because of META POST's numerical limitations. 

SetupPercent(PreString, PostString) 

This command specifies how percent labels are typeset. The PreString is attached before the 
string of the percent value, and the PostString is attached after it. thi s represents the current 
value, but SetupPercent (this , thi s )  does not print the value twice. The usual way to 
call this command is with 

SetupPercent (thi s , " % " ) ; 

Special care should be taken if labels are typeset with 'lEX. In this case, the command should 
be 

SetupPercent (this , " \% " ) ; 

I Example ! 
I 4-2- 19  ' 
L_� ___ -' 



4.2 Representing data with graphs 

PieChart(Radius, Height, Observation, Rotation, Offset) 

The pie chart itself is obtained with the PieChart command. The meaning of the parame
ters is as follows: 

Radius is the radius of the pie chart. 

Height is the ratio between the height and the radius. 

Observation is an angle in degrees specifying how the pie chart is viewed. Valid values are 
from 0 (2-D chart) to 89. 

Rotation is the angle by which the pie chart is rotated around its center. Valid values are 
from 0 to 359. 

Offset is an offset applied to all segments in a pie chart. 0 represents no offset, 1 represents 
a full radial offset, and a different value represents an intermediate displacement. The 
offset can be greater than 1, but the segments look very scattered. The offset should not 
be negative. To offset only some of the segments, the SegmentState command should 
be used. 

Thus our first example displayed a pie chart with radius of 2.5 cm, a height of 2.5 mm 
(2.5 cm x 0. 1 ) ,  an observation angle of 65 degrees, and no rotation; the segments were not 
offset. 

The same example, with the same values for the PieChart parameters but no labels, 
looks like this: 

input pie chartmp ; 

Segment ( 1 5 , " L i ons " , aut o )  ; 
Segment ( 6 , " Tigers " , aut o ) ; 
Segment ( 10 ,  " Hyaena " , aut o )  ; 

Segment ( 7 , " Monkeys " , aut o ) ; 
Segment ( 5 , " Warthogs " , aut o ) ; 
PieChart ( 3 cm , 0 . 1 , 50 , 0 , 0 ) ; 

Other values for the PieChart parameters produce the following pie charts: 

input piechartmp ; 

Segment ( 1 5 , " L i ons " , aut o ) ; 
Segment ( 6 , "Tigers " , aut o ) ; 
Segment ( 1 0 ,  " Hyaena" , aut o )  ; 
Segment (7 , " Monkeys " , aut o ) ; 

Segment ( 5 , " Warthogs " , aut o ) ; 
PieChart ( l cm , O , O , O , O ) ; 

1 7 1  



1 72 

and 

M ETA P05T APPLICATIONS 

input piechartmp ; 

Segment ( 1 5 ,  "Lions " , auto ) ; 
Segment ( 6 , " Tigers " , aut o ) ; 
Segment ( 10 ,  " Hyaena " , aut o ) ; 
Segment C 7  , " Monkeys " , aut o ) ; 

Segment (5 , " Warthogs " , aut o ) ; 
PieChart ( 2 . 5cm , 0 . 4 , 70 , 0 , 0 ) ; 

input pie chartmp ; 

Segment ( 1 5 , " Lions " , aut o )  ; 
Segment ( 6 , " Tigers " , aut o ) ; 
Segment ( 10 ,  " Hyaena " , aut o ) ; 
Segment ( 7 , " Monkeys " , aut o ) ; 
Segment ( 5 , " Warthogs " , auto ) ; 

PieChart ( 1 . 5 cm , 0 . 1 , 30 , 120 , 0) ; 

input pie chartmp ; 

Segment ( 1 5 ,  " Lions " , aut o ) ; 
Segment ( 6 , " Tigers " , aut o ) ; 
Segment ( 10 ,  " Hyaena " , aut o )  ; 

Segment (7 , I Monkeys " , aut o ) ; 
Segment ( 5 , " Warthogs " , auto ) ; 
PieChart (2cm , O . 3 , 60 , 220 , O . 2 ) ; 

SegmentState(SegmentID, State, Offset) 

This command specifies the state of a given segment. 

SegmentID is the identifier of the segment to which this command applies. The identifier 
is 1 for the first segment declared, 2 for the second, and so on. 

State can be normal (the segment is visible) ,  invis ible (the segment is invisible, but 
space is inserted) ,  hidden (the segment is ignored), or this (when the offset is 
changed, but not the state) .  

Offset is  the offset for this segment, and has the same meaning as the Offset parameter in 
the PieChart command. This offset is added to the global offset and can therefore be 
used to offset all segments but one. 

The following example illustrates this command, with the second segment being invisi
ble and the fourth segment offset by 0.3. Moreover, segments are defined with an alternative 

i Example 
: 4-2-22 

Example 

4-2-23 i ...... . 

: Example 

4-2-24 



Example 

4-2-25 

4.2 Representing data with graphs 

value for display. Finally, the colors are changed with SetupColors (discussed later in this 
section) .  

22400 

1 8200 

1 4 1 00 

input pie chartmp 

SetupColors « 0 . 7 , 0 . 7 ) , this , thi s ) ; 
Segment ( 32 . 5 , " L i ons " , aut o , " 32500 " ) ; 
Segment ( 1 2 . 8 ,  " Tigers " , aut o , " 1 2800 " ) ; 

Segment ( 22 . 4 , " Hyaena " , aut o , " 22400 " ) ; 
Segment ( 18 . 2 ,  " Monkeys "  , auto , " 18200 " )  ; 
Segment ( 14 . 1 , " Warthogs " , aut o , " 1 4 1 00 " ) ;  
SegmentState ( 2 , inv i s ible , th i s ) ; 

SegmentStat e (4 , this , 0 . 3 ) ; 
PieChart (2cm , 0 . 1 5 , 60 , 0 , 0 ) ; 
Label . aut o ( O)  (value ) ( outwards , O ) ; 

Label .Alignment (Segments)(Data) (SegmentPoint,Shift) 

Labels are drawn with the Label command, where 

Alignment specifies the alignment of the label, which can be the usual META P05T label 
position suffixes (top, urt , etc. ) ,  or the alignment auto, which enables the calculation 
of a placement according to the specific situation. 

Segments specifies for which segments a label should be created. It can be a comma
separated list of segment numbers, or the value 0 for all visible segments. 

Data is a string or a predefined value. A string is used to set a specific label. The predefined 
values are value (the segment values) ,  percent (the calculated percent values) ,  and 
name (the segment names) .  A comma-separated list of any such values can be used and 
will produce a concatenation of its values. 

SegmentPoint is a pair specifying the location of the label in a segment-specific system of 
coordinates; (X, Y) corresponds to a label at a fraction X of the radius from the cen
ter, and at an angular fraction Y of the segment from the beginning of the segment, 
counterclockwise. There are two predefined values: inwards, equal to (0 .7 , 0 . 5 ) ,  and 
outwards, equal to ( 1 . 1 , 0 . 5 ) .  

Shift is either a pair used for shifting the label from the position set by the SegmentPoint 
parameter (in which case a line is also drawn) or the value 0 when shifting (and drawing 
the line) is disabled. 

Our first example had the following calls: 

Label (O) (percent ) ( inwards , O ) withcolor whit e ;  
Label . aut o ( 0 )  (name ) ( outwards , 0) ; 

which draw the percent values in white within the segments and keep the segment names 
outside. No shifting occurs. 

1 73 



174 METAP05T APPlICAT10NS 

A more elaborate example appears below. The 8% corresponds to 10 being 8% of 50 + 
30 + 10 + 20 + 20. 

input piechartmp 

SetupColors « . 7 , .7) ,this , this) ;  
SetupPercent (this, " 'i," )  j 

a gr�cn 

Segment (SO. "Lions") j Segment (30, "Tigers") ; 
Segment (10, "Hyaena" ) ;  Segment (20, "Monkeys" ) ;  
Segment (20, "Warthogs" )  ; 

Monkeys 

a segment with 8 % 

SegmentState(4,this , O . 3) ; 
SegmentState(5,invisible ,this) j 
PieChart(2cm , Q . 15,60,Q,O) ; 
Label , auto(O) (name) (outwards ,O) ; 
Label (3.4 ,S) (value) (inwards,O) withcolor white ;  
Label Cl ,2) (percent) (inwards,O) withcolor ( 1 , 1 , 0) ;  
Label . lrt(3) ( "a  segment with " ,percent) 

« O . 9 , O . 8) , (O, -2cm» withcolor . Sred; 
pickup pencircle scaled 2pt ; 
Label , auto(2) ("a green label") 

( (O . 9 , Q . l ) , (-lcm,7mm» withcolor . 8green; 

This example has labels with spaces and needs a font with spaces-hence the 
defaul tfont declaration. This is not a problem when we are using 1bX labels. 

Set upNumbe r s(precisioll,d eUm; ter ) 

In addition to the SetupPercent commands, several other setup commands are available. 
Setup commal/ds The first, SetupNumbers, sets the accuracy and delimiter used. SetupNumbers (2 ,  " • " ) 

will, for instance. round at two places and use a comma delimiter. 

Set upeo 1 0 rs( a u [o-S V .shad i llg-S V .gra ysca ie) 

This command specifies the colors used for segments. The three arguments are as follows: 

auto-SV is a pair (S, V), where S is the saturation and V is the value in the HSV model. 
The hue H is taken from the position of the segment. 

shading-SV is a pair giving the maximum values of (S, V) for shaded areas in segments. 
The default is (0.4,0.3). 

grayscale is a Boolean that. when set to true, switches the colors to grayscale. 

SetupText(Mode.l'eXFormat .1'eXSettings) 

This command sets up how text is handled, using three arguments: 

Mode is an integer specifying the way labels are typeset: 0 is for string-based typesetting 
(default); I is for external lEX:'based typesetting using l'eXFormat and TeXSettings; 2 is 



4.2 Representing data with graphs 

like I, except that \documentclass {minimal} and \begin{document} are auto
matically added; and 3 is like 2, but with TeXFormat defaulting to %&latex. 

TeXFormat is a string representing the 'lEX format to be used, and is written on top of the 
external verbatimtex block. The default is an empty string. Certain systems support 
" %&latex " for !:\TEX. 

TeXSettings is a string including 'lEX commands, which will be written after the 'lEX format 
in the external file. 

For example, the command 

SetupText ( 2 , " %&lat ex " ,  " \us epackage [lat inl] { input enc} " ) ; 

uses a minimal !:\1EX class, selects the !:\TEX format (assuming the system supports the 
%&latex directive) , and loads the standard package for Latin- l input encoding. 

Setup Val ue(PreString,PostString) 

This command is similar to SetupPercent, but applies to the segment values. It might 
be used, for example, when segment values are in millions of euros and a special currency 
symbol needs to be used: 

SetupValue (this , "million \EUR " ) ;  

Set upN ame( PreString,PostString) 

This command is also similar to SetupPercent and SetupValue, but applies to segment 
names. 

Dei inePattern(ID,Method,FillColor, PatternColor,Dimen) 

Segments can be filled in with either a solid color or a pattern fill. In both cases, colors can be 
either chosen automatically or set explicitly. Patterns are defined with the Def inePattern Patterns 

command, where 

ID is an integer identifying the pattern. It is best to number patterns starting with l .  

Method i s  an integer specifying the pattern method. There are 10  predefined methods 
( l . . l O) ,  and the value 0 selects a private pattern (see below) . 

FiliColor is a color for the pattern background. 

Pa ttern Color is a color for the pattern foreground. 

Dimen is a pair (8, W) specifying the spacing 8 between pattern elements, and the 
linewidth W. 

1 75 



1 76 M ETA P05T APPLICATIONS 

An example of pattern definition and its use in a segment follows: 

Def inePattern ( 1 , 9 , red , green , (5mm , 2pt ) ) ; 
Segment ( 50 , I Lions " , 1 ) ; 

We can also create patterns other than the predefined ones. When the pattern method 
is 0, piechartMP calls the Pri vatePattern macro, which must be defined by the user. The 
prototype of the definition is 

vardef Privat ePatt ern (expr ulc , lrc , spc , lwd) = 
save pic ; pi cture pic ; 

p i c  
enddef ; 

This macro is called with a rectangular area given by an upper-left corner ule and a lower
right corner Ire,  plus the spacing and line width, which are embedded in the last parameter 
of Def inePattern. The Pri vatePattern macro must provide a picture and should not 
modify the eurrentpi eture variable. It can use the image or addto commands. 

More advanced examples-in particular, mixing colors in strings-are shown in the 
piecha rtMP documentation. 

Piecharts in  presentations 

When pie charts are used in presentations, and different versions of the same pie chart de
sign are used, it may be important to align properly all the pie charts. This can be achieved 
by setting the PieehartBBox variable to 1 before loading the package: 

Pie chartBBox : = 1 ;  
input piechartmp ; 

piecha rtMP requires two runs for the bounding boxes to become right. 
Incremental presentations can be simplified by applying the general principles on ani

mations, described in Section 4. 1 . 1 l .  The piechartMP documentation gives examples using 
this technique. 

4.3 Diagrams 

Diagrams are a general class o f  drawings loosely covering objects that are interconnected 
with lines or arrows. In this section, we consider a number of such diagrams. 

4.3 . 1  Graphs 
Small graph theory diagrams can be drawn with plain M ETA POST or with a few additional 
definitions. The example in Figure 4. 1 on the facing page shows a Cayley graph produced in 
a simple way, taking advantage of the many symmetries [98 ] .  



Example 

4-3- 1 

4.3 Diagrams 

Figure 4. 1 :  A Cayley graph drawn with M ETA POST 

More complex graphs (or trees) should probably be produced with dedicated tools, 
which can try to optimize the layout of these graphs. Computer algebra packages may also 
have the ability to export META POST code. 

4.3.2 Flowcha rts 

Flowchartsare another kind of diagram that is not too difficult to achieve with boxes, 
M ETAOBJ,  and other similar packages. The following example shows a simple M ETAOBJ 

flowchart: 

\'\� hat-t'---+{ 
- - - - -

input met aobj 

newBox . a (btex Input etex) ; 
a . c=origin ; 
newEll ipse . b (btex what ? etex) 

" framestyle (dashed evenly) " ;  
a . s-b . n= ( O , 5mm) ; 
newCircl e . c (btex no ! etex) ; 
c . w-b . e= ( 1 cm , O) ; 
newPolygon . d (btex f ive etex , 5 ) 

" f it ( f al s e ) " ,  " polymargin ( 2mm) " ;  
c . s -d . n= ( O , 1 cm) ; 
ncbar (a)  (d)  " angleA ( 1 80) " ,  " armA ( 1 cm) " ;  
drawObj ( a , b , c , d) ; ncl ine (a)  (b) ; 
ncl ine (b) ( c ) ; ncline ( c )  (d) ; 

The expressg package can also be used for flowcharts; see Section 4.3.4 for an example. 

4.3.3 Block d rawing and Bond g ra phs 

The blockd raw (CTAN: graphi cs/metapost / contri b/macros/blockdraw _mp) 
package (Henrik Tidefelt) is a set of simple METAPOST macros for the creation of block 

1 77 



1 78 M ETA P05T APPLICATIONS 

I :  ml  I :  m2 C:  C1 ... , s , --- R: Rl 

f J-l f r 1 e --

Se ... , S , --- GY ---I s , .... TF' .... P f 

1 /\ 
R: <PI  (.) R: R2 R: R3 

Se ... , s ... , I: m3 

Figure 4.2: An example of Bond graph done with the bondgraph package 

diagrams and bond graphs. Bond graphs are a graphical tool for capturing the common 
energy structure of systems. Figure 4.2 shows an example of Bond graph. 

4.3 .4 Box- l ine diagra ms: the expressg package 
EXPRESS-G is a standard graphical notation for information models. It is a useful compan
ion to the EXPRESS language for displaying entity and type definitions, relationships, and 
cardinality. For information on the EXPRESS-G notation, consult Annex B of the EXPRESS 
Language Reference Manual (ISO 10303- 1 1 ) .  

The expressg package by Peter Wilson provides a number of basic constructions cov
ering this graphical notation. In this section, we give an overview of the package and some 
examples. 

expressg provides macros for a variety of data types, such as Booleans, and integers. 
Data types These macros are as follows, all with similar graphical representations. The suffix is used to 

position the data type name. The integer 5, for instance, refers to the position z5, and so on. 
These coordinates must be defined before the data types are drawn. 

drawBINARY(suffix) 
drawCoMPLEX(suffix) 
drawGENERIC(suffix) 
drawLoGICAL(suffix) 
drawREAL(suffix) 

dr awBooLEAN(suffix) 
dr awEXPRESS I ON (suffix) 
drawINTEGER(suffix) 
dr a wNUMBER( suffix) 
drawSTRING(suffix) 

An exampleof such a data type is given below: 

INTEGER I I  
input expressg 

z5= ( O , O) ; 
drawINTEGER ( 5 ) ; 

, I I I Examp e I . I l _�.-�=� .. J 



Example 

4-3-3 

Example , 

, 4:.�:.�. I 

4.3 Diagrams 

drawc irclebox(sujfix,diameter) (name) 
drawovalbox(sujfix,length,height) (name) 
dr awroundedbox( sujfix, length ,heigh t,radius ) (name) 
drawdashell  i pse(sujfix,length,height) 
drawdashcircle(sujfix,diameter) 

Circles, ovals, and rounded boxes are obtained with the above macros, whose parameters 

1 79 

are self-explanatory. Circle and oval  boxes 

input expressg 

verbat imtex 
\def\staek# 1 { \vbox{ \hal ign{ \hf il##\hf i l \ er#1\erer}}} 
etex 

zO=origin ; z 1 -z0=z2-z1= (3em , 0 ) ; zO-z3=z 1 -z4=z2-z5= ( 0 , 1 . 5em) ; 
drawovalbox (O , 2em ,  1 em) (btex \staek{This i s \ cr a number} etex) ; 
drawcirclebox ( 3 , 1 . 5cm) (btex c ircular etex) ; 
drawdashcircle (4 , 2cm) ; label (bt ex phant om? etex , z4) ; 
drawroundedbox ( 2 , 1 . 5cm ,  1 cm ,  2mm) ( " rounded " ) ; 
drawroundedbox ( 5 ,  1 . 5cm , 1 cm ,  Omm) (btex \st ack{not \cr rounded} etex) ; 
drawNUMBER ( 1 )  ; 

This is 
a number 

NUMBER I I  
" / 

/ 

- - - -
" 

\ 
I \ 

I \ 
I phantom? I 
\ I 

\ " 
/ 

/ 

drawLEVENT(sujfix,length,height) (name) 
drawGEVENT(sujfix,length,height) (name) 

Slanted rectangles can be used for events: 

I lcvent I 

I gevent I 

not 
rounded 

input expressg 

z 1= ( 0 , 0) ; 
drawLEVENT ( 1 ,  2cm , 
z2= ( 0 , -2cm) ; 
drawGEVENT ( 2 , 2cm , 

1 cm) (btex 

1 cm) (btex 

Slanted rectangles 

l event etex) ; 

gevent etex) ; 



1 80 M ETR P05T APPLICATIONS 

drawcardbox(suffix,length,height,fold) (name) 
drawdi a:mondbox(suffix,length,height) ( name) 
dr awindexbox( suffix,length,height,length2,height2) (name) 

There are also card boxes (with a folded corner of size fold) ,  diamond boxes, and index boxes 
Other boxes (with additional dimensions for the top rectangle) . 

Card text J pack I 

drawdashO( begin,end) 
dr awnormalD( begin ,end) 
dr awnormalOA( begin,end) 
dr awdashA( begin,end) 
dr awnormalOD( begin,end) 
drawnormalDCA(begin,end) 

input expressg 

zO=origin ; 
drawcardbox ( O ,  3cm , l cm ,  3mm) 

(btex Card t ext etex) ; 

z l= ( 1 . 5cm , - l cm) ; 
drawdiamondbox ( l ,  2cm , l cm) 

(btex j ewel etex) ; 
z2= ( 3 . 5cm , - 1 . 5cm) ; 
drawindexbox ( 2 , 3cm , 2cm ,  l cm ,  5mm) 

(btex pack etex) ; 

drawthi ckO(begin,end) 
drawnormalCA(begin,end) 
drawnormalF(begin,end) 
dr a wdashOA( begin,end) 
drawnormalCD(begin,end) 

Finally, objects can be connected with relations. In this case, a relation takes two suffixes 
Relations referring to coordinate variables. 

- - - - - - - - - - - - - 0 

-----�o 
• 

--------------�� 
<: 

- - - - - - - - - - - - - .;>  
- - - - - - - - - - - - - {>  
-------C> 

• 

input expressg 

z l = ( 0 , 0 ) ; z 1 0 1-zl= ( 3 cm , 0 ) ; 

for i=2 upt o 12 : 
z l -z [i] =z 1 0 1 -z [1 00+i] = ( 0 , ( i - l ) * 5mm) ; 

endfor ; 

drawdashO ( l ,  1 0 1 ) ; % open circle 
drawthi ckO ( 2 , 102) ; % open circle 
drawnormalD ( 3 , 103) ; % black dot 
drawnormalCA (4 , 1 04) ; % closed arrowhead 
drawnormalOA ( 5 , 105) ; % open arrowhead 
drawnormalF ( 6 , 106) ; % f anin 
draw z7--z 1 07 dashe s ; 

drawdashA ( 8 , 108) ; % arrow 
drawdashOA ( 9 , 109) ; % open arrowhead 
drawnormalOD ( 1 0 ,  1 1 0 ) ; % open diamond 
drawnormalCD ( l l , 1 1 1 ) ; % closed di amond 
% double closed arrowhead 
drawnormalDCA ( 12 ,  1 12 ) ; 

Example 

4-3-5 



Example 

4-3-7 

4.3 Diagrams 

A simple nonsensical flowchart, showing the use of individual points of an object, is 
given in the next example. z 1 c  is the middle of the LEVENT object set at point 1, z2bm 
is the bottom middle of the diamond box object, etc. However, z3-and not z3c-is the 
middle of the oval box object, and it would not work to set z3c= (0 , -4cm) . More details on 
the handles available for each kind of object can be found in the expressg package manual. 

input expressg 

z l e= ( O , O ) ; 

1 8 1  

drawLEVENT ( l , 2em , l em) (btex A n  event etex) ; 
z2e= ( O ,  - 1 . 5em) ; 
drawdiamondbox ( 2 ,  3em , l em) 

(btex que st ions? etex) ; 
z3= (O , -3em) ; 
drawovalbox ( 3 , 2em ,  l em) (bt ex Oval etex) ; 

z4e=z3+ (3em , O ) ; 
draweirelebox (4 , 2em) (btex The End etex) ; 
drawarrow z lbm--z2tm ; 
drawarrow z2bm--z3tm ; 

drawarrow z3mr--z4ml ; 
label . l lft (btex No etex , z2bm) ; 
label . urt (btex Yes etex , z2mr) ; 

More complex connections can be produced, as shown in Figure 4.3 on the next page 
(courtesy of Peter Wilson). 

4.3.5 UML diagrams-Meta U M L  
M ETA POST is a natural candidate for UML diagrams. Plain M ETA POST can be  used 
for making such diagrams, but there have also been several attempts at developing general 
packages. Here we confine ourselves to the description of the basic features of MetaUML 
(CTAN: graphics/metapost/contrib/macros/metauml ). This package was devel
oped by Ovidiu Gheorghie� [30 J .  

MetaUML provides constructors for a variety of boxes and a variety o f  ways to connect 
these boxes. There are many features common to this package and other packages of the 
boxes family. 

Clas s .name( ClassName) (ListOjAttributes, Lis tOfMe th ods ) 

The main command Class defines a class, and its arguments are as follows: name is the 
name of a Class object representing a UML class; ClassName is a string representing the 
class; ListOjAttributes is a comma-separated list of strings representing the attributes; and 
ListOfMethods is a comma-separated list of strings representing the list of methods. 

The following example defines an instance of Clas s, which is identified as A. This name 
will be used only internally and will not be displayed. The visible name of the instance 



182 M ETA P05T APPLICATIONS 

DonorPointRange ,------""-------, 
M hC . . DonorZone Point Range es onnectlvlty Ll - - - - - - - - - - - - - - - - - - - - - - - - , 

N , trans 
: A [l :N] , 

, , 
_ _ _ _ _ _ _  .0. _ _ _ _ _ _  _ , , , , t eleven.IndexRange ) , , 
v � � Hewu . ZOnE' ) , ---------- , 

, 

L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  I 

, - - - - - - - - - - - - - - - - - - - - - - , 
Meshcon � . . J , - - - - - - - - - - - - - - eleven.MeshCOllIlPctlvltyType , , , f - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - (DER) ConnectivityType 

� - - - - - -«7,4 UnstructurecLDonOl) 
, 

Point Range ' K , 

5,2 (8) 

- - - - - - - - - - - - - -, , t clcven.IndexArray ) , , 
L - - - - - - -0 - - - - - - - , 

_ _ _ _ _ _  � UnstructuredDonor 
- - - - - - - - - - - - - -( 7,5 Struc:tur('cLDonor ) L....,:,-:--,---,--,---,---...J S truct urcdDonor . 

, '
M��hl�� 

- - - - - - - - - - - - - - - - - - - - - , 
PointListSiz 

, ' 

Celeven.IndexJ. , ' � - - - �o - - - - ' 
Point.List.Size , 

, , 
: _ _ _  )�Q.ig1:.Ie.i�t ,-----"--------, ¥�s_hlQ.'"- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  � 

PointRange OveriappingArea (DER) Location - - - - - - - - - - - - - - - - - - - - - �-�-----------� 

Figure 4.3: A complex diagram drawn with the expressg package 

is MyClass ,  the attributes are attrl  and attr2, and the methods are methodl and 
method2. 

MyClass 
• attr I :  int 
• attr2: int 

• method I O :  void 
• method20: void 

input met auml 

Class . A ( I IMyClass " )  
( l l attri : int " , " attr2 : int " )  
( "methodi ( ) : void " , "method2 ( ) : vo id" ) ;  

A . nw= ( O , O ) ; 
drawObj ect (A) ; 

Example 

4-3-8 



Example 

4-3-9 

I Example 

4-3- 1 1  

4.3 Diagrams 

The location of the instance is set with a familiar command: 

A . nw= ( O , O) ; 

It is drawn with 

drawObj ect (A) ; 

Each of the strings representing an attribute or a method may begin with a visibility 
marker: "+" for public, "#" for protected (default) ,  or "-" for private. MetaUML uses these 
markers to render the appropriate locks. 

Point 

.. x: int 
.. y: int 

_ set(x:int, y:int) 
_ getX() :int 
_ getYO:int 
lit debugO:void 

classStereotypes. name(ListO!Stereotypes) 

input metauml 

Class _ A ( I Po int " )  
( " #x : int " , " #y :  int " )  

( " +set ( x : int , y : int ) l I , 
" +getX 0 : int I I  , 
" +getY O : int " , 
" -debug O : vo id " ) ; 

A _ nw= ( O , O) ; 
drawObj ect (A) ; 

This function is used to define stereotypes, where name is the object name of a previously 
created class, and ListOfStereotypes is a comma-separated list of strings. An example of its 
use follows: 

« interface» 
<<home» 
User 

ClassTemplate.name(ListOfIemplates) (class-object) 

input metauml 

Clas s _ A ( I Us er " )  0 0 ;  
clas sSt ereotype s . A  

( " « int erface» " , " « home» " ) ; 

A _ nw= ( O , O) ; 
drawObj ect (A) ; 

The macro ClassTemplate  is the most convenient way of typesetting a class template. 
This macro creates a visual object that is appropriately positioned near the class object it 
adorns. It takes three arguments: name is the name of the template object, ListOfIemplates 
is a comma-separated list of strings, and class-object is the name of a class object. An exam
ple of its use follows: 

ii-----j I _ _ I �ilze: mt l � _ _ _ _ _ _  I 

input met auml 

Clas s . A ( I I Vector " ) 0 0 ; 

ClassTemplat e . T ( " T " , " s ize : int " )  (A)  ; 

A . nw= ( O , O ) ; 
drawObj ects ( A , T) ; 

1 83 



184 M ETA P05T APPLICATIONS 

1 Temp1ate.name(ListOfTemplates) 1 
This macro is used to create template objects independently of class objects. 

1 1 ink( how-to-draw-information ) (path ) 1 
Several kinds of relations between classes are possible, which are represented using the 1 ink 
macro. This macro takes two arguments: how-to-draw-information is either association 
(bidirectional association) ,  as sociat ionUni (unidirectional association), inheri tance 
( inheritance), aggregat ion (aggregation) ,  aggregat ionUni (unidirectional aggrega
tion) ,  composit ion (composition), composi  t ionUni (unidirectional composition), or 
trans i t ion ( transition); and path is a M ETA POST path. 

A simple example with an inheritance link between two class instances follows: 

input met awnl 

Class . A ( " A " ) ( ) ( ) ; Class . B ( " B " ) ( ) ( ) ;  
B . e=A . w+ ( -20 , O ) ; 
drawObj e ct s ( A , B) ; 

l ink ( inheritance )  (B . e--A . w) ; 

The link macro is powerful enough to draw relations following arbitrary paths. 

pathManhattanX(start,finish ) 
rpathManhattanX(start,finish) 

pa thManha t t an Y( start,finish) 
rpathManhattanY(start,finish) 

"Manhattan" paths provide rectangular paths, like in a big city with parallel streets. The 
four macros take the same arguments start and finish, which are the starting and fin
ishing points of the paths, respectively. The pathManhattanX and rpathManhattanX 
macros first draw a horizontal line, and then a vertical line, whereas pathManhattanY and 
rpathManhatt an Y first draw a vertical line, and then an horizontal one. The "r" -prefixed 
macros reverse the orientation of the paths. An example follows: 

pathStepX(start,finish,delta) 

input metawnl 

Class . A ( " A " )  0 0 ;  Class . B ( " B " )  0 0 ;  
B . sw=A . ne+ ( 1 0 , 1 0 ) ; 
drawObj e ct s (A , B) ; 
l ink ( aggregat ionUni ) 

(rpathManhattanX (A . e , B . s ) ) ; 
l ink ( inheritance )  

(pathManhattanY (A . n , B . w) ) ; 

pathStep Y(start,finish,delta) 

Stair-like paths are obtained with pathStepX and pathStepY, where start is the beginning 
of the path, finish is the end of the path, and delta is the amount by which the horizontal 
line (when pathStepX is used) or vertical line (when pathStepY is used) extends in the 
opposite direction before returning toward the end point. 

Example 

4-3- 1 2  , 



Example 

4-3- 14  

ro, •••• 

Example 

4-3- 1 5 

Example 

4-3- 16 

4.3 Diagrams 

pathHorizontal(pA,untilX) 
rpa thHor izon t al(pA,untilX) 

input metauml 

Class . A ( " A " ) 0 0 ;  
Class . B ( " B " ) 0 0 ; 

B . sw=A . ne+ ( 10 , 10) ; 
drawObj ects (A , B) ; 
st epX : =60 ; 
link ( aggregat ionUni)  

(pathSt epX ( A . e , B . e , st epX» ; 
st epY : =20 ; 
l ink ( inheritance )  

(pathSt epY (B . n , A . n , st epY» ; 

pathVert ical(pA,untily) 
rpathVert ical(pA,untily) 

Horizontal and vertical lines are also provided with these four macros, which draw a line 
from pA until the coordinate untilX or untilY is reached. The "r" versions reverse the paths. 

c 
.. foo:int 

I pathCut(objA,objB) (path) I 

input met auml 

Clas s . A ( " A " ) ( )  ( ) ; 
Class . B ( " B " ) ( " b " ) ( ) ; 
Class . C ( " C " )  ( " f oo : int " )  0 ; 

B . sw=A . e+ ( 1 0 , - 1 0 ) ; 
C . sw=A . nw+ ( 0 , 20 ) ; 
drawObj e ct s (A , B , C) ; 
unt ilX : =B . left ; 
l ink ( as s o c i at i on) 

(pathHorizontal ( A . e , unt ilX» ; 
unt ilY : =C . bottom ; 
link ( association) 

(pathVert i c al (A . n , unt ilY» ; 

Paths can also be drawn between objects, using pathCut to get a correct contact at the bor
ders. The path argument is the path to be defined between the two objects objA and objB. An 
example of its use follows: 

input met auml 

Class . A ( " A " ) 0 0 ;  
Class . B ( " B " )  0 0 ;  
B . sw=A . ne+ ( 30 , 10) ; 
drawObj ects ( A , B) ; 
z=A . s e + (30 , - 10) ; 
l ink (trans i t i on) 

(pathCut ( A , B) (A . c--z--B . c » ; 

185 



1 86 

Person 

M ETA P05T APPLICATIONS 

clink(style) (objA,objB) 

Direct paths between object centers can be obtained quickly with clink, where style is 
inheri  tance or any other drawing style. 

I i tern.aName(iAssoc) (s) (equ) I 

input met aurnl 

Class . A ( " A " )  () ( ) ; 
Class . B ( " B " )  ( )  ( ) ; 
B . sw=A . ne+ ( 20 , 10) ; 
drawObj e ct s ( A , B) ; 
cl ink ( inheritance ) (A , B) ; 

Associations are drawn using the i tern macro, where aName is the name of the association 
and will represent the string s, s is a string to adorn the association, and equ is an equation 
specifying where the string s should be located. An example follows: 

works for Company 

I Usecase.name(ListOjLines) I 

input metaurnl 

Class . P ( I Person " )  ( )  ( )  ; 
Class . C ( I Company " )  0 0 ;  
P . e=C . w+ ( -50 , O) ; 
drawObj ect s ( P , C) ; 
draw P . e--C . w ;  
item . aName ( iAssoc)  ( l l works f or " )  

( aName . s= . 5 [P . e , C . w] ) ;  

This macro creates a "use case", where name is the name of an object and ListOjLines is a 
comma-separated list of strings, which are placed on top of each other and surrounded by 
the appropriate visual UML notation. 

input metaurnl 

Authenticate user 
by name, password .. 

Usecas e . U ( " Authent i cat e user " , 
" by name , password " ) ; 

U . c= ( O , O) ; 
drawObj ect (U) ; 

Example 

4-3- 1 7  

Example 

4-3- 1 9  



,--I Example 
i 4-3-20 

, Example : 
4-3-22 i 

4.3 Diagrams 

I Actor.name(ListOfLines) I 
This macro creates an actor, where name is the name of the object and ListOfLines is a 
comma-separated list of strings representing the actor's name. 

Begin.beginName 
End.endName 

User 

input met auml 

Actor . A ( " User " ) ;  

A . c= ( O , O ) ; 
drawObj ect (A) ; 

These macros define the beginning and end of an activity diagram. An example follows: 

• 
I Act i vi ty.name(ListOfStrings) I 

input met auml 

Begin . b ;  
End . e ;  
b . nw= ( O , O ) ; 
e . nw= ( 20 , 20 ) ; 
drawObj ect s (b , e ) ; 

This macro constructs an activity, where name is the name of the activity and ListOfStrings 
is a comma-separated list of strings representing the activity. 

Learn MetaUML -
the MetaPost UML library 

St at e. name( state-name) (substates-list) 

input met auml 

Act ivity . A ( " Learn Met aUML - " , 
" the MetaPost UML l ibrary " ) ; 

drawObj ect (A) ; 

This macro defines a state, where name is the name of the state, state-name is a string or a 
comma-separated list of strings representing the state's name, and substates-list specifies the 
sub states of this state as a comma-separated list of objects. A simple state is obtained with 

input met auml 

Stat e . s ( " Take order " )  0 ; 
drawObj ect ( s ) ; 

1 87 



1 88 M ETR POST APPLICATIONS 

Composite states are defined by enumerating the inner states at the end of the construc-
tor. 

input met awnl 

Begin . b ;  
End . e ;  
Stat e . c ( I Component " )  0 ;  
Stat e . compo site ( I I Compo site " )  (b , e , c ) ; 

b . midx = e . midx = c . midx ; 
c . t op b . bottom - 20 ; 
e . t op = c . bottom - 20 ; 

compo s it e . inf o . drawNameLine . =  1 ;  
drawObj ect ( composite ) ;  

l ink (trans it ion) (b . s  
l ink (transition) ( c . s  

c . n) ; 
e . n) ;  

stateTransi  t ions.name( transitions-list) 

This macro is used to specify internal transitions, where name is the state object and 
transitions-list is a comma-separated list of strings. 

History.name 
Exi tPoint.name 
EntryPoint.name 
Termina te. name 

input met awnl 

State . s ( I I An interest ing stat e  I I  , 
" which i s  worth ment i oning " )  0 ;  

stat eTransitions . s (  
" OnEntry / Open eyes " ,  
" OnExit / Sleep well " ) ; 

s . inf o . drawNameLine . =  1 ;  
drawObj ect ( s ) ; 

Finally, four kinds of special states exist. These macros define name to be either a history 
state, an exit point state, an entry point state, or a terminate state. 

4.3.6 CM arrows util ity 

The cmarrows package by Tommy Ekola (CTAN: graphics/metapost/contrib/ 
macros/  cmarrows) contains macros to draw arrows and braces in the CM style. The rec
ognized arrow styles are given in Table 4. 1 .  

To use an arrow style, we give the command setup_cmarrows with the appro
priate parameters, after loading the package. In the next example, we first define three 

W''l 

I Example I 
I 4-3-24 i L_----.l 

Example 

4-3-25 



Example 

4·3·26 

Example 

4·3·27 

4.4 Geometry 

Table 4. 1 :  eM arrow styles 
A 

Bigbrace 

Biggbrace 

bigbrace 

biggbrace 

..-----"----.. extensiblebrace 

doublearrow 

-------*)) twoheadarrow 

+------�) twowayoldarrow 

twowayarrow 

twowaydoublearrow 

hookrightarrow 

hookleftarrow 

lefthalfarrow 

righthalfarrow 

parallel arrows 

�====::::!) paralleloppositearrows 

paralleloppositerighthalfarrows 

paralleloppositelefthalfarrows 

mapstoarrow 

oldtexarrow 

shortaxisarrow 

texarrow 

tailarrow 

========�) tripplearrow 

new arrow styles. These definitions create the macros drawtripple, drawbrace,  and 
drawparallel,  which can be used like draw or drawarrow: 

4.4 Geometry 

input cmarrows 
setup_ cmarrows C arrow_name = " t ripplearrow" ; 

paramet er_f i l e  = " cmr l0 . mf " ;  
macro_name = " drawtrippl e " ) ; 

setup_ cmarrows C arrow_name = " extensiblebrac e " ; 
parameter_f ile  = " cmr l0 . mf " ; 
macro_name = " drawbrace " ) ; 

s etup_ cmarrows C arrow_name = 
" parallel oppo sitelefthalf arrows " ; 

paramet er_f ile = " cmr l0 . mf " ; 
macro _name = " drawparal lel " ) ; 

numeric u ;  u=7mm ; zO=origin ; 
z l -z0= C 2u , O) ; z2-z 1= ( 3u , 2u) ; 
drawtripple zO o . z l . .  {dir- 120}z2 ; 
draw zO{up} . .  z2 ; 

drawbrace z l {up} . .  z2 ; 
drawbrac e z l {down} . .  zO ; 
drawparallel zO{dir - 1 50} . .  {up}z2 ;  

M ETRPOST is particularly well suited for 2-D geometry, and its automatic resolution of 
linear equations makes drawing geometrical figures very natural. Intersections, symmetries, 
and various other geometrical properties can easily be specified. 

1 89 



190 M ETA P05T APPLICATIONS 

4.4. 1 Plane geometry 
In its handling of linear equations, M ETA POST defines a special, nameless, variable 
whatever representing an unknown numerical value. It is, for instance, possible to write 

10=what ever*5 ; 

This will automatically set the (nameless) variable to 2. However, because this variable is 
nameless, the resulting value is not accessible, so this feature may seem useless. For the 
above, we could as well have written 

and then the variable a could have been used for other purposes. 
To appreciate better the power of the (nameless) whatever, we have to go a bit further. 

If we have two points A and B, finding the intersection between A B and Oy can be done as 
follows: 

pair A , B , I ;  
A= . . .  ; B= . . .  ; 
I =what ever [A , B] ; xpart ( I ) =O ;  

But we can do more-we can use whatever twice: 

pair A , B , I ;  
A= . . .  ; B= . . .  ; 
I=what ever [A , B] =what ever [origin , ( 0 , 1 ) ]  ; 

In the latter example, the two occurrences of whatever represent different variables, which 
usually get different values. The values themselves are not needed, however; only the inter
section I is needed. Hence, what ever can be used very conveniently in such cases where 
linear constraints have to be specified, but where the factors themselves are not explicitly 
involved in other calculations. 

A more complex example showing how whatever is applied to the classical geometri
cal problem of constructing the "nine points circle" of a triangle is given next [99] . It uses a 
straightforward definition, not given here, that draws all labels and dots. 

numeri c u ; u= l cm ;  
pair A , B , C , D , E , F , G , H , I , J , K , L , N , X ;  

A=origin ; B-A= ( 0 , 5u) ; C-A= ( -7u , u) ; % A , B , C  
D-A=B-D ; E-B=C-E ; F-A=C-F ; % middl es D , E , F  
% then , the three height s : 

G=what ever [B , C] =whatever [A , A+ « C-B) rotated 90 ) ] ; % G 
H=what ever [A , C] =whatever [B , B+ « C-A) rotated 90 ) ] ; % H 
I=whatever [A , B] =whatever [C , C+ « B-A) rotated 90 ) ] ; % I 
% then , the orthocenter X 

X= (A--G) intersectionpoint (C-- I ) ; 
% and the middles J ,  K and L of AX , BX and CX 



4.4 Geometry 

J = . 5 [A , X] ; K = . 5 [B , X] ; L= . 5 [C , X] ; 
% the center of the nine point s circle 
N=whatever [ . 5 [D , I] , ( . 5 [D , I] + ( (D- I )  rot ated 90) ) ]  

=whatever [ . 5 [D , H] , ( . 5 [D , H] + ( (D-H) rotated 90 ) ) ] ; 
% circle radius 
r=arclength ( I --N) ; 
draw A--B--C--cycle ; draw A--G ; draw B--H ; draw C--I ; 
draw fullcircle s caled 2r shifted N ;  
Ninepoint sLabelsAndDot s ;  

B 

D 

C ""-==--------+-------+----1 1 

A 

The next example shows construction of an ellipse inscribed in a parallelogram: 

pair O , A , B , C , D , E , F , G , K , M [] , N [] , P C] ; path parallelogram , X ;  
O=origin ; B-O=O-A=3cm*dir ( 120) ; D-O=O-C=4cm*dir ( 1 80) ; 
P l =A+D-O ; P2=B+D-O ; P3=B+C-O ; P4=A+C -O ; 
draw A--B dashed evenly withcolor blue ; 
draw C--D dashed evenly withcolor blue ; 
parallelogram=P l - -P2--P3--P4--cycle ; 
draw parallelogram ; 
E-D=arclength ( O--B ) * (unitvector (B-A) rotated -90) ; 
draw D--E ; draw O--E ; F= . 5 [O , E] ; 
X=fullcircle scaled arclength ( O--E) shifted F ;  
draw X ;  
G= (F--D) intersectionpoint X ; K= (F-- (F+ (F-D) ) )  intersectionpo int X ;  
draw D--K ; 
Nl-0=O-N2=arclength (D--G) *unitvector ( O-K) ; 

Ml -0=O-M2=arclength (D--K) *unitve ctor ( O-G) ; 
draw N l --N2 dashed evenly ; draw Ml--M2 dashed evenly ; 
a : =arclength (Ml--0 ) ; b : =ar c length ( N l - - 0 ) ; an : =angle (Ml-0) ; 
draw fullcircle xs caled 2a yscaled 2b rotated an shi fted 0 withcolor red ; 

draw E-- (E+ (E-D) ) dashed evenly ; 
EllipseLabelsAndPoint s ; % not shown 

191  



192 

A 

M ETA POST APPLICATIONS 

A B � .----------------==---�--==----�--------� 
\ 

\ 
\ 

\ / 

I 
I 

I 
I 

, 
, 

, K 

\ 
\ 

c 

A 

Figure 4.4 (adapted from Coxeter: The Golden Section, Phyllotaxis, and Wythoff's Game, 
1953) is another example of geometrical construction, where the construction provides a 
means to find the golden ratio. The value shown in the figure is slightly wrong, because it is 
the value measured by M ETA POsT after the construction was done, and there were round
ing errors. 

Plane fractals can also be constructed. The example in Figure 4.5 on the facing page 
shows the Apollonian gasket obtained from the three circles centered at C1 , C2 , and 
C3 [ 1 0 1 ] .  

As a final goody, here is the geometriesyr1 6 package by Christophe Poulain, which can 
produce hand-drawn geometrical figures: 

o 

B 

4.4.2 Space geometry 

input geometriesyr 1 6  

f iguremainlevee C O , O , 5u , 5u) ; 
trace grille ( l )  withcolor gri s ; 
origine ( ( 3 , 2 ) ) ; 
trace axe s ; 
pair A , B , C ;  
A=placepoint ( -2 , - 1 ) ; 
B=placepoint ( l , - l ) ; C=placepo int ( 1 , 2) ; 
trace polygone (A , B , C ) withcolor rouge ; 
trace cercles ( A , B , C ) withcolor bleu ; 
nomme . l lft (A) ; nomme . lrt (B) ; 
nomme . top C C ) ; 

f inmainleve e ; 

M ETA POST can also be used with great profit for space geometry applications. More detail 
can be found in Section 4.6.3 about 3-D extensions. 

Example 

4-4-2 

Example 

4-4-3 



4.4 Geometry 

,. V 
,. ,. 

o 

,. 
�--�,. 

��,. ,. " 
' <  

,. ,. ,. , ,. 
I 

, I 

I 
I 

I 

- _ > ::'10 

/r - -� _ _ _ B 
I 

I �Q / / / 
,. 

K 

�� � 1 .6 1 806 = ¢ = 1 +2V5 

Figure 4.4: Pipping's construction for the golden number 

Figure 4.5: The Apollonian gasket 

1 93 



194 M ETA POST APPLICATIONS 

4.4.3 Fracta ls  and other complex objects 

M ETA POST has been used for fractals as well. One example is the Von Koch flake (Sec
tion 3.5 .7) ;  another is the Apollonian gasket [ l O l l .  Still other examples include L-systems, 
which we saw earlier when discussing turtle-style graphics (see Section 4. 1 .9) .  

Hilbert's curve Another fractal is Hilbert's curve, adapted from code written by Urs Oswald. The main 

Sierpillski's curve 

macro is hi lbertPath: 

vardef hi lbertPath ( expr s ,  n) = 

save pa , pb , pc , A , B , C , shift , hilb , h ;  

path pa , pb , pc , hilb , h ;  pair A , B , C , shift ; 

if n=O : hilb=origin ; 

else : shift= ( s ,  0 ) ; 

f i  

h=hilbertPath ( s , n- i ) ; 

pa=h reflect edabout ( origin , ( i ,  - i ) ) ; 

A=point length (pa) of pa ; 

pb=h shifted ( A+shift ) ;  

B=po int 0 of pb ; 

hilb=pa & A--B & pb ; 

C=B shifted « A+ . 5shi f t )  rotated -90) ; 

pc=reverse hi lb reflect edabout ( C , C+right ) ; 

hilb : =hilb & point length (hilb) of 

hilb--po int 0 of pc & pc ; 

hilb 

enddef ; 

side=5cm ; n=5 ; 
onestep=side! ( 2 * *n) ; 
draw hilbertPath ( onestep , n) ; 
draw unit square s c aled s ide 

shifted ( - . 50ne step , . 50nestep-side ) ; 

Sierpinski's curve is even easier (after Martin Geisler) : 

def s i erpinski ( expr a , b , n) =  

if n=O : 

f i l l  a-- (b rotatedabout ( a , 60) ) --b- -cycle ; 

else : 

f i  

s ierpinski ( a , 0 . 5 [a , b] , n- i ) ; 

s ierpinski ( 0 . 5 [a , b] , b , n- i ) ; 

s i erpinski ( 0 . 5 [a , b  rotatedabout ( a , 60 ) ] , 

0 . 5 [a rotatedabout (b , -60) , b] , n- i ) ; 

enddef ; 

s i erpinski « 0 , 0 ) , ( 0 , 6cm) , 6) ; 

Example 

4-4-5 



4.4 Geometry 195 

Verhulst diagrams are not much more complex to produce (after Jean-Michel Sarlat) :  Bifurcation diagrams 

4.4.4 Art 

numeric r , pr , x , rmin , rmax , ur , ux ;  

rmin= 1 . 9 ;  
rmax=3 ; 
ur=5cm ; 

ux=6cm ; 
r : =rmin ; 
pr : = (rmax-rmin) /250 ; 
f or i=l  upto 250 : 

x : = . 3 ;  
f or j = l  upto 50 : 

x : = ( l+r) *x-r*x*x ; 
endf or ; 

f or j = l  upt o 50 : 
x : = ( l+r) *x-r*x*x ; 
draw ( r , x) xs caled ur yscaled ux ; 

endf or ; 

r : =r+pr ; 
endf or ; 

Simple combinations of scaling, rotations, and iterations sometimes produce impressive ef
fects. Here is an example, also from Jean-Michel Sarlat: 

numeri c  psi , iter , c , r , t , cv ;  
path p ;  
psi=137 . 6 ;  
iter=200 ; 
c=5 ; 
r=O ; 
for i=iter downt o 1 :  

t : =sqrt ( i ) ; 
r : = ( r+psi )  mod 360 ; 

cv : =cosd ( ( i/iter ) *90) ; 
p : = ( ( O , O) -- (t , l ) --

( t + l , O ) -- ( t , - l ) - - cycle)  

rotated r ;  
f ill  p scaled c withcolor ( l , cv , O ) ; 
draw p s c aled c ;  

endf or ; 

See Color Plate III for examples of artwork producing optical illusions. 



196 

R 

M ETA P05T APPLICATIONS 

4.5 Science and engi neeri ng appl ications 

4.5 . 1  Electrica l circuits 

There are two main M ETR POST packages for drawing electrical circuits: makecirc and 
mpcirc. We will give a detailed description of the first package. 

The makeci rc package by Gustavo S. Bustamante Argaftaraz provides a library con
taining various electrical symbols to be used in building circuit diagrams [ 10 J .  Like boxes, 
expressg , M ETROBJ ,  MetaUML, and other packages, it is a package of the "box-line" type. 

The package is loaded with 

input make circ 
initlat ex ( " " ) ; 

The additionnal ini t1atex command is necessary only when labels are to be type
set with �TFX. ini t1atex is provided by the latex package (by Jose Luis Diaz), which is 
automatically loaded by makecirc. This command takes a string representation of the �TEX 
preamble. It must be issued whenever �TEX is used, even if no package is loaded, as in Ex
ample 4-5- 1 below. 

When the labels are done in 1FX or �TEX, M ETR POST has to be called twice on each 
file. The first run collects the labels, while the second run typesets them. This speeds up 
processing, as only one 1FX or �TFX file is created. 

makeci rc can handle all the common elements of electrical circuits. Example 4-5- 1 
shows the main ideas of this package. It needs �TFX implicitly, because makecirc defines 
\ahm as an abbreviation for \ensuremath{\Omega} and \ensuremath is a �TEX com
mand. The three objects depicted are a resistor R, an inductor L, and a capacitor C. 

C 

L 

input make circ ; 
init l at ex ( " " ) ; 

resistor . a ( origin , normal , 90 , I R I , 1 1 0\ohm " ) ; 
inductor . a ( R . a . r+ ( 2cm , O ) , Up , -90 , I L I , " I ) ; 
centreof . A (R . a . r , L . a . l , cap) ; 
capac itor . a ( c . A , normal , phi . A ,  " G " , 11 1 1 ) ; 
wire ( R . a . r , G . a . l , nsq) ; wire ( G . a . r , L . a . l , nsq) ; 

wire (L . a . r , R . a . l , udsq) ; 

The main elements at our disposal are listed and demonstrated in Table 4.2 and 4.3 on 
the next page (only one type for each element is shown) .  

Before going into more detail on  these elements, it i s  useful to analyze the example. 
Suppose a resistor is set at the origin, rotated 90 degrees counterclockwise, and has the value 
IOn. The name of the resistor is "a" . Once the resistor is in place, the locations of its two 
pins are R .  a . 1  and R .  a .  r. The latter is used to position the inductor, which is also named 
"a" but could have been named differently. The inductor is rotated clockwise by 90 degrees 
and its spires are put on the "Up" side (before rotation) .  Then, the capacitor is positioned 
midway between the resistor and the inductor. The centreaf command specifies that a 
capacitor type element (cap; see Table 4.2) is to be positioned between R .  a .  r and L . a .  l. 
It accordingly sets c .  A and phi . A to the location of the origin pin of the capacitor and to 

[ Example 
, 

4-5- 1 ! 



4.5 Science and engineering applications 

Table 4.2: Elements and their abbreviations 

Element 

Inductor 
Motor 
Transformer 
AC source 
Current source 
Resistor 
Transistor 
Impedance 
Switch 

Volt 

-0-

Battery 

Lamp 

Generator 

L 

R 
-AM

l O n 

Abbreviation Element Abbreviation 
ind Capacitor cap 
mot Generator gen 
tra Battery bat 
sac DC source sdc 
si Voltage source sv 
res Diode dio 
bjt Measurement insttrument ins 
imp Lamp lam 
swt Current cur 

Table 4.3: The main components of a circuit 

junction 
• 

...L 

Current -

Impedance 
-c=:J-

!vIator 
-@-

AC 
-&-

C 
-H-

input make c irc ; 
init latex ( " " ) ; 

meains . a « Ocm , 1 1 . 5cm) , volt , 0 , " Volt " ) ; 
j unct ion ( ( 3 . 5cm , 1 1 . 5cm) , "  j unct ion " ) (top) ; 

rheostat . a « Ocm , 10 . 5cm) , Rrhe o , -90) ; 
diode . a « 3cm , 10 . 5cm) , normal , 0 , pinA , " D_ l " , " " ) ; 

trans istor . a « Ocm , 9cm) , pnp , 0 ) ; 
ground . a « 3 . 5cm , 9cm) , s imple , 0 ) ; 

battery . a (  ( O em , 7 .  5cm) , 0 ,  " B at tery " , " " ) ; 

transi ormer . a « 3cm , 7 . 5cm) , normal , -90) ; 

lamp . a « Ocm , 6cm) , 0 ,  "Lamp " , " " ) ; 

current . a « 3 . 5cm , 6cm) , 0 , " Current " , " " ) ; 

generat or . a « Ocm , 4 . 5cm) , 0 , " Generat o r " , " " ) ; 
impedance . a « 3cm , 4 . 5cm) , 0 , " Impedanc e " , " " ) ; 

switch . a « Ocm , 3cm) , NO , 0 , " NO " , " " ) ; 
motor . a (  (3cm ,  3cm) , 0 ,  " Motor " , " " )  ; 

induct or . a ( (0 em , 1 . 5cm) , Up , ° , " L "  , " " )  ; 

s ourc e . a « 3cm , 1 . 5 cm) , AC , 0 , " AC " , " " ) ; 

resi stor . a ( origin , normal , 0 , " R " , " 1 0\ohm " ) ; 
capac itor . a « 3cm , 0 ) , normal , O ,  " C " , " " ) ; 

197 



1 98 

R 

R 

M ETA P05T APPLICATIONS 

its angle, respectively. These two values are then used to set the capacitor (also called "a" ) .  
Finally, wires are drawn between the resistor and the capacitor, between the capacitor and 
the inductor, and between the inductor and the capacitor. The last parameter of the wire 
command defines how the lines are drawn, whether as a straight line or as several cut lines. 

Every makeci rc element type has an abbreviation (Table 4.2) .  These abbreviations are 
used in macros such as centreof or cent erto. 

The first example showed how to center the capacitor, but the resistor and inductor were 
not centered. This can be achieved with the centerto command: 

c 

input rnake circ ; 

initlatex ( 'I I ' )  ; 

resist or . a ( origin , norrnal , 90 , I R I , 1 1 0\ohm " ) ; 
centerto . A (R . a . l , R . a . r , 2crn , ind) ; 
induct or . a (A , Up , 90 , I L I , " I ) ; 
centreof . B (R . a . r , L . a . r , c ap ) ; 
capac itor . a ( c . B , norrnal , phi . B , I C I , " I ) ; 
wire (R . a . r , C . a . l , nsq) ; wire ( C . a . r , L . a . r , nsq) ; 

wire ( L . a . l , R . a . l , nsq) ; 

In this example, A (the origin of inductor "a") is defined as a point 2 cm away from 
the middle of [R . a . 1 ,R . a .  r 1 and at right angle with this segment. Note that centerto . A 
defines A as a point, but centreof . B defines c .  B as a point. As a consequence, the resistor 
and the inductor are correctly centered and the capacitor is between them, but the capacitor 
is tilted and the wires are not parallel. 

To overcome these problems, an additional point z 1 can be introduced, at the right of 
the capacitor and above the inductor, using xpart and ypart: 

c 

input rnake circ ; 
initlatex ( " " ) ; 

resist or . a ( origin , norrnal , 90 , I R I , 1 10\ohm " ) ; 
centerto . A (R . a . l , R . a . r , 2 crn , ind) ; 

induct or . a (A , Up , 90 , I L I , " I ) ;  
z l = (xpart L . a . r ,  ypart R . a . r ) ; 
centreof . B (R . a . r , z l , cap ) ; 
capac itor . a ( c . B , norrnal , phi . B , " C I , " I ) ; 
wire (R . a . r , C . a . l , nsq) ; wire (C . a . r , L . a . r , nsq) ; 
wire (L . a . l , R . a . l , nsq) ; 

The capacitor is now horizontal, and only the wiring needs to be improved. 
The exact syntax of the wire command is as follows: 

I wire(pin l , pin2, type) I 
The wiring type indicates how the lines are drawn, and in particular whether they first go up 
or down (type "udsq") or first right or left (type "rlsq") .  The "nsq" type is for straight lines 

[ Example 

4-5-3 

Example 

4-5-4 



Example 

4-5-5 

4.5 Science and engineering applications 

("no square") .  Changing the types, the correct output is obtained as follows: 

c 

R 

input make circ ; 
initlat ex ( " " ) ; 

resist or . a ( origin , normal , 90 , IRI , 1 1 0 \ ohm " ) ;  
centerto . A (R . a . l , R . a . r , 2cm , ind) ; 
induct or . a (A , Up , 90 , I L I , " I ) ; 
z l = (xpart L . a . r ,  ypart R . a . r ) ; 
centreof . B (R . a . r , z l , cap) ; 
capac itor . a ( c . B , normal , phi . B , I C I , " I ) ; 
wire (R . a . r , C . a . l , udsq) ; wire ( C . a . r , L . a . r , rlsq) ; 
wire (L . a . l , R . a . l , udsq) ; 

We now give the syntax of all the commands: 

resistor.a(z, type, angle, name, value) 
inductor.a (z, type, angle, name, value) 
swi t ch.a(z, type, angle, name, value) 

capaci tor.a (z, type, angle, name, value) 
source.a(z, type, angle, name, value) 

In most cases, the syntax is self-explanatory. Each element's name is indicated by the symbol 
a, except in the case of a mesh current ( imesh-see below), which does not have a name. 
The first parameter z of most of the macros is the element's center. In the earlier examples, 
the centers were origin, A, and c . B. 

Several elements are available in different kinds, or types. Sometimes the type merely 
serves to indicate how an element is drawn, as for the Up and Down versions of inductors. At 
other times the type corresponds to real differences in the elements, such as for PNP, NPN, 
and other transistors. 

An element can also have a name and a value (for instance, a resistor Rl of value 200n) .  
Except for junctions, which are represented by dots, elements are also positioned using 

an angular value angle. 

motor.a(z, angle, name, value) 
impedance.a(z, angle, name, value) 
current.a(z, angle, name, value) 
transformer.a(z, type, angle) 
ground.a(z, type, angle) 
diode.a(z, type, angle, pin, name, value) 
j unct ion.a (z, text) (pos) 

generator.a (z, angle, name, value) 
lamp.a (z, angle, name, value) 
battery.a(z, angle, name, value) 
trans istor.a (z, type, angle) 
rheostat.a (z, type, angle) 
meains.a (z, type, angle, text) 
imesh(center, width, height, sense, angle, name) 

A measurement instrument (meains) and a junction will also have a text label, and a junc
tion will have a positioning argument pos for this label. Diodes have an additional parameter 
pin indicating which pin-the anode (pinA) or the cathode (pinK )-is placed on the z po
sition. Finally, mesh currents ( imesh) are also given a center position, a width, a height, and 
a direction (clockwise or counterclockwise) . 

The values of both the parameters and the pins are given in Table 4.4. 

199 



200 M ETA POST APPLICATIONS 

Table 4.4: Possible types, pins, and positioning pins for each element 

Elements Types Pins Positioning Pins 
Inductor Up, Down 1.o:.1 l1.o:·r 1.o:.! 
Capacitor normal, variable, elec- C.o:.1 lC.o:·r c.0:.1  

trolytic, variant 
Resistor normal, variable R.o:.1, R.o:.r R.o:.1 
Source AC, DC, V, I S.o:.n, S.o:.p S.o:.n 
Switch NO, NC st.o:.1, st.o:.r st.a.1 
Motor / M.o:.D, M.o:.B M.n.D 
Generator G.o:.D, G.o:.B G.o:.D 
Impedance Z.o:.!, Z.o:.r Z.o:.1 
Lamp La.o:.1, La.o:.r La.n.1 
Current i.o:.s, i.o:.d 1.CY.S 

Battery B.o:.n, B.o:.p B.o:.n 
Transformer normal, mid, Fe, auto tf.o:.pi, tf.o:.ps, tf.o:.si, tf.o:.pi 

tf.o:.ss, tf.o:.m 
Transistor pnp, npn, cpnp, cnpn T.o:.B, T.o:.C, T.o:.E T.o:.B 
Ground simple, shield gnd.o: gnd.a 
Rheostat Lrheo, Rrheo rh.o:.i, rh.o:.s, rh.o:.r rh.o:.i  
Diode normal, zener, LED D.o:.A, D.o:.K D.o:.A (pin=pinA),  

D.o:.K (pin=pinK) 
Measurement volt, ampere, watt mi.o:.1, mi.o:.r, mi.o:.p mi.n.1 
instrument 

wireU(pin l , pin2, dist, type) 

This command is used when two pins need to be connected but with three segments, like the 
"u" shapes connecting the resistor G rJ> to the inductor BrJ> in Example 4-5-6. The type has the 
same meaning as for the wire command, except that it should not be "nsq". The absolute 
value of the dist parameter gives the distance by which the connection leaves the pins, and 
the sign of dist indicates the direction. 

ctext .pos (pin l , pin2, text, type) 

This command is used to center text between two pins, pin l ,  and pin2. Two types are avail
able: wi tharrow and no arrow. Morover, the text can be positioned using the optional ar
gument pos, which is identical to the optional argument of the label command. 

The following examples illustrate some of the capabilities of this package. 

input makecirc ; 
init latex ( " \usepackage {amsmath , amssymb} " ) ; 

j unct ion . a (origin , " lb " )  (lit ) ; j unct ion . b ( ( 0 , 4cm) , " l a" ) (lit ) ; 
r e s i stor . a (  ( i cm , 4cm) , normal , O ,  " R_ l " , " O  , 82\ohm " ) ; 
inductor . a (R . a . r , Up , 0 , " X_{Ll } " , " 0 , 92 H " ) ; 

centerto . A ( J . a , J . b , 4cm , re s )  ; 



!- Exampl� 1 
4-5-6 I 

4.5 Science and engineering applications 

res i stor . b (A , normal , 90 , " G_{\phi} " , " O , 4 1 \ ohm " ) ;  
cent erto . B ( J . a , J . b , 7cm , ind) ; 
inductor . b (B , Down , 90 , " B_{\phi} " , " 2 , 24 H " ) ; 
induct or . c (L . a . r+ ( 3 . 6cm , O ) , Up , O , " X ' _{L2} " , " O , 9  H " ) ; 
resistor . c (L . c . r , normal , O , " R ' _2 " , " O , 8\ ohm " ) ; 
j unct ion . c (R . c . r+ ( 1 cm , O ) , " 2a" ) (rt ) ; 
j unct ion . d (R .  c .  r+ ( 1 cm , -4cm) , " 2b " )  ( rt )  ; 
wire ( J . a , J . d , nsq) ; wire ( J . b , R . a . l , nsq) ; 
wireU (R . b . r , L . b . r , 3mm , udsq) ; wireU (R . b . l , L . b . l , -3mm , udsq) ; 
wire ( L . a . r , ( 5 . 5cm , ypart R . b . r  + 3mm) , rlsq) ; 
wire « 5 . 5cm , ypart R . b . l  - 3mm) , ( 5 . 5cm , O ) , nsq) ; 
wire (R . c . r , J . c , nsq) ; wire (L . c . l , ( 5 cm , ypart L . c . l ) , nsq) ; 
ct ext ( J . a ,  J .  b ,  " $V_ l $ "  , noarrow) ; ct ext ( J . c ,  J .  d ,  " $V '  _2$ " , noarrow) ; 

R' 2 

1a----J' \r----- 2a 

0 ,82 0 0,92 H 

0 ,41 0 2 , 24 H 

0 ,9  H 0 ,8 0 

V' 2 

1b.-----------------------�---------------------- 2b 

input makecirc ; 
initlatex ( " \usepackage {amsmath , ams s ymb} " ) ; 

trans istor . a ( origin , pnp , O ) ; j unct i on . B (T . a . B , " B " ) (top) ; 
j unct ion .  E (T .  a .  E ,  " E " ) (11ft)  ; j unct i on . C (T . a .  C ,  " C " )  ( t op )  ; 
resistor . C (T . a . C+ ( 2cm , -5mm) , normal , -90 , " R_C " , " " ) ; 
source . CC ( R . C . r , DC , -90 , " V_{CC} " , " " ) ; 
resistor . B (T . a . B+ ( -2cm , O ) , normal , -90 , " R_B " , " " ) ; 
source . EE (R . B . r , DC , -90 , " V_{BB} " , " " ) ; 
capac itor . a (T . a . B+ ( -3cm , O) , normal , - 180 , " C_ a " , " " ) ; 
j unct ion . a ( C . a . r+ ( - l cm , O ) , '"' ) (top) ; 
j unct ion . b c expart J .  a ,  ypart S .  EE . p-5mm) , " " )  (bot ) ; 
wire (T . a . C , R . C . l , rlsq) ; wire ( T . a . B , C . a . l , nsq) ; 
wire ( C . a . r , J . a , nsq) ; wireU ( S . EE . p , S . CC . p , -5mm , udsq) ; 

wire ( J . b , S . EE . p+ (O , -5mm) , nsq) ; 

wire (T . a . E , (xpart T . a . E , ypart S . EE . p-5mm) , nsq) ; 
current . E (T . a . E+ (O , - l cm) , 90 , " I _E" , " " ) ; current . C ( T . a . C+ ( 5mm , O ) , O , " I _ C " , " " ) ; 

current . B ( J . B+ ( -5mm , O) , - 1 80 , " I _B " , " " ) ; 

ct ext . 1ft ( J . a , J .  b ,  " $E_ l $ " , witharrow) ; 
wire (R . C . l , R . C . l+ ( lcm , O ) , nsq) ; wire (R . C . r , R . C . r+ ( l cm , O ) , nsq) ; 

20 1 



202 METAP05T APPLICATIONS 

ctext . rt (R . C . l+(lcm,O) , R . C .r+(lcm.O) , "$E_2$" ,witharroY) ; 

C Ie 

B 

Ca Ia 
Rs E Re E, 

E, Ie 
Vsa Vee 

input makecirc; 
initlatex(" \usepackage{amsmath , amssymb}") ; 

source , a (origin,AC,90,"v" , " " ) ;  
junction , aCS ,a .p+(3cm, lcm) , " ") (top) ; 
diode. aU. a,normal , -45,pinA, "0_1" . " " ) ; 
diode .bCD . a.K ,normal ,-135,pinK, "D_2" , " " ) ;  
diode . do. b . A , normal, 135,pinK. "0_3" . " " ) ;  
diode .d(D . c . A ,normal ,45,pinA , "D_4" , " " ) ;  
junction,b(D . b , A , " " ) (bot ) ;  

centerto ,A(S ,a ,n ,S , a.p) (5cm,imp) : 
impedance . a(A, 90, "Z_L" , " " )  ; 
wireU(S . a . p ,D . a . A , l . 5cm,udsq) ; 
wireU(S . a . n .D . b . A .-l .5cm.udsq) ; 
wire(D . a . K , Z . a . r , rlsq) ; 
wire ( Z . a . l , Z . a . l+(O, -4mm) ,nsq) ; 
wireU(Z . a . l+(O,-4mm) ,D .d .A ,-4cm,rlsq) ; 

input makecirc : 
initlatexCtt \usepaekage{amsmath, amssymb}tt) ; 

transformer . aCorigin,mid,O) : 
diode. aCtf . a .  ss+(Smm, 1cm) ,normal , ° ,pinA, "D_1" , " " )  j 
diode .b(tf . a . si+CSmm,-1em) ,normal , O ,pinA , "D_2" , " " ) :  
impedanee . aCD . a . K+C2em, -4mm) ,-90. ttZ_L" , "300\ohm") ; 
wire(tf . a. ss , D . a . A ,udsq) ;wireCt f . a . s i , D . b . A , udsq) ; 
wireCD . a . K , Z . a . l ,rlsq) :wire C Z . a . r , t f . a.m,udsq) : 
wire(D . b . K , D . a . K+(Smm,O) ,rlsq) ; 
junction. a(D . a . K+ (Smm.O) . " " ) (top) ; 
centerto.A(tf . a .pi,tf . a . ps) (-15mm,sae) ; 
souree . aCA,AC,90, "220 V" , "vtt) ;  
wireCS.a .p,tf . a . ps , udsq) ;wire (S . a.n ,tf . a .pi,udsq) ; 
centreof .A« xpart S . a.p, ypart tf . a.ps) ,tf . a . ps , eur) ; 
current . aCe.  A ,phi. A ,  "i (t) " , " S  A")  j 
imesh (tf . a . ss+ ( lcm,O) . 15mm, lem,ew,O . "I_{ce} tt ) :  



Example I 
4-5-9 j 

4.5 Science and engineering applications 

220V 

300 0 

At least one other pure M ETAPOST package for drawing electrical circuits exists: 

203 

mpcirc by Tomasz Cholewo, available from http : / / e i  . uof l . edu/tom/ software/ Other circuit packages 

LaTeX/mpeire .  In addition, tools are available that can take non-METAPOST input and 
produce METAPOST output for electrical circuits. An example of such a tool is the M4 
Cireui t_maeros by Dwight Aplevich [8 ]  and described in Section 8.6.2 on page 583. This 
tool also uses DPIC with a variety of output formats, in particular PSTricks. 

4.5.2 Mechan ics and engineering 
M ETAPOST is very well suited for engineering drawings, and in particular drawings rep
resenting mechanical components, as demonstrated in Figure 4.6. This figure makes use of 
the macros described in Section 4. 1 .3 for drawing hidden lines. 

Q 

Figure 4.6: A drawing in mechanical engineering, making use of the macros for hidden lines 

4.5 .3 Simu lation 

The random number generators of METAPOST can be used to produce various random 
walks for simulation purposes, as shown in the following example: 

vardef randomwalk ( expr C , wd , ht , n , l , f , r ) =  
save A , B , a , b ; pair A , B ; a=O ; 



204 M ETA P05T APPLICATIONS 

draw « wd , -ht ) -- (wd , ht ) -- ( -wd , ht ) - - ( -wd , -ht ) --cycle)  shifted C ;  
A=C ; 
f or i = l  upt o n :  

f orever : 
b : =a*f + « unif ormdeviate 2 ) - 1 ) * 1 80r ; 
B : =A+l * (unif ormdeviat e  l ) *dir (b) ; 
if ( abs (xpart (B-C) ) >= wd) or ( abs (ypart (B-C) ) >= ht ) : 

B : =A+l* (unif ormde viate 2 ) *dir (b+ 1 8 0 ) ; 
f i ;  
exitif ( abs (xpart (B-C) ) <  wd) and ( abs ( ypart (B-C) ) <  ht ) ; 

endfor ; 

draw A--B ; A : =B ; a : =b mod 360 ; 
endf or ; 

enddef ; 
randomwalk ( origin , 2 . 5 cm , 2 . 5 cm , 1 000 , 1 0mm , O , 1 ) ; 

randomwalk « 6 cm , O ) , 2 . 5cm , 2 . 5cm , 3000 , 4mm , 1 , O . 3 ) ; 

4.5.4 Optics 

There are no general-purpose METRPOST packages for optical drawing, although METR
POST is very well suited for this purpose. 

We give here a minimal example demonstrating the capabilities of METRPOST for 
tracing rays through diopters or rays reflected on mirrors. The macro ref lectray takes a 
ray source, an angle, and a path representing a surface. The refractray macro takes two 
refraction indices. A ray is followed by computing its intersection with the surface, comput
ing the normal at the intersection, and computing the refracted or reflected angles. These 
macros are very much simplified in that they will work for only certain surfaces, as the com
putation of the intersection is not robust enough and does not handle cases where there are 
several intersections in a given ray direction. A more elaborate package would identify each 
side of the diopter and ensure that refracted rays are, indeed, refracted. The main reason 
for our interest in these macros is their current simplicity and versatility with respect to the 
diopter surface. 



Example 

4-5- \ \  

4.5 Science and engineering applications 

A natural extension to these macros would be to associate several diopters and produce 
lenses. It would be desirable to have a data structure for each optical object so that rays could 
be followed in some transparent way, independent of the nature of the optical object. 

vardef ref le ctray ( expr s , a , p ) =  
save t 1 , tn , ia , 1 , J ; pair 1 , J ;  
t1=xpart (p intersectiont ime s ( s - - ( s+30cm*dir (a» » ; 
if t I >=O : 

1=po int t 1  of p ; draw s - - 1 ; 
tn=angle (direct ion t 1  of p) +90 ; 
%drawarrow 1-- ( 1+dir (tn) *3cm) ; % normal 

%drawarrow 1-- ( 1+dir ( 1 80+tn) *3cm) ; 
ia=tn-angl e ( s - 1 ) ; J=1+dir (tn+ ia) *2cm ; 
draw 1--J  withcolor blue ; 

f i ;  
enddef ; 

numeric u ; u=3mm ; path p ;  
p= ( (5u , -6u) . .  (4u , -2u) . .  ( 4 . 5u , 0 ) . .  ( 5u , 5u» rotated 90 ; 
zO=origin ; 

for a=40 step 5 unt i l  140 : reflectray (zO , a , p ) ; endf or ; 
draw p withcolor red ; 

varde f refractray ( expr s , a , p , na , nb) = 
save t 1 , tn , i a , ib , 1 , J , s ib ; pair 1 , J ;  
t 1=xpart (p intersect iont imes ( s - - ( s+30cm*dir (a» » ; 
if t 1 >=O : 

1=po int t 1  of p ; draw s - - 1 ; tn=angl e ( direct ion t 1  of p ) +90 ; 
%drawarrow 1-- ( 1+dir (tn) *3cm) ; % normal 
%drawarrow 1-- ( 1+dir ( 180+tn) *3cm) ; 
ia=tn-angle ( s - 1 ) ; 
% we have na* sind ( ia) =nb * s ind ( ib )  
sib=na*s ind ( ia) !nb ; ib=-angle ( l+-+sib , s ib) ; 
J=1+dir (tn+ 1 80+ib) *2cm ; draw 1 - - J  withcolor blue ; 

f i ;  
enddef ; 

numeri c  u ; u=3mm ; path p ;  
p= ( (5u , -6u) . .  (4u , -2u) . .  (4 . 5u , 0 ) . .  ( 5u , 5u» rotated 90 ; 
zO=origin ; 

205 



206 

Lenses over a 
document 

M ETA P05T APPLICATIONS 

for a=-40 step 5 unt il 140 : refractray (zO , a , p , 1 , 1 . 5) ; endfor ; 
draw p withcolor red ; 

It is possible, to some extent, to provide a lens-like feature over a picture, by clipping 
part of this picture and scaling it appropriately. An example is given below, where the text is 
stored in a METRPOST picture variable. 

vardef rnagnify ( expr p ic , p , c , f ) =  
save A ; p i cture A ;  
A=pi c ; c l ip A t o  p ;  
unf ill  (p shifted - c  scaled f shifted c ) ; 
draw A shifted -c scaled f shifted c ;  
draw p shifted -c s caled f shifted c ;  

enddef ; 

p i cture p i c  [] ; 

% ptext=bt ex . . .  etex ; % image with text not shown 

picO=pt ext scaled O . 4 ; label (picO , origin) ; pi c 1=the label (picO , origin) ; 
path p [J ; 
p 1 =ful l c ircle xs caled 1 . 2crn yscaled . 8crn shifted (O , 1 crn) ; 
rnagnify (pi c 1 , p 1 , center p 1 , 2 . 5 ) ; 
p2=unitsquare shif ted (- . 5 , - . 5 ) xscaled 2 . 5crn yscaled 1 crn shif ted (-2crn*up) ; 
rnagnify Cpi c 1 , p2 , cent er p2 , 2 ) ; 

]HTJ
odic II1lL" 111 t \u  JaI l ! !  ('llil��i., 111' dll!llIli�ll{'d II I  t l tht rati()  ,111(1 t I l( 

proportionals between S + P and S. Q .  
1 ,  The mathematical principles of natur 

Andrew Motte, 1848 . )  

Example 

4-5- 1 2  

Example 

4-5- 1 3  



4.6 3-D extensions 

4.6 3-D extensions 

4.6.1  I ntrod uction 
M ETAPOST was written with an implicit 2-D structure: Curves are made of pairs, two
dimensional closed paths can be filled, etc. These constraints are unsurprising, as the final 
output was supposed to be a printed page or a screen. 

M ETAPOST can be extended in several directions, with the same 2-D output, using 
"shallow" or "deep" techniques. 

In the "shallow" model, 3-D capabilities are added as METAPOSTmacros. This type of 
extension has been explored by several packages-in particular, Denis Roegel's 3d package 
and Nobre's featpost package. 

"Deep" extensions involve changes to the source of M ETA POST itself. In this case, ex
tensions may break compatibility with the standard META POST. Examples of such exten
sions include 3DLDF (see Section 4.6.3) and, to a lesser extent, Asymptote [46] . 

Genuine 3-D extensions provide natural means to manipulate 3-D data and ease the 
task of projecting points on a reference surface representing a screen. The removal of hid
den parts, the computation of visual intersections, and the integration of text labels on 3-D 
objects, while at the same time aiming at a vector output, are challenging tasks. It is therefore 
no surprise that no 3-D METAPOST package or extension provides a full solution. 

None of the 3-D extensions go beyond output on a 2-D surface (screen or page) ,  al
though it would be conceivable to have a 3-D extension to METAPOST output data for a 
3-D printer. 

4.6.2 Req uirements for a 3-D extension 

Before comparing the various 3-D extensions written for METAPOST, it  is useful to con
sider the requirements for such an extension. In our mind, a reasonable 3-D extension to 
M ETA POST should at least provide a solution to the following problems: 

1 .  there should be  a type for points in space, and this type should be  subject to easy han
dling; 

2. for mere perspective drawing, an observer, a screen, and an orientation should be de
fineable; 

3 . a projection routine should be available, so that a point can be projected on the screen, 
and several kinds of projections could be provided; 

4. lines or surfaces should be defineable, and projectable, with the removal of their hidden 
parts; 

5. complex objects-mainly bounded areas such as polyhedra-should be defineable; 

6. there should be a good integration with 'lEX; and 

7. vector graphics output should be available. 

207 



208 M ETA P05T APPLICATIONS 

Some of these features are actually standard, whereas others exist in only some of the ex
tensions developed so far. Some features, such as objects, are defined in META08J,  but not 
in the context of a 3-D environment. And some of the 3-D extensions go beyond this point
trying, for instance, to compute the intersections of the projections of various objects. 

4.6.3 Overview of 3-� packages 

This section gives a brief overview of the various 3-D extensions written for, or based on, 
M ETA P05T. 

3d/3dgeom 

The 3d package by Denis Roegel was among the first packages to address 3-D issues in 
METAP05T [97] . This package provides basic functionalities for setting up a perspective 
projection and defining basic objects such as convex polyhedra. Its notion of an "object" (a 
set of points and methods to draw them) is fiat, and there can be no composed objects. This 
package was specifically created for the animation of convex polyhedra; as such, it provides 
a framework for the generation of GIF animations based on M ETA P05T drawings. How
ever, there is no provision for hidden parts removal, other than in the simple case of convex 
polyhedra. 

Here are two figures produced with the 3d package: 

The 3d package has been extended with the 3dgeom package aimed at basic space ge
ometry [99] . With the 3dgeom package, it becomes possible to handle different kinds of 
projections, to manipulate abstract objects such as lines and planes, and to compute their 
intersections. 

Here is a figure produced with the 3dgeom extension: 

P3 

B 
/ " 

... 
... 

... 
... 

... 
... 

- - "c- _ _ _ 
... 

... 

PI 

P2 



4.6 3-D extensions 

m3d 

Anthony Phan's m3d (CTAN: graphics/metapost/ contrib/macros/m3D) is another 
3-D extension to META POST. It can also produce animations, following the footsteps of 
the 3d package. See Color Plate II for some nice drawings made with this package. 

Metagraf 

Metagraf (http : //w3 . mecanica . upm . es/metapost /metagraf . php) is a WYSI
WYG interface for METAPOST created by Santiago Muelas. Metagraf outputs a META
POST file, which can then be run through normal META POST. The program is written in 
Java and is platform-independent. 

Featpost 

The featpost package, by Luis Nobre Gonc;:alves, also provides basic 3-D functionalities and 
is geared toward physics diagrams [ 32, 33 ] . The color type is used to represent points in 
space. Like the 3d package, featpost does not handle the removal of hidden parts; it also 
does not have any notion of complex objects. 

Here, we illustrate some of featpost's features, without describing all the commands in 
detail. 

globes The tropicalglobe macro draws a globe in perspective, with its parallels. The 
meridians are obtained with the spatialhalfcircle macro. The position of the 
camera is specified in the viewcentr variable. 

input f e atpost3Dplus2D 

color gammacnt ; 

209 

numeric  newradius , radius , aux , i , numc , f oc , lc ;  
path conepath , latpath ; 
pen thi ckp ; 

f : =  ( 2 , 3 , 4) ; 
viewcentr : =  1 . 5* ( 1 , 1 , 1 ) ;  
Spread : =  200 ; 
Shif t s : = 300 ; 
radius= 0 . 5 ;  
numc= 9 ;  
thi ckp= penc ircle scaled . 5 ;  

pi ckup thi ckp ; 
tropicalglobe (numc , black , radius , blue ) ; 
f or i = l  upt o numc : % l ongitude s 

aux : =  ( i - l ) * 180!numc ; 
gammacnt : = ( cosd ( aux) , s ind ( aux) , O ) ; 
draw spat i alhalfcircle  

(black , gammacnt , radius , true ) ; 

endfor ; 



210 METAP05T APPLICATIONS 

hexagonal meshes Given a function z = f(x, y), a hexagonal mesh can be obtained with 
the hexagonal trimesh macro. 

input featpost3Dplus2D 

def zsurface( expr xc,  yc ) : 
cosd(xc*57)*cosd(yc*57) 
+4*mexp(-(xc.*2+yc*.2)*6.4) 

enddef ; 

f : =  7* (4 , 1 , 5) ; 
Spread : =  35 ; 
LightSource : =  10* (4 , -3,4) ; 
SubColor : =  O . 4background; 

numeric np, ssize; 
path chair; 
np = 20; 
ssize = 5 ;  

hexagonaltrimesh( true ,np,ssize,zsurface) ; 

cubes The kindofcube macro produces a cuhe in an orientation depending on its param
eters. In this example, each cube erases what has been drawn under it, so that it gives 
the illusion of the removal of hidden parts. 

input featpost3Dplus2D 

Spread : =  30; 
f : =  5 . 4* ( 1 . 5 , 0 . 5 , 1 ) ;  
numeric gridstep, sidenumber, 

i, j ,  coord, aa, ab, ac; 
color pa; 
gridstep = 0 . 7 ;  
sidenumber = 4 ;  
coord = 0 . 5*sidenumber*gridstep; 
for i=O upto sidenumber: 

for j=O upto sidenumber: 
pa : =  (-coord+j*gridstep. -coord+i*gridstep ,O) ; 
aa uniformdeviate (360) ; 
ab : =  uniformdeviate(180) ; 
ac . : uniformdeviate(90) ; 
kindofcube (false , false, 

endfor; 
endfor; 

pa, aa, ab. ac, 0 .4,  0 . 4 ,  0 . 9  ) ;  



I 

Example 
I 

4·6·4 

4.6 3-D extensions 211 

labels in space The next example shows how labels can be drawn in space using the 
labelinspace macro. 

input featpost3Dplus2D 
verbatimtex 
'l.&latex 
\documentclass{article} 
\begin{document} 
etex 

f ; =  1 . 1* C2 , l , O . 5 ) ;  
ParallelProj ; =  true ; 
kindofcubeCfalse , true, (0 ,-0 . 5 , 0) , 

90 .0.0. 1 . 2 . 0 . 1 . 0 . 4 ) ;  
kindofcubeCfalse,true, (0,0,0) , 

0 . 0 . 0 , 0 . 5 . 0 . 1 . 0 .8) ; 
labelinspace(false, (0 .45 , O . l ,O . 65) , 

(-0 .4 ,0 ,0) , (0 , 0 , 0 . 1) , 
btex \framebox{\textsc{Label}} etex) ; 

projected segments The last example shows how points can be defined in space, and 
pathofstraightline used to draw a segment joining the projections of these points. 

3DLDF 

input featpost3Dplus2D 

SphericalDistortion ; =  true; 
Spread ; =  50; 
f ;= 0 . 4* ( 1 . 5 . 0 . 5 . 1) ; 
numeric gridstep. sidenumber. i .  coord; 
color pa, pb, pc , pd; 
gridstep = 0 . 1 ;  
sidenumber = 5 ;  
coord = 0 . 5*sidenumber*gridstep; 
for i=O upto sidenumber: 

pa .= (-coord.-coord+i*gridstep.O) ; 
pb : =  (coord,-coord+i*gridstep ,O) ; 
pc ; =  (-coord+i*gridstep,-coord.O) ; 
pd ; =  (-coord+i*gridstep,coord,O) ; 
draw pathofstraightline ( pa. pb ) ;  
draw pathofstraightline C pc. pd ) ;  

endfor; 

Laurence D. Finston's ambitious extension to METAPOST, 3DLDF (http: //www . gnu . 
org/software/3dldf/LDF . html) is written in C++ using CWEB. 3DLDF (the author's 
initials) takes an input simil ar 10 META POST and outputs pure METAPOST code. The 
package currently computes the intersections of various projected curves, and the author 
plans to implement the removal of hidden parts. 



2 1 2  M ETA P05T APPLICATIONS 

3DLDF provides a number of classes for points, paths, pictures, transforms, focuses, 
ellipses, circles, regular polygons, rectangles, cuboids, tetrahedra, dodecahedra, icosahedra, 
etc. 

A small piece of code defining a dodecahedron, and then rotating and scaling it, reads 
as follows (courtesy of Laurence D. Finston) .  The default units are centimeters. 

beginf ig ( 1 )  ; 

pi ckup pencircle s c aled ( . 75mm , . 75mm , . 75mm) ; 

po int p [] ; 

pO : =  ( 2 , 0 ,  10) ; 
polyhedron d ;  
d : =  unit _dode cahedron rotated ( 1 5 ,  1 5 , 15)  scaled 5 shifted pO ; 

draw d ;  

dotlabel . t op ( " $p_O$ " , pO) ; 

endf ig ; 

verbat im_metapost " end " ; 

end ; 

Processing this code with 3DLDF yields some low-level METAP05T code looking like this: 

beginf ig ( 1 )  ; 
draw ( 5 . 603746cm , -8 . 422028cm) -- (7 . 585488cm , -4 . 9638 17cm) 

(3 . 597142cm , -3 . 6 1 9 1 59cm)  -- (-0 . 630485cm , -5 . 034796cm) 
-- ( -0 . 788 186cm , -8 . 1 1566 1 cm) 
-- cycle 

withcolor ( 0 . 000000 , 0 . 000000 , 0 . 000000) 
withpen pencircle transf ormed begingroup ; save T;  transform T ;  

xxpart T = 0 . 075000cm ; xpart T = O . OOOOOOcm ; xypart T = O . OOOOOOcm ; 

If this is then processed with M ETAP05T we obtain the following graphic: 



C H A P T E R  5 

Harnessing PostScript 
I nside (!\TEX: PSTricks 

5.1 The components of PSTricks . . . . . . . . . . . . . . . . . • • . • • . • . • • . . . . .  214 
5.2 Setting keywords, lengths, and coordinates . . . . . . . . • . . • . . . . • . . . . . 217 
5.3 The pspicture environment . . . . . . . . . . . . . . . . • . . . . • . . • . . . . .  220 
5.4 The coordinate system . . . . . . . . . . . . . . . . . . . . . • . . . . . . . • . . . . . 223 
5.5 Grids . . . . . . . . . . . . . . . . . . . . . . . . • . . • . . . . • . . . . . . . • . . . . .  224 
5.6 Lines and polygons . . . . . . . . . . . . • . . • . . . . . . . • . • . . • . . . . . . . . 231 
5.7 Circles, el l ipses, and curves . . . . . • . . • . . . . • . . . . • . . . . . . . • . . . . .  240 
5.8 Dots and symbols . . . . . . . . • . . . . • . . • . . . . • . . • . . . . • . . . . . 249 
5.9 Filling areas . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . • . . • . . . . . . . .  253 
5.10 Arrows . . . . . . . . . . . . • . . . . • . . • . . . . • . . . . • . . . . . . . • . . . . .  259 
5.1 1 Labels . . . . . . . . . . . . . . . . . . • . . . . • . . • . . . . • . . . . . . . • . . . . . 265 
5.12 Boxes . . . . . . . . . . . . . . . . . • • . • . . • . • • . . . • • . • • . • . • • . . . . . 269 
5.13 User styles and objects . . . . . . . • . . • . . . . • . . . . . . . . . . . . • . . . . .  279 
5.14 Coordinates . . . . . . . . . . . . . . • . . . . • . . . . . . . • . . . . . . . • . . . . .  296 
5.15 The PSTricks core . . . . . . . .  , . . • . • . . • . • . . . . . • . • . . • . • . . . . . .  302 

As we saw in Chapter 1, one way of drawing graphics with eT£,X is to embed low-level picture 
drawing primitives for the target device into IHEX macros, so that fuJI typesetting informa
tjon is available and we can work in a famil iar macro programming environment. When 
the target device is something as rich as the full PostScript language, this can result in a 
very powerful system. While many macro packages have implemented access to some parts 
of PostScript for this purpose, the most complete is undoubtedly PSTricks. In the next two 
chapters, we survey its capabilities and demonstrate some of the power that results from 
combining IHEX and PostScript. 



214 HARNESSING POSTSCRIPT INSIDE �EX: PSTRI(KS 

We do not attempt to describe absolutely every PSTricks-related macro, nor do we give 
examples of all the possible combinations and tricks, as this would require a large book of its 
own, e.g., [ 135]. We have, however, tried to describe and give examples of all the important 
features of the basic packages. You'll find a lot of useful information on the official PSTricks 
Web site at http : //PSTricks . tug . org/. 

Because there are a great many commands and especially kc}"vords in PSTricks, we pro
vide a summary description at the end ofthe next chapter (Section 6.8 on page 459). PSTricks 
and its related packages are extremely powerful, and their facilities may take some time to 
understand. It is also documented in the individual packages and [127, 135], and its imple
mentation is described in [126]. 

5.1 The components of PSTricks 
The PSTricks project was started by Timothy Van Zandt a long time ago and is one of the 
oldesl 'IEX packages still in use. 

I started in 1991. Initially I was just trying to develop tools for my own use. Then I thought 
it would be nice to package them so that others could use them. It soon became tempting 
to add lots of features, not just the ones I needed. When this became so interesting that it 
interfered with my "day job", I gave up the project "cold lurkey", in 1994. 

[Timothy Van Zandt] 

After Timothy Van Zandt stopped working on the project. Denis Girou took over the 
task to care for PSTricks. mainly fixing bugs and writing some more new packages; nowa
days this job is done by Herbert VoK Several developers are working on ex:isting and new 
packages, which is the reason why the number of these additional packages, which depend 
on the basic PSTricks, is still increasing. A selection of them is discussed in Chapter 6. and 
the full list is available at the official Web site at http : //PSTricks . tug . argo 

5.1 .1 The kernel 
The basic PSTricks package file is pst ricks . tex. which provides the basic unit handling, 
and basic graphic macros like dots, lines, frames, and so on. For some historical reason 
the packages pstricks, pst-plot, pst-node, and pst-tree build the core of PSTricks and are 
all available on CTAN in the directory CTAN : / graphics/pstricks/base/generic/. 
Each PSTricks package has a corresponding IHEX style file, and the basic ones are stored in 
CTAN : /graphics/pstricks/base/latex/ . In general, the style files do nothing other 
than load the lEX file via the \input macro. 

The basic PSTricks packages consist of a core of picture-drawing primitives imple
mented by \special commands that pass PostScript code to a driver, mainly dvips. The 
packages also contain a set of higher-level macros for particular applications, like pst-plot 
or pst-node. With it you can 

• Draw lines, polygons, circles, and curves. 

• Place and manipulate lEX text. 



5.1 The components of PSTricks 

• Plot data records and math functions with complicated labeled axes. 

• Draw nodes and connectors (including trees) .  

• Color lines and fill objects. 

• Define new graphical commands. 

The packages rely on the ability of a dvi driver to pass through literal PostScript code 
and know that it will interact with the 'lEX text in a controlled way. The dvips driver is the ref
erence implementation, but the package works with many other drivers as well. The PSTricks 
installation guide explains what functionality the driver has to provide and how to set it up. 

PSTricks is not a tool for drawing just one type of diagram well, unlike many of the other 
packages described in this book. It is a programming environment for as close a combina
tion of 'lEX and PostScript as is possible with existing software; its strength is its modularity, 
extensibility, and ability to access all the power of PostScript, and it is more or less easy to 
write some extensions to the code. 

Nearly all PSTricks packages depend on other PSTricks-related packages, which will be 
loaded internally and are listed in the logfile. In the descriptions that follow, we do not nor
mally indicate which file needs to be loaded for a particular function, since it is usually ob
vious. However, each example of code shows the necessary \usepackage commands. Be 
sure that you have the latest version of pstri cks . sty installed when you are using IHP)( 
with colors; it replaces the old and now-obsolete pstcol package. This is important to make 
pstricks work with other packages that also use colors. 

New modules for PSTricks may be released, as the packages are still under development. 
The material in this chapter was all tested with the files available in 2007. 

5 . 1 .2 Loading the basic packages 

PSTricks packages are loaded into the document in the usual way: 

\usepackage{pstricks} 

Since PSTricks was originally written for plain 'lEX, almost all PSTricks packages are provided 
as files with extension . tex . In most cases the appropriate �TP)( packages ( . sty files) ba
sically do nothing other than load the corresponding . tex file. An exception is the core 
package pstricks : pstri cks . sty performs several tests for the color management, then 
loads pstricks . tex, and modifies some of the 'lEX code afterwards. Thus the new version 
of the pstricks package (version 0.32) supersedes the use of the now-obsolete package pstcol . 

There are two options for pstri cks . sty available, which make sense only in some 
compatibility situations and are normally unimportant for �TP)( users. 

noxcolor Instead of loading xcolor (default) ,  use the old color package. 

plain No color package is loaded and only PSTricks's internal color handling is available. 

215  



216 HARNESSI NG POSTSCRIPT INSIDE It'TEX: PSTRICKS 

Table 5 . 1 :  The predefined gray and color names of PST ricks 

Gray I black, darkgray, gray, lightgray, white 
Color red, green, blue,  cyan, magenta, yellow 

All other options are passed to the xcolor package or, when using the noxcolor option, to 
the color package. 

For historical reasons there exists a pst-a l l  package, which loads all the so-called basic 
packages of PST ricks (pst-plot, pst-tree, pst-node, pst-3d, pst-g rad,  pst-coi l ,  pst-text, pst-eps, 
pst-fi l l ,  mu ltido) .  However, it is usually better to load the necessary packages individually 
with \usepackage. This makes it much easier to find and to fix errors, because one can 
comment out single packages or change the order. 

5 . 1 .3 Using colors 

Since 'lEX itself does not provide any color handling, several packages have been developed 
in the past that implement color handling by means of a set of private color commands. 
Unfortunately, in most cases those packages cannot be used simultaneously without giving 
rise to conflicts with other such packages. As it was originally written for plain 'lEX, psTricks 
also provides its own color handling rather than using �TEX'S standard color package. It 
uses the PostScript internal syntax, and defines five shades of gray and six basic colors (see 
Table 5 . 1 ) .  

These colors can be  used without any additional package within psTricks. However, 
the corresponding simple macros (such as \blue) are obsolescent and their use is depre
cated, even though they are still supported (for backwards compatibility) by all psTricks
related packages. Instead, �TEX users are advised to select colors in the standard way, e.g., 
\color{blue} or \text color{blue}{. . .  } .  

\usepackage{pstricks} 
Out of the blue you can become 

advisable . 

but this isn ' t  Out of the {\blue blue} you can become 
{\red red} , but this i sn ' t  advisable . 

Always load the ;z, 
pstricks package Y 

first 

PsTricks also provides its own commands for defining additional colors, but again it 
is better to define new colors through the standard �TEX interfaces of the color or xcolor 
package. In fact, pstricks nowadays loads one of these standard packages and then internally 
redefines the old declarations to use the modern interfaces. To avoid problems with the color 
management in PsTricks (that attempts to maintain both old and new syntax), it is important 
to always load the pstricks package prior to any other psTricks-based package. 

The xcolor package, which is loaded by default by pstricks, is an extended version of the 
older standard �TP)( color package. It offers full support for PsTricks and should be the pre
ferred color package for �TEX users, if possible. xco lor allows us to specify almost any color, 
be it a single one or a series of colors. Furthermore, the package allows us to convert color 
specifications between various color models and provides color separation. These topics are 
covered in detail in Chapter 1 1  and in the package documentation [68) . 

, 
Example 
5- 1 - 1  



5.2 Setting keywords, lengths, and coord inates 

5 .2 Setting keywords, lengths, and coordi nates 

PSTricks makes intensive use of the "key/value" interface provided by the package xkeyva l 
(see Section 5. 1 5 .5 on page 3 1 0) ,  which is an extended version of the standard keyva l pack
age. A special adaption for PSTricks, called pst-xkey, offers an interface between the old stand
alone key setting mechanism of the basic PSTricks packages and the corresponding mecha
nism of newer packages, such as pst-3dp lot and pst-asr  (see Section 5 . 1 5.3 ) .  These new pack
ages allow a specific key setting by a so-called family name (Section 5 . 1 5 .5 on page 3 1 0) .  

The optional argument i s  used only for newer packages that define the keyword inside a fam
ily ("names pace" ) to prevent clashes with a keyword of the same name in another package. 
Without an optional argument, all keywords of that name in all families are set. For details 
on the family for a package, consult the package documentation. 

PSTricks knows two more ways of passing key/value specifications to the macros. This 
may be confusing, because all such settings might also be achieved by means of \psset. 
First, nearly all macros have an optional argument for passing key/value options to the 
macro itself. 

I (command) '" (settings] . . .  I 
All changes to parameters set by the optional argument are kept local to the current macro, 
whereas those set by \psset are valid for all subsequent material and are subject to 'lEX's 
grouping mechanism. Hence, the following first two declarations are equivalent and the 
third one is valid for all following macros: 

\psl ine [linewidth=5pt] ( 3 , 3) 
{\ps set{linewidth=5pt }\psline ( 3 , 3) }  
\ps set{linewidth=5pt} 
\psline ( 3 , 3) 
\ps circle ( O , O ) { l cm} 

% valid for the macro ( l ocal)  
% local ins ide { . . .  } group 
% global for the f o llowing macros 

Second, for some historical reason PSTricks knows one more optional argument, enclosed in 
braces, for the end arrows of the so-called open objects, like lines and curves. 

This is indeed confusing for �TEX users, as it does not match the �TEX conventions (optional 
arguments in [] , mandatory arguments in {} ) .  

5 .2 . 1  Lengths and un its 

PSTricks provides two macros for setting and changing the values of length registers. 

217  



218 HARNESS ING POSTSCRIPT INSIDE I!'TEX: PSTRICKS 

\pssetlength{ length registerHvalue[unitJ} 
\psaddtolength{length register H value[unitJ} 

The difference between these commands and the corresponding J5.TEX commands is that the 
length unit may be omitted. If no unit is specified, the one previously defined is used. If none 
was given previously, the default unit of 1 em is used. It can be changed for the x- and y-axes 
separately or together with one keyword (see Table 5 .2) .  

Table 5.2: Lengths and their register names in PSTricks 

Keyword 
unit 
xunit 
yunit 
runit 

Meaning 
all together 
x-axis 
y-axis 
radius (radians) 

Default 
lem 
lem 
lem 
lem 

Length Register 
\psunit 
\psxunit 
\psyunit 
\psrunit 

Specifying \psset{xunit= l em,yunit=l em, runit= l em} is equivalent to setting 
\psset{unit=lem} . PSTricks-in contrast to 'lEX or J5.TE,X-allows us to use a length 
with or without a unit. A missing unit is always replaced by the current one (if set by 
\psset)  or the predefined value of lem. Thus a consecutive use of two \psset{unit=0. 5} 
commands defines the current unit as O . 25em. Defining the units before a pspicture 
environment also affects the coordinates of that environment. In the following examples the 
first unit setting is done inside the pspicture environment and the second one outside this 
environment. Hence, the \psline command has the same coordinate values in both cases, 
but the dimensions for the two pspi cture environments have to be specified differently. 

/ 
/ 

5.2.2 Angles 

\usepackage{pstricks} 

\begin{pspi cture} ( 2 ,  1)  
\psset{xunit=0 . 5mm , yunit= lmm} 
\psline{->} (20 , 10)  

\end{pspi cture } \ \ [0 . 75cm] 
\psset{xunit=0 . 5mm , yunit= lmm} 
\begin{pspi cture} ( 20 , 10) 

\psline{->} (20 , 10) 
\end{pspi cture} 

The angles in polar coordinates (and other arguments) are specified in degrees (counter
clockwise) by default. Since the predefined value of 360 degrees for a full circle is not the 
best choice for all applications, you may change it with the following commands. 

\ de gre e s [Unitsi in dfUftcircle] \radians 

The \degrees command lets you specify the number of units in a full circle; the optional 
argument defaults to 360, so \degrees is the same as \degrees [360J . If you prefer to 
specify angles clockwise, use \degrees [-360J . If you want to draw a pie chart, a setting 



5.2 Setting keywords, lengths, and coordinates 

of 100 units in a full circle makes it easier to use percentage values: \degrees [ 1 00] . Fi
nally, the argument need not be an integer value; e.g., \radians is just a shortcut for 
\degrees [6.2831 9] . 

5.2.3 Coordinates 

For the packages supporting three-dimensional views, coordinates are triplets of values 
(x, y, z ) . In all other situations they consist of pairs of values (x , y) . In either case each 
value may be given with or without a unit. If no unit is specified explicitly, then the current 
default units are used, as explained in Section 5.2. 1 on page 2 1 7. There is no restriction in 
mixing values with different units and/or without a unit. For example, in 

\psline (O . 05 , l in) ( 3mm , 300pt ) 

the first value depends on the current unit (default 1 cm); the other ones use explicit units. 
PSTricks converts all of them into 'lEX's internal unit (pt). 

I \Specialcoor \Normalcoor l 
By default, ( \NormalCoor) PSTricks supports only Cartesian coordinates, which have to 
be given as comma-separated values. After specifying \SpecialCoor you can use several 
other powerful systems of coordinate specification. PSTricks will analyze each coordinate 
argument and determine from its structure the input coordinate system. For example, polar 
coordinates are specified by separating the values with a semicolon; a full list of supported 
coordinate systems is given in Section 5 . 14  on page 296. 

When running �TEX it takes some extra time to test for the different special coordinates, 
but with the power of today's hardware one can normally use \Spec i alCoor throughout 
without any noticable effect. However, if one plots a function with more than 2000 points in 
Cartesian notation on a slow machine, a \NormalCoor may be useful. 

5.2.4 Commands 

Almost all the commands have the same (complex) structure. They need some or all of 
the following arguments, each of which has its consistent delimiters: obligatory arguments 
are surrounded by braces, like {arg}; optional settings, controlled by the key/value inter
face, are in square brackets, like [parl=val 1 , . . .  ] ;  coordinates are in parentheses, like 
(x , y) . Because PSTricks macros can get very complex with lots of different arguments, the 
summary macro descriptions here have a gray shading behind the arguments. The 
general syntactical form of most commands is 

(command) :lIi ,����gs]' {arrows/arguments}( coordinates) 

For all macros, except the ones beginning with the letter q (as an indication for "quick" ) ,  
there exists a star version, which basically i s  nothing else than an inverse representation 
of the object, filled with the current l inecolor (the other changed options are shown in 
Table 5.3) .  The starred form of the command generally means that the object being drawn 

2 1 9  



220 HARNESSI NG POSTSCRIPT INSIDE ItI'TEX: PSTRICKS 

Table 5.3 :  Meaning of the starred form 

linewidth Opt 
f illstyle solid 

f illcolor \pslinecolor 
line style none 

is to be solid rather than an outline. This is programmed in a rather algorithmic way; e.g., 
\psl ine * is not very useful at all. The optional settings in square brackets consist of a set of 
key/value pairs that override, for the current object, PSTricks's drawing defaults as discussed 
below. 

The existence of a starred form follows only some formal reasons in using PostScript 
code. However, for some macros it is rather pointless to use this option, such as \psline 
with only one line segment. 

5 .3 The p s p i cture envi ron ment 
T 
I 
I 

In most cases a PSTricks graphic object is put into a box of its own and �bt drawn overlapping 
the text, although this is possible: the following line appears here ----tL PSTricks takes 1F,X's 
current point into account and draws the object, but doesn't insert any horizontal or vertical 
space; hence 1F,X's current point is left unchanged. The pspicture environment is simply a 
box command-it saves horizontal and vertical space for the drawing and has the following 
syntax: 

\ begin {pspi cture * } [settings) (xM:ini)'Mil1.) (xMax,yMax) 

\end{pspicture *: } 

The box that is produced by pspi cture is placed by default with its lower-left corner at the 
current baseline of the text, which can readily be seen in the next example. 

\usepackage{pstri cks , pst-plot} 

Here we place a \texttt {pspi cture} environment in the middle of a paragraph . 
\psframebox [boxsep=Opt , framesep=Opt , l ine style=dashed] {% 

\begin{pspi cture} ( - 1 , -O . 5 cm) ( 1 . 5 , 1 0mm) 
\psaxes [labels=none] {->} ( O , O ) ( - 1 0mm , -5mm) ( 1 . 5 cm , 1 ) 

\ end{pspi cture}} By placing obj ects  out side the box boundaries one can 
achieve overprint ing of surrounding t ext . 

Here we place a E��c.!ur:. ��r��ment in the mid-

I I 
I I 
I I 
I I----t---+� 

dIe of a paragraph. � _ _ _ _ _ _ _  � By placing ob-

jects outside the box boundaries one can achieve over

printing of surrounding text. 
, Example 

i � 5-3- 1 



Example 

5·3·2 

5.3 The pspi cture environment 

Its internal origin depends on the given PSTricks coordinates and can also be placed out
side of the box. In the example above the origin is at point ( 1 ,  0 . 5 ) ,  measured from the lower 
left of the box. The area taken up by the box is 2 . 5  em x l . 5  em ( (X2 - xI ) X (Y2 - yI ) ) . 

Obviously, using a pspi cture environment within normal text is usually a bad idea, as its 
size will affect the line spacing. It is therefore usually deployed within a display environment 
such as center. 

The pspi cture environment complies with the following rules to determine missing 
values in the setup: 

• In case all coordinates are missing, PSTricks sometimes generates a low-level error. How
ever, it may also silently produce incorrect output! 

• In the case of only one given pair of coordinates, PSTricks always chooses (0 , 0 )  (x, y ) 

for the box. Negative values for (x, y ) are no problem, but the lower left is always on 
the baseline (see Example 5-3-2) .  

• PSTricks does not check if the values supplied make sense. 

• Values without a unit are interpreted in PSTricks's internal units (see Section 5.2. 1 on 
page 2 1 7) .  

• The coordinates define the space reserved for the picture. It is still possible to draw 
outside of this box, in which case the drawing may potentially overprint other material 
(also shown in the Example 5-3-2) .  

• The starred form of pspi cture clips everything around the given box. It uses 
\pstVerb and \pstverbscale for the clipping operation (see Section 5. 1 5 .2 on 
page 305) .  

1
- - - - - - -. . . . . . . . . . . . . .  : 

1 
1 
1 
1 
1 1 

foo_l _ _ _ _ _ _ _  1_ bar 

\usepackage{pstricks} 

foo\rule{5mm} { lpt}% 
\begin{pspicture } (-2 , -2 ) %  => ( 0 , 0 ) ( - 2 , -2)  

\psdot * [dot scale=2] ( 0 , 0 ) 
\psframe [linestyle=dashed] (-2 , - 2 )  
\psframe [l inestyle=dotted] ( 2 , 0 . 5 ) 

\end{pspi cture}\rule{5mm}{ lpt } bar 

5.3 .1  Keywords for the pspi cture environ ment 

There are only two special keywords for the pspi cture environment. All other parameters 
are set but have no meaning for this environment itself; yet the values provided affect other 
macros used within the environment. With the shift keyword the PSTricks box can be The shift key 

shifted relative to the text baseline in any vertical direction. A value of 0.5 cm shifts the box 
down. (This keyword's effect is similar to that of the �Tp)(-macro \raisebox. )  

\us epackage {pstri cks} 

\ small\rule{5mm}{ lpt}% 

221 



222 

-
gg gg 

HARNESSING POSTSCRIPT INSIDE INEX: PSTRICKS 

\begin{pspi cture} [shift=0 . 5 cm] ( -0 . 6 , -0 . 5 ) ( 0 . 6 , 0 . 75)  
\psframe [linecolor=blue] ( -0 . 5 , -0 . 5 ) ( 0 . 6 , 0 . 75) \rput ( 0 , 0 ) {0 . 5 cm} 

\ end{pspi cture}% 
\rule{5mm}{ lpt }\hspace{ l cm} \rule{5mm}{ lpt}% 
\begin{pspi cture} ( -0 . 6 , -0 . 5 ) ( 0 . 6 , 0 . 75 )  

\psframe [linecolor=blue] ( -0 . 6 , -0 . 5 ) ( O . 6 , 0 . 75) \rput ( 0 , 0 ) {none } 
\ end{pspi cture}% 
\rule{5mm}{ lpt }\hspace{ l cm} \rule{5mm} { lpt}% 
\begin{pspi cture } [shift=-0 . 5cm] (-0 . 6 , -0 . 5 ) ( 0 . 6 , 0 . 75)  

\psframe [lineco lor=blue] ( -0 . 6 , -0 . 5 ) ( 0 . 6 , 0 . 7 5 ) \rput ( 0 , 0 ) {$-$0 . 5 cm} 
\ end{pspi cture}% 
\rule{5mm}{ lpt } 

When using the pspicture environment inside a text line, it often makes sense to put 
the internal PSTricks x-axis on the height of the text baseline. The current y unit is saved in 
the macro \psyuni t, which can be used to shift the box up or down. In the following ex
ample the first arrow is placed 0 .3 unit above the baseline, while the second arrow is shifted 
down to the baseline by referring to the current unit with [shift=-O.3\psyuni t] . When 
you use the shift keyword without a unit, PSTricks takes as usual the currently active unit 
into account, which is by default 1 cm. 

\usepackage{pstr i cks} 

\rule{ 20pt } { . lpt }gg% 
\begin{pspi cture} ( -0 . 25 , -0 . 3 ) ( 0 . 25 , 0 . 25 )  

\psline{<->} ( -0 . 25 , 0 ) (0 . 25 , 0 ) 
\end{pspi cture}gg\rule{20pt }{ . lpt}gg% 
\begin{pspi cture} [shift=-0 . 3\psyunit] ( -0 . 25 , -0 . 3 ) ( 0 . 25 , 0 . 25)  

\psline{<->} ( -0 . 25 , 0 ) (0 . 25 , 0 ) 
\end{pspi cture }gg\rule{20pt }{ . lpt} 

The Boolean-valued showgrid key enables (or disables - the default) the drawing of 
The showgr id key a grid with the predefined PSTricks style gridstyle. This option is often useful when an 

object should be placed somewhere inside a pspi cture environment; with a plotted grid it 
is easier to get the coordinates right. 

The layout of the grid can be overwritten by using other values than the following de
fault ones: 

\newps sty le{gridstyle Hsubgriddiv=O,gridcolor=lightgray,griddots= 1 O,gridlabels=8pt} 

For the \newpsstyle declaration, see Section 5. 1 3  on page 279. Grids in general and 
the keywords controlling their layout, as well as solutions for creating special grids, are 

Example 

5-3-3 

Example 

5-3-4 



Example ' 
5-3-5 

Example ! 
5-3-6 

5.4 The coordinate system 

treated in Section 5.5 on the following page. 

0 

1 - 1  0 

0 1 
- 1  0 1 

1 

0 
1 - 1  1 

0 
- 1  0 1 

2 

2 

2 

2 

\usepackage{pstricks} 

\begin{pspi cture} [showgrid=true] ( - 1 , 0 ) ( 2 , 1 ) 
\end{pspi cture} \ \ [ 1 5pt] 
\newpsstyle{gridstyle}{% 

subgriddiv=2 , subgridcolor=lightgray} 
\begin{pspi cture} [showgrid=true] ( - 1 , 0 ) ( 2 , 1 ) 
\end{pspi cture} 

\usepackage{pstricks} 

\newpsstyle{gridstyle}{} 
\begin{pspi cture} [showgrid=true] ( - 1 , 0 ) ( 2 , 1 ) 
\end{pspi cture}\\ [ 15pt] 
\begin{pspi cture } ( - 1 , 0) ( 2 , 1 ) 

\psgrid 
\end{pspi cture} 

5.3.2 Wh ite space between commands 

Inside the pspicture environment, any white space between commands i s  ignored. Out
side of this environment, every PSTricks object is like a single character and white space is 
not removed. The latter can be toggled by the switches \KillGlue and \DontKillGlue 
(see Section 5 . 1 5 .2 on page 303) .  This compability may be of some interest when PSTricks 
macros are used in other environments, e.g., the pi cture environment of standard M-TEX, 
where the removal of white space is the expected behavior. 

5.4 The coordinate system 

As with PostScript, a Cartesian coordinate system is the basic system for PSTricks. The ori
gin of the coordinates, as determined by the choice of the pspi cture environment's size 
arguments (see Section 5.3 on page 220), can fall inside or outside of the box thus defined. 

As seen in the following example, the origin pertaining to the coordinate system for the 
dashed line is (0 .25 ,  -0 . 5 ) .  Both parabolas are defined with the same coordinate arguments, The origin key 

but with a different origin. There is one important fact: this keyword setting works only 
for real PSTricks graphic objects. A graphic object is a macro that is internally defined by 
the \pst@obj ect macro (see Section 5. 1 5 .3 on page 307). Note that the coordinate pair 
specified as values for the origin keyword must be given without parentheses. Instead, to 
prevent the comma from being misinterpreted as one separating entries in the key/value 
list, braces have to be used, as shown in Example 5-4- 1 .  (As usual, the coordinate values 

223 



224 HARNESSING POSTSCRIPT INSIDE IN"EX: PSTRICKS 

may have an explicit measure; if it is missing, then the corresponding current default one is 
used.) 

\usepackage {pst r i cks , pst-plot} 

\begin{pspi cture } ( - 1 , - 1 )  ( 2 , 2 ) 
\psaxe s{->} ( 0 , 0 ) ( - 1 , - 1 ) ( 2 , 2 ) 
\ps set{l inewidth= 1 . 5pt } 
\parabola ( 1 , 2 ) ( -0 . 5 , -0 . 5 ) 
\parabola [origin={0 . 25 , -0 . 5} ,  

l inestyle=dashed] ( 1 , 2 ) ( -0 . 5 , -0 . 5 ) 
\qdisk ( -0 . 5 ,  0 ) { 2pt } 

\end{pspi cture} 

The keyword swapaxes comes in handy for plotting mathematical functions if the cal-
The swapaxes key culation of the inverse can be realized easier, such as when PostScript supports only the 

inverse function. In the following example, the swapaxe s=true setting is used to plot the 
function y = arccos x in an easy way by simply plotting the cosine with swapped axes. Thus 
there is no need to perform mathematical conversions; only the given interval is to be kept in 
mind. The PSTricks package pst-math offers support for mathematical functions for which 
there is no direct support in PostScript [64] . 

Y 

2 f (x) = arccos x 
• 

• 1 

- 1 .0 -0 .5  
- 1  

• 
• 

• 
• 

• 

. 0  x 

5.5 G rids 

\usepackage{pstri cks , pst-plot } 

\psset {xunit= 1 . 5 , plotpoints=200 , plot style=dot s} 
\begin{pspi cture} ( - 1 . 1 , -3 . 2 5 )  ( 1 . 5 , 2 . 6) 

\psaxes [Dx=0 . 5] {->} ( 0 , 0 ) ( - 1 , -3 . 25) ( 1 . 5 , 2 . 5 ) 
\uput [-90] ( 1 . 5 , 0 ) {$x$} 
\uput [O] ( O , 2 . 5 ) {$y$} 
\rput [l] (0 . 2 ,  2 )  {$ \mathbf{f (x) =\arccos x}$} 
\psset {yunit= 1 . 5 , xunit=0 . 666667 , swapaxe s=true} 
\pstVerb{/rad { 180 3 . 141 592654 div mul} def }  
\psplot [linecolor=blue] {-3 . 1 4 1 592654}{0}{x rad c o s }  
\psplot [plotstyle=dot s , plotpoints= 10] % 

{0}{ 1 . 570796327}{x rad cos}  
\end{pspi cture} 

PSTricks offers a wide range of Cartesian coordinate grids; through a set of keywords many 
characteristics can be adjusted according to your requirements. Further variants are pro
vided by the pstricks-add  package, especially concerning logarithmic axis graduations and 
decimal labels . 

Example 

5-4- 1 

Example 

5-4-2 



I 

Example 
I 

5·5·1 

I 

Example 
I 

5·5·2 

5.5 Grids 

The \psgrid macro is a very powerful tool for drawing coordinate grids. The syntax is easy 
to use, but is valid only for Cartesian coordinate systems. 

When no coordinates have been specified, \psgrid takes the ones defined by the en
closingpspicture environment or, if not inside such an environment, a 10 x 10 rectangle 
in the current units is assumed. If only one coordinate pair is given, it is taken to denote one 
corner and ( 0 . 0) is established as the opposite corner. When using two coordinate pairs, 
any two opposite corners of the grid should be specified. With three coordinate pairs given, 
the first pair determines the intersection point of the lines to be labeled and the other two 
pairs are interpreted as in the previous case. 

In short: (xQ, Yo) defaults to (Xl. YI ) ;  the default for the latter is (0,0) ,  and (outside 
of a pspicture environment) the default for (X2, Y2) is 00, 10). 

The labels are positioned along the two lines that intersect at (xQ. Yo) ,  on the side of the 
line pointing away from (xz. yz). and shifted slightly horizontally or vertically towards the 
latter coordinate so they won't interfere with other lines. In the next example. \psgrid has 
no arguments. so it takes all coordinates from the surrounding pspicture environment. 
The ke)'\vords used in this and the following examples are discussed in detail in Section 5.5.1 
on the following page. 

2 

+ 
o + 

-, 
-, 

+ + 
+ + 

+ 
o 2 

\usepackage{pstricks} 

\psset{griddots=O. gridlahels=7pt . suhgriddiv=2} 
\begin{pspicture}{- l , -l )  (2,2) 

\psgrid 
\end{pspicture} 

With only one pair of coordinates, \psgrid assumes that ( 0 , 0) is the opposite corner. 
Exchanging the order of the coordinate pairs, as in the second figure, changes the position 
of the labels from the left and bottom sides to the right and top sides of the rectangle, respec
tively. (See also the last example below with three pairs of coordinates.) 

\usepackage{pstricks} 

225 

2 0 

, 

, 

+ 2 
\begin{pspicture} {-l ,-l)  (2,2) 

\psgrid[griddots=O ,gridlabels=7pt , suhgriddiv=2] ( 1 , 2) 
\end{pspicture} 

0 +' 
0 0 

\begin{pspicture}(-l ,-l)  (2,2) 
\psgrid[griddots=O ,gridlabels=7pt , 

subgriddiv=2] ( 1 . 2) {O,O) 
\end{pspicture} 



226 

i 

HARNESSING POSTSCRIPT INS IDE INEX: PSTRICKS 

By selecting any two opposite corners of the rectangle as (X l ,  YI )  and (X2, Y2 ) ,  the 
labels can be positioned on any desired pair of adjacent sides. 

o 
2 

- - f--

\us epackage{pstr i cks} 

\begin{pspi cture } ( - l , - l )  ( 2 , 2 ) 
\psgrid [griddot s=0 , gridlabels=7pt , subgriddiv=2] ( 1 , 0) ( 0 , 2 ) 

\end{pspi c ture }  
\begin{pspi cture } ( - l , - l )  ( 2 , 2 ) 

I....-_...J 0 
o 

\psgrid [griddot s=O , gridlabels=7pt , subgriddi v=2] ( 0 , 2 ) ( 1 , 0) Example 
o \end{pspi cture} 5-5-3 I 

2 

1 i 
---

In the next example three pairs of coordinates have been specified; hence the labels no 
longer appear at the edges of the grid. In most applications (xo, Yo )  will b e  ( 0 , 0 ) ,  but as 
the second figure depicts, other values may be chosen as well. 

I 

2 
1---" 

0 

... . -

1 

2 

2 
1 , 

0 

-r--
-1 

\us epackage{pstricks} 

\psset{griddot s=0 , gridlabels=7pt , subgriddiv=2} 
\begin{pspi cture } ( - l , - l )  ( 2 , 2 ) 

\psgrid ( 0 , 0) ( - 1 , - 1 ) ( 2 , 2 ) 
\end{pspi cture} 
\quad 
\begin{pspicture } ( - l , - l )  ( 2 , 2 ) 

\psgrid ( 1 , 1 ) ( 2 , 2 ) ( - 1 , - 1 )  
\end{pspi cture} 

5.5 . 1  Keywords of the \psgr i d  command 

Table 5 .4  shows all keywords that are only valid for the \psgrid command. They are indi
vidually discussed in the following examples. 

The gridwidth key The gridwidth keyword determines the width of the main grid lines and should be 
chosen rather too small than too big, at least wider than the sub-lines ( subgridwidth) .  

2 2 \usepackage {pstr i cks} 

\begin{pspicture } ( 2 , 2 ) 

1 1 \psgrid% def ault i s  . 8pt 
\ end{pspi cture}\hspace{2em} 
\begin{pspi cture } ( 2 , 2 ) 0 0 \psgrid [gridwidth=O . lpt] 

0 1 2 0 1 2 \ end{pspi cture} 

The keyword gridcolor determines the color of the main grid lines and can be used 
The gr idcolor and for highlighting. The griddots keyword determines the number of dots if a dotted main 

gr i ddots keys grid line should be drawn instead of a continuous line. This is especially of interest when 
the grid itself should stay in the background. Keep in mind that the dots can be seen only 

Example 

5-5-5 



: Example 

L.. 5-5-6 

5.5 Grids 

Table 5.4: Summary of keywords for setting grids 

Name Value Type Default 
gridwidth value{unitJ O . 8pt 
gridcolor color black 
griddot s value 0 
gridlabels value {unit] l Opt 
gridlabelcolor color black 
subgriddiv value 5 
subgridwidth value{unitJ O . 4pt 
subgridcolor color gray 
subgriddots value 0 

if subgriddi v is set to 0 or 1 ;  otherwise, the dots would be overlaid by the lines of the 
sub-grid. 

1 : 

0 : 0 . . . . . . . . . . . ����--� o 1 2 0 1 2 

\usepackage {pstri cks} 

\begin{pspi cture } ( 2 , 2 ) 
\psgrid [griddots=5 , subgriddiv=O] 

\end{pspi cture}\hspace{2em} 
\begin{pspi cture} ( 2 ,  2 )  

\psgrid [gridcolor=blue] 
\end{pspicture} 

The keyword gridlabels sets the font size of the labels, which can be set by a value 

227 

given with or without a unit. In the latter case, the current PSTricks unit is taken into account. The gridlabel s  and 

In many cases the default size of 10 pt is too large, as such labels are better set in a font size gridlabelcolor 

smaller than the running text. The gridlabelcolor keyword determines the font color of keys 

the labels, which may be useful for Web publishing. 

2 

1 

o 

j 
· f  [ 1  j. .... 
. : 1 +  

L I :  
o 1 

2 

1 . 

o ·  . . . . . . . . . . .  
2 0 2  

\usepackage{pst r i cks} 

\begin{pspicture } ( 2 , 2 ) 
\psgrid [gridlabelcolor=blue] 

\ end{pspi cture}\hspace {2em} 
\begin{pspi cture} ( 2 , 2 ) 

\psgrid [griddot s=5 , gridlabels=7pt , subgri ddiv=O] 
\ end{pspi cture} 

The keyword subgriddi v determines the number of subdivisions between two main 
divisions. To calculate the divisions, the values for xuni t and yuni t are taken into account. The subgr iddi v and 

This may cause massive problems when a small unit has been defined and \psgridis called subgr idwidth keys 

with large absolute values, as the unit determines the distance between main divisions. For 
instance, given a unit of 1 pt, a \psgrid ( l Ocm ,  l O cm) command might give rise to trouble, 
as there are about 280 main divisions and 1400 sub-divisions. Depending on the version of 
PSTricks, the maximum number of divisions is limited ( in the current version, to about 500) .  



228 HARNESSING POSTSCRIPT INSIDE INEX: PSTRICKS 

Such problems can be avoided by locally switching to some unit of comparable magnitude: 
\psgrid [unit=l emJ ( l  Oem, l Oem) . 

The keyword subgridwidth determines the width of the sub-grid lines and should be 
chosen rather too small than too big and above all smaller than the superior main grid lines. 

2 
r-----r--,-, 

1 I-----f---l 

o L..-';"";"'--L';"";"'_...J 

\usepackage{pstricks} 

{\psset{unit=10}% local sett ing 
\begin{pspi cture} ( O . 2 , O . 2 ) 

\psgrid [gridlabel s=Opt , subgr iddiv=40] 
\uput [-90] ( O . l , O ) {O . l } 
\uput [-90] ( O . 2 , O ) {O . 2} 

0. 1 0 .2  0 1 2 

\end{pspi cture}}\hspace{2em} 
\begin{pspi cture } ( 2 , 2 ) 

\psgrid [subgridwidth=O . O lpt] 
\ end{pspi cture} 

The subgr idcolor 

and subgr iddots 

keys 

The key subgridcolor determines the color of the sub-grid lines and can be used 
for highlighting. The key subgriddot s determines the number of dots if a dotted sub-grid 
line should be drawn instead of a continuous line. This is especially of interest when the grid 
itself should stay in the background. 

2 

· . . . .  � . . . . . . . . . . . . . .  . 
· . . 
· . . 
· . . · . . 
· . . 

\usepackage{pstri cks} 

\begin{pspi cture } ( 2 , 2 ) 
\psgrid [subgriddiv= 1 0 , gridlabels=O , 

gridwidth= lpt , subgridwidth=O . lpt , 
subgridcolor=blue] 

\end{pspicture}\hspace{2em} 

0 :  : : 
\begin{pspi cture } ( 2 , 2 ) 

\psgrid [griddot s= 1 0 , subgriddots=5] 
\end{pspi cture} 

. . . . . . . . . . . . . . . . . . . . .  0 1 2 

5 .5.2 Defining and using new grid commands 
There i s  only one predefined command to draw grids: \psgrid. I f  you need to use some 
settings of its numerous options consistently, you may want to define some abbreviations 
for them. Of course, one way to achieve this is with standard e-TEX macros, such as 

\newcommand\myGrid{\psgrid [subgriddiv=O , griddot s=10 , gridlabels=7pt] }  

However, PSTricks offers two more elegant ways to accomplish this task: 

\newpsstyle{dotGrid}{ subgriddiv=O , griddots=5 , gridlabels=7pt} 
\psgrid [style=dotGrid] 
\newpsobj ect{myGrid}{psgrid}{subgriddiv=O , griddot s=5 , gridlabels=7pt} 
\myGrid 

I II Example 

5-5-8 I 



S.S Grids 

The first method is to define a new style (named dotGrid in the code above) that can be 
used together with the style key to set all stored options in one go. (Styles are explained 
in detail in Section 5. 1 3  on page 279.) The second method is to create a new PSTricks object 
(named in the code above) ,  which essentially is a command that is based on \psgrid with 
a specific key setting. 

5.5.3 Embel l ishing pictu res with the help of grids 

We often want to add a remark, measure, label, or some other description to a pre-existing 
external graphic included in a document. Here we describe how PSTricks's macros can be 
applied to tackle this task. 

As our first step, we want to determine the final overall size to be specified with the 
pspi cture environment. To this end, the graphic is saved in a private box called \ IBox 
with \sbox. This enables us to refer to the size of the imported graphic easily by using lEX's 
low-level \wd (width) and \ht (height) operators. Since in our example we want to put 
denotions and measures at the left and upper sides of the graphic, we allocate some extra 
space there by specifying ( -2 , 0 )  as the lower-left corner and using a factor of 1 .4 with the 
graphic's height in the size arguments of the pspi cture environment (also, a small margin 
of 10 % of the graphic's width is inserted to the right) .  

To keep coordinate specifications simple, we choose the alignment parameter value lb  
for the \rput command, whereby we assign the lower-left corner of  the graphic to the origin 
of the pspicture environment. 

To facilitate the positioning of the individual items, we lay a coordinate grid over the 
graphic by means of \psgrid (see Section 5.5 on page 224) temporarily. (This will be re
moved in the end.) 

6 

5 :  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

\usepackage{pstr i cks , pst-node} 

\usepackage{graphicx} 
\newsavebox\IBox 
\ sbox\IBox{\ includegraphics  

229 

[scale=0 . 75] {pstri cks/overlay50-2 } }  

2 :  

2 3 4 5 6 

\begin{pspi cture} 
( - 2 , 0 ) ( 1 . 1 \wd\ IBox , 1 . 2\ht \ IBox) 

\ rput [lb] ( 0 , 0) {\usebox\ IBox} 
\psgrid [ subgr iddiv=0 , gridlabel s=7pt , 

griddots=10]  
\ end{pspi cture } 

After these preliminaries it is relatively easy for us to position the labels as desired by 
applying the appropriate PSTricks macros, again referring to the width and height of the box 



230 HARNESSING POSTSCRIPT INS IDE INEX: PSTRICKS 

containing the imported graphic. Note also how we use the \pnode command to define 
symbolic node names for use with the \ncl ine and (implicitly) \ncput commands. 

\usepackage {pstri cks , pst-node} % graphi c  def ined as bef ore 

\begin{pspi cture } (-2 , O ) ( 1 . 1 \wd\ IBox , 1 . 2\ht \ IBox) 
\rput [lb] ( O , O ) {\usebox\IBox} 

\psgrid [subgriddiv=O , gridlabel s=7pt , griddot s=10]  
\pnode ( -O . 5 , O ) {A} \pnode ( -O . 5 , \ht \ IBox) {B} 

\nc l ine{->}{A}{B} 
\ncput * [nrot= : U] { \ small molecular weight } 
\rput [rC] ( - 1 , . 3\ht \ IBox) { \ small $ 13$\ , db} 
\rput [rC] ( - 1 , . 65\ht \ IBox ) { \ small $38$\ , db} 
\rput [rC] ( - 1 , . 8\ht \ IBox ) { \ small $76$\ , db} 
\pnode ( O , 1 . 05\ht \ IBox) {A}\pnode ( \wd\ IBox , 1 . 05\ht \ IBox) {B} 
\nc l ine{->}{A}{B} 
\ncput * { \ small molecular weight in the complex} 
\rput [rC] {-90} ( O . 1 \wd\ IBox , 1 . 1 \ht \ IBox) {\small $- 100$\ , kDa} 
\rput [rC] {-90} (O . 8\wd\ IBox , 1 . 1 \ht \ IBox ) {\small $-800$\ , kDa} 
\psl ine [l inewidth=O . 1pt , arrowscale=2] { I - I } (4 , 1 )  (5 , 1 ) 
\uput [-90] (4 . 5 , 1 ) { \ small $ 1 $ \ , $\mu$m} 

\ end{pspi cture} 

I 
6 5 � : · · · · · · · · · : · · · · · · · · · : · · · · 0· · · : · · · · · · · · · : · · · · · · · · · : · · · · · · · · · : · · 0· · · · · : ·  . . . . . . .  . 

;-:- : : ;-:-
tJ : : tJ 

. . . � . � .  . 
5 '  . 

. I 1 . h '  h I ' . : . . . . . . . . .  : . . . . . . . . .  � rno ecu ar welg t III t e comp ex � . . . . .  : 

4 '  

: ) : 
: " '76 d� " " . . . .  . . . . . . 
. . ...... 
: : ..c 

3 :  . . .  38 4b: . . . £f . .  
::: 

: 13 db 
1 : : 

8 
'3 OJ . .  
<!) 

"0 
S 

. . . . . . . . . . . . . . . . . . .  
-2 - 1  6 

Of course, the size chosen for the margins used in the example and thus the values re
quired for the arguments of the pspi cture environment are specific to our particular ap
plication. If annotations are to be placed only within the actual area of the graphic, we would 
simply set these values equal to the size of the graphic. 

Finally, as all desired labels are in place, we can delete (or comment out) the \psgrid 
command to obtain the finished graphic. (In practice, such an ancillary instruction is often 
commented out, as it might become necessary to modify the labels later on.) 

Example 

5-5- 1 1  



.. 1 
, Example 

5-5- 1 2  , 

5.6 lines and polygons 

76 db I 
38 db 

1 3  db 

I 
� 00 
CO CO 
CO CO 
"'" "'" 
o 0 
� � 

- molecular weight in the complex _ 

5.6 Li nes and polygons 

Lines represent a main feature in  any graphical software, and PSTricks i s  no exception. It 
provides an extensive number of keywords that let you influence the appearance of lines; 
these are discussed in Section 5.6.2 on page 234. Here we deal with the basic commands that 
draw lines and some derived shapes. 

\psline * [settings] {(arrow type) } {xQ, yo) (X l , Yl ) 

A series of points given by the coordinate pair arguments is connected by straight lines. If 
there is only one coordinate pair specified with \psline, a line is drawn from the current 
point to the specified point. However, inside a pspi cture environment the current point is 
first reset to the origin of the coordinate system. 

The starred form leads to a closed polygon by connecting the last point to the first one. 
Then the whole area is filled with the line color. This doesn't really make sense for lines with 
only one segment. 

2 

o 2 

2 

o 
o 2 

\usepackage{pstricks} 

\begin{pspi cture} [showgrid=true] ( 2 , 2 ) 
\psline * [l inecolor=red] {->} ( 1 , 2 ) 
\psl ine [l ine color=blue] { < -} ( 2 , 1 ) 

\end{pspi cture}\hspace{2em} 
\begin{pspi cture} [showgrid=true] ( 2 , 2 ) 

\psline * [l inecolor=red] ( 0 , 1 ) ( 1 , 2 ) ( 1 , 1 ) 
\psl ine [linecolor=blue] ( 1 , 0 ) ( 1 , 1 ) ( 2 , 1 ) ( 1 , 0 ) 

\end{pspi cture } 

23 1 



232 

2 

o 
o 

4 

3 

2 

0 L....._..I. 

HARNESSING POSTSCRIPT INS IDE ItITEX: PSTRICKS 

I \qline (X l > Yl ) (X2, Y2 ) I 
This is the simplified version of \psline, because no local key setting via an optional argu
ment is possible and exactly two points must be given (only one line segment) .  However, all 
keys set with \psset are respected by \ql ine and can be local when grouping this setting 
by putting it into parentheses, as seen in the example. 

2 

\usepackage{pstricks} 

\begin{pspi cture} [showgrid=true] ( 2 , 2 ) 
{ \psset{l inewidth=2pt} % key i s  val id and local ! 

\ql ine ( 0 , 2 ) ( 2 , 0 ) 
\psset{line color=blue} 
\qline ( 0 , 0 ) ( 1 , 2 ) } 

\ql ine ( 0 , 0 ) ( 2 , 2 ) 
\ end{pspicture }  

In contrast to \psl ine, the command \pspolygon represents by default a closed line, as 
seen in the following examples, where the first and last points are not the same. When only 
two points are given, ( 0 , 0 )  is used as both starting point and end point. If the end point 
is not identical to the starting point, a line is drawn from the end point to the starting point 
to close the polygon. The asterisk version fills the inside of the polygon with the current line 
color and the current fill pattern. 

\us epackage{pstricks} 

\begin{pspi cture} [showgri d=true] ( 3 , 5 ) 
\pspolygon [l inewidth= 1 . 5pt] ( 0 , 2 ) ( 1 , 0) 
\pspolygon* [l inearc= . 2 , l inecolor=blue , 

swapaxes=true] ( 0 , 1 ) ( 0 , 3 ) ( 3 , 1 ) ( 3 , 3 ) 
\pspolygon [f ill style=hl ine s ,  

l inearc=0 . 3] ( 0 , 2 ) ( 0 , 5) ( 3 , 5 ) ( 3 , 3 . 5 ) ( 1 , 3 . 5 ) ( 1 , 2 ) 
\ end{pspi cture} 

I \psframe *  [$ettl�gs) (wl, yl) (X2, Y2 ) I 
\psframe draws a horizontal rectangle, which is given by two opposite points. If only one 
point is given, ( 0 , 0 )  is taken as the second one automatically. The starred form fills the 
inside of the rectangle with the current line color and the current fill pattern, as seen in the 

, 
Example 

, 5-6-2 

Example 
5-6-3 



I Exa��i� I 
! 5.::�:? ! 

,-- ----- - I Example I 
5-6-6 I 

5.6 Lines and polygons 233 

following example. For the rectangle the special keywords framearc and cornersize are 
recognized. 

° 2 3 

\usepackage{pstricks} 

\begin{pspi cture} [showgr id=true] ( 3 , 2 ) 
\psframe* [linecolor=l ightgray , shadow=true , shadowcolor=b lue 

shadowangle=90 , shadowsize= 1 5pt] ( 3 , 1 . 75 )  
\psframe [f illcolor=white , f i l l style=solid , 

framearc=O . 5 ,  shadow=true] ( 1 . 25 , 0 . 25 ) ( 2 . 8 , 1 . 5 ) 
\end{pspi cture} 

I \psdiamond * [settings] (X!vh'YM) (dx,dy) I 
\psdiamond draws a horizontal lozenge, which is given by its center and its perpendicular 
diagonals. dx and dy specify only half of the lengths. If only one point is given, ( 0 , 0 ) is 
taken as the center automatically. The asterisk version fills the inside of the lozenge with the 
current line color and the current fill pattern, as seen in the following example. With the 
keyword setting gangle=angle, the lozenge can be rotated arbitrarily. 

\us epackage{pstricks} 

\begin{pspicture} ( 3 , 3 ) 
\psdiamond* [line color=blue] ( 1 . 5 , 1 . 5 ) ( 1 . 5 , 1 ) 
\psdi amond* [linecolor=red , gangle=45] ( 1 . 5 , 1 . 5 ) ( 0 . 5 , 0 . 75 )  
\psdi amond [fi llstyle=solid , f ill color=blue ! 60 ,  

gangle=-45] ( 1 . 5 , 1 . 5 ) ( 0 . 25 , 0 . 5 ) 
\end{pspicture} 

\pstriangle draws an isosceles triangle, which is given by the center of the baseline, the 
length of this line, and the corresponding height. dx and dy specify the full length and base 
height, respectively. If only one point is given, ( 0 , 0) is taken as the center of the baseline 
automatically. The starred form fills the inside of the triangle with the current line color 
and the current fill pattern. With the keyword setting =angle, the triangle can be rotated 
arbitrarily, as seen in the following example. 

3 

2 

o �------------� 
o 2 3 

\us epackage{pstricks} 

\begin{pspi cture} [showgrid=true] ( 3 , 3) 
\pstriangle [ l ine color=blue] ( 1 . 5 , 0 ) ( 3 , 2 . 5 ) 
\pstri angle* [line color=red] ( 1 . 5 , 0 . 5) ( 1 , 1 ) 
\pstriangle [f ill style=solid , f i l l color=cyan , 

gangle=45] ( 1 . 5 , 1 . 5 ) ( 1 , 0 . 5 ) 
\end{pspicture} 



234 HARNESSING POSTSCRIPT I NSIDE I!'TEX: PSTRICKS 

5 .6 .1  Extensions to l ines 
When lines are joined, PSTricks has to be told how the lines should be connected. As the 

The setl inej oin following example shows, three variants are supported. The corresponding PostScript func-
command tion is value set line j O in, with valid values of 0, 1, and 2. The default value specified by 

PostScript is O. The easiest way to change this PostScript value is to use the \pscustom com
mand (see Section 5 . 1 3 . 1  on page 280) .  The \pstVerb can also be used (see Section 5. 1 5 .2 

on page 305) .  Both have been applied in the examples below. The package pst-3d plot sup
ports the drawing of lines through a separate key l ine j o in, thereby easing the process 
considerably (see Section 6.6.3 on page 412 ) .  

2 \usepackage {pst r i cks} 

N
3 

o 1 2 3 

\psset{l inewidth=3mm , unit=0 . 6} 
\begin{pspi cture} [showgrid=true] ( 3 , 2) 

\psline ( 0 , 0 ) ( 1 , 2 ) ( 2 , 0 ) ( 3 , 2 ) 
\end{pspicture}\\ [3ex] 
\begin{pspi cture} [showgrid=true] (4 , 2) 

\pstVerb{ 1 setlinej o in } 
\psl ine ( 0 , 0 ) ( 1 , 2 ) ( 2 , 0 ) ( 3 , 2 ) ( 4 , 0) 

\end{pspicture}\\ [3ex] 
\begin{pspi cture} [showgrid=true] ( 3 , 2 ) 

\pscust om{\ code{2 setlinej o in} 
\psl ine ( 0 , 0 ) ( 1 , 2 ) ( 2 , 0) ( 3 , 2) }  

\end{pspicture} 

5 .6.2 Keywords for l ines and polygons 
Table 5 .5  on the next page lists all keywords that are of interest in the context of lines. The 
major part can also be used for other macros-for instance, for \pscircle. 

Next, we give an example for each listed keyword, using the same order as in Table 5.5. 
A description of the keywords for fill options can be found in Section 5.9 on page 253. 

In theory, any desired line width can be chosen, e.g. ,  1 sp or 10  cm. However, both the 
The l inewidth key biggest and the smallest widths depend on the PostScript driver, about which 1EX and Post

Script do not have any information. Thus no decision can be made about sense or nonsense 
of the line width at this point. Keep in mind that you may experience problems with very 
thin lines when viewing the PostScript output on the screen, given the screen resolution sets 
limits here. 

2 

o 
o 2 3 

\usepackage {pstri cks , mult ido} 

\begin{pspi cture} [showgrid=true ] ( 3 , 2 )  
\psl ine [l inewidth=O . O lpt] ( 0 . 5 , 2) 
\psl ine [l inewidth=5pt , l inecolor=red] ( 2 , 2) 
\mult ido{\rA=O . 0+0 . 25}{9}{% 

\psl ine [l inewidth=\rA pt] ( 3 , \rA) } 
\end{pspi cture} 

Example 
5-6-8 

.. �-



Example 

I 5-6-9 

5.6 Lines and polygons 235 

Table 5.5: Summary of keywords for lines and polygons 

Name Value Type Default 
l inewidth value {unit} 0 . 8pt 
l inecolor color black 
line style line style solid 
dash value{unitJ value{unitJ 5pt 3pt 
dotsep value{unitJ 3pt 
double l ine Boolean f alse  
doublesep value{unitJ 1 . 25\psl inewidth 
doublecolor color white 
dimen dimen refpoint outer 
arrows arrow type 
showpoint s  Boolean f alse  
l inearc value{unitJ Opt 
framearc value 0 
cornersize relat i  ve labsolute relat ive 
gangle angle 0 
border value{unitJ Opt 
bordercolor color white 
shadow Boolean f alse  
shadowsize value{unitJ 3pt 
shadowangle angle -45 
shadowcolor color darkgray 
l inetype value 0 
liftpen 0 1 1 1 2 0 

As mentioned in Section 5. 1 .3 ,  PSTricks knows 1 1  predefined colors. Additional ones 
can be defined by the user with the command \def inecolor from the color or xcolor pack- The l ine color key 

age. 

3 

2 

o 
o 2 3 

\usepackage{pstri cks} 

\begin{pspicture} [showgrid=true , l inewidth= 1 . 5pt] ( 3 , 3) 
\psl ine [l inecolor=black ! 50] ( 3 , 1 ) 
\psl ine [linecolor=red] ( 3 , 2 ) 
\psl ine [linecolor=magenta] ( 3 , 2 . 5 ) 
\psl ine [linecolor=yellow] ( 3 , 3 ) 
\def inecolor{LColor}{rgb}{O . l , l , O . l } 
\psline [l inecolor=LColor] ( 1 , 3 ) 

\end{pspi cture} 

The keyword line style can have one of the following values: solid, dashed, 
dotted, or none. A line with the given line style none is not plotted, as can be gathered The l inestyle key 

from the example. Such a behavior is especially of interest when, for instance, we are filling 



236 

3 

2 

HARNESSING POSTSCRIPT INSIDE I!ITEX: PSTRICKS 

areas without border lines or setting the end points ( nodes) of a line without having them 
drawn. 

" 

" 
" 

\usepackage{pstricks} 

\begin{pspicture} [showgrid=true , l inewidth= 1 . 5pt] ( 3 , 3 ) 
\psl ine [l ine style=none] ( 3 , 3 ) %  <-- no l ine ! 
\psl ine [linestyle=solid] ( 3 , 2 ) 
\psl ine [l inestyle=dashed] ( 3 , 1 ) 
\psl ine [l ine style=dotted] ( 3 , 0 . 5 ) 

__ fill" • • • • • • • • • 

o ..,.� �  . . . . . \end{pspicture} 
o 2 3 

The keyword dash defines the structure of a dashed line in an order of "black-white" 
The dash and dotsep sequences, consisting of at least 1 sequence and a maximum of 1 1 .  The dotsep keyword 

keys is similiar to dash and is enabled by the line style dotted. The size of the individual dots 
depends on the specification of line width and is independent of the keywords dotsize 
and dot scale, which refer to the \psdot macro (discussed later) . 

3 
\ , 
\ , \ , I 

2 \ 
\ , 
\ , I I \ , I \ ,  I I I  

" I " ' 

\' 1/' 

3 
I , 

I , 
I , 2 

, 

. 
. . 

. . '
. . . . . . . 

.. . . . . .. : . . . 
. . . 
. ' . ... . . . 

'.' 
.' 

\usepackage{pstricks , mult ido} 

\begin{pspi cture} [showgrid=true] ( 3 , 3) 
\psset{l inewidth= 1 . 5pt , l ine style=dashed} 
\mult ido{\rA=0 . 0+ 1 . 5 , \rB=0 . 0+0 . 5}{7}{% 

\psl ine [dash=5pt \rA pt] ( 1 . 5 , 0 ) (\rB , 3 ) }  
\end{pspicture}\hspace{ 1 . 5em} 
\begin{pspi cture} [showgrid=true] ( 3 , 3 ) 

\ps set{l inewidth=2pt , l inestyle=dotted} 
\multido{\rA=0 . 0+ 1 . 5 , \rB=0 . 0+0 . 5}{7}{% 

Example 

5-6- 10  

0 0 \psl ine [dotsep=\rA pt] ( 1 . 5 , 0) ( \rB , 3 ) } Example · 

0 2 3 0 2 3 \end{pspi cture} 5-6- 1 1  

The double l i ne ,  The keywords double color and doublesep refer to the "inner part" of the double 
doubl e s ep, and line; the line color and line width itself can be changed with the keywords l inecolor and 

doubl e c o l or keys l inewidth, respectively. The double line can be enabled by the keyword double line. 

3 

3 

\us epackage{pstricks} 

\begin{pspi cture} [showgrid=true , 
doublel ine=true] ( 3 , 3) 

\psl ine [doublesep=5pt] ( 1 . 5 , 3 ) 
\psl ine [doublesep=5pt , doublecolor=blue] ( 3 , 1 . 5 ) 
\psl ine ( 3 , 3 ) 

\end{pspi cture} Exampie 

5-6- 1 2  



Example 

5-6- 1 3  

5.6 Lines and  polygons 237 

When a straight line is drawn, it is actually a filled rectangle. The question is how this 
"rectangle" is positioned with respect to the given coordinates of the line. PSTricks allows a The dimen key 

special setting for macros with closed lines, like \psirame, \psc ircle, and \psell ipse. 
For \pswedge, the dimen key applies to the radius only and doesn't affect the behavior at 
the center point (which will always be located in the middle of the line) .  The key dimen 
determines what the specified coordinates refer to: either the inner edge, the outer edge 
(default) ,  or the middle of the line. The following example demonstrates the effect of draw-
ing three rectangles and three circles with the same size specified, but with different settings 
of dimen. 

5 

4 

3 

2 

1 1----

o L...-__ 

1 

o 

\usepackage{pstricks} 

\begin{pspi cture} [l inewidth= 1 0pt , 
l ine color=blue] ( 5 , 5 ) 

\psframe [dimen=outer] ( 1 , 0 ) (4 , 1 ) 
\rput ( 2 . 5 , 0 . 5 ) {outer} 
\psframe [dimen=inner] ( 1 , 2 ) ( 4 , 3 ) 
\rput ( 2 . 5 , 2 . 5 ) { inner} 
\psframe [dimen=middle] ( 1 , 4) ( 4 , 5 )  
\rput ( 2 . 5 , 4 .  5)  {middle }  
\psgrid [subgriddiv=O , l ine color=black] 

\end{pspi cture} 

\bigskip 

\begin{pspicture} [l inewidth=8pt , 
linecolor=blue] ( 7 , 2 ) 

\pscircle [dimen=outer] ( 1 , 1 ) { 1 }  
\pscircle [dimen=inner] ( 3 . 5 , 1 ) { 1 }  
\ps c ircle [dimen=middle] ( 6 , 1 ) { 1 }  
\psgrid [subgriddiv=O , l ine color=black] 

\end{pspicture }  

PSTricks comes equipped with a large variety of  predefined arrows and line end mark-
ings (summarized in Table 5. 1 2  on page 26 1 ) .  These arrows can be requested via the key/- The arrows key 

value interface or with the special option, e.g., for the \psline macro: 

\psline * [arrows=(arrow type), • . .  T iGc<},'lIb b  (Xl , YI ) . 
\psline * [settings] {(arrow type}} (x(), yol (X l , YI )  

If the line consists of several segments, the arrow specification refers to the beginning (first 
segment) and the end (last segment) of the line set. By definition, \pspolygon creates 
closed lines by connecting the last point to the first point, so that arrow specifications make 
little sense here. 

The keyword showpoint s  can be used with Bezier curves (and other curve-drawing The showpo int s key 

macros) to illustrate the position of the current control points. In some cases it is also useful 



238 HARNESS ING POSTSCRIPT INS IDE �EX: PSTRICKS 

with straight lines. The size of the dots can be changed through the keywords dot size and 
dot scale, described in Section 5.8 on page 249. 

3 

\us epackage{pstri cks} 

\begin{pspi cture} [showgrid=true] ( 3 , 2 ) 
\psline [showpoint s=true , l ine style=dashed] % 

( 0 , 0 ) ( 1 , 1 ) ( 1 . 5 , 2) ( 2 , 2 ) ( 2 . 5 , 0 . 5 ) 
\psl ine [showpoints=true , l ine style=none , l inecolor=blue] % 

( 0 , 1 ) ( 1 , 0) ( 1 . 5 , 1 ) ( 2 , 1 ) ( 2 . 5 , 0 ) 
\end{pspi cture} 

The keywords linearc, framearc, and corners ize can be used to create sophisti
The l inearc key cated lines. However, they are of use only with line sets (like polygons) . In first example, the 

value for 1 inearc denotes the radius of the circle that the line is "bent" around. 

o 

3 

2 

o 
o 

2 

\usepackage {pstricks} 

\begin{pspi cture} [showgrid=true] ( 2 , 2 ) 
\ps circle [l ine color=red] ( 0 . 5 , 1 . 5 ) {0 . 5}\psdot ( 0 . 5 , 1 . 5 ) 
\psl ine [l inearc=0 . 5 , l inewidth=2pt] {->} ( O , O ) ( 0 , 2 ) ( 2 , 2 ) 

\end{pspi cture} 

If the beginning and the end of a set of straight lines drawn by \psline have the same 
coordinates, they won't be connected by an arc. In contrast, \pspolygon assumes closed 
lines by definition and produces an arc. (Compare the two figures at the top of the following 
example. )  

2 3 4 

\us epackage {pstricks} 

\begin{pspicture} [showgrid=true] ( 4 , 3) 
\psl ine * [line color=green , l inearc=0 . 4] %  

( 0 , 2 ) ( 1 . 5 , 2 ) ( 1 . 5 , 3) (0 , 3) (0 , 2 ) 
\pspolygon* [line c olor=red , l inearc=0 . 4] %  

( 2 , 2 ) ( 3 . 5 , 2 ) ( 3 . 5 , 3 ) ( 2 , 3 ) ( 2 , 2 ) 
\psl ine [l inearc=0 . 3 , doublel ine=true] {->}% 

( 0 , 0 ) ( 1 , 2 ) ( 2 , 1 . 5 ) ( 1 . 5 , 0 . 5 ) ( 3 , 0 . 5 ) (4 , 1 . 5 ) 
\end{pspi cture} 

The framearc key The keyword framearc is similar to linearc; the difference is that it refers to 
closed lines (frames) created by \psframe or \pspolygon. In contrast to linearc, the 

: Example 

i 5-6- 1 4 

Example 

5-6- 1 6  



Example 

5-6- 1 7 

Example 

5-6- 1 8  

Example , 
5-6- 19  

5.6 Lines and polygons 239 

framearc key can take only values between 0 and 1, where 1 refers to the half of the short
est edge. With a value of 1, a square will turn into a circle. 

2 

o 
o 2 

\us epackage{pstri cks} 

\begin{pspi cture} [showgrid=true] ( 2 , 2 ) 
\psframe [l inewidth=2pt , framearc=0 . 4 , l inecolor=red] ( 2 , 2 ) 
\psframe [l inewidth=2pt , framearc= 1 , l ine color=red] ( . 5 , . 5 ) ( 1 . 5 , 1 . 5 ) 

\end{pspicture} 

To cause all area-shaped structures to show the same behavior at the edges, one 
can choose either relative or absolute for the cornersize. With relative, the The c ornersize key 

framearc key determines the radius of the rounded corners, as described above (and hence 
the radius depends on the size of the frame) .  With absolute, the l inearc keyword deter-
mines the radius of the rounded corners (and hence the radius is of constant size) .  

3 

2 

1 

0 
0 2 3 

\us epackage{pstricks} 

\begin{pspi cture} [showgrid=true] ( 3 , 3 ) 
\psf rame [l inewidth=2pt , l inearc=0 . 25 ,  

cornersize=absolut e , l inecolor=red] (0 . 5 , 0 . 5 ) ( 2 . 5 , 2 . 5 ) 
\psframe [l inewidth=2pt , framearc=0 . 5 , linecol or=blue] ( 3 , 3 ) 

\end{pspi cture} 

With the keyword bordercolor, the crossings of lines can be shown easily when the The border and 

line on top has a border in a different color. The width of the surrounding border is set by bordercolor keys 

the keyword border. 

o 2 3 4 

\usepackage{pstr i cks} 

\begin{pspi cture} [showgrid=true] ( 4 , 3 ) 
\psl ine ( O , O ) ( 1 . 8 , 3 ) \psl ine [border=2pt] {*->} ( 0 , 3 ) ( 1 . 8 , 0  ) 
\psframe * [linecolor=lightgray] ( 2 , 0 ) (4 , 3 ) 
\ps set{linecolor=whit e }  
\psl ine [l inewidth= 1 . 5pt] {<->} ( 2 . 2 , 0 ) ( 3 . 8 , 3 ) 
\psellipse [linewidth= 1 . 5pt , 

bordercolor=gray , border=2pt] ( 3 , 1 . 5 ) ( . 7 , 1 . 4) 
\end{pspicture} 

Shadow effects primarily serve the purpose of highlighting certain regions. The key
word shadow enables the shadow effect, and the keywords shadowsize, shadowangle, 
and shadowcolor set the style of the shadow. The size of the shadow should be chosen 

The shadow, 

shadowsize,  

shadowangle,  and 

shadowcolor keys 



240 HARNESSING POSTSCRIPT INS IDE ItITEX: PSTRICKS 

especially carefully. This feature is useful only with closed curves or polygons. More informa
tion on how PSTricks achieves this shadow effect can be found in Section 5. 1 3 . 1  on page 289. 

\usepackage{pstr i cks} 

o 
\begin{pspi cture} ( 2 , 1 . 5 ) 

\pspolygon [l inearc=2pt , shadow=true , shadowangle=45] % 
( 0 , 0 ) ( 0 , 1 . 1 ) ( 0 . 2 , 1 . 1 ) ( 0 . 2 , 1 . 2 ) ( 0 . 8 , 1 . 2 ) ( 0 . 8 , 1 . 05 ) (2 , 1 . 05 ) ( 2 , 0 ) 

\end{pspi cture} 

The linetype keyword is only of interest to developers who write their own macros 
The l i netype key depending on PSTricks. The line styles dashed and dotted can connect to existing paths 

(lines or curves) with or without gaps only when they know something about the current 
state of the path or the type of the line/curve, which has previously been drawn. With the 
linetype keyword, the line type (see Table 5.6) can be passed to PostScript. 

Table 5.6: Possible values for l inetype 

Value Type 
o open curve without arrows 

- 1  open curve with arrow at the beginning 
-2 open curve with arrow at  the end 
-3 open curve with arrow at the beginning and the end 

1 closed curve with different elements 
n> 1 closed curve with n similar elements 

The keyword liftpen controls the behavior when drawing open curves, which is es
The l i ftpen and pecially of interest for \pscustom (see Section 5. 1 3 . 1  on page 28 1 ;  examples can be found 

l abelsep keys there) . The keyword labelsep specifies the distance between specified coordinates and a 
label set by one of the \ ?put macros (see Section 5. 1 1  on page 265; examples can be found 
there) .  The value oflabelsep can be queried through the length register \pslabelsep. 

5.7  Ci rcles, e l l ipses, and cu rves 

In PSTricks's terms, everything that is not part of a polygon is regarded as a curve. This class 
of objects also includes circles and ellipses, and parts thereof. (Although a circle is mathe
matically a special case of the ellipse, PSTricks distinguishes between the two.) Both shapes 
may be drawn in their entirety or as segments or sectors. For all macros of this group, the 
center point defaults to 'IEX's current point or ( 0 , 0 ) . The starred form of these commands 
fills the interior of the respective shape ( in the case of arcs, the area made up by connecting 
the ends of the arc with a chord) using the current line color and the current fill pattern. 
The keyword setting \showpo ints=true, when used with \psarc or \psell ipt icarc, 
causes dashed lines to be drawn from the center to the starting point and the end point of 
the arc. 

Example 

5-6-20 : 



Example i 
5-7- 1 

Example 

5-7-2 

5.7 Circles, ell ipses, and curves 

\pscircle  * [settings] (:J:M',YM) { radius} 

If no circle center is specified, then the default ( 0  , 0 )  is used. The starred form fills the inside 
of the circle with the current line color and the current fill pattern. 

3 

2 

o 2 3 

I \qdi sk(XNJ, YM Hradius} I 

\us epackage{pstricks} 

\begin{pspi cture} [showgrid=true] ( 3 , 3 ) 
\ps circle [linecolor=blue , doublel ine=true , 

doublecolor=red , double s ep= 1 2pt] ( 1 . 5 , 1 . 5 ) { 1 . 5 } 
\psc ircle* [l inecolor=green] ( 1 . 5 , 1 . 5 ) {O . 25} 

\end{pspi cture} 

\qdisk is a simplified variant of the starred form of the circle macro; it is always filled with 
the current line color. Keywords may only be set with \psset, and both the center and the 
radius have to be specified. 

3 

o 
o 2 3 

\usepackage{mult ido , pstricks} 

\begin{pspi cture} [showgrid=true] ( 3 , 3 ) 
\mult ido{\rA=O . 1 +0 . 25 , \rB=O . 05+0 . 05 ,  

\rC=3 . 0+-0 . 25 , \nA=O+ 1 0 } { 10}{% 
{\ps set{linecolor=black ! \nA}\qdi sk ( \rA , \rA) { \rB}} 

\psc ircle [l ine color=white , f illcolor=black ! \nA , 
f illstyle=sol id] ( \rC , \rA) { \rB}} 

\end{pspi cture} 

\psarc * [settings] {arrO'W t!Pei} t�l�¥g�J, {radius}{angleA}{angleB} 
\psarcn * [settings] {arrQiW ijlpel'" {radius} {angleA HangleB} 

These commands draw arcs and sectors, when the filling function is used. The difference 
between the two is that \psarc draws the arc in the mathematically positive sense (i.e. , 
counter-clockwise) and \psarcn draws it in the mathematically negative sense (i.e. , clock
wise) .  Note that the latter behavior is different from using \psarc with the angle specifica
tions swapped, as the arc would still be drawn counter-clockwise. This is especially useful in 

241 



242 

3 

2 

O .  
o 

3 

2 

o 
o 2 

3 

o 

HARNESSING POSTSCRIPT INS IDE It\TEX: PSTRICKS 

applications of \ps custom, which deals with drawing closed lines (among other things) .  

2 3 

\usepackage {pstri cks} 

\begin{pspi cture} [showgrid=true] ( 3 , 3 ) 
\ps custom [linecolor=blue , f i l l style=vl ine s , hat chcolor=gray] { 

\psar c ( 1 , 2) { . 5}{45}{225} 
\psarc ( 1 , 2 ) { 1 }{225}{45}} 

\ps custom [l ine color=blue , f illstyle=vlines , hat chcolor=gray] { 
\psarc (2 , 1 ) { . 5}{225}{45} 
\psarcn ( 2 , 1 ) { 1 } {45}{225} 
\closepath} 

\end{pspi cture} 

Note that the center point is not really optional. Although the {arrow type} and 
(x  M, Y M )  arguments are both marked as optional, the latter may be omitted only if the 
former has been given. Otherwise, lEX will mistake the {radius} argument for the {arrow 
type} . 

3 

2 

o .  
3 0 2 3 

\usepackage {pstri cks} 

\begin{pspi cture} [showgrid=true] ( 3 , 3 ) 
\psarcn* [showpoint s=true , l ine color=blue] % 

( 1 . 5 , 1 . 5 ) { 1 . 5} { 2 1 5}{O} 
\psarcn [l inewidth=2pt] { I - I }% 

( 1 . 5 , 1 . 5 ) { 1 . 5}{60}{ 1 50} 
\end{pspicture}\hspace{ 1 . 5em} 
\begin{pspi cture} [showgrid=true] ( 3 , 3 ) 

\psarc * [showpoint s=true , linecolor=blue] % 
( 1 . 5 , 1 . 5 ) { 1 . 5} { 2 1 5}{O} 

\psarc [showpoint s =true] % 
{ 1 - 1 } ( 1 . 5 , 1 . 5) { 1 . 5}{60}{ 1 50} 

\end{pspi cture} 

\pswedge � JGiiiiii,Ji L�mM. '!lM 1f {radius} {angleA} {angleB} 

\pswedge draws a sector starting at the first angle clockwise to the second angle. If no circle 
center is specified, ( 0 , 0 ) is taken by default. The starred form fills the interior of the sector 
with the current line color and the current fill pattern. 

2 3 

\usepackage{pstricks} 

\begin{pspi cture} [showgrid=true] ( 3 , 3 ) 
\pswedge* [l inecolor=black ! 1 5] {3}{O}{30} 
\pswedge * [line color=blue] {3}{30}{60} 
\pswedge * [linecolor=black ! 30] {3}{60}{90} 
\pswedge ( 1 , 1 ) { 1 . 5 }{20}{70} 

\end{pspi cture} 

I�-�� · ' 
, Example : 
: 5 -7-4 I 



Example 

5-7-6 

Example 
5-7-7 

5.7 Circles, ell ipses, and curves 

I \psellipse *  (settings] (XM,'!/U) ( a,b)  I 
In contrast to a circle, an ellipse needs an extended radius specification. As is common prac
tice in mathematics, the two semi-axes are used, given in parentheses like a coordinate pair: 
(a,b) . If no ellipse center is given, ( 0 , 0 ) is used. The starred form fills the interior of the 
ellipse with the current line color and the current fill pattern. 

3 

2 

o 
o 2 3 

\us epackage{pstricks} 

\begin{pspi cture} [showgrid=true] ( 3 , 3) 
\psellipse [line color=blue , doublel ine=true] % 

( 1 . 5 , 1 . 5 ) ( 1 . 5 , 1 ) 
\psellipse* [line color=blue] ( 1 . 5 , 1 . 5 ) ( 0 . 5 , 1 ) 

\end{pspi cture} 

\pselli pt i carc * [settings} {atrow typel (fi;M,'l/M) (a,b )  {angleAHangleB} 
\psellipticarcn* [settings} {arrQw:type} (xu, 'Yu) (a,b )  {angleA}{angleB} 

These commands are similar to their "circular" counterparts in that they are able to draw 
not only elliptic arcs, but also elliptic sectors, if the fill function is used. Again, the only 
difference between \psellipt icarc and \psellipticarcnis that the former draws the 
arc in the mathematically positive sense (i .e. , counter-clockwise) and the latter draws it in 
the mathematically negative sense (i.e., clockwise) . Note that this different behavior cannot 
be achieved by simply swapping the two angle specifications. \psell ipt icarcn can be 
very useful when we are applying the \pscustom command to create a closed path around 
an area. 

3 

3 \) 2 3 

o 2 3 

\us epackage{pstricks} 

\begin{pspi cture} [showgrid=true ] ( 3 , 3 ) 
\psellipt i c arc* [ showpo int s=true , l ine color=blue ] % 

( 1 . 5 , 1 . 5 ) ( 1 . 5 , 1 ) { 2 1 5}{O} 
\psell ipt i c arc [l inewidth=2pt] { I - I }% 

( 1 . 5 , 1 . 5 ) ( 1 . 5 , 1 ) {60}{ 1 50} 
\psellips e [linestyle=dashed , l inewidth=O . lpt] % 

( 1 . 5 , 1 . 5 ) ( 1 . 5 , 1 ) 
\end{pspi cture}\\ [ 1 0pt] 
\begin{psp i cture} [showgrid=true] ( 3 , 3) 

\ps ell ipt i c arcn* [showpo int s=true , l ine color=blue] % 
( 1 . 5 , 1 . 5 ) ( 1 . 5 , 1 ) {2 15}{0} 

\psell ipt i c arcn [l inewidth=2pt ] { I - I }% 
( 1 . 5 , 1 . 5 ) ( 1 . 5 , 1 ) {60 } { 1 50} 

\psellipse [l inestyl e=dashed , l inewidth=O . lpt] % 
( 1 . 5 , 1 . 5 ) ( 1 . 5 , 1 ) 

\end{pspi cture} 

243 



244 

2 

o 

- 1  
-2 - 1 

HARNESSING POSTSCRIPT INS IDE It\TEX: PSTRICKS 

\pselli  pt i cwedge� lE$�ttlng$l (m�t1'l�rM)' (a,b )  {angleAHangleB} 

This macro is similar to \pswedge (discussed on page 242) ,  with the only difference being 
that an elliptic sector is drawn instead of a circular one. 

° 2 

\us epackage{pstricks} 

\begin{pspi cture} [showgrid=true] ( -2 , - 1 ) ( 2 , 2 ) 
\psell ipt i cwedge [f illstyle=vl ine s , 

l inewidth=O . l ] ( O , O ) ( 1 . 5 , 1 ) {0}{200} 
\psell ipt i cwedge [f illstyle=hl ines , 

linecolor=red] (0 , O) ( 0 . 5 , 1 . 5 ) {30}{220} 
\end{pspicture} 

5.7 . 1  General  curves 

PSTricks provides a variety of commands for drawing smooth curves according to a speci
fied set of points. With some of these commands, the curve will go through all points given; 
other commands need some auxiliary points that determine the shape of the curve. Bezier 
curves always operate on a limited number of points (four with cubic Bezier curves), while 
the second-order polynomial functions applied by other macros allow for any number of 
points (above a certain minimum) to be connected. The starred form of most curve macros 
connects the end point of the curve to the starting point and fills the area thus obtained with 
the current line color and the current fill pattern. Whether this ability is useful depends on 
the particular application. 

Since Bezier curves are an important method of drawing nonlinear curves, PostScript has 
a corresponding internal instruction, and \psbezier simply calls that procedure. It needs 
four points: the starting point and the end point of the curve, and two intermediate control 
points, which determine how the curve is bent. 

However, \psbezier makes the first point optional. If it is not given, it is determined 
as follows: inside a \ps custom command, the PSTricks current point is used. Inside a 
pspicture environment, the origin ( 0 , 0 ) is taken. Elsewhere (i.e., outside ofpspicture 
mode) 'lEX's current point is chosen. 

4 

\usepackage{pstricks} 

\begin{pspi cture} [showgrid=true] ( 4 , 3 ) 
\psbezier [linewidth= 1 . 5pt , 

showpoint s=true] {-> } ( 1 , 3) ( 2 , 1 ) (4 , 3 ) 
\psbezier [linewidth= 1 . 5pt , linecolor=blue , 

showpoint s=true] {->} (0 . 5 , O . 5) ( 1 , 0 ) ( 2 , 3 ) (4 , 1 ) 
\ end{pspicture} 



Example 

5-7- 1 0  

Example 

5-7- 1 1  

5.7 Circles, ellipses, and curves 

As seen in the next example, the starred form always leads to a filled area with a straight 
connection between the last and first point. 

3 

\usepackage{pstricks} 

245 

° 2 3 4 

\begin{pspi cture} [showgrid=true] (4 , 3) 
\psbezier* [l inewidth= 1 . 5pt , l ine color=red , 

showpo int s=true] {->} ( 1 , 3 ) ( 2 , 1 ) (4 , 3 ) 
\psbezier* [linewidth= 1 . 5pt , l ine color=blue , 

showpoint s=true] {->} (0 . 5 , 0 . 5 ) ( 1 , 0 ) ( 2 , 3 ) (4 , 1 ) 
\end{pspi cture} 

This macro requires the specification of the vertex AP(XA ,  YA ) and an arbitrary curve 
point P(xp ,  yp ) to be able to draw the parabola. The starred form fills the area from the 
vertex to y = yp with the current line color and the current fill pattern. 

2 

° 2 3 

\usepackage{pst r i cks} 

\begin{pspi cture} [showgrid=true] ( 3 , 2 ) 
\parabola* [line color=blue] ( 1 , 0 . 5 ) ( 1 . 5 , 2 ) 
\parabola [l inewidth=2pt ] ( 3 , 2 ) ( 1 . 5 , 0) 

\end{pspi cture} 

\pscurve draws a smooth curve through a given list of points. It expects at least three 
points, because otherwise no interpolating second-degree polynomial can be created
PSTricks needs this expression to connect the points. Bear in mind that PSTricks does not 
give an error message when fewer than three coordinate pairs are specified! (The outcome 
will depend on the dvi driver and PostScript interpreter used.) 

\usepackage{pstricks} 

\begin{pspi cture} [showgrid=true] (4 , 3 ) 
\ps curve * [l inecolor=blue , l inewidth= 1 . 5pt] % 

( 1 , 0 ) ( 1 , 1 ) ( 2 , 0 ) (4 , 3 ) 
\ps curve [l inewidth= 1 . 5pt , 

showpoint s=true] ( 0 , 0) ( 1 , 3 ) ( 2 , 1 ) (4 , 2 ) ( 2 , 3 ) ( 1 , 1 ) 
\end{pspi cture} 



246 

4 

3 .  

2 .  

o 
o 

3 

2 

o 

HARNESSI NG POSTSCRIPT INSIDE �TEX: PSTRICKS 

The "e" in the name of \psecurve stands for "end point". This command is a variation of 
the command that uses the first and last of the specified coordinate pairs as control points, 
like those for a Bezier curve. These points are taken into account to determine the curve gra
dient but are not displayed; the curve starts at the second point and ends at the penultimate 
point. This may be useful to let the curve start and end with a specific gradient. Hence, the 
curve can be given a defined behavior at the "visible" end points, which is not possible with 
\ps curve. 

Note that it is not meaningful to give fewer than four coordinate pairs, because 
\pse curve draws n - 2 points. PSTricks does not raise an error message when too few 
coordinate pairs are specified! (The outcome will depend on the dvi driver and PostScript 
interpreter used.) 

In the following example, a \psecurve is used together with a corresponding 
\ps curve (which omits the "invisible" starting point and end point) for comparison. 

2 3 4 

\usepackage {pstri cks} 

\begin{pspi cture} [showgr id=true] (4 , 4 ) 
\pse curve [showpo int s=true , 

l inewidth= 1 . 5pt] ( . 1 25 , 6 ) ( . 25 , 4 ) ( 1 , 3 . 5 ) %  
( 1 , 1 ) ( 2 , 3 ) (4 , . 25 )  (8 , . 125)  

\ps curve [linecolor=blue , l inewidth=0 . 5pt , 
l inestyle=dashed] ( . 25 , 4) ( 1 , 3 . 5 ) ( 1 , 1 ) ( 2 , 3 ) (4 , . 25 )  

\end{pspi cture} 

The name of the \psccurve command is an abbreviation for "closed curve" -it draws a 
smooth curve through a given list of points and will also connect the last point to the first 
point by a smooth curve. Like \ps curve, this command needs at least three points. Note 
that PST ricks does not give an error message when too few coordinate pairs are specified! 
(The outcome will depend on the dvi driver and PostScript interpreter used.) 

3 

\usepackage{pst r i cks} 

\begin{p spi cture} [showgri d=true] ( 3 , 3) 
\psccurve * [l inecolor=cyan] % 

( 1 . 5 , 1 . 5 ) ( 2 . 5 , 1 . 5 ) ( 2 . 5 , 2 . 5 ) ( 1 . 5 , 2 . 5 ) 
\psccurve [showpo int s=true] % 

( 1 . 5 , 1 . 5 ) ( 2 . 5 , 1 . 5 ) ( 2 . 5 , 2 . 5 ) ( 1 . 5 , 2 . 5 ) 
\psccurve [showpo int s=true , linecolor=red , 

linewidth=1 . 5pt] ( . 5 , 0 ) ( 2 . 5 , 1 ) ( 2 . 5 , 0 ) ( . 5 , 1 ) 
\end{pspi cture} 

: Example 

5-7- 14  



Example 

s�7 � 1 5  

Example 

s� 7 � 1 6  

5.7 Circles, ellipses, and curves 

Table 5.7: Summary of keywords for circles, ellipses and curves 

Name Value Type Defau l t  
arcsep value[unitJ Opt 
arcsepA value[unitJ Opt 
arcsepB value[unitJ Opt 
curvature value 1 value2 value3 1 0 . 1  0 

5.7.2 Keywords for cu rves 

Table 5.7 lists all keys that are relevant to circles, ellipses, and curves. The keys displayed 
in Table 5.5 on page 235 also apply, insofar as they refer to filling and lines in general. In 
this section, examples are given for every keyword specified, according to the order given in 
Table 5.7. 

The arcsep key is simply an abbreviation for the simultaneous setting of arcsepA 
(point A) and arcsepB (point B). These keywords are needed when line segments should The arc s ep, 

not end in the center of another line or in another point, but rather exactly at the outer edge arcs epA, and 

of that object. This is especially important when the line or curve ends with an arrow, as it arcs epB keys 

should not normally overlap another line or point with its tip. As can be seen in the following 
example, this feature unfortunately does not work correctly in all cases: the upper arc does 
not end at the edge of the circle. 

3 

o 2 3 

3 

\us epackage{pstri cks} 
\ Spe c i alCoor 

\begin{pspi cture} [showgrid=true] ( 3 , 3 ) 
\psset {l inewidth= lpt } 
\psarc [arcsep=20pt , 

line color=blue] { I ->} ( 1 . 5 , 1 . 5 ) { 1 . 5}{0}{360} 
\psar c [arcsep=20pt] { I ->} ( 1 . 5 , 1 . 5 ) {0 . 75}{ 180} { - 1 80} 
\psarcn [arcsep=20pt] { I ->} ( 1 . 5 , 1 . 5 ) {0 . 5}{ 180}{- 180} 

\end{pspi cture} 

\usepackage{pst r i cks} 
\Spe c i alCoor 

\begin{pspi cture} [showgrid=true] ( 3 , 3 ) 
\psl ine [l inewidth=3pt , l inecolor=blue] ( 3 ; 50 ) ( 0 , 0 ) ( 3 ; 1 0 )  
\psarc [ar c sep=3pt , l ine color=red] {->}{2 . 5 } { 1 0}{50} 
\ps c ircle ( 3 ; 80 ) {0 . 25} 
\psar c  [arcsepA=3pt , arc sepB=O . 2 5 cm , l inecolor=red] 

{->  }{3}{ 10}{80} 
\end{pspi cture} 

247 



248 HARNESSING POSTSCRIPT INSIDE INE>C: PSTRICKS 

The curvature key controls the appearance of all curves except Bezier curves (where 
The curvature key the control points are part of the curve specification) .  The other curves are determined by 

an interpolating second-degree polynomial (y = ax2 + bx + c), and the curvature can 
be influenced by the curvature key. The default values satisfy most needs, but can lead to 
insufficient results with curves that have to "steeply stub" the middle point (see Section 6. 1 .2 
on page 333 ) .  A curve from A over C to B is drawn by "stubbing" point C in such a way that 
the tangent in this point is perpendicular to the bisecting line of the angle AC B. 

3 

3 

c 

\us epackage{pstricks} 

\begin{pspi cture} [showgrid=true] ( 3 , 3 ) 
\ps curve [showpoint s=true , l inecolor=red , 

linewidth=1 . 5pt] ( 0 , 1 ) ( 2 , 2 . 5 ) (3 , 0 ) 
\pspolygon [l inewidth=0 . 3pt] ( 0 , 1 ) ( 2 , 2 . 5) ( 3 , 0 ) 
\rput [lC] { - 105 . 7} ( 2 , 2 . 5 ) {  

\psset{linewidth=0 . 2pt} 
\psl ine [l inestyle=dashed] ( 0 , - 1 ) ( 0 , 1 ) 
\psl ine [linestyle=dashed] ( 0 , 0 ) ( 1 . 5 , 0 ) 
\psarc ( 0 , 0 ) {0 . 25}{0}{90}} 

\uput [-75] (0 , 1 )  {A}\uput [ 135] ( 3 ,  0 )  {B}\uput [45] ( 2 , 2 . 5 ) {C} 
\ end{pspi cture } 

The bisecting line is displayed dashed in this example. This behavior is independent of 
the scale as well as the choice of the values of the curvature parameters. The values for the 
three parameters must be chosen from the range [- 1 ;  + 2] . The first parameter determines 
the gradient of the curve in such a way that for values smaller than 0, the starting gradient 
is smaller than the gradient of the line AC. For values larger than 0, the inverse is true and 
the gradient is larger than that of the line AC. The following example demonstrates this for 
the values [2 ; 1 ;  0 ;  -0 . 5 ;  - 1 ] .  For the value 0, the curve corresponds to a straight line; for 
negative values, a loop has to be inserted, because otherwise the aforementioned gradient 
condition in point C cannot be fulfilled. 

\usepackage{pst r i cks} 

\begin{pspi cture} [showgrid=true] ( 3 , 3 ) 
\ps curve [showpo int s=true , linecolor=red , 

linestyle=dashed] ( 0 , 1 ) ( 2 , 2 . 5 ) ( 3 , 0 ) 
\ps curve [linecolor=green , curvature=2 0 . 1  0] (0 , 1 ) ( 2 , 2 . 5 ) (3 , 0 ) 
\ps curve [linecolor=blue , curvature=O . O  0 . 1  0] (0 , 1 ) ( 2 , 2 . 5 ) (3 , 0 ) 
\pscurve [linecolor=gray , curvature=-0 . 5  0 . 1  0] (0 , 1 ) ( 2 , 2 . 5 ) (3 , 0 ) 
\ps curve [linecolor=black , curvature= - 1 . 0  0 . 1  0] (0 , 1 ) ( 2 , 2 . 5 ) ( 3 , 0 ) 

. Example 
, 5-7- 1 7 , 
L �  __ �_�.! 

\uput [-75] ( 0 , l ) {A}\uput [ 1 80] (3 , O ) {B}\uput [90] ( 2 , 2 .  5) {C} Example 

\end{pspi cture } ; 5-7- 1 8  

The second parameter influences the gradient right and left of the adjacent point, but 
only when the gradient AC with respect to BC is larger than 45°. To show this effect, the 



Example 

5-7-20 

5.8 Dots and symbols 

middle point C has been raised in the following example. As can be seen, the result is sym
metrical around the middle point. 

3 \usepackage{pstri cks} 

\begin{pspi cture} [showgrid=true] ( 3 , 3 ) 
\ps curve [showpoint s=true , l ine color=red , 

249 

2 

o 

l ine style=dashed] ( 0 , 0 ) ( 2 , 3 ) ( 2 . 5 , 0 ) 
\pscurve [linecolor=green , curvature=l 2 . 0  0] ( 0 , 0 ) ( 2 , 3 ) ( 2 . 5 , 0 ) 
\pscurve [linecolor=blue , curvature=l 1 0] ( 0 , 0 ) ( 2 , 3) ( 2 . 5 , 0 ) 
\ps curve [linecolor=gray , curvature= l -0 . 5  0] ( 0 , 0 ) ( 2 , 3 ) ( 2 . 5 , 0 ) 
\ps curve [linecolor=black , curvature= l - 1 . 0  0] ( 0 , 0 ) ( 2 , 3 ) ( 2 . 5 , 0 ) 
\uput [O] ( 0 , 0 )  {A}\uput [0] ( 3 ,  0) {B}\uput [90] ( 2 , 2 . 5 ) {C} 

\end{pspi cture} 

The third parameter of the curvature keyword influences the gradient in every point. 
For the value 0, the result is as described above. For the value - 1 ,  the tangent at point C 
is parallel to the straight line AB. Contrary to the second parameter, changes to the third 
parameter result in asymmetric effects in relation to the middle point: relocating the curve 
upwards on the left side causes it to move downwards on the right, and vice versa. For more 
information about the behavior of the curvature keyword, see [ 1 35] . 

3 

5.8 Dots and sym bols 

\usepackage{pst r i cks} 

\begin{pspi cture} [showgrid=true] ( 3 , 3 ) 
\ps curve [showpoint s=true , l inecolor=red , 

linestyle=dashed] ( 0 , 0 ) ( 2 , 2 . 5 ) ( 3 , 0 ) 
\ps curve [linecol or=green , curvature= l 0 . 1  - 1 ] ( 0 , 0) ( 2 , 2 . 5 ) ( 3 , 0 ) 
\ps curve [linecolor=blue , curvature=l 0 . 1 2] ( 0 , 0 ) ( 2 , 2 . 5 ) ( 3 , 0 ) 
\PlotLines % def ined in preamble 
\uput [O] ( 0 , 0) {A} \uput [ 1 80] ( 3 , 0 ) {B}\uput [90] ( 2 , 2 . 5 ) {C} 

\end{pspi cture} 

For PSTricks a dot is everything that can be defined by the dot sty le key. This may be a dot 
(i.e. , filled circle) or a symbol such as ready-made character from a font or a little graphic 
created with a PostScript subroutine. The symbols of the Zapf Dingbat s font are espe
cially easy to use because the font is already present inside PostScript. Such symbols can be 
defined as new "dots". The definition of dot style and size has direct influence on the key 
showpoint s  discussed in Section 5.6.2 on page 237. 

The "singular" variant \psdot takes at most one point argument (which defaults to the 
"current" point), whereas the "plural" form \psdot s must have at least one point but may 



250 

® 

2 ® 

o 
o 

1 

2 

HARNESSING POSTSCRIPT INSIDE NEX: PSTRICKS 

take as many points as desired. As depicted in Table 5.9 on page 252, the starred version of 
\psdot produces filled symbols, if available. 

2 3 

\usepackage{pstricks} 

\begin{pspi cture} [showgrid=true] ( 3 , 2 ) 
\psset{linecolor=blue } 
\psdot* [dot style=pent agon , dots cale=5] ( 1 . 5 , 1 . 5) 
\psdot s [dot size= . 4cm , dot style=square] % 

( 0 , 0 ) (0 . 5 , 0 ) ( 1 , 1 ) ( 1 . 5 , 1 ) ( 2 , 2) ( 2 . 5 , 2) 
\end{pspi cture} 

\newpsf ontdot{name} [xW xS yS yW xO yO] {jont nameHglyph number} 

The \newpsf ontdot declaration allows you to define your own dot symbols. First you have 
to choose a name that you later use with the dot style key (see example below) . Next comes 
a transformation specification that will be applied to the glyph. Although it is given in square 
brackets, this argument is not optional! It conforms to the usual PostScript representation of 
transformation matrices and comprises six numbers: x W and y W -the values for the hor
izontal and vertical scale factors; xS and yS-the values for the shearing factors in both di
mensions; and xO and yO-the values for the offsets in the x and y directions. Then comes 
the font name, which must be a valid PSTricks internal or PostScript font designation, fol
lowed by the glyph number, which is the slot position of the character (given as a hexadeci
mal number enclosed in angle brackets) .  Which PostScript fonts will be available depend on 
the driver used on the one hand and on the character sets built into the printing device on 
the other hand. Alternatively, the PSTricks internal "font" can be used, where the characters 
are defined in the header file pst-dot s . pro. 

In the following example, we define three new symbols called CircPlus, 
CircMultiply, and Flower (plus a few variants of these) .  The first two symbols are 
part of the Symbol font, and the third symbol comes from the Zapf Dingbat s font of 
PostScript with the numbers 196 ,  197, and 96. 

\usepackage{pst r i cks} 
\newpsf ontdot {CircMult iply} [2 0 0 2 - . 78 - . 7] {Symbo l}{ <C4>} 
\newpsf ont dot {CircPlus} [2 0 0 2 - . 78 - . 7] {Symbol}{<C5>} 
\newpsf ontdot {CircPlus45} [2 2 -2 2 - . 78 - . 7] {Symbol}{<C5>} 
% . . .  other def initions see example code . . .  

\begin{pspicture} [showgrid=true] (4 , 4 )  
\psset {dot scale=2 . 5} \psdot [dot style=Flower] (4 , 0 ) 
\psdot [dot style=Flower45] (4 , 1 ) \psdot [dot style=Flower90] (4 , 2 ) 
\psdot [dot style=Flower 135] (4 , 3 ) \psdot [dot style=Flower 180] (4 , 4) 
\psdot s [dotstyle=hFlower] ( O , O ) \psdot [dot st yle=vFlower] ( 1 , 1 ) 
\psdot [dot style=hvFl ower] ( O , l ) \psdot [dot style=xsFlower] (2 , 2 ) 
\psdot [dot style=ysFlower] ( 3 , 3 ) \psdot [dot style=dxyFlower] ( 2 , 3 ) 
\psdot [dot style=ysFlower] ( 2 , 4 ) \psdot [dot style=CircPlus] (3 , 0 ) 
\psdot s [dot style=CircPlus45] ( 3 , 2 ) ( 1 , 2 ) ( 2 , 1 ) 
\psdot s [dot style=CircMult iply] ( 0 , 3 ) ( 0 , 4 ) ( 1 , 4 ) Example . 

\end{pspi cture} 5-8·2 



Example [ 
5-8-3 

Example 

5-8-4 

5.8 Dots and symbols 

To find suitable values for the transformation specification often requires some hand
work in the end, which is admittedly easier with axis-symmetrical glyphs. 

5.8.1  Dot keywords 
Table 5.8 shows the possible options for the dot macros. 

Table 5.8: Summary of keywords for dot display 

Name Value Type Default 
dotstyle style name * 
dotsize value[unit} [value} 2pt 2 
dot scale value1 [value2} 1 
dot angle angle 0 

A large number of predefined styles to set dots exist, which are summarized in Table 5.9 
on the following page, in which the right column shows examples with an additional 
f illcolor key setting. For better reading the symbols have been set with dot scale= l . 5 
(see below) . Additional symbols can be defined using \newpsf ontdot as explained on the 
facing page. 

The size of a dot symbol is determined by two keywords. The dotsize key takes a 
size specification and an optional number as values; the latter is treated as a multiple of the The dot s i z e  and 

linewidth value (see Section 5.6.2 on page 234). The default value is 2pt 2 , making the dot dot s c al e  keys 

size depend on the width used for drawing lines (a feature useful with showpo int s ) .  If need 
arises, you can use fixed dot sizes by using a factor ofo (which is the default value, if omitted) .  
In  the case of  circles, the value specified with the dot size key refers to  the diameter. 

\usepackage{pstri cks , pst-node } 

\psdot [dot size=Opt 10 , dot style=square] ( 0 , 0 ) %  
\psdot [dot size=Opt 10 , dot style=square] ( 2 , 0 ) %  
\pcl ine [node sep=5\psl inewidth , l inewidth= 10\psl inewidth] ( 0 , 0 ) ( 2 , 0 ) 

The other key affecting the size of dot symbols is dot s cale , which takes one or two 
numbers as values. If two numbers are given, they specify the scaling factor in the horizontal 
and vertical directions, respectively; a single number applies to both directions. The default 
value is 1 (hence no additional scaling takes effect) .  

3 

2 

1 

o 
o 2 3 

\us epackage{mult ido , pstricks} 

\begin{pspi cture} [ showgr id=true] (3 , 3 ) 
\mult ido{\rA=O . 25+0 . 25} { 1 1}{% 

\psdot [dot scale=\rA , dot style=triangle] ( \rA , \rA) } 
\mult ido{\rA=O . 25+0 . 25 , \rB=2 . 75+-0 . 25 , \nB=O+9}{ 1 1 }{% 

\psdot * [dot s c ale=\rA\space 4 , dot style=triangle , 
linecolor=black ! \nB] ( \rA , \rB ) }  

\end{pspi cture} 

251 



252 

Name 
* 
Bo 
+ 
Add 
Oplus 
SolidOplus 
BoldHexagon 
asterisk 
Asterisk 
Sol idAsterisk 
ot imes 
BoldOt imes 
Mul 
I 
Bar 
Bullet 
BoldCircle 
Bsquare 
Square 
SolidSquare 
Bdiamond 
Diamond 
Sol idDiamond 
Btriangle 
Triangle 
SolidTriangle 
Bpentagon 
Pentagon 
SolidPentagon 
BoldHexagon 

HARNESSING POSTSCRIPT INSIDE �EX: PSTRICKS 

Table 5.9: Summary of dot styles 

\psdot 
• • • •  
0 0 0 0  
+ + + +  
+ + + +  
EB EB EB EB  
e e e e  
0 0 0 0  
* * * * 
* * * * 
® ® ® ®  
@ @ @ @  
@ ® ® ®  
x x x x 
I I I I 
I I I I 

• • • •  
0 0 0 0  
D O D  0 
D D D D 
• • •  • 
o 0 0 0  
o 0 0 0  
• • • • 
b,. b,. b,. b,.  
D D D D  
... ... ... ... 
0 0 0 0  
0 0 0 0  
• • • •  
0 0 0 0  

\psdot * 

• • • •  
• • • •  
+ + + +  
+ + + +  
• • • •  
• • • •  
• • • •  
* * * * 
* * * * 
• • • •  
@ @ @ @  
• • • •  
x x x x 
I I I I 
I I I I 

• • • •  
• • • •  
• • • •  
• • • •  
• • • •  
• • • • 
• • • • 
• • • • 
... ... ... ... 
... ... ... ... 
... ... ... ... 
• • • •  
• • • •  
• • • •  
• • • •  

Name 
o 
x 
B+ 
BoldAdd 
BoldOplus 
Hexagon 
SolidHexagon 
Basterisk 
BoldAsterisk 
oplus 
Ot imes 
Sol idOt imes 
BoldMul 
B I 
BoldBar 
Circle 
square 
square* 
BoldSquare 
diamond 
diamond* 
BoldDiamond 
triangle 
triangle* 
BoldTriangle 
pentagon 
pentagon* 
BoldPentagon 
Hexagon 
SolidHexagon 

\psdot 
0 0 0 0  
x x x x 
+ + + +  
+ + + +  
El:l El:l El:l El:l  
0 0 0 0  
• • • •  
* * * * 
* * * * 
EB EB EB EB  
@ @ @ @  
� � � �  
x x x x 
I I I I 
I I I I 

0 0 0 0  
D D D D 
• • • • 
o D O D  
o 0 0 0 
• • • • 
o 0 0 0 
D D D D  
... ... ... ... 
b,. b,. b,. b,.  
0 0 0 0  
• • • •  
0 0 0 0  
0 0 0 0  
• • • •  

\psdot* 
• • • •  
x x x x 
+ + + +  
+ + + +  
• • • •  
• • • •  
• • • •  
* * * * 
* * * * 
EB EB EB EB  
• • • •  
• • • •  
x x x x 
I I I I 
I I I I 

• • • •  
• • • •  
• • • •  
• • • •  
• • • • 
• • • • 
• • • • 
... ... ... ... 
... ... ... ... 
... ... ... ... 
• • • •  
• • • •  
• • • •  
• • • •  
• • • •  

The dot angle key After the application of the other keywords, like dots ize and dotscale, the symbol 

3 

o 

is rotated by the angle dot angle. The direction of the rotation is counter-clockwise. 

2 3 

\usepackage{mult ido , pstricks} 

\begin{pspi cture} [showgrid=true] ( 3 , 3 ) 
\mult ido{\nA=O+30} { 1 2}{% 

\psdot [dot size=2 . 25 cm , dot style=triangle ,  
dot angle=\nA] ( 1 . 5 , 1 . 5 ) }  

\end{pspi cture} Example ' 
5-8-5 



5.9 Filling areas 

Name 

f illstyle 

f illcolor 
hatchwidth 
hatchwidthinc 
hat chsep 
hat chsepinc 
hat chcolor 
hat changle 
addf illstyle 

Table 5. 10: Summary of the keywords used to fill areas 

Value Type 

none I solid i vlines I vlines* I hlines I hlines*  I 
crosshat ch l crosshat ch* 
color 

value[unit] 

value[unit] 

value[unit] 

value[unit] 

color 
value 
none I solid i vl ines I vl ines* I hlines I hlines* I 
crosshat ch l crosshat ch* 

5.9 F i l l ing a reas 

Default 

none 

white 
O . 8pt 
Opt 
4pt 
Opt 
black 
45 
none 

Each "real" PSTricks graphic object command (that is, the commands internally defined 
through the macro \pst©obj ect), except the commands starting with a "q", has also a 
starred variant that creates an object filled with the current linecolor. Other colors or 
patterns can be achieved by using the various keywords for filling areas. 

Only areas with a closed path can be filled with a color or pattern. If a path is not defined 
by a closed polygon or curve, PostScript will connect the last point with the first point by a 
line to create a closed path. This may sometimes produce an unexpected result. In this sec
tion we describe only the basic keys for the standard fill option of the main package pst ricks. 
Other fill styles require the package pst-grad for gradients or pst-fi l l  for filling with patterns 
or tiles (see Section 6.4) . 

5.9 . 1  F i l l ing keywords 
The basic fill styles are solid with a defined color or with lines of different width, separation, 
angle, and color. 

Several standard filling styles exist: none, sol id, vl ines, vlines*, hlines, 

253 

hlines*, none, crosshat ch, crosshat ch*, and boxf ill. The starred forms first fill The f i l lstyle key 

the background with the color specified by the f illcolor keyword, and then work similar 
to the unstarred forms. The fill style none fills an area with "no" style, which may seem to 
be useless, but actually suppresses and deactivates selected fillings of partitions. This also f i llstyl e =none 

provides an easy way to test and debug complex PSTricks figures. Simply changing the fill 
style to none disables the filling but leaves the current line path unchanged. 

The value solid must be used for the fillstyle key when filling the complete area 
with the current fill color. This corresponds to the starred form of the used command, when f i llstyl e =s o l i d  

the line color is set to the fill color. 



254 

3 

2 

o 1 2 3 

HARNESSING POSTSCRIPT INS IDE INEJ(: PSTRICKS 

\usepackage{pstri cks} 

\begin{pspi cture} [showgr id=true] ( 3 , 3 ) 
\ps circle* [linecolor=black ! 1 0] ( 1 . 5 , 1 . 5 ) { 1 . 5} 
\ps c ircle [f illstyle=solid , f il lcolor=blue] ( 1 , 2 ) { 1 }  
\pscircle* ( 2 , 1 ) { 1 }  

\ end{pspi cture} 

The key values vlines and vlines* are abbreviations for «vertical lines", and they fill 
f i l lstyl e =vl ine s the complete area with vertical lines of the current fill color. One must keep in mind that the 

hatchangle is set to 45 degrees by default but must be set to 0 degrees to get true vertical 
lines. While the vlines key value produces a transparent filling, the starred form vlines*  

f i l l styl e =vline s *  first fills the background with the color specified by f i ll color and only then repaints with 
the «normal" vline s style. 

3 3 

2 

o 
o 2 3 o 2 3 

\usepackage {pst r i cks} 

\begin{pspi cture} [showgrid=true] ( 3 , 3 ) 
\ps circle * [l inecolor=black ! 1 0] ( 1 . 5 , 1 . 5 ) { 1 . 5} 
\ps c ircle [ f i l l style=vl ine s] ( 1 , 2 ) { 1 }  
\ps c ircle [f i l l style=vlines , %  

hat chcolor=blue , hat changle=O] ( 2 , 1 ) { 1 }  
\end{pspi cture}\hspace{2em}% 
\begin{pspi cture} [showgrid=true] ( 3 , 3 ) 

\ps circle* [l inecolor=black ! 10] ( 1 . 5 , 1 . 5 ) { 1 . 5} 
\ps c ircle [f i l l style=vlines*]  ( 1 , 2 ) { 1 }  
\ps circle [f i ll style=vline s * , %  

hat chcolor=blue , hat changle=O] ( 2 , 1 ) { 1 }  
\ end{pspi cture} 

f i l l style=hlines The fill styles hlines and hlines * (for «horizontal lines" ) work similar to their verti-

3 

2 

o 
o 

and hline s *  cal counterparts vl ines and vl ines*, respectively. 

2 

3 

1 

o 
3 0 2 

\usepackage{pstri cks} 

\begin{pspi cture} [showgrid=true] ( 3 , 3 ) 
\pscircle * [line color=black ! 10] ( 1 . 5 , 1 . 5 ) { 1 . 5} 
\ps c ircle [f i l l style=hline s] ( 1 , 2 ) { 1 }  
\ps circle [f i llstyle=hl ine s , %  

hat chcolor=blue , hat changle=O] ( 2 , 1 ) { 1 }  
\end{pspi cture} \hspace{2em}% 
\begin{pspi cture} [showgrid=true] ( 3 , 3 ) 

\ps circle * [linecolor=black ! 10] ( 1 . 5 , 1 . 5 ) { 1 . 5} 
\ps circle [fillstyle=hline s*]  ( 1 , 2 ) { 1 }  
\psc ircle [f i llstyle=hl ines* , %  

hat chcolor=blue , hat changle=O] ( 2 , 1 ) { 1 }  
3 \end{pspi cture} 

Example 

5-9- 1 

Example 
5-9-2 



5.9 Filling areas 255 

The fill styles cros shat ch and crosshatch* (crossed lines) represent a combi- f i l l style =cros shat ch 

nation of the above two styles and work analogously to them. and cros shat ch* 

3 3 

2 

\usepackage{pstri cks} 

\begin{pspi cture} [showgrid=true] ( 3 , 3 ) 
\ps circle * [linecolor=black ! 10] ( 1 . 5 , 1 . 5 ) { 1 _ 5} 
\ps circle [fillstyle=cros shat ch] ( 1 , 2 ) { 1 }  
\ps circle [f il l style=crosshat ch , %  

hat chcolor=blue , hat changle=O] ( 2 , 1 ) { 1 }  
\end{pspi cture}\hspace{2em}% 
\begin{pspi cture} [ showgrid=true] ( 3 , 3 ) 

\ps circle * [linecolor=black ! 1 0] ( 1 _ 5 , 1 . 5 ) { 1 . 5} 
\ps circle [fillstyle=cros shat ch*] ( 1 , 2 ) { 1 }  
\ps circl e [ f i l l style=cros shat ch* , %  

Example i 
5-9-4 ,  0 2 3 0 2 

hat chcolor=blue , hat changle=O] ( 2 , 1 ) { 1 }  
3 \end{pspi cture} 

Example 1 
5-9-5 i 

The boxf ill style from the package pst-fi l l  plots an object specified by \psboxf ill  f i l l style =boxf i l l  

repeatedly to fill the specified area. I t  i s  used in the next example and described in more 
detail in Section 6.4. 

o 2 3 

\usepackage {pst r i cks} 
\usepackage [t i l ing] {pst -fill}  
\newcommand* \Circle{\pspi cture ( O _ 6 , O _ 6 ) %  

\pscircle ( O . 3 , O . 3 ) {O . 3}\endpspi cture} 

\begin{pspi cture} [showgrid=true] ( 3 , 3 ) 
\psboxf ill{\Circle} 
\psframe [ f i l l style=boxf ill]  ( 3 , 3 ) 

\end{pspi cture} 

The keyword f illcolor determines the fill color for the fill styles solid, vlines*, The f i l l color key 

hlines*, and crosshatch*. 

3 

o 1 2 3 

\usepackage{pstricks} 

\begin{pspi cture} [ showgrid=true] ( 3 , 3) 
\ps circle * [linecolor=black ! 1 0] ( 1 . 5 , 1 . 5 ) { 1 . 5} 
\ps c ircle [f i llstyle=solid , f i llcolor=blue] ( 1 , 2 ) { 1 }  
\ps circle [ f i l l style=cros shat ch* , f ill c olor=red , 

hat chcolor=blue , hat changle=O] ( 2 , 1 ) { 1 }  
\ end{pspi cture} 

The keyword hat chwidth establishes the (initial) line width for the fill styles vl ines, 
hlines, and crosshatch (including their starred forms) .  In the following example, the The hat chw idth and 

two "incomplete" curves are completed with a line from the end point to the starting point hat chwidthinc keys 



256 HARNESSING POSTSCRIPT INSIDE 1!\TEl(: PSTRICKS 

3 

2 

a 

3 

2 

a 

o 2 

by PSTricks, resulting in a definite area to fill. The keyword hat chwidthinc determines 
the increment of the line width for the fill styles vl ines, hlines, and crosshat ch (the 
starred forms included) . PSTricks tries to hold the amount of white space between two lines 
as constant. This is possible only when changing the value for the keyword hat chsep. Only 
the start value for hat chsep can be set. 

3 

2 

\usepackage{pstri cks} 

\begin{pspicture} [showgrid=true] ( 3 , 3) 
\psl ine [f illstyle=vl ine s] (0 , 0 ) ( 0 , 3 ) ( 3 , 0 ) 
\psline [f illstyle=hline s , hat chwidth= 1 . 5pt] % 

( 3 , 3 ) ( 3 , 0 ) (0 , 3 ) 
\end{pspi cture}\hspace{2em}% 
\begin{pspi cture} [showgrid=true] ( 3 , 3 ) 

\psframe [f illstyle=vline s , 
a .......,. ........ ..a...;a....; __ �____ hat chsep= l pt , hat chwidthinc=o . 5pt ] ( 3 , 3 ) 

3 a 2 3 \end{pspi cture} 

The keyword hat chs ep sets up the (initial) size of the separation between the lines for 
The hat chsep and the fill styles vl ines, hl ines, and crosshat ch (and the starred forms) .  We call this the 
hat chsepinc keys line distance. Again, the two "incomplete" curves of \psl ine have been completed with a 

line from the end point to the starting point by PSTricks to obtain a definite filling area. The 
keyword hat chsepinc determines the size of the increment for the separation between 
the lines for the fill styles vlines, hlines, and crosshatch, as well as the corresponding 
starred forms. 

3 
\us epackage{pstricks} 

\begin{pspi cture} [showgrid=true] ( 3 , 3 ) 
\psl ine [fillstyle=crosshat ch] (0 , 0 ) ( 0 , 3 ) ( 3 , 0 ) 

2 \psl ine [f illstyle=crosshat ch , hat chsep= 10pt] % 
( 3 , 3 ) ( 3 , 0 ) ( 0 , 3 ) 

\end{pspi cture}\hspace{2em}% 
\begin{pspi cture} [showgrid=true] ( 3 , 3 ) 

\psframe [f i l l style=vline s , hat changl e=O , 
a hat chsep= lpt , hat chsepinc=0 . 1 75pt] ( 3 , 3 ) 

a 2 3 a 2 3 \end{pspi cture} 

With the hat chcolor key, you can choose the line color for the fill styles vlines, 
The hat chco l or and hlines, and crosshat ch, including their starred forms. In the example the two "incom-

hat changl e keys plete" curves of \psline are completed with a line from the end point to the starting point 
by PSTricks, making up a definite fill area. The keyword hat changle determines the gra
dient of the lines for the fill styles vlines, hlines, and crosshatch, and their starred 
forms. Because of problems with rounding errors, not all angles are possible. In the next 

Example 

5-9-7 

Example 

5-9-8 



Example . 

5-9- 1 0  

5 .9  Fil l ing areas 

example the two "incomplete" curves of \psl ine are completed with a line from the end 
point to the starting point by PSTricks to form a closed path for a definite fill area. 

\usepackage {pstricks} 

257 

3 3 

\begin{pspi cture} [showgr id=t rue] ( 3 , 3 ) 
\psl ine [f illstyle=cros shat ch ,  

hat chcolor=blue] (0 , 0 ) (0 , 3 ) ( 3 , 0 ) 
\psl ine [f illstyle=cros shat ch ,  

hat chcolor=red] ( 3 , 3 ) ( 3 , 0 ) ( 0 , 3 ) 
\end{pspi cture} \hspace{2em}% 
\begin{pspicture} [showgr id=t rue] ( 3 , 3 ) 

\psl ine [f illstyle=hl ine s , hat chc olor=blue , 

° 

hat changle=30] ( 0 , 0 ) ( 0 , 3 ) ( 3 , 0 ) 
\psl ine [f illstyle=hl ine s , hat chco lor=red , 

hat changle=60] ( 3 , 3 ) ( 3 , 0 ) (0 , 3 ) 
° 2 3 ° 2 3 \end{pspi cture} 

The package pst-fi l l  allows you to define your own fill styles. Sometimes, however, it 
may be easier to use two existing styles and print them one over the other. The keyword 
addf illstyle determines such an additional fill style, so that especially in combination 
with the fill type boxf ill  there are manifold ways to fill areas. When you use this way of 
filling, you must assign the boxf ill  style to the addf illstyle key; the other way round 
doesn't work. 

\usepackage{pstricks} 
\usepackage [t il ing] {pst -fill}  
\newcommand*\Circle{\pspi cture ( 0 . 6 , 0 . 6 ) 

\ps circle (0 . 3 , 0 . 3 ) {0 . 3}\endpspi cture} 

The addf i l l style 

key 

\begin{pspi cture} [showgr id=true] ( 3 , 3 ) 
\psboxf ill{\Circle} 
\psframe [f illstyle=cros shat ch , addf i l l styl e=boxf i l l , 

hat chsep= 10pt , hat chcolor=red] ( 3 , 3 ) 
\end{pspi cture} 

5.9.2 More fil l  styles 
Transparencies are not possible in PostScript level 2, which is the standard for PostScript 
printers these days; level 3 supports an alpha channel to create real transparencies. However, 
we can define a fill style with lines, where the separation and the line width are very small; the 
naked eye cannot perceive the difference between a solid filled area and such a hatch style. 
This makes sense only for printing or on-screen output, when the viewer doesn't zoom into 
such a "color". 

In the next example we define a command \def ineTColor with two arguments; one 
for the name of this new fill style and one for the basic color. (The pstricks-add package 



258 HARNESSI NG POSTSCRIPT INSIDE �EX: PSTRICKS 

comes equipped with this command.) We print first the text and then the two rectangles, 
each with the special fill style. The result looks like we are using real transparency colors. 

\usepackage{pstricks} 
\newc OJilmand*\def ineTColor [2] {% transparent " colors " 

\newps style{# l } {% 
f i llstyle=vlines , hat chcolor=#2 , 
hat chwidth=O . l \pslinewidth , hat chsep=l\psl inewidth}} 

\def ineTColor{tBlack40}{black ! 40} 
\def ineTColor{tBlack80}{black ! 80} 

\begin{pspi cture} ( O , - l )  ( 5 , 6) 
\rput ( 2 . 5 , 2 . 5 ) {\psframebox [doublel ine=true , f rame arc=O . 3] 

{\Huge \t ext sf {PostScript }}} 
\rput {-30} ( 1 , 1 ) {\psframe [style=tBlack40] (2 . 5 , 4 ) }  
\rput {30} (2 . 5 , 1 ) {\psf rame [style=tBlack80] ( 2 . 5 , 4) }  
\end{pspi cture} 

Remember that so-called Moire effects may occur, when lines of the two fill styles have 
nearly the same gradient. In such a case one could select other angles for the lines, or choose 
the fill style cros shat ch as an alternative. 

Circular color gradients can be constructed easily, for example, by using the \mul t ida 
Color gradients command. By default, the pstricks package loads the xcolor package, which is the reason why 

no explicit loading of a color package is seen in the examples. 

\usepackage{mult ido , pstri cks} 

\begin{pspi cture } ( -3 , -3) ( 3 , 3) 
\psset {unit=3} 
\mult ido{\nHue=O . O l+0 . 0 1 } { 1 00}{% 

\def ine color{MyColor}{hsb}{\nHue , l , l } 
\psc ircle [l inewidth=O . O l ,  

linecolor=MyColor] {\nHue}} 
\end{pspi cture} 

Example 

5-9- 1 1  
.. .. . ..... ..1 



5.1 0 Arrows 

The next example could be defined as a macro and used as a fill style in conjunction 
with psclip environment (see Section 5. 1 2 .4 on page 275) .  

5.1 0 Arrows 

\usepackage {mult ido , pstricks} 

\newcommand\circularFill [ 1 ] {% 
\psset {unit=# 1 }  
\begin{pspi cture } ( - 1 , - 1 )  ( 1 , 1 ) 

\mult ido{\nHue=O . 0 1+0 . 0 1 } { 1 00}{% 
\def ine color{MyColor}{hsb}{\nHue , 1 , 1 } 
\ps circle [linewidth=O . 0 1 ,  

l ine color=MyColor] { \nHue} }  
\end{pspi cture }} 

\begin{p spi cture} ( 5 , 4) 
\begin{psclip}{\psframe ( 5 , 4 ) }  

\rput ( 2 . 5 , 2 ) { \ c ircularFill{3 . 5} }  
\end{ps c l ip} 

\end{p spi cture} 

PSTricks has a large choice of predefined «arrows", which are listed in Table 5. 1 2 . By «ar
rows", we mean a variety of line terminations (either beginning or ending) , which are often 
actual arrows. These «arrows" can be set either by means of the key/value interface or by us
ing the special optional {arrow} argument provided by many macros (see Section 5.6.2 on 
page 237) . A specification through \psset is also possible (Section 5.2 on page 2 1 7 ) .  

Arrows may be used not only for lines, but for all «open" curves. The property of  being 
open, in this context, refers to the way the curve is defined, not the resulting geometry. A 
polygon that starts and ends at the same point, for example, would be open in the required 
sense, when using the \psl ine command. In contrast, the \pspolygon command always 
yields a closed path. This implies that arrows make no sense for such a command. In this 
section, when we refer to line terminations, we implicitly include not only lines proper, but 
also other curves that are open in the relevant sense. 

The next lines of code show the three ways to add a line termination to a line produced 
with the \psl ine command. All three possibilities for setting arrows are equivalent, except 
that the declaration with \psset must be put inside a group if the scope of its effect is in
tended to be local. The first line declares arrows=-> locally; it is valid only for the current 
graphic object. The same holds for the second line, where the special optional argument for 
line termination is used. The third line then applies the \psset command, but it is used to
gether with the \psl ine command inside a group, delimited by the outer two curly braces; 
thus it is also local. 

\psl ine [arrows=->] ( 3 , 3 ) 
\ps l ine{->} ( 3 , 3) 
{ \psset{arrows=->}\psline ( 3 , 3 ) } 

259 



260 

] 
] 

HARNESSING POSTSCRIPT INSIDE IM"EX: PSTRICKS 

arrowsize 

Figure 5. 1 :  Dimensions of an arrow 

5 . 1 0 . 1  Keywords for arrows 
The keywords for arrows determine the style, size (see Figure 5. 1 ) ,  and shape of line termi
nations. In the keyword names, length is the dimension in the direction of the line, which is 
obvious for arrowlength but not for braeketlength; size is the dimension perpendicu
lar to the line. 

The predefined styles for line terminations that are set by the keyword arrows are 
The arrows key shown in Table 5. l 2. The ways to use them will become clear from the examples that fol

low. Many mixed combinations of line beginnings and endings are possible, some of which 
are illustrated in the following example. Be careful when you use the arrow types " -] " and 
"] -" in optional argument declarations: you must put these types in curly braces to prevent 
the closing bracket from being misinterpreted as the one terminating the key/value list! 

)0 � 
E E  [ 

[ 
0 

. <:  
)0 

\usepackage{pstricks} 

\ps set{linecolor=blue , arrows c ale= 1 . 5} 
\psline{->} ( O , lex) ( l , lex)  \psline{>-} (2 , l ex) ( 3 , l ex) \\ 
\psline{« - I } ( O , lex) ( l , l ex) \psline{ [-« } ( 2 , lex) ( 3 , lex) \ \  
\psl ine{] - I } ( O , lex) ( l , lex)  \psline{ [->} ( 2 , lex) ( 3 , lex) \\  
\psline{] -o} ( O , lex)  ( l , lex)  

Line terminations can also be affected by three additional arrows settings: e , e e, and C. 
The effects are shown in the next example. e and ce  round the line end, with the difference 

Table 5 . 1 1 : Summary of keywords for arrows 

Name Value Type Default 
arrows style 
arrowsize value[unit} value 1 . 5pt 2 
arrowlength value 1 . 4  
arrowinset value 0 . 4  
tbars ize value[unit} value 2pt 5 
braeketlength value 0 . 1 5 
rbracketlength value 0 . 1 5 
arrowseale valuel [value2} 1 

Example 

5- 10- 1 



Example 

5- 1 0-2 

5 . 10  Arrows 

Table 5. 1 2: List of arrow tips 

Value Example Code Explanation 

\psline{ } ( 1 . 3 , O ) none 
<-> oE � \psline{<->} ( 1 . 3 , O ) arrows 
>-< :> <: \psline{>-<} ( 1 . 3 , O ) inverse arrows 

« - » � � \psl ine{« - » } ( 1 . 3 , O ) double arrows 
» - « » « \psline{» -« } ( 1 . 3 , O ) inverse double arrows 

I - I 1 1 \psl ine { I - I } ( 1 . 3 , O ) cross strut, flush with end point 
1 * - 1 *  1 1 \psl ine{ I *- I *} ( 1 . 3 , O ) cross strut, centered at end point 

[- J E 1 \psl ine { [-] } ( 1 . 3 , O ) square brackets 
] - [ ] [ \psline{] - [} ( 1 . 3 , O ) inverse square brackets 
( - ) ( ) \psline{ ( - ) } ( 1 . 3 , O ) round brackets 
) - ( ) ( \ps line{) - ( } ( 1 . 3 , O) inverse round brackets 
0 - 0  0 0 \ps l ine{o-o} ( 1 . 3 , O ) circle, centered at end point 
*-* • • \psline{*-*} ( 1 . 3 , O ) disc, centered at end point 

0 0 - 0 0  0 0 \psline{oo-oo} ( 1 . 3 , O) circle, flush with end point 
**-** • • \psline { * * - * * } ( 1 . 3 , O ) disk, flush with end point 
1 <-> 1 I..: � I \psline{ I <-> I } ( 1 . 3 , O )  cross strut and arrow 
1 >-< 1 I> <I \psl ine{ I >- < I } ( 1 . 3 , O ) cross strut and inverse arrow 
c c I \psl ine{c c } ( 1 . 3 , O ) rounded corners 

cc-cc  • • \psl ine{c c - c c } ( 1 . 3 , O ) rounded corners, flush with end point 
c-c • • \psl ine {C-C} ( 1 . 3 , O ) squared end point 

being that one centers the rounding disk at the nominal line end and the other centers the 
disk so that the line is not extended. C extends the line the same distance that c does, but 
keeps the end square. The effect of these settings becomes more important as the line width 
Increases. 

\us epackage {pstricks} 

\begin{pspi cture } ( 3 , 3 ) 

261 

\psset{l inewidth=O . 5cm} 
\psl ine ( O . 25 , O . 25 ) (O . 25 , 2 . 25 ) \rput ( O . 25 , -O . 2 5 ) {-} 
\ps l ine{c-c} ( 1 , O . 2 5 )  ( 1 , 2 . 25 ) \rput ( 1 , -O . 2 5) { c - c }  
\psl ine{cc-cc} ( 1 . 75 , O . 25 ) ( 1 . 75 , 2 . 25 ) \rput ( 1 . 75 , -O . 25 ) { c c - c c }  
\psline{C-C} (2 . 5 , O . 25)  ( 2 . 5 , 2 . 25) \rput ( 2 . 5 , -O . 25 ) {C-C} 

c-c cc-cc c-c \end{pspi cture} 

The keyword arrows ize expects a dimension (with or without a unit) and optionally The arrowsize key 

a factor as its value from which the width of the arrow is calculated as follows: 

width = dimension[unitJ + factor * \psl inewidth 

If the dimension is 0, then the arrow width depends on the current line width (set by the 



262 

3 

2 

o 
o 

The arrowl ength 

key 

3 

2 

o 
o 

The arrow inset key 

3 

2 

o 
o 

HARNESSING POSTSCRIPT INSIDE 1tITEJ(: PSTRICKS 

keyword l inewidth) .  If the factor is 0 or not present, then the arrow width is independent 
of the current line width. 

2 3 

\usepackage{pstricks} 

\begin{psp i cture} [showgrid=true] ( 3 , 3 ) 
\psl ine{->} ( 1 , 3 ) 
\psl ine [arrows=-> , arrows ize=Opt 10] ( 2 , 3) 
\psl ine [arrows=-> , arrows ize= 1 5pt] ( 3 , 3) 
\psl ine [arrows=-> , arrowsize = 1 ]  ( 3 , 2 ) 
\psl ine [arrows=-> , arrows ize= . 2 cm] ( 3 , 1 ) 

\end{pspi cture} 

The keyword arrow length sets the length of an arrow as a multiple of the arrow width. 
The ratio of arrow length to width is therefore preserved when a change of the uni t value 
alters the scale. 

2 3 

\usepackage{pstricks} 

\begin{psp i cture} [showgr id=true] ( 3 , 3 ) 
\psset{arrows=->} 
\psl ine ( 1 , 3 ) 
\psl ine [arrows ize=Opt 10 , arrowlength= 1 ] (2 , 3 ) 
\psl ine [arrows ize= 15pt , arrowlength=0 . 5] ( 3 , 3 ) 
\psl ine [arrowsize= 1 , arrowlength=3] ( 3 , 2 ) 
\psline [arrows ize= . 2 cm , arrowlength=0 . 5] ( 3 , 1 )  

\end{pspi cture} 

The keyword arrow inset sets the depth of the notch of the arrow as a multiple of 
the arrow length (key arrowlength) . The ratio of the notch depth to the arrow length is 
therefore preserved when a change of the uni t value alters the scale. 

\usepackage{pstricks} 

\begin{pspi cture} [showgr id=true] ( 3 , 3 ) 
\ps set {arrows=->} 
\psl ine ( 1 , 3 ) 
\psl ine [arrowsize=Opt 10 , arrowlength= 1 ]  ( 2 , 3) 
\psl ine [arrows ize= 1 5pt , arrowlength=O . 5 , arrowinset=O . 1 ] ( 3 , 3 ) 
\psline [arrows ize= 1 , arrowlength=3 , arrowinset=O . 8] ( 3 , 2 ) 

Example 

5- 1 0-3 

, 
Example 

: 5 - 1 0-4 

\psl ine [arrows ize= . 2 cm ,  arrowlength=O . 5 ,  arrowinset=O . 5] ( 3 , 1 ) I Example 

2 3 \end{pspi cture} 5 - 1 0-5 

The key tbarsize sets the width of a strut, square bracket, or round bracket line ter
The tbarsize key mination in the form of the dimension plus a multiple of the line width (key linewidth) .  

This allows the width to depend on the current line width or not, as  desired. Like the width 



Example 

5- 1 0-6 

Example : 

5- 1�:2J 

, Example II' 
, 5- 1 0-8 

, 

5 . 10  Arrows 

of the arrow, this keyword accepts a dimension and an optional factor as its value using the 
following formula: 

tbarsize = dimension{unitJ + factor * \psl inewidth 

3 

2 

o 
o 2 3 

\usepackage {pstr i cks} 

\begin{pspi cture} [showgrid=true] ( 3 , 3 ) 
\psline{- I } ( 1 , 2 . 75 )  
\psl ine [arrows=- I , tbarsize=Opt 10] ( 2 , 2 . 75)  
\psl ine [arrows={-] } , tbars ize= 1 5pt] ( 2 . 75 , 2 . 75 )  
\psl ine [arrows={-] } , tbars ize= 1 ]  (2 . 75 , 2 ) 
\psl ine [arrows=-) , tbar s ize=0 . 2 cm] ( 2 . 75 , 1 ) 

\end{pspi cture} 

The keyword bracket length sets the length of a square bracket as a multiple of the The key 

bracket width. bracket l ength 

3 

2 

o 
o 2 3 

\us epackage{pstricks} 

\begin{pspi cture} [showgrid=true] ( 3 , 3 ) 
\psline{{-] }} ( 1 , 2 . 75 )  
\psl ine [arrows={-] } , bracketlength= 1 ]  ( 2 , 2 . 75 )  
\psl ine [arrows={-] } , bracketlength=5] ( 2 . 75 , 2 . 75 )  
\psl ine [arrows={-] } , bracketlength= 1 0] ( 2 . 75 , 2 ) 
\psl ine [arrows={-] } , bracket length=0 . 5] ( 2 . 75 , 1 ) 

\end{pspi cture} 

The keyword rbracketlength sets the length of a round bracket as a multiple of the The key 

263 

bracket width. rbracketl ength 

3 

2 

o 
o 2 3 

\usepackage{pstricks} 

\begin{pspi cture} [showgr id=true] ( 3 , 3 ) 
\psline{{-) }} ( 1 , 2 . 75 )  
\psl ine [arrows=-) , rbracketlength= 1 ]  ( 2 , 2 . 75 )  
\psl ine [arrows=- ) , rbracketlength=5]  ( 2 . 75 , 2 . 75 ) ' 
\ps l ine [arrows=- ) , rbracketl ength= 10]  ( 2 . 75 , 2 ) 
\psline [arrows=- ) , rbracketlength=0 . 5] (2 . 75 , 1 ) 

\end{pspi cture} 

The keyword arrowscale sets a scaling factor, which scales all requested "arrows". The arrows c al e  key 

The first value scales the width of the arrows, and second value the length (height). If only 



264 

3 

2 

o 
o 

HARN ESSI NG POSTSCRIPT INSIDE 1NEl(: PSTRICKS 

one number is given, it applies to both the width and the height, which are then scaled 
equally. 

2 3 

\usepackage{pstri cks } 

\begin{pspi cture} [showgrid=true] ( 3 , 3) 
\psline{{->}} ( 1 , 2 . 75)  
\psline [arrows=- ) , arrowscale=2] ( 2 , 2 . 75 )  
\psl ine [arrows={-] } , arrowscale=2 3] ( 2 . 75 , 2 . 75 )  
\psl ine [arrows=-> , arrowscale=3 5] ( 2 . 75 , 2 ) 
\psl ine [arrows=-o , arrowscale=3] ( 2 . 75 , 1 ) 

\end{psp i cture} 

5 . 1 0.2 Creating you r  own arrow types 
The arrow types can be extended arbitrarily. If, for example, one wants to use the symbols 
defined in Section 5.8 on page 250 as "arrows", only the following additional definitions in 
the preamble are necessary. The new arrows are referred to as " em" and " ep" and used in 
the conventional manner. The definitions are quite low level, which is the reason why they 
must be enclosed in \makeatletter . . .  \makeatother (see the example) .  

\usepackage{pstricks} 
\makeat letter % C4= 196 and C5= 1 97 

(8)------<(8) 

\newpsfontdot {CircleMult iply} [2 0 . 0  0 . 0  2 -0 . 78 -0 . 7] {Symbol}{<C4>} 
\newpsfontdot{Circ lePlus } [2 0 . 0  0 . 0  2 -0 . 78 -0 . 7] {Symbol}{<C5>} 
\@namede f {psas@cm}{ \psk@dot size \psds@CircleMult iply 0 0 Dot} 
\@namedef{psas@cp}{\psk@dot size \©nameuse {psds©CirclePlus} 0 0 Dot} 
\makeatother 

\begin{pspi cture} ( 3 , 2 ) 
\psl ine [arrows cale=2] { cm- cm} (0 , 2 ) ( 2 , 2 ) 
\psl ine [arrows cale=4 , l inecolor=red] { cm-cp} (0 , 1 )  ( 2 , 1 )  
\psl ine [arrowscale=3 , l inecolor=blue] { cm->} (2 , 0 ) 

\end{pspi cture} 

In case existing characters from a font are not sufficient and it is necessary to draw the 
needed symbols, the task is a bit more complicated and computationally expensive. This 
scenario is illustrated below with a rectangle, which is symbolically assigned the arrow sign 
"B" for "Box" . 

% Def init ion of the new " arrow " type B-B 
\makeatletter 
\edef\pst@arrowt able{ \pst @arrowt able , B-B} % add to  exist ing arrow table 
\def \tx@ABox{ABox } % int ernal PostS cript name ABox 
\@namedef {psas@B}{% int ernal macro name 

IABox { % PostScript procedure 
CLW mul add dup CLW sub 2 div %he ed l ine width 
Ix ED mul % s ave x value 

Example 

5 - 10-9 

Example 

5 - 1 0- 1 0  



5.1 1 Labels 

/y ED % 
/z CLW 2 div def % 
x neg y moveto % 
x neg CLW 2 div L % 
x CLW 2 div L % 
x Y L % 
x neg y L % 
closepath % 
stroke 0 y moveto % 

} def 

y as well 
reserve 
start ing po int 
l ineto 
l ineto 
l ineto 
l ineto 
close the corner 
draw and go to l ine end 

265 

\psk©bracketlength \psk©tbarsize \tx©ABox % width height ABo x 
} 
\makeatother 

At the PostScript level, it is important that the comment character % not be used imme
diately after a PostScript command or value. We need at least one space between two tokens. 
As is well known from 'lEX preceding spaces have no meaning. When defining PostScript 
code within a 'lEX document, therefore, it is important to keep in mind the different conven
tions of these two languages regarding white space and comments. While PostScript treats 
comments as white space separating two tokens, 'lEX ignores comments altogether as well 
as white space at the beginning of the line. Therefore one must be careful that the comment 
character % doesn't follow immediately behind a PostScript command or value, but rather is 
preceded by some white space; that way 'lEX will recognize the white space token and trans
fer it to the generated PostScript code. 

o 
o 2 3 

5.1 1 La bels 

4 

\usepackage{pst r i cks} 
% cm , and cp arrows as def ined in previous example 
% B arrow as def ined above 

\begin{pspi cture} [showgrid=true] ( 4 , 4 ) 
\ps set{arrows cale=3 , arrows=B-cp} 
\psl ine [bracket length=2] ( 1 , 1 ) ( 4 , 4 ) 
\psarc [l ine color=red] ( O , O ) {2}{O}{90} 
\psarc [arrows ize=2mm , l inecolor=blue] 

{ cm-cp} ( 1 , 1 ) {2}{20}{70} 
\end{pspi cture} 

The names of all PSTricks commands that place a label or an arbitrary object end in the 
letters put . However, most of these commands have both their own syntax and their own 
interpretation of their arguments. 

There is only one special keyword for use with labels: labelsep of type value[unitJ and The l abe l s ep key 

a default of 5pt . 1t defines the distance between the reference point (the lower left) and the 



266 HARNESSI NG POSTSCRIPT INS IDE INEX: PSTRICKS 

t l  t tr 

1 r 

Bl I- - - - - - Basel ine - - - - - - Br 

bl b br 

Figure 5.2: Reference point specification of a box 

actual placement of the object for most label-placing commands (it doesn't affect \rput) .  
It  is also available for \psaxes and related commands from the pst-plot package (see Sec
tion 6. 1 on page 3 1 3 ) .  

5 . 1 1 . 1 Reference points 
Every object has a certain width, height and depth. To position it at a certain point you must 
specify the coordinates for this point and the reference point of the object that should be 
positioned there. By default, the reference point is the center of the object (box) . This can be 
changed by specifying a letter for the horizontal and vertical alignments. PSTricks uses the 
usual shortcuts for the reference point: I for left, r for right, t for top, b for bottom, and B 
for baseline. Horizontal and vertical specifications can be used individually or combined as 
shown in Figure 5.2. 

5 . 1 1 .2 Rotation angle 

For the specification of  the rotation angle, the wind directions may be given in the form of 
abbreviations, summarized in Table 5 . 1 3 . Those may be taken for certain angular values for 
simplicity's sake. 

Table 5. 1 3 : Defined short forms for the rotation angles 

Letter Meaning Counterpart 

U up 0 
L left 90 
D down 180 
R right 270 
N north *0 
W west *90 
S south * 1 80 
E east *270 



Example 

5- 1 1 - 1  

5.1 1 Labels 

All rotation angles that have an asterisk as prefix make PSTricks ignore all superior rota
tions and execute only those rotations with an asterisk. 

3 

2 

o 
3 

\usepackage{pstricks} 

\begin{pspi cture} [showgrid=true] ( 3 , 3 ) 
\psframe ( 0 . 5 , 0 ) ( 3 , 1 ) 
\rput [lb] ( 0 . 5 , 0 ) {bot tom left} 
\rput [br] {*0} ( 3 , 1 ) {top right } 
\rput {30} ( 0 , 0 ) {% 

\psf rame [linecolor=blue] ( 0 . 5 , 0 ) ( 3 , 1 ) 
\rput [lb] ( 0 . 5 , 0 ) {\color{blue} bottom left} 
\rput [br] {*0} ( 3 , 1 ) { \color{blue} top right } } 

\end{pspi cture} 

5 . 1 1 .3 Commands to set labels or objects 

\rpu t ! • [re!erel1l::e PQint] {rQtatiJltl,anglfJ-. (x, y )  {object} 

\rput is a frequently used command, because it has all the properties one expects of a com
mand that puts an arbitrary object at an arbitrary position in the coordinate system. Al
though a wealth of applications for this command exist, only one example is shown here. 

top right 

- 1  o 2 3 

cr' o .... .... o 
a 

\usepackage{pstricks}  

\begin{pspi cture} [showgr id=true] ( - 1 , - 1 ) ( 3 , 3) 
\rput [lb] {L} ( -0 . 5 , 0 . 5 ) {ordinat e} 
\rput ( 1 . 5 , -0 . 5 ) {abs c i s sa} 
\rput{ *O} ( O , O ) { at the origin} 
\rput [rB] ( 3 , 3 . 2 5 ) {top right } 
\rput [rb] {R} ( 3 . 25 , 0 ) {bot tom right} 
\rput * [lb] {45}{diagonal overwrite}  
\rput [rB] {45}  ( 3 ,  3 )  {diagonal } 
\rput * ( 1 . 5 , 1 . 5 ) {\textbf {cent er overwrite}}  

\end{pspi cture} 

The starred form makes overwriting possible (see the example) .  The specification of a 
reference point and rotation angle can be omitted, in which case the center of the object is 
used as the reference point and a rotation angle of zero is selected. 

\multirput * ltefer�n¢e.p�intl t��ti(1nJ- (x, y )  (dx,dy) {n}{object} 

\mul tirput is based on \rput ; executes the rotation n times, with the current point being 

267 



268 

4 

3 

2 

1 

4 

3 

2 

o 

- 1 
- 1  o 

HARNESSING POSTSCRIPT INS IDE It'TEX: PSTRICKS 

shifted each time by (dx,dy) starting with the point (x,y) . With \mul tirput , axis marks
including labels-can be readily placed. 

y 

\usepackage{pstricks} 

\begin{pspi cture} [showgrid=true] (4 , 4 ) 
\multirput ( O , O )  ( 0 . 25 , 0 ) { 1 6}{% 

\psl ine [l inewidth=O . lpt] (0 , -0 . 1 ) }  
\mult i rput ( 2 , 0 ) ( 0 , 0 . 25) { 16}{% 

\psl ine [linewidth=O . lpt] ( -0 . 1 , 0 ) ( 0 . 1 , 0 ) }  
\mult irput ( 0 , 0 ) ( 0 . 5 , 0 ) {8}{\psline ( 0 , - 0 . 15) } 
\mult irput ( 2 , 0 ) (0 , 0 . 5 ) {8}{\psline ( -0 . 1 5 , 0 ) ( 0 . 15 , 0 ) }  
\uput * [O] (4 , 0 )  {$x$}\uput * [90] ( 2 , 4 ) {$y$} 
\psline{->} (4 , 0 ) \psline{->} (2 , 0 ) ( 2 , 4 ) 

\ end{pspi cture} 

\uput * {distance} [direction] {rotation} (:r, y ) {object} 

For some applications the adjustments provided by \rput are not suitable, e.g., labeling 
coordinate axes or certain points in a graphic with explanatory information. Here \uput 
comes in handy owing to its different set of arguments: It allows you to place an object rel
ative to a certain point (x, y )  and optionally apply rotation to it, by specifying a direction 
angle and a distance ( labelsep) . The distance may also be set with the labelsep key. For 
often-used direction angles, mnemonic abbreviations have been predefined; these are sum
marized in Table 5 . 14. 

In contrast to the El-T£X conventions, the [direction] argument, although in square 
brackets, is mandatory, whereas the {labelsep} and {rotation} arguments are optional, de
spite their curly bracket syntax. 

2 3 

\us epackage{pstricks} 

\begin{pspi cture} [showgrid=true] ( - 1 , - 1 )  ( 3 , 4) 
\uput{0 . 5} [ 180] {90} (0 , 1 .  5 )  {ordinate }  
\uput * { 0 . 5} [-90] ( 1 . 5 , 0 ) { ab s c i s sa} 
\psl ine ( 3 , 4) 
\uput *{O} [ 180] {52} ( 1 . 5 , 2 ) { \fbox{c enter}} 
\qdisk ( 1 . 5 , 2) {2pt } 
\qdisk ( 1 , 3 ) {2pt} \uput [45] ( 1 , 3 ) { \ small $ ( 1 , 2 ) $} 
\qdisk ( 2 , 2 ) {2pt} \uput * [45] ( 2 , 2 ) {\ small $ ( 2 , 1 ) $} 

\ end{pspi cture} 

Example 

5- 1 1 -3 

Example 

5 - 1 1 -4 



Example 

5 - 1 1 - 5  

Example 

5- 1 1 -6 

5.1 2 Boxes 

Table 5 . 14: Defined short forms for directions 

Character Meaning Counterpart 

r right 0 
u up 90 
1 left 1 80 
d down 270 
ur up-right 45 
ul up-left 1 35 
dl down-left 225 
dr down-right 3 1 5  

\cput * [settings] {rotation} (x, y ) {object} 

\cput combines the macros \pscirclebox (see Section 5 . 1 2 .2 on page 272) and \rput. 
It always uses the center of the object as reference point. 

2 

o 
o 2 

\us epackage {pst r i cks} 

\begin{pspi cture} [ showgr id=true] ( 2 , 2 ) 
\ cput [doublel ine=true] {45} ( 1 ,  1 )  {\t extbf {center}}  

\ end{pspi cture} 

\mult ips{rotation} (x, y )  (dx,dy) {nHobject} 

\mul t ips is like \mul t irput except that the reference point is always the center and no 
starred form exists. 

5.1 2 Boxes 

\usepackage{pstrick s }  
\def \myCoil{\pscurve (-O . 5 , O . 5 ) ( -O . 1 , O . 45 ) ( O . 3 , O ) %  

(O , - O . 5 ) (-O . 3 , O ) ( O . 1 , O . 45 ) ( O . 5 , O . 5 ) }  

\begin{pspi cture} ( 2 , O . 5 ) 
\psset{unit=O . 5 , l inewidth= 1 . 5pt} 
\multips ( O , O ) ( 1 , O ) {4}{\myCo il}  

\end{pspi cture} 

Quite a number of PSTricks macros have an argument for text that is processed in restricted 
horizontal mode (known as LR mode in �TEX parlance) .  In this mode, the argument, con
sisting of characters and other boxes, is concatenated to a single more or less long line. A 

269 



270 HARNESSI NG POSTSCRIPT INS IDE !eirE><: PSTRICKS 

line break is impossible with this mode, as are display formulas and vertically oriented en
vironments, e.g., center and itemize. However, this is not really a restriction, because a 
\parbox or minipage can be inserted easily, so that relatively few commands cannot be 
used within the argument of an LR box in the end. 

5 . 1 2 . 1  Keywords for box commands 
The commands for framing boxes put their argument into an \hbox and place a frame 
around it at the PostScript level (they are analogous to �TEX's \fbox command) .  Thus 
they are composite objects rather than pure graphics objects. In addition to the keys for 
\psframe, these commands use the keys listed in Table 5 . 15 .  Also, most of the line and fill 
keywords can still be used (see Table 5.5 on page 235) .  

Table 5. 1 5 : Summary of keywords for boxes 

Name 
framesep 
boxsep 
trimode 

Value 
value[unit] 
f alse ltrue 
UI *UID I *D IRI *RIL I *L  

Default 
3pt 
true 
U 

The framesep key The framesep keyword defines the distance between the margin of the box and the 
inner object, similar to \fboxsep from standard �TEX. 

I nothing IB� 
\usepackage {pstricks} 

\psframebox{nothing} 
\psframebox [frame s ep= 10pt] {much} 
\psframebox [framesep=Opt ] {really} 

The boxsep keyword determines whether the size of the final box is that of the in
The boxsep key ner object or includes the frame. It is applicable only to the commands \psframebox , 

\ps c irclebox , and \psovalbox . For all others, it is always the outer frame. 
When the size of the box refers to the inner object, the frame is automatically trans

parent to 'lEX, because it is not part of the box. This is especially useful when something 
within text or a figure should be highlighted through framing (see also Example 5 - 12-8 on 
page 273 ) .  

\usepackage{pstricks} 

\psset{boxsep=false} 
\psframebox{nothing} 
\psframebox [framesep=10pt] {much} 
\psframebox [framesep=Opt] {really} 

When using a triangle as a frame, one needs to specify how it should be oriented; the 
The t rimode key keyword trimode determines which direction the "tiP" of the triangle points to: "u" (up), 

"D" (down), "R" (right), or "L" (left) .  

i Example 

5 - 1 2 - 1  

Example 

5 - 1 2-2 



Example 

5- 1 2-4 

5 . 12  Boxes 

In the basic (unstarred) versions, an isosceles triangle (of minimum area) is produced, 
while the starred forms ("*U", "*D", "*R", and "*L") generate an equilateral triangle. 

� ~ \usepackage{pstricks} 

U *u \begin{tabular}{@{}rc@{\quad}rc@{}} 
U & \pstribox [trimode=U] {Jana} 

D "7 *D 

V 
& *U & \pstribox [trimode=*U] {Jana} 

\\ [5pt] 
o & \pstribox [trimode=O] {Jana} 

B> l3» 
& *0 & \pstribox [trimode=*O] {Jana} 

R *R \\  
R & \pstribox [trimode=R] {Felix} 

& *R & \pstribox [trimode=*R] {Felix} 

� <Ej 
\\  

L *L L & \pstribox [trimode=L] {Felix} 
& *L & \pstribox [trimode=*L] {Felix} 

\end{tabular} 

5.1 2.2 Commands for setting boxes 
As mentioned earlier, the PSTricks box commands discussed in this section all format their 
arguments in LR mode and place a frame around these arguments. They differ only in the 
type and form of this frame. 

I \psframebox* [settings] {contents} I 
\psframebox is the simplest of all available boxes. Its starred form, in contrast to all those 
previously discussed, does not paint the background with the linecolor, but uses the 
f illcolor instead. This ability can be used to create labels with a white background very 
easily. 

\usepackage{pstri cks} 

\begin{pspicture} ( 3 , 2 ) 
\pspolygon [fillcolor=l ightgray , f i l l style=crosshat ch ,  

hat chsep=5pt] ( 0 , 0 ) ( 3 , 0 ) ( 3 , 2 ) ( 1 , 2 ) 
\rput [b] ( 1 . 5 , 0 ) {\psframebox* [framearc=0 . 3] 

{\footnot e s ize bottom}} 
\rput [t] ( 2 , 2 ) {% 

\psframebox* [framearc=0 . 3] {\f ootnot e s ize top}} 
\end{pspi cture} 

\psdblframebox * [settings] {contents} 

As opposed to \psframebox, the command \psdblframebox shows a double frame. 

271 



272 HARNESS ING POSTSCRIPT INS IDE INEX: PSTRICKS 

Note that with very large values for framearc the frame may overlap with the text, as its 
size is based on the rectangular box and frame measures. 

This is an ordinary 
\psdblframebox* , 
which has line breaks 
because a \parbox was 
used ! 

\usepackage{pstricks} 

\psdblframebox [framearc=O . 25 , f ramesep= 10pt] {% 
\parbox{3 . 5cm}{\raggedr ight This is an ordinary 
\t extt t{\t extbackslash psdblframebox*} , whi ch has 
l ine breaks because a \texttt{\t extbackslash parbox} 
was used ! %  

}}  

\psshadowbox * Isettingsl {contents} 

The command \psshadowbox is equivalent to \psframebox with the shadow key set to 
true. 

\usepackage{pstricks} 

\ps shadowbox{\texttt{\t extbackslash ps shadowbox}} 
\ quad 

, Example 

5- 1 2-5 

I \psshadowbox l I \psframebox l \psframebox [shadow=true] Example 

{ \  texttt{\ textbackslash psframebox}} 5-1 2-6 

I \psc irclebox* [settings) {contents} I 
The command \ps cir cle box normally creates a very big radius for a circle, because the in
ner, rectangular box is taken as a measure. Particularly when using the \parbox and \fbox 
commands or a tabular environment, the margins framesep and \fboxsep (as well as 
\fboxrule) or \ tabcolsep, respectively, contribute to the final size of the circle. Note 
that using the @{} specification in the preamble argument of a tabular environment to 
avoid insertion of extra space at the outer edges of a table may have a considerable effect on 
the resultant size of the circle, as depicted in the next example. 

\usepackage{pstricks} 

\_  \ps c irclebox{ \rule{ 1pt } { 1 cm}} \_  
\ps c irclebox{\begin{tabular}{@{}c@{}} 

A big \\ c ircle \end{tabular}} \_ 
\ps circlebox{\begin{t abular}{c} 

A big \\  c ircle \ end{t abular}} \_  

\cput i s  an alternative to \psc irclebox, if  the contents should go to a particular spot 
(see Section 5 . 1 1 .3 on page 269) .  

I \psovalbox*, [settings] : {contents} I 
In contrast to standard �TEX's \oval command, which draws rectangles with rounded 
corners (and is therefore comparable to the frames generated by \psframebox), the 

I Example ' 

5- 1 2-7 ' 



Example 

5 - 1 2-8 

Example 

5- 12-9 

Example 

5- 1 2 - 1 0  

Example ' 

5- 1 2- 1 1  

5 . 12  Boxes 

\psovalbox command creates a true oval (Le_ , an ellipse) . Again, this border may become 
too large when circumscribing some \parbox commands or a tabular environment (see 
the discussion of \ps circ lebox on the facing page). 

\usepackage{pstricks} 

273 

\parbox{4cm}{The advert i s ing price for this book is j ust 
\psovalbox [boxsep=f al s e , l inecolor=darkgray] { 1 9 _ 99\poun dS} , 
whi ch i s  a very good pri c e ! }  

\psdiabox * [settings] {contents} 

\psdiabox produces a diamond-shaped frame, where the width is twice the height. 

I \pstribox * [settings] {contents} I 

\usepackage{pstricks} 

\psdiabox [shadow=true] { \Large Jana} 

\pstri box puts its argument inside a triangle (isosceles or equilateral) .  It has already been 
discussed in the context of the special keyword trimode (see Section 5. 1 2 . 1  on page 270) .  

5 . 1 2.3 Box size 

\us epackage{pstricks} 

\pstribox [shadow=true , trimode=R] { \Large Jana} 

In the box commands discussed so far, the resulting size is always determined by the box con
tents; Le., different contents produce different box sizes, an effect not always desired. Only 
with \cnode (Section 6.2 on page 334) can equally sized circles be achieved, as shown in the 
next example. 

\us epackage{pstricks} 
\usepackage {pst -node} 

\begin{pspi cture} ( -0 . 25 , -0 . 25)  ( 3 _ 25 , 0 _ 5 ) 
\psset {node sep=3pt , shortput=nab} 
\ cnode ( 0 , 0 ) {0 _ 5cm} {A}\rput ( 0 , 0 ) { $x_ l $ }  
\ cnode ( 3 , 0 ) {0 . 5cm}{B}\rput ( 3 , 0 ) { $x_{n- l } $ }  
\ncar c [arcangle=40] {->}{A}{B}� { $ c (x_{n- l } ) $} 

\end{pspi cture} 



274 HARNESSING POSTSCRIPT INS IDE INEX: PSTRICKS 

For all other commands, one can embed the contents inside a \parbox, whose optional 
arguments allow one to adjust both its width and height. Alternatively, \makebox can be 
used if only the width has to be kept constant. Both commands are deployed in the following 
examples. 

I Only constant I L-l __ W_l_· d_th_----' 

\usepackage{pstricks} 

\newcommand\bBox [2] {\makebox [# 1 ]  {#2}} 
\psframebox{\bBox{2cm}{only constant }} 
\psframebox{ \bBox{2cm}{width}} 

Constant width 

The next example uses the same value for the height and the width. Alternatively one 
could define such commands with three arguments to allow different values. 

and height 
\us epackage{pstricks} 
\newcommand\bhBox [2] {% 

\parbox [c]  [# 1 ]  [c] { # 1 } { \makebox [# 1 ]  {#2}}} 
\newcommand\bhpBox [2] {% 

Or with line breaking and variable 
height and width : 

\parbox [c]  [# 1 ] [c] {#1}{\ cent ering #2}} 
\newcommand\bhwpBox [3] {% 

\parbox [c]  [#2] [c] {# 1 } { \ centering #3}} 

Constant 
width and 

height 

and variable 
height 

\psframebox{\bhBox{2cm}{Constant width}} 
\psframebox{ \bhBox{2cm}{ and height}}  

\ small skip 
Or with l ine breaking and variable height and width : 

\psframebox{ \bhpBox{2cm}{Constant width and height}} 
\psframebox{ \bhwpBox{2cm}{3cm} {and var i able height}} 

S . 1 2.4 Cl ipping comma nds 
As mentioned earlier, the starred form of  the pspi cture environment clips the picture 
along the nominal boundaries given by the environment's arguments. In this section we dis
cuss other support for clipping. 

I \cl ipbox [distance] {contents} I 
This command puts arbitrary material into a horizontal box and chops off all "overlapping" 
parts a constant distance outside the nominal boundaries of the material. The extra distance 
is specified in the optional argument and defaults to Opt . The following example demon-

' I  I Example 1 
1 5- 1 2 - 1 2  ! 

Example i ! 
5- 1 2- 1 3  



Example 

5 - 1 2 - 1 4 

Example 

5 - 1 2- 1 5  

5.1 2 Boxes 275 

strates a somewhat complicated way to implement the functionality of the pspi cture* 
environment. 

\usepackage {pstricks} 
\newcommand*\exa [ l ]  [Opt ] {% 

\fbox{\cl ipbox [# l] {% 
\begin{pspicture } ( 1 , O . 5 ) \psl ine ( 2 , 2 ) 
\end{pspi cture} } } }  

\psset{l inewidth= 10pt} 
\fbox{\begin{pspi cture} ( 1 , O . 5) \psl ine (2 , 2 ) \end{pspi cture} }  
\exa\\ [ 1 2pt] 
\exa [ 1 0pt] \exa [ - 1 0pt] 
\fbox{\begin{psp i cture* } ( 1 , O . 5 ) \psl ine ( 2 , 2 ) \end{pspicture * } }  

\begin{psclip}{boundary} 
. . .  material . . .  
\end{psclip} 

With this environment, arbitrary material can be clipped along the boundary specified as an 
argument. This can be any closed path; i.e., it may be built by various parts of different lines 
or curves, but either it should start and end at the same point or the individual segments 
should at least have intersection points. Otherwise, one gets unexpected results because Post
Script itself closes the path with a straight line from the last point to the first one. 

In the following simple example, the closed curve is produced by a \pscircle com
mand. 

.tern so that '

J.ld use them . It SL 
ecame tempting to ad 

cots of features , not j ust 

the ones I needed.  When 

�his became so interest-

19 that it interfered wit' 

day "job", I gave 

�I) iect "cold t l '  

\usepackage {pst r i cks} 
\newsavebox\TBox \savebox\TBox{\parbox{4cm} {% 

The PSTri cks proj ect was started by Timothy Van Zandt l ong t ime 
ago and is one of the oldest \TeX\ paCkage s still  in use . ' I  
started in 1 9 9 1 . Ini t i ally I was j ust trying t o  deve lop tools 
for my own use . Then I thought it would be nice t o  paCkage them 
so that others could use them . It soon became t empting to  add 
lots of f e ature s ,  not j ust the one s I ne eded . When thi s became 
so interest ing that it interfered with my day " j ob " , I gave 
up the proj ect " cold turkey " , in 1994 . ' --- Timothy Van Zandt 
Other people who where involved in this proj ect are Denis Girou , 
Sebastian Rahtz , and Herbert Vo\ ss}}  

\begin{pspi cture} ( -2 , -2)  (2 , 2 ) 
\begin{ps clip}{\pscircle [l ine style=none] 

( O . 5\wd\TBox , -O . 15 \ht\TBox ) {2 cm}} 
\usebox\TBox 

\end{p s c l ip} 
\end{psp icture } 

Very often, a certain area between different mathematical functions must be marked. 
This can be achieved with the \pscust om macro and a subsequent filling of a clipping path. 



276 

-2 - I  

HARNESSING POSTSCRIPT INSIDE !!'TEX: PSTRICKS 

The x values of the intersection points are not important here, because PostScript uses only 
the inner closed part of the boundary. A setting ofl inestyle=none is often useful for the 
clipping path, because then it doesn't affect the default drawing of the curves. 

x 

\usepackage{pstricks} 
\usepackage{pst -pIot } 

\begin{pspi cture} ( -2 , -O . 5 ) (2 , 5 . 5 ) 
\begin{pscI ip}{% 

\pscustom [l ine style=none] {% 
\pspIot {-2}{2}{x dup mul 1 add}} 

\pscustom [linestyle=none] {% 
\pspIot {2}{-2}{x dup mul neg 5 add}}} 

\psframe * [linecolor=l ightgray] (-2 , O ) (2 , 5 ) 
\end{pscIip}% <- % i s  important here 
\psaxe s{->} (O , O ) ( -2 , -O . 5 ) ( 2 , 5 . 5 ) 
\pspIot {-2}{2}{x dup mul 1 add} 
\pspIot {2}{-2}{x dup mul neg 5 add} 
\uput [-90] (2 , O ) {x} \uput [O] (O , 5 . 5 ) {y} 

\end{pspi cture} 

The clipping commands are not really robust. One troublesome situation may occur if 
the psclip environment is used in mid-text (i.e., outside some box or pspicture envi
ronment), and the positions of its start and end points happen to become separated by a 
page break. Very complicated clipping paths with a lot of different curves and placement of 
one clipping path inside another may also give rise to problems. In such cases, one can try 
to use the \AltCl ipMode declaration; this (essentially) causes an additional gsave and 
grestore pair to be inserted in the generated PostScript code, wrapping the clipping oper
ation, so that the previous graphics state gets resurrected. 

5 . 1 2 .5  Rotating and sca l ing 

There are three different macros to rotate LR mode material. They can be  used much like the 
standard �TEX box commands (e.g., \mbox) . 

\rotateleft{con�n�} \rotateright{con�n�} \rot at edown{contents} 

\usepackage {pstricks} 

\Large \rotateleft{\Large Left } 
\rot atedown{\Large Down} 
\rotateright {\Large Right } 

PSTricks also defines three environments to rotate LR mode material, corresponding to the 
above commands. They can be used much like the standard �TEX lrbox environment. 

Example 

5- 1 2- 1 6  

Example ' 

5 - 1 2 - \ 7  



Example : 

5- 1 2 - 1 8  

5 . 12  Boxes 

\begin{Rotateleft} . . .  \end{Rotateleft} 
\begin{Rotateright } . . .  \end{Rotateright} 
\begin{Rotatedown} . . .  \end{Rotatedown} 

The environment forms have the advantage that one can use the verbatim mode (\ verb 
and verbat im environment) inside their body, which is not allowed within the arguments 
of commands. For example, while \rotatebox{90H\ verb/f ool} causes an error, the 
form \begin{Rotateleft} \ verb/fool \end{Rotateleft} is permitted. 

\usepackage{pstricks} 

277 

Que st i on : Whi ch macro creat e s  a new page? \ \  
Answer : \\ 

Question: Which macro creates a new page? 
Answer: 
· a2BdL"l.au\ pm� a2Bd.IBap\ 

\psscalebox{scaleHcontents} 
\psscaleboxto (:r, y) {contents} 

\begin{Rotatedown} 
\verb+\clearpage+ and \verb+\newpage+ . %  
\end{Rot at edown} 

There are two macros to scale arbitrary content. The first one works in a way similar to 
the \scalebox command known from the standard �TEX graph ics bundle, albeit with 
a different syntax: if the scale argument consists of two numbers, the first one applies to 
the horizontal direction and the second to the vertical; if there is only one number, it is 
used for both directions, which are then scaled equally. For example, a specification of 
\psscalebox{ - 1  1 Hword} corresponds to the \refle ctbox command of the graphics 

package; it yields a horizontally mirrored image: blOW . 
By contrast, \psscaleboxto does not scale the material by a given factor, but rather 

to a target size specified in the form of a (Cartesian) coordinate pair (x, y )  . If either of the 
values is 0, the other one is used for both dimensions. 

\begin{ScaleboxHscale} . . .  \end{Scalebox} 
\begin{Scaleboxto} (x, y ) . . .  \end{Scaleboxt o} 

As in the case of  rotation, there are corresponding environments for scaling, too. Hence it is 
possible to use the verbatim mode in the same way as shown above. 

Since the contents of all these rotation and scaling environments are processed in LR 
mode, the spaces after the beginning and before the end are not ignored by PSTricks. Hence 
comment characters "%" must be used if such space is undesired (as shown in the examples 
above and below) . 

\usepackage{pstricks} 

\begin{pspi cture} [showgrid=true] ( 4 , 1 ) 
\begin{S c alebox}{4} \verb+Jana+ \end{Scalebox}% <- the s e  spaces  show ! 

\end{pspicture} 
\begin{pspi cture} [showgr id=true] ( 4 , 1 ) 



278 HARN ESSING POSTSCRIPT INS IDE I!ITfX: PSTRICKS 

\begin{ Scaleboxto} ( 4 , 1 ) \verb+Jana+\end{ Scaleboxt o} 
\end{pspi cture} 

o J 
o 2 3 4 

5 . 1 2.6 Math and verbatim boxes 

4 

If one desires to frame a part of a formula in math mode, 1FX enters text mode begin
ning with \fbox, so that within this LR box, one needs to switch back to math mode, e.g., 
$f ex ) =\fbox{$x"'2_3$}$ . In contrast, PSTricks frame boxes by default typeset their ar
gument in math mode if they are used inside a formula. 

I \psmathboxtrue \psmathboxfalse l 
With \psmathboxtrue one can transparently use the command \psframebox in math 
mode-the default, as shown on the first line of the next example. This behavior can be 
switched offwith \psmathboxf alse, from which point on those boxes would again typeset 
their argument in LR mode, requiring additional $ signs to reenter math mode. 

f (x) = I x� I but f (x) = I x� I 
\usepackage {pstri cks} 

$ f (x) = \psframebox{x"'2_3} $ but 
\psmathboxf alse 
$ f (x )  = \psframebox{$x"'2_3$} $ 

However, there is the problem with inline math mode (in contrast to display math 
mode), in that limits are not displayed with certain operator symbols. This can be remedied 
by explicitly switching to \di splaystyle whenever such a box is typeset. 

I \everypsbox{code} I 
This declaration can be used to execute special code whenever a PSTricks box is typeset -
e.g., \di splaystyle in the next example. Conceivably there might be other applications 
for this command that are unrelated to math mode. 

\usepackage {pstri cks} 

\psmathboxtrue 
$ f ( x) = \psframebox{\ int _ a"'b \frac{x"'2}{3}\ , dx} $ 

Or with di splay style : 

\everypsbox{\displaystyle} 
$ f (x) = \psframebox{\ int _a"'b \frac{x"'2}{3}\ , dx} $ 

Example 

5 - 12-20 



Example 

, 5 - 1 2-22 

i Example 

5- 1 3 - 1  

5.1 3 User styles and objects 

In the previous section, we demonstrated by several examples how to use "verbatim" 
material within LR mode by means of the environments provided by PSTricks. Analogous 
to the Boolean switch regarding math mode that was discussed earlier, another such switch 
controls the behavior with respect to verbatim material as argument for other boxes. 

I \psverbboxtrue \psverbboxfalse l 
With \psverbboxtrue set, it is possible to use \ verb inside the argument of "normal" 
box macros, such as \psframebox . It's no longer necessary to resort to using one of the 
environments. 

I \psframebox l 
\usepackage{pstri cks} 

\psverbboxtrue 
\Large \psframebox{\verb+\psframebox+} 

This behavior can be switched offwith \psverbboxfal se , which would cause the example 
to raise an error message_ 

5. 1 3 User styles and objects 

PSTricks supports the definition of new styles to save time, and of new commands that can 
fill and clip arbitrary areas in a simple way. When one frequently uses a specific combination 
of keyword settings (Section 5.2 on page 2 1 7) ,  one can define a named style to invoke them 
m one go. 

I \newpsstyle{nameHkeylva[ue list} I 

This declaration defines a new style that can be passed to a command by its name using the 
keyword style. 

3 

\usepackage{pstricks} 
\newps style{TransparentMagent a}{% 

f ill style=vline s , hat chcolor=magent a ,  
hat chwidth=O _ l \pslinewidth , hat chsep= l\psl inewidth} 

\begin{pspi cture} [showgr id=true] ( 3 , 3 ) 

279 

o 2 3 

\psframe [fillstyle=solid , f il l color=cyan] ( 0 . 75 , 0 . 75) ( 3 , 3) 
\pscircle [styl e=TransparentMagent a] ( 1 , 1 ) { 1 }  

\end{pspicture }  

Another interesting application for \newpsstyle for the implementation of trans
parency was given in Section 5.9.2 on page 257. 

Styles, can be applied to any object, and the resulting combination can be assigned to a 
command. This creates a new object with a custom style. 



280 

O ¢m  
o 

HARNESSI NG POSTSCRIPT INS IDE le-"TEX: PSTRICKS 

\newpsobj ect {nameHobject nameHkeylvalue list} 

In the example below, a new object called \dashedV is obtained by applying a particular 
style to the object \psl ine . 

2 3 

\usepackage {pstri cks} 
\newpsobj ect{dashedV}{psline} { l inecolor=red , 

l inestyle=dashed , dash=7pt 5pt , l inewidth=2pt } 

\begin{pspicture} [showgrid=true] ( 3 , 1 ) \dashedV ( 3 , 1 ) 
\end{pspi cture} 

Be aware that unlike the standard �TEX \new . . .  commands, the \newpsstyle and 
\newpsobj ect commands of PST ricks do not warn you in case of name clashes, but simply 
replace the old definition with the new one. 

5 . 1 3 . 1  Customizations with \pscustom 
PSTricks provides a multitude of tools for creating graphic objects. Sometimes, however, 
none of the existing commands does the right job. In that case, \pscustom may be of help. 

\pscustom*, Is��tings). {arbitrary code} 

The \pscust om command expects the (almost) arbitrary code in its argument to produce 
some path. It then applies the drawing or filling operations requested in its settings argument 
(or some default operations) to that path. As usual, the starred form also fills the background 
with the current line color. (Whether an open path is treated as open or closed depends 
on the current graphic operation.) In other words, the path obtained can be rendered (i.e., 
stroked or filled or parqueted) in addition to or replacing what the commands generating 
the path already have specified. 

psTricks provides an interface to some low-level PostScript instructions through a set 
of special commands. This has the advantage of saving the user from having to resort to the 
explicit use of 'lEX's \spe cial instructions. These additional commands can only be used 
in the argument of \pscustom. All of them are described in this section. 

The commands introduced here interfere (practically all outside the control of PST ricks ) 
with the PostScript output and should, therefore, be used only by users with a basic knowl
edge of the PostScript programming language. Although most of these commands are pretty 
low-level, they still adhere to the PSTricks conventions; i.e., the current point and the current 
units are taken into account if necessary. Within the scope of \pscustom, the coordinate 
system is scaled so that one unit is equal to one 'lEX point ( 1  pt) instead of one PostScript 
point ( 1  bp in 'lEX's terms) .  This fact has to be kept in mind when inserting raw PostScript 
code by means of the \ code and \f ile commands. 

The \ps custom command uses \pstverb (Section 5. 1 5 .2 on page 305) ,  which 
writes \special instructions on the dvi file. The permissible length of the argument 
of \pscustom is system dependent. Problems may arise when many smaller curves are 
put together inside \ps cust om, because they are all collected in the argument of a single 
\spe cial instruction. 

Example 

5 - 1 3-2 



Example 

5- 1 3-3 

Example 

5 - 1 3-4 

5.1 3 User styles and objects 

Since \pscust om creates only one closed path, any style keywords used must refer to 
that path. In the following example, \psl ine is executed outside and inside \pscust om. 
As seen from the coordinates, \psl ine inside \pscust om is intended to fill the lower tri
angle, but this does not happen because the fill keywords linewidth, l ine color, and 
f illstyle do not have an effect inside \pscustom. There are a few exceptions, such as 
when setting arrows, which are pointed out separately in the following examples. 

3 3 

2 2 

\usepackage {pstricks} 

\begin{pspi cture} [showgrid=true] ( 3 , 3 ) 
\psl ine [l inewidth=2pt , l ine color=blue , 

f ill style=vl ine s] ( 0 , 1 ) ( 2 , 3 ) ( 0 , 3 ) 
\ps custom{% 

\psline [l inewidth=2pt , l inecol or=blue , 
f i l l style=hl ines] ( 1 , 0 ) ( 3 , 2 ) ( 3 , 0 ) }  

\end{pspi cture}\qquad 
\begin{pspicture} [showgr id=true] ( 3 , 3 ) 

\psl ine [l inewidth=2pt , l ine color=blue , 

281 

1 

o 2 
o 

3 0 2 

f i l l style=vlines] ( 0 , 1 ) ( 2 , 3 ) ( 0 , 3 ) 
\ps cust om [l inewidth=2pt , l ine color=blue , 

f i llstyle=hl ines] { \psl ine ( l , O ) ( 3 , 2 ) ( 3 , 0 ) }  
3 \end{pspi cture} 

As a rule, i t  is not a good idea to use keywords on commands within \pscustom. This 
is the reason why the left example is wrong. 

The line styles dashed and dotted can cause problems, because they do not know 
anything about an existing path in the first place. In those cases, one of the line types from 
Table 5.6 on page 240 should be passed to \ps custom as a key value. 

Some keywords are not available for use with \pscustom ,-namely, shadow , 
border , doublel ine , and showpoints . The keywords origin and swapaxes influ
ence only \pscustom itself. 

PSTricks distinguishes between closed curves and open curves. Since \pscust omis sup-
posed to build a single curve, it does not make sense to use already-closed curves within Open and closed curves 

\pscustom. The principal use of \pscustom is the concatenation of open curves. It helps 
to remember that, in general, a straight line is drawn from the end point of the previous line 
or curve to the start of the next one. However, a connecting line will not be drawn if the next 
line or curve possesses a start arrow. This can clearly be seen from the following example, 
where a straight connection is drawn from the end of the first arc to the start of the second 
arc only in the first case, which has an end arrow, and not in the second case, which has a 
start arrow. 

2 

o 2 

\usepackage{pstri cks} 

\begin{pspi cture} [showgr id=true] ( 2 , 2 ) 
\psset{l inewidth= 1 . 5pt , arrowscale=2} 
\pscustom [l ine color=red] {% 

\ps ar c ( 0 , 0 ) { 1 . 5}{5}{85} \psarcn{->} ( 0 , 0 ) {2}{85}{5}} 
\pscustom [linecolor=blue] {% 

\psarc ( 0 , 0 ) {0 . 5}{5}{85} \ps arcn{<-} ( 0 , 0 ) { 1 }{85}{5}} 
\end{pspi cture} 



282 

2 

o 
o 

HARNESSI NG POSTSCRIPT INS IDE ItITEX: PSTRICKS 

Table 5. 16: Meaning of the liftpen keyword 

Value Meaning 
o If a new line or curve does not start at the current point, a line from there to the 

beginning of the line or curve starts the path (default behavior). 
1 The current point is not called upon with incomplete coordinates, but instead the 

origin of ordinates is taken. The paths are connected by a straight line. 
2 Single lines or curves are treated as independent units; they do not use the current 

point as a beginning (with incomplete coordinates) and no line from the current 
point to the beginning of the next object is drawn. 

The above example assumes that the arrow is specified locally, since it applies only to a 
single curve here. Keep in mind that the commands \psl ine, \pscurve, and \psbezier 
start with the current point when their list of arguments is "incomplete". The current point 
is always set to the origin of coordinates outside \ps custom by PSTricks. In the following 
example, a set of lines is created this way. Without \ps custom, three independent lines, 
each starting at the origin of coordinates, would have been drawn. 

2 3 

\usepackage{pstricks} 

\begin{pspi cture} [showgr id=true] ( 3 , 2 ) 
\ps custom [l ine color=red , l inewi dth= 1 . 5pt] {% 

\psl ine ( 1 , 2 ) \psl ine ( 2 , 0 ) \psl ine ( 3 , 2 ) }  
\end{pspi cture} 

Some graphic objects are not available inside\pscust om: the commands \psgrid, 
\psdots , \ql ine, and \qdisk. Closed lines or curves should not be used inside the ar
gument of \pscustom; otherwise, unexpected side effects may occur. 

The l iftpen key The keyword liftpen controls the behavior of\pscustom when several line or curve 

2 

parts are to be connected by \pscustom itself. The different values possible are shown in 
Table 5 . 1 6. 

The following example is identical to the previous one, except that now the \psline 
macros use liftpen=l as a keyword value. Therefore all lines use the origin of the co
ordinate system for the missing coordinate and not the current point, as they would with 
liftpen=O. 

3 

\usepackage {pstricks} 

\begin{pspi cture} [showgrid=true] ( 3 , 2 ) 
\pscustom [line color=red , l inewidth= 1 . 5pt] {% 

\psl ine ( 1 , 2 ) 
\psl ine [l iftpen= l]  (2 , 0 ) 
\psl ine [liftpen= l ]  ( 3 , 2 ) }  

\psl ine [l ine style=dashed] ( 1 , 2 ) (2 , 0 ) ( 3 , 2 ) 
\end{pspi cture} 

Example 

5- 1 3-5  

Example 

5 - 1 3-6 



Example 

Example , 
5- 1 3-8 

5.1 3 User styles and objects 283 

To clarify this somewhat complicated fact, we give another example. 

3 

2 

1 

o 

3 

2 

o 
o 2 

3 

o 2 

3 

3 

3 

\us epackage{pstri cks , pst-plot } 

\psset {unit=7mm} 
\begin{psp i cture} [showgr id=true] ( 3 , 3 ) 

\ps custom [linecolor=red , f i l l color=l ightgray , f illstyle=solid] {% 
\psplot{O}{2 . 6}{x Radt oDeg 2 mul sin 2 add} 
\ps curve ( 3 , O . 25 ) ( 2 , 0 ) ( 1 , 1 ) ( 0 , 0 ) }  

\end{pspi cture} 
\\ [20pt] 
\begin{pspi cture} [showgrid=true] ( 3 , 3 ) 

\pscustom [l ine color=red , f illcol or=l ightgray , f illstyle=solid] {% 
\psplot{0}{2 . 6 }{x Radt oDeg 2 mul sin 2 add} 
\ps curve [liftpen= l ]  ( 3 , 0 . 25) ( 2 , 0 ) ( 1 , 1 ) (0 , 0 ) }  

\end{pspi cture} 
\ \ [20pt] 
\begin{pspi cture } [showgrid=true] ( 3 , 3 ) 

\pscustom [l inecolor=red , f il l color=lightgray , f i llstyle=s o l i d] {% 
\pspl ot{0}{2 . 6}{x Radt oDeg 2 mul sin 2 add} 
\ps curve [liftpen=2] ( 3 , 0 . 25 ) ( 2 , 0 ) ( 1 , 1 ) ( 0 , 0 ) }  

\ end{pspi cture} 

In the left example (l iftpen=O) , the end of the first curve ( \psplot) is  used as the 
starting point for the following curve (\pscurve) . In the middle example ( liftpen=l ) ,  
the end of  the first curve ( \psplot) i s  not used a s  the starting point for the following curve 
(\pscurve), but a connecting straight line is drawn between those two points. In the right 
example ( liftpen=2), neither the end of the first curve (\psplot) is used as the starting 
point for the second curve (\ps curve) nor a connecting line drawn, so two independent 
entities arise. 

I \movet o (x, y )  I 

This command is a direct interface to PostScript's movet o operator; it moves the current 
point to the new coordinates (x,y) without drawing a line. 

3 

3 

\usepackage {pstri cks , pst-plot} 
\ Spe c i alCoor 

\begin{pspi cture} [showgrid=true] ( 3 , 3 ) 
\pscustom [l inecolor=red , l inewidth= 1 . 5pt] {% 

\psplot{0}{3}{x 180 mul 1 . 57 div s in 2 add} 
\moveto ( 1 . 5 , 1 . 5 ) \ps curve (3 , 0 . 25 ) ( 2 , 0 ) ( 1 , 1 ) ( 0 , 0 ) } 

\psl ine [linestyle=dott ed] {->}% 
( !  3 dup 180 mul 1 . 57 div sin 2 add) ( 1 . 5 , 1 . 5 ) 

\end{pspi cture} 



284 

3 

2 

° 

3 

HARNESSI NG POSTSCRIPT INS IDE I!ITEX: PSTRICKS 

I \new-path l 
The use and effect of this command are the same as for PostScript's corresponding new-path 
operator: the current path is deleted and a new one is started. All information about the old 
path is lost. Hence the first curve is not drawn in the following example. 

3 

I \closepath I 

\usepackage {pstri cks , pst-plot} 

\begin{psp i cture} [showgr id=true] ( 3 , 3 ) 
\ps custom [linecolor=black ! 60 , f illcolor=black ! 2 0 ,  

f i llstyle=solid , l inewidth=1 . 5pt] {% 
\psplot {0}{3}{x 180 mul 1 . 57 div s in 2 add} 
\newpath 
\ps curve ( 3 , 0 . 25) ( 2 , 0 ) ( 1 , 1 ) ( 0 , 0 ) }  

\end{pspi cture} 

This is the counterpart of PostScript's closepath operator. The current path is closed by 
connecting the end point to the starting point. (Several disconnected parts can be drawn 
using \moveto, which will be treated independently. ) The starting point is made the current 
point. In the following example, the starting point ( 0 , 2 ) is made the new current point after 
\closepath, and consequently the following curve gets a completely different shape. 

3 

I \stroke[settings] 

\usepackage{pstri cks , pst-plot} 

\begin{pspi cture} [showgrid=true] ( 3 , 3 ) 
\ps custom [linecolor=black ! 60 , f illcolor=bl ack ! 20 ,  

f i llstyle=solid , l inewidth= 1 . 5pt] {% 
\psplot {0}{3}{x 180 mul 1 . 57 div sin 2 add} 
\closepath 
\pscurve ( 3 , 0 . 25) (2 , 0 ) ( 1 , 1 ) ( 0 , 0 ) }  

\end{pspi cture} 

This command is not simply equivalent to PostScript's operator of the same name. Rather, it 
performs that operation non-destructively, i .e. , within a pair of gsave and grestore oper
ators, and obeying the current line drawing parameters. This means that the path just drawn 
is still available afterwards for further use. Hence it is possible to apply the \stroke com
mand more than once to the same (partial) path within the body of a \pscustom macro 
and pass it different parameter settings each time. This fact comes in handy in special appli
cations like the following example, where we demonstrate how lines consisting of multiple 
colors can be created in a simple manner: by overprinting with varying colors and decreas
ing line widths. While the starred form of \pscustom initializes parameters with values 

Example 
5- 1 3-9 

Example 
5 - 1 3 - 1 0  



Example 
5- 1 3 - 1 2  

5.1 3 User styles and objects 

suitable for filling, the linestyle key has to be specified locally to make \stroke effec
tive. 

\usepackage{pstr i cks , pst-plot} 

\begin{pspi cture} [showgrid=true] ( 3 , 3 ) 

285 

\ps custom [lineco lor=whit e , l inewidth= 1 . 5pt] {% 
\psplot {0}{3}{x 180 mul 1 . 57 div sin 1 . 5  mul 1 . 5  add} 
\stroke [l ine color=red , l inewi dth=7pt] 
\stroke [l ine color=blue , l inewi dth=4pt ] 
\ stroke [l ine co lor=green , l inewidth=2pt ] 

I \f ill [settings] 

} 
\end{pspi cture} 

This command is not simply equivalent to PostScript's operator of the same name. Just as 
\stroke does, it rather performs that operation non-destructively, i .e . ,  within a pair of 
gsave and grestore operators, and obeying the current filling parameters. This means 
that the path just filled is still available afterwards for further use. Hence it is possible to 
apply the \fill command more than once to the same (partial) path within the body of 
a \pscustom macro and pass it different parameter settings each time. In the admittedly 
somewhat contrived example below, we exploit this fact to apply various fillings in one go. 
As the operations specified with \pscustom itself are always applied last, the white line 
and light hatch pattern overprint the blue line generated by the \stroke command. While 
the un starred form of \pscustom initializes parameters with values suitable for stroking, 
the f illstyle key has to be specified in order to make \f ill effective. However, as the 
starred form of \pscustom will fill the area with the current line color and fill style at the 
end anyway, overprinting any previous filling, the use of \f ill is pointless in this case. 

3 

3 

I \gsave \grestore l 

\usepackage {pst r i cks , pst-plot} 

\begin{pspi cture} [showgri d=true] ( 3 , 3 ) 
\pscustom [f illstyle=hl ines , hat chc olor=l ight gray , 

hat chwidth= l pt , l inecolor=whi t e , l inewidth= lpt] 
{ \psplot {0}{3}{x 180 mul 1 . 57 div sin 1 . 5  mul 1 . 5  add} 

\closepath 
\ f i l l [f i l l style=s olid , f illco lor=darkgray] 
\fill [f illstyle=vl ines , hat chcolor=gray , hat chwidth=3pt] 
\stroke [l inecolor=blue , l inewi dth=3pt] 
} 

\end{pspi cture} 

With \gsave it is possible to save the current state of the PostScript stack that covers the 
graphical output (e.g., path details, color, line width, origin of ordinates). \grestore re
turns the graphics state to what it was when \gsave was called. The commands \gsave 



286 

3 

o 1 

3 

o 

3 

o 

HARNESS ING POSTSCRIPT INS IDE 1!\TEl(: PSTRICKS 

and \grestore must always be used in pairs! (In addition to applying the corresponding 
PostScript operators, they make up a group at the 'lEX level. )  In the following examples, these 
commands are used to fill an area without having a visible line drawn at the margin. 

2 3 

\usepackage{pstr i cks , pst-plot} 

\begin{pspi cture} [showgrid=true] ( 3 , 3 )  
\ps cust orn [l inewidth= 1 . 5pt] {% 

\psplot {0}{3}{x 1 80 . 0  rnul 1 . 5  div sin 1 . 5  rnul 1 . 5  add} 
\gsave 

\psline ( 3 , 3 ) ( 0 , 3 ) %  is _not _ drawn 
\ f i l l [f illcolor=l ightgray , f i llstyle=sol id] 

\grestore } 
\end{pspi cture} 

Unlike in the earlier examples, now an area between two functions is filled. The path is built 
by the sequence of function-line-function, where the last one is plotted from right to left. 

2 3 

\usepackage{pst r i cks , pst-plot} 
\Spe c i alCoor 

\begin{pspi cture} [showgrid=true] ( 3 , 3 ) 
\pstVerb{/rad { 1 80 . 0  rnul 2 div} def} 
\ps custorn [plotpo int s=200] {% 

\psplot {0}{3}{x rad sin 1 . 5  add} 
\gsave 
\psl ine ( !  3 dup rad sin 1 . 5  add) % 

( ! 3 dup rad sin neg 1 . 5  add) 
\psplot {3}{0}{x rad sin neg 1 . 5  add} 
\fill [f i llcolor=l ightgray , f i llstyle=sol id] 
\gre store 
\psplot [liftpen=2] {3}{0}{x rad sin neg 1 . 5  add} } 

\end{pspi cture} 

l \translat e CX, y )  I 

\translate sets the origin of ordinates to (x,y) for all subsequent graphics operations. 
(This is a low-level interface to the PostScript operator of the same name.) 

2 3 

\usepackage{pstr i cks , pst -pl ot} 

\begin{pspi cture} [showgrid=true] ( 3 , 3 ) 
\ps cust orn [l inewidth= 1 . 5pt] {% 

\translate ( 0 , 1 ) 
\psplot{0}{3}{x 180 . 0  rnul 1 . 5  div s in} 
\translat e ( O , l ) 
\psplot [liftpen=2] {0}{3}{x 1 80 . 0  rnul 1 . 5  div s in}} 

\end{pspi cture} 

Example 
5- 1 3- 1 3  

Example 
5- 1 3- 1 5  



, Example 
5 - 1 3 - 1 6  

Exampl�- l 
5- I 3� 

5.1 3 User styles and objects 

I \scale{factor v{actor } I 
\scale changes the size and/or proportions for all following \pscustom objects. (This is 
a low-level interface to the PostScript operator of the same name.) As is common practice 
with PSTricks's scaling, the argument comprises one or two numbers. If only one factor is 
given, scaling is done proportionally; if there are two factors, they apply to the horizontal and 
vertical direction, respectively. Negative values result in scaling as well as reflection about the 
corresponding axis, as shown in the example. 

3 

2 
\usepackage{pstr i cks , pst-plot} 

\begin{pspi cture} [showgr id=true] ( 3 , 3 ) 
\pscustom [linewidth= 1 . 5pt] {% 

\ s cale { 1  0 . 5} \translat e ( 0 , 1 ) 

28: 

1 

o 

\psplot {0}{3}{x 1 80 . 0  mul 1 . 5  div s in} 
\translat e ( 0 , 1 ) \s cale{ 1 -0 . 5} 
\psplot [liftpen=2] {O}{3}{x 1 80 . 0  mul 1 . 5  div s in}} 

o 2 3 \end{pspi cture} 

I \rotate{angle} I 
This command rotates all following objects by the specified angle, which has to be given 
in degrees (as understood by PostScript). (This is a low-level interface to the PostScript 
operator of the same name.) 

4 

o 2 

I \swapaxes l 

3 

\usepackage{pstri cks , pst-plot} 

\begin{pspi cture} [showgr id=true] ( 3 , 4) 
\ps custom [l inewidth= 1 . 5pt] {% 

\translat e ( 0 , 1 ) 
\psplot {0}{3}{x 1 80 . 0  mul 1 . 5  div s in} 
\translat e ( 0 , 1 ) \rotat e {30} 
\psplot [liftpen=2] {0}{3}{x 1 80 . 0  mul 1 . 5  div sin}} 

\end{pspi cture} 

An example using \swapaxes was given in Section 5.4 on page 223, where it was used as a 
keyword. This command swaps the x- and y-axes, which is equivalent to 

\rotate{-90}\scale{-1  1 }  



288 

4 

3 

2 

o 

4 

HARNESSING POSTSCRIPT INSIDE �EX: PSTRI(KS 

This is also demonstrated in the next example. 

3 

I\msave 

\usepackage{pstricks,pst-plot} 

\begin{pspicture} [showgrid=true] (3,4) 
\pscustom[linewidth=1 . 5pt]{% 

\translate( O . l )  
\psplot{O}{3}{x 180.0 mul 1 . 5  div sin} 
\translate(2,O)  
\swapaxes 
\psplot [liftpen=2]{O}{3}{x 180.0 mul 1 . 5  div sin}} 

\end{pspicture} 

\mrestorel 
With this pair of macros, the currently valid coordinate system may be saved and restored, 
respectively. In contrast to what happens with \gsave and \grestore pairs, all other val
ues such as line type, thickness, etc., will remain unaffected. The \msave and \mrestore 
commands must be used in pairs! They can be nested arbitraril y both with themselves and 
with \gsave and \grestore. Care must be taken to ensure that this nesting is pairwise 
balanced. 

The next example plots the first sine function with the origin of ordinates set by 
\translate(O,  1 .  5 ) .  Thereafter, the state of the coordinate system is saved, a new ori
gin is set with \ translateCi,  2) 1, and another sine function is plotted. Following that, 
the old state is restored with \mrestore and the origin of ordinates is back at (0 . 1 . 5) 
again. The later cosine function is plotted with this origin. 

3� 
\usepackage{pstricks ,pst-plot} 

\begin{pspicture} [showgrid=true] (3,4) 
\pscustom[linewidth=1 . 5pt]{% 

\translate(O, 1 . 5) 

2 

o 
o 2 3 

\psplot{0}{3}{x 180.0 mul 1 . 5  div sin} 
\msave 

\translateO , 2) 
\scale{l 0 . 5} 
\psplot [liftpen=2]{-1}{2}{x 180.0 mul 1 . 5  div sin} 

\mrestore 
\psplot [liftpen=2]{0}{3}{x 180 . 0  mul 0 . 5  div cos}} 

\end{pspicture} 

1 Referring to the current origin ( 0 , 1 .5) a \translate(1,2) corresponds 10 the absolute coordinates 
( 1 , 3 .5). 



5.13 User styles and objects 

I \openshado'W [settings] 

The \openshadow command creates a copy of the current path, using the specified shadow 
key values (see page 239). Whether the shadow path thus obtained is stroked or filled de
pends on the parameter settings supplied with \openshado'W itself and/or \pscustom, as 
can be seen in the example. 

4 

3 

2 

o 
o 2 3 

I \closedshadow [settings] 

\usepackage{pstricks,pst-plot} 

\begin{pspicture} [showgrid=true] (3,4) 
\pscustom(linewidth=2pt] {'l. 

\translate (O,3) 
\psplot{O}{3}{x 180 . 0  mul 1 . 5  div sin} 
\openshadow [shadowsize=10pt ,shadowangle=-30 , 

shadowcolor=blue] } 
\pscustom(linewidth=2pt ,fillcolor=red, 

fillstyle=solid]{% 
\translate (O , 1 . 5) 
\psplot{0}{3}{x 180.0 mul 1 . 5  div sin} 
\openshadow [shadowsize=10pt , shadowangle=-30 , 

shadowcolor=blue] } 
\end{pspicture} 

The \closedshadowcommand always creates a filled shadow of the region enclosed by the 
current path, as if it were a non-transparent environment. 

4 

3 

2 

o 
o 2 3 

\usepackage{pstricks ,pst-plot} 

\begin{pspicture} [showgrid=true] (3,4) 
\pscustom[linewidth=2pt] {% 

\translate(0,3) 
\psplot{O}{3}{x 180 . 0  mul 1 . 5  div sin} 
\closedshadow[shadowsize=10pt, shadowangle=-30, 

shadowcolor=blue] } 
\pscustom[linewidth=2pt ,fillcolor=red, 

fillstyle:none]{% <-- no effect ! 
\translate(0, 1 . 5) 
\psplot{O}{3}{x 180 . 0  mul 1 . 5  div sin} 
\closedshadow[shadowsize=10pt, shadowangle=-30, 

shadowcolor=blue] } 
\end{pspicture} 

The method used for producing the shadow should be noted. PSTricks simply cre
ates a copy of the closed path, translates it according to the demands of shadowsize 
and shadow angle, fills it with shadow color, and then refills the original path with 
f illcolor, which is 'Whi te by default. The \openshado'W macro doesn't fill the original 

289 



290 

3 

2 
� � 

0-
1 

0 
0 

HARNESSING POSTSCRIPT INSIDE �EX: PSTRI(KS 

path with the current fillcolor, so that the underlying shadow copy is visible (and in 
this example, not filled). The \closedshadowfills the original path, so that the underlying 
copy looks like a real shadow. 

\usepackage{pstricks} 

\begin{pspicture}(Q ,-O.25) (5.2) 
\pscustom[fillstyle=none, shadowcolor=lightgray ,fillcolor=blue) {Y, 

\psbezier(O.O) ( 1 , 1) ( 1 ,-1) (2,O) \psbezier(2 ,O) ( 3 , 1) (1 , 1 ) (2,2)  
\closepath 
\openshadow {shadowsize=10pt ,fillcolor=white, shadowangle=30] } 

\rput(2.5,OH'l. 
\pscustom [fillstyle=none , shadowcolor=lightgray ,fillcolor=blue]{I. 

\psbezier(O .O) ( 1 , 1) ( 1 ,-1) (2,O) \psbezier(2 ,O) ( 3 , 1) (1 , 1 ) (2,2)  
\closepath 
\closedshadow [shadowsize=10pt ,fillcolor=white, shadowangle=30] }} 

\end{pspicture} 

This strategy is to be kept in mind when specifying, with the ke}'\vord \pscustom, a 
fillcolor that differs from white: in such cases the macro \closedsbadow has to be 
given the correct fill color. 

l\mOvepathCdT,dy) I 
The \movepath command shifts the current path by (dx, dy). If the original path is needed 
later on, the \movepath operation has to be encapsulated within a \gsave/\grestore 
pair. 

2 3 4 

\usepackage{pstricks ,pst-plot} 

\begin{pspicture} [showgrid=true] (4,3) 
\pscustom[fillcolor=lightgray ,fillstyle=solid]{'l. 

\translate(0 , 1 . 5) 
\psplot{0}{3}{x 180.0 mul 1 . 5  div sin} 
\movepath( l , O . 5) }  

\psline[linestyle=dashed] {*->} (0 ,1 . 5) ( 1 , 2) 
\end{pspicture} 



i Ex.amPlej 
• 5 - 1 3-24 

5.1 3 User styles and objects 

[ \lineto (x, y )  [ 
\l ineto corresponds to \psl ine (x, y ) ,  but always draws a line from the current point 
(which therefore has to exist) to (x,y) . (This is a low-level interface to the PostScript opera
tor of the same name. ) 

3 

2 

1 • 

o 
o 

[ \rlineto (dx, dii] 
2 3 

\usepackage{pst r i cks} 

\begin{pspi cture} [showgri d=true] ( 3 , 3 ) 
\ps custom [linewidth= 1 . 5pt ] {% 

\psline ( l , O ) ( 2 , 3 ) 
\l inet o ( 3 , O ) } 

\ end{pspi cture} 

\rlineto is similar to \lineto (x, y ) , except that the coordinate pair is interpreted rela
tive to the current point. (This is a low-level interface to the PostScript operator of the same 
name. ) 

3 

2 

i . 

o 
o 2 

[ \ curveto (X l , YI ) (X2, Y2 ) (X3, Y3 ) I 
3 

\usepackage{pst r i cks} 

\begin{pspi cture} [showgr id=true] ( 3 , 3 ) 
\ps cust om [linewidth= 1 . 5pt] {% 

\psline ( 1 , 0 ) ( 2 , 3 ) 
\rl ineto ( 1 ,  -3) } 

\end{pspi cture} 

This command corresponds to \psbez ier (xl , Yl )  (X2, Y2 ) (X3, Y3 ) ,  where the current 
point is taken as the starting point for the Bezier curve. The command expects three pairs 
of coordinates; otherwise, the curve can't be drawn. (This is a low-level interface to the Post
Script operator of the same name.) 

3 
\us epackage{pstri cks} 

291 

2 \begin{pspi cture} [ showgrid=true] ( 0 , 1 ) ( 3 , 3 ) 
\ps cust om [l inewidth= l . 5pt] {% 

\moveto ( 0 . 5 , 1 ) 

o 2 3 
\ curvet o ( 1 , 3) (2 , 1 ) ( 3 , 3 ) }  

\end{pspi cture} 



292 

3 

2 

1 
o 

3 

2 

o .  
o 

HARN ESSING POSTSCRIPT INS IDE ItI'TEX: PSTRICKS 

\rcurvet o works like \curveto (xl , Yl )  (X2, Y2 ) (X3, Y3 ) ,  except that all coordinate 
pairs are interpreted relative to the current point. The command expects three pairs of coor
dinates; otherwise, the curve can't be drawn. (This is a low-level interface to the PostScript 
operator of the same name.) 

2 3 

I \ code{PostScript code} I 

\us epackage{pstri cks} 

\begin{pspicture} [showgr id=true] ( 0 , 1 ) ( 3 , 3 ) 
\ps custom [l inewidth= 1 . 5pt] {% 

\movet o ( 0 . 5 , 1 ) 
\rcurvet o ( 0 . 5 , 2 ) ( 1 . 5 , O) ( 2 . 5 , 2) } 

\end{pspi cture} 

\code inserts the PostScript code specified as an argument directly into the PostScript out
put. This macro is identical to the internal macro \addto@pscode and should be preferred 
to directly using \special in any case. Note that setting linewidth in the next example 
has no effect whatsoever, as the line width is explicitly overwritten inside the PostScript code 
later on. 

2 3 

I \dim{length} I 

\usepackage{pstricks} 

\begin{pspi cture} [showgri d=true] ( 3 , 3) 
\ps custom [l inewidth= 1 cm] {% 

\code{ 
newpath 
20 20 movet o 
50 0 rlinet o 
-50 0 rlineto 
closepath 

o 50 rlineto 
o -50 rl ineto 

2 setline j o in 
7 . 5  setl inewidth 
stroke}% 

} 
\ end{pspi cture} 

\dim converts a length given in PSTricks terms (i .e . ,  \psuni t is used if necessary) into lEX's 
pt; the result is appended to the generated PostScript code (pushed on the stack) as a mere 

r 
: Example 

5 - 1 3-28 



Example 
, 5- 1 3-29 

5.1 3 User styles and objects 

number. (Recall that within the scope of \pscustom, the PostScript coordinate system is 
scaled so that one unit is equal to one 'lEX point.) 

\usepackage {pst r i cks} 

\begin{pspi cture} [showgr id=true] ( 3 , 3 ) 
\ps custom{% 

\ code{newpath} 

293 

3 

\dim{Ocm} \dim{-2cm} \dim{ 2cm} \dim{O cm} 
\dim{Ocm}\dim{2cm} \dim{0 . 5 cm}\dim{0 . 5cm} 
\code{ 

2 

° 
o 2 3 

I \coor (X l , Yl ) ·· ( Xzt Yz) · . . .  (:CniY1'l) , 

movet o rl ineto rl ineto rl inet o 
closepath 
2 setline j o in 
7 . 5  setl inewidth 
0 . 1  0 . 5  0 . 6  0 . 2  set cmykcolor 
[5 3] ° setdash 
stroke}% 

} 
\end{pspi cture} 

\coor converts the specified coordinates from PSTricks terms (as usual, the current inter
nal units are used if necessary) into 'lEX's pt; the results are appended to the generated 
PostScript code (pushed on the stack) as mere numbers. (Recall that within the scope of 
\pscustom, the PostScript coordinate system is scaled so that one unit is equal to one 'lEX 
point.) The use of \coor has a clear advantage over the use of \dim with several coordi
nates. 

3 

2 

0 
0 2 3 

\usepackage{pstricks} 

\begin{pspi cture } [showgri d=true] ( 3 , 3 ) 
\pscustom{% 

\ code {newpath} 
\coor ( 0 , -2) ( 2 , 0 ) ( 0 , 2 ) ( 0 . 5 , 0 . 5 ) 
\ code{ 

movet o % 0 . 5  0 . 5  
rl ineto % +Ox +2y 
rlineto % +2x +Oy 
rlineto % +Ox -2y 
closepath % back t o  0 . 5  0 . 5  
2 setl inej oin 
7 . 5  setl inewidth 
0 . 1  0 . 5  0 . 6  0 . 2  set cmykcolor 
stroke}% 

} 
\end{pspi cture} 



294 

3 

2 

o 

3 

2 

1 

o 
o 

HARNESSING POSTSCRIPT INSIDE I!ITEX: PSTRICKS 

\rcoor is virtually identical to \coor , except that the coordinates are placed in reverse 
order on the stack (reverse \coor) . 

2 3 

I \f ile{file name} I 

\usepackage{pstri cks} 

\begin{pspi cture} [showgrid=true] ( 3 , 3 ) 
\pscustom{% 

\ code{newpath} 
\rcoor (0 . 5 , 0 . 5 ) ( 0 , 2 ) ( 2 , 0) (0 , -2 )  
\ code{ 

moveto rl ineto rl inet o rl inet o 
clos epath 
2 set l inej oin 7 . 5  setl inewidth 
stroke}} 

\end{pspi cture} 

\f ile inserts the contents of a file (as PostScript code) without any expansion. Only com
ment lines starting with "%" are ignored. The following example first writes and then reads 
the contents of the file LGCf il e . ps. 

2 3 

I \arrows{arrow type} I 

\us epackage{pstri cks} 
\begin{f ile cont ent s}{LGCf ile . ps} 
% demo f or \file hv 2006-05- 1 3  
newpath 
20 20 movet o 0 50 rl inet o 
50 0 rl ineto 0 -50 rlineto 
-50 0 rl inet o 
closepath 
2 setlinej oin 7 . 5  setlinewidth 
stroke 
% end 
\end{filecont ent s} 

\begin{pspi cture} [showgri d=true] ( 3 , 3 ) 
\pscustom{ \file{LGCf ile . ps}} 

\end{pspi cture} 

\arrows defines the type of the line or curve start and line or curve end, respectively, to 
insert. Internally, the PostScript procedures ArrowA and ArrowB are both used, which are 



5.1 3 User styles and objects 

called as follows: 

x2 y2 xi y1 ArrowA 
x2 y2 xi y1 ArrowB 

Both draw an arrow from (X2 '  Y2 ) to (X l , yd . ArrowA sets the current point to the end of 
the arrowhead (where a line or curve connects) and leaves (X2 '  Y2 ) on the stack. In contrast, 
ArrowB does not change the current point but leaves the four values (X2 '  Y2 ,  x� , y� ) on the 
stack, with (x� , y� ) being the point where a line or curve connects. The example shows that 
the "invisible" points are taken into account when calculating the arrow direction. 

3 

2 

I 

I 
1 Ii I ,  

I I 
I ! 

I ! 
i j .  

I . I 
! I 

I I ' 1  
/, ! 

140pt) 

\usepackage{pstricks} 

\ SpecialCoor 
\begin{pspi cture} [ showgrid=true] (4 , 3 ) 

\pscustom [l inewidth= 1 . 5pt] {% 
\arrows { I ->} 
\code{ 

80 140 5 5 ArrowA % leaves 80 140 on stack 

295 

! 
f 30 -30 1 1 0 75 ArrowB % leave s 30 -30 105 . 4 1 68 . 986 

o 
o 

I 
! 

I 
. J . 2 
' I / 3 
/ / 

// 
I (30pt,-30pt) 

I \setcolor{color} I 

4 

curveto}} % curve for three point s  
\psl ine [linestyle=dashed] % 

( 5pt , 5pt ) (80pt , 1 40pt ) ( 30pt , -30pt ) ( 1 1 0pt , 75pt ) 
\uput [O] ( 80pt , 140pt ) { ( 80pt , 140pt ) }  
\uput [O] ( 30pt , -30pt ) { ( 30pt , --30pt ) }  

\end{pspicture} 

\setcolor sets the current color. Only previously defined color names can be used in the 
argument. 

3 

2 

o 
o 2 3 

\usepackage{pstricks} 

\begin{pspi cture} [ showgr id=true] ( 3 , 3) 
\pscustom [l inewidth= 1 . 5pt] {% 

\code{newpath} 
\rcoor ( 0 . 5 , 0 . 5 ) ( 0 , 2 ) ( 2 , 0 ) ( 0 , -2 )  
\setcolor{red} 
\code{ 

moveto rl ineto rlineto rlineto 
closepath 
2 setline j o in 7 . 5  setl inewidth 
stroke}} 

\end{pspi cture} 



296 

'\\II Ilt 
\It 

o ·  • 
It 

• 
- 1  <It 

,� 
- 1 

HARNESSING POSTSCRIPT INS IDE IttTEX: PSTRICKS 

5 . 1 4 Coordinates 

PSTricks provides Cartesian coordinates in its default setup. If the need arises, however, you 
can turn on the parsing of coordinate arguments to allow a number of variants for coordi
nate specification; these variants are distinguished by their syntax. 

In general, one can switch back and forth between "normal" (i.e. , Cartesian) and "spe
cial" coordinates within a document or, more precisely, even within a pspi cture environ
ment. 

I \Spec ialCoor \NormalCoor l 
If \Spe cialCoor is activated, an internal analysis is carried out for each coordinate argu
ment to find out what form of coordinate specification is being used. When processing com
plex pictures with Cartesian coordinates, \NormalCoor will speed things up considerably. 
However, given the power of today's computers, speed is rarely an issue, so in most circum
stances the global activation of \SpecialCoor is quite feasible. The various syntax forms 
that are recognized when \Spe cialCoor is in effect are presented in Table 5. 1 7 . 

For the specification of angles in arguments (i.e. , usually within curly braces), the ac
tivation of \Spec ialCoor enables further syntax variants, too. These are summarized in 
Table 5. 1 S. 

5 . 1 4.1  Polar coordinates 
( radius ; angle) : As is common practice in mathematics, polar coordinates specify a point 
by a radius (i .e. , its distance from the origin) and an angle (its direction relative to the pos
itive x-axis; counter-clockwise by default) .  The default unit for the radius is given by the 
value of the runi t keyword in effect. The angle is always a mere number; its interpretation 
depends on the unit specified by means of a \degrees [full circle] command, as explained 
in Section 5.2.2 on page 2 1 S. In either case, PSTricks's built-in default applies if there hasn't 
been a declaration earlier. 

" 41! 'II 
• 

iii · .. 
0 

t-
\\II 

ci 
" 
• 

• 

\usepackage{pstricks , mult i do} 
\Spe c i alCoor 

\begin{pspi cture} [ showgrid=true] ( - 1 , - 1 ) ( 1 , 1 ) 
\psdot s [linecolor=blue] ( 1 ; 0 ) ( 1 . 4 14 ; 45 ) ( . 5 ; 90) 
\multido{\iAngle= 1 8 + 1 8 } { 1 9 }{\psdot ( 1 ; \iAngle) } 

\end{pspi cture} 

5 . 1 4.2 Coordi nates ca lculated with PostScript 
( ! ps) : The PostScript expression ps has to leave a pair of values (x y) on the stack (without 
a comma). These coordinates refer to the scale specified by the keywords xuni t and yuni t, 



5 . 14  Coordinates 

Syntax 

(x , y ) 
(r ; a ) 

Table 5. 1 7 : Possible coordinate forms with enabled \SpecialCoor 

Explanation 

Cartesian coordinates (default) .  

Polar coordinates. 

Example 

( ! PostScript code) 

( 2 , -3 )  
( 2 ; -60)  

( !  2 s in -20 co s )  
The arbitrary PostScript code is expected to leave two values for x and 
y on the stack, given in terms of PSTricks's current xuni t and yuni t, 
respectively. 

(coord 1 1  coord 2) ( 2 ; 35 1 3 ,  -4) 
The x value is taken from the first coordinate specification and the y 
value is taken from the second specification, where any of the other 
forms supported may be used. (In this example the polar coordinates 
"{2;35}" are converted to Cartesian coordinates first. ) 

( node name) (A)  

The geometrical center of  an arbitrary previously defined node. 

( [parameters] node name) ( [nodesep=- i J A)  

The coordinates are determined relative to the geometrical center of the 
node and translated according to the specifications given by the param-
eters, which refer to the angle, a horizontal (node sep), and a vertical 
(off set) translation (see the example) . 

( [parameters] {node2}node 1 )  ( [nodesep=- l ] BA) 

Syntax 

angle 

The coordinates are determined relative to the geometrical center of 
node 1 and translated according to the specifications given by the pa
rameters, which refer to the angle, a horizontal (nodesep, Xnode sep, 
and Ynodesep), and a vertical (off set) translation, which is given by 
the virtual line from node 2 to node 1 (see the example) .  

Table 5. 1 8: Possible angle specifications with enabled \Spec ialCoor 

Explanation Example 

A numerical value is given in units as established by the \degrees 
declaration (default) .  

{gO} 

! PostScript code { !  1 -2 atan} 

(x , y ) 

The arbitrary PostScript code is expected to leave a single value a 
on the stack. (Here, too, PSTricks' current angle unit is taken into account.) 

A coordinate pair represents a vector pointing in the { (3 ,  -4) } 
direction that corresponds to the angle satisfying tan a = y / x. 

297 



298 

3 

2 

o 
o 1 

HARNESSING POSTSCRIPT INSIDE INEX: PSTRICKS 

respectively. The following example shows the conversion of a given polar coordinate speci
fication to an x y number pair. 

2 3 

\us epackage {pstri cks , pst-node} 
\Spe c i alCoor 

\begin{pspi cture} [showgrid=true] ( 3 , 3 ) 
\psset{dot s cale=2 , xunit=2 , yunit= 1 . 5} \psdot (2 ; 45 )  
\psdot [l inecolor=cyan] ( !  2 4 5  cos mul 2 4 5  sin mul ) 
\psset{dot style=triangle*} \psdot ( 1 . 5 ; 70)  
\psdot [lineco lor=cyan] ( !  1 . 5  70 cos mul 

1 . 5  70 sin mul ) 
\pnode ( 0 . 5 , 0 . 25 ) {A} \pnode ( 1 . 5 , 0 . 25 ) {B} 
\psset {dot scale=4} 
\psdot [dot style=* , l ine color=blue] (A) 
\psdo t * [dot style=o] (B)  

\end{pspicture }  

In the next example PostScript's rand function is  used twice to generate a sample of 
coordinates at random and then a third time to determine the print color for each dot indi
vidually. This routine produces a random integer, which is then converted by the following 
operations into a real number limited to a certain interval: [0 , 3] in the case of the coordi
nates and [0, 1] for the color. 

3 

\usepackage{pstricks} 
\Spe c i alCoor 

\begin{pspi cture} [showgrid=true] ( 3 , 4 ) 
\psset{dot s c ale= 1 . 25} 
\mult ips ( 0 , 0 ) {50}{% 

\psdot ( !  rand 301  mod 100 div 
rand 301  mod 100 div rand 1 0 1  
m o d  1 0 0  d i v  0 . 6  0 . 1 0 . 1 set cmykcolor) 

\psdot [dot style=o] ( ! rand 301  mod 100 div 
rand 401 mod 100 div rand 1 0 1  
mod 1 0 0  d i v  0 . 6  0 . 1  0 . 1  set cmykcolor) } 

\end{pspi cture} 

5 . 1 4.3 Double coord inates 

Cpointl l point2) : The x coordinate is taken from the first point and the y coordinate from 
the second. The ability to compose a coordinate pair from two given points is especially use
ful for intersections, where one does not necessarily know both coordinates. The following 
simple example illustrates this behavior. Here, for instance, the coordinates of the nodes A 
and B are unknown, since the positions of the centers of the two words "PSTricks" and "PS" 

, Example 
5 - 14-3 



Example II 
5- 14-4 

5 . 14  Coordinates 

are not determined. Yet with the use of double coordinates, vertical lines that possess the 
relevant x coordinates can be drawn without further ado. 

Unknown x-coordinate 

/ \  
PS icks is � 

\usepackage{pstricks , pst -node} 
\Spe c i alCoor 

\begin{pspi cture} ( 3 , 4) 
\rput [lb] (0 , 2 .  5 )  {\rnode{A}{\textbf {PSTricks}} 
i s  \rnode {B}{\textbf{PS}}} 
\rput [lb] ( 0 , 4 ) {\rnode {C}{Unknown $x$-coordinat e } }  
\ncline [node sep=5pt] {-> }{C}{A} 
\ncl ine [nodesep=5pt] {->}{C}{B} 
\psl ine [line co lor=red] (0 , 0 . 5 ) ( 3 , 0 . 5 ) 
\ps set{line color=blue } 
\psline{->} (A) (A I O , 0 . 5 ) 
\psline{->} (B) (B I 0 , 0 . 5 ) 

\ end{pspi cture} 

Alternatively, one could have defined new nodes to be able to use the node sep keyword with 
\ncl ine ( see Section 6.2.4 on page 350). 

5 . 1 4.4 Relative translations 
Using relative translations, it becomes possible to use points that make specified horizontal 
and vertical displacements from a target point. An explanation of the lines in Example 5- 14-
5 is given in Table 5 . 1 9  on page 30 1 .  

4 

3 

2 

o 
o 2 3 4 

\usepackage {pstricks , pst -node} 
\Spe c i alCoor 

\begin{pspi cture} [showgr id=true ] ( 4 , 4 ) 
\pnode ( 3 , 3 ) {A} 
\psdot [dot s c ale=2] (A) 
\uput [45] (A HA} 
\psline ( [node sep= l ] A)  
\psline [linestyle=dashed] ( [nodesep=- 1 ]  A )  
\psl ine [linestyle=dotted , 

l inewidth=0 . 08] ( [off set= l ] A)  
\psline [linewidth=0 . 08] ( [node sep=- l ,  

off set=- l ] A)  
\end{pspi cture} 

An additional effect can be achieved with the angle keyword, which rotates the coor
dinate system used at the target point prior to applying the nodesep and off set shifts. 

299 



300 

4 

3 

o 
o 

4 

o 

. 
• 

HARNESSI NG POSTSCRIPT INS IDE t'TEX: PSTRICKS 

The meanings of the arguments used in the next example are given in Table 5.20 on the next 
page. 

2 3 4 

\usepackage{pstri cks , pst-node } 
\Spe c i alCoor 

\begin{pspi cture} [showgrid=true] (4 , 4 ) 
\pnode ( 3 , 3 ) {A} 
\psdot [dotscale=2] (A) 
\uput [ 1 35] (A) {A} 
\pscircle [linestyle=dott edJ (A) { l }  
\psl ine ( [node sep= 1 , angle=-45] A) 
\psl ine [l inestyle=dashedJ ( [node sep=- 1 , angl e=-45] A) 
\psl ine [l inestyle=dotted , linewidth=O . 08J % 

( [offset=1 , angle=-45] A )  
\psline [linewidth=0 . 08] ( [offset=1 , angle= 135] A) 

\end{pspi cture} 

The next example is a bit more complicated, since a third point is used to control the 
relative translation: the coordinate system used at the target point for the nodesep and 
off set shifts is rotated to make the positive x-axis point in the direction of the ancillary 
point. In contrast to this behavior, the Xnodesep and Ynodesep keywords refer to the orig
inal coordinate system. These features are especially useful to extend a line beyond a given 
end point or to locate a point somewhere on given line. Table 5.21 on the facing page gives 
additional explanations of the particular lines from Example 5- 14-7. 

\usepackage{pstr i cks , pst-node } 
\Spe c i alCoor 

\begin{pspi cture} [showgrid=true] ( 5 , 5 ) 
\pnode ( 3 , 3 ) {A} \psdot [dot scale=2J (A) 
\uput [45J (A) {A} 
\pnode ( 0 , 5 ) {B} \psdot [dot scale=2] (B) 
\uput [45] (B) {B} 
\psl ine [l inestyle=dashed , 

dash=0 . 4 0 . 1 , l ine color=red] % 
(B)  ( [node sep=-2 . 5] {B}A) 

\psl ine (A)  
\psl ine [linestyle=dashed] ( [node sep= - l ] {B}A) 
\psl ine [l inewidth=O . 08] ( [Ynodes ep=- l ] {B}A) 
\psl ine [l inest yle=dotted , l inewidth=0 . 08] % 

Example 
5- 14-6 

( [Xnode sep= l ]  {B}A) Example 
2 3 4 5 \end{pspi cture} 5 - 14-7 



5 . 14  Coordinates 301 

Table 5. 1 9 : Relative point translation in Example 5- 14-5 

Command 

\psl ine ( [nodesep=1 J A) 
\psl ine [l inestyle=dashedJ ( [nodesep=- 1J A) 

Explanation 

Line from ( 0 , 0 ) to (x A + 1 ,  Y A ) '  

Line from ( 0 , 0 ) to (XA - 1 ,  YA ) .  

\psl ine [l inestyle=dotted , linewidth=O . 08J ( [offset=!] A ) Line from ( 0 , 0 ) to (XA , YA + 1 ) .  

\psl ine [l inewidth=0 . 08J ( [node sep=- 1 , off set=- 1 J A) Line from ( 0 , 0 ) to (XA - 1 , YA - 1 ) .  

Table 5.20: Relative point translation with angle specification in Example 5 - 14-6 

Command 

\psl ine ( [node sep= 1 , angle=-45] A) 
\psline [l inestyle=dashedJ 

( [nodesep=- 1 , angle=-45J A ) 
\psline [l inestyle=dotted , l inewidth=0 . 08J 

( [offset=1 , angle=-45J A) 
\psline [linewidth=0 . 08J 

( [offset=1 , angle=135J A) 

Explanation 

Line from (0 , 0 ) to ( 1 ;  -45° )  with A as center. 

Line from ( 0 , 0 ) to ( - 1 ;  -45° )  with A as center. 

Line from ( 0 , 0 ) to ( 1 ;  45° ) with A as center. 

Line from ( 0 , 0 ) to ( 1 ;  - 135° )  with A as center. 

Table 5.2 1 :  Relative point translation with reference to a third point in Example 5- 14-7 

Command Explanation 

\psline [l inestyle=dashed , dash=0 . 4  0 . 1 , l ine color=redJ (B ) ( [node sep=-2 . 5J {B}A) 
Line from B to (XA + �x, YA + �Y) , where J(�x) 2 + (�y) 2 = 2 . 5  and the end 
point lies on the line AB. 

\psline (A) "Normal" line from ( 0 , 0 ) to (A) .  
\psl ine [l inestyle=dashedJ ( [nodesep=- 1J {B}A) 

Line from ( 0 , 0 ) to (XA + �x, YA + �y) , where J(�x) 2 + (�y) 2 = 1 and the end 
point lies on the line AB. 

\psline [linewidth=O . 08J ( [Ynodesep=-1 J {B}A) 
Line from ( 0 , 0 ) to (x A + �x, YA - 1 ) ,  where �x is chosen so that the end point lies 
on the line AB. 

\psline [line style=dotted , linewidth=O . 08J ( [Xnodesep= 1J {B}A) 
Line from ( 0 , 0 ) to (XA + 1 ,  YA + �y) , where �Y is  chosen so that the end point lies 
on the line AB. 



302 

3 

o 

" " " 
. , 

HARNESSING POSTSCRIPT INS IDE ItI"TEX: PSTRICKS 

5 . 1 4.5 Angle specifications 

In the following example, {-1 , 1} is used for the first \psarc macro instead of an explicit 
angle specification; it corresponds to an angle of 0: = arctan � 1 = 135 degrees. The point 
P{ - 1 , 1 }  need not be part of the arc itself, as can clearly be seen in the example. 

\usepackage{pstricks} 
\ SpecialCoor 

\begin{pspi cture} [showgri d=true] ( -2 , 0 ) ( 3 , 3 ) 
\psar c [linecolor=red] ( O , O ) {3}{O}{ ( - 1 , 1 ) }  
\psar c [l ine color=blue] ( O , O ) { 2 . 95}{O}{ 135} 
\psdot [dotscale= 1 . 5] ( - 1 , 1 ) 
\psl ine [l inestyle=dashed] ( - 2 , 2 ) 

-2 - 1  0 2 3 \end{pspi cture} 

5 . 1 5 The PSTricks core 

In this section, we discuss a few fundamental aspects of PSTricks, which will not necessarily 
be of importance to every user and which one normally encounters only when creating com
plex graphics. Those who want to develop PSTricks-related macros or packages of their own 
will find some vital information in this section. 

5 . 1 5 . 1  Header fi les 

In principle, a PostScript header (prologue) file is similar to a lEX macro file (e.g., a style or 
package file in IHEX terms), in that it contains application-specific definitions of routines, 
variables, and constants that can be referred to later, albeit at the PostScript level. The driver 
program will put a copy of the contents of each requested header file into the generated Post
Script output, at the beginning of the file. The inclusion of such header files is demanded by 
means of lEX's \spe cial primitive or with the PSTricks-specific \pstheader command, 
using the following syntax: 

\spe cial {header=headerfile} 
\ps theadedheader file} 

Basically, a package writer is not forced to create a header file, although many authors of 
PSTricks packages choose to use this technique. It is advantageous in that one can put all 
definitions of PostScript routines in this separate file, thereby making the lEX package file 
more readable. At the same time, it reduces the processing overhead considerably, both at 
the lEX and at the driver stages, since otherwise those definitions would have to be passed 
on via \special commands. 

PSTricks header files usually have the file name extension . pro. In a lEX system con
forming to TDS, files in the PSTricks core are located in the $TEXMF / dvi ps/pstricks/ 
directory-e.g., pst-dot s . pro, pst-node . pro, pstri cks . pro. 

Example 
5- 1 4-8 



Example 
5- 1 5- 1 

5.1 5 The PSTricks core 

In most cases the semantics of the PostScript code output via \ spec ial commands is 
determined only by the definitions contained in the header files. Thus these files represent 
the principal obstacle to processing 'lEX documents that contain PostScript-specific code 
with pdfIEX [ 1 26 ] .  

5 . 1 5.2 Special  macros 

I \PSTricksOff l  

This macro turns off all PSTricks-specific output by redefining some low-level macros. The 
document can then be viewed with any dvi viewer. Also the creation of PDP files should 
be possible without problems. Especially with heavy use of PSTricks macros, this is only a 
temporary solution to get a quick overview over the plain text, because all the PSTricks output 
is suppressed. In particular, the following macros are changed into "no-ops" that "eat" their 
arguments: \pstheader, \pstverb, and \pstVerb. Additionally, \PSTri cksfalse is 
set. A corresponding \PSTri cksOn command does not exist. 

I \KillGlue \DontKillGlue l 

Within a pspicture environment, all white space is removed between PSTricks objects. 
This-usually rubber-space is denoted as "glue" in the 'lEX terminology. Outside the 
pspicture environment, every object is treated as a single character, thus preserving 
white space. This outcome can sometimes be undesired - for example, within a �TEX 
picture environment. In such cases, white space can be ignored or preserved with the 
switch \KillGlue or \DontKillGlue, respectively. 

\usepackage{pst r i cks} 

\begin{pspi cture} ( 3 , 2 ) 

303 

\KillGlue 
\psfrarne * [l inecolor=lightgray , shadow=true , shadowcolor=red , %  

shadowangle=90 , shadows ize= 1 5pt] ( 3 , 1 . 75)  
\quad% <--- ! ! !  ! --
\psfrarne [fillcolor=whit e , f i llstyle=so l id , %  

frarnearc=O . 5 ,  shadow=true] ( 1 . 25 , 0 . 25 ) ( 2 . 8 , 1 . 5 ) 
\end{pspicture }  

\usepackage{pstr icks} 

\begin{pspicture } ( 3 , 2 ) 
\DontKillGlue 
\psfrarne * [l inecolor=lightgray , shadow=true , shadowcolor=r ed , %  

shadowangl e=90 , shadowsize= 1 5pt] ( 3 , 1 . 75 )  
\quad% <--- ! ! ! ! --
\psfrarne [fillcolor=whit e , f i llstyle=solid , %  

frarnearc=O . 5 ,  shadow=true] ( 1 . 25 , 0 . 25 ) ( 2 . 8 , 1 . 5 ) 
\end{pspi cture} 



304 HARNESSING POSTSCRIPT INS IDE INEX: PSTRICKS 

I \pslbrace \psrbrace l 
The curly braces { and } play a vital role in the PostScript language, just as in (LA ) lEX. Hence 
macro programmers need to send these characters to the PostScript output quite frequently. 
Sometimes it is difficult - if not a nuisance - to prevent them from being interpreted by 
lEX in its own way. The \pslbrace and \psrbrace macros come in handy to cope with 
this situation. They essentially represent curly braces "in disguise" - i.e., with a different 
category code that makes lEX treat them as ordinary characters (just like other punctuation 
symbols) .  

I \ space l 
This standard B\TP)( macro expands to a single space. ( It has been part of the lEX folklore 
since the olden days of plain lEX.) Since lEX's parser ignores spaces after control words, 
macro programmers often need to (re) insert a space character after command names in an 
expansion context (i.e. , inside \edef, \write, or \special). Such situations frequently 
arise when pieces of PostScript code are generated on the fiy, as the PostScript syntax rules 
stipulate that tokens be separated by "white space" characters. 

For instance, consider the following snippet of code, which might occur as a part of 
"special coordinates" (see Section 5 . 14.2 on page 296) :  

\psk@l ineAngle abs 0 gt 

Given the definition \def \psk@l ineAngle{20}, 'lEX would yield the following expan
SIOn: 

20abs 0 gt 

To remedy this faulty PostScript instruction, one either has to supply a space with the macro 
being expanded (i.e. , \def \psk@lineAngle{20u}) or, if that is beyond the control of the 
programmer, employ the \space macro as follows: 

\psk@l ineAngle \ space abs 0 gt 

Either approach would produce the desired result: 

20 abs 0 gt 

I \altcolormode l 
It has been pointed out several times (e.g., Section 5. 1 . 3  on page 216 )  that the cooperation 
between (lJI.)lEX and the color packages color and xcolor on the one hand and PSTricks on 
the other hand is not without problems, because lEX does not have any built-in concept 
for coloring its output. In addition, the aforementioned packages and PSTricks do not use 
a unified syntax. Thus problems with color usage may arise when the user does not follow 
certain guidelines (see Section 5 . 1 . 3  on page 2 1 6) .  In some situations the \al tcolormode 



5.1 5 The PST ricks core 

declaration may resolve such conflicts. It redefines some internal macros so that they 
(among other things) take care of saving the PostScript graphics state with gsave prior to 
setting a color and restoring the state with gre store at the end of the 'lEX group. (However, 
with this variant of color setting, the scope of color commands should not reach beyond 
page boundaries. )  

\addto@pscode{PostScript code} 
\pstverb{PostScript code} 
\pst@Verb{PostScript code} 

\ code{PostScript code} 
\pstVerb{PostScript code} 
\pstverbscale 

Several macros can be used to contribute to the generated PostScript code. 

\addto@pscode This macro appends the PostScript code to the code accumulated for the 
current PSTricks object. It is used at various places by PSTricks internally and may also 
be useful to programmers for defining more involved macros. 

\code This macro may be used only within the argument of \pscustom; it is explained 
in Section 5. 1 3 . 1  on page 292. 

\pstverb This macro sends the PS code directly to the PostScript output, but has the 
driver wrap it in a gsave/grestore pair and establish a standard PostScript coordi
nate system, albeit with the origin at 'lEX's current point. 

\pstVerb This macro, like the previous one, sends the PostScript code directly to the Post
Script output, but does not change the current state of the graphical layer settings, such 
as origin, scale, etc. (With the dvips driver, this corresponds to 'lEX's coordinate system; 
i.e., the origin is located one inch down and right from the top-left corner of the paper, 
and one unit is equal to one pixel. )  

\pst@Verb This macro i s  like \pstVerb, but wraps the PostScript code so  that the 
PSTricks dictionary (defined in pstricks . pro) is the current one. 

\pstverbscale Whenused within the argument of \pstVerb, this macro restores a 
standard PostScript coordinate system, albeit with the origin translated to 'lEX's origin . 
( It uses a special dictionary defined in special . pro.) 

The following example demonstrates the use of these commands. 

\usepackage {pstricks} 

Theoret i c ally , both macros should draw the same f i l led s quare , as the 
absolut e coordinates are the same . But two diff erent squares are drawn , 
appearing in diff erent places on the page , the small dark blue one 
(pstverb) \pstverb{newpath 20 -20 moveto 

40 0 rl ineto 0 40 rlineto -40 0 rlineto 0 -40 rl ineto 
0 . 8  setgray f ill }% 

\pstVerb{newpath 20 -20 moveto 
40 0 rl ineto 0 40 rlineto -40 0 rlineto 0 -40 rlineto 
1 0 . 56 0 0 set cmykcolor f i ll }% 

305 



306 

• 

HARNESSING POSTSCRI PT INS IDE I!ITEX: PSTRICKS 

(pstVerb) out s ide of the text area and the big grey square amidst this 
paragraph . The text " (pstverb) (pstVerb) " {}  i s  placed corre ctly at the 
current text position . However , the text afterwards is changed to blue 
used in the book ( $ 1 \ , 0 . 56\ , 0\ , 0\ , $  as CMYKa color) . Only a 
\black\verb+black+ command swit ches this back here . Additionally , two 
diff erent - s i zed squares are drawn , whi ch is a probl em with the 
\verb+dvips+ program , because it does not reset all value s properly . 
With V\TeX{ } both squares are of equal size , but on diff erent positions . 

Theoretically, both macros should draw the same filled square, as the absolute 
coordinates are the same. But two different squares are drawn. appearing in different 
places on the page, the small dark blue one (pstverb ) (pstVe:rb) outside of the text area 
and the big grey square amidst this paragraph. The text "(pstverb)(pstVerb)" is placed 
correctly at the current text position. However, the text afterwards is changed to blue 
used in the book ( l  0 . 56 0 0  as CMYKa color). Only a black command switches this 
back here. Additionally, two different-sized squares are drawn, which is a problem 
with the dvips program , because it does not reset all values properly. With VTEX 
both squares are of equal size, but on different positions. 

\pstVerb provides the ability to write PSTricks-compatible PostScript code to the Post
Script output, while \pstverb exclusively writes local PostScript-compatible code, which 
is embedded within the gsave - grest ore pair. Both macros correspond to the \special 
commands, e.g., for the dvips driver: 

\pstverb -+ \special { "  . . . } 
\pstVerb -+ \special {ps : . . .  } 

In the following example, some of the trigonometrical constants are used. Instead of 
inserting them as number values or defining them within the argument of \psplot, we 
can write them with \pstVerb to the PostScript output prior to the \psplot command, 
locally inside the pspicture environment. This has the advantage that the constants are 
defined only once, and not for each and every calculated point. This would not work with 
\pstverb, because the values then declared as local would not be known to PSTricks after 
that command finished. 

4 

\usepackage {pstri cks , pst-plot} 

\psset {yunit=3 . 5 , plotpo int s=200} 
\begin{pspi cture} ( -0 . 5 , -0 . 75)  ( 5 , 0 . 75)  

\pstVerb{% 
/euler 2 . 7 1828 1 828 def 
/pi 3 . 1 4 1 592654 def 
/rad { 1 80 div pi mul } def 
/deg {pi div 180 mul } def } 

\psplot{0}{5}{euler x neg exp x 6 mul deg sin mul} 
\psaxe s{->} ( 0 , 0 ) ( 0 , -0 . 5 ) ( 5 , 0 . 75 )  

\end{pspicture} 

Example I 5 - 1 5-3  i 

��
I Example I 
i 5- 1 5-4 ! L� ___ ,,_�,�_ : 



5.1 5 The PST ricks core 

Table 5.22: Some basic PostScript procedures from pstri cks . pro 

Short Form Definition 
T 
CLW 
PtoC 
L 

/T /translate load def 
/CLW /currentlinewidth load def 
/PtoC { 2 copy cos  mul 3 1 roll s in mul } def 
/L /l ineto load def 

I \pst@def{name} < PS code > I 

Although this macro is intended for internal use only, it is like an interface to PostScript. 
By contrast, the macro \ tx@name is a synonym for a PostScript code sequence that can 
be used inside 1F,X when defining another PostScript-related code. These functions are nor
mally addressed indirectly, by means of an internal 1F,X macro. This macro is then redefined 
by a \pst@def declaration, not the PostScript function itself. (Therefore this mechanism is 
less efficient than a redefinition at the PostScript level. )  Example 6- 1 - 34 on page 327 demon
strates how to employ the \pst@def macro. 

5 . 1 5.3 "Low-level" macros 
PSTricks recognizes four types of objects: 

\begin@OpenObj 
\begin@AltOpenObj 
\begin@ClosedObj 
\begin@SpeciaIObj 

. . .  \end@OpenObj 

. . .  \end@OpenObj 

. . .  \end@ClosedObj 

. . .  \end@SpeciaIObj 

% with arrows 
% without arrows 

The names of these object macros indicate the type of path generated. Open objects come 
in two flavors: one for drawing paths with arrows and an alternative form for use without 
arrows. Special objects include the "quick" variants of some path-drawing commands, such 
as \qline and \psgrid. 

We will now explore the structure of such an object with an example. To draw a hexagon 
with PSTricks is not a problem, as is generally known, yet several lines of code are required 
to do so. With repeated use of this code, the desire to define our own macro \psHexagon 
might arise. The only special (private) option in this case has to handle the question of 
whether the given radius refers to the inscribed circle or to the circumscribed one. Since this 
is a yes/no question, the obvious thing to do is to define a Boolean variable using the key/ 
value interface. Thus our intention is to define a command \psHexagon with the following 
syntax: 

\psHexagon * [settings) (x,y) {radius} 

The code needed to define this command is displayed below. Some PostScript procedures 
are used there, which are defined in the PSTricks header file pstri cks . pro. They are listed 
in Table 5.22 and explained in more detail in [ 1 28] . 

307 



308 HARNESSING POSTSCRIPT INSIDE �EX: PSTRICKS 

\makeat letter 
%-------------- boolean key + its  def ault - - - - - - - - - - - - - - - - - - - - 

\newif \ ifHRlnner 
\def \psset @HRlnner# l{\@narneuse{HRlnner# l } }  
\psset@HRlnner{f alse}  
% ------------- pstricks obj ect ( c ommand) - - - - - - - - - - - - - - - - - - - - 

\def \psHexagon{\pst@obj ect {psHexagon}} 
\def \psHexagon@i{\@ifnext char ( %  

{\psHexagon@ii}{ \psHexagon@ i i ( O , O ) }} 
\def \psHexagon@ii ( # 1 ) #2{% 

\begin@ClosedObj % 
\pst@@get coor{# l}% 
\pssetlength\pst@dimc{#2}% 
\addt o@psc ode{% 

\pst@coor T % 
\psk@dimen CLW mul % 

center specif ied? 

begin closed obj ect 
get center 
set radius to pt 
PostScript 
xM yM new origin 
set line width 
save radius jRadius \pst@number\pst@dimc\space % 

\ifHRlnner\ space 3 sqrt 2 div div \fi % inner? 
def 
jangle \ifHRlnner 30 \else 0 \fi  def % start ing angle 
Radius angle PtoC moveto % 
6 { % 

jangle angle 60 add def % 
Radius angle PtoC L % 

} repeat 
closepath }% 

\def\pst@l inetype {3}% 
\ showpo int sf alse% 

\end@ClosedObj % 

go to f irst po int 
6 iterat ions 

alpha = alpha+60 
l ine to next po int 

closed obj ect 
set l inetype 
do not show base point s 

end 
\ignore spaces}% 

\makeatother 
swallow any spac es in input 

PSTricks objects defined in this way can be used in the same way as other PSTricks ob
j ects. For instance, we can make use of standard keywords as shown in the next two exam
ples. 

\usepackage {pstricks} 
% \psHexagon as def ined above 

\psset {unit=7mm} 
\begin{pspicture} ( - 3 , -3)  ( 3 , 3) 

% 

\psHexagon [linewidth=3pt , linecolor=red] {2 . 5} 
\ps c ircle [linestyle=dashed , linecolor=red] {2 . 5} 

\psHexagon [l inewidth=3pt , l ine color=blue , %  
HRlnner=true] {2 . 5} 

\pscircle [linest yle=dashed , l ine co lor=blue] {2 . 1 7} 
\end{pspicture} 

. Example : 
5 - 1 5-5 



Example 
5- 1 5-6 

5.1 5 The PST ricks core 

\usepackage{pstricks} 
% \psHexagon as def ined above 
\def inecolor{gray85 } {gray} {O . 85} 

\begin{pspicture} ( - 3 , -3) ( 3 , 3) 

309 

\psHexagon [double l ine=true] ( 2 , 2 ) { 1 }  
\psHexagon* [linecol or=gray85 , HRlnner=true] (2 , - 2) { 1 }  
\psHexagon [doubleline=true , doubl esep=O . 5 , %  

l inecolor=blue] {2} 
\psHexagon* ( -2 . 5 , 2 . 5 ) {O . 5} 
\psHexagon [border=3pt , HRlnner=true] ( - 1 , - 1 ) {2} 

\ end{pspi cture} 

5 . 1 5 .4 IIHigh-level" macros 

"High-level" macros are understood to involve the application of existing "low-level" macros 
or other "high-level" macros to form a new macro. (Very often, the new macro will be a 
combination of those two.) The package pst-e i re [63] is a very good example of this, because 
it does not define a single "low-level" macro but rather a large number of new "high-level" 
macros. 

As an example, we will define a macro that determines the focal point of a given triangle 
and saves it in a node name. The focal point of a triangle is the point of intersection of the 
mediators. Suppose the triangle ABC is given by the coordinates of its corners (these can 
also be given by node names) .  (XA, YA ) are the coordinates of A; likewise for B and C. 
Without proof (one can be found in any textbook on trigonometry) , the coordinates of the 
focal point are the arithmetic mean of all three corners: 

xS = (XA + XB + xc ) /3 

yS = (YA + YB + yc ) /3 

This result can be  the basic information used to define a new macro. 

\SpecialCoor 
\makeat letter 
\newif \ ifPST@showFP % mark f o c al point ?  
\def ine@key [psset] {H showFP} [true] {% I I  showFP I I  equals true 

\@nameuse{PST@showFP#l}% use \ifPST@showFP 
} 
\ps set{ showFP=true} % def ault 
% 
\def \focalPoint {\pst@obj ect{focalPoint } }  
\def \fo calPoint@i (# 1 ) (#2) (#3) #4{{ % to  keep everything local 

\pst@killglue % 



310 HARNESSING POSTSCRI PT INS IDE I!ITEX: PSTRICKS 

\begingroup 
\use@par 
\pst@get coor{# l } \pst@tempa% po int A % get coordinates as x y 
\pst@get coor{#2}\pst@tempb% po int B % 
\pst@get coor{#3}\pst@t empc% po int C % " 
\pnode ( ! % % set node 

\pst@t empa !YA exch \pst@number\psyunit div def 
!XA exch \pst@number\psxunit div def % x y in user coordinates 
\pst@tempb !YB exch \pst@number\psyunit div def 
!XB exch \pst@number\psxunit div def 
\pst@tempc !YC exch \pst @number\psyunit div def 
!XC exch \pst@number\psxunit div def 
XA XB XC add add 3 . 0  div 
YA YB YC add add 3 . 0  div 

) {#4} 
\ ifPST@showFP\qdi sk ( #4 ) {2pt } \ f i  
\endgroup 

}\ignorespac es} 
\makeatother 

% xFP 
% yFP 
% #5 = node name 

The macro \pst@get coor renders important services here. Above all, it performs the 
task of returning the coordinates in the normalized form used internally by PSTricks , i .e. , as a 
pair of Cartesian coordinates, each terminated by a space. Recall that with \Spe cialCoor 
activated, coordinates may be present in the input in a variety of forms (see Section 5.14 on 
page 296 and [ 1 28] ) .  

The application of  the macro i s  now easy, a s  demonstrated in the following example. 
The next section provides more information on the way the key/value interface is handled 
inside PSTricks .  

\usepackage{pstricks , pst -node , pst -xkey} 
% \focalPo int as def ined above 

\begin{pspicture} (4 , 4) 
\psset {l inewidth=2pt } 
\pspolygon [linecolor=red] ( 0 , 0 ) ( 2 , 4 ) (4 , 0 ) %  
\ f o c alPoint [showFP=true , l inecolor=red] ( 0 , 0 ) ( 2 , 4) (4 , 0 ) {FP 1}% 
\pnode ( 0 , 0 ) {A}\pnode ( 0 , 4) {B}\pnode (4 , 2 ) {C}% 
\pspolygon [linecolor=blue] (A) (B) ( C ) % 
\focalPoint (A)  (B)  ( C ) {FP2}% 
{\psset{linecolor=blue}% 
\qdi sk (FP2)  {2pt}}% 
\ncl ine [l inewidth= lpt] {<->}{FP 1 } {FP2}% 

\end{pspi cture} 

5 . 1 5 .5  The IIkey/va lue" i nterface 

The package pst-xkey provides a specialization of the xkeyva l package interface for PSTricks. 
It processes arguments in the key=value form-for instance, linecolor=red. The ac-

Example 
5- 1 5-7 



5.1 5 The PSTricks core 3 1 1  

tual mechanism behind this is not of significance to PSTricks users, but it will help PSTricks 
package authors in defining and setting keys for their packages. The main reason is the possi
bility of using multiple families in the \psset command, which allows each package to store 
its keys in a well-chosen family, ensuring that no time needs to be spent checking whether 
a particular key name has been used by another package. The pst-xkey package maintains a 
list of the families used in a document that is using PSTricks packages and scans all of these 
families when setting keys. 

All PSTricks packages use the package name as family name as well-e.g. , a definition family name=package 

from package pst-blur: name 

\def ine@key [ps set] {pst-blur}{blurradius} {\pst@get length{ # 1 } \psx@blurradius} 
\psset [pst -blur] {radius= 1 . 5pt } 

Actually, a single type of keyword would suffice to cover all cases; but PSTricks already has 
the ability to validate keywords on input and make appropriate corrections. Therefore, it is 
advisable to distinguish keywords by their meaning and define them accordingly. 

The general syntax for defining new keywords provided by the pst-xkey package is 

\def ine@key [prefix] {family } {key } [default] {function} 

For keys with Boolean values, a special interface will also declare the internal switch macro 
on your behalf, using \newif .  

\def ine@boolkey [prefix] {family} [macro-prefix] {key} [default] {function} 

Below are some examples that might be used with PSTricks. Note that psset must be used 
as [prefix] (matching the name of the \psset command) and that the family is left empty 
when the definition is not part or an extension of an existing package. 

The macro-prefix (PST@ in our example) may be chosen quite arbitrarily, of course, but 
serves to enforce a certain uniformity. 

Boolean keys 

The syntax of Boolean keys is as follows: 

\def ine@boolkey [psset] {} [PST@] {name} [true] {} 

Let's review the Boolean switch from the example in the previous section. 

\def ine@boolkey [psset] {} [PST@] { showFP} [true] {}% use \ ifPST@showFP 
\psset { showFP=false} % set def ault value 

Note that the specification of [true] does not establish a default value to be used when 
the keyword is missing altogether, but rather the value to be taken when only the keyword 
name is given in the input, without a value: for example, \focalPo int [showFP] will be 
completed to \f ocalPo int [showFP=true] given the above definition. The macro-prefix 



3 1 2  HARNESSING POSTSCRIPT INS IDE �EX: PSTRICKS 

(PST@ in our example) may be chosen quite arbitrarily, of course, but serves to enforce a 
certain uniformity. 

The pst-xkey package recognizes Boolean values regardless of their case (e.g., "True" 
and "FALSE" are valid) ,  but will otherwise reject erroneous input. 

I nteger keys 

The syntax for an integer keyword is as follows: 

\def ine@key [psset] {}{name}{\pst@get int{#l}{\PST@name}} 

Both the keyword value and the name of the macro, which is to save this value, are passed to 
\pst@get int. Note that if the number given as a value is not an integer but a real number, 
any fractional part is simply truncated. Otherwise, erroneous non-numeric input is treated 
as 0, with a low-level lEX error message being produced. (In either case, the rejected input 
will show up in lEX's output! )  

Floating-point keys 

The syntax for a floating-point keyword is as follows: 

\def ine@key [psset] {}{name}{\pst@checknum{#l}{\PST@name}} 

The \pst@che cknum macro checks whether a valid value was input and saves it in the 
macro \PST@name. Erroneous input! is treated as 0, with an error message issued by 
PSTricks. 

Dimension keys 

The syntax for a length (dimension) keyword is as follows: 

\def ine@key [psset] {}{name}{\pst@getlength{#l}{\PST@name}} 

The \pst@get length macro checks whether its first argument resembles a valid length 
value in PSTricks's terms (i .e. , the current default unit is used if none has been given explic
itly) and stores it in the macro whose name is given as the second argument. Erroneous 
non-numeric input is treated as 0, with a low-level lEX error message beeing produced. (As 
an implementation-dependent side effect, empty input is treated as I ,  i.e., one PSTricks unit! ) 

String keys 

The syntax for a string keyword is as follows: 

\def ine@key [psset] {}{name}{\def \PST@name{#1}}  

This is the simplest type. It simply saves the keyword value in  the specified macro. 

1 Funny: redundant "+" signs are rejected! 



C H A P T E R  6 

The Main PSTricks Packages 

6.1 pst-plot-Plotting functions and data . . . . . . • . . . . . . . . . . . . • . . . . .  313 
6.2 pst-node-Nodes and connections . . . . . . . . • . . . . • . . . . • . . • . . . . .  334 
6.3 pst-tree-Typesetting trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366 
6.4 pst-fill-Filling and tiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  383 
6.5 pst-3d-Shadows, tilting, and three-dimensional representations . . . . . . . . 388 
6.6 pst-3dplot-3-D parallel projections of functions and data . . . . . . . . . . . . 400 
6.7 Short overview of other PSTricks packages . . . . . . . . . . . . . . . . . . . . . . . 417 
6.8 Summary of PSTricks commands and keywords . . . . . . • . . . . . . . • . . . . .  459 

The "main" packages of PSTricks nowadays have this name only for historical reasons. 
PSTricks is used for those packages listed in the pst-all package. We do not follow this list 
here. Instead, we describe the most common ones (e.g., pst-plot, pst-node) in some detail. 
Section 6.7 then gives an overview of other packages, showing at least one characteristic 
example to help you understand the purpose of each package and approach that it takes. 

6.1 pst-plot-Plotting functions and data 

The base package pstricks provides some macros to plot function values and coordinates, 
as listed in Table 6.1. All of these macros accept an arbitrary number of coordinate pairs as 
arguments. 

The pst-plot package provides improved commands for plotting external data and 
functions as well as coordinate axes [59, 60, 131 1 .  It supports only two-dimensional data 
pairs. For plotting (x, y, z) data triplets or three-dimensional functions, you can use the 
pst-3d plot package discussed in Section 6.6, which supports a parallel projection of 3-D ob
jects [ 1 32, 134 [. 



3 1 4  T H E  MAIN PSTRICKS PACKAG ES 

Table 6. 1 :  Plot macros included in the base package pstricks 

\psdots 
\psl ine 
\pspolygon 
\ps curve 
\pse curve 
\psc curve 

2 

Section 5.8 on page 249 
Section 5.6 on page 23 1 
Section 5.6 on page 232 
Section 5.7. 1 on page 245 
Section 5.7. 1 on page 246 
Section 5.7. 1 on page 246 

0 1 2  4 
Figure 6. 1 :  Reference points for plotting coordinate axes 

6 . 1 . 1  The coordinate system-ticks and labels 

Although you can use normal line commands to draw coordinate axes, this task is much 
more easily accomplished using \psaxes provided with pst-plot. 

\psaxes .. ·.[$¢ttings] {�rrQwtype} { .. ·. x.· ·  ••. o .•. ' . • • . y.o . • · .J (x .•..• ·.l.· ·  . •. y. l.) (X2, Y2 ) . . " , ,, . . 
, , ' ,

, ,

'

,

-. . " 

"

,

. , , ' ' ' '  " '

, ,  

" ' " ' '  " . 
This command takes four optional arguments and one mandatory argument; i.e., at least 
one coordinate pair must be provided. The coordinates have to be given as Cartesian coor
dinates; you cannot use special coordinates as described in Section 5 . 1 4  on page 296. Fig
ure 6. 1 shows the relationship between the specified coordinate pairs and the plotted axes. 
The (X l ,  YI ) and (X2, Y2 ) arguments should specify any two opposite corners of the rect
angle (see Figure 6. 1 ) . A missing (xo, Yo ) defaults to (X l ,  YI ) . If only one coordinate pair 
is given, the origin ( 0 , 0 ) is used for the first two. By default, no arrowheads are drawn. 
With the arrow type argument, you can specify the kind of arrow tip desired, as described in 
Section 5 . 1 0  on page 259. 

Table 6.2 shows the keywords that are important for creating coordinate axes. They will 
be explained in detail on the following pages. The keyword labelsep, which was discussed 
in Section 5. 1 1  on page 265, is important for labeling coordinate axes. 

The keyword axe sstyle can have the value axe s, frame, or none. In the first case, 
The axe s  style key two perpendicular lines are plotted, and the point of origin is placed at (Xo, yo ) . The labels 

are positioned in relation to the axes' alignment. In the following example, ( -0 . 5 ,  -0 . 5 ) 



Example 
6- 1 - 1  

6.1 pst-plot-Plotting functions and data 

Table 6.2: Keywords for \psaxes 

Name Value Default 
axes style axes l frame lnone axes  
Ox  value 0 
Oy value 0 
Dx value 1 
Dy value 1 
dx value [unit] Opt 
dy value [unit] Opt 
labels all ix ly inone all 
labelsep value [unit] 5pt 
showorigin Boolean true 
t i cks all ix ly inone all 
t i ckstyle full itopibottom full 
t i cks ize value [unit] 3pt 

is chosen as the lower-left point of the surrounding box to prevent the axis labels from being 
placed outside the actual pspi cture environment. 

1 

o 
o 1 2 

\us epackage{pstri cks , pst-plot} 

\begin{pspicture} ( -O . 5 , -O . 5) ( 3 , 2 ) 
\psaxes [axe sstyle=axes] 

{->} ( O , O ) ( 3 , 2 ) 
\end{pspi cture} 

The next example shows how a third coordinate influences the placement of the axes. It 
also demonstrates that the placement of the labels depends on which corners of the rectangle 
are chosen. 

T 

: 1 2 
r- - - ...L - - - 1 - - - + - - .., 

I 
I 
I - 1 I 
I 
I 

J.. 

\usepackage{pstricks , pst-plot} 

\begin{pspi cture} (- 1 , 1 ) (3 , - 2 )  
\ps axe s [axe sstyle=axe s , l ine style=dashed] 

{ (-] } ( O , O ) ( - 1 , 1 ) (3 , -2)  
\end{pspicture} 

3 1 5  



3 1 6  THE MAIN PSTRICKS PACKAGES 

For the axes style frame, the point of origin should be placed in a corner. Otherwise, it 
axe s style=frame would not really make sense to use this style. 

2 

1 

o 
o 1 2 3 

o 1 2 3 
o .. - - - 1- - - -1 - - - 1 

- 1  

-2  

I I 
I I 
I I 

T I 
I I 
I I 

..L _ _ _ _ _ _ _ _ _ _  .J 

\us epackage{pstricks , pst-plot} 

\begin{pspicture} ( -0 . 5 , -0 . 5 ) ( 3 , 2 )  
\psaxe s [axe sstyle=frame] {->} (3 , 2 ) 

\end{pspi cture} 

\us epackage{pstricks , pst-plot} 

\begin{pspi cture } ( -0 . 5 , 0 . 5 ) (3 , -2 )  
\ps axe s [axe sstyle=frame , l inestyle=dashed] {->} (3 , -2)  

\end{pspi cture} 

On first glance the axes style none appears to be useless. However, since ticks and labels 
axesstyle=none are still printed, it comes in handy when you are using manually designed axis lines. You can 

hide labels and ticks in a similar fashion. 

2 -

1 -

o 
o 1 2 

\us epackage{pstricks , pst-plot} 

\begin{pspi cture} ( -0 . 5 , -0 . 5 ) (3 , 2 ) 
\psaxe s [axe s style=none] {->} ( 2 . 5 , 2 ) 
\psl ine [l ine color=blue] {->} ( 3 , 0 ) 

\end{pspicture} 

The keywords Ox and Oy allow you to specify arbitrary values for the axis origin (the 
The Ox and Oy keys default is ( 0 , 0 ) ) . Although you can use any real number, you should keep in mind that 

PSTricks uses the \mult ido command to create the axis labels and ticks. As \mult ido is 
capable of only rudimentary floating-point arithmetics, some numbers may lead to inaccu
rate results. 

1 

o 
1 2 3 

\us epackage{pstri cks , pst-plot} 

\begin{pspi cture} (-0 . 5 , -0 . 5 ) ( 3 , 2 )  
\psaxe s [Ox= 1 ] {->} ( 3 , 2 ) 

\end{p spi cture} 

Example 
6- 1 -4 

Example 
6- 1 -5 

Example 
6- 1 -6 



Example 
6- 1 -8 

Example 

6- 1 -9 

Example 

6- 1 - 1 0  

6.1 pst-plot-Plotting functions and data 

o 

- 1  
1 2 3 

\usepackage{pstricks , pst-plot} 

\begin{pspicture} ( -O . 5 , -O . 5 ) ( 3 , 2 ) 
\psaxes [Ox= 1 , Oy=- 1 ] {->} ( 3 , 2 ) 

\end{pspi cture} 

The keywords Dx and Dy specify a scaling factor for the distance between consecutive 

3 1 7  

labels. By default, the labels are placed one unit of  measurement apart. The Dx and Dy keys 

1 

o 

1 . 5 

1 .0 

0 .5  

o 

o 2 

o 0 . 75 1 . 50 2 . 25 

\usepackage{pstricks , pst-plot} 

\begin{pspi cture} ( -O . 5 , -O . 5 ) (3 , 2 ) 
\psaxe s [Dx=2] {->} (3 , 2 ) 

\end{pspi cture} 

\usepackage{pstr icks , pst-plot} 

\begin{pspi cture} ( -O . 5 , -O . 5 ) ( 3 , 2 ) 
\psaxe s [Dx=O . 75 , Dy=O . 5] {->} ( 3 , 2 ) 

\end{pspicture} 

The keywords dx and dy define the physical distance between two consecutive labels. 
Thus they have a unit of measurement associated with them. If it is not explicitly given, the The dx and dy keys 

current PSTricks unit is used. As you can see in Table 6.2, the keywords have the default value 
Opt. Internally this value is replaced as follows: 

3 

2 

1 

0 
0 3 6 9 

d.']; = 0 

dy = 0 

---+ dx = Dx . psxunit 

---+ dy = Dy . psyunit 

\us epackage{pstricks , pst-pl ot} 

\psset{unit=5mm} 
\begin{pspicture} ( -O . 5 , -O . 5 ) ( 6 , 4 )  

\psaxes [Dx=3 , dx=8mm] {->} ( 6 , 4) 
\end{pspi cture} 



3 1 8  

2 .4  
2 . 0  
1 . 6  
1 . 2  
0 . 8  
0 .4  

o 
o 1 2 3 4 5 

THE MAI N PSTRICKS PACKAGES 

\usepackage{pstricks , pst-plot} 

\begin{pspicture} ( -O . 5 , -O . 5 ) (3 , 2 ) 
\psaxe s [Dx= 1 , dx=O . 5 cm , Dy=O . 4 , dy=O . 3cm] {->} (3 , 2 ) 

\end{pspicture} 

If these keywords are changed from their default, it is best to use values with an explicit 
unit of measurement. The two examples above also work without a unit. If you change the 
unit values with \psset,  however, the labels may come out wrong. 

The l abels key The labels  keyword enables you to specify which axis is labeled. Possible values are 

o 

o 

all, x, y, or none. You can influence the distance between the axis and the label with the key
word labelsep (Table 6.2 on page 3 1 5) .  The label layout, however, can be changed only by 
redefining the macros for typesetting the vertical and horizontal axis labels. Their original 
definitions in the package are as follows: 

\newc ommand\pshlabel [l ] {$#l$} 
\newc ommand\psvlabel [ l ] {$#l$} 

If you want to typeset all labels in a small text font, simply precede the argument # 1 with a 
command like \small or \ t iny, as shown in the next examples. The package pstricks-add 
( see Section 6.7. 1 on page 4 18) offers additional options with which to influence the label 
style. 

l abel s=all The value all is the default value for the keyword labels and has been used in all of 
l abel s =x the preceding examples; it ensures that both axes are labeled. If you set the keyword labels 
l abels=y to the value x, only the x-axis is labeled, which is useful when the y-axis needs special labels 

that you cannot produce with the \psaxes command. The same is true for the y-axis with 
the value y. The following examples show the behavior of the keyword labels with the 
different values. 

2 

\usepackage{pstricks , pst-plot} 
\renewcommand\pshlabel [ l ] {\ small # 1 }  

\begin{pspicture} ( -O . 5 , -O . 5 ) (3 , 2 ) 
\psaxes [labels=x] {->} ( 3 , 2 ) 

\end{pspi cture} 

\us epackage{pstricks , pst-plot} 
\renewc ommand\psvlabel [ l ] {\ small # 1 }  

\begin{pspi cture} ( -O . 5 , -O . 5 ) ( 3 , 2 ) 

\psaxe s [labels=y] {->} ( 3 , 2 ) 
\end{p spi cture} 

Example 

6- 1 - 1 1  

Example 

6- 1 - 1 2  

Example 
6- 1 - 1 3  

'". � 



Exa;;pl�-I 
6- 1 - 1� 

6.1 pst-plot-Plotting functions and data 

With this value, all axes are plotted with ticks but without labels. This can be useful for label s =none 

special axis labels, e.g., logarithm values instead of decimal ones. 

3T€ 
2T€ 
I T€ 

\usepackage{eurosym , pstricks , pst-plot} 

\begin{pspi cture} ( - 1 , - 1 )  ( 3 , 2 ) 
\psaxe s [labels=none , Dy=0 . 5] {->} ( 3 , 2 ) 
\rput [rC] {45} ( 1 , -0 . 2 ) { 1 st Quarter} 
\rput [rC] {45} ( 2 , -0 . 2 ) {2nd Quarter} 
\rput [rC] ( -0 . 2 , 0 . 5 ) { 1T\euro} 
\rput [rC] ( -0 . 2 , 1 ) {2T\euro} 
\rput [rC] ( -0 . 2 , 1 . 5 ) {3T\euro} 

\end{pspi cture} 

3 1 9  

You can use the keyword showorigin t o  hide the labels at the origin. In  the following The showorigin key 

example, both axes have no label o. 

1 

1 2 

\usepackage{pstricks , pst-plot} 

\begin{pspi cture} ( -0 . 5 , -0 . 5 ) ( 3 , 2) 
\psaxes [showorigin=f al se]  {->} ( 3 , 2 ) 

\end{pspi cture} 

With the keyword t i cks, you can specify which axes are plotted with tick marks, 
which are then positioned depending on the given values for the keywords dx and dy ( see The t i cks key 

page 3 1 7) .  Possible values for t i cks are all, x, y, or none. The default key value is all, 
as in the preceding examples; i .e . ,  both axes get tick marks. With the value x, tick marks are 
plotted only on the x-axis; with t i cks=y, they are plotted only on the y-axis. With the key 
value none, the axes are plotted with labels but without tick marks. This can be very useful 
for plots of a more qualitative nature, which do not need tick marks. 

1 

o �--�----�---
o 1 2 

1 

o 
o 1 2 

\us epackage{pstri cks , pst-plot} 

\begin{pspi cture} (-0 . 5 , -0 .  5) ( 3 , 2 ) 
\psaxe s [t i cks=x] {->} ( 3 , 2 ) 

\end{pspicture} 

\usepackage{pstricks , pst-plot} 

\begin{pspicture} ( -0 . 5 , -0 . 5 ) ( 3 , 2 ) 

\psaxes [t i cks=y] {->} (3 , 2 ) 
\end{pspi cture} 



320 THE MAIN PSTRICKS PACKAGES 

\us epackage{pstr icks , pst-plot} 

\begin{pspicture} ( -0 . 5 , -0 . 5 ) ( 3 . 2 5 , 2 ) 
\psaxes [t icks=none , l abels=none] {->} (3 . 25 , 2 ) 

\uput [-90] ( 1 . 5 , 0 ) {Quarter} 
\uput [ 1 80] {90} ( 0 , 1 ) {Sales}  
\pspolygon [fillco lor=l ightgray , f ill styl e=sol id] 

( 0 , 0 ) ( 0 , 0 . 2 ) ( 1 , 0 . 8) (2 , 1 . 5 ) ( 3 , 1 ) ( 3 , 0) 
\ end{pspi cture} 

The keyword t i ckstyle defines the style of the tick marks. Possible values are full, 
The t i ckstyle key bottom, or top. The default value for t i ckstyle is full; it has been used in all preceding 

examples. With the value bottom, the tick marks are placed only to the left of the y-axis and 
below the x-axis. When plotting negative axes, the ticks and labels are always outside of the 
plot area. 

1 

o 
o 1 

- 2  - 1  

o 1 
o 

- 1  

2 

o 
o 

- 1  

2 

\usepackage{pstricks , pst-plot } 

\begin{pspi cture} ( -0 . 5 , -0 . 5 ) (3 , 2 ) 
\psaxes [ti ckstyle=bottom] {->} ( 3 , 2 ) 

\end{pspi cture} 

\us epackage{pstricks , pst-plot } 

\begin{psp icture} ( -3 , 0 . 5 ) ( 0 . 5 , -2 )  
\psaxe s [ti ckstyle=bott om] {->} (-3 , -2)  

\end{pspi cture} 

\us epackage{pstricks , pst-plot} 

\begin{pspi cture} ( -0 . 5 , 0 . 5 ) ( 3 , -2)  
\psaxe s [t ickstyle=bottom] {->} ( 3 , -2 )  

\end{pspi cture} 

With the value top, the tick marks are placed only to the right of the y-axis and above 
the x-axis. When plotting negative axes, the ticks are always inside and the labels always 

, Example 

L 6· [ · [ 8  

Example 

6· [ · [ 9  

Example 
6-1 -20 

Example 

6- [ - 2 [  



-- -- - - l Example I : 6- 1 -22 I 

! Exampl;] 6- 1 -23 I 

I Example I 
��-�� I 

; 6- 1 -25 I Example I 

6.1 pst-plot-Plotting fu nctions and data 

outside the plot area. The position of the ticks often has to be changed, when the direction 
of the axes changes. 

1 

o 1...-_--1... __ .1...-__ 
o 1 2 

- 2  - 1  o 
o 

- 1  

o 1 2 
o ,-----r---.----

- 1  

\usepackage{pstricks , pst-pl ot} 

\begin{pspi cture} ( -0 . 5 , -0 . 5 ) ( 3 , 2 ) 
\psaxe s [t i ckstyle=top] {->} ( 3 , 2 ) 

\end{pspi cture} 

\usepackage{pstricks , pst-plot } 

\begin{pspi cture} ( -3 , 0 . 5 ) (0 . 5 , -2 )  
\psaxe s [t i ckstyle=top] {->} ( -3 , - 2)  

\end{pspi cture} 

\us epackage{pstricks , pst-pl ot} 

\begin{pspi cture} ( -0 . 5 , 0 . 5 ) ( 3 , -2 )  
\psaxe s [ti ckstyle=top] {->} ( 3 , -2)  

\end{pspicture} 

The keyword t i cksize defines the length of the tick marks (the default is 3 pt) .  A value 

321 

without an explicit unit is interpreted in the current unit of measurement. You can easily use The t i cksize key 

this keyword to fill the coordinate system with lines parallel to the coordinate axes, as shown 
in the next example. 

1 

o 
o 1 2 

\us epackage{pstricks , pst-plot} 

\begin{pspi cture } ( -0 . 5 , -0 . 5 ) ( 3 , 2 ) 
\psaxe s [ticks=none] {->} ( 3 , 2 ) 
\psset{l inewidth=O . lpt} 
\psaxe s [axe s style=none , t ickstyle=top , 

t i cks ize=3 , t icks=y , labe ls=none] ( 3 , 2 ) 
\psaxe s [axe sstyle=none , t i ckstyle=top , t i cksize=2 , 

t i cks=x , Dx=0 . 5 , labe ls=none] (3 , 2 ) 
\end{pspi cture} 

By combining different values for t i cksize and labels,  interesting effects can be 
achieved. Note that we print the ticks first and then overprint them with the axes to ensure 



322 

1 

o 
o 1 

THE MAI N PSTRICKS PACKAGES 

that the blue ticks do not run into the axes. 

\usepackage{pstricks , pst-plot} 

\begin{pspicture} ( -O . 5 , -O . 5 ) ( 3 , 2 ) 
\ps set{l inewidth=O . 2pt , axe s style=none , l inecol or=blue , 

2 

t i ckstyle=bottom , t i cksize=5pt , labels=none} 
\psaxe s [t i cks=x , Dx=O . 25] ( 2 . 5 , 1 . 75 )  

\psaxe s [t i cks=y , Dy=O . 2] ( 2 . 5 , 1 . 75 )  
\psset{linewidth=O . 4pt , t icks ize= 10pt , l inecolor=black} 
\psaxe s [ti cks=x] (2 . 5 , 1 . 75 )  
\psaxe s [t i cks=y] ( 2 . 5 , 1 . 75 )  
\psaxes [axe s style=axe s , t i cks=none , 

labels=all , l abelsep= 12pt] {->} ( 3 , 2 )  
\end{pspi cture} 

On many occasions, you may need to label axes with symbols or text, e .g. ,  months of 
Special labels the year, instead of numbers. Example 6- 1 - 1 4  on page 3 19  showed a way to achieve this ef

fect. The package array job offers further support for labeling axes by enabling customized al
phanumeric labels. The lEX command \ if cas e basically offers the same possibilities with
out the need to load an external package. The trick is to use it within a redefinition of the 
PSTricks macros \pshlabel and \psvlabel for labeling the axes, as shown in the next 
example. 

\usepackage{pstricks , pst-plot} 
\newc ommand\Month [ l ] {% 

\ifcase#l \or January\or February\or March\or April\or May\or June\or% 
July\or August\or September\or October\or November\or December\f i}% 

\newcommand\Level [ l ] {% 
\if case# l \or Low\or Medium\or High\fi}% 

\renewcommand\psvlabel [ l ] {\f ootnotes ize\Level{ # l } }  
\renewc ommand\pshlabel [ 1 ]  {\rput [rb] {30}{\f ootnot e s ize \Mo nth{#l }}} 

\ps set {unit=O . 8} 
\begin{pspicture } (-O . 5 , - 1 )  ( 1 3 , 4 ) 

\psaxe s [showorigin=f alse] {->} ( 1 3 , 4) 
\end{pspi cture} 

High 

Medium 

Low 

r;::::_ . .  -c I Example : l 6· 1 -26 . 

i Example [ 6- 1 -27 . 



6.1 pst-plot-Plotting fu nctions and data 

A similar approach can be used for angular degrees by applying suitable (local) changes 
to the scaling factor. For example, plotting a sine function over the interval [0; 3n] can be 
achieved by using 6 length units for 3n, resulting in a scaling factor of � .  The resulting x
axis would then have a minimum length of 6 . � � 9 .4248 e m  if  a measuring unit of 1 cm 
is used. The labels at each tick (one unit apart) should then show multiples of � .  

This type of labeling of the axes can be easily achieved with the help of the packages 
if then and calc. Alternatively, the pstricks-add package provides a ready-made solution for 
trigonometric labels (see Section 6.7. 1 on page 418 ) .  

\usepackage {pstri cks , pst-plot , i fthen , c al c} 

\newcount er{t emp} 
\renewcommand\pshlabel [ 1 ]  {\small% 

\ifthenelse{\ isodd{# 1 }}{$\frac{#1 }{2}\pi$} 
{\setcount er{temp}{# 1/2}$\thet emp\pi$}}  

\begin{pspi cture} ( -0 . 5 , - 1 . 25)  ( 1 0 , 1 . 25 )  
\psaxes [xunit= 1 . 570796327 , showor igin=f alse] {->} ( 0 , 0 ) (-0  . 5 , - 1 . 25 ) ( 6 . 4 , 1 . 25 )  
\psplot [linecolor=blue , linewidth= 1 . 5pt] {0}{9 . 42477796 1 } { x  RadtoDeg s in} 

\end{pspi cture} 

1 

- 1  

Here the command \psplot is invoked with the default scaling factor, allowing us to use 
the interval [0; 3n] for this function. 

6.1 .2 Plotti ng mathematica l fu nctions and data fi les 

The package pst-plot provides three plotting functions with two additional commands for 
loading and saving data files or data records. 

\f ileplot .[settings] {file name} 
\dataplot [settings] {macro name} 
\listplot [settingsJ {macro name} 

All three commands can create the same output, and it is not easy to see the differences be
tween them, apart from the different syntax. If possible, \dataplot uses the "quick plot"; 
this approach is not feasible, if it internally calls \li stplot. Various criteria are applied 
when making this decision. Here are two examples: the usage of the showpoints  keyword 
and of the curve plot style. Neither is supported by "quick plots". Using \dataplot with
out these options, but with the default line key value for plot style, however, will result 
in a "quick plot". This method is completely different from what \li stplot would use, and 
among other changes in its behavior it will not accept PostScript code inside the data. The 

323 



324 

Data structures for 
plotting data files 

THE MAI N PSTRICKS PACKAGES 

definition of a "quick plot" depends on the PostScript behavior of handling data records. 
Normally, these details can be neglected when you are plotting external data files or data 
records. 

External data must be arranged in pairs of numerical values using one of the four de
limiters: space, comma, parentheses, or curly brackets. 

x y 
x , y  
( x , y) 
{x , y} 

The data pairs do not have to appear in separate lines and you can combine the delimiters. 
A file with contents such as 1 2 3 , 4  (5 , 6 ) {7 , 8} will still be accepted by the plotting 
macros. You can considerably speed up processing by putting all numbers in square brack
ets 1 because PostScript can then read the data as an array. On the downside, there are device
specific limitations, regarding how many data records 'lEX can read during one run. 

Tab characters (\ t or \009) are not allowed as delimiters. PSTricks does not recognize 
Tab characters them, so their inclusion leads to a data reading error. A possible workaround is to replace 

the tab characters with spaces by means of an editor or other program, such as under U*X: 

tr , \  t '  , , < in File > outFile 

Moreover, data files must not include symbols other than numeric values and the 'lEX com
ment character "%". 

You should use the command \f  ileplot whenever you wish to plot two-dimensional 
\ f i leplot data that is saved in an external file. There are a few drawbacks when using \fileplot: 

the plot style curve is not allowed and the key settings for arrows, l inearc, and 
showpoints  are ignored. 

Example 6- 1 -29 is a light absorption spectrum (A = 19 Iy as a function of the wave
length) .  Example 6- 1 -30 shows the evolution of a population as a function of the breeding 
factor (known as a Feigenbaum or bifurcation diagram). The plotting style used here can be 
derived from the source code. 

2 . . . . . . . .  " . . . . . . . . . . . . . . . . . . . . . . . . . . . 

\usepackage {pst ricks , pst-plot} 

\pss et{xunit=0 . 025mm} 
\begin{pspi cture} (-200 , -0 . 5 ) ( 1900 , 4 . 25)  

1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 

o 
o 400 800 1 200 1 600 

\fi leplot [plotstyle=l ine , linewidth= lpt , 
linecolor=blue] {pstri cks /fileplot . data} 

\psaxes [dx=400 , Dx=400] {->} ( 1 900 , 4 . 1 )  
\psgrid [griddot s=5 , subgr iddiv= 1 ,  

xunit=0 . 5cm , gridlabels =Opt] (8 , 4) 
\end{pspi cture} 

1 "  [" h a s  t o  be the first symbol i n  each line. 

I Example I 6- 1 -�? : 



Example 

6- 1 - 3 1  

6.1 pst-plot-Plotting functions  and data 

1 .00 

0.75 

0.50 

0.25 

o 
o 

y 
Feigenbaum diagram A:: 

fl� . 1!1 
. . . · · · · ·

·\X . . ' f?"'� . 
\{�: .: -:'-... .. 

"(.:-, 
\ ( 

2 3 

\usepackage{pstri cks , pst-plot } 

\psset{yunit=4cm} 
\begin{pspicture} ( -0 . 75 , -0 . 5 ) (4 . 25 , 1 . 1 ) 

\ f ileplot [plot style=dot s , dotsize= 1 . 5pt , 
linecol or=blue] {pstr icks /fe igenbaum . dat a} 

\psaxe s [Dy=0 . 25] {->} (4 . 25 , 1 . 05)  
\uput [-90] (4 . 25 , 0 ) {$x$} 
\uput [O] (0 , 1 . 05 ) {$y$} 
\rput [l] ( 0 . 3 , 0 . 95) {Feigenbaum diagram} 

\end{pspi cture} 

Just like \f ileplot, the command \dataplot expects external data. Instead of re-
siding in a file, however, the data has to be saved in a macro in a special way. To achieve this, \dataplot 

we can use \readdata to read from an external data file and save the data in a macro as 
follows: 

\readdata{\bubble}{pstricks /bubble . data} 

For details, see page 328. The size of the included data file( s) is limited only by the memory 
constraints. 

In addition, \dataplot supports plotting of simple overlays. The following example 
shows two different data sets plotted on a single coordinate system: 

Time 

Bubble-Sort 

\us epackage {pstri cks , pst-plot} 

\ps s et {xunit=0 . 0005cm , yunit=0 . 004cm} 
\begin{pspi cture} (0 , -50) ( 1 0000 , 1 1 00)  

\readdat a{\bubble}{pstri cks /bubbl e . dat a} 
\readdat a{\select}{pstricks/ select . dat a} 
\dataplot [plot style=l ine , l ine color=blue] {\bubble} 
\dataplot [plot style=l ine , l inestyle=dotted , 

325 

. . . . . 

. ' 
. 

. . ' 

• • • S"�lect -Sort 

linewidth=2pt , linecolor=blue] {\select}  
\psline{->} (O , O ) ( 1 0000 , 0 )  \uput [-90]  ( 9000 , 0 ) {Items} 
\psline{->} (0 , 0 ) ( 0 , 1000) \uput [O] ( 0 , 1 000) {Time} 
\rput [l] (4500 , 800) {Bubble-Sort} 
\rput [l] ( 7500 , 200) {Select-Sort} 

Items \end{pspi cture} 

From the user's point of view there are only small differences between \dataplot and 
\fileplot. When working with large amounts of data, \dataplot offers faster process
ing, but uses more memory than \f ileplot. Moreover, when it is called with optional 
keywords, \dataplot internally invokes \listplot, which is described in detail below. 
Consequently, \dataplot is best used for plotting polygons, for which it produces much 
faster results. Given the overall performance of to day's hardware, however, this argument 
seems to lose its importance. 



326 THE MAIN PSTRICKS PACKAGES 

-2 

-2 

In contrast to the preceding plot commands, the argument of \listplot is first ex-
\listplot panded if it contains 1tX macros; otherwise, it is passed to PostScript without change. In 

the process, 1tX macros are replaced with their corresponding replacement text. It is pos
sible to include entire PostScript programs in the argument to \listpIot , as shown in 
Example 6-1-33. 

1 

The first example illustrates the Henon attractor. 

\usepackage{pstricks ,pst-plot} 
% definition of \henon with data points like this : 
% \newcommand\henon{ 1 . 00000000 1 . 00000000 
% 0. 56000000 0 . 31000000 
% . . .  many more . . .  } 

\psset{xunit=1 . 5cm, yunit=2. 5cm} 
\begin{pspicture}(-2 , -0 . 5) ( 1 . 5 , 1 .25) 

\psaxes{->}(0 , 0) (-2,-0.5) ( 1 . 5 , l . 25) 
\listplot[showpoints=true,plotstyle=curve, 

linecolor=blue] {\henon} 
\end{pspicture} 

The second example includes the watermark "DRAFT", which was added to the original 
data with additional PostScript code. 

\usepackage{pstricks,pst-plot} 
% \henon as in previous example 
\newcommand{\dataA}{\henon 

gsave 
/Helvetica findfont 40 scalefont setfont 
45 rotate 
0 . 9  setgray 
-60 10 moveto (DRAFT) show 
grestore } 

\psset{xunit=1 . 5cm, yunit=2. 5cm} 
\begin{pspicture} (-2,-0.5) ( 1 . 5 , 1 .25) 

\psaxes{->}(O,O) (-2,-0.5) ( 1 . 5 , l . 25) 
\listplot [showpoints=true, linecolor=blue, 

plotstyle=curve] {\dataA} 
\end{pspicture} 

Instead of modifying the data set passed to \listpIot, you can redefine the 
\ScaIePoints macro in pst·plot. For example, if you wanted to exchange the x and y val-



: Example 

I 6- 1 -34 

6.1 pst-plot-Plotting fu nctions and data 

ues and then rotate the whole plotted graphic, the redefinition would look like this: 

1 

-2  

\usepackage {pstricks , pst-plot} 
\makeatletter 
\pst @def {ScalePo int s}<% 

45 rotate % rotate all obj ects 
Iy ED Ix ED 

countt omark dup dup cvi eq not { exch pop } if  
1m exch def In m 2 div cvi def 
n { exch % exchange s the last two stack el ement s 

y mul m 1 roll x mul m 1 roll 
1m m 2 sub def } repeat>  

\makeat other 

\ps set{yunit= 1 . 5cm , xunit=2 . 5 cm} 

\begin{pspi cture} ( -0 . 5 , -2)  ( 1 . 25 , 2 . 0 ) 
\psaxe s{->} ( 0 , 0 ) ( -0 . 5 , -2) ( 1 . 25 , 2 ) 
\li stplot [showpo int s=true , l inecol or=blue , %  

plotstyle=curve] {\henon} 
\end{pspi cture} 

Together \ps custom and the low-level macro \code enable you to perform virtu
ally any kind of manipulation at the PostScript level without having to interfere with the 
\listplot macro. The following example illustrates how to include the coordinate values 
next to their corresponding data points after the data has been plotted. 

4 5 6 
o 

7 

\us epackage{pstricks , pst-plot} 
\makeatletter 
\newcommand\plotValue s [1]  {\pscustom{\code{% 

IxOf f set 5 def lyOff set -2 def 
IHelvet ica f indf ont 10 scalef ont setf ont 
IVarray [ # 1  ] def Icnt 0 def 
Varray length 2 div cvi { 

327 

6 . 8  

I x  Varray cnt get def I y  Varray cnt 1 add get def 
x \pst@number\psxunit mul xOf f s et add 

- 1  

-2  

-3 

-4 

y \pst@number\psyunit mul yOff s et add 
moveto x 10 string cvs show 
Icnt cnt 2 add def } repeat}}}  

\makeatother 

\begin{pspi cture} ( 3 . 5 , 0 .  5)  ( S , -5)  
\psaxe s [Ox=4] {->} (4 , 0 ) ( S , -5)  
\newcommand*\dataV{ 6 . S  - 1  5 . 9  -2 5 . 4  -3 5 . 7  -4 6 . 2  -5 } 
\li stplot [plot style=curve , showpo int s=true , 

linecolor=blue] {\dataV} 
\plotValues{\dataV} 

\end{pspi cture} 



328 THE MAIN PSTRICKS PACKAGES 

\savedata{file} [data points] \readdat a [setti1'tgsl {macroHfile} 

The implementation of the two commands for saving and loading data records is very 
straightforward: \savedata takes the data points and saves them in the file; \readdata 
expects a macro name and a file name as arguments. The latter command does not require 
data to be in pairs since it reads the data step by step, ignoring any existing structure in the 
file. This behavior can be useful for several types of user-defined additions. For instance, 
some user applications store not only data but also error values. In such cases, it would be 
nice to plot both the data and the corresponding errors. The macro \readdata reads any 
list of data records and saves the data as a sequence in a given macro as follows: 

u D u valuel u D u value2 u D u value3 . . .  

The character D is inserted to get rid of trailing spaces when reading the data file and 
is of no relevance for the standard use of the plot commands. At the PostScript level, 
the D is replaced by an empty subroutine: /D {}  def .  Consequently, the data can easily 
be manipulated in 1FX before the data macro is sent to PostScript. With the command 
\©ifnext char D, you can define a macro that checks whether there is another data value 
in the list. The following example shows how to do so using a data file (dataError . dat) 
with the structure x y dmin dmax and the following content: 

-0 . 7  -0 . 4  -0 . 1  0 . 5  
-0 . 43 3 0 0 . 4  

1 4 . 6  -0 . 5  0 . 2  
1 . 2  2 . 3  -0 . 2  0 . 2  
1 . 7  3 . 9  -0 . 1  1 
2 . 7  - 1 . 1  -0 . 2  0 . 3  
3 . 98 -0 . 7  -0 . 4  0 
4 . 5  0 . 7539 -0 . 5  0 . 4  

The maximum upper and lower measurement deviations are denoted by dmax and 
dmin, respectively, and use the same scale as the data values x and y. After reading the data 
from a file with \readdata{dataError }{\Data} , the macro \Data contains the complete 
data set in the following form: 

D -0 . 7  D -0 . 4  D 0 . 1  D 0 . 5  D -0 . 43 D 3 D O D  0 . 4  D 1 D 4 . 6  D -0 . 5  D 0 . 2  
D 1 . 2  D 2 . 3  D -0 . 2  D 0 . 2  D 1 . 7  D 3 . 9  D -0 . 1  D 1 D 2 . 7  D - 1 . 1  D -0 . 2  
D 0 . 3  D 3 . 98 D -0 . 7  D -0 . 4  D O D  4 . 5  D 0 . 7539 D -0 . 5  D 0 . 4  

Instead of plotting only a single point, you now have to display a customized line such as 
\psline{ I - I } ex ,y+dmax) ex ,y+dmin ) , which shows the error margins as a bar. We can 
read four values (separated by Ds) from the data stored in the macro \Data and process 
them, then check whether another D is present and repeat the process. This requires a low
level 1FX definition (using \ de f )  as we pick up the arguments with special delimiters: 

\def \GetCoordinates#l{\expandaft er\GetCoordinates@i#l}  
% get  rid of any preceding space if necessary : 
\def\GetCoordinates@i#l {\GetCoordinates@ii# l }  
% pi ck up four value s separated b y  Ds : 
\def \GetCoordinates@ii  D # 1  D #2 D #3 D #4 {\DoCoordinate{# 1}{#2}% 



6.1 pst-plot-Plotting functions and data 

\pserrorLine [l ine color=blue , l inewidth= 1 . 5pt] ( # 1 , #2) {#3}{#4}% 
% recurring if more data i s  coming up : 
\@ifnext char D{\GetCoordinates@ii}{}}  

In the preceding code, \DoCoordinate typesets the data point itself and \pserrorLine 
handles the error margins around it. A possible definition for the latter macro-calculating 
the coordinates for the error bars directly within PostScript-is the following: 

\def\pserrorLine{\pst@obj ect{ps errorLine}} 
\def\pserrorLine@i ( # 1 ) #2#3{ \begingroup 

\use@par \pst@get coor{# l } \pst@t empA 
\def\ps@errorMin{#2}\def\ps@errorMax{#3}% 
\psline{ I - I } ( !  /yDot \pst@t empA exch pop \pst@number\psyunit div def 

/xDot \pst@tempA pop \pst@number\psxunit div def 

\endgroup} 

xDot yDot \ps@errorMin\ space add ) 
( !  /yDot \pst@t empA exch pop \pst@number\psyunit div def 

/xDot \pst@tempA pop \pst@number\psxunit div def 
xDot yDot \ps@errorMax\ space add) 

After putting these definitions together and providing a suitable definition for 
\DoCoordinate, we get the following result from the data in dataError . dat: 

5 

4 

2 

1 

1 2 
- 1  

-2 

3 5 
i: 

\us epackage{pstricks , pst -plot } \SpecialCoor 

% \GetCoordinates  def init ion as above 
\newcommand*\DoCoordinat e [2] {\p sdot ( # 1 , #2 ) } 

\readdata{\Dat a}{pstricks/dataError . dat } 
\psset{dot s cale=2 , unit=O . 75} 
\begin{pspicture} ( - 1 , -2)  ( 5 , 5 . 5 ) 

\psaxes ( O , O) ( - 1 , -2 ) ( 5 , 5 ) 
\GetCoordinat e s{\Dat a} 

\end{pspi cture} 

Internally PostScript uses the so-called stack system, which may be familiar to users of 

329 

HP calculators (or the BIB1EX programming language) .  This system, which is also known as Plotting mathematical  

Reverse Polish Notation (RPN), represents the internal standard for all computers. The usual functions 

mathematical notation for multiplications "a * b =" becomes "a (ENTER)b (ENTER)  * " . Be-
fore a mathematical operation is performed, all parameters (variables) have to be put on the 
stack [with (ENTER) ] .  The commands described here always refer to the highest or the two 
highest stack elements. Generally, if problems arise you can use an "Infix-Postfix" converter, 
which translates "usual" (Infix) mathematical expressions to RPN notation (Postfix) [93 ] .  



330 

1 . 0 

0 . 5  

-0 . 5  

- 1 . 0  

THE MAI N PSTRICKS PACKAG ES 

When it comes to final printing, it is not always an advantage to directly use PostScript 
commands instead of programs such as gnuplot for illustrating mathematical contexts. Also, 
not every mathematical problem is easily solved using PostScript commands. 

\psplot<t�����l��i {Xmin }  {xmaxHfunction y (x)}  
\pararnetri cplot��.�f�g�4 {tminHtmaxHfunctions x( t) y (  t )}  

Here [Xmin ; xmax l and [tmin ; tmaxl denote the definition interval (beginning and end val
ues) .  The special keywords for use with functions are plotpoints  and plot style. The 
plotpoints  keyword gives the number of data points plotted per interval, with the default 
beeing 50 .  Normally, all displayed values are connected by lines using plotstyle=l ines, 
which may result in sharp polygon edges if we use too few interpolation points. For most 
applications, a value of200 should be sufficient. 

The default variable names for \psplot and \pararnetri cplot are x and t, respec
tively. Although there is no easy way of altering these names, this does not pose any real 
limitations. Within a single expression, variables can be used as often as needed, since the 
second value coordinate is evaluated as being on top of the stack only after the closing paren
thesis is applied. The only difference between these two commands is that \psplot takes 
the topmost stack value (y) as its single argument, whereas \pararnetri cplot takes the 
two topmost stack values (x ;  y) as its arguments. 

Special attention should be paid to the fact that neither command will detect incorrect 
input. This can be of importance when we are using mathematical functions whose domain 
is not within the domain of real numbers. A single false argument, such as H, will pre
vent the plot from being displayed! In such cases you should process the PostScript output 
with ghostscript, which reports such problems in an error message. 

\usepackage{pstricks , pst -plot } 

\ps set{xunit=O . O l cm , yunit = l cm} 

\begin{pspicture} (-80 , - 1 . 25)  (400 , 1 . 25 )  
\psaxes [showorigin=f al s e , 

Dx=90 , Dy=0 . 5] {->} ( 0 , 0 ) (0 , - 1 ) ( 380 , 1 . 25)  
\uput{0 . 3} [90]  ( 360 , 0 )  {$\mathbf{\alpha}$} 
\uput{0 . 3} [0] ( 0 , 1 )  {$\mathbf {y}$} 
\psplot [plot style=curve , l inecolor=blue , 

l inewidth= 1 . 5pt] {- 10}{370}{x s in} 
\rput [l] ( 180 , 0 . 75) {$y=\sin x$} 

\end{pspi cture} 

Example 6-1 -38 shows a third-degree parabola and its inverse function. You do not have 
to choose an interval when using scientific notation, e.g., y = X- t . 

- 1  { +VIxI y (x) = 

_ VIxI 
X > O  

x < o  

Example i 
6· [ ·37 



I&�pl;-j 
�8J 

6.1 pst-plot-Plotting fu nctions and data 

\usepackage{pstri cks , pst-plot} 

\ps set{unit=0 . 75cm} 
\begin{pspi cture} (-3 . 25 , -3)  (3 . 25 , 3 ) 

\psaxes [l inewidth= 1pt , t i cks=none , 

labels=none] {->} ( O , O ) (-3 , -3) ( 3 , 3 ) 

\uput [ - 1 00] ( 3 , 0 )  {$\mathbf {x}$} 
\uput [-10] (0 , 3 )  {$\mathbf {y}$} 
\psset{linewidth= 1 . 5pt} 
\psplot{- 1 . 45}{1 . 45}{x 3 exp} 
\ps set{linestyle=dashed , linecolor=blue } 
\psplot{0}{3}{x 0 . 333 exp} 
\psplot{-3}{0}{x -1 mul 0 . 333 exp -1 mul} 

\rput [l] ( 1 . 5 , 2 . 5 ) {$y=x�3$} 
\rput [l] ( - 1 , -2 ) {$y=+\ sqrt [3] { l x l } $ }  
\rput [l] ( 1 . 25 , 0 . 8 ) {$y=+\sqrt [3] { l x l }$} 

\rput [r] ( - 1 . 25 , -0 . 8 ) {$y=-\sqrt [3] { l x l }$}  
\end{pspi cture} 

Example 6- 1 -39 shows a graphical representation of the relative mean power values of a 
power converter controlled by a pair of thyristors. The phase shift and delay angle ( indepen
dent variable) are denoted as <p and a, respectively. 

<p = o  I (a) _ { J 1 - � + � sin 2a 
10 - )(2 - 2: ) (2 + cos 2a) + � sin 2a <p = � 

PostScript expects the arguments of the trigonometric functions to be in degrees, which 
means we must convert relative angles to use this measurement unit. Therefore, we need to 
replace the expression � with l�O . 

0 .8 
0 .6 
0 .4 

\us epackage{pstri cks , pst-plot} 

\ps s et{xunit=0 . 025cm , yunit=4cm} 
\begin{pspi cture} (-0 . 1 , -0 . 25)  ( 1 90 , 1 . 1 ) 

\psgrid [subgriddiv=0 , griddot s=5 , 
gr idlabels=Opt , xunit=30 , yunit=0 . 2] ( 6 , 5 ) 

\psaxe s [linewidth= 1pt , t i cks=none , Dx=30 , 
Dy=0 . 2] {->} ( 1 90 , 1 . 1 ) 

\uput{0 . 5} [0] ( 1 80 ,  0) {$\mathbf {\alpha}$ }  
\uput{0 . 5} [90] ( 0 , 1 ) {$\mathbf { I / I_0}$} 
\ps set{linewidth= 1 . 5pt , l inecolor=blue} 

\psplot{0}{ 180}{ 1 x 180 div sub 1 
6 . 28 div x 2 mul sin mul add abs s qrt} 

\psplot [linestyle=dashed] {90}{ 180}{ 
2 x 90 div sub x 2 mul cos 2 add mul x 

0 .2 2 mul sin 3 3 . 1 5 d i v  mul add abs sqrt} 
\rput ( 50 , 0 . 75) {$\varphi=0$} 

o a \rput ( 1 25 , 0 .  9) {$\varphi=\pi/2$} 
o 30 60 90 120 150 1 80 \end{pspi cture} 

33 1 



332 THE MAI N PSTRICKS PACKAGES 

\parametri cplot A typical application for equations in parametric form that frequently appear in physics 

- 1 
- 1  

and electrical engineering comprises the well-known Lissajous figures. 

x = sin 1 . 5t 
Because of the "length" of this plot, the plotpoints  value was set to 200 to produce 

smooth polygons for the strong curvature at the plot "corners". 

o 

\usepackage{pstri cks , pst-plot} 

\psset{xunit= 1 . 5cm , yunit= 1 . 5cm} 
\begin{pspi cture} ( - l . l , - l . l ) ( l . l , l . l ) 

\psgrid [subgriddiv=0 , griddot s=10 , 
gr idlabels=7pt] ( - 1 , - 1 ) ( 1 , 1 ) 

\parametr icplot [plot style=curve , 

l inewidth= 1 . 5pt , plotpo int s=200] {-360}{360} 
{t 1 . 5  mul s in t 2 mul 60 add s in} 

\end{pspicture} 

The next example shows the following function plotted with three different values for 
the constant a. 

x (t) = a (t2 - 1) 
t2 + 1 ) at (t2 - 1) y (t = t2 + 1 

\usepackage{pstricks , pst-plot} 

\ps set{unit=2 . 0} 

Example 
6- 1 -40 

\newcommand\PSfunct ion [ l ] {t t mul l sub # 1  mul t t mul l add div 
t t mul 1 sub t mul #1 mul t t mul 1 add div} 

a = t ·  , 

\ 
, 
, 
, 
1 \ 

- 1 : , , , , , , , , , : , ,I , , \, , , , , : 
- 1  0 1 

\begin{pspi cture} ( - l . l , - l . l ) ( l . l , l . l ) 
\psgrid [subgriddiv=0 , griddot s = 1 0 , gridlabels=7pt] 
\psset{plotpo int s=200 , linewidth=1 . 5pt} 

\parametri cplot { - 1 . 85}{1 . 85}{\PSfunct ion{ 1}}  
\ps set{linestyle=dashed} 
\parametricplot{-4 . 5 }{4 . 5}{ \PSfunction{0 . 25}}  
\parametricplot{-2 . 1}{2 . 1 }{\PSfunct ion{0 . 75}} 
\rput [r] ( -0 . 05 , -0 . 5 ) {$a= 1 ; \  0 . 75 ; \  0 . 25$} 

\ end{pspicture} 

There are only two special keywords for plotting functions and data. The keyword 
The plotstyle and plot style can have a value of dots, l ine, polygon, curve, ecurve, ccurve, or 

plotpoint s  keys line, just like the corresponding macro names without the preceding ps. The keyword 
plotpoints  can be very important for plotting curves over a large x interval or curves 
with a great gradient. In both cases the predefined value of plotpoints=50 may be too 
small. 

Example 
, 6 - 1 -4 1  , : �. � .•. .- -���--



Example 
6- 1 -42 

Example I 
6- 1 -43 I 

Example 
6- 1 -44 

6.1 pst-plot-Plotting functions and data 333 

The plotstyle=l ine setting is the default. The coordinates are connected with se- plotstyle=l ine 

cants (lines) whose appearance can be altered with the keywords listed in Table 5.5 on 
page 235. 

y 

- 1  1 x 

\usepackage{pstricks , pst-pIot} 

\begin{pspi cture} ( - 1 . 5 , 0 ) ( 1 . 5 , 2 . 5) 
\psaxes{->} ( 0 , 0 ) ( - 1 . 5 , -0 . 5 ) ( 1 . 5 , 2 . 5 ) 

\uput [-90] (2 , 0 ) {x} \uput [O] ( 0 , 2 . 5 ) {y} 
\pspIot [plotstyle=line] { - 1 . 5} { 1 . 5}{x dup fiul} 

\end{pspi cture} 

With the plot style=dot s setting, the coordinates are displayed as dots, and the dis-
play style can be changed with the keywords for dots given in Table 5.8 on page 25 1 .  You can plotstyle=dots 

also define your own symbols (see Section 5.8 on page 250), e.g., if you wish to plot a lot of 
different data sets. 

- 1  1 x 

\usepackage{pstricks , pst-pIot} 

\begin{pspi cture} ( - 1 . 5 , 0) ( 1 . 5 , 2 . 5 ) 
\psaxe s{->} ( 0 , 0) ( - 1 . 5 , -0 . 5 ) ( 1 . 5 , 2 . 5 ) 
\uput [-90] ( 2 , 0 ) {x} \uput [O] ( 0 , 2 . 5 ) {y} 
\pspIot [plotstyle=dot s] { - 1 . 5} { 1 . 5}{x dup fiul} 

\end{pspi cture} 

The polygon plot style shows a similar behavior as the \pspolygon command (Sec- plotstyle=polygon 

tion 5.6 on page 232): it closes a curve at its end by plotting a line from the beginning to the 
end point. 

- 1  1 x 

\usepackage{pstricks , pst-pIot} 

\begin{pspi cture} ( - 1 . 5 , 0 ) ( 1 . 5 , 2 . 5 ) 
\psaxe s{->} (0 , 0) ( - 1 . 5 , -0 . 5 ) ( 1 . 5 , 2 . 5 ) 
\uput [-90] ( 2 , 0 ) {x} \uput [O] ( 0 , 2 . 5 ) {y} 
\pspIot [plot style=polygon] { - 1 . 5} { 1 . 5}{x dup fiul} 

\end{pspi cture} 

As shown in the following examples, there is not much difference between the plot styles 
curve, ecurve, and ccurve. This will generally be the case when we are plotting mathe- plotstyle=curve 

matical functions with more than a few values. For details, see the discussion of the corre- plotstyle=ecurve 

sponding commands in Section 5.7. 1 on pages 245-246. When plotting very steep curves, plotstyl e =c curve 

the key values curve, ecurve, and ccurve can lead to unique problems. A possible solu-
tion involves changing the value for the keyword curvature (Section 5.7 .2) .  

o 
x 

- 1  

\usepackage{pstricks , pst -pIot} 

\begin{pspi cture} ( 0 , - 1 )  (3 . 5 , 1 ) 
\p saxe s{->} ( 0 , 0 ) ( 0 , - 1 ) ( 3 . 5 , 1 ) 
\uput [-90] (3 . 5 , 0 ) {x} \uput [O] ( O , l ) {y} 
\pspIot [plotstyle=curve , curvature= l 1 - 1 ]  

{0}{3 . 5}{x 3 6 0  fiul 0 . 6  d i v  s in} 
\end{pspi cture} 



334 

o 

- 1  

o 

- 1  

\us epackage{pstricks , pst -plot} 

\begin{pspicture} ( 0 , - 1 )  ( 3 . 5 , 1 ) 
\psaxe s{->} ( 0 , 0) ( 0 , - 1 ) ( 3 . 5 , 1 ) 

\uput [-90J ( 3 . 5 , 0 ) {x} 

THE MAIN PSTRICKS PACKAGES 

\uput [OJ ( 0 , 1 ) {y} 
\psplot [plotstyle=e curve , curvature=1  1 -1 J  

{0}{3 . 5}{x 360  mul 0 . 6  div  sin} 
\end{pspi cture} 

\usepackage{pstri cks , pst-plot} 

\begin{pspi cture} ( 0 , - 1 )  ( 3 . 5 , 1 ) 
\psaxes{->} ( 0 , 0) ( 0 , - 1 ) ( 3 . 5 , 1 ) 
\uput [-90J ( 3 . 5 , 0) {x} 
\uput [OJ ( 0 , 1 ) {y} 
\psplot [plot style=ccurve , curvature=1 1 - 1 J  

{0}{3 . 5}{x 360 mul 0 . 6  div s in} 
\end{pspi cture} 

The keyword plotpoints  has a major influence on the appearance of all plots. The 
plotpoint s =50 default value of 50 points per chosen interval is probably reasonable for most functions, but 

many functions will require more points to produce smooth curves. Modern computers can 
easily allow values of 5000 or more without forcing the user to get a coffee between each 
IHEX run. Conversely, functions with a very shallow slope may produce good plots with 
fewer points. In this case, printer resolution might have to be adjusted accordingly. 

- 2  - 1  1 x 

\us epackage{pstri cks , pst-plot} 

\begin{pspi cture} ( -2 , -0 . 5 ) ( 2 , 4) 

\psaxe s{->} ( O , O ) ( -2 , -0 . 5 ) ( 2 , 4) 
\uput [-90J ( 2 , 0 ) {x} 
\uput [oJ ( 0 , 4) {y} 
\psplot [plotpoint s = 1 0 , showpo int s=trueJ {-2}{2}{x dup mul} 

\end{pspi cture} 

6.2 pst-node-Nodes and connections 

While the base package pstricks provides some commands to draw arbitrary connecting 
lines, it lacks support for placing and saving nodes. By comparison, the package pst-node 
offers outstanding support for nodes and connections. 

: Example 

: 6- 1 -47 



.. - ..... - -- -1 
Example I 
6-2- 1 

-------1 
Example ! 

6-2-2 --' 

6.2 pst-node-Nodes and conne�ons 

J 
I 

/ 
This section deals with the- placement of nodes such as \rnode{BHconne ctions} 

L' 
in the section heading, �rrd the creation of connecting lines such as the one from 
\rnode{AHhere})o. the node placed in the heading. Since you can define a symbolic 
name for a 'n'Ocle;-y6u do not need to know its coordinates. pst-node saves the coordinates in 
a "dictionary", a two-column table mapping the symbolic node name to its coordinates. 

Basically, there are no restrictions for node placement, except that all node connections 
that belong together have to be on the same TEX page, since information about the coordi
nates on a page is no longer available after that page has been completed. 

A node name consists of a finite number of alphanumeric characters and should start 
with a letter. Since PSTricks adds the prefix N@ to the node names at the PostScript level, the Node names 

restriction that names have to start with a letter is merely a precaution at the IHEX level, 
where command names may include only alphanumeric characters. As a rule, all node com-
mands are fragile, so that they should be prefixed with \protect when used in headings, 
etc. 

6.2 . 1  Setting nodes 
PSTricks allows for a very large number of macros to be created for different node connec
tions, and it isn't always easy to find the right node type with the right connection for a 
specific problem. 

\rnode [referencepointJ {name}{object} 

This is the simplest form of a node command. It has a name similar to that of the \rput com
mand because both refer to the same reference points. The center of a node is determined 
by the optional argument; if it is missing, the center of the surrounding box is taken as the 
default value. Other possible reference points are summarized in Table 5.2 on page 266. 

G 

\usepackage{pstricks , pst -node} 

\begin{pspicture} ( 2 , 2 ) 
\rput ( O , O) { \rnode{A}{\large G}}\rput ( 2 , 2 ) { \rnode{B}{g}} 
\ncl ine{A}{B} 
\end{pspi cture} 

\rnode can be nested arbitrarily so that, for example, even for a single character, you 
can set four nodes into the corners of its surrounding box. 

\usepackage{pstricks , pst -node} 

\quad\rnode [lb] {A}{\rnode [rb] {B}{\rnode [rt] {C}{% 
\rnode [lt] {D}{\Huge g}}}} 

\psset {nodesep=5pt } 
\ncline{A}{B}\ncl ine{B}{C}\ncline{C}{D}\ncl ine{D}{A} 

Example 6-2-2 can be extended to "encircle" arbitrary areas. For instance, with the def
inition in Example 6-2-3, you can choose four corner nodes for any area and interconnect 

335 



336 THE MAI N  PSTRICKS PACKAGES 

them to a closed curve with the \psc curve command (see Section 5.7. 1 on page 246). The 
corners are named #1-tl ,  # 1 -tr,  # 1 -bl, and #1 -br, where #1  has to be replaced by the 
basic node name, tl  is top left, and so on. For this example, \SpecialCoor must be en
abled (see Section 5 . 1 4  on page 296). With this "four-corner definition" of nodes, you can 
plot essentially any curve. 

\us epackage{pstricks , pst -node} 
\SpecialCoor 
\newcommand\DefNode s [2] {% 

\rnode [tl] {#l-tl}{% 
\rnode [tr] {#l-tr}{% 

\rnode [bl] {#l-bl}{% 

\rnode [br] {#1-br}{#2}}}}} 

\huge\ [ 
\f rac{ \DefNode s{A}{A_ l}+\DefNode s{B}{B_ l}+C_ l}  

{\DefNode s {D}{D_ l}+\DefNodes{E}{E_ l }+\DefNodes{F}{F_ l}} \] 
\ps c curve [linecolor=blue , l ine style=dashed , %  

fill style=hl ine s , hat chcolor=black ! 20] 

(D-bl ) (A-t l )  (A-tr) ( [angle=-90 , node sep=0 . 1 ] B-bl) 
( [angle=-90 , node sep=0 . 1] B-br ) (F-tr) (F-br) (F-bl) 
( [angle=90 , node sep=0 . 1] E-tr) ( [angl e=90 , node sep=0 . 1] E-t l )  
(D-br) (D-bl ) 

I \Rnode {s�ttings] {name}{object} I 
\Rnode differs from \rnode only in the way the center is specified: with \Rnode it is given 
relative to the baseline so that you can still obtain parallel lines when the actual center is 
different (see page 348) .  

g----G 
g G 

\us epackage{pstri cks , p st-node} 

\Rnode{A}{ \Large g}\hspace{2 cm} \Rnode{B}{\Large G} 
\ncl ine{A}{B} 

\Rnode [vref=Opt ] {A}{ \Large g} \hspace{2cm}% 
\Rnode [vref=Opt] {B}{\Large G} 

\ncl ine{A}{B} 

I \pnode (XiY) {name} I 
\pnode defines a node with a radius of zero, which is often used in normal line graph
ics. You can also set a node at any position within a text as shown in the section heading 
above ( \sect ion{ . . .  and \protect\rnode{B}{connect ions}}) ,  but always keep 

Example 
6-2-3 

Example 
6-2-4 



Example 
6-2-5 

6.2 pst-node-Nodes and con nections 

in mind that \protect is necessary because the node commands are fragile. This method 
is illustrated on the first page of the current section (page 334), where a line was drawn with 
the following connection command: 

\ncarc [arcangle=- 100 , l inestyle=dashed , l inewidth=0 . 5pt , 
arrowscale=2] {->}{A}{B} 

If you specify coordinates by means of the optional argument, you can place nodes at lo
cations that are arbitrarily independent of the current position. For instance, if you want 
to determine the center between two arbitrary points, you can easily locate it with \pnode 
when \SpecialCoor is set ( see Section 5 . 14  on page 296). 

With the special coordinate prefix " !  " , PSTricks identifies the coordinates as real Post
Script code that, at the end of any calculation, must leave the two values x y on the 
stack. The following example shows a simple application of the newly defined macro 
\nodeBetween. Because of the coordinates argument there is no need to use \rput here, 
as was necessary in the first example for \rnode. 

\usepackage{pstricks , pst -node} 

\SpecialCoor 
\makeatletter 
\def \nodeBetween ( # 1 )  (#2) #3{% 

\pst@getcoor{# l}\pst@tempA \pst @get coor{#2}\pst@t empB 
\pnode ( ! % 

\pst@t empA /YA exch \pst @number\psyunit div def 
/XA exch \pst @number\psxunit div def 
\pst@tempB /YB exch \pst@number\psyunit div def 

/XB exch \pst @number\psxunit div def 
XB XA add 2 div YB YA add 2 div) {#3}} 

\makeat letter 

\begin{pspi cture} [showgrid=true] ( -0 . 3 , -0 . 45 ) ( 3 , 2 ) 
\psl ine [linestyle=dashed] {o-o} ( 0 . 25 , O . 33 )  ( 2 . 333 , 2 ) 
\nodeBetween (0 . 25 , 0 . 33)  ( 2 . 333 , 2) {cent er} 
\ps circle [linecolor=blue] ( cent er) {3pt} 

\end{pspi cture} 

337 

A node demonstration. 
\bigskip A node \rnode{B}{demonstrat ion} . 
\nccurve [arrows=- > , l inecolor=blue , nodesep=5pt ] {B}{ cent er} 

In contrast to \pnode, \cnode creates a circular node with a defined radius, which 
again can be positioned within the running tex� (\ cnode{lex}{A}) ,  with the cen
ter of the node lying on the baseline. Keep in plinathat \ cnode does not reserve space 
in the running text, so that a box command such as \make box should be used, e.g., 
\makebox [3ptJ {\cnode*{3ptHB} }ekt you can see, line connections inside the nor
mal text are also possible. 



338 

3 

THE MAIN PSTRICKS PACKAGES 

I \Cnode � ' ��f�i,�l �wfyl): {name} I 
The command \Cnode essentially corresponds to \enode, except that the radius has to 
be set with the keyword radius. In large documents, this saves you from the trouble of 
specifying the radius for every single node, if all radii should have the same size anyway. 

: / : : 

· . .  · · ·  . .  

T
· . .  ·

O
· · · i . . . . .  : 

2 . . . . . . . . .  : . .  l . . . . . .  : . . . . . . : 
: I 

\usepackage{pstricks , pst -node} 

\begin{pspi cture} ( 3 , 3 ) 
\psgrid [subgriddiv=0 , griddot s=10 , gridlabels =7pt] 
\Cnode* [linecolor=red] ( 0 . 25 , 0 . 5 ) {A} 
\Cnode [l ine color=blue , radius=0 . 5] ( 2 . 25 , 2 . 5) {B} 
\nccurve [l ine style=dashed , angleB= 1 80] {A}{B} 0 : 

: 1 
/ . 

· · · · · · · · ·t · · · · · · · · · : · · · · · · · · ·  : 
/ : : : 

· . 
· . 
· . 
· . 
· . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
o 1 2 3 \end{pspi cture} 

I 
/ 

I 
I 

I 
I 

\eirelenode .� �$ettJj's] ; {name}{object} 

\eirelenode works like \pseirelebox, with the addition that the box serves as a node 
as well. The size of the circle is entirely determined by its contents. 

\us epackage{pstricks , pst -node} 

\psframe [f illcolor=lightgray , %  
f i llstyle=sol id] (-0 . 1 , 1 ) ( 3 . 75 , -0 . 5 ) 

\ c irclenode [linecolor=blue] {A}{A} \hspace{2cm}% 
\ c irclenode *{B}{\huge B} 
\ncline [l ine style=dashed] {A}{B} 

{name}{object} 

\ enodeput essentially corresponds to \eput, which means a combination of \rput and 
\eirelenode, i.e., \rput{angle}{\eirelenode{name}{object}}. The starred form 
fills the circle with the current value of the f illeolor keyword. 

\usepackage{pstricks , pst -node} 

\begin{pspicture} ( 3 , 3) 
\cnodeput * [f ill color=red] {45} ( 0 . 25 , 0 . 5) {A}{\large A} 
\cnodeput [line color=blue] {-45} ( 2 . 25 , 2 . 5 ) {B}{ \Large B} 
\nccurve [linestyle=dashed , angleB= 1 80] {A}{B} 

\ end{pspi cture} 

I E�ample 
l ?:�:? 

Example 
6-2-7 



Example , 

6-2- 1 0  

, - - - -, 
: Example : 

6-2- 1 1  i 

6.2 pst-node-Nodes and connections 

\ovalnode * [settings] {nameHobject} 

\ovalnode is like \psovalbox but the box serves as a node as well. The size of the oval is 
entirely determined by its contents. 

I \dianode * [settings] {nameHobject} I 

\usepackage{pstri cks , pst-node } 

\psframe [f illcolor=lightgray , %  
f i l lstyle=solid] ( -0 . 1 , 1 ) (4 , -0 . 5) 

\ovalnode{A}{AA}\hspac e { 1 . 25cm}% 
\ovalnode*{B}{\huge BB}% 
\ncl ine [l ine style=dashed] {A}{B}% 

\dianode essentially corresponds to \psdiabox but the box serves as a node as well. The 
size of the rhombus is determined entirely by its contents. 

I \ trinode * [settings1 {nameHobject} I 

\usepackage{pstricks , pst -node } 

\psframe [f illcolor=l ightgray , %  

f illstyle=sol id] ( -0 . 1 , 1 ) ( 5 , -0 . 5 ) 
\dianode{A}{AA}\hspace{ 1 . 25cm}% 
\dianode*{B}{\huge BB}% 
\ncl ine [linestyle=dashed] {A}{B}% 

\trinode works like \pstribox ( see Section 5 . 1 2.2 on page 273) but the box serves as a 
node as well. The size of the triangle is entirely determined by its contents. 

I \dotnode* [settingsl {x, y) {name} I 

\usepackage{pstri cks , pst -node} 

\psframe [f illcolor=lightgray , %  

f illstyle=solid] ( -0 . 1 , 1 . 25 ) ( 5 . 2 , -0 . 6 ) 
\trinode{A}{AA}\hspac e { 1 . 25cm}% 
\trinode * [trimode=L] {B}{\huge BB}% 
\ncl ine [linestyle=dashed] {A}{B}% 

\dotnode essentially corresponds to \psdot but the box serves as a node as well. The size 

339 



340 

3 

2 

o .  
o 

3 

2 

1 

o 
o 

THE MAI N  PSTRICKS PACKAGES 

of the symbol is entirely specified by the given values for dot s ize and dotseale (see Sec
tion 5.8 on page 25 1 ) .  

2 3 

\us epackage{pstricks , pst -node} 

\begin{pspi cture} [showgrid=true] (3 , 3 ) 
\rput ( O . 25 , O . 5 ) {\dotnode [linecolor=red , %  

dots cale=3] {A}} 

\rput ( 2 . 5 , 2 .  5) {\dotnode * [line color=blue , %  
dot style=triangle*]  {B}} 

\ncl ine [nodesep=5pt] {A}{B} 

\rput ( O . 25 , 2 . 5 ) {\dotnode [dot s cale=3 , %  
dot style=pent agon*] {A}} 

\rput ( 2 . 5 , O . 5 ) {\dotnode [linecolor=blue , %  
dot scale=2 , dot style=triangle*]  {B}} 

\ncline [node sep=5pt] {A}{B} 
\end{pspi cture} 

I \fnode * [set¥ng�� i�arrU) {name} I 
\fnode essentially corresponds to \psframe, with the additional functionality of being a 
node. If no coordinate pair is specified, the center of the frame is set at the current coordi
nates; otherwise, it is set at the specified coordinates. The size of the frame can be modified 
with a keyword (see page 350) .  

2 3 

\usepackage{pstricks , pst -node} 

\begin{pspi cture} [showgrid=true] ( 3 , 3 ) 
\fnode ( O . 25 , O . 5 ) {A} 
\fnode * ( 2 . 5 , 2 . 5 ) {B} 
\ncline{A}{B} 
\fnode [frame s ize=O . 25] ( O . 25 , 2 . 5 ) {A} 
\fnode* [frame s ize= l , linecolor=blue] ( 2 . 5 , O . 5 ) {B} 
\ncline{A}{B} 

\end{pspi cture} 

6.2.2 \nc connections 

All macros start with \ne and have the same syntax (where ????  i s  a placeholder): 

These macros draw a line or curve from node A to node B. Some of the connection com
mands may be a bit confusing, but you can easily discover the advantages of each particu
lar connection type with a little experimentation. If relevant in the following examples, the 
names node A and node B always designate the order of the nodes. The starred form is not 
always useful, even where formally possible. The ne connections are always directed at the 

Example I 
6-2- 1 2  : 

; Example 

I 6-2- 1 3  
L.� .. 



Example 

6-2- 1 4  

6.2 pst-node-Nodes a n d  connections 

center of the node, while the values of the keyword nodesep and those for the angle specifi
cations refer to the box frame. 

\neline * [se.tti1'lgsl {arlo�s} {nodeA}{nodeB} 

The simplest of all connection types is \nel ine, which just draws a straight line from one 
node to another. 

:3 
3 

2 

1 ; 

0 
0 2 3 

\us epackage{pstri cks , pst-node} 

\begin{pspi cture} [showgrid=true] ( 3 , 3 ) 
\rput [bl] (O , O ) {\rnode {A}{Idea 1}}  
\rput [tr] ( 3 , 3 ) {\rnode{B}{Idea 2}} 

\ncl ine [node sep=3pt , doubleline=true] {<->}{A}{B} 
\rput [lt] (0 , 3 )  {\rnode{A}{Idea 3}} 
\rput [rb] ( 3 , 0 ) {\rnode{B}{ Idea 4}} 
\ncl ine* [node sep=3pt , doublel ine=t rue] {<->} {A}{B} 

\end{pspi cture} 

\neare * [setting's] tartO'W,s} {nodeA}{nodeB} 

\neare draws a curve whose gradient angle (in relation to the direct line) at the beginning 
of the first node equals areangle (see page 35 1 ) .  

Idea 3 Idea 2 

Idea 1 Idea 4 

\us epackage{pstricks , pst-node} 

\begin{pspi cture} (3 , 3 ) 
\rput [bl] ( 0 ,  0 )  {\rnode{A}{Idea 1}}  
\rput [tr] ( 3 , 3)  {\rnode{B}{Idea 2}}  
\ncarc [node sep=3pt , arcangle=20] {->}{A}{B} 
\ncarc [node s ep=3pt , arcangle=20] {->}{B} {A} 
\rput [lt] ( 0 , 3) {\rnode{A}{Idea 3}} 
\rput [rb] ( 3 ,  0 )  {\rnode{B}{ Idea 4}} 
\ncarc* [node sep=3pt] {<->}{A}{B} 
\ncarc* [node sep=3pt] {<->}{B}{A} 

\end{pspi cture} 

\nediag* [settings] {arrows} {nodeA}{nodeB} 

\nediag also draws a line, albeit one that consists of three segments. Thus this connection 
type is not useful for nodes that are positioned directly horizontally or vertically to each 
other. You can modify the length of each segment with the arm keyword (see page 35 1 ) .  

341 



342 THE MAIN PSTRICKS PACKAGES 

Example 6-2- 1 6  illustrates that, as mentioned previously, the starred version of 
\ncdiag gives questionable results. Since the same is true for many of the examples, the 
starred version will be used only if it produces a usable effect in a particular case. 

� 
Idea 4 

\usepackage {pstri cks , pst -node} 

\begin{pspicture} ( 3 , 3 ) 
\rput [bl] ( 0 , 0 )  {\ovalnode{A}{ Idea 1}}  
\rput [tr] ( 3 ,  3 )  {\ovalnode {B}{Idea 2}} 
\ncdiag [angleA=90 , angleB=-90] {->} {A}{B} 
\rput [lt] ( 0 , 3 ) {\rnode{A}{ Idea 3}} 
\rput [rb] (3 , 0 ) {\rnode{B}{Idea 4}} 
\ncdiag* [angleA=-90 , angleB=90] {->}{A}{B} 

\end{pspi cture} 

In some cases, \ncdiag is more useful than \ncl ine, especially for connecting lines 
that are not directed at the center of a node. You can force a straight line with arm=O and at 
the same time use the angle option to direct the line at a different point on the node. 

\usepackage{pstricks , pst -node} 

\begin{pspi cture} ( 2 . 75 , 3 ) 
\rput ( 1 . 5 , 2 . 8) {\ovalnode{A}{root }} 
\rput [lb] ( O , O) {\ovalnode{B}{ l }} 
\rput [b] ( 1 . 5 , O ) {\ovalnode{C}{2}} 
\rput [rb] ( 3 , 0) {\ovalnode{D}{3}} 
\ncline{->}{A}{B}\ncline{->}{A}{C}\nc line{->}{A}{D} 

\psset{linecolor=blue} 
\ncdiag [arm=0 , angleA=80 , angleB=- 1 60] {<-}{B}{A} 
\ncdiag [arm=0 , angleA= 100 , angleB=-20] {<-}{D}{A} 

\end{pspi cture} 

\ncdiagg resembles \ncdiag, with the sole difference between the two being that an "arm" 
(leg) is drawn only for the first node, so the connection consists of just two line segments. 
You might think that \ncdiag with armB=Opt would produce the same results, but this 
is not the case, as the following example illustrates. With \ncdiag, there is a third "arm"; 
even through this segment is of zero length, it affects the the place where the connection is 
made to the node (as this arm is directed to the center of the node with a default specifica
tion of angleB=O) .  To achieve a similar behavior we would need to add angleB=30 in the 
following example. 

IE�ample I ! ... ?:2- 1 7  i 



. 
Example 

, 6-2- 1 8  

. Example 

6-2- 1 9  

i 
, Example 
I 6-2-20 ' � --� 

6.2 pst-node-Nodes and connections 

-r---- H 

\usepackage{pstricks , pst -node} 

\begin{pspicture} ( -0 . 2 , - 1 )  ( 3 , 1 ) 
\cnode{ 1 2pt Ha} 

343 

'----- T 

\rput [l] ( 3 ,  1 )  {\rnode{b}{H}} \rput [l] ( 3 , - 1 ) {\rnode{c}{T}} 
\ncdi agg [angleA= 180 , armA=1 . 5 , node s epA=3pt] {b}{a} 
\nbput [nrot = : D , npos=1 . 3] {\texttt{\t extbackslash ncdiagg}} 
\ncdiag [angleA= 180 , armA=1 . 5 , armB=0 , node sepA=3pt] {c}{a} 
\naput [nrot= : D , npos=1 . 3] {\texttt{\t extbackslash ncdiag}} 

\end{pspicture} 

\ncdiagg may also be used to draw a single line that starts at a specific angle from the 
first node and is directed to the center of the second node. 

\ncbar is similar to \ncdiag but the angles between the segments are always 900• With 
differing arm lengths or a starting angle other than 900, it produces a "slanting" connection. 
The angle can only be changed for both nodes together, and angleA and angle8 must have 
the same value (see page 35 1 ) .  

connect words with \ncbar 
t T 

\usepackage{pstri cks , pst -node} 

\begin{pspi cture} (O , - l )  ( 3 . 5 , 2 ) 
\rnode{A}{connect} words with % 

\rnode{B}{\texttt{\t extbackslash ncbar}} 
\ncbar [nodesep=3pt , angle=-90] {<-**}{A}{B} 
\ncbar [nodesep=3pt , angle=70] {A}{B} 

\end{pspicture} 

\ncangle is similar to \ncdiag, but arm lengths and angles are calculated from the spec
fied values to ensure correct values are used. 

node A 1-----..... 
\usepackage{pstri cks , pst -node} 

\begin{pspi cture} (4 , 3 ) 
\rput [tl] ( 0 , 2 ) {\rnode{A}{\psframebox{node A}}} 
\rput [br] (4 , 0 ) { \ovalnode{B}{node B}} 
\ncangle [angleB=90 , armB=0 , l inearc= . 5] {A}{B} 

\end{pspi cture} 



344 

armB 

THE MAIN PSTRICKS PACKAGES 

\us epackage {pstri cks , pst-node} 
% \showlnf o def ined in example code to  di splay 
% angle and arm inf o 

\begin{pspicture} (4 , 3 ) 
\rput [tl] ( 0 ,  3) {\rnode{A}{\psframebox{node A}}} 
\rput [br] (4 , 0 ) { \ovalnode{B}{node B}} 
\ncangl e [angl eA=-70 , angleB=90 , armB=lcm ,  

l inewidth= 1 . 2pt] {A}{B} 
\ showlnf o % see example code 

\end{pspi cture} 

\ncangles is a kind of "plural form" of \ncangle because it can represent up to four line 
segments . armA is connected to armB through two line segments, which are perpendicular 
to each other. The angle between armA and the middle segments is calculated as 90 + 2 x 
angleA, and the angle between the middle segments and armB is then derived from the 
values of the other angles. 

\usepackage{pstri cks , pst -node} 
% \ showlnf o def ined in example code to display 
% angle and arm inf o 

\begin{pspicture} (4 , 4 ) 
\rput [tl] ( 0 ,  4) {\rnode{A}{\psframebox{node A}}} 
\rput [br] (4 , 0)  {\ovalnode {B}{node B}} 
\ncangl e s  [angleA=-90 , angleB= 135 , armA= l cm , armB= . 5cm ,  

l inearc= . 1 5] {A}{B} 
\ showlnf o % see example code 

\end{pspi cture} 

\ncloop differs from the similar \ncangle and \ncangles  commands in having a total 
of five line segments. The first and the last of these segments are determined by the armA and 
armB lengths and angleA and angleB angles as usual. The middle three segments connect 
to one another at angles of 90°. The second line segment is always of length loopsize (see 
page 352) .  

All changes of direction occur counterclockwise, which determines whether the whole 
line is drawn above or below. 

Example 

6-2-21 : 

Example , 
6-2-22 ' 



Example : 
6-2-24 ; 

Example 

6-2-26 

6.2 pst-node-Nodes and connections 

Q) 

n 
M '-----------------/ 

\usepackage{pstri cks , pst -node} 

\hspace*{0 _ 5 cm} \rnode{A}{\psframebox{% 
\Iarge \textbf {start}}} to 

\rnode{B}{\psframebox{\large\t extbf {end}}} 
\ncIoop [angleA= 180 , loopsize=0 _ 9 , arm=0 _ 5 , %  

linearc= _ 2] {->}{A}{B} 
\ncput [npos= 1 . 5 , nrot= : U] {% 

\psIine{ I <-> I } ( _ 45 , - _ 2 ) ( - . 45 , - . 2 ) }  
\nbput [npos= 1 . 5 , nrot= : D , labelsep= _ 35 cm] % 

{\small\texttt{loopsize}} 
\ncloop [angI eA= 10 , angIeB= 180 , %  

l inecolor=blue , l inearc= . 2] {->}{B} {A} 

You can close a loop by specifying the same node twice. For more circular loops, the use 
of \nccircle is recommended (see on the following page). 

\usepackage{pstri cks , pst -node } 

345 

\hspace*{0 . 5 cm}\rnode [IB] {A}{\psframebox{ \Huge Ioooop}} 

\ncIoop [angleB= 180 , loopsize=l , arm= . 5 , l ine arc= . 2] {->}{A} {A} 
\psset {npos=3 . 5} 
\ncput [nrot= : U] {\psline{ I <-> I } ( 0 . 5 , -0 . 2 ) ( -0 . 5 , -0 . 2 ) }  
\nbput [nrot= : D , labelsep= _ 35 cm] {{\small\texttt{loopsize }}} 

You can also draw "railroad diagrams" with \ncloop by specifying appropriate angles_ 
The connections will then touch both nodes from the same side. 

I start � middle � 

\usepackage{pstri cks , pst -node} 

\large\rnode{A}{\psframebox{start }}\qquad 
\rnode{M}{\psframebox{middle}} \qquad 
\rnode{B}{\psframebox{end}} 
\nc I ine{->}{A}{M} \ncIine{-> }{M}{B} 
\ncIoop [loopsize=0 . 9 , arm=0 . 4 , l inearc= . 2 , angleB=180] 

{->}{A}{B} 

\nccurve * [settillg$l {arrows} {nodeA}{nodeB} 

\nccurve creates a Bezier curve between two nodes. It can be modified through the two 
angles angleA and angleB and the curve keyword ncurv (see page 352) .  

\usepackage{pstricks , pst -node} 

\begin{pspi cture} (4 , 2 ) 
\rput [tl] ( 0 , 2 )  {\rnode{A}{\psframebox{node A}}} 
\rput [br] (4 , 0 )  {\ovaInode{B} {node B}} 
\nccurve [angIeB= 180 , ncurv=0 . 9] {A}{B} 
\end{pspicture} 



346 THE MAI N PSTRICKS PACKAGES 

\neeirele � O��ttingsI {arro11'�! {nodeHradius} 

\neeirele refers to only one node, but requires two arguments. Technically, the circle runs 
through the center of the node and can be modified through angleA and the radius. 

\usepackage{pstri cks , pst-node} 

\begin{pspi cture} ( 5 . 5 , 2 ) 
t ext \rnode{A}{\t extbf {node}} t ext 

\nc circle [node sep=3pt] {->}{A} { l cm}\ 
\rnode {A}{\t extbf {node}} t ext 
\nccircle * [linecolor=lightgray , node s ep=3pt] {A}{ l cm} 
\end{pspi cture} 

\ne box * [setting$] 'ltattows:f {nodeA H nodeB} 

With \nebox, you must ensure that the node content is really enclosed in the box. The as
sociated keywords boxsize (see page 353) and nodesep (see page 350) offer an easy way 
to do this. In the following example, the keyword border is used with \nebox to illustrate 
the overlay effect (see also Section 5.6.2 on page 239). In contrast to the normal behavior of 
ne connections, no arrows are available for \nebox (the arrows argument is ignored, as the 
example depicts) .  

\usepackage{pstri cks , pst-node} 

\begin{pspicture} ( 3 , 3 ) \large 
\psset {node sep=3pt , l inearc=0 . 3} 
\rput [bl] ( O , O ) {\rnode{A}{l}} 
\rput [tr] ( 3 , 3 ) {\rnode{B}{2}} 
\ncbox{AHB} 

\rput [lt] ( 0 , 3 )  {\rnode{A}{3}} 
\rput [rb] (3 , 0 ) {\rnode{B}{4}} 
\ncbox* [border=4pt , l inecolor=lightgray] {->}{A} {B} 
\rput [lt] (0 , 3 )  {\rnode {A}{\t extbf {3}}} 
\rput [rb] (3 , 0 ) {\rnode{B}{\t extbf {4}}} 

\end{pspi cture} 

\neearebox* Usett1ngsl {arrOWS} {nodeAHnodeB} 

With \nearebox, you must also ensure that the node content is enclosed by the box. The 
associated keywords, boxsize (page 353) and node sep (page 350), offer an easy way to 
accomplish this. In the following example, the keyword border is used with \nearebox 

Example 

, 6-2-27 

Example 

6-2-28 



; Example ' , 
6-2-30 ; 

6.2 pst-node-Nodes and connections 

to illustrate the overlay effect (see also Section 5.6.2 on page 239) .  Angles are counted clock
wise. 

\us epackage{pstri cks , pst -node , t extcomp} 
\Spe cialCoor 

\begin{pspi cture} ( -0 . 5 , 0 ) (3 , 3 ) \large 
\psset {nodesep=3pt , linearc=0 . 3} 

\rput [bl] ( O , O ) {\rnode{A} { l } }  
\rput [tr] ( 3 , 3 ) {\rnode{B}{2}} 
\ncarcbox [arcangle=30] {A}{B} 
\pcline [linestyle=dashed] (A)  (B )  

\pcl ine [linestyle=dashed , node s epB=-0 . 2] (A) ( 3 , 0 . 8 ) 
\psarc{<->} ( 0 , 0 ) {3 . 25} { 1 5}{45} 
\rput ( 2 . 2 , 1 . 5 ) {\ smal130\t extdegree} 
\rput [lt] ( 0 , 3 ) {\rnode{A}{3}} 
\rput [rb] ( 3 , 0 ) {\rnode{B}{4}} 
\ncarcbox* [border=4pt , lineco lor=l ightgray , %  

arcangle=45] {A}{B} 
\rput [lt] (0 , 3 ) { \rnode{A}{\t extbf {3}}} 
\rput [rb] (3 , 0 ) {\rnode{B}{\textbf {4}}} 

\end{pspi cture} 

The drawn arc is part of a circle with a line width of boxsize. A negative value for 
arcangle, e.g., -60, causes the arc to be drawn in the other direction when the nodes are 
reversed, resulting in a gradient angle of 600 (between line AB and the tangent at the starting 
point) .  However, in this case the nodes will not be enclosed by the drawn path. 

6.2.3 \pc con nections 

\usepackage{pstricks , pst -node} 

\begin{pspicture} ( 0 . 5 , 0 ) (4 , 3 ) \large 
\psset {nodesep=3pt , l inearc=0 . 3 , boxsize=2mm} 
\rput ( 3 , 3 ) {\rnode{A} { 1 } }  
\rput ( 1 , 1 ) {\rnode{B}{2}} 
\ncarcbox [arcangle=60] {A}{B} 
\ncarcbox [arcangle=-60 , l ine co lor=l ight gray] {A}{B} 
\ncarcbox [arcangle=-60 , l inecolor=blue] {B}{A} 

\end{pspi cture} 

All connection macros with a \pc prefix have a similar syntax and behavior as their \nc 
counterparts discussed in Section 6.2.2 on page 340. The only difference is that the \pc con
nections generally start and end at the node center, not at the surrounding box of the defined 
nodes. Primarily we are dealing with well-known line or curve macros here, which is the rea
son why the arguments also have to be inside round braces ( ) .  With the \SpecialCoor 

347 



348 

Id 

THE MAI N PSTRICKS PACKAG ES 

option (Section 5 . 1 4  on page 296) enabled, coordinates can still be passed as node names. 
Alternatively, you can refer to a node directly from a specific point. 

This is the general syntax for all pc connections (where ????  is a placeholder) . The 
available commands are \pcline , \pccurve , \pcarc , \pcbar , \pcdiag , \pcdiagg , 
\pcangle , \pcangles , \pcloop , \pcbox , and \pcarcbox . 

The next two examples correspond to the discussion in Section 6.2.2 on page 341 .  With 
the help of the keyword nodesep, you can again extend (negative values) or shorten (posi
tive values) the beginning and end of a connection. 

\usepackage {pstricks , pst-node} \SpecialCoor 

\begin{pspicture} (3 , 3)  
\rput [bl] (O , O ) {\ovalnode{A} {Idea 1}}  
\rput [tr] (3 ,  3 )  {\ovalnode{B}{ Idea 2}} 
\pcdiag [angleA=90 , angleB=-90 , arm= 1 . 25 cm] {->} (A)  (B) 

\rput [lt] ( 0 , 3 ) {\rnode{A}{Idea 3}} 
\rput [rb] ( 3 , 0 ) {\rnode{B}{Idea 4}} 
\pcdiag [angleA=-90 , angleB=90 , arm=0] {->} (A)  ( B )  

\end{pspi cture} 

6.2.4 Node keywords 

\usepackage{pstri cks , pst -node} 

\Spe cialCoor 

\begin{pspicture} ( 3 , 3 ) 
\rput [bl] ( 0 ,  0 )  {\ovalnode{A} {Idea 1}}  
\rput [tr] ( 3 , 3 )  {\ovalnode{B}{Idea 2}} 
\pcarc{<->} (A)  (B)  
\rput [lt] ( 0 , 3 )  {\rnode{A}{Idea 3}} 
\rput [rb] ( 3 , 0 ) {\rnode{B}{Idea 4}} 

\pcangles [angleA=-45 , angleB=90] {->} (A)  (B)  
\end{pspi cture} 

Table 6.3 on the facing page lists all valid keywords for the pst -node package. These keywords 
are discussed in more detail in the following examples. 

The two keywords href and vref have meaning only for the \Rnode command, 
The href and vref where, by definition, the node center is the middle of the baseline of the surrounding box. 

keys This center can be modified with these keywords. href moves the center by href multiplied 
with the half-width of the node box. Modifying href without also applying vref will yield 
no visible change when the connecting line runs horizontally. In contrast to href, vref de
termines this point with an absolute value relative to the baseline (vref=Opt ) .  If relative 

Example 
. 6-2-32 ' 



Example 

6-2-33 

6.2 pst-node-Nodes and connections 

Table 6.3: Keywords for pst-node 

Name Value Type Default Name Value Type 
href value 0 angleB angle 
vref value [unit} O . 7ex arm value [unit} 
radius value [unit} O . 25cm arm A value [unit} 
framesize value [unit} [value [unit}} 1 0pt armB value [unit} 
nodesep value [unit} Opt loopsize value [unit} 
nodesepA value [unit} Opt ncurv value 
nodesepB value [unit} Opt ncurvA value 
Xnode sep value [unit} Opt ncurvB value 
XnodesepA value [unit} Opt boxsize value [unit} 
XnodesepB value [unit} Opt off set value [unit} 
Ynodesep value [unit} Opt off setA value [unit} 
Ynode sepA value [unit} Opt off setB value [unit} 
YnodesepB value [unit} Opt ref reference 
arcangle angle 8 nrot rotation 
arcangleA angle 8 npos  value 
arcangleB angle 8 short put none Inab lt ablr lt ab 
angle angle 0 tpos value 
angleA angle 0 rot rotation 

units (e.g., ex or em) are used, the relation is also preserved with different font sizes. 

\us epackage{pstri cks , pst -node}\SpecialCoor 

\ImgI \hspace{5mm}\ ImgI I\hspac e{5mm}\begin{pspicture} [sho wgr id=true] ( 6 , 4 ) 
\rput [lb] ( 0 , 0 ) { \Rnode{A}{\Square} \hspace { 1 . 4cm} \Rnode [h ref=4 , vref=3] {B}{\Square}} 
\psframe* [linecolor=black ! 20] ( 3 , 3 ) (4 , 4 ) \psframe * [lineco lor=black ! 20]  ( 5 , 3 ) ( 6 , 4 ) 
\psl ine [arrows=->] (3 . 5 , 3 . 5 ) ( 5 . 5 , 3 . 5 ) \uput [-90] (4 . 5 , 3 . 5 ) {href}  
\pcline [linecolor=red , linestyle=dott ed , linewidth=2pt] ( A ) (B )  
\ncline [linecolor=red , linewidth=2pt , arrows cale=2 , arrows=->] {A}{B} 
\pnode (3 , 0 . 7ex) {C} 
\ncline [l inecolor=blue , l inewidth=2pt , arrowscale=2 , arrows=->] {A}{C} 
\pcl ine{->} (3 . 5 , 0 . 5 ) ( 3 . 5 , 3 . 5 ) \uput [0] ( 3 . 5 , 2 ) {vref} 
\pcl ine [linecolor=whit e] ( 3 . 5 , 0 . 5 ) ( 3 . 5 , 1 ) 
\end{pspi cture} 

4 4 

6 

349 

Default 
0 
1 0pt 
1 0pt 
1 0pt 
1 cm 
0 . 67 
0 . 67 
0 . 67 
0 . 4cm 
Opt 
Opt 
Opt 
c 
0 
{}  
none 
0 . 5  
0 



350 

The radi us key 

THE MAI N PSTRICKS PACKAGES 

The r adi us keyword is useful when you wish to show nodes as circles of equal size. 

\usepackage {pstri cks , pst -node} 

\Cnode (O . 5 , O) {A}\rput ( O . 5 , O ) {\Large a} 
\Cnode ( 2 . 5 , O ) {B}\rput ( 2 . 5 , O ) {\Large B} 
\ncl ine{A}{B} \\ [5mm] 

\Cnode [radius=O . 5cm] ( O . 5 , O ) {A}\rput (O . 5 , O ) {\Large a} 
\Cnode [radius=O . 5cm] ( 2 . 5 , O ) {B}\rput ( 2 . 5 , O ) {\Large B} 
\ncline{AHB} 

The frame s ize key The frames ize keyword only takes effect only when used in combination with 
\fnode (see Section 6.2. 1 on page 340) .  If only one value is passed to this keyword, it is 
taken as the side length of a square. 

Df----

\usepackage {pstri cks , pst-node} 

\fnode (O . 5 , O ) {A}\fnode* ( 2 . 5 , O ) {B} 
\ncline{A}{B} \ \ [5mm] 
\fnode [framesize=20pt] ( O . 5 , O ) {A}% 
\fnode* [frame s ize=l 5pt] ( 2 . 5 , O ) {B} 
\ncline{AHB} 

The nodesep, 

nodesepA, and 

nodesepB keys 

Normally a connection touches the outer box of a node. With node sep, you can modify 
this behavior at both ends of a connection. Thus the specifications for nodesep refer to both 
ends, while nodesepA refers to the end at the first node and nodesepB to the end at the 
second node. 

0-=0 
8 - · 0  

\usepackage {pstricks , pst -node} 

\Cnode [radius=O . 3cm] ( O . 25 , O ) {A}% 
\Cnode [radius=O . 3cm] ( 2 . 5 , O ) {B} 
\ncarc{->}{A}{B}\ncarc{->}{B}{A} \\ [5mm] 
\Cnode [radius=O . 3cm] ( O . 25 , O ) {A}% 
\Cnode [radius=O . 3cm] ( 2 . 5 , O ) {B} 
\ncarc [nodesep=5pt] {->}{A}{B}% 
\ncarc [node sepA=-O . 3cm , node sepB=-O . 6cm] {->}{B}{A} 

The Xnodesep and 
Ynodesep keys and 

their variants 
XnodesepA . . .  

The values for [XY] nodesep do not refer to the direct connecting line to the center of 
the node. Instead, they determine the horizontal or vertical distance from the center of the 
node. In contrast, the values for nodesep determine the distance to the surrounding box 
(Section 5 . 1 4.4 on page 299) .  Example 6-2-37 shows connecting lines of different lengths. 

Example 
6-2-34 

, Example 
, 6-2-36 



Example 

i 6-2-39 

6.2 pst-node-Nodes and connections 3 5 1  

These keywords are especially useful when you need to work with special coordinates. 

2 \usepackage{pstricks , pst -node } 

\begin{pspicture} ( 2 , 2 )  \psgr id [subgr iddiv=2] 
\cnode (O . 25 , 1 . 75) {O . 25cm}{A} \cnode ( 1 . 75 , O . 25 ) {O . 25cm}{B} 
\cnode ( 1 . 75 , 1 . 75) {O . 25cm}{C} \cnode ( O . 25 , O . 25 ) {O . 25cm}{D} 

\ncl ine [nodesep=O . 25] {<->}{A}{B} 
\ncl ine [Ynodes ep=O . 25] {<->}{C}{D} 

o 1 2 \end{pspicture} 

The keyword arcangle defines the gradient angle of the connection at the two end 
points relative to the straight line. In Example 6-2-36, the connections are relatively close to- The arcangl e, 

gether, a result that can be modified with the keyword arcangle. The values for arcangle arcangleA, and 

always refer to both nodes, those for arcangleA to the first node, and those for arcangleB arcangleB keys 

to the second node. Thus, with an appropriate choice of angles, you can form the connec-
tions into virtually any curve shape. 

\us epackage{pstri cks , pst -node } 

\Cnode [radius=O . 3cm] (O . 25 , O ) {A}% 
\Cnode [radius=O . 3cm] ( 2 . 5 , O ) {B} 
\ncarc{->} {A}{B}\ncarc{->}{B}{A} \\ [5mm] 

\Cnode [radius=O . 3cm] ( O . 25 , O ) {A}% 
\Cnode [radius=O . 3cm] ( 2 . 5 , O ) {B} 
\ncarc [arcangle=30] {->}{A}{B}% 
\ncarc [arcangleA=30 , arcangleB=-60] {-> }{B} {A} 

The keyword angle denotes the angle by which the connection reaches the nodes, rel-
ative to the horizontal line. The values for angle always refer to both nodes, while angleA The angle, angleA, 

refers to the first node and angleB to the second node. Thus, with an appropriate choice of and angleB keys 

angles, you can form the connections into virtually any curve shape. 

\usepackage{pstri cks , pst -node} 

\Cnode [radius=O . 3cm] ( O . 25 , O ) {A}% 
\Cnode [radius=O . 3cm] ( 2 . 5 , O ) {B} 
\ncangle [angleA=45 , angleB= 1 35] {->}{A}{B}% 
\nccurve [angleB=-45 , angleA= - 1 35] {->}{B}{A} \\ [ 10mm] 
\Cnode [radius=O . 3cm] ( O . 25 , O ) {A}% 
\Cnode [radius=O . 3cm] ( 2 . 5 , O ) {B} 
\nccurve [angle=30] {->}{A}{B}% 

\nccurve [angleB=-45 , angleA=- 1 35] {->}{B}{A} 

The keyword arm defines the length of the straight line or arm, after which the connec- The arm, armA, and 

tion is allowed to take another direction. Values for arm always refer to both nodes, while armB keys 



352 

The loopsize key 

THE MAI N PSTRICKS PACKAGES 

arm A refers to the first node and armB to the second node. If no explicit value is given, a 
default of 1 0pt applies. 

\us epackage{pstricks , pst -node} 

\Cnode [radius=O . 3cm] ( 0 . 25 , 0 ) {A}% 
\Cnode [radius=0 . 3cm] ( 2 . 5 , 0 ) {B} 

\ncbar [angle=90] {->}{A}{B}% 
\ncbar [angle=-90 , arm=0 . 2 cm] {->}{B}{A} \\ [ 10mm] 
\Cnode [radius=O . 3cm] ( 0 . 25 , 0 ) {A}% 
\Cnode [radius=O . 3cm] ( 2 . 5 , 0 ) {B} 
\psset{linearc=0 . 2cm} 
\ncdiag [angle=90] {->}{A}{B}% 
\ncdiag [angle=-90 , armA=0 . 2cm , armB=0 . 75cm] {->}{B}{A} 

The keyword loopsize defines the "height" of a connection that is formed into a loop. 

\us epackage{pstricks , pst -node} 

\Cnode [radius=0 . 5cm] ( 1 . 5 , 0 ) {A}% 
\ncloop [angleA=0 , angleB= 180 , 

node sepB=3pt , linearc=0 . 4cm] {<-<}{A} {A} 
\psl ine [linewidth=0 . lpt , tbars ize=5pt] { I <-> I } (2 . 5 , 0 )  ( 2 . 5 , 1 ) 
\uput [0] {90} ( 2 . 5 , 0 . 5 ) {\texttt {loopsize}} 
\ncloop [angleB=- 1 0 , angleA=- 170 , l inear c=0 . 2cm , 

loopsize=O . 5cm] {->}{A}{A} 
\psl ine [l inewidth=0 . lpt , tbarsize=5pt] { I <-> I } ( 0 . 4 , -0 . 6 ) ( 0 . 5 , -0 . 2) 
\uput [ 180] {70} ( . 5 , -0 . 25 ) {\texttt{loopsize}} 

The keyword ncurv influences the behavior of a Bezier curve connection formed with 
The ncurv, ncurvA, \nccurve. A small value for ncurv leads to a "tighter" curve that is closer to a line (Sec

and ncurvB keys tion 5.7. 1 on page 244) . As usual, ncurvA and ncurvB affect only the connection at the 
corresponding side. 

\usepackage {pstricks , pst -node} 

\begin{pspicture} (4 , 3 ) 
\rput [bl] (0 , 0 )  {\rnode {A}{\psframebox{A}}} 
\rput [tr] ( 3 , 3 ) {\ovalnode{B}{B}} 
\nc curve [angleB=1 80] {A}{B} 
\rput [bl] ( l , O ) {\rnode{C}{\psf ramebox{C}}} 
\rput [tr] (4 , 3 ) {\ovalnode{D}{D}} 
\nccurve [angleB=180 , ncurvA=0 . 3 , ncurvB=1]  {C}{D} 

\end{pspicture} 

Example 

I 6-2-40 

Example 
6-2-41 

, Example 
6-2-42 



Example 
6-2-43 

Example 
6-2-44 I 

Example 
6-2-45 

6.2 pst-node-Nodes and connections 353 

The keyword boxs ize refers exclusively to the two connection types, \nebox and The boxsize key 

\nearebox, for which it specifies the half-width. 

.-. 
' D \ 
I I 
I I 

I I 
I I 

I I 
/ I 

/ / / / 
.,,

"" / ..... / 
"" 

." ..... 

\us epackage{pstri cks , pst -node} 

\begin{pspicture} (4 , 3 ) 
\rput [bl] ( 0 ,  0) {\rnode {A}{A}} 
\rput [tr] (3 , 3 ) {\rnode{B}{B}} 
\ncbox{A}{B} 
\rput [bl] ( l , O ) {\rnode{C}{C}} 
\rput [tr] (4 , 3 )  {\rnode{D}{D}} 
\ncarcbox [nodes ep=5pt , l inearc=0 . 3 , l ine style=dashed , %  

boxsize=0 . 25cm , arcangle=45] {C}{D} 
\end{pspi cture} 

The keyword off set moves a connecting line to a position parallel to its original, 
which simplifies the process of drawing double straight lines. The values for off set always The o f f s et,  

refer to both nodes, while off setA refers to the connection at first node and offsetB o f f s etA, and 

to the connection on the second node. These keys are not available for \nearebox and o f f s etB keys 

\pearebox . 

\us epackage{pstri cks , pst -node } 

\begin{pspicture} (3 , 3 ) 
\rput [bl] ( O , O ) {\rnode{A}{\psf ramebox{A}}} 
\rput [tr] ( 3 , 3 ) {\ovalnode{B}{B}} 
\psset{off set=0 . 2 , nodesep=2pt } 
\ncline{->}{A}{B} 
\ncline{->}{B}{A} 

\end{pspi cture} 

The keyword ref refers to the reference points given in Table 5.2 on page 266 and is 
useful only for labels that are set with \neput. This keyword determines how the label is set The ref key 

into the middle of a connecting line. For example, rb indicates that the lower-right corner is 
set exactly into the middle of the connecting line. 

/ e  
above 0: on-e 
below 

� e  

\us epackage{pstri cks , pst-node} 

\cnode ( 0 . 5 , 0 ) { . 5cm}{root} 
\cnode* (3 , 1 . 5 ) {4pt }{A} 

\cnode* ( 3 , 0 ) {4pt }{B} 
\cnode* ( 3 , - 1 . 5 ) {4pt }{C} 
\psset{node sep=3pt } 
\ncl ine{root}{A} \ncput *{above} 

\nc line{root}{B} \ncput *{on} 
\ncline{root}{C} \ncput *{below} 



354 

/. 
above 

O� on _ . 

� 
below 

" . 

\usepackage {pstricks , pst -node} 

\ cnode ( O . 5 , O) { . 5cm}{root} 
\cnode * ( 3 , 1 . 5 ) {4pt }{A} 

\cnode * ( 3 , O ) {4pt }{B} 

\cnode* ( 3 , - 1 . 5 ) {4pt}{C} 
\psset {node sep=3pt} 

THE MAIN PSTRICKS PACKAGES 

\ncl ine{root}{A} \ncput * [ref=rt] {above} 
\ncl ine{root}{B} \ncput * [ref=lb] { on} 
\ncl ine{root}{C} \ncput * [ref=lt] {below} 

With the keyword nrot, you can rotate labels before placing them. The possible val
The nrot key ues for reference angles are given in Table 5. 1 3  on page 266 and have to be specified in the 

form " :  angle/short-form". 

\usepackage{pstricks , pst-node} 

\cnode ( O . 5 , O ) { . 5cm}{root} 
\ cnode * (3 , 1 . 5 ) {4pt}{A} 
\ cnode* (3 , O ) {4pt }{B} 
\cnode* ( 3 , - 1 . 5 ) {4pt }{C} 
\psset {nodes ep=3pt } 
\ncline{root}{A} \ncput * [nrot= : U] {above} 
\ncline{root}{B} \ncput * [nrot= : U] { on} 
\ncline{root}{C} \ncput * [nrot= : U] {below} 

\usepackage {pstricks , pst -node} 

\ cnode ( O . 5 , O) { . 5cm} {root} 
\cnode* ( 3 , 1 . 5 ) {4pt}{A} 
\cnode * ( 3 , O ) {4pt }{B} 
\cnode * ( 3 , - 1 . 5 ) {4pt }{C} 

\psset {node sep=3pt } 
\ncl ine{root}{A} \ncput * [nrot= : L] {above} 
\ncline{root}{B} \ncput * [nrot= : R] {on} 
\ncl ine{root}{C} \ncput * [nrot= : D] {below} 

Every connection between two nodes consists of at least one segment (\ncl ine) and 
The npos key may include up to a maximum of five segments (\ncloop) . With npos, you can specify 

the segments on which the label should appear. The real decimal value specifies both the 
segment number and the relative position within the segment. For example, a value of 1 . 6  
places the label into the second segment with a distance of 60% from the beginning of the 
segment. Table 6.4 shows the number of segments possible with the different connection 
types, including the permissible value range for npos and the corresponding default values. 

Example 
6-2-46 

Example 
6-2-47 



, Example 

6-2-49 

- -_ ..... _- -� 
Example : 

, 6-2-50 i 

6.2 pst-node-Nodes and connections 355 

Table 6.4: Comparison of different node connections 

I node A I 

Connection 
\neline 
\neeurve 
\neare 
\nebar 
\nediag 
\nediagg 
\neangle 
\neloop 
\neeirele 

Segments 
1 
1 
1 
3 
3 
2 
3 
5 
1 

L'-___ d -----... 

Range 
0 :::; npos :::; 1 
0 :::; npos :::; 1 
0 :::; npos :::; 1 
0 :::; npos :::; 3 
0 :::; npos :::; 3 
0 :::; npos :::; 2 
0 :::; npos :::; 3 
0 :::; npos :::; 5 
0 :::; npos :::; 1 

Default 
0 . 5  
0 . 5  
0 . 5  
1 . 5  
1 . 5 
0 . 5  
1 . 5  
2 . 5  
0 . 5  

\usepackage{pstricks , pst -node} 

\begin{pspi cture} ( 3 . 5 , 3 ) 
\rput [tl] (0 , 3 )  { \rnode{A}{\psf ramebox{node A}}} 

\rput [br] (3 . 5 ,  0 )  {\ovalnode{B} {Kn . B}} 
\ncangles [angl eA=-90 , arm= . 4cm , linearc= . 15]  {->}{A}{B} 
\ncput *{d} 
\nbput [nrot= : D , npos=2 . 5] {par} 

\end{pspi cture} 

The segments of closed connections such as \nebox and \nearebox are counted 
clockwise starting from the lower side of the box. 

Oben - -.. 
1 2 \  I I I I 

;
' I 

/ I 
... / I 

,, - - - - - / 

I I /
/ 

, ." e,� 
...... _ _ _ _ _  '" '\)�'<\J 

\us epackage{pstricks , pst -node} 

\begin{pspi cture} (3 . 5 , 2 ) 
\rput [bl] ( . 5 , 0 ) {\rnode{A}{ 1}}  
\rput [tr] (3 . 5 , 2 ) {\rnode{B}{2}} 
\ncarcbox [node sep= . 2cm , boxsize= . 4 , l inearc= . 4 , %  

arcangle=50 , l inestyle=dashed] {<->}{A}{B} 
\nbput [nrot= : U] {Unt en} 
\nbput [npo s=2] {Oben} 

\end{pspi cture} 

The keyword shortput allows short forms for setting labels. You are not required 
to use them, however, since all have corresponding "long forms" . Possible key values are The short put key 

none, nab, tablr, and tab. They are discussed in turn below. The key value none disables short put =none 

shortput, which is the default setting; i.e., no short form characters are recognized. 
Table 6.5 on the following page lists the short forms for placing the labels when using 

the key value nab. These short forms must follow immediately after a connection command, short put =nab 

resulting in a simplified notation. 



356 THE MAI N PSTRICKS PACKAG ES 

Table 6.5: The short forms for nab Table 6.6: The short forms for tablr 

Short Form 
... { text} 
_ { text} 

�i 
O� I 

y ---------- • 

Long Form 
\naput{text} 
\nbput{text} 

Short Form 
"'{ text} 
_ {text} 
<{ text} 
>{ text} 

Long Form 
\ taput{text} 
\ tbput{text} 
\ t lput{text} 
\ trput{text} 

\usepackage {pstricks , pst -node} 

\ cnode ( O . 5 , O) { . 25cm}{root} 
\cnode * ( 3 , 1 ) {4pt }{A} \ cnode* ( 3 , - 1 ) {4pt }{C} 
\ps set {nodes ep=3pt , shortput=nab} 
\ncline{root}{A}'"' {$x$} 
\ncline{root}{C}_{$y$} 
\ncl ine{A}{C}\ncput *{$z$} 

shortput=tablr The short forms for the key value tablr are listed in Table 6.6. They must be placed 
directly after a connection to be recognized as short forms. 

�. 
o z 

�. 

\us epackage{pstricks , pst -node} 

\cnode ( O . 5 , O) { . 25cm}{root} 
\cnode * ( 3 , 1 ) {4pt }{A} 
\cnode * (3 , - 1 ) {4pt }{C} 
\psset{nodesep=3pt , shortput=tablr} 
\ncl ine{root}{A}'"' {$x$} 
\ncline{root}{C}_{$y$} 
\ncl ine{A}{C}>{$z$} 

The key value tab is a simplified form of tablr that implements only the first two 
shortput =t ab short forms in Table 6.6. It is only of historical interest, as there is no advantage to using tab 

rather than tablr. 
The tpos  key The keyword tpos determines the relative position of a label within a line segment of a 

connecting line from the series of the \ t '?put macros. 

�·2 
o 

�. 

\us epackage{pstricks , pst-node} 

\cnode ( O . 5 , O) { . 25cm}{root} 
\cnode* (3 , 1 ) {4pt}{A} 
\cnode * (3 , - 1 ) {4pt }{C} 
\psset {node sep=3pt , shortput=tablr} 
\ncline{root}{A}'"' {$x$} 
\ncline{root} {C}_{$y$} 
\ncl ine{A}{C}> [tpos=O . 2] {$z$} 

The rot key The keyword rot can take any value that is valid for \rput (Section 5 . 1 3  on page 266) .  

Example 
6-2-52 

I -E���pie 
, 6-2-53 L __ � ____ _ 



6.2 pst-node-Nodes and connections 

It works only in conjunction with the \nput command (see page 359). 

\usepackage{pstricks,pst-node,multido} 

\begin{pspicture} (4 . 5 , 4 . 5) 
\cnode*(2,2) {4pt}{A} 
\multido{\nA=O+10, \rB=O+O. 5}{90}{% 

\nput [rot=\nA .% 
labelsep=\rB pt){\nA}{A}{A}} 

\end{pspicture} 

6.2.5 Putting labels on node connections 
In Section 5.1 1  on page 265, we already discussed several commands that allow arbitrary 
placement of marks with respect to labels. In the context of connections, there are some 
special commands to consider. After a connection has been drawn, the coordinates of two 
points are stored temporarily until a new connection is drawn. This data may prove very 
useful for positioning the labels to be attached to such a connection. Of course, it also implies 
that label commands should come immediately after connection commands. 

In Section 6.2.4 on page 348, which discussed the allowed keywords, you will find many 
examples of the placement of labels. In this section we will review the various commands 
once again. 

\ncput * [settings] {object} \naput * [settings] {object} \nbput * [settings] {object} 

The n label commands are always based on the visible length of a connection, without atten-
tion to the actual node centers. By default, the label is placed in the middle of this visible nillbeis 

connection, which can be changed with the appropriate keyword. The letter c indicates con-
nected (on the line), and a and b indicate above and below the line, respectively. The starred 
versions produce opaque material, which means you can overwrite lines with a label to gain 
increased visibility. 

4 
above 

o 1 2 3 

\usepackage{pstricks ,pst-node} 

\begin{pspicture} [showgrid=true] (3,4) 
\cnode ( O . l , O . l){O. lcm}{A} \cnode ( 2 . 9 , 2 . 9){O. lcm}{B} 
\ncline{<->}{A}{B} \ncput*{on} 
\naput [npos=O .75] {above} \nbput [npos=O . 25] {below} 
\nccurve[angleA=110, angleB=100, 

linecolor=blue] {<->}{A}{B} 
\ncput{\textcolor{blue}{on}} 
\naput [npos=O. 7S] {\textcolor{blue}{above}} 
\nbput [npos=O. 25] {\textcolor{blue}{below}} 

\end{pspicture} 

357 



358 

4 

3 

2 

o 
o 

4 

3 

2 

o 
o 1 

2 3 

THE MAI N  PSTRICKS PACKAGES 

\usepackage{pstr icks , pst -node} 

\begin{pspicture} [showgrid=true] (3 , 4 ) 
\cnode ( O . l , O . l ) {O . l cm}{A} \cnode ( 2 . 9 , 2 . 9) {O . l cm}{B} 
\ncl ine{<->}{A}{B} \ncput* [nrot= : U] {on} 
\naput [nrot= : U , npos=O . 75] {above} 
\nbput [nrot= : U , npos=O . 25] {below} 

\nccurve [angle=90 , l inecolor=blue] { <->}{A}{B} 
\ncput * [nrot= : U] {\textcolor{blue}{on}} 
\naput [nrot= : U , npos=O . 75] {\textcol or{blue}{above}} 
\nbput [nrot= : U , npos=O . 25] {\textcol or{blue}{below}} 

\ end{pspi cture} 

Note that "above" and "below" refer to the default directions "from left to right". If the 
order of the nodes in the last example is reversed, the positions for "above" and "below" are 
reversed as well. This can, of course, easily be corrected by exchanging the angle specifica
tion : U (up) for : D  (down) .  

2 3 

\usepackage{pstricks , pst -node} 

\begin{pspi cture} [showgrid=true] ( 3 , 4 ) 
\cnode ( O . l , O . l ) { O . l cm}{A} \cnode ( 2 . 9 , 2 . 9 ) {O . l cm}{B} 
\ncl ine{<->}{B}{A} \ncput * [nrot= : U] {on} 
\naput [nrot= : U , npos=O . 75] {above} 
\nbput [nrot = : U , npos=O . 25] {below} 
\nc curve [angle=90 , l ine color=blue] {<->}{B}{A} 
\ncput * [nrot= : U] {\textcolor{blue }{on}} 
\naput [nrot= : U , npos=O . 75] {\textcolor{blue}{above}} 
\nbput [nrot= : U , npos=O . 25] {\textcol or{blue }{below}} 

\ end{pspi cture} 

\ tvput .* fi�efflpg�� {object} 
\ taput lfc £�f;t1�ng$l {object} 
\ tlput� m�e,tt:;,ngs� ; {object} 

\ thput * ��e#,��gsl {object} 
\tbput* £s�tt'i�g$l {object} 
\ trput * tsejingsl {object} 

The differences between the \ t ?put commands are as follows: \ tvput places the label in 
the vertical center; and \ thput in the horizontal center on the line. Placement above is done 
with \ taput and below with \ tbput; \ tlput refers to left, and \ trput to the right of the 
line. 

The starred versions produce opaque material that overwrites lines to make labels more 
visible. In calculating positions, these commands refer to the node centers regardless of 
whether a connection is visible. The following example illustrates this difference: \ thput 
puts the label lower than \ncput. 

I Example 
! 6-2-57 L.. 



Example 
6-2-58 

- - 1 
Example I . 6-2-59 

6.2 pst-node-Nodes and connections 

3 

o 2 3 

\usepackage{pstricks , pst -node} 

\begin{pspi cture} [showgrid=true] (3 , 3 ) 
\ cnode ( O . 5 , O . 5 ) {O . 5cm}{A} 
\ cnode ( 2 . 9 , 2 . 9 ) {O . l cm}{B} 
\ncl ine [l inewidth=O . lpt] {<->}{A}{B} 
\ncput{\text color{red}{n}} 
\thput{\t ext color{blue}{t}} 

\end{pspi cture} 

The \ t ?put commands are primarily intended for trees and commutative diagrams. 
For this reason there are the additional versions for left and right positions and horizontal 
and vertical centering. In the following example, the nodes are defined with \Rnode; other
wise, we would not obtain horizontal lines (see Section 6.2. 1 on page 336) .  

u 
-----. A 

I ' 
x - - - - - - - - - X 

b 

\usepackage{pstri cks , pst -node} 

\ [  
\setlength\arraycolsep{ l . l cm} 
\begin{array}{cc} 

\] 

\Rnode{a}{ (X-A) } & \Rnode{b}{A} \ \ [ 1 . 5cm] 

\Rnode{c}{x} & \Rnode{d}{\t ilde{X}} 
\end{array} 
\ps set {nodesep=5pt , arrows=->} 
\everypsbox{\s cript style} 
\ncline{a}{c} \t lput {r} 
\ncl ine {a}{b} \taput {u} 
\ncl ine [linestyle=dashed] {c}{d} \tbput {b} 
\ncl ine{b}{d} \trput {s} 

\npu t � �$�ttingsJ . .{teforenc�anglel {node name}{ object} 

The command \nput is essentially identical to \uput (see Section 5. 1 1 .3 on page 268) but 
refers to a node instead of a pair of coordinates. 

A 

O�! 8 �y I I-< • 
C 

\usepackage{pstricks , pst -node} 

\cnode ( O . 5 , O ) { . 25cm}{root} 
\nput [rot=90] {-90}{root}{root} 
\cnode * ( 3 , 1 ) {4pt }{A} \nput { 1 30}{A}{A} 
\ cnode* (3 , - 1 ) {4pt }{C} \nput { - 1 30}{C}{C} 
\ps set {nodes ep=3pt , shortput =nab} 
\ncline{root}{A} A{$x$} \ncline{root }{C}_{$y$} 
\ncl ine{A}{C}\ncput *{$z$} 

359 



360 THE MAIN PSTRICKS PACKAGES 

6.2 .6 M u ltiple connections 
Sometimes you may need several connections to  start and stop at a particular node. With 
the of f set key, you can very easily "separate" two connections of the same type. 

word 1 to word2 to word3 

\usepackage{pstri cks , pst -node} 

\rnode{A}{wordl}  t o  \rnode{B}{word2} % 
to \rnode{C}{word3} 

\psset{angleA=-90 , node sep=3pt , %  
arm=O . 4 , linearc=O . 2} 

\ncbar [of f setB=4pt] {->}{A}{B} 

\ncbar [offsetA=4pt] {->}{B}{C} l ) l ) 

A 

If connections point to two objects with boxes of different size, naturally the connec
tions do not end at the same height. 

\usepackage{pstri cks , pst-node} 

\begin{pspicture} ( -O . 5 , O ) (3 , 3 ) \Huge 
\ cnode ( 1 , 3 ) {4pt}{A} 
\rput [B] ( O , O ) {\Rnode{B}{A}} 

\rput [B] ( 2 , O ) {\Rnode{C}{a}} 
\psset{angleA=90 , armA= 1 , nodes epA=3pt } 
\nc curve [angl eB=- 135] {<-}{B}{A} 
\nc curve [angleB=-45] {<-}{C}{A} 

\end{pspi cture} 

In this case, the nodesep key is not very helpful because you do not know the exact 
size difference between the lowercase letter and the uppercase letter. Since the lower nodes 
are defined with \Rnode, their centers are positioned at the same distance from the baseline 
(see also Section 6.2. 1 on page 336) .  Instead of the nc connection, you can now use the pc 
version, which always refers to the node center. This way you obtain connections of  equal 
lengths since both end at the same distance from the node centers. 

a 

\us epackage{pstricks , pst -node} 
\Spe cialCoor 

\begin{pspi cture} ( 3 , 3) 
\cnode ( 1 , 3) {4pt }{A} 
\rput [B] ( O , O ) {\Rnode [vref=20pt] {B}{\Huge A}} 
\rput [B] ( 2 , O ) {\Rnode [vref=20pt] {C}{\Huge a}} 
\psset{angleA=90 , nodes epB=4pt} 
\pc curve [angleB=- 135] {<-} (B)  (A) 

\pccurve [angleB=-45] {<-} (C)  (A)  
\end{pspi cture} 

Example 

6-2-61 

Example 

6-2-63 



Exampl�···1 
6-2-64 

6.2 pst-node-Nodes and connections 

You can also use the nc commands in combination with the keyword Ynodesep, which 
specifies absolute distances from the center. 

A a 

6.2.7 The psmatrix  environment 

\us epackage {pstricks , pst -node} 

\begin{pspi cture} ( -0 . 5 , 0 ) ( 3 . 5 , 3 ) \Huge 
\cnode ( 1 , 3 ) {4pt }{A} 

\rput [B] ( O , O ) {\Rnode {B}{A}} 
\rput [B] ( 2  , 0 ) {\Rnode {C}{a}} 
\ps set{angleA=90 , Ynode sepA= 1ex} 

\nccurve [angleB=- 135] { <-}{B}{A} 
\nc curve [angleB=-45] {<-}{C}{A} 

\end{pspi cture} 

As already demonstrated several times, you can position nodes at any place within a docu
ment, i.e., in running text or in a table or other object. You simply have to make sure the 
node connections refer to nodes defined on the same 'lEX page. Even connections from nor
mal text to a floating environment are possible when this requirement is fulfilled. 

This arbitrary placement of nodes allows you to realize larger projects on the basis of 
a matrix. Within this matrix the nodes are uniquely defined through the individual cells, 
which are specified by their row and column number as {row,column} instead of by a 
node name. Essentially, any �1EIC tabular or array type environment could be used, but 
psmatrix offers better support. 

\begin{psmatrix} [$e.�ting$] 
[cell��f}�ing$l . . .  & (eell-$�ing$l' . . .  . . . \ \ . . .  

\end{psmatrix} 

The psmatrix environment i s  based on the math environment array but can be used in 
both math and text modes. For an upright font you must use the commands \mathrm or 
\ text from the amsmath package. 

Each cell can take an optional argument in square brackets to set keyword/value pairs 
for that cell. With the help of the keyword name (used in square brackets at the beginning of 
a cell) ,  you can turn any cell into a node to obtain special forms. Although psmatrix can be 
nested, the node connections must be on the same nesting level as their respective nodes. 

At the beginning of every row or column, hooks are executed if defined. This allows you 
to apply special settings to the cells in those rows or columns as described below. 

I \psspan{n} I 
psmatrix also supports a feature similar to �TEX's \mult icolumn. Here n denotes the 
number of columns to combine, and you have to place the command \psspan at the end of 

361 



362 THE MAIN PSTRICKS PACKAGES 

Table 6.7: Keywords for psmatrix 

Name Value Type Default 
mnode R l r l C l f l p l eirele l oval l dia l tri l dot l none R 
emnode R l r l C l f l p l eirele l oval l dia l tri l dot l none none 
name name 
nodeal ign Boolean f alse 
meal r i l l e e 
rowsep value [unit] 1 . 5em 
eolsep value [unit] 1 . 5em 
mnodesize value [unit] - 1pt 

the cell that is to be combined with the following n - 1 cells. 

\usepackage{pstri cks , pst -node} 

A 

/\\ 
$ \begin{psmatrix} [col sep= l cm] 

[name=A] A \ps span{3} \\ [Opt ] 
[name=X] X & [name=Y] Y & [name=Z] Z 

\end{psmatrix} 
\psset{node sep=3pt , arrows=->} 

x Y Z \ncl ine{A}{X} \ncl ine{A}{Y} \ncl ine{A}{Z} $ 

A 

1 

l \psroWhOOk ? ? ? ?  \pseolhOOk ???? 1 
You can specify that some code is to be executed for a particular row or column before that 
row or column is processed by placing the necessary definition before the actual psmatrix 
environment. To assign the code to the row or column, the command name is  suffixed with 
the row or column number in the form of a lowercase Roman numeral (represented as ????  
in the syntax) .  For example, valid command names include \psrowhooki i for the second 
row and \pseolhookxi for the eleventh column. Note that counting starts with i-there 
is no Roman numeral for zero. 

If both a row hook and a column hook are defined for a particular cell, the row hook 
is executed first. Thus the column hook may overwrite settings, as can be seen in the next 
example where the blue column wins over the gray row. 

B C \us epackage{pstricks , pst -node} 

\newcommand\psrowhooki i{\color{lightgray}\huge} 

C 
\newcommand\ps colhooki ii{\color{blue}} 

$ \begin{psmatrix} [colsep=O . 5cm , rowsep=O . 5cm] 
A & B & C \\ a & b & c \ \  1 & 2 & 3 

2 3 \end{psmatrix} $ 

Table 6.7 shows all valid special keywords for the psmatrix environment. They are 
discussed in the remainder of this section. 

The keyword mnode defines the node type. It can be changed globally with \psset 
The mnode key or locally in the optional argument. The node names refer to the node types discussed in 

I Ex.mple 

; 6-2-66 ; 
t . .  



6.2 pst-node-Nodes and connections 

Table 6.8: The keyword values for mnode and the corresponding commands 

mnode Node Type Page mnode Node Type Page 
R \Rnode 335 circle \circlenode 338 
r \rnode 336 oval \ovalnode 339 
C \Cnode 338 dia \dianode 339 
f \fnode 340 tri \trinode 339 
p \pnode 336 dot \dotnode 339 
none no node 

Section 6.2. 1 .  They are listed in Table 6.8, along with a reference to the page where their 
syntax is explained. 

\usepackage{pstricks , pst -node} 

$\begin{psmatrix} [mnode=dia , colsep= 1 cm] 
& [mnode=circle] X \\ y & z 

\end{psmatrix} 
\psset{nodesep=3pt , arrows=->} 
\ncline{ 1 , 2} {2 , 1} \ncline{ 1 , 2}{2 , 2} 
\ncline [linestyle=dotted] {2 , 1}{2 , 2} $ 

The keyword emnode determines the node type for empty cells. It works only when it The emnode key 

is specified globally. Even then, you should be aware that empty cells in the last column of 
the matrix are not necessarily recognized. 

\usepackage{pstricks , pst-node} 

\ps set{linestyle=solid} 

363 

o $\begin{psmatrix} [mnode=circle , emnode=tr i , colsep= 1 cm] 
& X & & \\ y & Z & 

\end{psmatrix} 
\psset{node sep=3pt , arrows=->} 

\ncl ine{ 1 , 2} {2 , 1} \ncline{ 1 , 2}{2 , 2} \ncl ine{2 , 2}{2 , 3} 
\ncl ine [l ine style=dotted] {2 , 1}{2 , 2} 
\ncl ine [linestyle=dashed , l inecolor=blue] {->}{2 , 2} { 1 , 1}$  

The keyword name allows you to assign a name to any cell. The name must be specified 
in the optional argument at the beginning of the cell, which causes problems with the first The name key 

cell in a row when it is preceded by a line break. For example, the code 

& & . . .  \\ 
[name=K2 1]  & 

would appear to �1FX as \ \ [name=K2 1] and, consequently, [name=K2 1 ]  would be inter
preted as an optional line feed. This would produce an error message indicating an invalid 
value. A possible workaround is to write \ \ [Opt] or \ \ \space. The node names remain 



364 THE MAIN PSTRICKS PACKAGES 

valid with their assigned coordinates until they are reassigned, even if a new psmatrix has 
been started. 

o 
/ 1  

0 · · · · � 0 

\usepackage {pstri cks , pst -node} 

$ \begin{psmatrix} [mnode=dia , colsep= l cm] 
& [mnode=circle , name=X] X \\ [Opt ] 

[name=Y] Y & [name=Z] Z 
\end{psmatrix} 
\psset {node sep=3pt , arrows=->} 
\ncline{X}{Y} \ncline{X}{Z} 
\ncl ine [l ine style=dotted] {Y}{Z} $ 

Normally, the bottom of a node lies on the baseline. With nodealign=true you can 
The nodeal i gn key put the node center on the base line. As a rule, this choice has little effect on psmatrix since 

the node content is generally represented by an entire cell. 

a�_bb_X_CC 

\usepackage{pstri cks , pst -node} 

aa\rule{ l em}{O . 5pt }\rnode{X}{\Huge X}\rule{ l em}{O . 5pt}bb% 
\psset {nodealign=true}% 
\rule { l em}{O . 5pt }\rnode{X}{\Huge X} \rule { l em}{O . 5pt}cc  

The mcol key The keyword meal specifies the horizontal alignment within cells. It can be used both 
globally and locally. 

A XxXxX 

// j 
YyYyY . . . . . . . .  � Z 

\usepackage{pstri cks , pst-node} 

$ \begin{psmatrix} [colsep= l cm , mcol=c]  
[name=A , mcol=r] A & [name=X] XxXxX \\ [Opt] 
[name=Y] YyYyY & [name=Z] Z 

\end{psmatrix} 

\psset{nodesep=3pt , arrows=->} 
\ncl ine{X}{Y}\ncl ine{X}{Z}\ncline{A}{Y} 
\ncline [linestyle=dotted] {Y}{Z} $ 

The keywords rowsep and eolsep correspond to the dimension \arrayeolsep and 
The rowsep and the \arraystreteh command. They specify additional vertical and horizontal space be

col sep keys tween cells and can take any value, including a negative one. 

ab 
cd 

\us epackage{pstri cks , pst -node} 

$ \begin{psmatrix} [colsep=Opt , rowsep=Opt] 
a & b \\ c & d 

\end{psmatrix} $ 

Usually, in array-like environments, the longest entry determines the width of a col
The mnodes i z e  key umn. With mnodes ize you can assign the same width to all columns, if the given value is 

sufficiently large for each column. 

Example 

6-2-69 

Example 
6-2-70 

Example 
6-2-71 

. Example 

6-2-72 



I 
Example I 
6-2-73 

Example 

6-2-74 : 

6.2 pst-node-Nodes and connections 

1 1 1  

2 

a bbbb 

c ddddd 

\us epackage {pstricks , pst -node} 

$ \begin{psmatrix} [colsep=Opt , rowsep= 1 2pt , mnode s ize= l cm] 
1 1 1  & a & bbbb \\ 2 & c & ddddd 
\end{psmatrix} $ 

6.2.8 TEX and PostScript: a one-way ticket 

The relationship between 'lEX and PostScript is quite one-sided: you can pass information 
from 'lEX to PostScript at any time, but you cannot directly retrieve information from Post
Script. This is possible only via intermediate steps, such as by having the PostScript driver 
write information to a file, which is then read when 'lEX is rerun, or by using the special 
'lEX implementation VTeX, which incorporates a PostScript engine but prevents you from 
processing the document on other 'lEX installations. 

When defining nodes whose precise coordinates are unknown (because they appear in 
the middle of a paragraph or are the result of some internal calculation), we may wish to 
know their values. With IHF,X those values cannot be obtained directly. There are, however, 
possibilities when we are using PSTricks, as shown in the next example: 

\usepackage{pstri cks , pst-node} \Spe cialCoor \raggedr ight 

365 

When defining nodes, 
such as G whose precise 
coordinates are 
unknown (because they 
appear in the middle of a 
paragraph or are the 
result of some internal 
ca1cu�tion), we may 
wish tp know their 
value�. With Jt.Tp( those 

When def ining node s , such as \ \cnode{3pt}{A} , whose pre cise  
co ordinates  are unknown (because they appear in  the middle of a 
paragraph or are the re sult of some internal calculat ion) , we may 
wish to know the ir values . With \LaTeX{} those  value s cannot be 
obtained directly . There are , however , po s s ibilities  when we are 
us ing PSTricks . 

I value,.<; cannot be 
obtaihed directly. There 

I are, flowever, 
poss'ibilities when we 

1 are �sing PSTricks. : . . . .  .,. . . .  ; 

: C) :  
O ·  . . . . . . . . . . . . . .  

o 

\begin{pspicture} ( l , l ) 
\psgrid [subgr iddiv=0 , griddot s=10 , gridlabels=7pt] 
\Cnode ( 0 . 5 , 0 . 5 ) {B} 
\makeatletter 
\psline [arrows cale=2 , l inestyle=dashed] {->} (B) ( ! % 

tx@NodeDict begin 
IN@B load GetCenter % center of node B 
lyB ED IxB ED 
IN@A load GetCenter % center of node A 

lyA ED IxA ED 
xA xB sub 0 . 6  mul xB add \pst@number\psxunit div 
yA yB sub 0 . 6  mul yB add \pst@number\psyunit div 

end) 
\makeatother 

\end{pspi cture} 

In this example, an arrow is drawn that points towards the node defined near the start 
of the paragraph. The length of the arrow line is 60% of the total distance between the two 
nodes. The arrow points exactly at node A. The PostScript code inside \psl ine uses the 
tx@NodeDict dictionary to call the needed procedures: ED (exchange and define variable) 
is an internally defined abbreviation for exch def and can be found in pstri cks . pro. 
\psline has to be surrounded by \makeat letter . . .  \makeatother because the Post-



366 THE MAIN PSTRICKS PACKAGES 

Script code in its argument refers to internal PSTricks macros with @ signs in their names 
and is first evaluated by �1EX before it is passed to PostScript. 

6.3 pst-tree-Typesetti ng trees 

The base packages pst ricks and pst-node include some commands to draw frames, circles, 
ovals, and other shapes, which may then be connected with various lines. The package 
pst-tree, however, offers far better support for creating various kinds of trees. It is based 
on pst-node ( see Section 6.2) and can be an excellent tool for creating trees. 

\pstree DSCetftngsj {root}{successors} \begin{psTree} [settings] {root} 
. . .  successors . . .  

\end{psTree}  

I n  terms of their content, there i s  no difference between these two versions. psTree i s  just 
the �TEX "long" variant; it is defined as a longbox ( see Section 5. 1 2 .5 on page 276) .  Both 
versions put the whole tree into a box with a baseline that runs through the center of the 
root. 

\usepackage{pstri cks , pst-tree} 

\ps set{showbbox=true}% 

\rul e { 1 em}{O . 5pt}% 
\pstree [radius=3pt] {\Toval{pstree}}{ 

\TC\TC\TC}% the successors 
\rul e { 1 em}{O . 5pt }% 
\begin{psTree} [radius=3pt] {\Toval{psTree}}  

\TC* \TC\TC* 
\end{psTre e} \rule{1em}{O . 5pt } 

The tree macros are not part of a pspicture environment. In some situations there 
may be a problem with the vertical line distance; in such a case you should either enclose 
the \pstree command or psTree environment in a pspi cture environment or provide 
sufficient white space with \ vspace. In the following examples, trees and tree connections 
will be denoted as tree objects. The root should be a single tree object, while a successor 
may be any arbitrary combination of tree objects. Subtrees are created recursively, and a 
successor consists of a new root. 

\usepackage{pstricks , pst-tree} 

\pstree [radius=3pt , levelsep=O . 9 cm] {\Toval{root}}{% 
\TC% succes sor 1 , 1  
\pstree{\Toval{new}}{% 1 , 2  and new subroot 

\TC\TC}% 2 , 1  2 , 2  
\TC}% 1 , 3  

In this example, you have to encode the tree in such a way that its tree structure can easily be 
recognized when you are creating complex trees. Otherwise, it will be very difficult to find 
any errors present. 

Example 
6-3- 1 

Example 

6-3-2 



6.3 pst-tree-Typesetting trees 

6.3 . 1  Tree nodes, predecessors, and successors 
Most of the node commands dealt with in Section 6.2 have counterparts here. Some nodes 
take an argument for material (e.g., a label) ,  that is printed inside the node; others generate 
only fixed symbols. Commands that behave exactly like their peviously described counter
parts will not be discussed in detail in this section. 

\ Tp * . [settings] 
\ Te '" . [settings] {value [unit}} 
\ TC * [settings] 
\ Tf * [settings] 
\ Tdot* [settings] 
\ Tr '" [settings) {label} 
\ TR* [settings] {label} 

\ Teirele jf< [settlttgU {label} 
\ TCirele"" [setfitlg�] {label} 
\ Toval"' Is�t�ng$J {label} 

\ Tdia* Isetting$J {label} 
\ Ttri * [settings1 {label} 
\ Tn [settings] 

All tree command names have a preceding "T" and are derived from the corresponding node 
commands (except \ Tn, which has no node equivalent) :  \ Tp corresponds to \pnode, \ Te 
to \enode, and so on.  All tree node commands support an optional argument, even if  the 
corresponding definition from Section 6.2 has none. There is no argument for a node name, 
nor are there coordinate specifications, as the tree nodes are placed automatically with their 
structure being defined through nesting. The next example shows all node types in action; 
later examples detail individual features of trees. 

\usepaekage{pstri eks , pst-tree} 
\neweommand\Les [l ] {\small\t exttt{\textbaekslash # 1 } }  

\ps set{levelsep=2em , labelsep=5pt} 

\pstree [treemode=U , angleB=-90 , angleA=90 , treenode size=O . 7  em] {%  
\pstree [treemode=D , angleA=-90 , angleB=90 , treenode s ize=O . 3em] {\Toval{Tree node}}{% 

\Tp-{\Les{Tp}} \Te{ . 5}-{\Les{Te}} \TC-{\Les{TC}} 
\Tn-{\Les{Tn}} \Tf -{\Les{Tf }} \Tr{\Les{Tr}} 
\TR{\Les{TR}}}}{% 

\TCirele{\Les{TCirele}} \Te irele{\Les{Teirele}} \Tdot -{\Les{Tdot}} 
\Toval{\Les{Toval}} \Ttri{\Les{Ttri}} \Tdia{\Les{Tdia}}} 

\T 

\Te 

367 



368 

A 

a X 

1 

b 

THE MAIN PSTRICKS PACKAGES 

In this example, the difference between the two node variants may not be obvious, so 
it will be reviewed here. Section 6.2. 1 on page 336 explained the difference between \rnode 
and \Rnode on a node level: \rnode regards the geometric center of the box as being the 
node center, while \Rnode takes the baseline within the box as the center. Especially with 
vertical tree structures, it is better that all text around the same horizontal axis appears on 
the same baseline. In such cases only the application of \ IR makes sense. 

\ IR* lsettings] c {label} I 
Reference points for \ Ir are set through the keyword ref .  

A 

x a X b 

I \ In (�1?�ings] 

x 

\us epackage{pstricks , pst-tree} 

\Large 
\pstree [linewidth=O . 2pt , node sepB=3pt] {\TC* }{% 

\Tr{a} \Tr{$ \hat {X}$} 
\ Tr{b} \ Tr{x}} 

\quad 
\pstree [l inewidth=O . 2pt , nodesepB=3pt] {\TC*}{% 

\TR{a} \TR{$\hat{X}$} 

\TR{b} \TR{x}} 

Whenever you wish to reserve space for a future node or simply make some room before 
the next group of nodes starts, you should use a "nil" node (not in list) ,  which does nothing 
except occupy the space. Nevertheless, as the current point is moved to the nil node, you can 
add any material there, e.g., using \rput . 

\usepackage{pstri cks , pst-tree} 

\Large 

nil a 
\pstree [linewidth=O . 2pt , nodesepB=3pt] {\TC*} 

{\TR{ 1 }  \Tn\rput ( O , O) {nil} \TR{a} \Tn \TR{ c}} c 

I \ If an � [�ett,i�gsl 
Another special node is \ If an, which can, for instance, be used to symbolically continue 
the tree when the tree structure would be fanned out too far. \ If an has no mandatory 

Example 
6-3-4 

Example 
6-3-5 



Example 
6-3-6 

Example 
6-3-7 

6.3 pst-tree-Typesetting trees 

argument, \uput follows it directly to prevent trailing spaces. The current point after set
ting a tree node is ( 0  , 0) , the center of the new root. 

! \pssucc \pspred ! 

\usepackage{pstricks , pst-tree} 

\pstree [treesep=0 . 2cm , linewidth=0 . 2pt , %  
radius=3pt] {\TC} 

{% 

} 

\Tf an* \uput [-90] ( O , O) {left} 
\pstree [linestyle=dashed] {\Toval {centre}} 

{% 

\TC* \TC*\TC*\TC*\TC*\TC*\TC*\TC*\TC*\TC* 
} 

\Tf an [linestyle=dashed] % 
\uput [-90] ( O , O) {right } 

After a new succeeding node has been defined, the command \pssucc contains its internal 
name. After a new node has been defined, the command \pspred contains the internal 
name of its precedessor. 

! \t space{value[unitJ} ! 
For special cases, in which the methods described previously do not lead to the desired re
sults, you can insert individual blank spaces with \ tspace. The extra 10pt in the next ex
ample compensates for the fact that the left leaf node has only a short label. 

1 2 1  1 23 2 1  

\usepackage{pstricks , pst-tree} 

\begin{pspicture} ( 0 , 0 .  25)  ( 0 . 5 , - 2)  
\pstree [nodesepB=4pt] {\Toval{root}}{% 

\TR{ 1}  
\t space{10pt} 
\TR{ 1 2 1 }  
\TR{ i232 1 }  } 

\end{pspi cture} 

\psedge{nodeA}{nodeB}{connection macro} 

The command \psedge was discussed in Section 6.3.2 on page 376, where you can also 
find some examples for it. For the sake of completeness, its syntax is shown here again. 
If you do not wish to have connecting lines, you can also define \psedge as empty: 
\renewcommand\psedge [2] {} .  Its two nodes are generally determined by the two nodes 
\pssucc and \pspred 

369 



370 THE MAIN PSTRICKS PACKAGES 

Table 6.9: Keywords for pst-tree 

Name Value Type Default 
f ansize value [unit} 1 ern 
treernode tree mode value D 
treef lip Boolean false 
treesep value [unit} O . 75ern 
treef it loose lt ight t ight 
treenodes ize value [unit} - 1pt 
levelsep value [unit} 2ern 
edge macro \neline 
bbl value [unit} empty 
bbr value [unit} empty 
bbh value [unit} empty 
bbd value [unit} empty 
xbbl value [unit} 0 
xbbr value [unit} 0 
xbbh value [unit} empty 
xbbd value [unit} empty 
showbbox boolean false 
thistreesep value [unit} empty 
thistreenodesize value [unit} empty 
thistreef it value [unit} empty 
thislevelsep value [unit} empty 

6.3.2 Keywords for tree nodes 

Table 6.9 lists the special keywords for the pst-tree package. They are discussed in the follow
ing examples. 

The fansize key Sets of branches can be symbolized by a triangle, whose base side can be defined 
with f ans ize. You can move the triangle with the keywords nodesep (Section 6.2.4 on 
page 350) and offset (Section 6.2.4 on page 353) .  

\usepackage{pstri cks , pst-tree} 

\pstree [radius=3pt] {\Toval{root}}{% 
\TC \Tf an \TC} 

\quad 
\pstree [radius=3pt] {\Toval{root }}{% 

\TC 
\Tf an* [fans ize=O . 4cm , nodesepA= 1 0pt] 
\TC} 

Example 

6-H 



: Example 

6-3- 10  i 

6.3 pst-tree-Typesetting trees 371 

The keyword treernode specifies the direction of the main tree and/or the following The treemode key 

subtrees: (D)own, (L)eft, (R) ight, (U)p. 

\usepackage{pstricks , pst-tree} 

\begin{pspi cture} ( -0 . 75 , 0 .  25) (0 . 75 , -4)  
\pstree{\pstree [treemode=L] {\Toval{root}}{\TC*}} 

{\pstree [treemode=L] {\Toval{left}}{ \TC\TC} 
\pstree{ \Toval{new}}{ \TC\TC} 
\pstree [treemode=R] {\Toval{r ight }} 

{\TC 

\pstree [treemode=U] {\Toval{right}}{\TC* \TC*} 
} 

} 
\end{pspi cture} 

Normally, all nodes are arranged from left to right and from top to bottom. This or-
der can be changed with the keyword treef I i  p locally as well as globally. In the examples The treef l ip key 

the use of this keyword becomes obvious wherever the sequence of the node ends is locally 
reversed, because the order A-B is kept. 

\usepackage{pstricks , pst-tree} 

\pstree{ \Toval{root}} 
{\pstree{\Tcircle{A}} 

{\Tcircle { 1 }  \Tcircle{2} 
\Tcircle{3} \Tcircle{4} 

} 

} 

\pstree [treemode=R] {\Tcircle{B}} 
{\Tcircle { 1 }  \Tcircle{2} 

\Tc ircle{3} \Tcircle{4} 
} 



372 

The treesep and 
thistreesep keys 

THE MAIN PSTRICKS PACKAGES 

\usepackage{pstricks , pst-tree} 

\pstree{\Toval{root}}{% 
\pstree [treeflip=true] {\Tcircle {A}}{% 

\Tcircle { l }  \Tc ircle{2} 

\Tcircle{3} \Tc ircle{4}}% 
\pstree [treeflip=true , treemode=R] {% 

\Tcircle{B}}{% 
\Tcircle{1}  
\ Tcircle{3} 

\ Tcircle{2} 
\Tc ircle{4}} } 

You can define the distance between tree nodes with the keyword treesep. It automat
ically causes the whole tree to become narrower or smaller, which may be very welcome with 
larger tree structures. 

\usepackage{pstricks , pst-tree} 

\pstree [treesep=O . 2cm] {\Toval{root}}{ 
\pstree{\Tcircle{A}}{% 

\Tc ircle { l }  \Tc ircle{2} 

\Tcircle{3} \Tc ircle{4}}% 
\pstree [treemode=R] {\Tcircle{B}}{% 

\Tcircle{l}  \Tcircle{2} 
\Tcircle{3} \Tcircle{4}}} 

With thistreesep, changes may be restricted to a single level. 

\usepackage{pstricks , pst -tree} 

\pstree [levelsep= l cm , radius=3pt] {\Toval{root}}{% 
\pstree [thi streesep=O . 2cm] {\TC}{% 

\TC\TC* 
\pstree{\TC*}{% 

\TC\TC\TC\TC}% 
\TC\TC}} 

PSTricks determines the distance between end nodes with regard to their contents. This 
The treef i t and distance can be specified globally or locally with the keyword treesep, but you can also in

thistreef it keys struct PSTricks to generally make the distance a bit larger. With treef i t=t ight (default) ,  
the minimal distance between two nodes on the same level equals treesep and is modified 

, Example 

6-3- 1 1  



Example 

6-3- 1 4  

Example i 
6-3- 1 5  

6.3 pst-tree-Typesetting trees 

only when node contents would overlap. With treef i t=loose ,  the distance of the perpen
diculars of all nodes is at least treesep. This may cause nodes of higher levels to be farther 
apart than nodes of lower levels. If all nodes are on the same level, there is no difference 
between loose and t ight. 

\usepackage{pstricks , pst-tree} 

373 

\pstree [treesep=O . 5 , levelsep= 1 cm , radius=3pt] {\Toval{ro ot}}{% 
\pstree{\TC}{% 

\TC* 
\pstree{ \TC}{\TC* \TC* \TC* \TC*}% 
\TC* \TC*}} 

Local changes, referring to a subtree, may be achieved with the keyword 
thistreef it. 

\usepackage{pstr i cks , pst-tree} 

\pstree [levelsep= 1 cm , radius=3pt] {% 
\Toval{root}}{\pstree [thi streefit=loose]  {\TC}{% 

\TC\TC* 
\pstree{\TC*}{\TC\TC\TC\TC}% 
\TC\TC} 

\pstree [thi streef it=t ight] {\TC}{% 
\TC\TC* 
\pstree{\TC*}{\TC\TC\TC\TC}% 
\TC\TC}} 

If a tree level contains an odd number of nodes with contents of different width, the tree 
connection in the center often is not a perpendicular line, which is not really visually appeal
ing. You can use the keyword treenode s ize to set the box to a fixed width or, for vertical 
trees, to a fixed height and depth so that the structure becomes symmetrical with a perpen
dicular line in the middle. If this method does not yield the desired result, you can insert or 

The treenode size 

and 
thistreenodes i z e  

keys 



374 

1 2 1  

THE MAIN PSTRICKS PACKAGES 

remove (negative value) individual white space with \ space (Section 6.3 . 1  on page 369) .  

1 23 2 1  1 1 2 1  1 232 1 

\usepackage{pstri cks , pst-tree} 

\pstree [node sepB=4pt] {% 
\Toval{root}}{\TR{ 1}  \TR{ 1 2 1 }  \TR{ 1 232 1}} 

\quad 
\pstree [node sepB=4pt , treenode s ize=O . 3cm] {% Example 

\Toval{root} H\TR{ 1 }  \TR{ i21}  \TR{ i 232 1}} 6-3- 1 6  

You can use thi streenode s ize to specify local changes that are valid only for subse
quent trees. 

\usepackage{pstricks , pst-tree} 

\pstree [levelsep= 1 cm , radius=3pt] {% 

\Toval{root}H% 
\pstree [thi streenode size=O . 25cm] {\TC}{% 

\TC\TC* 
\pstree{\TC*H% 

\TC\TC\TC\TC}% 
\TC\TC}} 

The keys levelsep and thi slevelsep refer to the vertical and horizontal distances 
The l eve l s ep and between the centers of two levels, respectively. If the value of the keyword is prefixed with 

thisleve l s ep keys an asterisk, it refers to the distance from the bottom of the current box to the top of the 
successor's box; thus the distance can vary within levels. 

\usepackage{pstricks , pst-tree} 

\pstree [levelsep= 1 cm , radius=3pt ] {\Toval {root}}{% 
\pstree{\TCH% 

}} 

\TC 
\pstree{\TC*H% 

\TC\TC\TC\TC 
}% 
\TC\TC 

This method may enhance the appearance of trees-especially horizontal trees. The fol
lowing example has been created with leve lsep=3cm. The different name lengths produce 
unfavorable line lengths. 

\usepackage{pstri cks , pst-tree} \SpecialCoor 

\psset{node sep=5pt} 
\pstree [treemode=R , levelsep=3cm] {% 

\rnode{A}{}\Tr{\rnode{A}{}Friedri ch Wilhelm}}{% 

\pstree{\Tr{Friedrich I . }}{% 
\Tr{\rnode{C}{}Fri edri ch Wilhelm I . }  \Tr{Friedrich}} 



Example 

6-3- 19  

Example 
6-3-20 

6.3 pst-tree-Typesetting trees 

\pstree{\Tr{\rnode{B}{}Albre cht Friedri ch} }{% 
\Tr{Wilhelm He inri ch} \Tr{Fr iedrich}}} 

\psset{arrowscale=2 , l inewidth=0 . 2pt} 
\pcl ine [l ine style=dashed] (A) (A I O , - l )  \pcl ine [l ine style=dashed] (B ) (B I O , - l )  
\pcl ine [l ine style=dashed] (C) (C I O , - l )  
\pnode (A I O , - . 8) {A1}\pnode (B I 0 , - . 8 ) {A2} \ncl ine [arrows=<->] {A1}{A2} 
\ncput *{\texttt{levelsep}} 
\pnode (C I 0 , - . 8) {A3} \ncl ine [arrows=<->] {A2}{A3}\ncput *{\t exttt{l evelsep}} 

I 
I 
I 
I 
I 
I 

Friedrich I .  

Friedrich Wilhelm 

Friedrich Wilhelm 1. 
- I  

� Friedrich 
I 
I 

____ J Wilhelm Heinrich 

Albrecht Friedrich I 
4----
I Friedrich 

I I I 
I +-- levelsep � I _ levelsep _ I 

A value of levelsep=* 1 ern has a positive effect on this formation, so that the separa
tion is between the end and beginning of two levels. 

\usepackage {pstricks , pst-tree} \Spe cialCoor 

\pstree [treemode=R , levelsep= * l cm] {% 
\Tr{Fri edrich Wilhelm\rnode{A}{}}}{% 

\pstree{\Tr{Friedrich I . }}{% 
\Tr{Fr iedr ich Wilhelm I . }  \Tr{Fr iedri ch}} 

\pstree{\Tr{\rnode{B 1}{}Albrecht Fr iedri ch\rnode {C}{}}}{% 
\Tr{\rnode{B2}{}Wilhelm Heinri ch} \Tr{Fri edrich}}} 

\psset{arrowscale=2 , l inewidth=0 . 2pt} 
\pcl ine [line style=dashed] (A) (A I O , - l )  
\pcl ine [l inestyle=dashed] (B2) (B2 1 0 , - 1 )  
\psline{<->} (A I O , - . 8 ) (B1 1 0 , - . 8 ) 

\pcl ine [l ine styl e=dashed] ( B 1 ) ( B 1 1 0 , - 1 )  
\pcl ine [l ine styl e=dashed] (C ) (C I O , - l )  
\psline{<->} (B2 1 0 , - . 8 ) ( C I O , - . 8 ) 

�drich Wilhelm I .  �edrich I. ____ 

� Friedrich 

Friedrich W� 
:_______ �lhelm Heinrich 

: flbrecht Friedr� 
I I I I Friedrich I I I I 
I I I I 
I I I I 
Ie » 1  I e » 1  

375 



376 THE MAI N PSTR ICKS PACKAGES 

In contrast to the keyword levelsep, thi slevelsep allows you to specify only the 
distance for the subtree. 

\usepackage {pstricks , pst-tree} 

\pstree [levelsep= l cm , radius=3pt] {\Toval{root}}{% 
\pstree [thislevelsep=2cm] {\TC}{% 

}}  

\TC\TC* 
\pstree{\TC*H% 

\TC\TC\TC\TC 
}% 
\TC\TC 

PSTricks needs at least two (LA)1EX runs to calculate the correct distance. The values of the 
intermediate runs are saved in the aux file (�TEX) or in \j obname . tmp. 

After a new tree node has been defined, \pssucc ( successor) is set to the name of this 
The edge key new node and \pspred (predecessor) to that of its preceding node. Thus you can create an 

arbitrary line/curve between these two nodes as, for instance, 

..,. .... 

\ncl ine{\pspred}{\ps succ} 

PSTricks offers a command for this case: 

I \psedge{\p spred}{\pssucc} I 
The command \psedge is identical to \ncline, unless it is redefined as in the fol

lowing example, where curves are desired instead of simple lines. Such a redefinition takes 
effect globally for the whole tree. With the option edge you can use this command locally by 
passing a previously defined macro as its value, as also shown in the example. 

, ..... 
, ..... " ..... .... .... -0 , 

\usepackage{pstri cks , pst-tree} 
\renewcommand\psedge [2] {% 

\nc curve [angleA=O , angleB= 180] {->}{#1 }{#2}} 
\newcommand\psedgeDash [2] {% 

\nc curve [angleA=O , angleB= 1 80 , %  
l inestyle=dashed] {->}{# 1}{#2}} 

, 
, 

' ..... -0 
\pstree [treemode=R , levelsep=3cm] {\Tcircle{O}}{% 

\Tcircle{1}  \Tc ircle{2} 
\Tc ircle [edge=\psedgeDash] {3} 
\Tcircle [edge=\psedgeDash] {4}}% 

: Example 

6-3-2 1 . 

Example 

6-3-22 



Example : 
6-3-23 ' 

Example 

6-3-24 

6.3 pst-tree-Typesetting trees 

This strategy also enables you to improve the appearance of the last example from Sec
tion 6.3.2 on page 374 by using \ncdiagg (Section 6.2.2 on page 342) for the connections. 

\usepackage{pstricks , pst-tree} 
\Spe cialCoor 
\def\edgeRed# 1#2{\ncdiagg [angleA= 180 , arm=Opt , node sep=2pt , l inecol or=red] {#2}{# 1}}  
\def\edgeBlue# 1#2{\ncdiagg [angleA= 180 , arm=Opt , node sep=2pt , l inecol or=blue] {#2}{# 1}} 

\pstree [treemode=R , levelsep= * l cm] {% 
\Tr{Friedrich Wilhelm\rnode{A}{}}}{% 

\pstree{\Tr [edge=\ edgeRed] {Fri edr i ch I . }}{% 
\Tr [edge=\edgeRed] {Fri edrich Wilhelm I . }  
\Tr [edge=\edgeRed] {Fri edrich}} 

\pstree{\Tr [edge=\edgeBlue] {% 
\rnode{B1} {}Albre cht Friedri ch\rnode{C}{}}}{% 
\Tr [edge=\ edgeBlue] {\rnode{B2}{}Wilhelm Heinri ch} 

\Tr [edge=\edgeBlue] {Friedrich}}} 
\ps set{arrows cale=2 , linewidth=0 . 2pt} 
\pcl ine [l ine style=dashed] (A) (A I O , - l )  \pcline [l ine styl e=dashed] ( B 1 ) (B1 1 0 , - 1 )  

\pcl ine [l ine style=dashed] (B2)  (B2 1 0 , - 1 ) \pcl ine [linestyl e=dashed] (C) (C I O , - l )  

\psline{<->} (A I 0 , - . 8 ) (B 1 1 0 , - . 8 ) \psline{<->} (B2 1 0 , - . 8 ) (C l o , - . 8 ) 

Friedrich Wilhelm I. 
Friedrich 1 .  

Friedrich 
Friedrich Wilhel� 

� ____ Wilhelm Heinrich 
: flbrecht Friedric.!l : 
I I � Friedrich I I I I 
I I I I 
I I I I 
I e: > 1  I e: > 1  

If  you do not want to define the macros outside \pstree, you can assign them directly 
to edge. If you wish to assign keywords to these macros as well, the entire definition has to 
be enclosed in {} .  

x y z 

\usepackage {pstricks , pst-tree , amsmath} 

\pstree [node sepB=3pt , arrows=-> , leve lsep=2cm] {% 

\Tdia{\begin{tabular} {c}o l o\\\�\end{tabular}}}{% 
\TR [edge={ \ncbar [angle=180 , armB=0 . 3cm] }] {x} 
\TR{y} 
\TR [edge={\ncbar [armB=0 . 3cm] }] {z} 

} 

377 



378 THE MAI N PSTRICKS PACKAG ES 

In general, labels are placed without regard to the sizes of their respective boxes. There
The showbox key fore, they may appear outside the regular box, causing \psframebox to produce a wrong 

result, as you can see in the next example. 

\usepackage{pstricks , pst-tree} 

\ps shadowbox [fillcolor=lightgray , f illstyle=solid , 
framearc=O . 4] { 

\psset {tpos= . 6} 
\pstree{\Tc{3pt}}{% 

\TC* A{left} 
\TC*_{r ight}}} 

You can show the frame of the current box with the key setting showbox=true and 
then correct its dimensions with the box options. This usage is shown below for the same 
example. In some of the earlier examples it was sometimes difficult to specify the size of the 

The bounding box bounding box correctly. For this purposes, pst-tree provides eight keywords to influence the 
keywords box surrounding a node. 

bb ? The bounding box is set to the specified values, where the question mark stands for 
1, r, h, or d representing left, right, height, and depth, respectively. The distances are 
measured from the object's origin. 

xbb ? The bounding box is increased or decreased by the specified values in the corre
sponding direction. 

\usepackage{pstricks , pst-tree} 

\psset{tpo s= . 6 , showbbox=true} 
\pstree{\Tc{3pt}}{% 

\TC* A{left} \TC*_{right }} 
\qquad 
\pstree [xbbl= 1 5pt , xbbr=20pt , xbbh=5pt] 

{\Tc{3pt}}{\TC*A {left} \TC*_{right}} 

Having corrected the surrounding box, you can now use \ps shadowbox successfully, 
as shown in the next example. 

\usepackage {pstricks , pst-tree} 

\psshadowbox [fillcolor=lightgray , 
f illstyle=solid , framearc=O . 4] {% 

\psset{tpos= . 6} 
\pstree [xbbl= 1 5pt , xbbr=20pt , xbbh=5pt] {\Tc{3pt}}{% 

\TC*A{left}\TC*_{r ight}}} 

Example 

6-3-25 ; 

i ···· 

; Example 
6-3-27 



Example 
6-3-28 

Example 

6-3-29 ; 

6.3 pst-tree-Typesetting trees 

6.3.3 La bels 

The connecting line from a predecessor to a new node ( except for a root) is created imme
diately after the new node has been defined. The pst-node macros are used internally , so 
the coordinates of the two nodes \pssucc and \pspred are still available after the con
nection has been created. Therefore you can use the label macros discussed in Section 6.2 
on page 334 to create labels. In particular, vertically or horizontally aligned labels are easily 
created with the \ t ?pu t variants. 

\usepackage{pstricks , pst-tree} 

\psset{tpos= . 6}% 60% from the beginning 
\pstree [treemode=R , thistreesep= l cm ,  

thislevel sep=3cm , radius=2pt] {\Tc{3pt }}{% 
\pstree [treemode=U , xbbr=20pt] {\Tc{3pt } � {top}}{% 

\TC* �{left} 
\TC*_{r ight}} 

\TC*\ncput*{centre} 
\TC*_{bottom}} 

\usepackage{pstricks , pst-tree} 

\psset{tpos= . 6}% 60% from the beginning 
\pstree [treemode=R , thistreesep= l cm , shortput=nab , nrot= : U ,  

thislevelsep=3cm , radius=2pt ] {\Tc{3pt }}{% 
\pstree [treemode=U , xbbr=20pt] {\Tc{3pt}�{top}}{% 

\TC* �{left} 
\TC*_{r ight }} 

\TC*\ncput*{ centre} 
\TC*_{bottom}} 

The macro \nput (Section 6.2.5 on page 359) is also available; it refers to a single node, 
which would always be \pssucc here. Furthermore, pst-tree defines the following special 
options: 

rv * [settings] {object} 

These options basically correspond to \nput, but are exclusively intended for tree connec
tions here. You can use this short form in combination with other short or long forms to set 
two labels in one step. Just keep in mind that if the rv variant is used in combination with 
other label macros, it must corne immediately after the node macro. 

379 



380 THE MAIN PSTRICKS PACKAGES 

The following example shows practically every possible combination of labels. The in
struction shortput=nab replaces short forms with their \n '?put long forms. The setting 
nrot= : U requests that all labels appear in parallel to their line. 

B l  B2 

\usepackage {pstricks , pst-tree} 

\psset{tpos= . 6}% 60% from the beginning 
\pstree [treemode=R , thistreesep= l cm , %  

shortput=nab , nrot= : U , thislevelsep=3cm , %  
radius=2pt] {\Tc{3pt}-{A}}{% 

\pstree [treemode=U , xbbr=20pt] {% 

\Tc{3pt}-{B}A{top}}{% 
\TC* - {B l } A {left} 
\TC*-{B2}_{right}} 

\TC*-{C}\ncput *{centre} Example 

\TC* -{D} _ {bottom}} 6-3-30 

Table 6. 1 0: Label keywords 

Name 
tnpos 
tnsep 
tnheight 
tndepth 
tnyref 

Value Type 
l lr la lb 
value[unitJ 
value[unitJ 
value[unitJ 
number 

Default 
\empty 
empty 
\ht\strutbox 
\dp\strutbox 
empty 

The tnpos key With the keyword tnpos you can arrange labels arbitrarily in the following ways: "(l)eft, 

The tnsep key 

(r) ight, (a)bove, (b )elow". Only the abbreviations I, r, a, and b are valid. 

bottom 

\usepackage{pstricks , pst-tree} 

\pstree [treesep=O . 3cm] {\Tc{3pt}}{% 

\TC*- [tnpos=a] {top} 
\TC*- [tnpos=l] {left} 
\TC*- [tnpos=r] {right} 
\TC*- [tnpos=b] {bottom}} 

In general, PSTricks sets a distance of labelsep between the label and the box. If you 

i Example 
. 6-3-3 \  



Example 

6�3�32 

Example 

6-3-33 

Example 

6�3�34 

6.3 pst-tree-Typesetting trees 

specify any value for tnsep, this value is taken. If it is negative, the distance is measured 
starting from the node center-not from the node edge. 

normal distance from node edge 

\usepackage{pstricks , pst-tree} 

\pstree [treesep=O . 3cm] {\Tc{3pt}}{% 
\TC- {normal distance} 
\TC- [tnsep=3pt] {f rom node edge } 
\TC- [tnsep=-3pt] {from node cent er}} 

In regard to horizontal alignment, all labels refer to the same baseline. Sometimes, how-

381 

ever, you may wish to align them to the nodes. For this case you can use tnhe ight=Opt to The tnhe ight and 

eliminate the height of the label boxes, leaving them with only a depth, so that all labels are tndepth keys 

aligned at the same distance from the nodes. The same applies for tndepth if the tree is 
aligned vertically. 

X x  

\usepackage{pstricks , pst-tree} 

\Huge\pstree [treesep=O . 3 cm , radius=3pt] {\Tc{3pt }}{% 
\TC-{X} 
\TC-{x} 
\TC-{\_} 
\TC-{\f ootnotesize a} 
\TC-{g}} 

\usepackage{pstricks , pst-tree} 

\Huge\pstree [treesep=O . 3cm , radius=3pt , %  

tnheight=Opt] {\Tc{3pt }}{% 

\TC-{X} 
\TC-{x} 
\TC-{\_} 
\TC-{\f ootnot esize a} 

\TC-{g}} 

If this keyword is empty, which corresponds to {}, then vref is used for the vertical The tnyref key 

positioning of the label (page 348) .  The keyword vref denotes the vertical distance from the 



382 

G 

g 

J 

x 

H 

THE MAI N PSTRICKS PACKAGES 

baseline to the top of the surrounding box. You can also specify a value of 0 < tnyref < 1 
for this length. 

J 

G 

x 

g 

H 

6.3.4 Skip tree levels 

\usepackage {pstri cks , pst-tree} 

\ps set{levelsep= . 75cm , labelsep=5pt , %  
treenode size=O . 3}\large 

\pstree [treemode=L , angleB=-90 , angleA=90] {% 
\pstree [treemode=R , angleA=-90 , %  

angleB=90] {\TC*}{ 
\TC-{j }\TC-{G}\TC-{X} 
\TC-{g}\TC-{\_}\TC-{H}}% 

}{ \TC-{G}\TC-{g}\TC-{j } 
\TC-{X}\TC-{\_} \TC-{H}} 

% 
\psset{tnyref=O . 3}% <----
\pstree [treemode=L , angleB=-90 , angl eA=90] {% 

\pstree [treemode=R , angleA=-90 , %  
angleB=90] {\TC*}{ 

\TC-{j }\TC-{G}\TC-{X} 

\TC-{g}\TC-{\_}\TC-{H} 
}% 

}{ \TC-{G}\TC-{g}\TC-{j } 
\TC-{X}\TC-{\_}\TC-{H}} 

Usually, a connection leads from one level to the next. With the command \ skiplevel and 
the environment skiplevels, you can skip single levels and establish connections to their 
pre-precedessors. 

\ski plevel ,t��i:bg$l {node or subtree} \ begin {ski plevels} [settings] {number} 
nodes or subtrees 

\end{skiplevels}  

The skiplevels  environment may also be  replaced by nested \skiplevel commands. 

\usepackage{pstr icks , pst-tree} 

\pstree [levelsep= l cm , radius=3pt] {% 

\Toval{root}}{% 
\pstree{\TC}{% 

\TC 
\pstree{\TC* }{\TC\TC\TC}% 
\TC} 

\begin{skiplevels}{2} 
\ skiplevel{\TC*} 
\pstree{\TC*}{\TC\TC\TC}% 

\end{skiplevels}} 

, Example 

, 6-3-35 

, : Example 
6-3-36 



Example 
6·4· 1 

6.4 pst-fi l l-Filling and tiling 

6.4 pst-fi l l-Fi l l ing and ti l ing 

The package pst-fi l l  optimizes the process of  filling and tiling. The filling method covers a 
plane with a color, color pattern, or picture pattern without offering control over the under
lying coordinate system. By contrast, the tiling method takes the geometric structure of the 
covered area into account-e.g. , to achieve symmetry. Tiling or tesselation is a very old math
ematical challenge and not at all an easy one [38, 1 1 1 , 1 1 3 ] .  The package pst-fi l l  does not 
claim to cover all aspects of tesselation but exclusively concentrates on monohedral tiling. 
Monohedral tilings are composed of many copies of a single basic tile (prototile) ,  whereas 
n-hedral tilings consist of patterns that use different basic elements. Still, with \mult ido 
(see Section 6.7.9 on page 458) or \mul tirput (Section 5 . 1 1 .3 on page 267), you can create 
individual basic patterns that then lead to monohedral tilings. 

pst-fi l l  has two different modes, a manual mode and an automatic mode. Both fill the 
whole shape starting from one point and then clip tiles that are jutting out. 

manual mode To fill an area, a pattern is set n times and then written to the PostScript 
output the same number of times. 

automatic mode To fill an area, a pattern is set n times but written only once to the Post
Script output; the repetition is then handed over to PostScript. All data in the starting 
point is lost in this process, so this method can be used only for filling with subsequent 
clipping but not for tiling. 

In principle, there are no urgent reasons to prefer the manual mode. The automatic 
mode is achieved by loading pst-fi l l  with the til ing option. Every fill object, such as a 
PSTricks graphic or an external image, must be saved in the macro \psboxf ill and the 
fill style must be set to boxf ill. 

6.4.1  Keywords for fi l l ing 

Table 6. 1 1  lists the special keywords for the package pst-fi l l .  
Unless indicated otherwise, the examples use one of the following defined tiles: 

\FSquare and \FRectangle. This results in the following simple pattern: 

\usepackage{pstri cks} \usepackage [t iling] {pst-f i l l }  
\newcommand\FSquare{\begin{pspicture} ( 0 . 5 , 0 . 5 ) 

\psframe [dimen=middle] ( 0 . 5 , 0 .  5 )  \end{pspi cture}} 
\newcommand\FRe ctangle{ \begin{pspicture } ( 0 . 5 , 0 . 75 )  

\psframe [dimen=middle] ( 0 . 5 , 0 . 75 ) \end{pspi cture } }  

\psboxf ill{\FSquare} 
\begin{pspi cture} ( 2 . 1 , 2 . 1 ) 

\psframe [f illstyle=boxf ill , f i llloopadd=2] ( 2 , 2 ) 
\end{pspi cture}\qquad 
\psboxf ill{\FRe ctangle} 
\begin{pspi cture} ( 2 . 1 , 2 .  1 )  

\psframe [fillstyle=boxf ill , f i llloopadd=2] ( 2 , 2) 
\end{pspi cture} 

383 



384 THE MAIN PSTRICKS PACKAGES 

Table 6. 1 1 : Keywords for pst-f ill 

Name Value Type 
f illangle angle 
f illsepl value [unit} 
f illsepx2 value [unit} 
f illsepT value [unit} 
f illcycle value 
f illcyclex2 value 
f illcycleT value 
f illmove value [unit} 
f illmover value [unit} 
f illmover value [unit} 
f ills ize auto l { (xo ,  Yo )  (Xl ,  YI ) } 

f illloopadd2 value 
f illloopaddx2 value 
f i llloopaddr value 
PstDebu� 0 1 1 

1 Without tiling option set to 2pt . 
2 Only available with t i 1 ing option. 

Default 
0 
Opt 
Opt 
Opt 
0 
0 
0 
Opt 
Opt 
Opt 
auto 
0 
0 
0 
0 

The f i l langle key The keyword f illangle specifies by which angle the pattern is rotated with reference 

The f i l lsep, 

f i l l sepx, and 

f i l l sepy keys 

to the horizontal. 

\usepackage{pstricks} 
\usepackage [t i l ing] {pst-fill}  

\psboxf ill{ \FSquare} 
\begin{pspicture} ( 2 . 1 , 2 .  1 )  

\psf rame [f illstyle=boxf i l l , f i llangle=30] ( 2 , 2) 
\end{pspi cture} 

The keyword f ill s ep specifies the distance between the single tiles. It can also have 
negative values, as shown in the following examples (the right one has a negative value result
ing in some overlap) .  The keys f iII s epx and f iII s epy allow you to specify the separation 
along the axes individually. 

\usepackage{pstricks} 
\usepackage [til ing] {pst-fill}  

\psboxf ill{\FSquare} 
\begin{pspi cture} C 2 . 1 , 2 . 1 ) 

\psframe [f ill style=boxf i ll , f ill sep=O . 2cm] ( 2 , 2) 
\end{pspi cture}\ 
\begin{pspicture} ( 2 . 1 , 2 . 1 ) 

\psframe [fillstyle=boxf i ll , f illsep=-O . 25 cm] ( 2 , 2) 
\end{pspi cture} 

Example 
6-4-2 



-- - -··1 

Example : 
6-4-5 

6.4 pst-fi l l-Filling and tiling 

\usepackage {pstricks} 
\usepackage [t i l ing] {pst - f i l l }  

\psboxf ill{\FSquare} 
\begin{pspi cture} ( 2 . 1 , 2 . 1 ) 

\psframe [f ill style=boxf i l l , f i l l s epx=O . 2cm] ( 2 , 2 ) 
\end{pspi cture}\ 
\begin{pspi cture} ( 2 . 1 , 2 . 1 ) 

\psframe [fill styl e=boxf ill , f i lls epy=O . 2 cm] ( 2 , 2 ) 
\ end{pspi cture} 

385 

The keyword f illcycle specifies the distance by which every second row and/or col-
umn is moved, while every first row remains at the original position. The specified value The f i l l cycle ,  

forms the denominator of the fraction by which the row/column is moved. A value of 2 f i l l cyclex, and 

means a movement of � = 0 .5 ,  or 50% of one tile width to the right. Again, negative values f i l l cycley keys 

are possible. 

\usepackage{pstri cks} 
\usepackage [t il ing] {pst - f i l l }  

\psboxf ill{\FSquare} 
\begin{pspi cture} ( 2 . 1 , 2 . 1 ) 

\psframe [f illstyle=boxf ill , f i l lcyclex=2] ( 2 , 2 ) 
\end{pspi cture}\ 
\begin{pspi cture} ( 2 . 1 , 2 .  1 )  

\psframe [f ill style=boxf ill , f ill cycley=2] ( 2 , 2 ) 
\end{pspicture}\\ 
\begin{pspi cture} ( 2 . 1 , 2 . 1 ) 

\psframe [fill style=boxf ill , f i l l cycle=2] ( 2 , 2 ) 
\end{pspi cture} \  
\begin{pspi cture} ( 2 . 1 , 2 .  1 )  

\psframe [f illstyle=boxf ill , f i l lcyclex=3 , f illcycley=-2] ( 2 , 2 ) 
\end{pspi cture} 

The keyword f illmove specifies the distance by which the next row/column is dis-
placed with regard to its predecessor. f i Ilmovex affects only the horizontal axis, and The f i l lmove, 

f illmovey only the vertical axis. Negative values are also possible. Contrast this behavior f i l lmovex, and 

with that of f illcycle, where every second row/column was displaced by the same value, f i l lmovey keys 

while every first row/column remained at its original position. To make this difference more 
obvious here, a rectangle has been used as a tile. 

\usepackage {pstri cks} \us epackage [t il ing] {pst - f i l l }  

\psboxf ill{\FRectangle} 
\begin{pspi cture} ( 2 . 1 , 2 .  1 )  

\psframe [fillstyle=boxf ill , f i llmovex=O . 2] ( 2 , 2 ) \end{pspi cture} 
\begin{pspi cture} ( 2 . 1 , 2 .  1 )  

\psframe [fillstyle=boxf ill , f illmovey=O . 25] (2 , 2 ) \end{pspi cture} 
\begin{pspicture} ( 2 . 1 , 2 .  1 )  

\psframe [fillstyle=boxf ill , f illmove=O . 25] ( 2 , 2 ) \end{pspi cture} 



386 THE MAIN PSTRICKS PACKAGES 

\begin{pspi cture} ( 2 . 1 , 2 . 1 ) 
\psframe [f illstyle=boxf i l l , f i l lmovex=O . 2 , f i l lmovey=-O . 2] ( 2 , 2 ) 

\ end{pspi cture} 

The f i l l s ize key The keyword f ills ize implicitly specifies the way of filling: if it is not present or is 

The f i l l l oopadd, 

f i l l l o opaddx, and 

f i l l l o opaddy keys 

set to the value auto, filling is done in automatic mode. Otherwise, it defines the fill area in 
manual mode. 

auto The default value. In this case a plane of ( - 1 5  em, - 1 5  em) ( 1 5  em, 15 em) is tiled. 
The patterns are arranged in such a way that they appear symmetrical within the visible 
area. 

(Xo , YO ) (Xl , YI ) If only one pair of values is specified, (xo, Yo )  is set to the default value 
( 0 , 0 ) and the specified value defines (Xl , YI ) . 

The manual mode is recommended only for special cases, such as if you wish to form a 
pattern from an EPS graphic. 

\usepackage {pst ri cks} \usepackage [t il ing] {pst-fill}  

\psboxf ill{\FRectangle} 
\begin{pspi cture} ( 2 . 1 , 3 .  1 )  

\psframe [f illstyle=boxf ill , 
f i l l s ize={ ( -O . 25 , -O . 25)  (4 , 4 ) }] ( 2 , 3 ) 

\end{pspi cture} 
\begin{pspi cture} ( 2 .  1 , 3 .  1 )  

\psframe [f illstyle=boxf ill] ( 2 , 3 ) 
\ end{pspicture} 

The following keywords, which are only available in t i l ing mode, are useful for more 
complex patterns where one or more rows are missing. With f illoopadd you can specify 
the number of rows to add. 

\us epackage {pstri cks} \usepackage [t i l ing] {pst - f i l l }  
\Spe c i alCoor 
\newcommand\FHexagon{\def \HRadius{O . 25}% 

\begin{pspi cture} ( O . 433 , O . 375 ) %  
\pspo lygon ( \HRadius ; 30)  ( \HRadius ; 90) (\HRadius ; 1 50 ) %  

(\HRadius ; 2 1 0 )  ( \HRadius ; 270)  ( \HRadius ; 330 ) %  hexagon 
\end{pspi cture }} 

\psboxf ill{ \FHexagon} 
\begin{pspicture } ( 2 , 2 ) \ps£rame [f i l l style=boxf ill] ( 2 , 2) 
\ end{pspi cture} 

Example 

6-4-7 



i-�- ---:-I [ Example I 
6-4-8 ! 

___ ._J 

6.4 pst-fil l-Filling and tiling 

\begin{pspi cture} ( 2 , 2 ) \psframe [f illstyle=boxf ill , f illcyclex=2] ( 2 , 2 ) 
\end{pspicture} 
\begin{pspi cture} ( 2 , 2 ) \psframe [fill styl e=boxf ill , 

f ill cyclex=2 , f illloopaddy= 1 ]  ( 2 , 2 ) 
\end{pspi cture} 

PstDe bug is not a real debugger but shows only the process of tiling, so that problems 

387 

with special patterns can be recognized more easily. The following examples are identical The PstDe bug key 

to the previous ones, but this time with the additional key setting PstDebug= l .  To prevent 
rounding errors from changing the result, we might want to increase the coordinates of the 
enclosing pspi cture environment a bit. 

� ........... ........... /'.. ........... 

'" '" '" ""'" "'" 

\usepackage{pst r i cks} 
\us epackage [t il ing] {pst-f i l l }  
% \FHexagon a s  previously def ined 

\psboxf ill{\FHexagon} 
\begin{pspicture} ( -O . 5 , -O . 5 ) ( 2 . 5 , 2 . 5 ) 

\psframe [l ine color=blue , f illstyle=boxf ill , PstDebug= l ] ( 2  , 2 ) 
\end{pspi cture }\\ [ - 1 0pt] 
\begin{pspi cture } ( -O . 5 , -O . 5 ) ( 2 . 5 , 2 . 5 ) 

\psframe [line color=blue , f il l style=boxf ill , 
f i ll cyclex=2 , PstDebug= 1 ]  ( 2 , 2 ) 

\end{pspi cture} 

\ps boxf ill accepts everything as an argument (e .g. ,  a graphic, which has to be scaled 
accordingly). Further examples can be found in the documentation on pst-fi l l  [3 1 ] .  Filling with an image 

\usepackage {graphi cx , pstricks} 
\usepackage [t i l ing] {pst-f ill} 

\psboxf ill{\includegraphi cs [ s c ale=O . 1 5] {figures/rose}} 
\begin{pspi cture} ( 2 . 1 , 2 .  1 )  

\psframe [fillstyle=boxf ill , f illloopadd= l ]  ( 2 , 2 ) 
\ end{pspicture}\ 
\begin{pspi cture} ( 2 . 1 , 2 . 1 ) 

\psframe [f illstyle=boxf ill , f i l lcyclex=2 , 
f illloopadd= l ]  ( 2 , 2 ) 

\end{pspi cture} 



388 THE MAIN PSTRICKS PACKAGES 

6.5 pst-3d-Shadows, ti lting, and th ree-d imensional  
representations 

The base package pstricks contains a few commands for producing three-dimensional ef
fects. In addition, several packages support the creation of three-dimensional objects or 
functions, as shown in Table 6. 1 2. Although pst-3d is one of the older packages, it will be 
discussed here because it includes the preliminary stages of 3-D representations: shadows 
and tilting. 

Table 6. 12 :  Summary of 3-D packages 

Package 
pst-3d 
pst-3d plot 
pst-fr3d 
pst-g r3d 
pst-map3d l l  
pst-ob3d 

pst-vue3d 

6.S . 1  Shadows 

Content 
Basic three-dimensional operations 
Three-dimensional plots 
Three-dimensional framed boxes 
Three-dimensional grids 
Three-dimensional geographical projection 
Three-dimensional basic objects 
Three-dimensional views 

pst-3d defines the command \psshadow with the following syntax: 

I \ps shadow{�¢tti�g$l {material} I 
The special keywords for this command are described on the following pages. The command 
also supports all other keywords that are useful for creating shadows. You can add shadows 
to any text-like material, text, rules, and mathematical expressions in inline mode. 

\usepackage{pstri cks , pst-3d} 

\psshadow{\Huge shadow} \\ [ 1 0pt] 
\ps shadow{\Huge $f (x) =x�2$}\\ [ 15pt] 
\ps shadow [Tshadowsize=2 . 5] {% 

\rule{2cm}{ 10pt}}\\  

The Tshadowangle The keyword Tshadowangle defines the angle of the shadow with regard to the per-
key pendicular of the paper plane. Therefore, the angle of the text itself is 90'. Negative angles 



Example 
6-5-4 

6.5 pst-3d-Shadows, tilting, and three-dimensional representations 

cause the shadow to stand out from the paper plane. Shadow angles cannot take the value 0° 
or 180°. 

\us epackage{pstricks , pst-3d} 

\psshadow{\Huge shadow} \ \ [5pt] 
\psshadow [Tshadowangle=30] {\Huge shadow} \\ [5pt] 
\ps shadow [Tshadowangle=70] { \Huge shadow} \ \ [5pt] 
\ps shadow [Tshadowangle=-30] {\Huge shadow} 

389 

The keyword Tshadowcolor is used to define the shadow color. The Tshadowcolor 

key 

\usepackage{pstri cks , pst-3d} 

\ps shadow{\Huge shadow} \ \ [5pt] 
\psshadow [Tshadowcolor=red] { \Huge shadow} \\ [5pt] 
\ps shadow [Tshadowcolor=green] {\Huge shadow} \\ [5pt] 
\psshadow [Tshadowc olor=blue] { \Huge shadow} 

The keyword Tshadows ize is used to determine the scaling factor of the shadow. The Tshadows ize 

key 

6.5.2 Tilting 

\usepackage{pstricks , pst-3d} 

\ps shadow{\Huge shadow} \\ [5pt] 
\ps shadow [Tshadows ize=O . 5] {\Huge shadow} \ \ [ 1 0pt] 
\ps shadow [Tshadows ize=1 . 5] {\Huge shadow}\ \ [20pt] 
\psshadow [Tshadows ize=2 . 5] {\Huge shadow} 

By tilting objects you can simulate perspective views of three-dimensional objects. pst-3d 
defines two commands for this purpose: 

\pstil t [settingsl {angleHobject} \psTil t [sfi!t#ngsJ {angleHobject} 

Figure 6.2 shows the difference between these two macros. In general, these macros can take 
any material as their argument and then tilt it. Vertical material, such as displays, may first 
have to be put into a \parbox (see the examples) .  



390 

o 
o 

o 

THE MAIN PSTRICKS PACKAGES 

\Bar \psTilt{30}{\Bar} \pst ilt{30}{\Bar} 

1 2 3 4 5 6 7 8 

Figure 6.2: The difference between \pst il  t and \psTil t 

9 

The command \pstilt tilts objects by rotating each point (x, y ) by a given angle 
\pst ilt around its nadir point [the point (x,O) 1 while preserving the distance between the tilted 

point and the nadir. In contrast, \psTil  t keeps the vertical position of all tilted points. See 
Figure 6.2 for a comparison. 

J 2 

\usepackage{pstri cks , pst-3d , multido} 

\begin{pspi cture} ( 5 , 2 ) 
\newcommand*\Bar{\psframe ( O , O ) ( O . 25 , 2 ) }  
\mult ido{ \nA= 15+15}{ 1 1 }{ \rput ( 2 . 5  , O ) {\pst ilt{\nA}{\Bar} 1�E�;';;I��: 
\end{pspi cture} I 6�� I 

\us epackage {pstri cks , pst-3d , multido} 

\pstilt{60}{\parbox{O . 5\linewidth}{% 
\ [  f (x ) =\int _ l � { \ infty}\frac { l } {x}\ , dx= l \] 

}} 

\usepackage{pstri cks , pst-3d , pst -plot , multido} 

\pst ilt {60}{% 

} 

\begin{pspi cture} (-O . 5 , -O . 5 ) ( 2 , 2 ) 
\psaxes [axes style=frame] ( 2 , 2) 

\end{pspi cture}% 

\us epackage{graphi cx , pstri cks , pst-3d , mult ido} 

\ includegraphi cs  [width=3cm] {pstri cks/t iger}% 
\pst il t{70}{% 

i E��;';ple 
I 6��-_6 __ 

J 

Example 
6-5-7 

\ includegraphics  [width=3cm] {% Example 
pstricks/t iger}} 6-5-8 



-E����le I 
6-5-9 I 

6.S pst-3d-Shadows, tilting, and three-dimensional representations 

\usepackage {pstr i cks , pst-3d , multido} 

\newpsstyle{TransparencyBlack}{% 
f il l style=vline s , hat chwidth=O . l \p s linewidth , 
hat chsep= 1 . 5\psl inewidth} 

\begin{pspi cture } ( 2 , 3 ) 

391 

\rput [lb] ( 0 , 0 ) {\pst i lt {45}{\psframe [l inestyle=dashed , %  
f i llstyle=solid , f ill color=blue] ( 2 , 3 ) }} 

\psframe [style=TransparencyBl ack] ( 0 , 0 ) ( 2 , 3 ) 
\end{pspi cture} 

The command \psTil t tilts objects in such a way that their vertical extension is pre-
served, while the horizontal extension grows as required so that, in theory, the object could \psTil t 

become infinitely wide (see Figure 6.2 on the facing page) .  

\usepackage{pstri cks , pst-3d , mult ido} 

\begin{pspi cture * }  (\l inewidth , 2) 
\newcommand*\Bar{\psframe ( O , O ) ( 0 . 25 , 2 ) }  
\multido{\nA= 10+10}{17}{ \rput ( 0 . 5\linewi dth , 0 ) {\psTilt{\nA}{\Bar}}}  

\end{pspi cture* }  

/=J /(J) =  - dz' = J 

o 
o J 

J J' 

.2 

\us epackage{pstri cks , pst-3d} 

\psTilt{60}{\parbox{0 . 5\linewidth}{% 
\ [  f (x ) =\int _ 1 A {\ infty}\frac { 1 } {x}\ , dx=1 \]  

}}  

\usepackage{pstricks , pst-3d , pst-plot} 

\psTi lt{60}{% 
\begin{pspi cture} ( -0 . 5 , -0 . 5 ) ( 2 , 2 ) 

\psaxes [axe s style=frame] ( 2 , 2 ) 
\end{pspi cture}% 

} 



392 THE MAIN PSTRICKS PACKAGES 

\usepackage{graphicx} 
\us epackage {pstricks , pst-3d , pst-plot} 

\ includegraphics [width=3cm] {pstricks/t iger}% 
\psTilt{70}{% 

\ includegraphi c s [width=3cm] {% 
pstricks/t iger}} 

\usepackage{pstricks , pst-3d} 

\newps style{TransparencyBlack}{% 
f i llstyle=vline s , hat chwidth=0 . 1 \psl inewidth , 
hat chsep= 1 . 5\pslinewidth} 

\begin{pspi cture } ( 2 , 3 ) 

: Example 

�_ 6-5-J� 

\rput [lb] ( 0  , 0 ) {\psTilt{45}{\psframe [l ine style=dashed , %  
f illstyle=solid , f illcolor=blue] ( 2 , 3) }} 

\psframe [style=TransparencyBlack] ( 0 , 0 ) ( 2 , 3 ) 
\ end{pspi cture} 

The package rotating provides macros to rotate text, e.g. , to produce slanted table head
ings. The problem that arises when the text is surrounded by a frame is easily solved with 
\pst il  t or \psTilt. 

\usepackage{pstri cks , pst-3d} 
\newcommand*\tabA{\begin{tabular}{*{3}{ l p{ 1 em}} I } \hl ine 
\rot ateleft{column 1 \  }&\rotateleft{column 2\ }& 

\rotateleft{column 3\ } 
\end{t abular}} 
\newcommand*\tabB{ \begin{tabular}{ * {3}{ l p{ 1 em}} I }\hl ine 

1 & 2 & 3 \\\hline 4 & 5 & 6 \\ \hl ine 
\end{tabular}} 

\begin{tabular}{l} 
\pstilt {60}{\tabA}\ \  \tabB 

\ end{tabular}\\ [5pt] 
\begin{tabul ar}{l} 

\psTilt{60}{\tabA}\\  \tabB 
\end{tabular} 

6.5.3 Three-d imensional  representations 

pst-3d supports only parallel projections, so geometrical objects like spheres or cylinders are 
displayed with quite restricted options. Although pst-3d defines just a single macro for 3-D 

proj ection, the package is very efficient and serves as a basis for other packages [80, 1 34] . 

, Example 
6-5- 14 



6.5 pst-3d-Shadows, tilting, and three-d imensional representations 

\ ThreeDput [settings] (x,y,z) {object} 

The package pst-3d defines only this one macro. Nevertheless with the help of this macro, 
you can display virtually any linear or planar object within three-dimensional space. If no 
coordinates are specified, the default value for the origin is ( 0 , 0  , 0 ) . The object is anything 
that can be put into a box. If it is vertical material in the 'lEX sense, it first must be put into 
a \parbox command or minipage environment. To simplify the source code, we use the 
macro \ I I IKOSystem in the following examples. This macro draws the coordinate axes 
with their grid and will not be explicitly mentioned again. 

\usepackage {pstricks , pst -3d} 
% \ I I IDKOSystem and \xyPlain def ined in 
% example code 

\begin{pspi cture} ( 5 , 4 . 25 )  
\psset{subgriddiv=0 , griddot s = 1 0 , 

393 

gridlabe ls=7pt , vi ewpoint = 1  - 1  0 . 75} 
\ I I IDKOSyst em{5} 
\ThreeDput { \psframe * [line c olor= . ! 80] ( 3 , 3 ) }  
\ThreeDput ( 1 . 5 , 1 . 5 , 0) {\Huge below} 
\ThreeDput ( 0 , 0 , 1 . 5 ) {% 

\psframe * [line c olor= . ! 25] ( 3 , 3 ) }  
\ThreeDput ( 1 . 5 , 1 . 5 , 1 . 5 ) {\Huge middle} 
\ThreeDput ( 0 , 0 , 3) {% 

\psframe * [linecolor= . ! 50] ( 3 , 3 ) }  
\ThreeDput ( 1 . 5 , 1 . 5 , 3 ) { \Huge above} 
\ThreeDput (4 , 4 , 0 ) {% 

\psframe * [linecolor= . ! 75] ( - 1 , - 1 ) ( 1 , 1 ) }  
\ThreeDput (4 , 4 ,  0 )  {\psdot [dot s cale=3] } 

% redraw front plain to appear on t op 
\xzPlain{5} 

\end{pspi cture} 

The coordinates of \ ThreeDput refer to the origin of the object, which does not neces
sarily have to be the visible geometrical center. 

\psframe ( 2 , 2 ) %  
\psframe ( - 1 , - 1 ( 1 , 1 ) %  
arbitrary text% 

origin bott om left ( 0 , 0 ) 
origin in the middle ( 0 , 0 ) 
origin in the middle of the base l ine 

In the preceding example, the smaller square with its center ( 0  , 0 ) has been positioned 
exactly at the coordinates (4 , 4 , 0 ) .  The macro \ ThreeDput can be used in a variety of 
ways, especially in conjunction with the package pst-vue3d [80] . By specifying the normal 
vector n and a point P( x, y , z) on a straight line and/or a plane, you can determine its exact 
position in space. Areas can be shaded in different levels of brightness to enhance the three
dimensional appearance. 



394 THE MAIN PSTRICKS PACKAGES 

\usepackage{pstricks , pst -3d} 

\begin{pspicture} ( -4 . 5 , -3 . 5 ) ( 3 , 4 . 75 )  
\ps set{subgriddiv=O , griddot s = 1 0 , gridlabel s=7pt , vi ewpoint = 1  1 . 5  1 }  
\ I I IDKOSystem [gridlabel s=Opt ] {5} 
\ThreeDput [normal=O 0 1]  

{\psl ine [l inewidth=3pt , linecolor=blue] {->} (4 , 4 )  (4 , 5 . 5) % xy plane 
\uput [90] (4 , 5 .  5) {\rotateleft{\textcolor{blue}{$\vec{n} _A$} }}} 

\ThreeDput [normal=O - 1  0]  
{\psl ine [l inewidth=3pt , l ine color=green] {->} (4 , O) ( 5 . 5 , 0  ) % xz plane 

\uput [90] ( 5 . 5 , 0 ) {\ps s c alebox{ - 1  1 }{\text color{green}{$\vec{n}_B$}}}} 
\ThreeDput [normal= 1 0 0] 

{\psl ine [l inewidth=3pt , linecolor=red] {->} ( 0 , 4) ( 0 , 5 . 5) % yz plane 
\uput [O] (0 , 5 .  5) {$\vec{n}_{top}$}}  % cube and axe s 

\ThreeDput [normal=O 0 1 ]  ( 0 , 0 , 4 ) {  \psframe * [linecolor= . ! 50] (4 , 4 )  
\rput ( 2 , 2 ) {\Huge\textbf{TOP}}} 

\ThreeDput [normal=O 1 0] ( 4 , 4 , O) {\psframe * [linecolor= . ! 75] ( 4 , 4) 
\rput (2 , 2 ) { \Huge \textbf { s ide A}}} 

\ThreeDput [normal= 1  0 0] (4 , 0 , 0) {\psframe * [l ine color= . ! 25] ( 4 , 4) 
\rput ( 2 , 2 ) { \Huge \t extbf { s ide B}}} 

% the small axe s  
\ThreeDput [normal=O 0 1 ]  ( 0 , 0 , 4) {\psl ine (4 , 0 ) \uput [90] ( 3 , 0) {X$_{top}$} 

\psl ine ( 0 , 4) \uput [O] ( 0 , 3 ) {Y$_{t op}$}}  
\ThreeDput [normal=O 1 0] (4 , 4 , 0 ) {\psl ine (4 , 0) \uput [90] ( 3 , 0) {X$_{A}$} 

\psline (0 , 4) \uput [0] ( 0 , 3 ) {Y$_{A}$}} 
\ThreeDput [normal= 1  0 0] (4 , 0 , 0 ) {\psl ine (4 , 0 ) \uput [90] ( 3 , 0 ) {X$_{B}$ }  

\psl ine (0 , 4) \uput [0] ( 0 , 3 ) {Y$_{B}$}} 
\end{pspi cture} 

Example 
6-5- 17 



6.S pst-3d-Shadows, tilting, and three-dimensional representations 

Figure 6.3: viewpo int definition 

Table 6. 1 3  shows the keywords that can be used to modify 3-D representations. 

Table 6. 1 3 : Summary of3-D keywords 

Name Value Type Default 
viewpoint valuex valuey valuez 1 - 1  1 
viewangle angle 0 
normal valuex valuey valuez 0 0 1  
embedangle angle 0 

The direction from which you look at a 3-D object is essential for its representation. 
With viewpo int you specify the (x , y,  z ) coordinates, which then define the vector of the 
viewing direction. In a parallel projection the length of this vector is unimportant, so that 
( 1  O .  5 1 .  5 )  and (2 1 3 )  yield the same representations. Figure 6.3 shows this repre
sentation. Naturally, you would look at the figure itself from a different angle; otherwise, you 
would look directly onto the vector. 

For Figure 6.3, we defined a vector of viewpo int=3 5 2. If you would like to 
look at something from a larger distance along the y-axis, you could think of specifying 
viewpoint=O 1 3. That is, the viewer moves one unit in the y direction and three units in 
the z direction from the center (origin) and watches everything from there. However, zero 
values for viewpoint (along any axis) are not possible: they would result in a division by 
zero later on when displaying or printing the result. Instead, specify at least 0 . 001 ,  which 
prevents the division by zero problem while still essentially ignoring that direction. 

A useful value for the viewpoint is viewpo int=1 1 0 . 5 , which corresponds to a 
horizontal rotation by 450 and a vertical rotation by about 200• Another useful point is 

395 

The vi ewpoint key 

� Division 

Y by zero danger 



396 THE MAIN PSTRICKS PACKAGES 

viewpo int= 1 . 5  1 0 . 5, which corresponds to a horizontal rotation by 33' and the same 
vertical rotation. Both are shown in the example below. 

\usepackage {pstri cks , pst-3d} 

\psset {unit= . 3 cm} 
\begin{pspi cture} ( - 5 , -3)  (4 , 3 ) 

\psset{viewpoint=l  1 0 . 5 } 
\ThreeDput [normal=O 0 1 ] {\psgrid ( - 3 , -3 ) ( 6 , 6 ) }  
\ThreeDput [normal=- l 0 0] ( 0 , 4 , 0 ) {\psframe * [linecolor=blue] (4 , 4) }  

\end{pspicture} \hf i l l  
\begin{pspi cture} ( - 5 , -3)  (4 , 3 ) 

\psset{viewpo int= 1 . 5  1 0 . 5 } 
\ThreeDput [normal=O 0 1 ] {\psgrid ( - 3 , -3 ) ( 6 , 6 ) }  
\ThreeDput [normal=- l 0 0] ( 0 , 4 , 0 ) { \psframe * [l ine color=blue] (4 , 4 ) }  

\end{pspi cture} 

The next examples provide a view of a cube, using a viewpo int from each of the four 
"top" corners: 

viewpo int=- l - 1  1 viewpo int=l  - 1  1 

viewpo int=l  viewpo int=- l 1 1 
Example , 
6-5- 19 j 



Example 
6-5-20 

Example 
6-5-2 1 . 

6.5 pst-3d-Shadows, tilting, and three-dimensional representations 397 

It is important to realize that PSTricks does not check which side hides another side; the 
last drawn side wipes out those drawn earlier, even if it lies behind them in 3-D space. When 
drawing the different views, we must therefore draw the sides in an adequate order. 

In addition to using viewpo int, you can rotate every object with the help of the key-
word viewangle. You can also perform this manipulation with the \rotatebox com- The vi ewangle key 

mand, but viewangle has some more advantages. Since it can sometimes be difficult to 
clearly identify front and back side in a three-dimensional coordinate system, a rectangle 
has been laid on the :ry plane in the following examples. 

-i; 

\usepackage{pstri cks , pst-3d} 

\begin{pspi cture} ( -3 , -2 . 5 )  ( -3 , 3 ) 
\psset{subgriddiv=O , griddot s = 1 0 , gridlabel s =7pt , 

unit=O . 7 , vi ewpoint = 1  1 O . 5 , viewangle=20} 
\ I I IDKOSystem{5}% see above 
\ThreeDput ( O , O , O) {\psframe * [linecolor= . ! 80J (4 , 4 ) }  
\ThreeDput (2 , 2 , O) {\Huge below} 

\end{pspi cture} 

\usepackage{pstri cks , pst-3d} 

\begin{pspi cture} C -4 , -2 . 5 ) ( - 2 , 3 ) 
\psset{ subgriddiv=O , griddot s = 1 0 , gridlabel s=7pt , 

unit=O . 7 , vi ewpoint = 1  1 . 5  O . 5 , viewangle=-30} 
\ I I IDKOSystem{5}% see above 
\ThreeDput (O , O , O) {\psframe * [line c o l or= . ! 80J (4 , 4 ) }  
\ThreeDput (2 , 2 , O ) {\Huge below} 

\end{pspicture} 

The keyword normal denotes the direction of the normal vector, which is  perpendicu-
lar to its corresponding plane. Therefore the normal vector can be used to clearly determine The normal key 

the position of an object in three-dimensional space. 

\usepackage{pstricks , pst-3d} 

\begin{pspi cture} (-3 . 5 , -2 . 5 ) ( -3 , 5 ) 
\psset{subgriddiv=0 , griddot s = 1 0 , gridlabels=7pt , vi ewpoint = 1  1 . 5  O . 5} 



398 THE MAIN PSTRICKS PACKAGES 

\ I I IDKOSystem{5} 
\ThreeDput ( O , O , O ) {\psframe * [linecolor= . ! 50] (4 , 4 ) } 
\ThreeDput ( 2 , 2 , 0 ) {\huge\rotatedown{xy-plane } }  
\ThreeDput [normal=O - 1  0] ( O , O , O ) {\psframe * [l inecolor= . ! 50] (4 , 4 ) }  
\ThreeDput [normal=O 1 0 ]  ( 2 , 0 , 2 ) {\huge xz-plane} 
\ThreeDput [normal= 1  ° 0] ( O , O , O) {\psframe * [l ine color= . ! 75] (4 , 4) }  
\ThreeDput [normal= 1  ° 0] ( 0 , 2 , 2 ) {\huge yz-plane} 
\ThreeDput [normal=O ° 1 ]  ( 0 , 0 , 0 ) 

{\psline{->} (O , O ) ( 0 , 5 ) \psline{->} ( 0 , 0 ) ( 5 , 0) }% xy plane 
\ThreeDput [normal=O 1 0] ( O , O , O ) {\psline{->} ( O , O ) ( 0 , 5 ) }% xz plane 

\end{pspi cture} 

Without the help of the normal vector, this example could not have been created so easily. 
Let us step through the code for a better understanding. 

\psset{ viewpoint=1  1 . 5  O .  5} The viewpo int is placed at P( l ,  1 . 5 , 0 . 5 ) .  

\ I I IDKOSystem{5}  First the coordinate system with the grid i s  drawn, s o  that axes and 
grid remain visible on the planes, which allows for a better visual orientation. 

\ ThreeDput ( 0 , 0 ,  O ) {\psframe* [linecolor=gray80] (4 , 4) } This puts the 
lower-left edge of a square with a side length of 4 at the origin of the coordinate 
system. Since no normal vector is specified here, the area is placed at the default 
position ii = (0 , 0 ,  1 ) ,  in the first quadrant of the xy plane. 

\ThreeDput ( 2 , 2 , 0 ) { \huge\rotatedown{xy-plane}} This places text that is ro
tated by 180" in the xy-plane, centered on the point (2 , 2 , 0 ) .  

\ThreeDput [normal=O - 1  0] ( 0 , 0 , 0 ) { \psframe* [linecolor=gray85] (4 , 4) }  
This puts the lower-left edge of a square with a side length of 4 at the origin of the co-

I"ExamPle 
L�-5-22 



6.5 pst-3d-Shadows, tilting, and three-dimensional representations 

ordinate system. Since the normal vector here is the "negative" y-axis, the square is 
positioned in the first quadrant of the xz plane. With normal=O 1 0, it would have 
been in the second quadrant. 

\ThreeDput [normal=O 1 0] (2 , 0 ,  2 ) {\huge xz-plane} This places the text in 
the xy-plane centered on the point (2 , 0 , 2 ) .  Since with regard to the viewpoint you 
look at the xz plane from the back, the normal vector for the area has to be reversed; 
otherwise, the text would be visible from the "back". 

\ThreeDput [normal=1 0 0] ( 0 , 0 , 0 ) {\psframe* [line color=gray90] (4 , 4) }  
This puts the lower-left edge of a square with a side length of 4 at the origin of the coor
dinate system. The normal vector is the "positive" x-axis, so the square is positioned in 
the first quadrant of the y z plane. 

\ThreeDput [normal=1 0 0] ( 0 , 2 , 2 ) {\huge yz-plane} This places the text in 
the yz-plane centered on the point (0 ,  2, 2 ) .  Since the text is written on the "positive" 
side of the area, the normal vector stays the same. 

\ThreeDput [normal=O ° 1] ( 0 , 0 , 0 ) The coordinate axes have been covered by the 
three areas and are now redrawn, first the x- and y-axes. 

\ ThreeDput [normal=O 1 0] ( 0 , ° , 0 )  Now the z-axis is redrawn. 

With viewangle, you can rotate an object perpendicular to the plane of the viewer. 

399 

With the keyword embedangle, you can rotate it perpendicular to the normal vector. The The embedangle key 

angles are counted mathematically (i.e. , counterclockwise). 

\usepackage{pstricks , pst-3d} 

\newcommand\tBlack [2] {\psframe [style=#2] (2 , 2 ) 
\rput ( 1 , 1 ) {\text color{# 1 } { \textbf {PSTr i cks }}}} 

\newpsstyle{Sol idYellow}{fillstyle=sol id , f i ll color=yellow} 
\newpsstyle{TransparencyRed}{fill style=vline s , hat chcolor=red , 

hat chwidth=0 . 1 \psl inewidth , 
hat chsep= 1 \psl inewidth} 

\newps style{TransparencyBlue}{fillstyle=vline s , hatchcolor= . ! 25 ,  
hat chwidth=0 . 1 \psl inewidth , 
hat chsep= 1 \pslinewidth} 

\begin{pspi cture} ( - 1 . 2 , - 1 . 75 )  (4 . 8 , 3 . 7 ) 
\ps set{ subgriddiv=0 , griddot s = 1 0 , gridlabels=7pt } 
\ThreeDput{\psgrid [subgriddiv=O] ( -2 , 0 ) (4 , 3 ) }  % embedangle=O 
\ThreeDput ( - 1 , 0 , O ) {\tBlack{black}{SolidYellow}} 
\ThreeDput (2 , 0 , 0 ) {\tBlack{black}{SolidYellow}} 
\ThreeDput [embedangle=50] ( - 1 , 0 , 0 ) {\tBlack{gray}{TransparencyRed}} 
\ThreeDput [embedangle=50] ( 2 , 0 ,  0 )  {\tBlack{gray}{TransparencyBlue }} 

% the normal vectors 
\ThreeDput [normal=O 1 0] ( - 1 , 0 , 0) 

{\psline [l inewidth=0 . 1 , l ine col or=red] ( 0 , 4) }  



400 THE MAIN PSTRICKS PACKAGES 

\ThreeDput [normal=O 1 0J ( 2 , 0 , 0 ) 
{\psline [l inewidth=0 . 1 , line color=blueJ ( 0 , 4) }  

\end{pspi cture} 
\ quad 
\psset{viewpoint = l  1 100} 
\begin{pspi cture} ( -2 . 5 , -4 . 5 ) ( 2 . 8 , 1 . 7 ) 

\ThreeDput {\psgrid [subgr iddiv=OJ ( -2 , 0 ) ( 4 , 3 ) }  % embedangle=O 
\ThreeDput ( - l , O , O ) {\tBlack{black} {Sol idYel l ow}} 
\ThreeDput ( 2 , 0 , 0 ) {\tBl ack{black}{Sol idYe llow}} 
\ThreeDput [embedangle=50J ( - l , O , O ) {\tBlack{gray} {TransparencyRed}} 
\ThreeDput [embedangle=50J ( 2 , 0 , 0 ) {\tBlack{gray}{TransparencyBlue}} 

% the normal vectors 
\ThreeDput [normal=O 1 OJ ( - 1 , 0 , 0 ) 

{\psline [linewidth=O . 1 , l inecolor=redJ ( 0 , 4 ) }  
\ThreeDput [normal=O 1 OJ  ( 2 , 0 , 0) 

{ \psl ine [l inewidth=O . 1 , line color=blue J ( 0 , 4) }  
\ end{pspi cture} 

". 

6.6 pst-3d p lot-3-D para l lel projections of functions and 
data 

The package pst-3d plot supports the representation of three-dimensional mathematical 
functions and three-dimensional data sets. It is based on the package pst-plot (see Sec
tion 6. 1 on page 3 1 3 ) and has nearly the same syntax. Furthermore, pst-3d plot provides 
macros for the parallel projection of simple points, lines, curves, figures. and bodies into 
three-dimensional space. In contrast to the packages pst-3d and pst-view3d (see Section 6.5 
on page 388),  you do not need, and therefore cannot define, a viewpoint. The parallel pro
jection simplifies the use of the commands, but also restricts their possibilities. 



; Example 
6·6- 1 

6.6 pst-3dplot-3-D parallel projections of functions and data 

6.6. 1 Commands for 3-D drawi ngs 
Three-dimensional coordinate axes are created with the following syntax: 

[ \pstThreeDCoor I����g�l.1 [ 
If no settings are specified, the coordinate cross is drawn with the following default values: 

xMin= - 1 , xMax=4 , yMin= - 1 , yMax=4 , zMin= - 1 , zMax=4 , Alpha=45 , Beta=30 

z 

:1; 

z 

x 

y 

\usepackage{pstri cks , pst -3dplot} 

\begin{pspi cture} ( -3 , - 1 )  ( 3 , 3 . 25 )  
\pstThreeDCoor 

\end{pspi cture} 

\usepackage {pstri cks , p st -3dplot} 

\begin{pspi cture} ( -2 , - 1 )  ( 1 , 2 ) 
\psset{Alpha=-60 , Beta=30} 
\pstThreeDCoor [linecolor=blue , %  

xMax=2 , yMax=2 , zMax=2J 
\end{pspi cture} 

The angles Alpha and Beta influence the representation of all commands and should 
always be set globally with \psset. 

\pstThreeDPut (settiH�l . Cx,y,z) {object} 

Internally \pstThreeDPut defines a two-dimensional node temp©pstNode and then uses 
the \rput command to place the object from its argument at these coordinates. The syntax 
is similar to \rput. 

401 



402 THE MAIN PSTRICKS PACKAGES 

Z 

TUGboat 
I 

\usepackage{pstri cks , pst -3dplot} 

\begin{pspi cture } ( -2 , - 1 )  ( 1 , 2 ) 
\ps set{ Alpha=-60 , Beta=-30} 
\pstThreeDCoor [linecolor=blue , xMax=2 , %  

yMax=2 , zMax=2] 

z 

Z 

x 

I 
I 

\pstThreeDPut ( 1 , 0 . 5 , 2 ) {\large TUGboat} 
\pstThreeDDot [drawCoor=true] ( 1 , 0 . 5 , 2 ) 

\end{pspi cture} 

\pstThreeDNode1.lltii!' Cx,y,z) {node name} 

Because (x, y , z) are saved internally as a two-dimensional node, these coordinates cannot 
be used to replace the coordinate triplet Cx , y , z) for the purposes of the special coordinates 
used by PSTricks (Section 5 . 14  on page 296) .  If A and B are two nodes defined this way, then 
\psline{A}{B} draws a line from A to B. 

With this command dots can be defined and drawn together with their corresponding coor
dinates (dotted lines) .  

• 

y 

\usepackage {pst ri cks , pst-3dplot}  

\begin{pspi cture} (-2 , - 2 )  (2 , 2 ) 
\psset {xMin=-2 , xMax=2 , yMin=-2 , yMax=2 , zMax=2 , Beta=25} 
\pstThreeDCoor 
\psset {dotstyle=* , dots cale=2 , l ine col or=blue , drawCoor=true} 
\pstThreeDDot ( - 1 , 1 , 1 ) 
\pstThreeDDot ( 1 . 5 , - 1 , - 1 )  

\end{pspi cture} 

\pstThreeDLine,!!��t��i�lli (Xl , YI , Zl ) (X2 , Y2 , Z2 ) 

All general keywords for lines can also be used for three-dimensional lines (see Section 6. 1 
on page 3 13 ) .  

\usepackage{pstri cks , pst-3dplo t }  

\psset{xMin=-2 , xMax=2 , yMin=-2 , yMax=2 , zMin=-2 , zMax=2} 
\begin{pspicture} (-2 , - 2 )  ( 2 , 2 . 25 )  

\pstThreeDCoor 
\psset{dot style= * , l ine color=re d , drawCoor=true} 
\pstThreeDDot ( - 1 , 1 , 0 . 5 ) 
\pstThreeDDot ( 1 . 5 , - 1 , - 1 )  
\pstThreeDLine [l inewidth=3pt , %  

l ine color=blue , arrows=->] ( - 1 , 1 , 0 . 5 ) ( 1 . 5 , - 1 , - 1 )  
\end{pspi cture} 

Example 
6·6·3 



Example I 
6-6-7 

6.6 pst-3dplot-3-D parallel projections of functions and data 403 

A triangle is defined by its three corners. If the keyword f illstyle has a value different 
from none, then the triangle is filled in the usual way with the current fill color. 

\usepackage{pstricks , pst -3dplot} 

\begin{pspi cture} ( -3 , -4) ( 3 , 3 . 25 )  
\pstThreeDCoor [xMin=-4 , xMax=4 , yMin=-3 , 

zMin=-4 , zMax=3] 
\pstThreeDTriangle [  

f illcolor=yellow , f ill style=solid , 
y linecolor=blue , 

l inewidth= 1 . 5pt] ( 5 , 1 , 2 ) ( 3 , 4 , - 1 ) ( - 1 , -2 , 2 ) 
\pstThreeDTriangle [  

drawCoor=true , l ine color=black , 
l inewidth=2pt] ( 3 , 1 , -2 ) ( 1 , 4 , - 1 ) ( -2 , 2 , 0 ) 

\ end{pspi cture} 

The arguments of \pstThreeDSquare define the vectors 0, 71, and if with a relation as 
shown in the following example: 

z 

y 

\us epackage{pstricks , pst -3dplot} 

\begin{pspi cture} ( - 1 , - 1 )  (4 , 4) 
\pstThreeDCoor [xMin=-3 , xMax= 1 , yMin=- 1 ,  

yMax=2 , zMin=- 1 , zMax=4] 
\psset{arrows=-> , arrows ize=0 . 2 , l inecolor=blue , 

l inewidth= 1 . 5pt} 
\pstThreeDLine [linecolor=green] ( 0 , 0 , 0 ) ( -2 , 2 , 3 ) 
\uput [45] ( 1 . 5 , 1 ) {$\vec{o}$} 
\pstThreeDLine ( -2 , 2 , 3) ( 2 , 2 , 3 ) 
\uput [O] ( 3 , 2 ) {$\vec{u}$} 
\pstThreeDLine ( -2 , 2 , 3 ) ( -2 , 3 , 3 ) 
\uput [ 1 80] ( 1 , 2 ) {$\vec{v}$} 

\ end{pspi cture } 

Rectangles are simply closed polygons that start and end at the point Po (support vec
tor) and that are defined by their two direction vectors, which also specify the length of their 



404 

:1: #' 

z 

I 

THE MAIN PSTRICKS PACKAGES 

respective sides. Rectangles can be filled with a color or pattern in the usual manner. 

1 
1 
1 

" 1 , "-- 1 I � :  1 

/ 

�, I 
/ / ' ,I / -/ / . '� 1 / 

1 / 1" / 
,/ 1 / / 

/ / / 
Y 

\usepackage {pstr i cks , pst-3dplot} 

\begin{pspi cture} ( - 2 , -2) (4 , 3) 
\pstThreeDCoor [xMin=-3 , xMax=3 , yMax=4 , zMax=3] 
\psset{fillcolor=blue , f illstyle=solid , 

drawCoor=true , dotstyle=*} 
\pstThreeDSquare ( -2 , 2 , 3) (4 , 0 , 0) ( 0 , 1 , 0) 

\end{pspi cture} 
: Example , 

6-6-8 

z 

, ,L / / 

A box is based on rectangles, so this command has a syntax similar to that of the square 
command. Apart from the support vector 0 you have to specify the three direction vectors, 
which also determine the side lengths. 

I 
o J , / 

" 1 
_'J 

y 

\us epackage{pstricks , pst -3dplot} 

\begin{pspi cture} ( - 1 , - 1 )  ( 3 , 4 . 25 )  
\psset {Alpha=30 , Beta=30} 
\pstThreeDCoor [xMin=-3 , xMax= 1 , yMin=- 1 , yMax=2 , zMin=- 1 , zMax=4] 
\pstThreeDBox ( - 1 , 1 , 2 ) ( 0 , 0 , 2) ( 2 , 0 , 0 ) ( 0 , 1 , 0) 
\pstThreeDDot [drawCoor=true] ( - 1 , 1 , 2 ) 
\ps set{arrows=-> , arrows ize=0 . 2} 
\pstThreeDLine [linecolor=green] ( 0 , 0 , 0) ( - 1 , 1 , 2) 
\uput [O] ( 0 . 5 , 0 . 5 ) {$\vec{o}$} 
\uput [O] ( 0 . 9 , 2 . 25) {$\vec{u}$} 
\uput [90] ( 0 . 5 ,  1 .  25)  {$\vec{v}$} 
\uput [45] ( 2 , 1 . ) {$\vec{w}$} 
\pstThreeDLine [linecolor=blue] ( - 1 , 1 , 2 ) ( - 1 , 1 , 4 ) 
\pstThreeDLine [linecolor=blue] ( - 1 , 1 , 2 ) ( 1 , 1 , 2) 
\pstThreeDLine [linecolor=blue] ( - 1 , 1 , 2 ) ( - 1 , 2 , 2 ) 

\end{pspi cture} 

\pstThreeDEllipse[s�ft.ijjg�J (ex ,  ey , ez ) (ux, uy, uz ) (vx, vy, vz)  

Here c i s  the center and u and v are the two vectors of  the semi-axes. 
Based on the two-dimensional form, the equation of an ellipse in three-dimensional 

space is 

e : x = c + cos a . 11 + sin a ' il, 0 :::; a :::; 360 



Example I 
6-6- 1 1  

6.6 pst-3dplot-3-D parallel projections of functions and data 

where cis the center of the ellipse and il and vare the perpendicular vectors of the semi-axes. 
Two keywords are used for creating an elliptic or circular arc: 

beginAngle=O 
endAngle=360 

Ellipses and circles are created with the command \parametricplotThreeD (see Sec
tion 6.6.2 on page 407) .  The number of interpolation points for this command is set to 50. 
For very narrow ellipses, this value can lead to unfavorable curves, so that it has to be in
creased accordingly. 

z 

\usepackage{pstricks , pst-3dpl ot} 

\ps set{xMin=- 1 , xMax=2 , yMin=- 1 , yMax=2 , zMin=- 1 , zMax=2} 
\begin{pspi cture} ( -2 , -2 )  ( 2 , 2 ) 

\pstThreeDCoor 
\pstThreeDDot [linecolor=red , %  

drawCoor=true] ( 1 , 0 . 5 , 0 . 5 ) %  cent er 
\ps set{line color=blue , linewidth= 1 . 5pt } 
\pstThreeDEll ipse ( 1 , 0 . 5 , 0 . 5 ) ( -0 . 5 , 1 , 0 . 5 ) ( 1 , -0 . 5 , - 1 )  

405 

y 
% sett ings f or an arc 
\psset {beginAngle=0 , endAngle=270 , l inecol or=gre en , arrows= I - I }  
\pstThreeDEllipse ( 1 , 0 . 5 , 0 . 5 ) ( -0 . 5 , 0 . 5 , 0 . 5) ( 0 . 5 , 0 . 5 , - 1 )  

\end{pspi cture} 

A circle is a special ellipse where lill = I vl = r and il . v = O. The command 
\pstThreeDCircle basically is a synonym for \pstThreeDEll ipse. The following cir
cle was drawn with 20 points and the keyword setting showpo ints=true. 

1 

\usepackage{pstri cks , pst-3dpl ot } 

\begin{pspi cture} ( -2 , - 1 )  ( 2 , 2 ) 
\pstThreeDCoor [% 

xMin=- 1 , xMax=2 , yMin=- 1 , yMax=2 , zMin=- 1 , zMax=2 , %  
l inecolor=black] 

\ps set{line color=red , l inewidth=2pt , %  
plotpoint s=20 , showpo int s=true} 

\pstThreeDCircl e ( 1 . 6 , +0 . 6 , 1 . 7 ) ( 0 . 8 , 0 . 4 , 0 . 8) ( 0 . 8 , -0 . 8 , -0 . 4 ) 
\pstThreeDDot [drawCoor=true , l inecolor=blue] ( 1 . 6 , +0 . 6 , 1 . 7 ) 

\end{pspicture} 

\pstThreeDSphere [settings] (x ,  y, z) {radius} 

(x ,  y, z ) is the center of the sphere and the segment color must be of the type CMYK, set 



406 THE MAIN PSTRICKS PACKAGES 

4 

as SegmentColor={ [cmyk] {O . 1 , 0 . 5 , 0 ,  O}} .  Before doing so, make sure that recent 
versions ofxcolor and pstricks are installed. 

2 

\usepackage{pstricks , pst-3dplot} 

\begin{pspi cture} [showgr id=true] ( -4 , - 1 . 25) ( 2 , 4 . 25 )  
\pstThreeDCoor [xMin=-3 , yMax=2] 
\pstThreeDSphere [% 

SegmentColor={ [ cmyk] {O . 1 , O . 5 , O , O}}]  ( 1 , - 1 , 2) {2} 
\pstThreeDDot [dot style=x , %  

l inecolor=red , drawCoor=true] ( 1 , - 1 , 2 ) 
\end{pspi cture} 

6.6.2 Plotting mathematica l fu nctions and data 
Analogous to the situation with pst-plot, two commands are available for creating mathe
matical functions, each of which depends on two variables z = f (x ,  Y) .  

\psplotThreeD{s�ttjtlg$l (XMin , XMax ) ( YMin , YMax ) {junction term} 

This command has a syntax different from the respective command in the pst-plot 
package, but it is used in the same manner. The function term has to be written in 

Theplotpoints, PostScript notation, as usual, and the only valid variable names are x and y. For ex
xPlotpoint s ,  and ample, {x dup mul y dup mul add sqrt} stands for the mathematical expression 
yPlotpoints keys Jx2 + y2 . The plotpoint s  keyword is divided into xPlotpoint s  and yPlotpoints 

and, therefore, may as well be set separately. The option hiddenLine follows a rudimentary 
hidden-line algorithm by drawing the curve from the back to the front and filling it with the 
current fill color. 

In several examples throughout this section, we plot the function described by the fol
lowing equation: 

This function (\func) is defined in PostScript notation in the example below. Later exam
ples just reuse it. 

, Example 

, 6-6- 12  



6.6 pst-3dplot-3-D parallel projections of functions and data 

The function is determined by two loops: 

for ( f l oat y=yMin ; y<yMax ; y+=dy) { 
for ( f l oat x=xMin ; x<xMax ; x+=dx) { 

z=f (x , y) ; }} 

407 

\usepackage{pstri cks , pst-3dplot} 
\newc ommand*\func{ x 3 exp x y 4 exp mul 

add x 5 div sub 10 mul 2 . 729 x dup mul 
y dup mul add neg exp mul 2 . 729 x 1 . 225 
sub dup mul y dup mul add neg exp add } 

\begin{pspi cture} ( - 6 , -3)  ( 6 , 4 ) 
\psset {Alpha=45 , Beta= 1 5 , unit=0 . 75 }  
\psplotThre eD [pl otstyle=curve , 

yPlotpoint s=50 , xPlotpoint s=80 , 
l inewidth=0 . 5pt ] ( -4 , 4 ) ( -4 , 4) {\func} 

\pstThreeDCoor [xMin=- 1 , xMax=5 , yMin=- 1 ,  
yMax=5 , zMin=- 1 , zMax=3 . 5] 

\end{pspi cture} 

Since the inner loop increases the x values, a closed curve can be created only in this 
direction; at the end of a partial curve in x direction, the current point is reset to the begin
ning. Therefore, too few yPlotpoints  are not really a problem, but too few xPlotpoints 
produce a polygon-like shape. 

\parametricplotThreeD["settijtgU ( tl , t2) {junction terms x y z} 
\parametricplotThreeD (setttl'lgs)l ( tl , t2) ( u l ,u2) {function terms x y z} 

The only possible variable names are t and u; the definition interval is t 1 , t 2 with respect 
to u 1 , u2. The sequence is not important, and u may be omitted if you are drawing a curve 
with no area in three-dimensional space. 

x = f(t , u) 

Y = f(t , u) 

z = f (t , u) 

To create a helix, for example, you need the following functions in parameter notation: 

x = r cos t 

Y = r sin t 

z = t/600 

The value of t is divided by 600 since PostScript needs angles specified in degrees. 

(6.2) 

(6 .3)  



408 

x 

x 

y 

THE MAIN PSTRICKS PACKAGES 

\usepackage{pstri cks , pst-3dplot} 

\psset {unit=0 . 9} 
\begin{pspi cture} ( - 3 , -2)  ( 3 , 5) 

\parametricpIotThreeD [% 
xPIotpo int s=200 , l inecolor=blue , %  
linewidth= 1 . 5pt , plotstyle=curve] (0 , 2 1 60 ) {% 

2 . 5  t cos  mul 
2 . 5  t s in mul 
t 600 div} 

\pstThreeDCoor [zMax=3 . 5] 
\end{pspi cture} 

The data files have to be structured analogously to the ones specified in Section 6. 1 .2 on 
page 324. For example: 

0 . 0000 1 . 0000 
-0 . 4207 0 . 9972 

0 . 0000 
0 . 0 1 9 1  

0 . 0000 , 1 . 0000 , 0 . 0000 
-0 . 4207 , 0 . 9972 , 0 . 0 1 9 1  

( 0 . 0000 , 1 . 0000 , 0 . 0000) 
(-0 . 4207 , 0 . 9972 , 0 . 0 1 9 1 )  

{0 . 0000 , 1 . 0000 , 0 . 0000} 
{-0 . 4207 , 0 . 9972 , 0 . 0 1 9 1 }  

\fileplotThreeDrt$ett:i�g�J {file name} 

y 

\usepackage {pstricks , pst-3dplot} 

\psset {xunit=1 . 75mm , yunit=3mm , Alpha=30 , Beta=30} 
\begin{pspi cture} ( -6 , -3)  ( 6 , 1 0) 

\pstThreeDCoor [% 
xMin=- 1 0 , xMax= 1 0 , %  
yMin=- 1 0 , yMax= 1 0 , %  
zMin=-2 , zMax= 10] 

\fiIeplotThre eD [plot style=polygon] 
{dat a3D . Roessler} 

\end{pspicture}% 

Example 
6-6 - 1 4  : 

Example ! 
6-6- 1 5  



6.6 pst-3dplot-3-D parallel projections of functions and data 

\dataplotThreeD[settings] {data macro} 
\readdata{macro nameHfile name} 

In contrast to \f ileplotThreeD, the command \dataplotThreeD needs a macro name, 
which holds all data, as an argument. With the command \readdata, external data files can 
be read and saved into a macro (see Section 6. 1 .2 on page 325) .  

409 

x 

\usepackage{pstri cks , pst -3dplot} 

\ps set{xunit = 1 . 75mm , yunit=3mm , Alpha=-30 , Beta=30} 
\readdat a{\dat aThreeD} {data3D . Roessler} 
\begin{pspi cture} ( -6 , -2 . 25 )  ( 5 , 1 1 )  

Y 

\listplotThreeD [settings] {data macro} 

\pstThreeDCoor [xMin=- 1 0 , xMax= 10 , %  
yMin=- 1 0 , yMax= 1 0 , zMin=-2 , zMax= 1 0] 

\dat aplotThreeD [plotstyle=l ine] {\dat aThreeD} 
\end{pspi cture} 

A user might perceive any real difference between the commands \listplotThreeD and 
\dataplotThreeD. With \listplotThreeD, however, you can easily transport addi
tional PostScript code via 'lEX to PostScript. Example 6- 1 -33 on page 326 is an example of 
the use of this method. 

' Y 

\usepackage {pstricks , pst-3dplot} 

\psset{xunit= 1 . 75mm , yunit=3mm , Alpha=-O , Beta=90} 
\readdata{\dataThreeD}{data3D . Roessler} 
\begin{pspicture} ( - 5 , -4)  ( 5 , 4 . 5 ) 

\pstThreeDCoor [xMin=- 1 0 , xMax= 10 , %  
yMin=- 1 0 , yMax=7 . 5 , zMin=-2 , zMax= 10]  

\li stplotThreeD [pl otstyle=l ine] {\dat aThre eD} 
\end{pspi cture}% 



410 THE MAIN PSTRICKS PACKAGES 

Table 6. 14: Keywords for the package pst-3dplot 

Name Value Type Default Name Value Type Default 
Alpha angle 45 endAngle angle 360 
Beta angle 30 l inej oin value 1 
xMin value - 1  nameX label x 
xMax value 4 spotX angle 180 
yMin value - 1  nameY label x 
yMax value 4 spotY angle 0 
zMin value - 1  nameZ label x 
zMax value 4 spotZ angle 90 
drawing Boolean true plane plane xy 
xThreeDunit value 1 origin refpoint c 
yThreeDunit value 1 hiddenLine Boolean f alse 
zThreeDunit value 1 drawStyle style xLines 
xPlotpo int s  value 25 vis ibleLineStyle line style solid 
yPlotpoint s  value 25 invisibleLineStyle line style dashed 
beginAngle angle 0 SpericalCoor Boolean f alse  

6.6.3 Keywords for pst-3dp lot 
The Alpha and Beta The keywords Alpha and Beta determine the rotation of the coordinate system in the hori

keys zontal and vertical directions. 

x 

z 

x 

The keys xMin, 

xMax, yMin, yMax, 

zMin, and zMax 

z 

y 

y 

\usepackage{pstri cks , pst -3dplot} 

\begin{pspi cture} ( -2 , - 1 )  ( 1 , 2 ) 
\psset {Alpha= 1 0 , Beta=30 , %  

xMax=2 , yMax=2 , zMax=2} 
\pstThreeDCoor 

\end{pspi cture} 

\us epackage {pstri cks , pst -3dplot} 

\begin{pspicture} ( -2 , - 1 )  ( 1 , 2) 
\psset {Alpha=60 , Beta=-30 , %  

xMax=2 , yMax=2 , zMax=2} 
\pstThreeDCoor 

\end{pspi cture} 

These keywords define the visible part of the three-dimensional coordinate system and may 
be customized freely, as already shown in Section 6.6.2 on page 406. They have no further 

Example 

6-6- 1 8 



Example 
6-6-20 

Example 
6-6- 2 1  

6.6 pst-3dplot-3-D paral lel projections of functions and data 41 1 

meaning. In particular, they do not depend on the given box size of the image, which is 
already defined by the values of the ps pi ct ure environment. 

The keyword drawing can be used to suppress the plotting of coordinate axes even as The d-rawing key 

important parameters are still calculated internally. 

\usepackage {pstricks , pst -3dplot} 

• 
I 
I 

A 

\begin{pspicture} ( - 2 , - 1 )  ( 1 , 2 ) 
\ps set{xMax=2 , yMax=2 , zMax=2} 
\pstThreeDCoor [drawing=false]  
\pstThreeDDot [drawCoor=true , dot s c ale=2] ( - 1 , - 1 , 1 ) 

/' '-/' '- \end{pspicture} 

If you wish to change the scale of individual dimensions, you can do so by adjusting 
these key values accordingly. Just keep in mind that they are not available for spherical coor
dinates, so you cannot set Spheri calCoor=true globally. 

(I Z 
• 
I 

\usepackage {pstri cks , pst -3dplot} 

\begin{pspi cture } ( -2 , - 1 )  ( 1 , 2 ) 

The xThreeDuni t ,  

yThreeDunit,  and 

zThreeDuni t keys 

' <  I 
A .  i......... ' .... / 1  ',-.... , /  

\ps set{xMin=-2 , xMax=2 , yMin=-2 _ 2 , yMax=2 , zMax=2} 
\pstThreeDCoor 

/' \psset{drawCoor=true , dots cale=2} 
\pstThreeDDot ( - 1 . 5 , - 1 , 1 ) 
\pstThreeDDot [linecolor=red , yThreeDunit=2] ( - 1 . 5 , - 1 , 1 ) 

x y \end{pspi cture} 

The keywords xPlotpoints  and yPlotpo ints strongly influence the appearance of 
a function. You have to find the correct values by trial and error. 

\usepackage{graphicx , pstri cks , pst -3dplot} 
% \func as def ined in Example 6-6- 1 3  

\psset {unit=O . 7} 
\makebox [\l inewidth] {% 
\begin{pspi cture} ( -4 , -3 )  (4 , 4) \psset {Alpha=45 , Beta= 1 5} 

\psplotThreeD [plotstyle=curve , yPlotpoint s = 1 0 , xPlotpoint s = 1 0 , 
linewidth=O . 5pt , hiddenLine=true] ( - 3 , 3) ( - 3 , 3) {\func} 

\pstThreeDCoor [xMax=5 , yMax=5 , zMax=3 . 5] 
\end{pspi cture} 
\begin{pspi cture} (-4 , -3) ( 4 , 4) \psset {Alpha=45 , Beta= 1 5 }  

\psplotThre eD [plot style=curve , yPlotpoint s=20 , xPlotpo int s=50 , 
l inewidth=O . 5pt , hiddenLine=true] ( -3 , 3 ) ( - 3 , 3) {\func } 

\pstThreeDCoor [xMax=5 , yMax=5 , zMax=3 . 5] 
\end{pspi cture }} 

The xPlotpo int s 

and yPlotpo int s 

keys 



412 

The beginAngle and 

endAngle keys 

x '" 

THE MAIN PSTRICKS PACKAGES 

The two keywords beginAngle and endAngle support the three-dimensional presen
tation of elliptic and circular arcs. 

z 

y 

\usepackage{pstri cks , pst-3dplot} 

\begin{pspi cture} (-2 , -2)  ( 2 , 2 ) 
\pstThreeDCoor [xMax=2 , yMax=2 , zMax=2] 
\pstThreeDEl l ipse [beginAngl e=30 , 

endAngle=270 , arrows= I - I , linewidth= 1 . 5pt] 
( 1 , 0 . 5 , 0 . 5 ) ( -0 . 5 , 0 . 5 , 0 . 5) (0 . 5 , 0 . 5 , - 1 )  

\end{pspi cture} 

Sometimes you may wish to modify the look of edges, especially in triangles with sharp 
The l inej oin key edges. The key linej oin corresponds to the PostScript command setlinej oin and can 

take only the values 0 1 1  1 2 . 

z 

\usepackage{pstr i cks , pst -3dplot} 

\begin{pspi cture} ( - 3 , -4) ( 3 , 3 . 25 )  
\pstThreeDCoor [xMin=-4 , xMax=4 , 

yMin=-3 , zMin=-4 , zMax=3] 
\psset{l inewidth=4pt } 
\pstThreeDTri angle [l inej o in=O] 

( 3 , 1 , -2) ( 1 , 4 , - 1 ) ( -2 , 2 , 0 ) 
\pstThreeDTriangle 

y [linej o in= 1 , l inecolor=red] 
( 3 , - 1 , -2 ) ( 1 , -4 , - 1 ) ( -2 , -2 , 0 ) 

\pstThreeDTriangle 
[l inej o in=2 , l inecolor=blue] 
( - 1 , 1 , -2 ) ( -4 , - 1 , - 1 ) ( -2 , -4 , 0 . 5 ) 

\end{pspi cture} 

Example 
6-6-22 

Example 
6-6-23 

i Example : 
6.6.24 i 



Example 
6-6-25 

Example 
6-6-26 

Example 
6-6-27 

6.6 pst-3dplot-3-0 parallel projections of functions and data 413  

Normally, the axes are named x,  y, and z as  usual for Cartesian axes. With the name X, 
nameY, and nameZ keywords you can change their names. 

The name X, nameY, 

and nameZ keys 

w 

u \usepackage {pstricks , pst -3dplot} 

\begin{pspi cture} ( -2 , - 1 ) ( 1 , 2 . 5 ) 
\ps set {Alpha=-60 , Beta=30 , xMax=2 , yMax=2 , zMax=2} 
\pstThreeDCoor [linecolor=blue , nameX=u , nameY=v , nameZ=w] 

\end{pspi cture} 

In the example above, the labels were not optimally positioned. You can modify their The spatX, spatY, 

positions with the spatX, spatY, and spatZ keywords, which define the angle by which a and spatZ keys 

label is rotated, analogous to the uput command (Section 5. 1 1 .3 on page 268) .  

x 

y 

z 

\usepackage {pstri cks , pst -3dplot} 

\begin{pspi cture } ( -2 , - 1 ) ( 1 , 2 . 5) 
\psset {Alpha=-60 , Beta=30 , xMax=2 , yMax=2 , zMax=2} 
\pstThreeDCoor [linecolor=blue , spotX= 135 , spotY= 1 80] 

\end{pspicture} 

The keyword plane specifies the plane the command \pstPlanePut can write to. Pos- The plane key 

sible values are xy I xz I yz. 

z 

y 

\usepackage{pstricks , pst -3dplot } 

\begin{pspicture } ( -2 , - 1 ) ( 1 , 2 . 5 ) 
\psset {xMax=2 , yMax=2 , zMax=2} 
\pstThreeDCoor 
\psset {pOrigin=lb} 
\pstPlanePut ( l , O , O ) {\fbox{\Huge\red xy}} 
\pstPlanePut [plane=xz] ( 0 , 1 , 0) {\fbox{\Huge \blue xz}} 
\pstPlanePut [pl ane=yz] ( 0 , 0 ,  1 ) {\fbox{ \Huge \green yz}} 

\end{pspi cture} 



414 THE MAIN PSTRICKS PACKAGES 

ThepOrigin key The keyword pOri gin is the positioning key, which is passed to the command \rput. 
Its effects concern only \pstThreeDPut, and the default value is based on the defaults for 
\rput (see Section 5 . 1 1 . 1  on page 266). 

y 

\usepackage{pstricks,pst-3dplot} 

\begin{pspicture}(-2,-1) ( 1 , 2 . 5) 
\pstThreeDCoor [xMin=-l ,xMax=2 , yMin=-1, 

yMax=2, zMin=-1,zHax=2] 
\pstPlanePut[pOrigin=c] (O,O,-l){\fbox{\Huge\red xy}} 
\pstPlanePut [plane=xz ,pOrigin=rb] (0,0,0) 

{\fbox{\Huge\blue xz}} 
\pstPlanePut [plane=yz,porigin=lb] (0, 0 , 1 . 5) 

{\fbox{\Huge\green yz}} 
\end{pspicture} 

The keyword hiddenLine enables a very simple "hidden-line algorithm": the lines 
ThehiddenLine key are plotted with the command \pscustom and then filled with the predefined fill style 

hiddenStyle. 

\nevpsstyle{hiddenStyle}{fillstyle=solid.fillcolor=uhite} 

You can overwrite this style as required. Just keep in mind that the curves must be built 
from the end to the beginning; otherwise, the hidden lines will be visible. For examples, see 
Section 6.6.2 on page 406. 

The keyword drawStyle defines the manner in which the function is plotted. Possible 
TlledrawStyle key key values are xLines, yLines, xyLines, and yxLines. The values refer to the plotting 

sequence; that is, xLines has the lines drawn in the x direction, whereas yxLines means 
that they are first drawn in the y direction and then in the x direction. 

\usepackage{pstricks,pst-3dplot} 
'l. \func as defined in Example 6-6-13 

\begin{pspicture} (-6,-3) (6,4)  
\psset{Beta=15,unit=O .75} 
\psplotThreeD[plotstyle=line, 

drauStyle=xLines ,  
yPlotpoints=50,xPlotpoints=50, 
lineuidth=O . 2pt] (-4,4) (-4,4) 

{\func} 
\pstThreeDCoor [xMax=5,yMax=5, 

zMax=3 .5] 
\end{pspicture} 



6.6 pst-3dplot-3-D parallel projections of functions and data 415 

\usepackage{pstricks.pst-3dplot} 
% \func as defined in Example 6-6-13 

\begin{pspicture} (-6.-3) (6.4) 
\psset{Beta=15 .unit=O . 75} 
\psplotThreeD [plotstyle=curve.% 

drawStyle=yLines .'l. 
hiddenLine=true .'l.  
yPlotpoints=50,xPlotpoints=50 ,'l. 
linewidth=O . 2pt] (-4.4) (-4.4){\func} 

\pstThreeDCoor [xMax=5,yMax=5 . zMax=3 . 5] 
\end{pspicture} 

\usepackage{pstricks ,pst-3dplot} 
% \func as defined in Example 6-6-13 

\begin{pspicture}(-6,-3) (6.4) 
\psset{Beta=15 .unit=O . 75} 
\psplo"tThreeD[% 

plotstyle=curve.drawStyle=xyLines,% 
hiddenLine=true .'l. 
yPlotpoints=50 . xPlotpoints=50 .'l.  
linewidth=O . 2pt] (-4,4) (-4,4) {\func} 

\pstThreeDCoor {xMax=5,yMax=5 ,zMax=3 . 5] 
\end{pspicture} 

The keywords visibleLineStyle and invisibleLineStyle refer to the ThevisibleLineStyle 

drawing of bodies: the macro tries to identify hidden lines and draws them with alld invisibleLineStyle 

the line style invisibleLineStyle. while drawing the visible ones with the style keys 

visibleLineStyle. 

z 

x 

I I I I I 
� 

, I 

_'J 

y 

\usepackage{pstricks ,pst-3dplot} 

\begin{pspicture}(- l , -l) ( 3 , 3 . 25) 
\psset{Alpha=30} 
\pstThreeDCoor [xMin=-3.xMax=1 ,yMax=2.zMax=4] 
\pstThreeDBox(-1 . 1 ,2) (O,O.2) (2 .0 ,O) ( O , l , O) 
\pstThreeDDot [drawCoor=true ,linecolor=blue) (-1 , 1 .2) 

\end{pspicture} 



416 THE  MAIN  PSTRICKS PACKAGES 

\us epackage {pstri cks , pst-3dplot } 

\begin{pspi cture} ( - 1 , - 1 )  ( 3 , 3 . 25 )  
\psset {Alpha=30 , invi s ibleLineStyl e=dotted , 

v i s ibleLineStyle=dashed} 
\pstThreeDCoor [xMin=-3 , xMax= 1 , yMax=2 , zMax=4] 
\pstThreeDBox ( - 1 , 1 , 2 ) (0 , 0 , 2 ) ( 2 , 0 , 0 ) (0 , 1 , 0 ) 
\pstThreeDDot [drawCoor=true , l inecolor=blue] ( - 1 , 1 , 2 ) 

\end{pspi cture} 

The Sphe r i c alCoor If the keyword SphericalCoor is set to true, all coordinate triplets are interpreted 

:1: 

key as spherical coordinates in the common notation (raduis ,  theta, phi ) .  

z 

- - - - ...- - - - ,-- � � 

\ 
\ 

\ 
\ 
\ 
\ 
\ 
I 

\usepackage{pstri cks , pst-3dplot} 

\begin{pspicture} (-6 , - 3)  ( 6 , 5 ) 
\psset {unit=3 . 4cm , drawCo or=true} 
\newcommand\oA{\pstThreeDLine [l inecolor=blue , 

l inewidth=3pt , SphericalCoor=true , arrows=c->] 
( 0 , 0 , 0) ( 1 , 60 , 70 ) } 

\newc ommand\oB{\pstThreeDLine [l inecolor=red , 
l inewidth=3pt , Spher i c alCoor=true , arrows=c->] 
( 0 , 0 , 0 ) ( 1 , 1 0 , 50 ) } 

\newcommand\oAB{\pstThreeDEllipse [beginAngle=58 , 
endAngle=90 , fillcolor=green , Spher i c alCoor=true] 
( 0 , 0 , 0 ) ( 1 , 140 , 40 ) ( 1 , 1 0 , 50) } 

\pstThreeDCoor [drawing=true , l inewidth= 1pt , 
l ine color=black , xMin=0 , xMax= 1 . 1 , yMin=0 , 
yMax= 1 . 1 , zMin=0 , zMax= 1 . 1 ] 

\pstThreeDEllipse [beginAngle=O , endAngl e=90 , 
l inestyle=dashed] ( 0 , 0 , 0 ) ( 1 , 0 , 0 ) ( 0 , 1 , 0 ) 

\pstThreeDEllipse [beginAngle=0 , endAngl e=90 , 
l inestyle=dashed] ( 0 , 0 , 0 ) ( 1 , 0 , 0 ) ( 0 , 0 , 1 )  

\pstThreeDEllipse [beginAngle=0 , endAngle=90 , 
l inestyle=dashed] ( 0 , 0 , 0 ) ( 0 , 0 , 1 ) ( 0 , 1 , 0) 

\psset{SphericalCoor=true} 
\pstThreeDDot [dot style=none] ( 1 , 10 , 50) 
\pstThreeDDot [dot style=none] ( 1 , 60 , 70 )  
\pscustom [f illstyle=cros shat ch , hat chcolor=yellow , 

l inestyle=none] {\oA\oB\oAB} 
\oA \oB \oAB 
\pstThreeDPut ( 1 . 1 , 60 , 70 ) {\Large $\vec\Dmega_ 1 $ }  
\pstThreeDPut ( 1 . 2 , 10 , 50) { \Large $\vec\Dmega_2 \ , $} 

y \pstThreeDPut ( 1 , 1 0 , 65) {\Large $\gamma_{ 1 2}$} 
\end{pspi cture} 

Example 
6-6-33 

, Example 
I 6-6-34 



6.7 Short overview of other PSTricks packages 

6.7 Short overview of other PSTricks packages 

It would be beyond the scope of this book to provide even a rudimentary discussion of all 
packages that are available for PSTricks. A more or less complete compilation can be found 
at the PSTricks site http : //PSTri cks . tug . org or in [ 135] , especially all sources listed. 
Unfortunately, not every package has found its way into CTAN. Table 6. 1 5  shows a list of all 
packages available on CTAN as of February 2007. 

Table 6. 15 :  List of PST ricks packages 

Name Purpose Name Purpose 
pst-3d basic three-dimensional operations pst-3d plot three-dimensional plots 
pstricks-add additional macros for pst-asr linguistic: auto segmental 

pstricks/pst-node/pst-plot representations 
pst-bar bar charts pst-barcode printing bar codes 
pst-b lur blurred shadows pst-ca lendar calendars as tabular or on a 

dodecaeder 
pst-eire electrical circuits pst-coi l  drawing coils 
pst-dbicons ER diagrams pst-eps save environments as EPS files 
pst-eucl geometry for �1EX with PSTricks pst-fi l l  filling 
pst-fr3d three-dimensional framed boxes pst-fracta l various types of fractals 
pst-func plotting special math functions pst-geo geographical objects 
pst-gr3d three-dimensional grids pst-grad gradient colors 
pst -i nfixplot math expressions in algebraic notation pst-jtree typesetting of trees common in 

linguistics 

4 1 7  

pst-Iabo drawing various assemblies of pst-lens using a lens to magnify parts of a text 
chemical objects or a graphic 

pst-l ight3d three-dimensional light effects pst-math extended mathematical operators 
pst-node nodes pst-ob3d three-dimensional basic objects 
pst-pdf PostScript into PDF pst-pdgr  medical pedigrees 
pst-optic optical systems with PSTricks pst-osei oscilloscopes with PSTricks 
pst-plot plotting functions and data records pst-poly polygons with PSTricks 
pst-slpe improved gradient fills pst-spectra draw continuum, emission, and 

absorption spectra 
pst-stru draw structural schemes in civil pst-text manipulating text and characters 

engineering analysis 
pst-tree trees pst-uml  easily draw diagrams with UML 

notation 
uml another package to draw UML pst-vue3d three-dimensional views 

diagrams 
- Packages depending on or related to PSTricks -

gastex graphs and automata simplified rrgtrees linguistic tree diagrams for "role and 
reference grammar" 

makeplot plotting exported data records from sfg drawing signal flow graphs 
Matlab 

multido loops vaucanson-g drawing automata 
psgo draw Go diagrams (see Section 10 .3 )  



418 THE MAIN PSTRICKS PACKAGES 

Table 6. 16: Additional keywords of the package pstri cks -add 

Name 
Arrowlns ide 
ArrowFill  
lineAngle 
xyAxes 
xyDec imals 
comma 
nStepxStep 
nStart,nEnd 
xStart,xEnd 
yStart,yEnd 

Meaning 
additional arrows inside a line or curve 
empty or filled arrows 
\ncdiag and \pcdiag connections with constant angles 
draw only one axis with \psaxes 
fixed numbers of decimals for the axis labels with \psaxes 
use a comma instead of a dot for decimals 
step value or number for plots 

start and end number or value for plots 

We will discuss the pstricks-add package in some detail here, as it contains extensions 
and bug fixes for the core of PST ricks. For all other packages listed in Table 6. 1 5  (except those 
that have been discussed in previous sections) ,  we show a small example to promote better 
understanding of what the respective package can do. Further information can be found 
in the package documentation. These packages should be part of MiKlEX and the current 
lEX Live 2007 distribution. Missing packages can easily be installed in the usual way. 

6.7.1  The pstricks-add package 
This package contains several bug fixes for some base packages and summarizes everything 
that has been contributed on the PSTricks mailing list in the last few years, mainly by Denis 
Girou, to eventually solve problems. Detailed documentation for this package exists [ 1 33] , 

but it is really dynamic, because all useful fixes or new commands in it should find their way 
into one of the other standard packages in due time. 

The keywords added by pstricks-add are listed in Table 6. 16. Their effects are explained 
throughout the examples found in this section. 

Extended a rrow options 

In addition to the known arrow tips (Section 5 . 10. 1 ) , pstricks-add offers the arrows listed in 
Table 6. 1 7. The length and width of an arrow of type H (hook leftlright arrow) are set with 
the keywords hooklength and hookwidth, respectively, with the following default values: 

\psset {hooklength=3mm , hookwidth= lmm} 

If a line or curve starts with a right hook, then it ends with a left hook, and vice versa. 
When using one of the two arrow types « or », the additional keyword nArrow is 

Multiple arrows available, which determines the number of arrows. If no key value is defined pstricks-add 
assumes the default behavior as described in Section 5 . 10 . 1  on page 260. There is no highest 
number; the maximum value depends on the length of the line or curve and has to be set by 
the user. 

To support arrows inside of lines and curves, pstricks-add offers a number of key
The Arrowlns i de words. Using the Arrowlns ide keyword alone draws one arrow inside a line or curve. 

keys The position can be set at a relative or absolute distance from the starting coordinates. 



Example ' 
6-7-2 

6.7 Short overview of other PSTricks packages 

Table 6. 1 7: Additional arrows defined by pstricks-add 

Symbols Example Code 

] - [ ] [ 
) - ( ) ( 

I >-< I I> <I 
H-H c:::: 

\psline{] - [} ( O , lex) ( 1 . 3 , l ex ) 
\ps line{ ) - ( } ( O , lex) ( 1 . 3 , lex)  
\psline{ I >-< I } (O , lex) ( 1 . 3 , l ex )  
\psline{H-H} ( O , lex)  ( 1 . 3 , lex)  

A value smaller than 1 for Arrowlns idePos means a relative distance; a value greater 
than 1 means an absolute distance measured in the default unit pt, which is then repeat
edly used (e.g., Arrowlns idePos=10  draws inside arrows at a distance of 1 0 pt each 
along the curve) .  With Arrowlns ideNo the number of inner arrows can be fixed; with 
Arrowlns ideOff set the first of them can be moved relative to the starting point of the 
curve. 

\usepackage {pstr i cks , pstr i cks-add} 

419  

.. \psset{arrows cale= 1 . 5 , linecolor=blue , unit=7mm , l inewidth= 1pt} 
\begin{pspi cture} ( 2 , 4) 

.. 
] .. ..  .. .. .. .. 

c:::: .. ) 

) ) ) 

.. [ 
=> 

( 

\psl ine [ArrowIns i de=->] {} ( 0 , 4) ( 4 , 4) 
\psl ine [ArrowIns ide=-> , ArrowIns idePos=O . 25] { } ( 0 , 3 ) ( 4 , 3  ) 
\psl ine [ArrowIns ide=- > , ArrowIns idePos=10] {] - [} ( 0 , 2 ) ( 4 , 2 )  
\psline [ArrowIns ide=-> , ArrowIns ideNo=2] {H-H} ( O , 1 )  ( 4 , 1 )  
\psl ine [ArrowIns ide=-> , ArrowIns ideNo=2 , 

ArrowIns i deOff set=0 . 1] { ) - ( } ( 0 , 0 ) ( 4 , 0 ) 
\end{pspi cture} 

\usepackage{pstricks , pstri cks-add} 

\begin{pspi cture} ( 2 , 2 ) 
\psset{arrowscale=2} 
\pc curve [ArrowIns i de=-> , ArrowIns ideNo=3 , ]  { I -> } ( O , O ) ( 2 , 2) 
\naput [labelsep=0 . 3] {\large$ i$} 
\end{pspi cture} 

Generally, all arrows are implemented as filled polygons. However, the keyword set-
ting ArrowFill  =f al se produces "transparent", unfilled arrows with a borderline of width The ArrowF i l l  key 

\pslinewidth, which is specified by the keyword l inewidth. 

\us epackage{pstri cks , pstri cks-add} 

\begin{pspicture } ( 2 , 2 ) 
\psset{arrows cale=3 , ArrowFill=f al s e }  
\ps l ine{<->} ( 0 , 0 . 5 ) ( 2 , 0 . 5) 
\psl ine [arrowinset=0] {<->} ( 0 , 1 . 5 ) ( 2 , 1 . 5 ) 
\psl ine [ArrowIns ide=-> , ArrowFi ll=true] { I <- > I } ( 1 , 0 ) ( 1 , 2  ) 
\end{pspi cture} 



420 

/ 

/ 
/ 

THE MAIN PSTRICKS PACKAGES 

Table 6. 1 8: Examples of multiple arrows 

Code 

\psl ine{ » } ( O , lex) (2 . 3 , lex)  
\psline [nArrowsA=3] {-» } ( O , lex)  ( 2 . 3 , lex) 
\psline [nArrowsA=5] {-» } ( o ,  lex)  ( 2 . 3 , lex) 
\psline{« -} (O , lex) ( 2 . 3 , l ex)  
\psl ine [nArrowsA=3] {« -} (O , lex)  (2 . 3 , lex) 
\psline [nArrowsA=5] {« -} (O , lex)  ( 2 . 3 , lex)  
\psline{« -» } ( O , l ex )  ( 2 . 3 , lex) 
\psline [nArrowsA=3] {« -» } ( O , lex) ( 2 . 3 , lex)  
\ps line [nArrowsA=5] {« -» } ( o ,  lex)  ( 2 . 3 , lex ) 
\psl ine{« - I } (O , lex) ( 2 . 3 , l ex)  
\psl ine [nArrowsA=3] {« -« } (O , l ex) (2 . 3 , lex ) 

Example 

« » 
� � 
� 
« I 
� « 

\psline [nArrowsA=5] {« -o} ( O , lex)  ( 2 . 3 , lex)  
\psline [nArrowsA=3 , nArrowsB=4] {« -« } ( O , lex)  ( 2 . 3 , l ex )  
\psline [nArrowsA=3 , nArrowsB=4] {» -» } (O , lex)  ( 2 . 3 , l ex) 
\psline [nArrowsA=1 , nArrowsB=4] {» -» } ( O , lex)  ( 2 . 3 , l ex)  

� 0 
� � 

� >-» 
� , 

You can also draw unfilled "inside arrows", but they tend to produce a somewhat 
strange result, as the arrow is drawn first and then the line, which is therefore not hidden 
by the arrow. 

/� 
/ \ 

\ 
\ / 

\ / 
• 

\usepackage{pstricks , pstricks-add} 

\begin{pspicture} (4 , 3 ) 
\psbezier [Arrowlns ideNo = 1 0 , arrows cale=2 , 

Arrowlnside=-> , ArrowFill=false , arrowinset=O , 
showpo int s=true] {->} ( 2 , 3 ) ( 3 , 0 ) (4 , 2 ) 

\end{pspi cture} 

\usepackage {pstricks , pstricks-add} 

\begin{pspicture } ( 6 , 2) 
\psset{arrows cale=2 , ArrowFill=true } 
\psl ine [Arrowlns ide=-*] {->} ( O , O ) ( 2 , 1 ) ( 3 , 0 ) 

(4 , 0 ) ( 6 , 2 ) 
\end{psp i cture} 

Example ' 
6-7-4 



6.7 Short overview of other PSTricks packages 

New com mands and environments 

\begin {psgraph} Isettings] (xMin,yMin) (xMax,yMax) {width}{height} 

\end{psgraph} 

In some cases it is not easy to get the right values for coordinate units. If possible, the en
vironment psgraph calculates them internally and determines the values \psxuni t and 
\psyuni t depending on the physical width and height of a box, respectively. 'lEX does not 
support numerical calculations for floating-point numbers, so some problems may arise 
when using psgraph, especially for very small or very large values. (xMin,yMin) and 
(xMax,yMax) are the logical coordinates of the image, and width and height are the physical 
dimensions of the image. If no unit is given, the current PSTricks unit is taken as default. Cal
culating the right scaling values requires floating-point division, which is a bit tricky in 'lEX; 
as a consequence, very small or large scalings are likely to cause problems. In such cases one 
should use local xuni t and yuni t values and pass them in the optional settings argument 
to the environment. For more information, see the package documentation [ 1 33 ] .  

\usepackage{pstricks , pstricks-add} 

\readdat a{\data}{pstricks/demo2 . dat }% 
\readdata{\dataII }{pstricks/demo3 . dat }% 
\pstScalePoint s ( 1 , 1 ) { 1 989 sub}{} 
\psset{11x=-O . 5cm , 11y=- l cm ,  xAxisLabel=Year , yAxi sLabel=What ever , %  

xAxi sLabelPos={2in , -O . 4in} , yAxisLabelPos={-O . 4in , l in}} 
\begin{psgraph} [axe sstyle=frame , Dx=2 , Ox= 1 989 , subt i cks=2 ] (0 , 0 ) ( 1 2 ,  6 )  {4in} {2 in}% 

\li stplot [linecolor=red , linewidth=2pt] {\data} 
\li stplot [linecolor=blue , l inewidth=2pt] {\dat a I I }  
\li stplot [l inewidth= lpt , yunit=O . 5] {\dat a I I }  

\end{psgraph} 

6 

5 

4 
.... 
Il) ;:;. 
Il) 

3 ...... I:\l ..c 
� 

2 

1 

0 
1989 1991  1 993 1 995 1 997 1 999 2001 

Year 

421 



422 

7 

6 

5 
4 

3 

2 

1 

o 

11 0  

THE MAIN PSTRICKS PACKAGES 

\psMatrixPlot ��t!ttittgsJ {rowsHcolumnsHdata file} 

The command \psMatrixPlot draws a visual representation of a given m x n matrix 
(defined in PostScript) containing only the values 0 and 1 .  

\begin{filecont ents}{LGCmatrix . dat } 
/dotmatrix [ 0 1 1 0 0 0 0 1 1 1 
o 1 1 0 1  1 1 0 1 0 1 0 1 1 0  
o 0 1 0 0 0 0 0 1 1 1 1 1 1 
0 0 1  1 0 1 0 1 1 1 1 0 0 0  
\end{filecont ent s} 
\usepackage{pstricks-add} 

1 
1 

o 0 
0 1 
1 0 

\begin{pspi cture} (-0 . 5 , -0 . 75 )  ( 6 , 6 ) 

1 1 0 
o 0 1 
o 0 1 ] def 

\psaxe s [dx=0 . 5 cm , dy=0 . 5 cm] {->} ( 5 . 5 , 4) 
\psMatrixPlot [unit=0 . 5 , dots ize=0 . 55cm , 

dot style=square* , linecolor=blue] 
{7}{10}{LGCmatrix . dat } 

\psMatrixPlot [unit=0 . 5 , dots ize= . 25cm , dot style=o , 
Change Order] {7H 10HLGCmatrix . dat } i Example 

0 1 2 3 4 5 6 7 8 9 10 \end {pspi cture} 6-7-7 

• o 
o 

o .  
o 

\psf oreach{macro nameH value list}{object} 

This command implements a loop with an individual increment. It is a modified version of 
'lEX's \loop command. The loop variable must be a 'lEX valid name. The object, which is 
executed n times, can be of any type (e.g., the \psdot command) .  

• • 
2 3 

• 
4 

\usepackage{pstricks-add} 

\begin{pspicture} [showgr id=true] (4 , 1 ) 
\psforeach{\nA} {O , 0 . 25 ,  1 . 5 ,  3 ,  4}{% 

\psdot [dot s c ale=3] ( \nA , 0 . 5 ) }  
\end{pspi cture} 

\psforeach takes anything as a value for the list, so you can use the \SpecialCoor 
feature to calculate the coordinates with all available PostScript commands. In the following 
example the dots are set at a horizontal distance of sqrt ( \nA) . The "!" character invokes 
the PostScript mode. At the end of any calculation, a pair of coordinates must be on top of 
the stack. 

2 3 

\usepackage {pstricks-add} 
\Spe c i alCoor 

\begin{pspicture} [showgr id=true] ( 3 , 1 ) 
\psf oreach{\nA}{O 0 . 5 , 2 sqrt 0 . 5 ,  3 sqrt 0 . 5 ,  

4 sqrt 0 . 5 ,  5 sqrt 0 . 5 ,  6 sqrt 0 . 5}{% 
\psdot [linecolor=blue , dotscale=2] ( ! \nA) } 

\ end{pspi cture} 

Example 
6-7-8 

Example 
6-7-9 



6.7 Short overview of other PSTricks packages 

\psStep [settingS} {::Dl , X2 HstepsHjunction} 

Step functions are useful to show the meaning of an integral. The macro supports lower, 
upper, and Riemann step types. See also Color Plate VIII(a) .  

\usepackage {pstri cks -add} 

\psset {unit = 1 . 25cm} 
\begin{pspi cture} [plotpo int s=200] ( -0 . 5 , -3 ) ( 1 0 , 2 . 5 ) 

\psStep [algebrai c , f illstyle=sol id , f i llcolor=yellow] 
(0 . 00 1 , 9 . 5 ) {40}{2*sqrt (x) * c o s ( ln ( x) ) * s in (x ) } 

\psStep [algebrai c , St epType=Riemann , f i l l style=sol id , f illcolor=blue] 
(0 . 00 1 , 9 . 5 ) {40}{2* sqrt (x) * c o s ( ln ( x) ) * s i n ( x ) } 

\psaxe s{->} ( 0 , 0 ) ( 0 , -2 . 75 ) ( 1 0 , 2 . 5 ) 
\psplot [algebrai c , l inecolor=white , labelFont S i ze=\f ootnot e s ize] 

{0 . 001}{9 . 75}{2* sqrt (x) * c o s ( ln (x) ) * s in (x) } 
\uput [90] ( 6 , 1 . 2 ) {$f (x) =2\cdot \ s qrt{x}\ cdot \ c o s { ( \ ln{x } ) } \cdot \ s in{x}$} 

\end{pspi cture} 

2 

1 

o 

- 1  

- 2  

\psplotDiffEqn[settiilg�1 {XOHXl Hstart valuesHdifferential equations} 

The \psplotDiffEqn command allows us to solve a differential equation or a system of dif
ferential equations. The author of this part of the package is Dominique Rodriguez. Possible 
numerical methods are the ones from Runge-Kutta and from Adams.  The following example 
shows the "Cornu spiral", which is based on the Fresnel integrals. The keyword alge brai c 
allows us to write the equations in the usual algebraic notation. For a system of differential 
equations, the delimiter between the equations is the bar character. 

it 7rt2 
Y = sin -dt with 

. 0  2 
. 7rt2 
X = COS 2 . . 7rt2 

Y = SlIl 2 

423 



424 

1 
r---------------�--� 

Spiral of Lorn$ 
- -!-

THE MAIN PSTRICKS PACKAGES 

\usepackage{pstri cks-add} 

\psset {unit=4} 
\begin{pspi cture } C l , 1 ) \psgrid [subgriddiv=5] 

\psplotDiffEqn [whi chabs=O , whi chord= l , 
method=rk4 , algebraic , %  
l inecolor=blue , plotpoints=500 , 
showpoint s=true] {O}{ 1 0}{O O}% 

o� __ .. �----�� 
{cos CPi *x�2/2) I s in (P i *x�2/2) } 

\rput ( O . 5 , O . 9 ) {\large Spiral of Cornu} 
\end{pspi cture} 

IJ 

1 

l \resetOpt ions l 

Sometimes it is difficult to know which keywords were changed in a long document. With 
\resetOpt ions you can reset all keywords depending on pstricks, pst-plot, pst-node, and 
pstricks-add itself. 

6.7.2 L inguistics 
Three packages have been developed to cover different aspects oflinguistics. These packages 
all refer to trees. 

The pst-asr package 

This package is designed to assist PSTricks in typesetting "auto segmental representations". 
pst-asr makes it fairly easy to design the complex structures that a linguist needs for a sub
mitted paper or a handout for a presentation. The author of this package is John Frampton. 

\usepackage{pstri cks , pst-asr} \ t iershort cuts 

\newt ier{nuclear , rhyme , coda , onse t }  
\psset {xgap=2 . 5em , yunit=2em , phB= - 1 , nuclear= . 9  ( lg) , 

�me 

coda= 1 . 2  C dg) , rhyme=2 . 3  (hy) , ons et=1 . 8  (tg) , syB=3 . 5} 
\DefList{\onsetpos{ . 5} , \nuclearpos{2 . 5} , \rhymepos{3 . 25 }}  
\ asr dri : m  

onset � /\ � c�da 

� I 

I \© ( \nuclearpo s , nuclear ) {nuclear} \- ( 2 , t s )  \- ( 3 , t s )  
\© ( 4 , coda) { coda} \- (4 , t s )  
\© ( \onsetpos , onset ) {onset} \- ( O , t s )  \- ( l , t s )  
\© C \rhymepo s , rhyme ) {rhyme} \- ( 4 , coda) 

\- ( \nuclearpo s , nuclear )  x 
I 
d 

x 
I 
r 

x x 
� 

x 
I 

m 
\© ( 2 , sy) {$\sigma$} \- ( \onsetpo s , onset ) \ - ( \rhymepos , rhyme) 
I \endasr 

The rrgtrees package 

This package by D. J. Gardner supports the "role and reference grammar for human 
language" and is an interface to the PSTricks basic package pst-tree (see Section 6.3 on 
page 366). 

Example 
6-7- 12  



, Example 

6-7- 1 3  

6.7 Short overview of other PSTricks packages 

CLAU S E  I � •• ------ PERIPHERY 
\us epackage{rrgtrees} 

\TOP{ 
\OPR{4}{the} 
\CLAUSE{ 

ARG Nuc AAJ 
I \CORE [COREa] { 

PRED 
I 

NP I PP 

D 
PP 

\ARG{\WORD (NP) { c at } }  
\NUC{walked} 
\AAJ{\FanEnd{PP}{to the mat } } } }  

\rPERIPH [a] {3}{PP} 
{\WORD{on the f loor}}} 

the cat walked to the mat on the floor \dolinks 

The pst-jtree package 

The pst-jtree package is another package by John Frampton that is designed to assist PSTricks 
in typesetting the kinds of trees that are common in linguistics, but different than the trees 
created by the previously mentioned packages. 

\usepackage{pstr i cks , pst-j tree} 

\j tree [dirA= ( 1 : - 1 ) , node sepA=O , node sepB= . 8ex , xunit=2 . 2em , yunit=1em , style=arrows2] 
\ !  = : ! a {\rnode{K1}{knew} } .  \ ! a  = : ! b {\rnode { 0 1 } {owned}} .  
\ ! b  : ! c {\rnode{C1}{cat s } } . 
\ !  c : \j tlong ! d [scaleby= 1 . 8] : {and} () [scaleby=2 . 4] 

: {he } ( )  @K2 <left>\ j t j ot ! e  . 
\ ! d  : { she} ( )  @K3 <left>\j t j ot ! f  . 
\ ! e  : {a woman} [labeloff set=- 1 ex] : {who } ( )  @02 <left>@C2 <left>{four} . 
\ ! f  : {a man} : {who} ( )  @03 <left >@C3 <left>{three} . 
\psset{linestyle=dashed , arrows=<-} 
\nccurve [angleB=- 10 , ncurvB=2 , ncurvA= 1 . 2] {02}{0 1 }  
\nc curve [angleB=-90 , ncurvA= 1 . 4] {03}{0 1 }  
\nc curve [angleB=- 1 0 , ncurvB= 1 . 8 , ncurvA= 1 . 6] {K2}{K 1 }  
\nc curve [angleB=-90 , ncurvA= 1 . 4] {K3}{K 1 }  
. . .  further code omitted . . .  

three 

knew _ 

owned J ..... , 
cats _ I { - -- -- ..... ' " I 1 -- I " \ 

{ , ..... { / 
..... 

, '- \ 
d { , '\ an I I /' '- I " 

....... - ....... j ....... J - -
- - + - / 

" / \ 
/ / he 

-
\- \ 

/ / \ \ 
-- / 

" 

\ I - - � - \ 
__ _ _ _ -

" 

\ / 1 
-{ -/ 

four 

425 



426 THE MAIN PSTRICKS PACKAGES 

6.7.3 Mathematics 
The base packages pstricks and pst-plot support only basic mathematical functions; the fol
lowing packages enhance them. 

The pst-eucl package 

This package by Dominique Rodriguez supports Euclidean geometry and offers the advan
tage that one defines only the physical coordinates of a triangle or any other object and then 
uses logical node names for all other special lines, circles, etc. In the following example only 
the three points A, B, and C have physical coordinates; all other coordinates are internally 
calculated from them. The user needs only the node names for additional lines, curves, or 
circles . A similar example is printed as Color Plate VIII (b) . 

\us epackage{pstri cks , pst-eucl} 

\psset{unit= 1 . 5} 
\begin{pspi cture} ( -2 . 5 , - 1 . 75 )  ( 2 . 75 , 2 . 5 ) 
\pstTriangle [PosAngleA= 180 , Po sAngleC=O] ( -2 , - 1 ) {A} ( 1 , 2 ) {B} ( 2 , - 1 ) {C} 
{ \psset{linestyle=none , Po int Symbo lB=none} 

\pstMediatorAB{B}{A}{I}{IP} 
\pstMediatorAB [Po sAngleA=-40] {A}{C}{J}{JP} 
\pstMediatorAB [Po sAngleA=75] {B}{C}{K}{KP} } 

\pst lnterLL [Po intSymbol=square , Po sAngle=- 1 70] { I }{IP}{J}{JP}{0} 
{ \psset {node sep=- . 8 , line color=green} 

\pstLineAB{o}{I}\pstLineAB{o}{J}\pstLineAB{o}{K} } 
\psdot [dot style=square] ( 0 )  
\pstProj ection [PosAngle=95] {B}{A}{C}{C ' }\pstProj e ct ion {B}{C}{A}{A ' }  
\pstProj e ct i on [Po sAngle=-90] {A}{C}{B}{B ' }  
\ps set{line color=blue }\ncline{A}{A ' } \ncl ine{C}{C ' }\ncl ine{B}{B ' }  
\pst lnterLL [Po intSymbol=square] {A}{A ' }{B}{B ' } {H} 
\ps s et { l inecolor=magenta} \ncline{A}{K}\ncl ine{C}{I}\ncline {B}{J} 
\pstMiddleAB [PointSymbol=o , Po intName=\omega] {o}{H}{omega} 
\pstCircleoA [line color=cyan , l ine style=dashed , dash=5mm lmm] {omega} {B ' }  
. . .  further code omitted ' "  

B 

KP 

A �----------��--���--� C 
B' 



Example 1 
6-7- 1 6  i �_. ___ . 

6.7 Short overview of other PSTricks packages 

The pst-fu nc package 

This package supports plotting of a variety of special mathematical functions: 

• Polynomials with their derivatives and zeros 

• Fourier curves 

• Bessel curves 

• Normal (Gauss) ,  binomial, or Poisson distributions 

• GauE integrals 

• Sine and cosine integrals 

• Lame curves 

• Implicitly defined functions 

The following examples first show the Poisson distribution and then an implicitly de
fined function, which is an example from fluid dynamics. A binominal distribution is shown 
on Color Plate VII (a) . 

\usepackage{pstri cks , pst-func} 

\psset{xunit=0 . 75cm , yunit=20cm} 
\begin{pspicture} ( - 1 , -0 . 05)  ( 1 4 , 0 . 25 )  
\uput [-90] ( 14 , 0 ) {$k$} \uput [90] (0 , 0 . 2 ) {$P (X=k) $} 
\psPoisson [markZero s , f illstyle=solid , 

f illcolor=black ! 30 , printValue , valuewidth=20] { 1 3}{6} 
\psaxes [Dy=O . l , dy=O . l \psyunit] {->} ( O , O ) ( - 1 , 0 ) ( 1 4 , 0 . 2 ) 
\end{pspicture} 

- 1  0 1 2 3 4 5 6 

\us epackage {pstri cks-add , pst-func} 

\begin{pspi cture*} ( -5 , -2 . 2 ) ( 5 . 5 , 3 . 5 ) 
\psaxe s{->} ( 0 , 0 ) (-5 , -2) (5 . 2 , 3 ) 

7 8 9 1 0  1 1  1 2  1 3 

427 



428 THE MAIN PSTRICKS PACKAGES 

\mult ido{\rA=0 . 0 1+0 . 2}{5}{% 
\psplot Imp [linewidth= lpt , line color=blue , polarplot] ( -6 , -6) ( 5 , 2 . 4) 

{r dup mul 1 . 0  r div sub phi s in dup mul mul \rA\space sub } }  
\uput * [45] ( 0 , 2 ) {$f (r , \phi ) =\left ( rA2-\frac { 1 } {r}\right ) \cdot\s inA2\phi=0$} 
\pscircle [linewidth= lpt] ( 0 , 0 ) { 1 }  
\end{pspicture * }  

2 

- 2  

The pst-math package 

This package defines extensions to the PostScript basic math functions, all of which are listed 
in Table 6 . 19 .  The style file just loads the PostScript header file to make all these extensions 
available on the PostScript level. The package author is Christophe Jorssen. 

tanh X 
. . . . . . . . . . . . . . . . .  

\usepackage{pstri cks , pst-plot} 
\us epackage{pst -math} 

\psset{unit=0 . 8} 
\begin{pspi cture * } (-5 , -5)  ( 5 , 5 ) 

- 5 -4 -3  -2 - l ." 
. . , 1 2 3 4 

\psaxes{->} (0 , 0 ) (-5 , - 5 ) ( 5 , 5 ) 
\psset{linewidth=2pt} 
\psplot {-5}{5}{x COSH} . . . . . . . . . . . . . . . . . r 1 , , 

I -2 
I 

I 
I - 3  

. h 
I sm X ,  

I -4 
I 

I 
• I':: 

\uput [O] ( -3 . 5 , 3 . 5 ) {$\cosh x$} 
\psplot [ linestyle=dashed] {-5}{5} 

{x SINH} 
\uput [O] ( -3 . 5 , -3 . 5 ) {$\s inh x$} 

\psplot [l ine style=dotted] {-5}{5} 
{x TANH} 

\uput [O] ( 3 , 1 . 25 ) {$\tanh x$} 
\end{pspicture * }  

Example 
! 6-7- 1 7  



: Example 
6-7- 19  

6.7 Short overview of other PSTricks packages 

Table 6. 1 9: PostScript math functions, supported by the pst-math package 

Stack Operator Result Description 

num COS real return cosine of num radians 

num SIN  real return sine of num radians 

num TAN real return tangent of num radians 

num COSH real return hyperbolic cosine of num 

num SINH real return hyperbolic sine of num 

num TANH real return hyperbolic tangent of num 

num ACoSH real return reciprocal hyperbolic cosine of num 
num ASINH real return reciprocal hyperbolic sine of num 
num ATANH real return reciprocal hyperbolic tangent of num 

num EXP real return exponential of num 

numl GAUSS real return Gaussian of numl with mean num2 and standard de-
num2 viation num3 
num;� 
num SINC real return cardinal sine of num radians 

num GAMMALN real return logarithm of r function of num 

The pst-infixplot package 

By default, mathematical expressions have to be defined in the postfix (PostScript) nota
tion, but with this package they can be written in the usual infix (algebraic) notation (e.g., 
pi x mul RadtoDeg s in 2 div versus sin (Pi *x) /2) . The package authors are Jean
Come Charpentier and Christophe Jorssen. 

3 

2 

1 

0 

- 1 

- 2 

- 3  

\usepackage{pstr i cks , pst-plot} 
\usepackage{pst- inf ixpl ot} 

\begin{pspi cture} ( 0 , -3 )  (7 , 4 ) 
\psset{plotpoint s=500} 
\ps axe s{->} ( O , O ) ( 0 , -3 )  ( 7 , 3 . 5 ) 
\psPlot [linecolor=gre en] {0}{7} 

{sqrt (x) } 
\psPlot [line color=red] {0}{7}{x� 0 . 4} 
\psPlot [line color=blue] {0}{7}% 

{ s in ( -x* 1 80/3 . 14 1 5 ) } 
\psplot{0}{7}{x RadtoDeg C O S }  
\psPlot {0}{7}{ s in (4*x*57 ) *x�0 . 65} 

\end{pspi cture} 

429 



430 

20 

1 5  

10  

5 

0 
0 1 

1 0- 1 
- 1 0  

THE MAIN PSTRICKS PACKAGES 

This package comes with another style file infix-RPN, which can be used to convert an 
infix expression to reverse polish notation (RPN) .  This may be useful for packages that sup
port only the RPN notation. 

20.25 

1 6 .0 
\us epackage{pstricks-add , inf ix-RPN} 

1 2 .25 
\usepackage {pst -func }  

\Spe c i alCoor 

9.0 
\psset{yunit=O . 25} 
\begin{pspicture } ( -O . 25 , -2 )  ( 5 , 22 . 5 ) 

6.25 
\ inf ixtoRPN{x*x} 
\mult ido{\rx=O . O+O . 5}{ 10}{\rput ( !  

4.0 Ix \rx\ space def 
\RPN\ space x exch ) %  

{\psPrintValue {\RPN}}} 
\psaxes [dy=5 , Dy=5] {->} ( 5 , 22 . 5) 

2 3 4 \end{pspi cture} 

The makeplot package 

This package by Jose-Emilio Vila-Forcen is intended for plotting external data files created 
by matlab (http : //www . mathworks . com) with nearly the same look as in matlab itself. 
The exported matlab data must have an x-y structure, with the values beeing separated by 
spaces. You can produce the values with matlab by saving the data in text (ASCII) format: 
save file . dat values -asc i i . 

--..::::::::-... 
-..::: " 

- UDQ-QIM 
- UQ-QIM 

I 
-5 0 

WNR, [dB] 

'\ 
\ 

5 

\us epackage [co lor] {makeplot} 

\begin{makeplot} [startX=- 10 , endX=5 ,  
startY=- l , endY=O , 
Dx=5 , width=40 , 
he ightFactor= l ,  
ylogBase=10 , logLine s=y , 
subt icks= 1 0 , xsubt icks= 1] 

{$P_e$}{WNR , [dB] } 
\plotFileA{pstricks/datal . mat} 
\plotFileB{pstri cks/data2 . mat} 
\legendDL{24 . 5 }{2} 
\legendAf{UDQ-QIM} 
\legendBf{UQ-Q IM} 

\end{makeplot} Example 

6-7 -2 1  



Example 

6-7-22 ' 

Example 

6-7-23 

6.7 Short overview of other PSTricks packages 

The pst-poly package 

This package allows you to draw various kinds of polygons with several optional customiza
tion parameters. The package author is Denis Girou. 

43 1 

\usepackage{pstri cks , pst-poly} 

\provide command{\PstPo lygonNode}{% 
\psdot s [dot style=o , dot size=O . 2] ( l ; \ INode ) 
\psline [line color=red] {->} ( O . 9 ; \INode ) }  
\PstPolygon [unit=2 , PolyNbSides=8] 

\usepackage{pstricks , pst -poly , multido} 

\multido{\nA=3+ 1 } {7}{\pspolygonbox [PolyNbSides= \nA , frame sep=2mm , doublel ine=true] {Text } - }  

6.7.4 Sciences 
The ps�pdgr package 

This package supports the creation of medical pedigrees complying with the recommenda
tions for standardized human pedigree nomenclature. The results are similar to genealogi
cal trees but have a more complex and special structure [ 1 30] . The package authors are Boris 
Veytsman and Leila Akhmadeeva. 

\usepackage{pst-pdgr} 

\begin{pspicture } ( 6 , 6) 
\psset{belowtextrp=t , armB= l }  
\rput ( 2 . 5 , 5 . 5 ) {\pstPerson [male , deceased , belowtext=A : l ] {A : l } }  
\rput ( 3 . 5 , 5 . 5 ) {\pstPerson [f emale , deceased , belowtext=A : 2] {A : 2} }  
\pstRelat ionship [descentnode=A : l _2] {A : l } {A : 2} 
\rput ( 1 , 3 . 5 ) {\pstPerson [female , af f e cted , be lowt ext=B : l ] {B : l } }  
\pstDescent{A : l _2}{B : l } 
\rput ( 2 , 3 . 5 ) {\pstPerson [male , bel owtext=B : 2] {B : 2}} 
\pstRelat i onship [descentnode=B : l _2] {B : l }{B : 2} 
\rput ( 3 . 5 , 3 . 5 ) {\pstPerson [male , af f e cted , belowtext=B : 3] {B : 3}}  
\pstDe scent{A : l _2}{B : 3} 
\rput (4 . 5 , 3 . 5 ) {\pstPerson [f emale , belowtext=B : 4] {B : 4}}  



432 THE MAIN PSTRICKS PACKAGES 

\pstRelat ionship [de scentnode=B : 3_4] {B : 3}{B : 4} 
\rput ( 5 . 5 , 3 . 5 ) {\pstPerson [female , af f e cted , de ceased , proband , 

belowtext=B : 5] {B : 5} }  
\pstDe scent{A : l _2}{B : 5} 
\rput ( O . 5 , 1 . 5 ) {\pstPerson [female , be lowtext=C : l ] {C : l } }  
\pstDe scent{B : l _2}{C : l } 
\rput ( 1 . 5 , 1 . 5 ) {\pstPerson [female , belowtext=C : 2] {C : 2}}  
\pstDe scent{B : l _2}{C : 2} 
\rput ( 2 . 5 , 1 . 5 ) {\pstPerson [female , deceased , 

belowtext=\parbox{2cm} { \ c ent ering C : 3\\4/52}] {C : 3}} 
\pstDe scent{B : l _2}{C : 3} 
\rput ( 3 . 5 , 1 . 5 ) {\pstPerson [f emale , af fe cted , belowtext=C : 4] {C : 4}}  
\pstDe s cent{B : 3_4}{C : 4} 
\rput (4 . 5 , 1 . 5 ) {\pstPerson [male , insidetext=? , be lowtext=C : 5] {C : 5}} 
\pstDe scent{B : 3_4}{C : 5} 

\end{pspi cture } 

4/52 

The pst-spectra package 

This package by Arnaud Schmittbuhl is based on the NASA lines database and allows you 
to draw continuum, emission, and absorption spectra of a variety of predefined chemical 
elements. A maximum of 16,880 visible lines from 99 chemical elements can be displayed. 
See also Color Plate VII (c) .  

\usepackage {pst-spectra , pstri cks-add} 
\psspectrum [element=Si] ( \ l inewidth , l ) 
\par 
\renewcommand\pshlabe l{\footnot e s ize\sffamily} 
\begin{pspi cture} ( O , -O . 5 ) ( \ l inewidth , 1 . 8 ) \psset{begin=650 , end=450 , gamma= 1 }  

\psspectrum [absorpt ion , element=Ne] ( \ linewidth , 1 . 5 ) 
\psaxes [Ox=650 , Dx=- 1 0 , dx=O . 8999 , yAxis=false , t icks ize=O lmm , 

t i cks=x , subt icks=O] ( \ linewidth , O . O l )  
\end{pspicture} 



Example 

6-7-26 

6.7 Short overview of other PSTricks packages 

\par 
\begin{pspi cture} ( \ l inewidth , 1 . 2 ) 

\ps spectrum [absorpt ion , lines={400 , 434 . 8 , 476 . 2 , 526 . 3 , 588 . 2 , 666 . 7} ,  
lwidth=O . l] ( \ linewidth , l ) 

\end{pspi cture} 

I I I I I 1 1  I I  II I I 
650 640 630 620 6 1 0  600 590 580 570 560 550 540 530 520 

The pst- Iabo package 

This package by Manuel Luque provides macros for a collection of simple and complex 
devices used mainly for chemical applications. The package comes with a variety of ready
made chemical glasses, bottles, etc. 

\usepackage {pstri cks , pst-labo} 

\ps s c alebox{O . 5}{\raisebox{ l cm} 
{\pstBallon [refrigerantBoulles , 

glas sType=ballon , 
substance=\pstClouFer] }}  

\ps scalebox{O . 5} 
{\pstDistillat ion 

[AspectMelange=Diffusion , 
CouleurDistillat=red] 
( - 3 , - 1 0 ) ( 7 , 6 ) }  

433 



434 THE MAIN PSTRICKS PACKAGES 

The pst-optic package 

This package by Manuel Luque and Herbert VoG is intended for optical systems with conver
gent and divergent lenses and mirrors with linear rays; it also supports lenses and mirrors 
for spherical optics. This package is mainly of interest for physics teachers in high schools. 

\usepackage [cmyk] {pstricks} \us epackage{pst-opt ic}  

\begin{pspi cture * } (-7 . 5 , -3)  ( 7 . 5 , 3 ) 
\rput ( O , O ) {% 

\lens [lensScale=O . 6 , XO=-4 , nameF=F_ l , nameA=A_ l , nameB=B_ l ,  
nameFi=F ' _ l , nameAi={ } , nameBi={} , nameO=O_ l ,  
f o cus= 1 , OA=-2 , lensGlas s=true , lensWidth=O . 5] }  

\pspolygon [style=rayuresJaune s , linestyle=none] (B) ( I ) (B ' ) ( I ' ) (B)  
\Transf orm 
\rput (O , O ) {% 

\lens [lens Scale= 1 . 2 , XD=2 , f o cus=2 , nameA=A ' _ 1 , spotA=90 , nameB=B ' _ l ,  
spotB=270 , nameO=D_2 , nameAi=A ' _2 , spotAi=270 , nameBi=B ' _2 , spotBi=90 , 
nameF=F_2 , nameFi=F ' _2 , lensTwo=true , lensGlas s=true , lensWidth=O . 5] }  

\pspolygon [styl e=rayuresJaune s , l inestyle=none] (B) ( I ) (B ' ) ( I ' ) (B)  
\end{pspi cture * }  

T h e  pst-osci package 

This package by Manuel Luque and Christophe Jorssen simulates the output of a one- or two
channel oscilloscope. All switches on a real oscilloscope can be modified with special key 
settings. A y-x view is also possible, such as for Lissajous figures. See also Color Plate IX(b) .  

\usepackage {pstri cks , pst - o s c i }  

\ps s c alebox{O . 5}{\Oscillo [ampl itude2=1 . 5 , peri od2=50 , per iod l = 1 0 , 
combine=true , operat ion=add] }\qquad 

\ps s c alebox{O . 5 }{\Oscillo [amplitude2= 1 . 5 , peri od2=50 , periodl= 1 0 , comb ine=true , 
operat ion=add , off set l=2 , off set2=2] } 

Example 

6-7-27 



6.7 Short overview of other PSTricks packages 

The pst-ei re package 

This package allows you to easily draw electric circuits. The authors are Christophe Jorssen 
and Herbert VoK Most dipoles, tripoles, and quadrupoles used in classical electrical circuits 
are provided as graphical units, which can readily be interconnected to produce reasonably 
complex circuit diagrams. European logic symbols are also available. 

\us epackage{pstri cks , pst-circ} 

\psset {unit=0 . 7} 
\ps set{intens itycolor=red , intens itylabelcolor=red , t ens i oncolor=green , %  

tensionlabelcolor=green , intens itywidth=3pt} 
\begin{pspi cture} ( - 1 . 25 , 0 ) ( 1 3 . 5 , 9 ) 

\ c ircledipole [tens ion , tensionlabel=$U_O$ , t ens i onoff set=-0 . 75 , %  
tensionlabelof f set=- l , labelof f s et=O] ( 0 , 6 ) ( 0 , 0 ) {\LARGE\ t extbf {=}} 

\wire [intens ity , intens itylabel=$i_O$] ( 0 , 6 ) ( 2 . 5 , 6 ) 
\diode [dipole style=thyri stor] ( 2 . 5 , 6) ( 4 . 5 , 6 ) {$T_ 1 $ }  
\wire [intens ity , intensitylabel=$ i _ 1 $ ]  ( 4 . 5 , 6 ) ( 6 . 5 , 6 ) 
\mult idipole ( 6 . 5 , 7 . 5 ) ( 2 . 5 , 7 . 5 ) %  

\coil [dipole style=re ctangle , l abeloff set=-0 . 75] {$L_5$}% 
\diode [labeloff set=-0 . 75] {$D_5$} . 

\wire [intens ity , intens itylabel=$i_5$] ( 6 . 5 , 6 ) ( 6 . 5 , 7 . 5 ) 
\wire (2 . 5 , 7 . 5 ) (2 . 5 , 3) 
\wire [intens ity , intensitylabel=$i_c$]  ( 2 . 5 , 4 . 5 ) ( 2 . 5 , 6 ) 
\qdisk ( 2 . 5 , 6 ) {2pt }\qdisk ( 6 . 5 , 6 ) {2pt} 
\diode [dipolestyle=thyri stor] (2 . 5 , 4 . 5 ) (4 . 5 , 4 . 5 ) {$T_2$} 
\wire [int ens ity , intens itylabel=$i_2$]  ( 4 . 5 , 4 . 5 ) ( 6 . 5 , 4 . 5 ) 
\capac itor [tens ion , t ensionlabel=$u_ c $ , %  

tens i onoff set=-0 . 75 , tens ionlabeloff set=- 1 ]  ( 6 . 5 , 4 . 5 ) ( 6 . 5 , 6 ) {$C_k$} 
\qdisk ( 2 . 5 , 4 . 5 ) {2pt}\qdi sk ( 6 . 5 , 4 . 5 ) { 2pt} 
\wire [intens ity , intensitylabel=$i_3$]  ( 6 . 5 , 4 . 5 ) ( 6 . 5 , 3) 
\mult idipole ( 6 . 5 , 3) ( 2 . 5 , 3 ) %  

\coil [dipole style=rectangle , l abelof f s et=-0 . 75] {$L_3$}% 
\diode [labeloff set=-0 . 75] {$D_3$} . 

\wire ( 6 . 5 , 6 ) ( 9 , 6 ) \qdisk ( 9 , 6 ) {2pt } 

435 



436 THE MAIN PSTRICKS PACKAGES 

\diode ( 9 , 0 ) ( 9 , 6 ) {$D_4$} 
\wire [ intens ity , intens ityIabel=$i_4$] ( 9 , 3 . 25 ) ( 9 , 6 ) 
\wire [int ens ity , intens ityIabel=$i _ a$] ( 9 , 6 ) ( 1 1 , 6 ) 
\muIt idipole ( 1 1 , 6 ) ( 1 1 , 0) %  

\re s i st or{$R_L$} 
\ c o i l [dipol estyle=rectangle] {$L_L$}% 
\ circIedipole [labeloff set=0 , tens i on , tens i onof f set=0 . 7 , %  

tensionlabel=$U_B$] { \LARGE\textbf {=}} . 
\wire ( O , O) ( 1 1 , 0 ) \qdisk ( 9 , 0 ) {2pt} 
\tens i on ( 1 2 . 5 , 5 . 5 ) ( 1 2 . 5 , 0 . 5 ) {$u_a$ } 

\end{pspicture} 

The pst-stru package 

The package pst-stru by Giuseppe Matarazzo can be very helpful for drawing bending mo
ments and structural schemes for beams, portals, arches, and piles in civil engineering 
analysis. 

\usepackage{pstri cks , pst - stru} 

\psset{arrows ize=0 . 8mm , arrowinset=0} 
\begin{pspi cture} ( - 1 , -4 )  ( 9 , 2 ) 

\pnode ( 0 , 0) {A} \pnode ( 2 , 0 ) {B} \pnode ( 8 , 0) {C} 
\rput{O} (C)  {\hinge }\rput {O} (B)  {\roller} 
\psI ine [l inecolor=red , f i ll color=yellow , f il l style=sol id] ( 0 , 0) ( 8 , 0 ) ( 8 , 1 ) ( 0 , 0 ) 
\muIt ido{\nStart = 1 . 00+0 . 025}{-37}{\psArrowCivil [RotArr ows=O , 

length=\nSt art , st art=\nStart , l ine c olor=magenta] (A)  ( C ) {}}  
\rput ( 8 . 3 , 0 . 4 ) {\large p} \rput ( 0 , -0 . 4) {\Large A}\rput ( 2 , - 1 ) {\Large B}  
\rput ( 8 . 3 , -0 . 6 ) {\Large C} 
\pcIine [off set=0 , l ine color=blue] { I - I } ( O , -3 )  ( 2 , -3 )  

\ lput * { : U}{\bf $\frac{I}{3}$} 
\pcI ine [off set=O , l ine color=blue] { I - I } ( 2 , -3 )  ( 8 , -3 ) \lput * { : U}{\bf $I$} 
\def \Mf IettAB# 1#2#3{#1 #2 div - . 125  mul x mul x mul x mul #3 mul neg} 



Example 

6-7-30 

6.7 Short overview of other PSTricks packages 

\pscustom [linecolor=blue , linewidth= 1pt , f i llstyle=hline s] {% 
\psplot [] {0}{2}{\Mf lettAB{6}{6}{0 . 1 5}}  
\psline [] ( 2 , 0) ( 0 , 0 ) }  

\def \TaglioAB# 1#2#3{#1 #2 div - . 375 mul x mul x mul #3 mul} 
\ps custom [linecolor=green , linewidth= 1pt , f i llstyle=cros shat ch] {% 

\psplot [] {0}{2}{\TaglioAB{6}{6}{0 . 15}}  
\psline [] ( 2 , 0) ( 0 , 0 ) }  

\def \Mf lettBC# 1 #2#3{# 1 #2 div - . 125 mul x mul x mul x mul 
#1 3 . 375 div #2 mul x mul add 
# 1  1 0 . 1 25 div #2 mul #2 mul sub #3 mul neg} 

\pscustom [linecolor=blue , linewidth= 1pt , f i llstyle=hline s] {% 
\psplot [] {2}{8}{\Mf lettBC{6}{6}{0 . 15}}  
\psl ine [] (8 , 0 ) ( 2 , 0 ) }  

\def \TaglioBC# 1#2#3{#1 #2 div - . 375 mul x mul x mul 
# 1  3 . 375 div #2 mul add #3 mul} 

\pscustom [linecolor=green , linewidth= 1pt , f ill style=cros shat ch] {% 
\psplot [] {2}{8}{\Tagl ioBC{6}{6}{0 . 1 5}} 
\psl ine [] ( 8 , 0 ) ( 2 , 0) ( 2 , 1 . 4) }  

\psl ine [linewidth= 1 . 5pt] ( 0 , 0 ) ( 8 , 0) % Print ing beam AC after diagrams BM/S 
\rput ( 3 , 1 . 6 ) {\em { \ s cript s ize Shear diagram (green boundary) } } 
\rput [lb] ( 0 , -2 . 3 ) {\em { \ s cript s ize Bending Moment diagram (blue boundary) } }  
\rput [lb] ( 0 , -2 . 6 ) {\s cript s ize [as sumed posit ive downwards] } 
\rput ( 5 , - 1 ) {\bf {\large +}}\rput ( 2 . 5 , 0 . 6 ) {\bf {\large +}} 
\rput (7 . 7 , - 1 . 3 ) {\bf { \Large -}} 

\end{pspi cture} 

Shear diagram (green boundary) 

A 

Bending Moment diagram (blue boundary 
[a"umed po,itive downwards] 
I-- 1 -----.,..--------3 

The pst-geo package 

This package is actually a bundle of four packages for plotting geographical representations 
in two- or three-dimensional views. The authors are Manuel Luque, Giuseppe Matarazzo, 
and Herbert VoK The data is read on the PostScript level, so having a correct path is im
portant. For some countries additional city data is available. The following projections are 
supported: Mercator, Lambert, Sanson-Flamsteed, Babinet, Collignon, Bonne, and a sim
ple one. Two databases are available, one each for the two- and three-dimensional views. 

437 



438 THE MAIN PSTRICKS PACKAGES 

The packages are called pst-map2d, pst-map2d l l ,  pst-map3d, and pst-map3d l l .  The data is 
always read for the whole world, and the visible part is specified by the longitude and latitude 
for the 3-D view and by pspi cture coordinates for the 2-D view. 

6.7.5 I nformation theory 

\usepackage{pstricks , pst-map2d} 
% path to dat a f iles : 
\psset {path=texmf /tex/latex/pstricks/data} 

% select a larger unit value to make 
% the map larger and more readable :  
\psset{level= 1 , unit=9} 

\begin{pspicture * } ( -4 . 3 , 1 . 25 )  ( -3 . 5 , 2 . 5 ) 
\WorldMap [rivers=true , USA=true , 

maillage=true] 
\def \psNodeLabelStyle{\t iny} 
\psset {mapCountry=USA , nodeWidth=O . 2mm} 
\input{cities . tex} 

\end{pspi cture *} 

An automaton is a mathematical model for a finite state machine. Given an input it  jumps 
through a series of states according to a so-called transition function. This behavior can be 
described by a symbolic scheme. 

The gastex package 

This package by Paul Gastin is intended for graphs and automata. It is not a PSTricks-related 
package, but it uses the same way of passing graphical elements from �TEX to PostScript. 
However, it is possible to combine any PSTricks command with gastex commands or to scale 
graphics in an easy way. Although no documentation comes with the package, it includes 
some quite self-explanatory examples. 



Example 

6-7-32 

6.7 Short overview of other PSTricks packages 

\usepackage [dvipsnarnes] {pstr i cks} \usepackage{gastex} 

\psset {unit=2 . 5pt} 
\begin{pspicture} ( -35 , -37) (85 , 1 5 )  

\node [Nw= 1 6 , l ine color=Yellow , f illcolor=Yel l ow] (A)  (-20 , O ) { init i al }  
\ imark [iangle=200 , l ine color=Peach] ( A )  
\node [Nmr=0 , Nw= 14 , f illgray=0 . 85 ,  

dash={ 1 }0] (B)  (20 , 0 ) {\text color{RedViolet}{f inal} }  
\fmark [flength= 10 , f angle=-30 , dash={3 1 1 1 }0] (B)  
\node [Nadj ust=wh , Nadj ustdist=2 , Nmr=3 , Nmarks=r , l inecolor=Green] ( C )  (60 , -20) {% 

$\left ( \begin{array}{ccc} 
2 & 1 & 0 \\  

-1  & 0 & 1 \ \  
o & - 1  & 2 

\end{array}\right ) $} 
\rmark [linecolor=Green , rdist= 1 . 4] ( C )  
\drawedge [curvedepth=5 , l ine color=Red] (A , B) {\text color{ Cyan}{ curved}} 
\drawedge [ELs ide=r , ELpos=35] (A , B) {straight } 
\drawedge [curvedepth=-25 , ELs ide=r , dash={ 1 . 5}0] (A , B) {f ar} 
\drawloop [ELpos=75 , loopangle=150 , dash={0 . 2  0 . 5}0] (A)  {loopCW} 
\drawloop [loopCW=n , ELs ide=r , loopangle=30 , dash={3 1 . 5 } { 1 . 5}] (B)  {loopCCW} 
\drawqbpedge [ELs ide=r , ELdist=0 , dash={4 1 1 1 }0] CB , -90 , C , 180) {qbpedge} 
\drawloop [ELpos=70 , loopangle=O] (C) {$b / 0 1 $} 
\drawloop [loopCW=n , ELpo s=75 , ELs ide=r , loopangle=-90 , sxo= 6] ( C ) { $ a  / 0 1 $} 
\drawloop [ELpo s=75 , loopangl e=-90 , sxo=-6] ( C ) {$b / 1 0  $ }  
\drawloop [loopangle=50] (C) {$b / 0 1 $} 
\drawloop [ELpo s=75 , loopangle= 148] ( C ) {$b / 0 1 $} 

\end{pspicture} 

The vaucanson-g package 

The vaucanson-g package of macros allows you to draw automata and graphs within texts; 
it is the only package described here that is not is not yet available on CTAN. The authors 
are Sylvain Lombardy and Jacques Sakarovitch, and the package is available from their Web 

439 



440 

a 

THE MAIN PSTRICKS PACKAGES 

site. 1 They follow the philosophy that "simple" automata should be described with simple 
commands. The complexity of commands (or the number of things that must be remem
bered to use them) should gradually grow with the complexity of the figure composed by 
these commands. 

The following example shows how a simple automaton can be drawn with commands, 
in which only the minimal information needed (position and label of states, shape and label 
of transitions) is made explicit. Except for the basic nodes, it also uses logical node names 
instead of physical coordinates. 

b 
a 

\usepackage{vaucanson-g} 

\begin{VCP i cture}{ ( O , -2) ( 6 , 2 ) }  
\State [p] { ( O , O ) }{A} \State{ ( 3 , O ) }{B} 
\State [r] { (6 , O ) }{C} 
\ Init ial{A} \Final{C} 
\EdgeL{A}{B}{a} \ArcL{B}{C}{b} 
\ArcL{CHBHb} 
\LoopN{A}{a} \LoopS{C}{d} 
\end{VCPi cture} 

The authors provide a special file for the beamer class to make it easier to create a 
presentation. The hint on the Web site that one has to load beamer with the class option 
xcolor=pst is obsolete. The next example uses the macro \resizebox from the graph icx 

package, which can conveniently be used here to scale the output. 

\usepackage {vaucanson-g , graphicx} 

\re sizebox{\l inewidth}{ ! }{\begin{VCP i cture}{ ( - 1 1 , -5 ) ( 1  1 , 1 2 ) } 
\PlainSt ate\LargeState\ChgStat eLabelScale{O . 75} 
\StateIF [p , q] { ( - 1 0 , - 1 ) }{AB} \StateIF [q , r] { ( -6 , - 1 ) }{BC} 
\StateIF [p , r] { ( -8 , -4 . 464) }{AC} 
\VCPut { ( -5 , -5 ) }{$\kappa= [2 , O , O] $} 
\Stat e I F [p] { (8 , 1 . 536) }{A} \StateIF [q] { ( 6 , 5 ) } {B} 
\StateIF [r] { ( 1 0 , 5 ) }{C} 
\VCPut { ( 8 , -O . 5 ) } {$\kappa= [ 1 , O , O] $} 
\ St ateIF [pq] { ( -8 , 7 . 536 ) } {Ab} \StateIF [qr] { ( -6 , 1 1 ) }{Bc} 
\StateIF [pr] { ( - 1 0 , 1 1 ) }{Ac} 
\VCPut { ( -2 , 1 1 ) }{$\kappa= [O , 1 , O] $} 
\StateIF [p , qr] { ( O , - 1 . 464) }{ABc} \State IF [q , pr] { ( -2 , 2 ) }{BAc} 
\State IF [r , pq] { ( 2 , 2 ) } {CAb} 
\VCPut{ ( 3 , -2 ) }{$\kappa= [ 1 , 1 , O] $ }  
\StateVar [pq , pr , qr] { ( -8 , 3 ) }{AbAcBc} 
\VCPut { ( -8 , 1 ) } {$\kappa= [O , 3 , O] $} 
\StateIF [pr , qr] { ( 2 , 8 ) }{AcBc} \Stat e I F [pq , pr] { (O , 4 . 536) }{AbAc} 
\State IF [pq , qr] { ( -2 , 8 ) } {AbBc} 
\VCPut { ( 5 , 9) }{$\kappa= [O , 2 , O] $} %--- end physical c oordinates 
\DimEdge \ChgEdgeLineStyle{dashed} \RstEdgeLineWidth 

l http : / / i gm . univ-mlv . f r / - lombardy/Vaucans on- G/ 

Example 

6-7-33 



Example ' 
6-7-34 

6.7 Short overview of other PSTricks packages 

\EdgeR{Ab}{AbAc}{} 
\EdgeR{B c}{AbBc}{} 
\EdgeR{AbBc}{AbAcBc}{} 
\EdgeR{A}{ABc}{} 
\EdgeR{AbAcBc}{ABc}{} 
\EdgeR{ABc}{AB}{} 
\EdgeR{BAc}{BC}{} 
\RstEdge 

\EdgeR{Ab}{AbBc}{} 
\EdgeR{Bc}{AcBc}{} 
\EdgeR{AbBc}{B}{} 
\EdgeR{B}{BAc}{} 
\EdgeR{AbAcBc}{BAc}{} 
\EdgeR{ABc}{AC}{ }  
\EdgeR{CAb}{AC}{} 

\ Init i al {Ab} \Final{Ab} \Final [w] {Ac} 

\EdgeR{Ac}{AbAc}{} 
\EdgeR{AbAc }{AbAcBc}{} 
\EdgeR{AcBc}{AbAcBc}{} 
\EdgeR{C}{CAb}{} 
\EdgeR{AbAcBc}{CAb}{} 
\EdgeR{BAc }{AB}{} 
\EdgeR{CAb}{BC}{} 

\EdgeR{Ac}{AcBc}{} 
\EdgeR{AbAc}{A}{} 
\EdgeR{AcBc}{C}{} 

\Initial{AbAc} \ Init i al{AbBc }  \Final [s] {AbBc} 
\ Init ial{AbAcBc} \Final{AbAcBc} 

\Final{Bc} 
\Final{AbAc} \Final{AcBc} 

\Final [s] {B} \Final{C} \ Init i al{A} 
\ Init i al{ABc} 
\ Init i al{AB} 
\Final{BC} 

\ Init i al{B} 
\Initial{BAc} 
\ Init ial{AC} 

\ Init ial [s] {CAb} \Final [s] {BAc} \Final{CAb} 
\ Initial [s] {BC} 

\EdgeR{Ab}{Bc}{a , b} \EdgeR{Bc}{Ac}{a} \EdgeR{Ac }{Ab}{a} 
\EdgeL{AbAc}{AbBc}{a} \EdgeL{AbBc}{AcBc}{a} \EdgeL{AcBc}{AbAc}{a} 
\LoopN{AbAcBc}{a} 
\EdgeL{A}{B}{a} \EdgeL{B}{C}{a} \ArcL{A}{C}{b} \ArcL{C}{A}{a} 
\LoopN{BHb} 
\EdgeL{ABc}{BAc}{a} \EdgeL{BAc} {CAb}{a} \EdgeL{CAb}{ABc}{a} 
\EdgeL{AB}{BC}{a , b} \EdgeL{BC} {AC} {a} \EdgeL{AC}{AB}{a} 

\end{VCPi cture}} 

,, � [O.  1 . 0! 

h � [0. 2 . 0J 

h � [0. 3 , 01 

" � [l.ll. 01 

441 



442 

1 

• 

"Yin 

THE MAIN PSTRICKS PACKAGES 

The sfg package 

This package by Hanspeter Schmid allows you to draw signal flow graphics. The "documen
tation" of the package can be found at the end of the style file. 

\usepackage{sfg} 

\sfgsetunit{O . 5 cm} \ sfgsetsize{O . 1 2}{O . 4}{O . 5}{O . 3} \sfgsetcompass 
\begin{pi cture} (27 , 4 ) % branche s related to node 2 

\put ( 6 , 2 ) {\ sfgbranch{3}{O}\S{$\frac { 1 } {R_ 1 } $}} 
\put ( 9 , 2 ) {\ sfgbranch{3}{O}\N{\boldmath $Z_2$}} 
\put ( 1 8 , 2 ) {\sfgcurve{-9}{O}{2}\S{$ \frac { 1 } {R_2}$ }} 
\put ( 24 , 2 ) { \sf gcurve{- 15}{O}{-2}\N{$sC_ 1$}}  % branches related t o  node 3 
\put ( 1 2 , 2 ) {\ sfgbranch{3}{O}\N{$\frac { 1 }{R_2}$}} 
\put ( 1 5 , 2 ) {\sfgbranch{3}{O}\N{\boldmath $Z_3$}} 
\put ( O , 2 ) {\ sfgcurve{6}{O}{2}\N{$ 1 $ }}% input , voltage gain , output 
\put ( 18 , 2 ) {\ sfgcurve{6}{O}{-2}\S{$\alpha_{\mathrm{V}}$}} 
\put ( 24 , 2 ) {\ sfgbranch{3}{O} \ S { $ 1 $ } }  
\put ( O , 2 ) {\sfgtermnode\S{$V_{\mathrm{ in}}$}}  % nodes 
\put ( 3 , 2 ) {\sfgnode\S{$ I _ 1$}}  \put ( 6 , 2 )  {\sfgnode\S{$V_ 1$}}  
\put ( 9 , 2 ) {\sfgnode\S{$I_2$}} \put ( 12 , 2 ) {\sfgnode\S{$V_2$}} 
\put ( 1 5 , 2 ) {\sfgnode\S{$I_3$}} \put ( 18 , 2 ) {\ sfgnode\S{$V_3$}}  
\put ( 2 1 , 2 ) {\sfgnode\S{$I_4$}} \put ( 24 , 2 ) {\ sfgnode\S{$V_4$}} 
\put ( 27 , 2 ) {\sfgtermnode\S{$V_{\mathrm{ out}}$}}  

\end{pi cture} 

SCI 

Z2 
1 

R2 Z3 
• 

V2 h 3 4 1 

1 ay 
R2 

6.7.6 UML and ER diagrams 

Two different packages are available for creating Unified Modeling Language diagrams. They 
are incompatible with each other. 

The pst- u m l  package 

This package from Maurice Diamantini comes with a French documentation, but the exam
ples are self-explanatory. 

\usepackage{graphi cx , pstri cks , pst-uml} 

\res izebox{ 1 2 cm} { ! }{% 
\begin{pspicture} ( 18 ,  1 5 )  

\rput ( 3 , 13) {\rnode {Clas s 1 } {\drawClas s i } }  \pnode ( 1 7 . 5 , 1 3 ) {pnode 1 }  
\rput ( 9 , 1 0 ) {\rnode{Class2}{\drawClas s i i } }  

, Example 

6-7-35 



6.7 Short overview of other PSTricks packages 

\rput ( 2 ,  5) {\rnode{Class3}{\drawClass i i i } }  
\rput ( 12 , 5 ) {\rnode{Clas s4}{\drawClas siv}} \rput (5 . 5 , 5 . 5 ) {\rnode {Clas s5}{ \drawClassv}} 
\rput ( 1 6 , 1 1 ) {\rnode{Actor l } {\umlActor{Actor ( s )  l } } }  

\end{pspi cture} 
\ncline{Class l }{pnode l }  \ncput i c on [npos=O . 7 , nrot= : U] {umlV} 
\naput {nc line} \naput [npos= l , ref=r] {Node " P l " }  
\ncSXE [armA= 1 1 . 5] {pnode l } {Class3} \nbput {SXE ( armA= 1 1 . 5 ) }  
\ncput i con{umlV}\ncput i c on [npos= 1 . 9999 , nrot= : U] {umlV} 
\ncput i c on [npos=2 , nrot= : U] {umlV}\ncput i c on [npos=5 , nrot= : U] {umlV} 
. . .  further code omitted . . .  

The um l  package 

ncSHS HcSI:lS 

- - - - - - - - - - - - - - - - - -1 
HeSHN vers 4) 

SXE (annA,, ] 1 .5) 

This package from Ellef Gjelstad is another one for Unified Modeling Language diagrams. It 
defines macros with the same name as pst-uml  and should not be used together with that 
package. 

443 

\usepackage{uml} 

\umlDiagram [box= , s izeX= 1 1 cm , s izeY= 1 3 . 5 cm , ref=ADTdiagram , graynes s=O . 92] {}% End of diagram 
\umlSchema [po s=\umlTopRight {ADTdi agram} , posDelt a={- . 5 , - . 5} , refpo int=tr] {ADT}{% Attributes 

\umlAttribute [visibility , type=String] {name}}{}{}{}{} 
\umlSchema [pos=\umlTopLeft{ADTdiagram} , posDelta={ . 5 , - 1 } , refpoint=lt , abstract , 

ref=ADTexample] {ADT-example}{% 
\umlAttribute [vi sibility=- , 

type=\emph{\umlColorsArgument\umlColorsAdj ust type } , def ault=null] {f irstNode} 
H%Methods 



444 THE MAIN PSTRICKS PACKAGES 

H%Argument s 
\umlArgument [type=Metaclas s ] {type} 

H%Constraint s 
H%Structure 

\umlDiagram [box= , innerBorder=2mm , outerBorder] {% 
\umlClas s [pos={ . 5 , . 5} ,  ref=adtNode , box=] {Node}{% 

\umlAttribute [vi sibility , 
type=\emph{\umlColorsArgument\umlColorsAdjust type}] {data}}{}% 

\umlAs s o c i at i on [angl eA=20 , angleB=-20 , arm= l em , arm= lem] {adtNode}{adtNode}% 
}\ cr% End of Diagram 

}% End of ADT-example 
. . .  further code omitted 

�..... 
-- I 

Example I 

I 6-7-37 



Example 

6-7-38 

6.7 Short overview of other PSTricks packages 

The pst-dbicons package 

This package from Wolfgang May allows you to create relationships between entities of a 
database model. The documentation comes with a very complex database example. 

\usepackage{pst-dbi cons} 
\set i conparams{ent ity}{shadow=true , f i ll col or=black ! 30 , f illstyle=solid} 
\set i conparams{attribute}{f i l l col or=bl ack ! 1 0 , f ills tyle= sol id} 
\set i conparams{relat i onship}{ shadow=true , f illcol or=black ! 20 , f ill style=sol id} 

\setlength\attrdist{2 . 5em} 
\ent ity{Pers on}\hspace{8cm}\ ent it y{Company } 
\attribut eof {Person} {30} [key] {Name} \attributeof {Person}{90} [mv] {Ni ckname} 
\attribut eof{Person} [4em] { 1 50}{phone} [phone\ _no] 
\attribut eof {Person} [2em] {270} [mv] {wt } [we ight \_at]  
\attribut eof {wt H240Hdate} \attri buteof {wtH300Hwe ight } 
\relat i onshipbetween{Person}{Company}{worksat} [works\_a t]  

6.7.7 3-� views 

Table 6. 12  on page 388 lists PSTricks packages available for three-dimensional views of text 
or graphical objects, and Sections 6.5 and 6.6 describe two of them. 

The pst-vue3d package 

This interesting package from Manuel Luque supports hidden lines or surfaces for 3-D ob
jects and offers commands for almost all basic geometric objects, including planes, cones, 
pyramids, and spheres, among others. See also Color Plate IX(a) .  

\us epackage {pst-vue 3d , mult ido} 

\begin{pspi cture} ( - 3 . 5 , -2 )  ( 3 , 4 _ 5 ) 
\psset {THETA=5 , PHI=40 , Dobs= 150 , De cran=6 _ 5 , f illstyle=sol i d , l inewidth=O . lmm} 
{ \psset {normal eLongitude=O , normaleLatitude=90} 

\FrameThreeD [fillstyle=solid , f ill col or=black ! 1 5] ( 0 , 0 , 0 ) ( -50 , 0 ) ( 50 , 50)  
\FrameThreeD [f illstyle=solid , f i llcolor=black ! 1 5] ( 0 , 0 , 0 ) ( -50 , 0 ) ( 50 , -50) 
\QuadrillageThreeD (0 , 0 , 0 ) ( - 50 , -50) (50 , 50)  } 

\mult i do{\iCY=-45+90}{2}{\Cyl indreThreeD ( -45 , \ iCY , 0 ) {5}{50} 
\DemiSphereThreeD C -45 , \ iCY , 50) {5}}  

445 



446 THE MAIN PSTRICKS PACKAGES 

\CylindreThreeD(O , O , O) {10}{15} \CylindreThreeD (O , O , 15) {20}{5} 
\DemiSphereTbreeD (RotX=180] (O,O ,3S){20) 
\SphereCreuseThreeD [RotX=180] (O , O , 35){20} 
{ \psset{RotY=90,RotX=O,RotZ=30} \CylindreThreeD(15,15,S){5}{20} } 
\multido{\iCY=-45+90}{2}{\CylindreThreeD (45,\iCY,O) {S}{50} 

\DemiSphereThreeD (45,\iCY,50){5}} 
\end{pspicture} 

The pst-ob3d package 

This package allows you to draw basic three-dimensional objects such as cubes (which can 
be deformed to rectangular parallelepipeds) and dies. The package author is Denis Girou. 

\usepackage{pst-ob3d} 

\ThreeDput{\psframe [fillstyle=solid,fillcolor=black ! 15] (6.6) 
\psgrid [subgriddiv=O,gridlabels=O ,griddots=5] (6 ,6)}  

\psset{fillstyle=solid,dotscale=2,RandomFaces=true, Corners=true} 
\randomi=123456 \PstDie [fillcolor=black ! 10] ( 1 , 3 ,0) 
\randomi=271354 \PstDie(fillcolor=black ! 20,viewpoint=1 0 . 3  1 ,  

CornersColor=black!80] (0 . 3 , 1 . 5,0) 
\psset{linecolor=white} 
\randomi=93850516 \PstDie[fillcolor=black ! 60,viewpoint=1 -0 5 1 ,  

CornersColor=black ! 20] (3,3 ,0) 
\randomi=8873165 \PstDie [fillcolor=black !40,viewpoint=1 -0 2 1 ,  

CornersColor=black ! 10] (2,5,0) 



6.7 Short overview of other PSTricks packages 

The pst-fr3d package 

This package from Denis Girou is for drawing simple three-dimensional framed objects, 
such as buttons. 

\us epackage{pstri cks , pst-f r3d} 

447 

\PstFrameBoxThreeD{Ctrl} 
\PstFrameBoxThreeD [FrameBoxThreeDCo lorHSB=0 . 1  0 . 9  0 . 5] {Alt} 
\par\ smal lskip 
\PstFrameBoxThreeD [FrameBoxThreeDOn=f al se , l inewidth=O . 1 ]  {Delete} 
\PstFrameBoxThreeD [FrameBoxThreeDOn=t rue , l inewidth=0 . 1 ] {De lete} 

The pst- l ight3d package 

This is another package from Denis Girou for creating three-dimensional light effects on text 
or graphical objects. 

The pst-g r3d package 

\usepackage {pstr i cks , pst-plot , pst-light3d} 
\DeclareFixedFont {\Rmb}{T 1 } {ptm} {m} {n} { 1 5mm} 

\PstLightThreeDText [l ine style=none , f i l lstyle=s olid , 
f i l lcolor=black ! 20] {\Rmb PSTricks} 

\psset {xunit=5cm , yunit= 1 5mm , LightThre eDXLength=0 . 3 ,  
LightThreeDYLength=-0 . 3 , plotpoints=500} 

\begin{pspi cture} ( -0 . 1 , - 1 . 1 ) ( 1 , 1 . 3 ) 
\psaxes [Dx=0 . 2 , Dy=0 . 4] {->} ( 0 , 0 ) ( 0 , - 1 )  ( 1 , 1 . 2 ) 
\PstLightThreeDGraphi c [LightThreeDColorPs Command= 

1 . 5  div 0 . 6  exch 0 . 8  0 . 2  set cmykcolor] 
{\pspl ot{0}{0 . 95}{x 40 mul Radt oDeg cos  2 div}} 

\PstLightThreeDGraphic [LightThre eDCo lorPs Command= 
1 . 5  div 0 . 05 exch 0 . 8  0 . 2  set cmykcolor] 

{\psplot{0}{0 . 95}{x 1 0  mul Radt oDeg s in}} 
\rput ( 0 . 35 , 0 . 8 ) { $ \ s in ( 10x) $ }  
\rput ( 0 . 2 , -0 . 65) {$\frac { 1 }{2}\ cdot \ c o s (40x) $} 
\end{pspi cture} 

This package allows you to create simple three-dimensional grids, such as a 3-D matrix. All 
corners can be defined as nodes to create additional connections. The original author is 
Denis Girou. 

\usepackage{pst -gr3d} 

\def\PstGridThre eDHookEnd{ {\psset{PstPi cture=fal se , gridwidth=0 . 1 } 
{\def\PstGridThreeDHookNode{\PstGridThreeDNodeProcessor{blue}}% 

\PstGridThreeD [gridcol or=blue , GridThreeDZPos=3] ( 0 , 7 , 0 ) }% 
{\def\PstGridThreeDHookNode{\PstGridThreeDNodePro cessor{red}}% 

\PstGridThreeD [gridcolor=red , GridThreeDXPos= 1 , Gri dThreeDZPos= 1 ]  ( 0 , 3 , 1 ) }% 
{\def\PstGridThreeDHookNode{ \PstGridThreeDNodePro c e s sor{green}}% 



448 THE MAIN PSTRICKS PACKAGES 

\PstGridThreeD [gridcol or=green , Gri dThreeDYPos=6] ( 1 , 1 , 1 ) }}} 
\PstGridThreeD [gridwidth=O . 04 , Gri dThreeDNode s=true] ( 1 , 7 , 3 ) 
\Spe c i alCoor 
\rput ( [Rx=O . 15 , angl e= 140] Gr3dNode033) {\psline [l inecol or=blue] {<-} ( O . 8 ; 150) } 
\rput ( [Rx=O . 95 , angle= 140] Gr3dNode033) 

{\ short st ack{ 1 d  gri d\\\footnot esize (X=8 , Y= 1 , Z= 1 ) }} 
\rput ( [Rx=O . 1 5 , angle=-50] Gr3dNode 1 2 1 ) {\psl ine [linecolor=red] {<- } ( 1 . 2 ; -50) } 
\rput ( [Rx= 1 . 5 , angle=-55] Gr3dNode 1 2 1 )  

{\ short st ack{2d grid\\\footnot es ize (X=4 , Y=2 , Z= 1 ) }} 
\rput ( [Rx=O . 2 , angle=- 100] Gr3dNode 160)  {\psl ine [linecolor =gre en] {<-} ( O . 8 ; - 100) } 
\rput ( [Rx= 1 . 4 , angle=- 1 00] Gr3dNode 160)  

{\ short st ack{3d grid\\\f ootnot esize (X=2 , Y=2 , Z=2) }} 

(X=4. Y =2,Z= 1 )  

6.7.8 Shapes a n d  color g radients 

Shapes and gradients are available for characters (text) or any other graphical objects. Char
acters must be typeset with the \ps charpath macro. 

The pst-grad package 

This package from Timothy Van Zandt is intended for linear color gradients having only two 
different colors. 

\us epackage{pst -grad , p st-text} 
\DeclareFixedFont {\RM} {T1} {ptm} {b}{n} {2cm} 

\psset{fill style=gradient , gradbegin=black , gradend=white , cmyk} 
\ps charpath [gradmidpo int=O . 5 , gradangle=90] {\RM PostScript} 

Example 

6-7 -43 

Example 

, 6-7-44 



Example 

6-7-45 

6.7 Short overview of other PSTricks packages 

The pst-s l pe package 

This package from Martin Giese is intended for extended linear, concentric, or radial color 
gradients. With its help you can fill any closed curve with any sequence of colors. See Color 
Plate IX( c) for a color version of the next example. 

\usepackage{pst -slpe , pst -text } 
\DeclareFixedFont {\RM}{T1} {ptrn} {b} {n}{ 2crn} 
\newcornrnand*\ slpBox [ 1 ]  {\rnakebox [4crn] {\rule [ - 1 crn] {Opt } { 2 crn }\t extt t { # 1 } } }  

\begin{tabular}{@{}cc@{}} 
\psfrarnebox [f illstyle=slope] { \ s lpBox{slope}} & 

\ \ [30pt] \psfrarnebox [f illstyle=slope s] { \ s lpBox{ slopes}} 
\psfrarnebox [f illstyle=c cslope] { \ s lpBox { c c s lope }} & 
\psfrarnebox [f illstyle=c c s lopes] {\slpBox{ c c slope s } }  \ \ [30pt] 
\psfrarnebox [f i l lstyle=radslope] {\slpBox{radslope} }  & 
\psfrarnebox [f ill style=radsl opes] { \ slpBox{rads lope s } }  

\end{t abular} 

\rnedskip 
\ps charpath [f ill style=slopes] { \RM PostScript } 

The pst-b lur  package 

This package produces blurred shadows for closed objects, such as curves. The package au
thor is Martin Giese. Unlike with the default shadow option of PSTricks, a blurred shadow is 

449 



450 

10 

8 

() 

4: 

2 

0 

. , . , . " . 

0\ .,. t<") -
I 0 0 t<") -

THE MAI N PSTRICKS PACKAGES 

more like a shadow gradient in pst-blur. 

\us epackage{pst-text , pst-blur} 

\ps set{l inewidth=0 . 5pt , blur=true , blurradius=0 . 1 cm , shadow=true , 
shadowc olor=black ! 60 , shadows ize=0 . 3cm} 

\begin{pspi cture} ( 1 0 , 3 ) 
\psframe ( 3 , 2 ) \f ont family{ptm} \selectf ont 
\rput ( 1 . 5 , 1 ) {\ps charpath{\f ont s ize {30}{30}\ selectfont blur}} 
\pscircle (4 . 5 , 1 ) { 1}\pscircle ( 4 . 5 , 1 ) {0 . 25} 
\rput ( 6 . 5 , 1 ) {\ps charpath{\f ont size{60}{60}\ selectfont A}} 

\end{pspi cture} 

6.7.9 Miscel la neous packages 
The pst-ba r package 

This package from Alan Ristow allows you to draw simple bar charts from external data files 
with comma-separated data records. The output can be customized in several ways. 

. , . ,  . . . . . . . .  . . .  " � " 

0\ 0\ 0\ .,. t<") .,. - -
I I 0 0 If) 0 t<") .,. -

0\ 0\ .,. -
I 0 If) .,. 

\us epackage{pstri cks , pst -bar} 

\psset {yunit=0 . 5} 
\begin{pspi cture} ( -0 . 5 , - 1 . 75)  (4 , 10) % 

\psgrid [xunit=4cm , gridlabe ls=0 , %  
subgriddiv=0 , griddot s=30] ( 0 , 0 ) ( 1 , 1 0 ) %  

\psaxe s [axes style=f rame , Ox=0 , Dx= 1 , Dy=2 , %  
label s=y , t i cks=y] ( 0 , 0 ) (4 , 1 0 ) % 

\psbarscale ( 0 . 75 ) {} 
\readpsbardat a{\data} {pstricks/data1 . csv}% 
\psbarchart [barstyle={red , blue , green , %  

black , whit e} , chart style=stack , %  
barl abe lrot=90] {\dat a}% 

\end{pspi cture} 

ro,-" i Example 

i 6+4_�_ 



6.7 Short overview of other PSTricks packages 

The pst-text package 

This package is for writing text along any path and for filling characters as you wish. The 
original author is Timothy Van Zandt. 

\usepackage{pst-plot , pst-text} 
\newcommand*\text I I {  

The PSTri cks proj ect was started b y  Timothy Van Zandt long t ime ago and i s  
one o f  the oldest \TeX\ package s s t i l l  i n  use . ' I  s t arted in 199 1 . 
Init ially I was j ust trying to develop tools  f or my own use . Then I 
thought it would be nice to package them so that others could use them . It 
soon became tempt ing to  add lots of f e atures , not j ust the ones I needed . 
When thi s became so int erest ing that it int erfered with my day " j ob " , I 
gave up the proj ect " cold turkey " , in 1994 . ' --- Timothy Van Zandt 
Other people who where invo lved in thi s proj ect are Denis Gi rou , 
Sebas t i an Rahtz and Herbert Vo \ s s }  

\DeclareFixedFont {\SF}{Tl } {phv}{b}{n} {2 . 35 cm} 

\begin{p spi cture} ( -2 . 7 , -2 . 2 ) ( 3 . 5 , 2 . 2 ) 
\ps set{l inestyle=none } 
\pst extpath [l] ( O , O ) {% 

\parametricplot [plotstyle=curve , plotpoints=500] {0}{3200 }{% 
t 1000 div dup t s in mul exch t cos mul }}{\text I I }  

\end{pspi cture} 
\begin{pspi cture*} ( -2ex , -4ex) ( 0 . 3 , 4 . 5) 
\pst extpath ( O , - l ex) {\ps charpath* [l inestyle=none] {% 

\SF\ short st ack{Van\\ [20pt] Zandt } } } { \ s cripts ize\text I I }  
\end{pspicture *} 

451 



452 THE MAIN PSTRICKS PACKAGES 

The pst- lens package 

This package from Denis Girou and Manuel Luque is for creating optical effects with a mag
nifier. 

\us epackage{pst -Iens} 
\newcommand\Wi shes{{\rput [lb] ( 0 , 0 ) {\Large\begin{minipage}{3cm}\cent ering 

\t extbf {Jana} , \ \ all the best\\for this new year\\ \Huge 2007 ! 
\end{minipage}}}}  

\begin{pspicture} ( 0 , - 1 . 5 ) ( 3 , 4) 
\Wi shes\PstLens [LensMagnif i c at i on=2 , cmyk] ( 2 , 2 ) { \Wishes } 

\end{pspicture} \hf ill 
\begin{pspi cture} ( O , - 1 . 5 ) ( 3 , 4 ) 

\Wi she s\PstLens [LensMagn i f i cat i on=4 , cmyk] ( 1 , 2 . 4 ) {\Wish e s }  
\end{pspicture } \hf ill 
\begin{p spi cture} ( 0 , - 1 . 5 ) (3 . 5 , 4 ) 

\Wishes \PstLens [LensMagnif i c at i on=O . 5 , cmyk] ( l , l ) {\Wishes} 
\PstLens [LensMagnif i cat i on=-0 . 5 , cmyk] ( 2 . 5 , 3 ) {\Wishes}  

\end{pspicture} 

for 

200 , 
• 

The pst-ca lendar package 

This package by Manuel Luque offers two different calendar macros, one for creating a cal
endar on a dodecahedron. All special national language support is up to the user. 

\us epackage{pstri cks , pst- cal endar , graphi cx} 

\psset {Year=2007} 
\res izebox{\l inewidth} { ! }{\begin{tabular } { c c c c }  

\psCalendar [Month=3] & \psCal endar [Month=5] & 
\psCalendar [Month=7] & \psCalendar [Month=9] 

\end{t abular}} 

\ps scalebox{0 . 25}{\psCaIDode caeder [style=f ebruary] } \hf ill 
\ps scalebox{O . 25}{\psCaIDode c aeder [style=sept ember] } 

: Example 

I 6·7-49 
I 



Example -I 
6-7-50 I 

6.7 Short overview of other PSTricks packages 

The pst-barcode package 

M T W T F S S 
1 

.6 17 1 8  19 20 21  22 

13 14 

30 3 1  

III 1 1  t2 1 3  1 4  

1 7  IS 1 9  20 

This package supports the following bar codes: EAN- 1 3  ( JAN- 13 ) ,  EAN-8 ( JAN-8) , UPC-A, 
UPC-E, EAN-5, EAN-2 (EAN/UPC add-ons) ,  ISBN (including ISBN- 13 ) ,  Code 1 28 (A, B, C, 
including EAN- l28), Code 39 Extended, Code 93 Extended, Interleaved 2 of 5 (including 
ITF- I4) , RSS- I4, RSS Limited, RSS Expanded, Code 2 of 5, Code 1 1  (USD-8), Codabar, MSI, 
Plessey, OneCode, PostNet, Royal Mail (RM4SCC), KIX (Dutch Postal) , AusPost (FCC types 
1 1 , 59, 62), and USPS FIM symbols. The package authors are Terry Burton and Herbert VoK 

\usepackage{pst-barcode} 

\res izebox{\l inewidth}{ l }{% 
\begin{tabular}{p{ 1 in}p{ 1 . 7in}p{O . 9in}p{ 1 . 3in}} 

\psbarcode{01 335583}{ includet ext guardwhite space height =O . 5  texts ize=8} 
{ean8} & 

\psbarcode{0 1 1 0 1 97595}{ includecheck includet ext height=O . 5  texts ize=8} 
{ interleaved2of5} & 

\psbarcode{01 23456}{includet ext he ight=O . 5  textsize=8}{upce}  & 
\psbarcode{23 1 1 1 949680 1 } { includet ext height=O . 5  texts ize=8}{ean13}\\ [5pt] 
EAN-8 & Int erleaved 2 of 5 & UPC-E & EAN- 1 3  

\end{tabular}} 

\vspace{2 cm} 
\res izebox{\l inewidth}{ l }{% 

1 2 

1 6  

2 2  2 3  

453 



454 THE MAIN PSTRICKS PACKAGES 

\begin{t abular}{p{ 1 . 4in}p{ 1 . 7in}p{2in}} 
\psbarcode{7885 8 1 0 1497}{ includet ext height=O . 75 texts ize=8} {upca} & 
\psbarcode {01 23456789}{includetext he ight =O . 75 textsize=8}{code 1 1 } & 
\psbarcode{� 104� 102Count �099 1 234� 1 0 1 ! }  

{includet ext height=O . 75 text s i ze=8}{code 128}\\ [5pt] 
UPC-A & Code 1 1  & Code 128 

\end{tabular}} 

\vspace{2 . 5 cm} 
\res izebox{\l inewidth}{ ! }{% 
\begin{t abular}{p{2 . 1 in}p{ 1 . 8 in}p{ 1 . 2in}} 

\psbarcode{A0 1 23456789B} { includecheck includetext text s ize=8} 
{rat i onal izedCodabar} & 

\begin{t abular} {p{ 1 . 7in}} 
\psbarcode [t ransy= 1 . 5cm] {01 1075}{inc ludet ext texts ize=8} 

{postnet}\\ [ - 1 . 4 cm] 
Po stnet\ \ [60pt] 
\psbarcode [transy= 1 . 5cm] {LE28HS9Z}{ includetext text s i ze=8} 

{royalmail} \\ [- 1 . 4cm] 
Royal Mail 

\end{t abular} & 
\psbarcode { 1 -86074-27 1}{ includetext texts ize=8} {isbn}\\ 
Rat ional ized Codabar & & ISBN 

\ end{t abular} } 

> 1 1 1 1 11 1 1 11 11 1  0 um J 
o 0 1 1 0 1 9 7 5 9 5 

Interleaved 2 of 5 UPC-E 

5 2 
I I I  I I  
3 1 1 1 9 4 9 6 8 0 1 3  

EAN- 1 3  

7 8 8 5 8 1 0 1 4 9 7  4 0 1 2 3 4 5 6 7 8 9  
Code I I  

11 1 1  I 
C 0 U n t 1 2 3 4  

Code 1 28 UPC-A 

A 0 1 2 3 4 5 6 7 8 9  

Rationalized Codabar 

B 

1 1 1 " " 1 1 1 1  • • •  1 1 1 1  • • •  1 • • •  1 . 1 . 1  • •  1 1  • •  1 
o 1 1 0 7 5 

Postnet 

1 1 , , 1 , 1 1 " 1 1 1 ' 1 1 1 1 1 1 ' 1 ' 1 ' 1 1 ' 1 1 1 " 1 1 ' 1 1  L E 2 8 H S 9 Z 
Royal Mail 

I S BN 1 - 8 6 0 7 4 - 2 7 1 - 8  

9 7 8 1 8 6 0  7 4 2 7 1 2  
ISBN 

Example 

6-7 - 5 1  



6.7 Short overview of other PSTricks packages 

The pst-co i l  package 

This package from the PSTricks author Timothy Van Zandt is for creating coils and zigzag 
lines or node connections. 

\us epackage {pst-coil} 
\newc ommand\block{\psl ine [linewidth= . 2 5pt ] (0 , 0 ) ( . 4 ,  . 6 ) ( . 5 ,  . 6 ) ( . 5 , 0 ) 

\pspo lygon [l inewidth= . 25pt ] ( - . 1 , 0 ) ( - . 1 , - . 1 ) ( 5 . 4 , - . 1 ) ( 5 . 4 , 0 ) }  

\begin{pspi cture } ( - . 1 , - . 1 ) ( 5 . 4 , 5 . 6 ) 
\ps set{labels ep=2 . 5pt , f i llstyle=sol id , f i ll color=lightgray} 
\footnot e s ize % neutral spring 
\rput ( 0 , 4) { \rput ( . 5 , . 5 ) {\psline{c-c} ( 0 , 0 ) ( . 1 25 , 0 ) 

\psCo i l [coilaspect=0 , c oilwidth= . 8 , coilhe ight= . 625 , arrows=c -c] {90}{ 1890} 
\rput ( 2 . 625 , 0 ) {\psline{c-c} (0 , 0 ) ( . 1 25 , 0 ) 

\rput ( . 125 , 0 ) {\pspolygon [fillcolor=black ! 1 0] ( 0 , - . 5 ) (0 , . 5 ) ( 1 , . 5 ) ( 1 , - . 5 ) 
\psdot s ( . 5 , 0 ) 
\psl ine [linewidth= . 25pt , l inestyle=dashed , dash=2pt 1 . 5pt] ( . 5 ,  . 75 ) ( . 5 , -4 . 5 ) 
\uput [u] ( . 5 , . 75 ) {$x=0$}}}}\blo ck} % compressed spring 

\rput ( 0 , 2 ) { \rput ( . 5 , . 5 ) {\psline{c-c} ( 0 , 0 ) ( . 125 , 0 ) 
\rput ( . 05 , 0 ) {\psCo i l [co ilaspe ct=0 , co i lwidth= . 8 , coilheight= . 375 , arrows=c-c]  {90}{ 1 890} 

\rput ( 1 . 575 , 0) {\psline{c-c} ( 0 , 0) ( . 125 , 0 ) \rput ( . 1 25 , 0 ) {  
\pspolygon [fillcolor=black ! 1 0] ( 0 , - . 5 ) (0 , . 5 ) ( 1 , . 5 ) ( 1 , - . 5 ) 
\uput [d] ( . 65 , 0 ) {$f$}\psline{*->} ( . 5 , 0 ) ( . 9 , 0 ) 
\uput [u] ( 1 , . 6 ) {$x<0$}\psline [linewidth= . 5pt ] { <-} ( . 5 ,  . 6 ) ( 1 . 5 , . 6 ) 
\psl ine [linewidth= . 25pt] ( . 5 ,  . 1 ) ( . 5 , . 7 ) }}}}\block} % stret ched spring 

\rput (0 , 0 ) {\rput ( . 5 ,  . 5 ) {\psline{c-c} ( 0 , 0 ) ( . 1 25 , 0 ) 
\rput ( - . 05 , 0 ) {\psCoil [coi laspe ct=0 , co i lwidth= . 8 , coilheight= . 875 , arrows=c-c]  {90 } { 1 890} 

\rput ( 3 . 675 , 0 ) {\psline{c-c} (0 , 0 ) ( . 1 2 5 , 0) 
\rput ( . 1 25 , 0 ) {\pspolygon [fillcolor=black ! 1 0] ( 0 , - . 5 ) ( 0 , . 5 ) ( 1 , . 5 ) ( 1 , - . 5 ) 

\uput [d] ( . 3 , 0 ) {$f$} \ps line{*->} ( . 5 , 0 ) ( . 1 , 0 )  
\uput [u] ( 0 , . 6 ) { $x>0$ } \ps line [l inewidth= . 5pt ] { <-} ( . 5 , . 6 ) ( - . 5 ,  . 6 ) 
\psl ine [linewidth= . 25pt ] ( . 5 ,  . 1 ) ( . 5 , . 7 ) }}}} \bl ock} 

\end{pspi cture} 

x = o  

455 



456 THE MAIN PSTRICKS PACKAGES 

The pst-fracta l package 

This package provides several macros for fractals: Julia and Mandelbrot sets, Sierpinski tri
angle, Phyllotaxis, Fern, Koch flake, Apollonius circles, and Trees. 

\psfractal[.�ettingsl · (xo,Yo) (XhYl) 
\psSier [settings] (xo, Yo )  (X l , Yl ) (X2, Y2 ) 

\psPhyllotaxis [Settings] (XO,Yo ) 
\psFern .[settings] (:Co, ;Yo ) 
\psKochf lake [settings] (:Co, Yo)  
\psAppolonius[set#ngs] (XO, Yo) 
\psPTree Tsettings] (xo. Yo ) 
\psF Arrow[set'tings] (xo, 1/o) {fraction} 

\psf ract al computes by default the Julia set; the Mandelbrot set is available by setting the 
optional keyword type=Mandel. Depending on the algorithmn and the iteration depth, 
the generation of the fractal will take some time. Every point is the result of an iteration with 
several calculations of complex numbers. 

\us epackage{pst-fractal} 

\psfract al [type=Mandel ,  xWidth=9 . 6 cm , yWidth=7 . 8cm , 
dlter= 1 5 , baseColor=white] ( -2 . 5 , - 1 . 3) (O . 7 , 1 . 3 ) 

The physical sizes of the fractal should be of the same ratio as the logical sizes. For the 
above example we have 9 .6  = 3 . (0 . 7 + 2 . 5 )  and 7 .S  = 3 . ( 1 . 3 + 1 .3 ) ,  i .e., both are of a 
factor 3 greater than the logical width and height. 



Example I 
6-7-54 ! 

Example 

6-7-55 i 

6.7 Short overview of other PSTricks packages 

The color for a point is produced by adding 400 to the number of iterations for this 
point and then interpreting this sum as the wavelength of the color to be used. To reduce the 
number of different colors in the output, you can set the keyword dIter to a value greater 
than one. In that case the algorithm changes the color only after dlter wavelength steps. 

For the Phyllotaxis the size of the image depends to the iteration depth, which is set by 
default to 6 steps. 

An example of \psPTree is shown on Color Plate VII(b ) .  

The pst-eps package 

\usepackage{p st-f ractal} 

\begin{pspi cture} ( - 3 , -3)  ( 3 , 3 ) 
\psPhyllotaxis  
\end{pspi cture} 

This package, also from Denis Girou, allows you to write the pspi cture environment or 
a PSTricks object "on the fly" into an . eps file, which can then be read again into the IHEX 
source in the same run. In the following example the macro \PSTtoEPS writes the PSTricks 

object into the external file pstricks/frame . eps, which is then read immediately. Using 
this package makes sense only for single images, because pst-pdf does a better job when you 
are dealing with a larger number of exported images. 

457 

2 
I 

\usepackage {pst-eps , graphicx} 

\PSTt oEPS [bbllx=-O . 5 , bblly=-O . 5 , bburx=5 . 3 , bbury=3 . 4 ,  
checkf ile , headers=all , makeeps=all] {pstr i cks/frame . ep s}{ % 
\psgrid [subgriddiv=O] ( 5 , 3 ) 
\psframe [linecolor=blue , l inewidth=O . l ] ( 1 , 1 ) ( 4 , 2 ) %  

o 
o 3 4 

The pst-pdf package 

} 
\ includegraphics [s cale=O . 5] {pstri cks/frame} 

As already mentioned, PSTricks is an abbreviation for PostScript tricks. It cannot be used 
directly with the pdflatex program, however. The package pst-pdf from Rolf Niepraschk and 
Hubert Giimein supports the transformation from PostScript to PDF in such a way that you 



458 THE MAIN PSTRICKS PACKAGES 

can use pdflatex, at least in a last run. This is different from the way dvips-+ps2pdf works, 
as it allows you to make use of features that are available only with pdflatex. 

Thepst-pdf package itself uses the preview package to intercept PSTricks-specific code 
(macros and environments) at the �TEX level; anything else in the document is ignored. The 
resulting dvi file thus collects all PSTricks-related parts as code snippets. This code is con
verted to PostScript and then to PDF. This PDF file is an image container, which contains all 
the PSTricks graphics as single PDF pages that can then be read by pdflatex. 

Preparing this image container requires four steps: 

1 .  latex f ile . tex creates a special dvi file ( pst-pdf is active) . 

2 .  dvips - 0  f ile-pies . ps f i le . dvi creates a PostScript file that collects all im
ages as single pages. 

3 .  ps2pdf f ile-pies . ps f i le-pies . pdf converts the image container to a PDF 
file. 

4. pdf latex f ile . tex creates the documents by replacing the PSTricks parts in the doc
ument with the PDF images from the image container file (pst-pdf is inactive) . 

Unless the order or number of the images in the container changes, there is no need for 
a new �lEX run when only the text part was edited. In such a case a single pdflHEX run is 
already sufficient. Scripts for different platforms are available on CTAN. 

The only important consideration with this package is that preview takes the values of 
the pspi eture environment for building the bounding box and then everything outside of 
this area is cut off. 

The mu ltido package 

The mu ltido package by Timothy Van Zandt is not actually a PSTricks-related package, but 
it is listed together with the other PSTricks packages for historical reasons. The package can 
be found at CTAN: /maeros/generie/mul t ido. To prevent problems caused by the iden
tical macro names found in the fp package, you should at least use mu ltido version 1 .4 1 .  
mu ltido works best with integer values; i t  may cause problems when using real values due to 
rounding problems when using lEX arithmetics. 

You should use the predefined prefixes from mu ltido when declaring the counter vari
able names. mu ltido knows the following prefixes: 

Prefix 
d 
n 

r 

Meaning 
length (dimension) 
counter 
integer number 
real number 

Valid values are \dA,\nABC,\iAbCd, and \rAbCd. Additional information is available in 
the package documentation [ 1 29] . The example shows 40 different curves of a so-called su
perellipse (Lame curve) with \mult ido{\rA=0.2+0. 1 , \iA=O+ 1}{40}{. . .  } .  



i, E��m�ie I 
. 6-7-56J 

6.8 Summary of PSTricks commands and keywords 

\us epackage{pst-func , mult ido} 
\def inecolorseries{col}{cmyk}% 

{last}{blue }{white} 
\re setcolorseries [41]  {col} 

\psset {uni t= . 4} 
\begin{pspi cture} ( -9 , -S)  ( 9 , S . 5 ) 

\psaxes [Dx=2 , Dy=2 , t i ckstyle=bot t om ,  
t i cks ize=2pt ] {->} ( O , O ) ( -9 , -S)  ( 9 , S . 4 ) 

\multido{\rA=O . 2+0 . 1 , \ iA=O+ 1 } {40}{% 
\psLame [radiusA=S , radiusB=7 , 

l inecolor={col ! ! [\ iA] } ,  
l inewidth= . Spt] {\rA}} 

\end{pspi cture} 

6.8 Summary of PSTricks com mands and keywords 

Table 6.20: Alphabetical list of all environments of the basic PSTricks package 

Name Page Name Page 
psclip 275 psgraph 42 1 
psmatrix 361  pspi cture 220 

Table 6.2 1 :  Alphabetical list of all commands of the basic PSTricks package 

Name 
\alt colormode 
\arrows{arrow type} 
\begin@AltOpenObj 
\begin@ClosedObj 
\begin@OpenObj 
\begin@SpecialObj 
\cl ipbox [yalut?[unitjJ {obj�:(;t} 
\closedshadow.[settings] 
\closepath 
\ code{PostScript code} 
\coor (Xl , YI ) (X2tY2J . . .  (xn, ynD 
\cput * {settings} {rotation} (x, y ) {object} 

Page 
304 
294 
307 
307 
307 
307 
274 
289 
284 
292 
293 
269 

459 



460 THE MAIN PSTRICKS PACKAGES 

Name 
\curvet o (Xl , Yl ) (X2, Y2 ) (X3, Y3 ) 
\degrees [valuefor thefull circle] 
\dim{number unit} 
\DontKillGlue 
\end@AltOpenObj 
\end@ClosedObj 
\end@OpenObj 
\end@SpecialObj 
\everypsbox{code} 
\f ile{file name} 
\f ill ·  [settings] 
\grestore 
\gsave 
\KillGlue 
\l ineto (:D, y )  
\movepath(dx,dy) 
\moveto (x, y)  
\mrestore 
\msave 
\mult ips {rotation} (;r, y )  (dx,dy) {nHobject} 
\mult irput * [referencepoint] {rotation} ( :c, y ) (dx,dy) {nHobject} 
\newcmykcolor{nameH value1 value2 value3 value4} 
\newgray{nameH value} 
\newrgbcolor{nameH value1 value2 value3} 
\newhsbcolor{nameH value1 value2 value3} 
\newpath 
\newpsfontdot{name} [xW xS yS yW xO yO] {jont name}{glyph number} 
\newpso b j ect{nameHobject nameHlist of options} 
\newpsstyle{name}{list of parameters} 
\NormalCoor 
\openshadow [settings] 
\parabola* (settings] {arrow} (x:p, yp ) (XA, YA )  
\psaddtolength{length register}{value[unitj} 
\psarc itc [settings] {arrow} (XM, YM ) {radius}{angleAHangleB} 
\psarcn * [settings] {arrow} (XM, YM) {radiusHangleAHangleB} 
\psbezier * [settings] {arrow} (xQ, Yo) (X l , Yl ) ( :r2, Y2 ) ( :r:i , Y:i ) 
\psc curve * (settings] {arrow} (:r j , Yl ) ( :D2, Y2 ) . . .  (xw Yn ) 
\pscircle * [settings] (x M, YM) {radius} 
\ps circleboxitc [settings] {object} 
\pscurve * [settings] {arrow} ( :r: j , Yj ) (X:2, J)2 ) . . .  (:r:1l J Yn )  
\ps custom * [settings] [arbitrary code] 
\psdblframebox* (settings] {content} 
\psdiabox * [settings] {object} 

Page 
291 
2 1 8  
292 
303 
307 
307 
307 
307 
278 
294 
285 
285 
285 
303 
291 
290 
283 
288 
288 
269 
267 
2 1 6  
2 1 6  
2 1 6  
2 1 6  
284 
250 
280 
279 

2 19,296 
289 
245 
2 1 7  
241 
241 
244 
246 
241 
272 
245 
280 
271 
273 



6.8 Summary of PSTricks commands and keywords 

Name 
\psdiamond * [settings] (XM, YM ) (dx,dy) 
\psdot * [settings] (x, yJ 
\psdots * [settings] ( :,D I , YI ) . . . (xrt> Yn)  
\psecurve * [settings] {arrow} (X l ,  Yl ) (X2, Y2 ) . . .  (:1:n> Yn ) 
\psellipse * [settings] (XM, YM ) (a,b)  
\psell ipt icarc * [settings] {arrow} (Xlvl,YM) (a,b) {angleAHangleB} 
\psell ipt icarcn* [settings] {arrow} (XM, YM) (a,b) {angleA}{angleB} 
\psellipt icwedge * [settings] {arrow} (XM, YM) (a,b) {angleAHangleB} 
\psf r ame * [settings] (Xh Yl )  (X2, Y2 ) 
\psframebox * [settings] {content} 
\pslbrace 
\psline * [settings] {arrow} (Xb Yl )  (X2, Y2) ( . . . ) (:r:n > Yn ) 
\psmathboxtrue 
\psmathboxf alse 
\psoval box * [settings] {object} 
\pspolygon * [settings] (X l , l}l ) ( :1:2, Y2 ) (. • •  ) (Xn, Yri) 
\psrbrace 
\psscalebox{ valuel [value2}Hobject} 
\psscaleboxto C :r, y) {object} 
\ps set {par 1 =value 1 ,par2=value2, . . .  } 
\pssetlength{ length register H value{unitJ} 
\psshadowbox * [settings] {object} 
\pst@dei{Code} 
\pstriangle *  [settings] (XJ\h YJ\I ) (dx,dy) 
\pstribox * [settings] {object} 
\PSTricksOff  
\pstVerb 
\pstverb 
\psverbboxtrue 
\psverbboxfalse 
\pswedge * [settings] (XM, YM) {radiusHangleAHangleB} 
\qdi sk CTJIf , YJIf ) {radius} 
\qline ( ;r l , Y l ) ( :r2, Y2 ) 
\radian 
\rcoor (dxl,dyl ) Cdx2,dy2) . . .  (dxn,dyn) 
\rcurveto (dxl,dyl ) (dx2,dy2) ( dx3,dy3) 
\rl ineto (dx,dy) 
\rotate {angle} 

\rotatedown{object} 
\rotateleft{object} 
\rotateright{object} 
\rput * ere/point] {rotating angle} ( :r, y ) {object} 
\s cale{numl {num2}} 

Page 
233 
249 
249 
246 
243 
243 
243 
244 
232 
27 1 
304 
23 1 
278 
278 
272 
232 
304 
277 
277 
2 1 7  
2 1 7  
272 
307 
233 
273 
303 
305 
305 
279 
279 
242 
24 1 
232 
2 1 8  
294 
292 
291 
287 
276 
276 
276 
267 
287 

461 



462 

Name 
\setcolor{color name} 
\space 
\Spe cialCoor 
\stroke [settings] 
\swapaxes 
\ translate ex, y) 
\uput '" {ftillil,scpW [angleJ tfcta#�nJ- ex, y) {object} 

THE MAIN PSTRICKS PACKAGES 

Page 
295 
304 

2 19,296 
284 
287 
286 
268 

Table 6.22: Alphabetical list of all keywords 

Name Value Default Page 
Alpha angle 45 410  
ArrowFill  Boolean true 4 18  
Arrowlns ide value empty 4 18  
Arrowlns ideNo value 1 418  
Arrowlns ideOf f set value 0 4 18  
Arrowlns idePos value empty 4 18  
addf illstyle fillstyle none 257 
angle angle 0 35 1  
angleA angle 0 35 1  
angleB angle 0 351  
arc angle angle 8 35 1  
arcangleA angle 8 35 1  
arcangleB angle 8 35 1  
arcsep value[unit} Opt 247 
arcsepA value[unit} Opt 247 
arcsepB value[unit} Opt 247 
arm value[unit} 1 0pt 35 1  
armA value[unit} 10pt 35 1  
armB value[unit} 10pt 35 1  
arrow inset value 0 . 4  262 
arrow length value 1 . 4  262 
arrows arrows 260 
arrows cale valuel [value2} 1 263 
arrowsize value[unit} value 1 . 5pt 2 26 1 
axesstyle framestyle axes 3 14  
bbd value[unit} empty 378 
bbh value[unit} empty 378 
bbl value[unitJ empty 378 
bbr value [un it} empty 378 
beginAngle angle 0 412  
Beta angle 30 410  
border value[unit} Opt 239 



6.8 Summary of PSTricks commands and keywords 463 

Name Value Default Page 
border color color white 239 
boxsize value[unit} 0 . 4cm 353 
bracket length value 0 . 1 5 263 
cornersize relat i  ve labsolute relative 239 
curvature valuel value2 value3 1 0 . 1  0 248 
dash value[unit} value[unit} 5pt 3pt 236 
Derivation value 0 427 
dimen outerl innerlmiddle outer 237 
dot angle angle 0 252 
dotsize value[unit} value 2pt 2 25 1 
dotscale value 1 [value2} 1 251  
dotsep value[unit} 3pt 236 
dot style style name * 25 1 
doublecolor color name white 236 
doubleline Boolean f alse  236 
doublesep value[unit} 1 . 25\psl inewidth 236 
drawing Boolean true 4 1 1  
drawStyle xLines lyLines lxyLines l  

yxLines xLines 414  
Dx value 1 3 1 7  
dx value[unit} Opt 3 1 7  
Dy value 1 3 1 7  
dy value[unit} Opt 3 1 7  
dZero value 0 . 1  427 
edge macro \ncl ine 376 
embedangle angle 0 399 
endAngle angle 360 4 1 2  
epsZero value 0 . 1 427 
fansize value [unit} l cm 370 
f illangle angle 0 384 
f illcolor color name white 255 
f illcycle value 0 385 
f illcyclex value 0 385 
f illcycley value 0 385 
f illloopadd value 0 386 
f illloopaddx value 0 386 
f illloopaddy value 0 386 
f illmove value[unit} Opt/2pt 385 
f illmovex value[unit} Opt/2pt 385 
f illmovey value[unit} Opt/2pt 385 
f illsep value[unit} Opt/2pt 384 
f illsepx value[unit} Opt 384 
f illsepy value[unit} Opt 384 
f illsize auto / {  (xO,yO) (xl ,yl ) } auto 386 



464 THE MAIN PSTRICKS PACKAGES 

Name Value Default Page 
f illstyle fillstyle none 253 
framearc value 0 238 
framesep value{unit] 3pt 270 
frames ize value{unit] {value{unit]J 10pt 350 
gangle angle 0 233 
gridcolor color black 226 
griddots value 0 226 
gr idlabelcolor color black 227 
gridlabels value{unit] 10pt 227 
gridwith value{unit] 0 . 8pt 226 
hat changle angle 45 256 
hatchcolor color name black 256 
hat chsep value{unit} 4pt 256 
hat chsepinc value{unit} Opt 256 
hat chwidth value{unit} 0 . 8pt 255 
hat chwidthinc value {unit] Opt 255 
href value 0 348 
hiddenLine Boolean f alse  414 
invis ibleLineStyle line style dashed 415  
labels all ix ly inone all 3 1 8  
labelsep value{unit} 5pt 265 
levelsep *value {unit} 2cm 374 
liftpen 0 1 1 12  0 282 
linearc  value{unit} Opt 238 
linecolor color black 235 
l inej oin 0 1 1 1 2  1 4 12  
linestyle none l solidldottedldashed solid 235 
linetype value 0 240 
liftpen 0 1 1 1 2  0 240 
linewidth value{unit} 0 . 8pt 234 
loopsize value{unit] 1 cm 352 
name X label x 4 1 3  
nameY label y 413  
nameZ label z 4 1 3  
ncurv value 0 . 67 352 
ncurvA value 0 . 67 352 
ncurv8 value 0 . 67 352 
nodesep value{unit} Opt 350 
nodesepA value{unit} Opt 350 
nodesep8 value{unit] Opt 350 
normal valuex valuey valuez o 0 1 397 
npos value empty 354 
nrot rotation 0 354 



6.8 Summary of PSTricks commands and keywords 465 

Name Value Default Page 
off set value[unit} Opt 353 
off setA value[unit} Opt 353 
off setB value[unit} Opt 353 
origin xvalue[unit},yvalue[unit} Opt , Opt 223 
Ox value 0 3 1 6  
Oy value 0 3 1 6  
plane xylxzlyz xy 4 1 3  
plotpoints  value 50 334 
plot style dots l l ine lpolygonl curve l  

ecurve l c curve line 333 
pOrigin reference point c 4 14  
radius value[unit} 0 . 25cm 350 
rbracketlength value 0 . 1 5 263 
ref reference c 353 
rot rotation 0 356 
shadow Boolean f alse  239 
shadowangle angle -45 239 
shadowcolor color darkgray 239 
shadowsize value[unit} 3pt 239 
shift value[unit} Opt 22 1 
shortput nonelnab ltablr ltab none 355 
showbbox Boolean f alse 378 
showgrid Boolean f alse 222 
showpoints Boolean f alse  237 
showorigin Boolean true 3 1 9  
SphericalCoor Boolean f alse 416  
spotX angle 180 4 1 3  
spotY angle 0 4 1 3  
spotZ angle 90 4 1 3  
subgridcolor color gray 228 
subgriddiv value 5 227 
subgriddots value 0 228 
subgridwith value[unit} 0 . 4pt 228 
swapaxes Boolean f alse  223 
tbars ize value[unit} value 2pt 5 262 
thistreef it value[unit} empty 372 
thislevelsep *value[unit} empty 374 
thistreenodes ize value [unit} empty 373 
thistreesep valuer unit} empty 372 
ticks all ix ly inone all 3 1 9  
ticksize value[unit} 3pt 32 1  
tickstyle full itopibottom full 320 
tndepth value[unit} \dp\strutbox 38 1  
tnhe ight value[unit} \ht\strutbox 38 1  



466 THE MAIN PSTRICKS PACKAGES 

Name Value Default Page 
tnpos value[unit} empty 380 
tnsep value[unit} empty 380 
tnyref value empty 381  
tpos value 0 . 5  356 
treeflip Boolean f alse 37 1  
treef it loose lt ight t ight 372 
treemode D IU IR IL D 37 1  
treenode size value[unit} - lpt 373 
treesep value [unit} 0 . 75cm 372 
trimode *UIDIR IL U 270 
Tshadowangle angle 60 388 
Tshadowcolor color lightgray 389 
Tshadows ize value 1 389 
viewpo int valuex valuey valuez 1 - 1  1 395 
viewangle angle 0 397 
vis ibleLineStyle line style solid 4 15  
vref value [unit} 0 . 7ex 348 
xbbd value[unit} empty 378 
xbbh value[unit} empty 378 
xbbl value[unit} 0 378 
xbbr value[unit} 0 378 
xMin value - 1  4 10  
xMax value 4 410  
Xnode sep value [unit} Opt 350 
Xnode sepA value[unit} Opt 350 
XnodesepB value[unit} Opt 350 
XPlotpo ints value 25 41 1 
xThreeDunit value 1 41 1 
yMin value - 1  4 1 0  
yMax value 4 410  
Ynodesep value[unit} Opt 350 
YnodesepA value[unit} Opt 350 
YnodesepB value [unit} Opt 350 
yPlotpoints value 25 41 1 
yThreeDunit value 1 41 1 
zMin value - 1 4 10  
zMax value 4 410  
zThreeDunit value 1 4 1 1 



C H A P T E R  7 

The XV-pic Package 

7.1 Introducing Xv-pic. . . . . • . • . • . • . • . • • . • • . . • . • . • • • . • • . • . . . .  467 
7.2 Basic constructs . . . . . . . . . . . . . . . . . • . . . . . . . • . . . . . . . . . . . . .  469 
7.3 Extensions . . . . . . . . . . . • . . . . • . . . . • . . • . . . . • . . . . . . . • . . . . . 474 
7.4 Features . . . . . . . . . . . • . • . • • • . • . • • . • • . . • . • . • • • • • • . • . . . .  478 
7.5 Furtherexamples . . . . . . • . • . . • . . . . • . . • . . . . • . . . . • . . • . . . . . 509 

XV-pic is a general-purpose drawing package based on lEX. It works smoothly with most 
formats, including LATEX, A.M5-�TEX, AMS-1FJ(, and plain lEX. It has been used to type
set complicated diagrams from numerous application areas, including category theory, au
tomata, algebra, geometry, neural networks, and knot theory. Xy-pic's generic syntax lets 
you use a consistent mnemonic notation system that is based on the logical construction of 
diagrams by the combination of various elementary visual components. You can also write 
macros by combining these basic elements consistent1y to form higher-level structures spe
cific to the intended application. 

Xy-pic was originally written by Kristoffer H0gsbro Rose [ 1051. Later Ross Moore 
joined the development effort and the ensuing collaboration resulted in extensive revisions 
and extensions [ 1 04, 1061. 

7.1 Introducing XV-pic 

The Xy-pic system is built around an object-oriented drawing language called the kernel: 
this is a notation for composing "objects" with "methods" that correspond to the meaningful 
drawing operations on the object. 

The kernel supports the following basic graphic notions (see Section 7.2): 

• Positions can be specified in various formats. In particular, user-defined coordinates 
can be absolute or relative to previous positions, objects, object edges, or points on 
connections. 



468 

A first example of 
Xy-piccode 

A 

THE XV-pic PACKAGE 

• Objects can have several forms-e.g., circular, elliptic, and rectangular-and can be 
adjusted in several ways, even depending on the direction of other objects. In particular, 
an object can be used to connect two other objects. 

Enhancements to the kernel, called "options", have two main varieties: extctlSiOrlS (see 
Section 7.3) add morc objects and methods to the repertoire (such as "curving" and "fram
ing"), while features (see Section 7.4) provide notations for particular application areas (e.g., 
" " "  . " "  1 " "1 ' " "k ") 1 1 ' 'd ' 1 arrows , matnces , po ygons , attlces , oats . n genera > extensIOns pravl e Vlsua 
components, whereas features add domain-specific notations for their logical composition. 

This chapter gives examples of Xy-pic's use in various application areas. Through this 
"teach by example" approach, it serves as a complement to the Xy-pic User's Guide [ 106[, 
which introduces the most used features, and the Xy-pic Reference Manual [ 104[, which de
scribes the syntax of all XV-pic commands and their arguments. A study of our examples 
should put you in an excellent position to start drawing your own diagrams; we hope it will 
also convince you of the beauty, power, and RexibiJity of the XV-pic package. 

XV-pic consists of various modules. If you are not sure which ones to load, it is probably 
best to load "a large set", as follows: 1 

\usepackage [all] {xy} 

Once you know enough about XV-pic to identify which functions you want to use, then you 
can specify only the extensions or features that are actually needed. For instance, 

\usepackage [curve ,arrow, cmactex] {xy} 

loads the curve extension and arrow feature, which are tuned to produce \special com
mands understood by Thomas Kiffe's CMacTeX Macintosh port ofltX programs. 

To get an idea of the philosophy on which XV-pic is based, let us first look at how we 
"construct" an XV-picture. To make things relatively easy, we consider a matrix-like diagram. 
As explained in more detail in Section 7.4.2, the principal way to create a diagram is with the 
command \xymatrix{spec}, where spec is the specification of the matrix entries, which, in 
general, are aJigned in rows and columns. Just as in a tabular environment, entries inside 
a row are separated by ampersands and successive rows are separated by \ \. 

� 

L-'�n '
� 

• D 

\usepackage [all] {xy} 

\ [  
\xymatrix{ 

A & .+ (F) {\sum_{i=n}�m {i�2}} \\ 
& {\bullet} & D \ar(ul) 

}\] 

1 For formats other than LA'JEX, use the command \input xy followed by \xyoption {all}. The all option 
loads the curve, frame, tips, line, rotate,and color extensions as well as the matrix, arrow, and graph 
features. Any other features or extensions needed must be loaded separalely. 



7.2 Basic constructs 

This example has two rows of three columns and shows a good deal about how XV-pic 
interprets commands. 

• By default, entries inside XV-pic environments are typeset in mathematics mode, using 
"text style", and are centered. 

• In many cases you may not start entries with a bare macro name-such names must be 
enclosed in braces or be otherwise "protected". 

• As in a tabular environment, empty entries at the end of rows can be omitted if not 
referred to. 

• Elements can be addressed by their relative ("logical") position in the diagram; thus 
\ar [ul] draws an arrow from the "current" position to the matrix cell "one up and 
one to the left". 

• The format and shape of an element can be customized by specifying an "entry modi
fier" (e.g., " [F] " tells XV-pic to frame the entry). 

If you have questions or need some help, you can address the XV-pic mailing list 
xy-pic0tug . org, to which you can subscribe by visiting the Web site http : //tug . org/ 
mailman/listinfo/xy-pic. 

7.2 Basic constructs 

A thorough knowledge of how XV-pic interprets the various commands will let you exploit 
its many functions fully. It will also help you understand the subtleties of the various exten
sions and features introduced in later sections. 

A kernel XV-picture is enclosed in an xy environment I 

I \begin{xy} . . .  \end{xy} I 
The location at which an XV-pic object is being "dropped" is called its "position". In fact, in 
most cases only the coordinates or shape of the "current position" is set. 

7.2.1 Initial positions 
The simplest form of XV-pic position is called absolute, written <X. V>. The coordinates X 
and Y are the offsets right and above the origin of the picture, which thus lies at <Oem. Oem>. 
Simple arithmetic operators can be used to position the current point. A comma is used to 
separate one position from another: 

UL UR 
5, 5 

DL DR 

\usepackage{xy} 

\ [\begin{xy} 
O*{DL} .+/rlcm/*{DR} 

, <Ocm, lcm>*{UL} ,<lcm, lcm>*{UR} 
. C5.5)*{5.5} 

\end{xy}\] 

I When using Xy.picwith formals other than LA1fX, use \xy . . .  \endxy. 

469 



470 THE XV-pic PACKAGE 

The above exampleillustrates various ways to specify coordinates. 1 In particular, 0 
(zero) is a shorthand for the origin, and + / r 1 em/ moves right by 1 cm. The next two points 
<Oem , 1 em> and < 1 em , 1 em> are explicit X, Y coordinates. Finally, the middle point (5 , 5 ) 
uses the default coordinate system with units of 1 mm for usual Cartesian x- and y-axes start
ing from (0 , 0 ) .  We will say more about the "*" operator later. 

In the next example, we define the units of the coordinate system explicitly by setting 
them to 5 mm in X and Y using the : operator. This means that all further dimensionless 
coordinate pairs refer to multiples of 5 mm. You can add or subtract lengths from a given po
sition. In particular, for the right-hand part of the diagram below-starting on the third line 
of code-we first offset the coordinate with respect to the origin 0 by moving four units (i.e., 
2 cm) to the right. We call this new location I I NO I I (for "new origin" -the quotation marks 
indicate that it is to be a name) using the "=" operator. We then use this name to calculate 
the location at which we want to drop the text object UR and name it I I SUR II (for "saved up
per right") .  Finally, we use I I SUR II twice, each time subtracting a coordinate specification, to 
obtain the locations at which the texts UL and DR are to be dropped. 

UL UR 

DL DR 

UL UR 

DL DR 

\usepackage{xy} 

\ [\begin{xy} O ; <5mm , Omm> : 
O* {DL} , ( 2 , O ) *{DR} , <O cm , 1 cm>*{UL} , ( 2 , 2 ) *{UR} 
, O+ (4 , O ) = " NO " * {\mathtt{DL}} 
, " NO " + ( 2 , 2 ) = " SUR " * {\mathtt{UR}} 
, " SUR " - < 1 cm , Ocm> *{\mathtt{UL}} 
, " SUR " - ( O , 2 ) *{ \mathtt{DR}} 

\end{xy}\] 

7.2.2 Making connections 

The effects of the connect operator, **, can be quite complex. To a first approximation, it 
"connects" the current and previous positions (c and p, respectively) . As a simple example, 
let us connect some of the locations in an earlier diagram. 

UXR 

D R 

\usepackage{xy} 

\ [\begin{xy} 
O* {DL} ; < 1 cm , 1 cm>*{UR} **@{-} 
, <O cm , 1 cm> * {UL} ; < 1 cm , Ocm> *{DR}* *@{=} 

\end{xy}\] 

Here the connection operation, **@{ -},  typesets a connection using the special @{ -} 
kernel object, which connects as a solid line. The Xy-pic documentation lists the connec
tions initially provided; new ones can be created with the command \newdir. Most have 
mnemonic names: @{ . } connects with a dotted line, @{ - } with a dashed line, @{ =} with 
a double line, etc. Note the use of the semicolon operator, which swaps the positions p and 
c. Here it has the effect of moving the position in c (namely 0)  into p; then c is immediately 

1 Note that the comma delimiter appears before the following item rather than after the preceding one. This is a 
particularly useful device in developing a picture, since whole lines can be easily "commented out" while retaining 
valid syntax overall. 



Example 
7-2-4 

Example 
7-2-5 

7.2 Basic constructs 

overridden with a new position for the next object (remember that connections with the **  
operator are drawn from p to c) . The example also reveals that the drop operator * does not 
place a default margin around objects. Rather, such space is created implicitly, by inserting 
one or more + modifiers between the * and the brace opening the object-more on this later. 

You can combine several drop operations. In addition, the question mark (7 )  operator 
lets you specify the location where something is to be drawn "along" a just typeset connec
tion in a coordinate-independent way: 

\usepackage [frameJ {xy} 

\ [\begin{xy} 

O*+ [oJ [FJ {DL} ; <2cm , l cm>*+ [FJ {UR} **@{ . }  
?<*@{« } ? ( 0 . 5 ) * ! /_3mm/{\ Omega} ?» >*@{>} 

\end{xy}\J 

The two objects are enlarged with the + modifier, and the [0] makes the shape of the 
first object round instead of the default rectangular (we have added the [F] modifier, de
fined by the frame extension, to highlight this fact) . On the second line, the 7 operator lets 
us position objects at a given place along the last "connection" (here the dotted line between 
the circle and the frame) .  First, a left double arrow tip is placed at the starting end (7<) ,  
i.e., the end given by the position p when the connection was made. Next, near the middle 
(7 (0 . 5 ) )  and 3 mm above the line, we write an n (by shifting, as described later) .  Some 
length units away from the finishing end of the line, i.e., at the position c when the connec
tion was made, a right arrow tip is output (positioned by 7>>» . The > and < notations 
accumulate, somewhat analogously to the +, ++, etc. operators that alter the object margin. 

Finally, we calculate the intersection of two lines with the 7 !  operator: 

\usepackage{xy} 

\ [\begin{xy} 
O*=+{l}= " l "  ; <2cm , 8mm> *=+{r}= " r "  **@{-} 

, <4mm , 1 0mm> *+{11} ; < 25mm , 2mm>*+{rr} **@{--} 
? ! { " r " ; " l " } *{\oplus} 

\end{xy}\J 

First the two lines ( I ,  T ) and ( l l ,  TT ) are typeset and the end points are stored with 
names " 1 "  and " r " , respectively. Using the syntax 7 !  {<XY1> ; <XY2>} (where <XY 1 >  and 
<XY2> are two positions), the intersection with the last connection is computed as the place 
to drop the �TEX EB symbol. 

7.2.3 Dropping objects 

We have already used objects in most of the examples in the previous section. More precisely, 
objects are the arguments of the drop * and connection **  operators; they are usually the 
elements that are actually output into the picture. Objects always include a brace pair { . . .  } 
specifying what is to be dropped. The part preceding the opening brace, called the modifier, 
allows fine adjustments to specify exactly how the object is to be placed. 

471 



472 THE XV-pic PACKAGE 

The " ! "  shift modifier lets you move the reference point of an object from its initial 
central position to somewhere else within the object's bounding box: 

\usepackage [frarne] {xy} 

\ [\begin{xy} 
( O , O ) *@{o}* ! UL{Box l}*\frm{-}*@{x} 

, ( 20 , O ) *@{o}* ! RD{Box2}*\frm{-}*@{x} 

\end{xy} \] 

The first box has its upper-left corner ( ! UL) positioned at the current position (0 , 0 ) ,  
while the second box has its lower-right corner ( !  RD) at the current position (20 , 0 ) .  In 
either case, the location of c remains unchanged, since the times symbol ( x ,  typeset with 
@{x}) and open circle ( 0 , typeset with @{o})  overlap in the picture. This example also illus
trates the use of the modifier @ to request a "directional" object from the kernel library, using 
the contents of the braces as a mnemonic abbrevation (a fact we have already used silently 
on several occasions) .  

Shifting an object can be compared to using the skew position operator, which also uses 
the " ! " symbol but occurs after a dropped object or position specification: 

\usepackage [frarne , arrow , curve] {xy} 

\ [\begin{xy} 

( O , O ) *@{*}* [F] {Box 1 } ! UL= l a" , *@{x} 
, ( 20 , O ) *@{*}* [F] {Box2} ! RD*@{x} 
, \ ar@/� 20pt/ l a " , \POS l a " ! DR ( . 8 ) *@{+} 

\end{xy}\] 

Here the current point c is translated to the location specified on the box [as can be seen 
by comparing the positions of c before (. ) and after ( x ) applying the ! operator J .  However, 
the "extents" of the position remain those of the box itself, as can be seen from where the 
curved arrow places its arrow tip. The difference between shifting and skewing highlights the 
essential difference between position operators and modifiers: only the former can change 
the current position, while the latter can be used to change the extents, adjustment, and 
other characteristics of the rendered object relative to the reference point at which the object 
is "anchored". Modifiers have no effect on the current position after the object has been 
dropped. 

Several more commands are available to specify the vector amount of the shift or skew. 
We have already seen how to obtain a position based on the current object by using the vec
tors R (right), L (left), U (up), D (down) ,  and combinations thereof. These vectors denote 
the offsets to the corners of the current (rectangular) object from the reference point; C is 
the offset to the center. These can be further refined using "factors"; e.g. , ! DR ( . 8 ) in the 
previous example specifies where to put the + sign (@{  + }) .  Also useful is a specific distance 
in the current direction, as set by the most recent connection using ** .  The notation /3mm/ 
refers to the vector that is 3 mm long and oriented along the current direction. Similarly, the 
notation / _3mm/ has the same length but is oriented 90' clockwise of the current direction 
(this is how we positioned n in an earlier example) ,  while /�3mm/ is the vector in the coun
terclockwise direction. 

Example 
7-2-6 

Example 
7-2-7 



Example 
7-2-8 

7.2 Basic constructs 

Among the object modifiers are some that change the size and shape of an object's 
bounding box (called the edge in Xy-pic jargon) . Initially this box is the typeset size of the 
object itself, but it can be changed using the grow and shrink modifiers, "+" and , , _ n o  These 
operators add or subtract a fixed amount, called the object margin, to effectively create or re
duce a margin of space around the object. The default value for the object margin is 3 pt, but 
it can easily be changed. The set size modifier, "= (wid,ht) ", lets us set the width and height 
to any specified values. Without such a specific value, "=" is used to square the shape, i.e., 
equalize the width and height to the smaller of their existing values; similarly, "+=" equal
izes the box size to the larger of these values. Modifiers are always interpreted sequentially, 
from left to right. 

B�x 

8 
8 

\usepackage [frarne] {xy} 

\ [\begin{xy} 
, ( 0 , 0 ) *+= [0] [F] \txt {Box} 
, ( 12 , 0 ) *+= [0] =<9mm> [F] \txt{Box} 
, ( 0 , 12) *+= [0] + [F] \txt{Box} 
, ( 1 2 , 1 2 ) *+= [0] ++ [F] \txt {Box} 
, ( 0 , 24) *+= [0] - [F] \txt {Box} 
, ( 1 2 , 24 ) *+= [0] -- [F] \txt{Box} 

\end{xy}\] 

The bottom line above shows at the left the default equalized circle drawn around the 
object, and at the right a circle with radius set to 9 mm (more precisely, the height and width 
are both set to 9 mm, since <9mm> abbreviates <9mm , 9mm» . On the middle line we increase 
the circle's radius by the object margin, then by twice the object margin. Finally, on the top 
line we shrink the circle's radius by the same amounts. 

7 .2 .4 Enteri ng text in your  pictures 
The \ txt object command facilitates entering text strings in Xy -pic pictures. It typesets text 
in centered paragraph mode, such that line breaks can be controlled with the \ \ command. 
The syntax is 

I \txt (wid) sty{ text strings} I 
Both (wid) , the declared width, and sty, the style to be used for typesetting, may be absent. 
Various possibilities are seen below; note the use of opposite vectors to obtain the same po
sitioning by shifting and skewing. The example also illustrates how \newcommand decla
rations for one diagram should be made: before the xy environment, but within the outer 
math display, in order to ensure that those definitions have no effect on later diagrams. 

\usepackage [frarne] {xy} 

\ [  
\newcommand{\ smbf }{\small\bf series} \newcommand{\smit}{\small\it shape} 
\begin{xy} 

0*= (22 , 14) ! UR !  ( - 1 0 , -8) [F] \ txt\ smbf { c ent er\ \of box}= "box " ; 

473 



474 

"box " +L*+ ! R\txt \ small{Left \ \ side} 
, " box " +R*+ ! L\txt\ small{Right \\s ide} 
, " box " +D*+ ! U\txt\ small{Bottom s i de} 
, "box " +U*+ ! D\txt\ small{Top s i de} 
, " box " +LD*@{ * } * + ! RU\txt<2cm>\ smit {Lower left diagonal} 
, l box " +RD*@{*}*+ ! LU\txt<2cm>\ smit {Lower right diagonal} 
, lbox " +LU*@{ *}*+ ! RD\txt< 2 cm>\smit {Upper left diagonal} 
, " box " +RU*@{ *}*+ ! LD\txt<2cm> \ smit {Upper right diagonal} 

\end{xy} 
\] 

7.3 Extensions 

Upper left 

diagonal 

Left 
side 

Lower left 

diagonal 

Upper right 

Top side diagonal 

center Right of box side 
Bottom side Lower right 

diagonal 

THE XV-pic PACKAGE 

We have already used the frame extension, since that is where the [F] modifier is defined. By 
activating further extension options, other sophisticated graphics functions become avail
able: 

• The curve extension lets you draw curves and splines using quadratic or cubic Bezier 
curves and B-splines (see Section 7.3. 1 ) .  

• The frame extension provides a convenient way to draw frames, brackets, and filled 
regions (see Section 7.3 .2) .  

• The t ips extension lets you choose the type of arrow tip (Computer Modern or Euler, 
in addition to the Xy-pic default "technical" style) ,  while line styles are controlled by 
specifying the line extension. 

• Both rotation and scaling are possible with the rotate extension. Color and patterns 
and tiling effects can be obtained using the color and tile extensions. Graphics im
ages can be imported using the import extension. 

Several of these extensions work fully only if your dvi driver supports them. By default, 
however, the Xy-pic package uses only standard 'lEX and METAFONT. Thus it produces 
completely standard dvi files containing references to the Xy-pic fonts. Output for a specific 
driver (e.g., dvips) can be generated by loading an appropriate back end option that "tunes" 
the output produced in the dvi file to the indicated driver (by using \special commands). 
This tuning does not extend the Xy-pic language. When no back end is available, Xy-pic tries 

Example : 
7-2-9 



Example 
7-3- l 

7.3 Extensions 

to approximate what is requested by using, among other means, the special Xy-pic fonts. In 
particular, the picture size is identical, so that the choice of back end can never affect the 
page count, or other aspects of the output. 

As an example, consider the ps extension, which permits inclusion of PostScript code 
in Xy-pictures whether or not the driver supports it (the included PostScript will work only 
if the driver supports it, of course) .  If the same file is to be J:l.TEX'd on a different system, 
then the source file need not be changed (except to insert the declaration of which back end 
to use). With a PostScript-based back end, the Xy-pic fonts are not used, since native Post
Script is generated to draw all arrows, tips, etc . l  This improves the quality of the printed 
output, especially for dotted or dashed lines and curves; in addition, J:l.TEX processing time 
is reduced. We do not discuss back ends further in this book; refer to the Xy-pic documenta
tion for details, including the current list of supported drivers. 

7.3.1  Cu rves and spl i nes 
The curve extension makes it possible to draw spline curves. It allows calculation of curved 
connections along which objects may be dropped; when directional, the objects are aligned 
with the tangent direction. The basic syntax is 

I \ crv setup{control-points} I 
where the argument control-points is a list of positions separated by & signs. The object re
ally makes sense only with the connection operator ** ;  as always, the previous and current 
points p and c, respectively, define the end points of the connection. 

2 

------� R 
\usepackage [curve , frarne] {xy} 

\ [\begin{xy} 

0* [o] +{L} ; ( 50 , 20) * [o] +{R}= " R "  
* * \ crv{} ? ( . 6 ) *@{+} *A+ ! UL{0} 

, "R" * * \ crv{ (30 , 30) } ? *@{+} * A + ! DR{ 1 }  

475 

, " R "  * * \ crv{ (20 , 30) & (30 , 40 ) } ?*@{+} * A + ! DR{2} 
, " R"  * * \ crv{ ( 10 , -20) & ( 25 , -20 ) & ( 40 , 20) } 

? ( . 4) *@{+} * A + ! DR{3 }  
, " R "  * * \ crv{ ( 0 , - 1 0 ) & ( 1 2 , -20) & (28 , 25 ) & ( 40 , 20) } 

? ( . 4 ) *@{+} * A + ! DR{4} 
\end{xy}\] 

This example shows five curves, labeled from 0 to 4 to indicate the number of sup
plementary control points used. This number determines the type of Bezier curve used to 

1 The package also comes with a Type 1 version of the various Xy-pic- specific fonts: these are used only when 
a PostScript driver is used on a dvi file produced without activating a PostScript back end! 



476 THE XV-pic PACKAGE 

connect the start (L)  to the end (R) point. With one or two control points, a pure quadratic 
or cubic Bezier curve is drawn, with the tangents at L and R pointing along the lines con
necting these points with the adjacent control point. When three or more control points are 
specified, then a cubic B-spline is constructed. Note the use of the ? operator to locate places 
along the connection; in addition to finding the correct location, it sets the "current direc
tion" to be the tangent direction of the curve at that point. The small crosses, set with *@{ + }, 
indicate that this directional object has been aligned appropriately. 

It is quite simple to visualize the control points by using options along with the \crv 
objects. 

I' 
'/ 

'II 

R 
If 

\usepackage [curve] {xy} 

\ [\begin{xy} 

L ij 
� ij 

O*+{L} ; ( 50 , 20) *+{R} 
* * \ crv{ -*=<2mm>{ . } (20 , 30) & (30 , 35 ) }  

* * \ crv-L c { - * *@{==} - * {\bullet}% � ij 
" � II ( 20 , - 1 5 ) & (30 , - 1 5) } 

\end{xy}\] � II � 
�.= = =,1 

The first \crv has no optional part, but uses an object specifier - *  describing which 
objects should be drawn along the path. The second curve has the Lc option, specifying that 
the curve should be drawn together with the control points and the lines connecting them. 
Furthermore, the positional coordinates are preceded by connector ( - * *) and drop (- *) 
object specifiers; these determine how the control points are marked and which style to use 
for the connecting lines. 

If you don't have a back end with built-in support for expressing curves, drawing curves 
can consume quite a lot of memory. In such cases it can be wise to use the command 
\SloppyCurves  or to adjust the tolerance for typesetting the curves with the command 
\splinetolerance{tol}, whose only argument is a length tol. A curve is constructed as 
a series of closely spaced points. The value of tol is the minimum separation of points be
tween which an intermediate point is not calculated-it is not the separation of the points 
themselves. This helps to explain the non-uniform spacing of objects on curves, especially 
dotted or dashed curves. 

The minimum tolerance allowed is 0.2 pt, which is used for fine "solid" curves and is 
actually used if 0 pt is requested. Specifying \SloppyCurves changes tol to 0.8 pt. 

7.3.2 Frames and brackets 

The frame extension introduces commands of the type 

[ \frm (dim ) {spec} [ 



Example 
7-3-3 

Example 
7-3-4 

7.3 Extensions 

where spec is a frame specification and (dim) is an optional dimension. When the frame is 
"dropped" (with the * operator) ,  then the object at the current point c is framed. When it is 
"connected" (with the **  operator), then the rectangle defined by the previous and current 
objects together is framed. A complete list of possible frames is given in the Xy-pic docu
mentation. 

\usepackage [f rame] {xy} 

\ [\begin{xy} 
0*+++{L} *\frm<2pt>{- , }  

, ( 1 0 , 10) *++{M} *\frm{o} ;  
(20 , 1 5 ) *+{R} * \ f rm{=} * * \ f rm{ o-} 

\end{xy}\] 

In the picture above we drop the letter L, surrounding it with a rectangular shadow 
box of size increased by three times the object margin. At the coordinate point ( 1 0 , 1 0 )  , we 
drop the letter ]\;1 and surround it with a circular frame increased by twice the object margin. 
Then we transfer the current position to the previous position p ( ;  operator) and set the 
current position c as the new coordinate (20 , 1 5 ) . Here we drop the letter R, surrounded 
by a double rectangular frame increased by the object margin. Finally, with the connection 
operator * *, we draw a rectangular dashed frame with rounded corners surrounding the 
covering rectangle defined by the objects at c and p. 

R 

AI 

L 

\usepackage [frame] {xy} 

\ [\begin{xy} 
( O , O ) *+++{L}= " l " ; 
p+ ( 1 5 , 10) *+++{M} * * \f rm{ _ ) }% 1 

* * \ f rm{ \{} % 2 
; * *\frm{ \}} % 3 

, p+ ( 1 5 , 10) *+++{R} * * \f rm{ ( }  % 4 
* * \f rm{\}} % 5 

; " l " * * \frm{ A\}} % 6 
\end{xy}\] 

When constructing braces using the frame extension, we must track the previous p 
and current c positions carefully. In the above example we drop the letter L, name the corre
sponding position " 1 " ,  and store it as p ( ; operator) . Then we use p to calculate the coordi
nates of a new object ]\;1. Next we link the objects c and p by a lower bracket (at " I ") and a 
left-hand brace (at "2") .  We then exchange p and c so that ]\;I becomes p and L becomes c. 
Next we draw the right-hand brace. Note in particular how the nibble of the brace is aligned 
for the cases "2" and "3". Next we move up to point R, which now becomes c, and we draw 
first a left-hand parenthesis (at "4") and then a right-hand brace (at "5") linking A! and R. 
Once again using the ; operator, we make object R the "previous" p and retrieve the saved 
position " I "  of L, which becomes "current" c. This lets us finally draw the top brace (at "6"). 

477 



478 THE XV-pic PACKAGE 

As a special convenience, rather than separately dropping a frame after an ob
ject via *\frm (dim) {spec}, you can obtain the same effect using the object modifier 
[F spec : (dim) ] , or just [F spec] when no (dim) is specified. The simplest variant [F] cor
responds to * \frm{ - }, since this is the choice most frequently desired. 

7.4 Featu res 

The Xy-pic package comes with an interesting and quite complete set of add-ons that extend 
Xy-pic for particular application domains. These "features" must be loaded as needed. The 
present version ofXy-pic provides functionality in the following areas: 

• Arrows. Draw simple and segmented arrows with configurable marks and labels (Sec
tion 7.4. 1 ) .  

• Matrices. Construct two-dimensional matrix-like layouts, in which an object may be 
addressed by its row and column identifier or by "hops" along the grid from another 
object (Section 7.4.2) .  

• Graphs. Draw directed graphs, flowcharts, trees, etc. (Section 7.4.3) .  
• Two-cells. Typeset "categorical two-cell" diagrams containing pairs of (labeled) curved 

arrows (Section 7.4.4) .  
• Polygons. Specify the positions of the vertices of regular polygons (Section 7.4.5) .  
• Circles, ellipses, and arcs. Construct (parts of) circles and ellipses with their minor and 

major axes aligned in any direction (Section 7.4.6). 
• Lattices and webs. Draw objects on the regular arrangement of a two-dimensional lattice 

(Section 7.4.7) . 
• Knots and links. Draw and label knot-like and link-like structures (Section 7.4.8) . 

7.4.1 Arrows 

The construction of "pretty" arrows was at the very heart of Xy -pic's original development, 
as its author wrote [ l 05 ] :  "Our first task [with Xy-pic] is to design an arrow such that it looks 
nice even when very long . . .  " 

The arrow feature is automatically loaded with the all option. In fact, many other ex
tensions depend on this extension, so this feature is automatically loaded by them as well. 
Arrows are implemented as an extension of connections to permit an explicit tail, stem, and 
head. As arrows occur in many places, a simple and convenient syntax is available to typeset 
them, which is initiated by the \ar command. We limit ourselves here to a few simple exam
ples. The versatility of the arrow feature will become more apparent later when we describe 
the matrix and knot features. 

Generally speaking, the style of an arrow is customized with the help of the @ character. 
The braced part specifies the tail, stem, and head to be used. Preceding this, the characters 
A, _, 0, 1 ,  2, and 3 stand, respectively, for the above, below, invisible, single, doubled, and 
tripled variants, as shown in the next example (note the absence in the center of the \ar@O 
instance) , 



Example II 7-4-2 

7.4 Features 

= 

\usepaekage [arrow] {xy} 

\ [\begin{xy} 

( O , -20) = " a " , ( O , O ) = " b "  

479 

\ar@{ < . I I } @< 24mm> " a " ; " b "  \ar@A{ < . I I } @< 1 6mm> " a " ; " b "  
\ar@_{< . I I } @<8mm> " a " ; " b "  \ar@O{< . I I } " a " ; " b "  
\ar@ i {< . I I } @<-8mm> " a " ; " b "  \ar@2{ < . I I } @ < - 1 6mm> " a " ; " b "  
\ar@3{< . I I } @<-24mm> " a " ; " b "  

y y v \II \end{xy}\] 

The following example, combining syntax already introduced, shows several useful vari
ations (the curve and frame extensions and the arrow feature must be loaded) .  

Q 
D c 

\usepaekage [eurve , arrow , frame] {xy} 

\ [\begin{xy} < 1 em , Oem> : 
(O , O ) H@{* }= " a " H ! DL{ \mathrm{A}} , " a "  

\ar@ ( dr , dl )  
\ar@{ - > }  ( 2 , O ) H@{*}= " b " H ! DR{\mathrm{B} } , " b "  
\ar@ ( r , d) " b " ; " b "  

\ar@{<->} " b " ; ( 2 , 2 ) *+@{ *}= " e " *+ ! UR{ \mathrm{C}} , " e "  

\ar@ (u , r ) " e " ; " e "  I *=<2pt > [0] [F] { }  
\ar@ (ul , dr )  " e " ; ( O , 2 ) *+@{ *}= " d " *+ ! U{ \mathrm{D} } , " d "  
\ar@ (ul , ur) " d " ; " d "  
\ar�{ . >}� ( { ( -O . 8 , 1 . 5 ) , ( O . , 1 . 0 ) , ( -O . 8 , O . 5 ) }  " d " ; 

\end{xy}\] 

After setting the coordinate system base unit to 1 cm and dropping the vertex A (named 
" a" using the = operator), we typeset several arrows. Like connections, arrows are typeset 
from p to c as determined by the position following the arrow. Both default to the current 
position c before the arrow: this is exploited by the first \ar command to draw a loop, i.e., 
an arrow leaving and reentering A. The outgoing and incoming directions of a loop are in
dicated using @ ( <dir> , <dir> ) , where <dir> represents a direction, combining at most 
one of d and u with at most one of 1 and r (other forms are described in the Xy-pic docu
mentation). Next we draw a "variant" arrow from A to a bullet at ( 2 , 0 ) with label B and 
name " b "  . Notice how the typesetting of the label relative to B is "hidden" with the comma 
operator so as explicitly to make the final c be " b "  and not the label. We make a second 
loop arrow, this time from the explicitly specified " b "  to itself, followed by a double arrow 
to C with yet another loop, this one "broken" in the middle by a 2 pt circle (typeset with 
*=<2pt> [oJ [FJ {}) .  The next arrow, linking C to D at (0 , 2 ) ,  is a "curved arrow" with 
specified tangent directions at either end. To finish, we draw another curved arrow, this time 
specifying control points explicitly, with the notation @ ( { cp , cp , . . .  }, where each cp is 
the position of a control point. 

Parsing of the position specifying the arrow target (and, if ; is used, also the source) , 
continues as long as possible. As in Example 7-4-2, the resulting current position c is the 
ultimate target, although other objects may have been typeset along the way; similarly, the 
resulting p, which defaults to the position before the arrow, is the ultimate source. The parser 
stops when it encounters a macro name such as \relax, \ar, \endxy, or \end, or at a label 



480 

c 

THE XV-pic PACKAGE 

or break character (one of A, _, or I ) , unless this character is absorbed as an argument of 
another operator (as in the \mathrm command in the example). After an \ar command is 
finished, however, what follows is not interpreted as a position. To achieve this the special 
\POS macro should be used, as we will see in later examples. 

Finally, an arrow can be composed as a path of several segments, separated by , or ' 
depending on whether they should be joined directly or by circle "turns". Each segment can 
have its own set of labels and breaks along the straight portion. 

3 

4 5 0 . . ... :»- ngm 
P 3 

1 
2 

\usepackage [arrow] {xy} 

\ [\begin{xy} < 6mm , Omm> : 
( O , O ) *+\txt \ small{Origin}= " O "  
\ar@{ . » } 

' r  ( 3 , 2 ) *\dir{ * } * + ! DL{ \mathrm{P_ l } }  A - l  
( - 2 , 2 ) *\dir{*}*+ ! U{ \mathrm{P_2}} A2  

' _dr ( - 2 , O ) *\dir{*}*+ ! U{ \mathrm{P_3}} _ ( . 3 ) 3  
' drAr " 0 "  _ ( . 8 ) 4  

" 0 "  
\end{xy}\] 

In this example we start at the position labeled "Origin" (identifier I I 0 II ) , set off to the 
right, and then turn towards point "P 1 '" Once Xy -pic is given the point "P 2 '" it knows it 
is to move up and to the left (note the constructed quarter circles). Looking at the double 
arrow tips and the labels 1 -5 shows the construction of the different line segments. To make 
things a little more interesting, we specify that we want to go back to the origin at I I 0 II by 
going down and to the right-first turning clockwise (the three-quarter circle at the upper
left corner), and then going via "P 3" from the northwest to the east (right). 

We have placed the labels using positioning "factors" that indicate the amount along the 
straight section where the label is to be dropped. In particular, "3" and "4" are placed 30% 
and 80% of the way along their respective straight sections. With no factor explicitly given, 
"2" uses the default 0 .5 .  The minus sign in " I "  and "5" is a useful device that tells Xy-pic 
to calculate the label position as a factor along the "visible portion" of the straight segment, 
by excluding the edges of the source and target positions. Thus "5" is typeset 20% along the 
visible part of the final straight segment and " 1 "  is halfway along its visible section-the 
default again is 0 .5 .  Using the - sign is particularly appropriate when either the source or 
the target position is of significant size (as in Example 7-4-3) .  

7.4.2 Matrix- l ike diagrams 
The matrix feature i s  a powerful tool for typesetting diagrams with a regular "matrix-like" 
structure (indeed, the initial release of Xy -pic contained just the functionality of the arrow 
and matrix features) .  The format of the command is 

I \xymatrix setup{entries} I 
The setup part can contain switches, shapes, decorations, and so on to be applied to every 
entry. The argument entries is the description of the text or objects to occupy the cells of the 

Example 
7-4-3 



Example 
7-4-4 

7.4 Features 

matrix. These cells are positioned in columns, separated by &, and in rows, separated by \ \ .  
Each cell can contain arbitrary Xy-pic decorations, with the current state c set to the matrix 
entry in question. In particular, this means that the cell is the source for \ar commands 
within that cell. The complete matrix is also an Xy-pic object with a reference point at the 
top-left cell. Since * has a special function, the asterisk character must be entered between 
curly braces {* } if it is to be the first character in a cell. The simple example in Section 7. 1 
illustrates most of these ideas. 

Given that most of the Xy-pic User's Guide [ 1 06] describes the matrix feature, here we 
merely look at examples that illustrate some finer points. 

Commutative diagrams 

The \xymatrix command is very useful for drawing commutative diagrams, a mathemat
ical construct where arrows in different paths between two objects compose to the same 
arrow. Many authors have developed ad hoc 'lEX packages for dealing with such diagrams. 
James Milne gives an up-to-date list of the better-known packages. I It is a useful comple
ment to the review article [ 1 23 ] ,  where 1 0  different 'lEX packages for typesetting commuta
tive diagrams are compared. We use here the first example of the Feruglio paper as the basis 
of our own example.2 The example assumes that both the t ips extension and the arrow 
feature are also loaded. 

\us epackage [arrow , matrix , t ips] {xy} 

\ [\UseTips 
\newdir{ >}{ ! /-5pt/ \dir{>}} 
\xymatrix @= lpc @* [r] { 

& \SigmaAL \ar [rrrr] A{ \varphi Ar} 

48 1 

\ar ' [d] ' [ddd] _{ \varphi Am} [dddd] 
& & & & \SigmaAR \ar [dddd] A {\varphi A{mA *}} 

\\ L \ar [ur] A{\lambdaAL} 

I See http : //www . jmilne . org/tex!CDGuide . pdf . 

& & L_r \ar@{ >->} [11] _ ( . 32 ) { i _ l }  \ar [rr] Ar 
& & R \ar [ur] _{\lambdaAR} 

\\ \\ L_m \ar@{ >->} [uu] A { i_2} \ar [dd] _m 
& & K_{r , m} \ar@{ >->} [11] _ ( . 3 ) { i _3} 

\ar@{ >->} [uu] _ { i _4} 
\ar [dd] _« « m  \ar [rr] Ar 

& & R_{mA*} \ar@{ >->} [uu] _{i _6} 
\ar [dd] _« « {mA *} 
\\ & \SigmaAG 

\ar ' [r] ' [rrr] _{ \varphi A{rA*}}  [rrrr] 
& & & & \SigmaAH 

\\ G \ar [ur] A ( . 7 ) {\lambdaA G} 
& & G_{r A * }  \ar@{ >->} [11] A { i _5} 

\ar [rr] _{rA*}  
& & H \ar@{ . >} [ur] _{\lambdaAH} 

}\]  

2 We recoded the Xy-pic version as given i n  his appendix, since his code was based o n  version 2 ofXy-pic. Our 
code, based on version 3, is more readable and complete, and uses a more homogeneous notation. 



482 

Xl 

t 
X3 > 

THE XV-pic PACKAGE 

First we add with \newdir a variant of the @{> } tip that is moved a bit so as to make 
a better arrow tail. The rest is just a matrix designed to have entries at all "interesting" loca
tions. Note how the quote character ' is used to specify that an arrow should go via certain 
cells, passing "below" another arrow (without inserting "turns", as with the backquote char
acter ( ) . For instance, to produce the arrow pointing down from node 'EL , we use that nota
tion for the relative number of "hops" to refer to the nodes one ( '  [d] ) and three ( '  [ddd] ) 
rows below the current one. We use similar code to make the arrow to the right of 'EG pass 
below the arrows at cells one ( '  [r] ) and three ( , [rrr] ) hops to the right. The < < < < and 
(0 . xx ) notation lets you fine-tune the placement of the text associated with the arrows 
by specifying how far from the start point of the arrow the material should appear. The lat
ter form is especially useful, since it allows you to take into account small differences in 
the lengths of the arrows due to slightly wider elements, so that the typeset material can be 
aligned with great precision. Also notice the three setup parameters: @=1 pc forces the spac
ing between columns to be 1 pc; @* [r] imposes the adjustment [r] on all entries, which is 
aesthetically pleasing since all entries contain one uppercase letter with varying subscripts 
and superscripts. 

Michael Barr has recently reimplemented his diagram package as an add-on to Xy-pic. 
This new package, d iagxy, builds on the \xymatrix construct but introduces a more uni
form and higher-level syntax for many cases. The package introduces the arrow drawing 
function \morphism, which is used to define common diagram shapes (e.g., squares, trian
gles with a variety of orientations) ,  and a few compound diagrams (e.g., cubes) .  

The general structure of a command in d iagxy is  as follows: l  

\morphi sm(x,y) Iplacementl/ shape/ <dx,dy> [N'N;L] 

Only the last argument is required, and it corresponds to the source and target nodes of the 
arrow (before the semicolon) and its label. The argments x and y and x+dx and y+dy are 
the location of the source and target nodes (in units of, by default, 0.01 em) . The placement 
argument is either a (above), b (below), 1 (left), r (right), or m (middle) and defines where 
the label is to be placed on the arrow. The shape argument describes the shape of the arrow 
(using Xy-pic syntax). 

Square diagrams are conveniently typeset with the \square command, as in the fol
lowing example. 

a X2 » 

j ' 
\usepackage {diagxy} 

z \ [\bf ig 
\square/» ' > ' > '  >->/ [X_ l ' X_2 ' X_3 ' X_4 ; a ' h ' c ' dJ 

)0 X4 
\morphi sm ( 500 , 500) I m l / . >/<-500 , -500> [X_2 ' X_3 ; zJ 

d \ef ig\J 

The various components of the geometric element-in this case the four vertices of 
the square-are separated by ( signs_ The first part of the command specifies the shape of 

I diagxy markup is set in math mode and bracketed inside \ bf ig and \ ef ig commands, which are equivalent 
to being inside an xy environment. 

Example 
7-4-5 



7.4 Features 

the four arrows (using Xy-pic conventions) .  Between the square brackets are the labels of 
the vertices and the sides. The \morphi sm command draws a dotted arrow from the upper
right corner ("X2") to the lower-left corner ("X3") and places the label "z"in its middle. 
Squares can be combined vertically and horizontally. 

A square with different kinds of sides is readily drawn. 

\usepackage {diagxy} 

\ [\bf ig 
\square /@3{->} ' - ) ' =o ' --x/ [X_ l ' X_2 ' X_3 ' X_4 ; 1 ' 2 ' 3 ' 4] 
\place (400 , 1 00)  [\twoar ( - l , - l ) ]  
\place ( 1 00 , 400) [\twoar ( l , l ) ]  
\morphi sm ( 500 , 500) I 1 /{ * } . {*}/< -500 , -500> [X_2 ' X_3 ; ]  

\ef ig\] 

The various kinds of arrows are specified in the first argument of the \square com
mand. The \place command is similar to �TEX's \put and places its contents at the given 
coordinate. The \ twoar command draws a double arrow with a slope indicated by its argu
ment. 

Annotations on vertices and sides are easily added with the \Square command, which 
figures out its own width. Hence only the vertical displacement dy « 350> in the example) 
needs to be specified. 

a(X,Y) 
Hom(X, 2Y ) c� ___ �) Sub (X x Y) 

� J 
Hom(X' ,  2Y' ) ( ) Sub(X' X Y' ) 

a(X ' ,Y ' )  

\usepackage {diagxy , amsmath} 
\De clareMathOperator\Hom{Hom} 
\DeclareMathOperat or\Sub{Sub} 

\ [\bf ig 
\Square/�{ ( } -> ' > ' > ' � { ( } - >/<350>% 

[\Hom (X , 2�Y) ' \ Sub (X\times Y) ' 
\Hom ( X ' , 2� {Y ' } ) ' \Sub (X ' \t imes Y ' ) ;  
\alpha ( X , Y) " ' \alpha ( X ' , Y ' ) ]  

\ef ig\] 

We note the use of �{ ( }-> in the first argument to construct the inclusion arrow, 
where we added some extra space before the hook. The amsmath package is loaded to de
fine the math operators \Hom and \Sub in the preamble; we then use these operators in the 
diagram. 

Various primitive commands for constructing trangle diagrams are available. The next 
example shows the combination of a pair of triangles in a "V" form. 

\usepackage {diagxy} 

\ [\bf ig 
\Vtrianglepair [X_ l ' X_2 ' X_ 3 ' X_4 ; %  

a_ l ' a_2 ' a_ 3 ' a_4 ' a_5] 
\ef ig\] 

483 



484 

T 

THE XV-pic PACKAGE 

Squares and triangles can be easily combined to create more complex diagrams. A spe
cial kind of diagram is the "pullback", which is created as follows. 

(x,y) x 

y 
\usepackage{diagxy} 

\ [\bfig 
\pullback lbrral 

[X\times_ZY ' X ' Y ' Z ; p ' g ' f 'gJ% 
/> ' { . >} ' >/ [T ; x ' (x,y) ' yJ 

\efig\] 

In homology one often encounters 3 x 3 and 3 x 2 diagrams. They are typeset with 
the \iiixiii and \iiixii commands, respectively> whose default behavior is displayed 
in the following examples. The usual order for the arrow parameters is first all horizontal 
arrows and then all vertical ones, left to right, and then top to bottom. 

\usepackage{diagxy} 

$\hfig \iiixiii(A ' B ' C 'D ' E ' F ' G ' H' I ;  1 ' 2 '3 ' 4 ' 5 ' 6 ' 7 ' 8 ' 9 ' 10 ' 1 1 ' 121 \efig$ 
\quad 
$\bfig \iiixii [A' B ' C 'D ' E ' F; 1 ' 2 ' 3 ' 4 ' 5 ' 6 '7] \efig$ 

A B 2 C , , 

7
] I ]

9 

2 8 A B , c 
I 

5
] 

I ]
7 

D -3_ E -'I __ F 6 

I I 
1 0] II 1 1 2 D E � F' 

I 3 4 

G 
5 

, H 6 , I 

A more interesting example of a 3 x 2 diagram is the following, where we add annota
tions (text and matrices) to the arrows. The placement of the arrow labels is specified with 
the first argument. Recall the order in which the arrow characteristics should be specified 
(see Example 7-4-10). We also load the amsmath package since we use the pmatrix envi
ronment. 

\usepackage{diagxy , amsmath} 

\[\bfig 
\iiixi i l aaaalmr l <1000 .BOO> 

[X ' Y ' Z ' X\oplus X_O' Y\oplus X_O\oplus Z_O' Z\oplus z_o; 
f_1 'f_2' \begin{pmatrix}f_1&0\\0&1\\O&O\end{pmatrix}' 

\begin{pmatrix}f_2&0&O\\O&0&1\end{pmatrix}, 



7.4 Features 

\efig\] 

x 

(�) 

\begin{pmatrix}l\\O\end{pmatrix}' 
\begin{pmatrix}l\\O\\O\end{pmatrix}' 
\begin{pmatrix}l\\O\end{pmatrix}] 

r. ) y h 

I 

0 
0 

• z 

m 

X Ell Xo 
(� D (!) (i' 

Y Ell Xo Ell Zo 
�) 

J Z E9 Zo 

Finite-state and stack diagrams 

Finite-state diagrams can also be typeset in a straightforward way: 

b 

[ a 
.r-\ 

In 

b a 
a 

\usepackage [matrix, curve, arrow , tips, frame] {xy} 

\ [\UseTips 
\entrymodifiers={++[o] [F]} 
\xymatrix �-lmm { 

.+\txt{in} \ar[r] 
& 1 \ar�(dr .dl) [J �b \ar[rJ_a 
& 2 \ar� (d.dl) []Aa \ar[r]_b 
& 3 \ar ' u [l] '�d [lLa (1] \ar[rLb 
& .++[0] [F=] {4} 

\ar 'dl_l [11] +/d6mm/ '1_ul[ll]Aa [11] 
\ar 'uAl (l1lJ +/ulcm/ ' lAd(111Lb [Ill] 

}\) 

In this kind of diagram,l all states (elements) are enclosed in circles; here we use the 
\entrymodifiers command to specify the default modifier to realize this goaL To get 
nice arrowheads on the end of curves, we use Computer Modern tips. To keep the diagram a 
little more compact, we reduce the interelement spacing by 1 mm «(Q-imm before the opening 
brace of the \xymatrix command). Starting an entry with an asterisk (i.e., using the form 
• (object) ) overrides the default settings from \entrymodifiers; this feature is used in the 
leftmost cell to eliminate the frame and in the rightmost cell to typeset a double circle. Note 
that in the latter case the complete modifier specification had to be given. The only other 
tricky bit is the use of displacements towards the exterior, which add 6 mm (for a) and 1 em 
(for b) in establishing the locations of the turns. 

l We based our example on the deterministic finite automaton diagram in [7, p. 1361; another representation 
of the same diagram can be found in [106, Section 3.41, and we also used it for Example 3-4-10 on p. 79. 

485 



486 

As a final example, we draw stack diagrams with pointers. 

\usepackage [matrix , arrow , frame] {xy} 
\newc ommand\t opbar{\vrule he ight O . 4pt width 20mm} 
\newc ommand\previous{% turning-width of 1 5mm 

\ s ave\ar ' r [u] +/r 1 5mm/ ' [u] [u] \restore } 
\newc ommand\saved [2] {\txt{#1\\\emph{ saved} $d [#2] $\\}} 
\newc ommand\bendt o [2] {% creates  a bendy arrow , off set 5mm 

\save c ! C+/r5mm/\ar ' r# 1 ! C+/l#2/ ' �r# l ! C  # l ! C\restore} 
\newc ommand\dinput [ l ] {% labe l-off set 1 1mm 

\save +/l l lmm/ *{d [#l] }\restore} 

\ [\begin{xy} 
\xymatrix " R "  @M=Omm @H= 1 2mm @W=20mm @R=Omm @* [F] {% 

{\txt {\topbar\\s\\\\ }} % 1 , 1  
\ \  \ s aved{A}{2} %2 , 1  
\ \  \ s aved{B}{2}\previous %3 , 1  
\\  \ s aved{C}{3} %4 , 1  
}\turnradius{2mm}\POS ( -30 , +4)  
\xymatrix @M=Omm @H=5mm @W= 1 2mm @R=Omm @* [F] {%  

\dinput { 1 } \bendt o { " R 1 , 1 " } { 1 5mm} %1 , 1  
\\ \dinput{2} \bendto{ " R3 , 1 " } { 1 7mm} %2 , 1  
\ \  \dinput {3} \bendto{ " R4 , 1 " }{ 19mm} %3 , 1  
} 
\end{xy}\] 

d [ l ]  

d [2] 

d[3] 

-,� 
-----., 

� 

� 

S 

A 
saved d[2] 

B 
saved d[2] 

C 
saved d[3] 

� 

� 

THE XV-pic PACKAGE 

We build up the picture using two \xymatrix commands, with text or labels on some 
entries. Arrows between entries are specified as excursions that use previously defined posi
tions and are enclosed within \save . . .  \restore pairs so as not to affect the layout of the 
subsequent matrix entries. Placing the right -hand stack first and assigning it the name " R" 
lets us  access its cells as  positions while the left-hand stack i s  being built; indeed, some of 
those cells are used as targets for arrows starting from the left-hand stack. For precise con
trol on object positioning within each \xymatrix, we first kill the object margin (©M=Omm) 
and row separation (©R=Omm) as part of the matrix setup. Furthermore, we choose exact 

i Example 
7-4- 1 3  



, Example 

7 -4- 14 

7.4 Features 

cell heights (@H= . . .  ) and widths (@W= . . .  ) appropriately and specify a frame (@*  [F] ) to 
appear around each entry. 

Since the same types of structures are needed with different matrix entries, it is appro
priate to define macros for these cases. Not only does this shorten the code by avoiding the 
repetition of long constructions, but it also facilitates making consistent changes if they are 
needed. In addition, macros help keep the main body of code tidy by shifting the details 
elsewhere; if chosen wisely, the macro name can signify its intent. Thus macro \saved 
places the contents of three cells from the right-hand stack, changing just two characters 
in each instance. The topmost cell is a little different, having an extra line created by ex
panding the macro \ topbar. Also, the extra arrow from the third cell ( " R3 ,  1 " )  to the sec
ond cell ( " R2 ,  1 " )  is given as a \save . . .  \rest ore excursion after expanding the macro 
\previ ous. The appearance of this turning arrow is controlled with the help of the 1 5 mm 
displacement in ( r  [u] +/r 15mm/. 

Now we turn our attention to the left-hand stack, which is placed at the location 
with coordinates ( -30 , 4 ) .  Reducing the \ turnradius to 2 mm (from its default 10 pt) 
allows tighter turns. Again, sizes and margins are set as part of the matrix setup. The 
\dinput macro places each input label as an excursion translated a fixed amount to the 
left (+/1 1 1mm/) .  Each arrow to the right-hand stack is built by specifying its target cell 
(e.g., I I  R4 , 1 " )  and a displacement from its center determining where the bends occur (e.g., 
15 mm) .  The code of \bendto builds the appropriate arrow from this information. 

7.4.3 Graphs 
Flowcharts, directed graphs, trees, and other structured mathematical representations can 
be drawn with the graph feature, which implements a combinatorial drawing paradigm 
somewhat similar to the pic language. The graph feature depends on the arrow feature, 
which is always loaded with it. The syntax is 

I \xygraph{graphdesc} I 
where graphdesc describes the various components of the graph. The & operator puts objects 
into columns. Unlike with the matrix feature, there is no extra alignment or spacing of the 
objects. 

The basic principle is to draw a line or arrow from a current node to a target node, after 
which the target becomes the current node. The basic operators are - and : for drawing 
a line and an arrow, respectively. These operators are followed by arrow, node, and label 
specifiers, if required. An example will make this clearer: 

\usepackage [graph , curve] {xy} 

\ [\xygraph{ 
[] L : ©/_/ [r] {M_ l }  : ©/ � /  [r] {M�2} 

: ©{ I . > } [r] R : ©/ _ lem/ I L "  
}\]  

We start by defining a point L and giving it a symbolic label " L " ,  since we want to 
reference it later. Then, we construct three small arrows connecting the points L, lVh ,  ]0.12, 

487 



488 THE XV-pic PACKAGE 

and R with various types of arrows. Finally, we draw a long arrow pointing back from R to 
L, using the reference " L " ,  which automatically refers to the most recent node containing 
just an L. 

A convenient syntax for tree branching is (parent) ( (child) , . . .  , . . .  (child) ) :  each 
(child) graph is typeset as if it came directly after (parent) . The following example includes 
two lists, one at the top from node 1 and one at the second level from node 1 2 . 

\usepackage [graph , f rame] {xy} 

\ [\xygraph{ 
[] H [0] + [F] { 1 }  

( - [dl] *+= [o] + [F] { l l }  
, - Ed] *+= [0] + [F] { 1 2} 

(- [dl] H= [0] + [F] { 1 2 1 }  
, - Ed] *+= [0] + [F] { 1 22} 
, - [dr] *+= [0] + [F] { 123} 
) 

, - [dr] *+= [0] + [F] { 13} 
) 

}\]  

The example also shows that any Xy-pic object can be dropped at a node, as usual, by 
the * operator. Indeed, the ! escape makes it possible to introduce any Xy-pic kernel con
struction, placed in {},  after a given node; we use this technique in the following two exam
ples. We present two "mini-packages" developed by the authors of the Xy-pic package for 
drawing neural networks and logic diagrams; together these illustrate most capabilities of 
the graph option. Both rely on the \newgraphescape command to define new types of 
objects, denoted ! ( letter) , in graphs. 

Let us first look at Ross Moore's approach to typesetting neural network diagrams. He 
uses a structured-programming paradigm, guided by the principle that the higher-level ob
jects the user must manipulate should look familiar. To illustrate this approach, we chose a 
simple diagram of the feed-forward type (so called because the neurons in each layer con
tribute to the input of the neurons in the next layer) : 

\usepackage [all , dvips] {xy} 
\newcommand\Neuron [ l ] {\POS*+=< l em> [o] + [F] { # l } }  
\newc ommand\Link [ l ] {\ar @ { - }  " # 1 " }  
\newcommand\Out {\ar +/r8mm/} 
\newcommand\In{ \ s ave +/19mm/ *{}\ar +/r5mm/ \restore} 
\newgraphes c ape{O} [1] { I  {\Neuron{# 1 }= " # l " \Out } }  
\newgraphe s c ape{H} [l] { ! {\Neuron{ # 1 }= " # l " \Link{A} \Link{B}}} 
\newgraphescape { I }  [1] { ! {\Neuron{ # l } \ In\L ink{ a}\Link{b} \Link{c } } }  

\ [\xygraph{ ! {O ; < 1 8mm , Omm> : <Omm , 10mm> : : }  
[] ! O{A} Ed] ! O{B} 
[dd] * [left] ! U [F] \txt < 1 2mm> {output\\layer}= " T "  

" A "  [u ( . 5 ) l] ! H{a} 
Ed] ! H{b} Ed] ! H{c} 

" T "  [1] * [left] ! U [F] \txt < 1 2mm>{hidden\ \layer} 

Example 

7-4- 1 5  



Example ! 
, 7-4- 1 6  

7.4 Features 

" a "  [ul] ! I {t _ H  
[d] ! I{t3} 

[d] ! I {t_2} 
[d] ! I {t_5} 

" T " [ll] * [left] ! U [F] \txt < 1 2mm>{input \\layer} 
}\] 

First we define some macros, using names reminiscent of those for the actual neural net
works being described. Use of these names in subsequent \xygraph allows us to specify the 
logical structure of the components in the diagram while hiding the details of the lower-level 
Xy-pic implementation. The command \newgraphescape permits new types of nodes to 
be recognized, following the ! character. These "node-macros" can even take arguments, as 
in Example 7-4- 16. 

After defining the unit vectors for the two base directions, we place the elements of the 
neural network. Moving from right to left, we first encounter object A on top of B (created 
by ! 0) ,  both with a right arrow pointing away from the main part of the diagram. This is 
called the output layer. Then we have three objects a, b, and c (created by ! H) ,  all connected 
to A and B, in an intermediate layer called the hidden layer. Finally, we arrive at the input 
layer (using ! I) with labels of type t i .  

When executing the code in  Example 7 -4- 1 6, the two uses of  the node macro ! 0 define 
the labels " A "  and " B "  , which are referenced by the three ! H -nodes, which themselves de
fine the labels " a " ,  " b " ,  and " c " . These, in turn, are referenced by the five ! I commands to 
draw links between all elements of the input and hidden layers. To typeset the text vertically, 
we use the [left] specifier, which is part of the rotate extension and requires a PostScript 
driver. 

It should be evident from this description that these or similar commands can be used 
in a generic way to typeset all kinds of diagrams featuring neural circuits. 

Our second mini-package is a command, \circui t, for typesetting logical circuit di
agrams. The components we consider are nand (negated-and) and inverter gates, denoted 
by ! N and ! I, respectively. These are defined in the Xy-pic spirit of being independent of the 
current direction; however, only one direction, ! R (for "right") is set up and used. A gate is 
placed with its output at the current location. It must have a name, which is used for later 

489 



490 THE XV-pic PACKAGE 

reference; in addition, the inputs are given names with suffixes a and b. Notice in the two 
sample circuits below how few of the gates are placed absolutely-this kind of specification 
is very modular. 

\usepackage [graph , curve , arc] {xy} 
\newgraphe scape{N} [ 1 ] { ! {\save-/4mm/- /4pt / ; p+/4mm/ : 

( - 1 , i ) ; ( - 1 , - i ) * *@{-} 7 ( . 25 ) = " N# 1 a "  7 ( . 75) = " N# 1b " , 
( - 1 , i ) ; ( 0 , i ) * *@{-} ; ( 0 , - 1 ) , {\ellipse_{}} ; ( - 1 , - i ) * *@{ - } ,  
(0 , 0 ) ; ( 1 , 0 ) * * { } * !  E\c ir<2pt >{} ! C-E= " N# 1  " \rest ore \POS "N#1  " } } 

\newgraphe scape { I }  [ 1] { ! { \ s ave-/4mm/-/2pt / ; p+/4mm/ : 
( - 1 , 1 ) ; ( - 1 , - 1 ) * *@{-} 7= " I # 1 a " , (- 1 , 1 ) ; ( . 667 , 0 ) * *@{-} ; ( - 1 , - 1 ) * *@{-} , 
( 0 , 0 ) ; * * {} * ! E\ c ir<2pt >{} ! C-E= " I # 1 " \rest ore \POS " I# 1 " }} 

\newgraphe scape {B}{ ! { *=o@{ * } } }  

\newgraphes cape{R}{ ! { ; p+/r4mm/ * *{ } ; } } 

\newgraphe s c ape{p} [2] { [# 1 ! { " #2 " ; p+/ A / }] } 
\newcommand\ circuit [ 1 ] {\xygraph{-{0 ; < 1 0mm , Omm> : <Omm , 9mm> : : 0 } # 1 } }  

\ [\begin{array}{c} 
\ c ircuit { 0 ! R ! N1 ( " N1a" ( [I] x - 7 ) , " N 1 b " ( [I] y - 7 ) ) 

[r] ! 1 2 ( " N1 " - " 1 2a" ) - [r] {x\Iand y}}\\ 
\ c ircuit{ [] x 

[rrr] ! R ! 1 1  ( " I l a" ( " x "  - ? ) ) 
[drr] ! R ! N 1 ( " 1 1 "  - ' r [d] ' " N 1 a '"' Nla" , " Nlb"  ! pIx y - "N1b " )  

" 1 1 "  [dddd] ! R ! I 2 ( " I2a" [I] ! puy ! B  - ' d " I2a" " I 2a" ) 
" N l "  [dd] ! R ! N2 ( " I l a"  [I ( . 5 ) ]  ! pux ! B  - ' d " N2a" " N2a" , " 1 2 "  - ' r [u] ' " N2b " " N2b " )  

[urr] ! R ! N3 ( " N l " - ' r [d] ' ' ' N3a '' '' N3a '' , " N2 "  - ' r [u] ' ' ' N3b ' ' ' ' N3b '' ) 
- [r] {x\mathreI{\t extrm{xor}}y}} 

\end{array}\] 

X -------.----l 

y ---.--+---------I 

x xor y 

We use a kernel code protected within \save . . .  \restore to set up a local coordinate sys
tem reflecting the current direction when the gate is placed; we use the \ e 1 1  ips e command 
(see Section 7.4.6) to make the round part of nand gates independent of the chosen direction. 
Also notice that arrows with turns using ' are permitted. 



Example 

7·4· 1 8 

7.4 Features 49 1 

Two packages have been developed for use on top of Xy-pic to generate diagrams that 
are often found in linguistics: 1 Ralf Vogel's xyl ing and Koaungli Un's xytree. Both packages Graphsfor linguistics 

let you draw syntactic and other trees. To give you a glimpse of the possibilities of those 
packages, we show a number of examples courtesy of the package authors. For in-depth 
information, consult the package documentation. 

The first two trees are drawn with the xyl ing package, which provides a set of macros 
intended to facilitate the tree generation within the Xy-pic framework. Note the possibility 
of highlighting parts of the tree in color. 

\usepackage{xyl ing} 

\Tree{ & & \K [5 . 2] {S}\Bkk{5 . 2 , O}{O , O}{dl}\Bkk{ 5 . 2 , O}{O , O}{drr} \\ 
\\ 

\qquad 

&\NP\TRi && & \VP 
& \K{\emph{my beloved}} 

\Below{\emph{wif e}} 
& 

&&\Vzero &&\NP\TRi [2] \\ 
&&\T{like s }&&\K{\emph{our old hous e}} } 

\Tree{ & \IP \\  
\NP & & \ Ibar \\  

\T{John}&\ Izero\D& & \Kblue{VP}\Bblue{dl}\Bblue{dr} \\ 
&\Trace &\Kblue{V$ �{O}$}\Bblue{d} && \Kblue{NP} \\ 
& &\Kblue [6] {V+INFL}\Linkblue [<-] {lu}&& \T{Mary} \\  
& &\T{ loves }  } 

s IP 

� � 
NP VP NP I' 

� � I 
VO NP John VP my beloved 

wife � � 
likes our old house 

loves 

Our next example is done with xytree. Connection lines are specified in the optional 
argument to \xynode and \yynode as relative moves from the current node to the nodes 
on the next level. At the left we reproduce the syntactical tree at the right of Example 7-4- 1 8  

l The Web page "Tree drawing in IHEX" (http : //www . essex . ac . uk/l inguist ics/ clmt/ 
latex4ling) maintained by Doug Arnold lists a number of excellent JfIEX packages and other tools for 
linguists. 

NP 

I 
Mary 



492 THE XV-pic PACKAGE 

to show how this package approaches the task. At the right we construct a hierarchical tree. 
The optional argument [ 1 , 4] of the node grandparent s connects to the row rna & pa 
directly under the current node and to the fifth row uncle & aunt (fourth row from the 
current node) with a line. Similarly, [ 1 , 2J connects the rna & pa node to the two following 
nodes. 

\usepackage {xytree} 

\xytree{ 

} 

& \xynode [ l , - l ] {IP} \\ 

\xynode [O] {NP} & & \xynode [ - l , l ] { I $ � \prime$} \\ 
\xyt erminal{John} 

& \xynode [O] { I $ � O$} & & \xynode [- l , l ] {VP} \\ 

& \xynode{t$_i$}\xyc onnect [->] [_2pc] ( LD , L) { l , l } 
& \xynode [O] {V$�{O}$} 

& & \xynode [O] {NP} \\ 
& &\xynode [0] {V+INFL} 

& & \xyt erminal{Mary}\\ 
& &\xyt erminal{love s} 

\qquad 
\yytree{ 

} 

\yynode [ 1 , 4] {grandparent s }  \\  
& \yynode [ 1 , 2] {ma \& pa} \\ 
& & \yynode{brother} \\ 
& & \yynode{ s i ster} \\ 
& \yynode [ l ] {uncle \& aunt } \\ 
& & \yynode{ c ous in} 

grandparents 

ma & pa t brother 

sIster 

uncle & aunt 

L cousin 

Example 
7-4- 19 



Example : 
7-4-20 I 

i Exampl� · 1 i I 
7-4-2 1  i i 

7.4 Features 

7.4.4 Two-cel l  diagrams 

In category theory, one often encounters "two-cell" morphisms that use pairs of curved 
arrows labeled on or between the arrows. The 2cell feature is available to typeset such 
diagrams. 

The simplest two-cell diagram looks like this: 

\usepackage [all , 2cell] {xy} 

\UseTwo cells 
\ [  
\xymatrix{L\rtwo cell �u_d & R} 
\] 

Most category diagrams have an overall matrix-like structure, and hence we use the 
\xymatrix command. Since not all the commands available for typesetting two-cell com
ponents are always required, it is more efficient to load only those subsets that are ac
tually needed. In particular, declaring \UseTwocells  defines commands of the type 
\ (cc) twocell; thus Example 7-4-20 uses \rtwocell to produce arrows pointing to the 
right. A maximum of three "hops" (1 ,  r, u, and d) can be specified as part of the command 
name; beyond this the \xtwocell command is available (see Example 7-4-2 1 ) . 

In Example 7-4-20 we loaded only the commands associated with symmetric two
branch cells consisting of two curves. To typeset single-curve portions of two-cell 
diagrams, you should specify \UseHalfTwocells  (defining commands of the type 
\ (cc)uppertwoce11 and \ (cc) lowertwocell) .  More complex (asymmetric) constructs 
are possible with the \UseCompos i  teMaps command (for commands of the type 
\ (cc) compositemap) . When you specify \UseA11Twocells, all available types are 
loaded. These commands need be issued only once, usually within the preamble to the �TEX 
document. In the examples that follow, the \UseAll Twocells  command is shown outside 
of the math display, to serve as a reminder only; it is not part of the diagram itself. 

The next example illustrates the different commands and some of their options. 

\usepackage [all , 2cell] {xy} 

\UseAIITwo cells 
\ [  
\xymatrix @= 1 5mm { 

493 

L_ l \rlowertwocell<-3>_{a_ l } { < - 1 > }  
\rcompo s i t emap<6>_{a_2}� {a_3}{\omit} 

& R_ l \dtwocell<O>3a3}{ " }  

L2 � R2 

\\ L_2 \uuppertwocell_u�d{\omit} 
\rtwocell<2>{ ' id} 



494 THE XV-pic PACKAGE 

As we want to exercise all possible forms of the two-cell diagram , we use the command 
\UseAIITwocells; we also set the row and column separations to 15 mm. The amount of 
curvature of the curved arrows is controlled using a "nudge" factor of the form <nb>, i.e., a 
number between triangular brackets. For the lower arrow (going from L1 to R1 ), the nudge 
factor < -3> reduces the curvature to about half the default. To position the double arrow cor
rectly, we nudge it back by one unit « - 1 » . Next we draw a composite arrow, going six units 
« 6» higher than the default, and omit the central arrow ( \omit) .  For the second cell Rb 
we draw a vertical arrow downwards-the nudge factor zero « 0» corresponds to a straight 
arrow and suppresses printing of the central double arrow. In this case, we have produced ar
rowheads pointing in both directions by specifying a double quote ( " ) as the first character 
in the argument for the label text. Similarly, the end-quote character ( ' ) makes the arrows 
point in the clockwise direction, and the open-quote character ( ( )  in the counterclockwise 
direction; an exclamation point ( ! ) suppresses the arrowheads altogether. Any text follow
ing one of these characters in the argument of the \rtwocell command is printed as the 
label for the two-cell diagram. 

\usepackage [all , 2cell]  {xy} 

\UseAl lTwocells 
\ [  
\renewcommand{\obj ect style}{\s cript style} 
\renewcommand{\label style}{\scriptstyle} 
\xymatrix ©=lpc { 
&& \bullet \ar [2 , 2] 
\\ \\  

\bullet \ar [-2 , 2] 
\rrtwocell {=} 
\xtwocell [O , 4] {}\omit{�< -4>a} 

&& x_b \ar [rr] \ar [dr] _{\mathrm{ id}_x} 
\rrtwocell\omit { < 1 . 5>} 

&& \bullet 
\\  &&& x_e \ar [ur] 
}\]  

The diagram above illustrates a few more features available with two-cell diagrams. 
First we declare a smaller font size, by setting the style for the labels (\labelstyle) and 
objects ( \obj ect style) to \scriptstyle. Also, we decrease the row and column spac
ing to one pica. Then we construct a matrix consisting of arrows (for the straight parts) and 
two-cell diagrams. Note the use of the equals sign (=) with the \rrtwocell command: this 
sets a double line (representing equality), instead of a double arrow. Putting \omi t in that 
position would leave out this object altogether. To reverse the direction of the central double 
arrow so that it points counterclockwise, we can make the first character a caret ( ... ), as in the 
\xtwocell command; the default is the clockwise direction C).  

The main purpose of the \xtwocell command is  to allow "excursions" to link two 
distant cells more than three "hops" away. The first argument is the target (here, four cells to 
the right) ;  next comes any displacement with respect to the center of the target cell (as this 

Example 
7-4-22 



, Example i 
7-4-23 r 

7.4 Features 

argument is empty, here we point to the center of cell " 3 , 5 " itself) . The next token \omi t 
signifies that we do not want the curved arrows, while the last argument specifies a negative 
nudge factor and a label a. This allows us to position the upper double arrow in a convenient 
way. The same applies to the rightmost double arrow: it is drawn with the \rrtwocell 
command with \omi t as  the first argument, also suppressing the curved arrows. 

The two-cell feature can be combined with curved arrows to obtain the following inter
esting layout: 

. � .  

.�.J�\ 
� �  \ J • • 

\usepackage [all , 2cell]  {xy} 

\Us eTwocells 
\ [  
\xymatrix @R=2 . 0pc @C= . 8pc { 
& \bullet \ar @/- lex/ err] 
&& \bullet \ar @/- lex/ Cdr] 
\\ \bullet \urtwocell<2> \rrtwocell<2> 

\drtwocell<2> \xtwocell [1 , 3] {}\omit 
\xtwocell [ - 1 , 3] {}\omit 

&& \bullet \ar @/_ l ex/ Cur] 

&& \bullet 

\ar @/- l ex/ Cdr] 
\rrtwocell\omit 

\\  & \bullet \ar @/_ lex/ err] 
&& \bullet \ar @/_ l ex/ Cur] 
}\]  

The two \xtwocell commands produce the double arrows in the middle of the diagram, 
pointing towards and away from the central bullet. The rightmost double arrow is the only 
thing typeset by the final \rrtwocell command. The \omi t on all three of these com
mands prevents typesetting of the curved arrows. 

7.4.5 Polygons 

Regular polygons are easy to construct with the poly feature. Moreover, one can draw sev
eral kinds of non-regular polygons by using a non-square coordinate system. This feature 
depends on the arrow feature, which it loads automatically. 

The general form of the command for drawing polygons is 

I \xypolygon(nb) " (pref) " { (swit) . . .  } I 
The mandatory argument nb is the number of sides of the polygon. The other mandatory 
part, represented by the ellipsis ( . . .  ) above, contains a description of the objects to be de
posited at the vertices. The optional prefix " (pref) " provides an explicit name for the poly
gon so that you can address it from anywhere inside the xy environment. If the first character 
inside the curly braces is not the tilde character, then the material inside the braces is inter
preted as an object to be dropped at each vertex. An argument starting with - signifies the 

495 



496 THE XV-pic PACKAGE 

presence of one or more switches that modify the form of vertices, sides, or spokes. A few 
examples will make this clearer. 

\usepackage [all , poly] {xy} 

\ [\begin{xy} /r l 0mm/ : 
o , {\xypolygon6{}} 

, +/r22mm/ , {\xypolygon6{@{o}}} 
, +/r22mm/ , { *@{o}\xypolygon6{@{ *}}} 

\end{xy}\] 

Above we show three forms of a hexagon: the default (no ornaments) ,  then with a sim
ple object at the vertices, and finally with a small open circle in the middle (indicating that 
the reference point of the polygon lies at its center) . 

It is not very difficult to make a few variants on the preceding example by exploiting 
the switches. First, for the vertices, we can use - *{obj} to drop an object and -={ang} 
to indicate the angle of the first drawn vertex. By contrast, when we are typesetting the 
spokes (sides), directionals are specified with - <{. . .}  ( ->{ . . .} ) ,  arrow styles with -« {arr} 
( -»{arr}) ,  and labels and breaks with -<>{ .  .. } (- ><{. . . } ) .  

Let us look at all this in practice. 

\usepackage [all , poly] {xy} 

\ [\begin{xy} / r l 0mm/ : 
o , {*@{o}\xypolygon6 { - *{\dir{*}}}} 

, +/r22mm/ , {\xypolygon6{-<{ . }->{}-={30}{ \dir{ *}}}} 
, +/r22mm/ , { \xypolygon6{ - <{=}->{ : }{\dir{ *}}}} 

\end{xy}\] 

• 
• 

• 
• 

By default, the object on a vertex is typeset in a box of zero size (see the third command 
of Example 7-4-25, where we wrote \xypolygon6{@{*}} ) .  However, the first line above 
shows that, in the case of the switch - *{ . . .} ,  the object at each vertex takes into account the 
\ob j ectmargin. On the second and third lines, we specify both the directionals for the 
spokes and the sides of the polygons; with an empty declaration ( - >{})  no sides are drawn. 
Furthermore, on the second line the declaration -={30} rotates the hexagon by 30 degrees. 
On the third line we specify the directionals for the spokes and the sides as -<{  =} and 
-> { : }, respectively. 

, Example 
7-4-24 

Example ' 
7-4-25 ' 



Example 
7-4-26 

7.4 Features 

The vertices are automatically named " 1 ", "2", . . .  , "nb", with the center being identi
fied as " 0 " .  For typesetting labels, the command \xypolynode corresponds to the actual 
number of a side, spoke, or vertex at the moment the command is executed. Moreover, the 
command \xypolynum typesets the number of sides. Let us return to our hexagon and see 
what we can achieve with this knowledge. 

3 -- 2 

/ \ 
4 

\ / 
;, -- 6 

0 - 0  
/ \ 

8) ® CD 
\ / 

@ - @  

\usepackage [all , poly] {xy} 

\newcounter{node} 
% 
\ [  
\renewcommand{\obj ect style}{\s cript style} 

\newcommand{\Letter}% 

% 

{{\setcounter{node }% 
{\xypolynode} \Alph{node}}}  

\begin{xy} /rl lmm/ : 
( 2 , 4 . 8 ) , {\xypolygon6{ - * { \xypolynode}}}  

, ( 2 , 2 . 5 ) , {*{0}*\c ir<5pt >{} 
\ xypolygon6{ - *{\xybox{% 

* {\xypolynode } *\ c ir<2mm>{}}} }} 
, ( 2 , 0 ) {\xypolygon6{% 

\end{xy} 
\]  

-><{@/_ . 5ex/} 
-» {_{\delta- {\xypolynode} 

_{\xypolynum}}} 
-«{@{=}} 
-<>{ I \uparrow} 
- *{\Letter}}} 

After declaring that objects should be typeset in script style, we first define a command 
\Letter that translates a node number ( 1  through 6) into an uppercase letter. The top 
hexagon shows how node numbers can be typeset at the vertices. In the middle hexagon 
we circle the vertex numbers, but to achieve this we must specify the compound command 
sequence as an argument of an \xybox command. Finally, at the bottom we construct a 
rather more complex setup in which sides are curved arrows labeled with the Greek letter 
8, with the node number and total number of sides as a superscript and a subscript, respec
tively. The spokes have a double line with an uparrow in the middle; the vertices have the 
uppercase letter corresponding to their number, as determined by the \Let t er macro. 

There is one more switch not yet described, namely - : { . . .  }. This notation allows scal
ing of the coordinate axes to build non-regular polygons. Perhaps more interestingly, this 
lets three-dimensional or perspective drawings be simulated, as in the following example. 

497 



498 THE XV-pic PACKAGE 

\usepaekage [all , poly] {xy} 

\ [\begin{xy}/r9mm/ : 
( 0 , 0) , {\xypolygon6{% 

- : { ( 1 , - . 1 ) : ( 0 , . 33 ) : : } - <{-}}} 
, ( 0 , 2 ) , {\xypolygon6{% 

- : « 1 , - . 2) : (0 , . 5 ) : : } - <{-}}} 
, ( 2 . 5 , 0 ) , {\xypolygon6{% 

- : { ( 1 , . 2 ) : ( 0 , - . 3 ) : : }-<{-}}} 
, ( 2 . 5 , 2 ) , {\xypolygon6{% 

- : ( ( 1 , . 3 ) :  ( 0 , - . 6 ) : : }-<{-}}} 
, ( 5 , 0) = " 0 " , + ( - . 5 , 3 ) = " T " , " 0 "  
, {\xypolygon6{- : { ( 1 , 0 . 2 ) : ( 0 , . 4) : : }  

- < > { ; " T " * *<H -}}}} 
\end{xy}\] 

At the left we show the effect of four different coordinate transformations on a hexagon. 
To understand the "colon" notation in the argument of the \xypolygon commands, con
sider the first hexagon, in which the new base's x-axis is set to the coordinate ( 1 ,  - . 1 )  and 
the y-axis is set to (0 ,  .33) so as to generate the skewing effect. The drawing at the right, at 
position (5 ,  0 ) ,  defines an "origin" " 0 "  and an apex " T "  at position ( - . 5 ,  3) with respect to 
that point. In drawing the hexagon, extra lines to " T "  are drawn as a result of the -<>{ . . . }  
switch. This i s  achieved by the semicolon operator, which first loads the vertex position as 
"previous" object p, and then sets the "current" object c to the top " T " ,  before finally drawing 
a connector **<H -}  between them. 

Another application is constructing a perspective drawing. The next example also 
shows how to use the prefixes to identify different polygons. 

D 
D 

D [ 

\usepaekage [all , poly] {xy} 

\ [\begin{xy} /rl em/ : 
{\xypolygon4 " F " {  - :  { ( O ,  . 6 ) : : }}} , + ( . 8 , 1 .  3 )  

, {\xypolygon4 " B " {  - :  { ( .  7 , 0) : ( 0 , . 7 ) : : } }}  
, " F l " ; " B l " **@{ . }  , " F2 " ; " B2 " **@{ . }  
, I F3 " ; " B3 " * *@{ . }  , " F4 " ; " B4 " **@{ . }  

\end{xy} 
\qquad 
\begin{xy} / l em/ : 

{\xypolygon4 " F " {- : { ( O ,  . 6 ) : : }}} , + ( . 8 , 1 .  3 )  
, {\xypolygon4 " B " {- : { ( .  7 , 0 )  : ( 0 , . 7 ) : : }} }  
, " F l " ; " B l " **@{ . }  , " F2 " ; "B2 " **@{ . }  
, " F3 " ; " B3 " * *@{ . }  , "F4" ; " B4 " * *@{ . }  

\end{xy}\] 

In these two drawings, we first make the base asymmetric. For the front rectangle, the y-axis 
is scaled 60% with respect to the x-axis; for the back plane, the x-axis is scaled 70% and the 
y-axis a further 70%, to give an impression of perspective. Since we labeled the polygons 
" F "  (front) and " B "  (back) , we can identify the various vertices with this prefix and their 



Example ' 
7-4-29 

7.4 Features 

number. It is then easy to connect corresponding vertices on the rectangles to create the 
visual effect of a three-dimensional box. 

A variant of the above allows the transition to nested polygons: 

\usepackage [all , poly] {xy} 

\ [\begin{xy} / r l 0mm/ : ,  
{\xypolygon4 " F "  {\dir{*}}} 

, + ( . 8 , 1 . 0 ) , {\xypolygon4 " B " {\dir{* } } }  
, " F l " ; " B l " * *@{-} , " F 2 " ; " B2 " * *@{-}  
, " F 3 " ; " B3 " * *@{-} , " F4 " ; " B4 " * *@{-} 
, - ( 1 . 0 , 2 . 8 ) 
, {\xypolygonl 0 " 0 " {-={1 8}\dir{ *}}} 
, {\xypolygon5 " I " {- : { ( 0 . 55 , 0 ) : }  

-={ 18}{\dir{*}}}} 
, " 0 1 " ; " I l " * *@{ . } , " 0 3 " ; " I 2 " * * @ { . }  
, " 0 5 " ; " I3 " * * @{ . } ,  " 0 7 " ; " I4 " * * @ { . }  
, " 0 9 " ; " I5 " **@{ . }  

\end{xy}\] 

Having learned above how to displace rectangles to give the impression of depth, it is 
now self-evident how to construct a cubical form: we just place two squares a certain dis
tance from each other and then connect corresponding foreground ( " F" ) and background 
( " B "  ) vertices. In the lower part of the picture, we show that it is equally simple to draw a 
pentagon inside a decagon by merely positioning both at the same point. As we want the top 
vertices of both polygons to point up, we rotate them by 18 degrees. The inner polygon is 
scaled down (to 55% in our case) for aesthetics, and finally the vertices of the inner ( " I " ) 
pentagon are connected to the appropriate vertices of the outer ( " 0 " )  decagon. 

We close this section on polygons by showing how to nest them. Here we draw a triangle 
at each of the vertices of a pentagon. 

\usepackage [all , poly] {xy} 

499 

2 , 2  - 2 , 1  

\ [\renewcommand{\obj e ct style} { \ s cr ipt s cript styl e }  
\begin{xy} 

3 , 2  - 3 , 1  2 , 3 1 , 2  - 1 , 1  

4 , 2  - 4 . 1  [) . 2  � 5 , 1  

4 , :1 5 , :1  

\xypolygon5{- : {/r12mm/ : }  
-<>{\xypolygon3{- : { ( 0 . 45 , 0 ) : }  

-*{\xypolyname \xypolynode } 
-={30}}} 

->{}  
- <{ . }  
=<3mm> [0] {\xypolynode }} 

\end{xy}\] 

Inside the "outer" pentagon are triangles at each of the vertices, scaled down 45% with 
respect to the dimensions of the pentagon. Each vertex of the triangle is labeled with its 
number but prefixed with \xypolyname, which corresponds to the vertex identifier of 
the enclosing polygon: labels of the type " 4 ,  2 "  identify the second vertex of the triangle 



500 THE XV-pic PACKAGE 

positioned on the fourth vertex of the pentagon. All triangles are oriented at the same 30 de
gree angle ( -={30}) .  Furthermore, we have turned off the drawing of the sides and con
nected the triangles to the center of the pentagon by a dotted line. At the center of each of 
the pentagon nodes we typeset its number inside an empty disk of radius 3 mm. 

7.4.6 Arcs, circles, and e l l ipses 

Circles and ellipses in many forms and styles are available with the arc feature. More gener
ally, circular arcs can be specified that join two points or have a specified tangent at a given 
point. This feature is based on the curve extension discussed in Section 7.3. 1 ,  so you should 
ensure that it is also loaded. As explained there, drawing curves can overload 1'EX's memory 
quite rapidly, so you are advised to use a back end that directly supports the curve paradigm. 

Simple circles and el l ipses 

Circles of arbitrary radius and line style, including curved arrows, are available with the 
\ellipse command. In its basic form \ellipse draws a "circle" at the current point. It 
has a variety of forms, as the next example shows. 

p 

\usepackage [all , arc , dvips] {xy} 

\ [\begin{xy} /r12mm/ : 
( O , O ) *@{*}= " c " , *++++ ! R{ c }  

, ( 1 . 2 ,  . 8 ) *+ [] [F]«l {+}= " p "  
, *++ ! LD{p} , " p " ; " c " * *<H --} 
, {\ellipse<>{}} 
, {\ellipse ( 0 . 8 ) {}} 
, 0 ;  ( - 1 , 1 ) : :  
, {\ar@{ . >} 0 ; ( 1 , 0 ) }  
, {\ar@{ . >} 0 ; ( 0 , 1 ) }  
, " p " ; " c "  , {\ellip s e ( . 8 ) {--}} 
, {\ellipse <3mm>{=}} 

\end{xy}\] 

We start with a rectangular coordinate base of 12 mm in both directions. We choose 
a point p (for "previous") and a point c (for "current") ;  we position the latter at the origin 
for convenience. The simplest way to draw a circle is the first \ellipse command, which 
produces a circle with its center at the current point and radius cpo As the argument between 
the curly braces is empty, the default style (a full line) is used to draw the curve. Note that the 
circle is not drawn through the object at p. The second \ellipse command draws a circle 
whose radius is expressed as a fraction of the current coordinate units (80% of 1 2  mm in our 
case) . We now skew the coordinate system and draw the dotted coordinate axes. Then, with a 
command similar to the previous one but with a dashed line style, we draw an ellipse. While 
this shows clearly the effect of the introduction of the skewed base, the base has no effect on 
the drawing resulting from the last \ellipse command, where the radius is specified in 
angle brackets. 



Example 

7-4-32 

7.4 Features 

Since a non-square coordinate system is not always convenient, or even desirable, el
lipses can also be specified with other forms of the \ellipse command. For these figures 
you must in general specify the lengths of the minor and major axes and their alignment. As 
in Example 7-4-3 1 ,  the current point c lies at the center of the ellipse and the vector connect
ing the previous point p with c provides the alignment of one of the axes. 

A P 

\usepackage [all , arc , dvips] {xy} 

\ [\begin{xy} O ; / r 1 2mm/ : 
{\ar©{ . >} O ; ( l , O ) }  

, {\ ar©{ . > } O ; ( O , l ) }  
, ( O , O ) *©{*}= I C " , *+ ! RU{c} 
, 0 . 2 ,  0 . 8 ) *©{O}= " p " , *+ ! LD{p} 
, l p l ; I C " * *©{--} 
, {\ellipse ( 1 . 1 , . 6 ) {}} 
, {\ellipse ( , O . 8 ) {} }  
, {\ellipse<6mm , 4mm>{=}} 
, {\ellip se < , 5mm>{--}} 

\end{xy}\] 

We begin with the same coordinate system as previously and choose the same points 
c and p, now of zero size. The syntax with parentheses before the argument uses the coor
dinate basis as the unit length. When numbers are explicitly given, both axes of the ellipse 
are aligned with the coordinate axes and their lengths are given as a fraction of the base 
vectors. When the number in front of the comma is absent, one of the axes of the ellipse is 
aligned with the line cp and the perpendicular axis is scaled by the number specified after 
the comma. Hence, in the preceding examples, the first ellipse is aligned with the coordinate 
system and has horizontal axis equal to 1 . 1  base units and vertical axis to 0 . 6  base unit. The 
second ellipse has an axis perpendicular to cp with a length of 0 .8  base unit. The second 
basic syntax uses angle brackets in front of the curly braces; in this case, the actual dimen
sions of the axes are exactly specificed as �TFX lengths. With this syntax the ellipse is always 
aligned with the direction cpo If the first dimension is absent, then (as in the parenthesized 
case) cp becomes one of the axes and the length specified after the comma is used for the 
perpendicular axis. 

Constructing arcs 

Often you are not interested merely in typesetting full circles or ellipses, but also in using 
circular or elliptical arcs. Generally speaking, two kinds of situations arise: ( 1 )  the end points 
are given but the radius is not determined; and (2) the radius is known but the end points 
are to be determined. 

In fact, in most practical cases the end points are known. Yet, since an infinite number 
of circular (elliptical) arcs can be drawn through two points, more information is needed. 
For instance, to determine the arc uniquely, you can supply the tangent of the curve at one 
of its end points. This is implemented by taking the current direction at the point p-i.e., the 
direction determined by the latest connection or "up" when there has been no connection. 

50 1 



502 

o 

Let us look at an example. 

PI 
P2 

THE XV-pic PACKAGE 

\usepaekage [all , are , dvips] {xy} 

\ [\begin{xy} 0 ; /r20mm/ : 
( 0 , 0 ) = " 0 " , *(\H*} , *+ ! U{o} 

, ( - 1 . 0 , 0 . 5) = " p " *@{0} , H ! LD{p_ 1 }  
, {\ar @{-->} " o " ; "p " } ;  
(-2 . , 0 .  ) = " e "  , *@{*} , H ! L{e _ 1 }  
, " e " , {\ellipse_{}} , {\ellipse A { . } } 
, ( 1 . 8 , 0 . 4) = " p "  , *@{0} , H ! D{p_2} 
, {\ar @{-->} " o " ; "p " } ;  
( 0 . 8 , - 1 ) = " e " , *@{* } , H ! R{e_2} 
, " e "  , {\ellipse{} } 

\ end{xy}\] 

After defining the points " 0 " and " p "  (at PI ) '  we draw an arrow, at the same time setting the 
direction op; this arrow will be used as the tangent for the circular arc we will draw. We then 
define the current point (CI ) and draw the circle segment from PI to CI with the \ellipse 
command. Note that an underscore-tagged command draws the segment in the clockwise 
direction, while the form with the caret ( A ) draws it counterclockwise (the dotted circle seg
ment). Similarly, we define points P2 and C2 and draw the circle segment to the right of the 
picture. Without further tags, the segments are drawn traversing the arc counterclockwise. 

More generally, we can also base the drawing on the tangent at the end points or spec
ify alternative types of curve, such as parabolic or cubic segments, "interpolating" Bezier 
splines, or "cuspidal" cubics (see [ 1 04] for more details) .  

7 .4 . 7 Lattices and web structu res 
Two-dimensional lattices and other web-like structures can be handled with the web feature. 
At present its facilities are limited to dropping objects at the intersection points of an integer 
lattice. This lattice can be skew, such that its basis need not be rectangular; any coordinate 
basis setting defined with Xy-pic can be used. 

The simplest command is \xylatti ce, whose four arguments are integers specifying 
which part of the lattice is to be drawn (in fact, they define the positions of the lattice points 
at the lower-left and upper-right corners as multiples of the base vectors) .  

o 
o 

0 
0 

0 0 0 0 
0 0 

0 

o 
o 

o 

o o o 
o 

o 
----��-o--�---o��o�� ZI 

o 

o 

\usepaekage [all , web] {xy} 

\ [\reneweommand{\lat t i eebody}{\drop@{o}} 
\begin{xy} 

*\xybox{0 ; <5mm , 2mm> : <2mm , 5mm> : : 
, 0 , {\xylat t i e e {-3}{3}{-3}{3}}}= " S "  
, { " S " +L \ar " S " +R*+ ! L{z_ l}} 
, { " S " +D \ar " S " +U*+ ! D{z_2}} 

o o 
o 

o o o o 
o o 

\end{xy}\] o o 
o 

o 
o 

Example , 
7-4-33 

I Example 
7-4-34 



Example 
7-4-35 

7.4 Features 

The command \latticebody is expanded at each point of the lattice, so that it can 
be used to drop objects (\drop is like * but is a stand-alone command). In Example 7-4-
34 we choose an open circle. The command \xybox isolates the coordinate base change 
needed to construct the lattice from the rest of the picture. We define the base vectors of the 
lattice as <5mm , 2mm> and <2mm , 5mm>, and then draw all lattice points from -3 to +3 in the 
directions of both unit vectors. The resulting box is stored as " S " so that we can reference 
its dimensions to draw the coordinate axes Zl and Z2 . 

Sometimes we may want to drop objects at specific lattice points. To find the position of 
a lattice point, we use the commands \latt iceA and \latticeB to give its "coordinate", 
and the commands \latt i ceX and \latti ceY to return the x and y offsets (in points) 
with respect to the lattice origin. In addition, we can limit the size of the picture with the 
\croplattice variant, which has four arguments for specifying a cropping rectangle out
side of which no lattice points are shown. 

Z2 0 
x x x \usepackage [al l , web] {xy}\usepackage{if then} 

x x x 0 
\ [\renewcommand{\lat t i c ebody}{% 

x x x x 
\ifthenelse{\lat t i ceA= l }{% 

x • x 
\ifthenelse{\lat t i c eB= l } {\drop{\dir{*}}}% 

x x x x {\drop{ \dir{o}}}}% 
x x 0 x {\drop{\dir{x}}}} 

Zl \begin{xy} 
x x 0 x *\xybox{0 ; <8mm , 4mm> : <4mm , 8mm> : : 

x x x x , 0 ,  {\ croplatt i c e { -6}{6}{-6}{6}% 
x x x {-3}{3}{-3 . 5}{3 . 5}}% 

x x x x }= " S "  
x 0 x x , { " S " +L \ar " S " +R*+ ! L{z_ 1 } }  

X X x , { " S " +D \ar I S " +U*+ ! D{z_2}} 
X \end{xy}\] 

The four numbers defining the clipping rectangle need not be integers (as seen in the 
above code): they define the x and y ranges between which lattice points should be typeset 
as multiples of the lattice's unit vectors. When the object to be typeset at a given grid po
sition depends on its x and y coordinates, then (as mentioned earlier) it is probably more 
convenient to use the commands \latticeX and \latti ceY. Note that you need to load 
the ifthen package to use the \ ifthenelse construction. 

7.4.8 Li nks and knots 

Research about strings has become very popular in many fields of physics and mathematics, 
and Xy-pic offers an interesting toolkit for constructing arrangements of different kinds of 
knots, string crossings, and links. 

The knot feature provides two kinds of basic building blocks: "crossings;' to pass one 
string above or below another string, and "joins;' to connect strings at their endpoints. The 
knot feature uses the curve extension and arrow feature, so all three should be loaded 

503 



504 THE XV-pic PACKAGE 

together. Also, the processing of knot diagrams is the most time-consuming and memory
greedy application discussed so far, so that such diagrams must often be output on individ
ual output pages or as separate Encapsulated PostScript files. Use of these files on subsequent 
�TEX runs saves both time and memory. 

Constructing crossings 

Strings "cross" when they come close to each other without actually meeting. Therefore three 
types of crossings exist: a string can pass above, below, or alongside another string. These 
possibilities, in various configurations, are systematically summarized in the Xy-pic refer
ence manual; take care to separate the "h" and "v" categories of commands, which serve as 
building blocks for stacking in the horizontal (the current point moves to the top right) and 
vertical (the current point moves to the bottom left) directions. 

Q 

\usepackage [all , poly , knot , dvips] {xy} 

\ [\UseTips 
\renewcommand{\obj ect style}{\s cript style} 
\renewcommand{\labelstyle}{\ scriptstyle} 
\begin{xy} /r9mm/ : 

\vover\vcros s \vcross\vover
\end{xy} 
\hspace { 1 cm} 
\begin{xy} /r9mm/ : 

\vunder<><{x_i } I > I {y_i}» >{z_i}% 
\vtwist I >« \vtwist 
\vunder-<><{x_ o} I > I {y_o}» >{z_o}% 

\end{xy}\] 

Some combinations of vertical crossings are drawn in this example. On the left we see 
the effect of the bare commands, while on the right we show how to add labels and arrow tips. 
Note that the \ (c) twist and \ (c) cross  variants twist the strings in opposite directions. 
Note also that either end of the string can be the source or the target of a curved arrow
a distinction that becomes important when arrowheads and labels are to be placed in the 
string. Use of a hyphen (or minus sign) as the first character immediately following the name 
of any knot piece produces a mirror image of that piece. It may appear identical to another 
piece, but string orientations will be different (see the next example) .  

Positioning of  labels and arrows is controlled by the operators < and > ,  which should 
precede the object to be put on the initial and final portions of the crossed string. The oper
ator I is used to specify material to be added to the crossing string. When the first charac
ter following the < , >, or I is another > (or < ) ,  then an arrow tip pointing in (against) the 
"natural" direction is typeset at a predetermined position. These placing operators can be 
repeated as many times as needed. Examine the code for Example 7-4-36 to see how each tip 
and label have been placed on the knot crossings, and see [ 1 04] for a complete listing of the 
pieces, their orientations, and the default label positions on each part. 

Horizontal rows of knot pieces can be combined in complete analogy with the "verti
cal" knot-building commands described previously. In the next example we show that the 

Example 
7-4-36 



Example 

7-4-37 

7.4 Features 

same knot configuration can be built by exchanging commands of the . .  cross  . .  and 
. .  twist . .  series. However, from the labeled arrows, we can see that these visually iden
tical curves actually have different orientations and label positions. 

Adding joins 

\usepackage [all , poly , knot , dvips] {xy} 

\ [\UseTips 
\renewcommand{\labe lstyle}{\s cript styl e }  
\begin{xy} 0 ; /r8mm/ : 

( 0 , 0 ) 
, {\hover\hcros s < > < { l }  1 > 1 {2}» >{3}% 

\hcros s <><{4} 1 > 1 {5}» > {6}\hover-} 
, ( 0 , -3 )  
, {\hover\htwi stneg<><{ 1 } 1 > 1 {2}» >{3}% 

\htwistneg< ><{4} 1 > 1 {5}» >{6} \hover-} 
\end{xy}\] 

Ends of crossing strings can be connected by "joins" -in particular, loops and caps. The next 
two examples illustrate the use of joins with horizontal or vertical crossing commands of the 
types " . .  cross  . .  " or "  . . twist . .  " . 

As with the crossing commands, labels and arrow tips can be placed on the joins. Now 
there is only one segment, so the I operator refers to the middle of the curve while < and > re
fer to places before and after the midpoint, respectively. A scale factor, given between square 
brackets immediately following the command name, can be introduced for each string seg
ment. Moreover, the positions of the label and tip can be fine-tuned by specifying a value 
between 0 and 1 between the operator and the object to be typeset, or by adding/subtracting 
a small amount. 

\usepackage [al l , poly , knot , dvips] {xy} 

\ [\UseTips 
\renewcommand{\label style}{\script s cript style} 
\begin{xy} /r9mm/ : 

, ( 0 , 0 ) 
, {\hunder<> < { 1 } 1 > 1 {2}» >{3}% 

\htwi st« <{4} 1 > 1 {5}><>{6}% 
\hloop<><{7} 1 > 1 {8}» >{9}} 

, ( 0 , -3 )  
, {\hunder« +0 . 1 » < { 1 } 1 > 1 {2}» >{3}% 

\htwi st« <{4} 1 ( - . 2 » 1 ( - . 2 ) {A{5}}> < > {6}% 
\hloop« + . 1 » <{7} 1 > 1 {8}» > ( - . 1 ) {9}}  

\end{xy}\] 

Here we have combined two horizontal crossings and one join command. The top drawing 
shows the default positions for labels and tips; the lower one uses the fine-tuning parameters 
to position tips and labels. Positive values move along the curve in the "natural" direction. 

505 



506 THE XV-pic PACKAGE 

Note the use of the " character in the first position of the label "5", which places the label 
"above" the arrow while the (default) _ character places it "below", 

\usepackage [curve,knot ,graph ,dvips] {xy} 

\ [\xygrapb{ ! {O j /rlOmm/ : }  
! {\vover} 

[u] ! {\heap [-2] } 
[d) H\vover-} 

[ruu] ! {\heap [2] } 
}\] 
\[\begin{xy} O ; /rl0mm/ : 

, \hcap[-2] \vunder\vunder
, + ( 1  ,2) , \beap [2] 

\end{xy}\] 

Since all knot crossings are, by default, bounded by a rectangle of one coordinate unit, 
and since loop and cap commands do not change the current point, it is convenient to use the 
graph feature to put together the various pieces of knot crossings and joins. This is shown 
in the top part of Example 7-4-39, where the \ voyer and \heap commands position the 
elements by using "turtle" movements (up, down, left, right). The bottom part presents a 
variant diagram in which an explicit coordinate move was used to place the final \heap. 

Note the use of the scaling factors, [2] or [-2] . 
Commands are also available to combine pieces in which the strings are basically at 

angles of 45 degrees, as in this next example. 

k 

\usepackage (curve ,knot , arrow , dvips] {xy} 

\ [\reneweommand{\labelstyle}{\scriptstyle} 
\begin{xy} 0 ; /r8mm/ : 

, {\xcapv- I {a}} 
, + (0 , 1) , {\xcaph l {b}\xunderh l {c}'l. 

\xeaph I {d}\xcapv I {e}} 
, - (3 , O) , {\xoverh l {f}} 
,+(l ,O) , {\xoverh l {g}} 
, - (3 , l ) , {\xcapv- l {h}\xcaph- l {i}} 
, + (O , l ) , {\xunderh- l {j}} 
, + ( O , -l ) , {\xcaph- l {k}} 
, + (O , l ) ,{\xcapv l {l}} 

\end{xy} \] 

The placement of the various pieces in this construction is easy to follow by looking at the 
labels. 



Example 

7-4-42 

7.4 Features 

There are also some "bendy" pieces that allow easy connection of these 45 degree pieces 
with the vertical and horizontal ones. However, even more general effects are obtained by 
using a non-square coordinate base. 

507 

\usepackage [curve , knot , dvips] {xy} 

\ [\begin{xy} /r2cm/ : ( 0 , . 5 ) : :  
, {\hcap-\huncross\hcap} 
, + ( 1 , O) , {\vcap\vuncross \vcap-} 

\end{xy} \] 

The greatest variety in the shape of knot pieces is obtained by setting the coordinate 
base for each piece individually, using the � : switch. The remaining examples illustrate this 
technique in conjunction with the \xypolygon command from the poly option (in the 
form of the ! P standout macro of the graph feature) . 

\usepackage [all , knot , poly , dvips] {xy} 

\ [  
\renewcommand{\labelstyle}{\s cript style} 
\renewcommand{\obj e ct style}{\s cript style} 
\knotholes ize{3mm} 
\renewcommand\Vcap [2] { \ s ave 0 ; #2-#1 : # 1 ,  

\vcap-{#1+ ( 0 , 1 ) } {#2+ ( 0 , 1 ) }{# 1 }{#2}\re store} 
\xygraph{ ! {0 ; /r5mm/ : }  

! P3 " t " { - > { . } - * {\xypolynode}} 
! P6 " h " {- : { (4 . 5 , 0) : } - > { . } - * {\xypolynode}} 
! {\xunderv - { " h2 " } { " h 1 " } { " t 1 " }{ " t 3 " }@ ( . 62 ) } 
! {\xunderv-{ l h4 " }{ " h3 " } { " t2 " }{ " t 1 " }@ ( . 62 ) } 
! {\xunderv-{ "h6 " } { " h5 " } { " t 3 " } { " t 2 " }@ ( . 62 ) } 
! {\Vcap{ "h3 " } { " h2 " } \Vcap{ " h5 " H " h4 " }% 

\Vcap{ "h1 I } { " h6 " }} 
}\] 

This three-leaf figure is drawn with the help of the vertices defined by the inner (dotted) 
triangle (identified by " t " )  and the outer (dotted) hexagon (identified by " h " ) .  To make ex
plicit the different steps in the construction, we also show the number of each vertex. Three 
knot crossings of type \xunderv are used, and the � syntax permits their precise position
ing between pairs of vertices of the triangle and the hexagon (see Section 7.4.5 for more de
tails). To construct the outer caps we have to renormalize the coordinate base vector, since 
the \ vcap command bridges one coordinate unit in the x direction. That is the reason for 
the base change inside the \ V cap command, which is isolated from the rest of the diagram 
with the \save . . .  \restore pair. Note the scaling factor of 4 . 5  inside the hexagon specifi
cation and the fine-tuning of the position of the hole for the crossing with the @ (  . 62)  syntax 



508 

6 

7 

d 

THE XV-pic PACKAGE 

and of its size with the \knotholes ize command. 

\usepackage [all , knot , poly , dvips] {xy} 

\renewcommand{\labelstyle}{\s cript style} 
\renewcommand{\obj e ct style}{\s cript style} 
\ [\xygraph{ ! {0 ; /r2mm/ : }  

4 3 ! P3 I t " {->{ . }} 
! P6 I h " {- : { (4 . 5 , 0 ) : } - > { . } - *{\xypolynode}} 
! P 1 2 I d " { - : { ( 9 , 0 ) : } - > { . } - * { \xypolynode}} 

9 

1 

1 2 

1 0 

! P 1 2 I D " {  - :  { ( 1 3 . , 0 ) : }->{ . } - * { \xypolynode }} 
! {\xoverv- { l h2 1 }{ l hl I H l t l l } { l t3 " }@ ( . 62) }  

! {\xoverv-{ l h4 1 }{ l h3 1 }{ l t2 1 } { l t l " }@ ( . 62 ) }  
! {\xoverv- { l h6 1 } { l h5 1 }{ l t3 1 } { l t2 " }@ ( . 62 ) } 
! {\vover - { l d4 1 }{ l d3 1 }{ l h3 1 }{ l h2 " }} 

, I d4 1 _@ ' { I D5 " , ID6 1 } l d7 " , 

! {\vover-{ l dS I }{ l d7 1 }{ l h5 1 } { l h4 " }} 
, l dS I -@ ' { I D9 1 , I D l 0 1 } l dl l " , 

! {\vover-{ l d12 1 }{ l dl l l }{ l hl l }{ l h6 " }} 

, l d12 1 -@ ' { I D l l , I D2 1 } l d3 " 
}\]  

The drawing in Example 7 -4-43 is a little more complex: it involves four polygons. The 
central triangle and hexagon are similar to those discussed earlier. Here, however, we add a 
second level of crossings defined by pairs of vertices of the hexagon and the inner dodecagon 
(identifier I I d " ) . To close the ends of the open strings, we draw curves from the relevant 
vertices using control points on the outer dodecagon (identifier " D " )  by means of the @ , 
syntax discussed in Section 7.4. 1 .  

b 

a 

e 

\usepackage [all , knot , poly , dvips] {xy} 

\ [  
\UseTips 
\knotholes ize {2mm} 
\xygraph{ ! {O ; /r l cm/ : }  

! P5 I p " { - > { . }} 
! P l 0 I d " { - : { ( 1 . 7 , 0 ) : } - > { . }} 
! P20 I D " {-={-9}- : { ( 2 . 2 , 0 ) : } - > { . }} 
! {\xunderv- { l d3 1 }{ l d2 1 }{ l p2 1 }{ l p l " }} 

! {\xunderv- { l d5 1 }{ l d4 1 }{ l p3 1 }{ l p2 " }} 

! {\xunderv- { l d7 1 }{ l d6 1 }{ l p4 1 }{ l p 3 " }} 
! {\xunderv-{ l d9 1 }{ l dS I } { l p5 1 }{ l p4 " } }  
! {\xunderv-{ l d l l }{ l d l 0 1 }{ l p l l }{ l p5 " } }  

! {\vloop-{ I D3 I H I D2 I H l d2 I H l dl " } I > I {a}} 
! {\vloop - { I D7 1 } { I D6 1 }{ l d4 I H l d3 " } I > I {b}} 
! {\vloop- { I D 1 1 I }{ I D l 0 1 }{ l d6 I H l d5 " } I > I {c}>} 
! {\vloop - { I D 1 5 1 } { I D14 1 }{ l dS I H l d7 " } I > I {d}} 
! {\vloop - { I D 1 9 1 } { I D 1S I }{ l d l 0 1 }{ l d9 " } I > I {e}} 

}\]  
Example 
7-4-44 



Example 
7-5- 1 

Example 
7-5-2 

Example 
7-5-3 

7.S Further examples 

Finally, with the help of the 5-fold, lO-fold, and 20-fold symmetric polygons (shown 
with dotted lines) ,  we construct the cinquefoil shown in Example 7-4-44. The inner pen
tagon is identified by " p "  , the middle decagon by " d "  , and the outer polygon by " D " .  The 
relative rotation angle of the vertices and the scaling factor of the polygons are defined in
side braces following the ! P . .  specifier. Furthermore, the - syntax on the \xunderv and 
\ v loop commands lets us precisely control the position and size of the crossing and joining 
elements. The loops of the foil can be made longer or shorter by tuning the scaling factor of 
the external polygon (a value of 2 . 2 is used here). 

7.5 Further examples 

The possibilities of Xy-pic are many and go well beyond what has been shown in 
this chapter. A particularly valuable resource regarding what you can achieve with 
Xy-pic is Aaron Lauda's Xy-pic Web-site (http : //www . dpmms . cam . ac . ukl -a13661 
xytutorial . html) ,  which contains a tutorial with a large archive of examples. This mar
velous site, whose contents is constantly enriched by its author, is certainly worth a visit! As 
an appetizer we show here a few instances of what is available. These examples, which are la
beled with the category to which they belong, are reproduced with Aaron's kind permission. 

Braids: 

Globular 3-morphisms in category theory: 

A cobordism of Morse theory: 

509 



5 1 0  

A pentagonal sphere: 

C x C x C x C  
• 

C 
A string diagram: 

F(x) 
F(x) 

. . . . . . . 

... . . . . . ... F (x) 

Surfaces: x* • 

� l� �x
l·
* * 

"

l· x l� � ��r x . " X 

• . . . . . . ;. . > . . . . . . 
x* *l�x ./" -- -- * x x x x 

THE XV-pic PACKAGE 

i Example : 
7-5-4 

! Example 
7-5-5 

E;'�pl�-1 
7-5-6 



COLOR PLATES 

200 

150 

100 

50 

0 

(a) 

1800 1 850 1900 1950 
Number of burials per decade (n '" 4�OO) 

(e) 

b 

100 

80 

60 

40 

20 

0 

Color plate I: META POST examples 

I 

--

a 

b 

in 

(b) 

(d) 



II 

-:\I;,'S "\\10'( oto\ 
� �enoQ 9'\6. e:�,6b 

;,,,&S-e f,,\e.8 
.9n01;2. B 

qu '(bOd 

,;���� Into your ear; 

� days are gone, 
and satin gear; 

B stone, 
bOdy up 

Color plate II: METAPQST examples: the m3d package (Anthony Phan) 

COLOR PLATES 



COLOR PLATES III 

(a) Moving circles (Maxime Chupin) 

(b) Fraser's spiral 

Color plate III: META POST examples: optical illusions 



IV COLOR PlATES 

(a) L-Systems produced with a turtle-like approach (Jean-Michel Sarlat) 

(b) A METROBJ graphic 

Color plate IV: META POST examples: turtle drawing and meta objects 



COLOR PlATES 

x 

1 

I 

2 

3 

- .. 
.... . 

.... . 
.. . 

.... .. .. ..  

,. . . . �. / .  . • • 
• • • • • 

(a) Colored lines 

y 
y 

(e) 3-D object� in a para11el and central projection 

o 1 2 3 

5 y 

/ / 

/ 

V 

V 
1 

(b) Areas under a math function and special grids 

Color plate V: PSTricks examples: lines. grids. and 3-D views 

v 

1 1 1 1 1 1 1 1 1  
, I 

1 5 

V 

x 



VI 

A \ flScen 'lll'zz" 'V Ue 

�� �" '" � 
Rincewind, Arch Chancellor 

);> � 

� ,§' ?� .<V.sV 
°1porK. '))"" 

(a) Text along a path 

(b) Using basic PSTricks objects 

, 1 " 1 
, 1 ..... .1... _ _ _ _ _ _ 

z 

, I  
....... - - - - -

(c) Spheres in a 3-D coordinate system 

y 

Color plate VI: PSTricks examples: rotating text, using basic macros, and spheres 

COLOR PlATES 



COLOR PlATES 

P(X = k) 

o 

N = -I; 7J = O.G 

N = 5; p = 0.5 

_v = 10; p = 0_5 

P(k) = P(k - 1) _ 
N - k + 1 _ _  p_ 

k 1 - )) 

N = 20: p = o.r; .,_ !i0: l' 0.;) 

5 10 1 5  20 25 30 

..r-fTl-':.Y = 75: p 0.5 

35 �o 45 50 

(a) Different binomial distributions 

(b) A fractal tree 

VII 

55 k 

380_ 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740 760 780 

(c) Noon spectrum 

Color plate VII: PSTricks examples: math and physics 



VITI 

2 

o 

-1 

-2 

A 

f(;,;) = 2 · Ji · cos (hu) · sin.< 

2 

(a) Showing the Riemann squares 

J-1 C  

lP 

(b) Using pst-eucl for lines and points in a triangle 

Color plate VIII: PSTricks examples: analysis and geometry 

COLOR PlATES 

IP 



COLOR PLATES IX 

z 

y 
y 

(a) 3-D view as a central projection 

"""'" "'-' . • � 
>-'''' 1 11/6.. 1 11/"'- "" 

" 
" I" 

V "'-
:-;; V 
\; V 

\J 
:: """'" """'. ""::" , 

(b) Simulating the output of an oscilloscope 

(e) Various color gradients 

Color plate IX: PST ricks examples: 3-D views. oscilloscopes, and color gradients 



x 

138 
130 
153 
159 
131 

extra 

El 
El 
El 
El 
El 
• 
• 
X 

• similar positions 

acidic ( - ) 
aliphatic 

amide 

aromatic 

basic (+) 
hydroxyl 

imino 

sulfur 

(a) Colored version of Example 8-3-4 

o conserved positions 
• invariable positions 

(b) Colored version of Example 8-3-8 

AQP 1 . PRO 
AQP2 . PRO 
AQP3 . PRO 
AQP4 . PRO 
AQP5 . PRO 

Color plate X: Examples of the texshade and textopo packages 

COLOR PLATES 



COLOR PLATES Xl 

Yellow 

(a) The relation between the RGB and CMYK color models 

yellow 

greenish yellow orange yellow 

green orange 

greenish blue orange red 

pUrple 

(b) Color harmonies and the chromatic circle [after 57] 

(e) Color harmony and the primary colors 

Color plate XI: Color models and color harmonies 



XII 

The B"JE;X + Graphics 
Companion 

The H'IEX t Graphics 
Companion 

The £'TEX + Gruphic:-< 
Compauion 

The B"'IF;X + Graphics 
Companion 

The B"JE;X t Graphics 
Companion 

The "''lEX + Graphic� 
Companion 

The B"JE;X t Graphics 
Companion 

The B"JE;X + Graphics 
Companion 

T h,> "''lEX + Graphic� 
Companion 

The "''lEX + Graphics 
Companion 

White 

Black 

Yellow 

Black 

Black 

Yellow 

White 

Green 

White 

Red 

Blue 

White 

Yellow 

Blue 

White 

Blue 

Black 

White 

Yellow 
Green 

Th.> ""1'FX + Graphi(" 
( '0 III J .. mnlOll 

The "''lEX + Graphics 
Companion 

The "''lEX + Graphics 

Companion 

The ""IEX t Graphics 
Companion 

Orange 

Black 

Red 

Black 

Black 

Orange 

Blue 

Yellow 

Green 

White 

Red 

Black 

Orange 

Blue 

Green 
Yellow 

Red 

Blue 

Red 

Yellow 

COLOR PLATES 

The "''lEX + Graphics 
Companion 

The ""IEX + Graphics 
Companion 

The Il<IEX + Graphics 
COHlpanion 

The Il<IEX + Graphics 
Companion 

Red 

White 

Black 

Red 

Orange 

White 

Green 

Black 

White 

Orange 

Blue 

Orange 

Yellow 
Orange 

Orange 

Red 

Green 

Red 

Orange 

Green 

Color plate XII: Color contrasts for optimizing visibility and readability !after 19. p. 1921 



(OlDR PLATES 

Hue (H): 

Saturation (S): 

Brightness (B): .0 . J � � , 

(a) The HSB model 

Text starts otT in green a little red nested blue text returning to green. 

I .  magenta cmyk black 

2. predefined blue gray (ext 

I .  The current color changes. 

II. The , 

tralllC' 

White rex.t, green background, red frame Yellow text. orchid ba(;''''grollnd. blue frame 

Fun with color Fun with color 

Start with lblack text) and [orange text], and return to black 

SI<.1f1 in green. see (black text! and lomnge text! and once again green 

(b) Examples ofL"TEX's xcolor package 

Sydney OG4G Thu Oct 1 0  Mon Oct 2 1  or 28 I I  or 18 days 

Thu Oct 1 7  Mon Oct 2 1  or 28 4 or I I  days 

OG7 A Sun Oct 1 3  Mon Oct 21 or 28 8 or 15 days 

Sun Oct 20 Mon Oct 28 

United Kingdom London Thames 

Fmnce Paris Seine 

Russia Moscow Moskva 

(c) Colored tables 

Color plate XIII: Examples of colored text 

XIII 



XN COLOR PLATES 

600 620 640 GOO 680 700 no 740 1150 7lIO eoo 

(a) Wave model (complete color spl.'Ctrum) 

red 
red!75 

red! 75 ! green 
red ! 75 ! green !50 
red !75!green !50 !blue 

-red 

-red ! 75 
-red! 75! green 

-red! 75! green!50 
-$1 -red ! 75 ! green! 50! blue 

I red ! 75 ! green !50!blue !25 -red ! 75 ! green!50!blue !25 

(b) Standard color expressions 

black gray olive 
blue b'Teen orange 

brown lightgmy I pink 

cyan lime purple 

darkgray magenta red 

(c) Base colors for xcolor (always available) 

Apricot ForestGreen Orange Red 

Aquamarine Fuchsia Orchid 

Bittersweet I Goldenrod Peach 

Black Gray PeriwinkJe 

B lue Green PineGrcen 

BlueGrcen I GrccnYellow Plum 

BlueViolet JungJeGrcen ProcessBlue 

BrickRed E 5'4 Lavender Purple 

Brown LimeGreen RawSienna 

BurntOrange Magenta Red 

CadelBlue Mahogany RedOrange 

CamationPink Maroon RedViolct 
Cerulean Melon Rhodamine 

I CornHowerBlue MidnighlBlue RoyalBlue 

Cyan Mulberry RoyalPurple 
I Dandelion NavyBlue RubineRed 

DarkOrchid OliveGrcen Salmon 

Ememld Omnge SeaGreen 

(d) Colors via the dvipsnames option for xcolor 

Color plate XIV: Color expressions and color definitions with xcolor 

teal 
violet 

I white 
I yellow 

Sepia 

SkyBlue 

SpringGreen 

Tan 

TealBlue 

Thistle 

Turquoise 
Violet 

VioletRed 

I White 

I Yellow 

YellowGreen 
YellO\vOrange 



COLOR PLATES xv 

(a) Two color series 

[::=:J AliceBlue _ DarkTurquoise _ LightSalmon _ PalcVioletRed 
[::=:J AntiqucWhite _ DarkViolet _ LightScaGrcen c::J Papaya Whip 
_ Aqua _ DeepPink � LighlSkyBlue c:::J Peach Puff 
_ Aquamarine _ DecpSkyBlue _ LighlSlaLcBtue _ Peru 
[::=:J Azure _ DimGray _ LightSJateGray c:::J Pink 
[::=:J Beige _ DimGrey _ LightSlateGrey _ Plum 
c=:::J Bisque _ DodgerBlue LightSteelBlue P()v.'derBlue 
_ Black _ FireBrick [::=:J LightYellow _ Purple 
[::=:J BlunchcdAlmond [::=:J FloralWhite _ Lime _ Red 
_ Slue _ ForcstGreen _ LimeGreen _ RosyBrown 
_ BlucViolet _ Fuchsia [::=:J Linen _ RoyalBlue 
_ Brown c:=J Gainsboro _ Magenta _ SaddleBrown 
_ BurlyWood c::::=J GhostWhite _ Maroon _ Salmon 
_ CadetBlue c:::J Gold _ MediumAquamarine _ SandyBrown 
_ Chartreuse _ Goldenrod _ MediumBlue _ SeaGreen 
_ Chocolate _ Gray _ MediumOrchid [=::::J Seashell 
_ Coral _ Green _ MediumPurple _ Sienna 
_ ComfiowerBlue GreenYellow _ MediumSeaGreen Silver 
c:=::J Comsilk _ Grey _ MediumSlateBlue _ SkyBlue 
_ Crimson c:::=:J Honeydew _ Medi umSpringGreen _ SlateBlue 
_ Cyan _ HotPink _ McdiumTurquoise _ SlateGray 
_ DarkRlue _ lndianRed _ McdiumViolelRed _ SlaleGrey 
_ DarkCyan _ Indigo _ MidnightBlue c:::=:J Snow 
_ D:lrkGoldenrod c:=:=J Ivory c:=::J MinlCream _ SpringGreen 
_ DarkGray c:::J Khaki c=J MistyRose _ SleelBlue 
_ DarkGreen [:=::J L1vender c:::J Moccasin _ Tan 
_ DarkGrey c:=::J LavenderBlush C=:J NavajoWhite _ Teal 
_ DarkKhaki _ LWJIlGrccn _ Navy I::::J] Thistle 
_ DarkMagenta c=:J LemonChitTon _ NavyBlue _ Tomato 
_ DarkOliveGreen _ LighlBlue c=:J OldLace _ Turquoise 
_ DarkOrange _ LightCoral _ Olive _ Violet 
_ DarkOrchid c::=:J LightCyan _ OliveDrab _ ViolelRed 
_ DarkRed � LightOoldenrod Orange (=::J Wheat 
_ DarkSa1mon c=::J LightGoldenrodYello� Orange Red c:::J White 
_ DarkSeaGreen c:J LighrGray _ Orchid c=:J WhireSmoke 
_ DarkSlateBlue _ LighlGreen c:::::J PaleGoldenrod c:::J Yellow 
_ DarkSlateGray = LightGrey � PaleGreen _ YellowGreen 
_ DarkSlateGrey c=:::TI LighlPink c::::::::::::J PaleTurquoise 

(b) Colors via the svgnames option for xcolor 

Color plate XV: Color series and more color definitions with xcolor 



XVI 

a) 

Table title 
Description 

d) Row on(' 
Rowlwo 
Row three 
Ruw four 
Totals 

Table title 
Descrip1ion 

g) Row one 

ROw lwo 
Row three 
Row four 
Tntals 

Table title 
IkscripUon 

j) __ Row one 
Row IVo1l 
R()w �r� 
Row four 
Totals 

on) OWOlle 
Rowt .... l1 
Row three 

Row four 

Totals 

Column ! Column 2 
mmmmm mmmm 

mrnrnm mmm 
mmmmm mmmmm 
1l1lllmmlll mmmm 
mmmmm mmmmm 

I Column 2 
........... mmmm 

........ m mm 

... -. mmmmm 

........ m mmmm 
mlTIlllmrn 

Column I I Clllumn 2 
'11Il1I1ll1I1II IIIIllQlm 

rnmrnm mmm 
11lI1mUnl� . Illmmlnm 
111111111111111 mmmn. 
mmrnmm l mmmmm 

mmmmm mmmm 

� mmmm mmm 
mmmmm mmmmm 
mmmmm mmmm 
mmmmm mmmmm 

....... '-' _ <"'-"-.. .  t.1II< 
-.-_. 

x) 

Table (iUt' 

b) Ik-scrlplilln 

ROIfIo om: 
Row IV." 
Row thrt,: 
R""" [nur 

TOI,d5 

Table title 

e) Dcscriptioo 

Row one 

Totals 

h) 

"Iii ... dill- t 
,_ .... 

k) th.", .one 
R .. ",-jW\. 
W,N/ ltun" 

R,O\\. h",. 
I"ulh 

lin. 
Dt-st:riplinll 

n) Kuw,lfIC 
Row Iwtl 

R .. w Ihra: 

y) 

(lIlumn I Column 2 
mmll'mmm mmmmm c) 

mmmmm mmmm 
mmmmmm mmrrunmm 
mn'rnm ....... --
mmmmmm mmmmmm 

CoIullln l Column 2 
mmmmm IIImmm f) 

mmmmm mmmmm 

i) 

c · ........ .  c · ...... '" 2 
mmmmm mmmm I) 

� 

mmmmm I mmmm 
nllUllllnm '" nllllm"lm 

ColulIllI I Column 2 
0) 

mmmmm mmmmm 

z) 

COLOR PLATES 

Tabll' title 

Descripthm Column 1 Colun," 2 
Row Ont mmmmmm mmmmm 
Row two mmmmm mmmm 
Row tll1'ft' mmmmmm mmmmmm 
Row rOOf mmmmmm mmmmm --_._-----
Tulal� mmmmmm mmmmmm 

Table tillt' 
Ik'1<cripliun L'olumn I Column 2 

Row two 
ReM'three 

Row four 
�mm 

.., .... -.,. ".pr'" "00 . .... h 'o. co .. , .  >. , • '''''. , •• , 
" eo ....... Ull , ... .... .. , .. " , 

... .... J . ,. J . ""  

...... .. 

Color plate XVI: Examples of colored tables and the beamer class 



C H A P T E R  8 

Appl ications in  Science, 
Technology, and Medicine 

8.1 Typographical rules for scientific texts . . . . . . . . . . . • . . . . . . . • . . . . .  512 
8.2 Typesetting chemical formulae . . . . . . . . . . . . . . . . • . . . . . . . • . . . . . 518 
8.3 Alignment and topology plots in bioinformatics . . . . . • . • • •  , . . . . . . . .  547 
8.4 Drawing Feynman diagrams . . . . . . . . . . . . . . . . . • . . . . . . . • . . . . . 555 
8.5 Typesetting timing diagrams . . . . . . . . . . . . . . . . . • . . . . . . . • . . . . .  572 
8.6 Electronics and optics circuits . . . . • . • . • • . • • . . • . • . • • • • . • • • . . . .  576 

Because of its unsurpassed mathematical typesetting, 1t:X is widely used in the area of sci
ence, technology, and medicine (STM). 1t is not surprising, therefore, that the STM commu
nity has developed a number of packages to typeset the diagrams and schematics needed 
in their various disciplines. Chapter 8 of Tile [HEX Companion, Second Edition [83[, de
scribes in detail the AMS-LKJEX package, which makes marking up (higher) mathematics 
rather more convenient than with ltX's basic commands. Chapter 1 0  of that book mentions 
a few simple packages, such as epic, eepic, and pspicture (or the recently released piet2e), 
which complement �TEX's picture environment for drawing "simple" generic graphics. Of 
course, the general packages, such as METAPQST (Chapters 3 and 4) and PSTrieks (Chap
ters 5 and 6), or even the slightly more directed XV-pic package (Chapter 7) may provide all 
the functionality you need to typeset even the most complex graphics. Nevertheless, the spe
cific needs of a given user community are often better served by a more targeted approach; 
the packages covered in this chapter address such problem areas. 

In scientific texts, precision and consistency are of the utmost importance. Therefore 
we start with a brief discussion of typographic conventions in scientific texts. The next two 
sections describe packages for typesetting chemical structures and complex biological pro
tein topologies. Section 8.4 explores various ways of constructing Feynman diagrams, an 



512 APPLICATIONS IN SCIENCE, TECHNOLOGY, AND MEDICINE 

important tool used by physicists. The last two sections turn to electronics and describe ded
icated packages for drawing timing and circuit diagrams. 

8.1 Typographical rules for scientific texts 

In scientific texts the typographic representation of a symbol carries a semantic meaning. 
Authors working in these areas should, therefore, be aware of and adhere to these typograph
ical conventions. A brief summary of the most important rules for composing scientific texts 
follows (see also [52, 53, 56, 69[). 

The most important rule in all circumstances is consistency: a given symbol should al
ways be presented in the same way, whether it appears in the text body, a title. a figure, a 
table, or a formula; on the main line or as a superscript or subscript. An important corolJary 
for �1'EX users is this: always typeset a symbol in either math or text mode-never mix the 
two, even if the results appear to be the same. Indeed, with �TEX, the final visual appearance 
may change substantially when using a different class file or after adding a new package. For 
example, when using PostScript fonts, digits in text are taken from the PostScript text face 
and can look quite different from those in formulae. Therefore, it is good practice to always 
typeset numbers that refer to a result or part of a formula in math mode-i.e., surrounded 
by$. 

In scientific texts, many symbols are traditionally typeset as Roman (upright) charac
tersl and may not be understood properly otherwise. The most important sllch symbols are 
described here:2 

• Units-for example, g, cm, s, keY. Note that physical constants are usually set in ital
ics, so that units involving constants are mixed Roman-italics, e.g., keV!c (where c is 
the speed of light, a constant). Unit symbols are never followed by a period (see Sec
tion 8.l .!).  

• Chemical elements-for example Ne, 0, Cu-and elementary particle names-for ex
ample, p, K, q, H. To help the typist produce typographically correct texts, packages 
that contain commands representing the various names have been developed. In par
ticular, chemists can use chemsym (see Section 8.1 .2), while the PEN (Particle Entity 
Notation) scheme has been proposed for high-energy physics [341.3 

• Standard mathematical functions (sin, det, cos, tan, R :s, etc.), for which the built-in 
IHEX functions should be llsed. 

• Numbers. 

I With LA'fEX, Roman type in mathematics mode can be achieved by the \mathrm command. 
2See http: //physics . nist . gov /Document/typefaces. pdf for a convenient two-page overview. 
3 Andy Buckley's heppennames package is an implementation of the PEN notation. He also wrote 

hepnicenames, which complements heppennames by providing more "user-friendly" names for often-occurring 
particles. These packages do, however, allow you too much freedom by offering the possibility to define the output 
style for the particle names. For instance, you can typeset their symbols in italic, a style still often (wrongly) used 
in American physics journals, rather than in Roman, as mandated by the WPAP rules [56] described here. See 
Section 8.4.2 for an example of how these packages are used in practice. 



8.1 Typographical rules for scientific texts 

Table 8.1: The importance of typographic rules in scientific texts 

ROnlan lype Italic Type 
A ampere (electric unit) A atomic number (variable) 
, electron (particle name) e electron charge (constant) 
g gluon (particle name) 9 gravitational constant 
I liter (volume unit) I length (variable) 
m meIer (length unit) m mass (variable) 
p proton (particle name) p momentum (variable) 
q quark (particle name) q electric charge (variable) 
s second (time unit) s C.Ill. energy squared (variable) 
t tonne (weight unit) , time (variable) 
V voll (electric unit) V volume (variable) 
Z Z boson (particle name) Z atomic charge (variable) 

• Names of waves or states (p-wave) and covariant couplings (A for axial, V for vector); 
names of monopoles (E for electric, M for magnetic). 

• Abbreviations that are pieces of words (exp for experimental; min for minimum). 

• The "d" in integrands (e.g., dp). 

Obeying these typesetting conventions helps the reader understand at first glance the 
meaning of a symbol. Table 8.1 shows a few examples in which the meaning of a symbol 
depends on its typographic representation. 

8.1 .1 Getting the units right 

The importance of correctly typesetting units was recognized early. and several authors have 
developed packages to help users in this respect. Axel Reichert made a first step with his units 
and nicefrac packages. More recent and complete approaches are Patrick Happel's unitsdef 

package and Danie Els's Sistyle package. Both contain useful rules for expressing values of 
quantities.l Sistyle can be used together with Marcel Heldoorn's Siunits package. This pack
age, which we shall describe next, is by far the more complete and provides full support for 
all units defined by the International System of Units (abbreviated SI2 ), the modern form of 
the metric system. It is the world's most widely used system of units, both in everyday com-

lThe requirements for formatting and typesetting ofSI units and numbers are described in the NIST (National 
Institute of Standards and Technology) document http: //physics . nist . gov IDocumentl sp81l . pdf. A 
very handy check list for reviewing compuscripts is available from http: //physics . nist. gov / cuu/Uni ts/ 
rules . htllll. 

2From the French name Sysl�lIIe llllernuliollu/ d'Ullites. The SI was adopted by the "General Conference on 
Weights and Measures", which is also known under its French acronym CGPM (Colljerellce Gemlra/e des Pvids 
el Mesures; see http: //vww . bipm.fr/en/convention/cgpm/). The CGPM meets in Paris once every four 
years, and the last CGPM was held in October 2003. The SI is a coherent system based on seven base units as 
defined in the CGPM 1960 and subsequent conferences. An overview of the SI system is available in the brochure 
http: //wwwl . biplll. org/utils/common/pdf/si_brochure_B_en. pdf (eighth edition, 2(06). 

513 



5 1 4  APPLICATIONS I N  SCIENCE, TECHNOLOGY, A N D  MEDICI NE 

Table 8.2: SI base units, including their names, symbols, and their S iun its command names 

Physical Quantity Name Symbol Command 
length meter m \metre 
mass kilogram kg \kilogram 
time second s \second 
electric current ampere A \ampere 
thermodynamic temperature kelvin K \kelvin 
amount of substance mole mol \mole 
luminous intensity candela cd \candela 

Table 8 .3 :  Examples of SI-derived units, including their special names, symbols, and S iun its 
command names 

Physical Quantity Name Symbol Command 
frequency hertz Hz (S- I ) \hertz 
force newton N (m kg s-2 ) \newton 
pressure pascal Pa (N m-2 ) \pas cal 
energy joule J (N m) \j oule 
power watt W O s- I ) \watt 
electric charge coulomb C (A s) \coulomb 
potential difference volt V (W A-I ) \volt 
capacitance farad F (C V- I )  \f arad 
electric resistance ohm Q (V A-I )  \ohm 
magnetic flux weber Wb (m2 kg s-2 A- I )  \weber 
magnetic flux density tesla T (Wb m-2 ) \tesla 
inductance henry H (Wb A-- I )  \henry 
Celsius temperature celsius T (K) \celsius 
activity (of radionuclide) becquerel Bq (S- I )  \becquerel 
absorbed dose gray Gy 0 kg- I ) \gray 
dose equivalent sievert Sv 0 kg- I ) \sievert 
catalytic activity katal kat (S- I  mol) \kat 

merce and in science. The S iun its package implements the basic standardization principles 
of the SI system: 

l .  It is based o n  seven well-defined "base units" that, by convention, are considered as 
dimensionally independent (Table 8 .2) .  

2 .  It defines a set of "derived units", units that can be constructed by combining base units 
according to given algebraic relations. The names and symbols of such derived units 
can have their own special names and symbols (see Table 8.3 for examples) .  

3 .  Multiples and subdivisions of units are decimal only (see Table 8A on the facing page). 



8.1 Typographical rules for scientific texts 

Table 8.4: 51 prefixes, including their symbols, values, and S iun its command names 

Name Symbol Factor Command Name Symbol Factor Command 
yocto y 10  24 \yocto yotta Y 1024 \yotta 
zepto z 1O�2 1 \zepto zetta Z 102 1 \zetta 
atto a 1O� 1 8  \atto exa E 10 1 8  \exa 
femto f 1O� 1 5  \femto peta P 10 1 5  \peta 
P1CO p 1O� 1 2 \pico tera T 10 12 \tera 
nano n 1O�9 \nano giga G 109 \giga 
mICro II 10-6 \micro mega M 106 \mega 
milli m 10-3 \milli  kilo k 103 \kilo 
centi c 10-2 \cent i hecto h 1 02 \hecto 
deci d 10- 1 \deci  deca dk 10 1  \deca 

Many features of the S iun its package are controlled by package options. They can also 
be changed inside the body of the text with the \SIuni ts  command (see Example 8- 1 - 1 ) . Package options 

Spacing between units The option cdot typesets a \ cdot between units, while the op
tions thi ckspace, mediumspace, and thinspace typeset a thick, medium, and 
thin math space, respectively, between units. 

Spacing between quantity and units The options thickqspace, mediumqspace, and 
thinqspace typeset a thick, medium, and thin math space, respectively, between the 
numerical value(s) and the units ( the numerical value is specified with the \uni t com
mand). 

Typeset style of units The textstyle option automatically prints units in the same type
face as the surrounding text. 

Miscellaneous A number of options exist to control the behavior of the S iun its package 
when its commands collide with those defined in other packages (such as amssymb, 
pstricks, or babel) ,  or to activate extensions that augment the functions of the basic 
package. See the manual for details. 

The following example shows how the spacing options operate. Note the use of the \ usk 
command to typeset a unit spacing character between the units. 

99 Y · A  
99 Y A 
99 Y A 
99 Y A  
99 Y · A  

\usepackage [cdot , thi ckqspace] {SIunit s }  

\providecommand\test{\unit{99}{\volt \usk\ ampere } }  
\begin{flushleft}  
\test\\ % default : thi ckqspace , cdot 
\SIunits [thi ckspace] \test\\ % " thi ckspace 
\S Iunits  [mediumspace] \test\\% " mediumspace 
\SIunits  [thinspace] \test\\ % " thinspace 
\S Iunits [thinqspace , cdot] \ t e st %thinqspace , cdot 
\end{f lushleft} 

5 1 5  



5 1 6  

2 .2 A/s 
3 Wm-3 
3 . 2  f.l.J /mol K 
10 m2 
5 g/cm2 
6 .022 1023 mol- 1  

A m s  
C m-3 
.J kg- 1 K - 1 
kg S - l  m-3 

m2 8-2 
W m-2 8r- 1 

APPLICATIONS I N  SCIENCE, TECHNOLOGY, AND MEDICINE 

We can combine several units, their multiples or subdivisions, their reciprocals, etc., as 
the following example shows. 

\usepackage [mediumspace , mediumqspace] {SIunits} 

\begin{f lushleft} 
\unit{2 . 2}{\arnpere\per\ second} \ \  \unit{3}{ \watt\metre\rpcubed} 
\unit{3 . 2}{\mi cro\j oule\per\mole\usk\kelvin}\\ 
\unit{ 10}{\ square\metre}\\ \unit{5}{\grarn\per\cent i\metre\ squared}\\ 
\unit{6 . 022\ , \power{ 10}{23}}{\rec iproc al\mole}\\ 
\ end{f lushle f t }  

More than 100 ready-to-use combinations of units (see the package documentation for 
a full list) are predefined. A few examples follow. 

\usepackage{SIuni t s }  

\begin{f lushleft}  
\arnperemetresecond\\ 
\j ouleperkilograrnkelvinnp\\ 
\ s quaremetrepersquaresecondnp\\ 
\ end{f lushle f t }  

\ coulombpercubi cmetrenp\\ 
\kilograrnpersecondcubicmetrenp\\ 
\wattpersquaremetresteradiannp 

Complementary user commands can be added in the SIuni ts . cfg configuration file, 
which is loaded at the end of the package. 

Alternatively, such additional definitions can be grouped in a new package, dedicated 
to a given application area. For instance, Andy Buckley developed the hepunits package, 
which extends the original S iun its package with a set of units commonly used in high-energy 
physics. The following example shows the commands of the hepunits (and S iun its) packages 
in action. We also see that these commands can be used invariably inside text or mathemat
ics mode, with the typeset result being correct in both cases. This feature makes these pack
ages very convenient for authors since typographic rules are automatically taken care of. 

5 MHz, 5 GHz, 5 THz 

\usepackage{hepunit s }  

\begin{f lushleft}  
\unit{5}{\MHz} , $\unit{5}{\GHz}$ , \unit{5}{ \THz} \\ 
\unit { 1 . 0}{\mrad} , $\unit{ 1 . 0}{\gaus s}$ \\ 
Lumino s ity : \unit{\power{ 10}{32}}{\lumiunits} , 

1 .0 mrad, 1 .0 G 
Luminosity : 1 032 cm-2 s- I ,  
1 025 cm-2 s- I 
Cross-sections and event rates :  
1 fb, 1 pb 
3 fb- I 3 b- I , P 
Energy and momenta: 
3 meV, 3 GeY, 
20 key- I ,  20 Tey- I 
9 meY/c, 9 MeY/c 
1 0 MeY/c2 , 1 0  TeY/c2 

$\unit{\power { 1 0}{25}}{\lumiunits}$\\ 
Cro s s - s e ct ions and event rat e s : \\ 
\uni t { l }{\f emt obarn} , $\uni t { l }{\picobarn}$ \\ 
\unit{3}{\ invf emt obarn} , $\unit{3}{\ invpicobarn}$ \\ 
Energy and moment a : \ \  
\unit{3}{\meV} , $\unit{3}{\GeV} $ , \ \  
\unit{20}{\kinveV} , $\unit{20}{\TinveV}$\\ 
\unit{9}{\meVoverc} , $\unit{9}{\MeVoverc}$\\ 
\unit { 1 0}{\MeVovercsq} , $\uni t { 1 0}{\TeVoverc sq}$\\ 
\end{f lushleft}  



8.1 Typographical rules for scientific texts 

8.1 .2 Typesetting chemical sym bols 
Chemistry texts often contain the names of the elements. From the discussion in Section 8. 1 ,  
we know that element names should b e  set in Roman type. Mats Dahlgren developed the 
chemsym package to ensure the typographic correctness of the element names. It provides 
commands for the 109 chemical elements, using the same names as those in the periodic 
table of the elements. Some supplementary commands handle chemical groups such as \ OH, 
\COOH, and \CH, and the command \kemtkn lets you define further customized chemical 
symbols. As there are already �1EX commands that use some of the element names, the 
chemsym package renames these commands as follows: 1 

\H -+ \h 
\0  -+ \00 
\P -+ \PP 
\S -+ \SS 
\Re -+ \re 
\Pr -+ \pr 

Hungarian umlaut ii 
Danish and Norwegian 0 
Paragraph sign � 
Section sign § 
Real part � (math mode) 
Probability function Pr (math mode) 

In addition, the Sb environment of the amstex package is renamed SB. 
To simplify entering chemical formulae, �TEX's superscript and subscript symbols A 

and _, respectively, are redefined to be available outside mathematics mode. For example, 

2\H_2 plus \0_2 gives 2\H_2\D in an explos ive react ion . 

produces 

2H2 plus O2 gives 2H20 in an explosive reaction. 

Some packages, however, rely on the original meaning of the A character-most notably 
those packages, like longtable,  that use the A A  syntax to handle control characters. In this 
case the redefinition results in chaos and should be turned off by specifying the collis ion 
option when loading chemsym with the \usepackage command. 

A complex and interesting example of chemsym is Mats Dahlgren's file pertab . tex 
(Figure 8. 1 corresponds to a slightly simplified version), which typesets the complete peri
odic table of the elements and is part of the chemsym distribution. For instance, the line 
starting with potassium (K) was entered as follows inside the tabular environment: 

_{19} & _{20} & _{2 1 }  & _{22} & _{23} & 
_{24} & _{25} & _{26} & _{27} & _{28} & 
_{29} & 330} & _{3 1 }  & _{32} & _{33} & 
_{34} & _{35} & _{36} \\ 

\K & \Ca & \Sc & \Ii & \V & 
\Cr & \Mn & \Fe & \Co & \Ni & 

1 It should be noted that renaming of commands that depend on �1EX's encoding, i.e., commands that might 
change internal meaning if the font encoding changes, such as \H or \0, can never be fully successful. To a certain 
extent these commands remember their old name; for example, they write that name into external files. This can 
produce surprises in the table of contents, for example. 

5 1 7  



5 1 8  APPLICATIONS I N  SCIENCE, TECHNOLOGY, A N D  MEDICI NE 

\Cu & \Zn & \Ga & \Ge & \As & 
\Se & \Br & \Kr \\ 

�{39 . 0983} & � {40 . 078} & � {44 . 9559} & � {47 . 867} &�{50 . 9415}& 

� { 5 1 . 996 1 }  & �{54 . 9380} & �{55 . 845} & �{58 . 9332}&�{58 . 6934}& 
�{63 . 546} & �{65 . 39} & �{69 . 723} & �{72 . 6 1 }  &� {74 . 92 1 6}& 
�{78 . 96} & �{79 . 904} & �{83 . 80} \\\hline 

It is not straightforward to typeset isotopes correctly with �TEX, since their notation 
Typesetting isotope uses superscripted and subscripted material in front of the symbol for positioning the 

names atomic and nuclear numbers. One could use an ad hoc mathematical notation but in this 
case one can have problems with the alignment, as shown in the following example. 

207Bi and 60Co 83 29 
207Bi and 60Co 83 29 

\usepackage{ chemsym} 

\begin{f lushleft} 
% pure math 
$ � {207}_{83}\mathrm{Bi } $  and $� {60}_{29}\mathrm{Co}$\\ [ lex] 
% math and chemsym package commands 
$ � {207}_{83}\Bi$ and $ � {60}_{29}\Co$ 
\end{f lushleft} 

Heiko Bauke's isotope package introduces the \ isotope command, which is  defined 
as follows: 

\isotope [nuclear number] [atomic number] {element name} 

One no longer has to use mathematics mode to get the correct typeset result. A command 
\ i sotopestyle lets you specify the style in which the isotope name and numbers are type
set, as the following example shows. 

207Bi and 60Co 83 29 
207 B i  and 60 (0 

83 29 

\usepackage{ i s ot ope} 

\begin{flushleft} 
\ i s otope [207] [83]  {Bi} and \i sotope [60] [29]  {Co} \\ [ lex] 
\renewcommand{\ i sotopestyle }{\sf }% sans-serif 
\ i sot ope [207] [83] {Bi} and \ i s otope [60] [29] {Co} 
\end{f lushleft} 

8.2 Typesetting chemica l formulae 

Chemical diagrams are quite complex, and (LA)lEX has few utilities for typesetting them. 1 
This is due in part to the fact that, although �T:EX's pi cture environment is quite adequate 
for drawing simple figures, a more structured set of macros is needed for chemical formulae. 

The first attempts at special chemistry packages were ChemlEX by Roswitha T. Haas 
and Kevin C. Kane [ 4 1 ]  and a plain lEX macro \structure by Michael Ramek [96) . 
These approaches represented a step forward, but it remained difficult to accommodate 
more than a few constituent groups in a systematic and transparent way. More recently, 

1 See [901 for an interesting overview of electronic publishing and chemical text processing. 



"T'l 
�. .... (l) 
?O 

""0 (l) .... o·  0.. (S.  
� r0-
o ....., 
& (l) 
(l) ro
S (l) 
� V> 

--< "0 (l) V> (l) ..... 
� 
s: 
t>-� 
Sll ::l 0.. 
& (l) 
r"\ ::r (J) 3 '" '< 3 

"0 Sll (') 
G CICI (l) 

"" � 
7 3 ,-, ,,,, " 

1 2 3 4 5 
(I) (II) 

1 
H 1 . 00794 
3 4 
Li Be 

6 . 941  9 . 0 1 2 182 
11  12 

Na Mg 22 . 9898 24 . 3050 
ID 20 2 1  22 23 
K Ca Sc Ti V 39 . 0983 40 . 078 44 .9559 47 .867 50 .9415  
37 38 39 40 4 1  

Rb Sr Y Zr Nb 85 .4678 87 .62  88 . 9059 9 1 .224 92 . 9064 
55 56 La- 72 73 
Cs Ba Hf Ta 132 . 905 137 . 327 Ln 1 78 .49 180 . 948 
87 88 

Ac-
104 105 

Fr Ra Db Sg (223) (226) Lr (26 1 )  (262)  

57  58 59 
La Ce Pr 138 . 905 140 . 1 1 5  140 . 908 
89 90 9 1  
Ac Th Pa (227) (232 .m8) (23 1 . 036) 

Periodic Table of the Elements 
6 7 8 9 10 1 1  12 

A t o r n i c  number 
Symbol 

Relat ive aton1 i c  n1 aRs * 

24 25 26 27 28 29 30 
Cr Mn Fe Co N i  Cn Zn 5 1 .9961  54 . 9:380 55 . 845 58 . 9332 58 . 69:34 63 . 546 65 . 39 
42 43 44 45 46 47 48 

Mo Tc Rn Rh Pd Ag Cd 95 . 94 (98) 1 0 1 .07 102 . 906 106 .42 107 .868 1 1 2 . 4 1 1  
74 75 76 77 78 79 80 
W Re Os Ir Pt An Hg 183 .84 186 .207 1 DO . 23 192 . 2 1 7  195 .08  1 96 . 967 200 . 59 
106 107 108 1 09 * *  

Rf Bh Hs Mt (263)  (262) (265)  (266)  

60 61  62 6:3 64 65 66 
Nd Pm Sm En Gd Tb Dy 144 .24 ( 145 )  1 50 . 36 1 5 1 . 965 157 . 25 1 58 . 925 162 . 50  
92  93  94 95 96 97 98 
U Np Pn A m  C m  Bk C f  (238 . 029) (237)  ( 239) (243) ( 247) (247) ( 2 5 1 )  --

13 
(III) 

5 
B 

1 0 . 8 1 1  
1 3  
Al 26 . D8 15  
3 1  

Ga 69. 723 
49 
In 1 14 . 8 1 8  
8 1  
TI 204 . 383 

67 
Ho 164 .930 
99 
Es (252) 

14 
(IV) 

6 
C 1 2 . 0 1 1  
1 4  
S i  28 . 0855 
:,2 
Ge 72 . 6 1  
50 
Sn 1 1 8 . 7 l 0  
82 
Pb 207 .2  

68 
Er 1 67 . 26 

- -

100 
F m  ( 257) 

- - --

15 
(V) 

7 
N 

14 . 0067 
15 
P 30. 9738 
33 
As 74 . 92 16  
5 1  
S b  1 2 1 . 760 
83 
B i 208 . 98 1  

69  
Tm 168 . 934 
1 0 1  
Md ( 258) 

----

* Relative atomic mass based on Ar ( 1 2 C) == 1 2  (after IUPAC "Atomic Weights of the Elements 1 993", Pure and Applied Chemistry, 
1994,66 ( 1 2), 2423-2444). For elements which lack stable isotope(s) is the mass number for the most stable i sotope given in parentheses, 

or for Th, Fa and U the re lative atomic mass given by TUPAC for the isotopic mixture present on Earth. 

Chemical symbols for elements 1 04-1 09 according to TUPAC "Names and Symbols of Transfermium Elements 

(TUPAC Recommendations 1 997)", Pure and Applied Chemistry, 1997, 69( 1 2) ,  247 1 -2473 .  

16 17 18 
(VI) (VII) (VIII) 

2 
He 4 . 00260 

8 9 1 0  
0 F Ne 

1 5 . 9994 1 8 . 9984 20 . 1 797 
16  17  18  
S Cl Ar 32 .066 35 . 4527 39 . D48 
34 35 36 
Se Br Kr 78 . 96 79. 904 83 .80 
52 53 54 
Te I Xe 127 .60 126 . 904 131 . 29 
84 85 86 
Po At Rn ( 209) ( 2 10 )  (222)  

70 7 l  
Yb Lu 173 .04 1 74 . 967 
102 1 03 
No Lr (259) I (262) 

Copyright © 1 99) - 1 995 by  Mats Dah lgren. 

co 
i-..I 

� "C I'D '" I'D := :i' \Q n :r I'D 3 n' � 
0-
3 s:: 
iii I'D 

VI -\0 



520 APPLICATIONS IN SCIENCE, TECHNOLOGY, AND MEDICINE 

Shinsaku Fujita has developed the XYMIEX system, a set of�TEX packages for drawing a wide 
variety of chemical structural formulae; this system is described in Section 8.2. 1 .  

Another approach to drawing chemical formulae is the PPCH1EX package written by 
Hans Hagen and A. F. Otten, which is the subject of Section 8.2.2. 

8.2. 1 The XlMrEX system 

The commands ofShinsaku Fujita's XYMIEX package [23-26] offer a systematic approach for 
specifying arguments for substituent groups and their positions, endocyclic double bonds, 
and bond patterns, while an additional argument lets you specify heteroatoms on vertices of 
heterocycles. XYMIEX uses only �TEX's pi cture environment and in some cases the exten
sion package epic, so it is highly portable. It consists of a set of package files, each specialized 
to treat a particular kind of chemical structure: 

a l iphat 
carom 
ccycle 
chemstr 
lowcycle 
hcycle 
hetarom 
heta romh 
locant 

aliphatic compounds 
vertical and horizontal carbocyclic compounds 
bicyclic compounds, etc. 
basic typesetting commands for atoms and bonds 
carbocyles with five members or fewer 
pyranose and furanose derivatives 
vertical heterocyclic compounds 
horizontal heterocyclic compounds 
helper package producing locant numbers and bond letters 

The packages can be loaded individually using �1EX's \usepackage command, but the 
chemstr package is loaded automatically by any of the other packages. The xymtex package 
loads all packages in the XYMIEX bundle. 

Genera l  conventions 

The XYMIEX command names are based on the standard nomenclature used for organic 
compounds [55] . The invariant part of a structure-i.e., the base skeleton containing fixed 
bonds and atoms-is automatically printed with no designation, while the varying part
i.e., substituent groups, additional bonds and atoms-is specified by a set of arguments. 

The commands can be subdivided into those for general and specific use. The specific 
commands offer convenient shortcuts for drawing a narrow range of structures in a partic
ular category, while the general commands support a wider range at the cost of additional 
specification. This distinction is also reflected in the command names; e.g., specific com
mands for drawing certain N-heterocyles would be \isoindolev or \purinev (with the 
N atoms automatically typeset) ,  while the name for the underlying general command would 
be \nonaheterov (i.e., describing the geometric structure of the base skeleton without any 
atoms in predefined positions) .  

Syntax for specific commands 

For carbocycles and heterocycles we have the abstract syntax \Com [opt] {subslist} where 
\Com is a command name corresponding to the compound to be typeset. It is usually 



I I I Example I i 8-2- 1 I L .. __ .. ___________ .. _j 

8.2 Typesetting chemical formulae 

suffixed by either v or h, denoting a vertical or horizontal representation of the structure, 
respectively. If alternative orientations are possible, the name might be further suffixed with 
the letter i .  

The preselected bond pattern can be modified by the argument opt, consisting of  one 
or two letter combinations denoting a certain bond pattern. The values allowed and their 
exact meaning depend on the command; a detailed discussion appears in the manual [26] . 

The subslist argument lists substituents, with their bonds separated by semicolons if 
there is more than one bond-substituent pair. A bond is specified by a number giving the 
atom's position in the structure to which it is attached, optionally followed by a bond mod
ifier (one or more letters) that classifies the type of bond to be used. The substituent is sep
arated from this by two equals signs; e.g., 1D==O ; 3==OCH$_3$ ; . . .  means that the bond 
at the atom in position 1 takes an oxygen atom (0) through a double bond, the bond in 
position 3 takes a methoxy group through a single bond, and so on. Atom positions are 
numbered sequentially, usually in a clockwise fashion starting at the top for vertically ori
ented structures and on the left for horizontally oriented ones. Possible bond modifiers for 
the bond at an atom at position n are as follows: 

nS exocyclic single bond at n-atom (equivalent to specifying just n) 

nD exocyclic double bond 

nA alpha single bond represented as a dotted line 

nB beta single bond represented as a bold line 

The nA modifier relies on the availability of the \dottedline command as defined by the 
epic or eepic package. If neither package is loaded, the bond appears as a single line of nor
mal width; i.e., it looks the same as if n were specified. 

If n is greater than 9, it must be surrounded by two braces; otherwise the commands 
fail to parse their subslist argument correctly. For example, while you can write 1D==O to 
attach an 0 atom with a double bond to the first atom of a structure, you would specify 
{ { 13} }D==O to attach it to the thirteenth atom. Unfortunately, there is no error message
the only indication of a problem is an incorrectly drawn structure. 

As a first example, let us look at the 1 ,4-dibromobenzene compound (also known as 
para-dibromobenzene or p-dibromobenzene) . We can get several different representations 
by using the h and v suffixes on the command name and by specifying a bond pattern in the 
optional argument. 

\usepackage {carom} 

\bzdrh{ 1==Br ; 4==Br} 
\bzdrv [l] { 1 ==Br ; 4==Br} 

\bzdrv{ 1 ==Br ; 4==Br} 
\bzdrv [c] { 1==Br ; 4==Br} 

Br 

Br---()-Bf 

Br 

Br Br 

Br Br 

52 1 



522 

o 

APPLICATIONS I N  SCIENCE, TECHNOLOGY, AND MEDICINE 

The optional argument [lJ designates a left-oriented set of double bonds (the default 
is [r J ) and [c J specifies an aromatic circle. Other legal values for the optional argument 
for \bzdrv and \bzdrv are [paJ to [pcJ for the three p-quinone variants (two examples 
are shown below) and [oaJ to [ofJ  for the six o-quinone variants. 

Instead of letting the command decide on the handedness of a substituent, you can 
specify it explicitly using \rmoiety and \lmoiety commands, as shown in the following 
example with left-handed and right-handed methanesulfonimido groups: 

o I \usepackage {carom} 

\bzdrv [pa] { l D==O ; 4D==% 
\lmoiety{CH$_{3}$SO$_{2}$- -N} ; %  

2==CH$_{3}$} 
\bzdrv [pa] { l D==O ; 4D==% 

\rmo iety{N--SO$_{2}$CH$_{3}$} ; %  

2==CH$_{3}$} 

Depending on the base structure, two bonds might also be possible at a locant. In that 
case the modifiers for a bond in position n are as follows: 

nSA alpha single bond represented as a dotted line 

nSB beta single bond represented as a bold line 

nSa unspecified alpha single bond 

nSb unspecified beta single bond 

Again, the dotted line for the alpha bond requires the use of the epic or eepic package. As an 
abstract example we show below all bond modifiers in a single structure; real-life examples 
follow later on. 

4B 

Syntax for genera l  commands 

\us epackage{carom , epi c }  

\cyclohexanev{ l==l ; %  
2D==2D ; %  
3A==3A ; %  
4B==4B ; %  
5Sa==5S a ; 5Sb==5Sb ; %  
6SA==6SA ; 6SB==6SB} 

The general commands, such as \cyc1ohexanev in Example 8-2-3, are similar to the spe
cific commands, but can have a variable set of skeletal heteroatoms so as to cover a wider 
range of compound structures. For carbocycles the general syntax is 

\Com [bondlistJ {subslist} 

where, instead of an optional argument specifying a predefined bond pattern, we now have 
an optional bondlist argument that lets us specify double bonds individually. The possible 
double bonds of the structure are internally labeled as a, b, c, etc.; to make the desired bonds 



8.2 Typesetting chemical formulae 

appear, you specify them in the bondlist argument. Aromatic cycles are usually labeled with 
uppercase letters A, B, etc., if the structure is large enough to permit more than one cycle, 
such as in the case of per hydro anthracene derivatives. 

All of the specific commands are internally implemented as calls to the general forms 
with specific argument settings. For instance, one of our previous examples involving 
\bzdrh can also be typeset like this with the general command \cyclohexaneh: 

Br 

nr-o-nr 

Br 

\usepackage{carom} 

\cyclohexaneh 
[bdf] { 1 ==Br j 4==Br} 

\cyclohexanev 
[A] { 1==Br j 4==Br} 

The syntax is a little more complex for heterocycles because it must allow the user to 
specify individual atoms on the base skeleton: 

\Com [bondlist] {atomlistHsubslist} 

Endocyclic bonds are specified as before with the bondlist argument, as are the substituents, 
including their bonds, with the subslist argument. What is different for this type of command 
is the additional mandatory atomlist argument, in which the individual atoms on the base 
skeleton are specified if necessary. The argument syntax is comparable to that of the subslist 
argument: atom specifications are separated by semicolons and atom positions are denoted 
by a number, followed by a double equals sign, followed by the string denoting the atom. 

o CI I I  

CIX) OMe MeO 
Charges on atoms 

/COOH 
VC-COOH 

\usepackage {het arom , epic} 

\ s ixheterov [eb] { 1 ==N} 
{ 1 D==O j 

4SA==MeO j 4SB==OMe j 
5==Cl j 
6==Cl} 

\threehetero [H] {2==C} 
{2Sa==COOH j 2Sb==COOH} 

The charge on individual atoms of the base skeleton can sometimes be specified in the opt 
or bondlist argument, using the atom number followed by a plus sign and surrounded by a 
set of braces. 

523 



524 

Br Br 

APPLICATIONS IN SCIENCE, TECHNOLOGY, AND MEDICINE 

\us epackage{het arom , epic}  

\pyrazinev [1{ 1+}{4+}] 
{ 1 ==H ; 4==H ; 2==Cl ; 6==Cl} 

Having reviewed the design principles of the XYM!EX system, we are now ready to look 
in more detail at some of its packages for drawing chemical diagrams. 

The carom package 

XYM!EX's carom package allows you to draw a large variety of carbocyles (see Table 8.5 on the 
next page) .  We have already seen some examples of the \bzdrv and \bzdrh commands to 
draw benzene derivatives. General cyclohexane derivatives are available with the commands 
\cyclohexanev and \cyclohexaneh. Using the bondlist argument described earlier, you 
can introduce endocyclic double bonds at appropriate places. 

\usepackage{ep i c , carom} 

\ cyclohexanev 
{ lD==O ; 2Sa==F ; 2Sb==F} 

\cyclohexaneh [c] 
{ 1 ==Cl ; 4==F ; 2==CH$ _{3}$} 

Fused rings, such as naphthalenes and naphthoquinones, are drawn with the 
\naphdrv set of commands. The opt argument for bond patterns supports all types of 0-
quinone variants as well as the aromatic circle. 

CI 

o 

F 
\usepackage{epic , carom} 

\naphdrv [ob] 
{ l Sb==Br ; lSa==Br ; 3D==O} 

\naphdrh [A] 
{ 1 ==Cl ; 4==F ; 2==CH$_{3}$} 

Commands for other complex structures are available, such as tetraline deriva
tives ( the \ tetral inev and \ tetralineh commands), decaline derivatives 
(\decalinev and \decal ineh) , tricyclic carbocycles such as anthracene derivatives 
( \anthracenev and \hanthracenv) and phenanthrene derivatives (\phenanthrenev 
and \hphenanthrenev), and steroid derivatives with and without side chains ( \steroid 
and \steroidchain) .  These commands all employ the same general syntax, as outlined 
in the previous section, and are easy to use, although memorizing position numbers and 



8.2 Typesetting chemical formulae 

Table 8.5: Aromatic carbo cycles commands (\command{ l==al ; 2==a2 ; 3==a3}) 

Ring Size 

6 \bzdrv 

6,6 
\naphdrv 

\tetral inev 

6,6,6 \anthracenev 

Specific Commands 

:.12 <13 

"'-0 
\bzdrh 
a2 a3 

"-8 
\naphdrh 

a2 a3 

" '-8 
\tetral ineh 

a3 
a2 

a 1  

\phenanthrenev 

a3 
\naphdrvb 

a2 
a6Ya3 -;/ . 

I ": 
I 

� 

\naphdrvt 

CQ:": aCl
a2 

a.l 

� . 1 ": 
I � a2 

a3 
\t etral inevb \tetral inevt 

bond letters might take some time. These are well documented both in the package files and 
in the extensive online manual (more than 1 20 pages of diagrams and examples) ,  where 
they are shown in diagrams like the following: 

1 2Sb(l) 
1 1  Sb(l) m 

I Sb(l) 11 1  
2Sb(l) a 1 0  I h 8 

2Sa(l) 
k 9 

f 

o 

1 7Sa(r) 
1 6Sb(r) 

1 6Sa(r) 
A----,,----+-- 1 5  S a( r ) 

p 

g 1 4  
7Sa(r) 

7Sb(r) 

1 5Sb(r) 
3Sa(l) 

3Sb(l) 
4Sb(l) 6 6Sa(r) 

525 



526 

o 

APPLICATIONS I N  SCIENCE, TECHNOLOGY, AND MEDICINE 

By referring to these kinds of diagrams and tables listing the allowed values for the opt or 
bondlist argument, it is not too hard to produce formulae like 

\usepackage {carom} 

\steroid [dim] 
{3D==O ; %  
{ { 1 3}B}==\lmo iety{H$_3$C} ; %  
{ { 1 7}SB}==HO ; %  
{ { 1 7}SA}==COCH$_3$} 

The optional argument [dim] indicates the positions of the three endocyclic double bonds, 
and the command \lmoiety connects the right terminal carbon of the methyl to the corre
sponding bond at the fused 1 3-position. 

The lowcycle package 

Lower-order cycles (up to six carbon atoms in one of the cycles; see Table 8.6 on the facing 
page) are available by loading the lowcycle package. Five-member cycles can be drawn with 
the \cyclopentanev set of commands (all four suffix types) .  Below are a few examples. 

F 

D-H \usepackage{lowcycle} 

\cyclopent anevi [b] { lD==O ; %  
2==Ph} 

\ cyclopentaneh [H] { 1 ==H ; 2==F} 

Beside putting charges on each atom, these structures support a charge in the center 
using {O+} or {O$-$} .  

\usepackage{epic , lowcycle} 

\cyclopentanev [A{O{$-$}}] {} 

Also provided by this package are indane derivatives (fused six- and five-member 
rings) with the \indanev set of commands; again, horizontal, vertical, and inverse forms 
exist. 



8.2 Typesetting chemical formulae 

Table 8.6: Carbocyclic compounds (\command{ l ==al ; 2==a2 ; 3==a3}) 

Ring Size 

3 

4 

5 

6 

5 ,6 

6,6 

6,6,6 

alya2 

<I I 
\cyclopropanev 

Aa, 

a 1  a2 

\cyclobutane 

eye:: a l  
\cyclopentanev 

a I 

CC a3 

\cyclohexanev 

OyC' � -
I I "'" a2 

a l  
\ indanev 

a l  

ccc a3 

\decal inev 

Specific Commands 
a3 0 1  }>- a l  

a3Aa2 a2 
\cyclopropanevi \cyclopropaneh 

a l  Q,2 a3 a2 U- a l  
a3 

\cyclopentanevi \cyclopent aneh 

a2 a3 

a 1-U 
\cyclohexaneh 

a3 a2 

a l  �. cP:: 
\indanevi \indaneh 

<12 a3 

"-8 �X" a2 
a3 

\decal ineh \de cal inevb 
a3 

(xtcc8=" al 

a3 

\hanthracenev \hphenanthrenev 

a3 
a l� 

a2 
\cyclopropanehi 

,,2 a3 

a 1-d 
\cyclopentanehi 

a2 a3 

"-8 
\ indanehi 

a2 "6)" 
\decal inevt 

527 



528 

OMe MeO 

CI 

CI 

o CH1-I 

o 

APPLICATIONS I N  SCIENCE, TECHNOLOGY, AND MEDICI NE 

\usepackage{ep i c , lowcycle} 

\ indanev [eb] 
{ lD==O ; 4SA==MeO ; %  

4SB==OMe ; 5==Cl ; 6==Cl} 
\ indanehi [A] {2D==O ; %  

3Sa==CH$_3$ ; 3Sb==H} 

Finally, four- and three-member carbon cycles are supported through \cyclobutane 
and \cyclopropane, respectively. Not surprisingly, due to their geometric form, they do 
not have different suffix variants. 

�OOH 

V COOH 

\usepackage{lowcycle} 

\cyclobutane 
{3Sa==OH ; 3Sb==CH$_3$} 

\cyclopropane{2Sa==COOH ; %  
2Sb==COOH} 

The hetarom and heta romh packages 

Heterocyclic compounds-i.e., those in which one or more of the carbon atoms in the cyclic 
chain have been replaced with other atoms-are available by loading the hetarom package 
(vertical-form commands) or the heta romh package (the corresponding horizontal forms) .  

General commands for three- to six-member heterocycles are available with predictable 
names like \s ixheterov ( see Table 8.7 on the next page). Here are some examples: 

\usepackage{epi c , het arom} 

\threehetero { l ==S} {3Sa==H$_3$C ; 3Sb==H$ _3$C} 
\f ourhet ero { 1==O ; 2==O}{4Sa==COOH ; 4Sb==COOH} 
\f iveheterov [eb] { l ==N} { lD==O ; 4SA==MeO ; 4SB==OMe ; 5==Cl} 

\ s i xheterov [c] { l ==N} { 1==Cl ; 4==F ; 2==CH$_3$} 

OMe c�g�� Me0)::J 
0-0 CI 

I I  
o 



8.2 Typesetting chemical formulae 

Table 8.7: Heterocyclic compounds (\command{ 1==1}{2==a2 ; 3==a3}) 

Ring Size 

3 

4 

5 

6 

5 ,6 

6 ,6 

a,va2 
I 

\threeheterov 

0:"' a2 

\f ourhet ero 

cral 

1 a2 

\fiveheterov 

CXa2 

<13 

\s ixheterov 

ecra, 

I a2 

\nonaheterov 

ceca2 

a3 

\decaheterov 

cq" <13 
\decaheterovb 

Generic Commands 

A <13 a2 
\threeheterovi 

Qa2 

,13 

\f iveheterovi 

exa, 

I a2 

\s ixheterovi 

cexa2 

a3 

\nonaheterovi 

(XXa, 

I a2 

\decaheterovi 
a2 

g" 
\decaheterovt 

a3 

f> al 
\threeheteroh 

a3 a2 

b 
\f iveheteroh 

a2 a3 

b 
\sixheteroh 

a3 a2 

8 
\nonaheteroh 

a2 33 

8 
\decaheteroh 

a3 

� a2 
\threeheterohi 

a2 a3 

U 
\f iveheterohi 

a3 a2 

d 
\sixheterohi 

a2 a3 

8 
\nonaheterohi 

a3 a2 

8 
\decaheterohi 

529 



530 

HOCH 

H 

APPLICATIONS I N  SCIENCE, TECHNOLOGY, AND MEDICINE 

Table 8.8: Application commands of the hetarom package; corresponding horizontal forms 
are defined by the heta romh package 

Six-Member Heterocycles 
\pyrazinev \pyridazinevi \pyridazinev \pyridinevi \pyridinev 
\pyrimidinevi \pyrimidinev \ triazinevi \ triazinev 

Five-Member Heterocycles 
\ imidazolevi \ imidazolev \ i s oxazolevi \ i soxazolev \oxazolevi 
\oxazolev \pyrazolevi \pyrazolev \pyrrolevi \pyrrolev 

Six-Six-Fused Heterocycles 
\ c innol inevi \ c innol inev \ i soquinol inevi \ i soquinol inev \pteridinevi 
\pteridinev \quinazol inevi \quinazol inev \quinol inevi \quinol inev 
\quinoxal inev 

Six-Five-Fused Heterocycles 
\benzofuranevi \benzofuranev \benzoxazolevi \benzoxazolev \ indolevi 
\ indolev \ indoliz inevi \indolizinev \ i s obenzofuranevi 
\ i s obenzofuranev \ i s o indolevi \ i s o indolev \purinevi \purinev 

In addition, fused six-member rings and fused five- and six-member rings are sup
ported by general commands. They have horizontal and (where applicable) invariant forms. 

\usepackage{eepic , het arom} 

\decaheterov [af ]  {4==O} 
{ 1 ==CH$_3$ ; 6==H$_3$C ; 9A==H ; %  

{ { 1 0}A}==\lmo iety{HOCH$_2$}} 
\nonaheterov [bj ge] { 1 ==S ; 2==N}{3==Cl} 

Clearly, with this many general commands, it is easy to provide an even richer set of ap
plication commands, and indeed the two packages implement more than 80 of them (if we 
include all of the suffix variations for drawing the structures in different ways) .  This set in
cludes pyridine derivatives and other six-member ring structures; for five-member rings we 
have pyrrole derivatives and others. As specializations of the general fused-ring commands 
\nonaheterov and \decaheterov, there are commands for drawing N,O-heterocycles 
such as indoles and isobenzofuranes (see Table 8.8) and N-heterocycles (see Table 8.9 on the 
next page) 

The ccycle and hcycle packages 

Use of stereochemical compounds is facilitated with commands for drawing cyclohexane 
chair forms, bicyclo [2.2 . 1 l heptane, and adamantane derivatives, which are loaded with the 
ccycle package. 



8.2 Typesetting chemical formulae 

Table 8.9: Heterocycles containing nitrogen (\command{ 1==a1 ; 2==a2 ; 3==a3}) 

N a l  
I 0 ('2 

a3 
\pyridinev al 

I (x::: 
2,4 \pyraz inev a l  

I (Ni(2 
�N"'L1 

1 ,3 

Specific commands 

exa} Y" . 
::--.. I I' ,,2 a l 

\pyr idinevi 

a2 a3 
,, 1 -0 
\pyridineh 

\pyraz ineh 

\pyr idinehi 

'� ,,2 N=< V-al 
\pyrimidinev \pyr imidinevi \pyr imidineh \pyr imidinehi 

'\ a3 ,=< " I - \J 
a3 f )=\ \J-al 

1 ,2  
\pyr idazinev \pyridaz inevi \pyridaz ineh \pyr idazinehi 

N�N""aJ �NJla2 
1 ,3 ,5 I :I I 

\triaz inev \triaz inevi \triaz ineh \triazinehi 

The \chair command uses nSe as a bond modifier to denote an equatorial single 
bond at the nth atom. 

\usepackage{ c cycle} 

\ chair{ lD==O ; %  
2Se==H$_3$C ; 2Sa==CH$_3$ ; %  
6Se==CH$_3$ ; 6Sa==CH$ _3$} 

The other commands follow the standard syntax, except that the handedness of sub
stituents cannot be specified explicitly. 

\usepackage{ccycle} 

\bicychepv{2D==O} 
\bornane{3B==OH ; 2A==OH} 

\bicycheph [b] {2==OMe ; 3==OMe} 
\adamantane{2D==O ; 6D==O ; 1==F ; 3==Cl} 

53 1 



532 

o 
I I  

Cl - C -CI 

APPLICATIONS I N  SCIENCE, TECHNOLOGY, AND MEDICI NE 

o 
F CI 

OMe OMe 

or
o

d OH 

I I  o 
The commands for drawing furanoses and pyranoses derivatives are defined in the 

hcycle package. Below are examples of both. 

The a l i phat package 

\usepackage{xymt ex} 

\furanose [b] { lD==O ; 2Sa==OH ; %  
3Sa==\lmo iety{HO} ; %  
4Sb==HOH$_2$C (HO ) HC} 

\qquad 
\pyranose [a] {3Sb==OAc ; %  

4Sa==AcO ; 5Sb==CH$_{2}$OTs} 

To draw tetrahedral and other aliphatic compounds you need the a l iphat package. Given that 
the skeleton of tetrahedral or trigonal units consists only of a single atom, the commands for 
drawing them have no bondlist argument. They do, however, take an optional argument in 
which a charge for this atom can be specified, as seen below. Another advantage offered by 
this type of command is the possibility of assigning an atom symbol to the central position 
by specifying, e.g., o==c. 

\us epackage{al iphat } 

\tetrahedral{O==C ; lD==O ; 2==Cl ; %  
4==Cl} 

\qquad 
\tetrahedral [{O+}] {O==N ; %  

1 ==H ; 2==CH$_3$ ; 3==H ; 4==H} 
\square{O==C ; lD==O ; 2==Cl ; 4==Cl} 



8.2 Typesetting chemical formulae 

There are six commands for drawing trigonal units. Those starting with an uppercase 
letter have an angle of 1 200 between the diagonal bonds, while the others are 900 apart. 

\usepackage{al iphat } 

533 

P"" 
/

Cl 

c I I  
o 

o I I  
C 

p/ �
Cl 

\begin{f lushleft} 
\rtrigonal{O==C ; lD==O ; 2==Cl ; 3==F}\quad 
\ltrigonal{O==C ; lD==O ; 2==Cl ; 3==F}\quad 
\utrigonal{O==C ; lD==O ; 2==Cl ; 3==F}\\ 
\Utrigonal{O==C ; lD==O ; 2==Cl ; 3==F}\quad 
\dtrigonal{O==C ; lD==O ; 2==Cl ; 3==F}\quad 
\Dtrigonal{O==C ; lD==O ; 2==Cl ; 3==F} 
\end{f lushleft}  

Drawing ethylene derivatives is  supported with the \ethylene command (notice the 
missing suffix) and its vertical forms \ethylenev and \Ethylenev, the latter having the 
diagonal bonds 1 200 apart. Inner double and triple bonds are specified with d (default) and 
t in the optional argument. 

\usepackage{al iphat } 

\ethylene { 1 ==C ; 2==C} 
{ 1 ==F ; 2==Cl ; 3==H ; 4==Br} 

\qquad 
\ethylenev [t{2+}] { 1 ==C ; 2==N} 

{ 1 ==H$_3$C ; 2==CH$_3$ ; 3==H} 

Finally, the package supports the drawing of configurations of the tetrahedra carbon in 
different projections through the commands \ tetrastereo and \dtetrastereo, and 
the configuration of ethane with the command \ethanestereo. Here the central atoms 
can be specified explicitly. 

Ph 

H 

Cl&Br A y cr J; -Br P 

Br 

H 

\usepackage{aliphat } 

\setlength\unitlength{O . lpt} 
\tetrastereo{l==F ; %  

2==Cl ; 3==H ; 4==Br} 
\dtetrastereo{l==F ; %  

2==Cl ; 3==H ; 4==Br} 
\ethanestereo { 1 ==C ; 2==C} 

{ 1 ==F ; 2==Cl ; 3==H ; 4==Br ; %  
5==Ph ; 6==H} 



534 

a l  

APPLICATIONS I N  SCIENCE, TECHNOLOGY, AND MEDICINE 

Combining structures 

The hetarom and hetaromh packages also support six- and five-member building blocks, 
which can be fused with other ring structures to produce new ring systems. Their syntax is 
comparable to that for general heterocycles but with one additional mandatory argument: 

\Com [bondlistJ {atomlist}{subslist}{omit} 

The omit argument specifies which bonds are to be deleted from the structure. 

o �C1 
\usepackage{het arom} 

\ s ixunitv [b] { 1 ==N}{1==H ; 2==F}{d} 
\f iveunitv [b] {}{ lD==O ; 2==Cl}{d} 
\f iveunitvi [b] {}{ lD==O ; 2==Cl}{d} 

The corresponding horizontal commands are defined in the heta romh package. 

Drawing complex structures 

More complicated structural formulae can be constructed from the commands described 
in previous sections by combining two or more structures inside a pi cture environment. 
This technique is explained in detail in Chapter 1 4  (Combining structures) of the XYMIEX 
manual for version 1 . 0 1 .  Moreover, Chapter 1 5  (Large substituents) explains how XYMIEX 
commands can be used inside the argument of another. 1 

Since version 2 of XYMIEX2 the combination method mentioned in the previous para
graph has been conveniently extended by the introduction of the "yl" function. Almost all 
XYMIEX commands can be converted into the corresponding substituent by adding the code 
Cyl)  together with a locant number; i.e., in the subslist argument we can write something 
like {n== C y 1 )  ; . . . } , n to specify the locant at which the structure will be attached. 

a3 

\usepackage{carom} 

\bzdrh{ 1==al ; 4==\bzdrh{ 1== (yl) ; 3==a3}} 

Here the benzene ring at the right in converted into a substituent by specifying Cyl) 
and is  connected by its locant 1 to locant 4 of the benzene ring at the left. Nesting is  possible, 

' See http : // imt . chem . kit . ac . j p/fuj ita/fuj itas3/xymtex/xym101 /xymdvi /xymtex . pdf . 

2 All versions of XYMIFX.-in particular the more recent ones-can be downloaded from the XYMIFX. home 
page at http : // imt . chem . kit . ac . j p/fuj ita/fuj itas3/xymt ex/ indexe . html . There you can also 
find the manuals for all versions as well as some recent journal articles describing XYMIFX.. 



8.2 Typesetting chemical formulae 

as the following example shows, where the various elements are added as substituents going 
from left to right. 

o 

HO 
I I � c� \usepackage{xymt ex} 

\naphdrh{ 1 ==HO ; 4==% 
\ cyclohexaneh{ 1== (yl ) ; 4==% 

\tetrahedral{2== (yl) ; O==C ; lD==O ; 4==% 
\bzdrh{ l== ( yl ) }}}} 

In many cases the substituent is  linked to a substitution site by an intervening unit 
(e.g., 0, NH, S02 ) .  The commands \ry1 and \ly1 generate, respectively, a right-hand sub
stituent and a left -hand substituent with a linking unit. 

[ \ 1 Y 1 C link Hgroup} \ry1 C linkHgroup} [ 
link Specifies the linking unit. The first element is an integer (0-

8) indicating the slope of the incidental bond (L side of the 
2 boxed diagram for \ry1, R side for \ly1) .  The second ele-

ment is the linking unit. Both elements are separated by a 3 

== delimiter. 

L O R 
2 
3 

4 ------:JE--- 4 
group Specifies the substituent produced by a "yl" function. The 

first element is an integer (0-8) indicating the slope of the in - 5 
cidental hond (R side of the boxed diagram for \ry 1, L side 6 
for \ly1) .  The second element is the substituent command. 7 
Both elements are separated by a == delimiter. 

7 

5 
6 

Consider the following example, which shows the \ly1 and \ry1 commands in action. 
Note how the slope parameters are used to specify the directions of the bonds. 

\usepackage{xymt ex} 

\cyclohexanev [] {% 
1==\lyl ( 8==SO$\sb{2} $--HN) { 1==\bzdrh{5== ( yl) }} ; %  
6==\lyl ( 5==SO$\sb{2}$--NH) {4==\bzdrh{4== (yl ) } } ; %  
5==\lyl ( 3==SO$\ sb{2}$--NH) {4==\bzdrh{4== (yl) }} ; %  
4==\lyl ( o==SO$\sb{2}$--HN) {7==\bzdrh{3== (yl ) }}}  

\quad 
\cyclohexanev [] {% 

1==\ryl ( 8==NH--SO$\ sb{2} $ ) { 1==\bzdrh{6== (yl ) }} ; %  
2==\ryl ( 5==NH- -SO$\sb{2}$ ) {4==\bzdrh{ 1== (yl) } } ; %  
3==\ryl ( 3==NH- -SO$\sb{2}$ ) {4==\bzdrh{ 1== (yl) }} ; %  
4==\ryl ( O==NH--SO$\sb{2}$)  {7==\bzdrh{2== (yl) }}}  

535 



536 APPLICATIONS IN SCIENCE, TECHNOLOGY, AND MEDICINE 

o 
NH-S02 

NH-S02--< > 
NH-S02--< > 

NH-SO� > 
A more complex example shows how we can control the layout of a formula in great 

detail. 

\usepackage{xymt ex} 

\bzdrv{ 1==OH ; 5==CH$ \ sb{3}$ ; 4==OC$\sb{ 16}$H$\sb{33}$ ; %  
2==\ryl (4==NH--SO$\sb{2}$) {4==\bzdrh{ 1== (yl) ; %  

2==OCH$\ sb{2}$CH$ \ sb{2}$OCH$\sb{3}$ ; %  
5==\ryl ( 2==NH--SO$\sb{2} $ ) {4==\bzdrh{ 1== (yl) ; %  

5==\ryl ( 2==SO$\sb{2}$--NH) {4==\naphdrh{ 1== (yl ) ; 5==OH ; %  

OH 

8==\lyl (4==N=N) {4==\bzdrh{4== (yl) ; 1==NO$\ sb{2}$ ; %  
5==SO$\ sb{2}$CH$ \ sb{3}$}}}}}}}}} 

OH 

We have already seen examples of predefined commands for fused rings (see the lower 
parts of Table 8.6 on page 527 and Table 8.7 on page 529). More generally, ring units can be 



8.2 Typesetting chemical formulae 

Table 8. 1 0: Fusing skeleton commands 

Ring Size Fusing Skeleton 
3 \threefusev \threefusevi \threefuseh \threefusehi 
4 \f ourfuse 
5 \f ivefusev \f ivefusevi \f ivefuseh \f ivefusehi 
6 \s ixfusev \sixfusevi \s ixfuseh \ s ixfusehi 

fused by using one of the commands in Table 8. 10, which have the following general struc
ture (note the presence of a third mandatory argument) .  

\Com [bondlistJ {atomlistHsubslist}{fuse} 

The argument fuse identifies the bond to be used for the fusion-namely, a letter represent
ing the bond to be omitted (see Chapter 5 of the XYMIEX manual for version 1 .0 1 1 ) .  Exam
ple 8-2-38 on page 539 illustrates the use of ring fusion. Fuse commands can be nested. 

Using PostScript output 

Since 2004 (version 4.02 of the XYMIEX package2 ) ,  PostScript support has become fully inte
grated in XYMIEX via the use of PSTricks, thus eliminating the limitations imposed by �1EX's 
pi cture environment. With respect to the package files present in version 1 .0, as described 
on page 520, the following files have been added: 

polymers support for drawing polymers 

fusering support for drawing units for ring fusion (Table 8. 10) 

methylen support for drawing zigzag polymethylene chains (Table 8. 1 1  on the next page) 

sizeredc support for allowing size reduction (version 3 and above) 

xymtx-ps support for PostScript printing (This package reimplements several macros de
fined in the other XYMIEX packages.) 

There are also two utility packages: xymtex, which loads all packages except xymtx-ps 
(i.e., no PostScript support), and xymtexps, which loads all packages, including xymtx-ps 
(allowing full PostScript support) .  Furthermore, the chemist and chmst-ps packages define 
some �ecific chemical environments without and with PostScript support. 

X MIEX now works in two modes. We have "TEXmTEX -compatible mode" (uses xymtex 
with no PostScript support), which simulates stereochemistry effects with thick and dotted 
lines and reduces formulae with the help of epic, and "PostScript -compatible mode" (uses 
xymtexps providing PostScript support) ,  which implements stereochemistry effects fully. 

I See http : //imt . chem . kit . ac . j p/fuj ita/fuj itas3/xymt ex/xym 1 0 1 / xymdvi/xymt ex . pdf . 

2The latest version of XlMfEX and its full documentation are available from the XIMfEX home page at 
http : // imt . chem . kit . ac . j p/fuj ita/fuj itas3/xymtex/ indexe . html . 

537 



538 

o 

I I  

APPLICATIONS I N  SCIENCE, TECHNOLOGY, AND MEDICINE 

Table 8. 1 1 : Polymethylene commands (\command{ 1 == 1 }{2==a2 ; 3==a3}) 

Length Generic Commands 

)' 
2 and 3 'i a2  ,� 

u.' 

\dimethylene \dimethylenei \trimethylene \trimethylenei 

4 and 5 ,Jy ,3 '0 a2 ,� a.' ,� <12 
\tetramethylene \tetramethylenei \pentamethylene \pentamethylenei 

6 and 7 ,0 ilJ ,� " ,� aJ ,� a2 

8 and 9 

\hexamethylene 

,� aJ 

\hexamethylenei 

,� <12 

\heptamethylene 

,� aJ  

\heptamethylenei 

,� il2 
\octamethylene \octamethylenei \nonamethylene \nonamethylenei 

1 0  ,� a3 ,� a2 
\decamethylene \decamethylenei 

The difference between these modes is seen in the following examples, where we first show 
the standard ("E'-TEX's picture) mode. 

\usepackage {xymt ex} 

\begin{f lushleft} 
\reduceds izepi cture 
\cyclohexanev{ lD==O ; 4SA==CH$\ sb{3}$ ; 4SB==F} 
\ changeunit length{O . 05pt} 
\cyclohexanev{ lD==O ; 4SA==CH$\sb{3}$ ; 4SB==F} 
\end{f lushleft} 

With PostScript we can generate full stereochemistry effects with wedges and dashes. 

\usepackage {xymt exps} 

\wedgehashedwedge \cyclohexanev{ lD==O ; 4SA==CH$ \sb{3}$ ; 4SB==F} 
{\ changeunitlength{O . 07pt } \ cyclohexanev{ lD==O ; 4SA==CH$\sb{3}$ ; 4SB==F}} \qquad 
\dashhasheddash \cyclohexanev{ lD==O ; 4SA==CH$\sb{3}$ ; 4SB==F} 
\ changeunitlength{O . 05pt}\ cyclohexanev{ lD==O ; 4SA==CH$ \ sb{3}$ ; 4SB==F} 

0 0 

I I I  
0 

0 

� ........ Q � ¢ 
CH3 

� 
F F CH3 F CH3 F CH3 



8.2 Typesetting chemical formulae 

The three types of derivations revisited 

The three types of derivations used in X1'IvnEx-namely, "substitution derivation" for nested 
substitution, "atom derivation" for generating spiro compounds, and "bond derivation" for 
ring fusion-can now be revisited with the PostScript mode turned on. 

The structural formula of ribavirin, for example, can be obtained by the technique 
called "substitution derivation" using a "yl" function to turn a \f i veheterov command 
into a substituent, which is then attached to a furanose skeleton (\furanose  command) .  

\usepackage{xymt exps} 

\ changeunitlength{O . 09pt } 
\furanose{ l Sa==H ; 2Sb==H ; 2Sa==OH ; 3Sb==H ; %  
3Sa==OH ; 4Sa==H ; 4Sb==HOC\rlap{H$\sb{2}$} ; %  
l Sb==\f iveheterov [bd] { 1 ==N ; 2==N ; 4==N} 
{ 1== (yl) ; 3==CONH$ \sp{2}$}} 

A substituent generated by a "yl" function can be declared in an atom list of a skeleton 
so as to generate the formula of a spiro compound, known as an "atom derivation". For 
instance, the three-member spiro ring of illudin S, an antibiotic, is obtained as follows. 

o CH;1 I I  HO .. " . .  -

\usepackage{xymtexps} 

\ changeunitlength{O . 09pt} 
\wedgehashedwedge 
\nonahet erovi [di] {% 
5s==\cyclopropanev{2== (yl) }}% 

{2SB==CH$\sb{3}$ ; 2SA==CH$\ sb{2}$OH ; %  
3B==OH ; 4==CH$\ sb{3}$ ; 6SB==CH$\sb{3}$ ; %  
6SA==HO ; 7D==O} 

Fused rings can be drawn using "bond derivation". An example is penicillin V, where 
the fusing command \f ivefusevi (see Table 8. 10  on page 537) is used. The five-member 
ring (\f iveheerovi) shares its bond edge labeled d with the bond edge labeled b of the 
four-member ring (\f ourhetero) . The command \lyl links the four-ring to the phenyl 
substituent via the group ( OCH2CONH) . 

H H < rCH2CONH] (S"(��3 
// N " 

0 /  �COOH 

\usepackage{xymt exps} 

\ changeunitlength{O . 09pt } 
\wedgehashedwedge 
\f ourhetero [% 
{b\f ivefusevi { 1 ==S ; 4==\null}% 
{2Sa==CH$\ sb{3}$ ; 2Sb==CH$\sb{3}$ ; %  
3A==COOH}{d}}] % 
{2==N}{ lD==O ; 3FA==H ; 4GA==H ; 4Su==% 
\lyl (4==OCH$\ sb{2}$CONH) % 
{4==\bzdrh{4== ( yl ) }}} 

539 



540 APPLICATIONS IN SCIENCE, TECHNOLOGY, AND MEDICINE 

Configurations, conformations, and reaction schemes 

Numerous configurations of tetrahedral molecules with wedged bonds can be drawn us
ing variants of the command \ tetrahedral. For instance. the following Fischer dia
gram, which shows the absolute configuration of the sugar D-glucose, uses four nested 
\ tetrahedral commands. 

CHO 
\usepackage{xymtexps} 

\changeunitlength{O . 09pt} 
\tetrahedral{O==C; lA==CHO ; %  

2B==H ; 4B==OH; 3A=='l. 
\tetrahedral{O==C ; l==(yl) ;'l. 

2B==HO ;4B==H; 3A=='l. 
\tetrahedral{O==C; l==(yl ) ; 'l. 

H-C -OH 

HO- C -H 

H-t-OH 
H-t-OH 

CH,OH 

2B==H; 4B==OHj 3A=='l. 
\tetrahedral{O==C ; l==(yl ) ; 'l. 

2B==Hj 4B==OHj 3A==CH$\sb{2}$OH}}}} 

Finally. reaction schemes containing tetrahedral molecules with wedged bonds can also 
be handled. For instance, consider the Walden inversion reaction, which is drawn with the 
help of the cbemeqn environment and the \reactrarrow command, both of which are 
defined in the chemist package (part of the x1MrEx distribution). 

\usepackage{xymtexps . chmst-ps} 

\begin{chemeqn} 
HO\sp{-}-+
\raisebox{-28pt}{\ltetrahedralS{O::C j l==Cl j y'  

2==C$\sb{3}$H$\sb{7}$ ; Y. 
3A==CH$\sb{3}$; 4B==C$\sb{2}$H$\sb{5}$}} 

\reactrarrow{Opt}{lcm}{}{}\qquad 
\raisebox{-28pt}{\dtrigpyramid[{O{--$\delta+$}}]y' 

{O==Cj 4A==HO$\sp{\delta-}$ j y'  
SA==Cl$\sp{\delta-}$ jy' 
1==C$\sb{3}$H$\sb{7}$ ; Y.  
2A==CH$\sb{3}$ ;Y. 
3B==C$\sb{2}$H$\sb{5}$}} 

\quad\reactrarrow{Opt}{lcm}{}{}\quad 
\raisebox{-28pt}{\rtetrahedralS{O==C ; 1==HO ;Y. 

2==C$\sb{3}$H$\sb{7}$ ; Y. 
3A==CH$\sb{3}$; 4B==C$\sb{2}$H$\sb{S}$}} 

-+-Cl\sp{-} \label{myeqn} 

\end{chemeqn} 

C3H,\ 
HO- + .C-CI 

CH3', 
C2HS 

C3 H7 
HOO- �+ C10- --

1 \. 
C,H, CH3 

( I )  

/3H, 
HO-C. + CI-

,\'CH3 
C2HS 



8.2 Typesetting chemical formulae 

8.2.2 The ppchtex package 

Hans Hagen and A. F. Otten are the developers of P P C H'lEX [44] , a package for typesetting 
chemical formulae originally based on PIG EX [ 1 38 ] .  Presently, a PST ricks interface is avail
able. You can use the PIGEX interface by specifying the pictex option; you can choose the 
PSTricks interface by specifying the pstricks option (the latter is chosen for the examples) .  
This PPCH'lEX package describes the chemical structures more by their graphical represen
tation than their chemical significance. Unlike XYMIEX, which relies on the �TEX picture 
environment, this package can be used with both plain 'lEX and �TFX. 

Rather than trying to explain the syntax in detaill we merely present some examples 
here, with the hope of giving you a feeling for the approach taken. 

Structures 

Chemical structure formulae are typeset with the help of four basic commands, all of which 
are used in the following example. 

5 

\setupchemical [typesetting-data] 

\usepackage [pictexJ {m- ch-en} 

\setupchemical 
[axis=on , border=on , s cale= small , 
s ize=medium] 

\start chemical 

\ chemical [FIVE , B , R , RZJ [ 1 , 2 , 3 , 4 , 5J 
\stopchemical 

\startchemical [ typesetting-data] 

The \setupchemical command establishes various characteristics for setting the follow
ing chemical formulae. Its scope is limited to the current group. Typesetting instructions can 
also be specified on the \start chemical command itself, in which case the instructions 
remain valid only up to the corresponding \stopchemical command (i.e., for the current 
formula) . 

c D 

A F 

\usepackage [pictexJ {m- ch-en} 

\ s etupchemi cal [ax i s=on] 
\start chemical 

[width=6000 , s cale=smal l , s ize=medium] 
\ chemical [CARBON , CB 1 J  [A , B , C , D , E , FJ 

\stopchemical 

I See http : //www . pragma- ade . c om/general/manuals/mp- ch-en . pdf , the P P C H'IEX manual, for a 
full description. 

541 



542 

o 

APPLICATIONS IN SCIENCE, TECHNOLOGY, AND MEDICINE 

\chemical [structure] [atoms/molecule-list] 

\chemical, the main command, can occur several times between the \start chemical 
and \stopchemical commands that delimit a chemical formula. Its first argument defines 
the structure that is filled with the data presented in the second (optional) argument. Any 
text in the atoms/molecule-list is typeset in math mode (but with letters set properly in Ro
man) .  If the argument is missing, the command produces a skeleton with no atoms. There 
are eight predefined base structures that can be used in the first argument structure: 

'»-, 2 

ONE THREE 

6 

4 

,-9-' 
5 

4 2 
2 

3 

SIX CARBON 

4 

3 
)=( 
FOUR 

6 

':¢Z' 5 4 

2 

2 

NEWMAN 

FIVE 

2 

EQUILIBRIUM 

Chemical bonds between C atoms inside these structures are indicated, for example, by 
the letter B and are referenced by numbers. Various representations are possible, as shown 
below for a six-ring structure: 

\usepackage [pict ex] {m-ch-en} 

\startchemical [scale=small , s ize=medium] 
\ chemical [SIX , B l , B2 , B3 , B4 , B5 , B6] 
\qquad\qquad\qquad 
\ chemi c al [SIX , B 135] 
\qquad\qquad\qquad 
\ chemical [SIX , B l . .  5] 

\stop chemi cal 

Substructures can be added by the R tag, where the position on the ring again is indi
cated by a number. This tag merely draws bonds for subcomponents; the actual subcompo
nent must be declared explicitly with a RZ tag, and its "value" (e.g., an atom) ,  is then speci
fied inside the second optional argument. When the second argument is omitted or doesn't 



8.2 Typesetting chemical formulae 

contain enough material, no text is placed and the corresponding RZ tags have no effect. 

OR 

Definitions 

\usepackage [pictex] {m-ch-en} 

\start chemical [ s c ale=small , s ize=medium] 
\ chemical [SIX , B l  . .  6 , Rl . .  6] 

\qquad\qquad\qquad 
\ chemical [SIX , B l  . .  5 , R1 2 , RZ 1 2 ]  [A] 

\qquad\qquad\qquad\qquad 
\ chemical [SIX , B l  . .  6 , Rl . .  6 , RZ 1  . .  3]  

[CH_3 , CH_3 , OH] 
\stopchemical 

It is straightforward to build a library of structures that can be used as building blocks of 
more complex components. For instance, you can define the string "sixring" as an un
adorned six-ring by using the \def inechemical command. With a definition like the one 
below, a simple six-ring without sub constituents can be typeset and the six substituents can 
be added by specifying them in the second argument: 

H2 

\usepackage [pict ex] {m- ch-en} 

\def inechemical [sixring] 
{ \chemical [SIX , B , R , RZ] } 

\start chemi cal [ s ize=small] 
\ chemical [s ixring] 

\qquad\qquad\qquad\qquad\qquad 
\ chemical [ s ixring] 

[R_ l , R_2 , R_3 , R_4 , R_5 , R_6] 
\st opchemical 

More complex structures are possible; remember that the sub constituents in the second 
argument are placed according to the sequence specified in the first argument. An example 
with a slightly modified definition of s ixring is 

c 

B 

Bonds 

A 

\usepackage [pi c tex] {m-ch-en} 

\def inechemical [sixring] 
{\ chemi cal [SIX , B , R , RZ 1 35] % 

[R_ l , R_3 , R_5] } 
\startchemi cal [s ize=small] 

\ chemical [s ixring , SI X , RZ246] 
[A , B  , C] 

\stopchemical 

Different kinds of bonds can be used in structures in the PPCH1EX package, as shown in 
Table 8 . 12  on the next page. The left-hand pair of columns corresponds to complete bonds, 
and the right-hand columns are for shortened variants. Bonds can be shortened on both 

543 



544 APPLICATIONS I N  SCIENCE, TECHNOLOGY, AND MEDICINE 

Table 8. 1 2: Bond identifiers for ppchtex 

Saturated bonds 

Unsaturated bonds 

Special bonds 
Bonds to substituents 

Double bonds to substituents 
Atoms and molecules (radicals) 

B bond 

EB extra bond 

S shortcut 
R radical 

-R left radical 
+R right radical 
ER extra radical 

Z atom 

SB single bond 
-SB left single bond 
+SB right single bond 
DB double bond 
TB triple bond 

C circle 
SR single radical 

-SR single left radical 
+SR single right radical 

DR double radical 
RZ radical atom 

-RZ left radical atom 
+RZ right radical atom 

sides, on the left (- )  or on the right (+) .  Shortened variants make it possible to attach atoms 
and molecules to a bond. 

Bond specifiers can be followed by one or more numbers or a range (e.g., Bl ,  B135, 
or B l  . .  5 ) .  A specifier without numbers (e.g., B), applies to all bonds. Text to be linked to 
bonds is collected from the second optional argument of \chemical in the order given. 
Items are numbered clockwise. A text can be placed in the center of a structure with the ZO 
("Z-zero") specifier. 

Combinations 

Structures can be positioned or rotated to form complex compounds with the help of the 
following specifiers: 

MOV (Move) move an identical structure in the direction of a bond 
ADJ (Adjace) move two structures relative to each other in the x- or y-direction to make 

them share a common side 

SUB (Substitute) move two structures relative to each other in the ;]; - or y-direction and 
connect them via a bond 

ROT (Rotate) rotate a structure 

Note that these commands can have different effects for different structures. For in
stance, the rotation angle differs in the commands \chemical [FIVE , ROT1 , BJ and 
\chemical [SIX , ROT1 , BJ . A few examples are given below. 

\usepackage [pi ctex] {m- ch-en} 

\start chemi cal [size=small] 
\ chemical [SIX , B , MDV1 , B] 

\stopchemical 



8.2 Typesetting chemical formulae 

Here we can study the effects of the ROT tag: 

\usepackage [pictexJ {m-ch-en} 

\mbox{\start chemi cal [ s ize=smallJ  
\ chemical [SIX , B , ADJ1 , FIVE , BJ 

\stopchemical\start chemi c al 
\chemical [SIX , B , ADJ1 , FIVE , ROT3 , BJ 

\stop chemi cal} 

As you see, connected structures are built with the AD] specifier. Often one of the two struc
tures must be rotated with ROT to get a good connection. If there is a bond between the two 
structures, then use the SUB specifier. Rotations are specified in steps of 90 degrees clock
wise, and displacements with AD] and SUB are in the direction of one of the four axes. 

\usepackage [pict exJ {m- ch-en} 

\ s t art chemi cal 
\ chemical [SIX , ROT2 , B , R6 , %  

SUB 1 , FIVE , B , R4] 
\stopchemical 

The preceding examples indicate that the sequence in which the tags are specified must 
follow a given order: 

\ chemi cal 
[structure & rotat i on , % S I X , F IVE , . . .  

% B ,  C ,  EB , . . .  

% R ,  DR , . . .  

% Z 

bonds inside the structure , 
bonds out s ide the structure , 
locat i ons of the atoms , 
locat i ons of the subcomponent s ,  
connection , 

% RZ , -RZ , . . .  

% MOV , ADJ , . . .  

structure & rotat i on ,  % S I X , FIVE , . . .  

bonds ins ide the structure , % B ,  C ,  EB , . . .  

J 
[at oms , subcomponent s J  

Chemica l equations 

Reaction equations can be typeset using symbols specially provided for this purpose, as the 
following example shows: 

\usepackage [pi ctex] {m- ch-en} 

\ setupchemical [size=small , width=f it , he i ght=5500 , under= 1 500J 
\mbox{% 

\start chemical 
\ chemical [SIX , B , ER6 , RZ6J [OJ \stopchemical 

\start chemi cal 
\chemical [SPACE , PLUS , SPACE] \stopchemical 

545 



546 

o 

} 

APPLICATIONS I N  SCIENCE, TECHNOLOGY, AND MEDICINE 

\start chemi cal 
\ chemi cal [FIVE , ROT4 , B 125 , +SB3 , -SB4 , Z4 , SR4 , RZ4J [N , HJ 

\st opchemical 
\start chemical \ chemical [SPACE , GIVES , SPACEJ [?J  \stopchemical 
\start chemical 

\ chemi cal [SIX , B , EB6 , R6 , SUB4 , FIVE , ROT4 , B 125 , +SB3 , -SB4 , Z4J [NJ 
\stopchemical 

o () N 

N 

H 

The \mbox command ensures that the structures are typeset on a line; the symbols 
GIVES and PLUS are self-explanatory; and SPACE inserts a little extra space. An equi
librium can be shown with EQUILIBRIUM, and a text can be typeset above GIVES and 
EQUILIBRIUM (here a question mark) . 

Special features 

With the ONE tag, ZO can consist of more than one atom. If the reserved space is insufficient, 
bonds 1 , 2, and 8 can be moved with the command OFF (for "offset") ,  as shown in the fol
lowing example, where the offset is one extra character (" 1 ") .  In such complex constructs, 
rotations are best made last. The CRZ (for "centered radical atom") command is used to 
align an atom or a molecule with a bond. 

o 
II c 
\ / COOC2 HG 

N - CH 
/ "' cooc H C 2 G 

\\ o 

\usepackage [pict exJ {m- ch-en} 

\start chemical [width=fitJ  
\ chemical 

[SIX , B , C , AD J 1 , FIVE , ROT3 , SB34 , 
+SB2 , -SB5 , Z345 , DR35 , SR4 , CRZ35 , 
SUB 1 , ONE , OFF 1 , SB258 , ZO , Z28J 

[C , N , C , O , O , CH , COOC_2H_5 , COOC_2H_5J 
\stopchemical 

There are two other forms of the \chemical command: 

\chemi cal {formula} \chemi cal {formulaHtext} 

These forms typeset a formula inside a paragraph of text. 



8.3 Alignment and topology plots in  bioinformatics 

\usepackage [pi ctex] {m-ch-en} 

\ [  \ chemical{2H_2}{}  
\ chemi cal {PLUS}{} 
\ chemi cal{O_2}{} 
\ chemical{GIVES}{} 
\ chemi cal{2H_20}{} \]  

Such a formula can also be typeset inside a paragraph in the running text where a 
smaller font size is chosen. Note that the same formula could have been obtained with ei
ther of the two (shorter) \chemical commands, in which everything is specified in the 
first argument: 

\ [\ chemical{2H_2 , PLUS , O_2 , GIVES , 2H_20}{}\] 
\ [\ chemical{2H_2 , + , O_2 , - > , 2H_20}{}\]  

The second argument text of the \chemical commands can be used to include ex
planatory text in the formula. 

hydrogen oxygen violent 

\usepackage [pict ex] {m- ch-en} 

\ [  \ chemical{2H_2}{hydrogen} 
\ chemi cal{PLUS}{} 
\ chemi cal{O_2}{oxygen} 
\ chemical{GIVES}{violent } 
\ chemi cal{2H_20}{} \] 

The package also supports other features, such as coloring parts of a formula. 

8.3 Al ign ment and topology plots in bioinformatics 

Preparing a clear visual representation of alignments of nucleotides and pep tides for publi
cation purposes is generally a rather complex two-step process. First, the alignment is cal
culated using a dedicated software program. Next, special relationships in the sequences 
are highlighted and positions or regions of interest labeled, which requires the use of an
other software program with high-level output capabilities. With standard word processing 
or graphics programs manipulation of sequence alignments often takes several hours. More
over, even small changes in the input or different line breaks in the output imply that most 
of the work has to be repeated. 

To help alleviate this problem, Eric Beitz developed his texshade and textopo packages l 
in the framework of the B I OTEX-project. We will not describe these two packages in great 
detail, but simply show how they can handle complex graphical information for publication 
with )}TEX. 

1 Eric's home page at http : //homepages . uni - tuebingen . de/bei tz/txe . html contains the latest in
formation. 

547 



548 

80 
72 
80 

1 0 1  
73 

80 
72 
80 

1 0 1  
73 

APPLICATIONS I N  SCIENCE, TECHNOLOGY, AND MEDICI N E  

8.3 . 1  Al igning and shading nucleotide and peptide sequences 

The texshade package lets you align and shade multiple-nucleotide and -peptide sequences, 
which can be coded in several file formats used by the bioinformatics community ( see the 
manual for more details) . In addition to common shading algorithms, texshade provides 
special shading modes featuring functional aspects, such as charge or hydropathy, and sev
eral commands for controlling shading colors, text styles, labels, and legends. The user can 
also define completely new shading modes. 

The texshade package provides a single new texshade environment, which is defined 
as follows. 

\begin{ texshade} [parameterfile] {alignmentfile} 
texshade commands, when needed 

\end{texshade} 

Since the package does not itself calculate aligments, the mandatory argument alignmentfile 
must contain the aligned nucleotide or peptide sequences in one of three common aligment 
input formats that texshade accepts (MSF, for multiple sequence format; ALN for aligment for
mat; and FASTA, the format used by the f asta tools for biological sequence analysis) .  The 
optional argument, when specified, loads the file parameter file, which contains definitions 
for the customized calculation of the consensus, special sequence features, labels, etc. Inside 
the environment itself, you can give even more texshade commands to replace or complete 
settings from the parameter file. 

The examples that follow read the example alignment file AQPpro . MSF, which comes 
with the distribution. The first example shows a basic type of shading that is provided by 
almost any alignment program. All identical residues at a position are shaded if the number 
of matching residues is higher than a given threshold percentage. 

I

L G LI!L S C  
V�CI!VGCH  
F ' MCFLAR  
V I MVCT  
L i LI!I G N Q  

AQP 1 . PRO 
AQP2 . PRO 
AQP3 . PRO 
AQP4 . PRO 
AQP5 . PRO 

\usepackage [] {texshade} 

\begin{texshade}{AQPpro . MSF} 
\ s et ends { 1 }{80 . .  104} 
\hideconsensus 

\end{texshade} 

Positions where all residues are identical can be shaded in a special color and the con
sensus can be shown with or without shading according to the degree of conservation, as 
seen in the following example. 

I

L G LI!L S C  
V�CI!V G C H  
F ' MCFLAR  
V I MV C T  
L I LI!I GN  

T a 

I I

I

I C

I 
A I L 
L I T  

I T ' C 
A '  I LV 

Y , A Q , i G 

AQP 1 . PRO 
AQP2 . PRO 
AQP3 . PRO 
AQP4 . PRO 
AQP5 . PRO 
consensus 

\usepackage [] {texshade} 

\begin{texshade}{AQPpro . MSF} 
\al lmat chspec i al 
\setends { 1 }{80 . .  104} 
\ showconsensus [ColdHot] {bott om} 
\defconsensus{ . }{lower}{upper} 

\end{t exshade} 



8.3 Alignment and topology plots in bioinformatics 

When you want to highlight differences rather than similarities, you can select the 
diversity mode. It is useful for comparing very similar sequences, such as species variants 
of a protein. One sequence is used as consensus. Matching residues in other sequences are 
blanked out, and mismatches are shown in lowercase. In this case the file AQP2spec . ALN is 
read. 

AQP2 species variants 
80 

Bos taurus S F L R  
90 100 

FYVAA Q L L G AVAGAALLHE  

\usepackage [J  {texshade} 

\begin{texshade}{AQP2spe c . ALN} 
\ seqtype{P} 
\ shadingmode {diverse} 
\setends { 1 }{77 . .  106} 
\feature s l arge 
\feature{t op}{ 1 }{77 . .  106}{} 

549 

Canis familiaris 
Dugong dugong 
Equus caballus 
Elephas maximus 

. .  1 . . . . . . . . . . . .  i . .  . 

. .  1 . . . . . . . . . . . . . . .  . 

{AQP2 spe c i e s  variant s }  
\namesrm\name s i t  
\hidenumbering\ showruler{top} { 1 }  
\showname s{left} 

AQP2 species variants 

Bos taurus I IP P  
Canis familiaris 
Dugong dugong 
Equus caballus 
Elephas maximus 1 . . .  

Six functional shading modes are predefined. 

\name seq{ 1 } {Bos t aurus} 
\name seq{2}{Can i s  f amil i ar i s }  
\names eq{3}{Dugong dugong} 
\names eq{4}{Equus caballus} 
\nameseq{5}{Elephas maximus} 
\frameblock{ 1}{82 . .  82 , 106 . .  106} 

{Red [ 1pt] } 
\end{texshade} 

charge Residues that are charged at physiological pH (7.4) are shaded if their number at a 
position is higher than the threshold. 

hydropathy Discriminates between acidic and basic, polar uncharged and hydrophobic 
nonpolar residues. 

structure Displays the potential localization within the tertiary structure of the protein. 

chemical Residues are shaded according to the chemical properties of their functional 
groups. 

standard area Displays differences in surface area for the different amino acids' side 
chains. 

accessible area Uses the surface area accessed by solvent molecules as a basis for shading. 
Low accessibility means hydrophobic (i.e., strongly buried residues) , whereas highly 
accessible side chains are hydrophilic. 

Only one example of the chemical shading mode will be given here. The texshade man
ual gives examples of the other modes as well as how the package handles secondary protein 
structures ( see also Color Plate Xa) .  



550 

138 
130 
153 
159  
131  

158 
150 
173 
179 
1 5 1  I

R ·1" R[;JL

I 

I E . " " G[;JN 
t P Y N N P V P R  
I S . GI!T[;JVT 
t S . Ii1DT S P  

t3 acidic ( - ) 
t3 aliphat ic  
m amide 
t3 aromat ic  
t3 bas ic  C+ )  
I hydroxyl 
I imino 
X sulfur 

AQP1 . PRO 
AQP2 . PRO 
AQP3 . PRO 
AQP4 . PRO 
AQP5 . PRO 

AQP 1 . PRO 
AQP2 . PRO 
AQP3 . PRO 
AQP4 . PRO 
AQP5 . PRO 

APPLICATIONS I N  SCIENCE, TECHNOLOGY, AND MEDICI N E  

\usepackage [ ]  {texshade} 

\begin{texshade}{AQPpro . MSF} 
\shadingmode [chemical] {func t i onal} 
\ s et ends { 1 }{ 1 38 . .  166} 
\ showlegend 

\end{texshade} 

To illustrate the flexibility of the package, we end the current section with an example of 
sequence fingerprints, which are obtained with the \f ingerprint command. Fingerprints 
provide a convenient overview of sequence similarities or properties since one can display a 
complete sequence on one single line. Residues are presented as colored vertical lines. The 
higher the similarity, the darker the vertical lines. Sequence gaps are drawn as lines (the 
\gapchar command with a rule argument, although this argument can be left blank, the 
default) . 

TM TM TM TMrM TM 

AQP 1 . PRO 

AQP2 . PRO 

AQP3 . PRO 

AQP4 . PRO 

AQP5 . PRO 

\usepackage [] {texshade} 

\begin{texshade}{AQPpro . MSF} 
\ shadingmode [allmat chspec i al] {s imilar} 
\ shadingcolors {grays} 
\f ingerprint{360} 

non conserved 
s imilar 
conserved 
all mat ch 

\ showlegend 
\gapchar{rule} 
\feature{top} { 1 } { 1 3  . .  36 , 5 1 . .  68 , 94 . .  1 1 2 ,  

138 . .  156 , 165 . .  185 , 2 1 1  . .  232}{ , - , }{TM} 
\end{texshade} 



8.3 Alignment and topology plots in bioinformatics 

8.3.2 Membrane protein topology plots 
Eric Beitz also wrote the textopo package, which provides a LATEX interface to generate 
shaded membrane protein topology plots. This package provides two new environments, 
textopo and helicalwheel. 

The textopo environment displays schematic topology plots of membrane proteins. It 
allows you to import sequence and topology data or alignment files in various formats. You 
can also manually enter the sequence and the positions of the membrane spanning domains 
within the environment. The package implementation will generate a basic layout from these 
data, which can be further adjusted by adding labels, special styles for the presentation of 
residues, automatic or manual shading, and annotations. 

\begin{ textopo} [parameterfilel 
textopo commands 

\end{textopo} 

The parameter file parameter file, which is optional, can contain any command defined by the 
textopo package 10 specify user parameter settings. The textopo environment itself must 
contain at least one command to load the sequence and topology dala for the protein that 
must be plotted (j.e., \getsequence or \sequence and \MRs, which specify the positions 
of the membrane regions). 

The following example, which IIses the file AQP1 . PHD, comes with the distrihution. 

\usepackage [] {textopo} 

\begin{textopo} 
\getsequence{PHD}{AQP1 . phd} 

Yo no transmembrane labels 
\hideTMlabels 

Yo small font size (range 1-10) 
\scaletopo{2} 

\end{textopo} 

The second environment, belicalwheel, is in its functionality quite similar to 
textopo, but produces output that shows helical transmembrane spans as helical wheels 

551 



552 APPLICATIONS IN SCIENCE, TECHNOLOGY, AND MEDICINE 

or nets. All or a subset of the transmembrane domains as well as their order can be chosen. 
Different views of the cell membrane are possible. 

\begin{helicalwheel} [parameter file] {helixlist} 
!urther helicalwheel  commands 

\end{helicalwheel} 

The parameter file, which i s  optional, i s  as  described for textopo. The mandatory argu
ment helixlist contains the list of the helices to be displayed. 

The example shows helices 1 and 4 of an aquaporin and rotates helix 4 by 50 degrees. 

\usepackage [] {textopo} 

\begin{he l i c alwheel } { 1 , 4 [50] } 
\getsequence{PHD}{AQP 1 . phd} 

\end{hel i c alwheel} 

1 40 

The full functionality of texshade is available with textopo. For example, protein topol
ogy plots can be shaded automatically according to the functional properties of their amino 
acid residues or according to sequence conservation based on protein alignments. Thus 
most texshade commands can be used in addition to the commands provided by textopo. 

A simple example of a topology plot with shading calculated according to protein align
ment data follows. The sequence and topology data are read in one file, and shading is ap
plied as calculated from alignment data read in a second file (see also Color Plate Xb) .  

\usepackage [] {texshade , t extopo} 

\begin{text opo} 
\get sequence{PHD}{AQP 1 . phd} 
\applyshading{s imilar}{AQPpro . MSF} 
\allmat chspec i al 
\loopext ent { 1 5 }  

\end{textopo} 



8.3 Alignment and topology plots in  bioinformatics 

extra 

• simi lar  posit ions 
., conserved positions 
., invariable positions 

A final annotated example shows how sequence data can be specified inline with the 
\sequence command. The \loopextent commands set the number of residues allowed 
in the straight sections (including the bends) for the loops in the structure. However, the 
fifth loop in the example is very long; hence the \loopfoot command was used to con
trol its layout. We let the loop go down in a straight line by 1 0  residues, then let it turn 
left. From that point onwards, the parameters defined in the \loopextent argument ap
ply ( 1 2  residues for each loop turn) .  The \labelstyle sets the style to be used for subse
quent labels, which are associated to residue regions with the \labelregion commands. 
These latter commands show the "neck" where the fifth loop descends and the role of the 
\loopextent settings. 

\usepackage [] {textopo} 

\begin{textopo} 
\ sequence{% 

MNTSAPPAVS PNITVLAPGK GPWQVAFIGI TTGLLSLATV 
TGNLLVLISF KVNTELKTVN NYFLLSLACA DLI I GTFSMN 
LYTTYLLMGH WALGTLACDL WLALDYVASN ASVMNLLLIS 
FDRYFSVTRP LSYRAKRTPR RAALMIGLAW LVSFVLWAPA 
ILFWQYLVGE RTVLAGQCYI QFLSQPI ITF GTAMAAFYLP 
VTVMCTLYWR IYRETENRAR ELAALQGSET PGKGGGSSSS 

553 



554 APPLICATIONS IN SCIENCE, TECHNOLOGY, AND MEDICINE 

SERSQPGAEG SPETPPGRCC RCCRAPRLLQ AYSWKEEEEE 
DEGSMESLTS SEGEEPGSEV VIKMPMVDPE AQAPTKQPPR 
SSPNTVKRPT KKGRDRAGKG QKPRGKEQLA KRKTFSLVKE 
KKAARTLSAI LLAFILTWTP YNIMVLVSTF CKDCVPETLW 
ELGYWLCYVN STINPMCYAL CNKAFRDTFR LLLLCRWDKR 
RWRKIPKRPG SVHRTPSRQC} 

% posit ion of the membrane regions 
\MRs{25 . .  47 , 62 . .  82 , 100 . .  1 2 1 , 142 . .  164 , 187 . .  209 , 367 . .  387 , 402 . .  42 1 }  
\Nt erm{extra}% s e t s  N-terminus 

\loopf oot{5}{lef t [ 1 0] }% f oot at 5th loop turns left aft er 10 res idues 
\loopextent { 12}% maximum number of res idue s in straight sections of loop 
\loopext ent [C] {26}% f or C-t ermini loop set t o  26 
\ scalet opo{+ 1 }  
\labelstyle{black}{circ}{Black}{Black}{Whit e}{} 
\labelregion [E , 7] {210  . .  2 1 9}{black}{ ' neck ' } 
\labelregion [W , 7] {237 [NW] . .  248 [SW] }{black}{ ' loopextent ' }  
\hidelegend 
\end{textopo} 

extra 

intra 

lJ7 

' Ioopextent' 



8.4 Drawing Feynman diagrams 

8.4 Drawing Feyn man diagrams 

The graphical technique of  Feynman diagrams was introduced by American physicist 
Richard Feynman in 1948 as a practical method for performing calculations in quantum 
field theory. In recognition for his work in quantum field theory. Feynman shared the 1965 
Nobel Prize in physics with Julian Schwinger and Shin-Ichiro Tomonaga. 

Originally the technique of Feynman diagrams was used to calculate scattering cross 
sections in particle physics. This implies summing the amplitudes of all possible interme
diate (and possibly virtual) states. Each such state is represented by its Feynman diagram. 
The Feynman technique offers a convenient way to keep track of tortuous calculations by 
introducing a symbolic notation for the factors appearing in each term of the perturbation 
series. Feynman diagrams do not necessarily represent real processes. They nevertheless 
provide a deeper physical insight into the nature of particle interactions. For this reason 
they have found their way into other fields of physics, such as statistical mechanics (see 
http : //en . wikipedia . org/wiki/Feyrunan_diagramfor more) .  

Given their importance in physics, several authors have developed ways of creating 
Feynman diagrams. Michael Levine's feynman package [79] is an implementation on top of 
standard E\TEX's pi cture environment. This makes it completely portable, but the graph
ics output is less than perfect and complex graphs are often impossible to draw. FeynArts 
is a Mathematica package that includes procedures to calculate and draw Feynman dia
grams [20] . We will not describe these packages any further. 

Instead, we shall look in greater detail at the work of Norman Gray, who has devel
oped a dedicated feyn font; Jos Vermaseren, whose axod raw package uses \special com
mands to directly access PostScript primitives; and Thorsten Ohl, whose FeynMF system 
uses METAFONT or METAPOST for drawing. 

8.4. 1 A specia l font for drawing Feynman diagrams 
Norman Gray designed the font feyn, which allows users to typeset relatively simple Feyn
man diagrams inside equations or within text, in a size matching the surrounding text size. 

The characters in the f eyn font are accessed by the \f eyn command, which must be 
used inside math mode. Given that in math mode spaces are ignored white space can be 
added to increase legibility. 

All characters available in the feyn font are displayed in Table 8. 1 3  on the following 
page in their \textstyle variant, together with their name and a short description. As 
seen in Table 8. 13 , almost all characters are obtained by typing a single letter or a couple of 
letters that form a ligature. The reference point of each character is indicated by the 0 sign. 
Characters that are marked with a t sign exist in two arrowed variants: an "j{' variant for 
arrows pointing rightwards or upwards, and a "V" variant for arrows pointing leftwards or 
downwards. Unassigned positions in the f eyn font are filled with a dummy character. 

\usepackage{f eyn} 

Arrows : $\f eyn{fA + gV}$ \newline 

555 

Arrows : - + �  
Fermion: -. Unknown: !. Fermion : $\f eyn{f s}$ . Unknown : $\f eyn{A}$ .  



556 APPLICATIONS IN SCIENCE, TECHNOLOGY, AND MEDICINE 

Table 8 . 1 3 :  The feyn font: available symbols, with their names and descriptions 

Symbol Result Description Symbol Result Description 

f � fermiont f s  G- short fermion 
f 1  fo\ fermion loop t fu if upward fermion t (45° )  
fd � downward fermion t fv l vertical fermion t 
f O  0 spacer fsO  0 short spacer 
g (!}V\, gluon/photon t gl � gluon loopt 

glB t:\ gluon loop (big)t glS � gluon loop (small)t 

glu � gluon loop upsidedown t g1  r: gluon loop, first quadrant 
(similar for 2, 3 , 4t)  

gu d upward gluon t (45° )  gd d<. downward gluon t 
gv � vertical gluon t m @== massive fermion t 
ms @= short massive fermion h 0---- ghost 
hs 0-- short ghost hu (3/ upward ghost (45° )  
hd 

" 
0 '" downward ghost X 181 counterterm vertex 

P <® proper vertex c cO complete vertex 
a � arrow 

t The symbol also exists in two arrowed variants; see the text. 

The feyn package provides commands to conveniently use the characters defined in the 
feyn font. We describe the more often-used ones_ 

\f eyn, \Feyn These commands are used inside math mode and typeset their argument 
using the f eyn font in the \displaystyle and \ text style variant. For example, 

\usepackage{f eyn} 

$\f eyn{fgl f } $  \qquad $ \Feyn{fglf }$ 

\momentum [pos] { ch}{text} This command typesets character ch (can be a ligature) and 
puts text at the recommended annotation position for that character. The optional argu
ment pos (possible values: top, urt , lrt, bot, 11ft ,  u1ft )  allows for a finer control 
of the placement. Note that the feyn package makes the " ! " character active and defines 
it to be \momentum. 

\Diagram{. . .  } This command, which can be used to build more complex diagrams, 
takes one argument, which is structured like the contents of an array environment 
with its elements formulae separated by &'s and \ \ symbols_ 



Example 
8-4-7 

8.4 Drawing Feynman diagrams 

\vertexlabel{p}{text} This command adds a label to a vertex. p can have only two 
values: _, which places text below the vertex, and .... , which places text above the vertex. 
For example, 

557 

\usepackage {f eyn} 

$\f eyn{\vert exIabel_{b}g\vert exIabel .... {a}}$  

The next example shows a simple fermion propagator. We load David Carlisle's slashed 
package to conveniently produce slashed symbols, which occur frequently in Feynman dia
gram calculations. The ! character serves as a shorthand for the \momentum command to 
place the "p" above the arrowed fermion line. 

a P b - = ---p - rno 

\usepackage {f eyn , slashed} 

$ \f eyn{\vert exlabel .... a 
! {fA}p \vert exlabel .... b} 
\di splaystyle 
\frac { i \delta .... {ab}}{\slashed{p}-m_O} $ 

The \Diagram command handles its argument as an array, as shown in the following 
example, where two fermion lines join to form a gluon line, with three vertices labeled with 
indices which are referenced in the formula on the right-hand side. 

b 

\usepackage{f eyn} 

$ 
\Di agram{\vert exlabel .... a \ \  

f d  \ \  

$ 

& g\vert exlabel_{\mu , c} \\  
\vert exlabel_b fu} 

\di splaystyle ig\gamma_\mu (T .... c ) _{ab} 

A fermion line with two gluon loops is shown next. The size effect of the \f eyn as 
compared to the \Feyn command is clearly seen. 

and -&- \usepackage{f eyn} 

$\f eyn{f s f glu f gl f f s } $  and 
$\Feyn{f s f glu f gl f f s } $  

Our final example shows how the f eyn characters can be  used a s  structural elements 
of an equation. 

\usepackage{f eyn} 

\begin{eqnarray} 
\f eyn{fcf}  &=& \f eyn{faf }  + \f eyn{fpf } + \ cdot s \\  

&=& \ sUID_{n=O} .... \ infty \f eyn{f saf s  ( pf saf s ) } .... n 
\end{eqnarray} 



558 APPLICATIONS IN SCIENCE, TECHNOLOGY, AND MEDICINE 

-0- --------- + --@-- + . . .  ( 1 )  
00 

(2) 

8.4.2 PostScript for drawi ng Feynman diagrams 
Jos Vermaseren's axod raw package defines a set of drawing primitives that can be used for 
simple graphics. This package is particularly well suited for Feynman diagrams but can 
also be used for flowcharts. It uses PostScript to implement its drawing commands and is 
presently interfaced only to dvips. 

The commands of axod raw should be executed inside a pi cture or f igure environ
ment. Inside such an environment, objects can be placed at arbitrary positions with text be
tween them. We next give a one-line summary of each of these commands, without detailing 
their arguments. See the manual for details. 1 

\ArrowAre (\DashArrowAre )  counterclockwise (dashed) arrowed arc segment 

\ArrowAren (\DashArrowAren) clockwise (dashed) arrowed arc segment 

\ArrowLine (\DashArrowLine ) (dashed) line with arrow in its middle 

\BBox, \BBoxe blanked-out box 

\BCire 

\Boxe 

. blanked-out circle 

box 

\BText , (\B2Text ) blanked-out box with one (two) lines of text 

\CAre (\DashCAre )  (dashed) counterclockwise arc segment 

\CBox, \CBoxe blanked-out colored box 

\CCire (\COval ) blanked-out colored circle (oval) 

\CText (\C2Text ) blanked-out colored box with one (two) lines of text 

\CTri blanked-out colored triangle 

\Curve (\DashCurve)  (dashed) curve through given points 

\EBox box 

\ETri (\BTr i )  (blanked-out) triangle 

\GBox, \GBoxe blanked-out grayscale box 

\GCire (\GOval ) blanked-out grayscale circle (oval) 

\GlueAre gluon on arc-segment 

\Gluon gluon between two points 

\GText (\G2Text ) blanked-out grayscale box with one (two) lines of text 

\GTri blanked-out grayscale triangle 

l The page http : //www . nikhef . nl / - f orm/maindir/others/others . html gives access to the man
ual as well as the latest version of the package. 



8.4 Drawing Feynman diagrams 

\LinAxi s  axis with linear scale on a graph 

\Line (\DashLine ) (dashed) line between two points 

\LogAxi s  axis with logarithmic scale on a graph 

\LongArrow line with arrow at its end 

\LongArrowArc counterclockwise arc segment with arrow at end 

\LongArrowArcn clockwise arc segment with arrow at end 

\Oval 

\Photon 

oval 

photon between two points 

\PhotonArc photon on arc-segment 

\SetColor sets color for next commands 

\SetPFont sets PostScript font 

\SetScale sets scale for PostScript graphics 

\Set Offset adds offset to all coordinates at Io'TEX level 

\SetScaledOff set adds offset to all coordinates at PostScript level 

\SetWidth sets line width for graphics operations 

\ Text, (\PText, \rText ) places (PostScript, rotated) text 

\Vert ex fat dot ("vertex") 

\ZigZag zigzag line between two points 

The following example shows how the different elementary building blocks (arrows, 
text, and zigzag line) are placed at specific coordinates as defined by the pi cture environ
ment. Note the use of the \rna thrrn commands to ensure that particle names are typeset in 
Roman. 

Feynman rule for the vertex Ve e W 

e 

V 

\usepackage{axodraw} 

Feynman rule f or the vertex 
$\nu_\mathrm{e}\mathrm{eW}$ 
\begin{ center} 
\begin{pi cture} ( 1 60 , 100)  ( 0 , 0 ) 

\ArrowLine (30 , 50 )  ( 10 , 90 )  
\Text ( 5 , 85 )  [J {$\mathrm{e}$} 
\ArrowLine ( 10 , 1 0 )  ( 30 , 50 )  
\Text ( 5 , 1 5 )  [J {$\nu$} 
\ZigZag ( 30 , 50 )  (90 , 50) {3}{6} 
\Text ( 95 , 58 )  [J { $ \lambda$} 
\Text ( 1 10 , 50 )  [lJ 

{$\di splaystyle\frac{- ig}{2\ sqrt {2}} 
\gamma_{\lambda} ( 1  - \gamma_{5} ) $}  

\end{pi cture} 
\end{ center} 

559 



560 APPLICATIONS IN SCIENCE, TECHNOLOGY, AND MEDICI NE 

This second example introduces the construction of an arc segment ( \CAre) with a 
vertex dot ( \  Vertex) in its middle). 

\usepackage{axodraw} 

The normal charged-current lept oni c de cay 
of the posit ive kaon : 
\begin{center} 

\begin{pi cture} ( 1 50 , 50 )  (0 , 0 ) 
\ArrowLine (70 , 30)  (20 , 30)  
\ArrowLine (20 , 20 )  (70 , 20)  
\CArc (70 , 25)  ( 5 , -90 , 90)  
\Vertex ( 75 , 25 ) {2} 

The normal charged-current leptonic decay of 
the positive kaon : 

\ZigZag ( 75 , 25)  ( 1 1 5 , 25) {2}{5} 
\ArrowLine ( 125 , 50)  ( 1 15 , 25 )  
\ArrowLine ( 1 1 5 , 25 )  ( 1 25 , 0 ) 
\Text ( 17 , 25 ) [r] {$\mathrm{K} �{+}$} 
\Text ( 130 , 45)  [l] {$\mu�{+}$} 
\Text ( 1 30 , 5 ) [1] {$\nu$} 

w+ 

\Text (25 , 35 )  [b] {$\mathrm{\bar{ s}}$} 
\Text ( 25 , 1 5 )  [t] {$u$} 

\end{pi cture} 
\end{ center} 

The next example shows a simple quark loop diagram for calculating quantum cor
rections to the Standard Model predictions for the mass of the W boson. It introduces 
two arcs with arrows (\ArrowArc) to draw the loop. Note the reference we make to the 
heppennames package (mentioned in Section 8. 1 )  to typeset the particle names. The equiv
alent command to get the same typeset result in math mode is appended as a comment in 
each case, amply demonstrating the convenience of the scheme. 

b 

w+ 
t 

\usepackage{axodraw , heppenname s} 

\begin{pi cture} (280 , 80) (0 , 0 ) 
\ZigZag ( 1 0 , 40 )  (50 , 40 ) {2}{5} 
\Z igZag ( 75 , 40 )  ( 1 15 , 40 ) {2}{5} 
\ArrowArc (62 . 5 , 40 )  ( 1 2 . 5 , 0 , 180)  
\ArrowArc ( 62 . 5 , 40 )  ( 1 2 . 5 , 180 , 360) 
\Text ( 62 . 5 , 58 )  [b] {{\large\Paqb}}%$ \bar{\mathrm{b}}$ 
\Text ( 62 . 5 , 22 )  [t] {{\large\Pqt}}%$\mathrm{t}$ 
\Text ( 5 , 40 )  [r] {{\large\PWp}}%$\mathrm{W}�+$ 
\Text ( 120 , 40 ) [1] {{\large\PWp}}%$\mathrm{W}�+$ 

\end{pi cture} 

Our final example adds a photon line ( \Photon) between the neutrino scattering 
vertices. We also use Andy Buckley's hepnicenames package, which complements his 
heppennames package (mentioned in the previous example) .  The former package proposes 
somewhat more mnemonic and simpler names to designate the particle names. 



8.4 Drawing Feynman diagrams 

\usepackage{axodraw , hepnicename s} 

Neutrino s c attering diagrams 
\begin{pi cture} ( 240 , 100)  ( 0 , 0 ) 

\ArrowLine (40 , 100)  (70 , 75 )  \ArrowLine ( 40 , 0 ) (70 , 25 )  
\Photon (70 , 75 )  (70 , 25) 3 4 \Text ( 1 05 , 50 )  [r] {\PWpm} 
\Text ( 1 1 0 , 1 5 )  [r] {\Pnue} \Text ( 40 , 1 5 )  [1] {\Pe} 
\ArrowLine (70 , 75 ) ( 1 00 , 100)  \ArrowLine (70 , 25 ) ( 1 00 , 0) 
% 

\Text ( 9 5 , 85 )  [r] {\Pe} 
\Text (40 , 85 )  [1] {\Pnue} 

\ArrowLine ( 170 , 100) (200 , 75 )  \ArrowLine ( 170 , 0 ) (200 , 25 )  
\Photon ( 200 , 75 )  (200 , 25 ) 3  4 \Text (225 , 50 )  [r] { \PZzero} 
\Text (265 , 85 )  [r] {\Pnue , \Pnum , \Pnut} \Text ( 265 , 1 5 )  [r] {\Pproton , \Pneutron , \Pe} 
\Text ( 140 , 1 5 )  [1] { \Pprot on , \Pneutron , \Pe} \Text ( 140 , 85 )  [1] { \Pnue , \Pnum , \Pnut } 
\ArrowLine (200 , 75 ) (230 , 100)  \ArrowLine (200 , 25 ) (230 , 0) 

\end{pi cture} 

e 

e p, n, e 
Neutrino scattering diagrams 

8.4.3 M ETA FONT and M ETA POST for drawing Feynman diagrams 

In this section we take a closer look at Thorsten Ohl's sophisticated FeynMF system [9 1 , 92] ' 
which fully exploits the formal structure of Feynman graphs, thereby freeing the user from 
specifying the layout manually with low-level graphic primitives. 

The aim of the FeynMF system is to provide a user interface so that the user need not 
specify graph layouts at the level of points and curves. The package was designed with the 
following goals: 

• Simplicity and conciseness for common diagrams. For example, the Z-particle produc
tion diagram (very common in high-energy physics) can be specified with just eight 
�TFX commands. The position of vertices is calculated automatically. 

\usepackage{feynmp} 

\begin{fmfgraph*} ( 100 , 70)  
\fmf left{em ,  ep} 

Zo 

p , n , e 

561 

\fmf {fermion}{em , Zee , ep} 
\fmf {phot on , labe1=$\mathrm{Z}$}{Zee , Zf f }  
\fmf {f ermion}{fb , Zff , f }  
\fmfright{fb , f} 
\fmfdot{Zee , Zff}  

\end{fmfgraph*} 



562 APPLICATIONS I N  SCIE NCE, TECHNOLOGY, AND MEDICINE 

• Expressiveness and extensibility for complex diagrams. 
• Portability. Only �TE,X and M ETAFONT (or METAPOST) are needed. 
• Integration with �TEX. All labels, including complex math expressions, are typeset by 

�TEX. 

Two versions of the FeynMF package are available: feynmf uses METAFONT for draw
ing, whereas feynmp uses M ETAPOST and can add color to diagrams. Apart from this 
distinction, the programs differ little at the �TE,X level. Just as in Chapter 3, we use the term 
META here if the explanation is valid for both programs. 

The FeynMF system works by writing METAFONT or METAPOST code into an exter
nal file. The sequence of use is as follows: 

1 .  Run �TE,X; this writes METAFONT or M ETAPOST code for all the pictures into a file. 

2. Run METAFONT or METAPOST; this generates either a set of PostScript files (META
POST) or a font with a set of characters, one for each picture; in addition, an auxiliary 
file with labeling information is created. 

3 .  Run �TEX again; this time the pictures or the font and the labeling information are used. 

If the FeynMF code in the :E\TE,X file does not change, there is no need to run METAFONT or 
METAPOST again every time you process the :E\TEX file. 

The choice to use METAFONT or M ETAPOST is taken in the preamble of a document 
by loading either the feynmf or feynmp package. The commands defining your diagrams 
are then placed within the scope of an fmff ile  environment, which has an argument spec
ifying the name of the file for intermediate META FONT or METAPOST code. Thus the 
skeleton of a complete :E\TE,X file might look like this: 

\document class{art icle} 
\usepackage{feynmf } 
\begin{document} 
\begin{fmf f ile}{fmpict} 

. . . .  diagram commands 
\end{fmff ile} 
\end{do cument} 

Here we chose feynmf, so a M ETAFONT file called fmpict . mf is created in which each 
character represents one diagram. 

To avoid a naming clash between the transcript files of1E,X and METAFONT or META
POST, all of which usually have the extension . log, the :E\TE,X source file cannot have the 
same name as the FeynMF file specified as the argument on the fmffile  environment 
(fmpict in the above example). 

When a file like the one containing the diagram of Example 8-4- 1 3  is run through �TEX 
for the first time, you see messages like the following: 

This is pdfeTeXk , Version 3 . 1 4 1 592 - 1 . 30 . 4-2 . 2  (Web2C 7 . 5 . 5 ) 
%&-line pars ing enable d .  



8.4 Drawing Feynman diagrams 

entering ext ended mode 
( . /f eynmfex . tex 
LaTeX2e <2003/ 12/01>  
( /texl ive/2005/t exmf -dist/tex/ latex/base/art icle . cl s  
Document Class : art icle  2004/02 / 1 6  v 1 . 4f St andard LaTeX document class 
( /texlive/2005/t exmf -dist/tex/latex/base/size 1 0 . clo»  
( /texl ive/2005/texmf -dist/tex/latex/f eynmf /f eynmf . sty 
Package : ' f eynmf ' v1 . 0  (rev . 1 . 12 )  < 1 995/05/06> (ohl»  
No f il e  f eynmf ex . aux . 
feynmf : Files fmpict . mf and fmpict . t fm not f ound : 
feynmf : Thi s  j ob will create fmpict . mf ,  process it later with METAFONT 
feynmf : and then reprocess this f i le . Don ' t  worry about a harmless premature 
feynmf : MakeTeXTFM that might have failed j ust a moment ago ! 
feynmf : Label f i l e  fmpict . t 1  not f ound : 
feynmf : Pro cess fmpict . mf with METAFONT and then repro cess this f i le . 
[ 1 ]  ( . /feynmf ex . aux) ) 
Output wr itten on feynmf ex . dvi ( 1  page , 232 byte s ) . 
Transcript written on feynmfex . log . 

The resulting file fmpict . mf must be processed by the META FONT program to gen
erate the 'lEX font metric file fmpict . tfm as well as a generic font . gf file. This file is then 
transformed with gftopk into a packed bitmap image of type . pk so that it can be used with 
a dvi driver: 

> mf " \mode=localfont ; \ input fmpict " 
This is METAFONT , Vers i on 2 . 7 1 828 (Web2C 7 . 5 . 5 ) 
(fmpict . mf 
( /texlive /2005/t exmf -dist/metaf ont /feynmf /f eynmf . mf )  
: 1 : \fmfL (49 . 98672 , 4 1 . 08102 , b ) {$\mathrm {Z}$}% [ 1 ]  ) 
Font metrics  written on fmpict . t fm . 
Output written on fmpi ct . 600gf ( 1  charact er , 4168 byte s ) . 
Transcript written on fmpict . log . 
> gft opk fmpict . 600gf 

When METAPOST rather than METAFONT is used to generate the images, the 
FeynMF system writes a METAPOST file called fmpict . mp. When the METAPOST pro
gram runs with this file as input, PostScript drawings in files named fmpict . n are created 
for each diagram in the input file (where n is the sequence number of the graph) .  These 
drawing files are automatically included in following IHEX runs using the standard graph ics 
package. 

You can run FeynMF in two different modes, depending on how you want to tackle a 
particular problem: 

• Vertex mode, in which the layout is determined automatically from the mathematical 
description of the graph (including its vertices and arcs); physical coordinates are not 
normally specified. 

• Immediate mode, in which you can completely control all physical coordinates by cod
ing in META. 

Vertex mode and a lgorithmic layout 

In vertex mode, everything can be specified at the E'-TEX level and no knowledge of M ETA is 
needed. For maximal flexibility, FeynMF accepts a mathematical description of a graph and 

563 



564 APPLICATIONS I N  SCIENCE, TECHNOLOGY, AND MEDICINE 

Table 8 . 14: FeynMF vertex and fill styles 

f illed=- . 5  f i lled=O f illed= . 5  f illed=1 

c ircle e 0 � e 
square m D � II 
triangle A � A. • 
diamond + <> � + 
pentagon e 0 � * 
hexagon @ 0 � e 
triagram A � A A 
tetragram + {> + + 
pentagram * {:( "* * 
hexagram * * * * 

creates the layout of the corresponding Feynman diagram automatically from that specifica
tion. 

FeynMF includes commands to place external vertices along the sides of a diagram. To 
calculate optimal positions for the vertices, FeynMF minimizes a weighted sum of squared 
lengths for the internal vertices with the help of META: 

where i ,  j run over all combinations of vertices. The elements of the tension matrix tij are 
taken as 1 by default, but the user can specify other values to fine-tune the layout. The ten
sion values can be viewed as rubber bands that let you pull together or push apart adjacent 
vertices, as shown in the following example: 

�ij � 1 /4 

Practice has shown that the most effective way to draw Feynman diagrams is a combi
nation of step-by-step construction of subgraphs and, if necessary, adjustment of tensions. 
Often the default settings for the tensions give a quite satisfactory result straightaway, and 
only fine-tuning the tension of a single arc or loop is necessary. 

A large choice ofline, vertex, and fill styles are used by physicists, and FeynMF provides 
the most common styles (see Tables 8. 14 and 8. 15 ) .  



8.4 Drawing Feynman diagrams 

\.Q..Q..Q.SV : cur 1 y 

- - - - - : dashes 

Table 8. 1 5: FeynMF line styles 

� : dbLcurly 

- - - - -- - - - - : dbl_dashes 

: dot s 

0 0 0 0 0 0 0 0 0  : dbl_dot s 

: phantom ---- : plain 

: dbl_plain � : wiggly 

� : zigzag 

- - .. - : dashes_arrow 

= = �= : dbl_dashes_arrow . . . .  � . . .  : dots_arrow 

0 0 0 .- 0 0  : dbl_dot s_arrow 

� : phantom_arrow 

� : plain_arrow 

.. : dbl_plain_arrow 

� : dbl_wiggly 

WIJ!JIltl(J£ : dbl_zigzag 

\fmfleft{vb . . .  } 
\fmfright{vI , . . .  } 
\fmftop{ Vi> • • •  } 
\fmfbottom{ VI , . . .  } 
\fmf surround{Vl, . . .  } 

\fmf leftn{vHn} 
\fmfrightn{v}{n} 
\fmftopn{v}{n} 
\fmfbott omn{v}{n} 
\fmf surround{v}{n} 

These are FeynMF's basic commands in  vertex mode; they place the set of  external vertices 
VI, .  . .  at the left, right, top, bottom, or surrounding the diagram. The right-hand form of 
the commands (with suffix n) places all vertices V from 1 to n, without the need to list them 
explicitly. 

! \fmf curved \fmf straight ! 
By default, the external vertices are put on a smooth curved path. When the \fmf straight 
command is specified, they are put on a straight path from then on (i.e., \fmf curved and 
\fmf straight switch between both alternatives). 

\fmf {lsty H VI, . . .  } 
\fmf cyclen{lsty H V Hn} 

\fmfn{lsty}{ v}{n} 
\fmfrcyclen{��}{v}{n} 

The command \fmf connects a set of  vertices VI , . . .  with line style lsty (see Table 8 . 15 ) .  This 
line style can be customized further by specifying a number of options (see Table 8 . 16 ) .  For 
instance, 

\fmf {f ermion , tension= . 5}{vw , vn , ve , vs , vw} 

connects the specified internal vertices with a "fermion" line using a "tens ion" keyword 
value of 0 .5 .  The other commands \fmfn, \fmf cyclen, and \fmfrcyclen connect ver
tices Vi to Vn normally, cyclically, or cyclically in reverse order, respectively. 

565 



566 APPLICATIONS IN SCIENCE, TECHNOLOGY, AND MEDICINE 

Table 8. 16 :  FeynMF line-drawing keywords 

Keyword Name 

label 
label . s ide 
label . dist 
left 
right 
straight 
tag 
tension 
width 

f oreground 
background 

I \fmfpen{ wgt} I 

Explanation 

lEX text used for arc label 
place label at "left" or "right" 
place label at given distance 
draw half-circle on left 
draw half-circle on right 
draw straight line (default) 
tag for disambiguating arc (if needed) 
draw tighter ( >  1 )  or looser « 1 )  arc 
line width 
foreground color (METAP05T only) 
background color (METAP05T only) 

This command sets the thickness (weight) of the lines to wgt. Predefined sizes are thin and 
thi ck. To change the width of individual arcs, use the width keyword (see Table 8 . 16) .  

\fmfv{vopt}{VI , .  . .  } \fmfvn{voptHvHn} 

The command \fmfv declares the set of internal vertices Vb . . .  with options vopt (\fmfvn 
does the same for vertices VI to vn ) .  Table 8 . 14  on page 564 shows some of the available 
vertex forms and fill styles, and Table 8. 1 7  on the facing page shows possible values for the 
options associated with vertices. 

I \fmfdot{vl, . . .  } \fmfdotn{v}{n} I 
This is a special case of the \fmfv command, in which a set of vertices is drawn as dots. For 
instance, the two following commands are equivalent: 

\fmfdotn{v}{4} 
\fmfv{de cor . shape=circle , decor . f illed=full , 

decor . s ize=2thick}{v l , v2 , v3 , v4} 

\fmfblo b{dia}{ VI, . . .  } \fmfblo bn{diaH V Hn} 

Similarly, Thorsten Ohl has created a shorthand for drawing a "blob"; both commands below 
have the same result: 

\fmfv{de cor . shape=circle , decor . f i lled=shaded , 
decor . s ize=5mm}{vblob} 

\fmfblob{5mm} {vblob} 



8.4 Drawing Feynman diagrams 

Table 8. 1 7: FeynMF vertex-drawing keywords 

Keyword Name 

decoration . shape 
decoration . size 
decoration . f i lled 
decoration . angle 
label 
label . angle 
label . dist 

f oreground 
background 

Explanation 

shape of decoration 
size of decoration 
fill, shade, or hatch decoration 
rotate decoration 
lEX text used for vertex label 
place label at angle with respect to vertex 
place label at given distance 
foreground color (META POST only) 
background color (METAPOST only) 

\fmfpoly{ voptH VI,  . . . } \fmpolyn{ voptH v}{n} 

Complex vertices are commonplace in solid-state physics. They can be constructed with 
polygons. The command \fmfpoly places the vertices Vb . . .  on a polygon using the ar
gument vopt (\fmpolyn is similar for vertices VI to vn ) .  Possible keywords are listed in 
Table 8. 1 8  on the next page. 

I \fmffreeze l 
A number of commands let you influence the automatic layout algorithms of FeynMF.  Per
haps the most important is \fmffreeze, which calculates the diagram up to the current 
point and "freezes" it, so that arcs added later do not affect its positioning. This important 
technique of using skeletons in the construction of diagrams is described in detail in the 
manual [92] (see also Example 8-4- 18 ) .  

METAPOST lets you use color in  your diagrams (via the f oreground and 
background specifiers in the line- and vertex-drawing keywords of Tables 8. 1 6  and 8. 1 7) .  
The predefined colors are white,  black, red, green, and blue;  other colors can be 
specified as RGB (red, green, blue) triplets. For instance, f oreground= C 1  "0 , ,  1) 1 and 
foreground=red+blue are equivalent. For arcs, the background color is used only for 
the interior between double lines. For example, the following command draws a red gluon 
line between the vertices in and out : 

\fmf {gluon , f ore=red} { in , out } 

Note that keywords can be abbreviated to their shortest non-ambiguous form (e.g., 
fore for f oreground in the previous example). This works for each dot-separated com
ponent of a keyword name; thus 1 .  d is interpreted as label . dist .  

FeynMF can calculate optimal positions for labels with the help of  META FONT. Since 
METAFONT can write only to its . log file, the positioning information needed to typeset 

1 Note the double commas ",,", which are needed to disambiguate the comma as a keyword separator in the 
commands and inside the keyword values. 

567 



56� APPLICATIONS I N  SCIENCE, TECHNOLOGY, AND MEDICI NE 

Table 8. 18 :  FeynMF polygon keywords 

Keyword Name 

empty 
f ill 
f illed 
hatched 
label 
label . angle 
label . dist 
phantom 
pull 
shade 
smooth 
tension 

foreground 
background 

Explanation 

only outline drawn 
filled interior 
interior filled, shaded, or hatched 
hatched interior 
'lEX text for labeling polygon 
place label at angle with respect to vertex 
place label at given distance 
nothing is drawn 
edges pulled in « 0 ) or out (>0)  
shaded interior 
corners are drawn smoothed 
tension used for edges 
foreground color (METAP05T only) 
background color (M ETAP05T only) 

the labels with �TEX is written in that file, which is subsequently read and parsed by �TEX.. By 
default, all labels are placed at the outside of the arc or vertex with which they are associated. 
Explicit user placement of labels is possible, of course, as described in the manual. 

To get a flavor of how to specify Feynman diagrams in vertex mode, look at the diagram 
in Example 8-4- 1 7. The environment fmf gr aph contains the description of a single Feyn
man diagram. In analogy with �TEX's standard picture environment, the argument inside 
the parentheses specifies the width and height of the diagram in units of \uni tlength. 
This environment does not allow labeling the diagram. To add labels-for instance, to la
bel the central arc and the external vertices in our figure-we would use the starred version 
fmfgraph*. 

\usepackage{ f eynmp} 

\begin{fmfgraph*} ( 100 , 60 )  
\fmf l eftn{i}{2} \fmfrightn{o}{4} 
\fmf label{$ \mathrm{e}�-$} { i l }\fmf label{$\mathrm{e} �+$}{i2} 
\fmf label{$\mu�+$}{o l }  
\fmf l abel{$\nu_{\mu}$}{o2} 
\fmf label{$\mathrm{s}$}{o3} 
\fmf l abel{$\bar\mathrm{c}$}{o4} 
\fmf {f ermion}{ i l , vl , i2} 
\fmf{bos on , label=$\gamma , , \mathrm{Z}$}{vl , v2} 

1 0  \fmf {bos on}{v3 , v2 , v4} 
I I  \fmf {f ermion}{ o l , v3 , o2} 
1 2  \fmf {f ermion}{o4 , v4 , o3} 
1 3  \fmfdot {vl , v3 , v4}\fmfblob{ . 1 2w}{v2} 
1 4  \end{fmfgrapM} 



8.4 Drawing Feynman diagrams 

c 

Line 2 declares two incoming particles (at the left of the diagram; \fmf leftn command) 
and four outgoing particles (at the right of the diagram; \fmfrightn command) and lines 
3-7 assign them a label. The inner vertices are numbered vi  to v4 from left to right, so that 
line 8 connects the incoming fermions i 1  and i2  with the first inner vertex vi .  In line 9, 
this vertex is connected with a boson line style to the left of the "blob" (inner vertex v2) ,  and 
a label is added. Line 10 draws the boson line between the internal vertices v2, v3, and v4; 
lines 1 1  and 12  connect these latter two inner vertices with outgoing fermion lines. Finally, 
on line 13 ,  vertices vi ,  v3, and v4 get a dot, while a blob with a diameter equal to . i2w (w 
being the total width of the diagram) is put at vertex v2. 

Immediate mode 

FeynMF's vertex mode operates on abstract vertices, and the result depends on how these 
vertices are connected. In most cases this "automatic" vertex mode suffices to obtain the 
desired layout. However, with minor exceptions, this mode can produce only straight lines. 
If you want curved arcs, you should use FeynMF's immediate mode instead. This mode also 
lets you control the positioning of the diagram elements more closely, since it acts on the 
vertex coordinates and the arcs connecting them. 

Let us consider the loop diagrams in Example 8-4- 1 8. The left-hand graph is drawn in 
vertex mode, while the right-hand version, which is created using immediate mode, has a 
more attractive appearance. 

\usepackage{feynmp} 

\fbox{\begin{fmfgraph} ( 100 , 40 )  
\fmf left{w}\fmfright{e} 
\fmf {boson}{w , vw}\fmf {bos on}{ve , e} 
\fmf {f ermion , tension= . 5}{vw , vn , ve , vs , vw} 
\fmf {gluon}{vn , vs }  
\fmf f ixed{ ( O , h) }{vn , vs }  
\fmfdot{vw , vn , ve , vs} 

\end{fmfgraph}} 
\fbox{\begin{fmfgraph} ( 1 00 , 40) 

1 0  \fmf left {w}\fmfright{e} 
1 1  \fmf {boson}{w , vw}\fmf {boson}{ve , e} 
1 2  \fmf {phant om , left , t ension= . 4}{vw , ve , vw} 
13  \fmf dot { vw , ve} 
14  \fmf f reeze 
1 5  \fmf ipath{pn , ps}\fmf ipair{vn , vs }  

569 



570 APPLICATIONS IN SCIENCE, TECHNOLOGY, AND MEDICINE 

1 6  \fmf iequ{pn}{vpath ( _ _  vw , _ _  ve ) }  
1 7  \fmf iequ{ps } {vpath ( _ _  ve , _ _  vw) } 
1 8  \fmf iequ{vn}{po int . 51ength (pn) of pn} 
19  \fmf iequ{vs } {point . 51ength(ps)  of ps} 
20 \fmf i{fermion}{subpath ( O , . 5 ) *length (pn) of pn} 
2 1  \fmf i{f ermion}{subpath ( . 5 , 1 ) *length (pn) of pn} 
22 \fmf i{fermion}{subpath ( O , . 5 ) * length (ps ) of ps} 
23 \fmf i{fermion}{ subpath ( . 5 , 1 ) *length (ps)  of ps} 
24 \fmf i{gluon}{vn--vs} 
25 \fmf iv{dec . sh=circle , dec . s iz=2thi ck}{vn} 
26 \fmf iv{de c . sh=circle , dec . s iz=2thi ck}{vs} 
2 7  \end{fmfgraph}} 

For clarity, the vertices of both loop diagrams are named-going clockwise, vw, vn, ve, 
and vs (for west, north, east, and south, respectively) . In the first diagram we observe on 
line 4 the use of the tens ion keyword to control the fermion loop. Line 6 has a \fmff ixed 
command, which fixes the distance between subsequent vertices in the list. Here the distance 
between the top vertex and the bottom vertex is fixed to the height of the diagram h, 40 
"units" ( such a constraint is used in the METAFONT processing step for calculating the 
layout of the diagram). Without this command the loop would collapse. 

Now look at the "improved" diagram. Lines 10 and 1 1 , which correspond to the "ex
ternal" lines, are identical to those in the previous diagram. The \fmffreeze command 
(line 14)  ensures that this part of the diagram remains fixed (i.e., it cannot be influenced by 
subsequent FeynMF commands), From line 1 5  onwards we use FeynMF's immediate com
mands, all of which start with the four letters fmf i . !  The \fmf ipath and \fmf ipair 
commands declare a M ETA path and a coordinate pair, respectively. Lines 16- 1 9  are assign
ments (argl =arg2) .  Note the vpath commands, which get the META path between two 
vertices (after \fmf freeze) .  Note also that the vertices must be preceded by a double un
derscore (e.g., ve becomes __ ve) .  The \fmf i commands on lines 20-24 draw a line in the 
given line style (first argument) along a path (second argument) . Line 24 also shows META's 
-- operator, which forces a straight line (for the gluon) . Finally, lines 25 and 26 draw a vertex 
with the \fmf i v command at the M ETA coordinates specified as the second argument. 

We end this section with a few more practical examples. The first one shows how �TEX 
\parbox commands can be used to include Feynman diagrams in an equation. Further 
fine-tuning is possible with the help of \hspace commands. 

\us epackage{feynmp} 

\begin{equat i on} 
\parbox{40mmH% 

1 For a detailed understanding o f  these commands, you should have some familiarity with M E T A 's constructs, 
such as how they connect vertices using Bezier curves; see, for example, Knuth [72 ] .  



8.4 Drawing Feynman diagrams 

\begin{fmfgraph*} ( 1 00 , 90 )  
\fmfleft{i}\fmfright{o} 
\fmf {photon}{i , v3} \fmf {photon}{v3 , v 1 }  
\fmf {phot on}{v4 , v2}\fmf {photon}{v2 , o} 
\fmf {f ermion , left , tens i on= . 3}{v1 , v4 , v1 }  

\end{fmfgraph*}} 
=\frac {-i \etaA{\mu\alpha}}{qA2+i \ep s i lon} \left [\hspace * { -O . l cm} 
\parbox{30mm}{% 

\begin{fmfgraph* } ( 60 , 60 )  
\fmf left{i}\fmfright{o} 
\fmf {phantom}{i , v 1 }\fmf {phant om}{v2 , o} 
\fmf {f ermion , left , tens i on= . 3}{v1 , v2 , v 1 }  
\fmfdotn{v} {2} 
\fmf label{$\alpha$}{v 1 } \ fmf label{$\beta$}{v2} 

\end{fmfgraph*}} 
\hspace*{- l cm} \right] 
\frac{-i\etaA{\bet a\nu}}{qA 2+i\epsi lon}\label{f eyneq} 

\end{equat ion} 

-iT]ILOI 
q2 + if 

-iT](3v 
q2 + if ( 1 ) 

Example 8-4-20 shows how textual labels can be placed in various positions on the dia
gram. 

\us epackage{f eynmp} 

\begin{fmfgraph* } ( 90 , 70 )  
\fmfleft{ i 1 }  \fmfright{o l , 02 , o3} 
\fmf {f ermion , label . s ide=right , label=$\mathrm{u} $ } { i 1 , v 1 }  
\fmf {f ermion , label . s ide=right , label=$\mathrm{d}$}{v1 , o 1 }  
\fmf {photon , label . s ide=lef t , labe l . dist=lmm ,  

label=$\mathrm{W} A {+}$ , t ens i on=0 . 5}{v1 , v2} 
\fmf {f ermion , label . s ide=left , label . di st=lmm , 

label=${\nu}_\mathrm{e}$ , t ension=0 . 5}{v2 , o2} 
\fmf {f ermion , label . s ide=right , 

label=$\mathrm{e} A {+}$ , t ension=0 . 5}{o3 , v2} 
\end{fmfgrapM} 

Finally, Example 8-4-2 1 displays a more complex cyclic diagram constructed with the 
\fmf eye len command, using the tens ion keyword to control the appearance of arcs and 
edges. 

571 



572 APPLICATIONS IN SCIENCE, TECHNOLOGY, AND MEDICINE  

\usepackage{f eynmp} 

\begin{fmf graph*} (90 , 70 )  
\fmf left {i l , i2} \fmfright { o l }  
\fmf {photon , tension=4}{ i l , v l }  \fmf {photon , tension=4}{i2 , v3} 
\fmf {photon , tens i on=4}{v2 , o l }  
\fmf cyclen{fermion , t ension= 1 }{v}{3} 
\fmf {f ermion , tension= 1 , left= 1 . 4/3}{v l , v3} 
\fmf {f ermion , tens i on= 1 , left=2/3}{v3 , v2} 
\fmf { f e rmion , tens i on= 1 , left=2/3}{v2 , vl }  

\end{fmfgraph* }  

8.4.4 Extending FeynMF 

Sometimes i t  i s  necessary to go beyond FeynMF's predefined facilities. In such a case, we can 
use META commands directly, either by inputting a META file or by exploiting FeynMF's 
\fmf cmd command. 

I \fmf cmd{MFcmds} I 
The \fmf cmd command enters the META commands MFcmds directly into the output file. 
This facility can be useful for defining new line styles. A META macro style_def is used to 
register the new style with FeynMF  and to define a macro to be called whenever the new style 
is referenced-for instance, as the first argument in an \fmf command. Such functions are 
called transformers since they take a M ETA path as their argument and return a transformed 
(embellished) path. This facility has already been used to obtain the various line styles given 
in Table 8. 1 5  on page 565. For example, you can first transform a line into a wiggly line and 
then add an arrow with the help of the predefined style wiggly: 

\fmf cmd{% 
style_def charged_boson expr p 
draw (wiggly p) ; 
f ill  ( arrow p )  
enddef ; }  

In general, all of M ETA's path-related commands are available to extend FeynMF. To handle 
color (with METAP05T), you should use feynmp's explicitly color-aware functions, such 
as cdraw and cf ill .  

8.5 Typesetting t iming diagrams 

Jens Leilich and Ludwig May wrote the t iming package to typeset timing diagrams for dig
ital circuits. They developed a METAFONT alphabet of symbols and used METAFONT's 
ligature mechanism to typeset logic transitions. Figure 8.2 on page 574 shows a complete 
example of the use of the t iming package. 



8.S Typesetting timing diagrams 

8.5 . 1  Commands in  the t iming environment 

The commands described in this section can be used only inside the t iming environment; 
it is an extension ofIHEX'S picture environment, so that all picture-specific commands 
are available as well. The chosen \uni t length unit is 1 sp. 

\begin{ t iming} [symbol-type] {label-width} . . .  \end{ t iming} 

The optional argument symbol- type specifies which of the four timing-symbol font variants 
is to be used. Its value can be 1 ,  1 s, 2, or 2s,  where the digit represents the width (about 1 or 
2 mm) and the letter s selects oblique (rather than vertical) lines to connect the signal levels. 
By default, symbols of type 2 are used. Table 8. 1 9  on page 575 shows all of the signal sym
bols with their representative letters and examples in all four font variants. The mandatory 
argument label-width gives the width of the widest label describing the signals. These labels 
are typeset to the left of the signal lines. 

I \t il{y-posHsymbols} I 
A signal line in a timing diagram is typeset using the \ t i l  command; y-pos denotes the line 
position in the diagram. In most cases you should use consecutive integer values. The second 
argument symbols contains a combination of letters (see Table 8. 1 9  on page 575) represent
ing various signal states. Because of the way in which the symbol fonts are implemented, it 
is best to have at least two identical letters representing each state. Otherwise, the ligature 
mechanism that draws the state transitions may not work correctly. 

The symbols argument can also contain one of following commands: 

\ t im ingc oun t er{separation} {Start-value} {End-value} {Interval} 
\contt imingcounter{separation}{Start-value}{End-value}{Interval} 

These commands typeset a scale of numbers representing timing values. The second form 
\contt imingcounter, for use after an interruption, also leaves the necessary space. 

I \t in{y-posHtext} I 
The \ t in command describes the label of the signal line. By using the same y-pos value as 
in the corresponding \ til  command, the argument text is centered properly to the left of 
the line. 

I \ tnote{y-posHx-posHtext} I 
The \ tnote command lets you place annotations anywhere on a signal line. Again, the y
pos should correspond to the value in the \ til  command (you may want to add or subtract 
a bit to move the text vertically). The x-pos denotes the horizontal start position-that is, the 
width of the symbols produced by letters in the symbols argument of the \ t i l  command is 
used as a unit (e.g., a value of 5 denotes the position after LHHHL) .  

573 



574 APPLICATIONS IN SCIENCE, TECHNOLOGY, AND MEDICINE 

\us epackage{t iming} 

\begin{t iming} [2s] { 1 . 4cm} 
\tnote{O . 5}{4}{$\mathrm{T}_ 1 $ }  
\tnote{O . 5} { 1 2}{$\mathrm{T}_2$}\tnote {O . 5}{20}{ $\mathrm{T}_ i $ }  
\tnote{O . 5}{28}{$\mathrm{T} _ 1 $}\tnote{O . 5}{36}{$\mathrm{T}_2$} 
\tnote{O . 5}{44}{$\mathrm{T}_i$}\tnot e{O . 5}{52}{$\mathrm{T } _ l $ }  

%% Clock 
\ t in { 1  H CLK} 

. . . .  1 1 1 1 . . . .  2222 . . . .  i i i i . . . .  1 1 1 1 . . . .  2222 . . . .  i i i i . . . .  1 1 1 1  
\ t i l { l }{HHHHLLLLHHHHLLLLHHHHLLLLHHHHLLLLHHHHLLLLHHHHLLLLHHHHLLLL} 

%% Adre s s e s  l ine . . . .  1 1 1 1  . . . .  2222 . . . .  i i i i  . . . .  1 1 1 1  . . . .  2222 . . . .  i i i i  . . . .  1 1 1 1  
\ t in{2}{ADDR} \til{2}{VVVVXVVVVVVVVVVVVVVVXVVVVVVVXVVVVVVVVVVVVVVVXVVVVVVXVVVV} 
\tnote{ 1 . 85} { 1 0} {Val id}\tnot e { 1 . 85}{22}{ Inval id}% 
\tnote { 1 . 85}{34}{Val id}\tnot e { 1 . 85}{46}{ Inval id} 

%% Adre s s e s  status . . . .  1 1 1 1  . . . .  2222 . . . .  i i i i  . . . .  1 1 1 1  . . . .  2222 . . . .  i i i i  . . . .  1 1 1 1  
\t in{3}{ADS\#} \til{3}{HHHHLLLLLLLLHHHHHHHHHHHHHHHHLLLLLLLLHHHHHHHHHHHHHHHHLLLL} 

%% Write/Read . . . .  1 1 1 1  . . . .  2222 . . . .  i i i i  . . . .  1 1 1 1  . . . .  2222 . . . .  i i i i  . . . .  1 1 1 1  
\t in{4}{W/R\#} \til{4}{HHHHLLLLLLLLLLLLLLLLFFFFFFFFHHHHHHHHHHHHHHHHFFFFFFFFLLLL} 

%% Burst ready . . . .  1 1 1 1  . . . .  2222 . . . .  i i i i  . . . .  1 1 1 1  . . . .  2222 . . . .  i i i i  . . . .  1 1 1 1  
\t in{5}{BRDY\#}\til{5}{UUUUUUUUUUUUZZZZZZZZ�ZZZZZZZZUUUUUUUUUUUU} 

%% Data l ines . . . .  1 1 1 1  . . . .  2222 . . . .  i i i i  . . . .  1 1 1 1  . . . .  2222 . . . .  i i i i  . . . .  1 1 1 1  
\t in{6}{DATA} \til{6}{ZZZZZZZZZZZZVVVVVVVVZZZZZZZZZZZZZZZZVVVVVVVVZZZZZZZZZZZZ} 
\tnote{5 . 85}{ 14}{To CPU}\tnot e{5 . 85}{37}{From CPU} 
\ s l ine{O . 6}{O}{6 . } \ s l ine{O . 6}{8}{6 . } \ s l ine{O . 3} { 1 6}{5 . 5}\sline{O . 6}{24}{ 1 . 5} 
\ s l ine{2 . 1 }{24}{6 . }\ s l ine{O . 6}{32}{6 . } \ s l ine{O . 3}{40}{5 . 5} \ s l ine{O . 6}{48}{ 1 . 5} 
\ s l ine{2 . 1 }{48}{6 . }\ s l ine{O . 6}{56}{6 . }  

\ end{t iming} 

eLK 

ADDR Valid Valid 

ADS# 

WIR# 

BRDY# 

DATA 

Figure 8.2: Timing diagram of a memory read followed by a memory write 



8.5 Typesetting timing diagrams 

Table 8. 19: Symbol combinations in all font variants 

Letter 

L Low level 

H High level 

Symbol 1 
Font Variants 

1 s  2 2s  

F Floating line (unknown level) 

HLLLLH --+ U U U V 
LHHHHL --+ n n n n 
LFFFFH --+ D D D 0 
hllllh --+ U U U U 
Ihhhhl --+ TI n n D 

1 

h 

v 

x 

u 

z 

Low level with marks 

High level with marks 

Empty line with marks 

Valid bus 

Bus with change of state 

Invalid bus 

Tristate 

. . . . . .  --+ 

zvvvvu --+ -0 a -D -D 
vvvxvv --+ I I I I 
zuuuuv --+ -Wi {N -D �� 
vzzzzu --+ H H H H 

T Top line with time mark TtttTt --+ 

t Top line without time mark TtTtTt --+ 

B Bottom line with time mark BbbbBb --+ 

b Bottom l ine without time mark BbBbBb --+ 

Interruption sign uuu-uu --+ 

\rarw{y-pos}{x-pos}{length} { text} \larw{y-pos} {x-pos} { length} { text} 

These two commands produce horizontal arrows: \rarw points to the right, \larw points 
to the left. To position such an arrow over a signal line, make the y-pos a little smaller (e.g., 
o . 6) than the line value. 

575 



576 APPLICATIONS IN SCIENCE, TECHNOLOGY, AND MEDICINE 

! \sline{y-pos}{x-posHy2-pos} ! 
A vertical line is drawn with the \sline command, starting at y-pos/x-pos and going down 
to y2-pos/x-pos. The width of such lines can be influenced with E\TEX's \linethickness 
declaration. 

8.5.2 (ustomization 
A diagram can be further fine-tuned with the following commands: 

! \t imescalefactor ! 
This command controls the separation between lines (the default value is 2, which means 
there is one empty line between two signal lines that are one vertical y-pos apart). 

! \t imadj Ust ! 
This command adjusts the vertical lines (the default value is Opt ) .  It can be of help if the 
printer driver does not position the vertical lines properly in the middle of the state transi
tions. 

Both these values are set using \renewcommand. 

8.6 Electronics and optics circu its 

As with Feynman diagrams (see Section 8.4), a variety of techniques can be used to type
set circuit diagrams. In this section we first look at the eire package, which uses dedicated 
fonts. Next we study the eireu iCmaeros package, a series of macros written for the m4 
macro processor. Finally we briefly mention the interactive XCireuit package, which gener
ates PostScript output.' 

8.6. 1 A special font for drawing e lectron ics and optics diagrams 

The eire package (CTAN: macros/generic/diagrams/circ)  by Sebastian Tannert and 
Andreas Tille can be used to typeset circuit and optics diagrams. This package provides a 
convenient way to draw diagrams containing not only resistors, capacitors, and transistors, 
but also lenses, mirrors, and the like. Symbols are coded in META FONT, so that the output 
can be printed or viewed on any device. 

The principles underlying the eire package are similar to those in a turtle system: all 
symbols and wires are drawn with respect to a "current" point that is advanced automatically, 
though if necessary the drawing position and direction can be set by hand. The package 
has commands to draw, justify, link, and position symbols and wires either absolutely or 
relatively. 

I There is also the makeci rc package by Gustavo S. Bustamante Argafiaraz, a M ETR PO 5T library for drawing 
electric circuit diagrams, see the section on electrical circuits in Chapter 4. 



8.6 Electronics and optics circuits 

Table 8.20: Electronic circuit symbols (bas ic  option) 

ground and junction \GND ...L \gnd ---b- \ .  Rn ¢ resistors and capacitor \R ---c=::J- \Rvar \C 

capacitors and diode \Cvar # Cn \Cel $ Cn \D 

various diodes \ZD 
* Dn 

\LED 
�� Dn 

\Dcap 

1 U +- Un 
sources \U T n \Uvar \ 1  

source and meters \1var 
�In 

\V 
¢ Un 

\A ( Ln � 
c:J Qn 

coil ,  crystal \L \xtal T 

lamps, switch \La 
� Lan 

\GasLa O n 
\S 

(photo) transistors \npnEC � \pnp A \npnPH 

FET and VMOS \nf et h \pfet h \nvrnos 

� � 
VMOS \pvrnos ---ITT.- \namos .lJ "L  \pamos 

The eire package is subdivided into several parts that can be specified separately as op
tions to the \usepackage command: 

basic  basic symbols, such a s  resistors, capacitors, switches, diodes, and transistors (see 
Table 8.20) 

box blackbox, oscilloscope, generator, and amplifier (see Table 8.22 on the next page) 

gate logical circuits (an oldgate option offers old-fashioned variants) (see Table 8.2 1 
on the following page) 

ic  integrated circuits, such as flip-flops (see Table 8.23 on page 579) 

opt ics  optical elements, such as lenses and mirrors (see Table 8.24 on page 580) 

phys ics  Newtonian mechanics symbols (see Table 8.25 on page 580) 

577 

• 

� � Cn � Dn $ Dn 
e In 
� In 

J � Bn Tn 
\\ 

7""""--
� 

--IT"L 
� 

lJ "L  



578 APPLICATIONS IN SCIENCE, TECHNOLOGY, AND MEDICINE 

Table 8.2 1 :  Gate and trigger symbols (gate option) 

fi tl tl c 
b 

gates \NAND \AND \OR 

tl tl � c 
b 

more gates \NOR \XOR \XNOR 

triggers and buffer \ST -1}- \STINV 1}- \BUF U 
Table 8.22: Electronic box symbols (box option) 

d d d d 
d 

b 

\oscillograph \G \Gvar \ Impulse \Amp \ACtoDC 

oscillograph generators (fixed, variable, pulse) amplifier AD convertor 

General circuit d iagram commands 

Every circuit diagram is enclosed inside a circui t environment. 

\begin{circui t}{magstep} . . .  \end{ circui t} 

The argument magstep i s  an integer (in the interval 0 to 4) specifying the size of  the symbols. 
Tables 8.20 through 8.25 show some of the commands available and associated symbols that 
can be used inside the circuit environment. 

The general syntax of a drawing command is 

\ s ymbo lnameunumber ulabeluspecsudir 

The bas ic  option offers more than 60 symbol commands from which to choose. The num
ber argument is an additional identifier; i.e., the combination of \symbolname and number 
must be unique within one diagram, so that the various circuit elements can be connected 
unambiguously. The direction in which a symbol is drawn is specified with the argument 
dir (h for horizontal, v for vertical, 1 for left, etc. ) .  Each symbol can be annotated by using 
the argument label (note the position of the symbol and its annotation with respect to the 



8.6 Electronics and optics circuits 

Table 8.23: Integrated circuit symbols ( i c  option) 

S 
1 J  

n n 
C 1  
1 K  

C 1  R 

\NRSFF \DFF \JKMSFF 

RS flip-flop D flip-flop JK master slave flip-flop 

6 IS  OK 5 

2 IT 0 3 

4 R 00 7 

\fff  

timer 

current point in Tables 8.20-8.25) .  The optional argument spec specifies the pin position at 
the current drawing point (for variable resistors, transistors, etc . ) .  

In addition to the inscription produced by label, the symbol is labeled automatically 
with an abbreviation indexed by number. The former can be suppressed by using \nv be
fore the command, the latter by using \In. In addition, the command \cc  exchanges the 
positions of both labels. 

1 \ .  number \ junct ion number I 
Junctions are made with the command \ .  (or, alternatively, \ junct ion) . The only argu
ment is a number identifying the junction for further reference. 

I \- lenudir \ wire lenudir I 
Simple connections between symbols are drawn with the \- (\wire) command. The first 
argument len specifies the length in 2 . 5-mm steps, while the second argument dir indicates 
the direction (1 for left, r for right, u for up, d for down).  Thus \ -u8uu draws a wire 8 units 
(2 cm) long upwards. Variants are \dashed, \bundle, and \wwire, which draw a dashed 
wire, a bundle, and a wire pair, respectively. 

I \htopinpinrefu \vtopinpinrefu I 
The current position is connected horizontally or vertically to the x and y coordinates of 
a given pin by the commands \htopin and \ vtopin, respectively, where the argument 
pinref is the symbolic identifer of a pin of some symbol. For example, if the resistor R2 was 
previously defined with an \R command, then the succession of commands 

\vtopin R2r \htopin R2r 

draws a wire starting from the current position vertically to the y position and then horizon
tally to the x position of the right side of resistor R2. 

[> 00  
+ + 

\NULL 

nuller 

579 



580 APPLICATIONS IN SCIENCE, TECHNOLOGY, AND MEDICINE 

Table 8.24: Optical symbols (opt ics  option) 

lenses \SLens <P Ln \HSLens + Ln \BLens ct> Ln 

more lenses \HBLens � Ln \VLens [:±,::J Ln \HVLens � Ln 

mirror, splitter, polarizer \Mirror -<P \BSplit -/-- \Polar =+= Pn 
: � n  C7 n  pinhole, screen \Pinhole -1- n \ScrL \ScrTL I n n n 

camera, laser, photometer \Cam c:[] \Laser 
I Laser I 

\PM 
I PM I  

Table 8.25: Newtonian mechanics symbols (phys ics  option) 

kn 
JVWI'v-

\spring 

sprmg 

\at xuYu 
\moverel xuYu 

mn rnn 
0 • 

\dmass \fdmass 

mass with two forces 

\from xuYu 
\shift xuYu 

Sn Sn 
+ + 

\wall \ spinu \spind 

wall spm up spin down 

The current drawing position can be changed with several commands. The first two in the 
syntax box set the current point to the absolute coordinate (x ,  y) in the eire coordinate sys
tem (in steps of 2 _ 5  mm).  In general, such absolute positioning is not desirable, since all 
diagrams are implicitly drawn with respect to the point (0 , 0) and introducing absolute co
ordinates destroys the logical structure. It is much better to issue the command \moverel 
(or \shift) ,  which uses relative positioning to move the current points x units right and y 
units up. 

I \atpinpinreJu \frompinpinreJu I 
You can move the drawing position with \atpin or, alternatively, \frompin. After execut
ing this command, the drawing continues at the given pin position. For instance, the current 
point can be set to the down pin of the coil labeled L4 with the command \atpinuL4du. 

The previously described commands are only a few of the possibilities described 
in [ 1 14 ] . The eire package has commands to center objects horizontally or vertically with 
respect to other objects, commands to add text at the current drawing position, and a few 
more bells and whistles, most of which appear in the following examples. 



8.6 Electronics and optics circuits 

Examples 

Our first example is taken from the eire reference manual, which discusses in detail how the 
drawing is produced; it shows a circuit for measuring the current -amplifying characteristics 
of an npn transistor. 

Ub 

\usepackage [bas ic]  { c irc} 

\begin{c ircuit}{O} 
\npn1 { ? }  B 1 % draw npn trans i stor 
\frompin npn1 C  % draw from collector 
\- 1 u % a little wire up 
\nl\A1 { $ I _C$} u % A-meter for colle ctor current 
\atpin npn 1B % next draw from base 
\ - 1 1 % a l ittle wire left 
\R1  { 5 1 0  k$\Omega$} 1 % place res i st or on base 
\ - 1 1 % add little wire left 
\centerto A1  % align centered on f irst 
\nl\A2 { $ I _B$} u % draw second A-meter 

A-meter 

\frompin A2b % connect second A-met er t o  
\vtopin R l l  
\frompin A it 
\- 1 u \ . 1  
\frompin A2t 
\vtopin . 1  

% 

% 

resi stor 

connect ion point 

\htopin . 1  % conne ct second A-met er t o  1 .  
\- 1 u \ c c \ c onnect ion1 

{$U_b$} c u % c onnect t o  volt age 
\frompin npn1E 
\ - 1 d \GND 1 
\end{c ircuit} 

% connect emitter to 
% ground 

Another example from the reference manual is an experimental setup in optics, with a 
laser, a modulator, lenses, mirrors, a camera, and a screen: 

\usepackage [bas i c , opt i c s ] {circ} 

\begin{c ircuit }{O} 
\nl\Laser1 {} r 
\oa 2 r 
\Polar 1  {} r 
\oa 2 r 
\nl\OM1 P 1  {} {} {} {} h 
\atpin OM1P3 
\oa 4 r 
\c c\BLens 1 {} r 
\oa 2 r 
\nl\P inhole 1 {} r 
\oa 7 r 
\cc\SLens2 {} r 

% 
% 
% 

% 

% 

% 

% 

laser 
opt i cal axi s  
polarizer 

opt i cal modulat or 

f irst lens 

p inhole 

second lens 

58 1 



582 APPLICATIONS IN SCI ENCE, TECHNOLOGY, AND MEDICINE  

\oa 1 r 
\Polar2 { }  r 
\oa 3 r 
\oa 3 r 
\nl\BSplit l { }  + d 
\atpin BSpl it 1+ 
\oa 2 r 
\nl\Caml {camera} . r 
\atpin BLens l :  \shift 0 2 
\atpin P inhole l : \shift 0 
\ atpin SLens2 : \shift 0 2 
\Dtext{\small $ f _ l $ }  from 
\Dt ext { \ small $f_2$} from 
\ atpin BSpli t 1 . 
\oa 5 d 
\Mirror l {} * R 
\oa 2 r 
\nl\ScrLl { s c reen} h 

\end{c ircuit} 

\P3 
2 \P4 
\P5 
P3 to P4 
P4 t o  P 5  

% analyzer 

% beam splitter 
% cont inue drawing right 

% camera 
% mark middle of f irst lens 
% mark middle of pinhole 
% mark middle of second lens 

% C l 
% C2 
% second part of beam down 

% mirror 

% white s creen 

H I .. it .. I .. h .. I P2 I Laser f - - - - - � - - - - - l ()�  f - - - - - - - -�- - - - - - t - - - - - - - - - - - - - - - -�- - - - � - - - - - - - - - -�-- - -� 
camera 

screen 

A more complex example (courtesy of the package authors) follows, given without code. 
It represents an operational amplifier. 

Uo 



8.6 Electronics and optics circuits 

8.6.2 Using the m4 macro processor for electron ics diagrams 
A procedure completely independent of  'lEX and META FONT forms the basis of  the cir
cuiCmacros package written by Dwight Aplevich. His approach uses a series of macros writ
ten for the m4 macro processor available on Unix systems. These macros generate code in 
the pic language, which can be handled by a pic (gpic) interpreter generating 'lEX input in 
the form oftpic \specials. Aplevich has developed a special tpic interpreter dpic that can 
generate output for mfpic and PSTricks, as well as several other formats. l  

Basic principles 

The circu iCmacros package has a number of m4 libraries, each containing a set of basic 
macros, that let you construct complex electronic and flow diagrams. The IEEE Standard 
3 1 5  of 1975 is followed for drawing the electronics and electrical elements. 

Quite complex diagrams can be composed fairly easily (the distribution contains the 
worked-out code of the complex example at the end of [ 8 1 ] ) .  Here we merely show how to 
obtain a simple circuit. The m4 code for our first example looks like this: 

. PS 
eet init 
def ine ( ' dimen_ ' , 0 . 6) 
loopwid = 0 . 9 ;  loopht = 0 . 7  

soure e ( left _ loopwid) ; llabel ( - , v_ s , +) 
res i stor (up_ loopht ) ; llabel ( , R , ) ; b_ eurrent ( i )  
induetor (right _ loopwid , L) ; rlabel ( , L , )  

583 

eapae itor (doWll_ loopht , C ) ; llabel (+ , v_C , - ) ; rlabel ( , C , )  
. PE 
\usebox{\graph} 

The macros . PS and . PE enclose each picture (these are the usual delimiters for the 
pic program). The first macro command cct_ini t initializes some local variables for the 
circuit package (global parameters, such as line widths, page size, and scaling factors) .  The 
default value for the width of the picture is 0 .5  inch. On the following two lines we set the 
width of the body element (dimen_) and, since we want to draw a loop circuit, we specify its 
width (loopwid) and height ( loopht ) .  Then we put a current source moving left and label 
it with plus and minus signs and v s ,  draw a resistor (going up) ,  label it R, and add a current 
arrow at i. This is followed by a self (inductor) at L. The loop is closed by a capacitor at C, 
with an indication of the voltage Vc and the polarity of the charges on the plates. Note the 
use of the llabel and rlabel commands to place texts to the left and right of the circuit 
element, respectively. 

Before we can use this input with �TEX, we must perform several translation steps. First 
we have to translate the m4 instructions into pic code by executing m4 using the library 
libcct . m4, which contains definitions for commonly used elements. This file is then run 
through a pic-language interpreter like gpic to generate tpic \specials. The result can then 
be processed by 'lEX and finally interpreted by a . dVi-reading program such as dvips. The 

I The program dpic does not come with the distribution, but it can be downloaded from the author's Web site 
at http : //ece . uwaterloo . c a/ - aplevi ch/dp i c / .  



584 

R 

R 

i.Lw 

1 
'iew 

APPLICATIONS IN SCIENCE, TECHNOLOGY, AND MEDICINE 

command sequence for this precedure on a Unix machine would be similar to the following 
(depending on where the m4 files are stored): 

m4 /usr/local/lib/m4/1ibcct . m4 cirexa.m4 > cirexa.pic 
gpic -t cirexa .pic > cirexa .tex 

This leaves us with a lEX file cirexa . tex, which contains only the tpic code for the exam
ple. To process it further, we could include it into a LKfEX source using \input. This stores 
the picture in a box register named \graph, so we have to add a \usebox{\graph} state
ment into the document at the spot where we want it to appear. 

Customizing the diagram 

To show the flexibility of the cireui t_macros approach, let us modify our example 
slight1y to see how it behaves with an alternating current. 

c 

.PS 
cct init 
linethick= 1 . 6  
define ( 'dimen_' . 0 . 6) 
loopwid = 0 . 9 ;  loopht = 0 . 7  

source(left_ loopwid. AC) ; llabe l ( . V_{ac} . )  
resistor(up_ loopht .5) ; llabel C ,R . )  
inductor(right_ loopwid.W) ; rlabcl ( . L . ) ;  llabc l ( . iL\omcga . )  

capacitor(doWD_ loopht . ) ;  llabel ( , C . )  

.PE 
\usebox{\graph} 

rlabe l C . \displaystyle\frac{l}{iC\omega} . )  

After specifying thick lines, we draw an alternating current (AC) source. The resistor 
is made a little bigger, and we specify a complex value for the impedance of the self and the 
capacitor. Note how we place text at either side of the element with the llabel and rlabel 
commands. As the label text is set in mathematics mode, you can freely use math symbols 
and other specific commands for math mode (e.g., \displaystyle to choose a larger type 
size for the capacitor's numerator and denominator). 

Some authors prefer to draw their circuit elements using a grid. We can write an m4 
macro grid, which has two arguments $ 1  and $2 that define the x and y coordinates at 
which the element is to be drawn . 

c 

. PS 
cct_init 
gridsize = 0 . 1  
define ( ' grid ' , ' (gridsize* '$1 ' , gridsize* ' $2 ' ) ' )  

source(left_ from gridC7.0) to gridCO .O) ,V) ; llabel C . V , )  
resistor(up_ from gridCO,O) to gridCO ,5) ,4) ; llabel C , R , )  
inductorCright_ from grid(0.5) to gridC7 .5) .W) ; llabelC , L . )  
capacitor (down_ from gridC7,5) to gridC7,O» ; llabel( . C , )  

.PE 
\usebox{\graph} 



8.6 Electronics and optics circu its 

In the next example we exploit the for loop construct of the pic language. The code 
below also shows how to scale a diagram by expressing movements and dimensions as func
tions of the lengths dimen_ (the body size of a two-terminal element, such as a resistor or 
a capacitor) and elen_ (the default length for an element) .  Both of these lengths are ex
pressed as functions of the parameter l inewid, which has a default value of 0 .5  inch. As 
the code below shows, a variation of the latter parameter is reflected in a modification of 
both dimen_ (by default equal to linewid) and elen_ (by default equal to 1 .5 dimen_ ) . 

L RQC 
V 

. PS 
eet init 

def ine ( ' loop ' , '  [ 
souree (left_ elen_ ) ; llabel ( , V , )  
re s i stor (up_ dimen_ ) ; llabel ( , R , ) 
induetor (right _ elen_ ) ; llabel ( , L , )  
eapae itor ( down_ dimen_ ) ; l label ( , C , )  
] ' )  

f or l inewid 0 . 2  t o  0 . 4  by \ 
* 1 . 3  do { loop ; move right } 

. PE 
\usebox{\graph} 

Our last, somewhat more complex example (see the manual that comes with the pack
age distribution for many more elaborate examples) also uses a for loop to replicate the 
same combination of elements several times. As previously, dimensions are expressed as 
functions of the lengths dimen_ and elen_. After defining the sres istor, s inductor, 
and tsection macros, the real work is done starting at the point labeled SW : .  First a resis
tor "r" is placed. It is then connected to a succession of four tsect ion elements (an induc
tor "L" connected to a sub circuit consisting of a capacitor "e" and a resistor "R" in parallel, 
connected to a resistor "r") .  Finally a dotted line is followed by another tsection element. 
The dot elements show the locations of the interconnections . 

. PS 
eet init 
hgt elen_ * 1 . 5  
ewd = dimen_ *0 . 9  

def ine ( ' sresi stor ' , ' resi s t or (right _  ewd) ; llabel ( , r ) ' )  
def ine ( ' s induetor ' , ' induetor ( right _ ewd , W) ; llabel ( , L) ' )  

def ine ( ' tseetion '  , ' s induetor 
{ dot ; l ine dOWTI_ hgt *0 . 25 ;  dot 

gpar_ ( resistor ( down_ hgt * 0 . 5 ) ; rlabel ( , R) ,  
eapae itor (down_ hgt *0 . 5 ) ; rlabel ( , C) ) 

dot ; l ine down_ hgt *0 . 25 ;  dot } 
sres i stor , )  

585 



586 

r L 

APPLICATIONS I N  SCIENCE, TECHNOLOGY, AND MEDICI NE 

SW : Here 
gap (up_ hgt ) 
sre s i stor 
for i=1 t o  4 do { t s e ct i on } 
l ine dotted right _ dimen_/2 
t sect ion 
gap ( down_ hgt ) 
l ine t o  SW 

. PE 
\usebox{\graph} 

r L r L r 

8.6.3 Interactive diagram generation 

L r L r 

For drawing electronics diagrams we can use one of the algorithmic approaches described in 
this chapter or one of the dedicated META POST or PSTricks packages. In addition, several 
commercial (e.g., Adobe's I l l u strator) and free (e.g., xfig)  tools exist for drawing diagrams in 
an interactive fashion on-screen. 

For interactively designing circuit diagrams, Tim Edwards has written and maintains 
XCi rcu it. 1 This program runs on any Unix X-window system as well as on Microsoft Win
dows with an X-server. XCircuit considers circuits to be hierarchical structures and captures 
this interpretation in the form of a PostScript output instance. In fact, XCircuit defines a set 
of PostScript macros that can be used as building blocks for constructing complex circuit 
diagrams. Several libraries of fully editable circuit components are available. The use of Post -
Script as an output format ensures that the electrical circuit schematic diagrams generated 
in this way will be of high quality. In comparison with more generic programs, such as xfig, 
XCi rcu it is particularly useful for drawings that require repeated instances of a standard set 
of graphical objects, making it, for instance, well suited to creating printed circuit board lay
outs. Good examples of the use ofXCircuit in practice can be found in Tony Kuphaldt's series 
of Web books Lessons In Electric Circuits? 

I Freely downloadable from http : //openc ircuitdes ign . com/xc ircuit / .  

2 Freely downloadable from http : //www . ibibl io . org/kuphaldt /electri cCircui t s / .  



C H A P T E R  9 

Preparing Music Scores 

9.1 Using TEX for scores-An overview . . . . . . . . . • . . . . • . . . . . . . • . . . . . 589 

9.2 Using MusiXTEX . . . . . . . . . . . . . . . . . • • . • • . . • • • . • • • • • • . • . . . .  590 

9.3 abc2mtex-Easy writing of tunes . . . . . . • . . • . . . . • . . . . . . . • . . . . .  600 

9.4 Preprocessors for MusiXTEX . . . . . . . . • . . . . • . . . . • . . . . . . . • . . . . . 615 

9.5 ThePMX preprocessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  618 

9.6 M-Tx-Music from TeXt . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . .  651 

9.7 The music engraver UlyPond . . . . . . . . . . . . . . . . . . . • • • • . • • . . . . .  661 

9.8 TE>Cmuse-TEX and METAFONT working together . . . . . . . . • . . • . . . . . 666 

Preparing music scores of high quality is a complex task, since music notation can represent 
a huge amount of information about the structure and performance of a musical piece.l 
While reading a score for performing a music piece, musicians must gather all the informa
tion they need, including the pitch and the length of the notes, the rhythm, and the articula
tion. Depending on the instrument, the musical notation may span more than a single stave 
(e.g., three or more for the organ), so the amount of data to be processed concurrently can 
be quite large. This makes great demands on the musician's ability, especially when sight
reading a piece. The quality of the typeset score plays an important role in this process since 
it must clearly show the structure of the piece. 

High-quality music typesetting requires a good eye and much experience. Until recently, 
this type of work has been done by highly trained music engravers who manage. accord
ing to Helene Wanske [136], no more than one or two pages per day. As in typesetting 
of text, a criterion of high quality is the overall look of the page, especially the distribu
tion of black and white. Several texts about music notation practice have been published, 
but they cannot replace a practitioner when it comes to ensuring the aesthetic form of the 
score as a whole. The Production Committee of the Music Publisher's Association has pub-

IThe Web site http ://www.music-notation.info/ pro\lides a set of pointers to music notation lan
guages, programs, fonts, etc. 



588 PREPARING MUSIC SCORES 

lished a text that outlines a series of standards for music notation (http: //www . mpa . org/ 
notation/notation . pdf). The Big Site of Music Notation and Engraving (http : //www . 
coloradocollege. edu/dept/MU/Musicpressl) intends to provide a helpful source 
for musicians, typesetters, students, publishers, and anyone else who is interested in music 
notation and engraving. See also Jean-Pierre Coulon's Essay on the true art of music engrav
ing (http : //icking-music-archive . org/lists/sottisierlsottieng .pdf). 

In recent years several computer systems for writing scores have been devel
oped. Encore (www. encoremusi c . com), Finale ('01.1"01 . finalemusic . com), and Sibelius 
(www . s ibelius . com) are examples of commercial products, while Rosegarden (http : 
IIYYY. rosegardenmusic . com/) and noteedit (http: //developer . berlios . del 
proj ects/noteedi t) are freely available developments. All of these programs are of the 
WYSIWYG (What You See Is What You Get) type, and most of them have reached a gen
uine state of perfection. However, they cannol yet replace an experienced music engraver. 
All they can do to ensure high-quality typesetting is to create a "nice" draft: they contribute 
to a high-quality score only if they leave the aesthetic decisions to the experienced user. 

This role is even more evident when one considers nonstandard situations, which are 
encountered in modern music, for which notational requirements are hard to standardize at 
all. Indeed, music. as a live art form, evolves continuously, and its current practice is often 
quite distinct from that of the 18th and 19th centuries, when the "standard" music notation 
was consoIjdated. Whereas standard notational practices are quite sufficient for popular and 
commercial music (and thus the favored target for commercial software). "modern" music 
goes well beyond this traditional form, in particular in its graphic representation. Moreover, 
musicology has notational needs (e.g .• symbols for highlighting certain notes, unusual ties. 
superposition of staves) for the analysis of all kjnds of music-classical and contemporary, 
western and oriental, ethnic from various peoples of the world-that go well beyond the pos
sibilities of current professional typesetting applications. What is needed is a programmable 
system, and here lEX can be an important player. 

In this chapter, after a short historical introduction (Section 9.1), we first consider 
MusiXTEX, a set of lEX macros that build a very powerful and flexible tool for typesetting 
scores. As MusiXlEX makes no aesthetic decisions-these choices must all be made by the 
typesetter-it is quite complex to use. Therefore several preprocessors have been developed 
to provide an easier interface. In Section 9.3, we introduce the abc language, which is in 
widespread use for folk tunes. In Section 9.5, we describe the PMX language, which makes 
entering polyphonic music more convenient. In Section 9.6, we have a look at the M-Tx lan
guage, an offspring of PMX, which adds, among other features, support for dealing with 
multi-voice lyrics in scores. In Section 9.7, we introduce UlyPond, a music typesetter writ
ten in C++, while Section 9.8 says a few words about lEXmuse. 

The Werner Icking Music Archive (http : //icking-music-archi ve . org) contains 
a lot of material related to music software. In particular, it is the definitive archive of soft
ware related to MusiXTEX, including pointers to the latest developments of abc, PMX. M-Tx, 
and their brethren. It also contains hundreds of freely available music scores typeset with 
MusiXTEX. often with accompanying input files, so that it is an ideal source of examples. 

This chapter is somewhat unusual as it contains littJe �1EX: MusiXTEX is essentially low
level lEX, albeit with a I1TEX interface; some of the programs discussed to translate musical 
languages. such as abc. even bypass lEX altogether. We nevertheless believe that it is appro-



9.1 Using lEX for scores-An overview 

priate to introduce them here, as they can nicely work together with other �TEX material 
and all have their origin in concepts developed in or for the 'lEX world. 

9.1  Usi ng TEX for scores-An overview 

Early attempts to use 'lEX for score preparation were made by Andrea Steinbach and Ange-
lika Schofer [ 1 l0 ]  and later by Fran<;:ois Jalbert, who developed MUIEX [62] . It was Daniel We dedicate this 

Taupin, however, who really made a breakthrough by developing MusicTEX [ 1 l 7, l l S, 1 20, chapter to Daniel's 

1 2 1 ] .  For more than lO years, until his untimely death in a climbing accident in August 2003, memory 

Daniel was a major driving force for promoting music typesetting with 'lEX. I 
Daniel's main aim in developing the MusicTEX package was to typeset complex poly

phonic orchestral or instrumental music. He first thought he could extend MUIEX to several 
staves, but soon decided to write a completely new set of macros, only adopting MUIEX's 
METAFONT code as a starting point. The resulting system (MusicTEX) was still inadequate, 
as its one-pass system did not compute an optimal spacing of the notes. Therefore, Daniel, 
together with Ross Mitchell and Andreas Egler, developed MusiXTEX, a new system derived 
from MusicTEX. It is backward-compatible with the earlier package, but uses a three-pass 
approach to optimize slurs and the spacing between the notes. Since the principles and com
mands for writing the source are to a large extent identical, differences in notation between 
MusicTEX and MusiXTEX are usually irrelevant to the ordinary user. For this reason, we shall 
describe only MusiXTEX here. 

Beside the commands for handling a large number of instruments, and different kinds 
of clefs, notes, chords, beams, slurs, and ornaments, MusiXTEt< has several extension libraries 
containing commands that are less frequently used or are necessary only for special kinds of 
music. The extension libraries cover such features as these: 

• 12Sth notes 
• Specialties for choral music 
• Gregorian chant 
• Guitar tablatures 
• String instruments 

The MusiXTEX system is not intended to translate standard music notation into 'lEX, nor 
does it attempt to include aesthetic considerations. The system typesets staves, notes, chords, 
beams, slurs, and ornaments by slavishly following the instructions of the typesetter (Le., 
you) .  In the hands of a specialist, MusiXTEX is an extremely flexible and powerful tool and 
can generate very pleasing results. 

Because MusiXTEX is quite complex, several preprocessors have been developed to pro
vide an easier interface. These can, of course, cover only a subset of MusiXTEX's facilities .  Each 
has its own main emphasis and input language. 

1 Being an very fine organ player himself, Daniel had a deep knowledge of music and was continuously im
proving his MusiXTEX system. As a tribute to his lasting contribution, the maintainers of the Werner !eking Music 
Archive have decided to keep his excellent work alive and current by assembling a new release of MusiXTEX, updat
ing the manual and augmenting the distribution by adding some additional packages. See the !eking Archive for 
more details. 

589 



590 PREPARING MUSIC SCORES 

Several preprocessors are available that provide a text-based input language. abc2mtex 
(Section 9.3) uses the ASCII-format music-notation language abc as its input. This lan
guage, which was developed primarily for writing down tunes, is very intuitive to read and 
write. It is particularly suitable if only one stave is needed, but also handles guitar chords 
above a stave. The pmxab program supports another textual input language, Don Simons's 
PMX [ 1 1 2 ] ,  which allows multi-stave input. Dirk Laurie's "Music from Text" (M-Tx) adds 
a level on top of PMX and provides a somewhat simpler interface, especially for handling 
lyrics. 

In the next section, we introduce the main concepts of writing input for MusiXTEX. Be
cause MusiXTEX is a very large system, only some of its features will be described here; you 
should consult the full documentation [ 1 16) for further details. The later sections of this 
chapter describe how to use the various preprocessors mentioned. Thus, if you are only in
terested in using one of the preprocessors, you can skip the next section on the first reading, 
as it is not necessary for understanding the preprocessors. Afterwards you should read at 
least Section 9.2.5 to learn how to run MusiXTEX, because you will need this information in 
all cases. 

9.2 Using M usiXTEX 

Let us start by looking at the score of a musical piece-specifically, bars 40-4 1 of a prelude 
by Johann Sebastian Bach (BWV 926). 

4 1 1 1 

4 2 

This score contains important information that can be retrieved only with knowledge about 
the surrounding context. 

• The pitch of a note. This cannot be determined from its position in relation to the lines 
of the stave only; it depends additionally on the clef and on accidentals valid for the note. 
The clef is normally found at the beginning of the line but may also appear anywhere 
else on the stave. When considering the accidentals, you must distinguish between local 
accidentals valid for the bar only and accidentals valid for a larger part of the piece; the 
latter are found at the beginning of the current bar or in one of the previous bars. 

• The time at which a note should be played. This usually depends on the sequence of 
notes or rests in the same bar before the note, but may be obscured if a voice changes 
staves, as in Example 9-2- 1 .  

Example 
9-2- 1 



9.2 Using MusiXTEX 

I note sequence 3 1  I note sequence 2 1 I note sequence 1 I 
I note seq. 6 1  I note seq. 5 1 I note seq. 4 1  

I note seq. 9 1 I note seq. 8 1  I note seq. 7 1  
I note seq. 1 2 1 I note seq. 1 1  I I note seq. 1 0  I 

Figure 9. 1 :  Sequence of score pieces coded in MusiXTEX 

9.2 .1  The structure of a Mus iXTEX sou rce 

The MusiXTEX input specifies the structure and kind of information in scores. But the score 
of a piece of music with several staves has two dimensions: the x-axis represents the time 
and is divided by the bars, and the y-axis is used for the staves. To quote Daniel Taupin: 

The musician reads or thinks several consecutive notes (typically a long beat or a 
group of logically connected notes), then he goes [ . . .  J to the next instrument or 
voice and finally assembles the whole to build a sequence of music lasting roughly 
a few seconds. He then proceeds to the next bar or beat of this score. 

Using this theory, Taupin implemented an input syntax that describes the score in small 
chunks starting with some notes in the bottom stave and then moving upwards (see Fig
ure 9. 1 ) .  The question of whether this bottom-up order is more natural than a top-down 
approach is a matter of debate in the music literature. Indeed, some of the preprocessors for 
MusiXTEX enter information into the staves from top to down. 

The fundamental command of MusiXTEX is 

I \notes  . . .  & . . .  & . . .  \enotes  I 
which describes one vertical row of note sequences. The character & separates note se
quences that are to be typeset on one stave of the various voices or instruments, starting 
from the bottom. Multiple staves are separated by the I character: for instance, the score 
of a song for violin and piano would be coded using \notes  . . .  I . . .  & . . . \enotes  
for each column of  groups of notes considered a logical unit-not merely chords contain
ing notes to be played simultaneously, but also small sequences of consecutive notes that 
build a musical phrase. Therefore the main part of a MusiXTEX source is determined by the 
\notes  . . .  \enotes  commands. One or more ofthese commands is followed by the \bar 
command denoting the end of a bar. MusiXTEX provides a number of variant forms, such as 
\Not es and \NOtes  (see Table 9.2 on page 595), that differ only in how they set the space 
between individual notes. 

9.2.2 Writing notes 
MusiXTEX provides many commands for typesetting score elements (Table 9. 1 shows the 
most frequently used) that are the basis for work with this system. We concentrate here on 
some of the basic commands for writing notes to show the underlying principles. 

591 



592 

I'): 

I� 

I� 

PREPARING MUSIC SCORES 

Table 9. 1 :  Overview of MusiXTEX commands (prepared by Daniel Taupin) 

Pitches 
' A  ' B  ' c  ' D  ' E  ' F  ' G  A B C D E F G H I J K L M N a b e d e 

.0. -e-0 -e-(1 0 () 0 () 0 () 0 0 0 
-e- u -e- ' A ' B ' c ' D ' E ' F ' G u -e- u 

-e- u -e- .0. u .0. -e-u -e- .0. -e-.0. -e-.0. -e-.0. -e--e-

-e- u -e
a b c  d 

' a ' b ' c ' d ' e ' f ' g " a " b " c " d " e " f " g ' ' ' a ' ' ' b " ' c " ' d " ' e 
e f g h i j k I m  n 0 p q r s t u  v w x y z 

Notes, Accidentals , Accents,  Clefs and Rests 
\zlon�a \zwq 

\zmaxima zbreve 
\wh \hu \hl \qu \ql \eu \el \eeu \eel \eeeu\eeel\eeeeu\eeccl \greu\grcl 

(#)r (�)� 9 9 � 101 0 j (8)� � �?� I,) 
\CdSh# ' Acc identals : > \csh \ ena -

1 mll�ixdia.t('x 2 mu�ixper.t('x �� l1lU�iXgTP.tpX 1 mllsix l i t . t e x  ,5 Inusixl'x t . t e x  

I�:I; � (�� It,. 
\cfl  < \edfl 

J i J'¥ V I 

\downbow \flageolett 
\lpz \upz \lsf \usf \lst \ust \ lppz \uppz \lsfz \usfz \lpzst\upzst \upbow \whp \qupp 

A 1""1 V 0 J J r J r J J J. . I r U F r r r . >- " V  
Accpnt on bC'am wit.h prehx b and beam fPfpfel1CP Humber inst ead of t h e  pItch 

\trebleelef \basselef 
\al toclef 

liB 
\ smal lal toelef \drumelef 2 \greg<?rianFelei1 

\ smal l treble clef \ smallbas sclef \:regoriancclef.! \o ldGclef"l 

@ liB ')= I I  .,c � 
\qqs \hs \qs \ds \qp \hpause \hpausep --- \pause \pausep \PAUSe \Hpause 1  

I@ , § 
\lifthpause 

_ . - . 

\PAuse 
\liftpause 

Other Symbols 
\Trille \trille  \ shake \Shake \mordent \Mordent \turn \backturn \Shakel\Shake sw\Shakene\ Shakenw 
tr F - '"'" � 
(I� e) !I) � � � t..- � ...w \:.-

B I S i B  . 7  == 
\allabreve \meterC \reverseC \reverseallabreve \meterplus \duevolte 

� \setvoltabox\setvolta \ c oda\Coda\s egno \Segno \caesura \ cbreath ic 'me;c;; 1 1  1 1 2 <I> I1J $S § . ' 1& I : 11 II I � , 
\fermataup \arpeggio d5 \upt rio 

\Fermataup \braeke� t:'I t:'I I :1 _  
\octf inup \sl ide" 

8 - - - - l  

\boxit A 

\ l [r] par 

\PED \ sPED \DEP \sDEP 

* * 

\ c ircleit B 

� �Fermatadown \octf indown \leftrepeat \rightrepeat 
\fermatadown 8 _ _ _ _  J \leftrightrepeat 



�.2 Using MusiXTEX 

Specifying note pitches 

rhe pitch of notes is denoted by letters (see Table 9. 1 on the preceding page) .  It is important 
to note that this specification does not depend on the current clef. This is one deviation 
from the MusiXTEX principle that the representation of information about a musical piece 
is normally very similar to the way it is represented in the score itself. This feature exists 
so that you can change the clef for a few bars only, for example, without having to correct 
all the notes affected by it. The positions of the notes in the staves of the typeset score are 
automatically adjusted to the new clef. 

Accidentals must be specified separately, for instance, to put a flat or sharp before a 
certain note; for example, with pitch c, you would write \fla c or \sh c, or simply _c or 
.... c, respectively. To define the key signature of the whole piece or a part of it, you use the 
command \generalsignature, which has a number as argument (positive for sharps 
and negative for flats) .  

Note symbols 

To build a note, the pitch specification must be combined with a command specifying the 
duration of the no te and the direction of the stem. The most frequently used note commands, 
which also set a single space after the note, are as follows: 

\ wh p : whole note at pitch p 
\hu p : half note at pitch p with stem up 

\hl p : half note at pitch p with stem down 

\ha p : half note at pitch p, whose stem direction is chosen automatically according to the 
convention used for melodies; the stem points upwards if it is below the third line of the 
stave, but otherwise is presented stem down 

\ qu p : quarter note at pitch p with stem up 

\ql p :  quarter note at pitch p with stem down 

\qa p :  quarter note at pitch p with automatic stem 

\cu p :  eighth note at pitch p with stem up (The letter c in this and the following com
mands comes from the French word "croche", meaning eighth note; cc and c c c  stand 
for "double croche" and "triple croche"; etc.) 

\cl p :  eighth note at pitch p with stem down 

\ ca p : eighth note at pitch p with automatic stem 

\ c cu p : sixteenth note at pitch p with stem up 

\ccl p :  sixteenth note at pitch p with stem down 

\ c ca p : sixteenth note at pitch p with automatic stem 

\ c c Cli p : thirty-second note at pitch p with stem up 

593 



594 

\eeel  p :  thirty-second note at pitch p with stem down 

\eceeu p :  sixty-fourth note at pitch p with stem up 

\ e e eel  p : sixty-fourth note at pitch p with stem down 

PREPARING MUSIC SCORES 

We can use these commands to typeset a first simple example: 

\usepackage{mus ixtex} 

\begin{mus i c }  
\startextract 
\Notes\qu c\cu d\cu e\ccu f \ c cu g \ c cu h\ ccl i\enot e s\bar 
\Not e s \ c c a  j \ c c a  i \ c c a  h\cca g\ca f \ c a  d\qa c\enot e s  
\endextract 
\end{mu s i c }  

2 I@ j ) i ;ft � ;ft � I � � ;ft � ) ) j I 
As we are using �TEX, everything must be placed into a mus i c environment (if plain 

'lEX is used, the wrapper is slightly different) .  The coding of the notes starts with the com
mand \startextraet and is ended by \endextraet. If you are writing a whole piece, 
use \startpiece and \endpieee instead. 

To get a dotted quarter with pitch e, you can write \qu{ . e} or use the command \pt 
and write \ptue\quue. For rests, the following commands are provided among others: 
\pause for a full bar rest, \hpause for a half-note rest, \qp for a quarter-note rest and 
\ds for an eighth-note rest. 

The note symbol commands introduced earlier are not enough, however. To handle 
chords, you need commands that do not add a space after them, and to typeset chords with 
very small intervals, you need to be able to put the head of the note to the right or left side 
of the stem. For these purposes there is a set of non -spacing commands like the commands 
shown earlier but starting with \z . . .  , and a set of commands for shifting note heads to the 
right or left starting with with \r . . . or \1 . . .  , respectively. 

In typesetting chords, use non-spacing commands for all notes in the chord except the 
last. If the last note is stemmed, one stem for the chord is produced that links all of the 
simultaneous notes: 

\usepackage{mus ixtex} 

\begin{music}  
\startextract 
\Notes\zw c\zw e\zw g\wh j \enote s\bar 
\Not e s\zh c\zh f \zh h\hu j \zh d\rh f %  

\zh g\hu i \ enote s\bar 
\Notes \zw c\zw e\zw g\wh j \enotes 
\endextract 
\end{mu s i c }  

Example 
9-2-2 



9.2 Using MusiXTEX 

Table 9.2: Variant forms of the \not es  command 

\znotes  
\notes  
\notesp 
\Notes  
\Notesp 
\NOtes  
\NOtesp 
\NOTes 
\NOTesp 
\NOTEs 

· . .  

· . .  

· . .  

· . .  

· . .  

· . .  

· . .  

· . .  

· . .  

· . .  

Notation 
& 
& 
& 
& 
& 
& 
& 
& 
& 
& 

· . .  

· . .  

· . .  

· . .  

· . .  

· . .  

· . .  

· . .  

· . .  

· . .  

& 
& 
& 
& 
& 
& 
& 
& 
& 
& 

9.2.3 Note spacing 

· . .  

· . .  

· . .  

· . .  

· . .  

· . .  

· . .  

· . .  

· . .  

· . .  

\enotes 
\enotes 
\enotes 
\enotes  
\enotes  
\enotes 
\enotes 
\enotes 
\enotes  
\enotes 

Spacing 
0 \elemskip 
2.0 \elemskip 
2.5 \elemskip 
3.0 \elemskip 
3.5 \elemskip 
4.0 \elemskip 
4 .5 \elemskip 
5.0 \elemskip 
5.5 \elemskip 
6.0 \elemskip 

Suggested Use 
special 
16th 
dotted 16th 
8th 
dotted 8th 
quarter 
dotted quarter 
half 
dotted half 
whole 

Positioning the notes in an aesthetically pleasing way is a complex matter. Within a column 
of notes the internote spacing is not necessarily constant, since it ideally depends on the 
duration of the shortest of the simultaneous notes. However, this is not an absolute rule, 
since spacing does not depend exclusively on the local notes, but also takes into account the 
context (at least in the same bar), and exceptions to the rule are easily found. 

MusiXTEX, therefore, handles spacing in several steps. The first step is to specify the size 
of the spaces in the source. For this purpose, the sequence \notes  . . .  \enotes  is used. 
There is a set of variants on this command, all working in the same way but setting a different 
amount of space (\not eskip) between consecutive notes (see Table 9.2) .  In each of these 
variants, all typeset spaces are initially the same size. With the command \sk you get an 
extra space with a width equal to \noteskip between consecutive notes . By default, the 
length \noteskip increases linearly from \notes  to \NOTEs. This can be changed to a 
geometric progression, in which \Notes  is V2 wider than \notes, etc., by the command 
\geometri cskipscale. In fact, both the basic spatial unit (\elemskip) and the note
specific spacing (\noteskip) can be freely adjusted, as explained in [ 1 16] . 

The second step is performed by the musixflx program, which takes the default value 
of \elemskip and computes for each line a new value that is then used for the typesetting. 
This step ensures that all lines are filled with bars and prevents a line from breaking in the 
middle of a bar. In Section 9.2.5 we take a closer look at this procedure. 

To illustrate how the spacing commands work, here is the earlier example now typeset 
with proper spacing: 

\usepackage{musixt ex} 

\begin{mus ic}  
\startextract 
\NOtes\qu c\enote s  \Not es\cu d\cu e\enot es \not es\ccu f \ c cu g\ccu h\ccl i \enot e s  
\bar 
\notes\cca j \ cca i\cca h\ cca g\enot e s  \Not e s \ c a  f \ c a  d\enot e s  \NOt e s\qa c\enotes 
\endextract 
\end{mus i c }  

595 



596 PREPARING MUSIC SCORES 

9.2.4 A moderately complete example 

To present a few more concepts of  MusiXTEX, we show below the first four bars of  Bela Bar
tok's piano piece "Schweinehirtenlied". The beginning of the code contains some header 
information: if such information is missing, as in the previous examples, suitable defaults 
are assumed. 

The header should probably contain the command \ instrumentnumber, which sets 
the number of instruments in the piece. The instruments are numbered in a bottom-up fash
ion. An instrument whose score covers more than one stave is specified with the command 
\setstaf f s. 

Two type sizes are available: 20 pt per stave or 16  pt per stave. For the latter size, you 
would add \smallmus icsize in the header. 

By convention, MusiXTEX users usually omit braces around command arguments when
ever possible; e.g., they write \qbOg rather than \qb{OHg}. To make the following exam
ple easier to understand, we have put braces around arguments denoting pitches of note
creating commands. Since it is a piano piece, the staves belong to one instrument. Thus I is 
used instead of& to separate note groups inside the \notes  commands below: 

\usepackage{musixtex} 

\begin{mus i c }  
\ instrumentnumber{ l }  \setstaf f s { 1 }{2} 
\generalmeter{\meterfrac24} \general signature{-2} 
\setclef { l }{\bas s} \setclef {2}{\treble} 
\ s t artextract 
\Not e s  \ i sluruOg\ iblOe{-2}\qbO{g}\ t s lurOf \qbO{f}% 

\ i s luruOe\qbO{e}\t slurO{d}\tblO\qbO{d}% 
l \ i s luruOn\ iblOm{-2}\qbO{n}\t s lurOm\qbO{m}% 
\ i s luruOl\qbO{l} \tblO\t s lurOk\qbO{k}% 

\enot es\bar 
\Note s  \ i s luruOc\iblOcO\qbO{c}\tslurOd\tblO\qbO{d}% 

l \ i s luruO j \ iblOj O\qbO{j } \tslurOk\tblO\qbO{k}% 
\enote s  
\NOt e s  \zq{N}\ql{b} l \zq{g}\qu{ i}\enot e s \bar 
\Not e s  \ i sluruON\ iblON{-2}\qbO{N} \ts lurOM\qbO{M}% 

\ i sluruOM\qbO{M}\t s lurOL\tblO\qbO{=L}% 
l \ ibuO j O \zqbO{g}\rq{h}\qbO{j } \zqbO{g}\rq{h}\qbO{j }% 
\zqbO{g}\rq{h}\qbO{j }\tbuO\zqbO{g}\rq{h}\qbO{j }% 

\enot e s\bar 
\NOt es \ql{K}\ql{K} I \zq{f}\zq{h} \qu{k}\zq{f }\zq{h}\qu{k}\enotes 
\endextract 
\end{mu s i c }  



Example 
9-2-5 

9.2 Using MusiXTEX 

I 

I 

� I 
1'1 h. I I, n., v  

V 
t.. 

. . 

� �  
A '-:I: 

:I: 

.---- --J- - -J-

� � � r-f.-
2 I 3 4 

-- J- .-I • • • • - -
:::101 - - - - • • - - - - - • • ....... 

rf'- • -

... 
- I I 

The code for the above score looks quite complicated as a result of the slurs and beams. 
For each beam or slur, two commands are needed: one for the beginning (which must appear 
before the first note belonging to it) and one for the end (which must appear before the last 
note belonging to it). 

For slurs, the most common opening command is \ i sluru np if the slur is to be above 
the notes and \islurd np if it is to be below them. The two parameters of this command 
specify the reference number of the slurl and the pitch to which the beginning of the slur 
belongs. The accompanying terminating command is \ t slur, which takes as parameters 
the slur reference number and the pitch at which the slur is to terminate. 

Frequently used opening commands for beams include \ i bu for beams above the notes 
and \ i bl for beams below them. To produce double, triple, or quadruple beams, just double, 
triple, or quadruple the number of b's in the command; e.g., use \ibbu for double beams 
above the notes. There are also commands for repeated beam patterns and semi-automatic 
beams whose slope is computed. It is even possible to print beams across bars. 

These commands have three parameters: the reference number, the pitch to which the 
beginning of the beam belongs, and the slope (an integer in the range [-9 , 9] that creates a 
slope between -45% and 45%). The beam is drawn three lines above or below the line of the 
referenced pitch. To end a beam, the commands \ tbu and \ tbl, respectively, are provided, 
which take as an argument only the reference number. 

The opening and terminating commands are not enough to create a beam: the notes 
belonging to it must be connected to the beam. The note command \qb performs this task; 
it works like \qu or \ql but has as an additional argument the reference number of the 
beam to which the stem is connected. 

9.2.5 Running M usiXTEX 

To produce its "beautiful scores", MusiXTEX adopts a three-step approach. As the first step, 
E'-JEX or plain 1£X2 is run on the file containing the MusiXTEX source. This produces a file 
with the extension . mx 1 containing relevant information about the music piece, such as 
distances between notes. In the second step, the optimal between-note spacing is computed 
by the external program musixflx. This program reads the . mx 1  file and writes a new file 
with the extension . mx2 containing the proper settings for \elemski p for every line of the 

I The reference number is normally set to 0 if there is no more than one simultaneous slur in a stave. 
2 The choice of which lEX flavor to use depends on the content of the file. The examples in this section are set 

up to use the E\lEX interface; this is a sensible choice if music and text are to be mixed. However, if only scores are 
to be produced, the additional functionality of E\1f)C is rarely needed, so most preprocessors produce files to be 
run with plain lEX, which is what we shall use in the remaining sections in this chapter. 

597 



598 PREPARING MUSIC SCORES 

score. As the third step, (15\)1EX is run again on the source file. This time MusiXTEX finds the 
corresponding . rnx2 file and uses the information contained therein. 

MusiXTEX might in the first step find an old . rnx2 file from some previous run containing 
incorrect information. In such a case the . rnx 1 produced is incorrect, and thus the output 
after the third step will not be good, either. Thus, after changes are made to the source file, 
or when you get inscrutable error messages or unexpected output, you should delete all of 
the auxiliary files and start again. 

To see how this works in practice, consider the MusiXTEX source of Example 9-2-6 on 
the next page. Let us process this file with �1EX for the first time. 

> latex 7-2-6 

( . /7-2-6 . tex 

LaTeX2e <2003 / 1 2 / 0 1 >  

Babel <v3 . 8d> and hyphenat ion patt erns f or . . .  

( /TeX/t exmf -dist/tex/latex/base /art icle . c ls  

Do cument Clas s : art icle 2004/02/16  v1 . 4f St andard LaTeX do cument clas s )  

( /TeX/tex-dist/tex/generic/mus ixtex/mus ixtex . sty 

( /TeX/t exmf -dist /t ex/generic/mus ixtex/mus ixtex . t ex 

MusiXTeX ( c )  T . 1 12 <3 Jan . 2003» 

( /TeX/t exmf -dist /tex/gener ic/mus i xtex/mus ixltx . tex 

Mus iXLaTeX T . 6 1 <25 Sept ember 1996» ) 

No f i le 7-2-6 . aux . 

bar 1 bar 2 bar 3 bar 4 bar 5 bar 6 bar 7 bar 8 

bar 9 bar 1 0  [6] ( .  /7-2-6 . aux» 

Output wr itten on 7-2-6 . dvi ( 1  page , 2872 byte s ) . 

Trans cr ipt wr itten on 7-2-6 . log . 

This run yields the following output, with all lines containing equal (and thus incorrect) 
element spacing. 

1& r E F  

r 
f 

r 1 E c E E L  E 1 C '  C r · J 
____ t� 

C [ E I r � f I tF �' � I 



9.2 Using MusiXTEX 

Next we process the generated . mx1 file with musixflx. 

> mus ixflx 7-2-6 

« <  mus ixflex 0 . 83/T . 63dt+j h . 2  » >  

decoding command l ine 

open <7-2-6 . mx 1 >  for input 

test ing versionnumber 

open <7-2-6 . mx2> for output 

reading 

compute 

that s all , bye 

Finally, as the third pass, we reprocess the source with IHEX. 

> latex 7-2-6 

( . /7-2-6 . tex 

LaTeX2e <2003 / 1 2 / 0 1 >  

Babel <v3 . 8d> and hyphenat ion patterns for . . .  

(/TeX/texmf -dist/tex/lat ex/base/art i c l e . c ls  

Document Clas s : art icle 2004/02/16 v 1 . 4f St andard LaTeX document clas s )  

( /TeX/tex-dist/tex/generic/mus ixtex/mus ixtex . sty 

( /TeX/texmf -dist /t ex/generic /mus ixtex/mus ixtex . t ex 

Mus iXTeX ( c )  T . 1 1 2  <3 Jan . 2003» 

( /TeX/texmf -dist/tex/generic /mus ixtex/mus ixlt x . tex 

Mus iXLaTeX T . 6 1 <25 September 1996» ) 

( . /7-2-6 . aux) (7-2-6 . mx2 ) 

< 1> bar 1 bar 2 bar 3 < 2> bar 4 bar 5 bar 6 

< 3> bar 7 bar 8 bar 9 bar 10 [6] ( . /7-2-6 . aux) ) 

Output written on 7-2-6 . dvi ( 1  page , 2772 byte s ) . 

Transcript written on 7-2-6 . log . 

Note how the fiie 7-2-6 . mx2 (the result of the musixflx run) is read by �TEX so that its 
contents can be handled by the MusiXTEX macros to correct the spacing. As a final result, 
we obtain the following nice-looking typeset score (the first bars of Sonata Sesta for treble 
recorder and basso continuo by Francesco Maria Veracini) :  

\usepackage{musixtex} 

\begin{mus ic}  
\instrumentnumber{ 1 }  
\generalmeter{\meterfrac34} 
\nobarnumbers 
\startpiece 
\NOtes\qp\zcharnote N\f \ql{lm}\ enot es \bar % 1  
\NOt e s \ i s luruOm\ql{m}\tslurOl\ql{l}\ql{p}\enot e s \bar %2 
\Not es\ ibl010\qbO{p�np}\enot es 
\notes\nbblO\isluruOm\qbO{m}\tblO\t s lurOl\qbO{l}\enot e s  
\Note s\qbOp\tblO\qbOk\enote s \bar%3 
\NOt e s \ i sluruOk\ql{k}\tslurOj \ql{j } \ql {o}\enote s \bar %4 
\Note s \ ibl010\qbO{mkpnr}\tblO\qbOm\enotes \bar %5 
\NOtesp\qlp{l}\enot e s  
\Notes\ iblOn{-4}\qbO{nl}\tblO\qbOj \enot es\bar %6 

599 



600 

\Note s \ ibl010\qbO{ omokr}\tblO\qbOm\enotes \bar 
\NOtesp\qlp{p}\enote s  
\Notes\cl{n}\enotes 
\NOt e s \ itenuOr\ql{q}\enot e s \bar 
\Not es\ iblOq{-3}\ttenO\qbOq\tblO\qbOo\enotes 
\NOtesp\Upt ext { \ i t  tr} \ i s luruOp\qlp{p}\ enot es 
\Not e s \ t slurOq\ c l {q}\enotes\bar 
\NOt e s \ql{q}\enot e s  
\NOTe s\hpause\enot e s  
\endpiece 
\end{mu s i c }  

r r 
f 

r I E r E r r E I L' 

9.3 abc2mtex-Easy writing of tu nes 

PREPARING MUSIC SCORES 

%7 

%8 

%9 

% 1 0  

;J 

-

For writing music on a computer, most available music notation programs come with a 
graphical interface that displays staves on-screen. The user is supposed to position notes 
on these staves visually with the help of the mouse. Few music notation programs exist that 
allow you to enter music using a textual representation, by typing notes and other relevant 
symbols as symbols via the keyboard. 

In this section we discuss the abc language (see http : / / abc . sourcef orge . net) ,  
designed by Chris Walshaw1 in the early 1990s. It uses an ASCII format and is  particularly 
convenient to notate folk and traditional tunes of Western European origin (such as English, 
Irish, and Scottish) that can be written on one stave. More recently, several extensions of the 
abc language have been developed. Here we shall mention only abcPlus (http : / / abcplus . 
sourcef orge . net ), which can be used to typeset quite complex classical music scores. 

Programs on most computer platforms are available to produce printed sheet music 
from abc or abcPlus sources or to perform them on your computer. Utilities also exist to let 
you search tune databases or analyze tunes in various ways. 

Among the various textual notation systems, abc is one of the easiest to learn. After 

1 Many sites refer to Chris's home page for additional information but unfortunately give an obsolete link to 
its old place. The correct URL is http : / / abcnotat ion . org . uk. 

i Example 
9-2-6 



9.3 abc2mtex-Easy writing of tunes 

a little practice, most users can play a tune directly from the abc notation (without gen� 
erating sheet music output). Moreover, the simplicity and clarity of the notation make it 
a straightforward matter to notate tunes that are stored in a computer file. In addition, 
these files can be easily exchanged by e�mail, thus enabling dissemination and discussion 
of the music. In fact, the abc language has become the de facto standard among folk musi� 
cians, and thousands of tunes in abc notation are now available on the Internet (see, e.g., 
http : //abcnotation . org. uk/tunes . html). 

9.3.1 Writing an abc source 
To see how an abc source is built up, consider the following example: 

1.  Sur Ie pont d'Avignon 

If'3 n J I n j I Jl = J I D OJ] I 
X :  1 

If, n J I n j I Jl = J I iJ )11 )1 
T : Sur Ie pont d 'Avignon 
M: 2/4 

If· n n I j n I J J J J I j J II 

L: 1/8 
K : F  

FF F2 GG G2 
FF F2 GG G2 
FF FF G2 FF 

ABcF 
ABcF 
FFFF 

An abc source consists of two parts: a header and a body. The header (shown in blue in 
the examples) contains information fields, each starting with an uppercase letter to denote 
the kind of information, followed by a colon. The body consists of the music piece itself. 
Within the body, additional information fields can be inserted that are used for changes to 
the header information (e.g., the key, meter, or tempo). 

Table 9.3 shows all possible information fields, most of which are optional. A few words 
about the more important ones follow. 

• Musical information: 

- K :  the key, consisting of a capital letter possibly followed by a # or b for 
sharp or flat, respectively. You can use major keys (e.g., K :  Emaj ) or minor keys 
(K: gmin), or specify other modes, such as Mixolydian (K : AMi x) and Dorian 
modes (K: EDor). 

- L :  the default note length (j.e., L :  1/4 for a quarter note, L:  1/8 for an eighth note, 
etc.). The default note length is also set automatically by the meter field M :  . 

- M :  the meler, such as M : 3/4, M : C  (common time), or M : C I  (cut time). 

EFGC I 
GE F I I  F 
G2 F2 I ]  

601 



602 PREPARING MUSIC SCORES 

Table 9.3: Overview of information fields in abc language tune files 

Field and Usage 

A header 
B header 
C header 
D header 
E header, body 
F header 
G header 
H header 
I header 
K last in header 
L header, body 
M header, body 
N header 
o header 
P header, body 
Q header, body 
R header 
S header 
T second in header 
U header 
V header, body 
W body 
w body 
X start of header 
Z header 

Example and Notes 

Area. A :  London 
Book. B : Groovy Songs 
Composer. C : Beethoven 
Discography. D :  The piano sonatas 
see comments below 
File name. F :  sonatas . abc 
Group. G :  gui tar 
History. H :  This  sonata was written . . .  
Information. I :  lowered by a semi tone 
Key. K : C  
Note length. L :  1 /4, L :  1 /8  
Meter. M :  3/4, M :  1 /8, C 
Notes. N :  See also  . . .  
Origin. 0 :  German 
Part. P : ABAC, P : A, P : B 
Tempo. Q : 1/  4=66 
Rhythm. R :  Reel  
Sourc� S : Collected in  Bonn 
Title. T :  First movement 
User defined. U :  T= ! trill ! (abcm2ps extension) 
Voice. V :  1 (abcm2ps extension) 
Lyrics at end. W :  some text . .  . 
Inline lyrics. w :  some text . . .  (abcm2ps extension) 
Reference number. X :  1 
Transcription notes. Z :  Copied from original 

- Q :  tempo; can be used to specify the notes per minute (e.g., Q :  C3=40 would 
be 40 dotted quarter notes per minute). An absolute tempo can also be set (e.g., 
Q :  1 /8= 120  is 1 20 eighth notes per minute) ,  irrespective of the default note length. 

• Song information: 

- T :  the title; second field in the header. It denotes the main title of the piece. It can 
be used several times in the header to indicate variant names (see Example 9-3- 19  
on page 608) .  It can also be  used in  the body to indicate sub-titles for parts of  the 
piece (see Example 9-3- 1 1  on page 606) .  

- X :  sequence number of the piece in the file; first field of the header. 

• Technical information: 

- E :  the value of \elemskip in MusiXTEX; used to manipulate the internote spacing 
in the output (see Section 9.2.3) .  



Example 
9-3-2 

Example 
9-3-3 

9.3 abc2mtex-Easy writing of tunes 

The order of the fields is not important except that X :  must come first, T :  must come 
second, and K :  must come last since it denotes the start of the body. All three are mandatory 
(at least when used in conjunction with the abc2mtex program) .  However, to save space, we 
will normally omit X :  and T :  lines in the examples given in this book. 

� Note on 

7 the examples 

Repeat/bar symbols 

As Example 9-3- 1 shows, bars are separated by I .  More generally, double bars are denoted 
by 1 1 or I ]  (thin, thick) . Repeats are generated by : I (left), : : (left-right) ,  or I : (right) .  
Finally, first and second repeats are obtained by additionally using [1 and [2 .  

r-r- � I@ i J I j I I j I j II :J II: d :11: j I j I j I J :11 J II 
Note pitch and length 

M : 2/4 
K : C  

C8 D8 I I E8 I F8 I ]  G8 I :  A8 
D8 I E8 1 [ 1 D8 I C8 : I [2 C8 I ]  

For each of the notes you write the letter used in music. Uppercase letters are used for low 
notes; lowercase letters are used for higher notes. A right quote ( , ) is suffixed to a lowercase 
letter to represent the next higher octave, while suffixing the uppercase letters with a comma 
denotes the next lower octave. To obtain a rest, you use the letter z. 

M : C  
L :  1/4 
K : C  

\ 

603 

I@ (j� 3 g J I J J J J I J J J J I J oJ r r I 

I@ r r r f i r  [ E [ I t IT IT E II C ,  D ,  E ,  F , I G , A ,  B ,  C I D  E F G I A  B c d l  
e f g a I b  c ' d '  e ' l f '  g ' a ' z l ]  

The default note length depends on the meter specified. The sixteenth note is used if 
the meter represented as a decimal number is less than 0 .75 and the eighth note otherwise; 
thus, for a 4/4 meter, the default note length is an eighth note. This default note length can 
be changed with the information field L : . 

Notes of differing lengths are obtained by putting a multiplier after the letter. Thus, in 
2/4, A or Ai  is a sixteenth note, A2 an eighth note, A3 a dotted eighth note, A4 a quarter note, 
A6 a dotted quarter note, A 7 a double dotted quarter note, AS a half note, A 1 2  a dotted half 
note, A14 a double dotted half note, A15  a triple dotted half note, and so on. In 3/4, A is an 
eighth note, A2 a quarter note, A3 a dotted quarter note, A4 a half note, and so on. 



604 PREPARING MUSIC SCORES 

To get shorter notes or rests, either divide them-e.g., in 3/4, A/2 is a sixteenth note 
and A/4 is a thirty-second note-or change the default note length with the L :  field. 

J ) J J. J J J. n n· 0/ II 
M : C  
K : C  

L : l / 1 6  
A A 2  A 3  A4 A 6  A 7  A8 A 1 2  A 1 5  A 1 6  z z2 1 ]  
L :  1/8  

I@ J .. Jl J j J () (1- 11 . .  9 0/ l II 
A/2 A A2 A3 A4 A6 A7 A8 A 1 2  A 1 5  z/2 z l ]  
L :  1/4 
A/4 A/2 A A2 A3 A4 A6 A7 z/4 z/2 z l ]  

As seen previously, the default note length changes with the meter. This is shown in the 
following example, which also displays how the use of \ lets you continue the music on the 
same line (by default, every source line produces one line in the output score) . 

I@ �n J1 in 1 3 15 ]a  tJ n I M : 7/8 
K : C  

I I . I@ J j : 

I@ O ) 

I@ .. Jl l 

1 2 . 
J lJ J j :11 J 

Broken rhythms 

CDEF GFE 1 \ 
M : 2/4 
CDEF GFED 1 [1 CEGE GEGE : 1 [2 CEGE C4 I ]  

A common occurrence in traditional music is the use of a dotted or broken rhythm. For ex
ample, hornpipes music features dotted eighth notes followed by sixteenth notes. To support 
this, abc notation uses a > to mean "the previous note is dotted, the next note halved" and < 
to mean "the previous note is halved, the next note dotted". As a logical extension, > > means 
that the first note is double dotted and the second quartered, and > > > means that the first 
note is triple dotted and the length of the second divided by eight (and similarly for « and 
<<< ) .  

E1 r" ---1* r" � :3 
M : 6/4 
K : C  

-- J =$iii J.. A2>B2 c>d e» f f 2»>g2 1 

J J J J .. II A2<G2 F<E D« C B , 2« <C2 1 ] 

Example 
9-3-4 

, Example 
9-3-5 

Example 
9-3-6 



Example 
9-3-7 

Example 
9-3-8 

Example , 
9-3-9 

9.3 abc2mtex-Easy writing of tunes 

Accidenta ls 

Accidentals are produced by prefixing a note with the symbol '" (sharp), = (natural) , or _ 
(fiat), and double sharps and fiats by "' ''' and _ _  , respectively. 

I@ .8.. JiJu I J.. 
Doublets, triplets, quadruplets, etc. 

M : 2/4 
L :  1/8  
K : C  

"'F<G "' '''F< '''G "'G2>=G2 I 
A« G __ A« _G I F2» "'F2 I G4 I ]  

These musical elements can be simply coded with the notation (2ab for a doublet, ( 3abc for 
a triplet, or (4abcd for a quadruplet, etc., up to (9 .  The musical meanings are as follows: 

( 2  
(4  
(6  
(8  

2 notes in the time of 3 
4 notes in the time of 3 
6 notes in the time of 2 
8 notes in the time of 3 

( 3  3 notes in the time of 2 
( 5  5 notes in the time of n 
( 7  7 notes in the time of n 
( 9  9 notes in the time of n 

lf the time signature is compound (e.g., 3/8, 6/8, 9/8, 3/4) ,  then n is 3, otherwise n is 2. 

I@ � JJj J j I V ceo I J. I 
Beams 

M : C  
K : C  

(2AB ( 3ABA (4ABAB ( 5ABABA (6ABABAB 
(7ABABABA I (8ABABABAB ( 3ABA B4 I ]  

M : 3/4 
K : C  

( 3CDE F2 G2 I ( 2FE (4gabC I C6 I 

To group notes together under one beam, you should group them together without spaces. 
Thus, in 2/4, A2BC will produce an eighth note followed by two sixteenth notes under one 

605 



606 PREPARING MUSIC SCORES 

beam, whereas A2uBuC will produce the same notes separated. The beam slopes and the 
choice of upper or lower stems are generated automatically. 

I� (:�)�  p fJ 0 1 c:r E1 fJ F II M : C  
K : C  

A B e  d AB ed l ABed ABe2 1 ]  

Changing key 

The key can be changed by entering a new line with a K :  field, as the following example 
shows. Some keys can be represented in more than one way. As shown in the example, the 
repeated use ofT : inside the body produces sub-titles. 

M : 4/4 
K : D  

D = Dmajor = D maj 
T : D  = Dmaj or = D maj 
DEFG ABed l \  

D Lydian / D Ionian / D Mixolydian 

I�¥ i £j $1 an Ig� £j J] an I�� 
I�� ; J J F r J II 
D Dorian / D Minor = Dm 

D Phrygian / D Locrian 

Ties and slurs 

K : Dmaj or 
DEFG ABed l \  
K : D  maj 
DEFG ABed i ]  
T : D  Lydian / D I onian / D Mixolydian 
M : 2/4 
K : D  Lydian 
DEFG ABed l \  
K : D  Ionian 
DEFG ABed l \  
K : D  Mixolydian 
DEFG ABed i ]  
T : D  Dorian / D Minor = Dm 
M : 6/8 
K : D  Dorian 
DEF/2G/2 ABe/2d/2 1 \  
K : D  Minor 
DEF/2G/2 ABe/2d/2 1 \  
K : Dm 
DEF/2G/2 ABe/2d/2 1 ]  
T : D  Phrygian / D Loerian 
K : D  Phrygian 
DEF/2G/2 ABe/2d/2 1 \  
K : D  Loerian 
DEF/2G/2 ABe/2d/2 I J  

You can tie two notes together either across or within a bar with a - symbol (e.g., abc - I  e ba 
or abe-eba) .  More general slurs can be put in with ( )  symbols. Thus CDEFG) puts a slur 
over the four notes. Spaces within a slur are acceptable, as in CDuEuF uG) , but the open 

Example 
9-3- 10 

: Example 
9-3- 1 1  



Example 
9-3- 1 2  ' 

Example 
9-3- 1 4  

Example ; 
9-3- 1 5 : 

9.3 abc2mtex-Easy writing of tunes 

bracket should come immediately before a note (and its accents, accidentals, etc.) and the 
close bracket should come immediately after a note (and its octave marker or length) .  Thus 
(=buc ' 2) is acceptable but ( u=buc '  2u) is not. 

M : C  
K : C  

(AA) (A (A)  A)  ( (AA) A)  ( A  I A)  \ 
A-A A-A-A A2- I A4 I J  

The next example shows beams, slurs, and ties as well as staccato marks (see Example 9-
3 - 15  for details). 

j J J J II 
Gracings and accents 

M : 6/8 
K : C  

(g� f )  . e ( ed) � c - I ( � c 3  d) z g- I 
(g3-ge c )  I . S . c . A  G3 I J  

Grace notes can be written by enclosing them in curly braces, {} .  Grace notes have no time 
value, so expressions such as {a2} and {a>b} are illegal. 

J .� II M : 6/8 
K : C  

607 

r r {g}A3 A{g}AA I {gAGAG}A3 {g}A{d}A{e}A I J  

A staccato mark (a  small dot above or below the note head) can be generated by placing 
a dot before the note; e.g., a staccato triplet is written as (3 . a .  b . c . 

The tilde symbol - represents the general gracing of a note, which, in the context of 
traditional music, can mean different things for different instruments-for example, a roll, 
cran, or staccato triplet. 

For fiddlers, the letters u and v can be used to denote up-bow and down-bow, respec
tively (e.g., vAuBvA) .  

ro-, I' el • • � l D Jl D-
Chords 

V ro-, • Jl D 
V 

D II M : C  
K : C  

-A - c  . A  . c  vA vc uA uc l J  

Chords (i.e., more than one note head on a single stem) can be coded with [] symbols 
around the notes; e.g., [CEGc] produces the chord of C major. Chords can be grouped in 



608 

A 

1@# l i 
D 

It 
J 

PREPARING MUSIC SCORES 

beams (e.g., [d2f2]  [ce] [df ] ) but there should be no spaces within a chord. 

, i f II 
Guitar chords 

M : 2/4 
K : C  

[C4E4G4c4] [C2G2] [CE] [DF] 1 \ 
[D2F2] [EG] [FA] [A4d4] I ]  

Guitar chords can be put in under the melody line by enclosing the chord in double quotes 
(e.g., " Am7 " A2D2) .  

j J J J II M : 4/4 
K : C  -

Gm7 BO F# " A " A2 " Gm7 " D/2E/2 (F " Bb " F2 )  " F# " A2 1 ]  

e 

G 

Order of symbols 

The order of symbols for one note is (guitar chords) , (accents) (e.g., roll, staccato marker, or 
up/down-bow) , (accidental) , ( note) , (octave) , and (note length) . Examples include _ .... c '  3 
and even " Gm 7 " v  . =G , 2 . 

A tie symbol - should come immediately after a note group but may be followed by 
a space (e.g., =G , 2-u) .  Open and close chord symbols, [] , should enclose entire note se
quences (except for guitar chords) ,  as in " C "  [CEGc] or " Gm7 " [ .  =G , .... c ' ] ,  and open and 
close slur symbols, ( ) ,  should do likewise, as in " Gm 7 "  (v . =G , 2 _ .... c ' 2) . 

M : 4/4 

:Cl � L :  1/4 
K : G  B ;;;;::> " D "  [FA] 1 " G " G4 1 " D "  [F4A4] 1 \ 

D Em " Em" [ (B/2E4] A/2 B) - B2 1 

abc2mtex is a convenient tool for publishing music pieces with one voice. Here is a final 
example. 

H : Example of an Engl i sh tune 
X : l  % tune no 1 
T : Dusty Miller , The 
T : Binny ' s  Jig 
O : Engl i sh 
C : Trad . 
R : DH 
M : 3/4 
E : 8  
I : speed 300 
K : G  

% t it l e  
% alternat ive t itle 
% Mark as  Engl i sh 
% tradit i onal 
% double hornpipe 
% meter 
% note spac ing 
% speed f or playabc 
% key 

B>cd BAG I FA Ac BA I B>cd BAG I DG GB AG : 1 \  
Bdd gfg l aA Ac BA I Bdd gf a l gG GB AG : 1 

Example 
9-3- 1 6  , 



, Example 
9-3- 19  

9.3 abc2mtex-Easy writing of tunes 609 

BG G/2G/2G BG I FA Ac BA I BG G/2G/2G BG I DG GB AG : I 
W : Hey , the dusty miller , and his dusty coat ; He will win a shill ing , or he spend a groat . 
W : Dusty was the coat , dusty was the color ; Dusty was the kiss , that I got f rae the miller . 

1 . The Dusty Miller Trad. 
AKA Binny's  J ig  

I@j C F 1 r r r I lf cJ n I c F 1 r t' r I EJ A A :11 
I@j 0 j J J 0 I t"3 n R I O j J J 0 I �'1 n S :11 
Hey, the dusty miller , and his dusty coat ; He will win a shilling, or he spend a groat . 

Dusty was the coat , dusty was the color ; Dusty was the kiss, that I got frae the miller . 

9.3.2 The a bcP lus  extensions 
It  is  not our intention to describe in detail the various extensions that have been developed 
over the years for the abc language. In the present section we shall mention only abcPlu5,  
which provides the following features: 1 

• Polyphonic scores 

• Bass and alto clefs 

• Vocals 

• Sub-titles and in line information fields, which can be coded using [ . . .  ] 

• Multiple composer fields 

• x acts like a rest but is invisible on the page 

• Bagpipe mode for K : HP 

• Predefined formats: standard, pretty, pretty2 (flag -p, -P) 

• Pseudo-comments (lines starting with %% in the abc file), which provide for user con
trol: 

- Page format (e.g., %%pagewidth, %%staffwidth, %%f ooter) 

- Text between tunes (e.g., %%begintext . . .  %%endtext, %%vskip) 

I Guido Gonzato's very complete manual "Making Music with A B C  PLUS", available on  the abcPlus Web site 
(http : / /abcplus . sourceforge . net ), provides an excellent guide to the abcPlus language and its applica
tions. 



6 1 0  

fl I 
1 1'  

-.J 

. . 

PREPARING MUSIC SCORES 

- Fonts (e.g., %%t i tlef ont , %%tempof ont , %%vocalfont ) 

- Spacing (e.g., %%mus icspace, %%vocalspace, %%slurheight ) 

- Other commands (e.g., %%deco,  %%MIDI ,  %%beginps . . .  %%endps)  

This list shows, in  particular, that one can embed MIDI commands and PostScript defini
tions in the files. These can later be used by programs that know how to handle them, such 
as abc2midi ,  which generates MIDI  files, and abcm2ps, which directly generates PostScript 
without using 'lEX. 

Next we give three examples of abcPlus source files containing short pieces of mu
sic, as well as the result as typeset with Jean-Fran<;:ois Moine's abcm2ps program (http : 
/ /abcplus . sourceforge . net/#abcm2ps) .  

Our first example i s  a piece by J .  S .  Bach in  C minor. Note the use of  C : and Q :  and their 
representation in the output. Using a technique specific to abcPlus, the example defines two 
staves (RH and LH), whose notes are given after the lines v :  RH and V :  LH, respectively. The 
staff width is set to 14 . 5cm to fit the book. There is also an indication for a MIDI  interpreter 
(e.g., abc2mid i ) ,  which is told to use instrument number 6 (a harpsichord) to perform the 
music. 

X :  1 
T :  Praeludium I I  (WT I I )  
C :  J .  S .  Bach 
M :  C 
L :  1 / 1 6 
Q :  1 /4=66 
%%staves {RH LH} 
%%staf fwidth 14 . 5 cm 
%%MIDI program 6 
K : Cm 

V : RH 
zGFG AFEF GEOE FOCO E2c2F2c2 E2c202=B2 

V : LH 
C , 2C2F , 2C2 E , 2C20 , 2=B , 2  C , G , F , G ,  A , F , E , F ,  G , E , O , E ,  F , O , C , O ,  

Praeludium II (WT II) 
1. S. Bach 

� = 66 
I 

- - . - . ... . - - • 

• • • b • -

- -



9.3 abc2mtex-Easy writing of tunes 

The next example shows guitar chords (specified as strings between " signs, such as 
" Gm " )  and the use of vocals put below the staves (preceded by the "words" key w :  ). Normally 
one word corresponds to one note. If necessary, you can split words using a - or use _ to 
indicate that the word should be used for more than one note. 

M :  2/4 
L :  1/8 
K :  F 
" Bb " d2 dd 1 d d3- 1 " Gm " d  z z2 1 " C7 " z  B dB 1 " F " e  dA 1 e e3-
w :  Guan-t a-na-me-ra , _  gua-j i -ra , guan-t a-na-me-ra_ 
" F " A2 Be 1 " Bb " d4 1 " Gm" e4- 1 " C7 " e  d BG 1 " F " F2 FE 1 " Bb " D4 
w :  guan-ta-na-me-ra , _  gua-j i -ra , guan-t a-na-me-ra . _  

" C7 " e  z z2 1 

" C7 " C4- 1 C4 I ]  

S b Gm C7 F C7 

61 1 

r E r 1 � t3 � '1$ 1 0/ � E! 1 � U I � r I) 0/ 1 I 
Guan- ta - na - me - ra, __ gua -ji - ra, guan- ta - na - me - ra __ 

F s b Gm C7 F s b C7 

J U 1 IT 1 r= I) � fJ 1 J 
guan - ta - na - me ra, ___ gua - ji - ra, guan - ta - na - me 

As a final example of the possibilities of the abcm2ps program, we show how to define 
and use custom PostScript definitions. In this case we define commands for drawing a guitar 
diagram (guitar) ,  drawing some auxiliaries (gdot, gx, go), and finally displaying some 
chords on the guitar diagram (Dm, Bb, C7) .  The interface with these PostScript definitions 
(specified between the %%beginps and %%endps pair of lines) is created with the help of 
the %%deco specifications just preceding the tune. They specify in this case that for each 
chord the corresponding PostScript instance has to be drawn with a height of 36 points. In 
the score, these commands are instantiated with ! Dm ! , etc. 

% -- guitar di agrams 
%%beginps 
/SLW {setl inewidth} I 

I j I j I I 
� ra. __ _ 

/guitar{ gsave exch 10 sub exch 8 add T 1 . 5  SLW -0 . 3  24 . 6  M 20 . 6  0 RL stroke 
0 . 6  SLW 0 0 M 20 0 RL 0 6 M 20 0 RL 0 12  M 20 0 RL 0 18  M 20 0 RL 0 0 M 
o 24 RL 4 0 M 0 24 RL 8 0 M  0 24 RL 12 0 M  0 24 RL 16 0 M  0 24 RL 20 0 M  
o 24 RL stroke 0 . 5  SLW} I 

/gdot {newpath 1 . 4  0 360 arc f i ll} ! 
/gx{28 M - 1 . 3  - 1 . 3  RM 2 . 6  2 . 6  RL 0 -2 . 6  RM -2 . 6  2 . 6  RL stroke} ! 
/go{28 newpath 1 . 5  0 360 arc stroke} ! 
/Dm{ guitar 0 gx 4 gx 8 go 20 2 1  gdot 1 2  1 5  gdot 16 9 gdot gre store } ! 
/Bb{ guitar 0 gx 20 gx 4 2 1  gdot 8 9 gdot 1 2  9 gdot 16 9 gdot gre store} ! 
/C7{ guitar 0 gx 20 go 16 2 1  gdot 8 1 5  gdot 4 9 gdot 12 9 gdot grestore} ! 
/F{ guitar 0 2 1  gdot 20 2 1  gdot 0 . 9  SLW 0 2 1  M 20 0 RL stroke 

12 15 gdot 4 9 gdot 8 9 gdot gre store} I 



6 1 2  PREPARI NG MUSIC SCORES 

%%endps 
% - - guitar chords 
%%de co Om 3 Om 36 0 0 
%%de co Bb 3 Bb 36 0 0 
%%de co C7 3 C7 36 0 0 
%%de co F 3 F 36 0 0 
%%staffwidth 14 . 5cm 

X :  1 
T : Def ining customized decorat ions 
M : C  
K : C  treble-8 
" Om "  ! Om ! e3/d/ d6 1 " Bb " ! Bb ! z2 d/d3/ " C7 " ! C7 ! cB/ A/- AG 1 " F " ! F !  F8 1 

Defining customized decorations 

Dm 8 D  C7 F xxo x x x 0 

4 
1m 

e E� [ '  --= 
8 

I I II 
I 1 i r '  � gil J «I 

Even without a deep understanding of PostScript, it should be a fairly easy task to 
provide additional chord diagrams. A complete set of definitions for base chords can be 
found at http : //abcplus . sourceforge . net/deco-gui tar . fmt.  Instead of placing 
such declarations into the preamble before the tune (as we did in Example 9-3-22), you can 
store them in an external file with the extension . fmt.  Such files can then be loaded using 
abcm2ps -f deco-fi L e  tune-fi L e. 

9.3.3 Easy inclusion of a bc fi les in I!\TEX documents 

Enrico Gregorio wrote the abc package, which allows �TEX users to include in their docu
ments small excerpts of music written directly in ABC (Plus) .  The program defines the abc 
environment, which can be given several arguments, as the following example shows. 

\do cument class{art icle} 
\usepackage [generat e , ps2epsJ {abc} 
\page style{empty} 
\begin{do cument } 
An example of a very short piece  of mus i c  follows . 
\begin{abc} 
X :  1 
M : 6/8 
K : C  
(gAf ) . e  ( ed) A c - 1 ( A c 3  d) z g- I (g3-ge c )  1 . B . c . A  G3 I J  

Example i 
9-3-22 



9.3 abc2mtex-Easy writing of tunes 

\end{abc} 
The following piece of Bach i s  saved in the current 
directory , as well as typeset . 
\begin{abc} [name=Bach] 
X : 2  
T :  Praeludium I I  (WT I I )  
C :  J . S .  Bach 
M :  C 
L :  1 / 1 6  
Q :  1 /4=66 
%%staves {RH LH} 
%%MIDI program 6 
K : Cm 
V : RH 

zGFG AFEF GEDE FDCD 
V : LH 

C , 2C2F , 2C2 E , 2C2D , 2=B , 2  
\end{abc} 

E2c2F2c2 E2c2D2=B2 

C , G , F , G ,  A , F , E , F ,  G , E , D , E ,  F , D , C , D ,  

Finally , we show how you can read a f i l e  from a direct ory and 
type set it (we reuse the f ile saved in the previous exampl e ) . 
\renewcommand{\abcwidth}{ . 8\linewidth} 
\abcinput {Bach} 
\end{do cument} 

This E-Tp)C source file can be typeset with the following command (note the 
- shell - es cape command line option) :  

> latex -shell-es cape abcexa 
Thi s  i s  pdf eTeXk , Vers i on 3 . 141592- 1 . 30 . 4-2 . 2  (Web2C 7 . 5 . 5 ) 

\wri t e 1 8  enabled . 
%&-l ine par s ing enabled . 

ent ering extended mode 
( . / abcexa . tex 
LaTeX2e <2003/ 1 2 / 0 1 >  

. . .  L ines de L e t e d  . . .  
( . /abcexa . aux) abcm2ps-4 . 1 1 . 8  (October 12 , 2005) 
File out -abc . abc 
Output written on out -abc . ps (1 page , 1 t itle , 17562 byt e s )  

<out-abc . eps i >abcm2ps-4 . 1 1 . 8  ( O ctober 12 , 2005) 
File Bach . abc 
Output written on Bach . ps ( 1  page , 1 t itle , 1 8396 byt e s )  

<Bach . epsi>abcm2ps-4 . 1 1 . 8  (October 12 , 2005 ) 
File Bach . abc 
Output written on Bach . ps ( 1  page , 1 t itle , 18396 byt e s )  

<Bach . ep s i >  [ 1 ]  ( . /abcexa . aux) ) 
Output written on abcexa . dvi ( 1  page , 788 byt e s ) .  
Transcript written on abcexa . log . 

6 1 3  



614 PREPARI NG MUSIC  SCORES 

An example of a very short piece of music follows . 

-- -=-----
� � V I r ' leI I tD J. I I 

T h e  following piece of B ach is saved in t h e  current directory, as well as typeset . 

Praeludium II (WT II) 
.I S. Hm lr 

Finally, we show how you can read a fik from a directory and typesct it (we 

re-use the file saved in the previous example ) .  

Pracludium I I  (WT I I )  
1 \  Bm h 

Figure 9.2: Using the abc package for typesetting abc code 

> dvips ab cexa -E - 0  abcexa . eps 
Thi s  i s  dvips (k) 5 . 95b Copyright 2005 Radical Eye Software 

(www . radicaleye . com) , TeX output 2006 . 04 . 23 : 1249 ' -> abcexa . eps 
<tex . pro><texps . pro><spe c i al . pro> . <cmr 1 0 . pfb> [ 1 <out -abc . ep s i >  
<Bach . eps i > <Bach . epsi>]  

You see that the abcm2ps program is run and that . eps i files are created, which are 
afterwards included by dvips to generate the typeset result abcexa . eps, which is shown in 
Figure 9.2. Alternatively, you could generate a PDF file directly by running pdtlatex rather 
than latex on the source file abcexa . tex; in this case the dvips step is not needed. 

The optional argument of the abc environment gives you some control over the use of 
the various programs that are invoked. For example, 

\begin{abc} [name=Bach , opt ions={ . . .  } , postopt ion={ . . .  }] 

\end{ab c }  

writes the file Bach . abc to the current directory, and then runs the program abcm2ps with 
the options specified on the opt ions argument preceding the file name Bach . abc on the 
command line as well as those specified with the post opt ions argument following this file 
name. 



9.4 Preprocessors for MusiXTEX 

You can even run a different program than abcm2ps by specifying its name as argument 
of the program option. For instance, 

\begin{abc} [name=Bach , program={myabcprog}] 

\end{abc} 

will run the program myabcprog (if it exists ! )  on the file Bach . abc. Finally, as seen in the 
source code of the example in Figure 9.2 on the preceding page, the code of an abc file 
that resides on an external file can be input and typeset with the help of the command 
\abcinput. Our example also shows how you can control the width of the typeset music 
piece by redefining the \abcwidth length. This is best done with respect to a known length, 
such as \l inewidth (\abcwidth is set equal to \linewidth by default). A change to 
\abcwidth affects all subsequent music inclusions, subject to the usual scoping rules. 

Package options 

shellescape / noshellescape 
The option shellescape (default) means that IHEX calls external programs to type
set the music environments. If you do not want �TEX to run programs automatically, 
specify noshellescape. In this case, since �TFX by default uses the same file name 
for the . abc files that it writes, you should provide a different name for each abc envi
ronment to prevent overwriting. A shell command script out-abc . sh is produced to 
help you manage this situation. 

generate / nogenerate 
The option generate (default) will process the . abc files by means of the external pro
grams. In case you do not want this behavior (e.g., because the sources did not change), 
specify the nogenerate option. Similar to the previous case, you must then specify a 
different name with each of the abc environments. 

ps2eps / ps2eps i 
The option ps2eps (default) specifies that the ps2eps Perl script must be used to gener
ate the EPS files to be included. With the ps2epsi  option, the ps2epsi program is used 
instead. 

9.4 Preprocessors for MusiXTEX 

MusiXTEX, which we described in Section 9.2, is undoubtedly one of the best programs for 
typesetting musical scores: it produces ready-to-print, high-quality output in PostScript and 
PDF format; it is stable; and it is freely available. 

Nevertheless its use seems to be limited, with few exceptions, to musicians who have 
a scientific background. MusiXTEX is far from having an intuitive "look and feel" . Indeed, it 
often uses terms that belong more to the everyday language of computer programmers than 
to the vocabulary of musicians. Moreover, coding a musical score in the MusiXTEX language 
remains a somewhat tedious process. 

615 



616 PREPARING MUSIC SCORES 

Fortunately, there exist two higher-level preprocessing languages, Don Simons's PMX 
and Dirk Laurie's M-Tx, which can significantly simplify the input process. As an illustration, 
let us consider the input that has to be coded for the first two bars of Mozart's piano sonata 
KV 545 with MusiXTEX, PMX and M-Tx. 

MusiXTEX input \us epackage{mus ixtex} 

I fl A 
[ ,,, r"- A V ":J: l tJ 

Piano < 
fl 

I 
A 1'1 '"± 

' tJ 

\ setname 1{Piano} 
\setstaf f s 1 2  
\generalmeter{\meterfrac44} 
\nobarnumbers 
\startextract 
\Not es\ ibuOfO\qbO{cge}\tbuO\qbOg i \hl j \ en 
\Notes\ ibuOfO\qbO{cge}\tbuO\qbOg i \ql l\ sk\ql n\en 
\bar 
\Note s \ ibuOf O\qbO {dgf } i \qlp i \en 
\note s \tbuO\qbOg i \ ibbl 1 j 3\qb 1 j \tbl1 \qb1k\en 
\Note s \ ibuOfO\qbO{cge}\tbuO\qbOg i \hl j \en 
\endextract 

• 

1 I == 1  

-
� � .. � 

....I - -

Now let's look at the same example in the PMX input language. Ifwe ignore the preamble 
PMX input part ( in blue), we end up with very few lines representing the notes, and it is almost possible 

to guess their meaning even without further explanation. But just like with MusiXTEX, the 
staves have to be entered in a bottom-up order, which is fairly unnatural for musicians. 

M-Tx input 

% PREAMBLE : 
% nstaves ninstr mtrnuml mtrdenl mtrnump mtrdenp 
2 1 4 4  4 4 
% npickup nkeys npages nsyst ems mus i c s ize frac indent 
o 0 1 1 16 0 . 1 2 
P i ano 
tt 
. /  

% Bars 1 -2 
c8 g+ e g c - g+ e g 
c2+ e4 g 

d g f g c
bd4- c 1  d c2 

g+ e g Rb / 

/ 

The M-Tx language uses a somewhat more readable preamble and specifies the staves 

Example 
9-4- 1 



9.4 Preprocessors for MusiXTEX 

from top to bottom. The syntax for notes input is essentially the same as for PMX, which is 
not surprising given that M-Tx is a preprocessor language to PMX. 

Style : piano 
Piano : Voi c e s  RH LH ; Clef s G G ; Cont inuo 
Name : Piano 
Meter : 4/4 
Size : 16 

c2+ e4 g 
c8 g+ e g c- g+ e g 

b4d- c 1  d c2 
d g f g c - g+ e g 

You will undoubtedly agree that the MusiXTEX variant seems less intuitive and more com
plicated than the other two. For further comparison, here is the same piece in abcPlus syntax 
as introduced earlier and processed by abcm2ps (i.e., without using lEX). 

M :  4/4 
%%staves {RH LH} 
%%staffwidth 14 . 5cm 
K : C  
V : RH 

c4 e2 g2 B3 c/2d/2 c4 
V : LH 

CGEG CGEG DGFG CGEG 

fJ 

-.J 
fJ 

-.J ... -

Using the right terms 

• 
. 

I .... I 

... - • ... 

In the next two sections of this chapter, we describe the PMX and M-Tx languages. To facili
tate their discussion, we first define here a few technical terms rooted in the music vocabu
lary and explain how they are used in the framework of PMX and M-Tx. 

• Line: text line of typed music 

• Word or symbol: string of consecutive characters, separated by blanks from other words 
or symbols on the same line 

• Stave: group of five closely spaced parallel lines on which music is written 

• Voice: melodic strand of music, of which there can be one or two per stave 

• Instrument: a single stave or a group of two or more adjacent staves linked together with 
a brace ( { )-for instance, for a piano 

• System: group of staves for noting the various voices that are played simultaneously 

6 1 7  



6 1 8  PREPARING MUSIC SCORES 

9.5 The PMX preprocessor 

Before going into the details of Don Simons's PMX language, we describe the sequence of 
steps needed to go from the PMX source file to the typeset output "page". 

1 .  The music piece is coded in the PMX language with the help of a text editor and is saved 
into a normal text file, which should have the suffix . pmx (e.g., my-piece . pmx) .  

2 .  This text file, my-pi ece . pmx, i s  run through the PMX processor, pmxab. !  This pro
duces (among others) the output file my-piece . tex. Whenever pmxab terminates 
due to a syntax error, the exit code is set to 1 (0 when there are no errors) .  Moreover, 
pmxab always writes a file pmxaerr . dat containing the line number in the . pmx file 
where the syntax error occurred (0 when the run was successful) . 

3 .  The file my-piece . tex is then processed with lEX to produce a . dvi output file. In 
fact, as already mentioned, this step is a three-pass procedure, consisting of (i) running 
lEX, ( ii) running musixflx, and (iii) running lEX again (see Section 9.2.5 ) .  

4.  The file my-pi ece . dvi can be viewed with a DVI viewer or can be translated into 
PostScript, such as with dvips. Of course, if in the previous step you had used pdftex 
rather than tex, you would have obtained PDF output directly. 

As an example, we put the PMX file shown on page 616  through the various stages of 
this run procedure. 

> pmxab my-p i e c e . pmx 
Thi s  i s  PMX , Vers i on 2 . 506 , 14 Nov 04 
Opening my-p i e c e . pmx 

Starting f irst PMX pas s 
Bar 1 Bar 2 

Done with f irst pas s 
St art ing s e c ond PMX pas s 

Bar 1 Bar 2 
Writ ing . /my-piece . t ex 
Done with s e c ond PMX pass . Now run TeX 

> tex my-p i e c e . t ex 
. . .  [ l og output no t shoum] 

> mus i xflx my-pi e c e . tex 
. . .  [ l og ou tpu t n o t  shoum] 

> tex my-pi e c e . tex 
[ l og output no t shoum] 

> dvips -E - omy-piece . eps my-pi e c e . dvi 
Thi s i s  dv ip s ( k )  5 . 94b Copyright 2004 Radical Eye Software (www . radicaleye . com) 
, TeX output 2005 . 03 . 29 : 1424 ' -> my-piece . eps 
<tex . pro><texps . pro> . < cmbx 1 2 . pfb><mus ix20 . pfb><cmr 1 0 . pfb><mus ixspx . pfb> [ 1 ]  

1 pmxab i s  a program written i n  Fortran. Its source and precompiled binaries for several computer platforms 
are available from the Icking Archive (http : // i cking-mus i c - archi ve . org/ software/indexmt6 . 

html) under the heading "PMX". 



9.S The PMX preprocessor 

9.5 . 1  General  structu re of  a PMX score 
A PMX music score always has two parts: a preamble followed by a body. The preamble con
tains musical as well as typographical specifications about the score. The body codes the 
music itself. It normally starts with a header followed by the bars for each of the instruments 
and voices from the bottom up. Comments can be introduced in the score by putting a "%" 
in the first column of a line. Such lines are ignored by the pmxab processor. 

9.5.2 The preamble of a PMX file 
To describe the structure of  the preamble in  detail, let us  consider the first line of  Mozart's 
Jupiter Symphony from page 644. 

The numerica l parameters 

The first four lines of the score input are reproduced here. 

% nstave s ninstr mtrnuml mtrdenl mtrnump mtrdenp 
1 1  1 1  4 4 0 6 

% np ickup nkeys npages nsystems mus i c s ize f rac indent 
o 0 1 1 1 6  . 07 

The first line(s) of the preamble (ignoring comment lines) must contain exactly 1 2  nu
merical parameters, separated by one or more spaces or newlines. In fact, the preceding is 
equivalent to this (much less readable) one-liner: 

1 1  1 1  4 4 0 6 0 0 1 1 16 . 07 

A short explanation of each of these numbers follows (the names of these parameters 
are purely mnemonic and have no formal significance for PMX). The first eight numbers 
specify musical parameters. The ninth to twelfth numbers define the typographic layout. 

nstaves ( an integer :::; 12 )  is the total number of staves per system (this limit of 1 2  staves 
can be increased) .  A system is a coherent set of staves to be played simultaneously. Moreover, Number of staves 

the number of voices in a stave may change as the piece progresses, but the total number of 
voices at any one time cannot exceed 12.  Thus, when there are 1 2  staves, there can be only 
one voice per stave. 

ninstr ( an integer :::; nstaves )  is the number of instruments. Each instrument has a 

6 1 9  

unique name (see below). I f  some instruments have more than one stave, they will have Number of instruments 

their staves joined with a curly bracket. In such a case the number of staves per instrument 
is assigned by preceding ninstr with a minus sign, and following it with the number of 
staves in each instrument in succession, in sequence from the bottom one up. Indeed, in a 
PMX input file, the first stave to be specified is the bottom one of the system as it appears 
in the final score, and the last stave specified is the top one. These numbers must add up to 
nstaves .  For instance, 9 -7 1 1 1 1 2 2 1 means that there are nine staves, for a total 
of seven instruments, of which the second and third (from the bottom up) have two staves 
each, and the other five instruments have only one stave. 



620 PREPARING MUSIC SCORES 

mtrnuml and mtrdenl are a pair of numbers determining the logical meter of the piece. 
Meter specification PMX uses these values to calculate the length of a bar, where mtrnuml is the numerator of 

the meter (the number of beats per measure), and mtrdenl is its denominator. 

mtrnump and mtrdenp are a pair of integers that are not used by PMX in its analysis of 
Meter representation the timing. These numbers determine the appearance of the meter in the printed output. 

When mtrnump is positive, its value and that of mtrdenp are printed literally as the numer
ator and denominator of the time signature. If mtrnump is negative, the absolute values of 
mtrnump and mtrdenp will be used for the signature, which will be printed with a vertical 
slash through it. When mtrnump is zero, the value of mtrdenp determines the signature, as 
follows: 

@ 1 1 1 2 1 01 1 4  I (I: I e  I �I 
0 1 2 3 4 5 6 7 

Pickup bar length npickup is the number of beats in a pickup bar, if one is present. npickup need not be an 
integer, as the following example shows (the values of npickup are given under the stave) .  

@.t J • I J J J J 1 1 1 j I J J J J 1 11 Jl 
3 . 5  2 

@· t J I J J J J 1 1 1 JI J J J J II 
0 . 25 0 . 0625 

Key signature nkeys is the key signature. If nkeys is a positive integer, it specifies the integer for sharps; if 
negative, it specifies the number of fiats. For instance, the previous example had nkeys set 
to - 1 .  

Pages in the output npages is the total number of pages. If it is zero, the next parameter specifies the average 
number of bars per system. 

Total number of nsystems is the total number of systems. When npages is zero, nsystems is interpreted 
systems as the average number of bars per system. In this case the PMX processor will calculate an 

optimal number of pages. 

Stave height mus ics ize is the height of a stave, in points (only the values 16  and 20 are allowed). 

First system f rac indent is the indentation of the first system from the left margin, expressed as a deci
indentation mal fraction of the total line width (useful for specifying the instrument names) .  

[Exam�� 
I 9-5- 1 
L _ --�-. � -� 

Example 
9-5-2 



[ Example j 
9-5-3 I 

9.5 The PMX preprocessor 

The rest of the preamble 

To describe the structure of the rest of the preamble, we display the start of the Mozart score 
from page 644. 

% nstaves ninstr mtrnuml mtrdenl mtrnump mtrdenp 
1 1  1 1  4 4 0 6 

% npi ckup nkeys npages nsystems mus i c s ize frac indent 

Cb 
Vc 
Va 
VI II 
VI I 

o 0 1 1 16 . 07 

1 0  Tp 
1 1  Tb (do) 
1 2  Cr ( d o )  
1 3  Fg 
1 4  Db 
1 5  F l  
1 6  bbattbttbtt 
1 7  . /  

After the numerical parameters described in the previous section, we need 1 1  
(ninstr) lines to specify the names of all instruments (lines 5- 15  in our example) ,  enu- Instrument names 

me rated from the bottom instrument up. These names will be typeset within the indentation 
of the first system (fracindent ) .  You must leave a blank line for each instrument for which 
no name has to be displayed. 

Then, a separate line contains, as a single string, the clefs for each of the nstaves staves 
(as letters or numbers), again starting with the bottom stave. Possible choices are (Exam- Clefs 

pIe 9-5-3) a (alto or 3) ,  b (bass) or 6) ,  f (French violin or 7) ,  m (mezzosoprano or 2 ) ,  n 
(tenor or 4) ,  r (baritone or 5) ,  s (soprano or 1 ) , and t ( treble or 0) .  Clef changes within the 
staves are displayed with slightly smaller symbols, so the following example shows only the 
treble key on the left in its natural size. 

, lSi Iisl IIBI lSI '):1 �):I �I $1 
1 , s  2 , m 3 , a  4 , n  5 , r  6 , b  7 , f  O , t  

Let us look somewhat more closely at Example 9-5-36 on page 644, which shows a small 
fraction of Mozart's Jupiter symphony and its clefs definitions (line 16 ) .  Remembering that 
staves are specified from the bottom up, the first two staves (lines 5 and 6-the double 
bass, "Cb", and violoncello, "V c") use the bass (b) clef, the third stave (line 7-the viola, 
"Va") uses the alto (a) clef, the two violin staves (lines 8 and 9-"V II" and "V I") use the 
treble (t )  clef, and so on. 

The last line of the preamble (line 1 7) contains the path name of the directory to which 
the pmxab  program will write its output files-in particular, the . tex file. This is often the Output path 

current directory, which on most systems is specified as . / (on Windows it is . \ ) .  In any 
case, the path-and thus every PMX preamble-must terminate with a line ending in a slash 
or backslash (I or \ ) .  

9.5.3 The body of a PMX file  
The part following the preamble of  a PMX input file i s  called the body. At its beginning, the 
body has a header where we can specify global options, one per line. Following the header, 
which can be empty, the actual music begins. 

62 1 



622 PREPARING MUSIC SCORES 

The music is specified using a block as the base unit. Each block consists of up to 15  
complete bars. The input data for these bars are specified for each stave i n  turn, working 
from the bottom upwards, since the sequence of staves (and thus the instruments) is defined 
in the preamble. The data for each stave must start on a new line, can extend over as many 
lines as needed, and may include blank lines or comment lines, but it must end with a / 
(slash) .  If a stave contains more than one voice, these are separated by II .  A block ends with 
the slash of the last stave of the last instrument (the top stave in the score) .  

For convenience, many users of  PMX put only one bar  per block. If  you prefer to put 
more than one bar in a block, however, it is advisable (although not required) to separate 
bars with a I ("vertical stroke") .  This provides visual separation in the input file and helps 
pmxab better diagnose input errors. It is also good practice to separate the blocks with com
ment lines that indicate which bar is being coded. A pickup bar, when present (pickup > 0), 
must be in a block with the first full bar. 

Generally speaking, PMX input code comprises sequences of symbols, each one contain
ing one or more adjacent characters, separated by one or more spaces or newlines. Thus 
several characters strung together without spaces are considered one single symbol. 

9.5.4 Notation to describe a stave 
In this section we describe the notation that is used to produce the material for individual 
staves, such as to obtain notes, rests, and chords. Section 9.5.5 on page 639 then discusses the 
notation that affects all voices of a system. To shorten the examples we will omit the header 
part of the examples if it doesn't contribute anything new. 

Notes 

A single note, characterized by its pitch and duration, is the basic input item of a music score. 
The pitch is specified using the traditional one-letter lowercase note name: c (do), d (re), 
e (mi), f (fa) ,  g (sol), a (la) , b (si). Possible accidentals are attached to the note name: s 
(sharp),  f (flat), n (natural) ,  ss  (double sharp) ,  ff  (double flat) .  

The basic duration ( i .e . ,  exclusive of a possible dot) is specified by appending an un
signed digit following to the note name: 9 (double whole or breve), 0 (whole or semi-breve),  
2 (half) , 4 (quarter), 8 (eighth or quaver), 1 (sixteenth or semi-quaver), 3 (thirty-second), 
and 6 (sixty-fourth) .  For a sequence of notes with an equal duration, this number needs to 
be given explicitly only for the first note of the sequence, since subsequent, consecutive notes 
without explicit duration "inherit" their basic durations from the most recent note with an 
explicit duration. 

Dotted or doubly dotted notes are specified by including a d or dd somewhere inside 
the note symbol following the note name. Dots are never inherited and, therefore, must be 
specified for every note in question. 

The octave that is needed to fully qualify the pitch of a note can be specified by the sec
ond digit following the note name. 1 This digit indicates the octave to which the note belongs. 

I Unlike the letters for accidentals and dots (and other letters to be explained later), the two digits for duration 
and pitch, if present, must always be given in this order. Specifically, if the duration digit is omitted (inherited 
duration) ,  the octave can no longer be specified explicitly by an unsigned digit. 



Example 

9-5-4 

9.5 The PMX preprocessor 

For reference, octave 4 runs from middle C to the B above, as seen in the following schema. 

. ..  �". � 
I I . .  I . .  �.,.. 

: 

I .  �-.J." c43
1 � .. I I 

c46 
I .  c44 c45 

11 fil l - c42 

c41 

If we omit an explicit octave specifier, PMX will make the note "inherit" the pitch and 
assign it to the octave that makes it nearest to the most recent note in the same voice. Thus, 
for jumps of less than a fourth up or down, you need to enter only the note name to fully 
specify the pitch. 

By contrast, for jumps of a fifth or more, you need to specify the octave either explicitly, 
as described above, or relatively, by adding a + or - to a note symbol, which moves it an 
octave higher or lower than it would otherwise be. Two consecutive plus signs will raise the 
pitch two octaves, and so forth, as seen in Example 9-5-5, where we also use the equivalent 
absolute notation for duration and pitch. 

% PREAMBLE up to . /  omitted 

c8 d e c+ b4 g-
c2++ g2- - I cO Rb / 
% Dr in absolut e value s 
c84 d84 e84 c85 b44 g43 
c26 g23 I c04 Rb / 

It is always good practice, though not strictly necessary, to specify for the first note of 
each line of music in a block not only the note name and a basic duration value but also the 
explicit octave. In later blocks, PMX will use the obvious inheritance rules from the end of the 
prior block. Nevertheless, it is safest to reset the octave at the start of a new block, especially 
if the number of voices in a stave has changed from the prior block. Note that duration is 
never inherited across block ends, so it must be reset at the start of each input block. 

Stems and other note parameters 

Although pmxab does a decent job when translating the PMX source into MusiXTEX, it is 
sometimes necessary to help pmxab generate 'lEX code that guarantees a better placement 
of some visual components defining a note. Therefore, PMX has several parameters that let 
you specify the display characteristics of a note in a printed score. Table 9.4 on page 625 gives 
an overview of the more important of these parameters. Practical instances of how one can 
characterize the form of a note according to these parameters are seen in Examples 9-5-6 
to 9-5-9 on the next page. 

623 



624 PREPARING MUSIC SCORES 

de2 d2 

@ (: J r' D I r" � r I * * r eu 
cd e8 edd4 c 1  e2 e2 er2 

a14 

� @ r r r D #r hr gr zr I fAIr r (�)r (tJ)r (�)r r r r 
e8 e e ea es  ef  en ess  eff  e e s c  efe ene e s i  e f i  eni 

The positions of the dots for dotted notes can be adjusted by using + and - signs im
mediately following the letter d. The first value indicates a vertical displacement (in units of 
\ internote,  which is the vertical spacing of contiguous notes for the current instrument); 
the second value, when present, indicates a horizontal displacement (in multiples of note 
head widths) . The following example shows how this works in practice. 

@ I: r D r D I r D r � I 
e4d+O+ l e8 e4d+2 e8 e4d-2+1 e8 e4dd+2 e l  

I t  i s  possible to modify the position of  an  accidental, but in  this case we must introduce 
the values of both the vertical and horizontal displacements (e.g., + 1  +0) .  As in many other 
cases, only the horizontal position needs to be tuned. A special notation for left « )  and 
right (» shifts is possible, where in each case these symbols are followed by a floating-point 
number. Examples of specifying the position of accidentals using both notations are given 
next. 

� r �r 
e4+s+1+0 e f - l - l  en-2+0 es s+O-2 

f,r 
e4s< . 85 e s > . 2  ef< . 3  ef> . 2  

Pointed rhythms (having the value 3:  1 )  can be easily entered using a "dot" symbol ( . ) 
without duration indicator, rather than with a d. For example, the first bar ("a" in Example 9-
5-9) was coded e8 . g c .  a g .  i; this is evidently much simpler than ed8 g1 cd8 a1 gd8 
i 1 . 

Similarly, ternary 2 : 1 rhythms can be coded using a comma ( , ) . For instance, part "b" 
of the following example was coded e4+ , d I c ,  e I d , b  I cd; the full forml would be 
e4+ d8 I c4 e8 I d4 b8 I cd4. 

I I Q r p I r D I r p I r' b 

: Example 
9-5-6 

Example 
9-5-8 

Example 
9-5-9 



9.5 The PMX preprocessor 

Accidentals 
s 
f 
n 
ss  
f f  

Table 9.4: Note parameters 

sharp 
flat 
natural 
double sharp 
double flat 

s c ,  s se , f e ,  f f e , n c  cautionary accidental (accidental in parentheses) 

Dotted Notes 
d 
dd 

Stems 
u 
1 
Shifts of Position 
e 
r 
< 
> 
+ ,  -
Beam Inhibit 
a 
Xtuplets 
x 

Rests 

single dot 
double dot 
shorthand for 3: 1 rhythm 
shorthand for 2: 1 rhythm 

force the stem up 
force the stem down (lower) 

shift note head left by note head's width 
shift note head right by note head's width 
left shift of accidental 
right shift of accidental 
general shift of accidental 

stem alone 

(xtuplet) 

Rests are coded with the letter r. Like notes, rests have a duration whose value is specified 
by a number. Identical inheritance rules apply to rests and notes, as the duration algorithm 
makes no distinction between the two. Thus any rest or note can inherit from the prior note 
or rest. Similarly, the same rules as those outlined for notes apply for generating rests with 
dotted values. Any rest (or sequence of rests ) that occupies a full bar will, by default, be 
horizontally centered in the bar. 

A few special notations exist for rests: 

• rp: denotes a full-bar rest (whole rest) ,  regardless of what the meter signature for the 
bar may be. 

• rpo: typesets the rest horizontally off-center. 

• rb: generates a blank rest-i.e., one that is not typeset. This option is useful when there 
are two voices in a stave, and one voice is silent for part of the current input bar. 

• rm: generates a "multi-bar" rest, where the number of full bars is specified by appending 

625 



626 

7 

PREPARING MUSIC SCORES 

an integer n. This will generate the multi-bar rest symbol with the number n typeset 
above it. 

E 0/ 9 q q I 
% PREAMBLE up t o  . /  omitted 

1 5  rO I r2 r4 rS r l  r 3  r 6  rb / 
r4+3 rS-6 r r . r  rdd r3 / 
rp I rpo I rm1 5 Rb / 

Xtuplets 

PMX checks that the sum of durations of all notes or rests in a bar add up to the total re
quired by the bar's meter. For polyrhythmic music, PMX supports the traditional xtuplets
doublets, triplets, etc.-together with their usual notation. 

Xtuplets can have from 2 to 24 notes (or rests) and, by default, all notes in an xtuplet 
have the same duration. Nevertheless, some can be dotted or have twice the basic duration. 
The following notation applies. 

1 .  The symbol for the first note of an xtuplet begins exactly like a note symbol, with the 
name of the first note in the xtuplet (or r ifit starts with a rest) ,  and an optional duration 
digit. However, this duration, whether given explicitly or inherited from a previous note 
or augmented by a dot, is not the duration of the first note, but rather represents the 
total duration of the whole xtuplet. 

2. Next, without space, comes x (for "xtuplet") ,  followed by a one- or two-digit integer, 
indicating the number of notes in the xtuplet. If the first note is to be dotted, add the 
usual d; if it is to have twice the basic duration, add a D or F (see below). The only 
options allowed after this begin with the letter n and control the printed appearance of 
the xtuplet: 

• If n is omitted, the xtuplet is printed in the standard way (e.g., for a triplet, a 3 is 
typeset above or below). By default, PMX prints a bracket only if the xtuplet notes 
are unbeamed; otherwise, just the xtuplet number is printed. 

• If n is followed by an unsigned integer, this integer is taken as the number to be 
printed instead of the natural (default) one. 

• If n is followed by the letter f (flip) ,  the xtuplet number is flippped vertically from 
its default position. 

• The position of the xtuplet number can be adjusted in the usual way with 
one or two signed numbers following n: the first is a vertical shift (in units of 
\ internote) ,  and the second (optional) a horizontal shift (in note head widths), 
as explained with Example 9-5-7. 

• If n is given but followed by a space (thus ending the first-note symbol), no number 
will be printed. 



9.S The PMX preprocessor 

3. The second through the last notes of the xtuplet are then each given by a separate note 
symbol, containing the meaningful subset of the parameters permitted for notes or 
rests: 

(a) The note name, which is required, as the first character. It can be an r (for a rest), 
except that PMX does not allow that the last note of an xtuplet be a rest. 

(b) An accidental. 

(c) An octave change (+ or - ) .  The octave may also be given explicitly. This is the 
only digit allowed, since no explicit duration is allowed in symbols for the second 
through last members of the xtuplet, as their duration is determined by the first 
note. 

(d) A d  (dot). The next note after the dotted one is automatically shortened to half the 
normal value. 

(e) The character D in the note symbol for any note in an xtuplet doubles the duration 
of this note. As this accounts for two notes of the xtuplet, it will decrease the ex
pected number of notes in the xtuplet by one. If used for the first note of an xtuplet, 
D goes before an optional n parameter. 

(f) The character F is a variant ofD in which the doubled note will typeset as dotted, a 
notation sometimes used by Bach. 

Beaming of xtuplets is done automatically. If it is to be inhibited, add the a ("alone" 
option; see Table 9.4) to the first-note symbol. Grace notes are not allowed in xtuplets. 

Example 9-5- 1 1  shows how xtuplets are built in practice (note the change of measure 
after the second bar-this notation is explained on page 640) .  By merely changing the spec
ifier of the first note of the xtuplet (compare bars 1 and 2, or 3 and 5), the variant forms are 
obtained. Note that the first flip in bar 5 has been lowered even further due to the specifier 
cd4x2n-4f.  

% PREAMBLE up to . /  omitted 

% Bar 1 
e4x5 f g a b c4x3 g e c2x 14 

d e f g a b  c d e f 

% Bar 2 

627 

g a b  / 

e44x5n+ l + l  f g a b c4x3n g e 
c2x 14n7 - 1  d e f g a b  c d e f g a b / 

% Bars 3-6 
m6868 
cd4x2 c- f d4x4 g a b  I cd2 / 
cd4x2n-4f c - f d4x4nf g a b I cd2 Rb / 



628 

I 

I 

I 

PREPARING MUSIC SCORES 

To introduce a note with twice the duration of the other notes in the xtuplet (which 
reduces the total number of notes by one unit), you would use a D specifier (or F if you want 
the note dotted) .  Dotted notes inside an xtuplet are entered with the d specifier. 

3 3 

F 3 � p J Ji J  0 1 2  J- j  % PREAMBLE up to . /  omitted 

c4x3D d e4x3F f gx3d a b cx3 gd e Rb / 

fl 

u -� 

: 

c:; 

f\ 

I t.- 17 " � 

: 

., �  

Chords 

A chord consists of notes that share a common stem and have the same duration. In PMX 
a chord is characterized by its "main" or "first" note, which is coded specially, as well as by 
one or more supplementary notes, which are all separated by a space. The symbols of the 
supplementary notes of a chord all start with z, followed by the note name, an octave indi
cator (+ or -, if needed).  Although PMX will try to avoid collisions between notes you might 
sometimes select to move the note head to the right or left, which is achieved by adding r 
or e, respectively. The example also shows how 'lEX code can be passed to MusiXTEX at the 
beginning of the body. More details on this behavior are found in Section 9.5.8 on page 646. 

,,<.. 

� 

I 

I" �i IT 

l� 

' �  

2 1 2 4 0 0 0 - 1  1 2 1 6  0 . 0  

bt 
. /  

\ \nobarnurnbers\ 
w54m 
% bars 1 - 3  
f 22 za zc  zf 
c2  zef zf za 
% bars 4-5 

gf - zb zdf zgf 
df - zgf zb zdf 

ef- zgn zb zef / 
b- zdf zef zgn / 

dn2- zbn+ zen I cs zes zgs zcs Rb / 
bn2- zen zgs I es zgs zcs / 

The main note is written as usual and can have all kinds of modifiers, as described 
previously. In particular, you can specify its duration, which is inherited by all other notes 
of the chord. A dot on the main note is inherited, so that adding a d to the supplementary 
notes is redundant unless you want to shift the dot of the note in question. In this case the d 
must be specified, followed by the relevant shift parameters. 

The position of accidentals is calculated automatically, but you can shift accidentals of 
chord notes manually with the techniques available for single notes. Note, however, that a 
manual shift of any accidental in a chord will disable automatic positioning of all accidentals 
in a chord, unless you preface the shift parameter with A (e.g., zcsA< . 5 ) ,  which will add the 
manual shift to that applied automatically by PMX. 

Example 
9-5- 1 3  1...., 



Example 
; 9-5- 1 4  ! 

9.5 The PMX preprocessor 

The option Ao will typeset accidentals in the order specified in the input source. Each 
accidental is positioned as far to the right as it will go without crashing into a note head, 
stem, or another accidental. 

The stem length and direction of a chord are controlled by the first note. The PMX de
fault can be overridden with u or 1 in the first note symbol. 

An arpeggio-notes of a chord that are played in rapid succession, and indicated by 
a vertical wavy line in front of the chord in a score-is specified by placing the symbol ? 
(question mark) following the symbols of both the first and last notes of the chord. 

'l I � Q d±Q I. .f±. d±. 

t- % PREAMBLE up to . /  omitted 

% bars 1-2  

: e22f zgn zb zef dn2- zbn+ zen 
b24 zdf zef zgn bn2- zen zgs 

., �  ' b;c  � � % bar 3 

/ 
/ 

dn4- zbn< 1 . 5+ zen dn- zbnA<O . 5+ zen 
4 b�1 �� fl .: 

bn4- zen< 1 . 5  zgs bn- zen<O . 5  zgs 
% bar 4 

/ 
/ 

I f8- ? za zc zf ? gd4f - zb zdf zgfd+O . 5+2 

I t- cd4- zef zf za d8f - zgf zb zdf 
< % bar 5 1'1 
I : 

l� �. c4s- zes zgs zcs c4sAo zgs zes zbn Rb 
es 2-u zgs zcs • 

More complex chords showing various combinations of accidentals are seen in the fol
lowing PMX code. The second bar is especially interesting, since it shows how to fine-tune 
the vertical and horizontal positions of dots and accidentals. 

% PREAMBLE up to . /  omitted 

c4 ze zg [u c8 za zf s zefd-2 zcd-2 . b+ zg zfn zd ] c4 zds zf s za zbf c ze zg zc / 
% bar 2 with key change 
Cb K+O+7 g22d-2 za zb zd zf zad+O+O . 8f f < 3 . 2  zbd+ 1+0 . 2f f < 1 . 6  zcff r4 / 

II 
Grace notes 

The symbol for grace notes, which are usually entered before the note to which they relate, 
starts with a G and is followed by a combination of options. 

• A single digit (default 1 )  for the number of notes in the grace 

• m and a digit (for multiplicity) , representing the number of flags or beams (default is 1 ;  
o i s  allowed) 

/ 
/ 

/ 
/ 

629 



630 PREPARING MUSIC SCORES 

• s (for slur) to join all notes of the grace to the main note (no s is needed in the main 
note symbol) 

• x for a slash (only for single graces) 

• l or u to force the direction of the stem(s) as desired 

Next comes the only required character, the first grace note name. No time value must 
be entered, but, if one is needed, the relative octave or an accidental can be given as usual. 
Second and later notes must follow immediately in sequence, set apart by spaces, and like
wise without any time value or any intervening symbols. 

Graces that follow a note ("after" -graces) are entered as described above, but are fol
lowed (without space) by A (After) or W (Way-after).  After-grace symbols are specified after 
the main note symbol. 

% PREAMBLE up to . /  omitted 

G3sm2g++ a b c4 f- G2s1Ae d c Gsxb+ c / 
Ga- g4 Gf s - g c G 1 3 sm3d e f g a b  c d e f g a b  c / 
c2- G3s 1Wb a b c 2  of Rb / 

Ornaments 

1 « &rr 
Symbols for ornaments must follow the associated note symbol, separated by a space. 
Table 9.5 on the facing page shows the list of ornaments available with PMX. Instances of 
ornaments and their associated symbol are displayed in the following example. 

:> A # � � , - (�) E � #?  ? � (i 
� • x + r t t E r r r F r 1 C r r .,. 

j 
ot om ox 0+ ou °P 0_ o C 0 )  o .  0> 0 oes oef oen oes? oe? 

' 1:\  � tr - ]3 fltr � C r iff r - F" II# a f" J I I � I --C 1 r f 
o c  ob .-..:,.1 oTO oT oTt oTl 

of ofd 

�j 3 f f S5 

[J 1 L L t t I #E f j r L L 1 r f 
o .  : 0 :  og 

o .  o .  

Most ornaments appear above the stave. Exceptions are staccato ( 0  . ) and tenuto ( 0  _ ) , 
which appear just above or below the note head, and down fermata (of d), which appears 
below the stave. Parentheses (0 ( ,  0 )  ) are typeset at the level of the note head. 



9.5 The PMX preprocessor 

Table 9.5: List of ornaments 

+ 0+ X ox 
accent 0>  breath ob 
caesura oc  dubious accidental oes? ,  oef? ,  oen? 
dubious note oe?  editorial accidentals oes , oef , oen 
fermata (upper, lower) of , ofd left parenthesis before note head o (  
mordent om ornament repetition 
pizzicato ou right parenthesis after note head 0 )  
segno ogx sforzando 0 
shake ot staccato o .  
strong pizzicato op tenuto 0 
trills oT, oTx, oTO, oTt 

A segno symbol (og), which can be specified only for the first ( lowest) voice, may be 
immediately followed by a positive or negative integer indicating the horizontal offset (in 
points) .  The segno will appear above every stave of the system. 

A trill symbol (oT) extends by default until the next note. The second stave in Exam
ple 9-5- 1 7  shows how appending a decimal number to specify the length of the wavy line (in 
units of \noteskips) allows you to vary the duration of trilling. For example, oTO gives a 
tr without any wavy line, and oTt2 is a wavy line of two \noteskips without any tr symbol 
starting the wavy line (see Section 9.2.3, which deals with note spacing). 

Most ornaments can be raised or lowered from their default positions by appending a 
signed integer to the symbol, giving the vertical offset (in units of \internotes) . As seen 
at the beginning of the second stave in Example 9-5- 1 7, caesura and breath are typeset hori
zontally offset to the right of the note they qualify. This position can be fine-tuned by adding 
a signed number, giving a horizontal shift in note head widths. 

For notes in the same block, an ornament can be automatically repeated for consecutive 
notes by appending a : sign to the first ornament symbol. From there on, every note in the 
given voice has the same ornament until a note is followed by the repeat terminator ( 0 : ), as 
seen on the third stave in Example 9-5- 1 7. 

Beams 

PMX usually automatically selects which notes are beamed together, calculating the neces
sary angle, direction, height, and multiplicity (the number of bars at top or bottom). If, for 
some reason, you want to override PMX's choice and define a forced beam, you should sur
round the note symbols to be beamed together with a pair of bracket symbols [ and ] .  More
over, a single note can be excluded from a beam by adding the option a to the note symbol 
("beam inhibit" in Table 9.4 on page 625 ) .  

Certain aspects of a forced beam can be controlled by appending one or more option 
symbols to [. The direction of the beam can be made to go up (u) , down ( 1 ) ,  or opposite 
(flipped, f )  with respect to PMX's selection. A horizontal beam is forced with h, and a j 
symbol joins beams between staves. The multiplicity of the beam is specified by m followed 
by a single digit ( 1 ,  2, 3, or 4) .  However, this option is probably of little use, as the internal 
counting doesn't take this change into account (as can be seen in bar 3 in Example 9-5 - 18 ) .  

63 1 



632 PREPARING MUSIC SCORES 

Subgroups inside a forced beam can be specified with the ] [ symbol, which causes the 
multiplicity to decrease to unity and immediately increase to its natural value for the next 
note (see the first forced beam in bar 4) .  You can also interrupt the beam at a given point 
inside a forced beam by using the ] - [ symbol (see the second forced beam in bar 4) .  

Beam symbols can also contain one, two, or three consecutive signed integers (i.e., + 
signs must always be specified) . The first integer determines the stem length of the first 
beamed note by indicating how its starting height is to be adjusted (in \internote units, al
lowed values are between -30 and 30) .  The second integer is for the slope adjustment (again 
in the range -30 to 30) .  The third integer is an additional adjustment to the starting height, 
given in units of the beam thickness (possible values are 1, 2, and 3) ;  it can act only to in
crease the stem length. The first and third options can be combined for optimizing the result, 
as seen in bar 6 of the music sample in Example 9-5- 1 8, which also shows other examples of 
specifying beam parameters. 

The next example also shows how to use the Ab option to obtain bigger accidentals 
(other options of that kind are discussed in Section 9.5.6 on page 642) .  

% PREAMBLE up to . /  omitted 

Ab 
% bar 1 

f 1 s c f a c f s  a c - b g+ b g [1+12-8 b-- g1++ b g J Rd / 
% bar 2 
[1 f 1 s - c f a J [u c f s  a c - [f b g+ b g b-- g1++ b g J Rd / 
% bar 3 
[m3 f 1 s - c f a J [ c f s  a c - J b g+ b g [m1h b-- g1++ b g J Rd / 
% bar 4 

[ f 1 s - c f a J [ c f s  a c - J [ b g+ J - [ b g  b-- g1++ b g J Rd / 
% bar 5 
[ f s -4x3nf c a+ c 1  f s  a c - J b g+ b g b-- g 1 ++ b g Rd / 
% bar 6 
m3434 cd84 c3 c6  c [+0+0+3 cd8 c3 c6 c J [ - 1 +0+3 cd8 c3 c6 c J Rd / 

Example 9-5- 1 9  shows other instances of fine-tuning beams with vertical and horizon
tal shifts as well as the effect of the X symbol for moving stems and the use of the Abp op
tions to get big accidentals and to use PostScript K slurs (for more on both operations, see 
Section 9.5.6 on page 642) .  

Example 
9-5- 1 8  



Example 
9-5 - 1 9 

9.5 The PMX preprocessor 

% PREAMBLE up to . /  omitted 

Abp 
% bar 1-3  
[1+13-8 a13  X . g  a++ s g3  a f1  s+l ] 
[1+ 13-8 a13  a++ s g3 a f 1  s+l ] 
[1+13- 1 a x . g  a++ g3 a X- . 7  a1-- ] 
% bar 4-6 
[1+ 1 3 - 1  a a++ g3 a a 1 - - ] 
[u- 12+1 a++ X- . 7  a-- b3 a x . g  a1++ ] 
[u- 12+1  a++ a-- b3 a a1++ ] 

[u- 13+8 
[u- 1 3+8 
[u- 12+7 

[u- 1 2+7 
[u- 12+7 
[u- 12+7 

a X- . 7  a- - s b3 a gl s ] / 
a a-- s b3 a gl  s ] / 
a++ X- . 7 a-- b3 a c 1  ] / 

a++ a-- b3 a c1 ] / 
a X- . 7  a-- b3 a c 1  ] / 
a a-- b3 a c 1  ] / 

The following points should be noted. Xtuplets have, by default, their own beam. If 
you want a beam to be shared between the notes of an xtuplet and other notes, you should 
include everything inside a forced beam. Rests that have a duration of less than a quarter 
note and are placed between the first and last notes under the beam can be included within 
forced beams. 

If large jumps in pitch exist between notes inside a beam within a single stave, you may 
want to flip the direction of the beam between its beginning and end. This configuration 
can be initiated by forcing a beam with the appropriately up/down-ness, starting level, and 
slope. 

Normally, beams cannot jump staves, although this behavior is sometimes needed, such 
as in piano scores. To obtain a stave-jumping beam, we start the beam in one voice as usual 
with [ and terminate the part of the beam in the current voice with ] j . The beam is resumed 
in the neighboring stave with [j and ends with ] . Stave-jumping beams can have a single 
note inside one or both of the partial beams. Nevertheless, because each voice must have 
the right number of beats, it will often be necessary to adjust the durations with blank rests 
after the first members of the beam and before the second. Moreover, adjustments to beam 
height and slope will usually be required, and the direction of beam for the ending section 
must sometimes be overridden, using a u or 1 specifier. Example 9-5-20 shows how a stave
jumping beam can be constructed. 

% PREAMBLE up to . /  omitted 

Abdv 
h35m 
r4 I [ c8-- e c+ e c+ e- c a+ ] j  st1 I a1d2 st ze ze+ r4 Rb / 
c4+ zc+ su I bdf 2 zbf - a4+ s za- I [ ju  c8- a+ c e ] c+ r+O c4 zc- //  

633 



634 

I 
r 

PREPARING MUSIC SCORES 

% second voice in t op stave 
rb4 I erO+ I rbO / 

1\ � p-. 

1 tJ 

I - I 
: 

\ 
:e -ill 

Slurs and Ties 

� � � 

-r_ I l .-J  

I J  I J 9-. -=-. 

In PMX a slur can be created by putting a ( before the first note and a ) following the last 
note of the slur from which they are separated by spaces (slurs to or from grace notes are 
created differently; see Example 9-5- 16) .  

II % PREAMBLE up to . /  omitted 

( c45 g ) ( [ d85 c b a ] ) I ( 1  b4 [ a8 b ] ) c2 / 

Slurs can also be defined by using the "slur toggle": put an s after the first and last 
notes defining the slur. This s symbol turns a slur on or off, depending on its current state. 
Similarly, there exists a t toggle for creating ties. For all practical purposes, however, ties are 
indistinguishable from slurs, except with the K-package, which typesets true ties. 

Because of the limitations of the fonts used by MusiXTEX for typesetting PMX scores, 
the slurs generated are not always of the required quality, as can be seen in the following 
example. 

I CE  r! 
r r 

% PREAMBLE up to . /  omitted 

(u c14 c+ ) (u c1- g++ ) I 
(u c1-- e++ ) (u c1-- e+++ ) Rb / 

Later in this section we will address this shortcoming with the help of supplementary pack
ages. See Example 9-5-25 on page 636. 

In complicated scores, where you have slurs inside slurs, PMX lets you identify each slur 
by appending a single digit or letter (0 to 9, A to Z) to the opening character ( ( ,  s, t )  for the 
slur. Then the correct slur can be closed by specifying the identifying character following the 
closing symbol ( ) , s, t) for the slur. Example 9-5-23, which includes part of a music piece 
by Ernest Bloch, shows how the six slurs were identified with letters from A to F. 

% PREAMBLE up to . /  omitted 

% bar 1 
(A e4x3n g bf f c f 4x3n b g ) A  (B e4x3n bf e / 

! Example 
9-5-2 1 

Example 

, 9-5-22 



Example , 
9-5-23 ' 

Example 
9-5-24 

9.5 The PMX preprocessor 

£8+ (C z£+ e- ze+ c4nc- zcnc+ (Dt1 b- D< (Et zb+ / 
% bar 2 
g4x3n an g e4x3n b e g4x3n a g ) B+0+0-8 Rb / 
b4- ) Dt D< zb+ ) Et ) C+0+0+4 : 24 dd4- D< (F+l zd+ 0 e8- D< ze+ ) F  / 

e: � (� � !II-�� ii· 
r, I f- f- -

I t.,  
'" -

� f-

t..I ---- �� � 
Usually, PMX generates slurs that are quite acceptable, although sometimes we might 

want to optimize their visual appearance. Therefore, just after the closing symbol that de
fines the slur (including the identifier, if present), we can add u to instruct PMX to put the 
slur above the notes, or 1 or d to force it below. The start or end points of a slur can be 
shifted from their default positions by appending one or two explicitly signed numbers. The 
first one, which must be an integer, gives the vertical shift (\ internote units) ;  the second, 
which may be decimal, specifies the horizontal offset, in note head widths. These two num
bers can be followed by a signed, nonzero integer to specify a vertical adjustment to the 
mid-height of the slur (again in \ internote units) .  Finally, you can tune the slope by ap
pending a : (colon) followed by two integers that specify the slope at the beginning and end 
of the slur, respectively ( see the section on slurs and ties in the MusiXTEX manual for details ) .  
Instances of fine-tuning slur positions are seen at the end of the B and C slurs in Example 9-
5-23. 

Dotted (broken) slurs are obtained by adding the option b in the start symbol of the 
slur. 

o 
% PREAMBLE up to . /  omitted 

635 

, fW EUJ I f ··D r- II ( c45 g ) ( d85 c b a ] ) 
(b c45 g ) (b [ d85 c b a ] ) 

( 1  b4 [ a8 b ] ) c2 / 
( lb b4 [ a8 b ] ) c2 / 

Additional packages for generating s lurs 

For typesetting slurs, PMX uses MusiXTEX's built-in, font-based slur mechanism. Generally, 
this approach works quite well, although for some ties for complicated layouts it lacks flexi
bility. For such cases users can turn to two packages that are based on PostScript slurs. 



636 

, 7 Z :r I 

r 

PREPARING MUSIC SCORES 

I nvoking and using type K s lurs 

Stanislav Kneifl's PostScript Slur Package Kl is directly supported by PMX. After installing 
the files of this package, you can activate it by adding the Ap symbol in the preamble of the 
PMX source file. To see the result of this package's action, we repeat here Example 9-5-22 
from page 634, this time adding the Ap option in the header. 

% PREAMBLE up to  . /  omitted a 7Z..........-� (� Ap I (u c14 c+ ) (u cl- g++ ) I J I i I 

r i (u cl-- e++ ) (u cl-- e+++ ) Rb / r r 
For type K slurs, some optional parameters can be used in the slur symbol to change 

the shape of the slur. Example 9-5-26 shows how an f option flattens the slur, while h, H, and 
HH increase the slur's curvature more and more, thereby raising (or lowering) its middle. 

I Q I @ 
II 

% PREAMBLE up to . /  omitted 

Ap 
( e44 g ) I (f e g I (h e g ) / 
(H e g ) I (HH e g / 

The behavior of slurs and ties-in particular, their appearance if they span lines-is 
controlled by the A specifier, which can appear either in the preamble (for global settings) 
or in the score (for local settings) .  The PMX manual has more details. Example 9-5-27 is the 
same as Example 9-5-23 from page 634 after adding Ap to the preamble to call the K slurs. 

� I � f- � (� � iIt-�iIt- iii· f- � f-

� 

fl I - -

� � ,PJ .� 
1 Available from http : / / i cking-mus ic- archive . org!software!indexmt 6 . html under the head

ing "Postscript Slur Package K". 

r' ---�� ., 

, Example 
, 9-5-26 

I Example , 
9-5-27 



, Example 
9-5-28 

9.5 The PMX preprocessor 

Using type M slurs and ties 

Hiroaki Morimoto's PostScript Slur Package Ml is not directly interfaced to PMX. It is some
what more flexible than the K package, but needs METAPOST to be installed and the files to 
be downloaded from the Icking Web site. Moreover, the musixpss preprocessor executable 
also needs to be available on the system. To call the M slur package, insert the command 
\ \ input mus ixpss\relax\ in the header of your PMX source file, as shown here. 

II % PREAMBLE up to . f  omitted 

\\ input mus ixp s s \re1ax\ 
( c45 g ) (b [ d85 c b a ]  ) 1 ( 1 b4 [ a8 b ] ) c2  f 

To process a file using M slurs, three extra steps are needed to produce a printed musical 
score, as seen in the sequence of commands shown below. After the second tex run, we ex
ecute the musixpss program, which reads a file (my-piece . s lu in our case) that contains 
the slur characteristics and generates a META POST file (my-piece . mp) .  This file is then 
handled by the mpost program, which generates files with PostScript code to draw each slur. 
These files (my-piece . 1, my-piece . 2, my-piece . 3) are read by tex (lEX), to take into 
account the slur's dimensions, and by dvips, to display them in the final PostScript file. The 
parts relevant to musixpss  are shown in the following transcript. 

> pmxab my-piece 

> tex my-piece 

> mus i xflx my-piece 

> tex my-piece 

> mus ixps s  

Mus iXTeX Extens ion : PostScript Slurs b y  MetaPost 

Support Program version 0 . 50 <January 5 ,  2003> 

file : mus ixpss 

f i l e : my-piece 

Now process ing my-piece . slu ->  my-piece . mp 

Completed . 3 slur ( s )  performed . 

> mpost my-piece 

Thi s  i s  MetaPost , Version 0 . 64 1  (Web2C 7 . 5 . 3) 
(my-piece . mp 

( /home/goo s sens/ save /texl ive2004/t exmf -updat e/metapost/musixpss/mus ixps s . mp 

MusiXTeX Ext ens ion : PostScript Slurs by MetaPost vO . 50 <January 5 ,  2003» [ 1 ] 

[2] [3] ) 
3 output f i les written : my-piece . 1  . .  my-p ie ce . 3  

Transcript written on my-piece . l og . 

> tex my-piece 

. . .  [ L ines de L e t ed] 
( /TeX/texmf /tex/generi c /mus ixps s /musixpss . tex 

Mus iXTeX Ext ens ion : PostScript Slurs by MetaPost vO . 5 1 <February 2 1 , 2004» 

(my-piece . mx2) < 1>  (my-piece . 1 ) (my-piece . 2 ) bar 1 (my-piece . 3 ) bar 2 [ 1 ]  
Memory usage before : 970&26272 ; after : 204&26 1 1 3 ;  s t i l l  unt ouched : 1493 102)  

I Available from http : // i cking-mus i c - archive . org/ software/ indexmt 6 . html under the head
ing "Postscript Slur Package M". 

637 



638 

Output written on my-pieee . dvi ( 1  page , 808 byt es ) . 

Transcript written on my-pieee . l og . 

> dvips -E - omy-pi eee . eps my-piece 

PREPARING MUSIC SCORES 

Thi s  i s  dvips (k)  5 . 94b Copyright 2004 Radical Eye Sof tware (www . radiealeye . eom) 

, TeX output 2005 . 04 . 1 1 : 1437 ' ->  my-pieee . eps 

<texe . pro><texps . pro><spe e i al . pro> . 

<mus ix16 . pfb> [ 1 <my-pieee . 1 > <my-pieee . 2 ><my-pieee . 3>] 

Examples 9-5-22 and 9-5-23 are repeated here, this time running them with type M 
slurs. 

, z7m /t 24 it 7 7 I 7 Z 7 7 ! / 

r r r r 
!If- �-- --

'l I 
f- � (� � !If-/� �- !If- ii· � r-- r- r- r-

I � / 

� 

� - -
I 

� �� ---/ �-� -- � 

Dynamical Marks 

It is straightforward to include dynamical marks by using the D ("dynamics") symbol, which 
comes in three types (plus, optionally, a positional shift specifier for vertical and horizontal 
adjustments) .  Standard marks (pppp, ppp, pp, p, mp, mf , f, ff ,  fff ,  ffff ,  sfz,  fp) are 
generated by including D followed by any of these symbols. The crescendo and diminuendo 
passages are delimited by a pair of D< or D> symbols, respectively. Finally, arbitrary text can 
be added to a score by using the construct D "  . . .  " , where . . .  can be anything (e.g., molto 
cantabile) .  The text will be typeset in italic, unless an explicit 'lEX font specification is given. 

All dynamics symbols go after the note to which they refer; e.g., c Dmf will typeset a 
mezzo-forte c. Moreover, pairs ofD> or D< must stay within the same input block. Example 9-
5-3 1 shows instances of dynamical marks. 

% PREAMBLE up to . /  omitted 

Abp 
% bar 1 
r2 D " Adagi o " + 1 6  r4 e8-- Dpp- l D< s f D< D>- l s 
% bar 2 
g4 D>- l s f 2  s D<- l f 8  s D< - l  Dp- l g s D>-2 I 

Example 
9-5-29 

Example 
9-5-30 



Example 
9-5-3 1 

Example 
9-5-32 

9.5 The PMX preprocessor 

% bar 3 
a4 s 0>-2 0<-2 g2 s 0<-2 g8 s Omp - 1  0<- 1 a s I 
% bar 4 
b4 0<- 1 0>- 1  asd2 0>- 1  0 < - 1  
% bars 5-6 
bO st 0<- 1 Osfz- 1 0>- 1  I b8 st 0>- 1 Op- 1  r r4 r2 Rb f 

A dagio 

:>:§ e - E )1 1  J Cd n 1 J J :n 1 J #d. 1 Q£J}7 E 
Clef Changes 

As explained in Section 9.5.2, the clef for each instrument of a score is specified in the pream
ble. To change the clef in the midst of the music, we can use a C followed by a single lowercase 
letter or a digit, as defined earlier. The next example shows how the key signatures defined 
in Example 9-5-3 on page 62 1 are used. Compared to the clef at the beginning of the stave, 
the inline clef symbols are slightly smaller in size. 

% PREAMBLE up to . f  omitted 

c I C 1  c I C2 c I C3 c I C4 c C5 c I C6 c I C7 c 

IIBI e IIBI e '):1 e 

9.5.5 Notation that affects a l l  voices 

co c Rb f 

In Section 9.5.4, we described commands that were associated with a note or a group of 
notes. In this section we introduce commands that, unless specified otherwise, affect all 
staves in a score in the same way. Such commands must be entered in the first (lowest) voice 
of the first (lowest) stave only. 

Bars and repeats 

Keeping with general practice, by default PMX typesets no bar line at the beginning of a score, 
a single bar line at the beginning of each system after the first (except if there is only one 
stave per system), a single bar line at the end of each bar (except the last one of a movement 
or score), and a common ending bar line (thin-thick double bar line) as the last bar line of a 
movement or score. 

Explicit bar symbols are obtained by using R symbols followed by one of the following 
in the lowest voice (see Example 9-5-33 on the following page) .  

b single bar line 

d thin-thin double bar line 

D thin-thick double bar line 

639 



640 PREPARING MUSIC SCORES 

z invisible bar 

I left repeat 

r right repeat 

Ir left-right repeat 

dl thin-thin double bar followed by left repeat 

Voltas 

The end of repeated sections in music often come in two versions, called "volte". To denote 
the beginning and end of such a section and its shape, PMX uses the "V" symbol (for Volta).  
The start of the first volta is signaled by V followed by any text string that does not start with 
b or x (often V1  is used). The end of the first volta and the beginning of the second volta 
is signaled by Vb followed by a text string. Vx indicates the end of the volta-i.e., the first 
measure following the repeated section. This is shown on the second stave of the example. 

' J J II: J J =II: J J I I J J II J J II: J J 
Rl Rlr Rd RD Rdl 

1 1 . 1 1 2 . 1 1 volta·1 1 2volta. , II: J J I J J :II=; J I J J I J J :11 J J I J J :II=; J I J J I J J 
Rb 

Example 

Vi Vb2 Vx Vivolta V2voltaVx Rz 9:5:�� j 

Meter changes 

The meter is changed with the m symbol. We can specify the meter two ways. First, we can 
use the four meter-defining numbers mtrnuml, mtrdenl, mtrnump, and mtrdenp for the 
new meter (the meaning of these numbers is explained in Section 9.5.2) separated by slashes 
( / ) .  For instance, 1 18 is coded as ml/S/ l /S, 1 2/8 as m12/S/ 12/S, and 211 as m2/0/2/1 ,  
since a whole tone i s  represented b y  o .  

Alternatively, we can specify the meter b y  using the same four numbers, but entered 
consecutively (without spaces) .  In this case, to distinguish between one- and two-digit num
bers, we would use the convention that the number " 1 "  is represented by the letter 0, while 
consecutive digits 1 1 , . . .  , 1 9  stand for themselves. Hence the previously mentioned exam
ples of meters become in this case moSoS, m12S12S, and m2020, respectively. 

Key changes 

We can change the key anywhere in a score by using a K symbol in the first voice, since it will 
automatically affect all other voices. In fact, since the K symbol is also used for transpositions 
(which are not described here) ,  we should use the combination K+O, followed by the new key 
signature: a positive integer for sharps, a negative integer for fiats. 



Example 
9-5-34 

9.5 The PMX preprocessor 

o % PREAMBLE up to . /  omitted 

Ab 
% bars 1+2 

641 

@*' 3 J j 3 L r F � l�g91WV c8 d e f g a b c K+O+2 d8- e f g a b  c d / 
% bar 3 

� @ .\ •• r If �rFI�I.I' jllt: �r�rFi 
Titles and text above/below a system 

K+O+4 e - f g a b  c d e / 
% bar s  4+5 
K+O-4 f- g a b c dn en f / 
K+O-2 g- a b c  d en f s  g Rb / 

The header of a PMX score can contain a title block, consisting of three components (prefer
ably entered in the order shown here) :  

1 .  Ti :  name of the instrument (typeset left justified) 

2. Tc: name of the composer (typeset right justified) 

3. Tt : title of the piece (typeset centered), optionally followed by a one- or two-digit num
ber indicating the space (in \internote units) to be left after the title 

Each of these title symbols is followed by a text string to be contained on a single and sepa
rate line. 

Text can be typeset below and above a system with the 1 and h symbols, respectively. As 
with the T symbols, the text string to be typeset is specified on a separate, single line. 

The example that follows shows instances of how these symbols are used in practice. 

% PREAMBLE up to . /  omitted 
Ti 
Oboe I 
Tc 
A .  Vivaldi ( 1678- - 1 7 4 1 )  
Tt 
Concerto\ \RV535\\ (d min . ) 

h-2 
- - -Largo 
d45 a44 r4 g44 f 44 r4 I g45 a45 b45 I cs45 d45 r4 / 
1 
( c ont inued) 
f s45 g45 a45 I b45 r4 r4 I cs45 d45 e45 I f45 r4 r4 Rb / 



642 

Oboe I 

Largo 

Concerto 
RV5 3 5  (d min. ) 

PREPARING MUSIC SCORES 

A .  Vivaldi ( 1678-1 741 )  

,I> B r J E I JJ E I rr r I'r FE liFt r I r E E I'r rr I r E E I ( continued) 
Page layout parameters 

By default, PMX does not typeset page numbers. Page numbering is turned on with the p 
symbol, which can be followed by a number (for the initial page number to be used) and by 
the letter 1 or r for putting the page number at the left or right of the page, respectively. By 
default, PMX starts page numbers with 1 and puts them at the top right on odd-numbered 
pages, and at the top left on even-numbered pages. 

We can typeset a header on every page (except the first) by using c as the last option on 
the P symbol. The text to be typeset is specified between quotes. For instance, the string 

P541 c " Title  on every page " 

will typeset "54" at the top left as the page number for the current page (and number subse
quent pages as 55, 56, etc. ) ,  and put the text "Title on every page" as a centered title on all of 
these pages. 

The layout of a score is determined by the parameters npages and nsystems, which 
are specified in the preamble (see Section 9.5.2) .  PMX attempts to distribute the music evenly 
over the number of systems, and then spread the systems evenly over the number of pages. 
This layout can be fine-tuned by specifying explicit line and page breaks. 

In particular, Ln introduces a line break at the start of the nth system ( n<nsystem). A 
page break can be specified only following a line break; e.g., L4P7 introduces a page break 
at the start of the fourth system on page 7. 

9.5.6 Some genera l  options and techn ica l  adjustments 

Many of PMX's defaults for its layout parameters can be changed with the help of the A sym
bol (which is present in the header of many of the PMX examples). Table 9.6 on the next page 
displays a list of the available options. Options can be concatenated (e.g., AdI2 . 3p+hl br). 

The width and height of the page are specified by the symbols h [n] [u] or w [n] [u] 
in the header, where n is  a decimal number for the new size, and u defines the units (i for 
inches, m for millimeters, and p for points) .  

, EXdmple 
9-5-35 



9.5 The PMX preprocessor 

Table 9.6: PMX global A options 

Accidentals 

Ab make accidentals big 
As make accidentals small 
Ar switch accidentals to relative (needed for transpositions)  

Layout Specifications 

Aa [x] set space before first note in bar to x\elemskip (see Section 9.2.3) 
Ad put dots in lower voices below the line 
ASnnn inform PMX that some staves have used a smaller font, where the mandatory 

nnn is a sequence of nstaves (total number of staves), - (for reduced) and 0 
(for normal) symbols 

Vertical Spacing 

Ae 

AI [x] 
Ai [x] 
Av 

equalize inter-system space; by default, PMX distributes space according to 
what is occupied by the symbols in each stave 
change default interstave spacing to x\ interstaff for the complete score 
change default interstave spacing to x\ interstaff  for the current page only 
when there is too much space between staves PMX places them all at the top of 
a page; the toggle A v turns this behavior off so that systems are spread over all 
of an unfilled page 

PostScript K Slurs and Ties 

Ap enable PostScript type K slurs 
Ap [+,-] active (or deactivate) automatic height adjustment 
Ap [s, t,h] previous function acts on slurs ( s ) ,  ties (t ) ,  and half-ties (h) 
Ap [lJ break every slur and tie automatically into separate ones at a line break (fine

tuning is possible on the individual symbols) 

Although PMX usually generates adequate horizontal spacing, manual adjustments are 
sometimes needed. For this purpose you can use an X symbol, which allows you to shift a 
single element, a group of elements or all elements of a system. In particular, XS [x] adds 
horizontal space before the next note or rest, while X :  [x] , a group shift, adds space to every
thing up to the next X :  symbol. Finally, X [x] introduces a hard space at the present point in 
all staves of a system. In all of these cases, x must be a positive or negative decimal number 
that specifies the desired shift in \notehead widths. 

Example 9-5- 19  on page 633 shows how the X symbol is used for fine-tuning note stems 
in beams. The global option Abp specifies that big accidentals (sharps in this case) and the 
PostScript K slur package should be used. 

The minimal spacing between notes in PMX is 0 . 3  note head width. This value can be 
changed by specifying W .  n, where n is a single digit going from 1 to 9. This sets the new 
minimal spacing to n-tenths of note head widths. 

Table 9.8 on page 650 gives a convenient one-page overview of most of the PMX com
mands that have been described so far. 

643 



644 

9.5.7 Two complete exam ples 
% Mozart , Symphony No 4 1 , in C K 
% nstaves ninstr mtrnuml mtrdenl 

1 1  1 1  4 
% npi ckup nkeys npages 

0 0 
Cb 
Vc 
Va 
VI I I  
VI I 
Tp 
Tb (do) 
Cr (do)  
Fg 
Db 
Fl 
bbattbttbtt 

. /  
\\ interstaf f { 1 2 . }\ 
w1 20m 
Abp 
B 
h 
Allegro vivace 
% Bars 1-2  

1 

4 
nsystems 

1 

551 " Jupiter"  
mtrnump mtrdenp 

0 6 
mus i c s ize frac indent 

16 . 07 

c4- Df r8 g8x3 s a b c4 s r8 g8x3 s a b I c4 s r r2 / 
c4- Df r8 g8x3 s a b c4 s r8 g8x3 s a b I c4 s r r2 / 
c4 Df r8 g8x3 s a b c4 s r8 g8x3 s a b I c4 s r r2 / 
c4 Df r8 g8x3 s a b c4 s r8 g8x3 s a b I c4 s r r2 / 

PREPARING MUSIC SCORES 

c4 Df r8 g8x3 s a b c4 s r8 g8x3 s a b I c4 s r r r8 c+ o .  / 
c4- r c r i c  r r2 / 
c4 Df zc+ r c - zc+ r I c- zc+ r r2 / 
c4 Df zc+ r c - zc+ r I c- zc+ r r2 / 
c4- Df D " a2 " + 1 6 r8 g8x3 s a b c4 s r8 g8x3 s a b I c4 s r r2 / 
c4+ Df D l a2 " + 1 6  r8 g8x3 s a b c4 s r8 g8x3 s a b I c4 s r r2 / 
c4++ Df r8 g8x3 s a b c4 s r8 g8x3 s a b I c4 s r r2 / 
% Bars 3-4 
rp I rp Rb / 
d2+ s c s I b t b4 t r / 
gO+ t I g2 t t g4 t r / 
f 2  s e s I d t d4 t r / 
c4 s . b  d . c  s I g2+ s f 4  s r / 
rp rp / 
rp rp / 
rp rp / 
rp rp / 
rp rp / 
rp rp / 



Example 
9-5-36 

9.S The PMX preprocessor 

Allegro vivace 
� � I'i r- .• ,w. .�f"" -F-

FI 
tJ f 

3 3 
fl a2 =:::! =:::! 

Ob 
tJ f 

q2 _ I  - 1 
Fg : 

f -� -� 

'1 
Cr (do) 

t- .. .. .. 
f 

fl 
Tb (do) 

t- .. .. .. 
f 

Tp : 

fl 
VI I 

I t- .. 
� �1: .f f 

, 
VI II 

I t- .. 
� iJ� l1 f 3 
� � 

Va 
I --- � I 

f 
� _ I  -- J 

Vc 
: 

f -� -� 

1 _ I  - 1 
Cb 

: 

f -� ----:1-/ 

645 

c� 
, 1 r , 

'---./ r..,; '-----"_ 

..:- �. "-"'" 

e� Q,.-...... 



646 

% F .  J .  Haydn , Quartetto Op . 76 ,  n .  2 ,  bb . 1--4 
4 4 4 4 0 6 0 -1 1 1 16  . 07 
Vc 
Va 
VI I I  
V l  I 
batt 
. /  
Abp 
It 92ivcvavIvI 
w1 20m 

% Bars 1 - 2  
h 
Allegro 

PREPARING MUSIC SCORES 

d8- - O£ o .  d+ o .  d o .  d o .  r d o .  d o .  d o .  I r  d o .  d o .  d o .  r e o . e o .  e o .  / 
£ 8 - O£ o .  £ o .  £ o .  £ o .  r £ o .  £ o .  £ o .  I r  g o .  g o .  g o .  r g o .  g o .  g o .  / 
r8 a O£ o .  a o .  a o .  r a o .  a o .  a o .  I r  b o .  b o .  b o .  r cs o .  c o .  c o .  / 
a2+ O£ d- I e a- / 
% Bars 3-4 
£ 8  s e £ c s  s d4 a I b2 s a4 s o .  r Rb / 
a2 t a4 t . cs - I d8 s e £ d s e4 o .  r / 
d8 s c s  d e s  e s d c s al+ s g s I £ s g £ e s d8 o .  d o .  cs4 r / 
d8 s c s  d e s  g s £ e s a I d4- zd+ cnl s b a gs s a4 o .  r / 

Allegro 
'1 � I  

Vl I 
I t.  f (J :€J .� "--./ 

• 

� - � 
VI II 

i t.)  ��� ��� 7!7!7! ���� .� � "----./ "!" "!" f* 
f 

Va 

j . .  - #- • •  • "!" � 
� � - I 

Vc : 
. .  

til - '----
j 

9.5.8 I n l ine lEX comma nds 
In some of the examples you may have noticed inline 1EX commands entered in the PMX file. 
For instance, to change the default behavior of PM X, which places a bar number above the 
first bar of the top stave in every system, we must use a MusiXTEX command. In this case we 
add in the PMX header \ \nobarnumbers \ (to turn bar numbers off) or \ \barnumbers \ 

i Example 
9-5-37 



9.5 The PMX preprocessor 

(to add the bar number to every bar) . Similarly, for loading the type M slurs package (see 
Example 9-5-28 on page 637), we need to use the command \ \ input mus ixps s\relax\. 

Such doubly escaped commands (starting with \ \ )  apply to the whole score and are 
moved by pmxab to the beginning of the generated 'lEX source. A normal 'lEX command 
(initiated with a single \) can be used for actions limited to the current music line (note, how
ever, that (re)definitions of 'lEX commands are valid for the whole file) .  In any case, direct 
use of 'lEX commands should be limited to final adjustments of the score, where MusiXTEX 
fine-tuning turns out to be the only way to achieve the desired result. See the MusiXTEX and 
PMX manuals for more details. 

9.5.9 Lyrics 
PMX has no special provisions for lyrics. One way to include them is by using Rainer 
Dunker's musixlyr.tex extension package for MusiXTEX, whose commands are entered as in
line 'lEX directly into the . pmx file. 

Rather than use musixlyr.tex directly, it is often more appropriate to take advantage of 
Dirk Laurie's M-Tx program, which provides a convenient interface for lyrics, as explained 
in Section 9.6.3. 

9.5. 1 0  Creating parts from a score 
Parts of a score can be split off into separate files with the help of the scor2prt program. By 
default, when specifying the name of a PMX source file, this program will create noinst 
(the number of instruments) separate . pmx files. Suppose we take Example 9-5-37  and run 
it through scor2prt. 

> s cor2prt haydn . pmx 
Thi s  i s  s cor2prt for PMX 2 . 50 1 , 29 February 04 

This generates, as expected, four files, haydnl . pmx through haydn4 . pmx, each of which 
contains one of the instruments. The result of typesetting the contents of these files is shown 
in Figure 9.3 on the next page. We never need to edit the . pmx files of the parts separately 
since we can control the layout of the parts by embedding commands in the PMX source 
of the score (see the PMX manual for a list of these commands) .  This greatly simplifies the 
editing process, since both the score and the parts are always kept up-to-date, the latter by 
simply regenerating them from the modified score. 

9.5 . 1 1 Making MID I  files 
The Musical Instrument Digital Interface (M ID I )  protocoll provides a standardized and ef
ficient means of conveying musical performance information as electronic data. It was de
veloped in the early 1 980s and has since become widely accepted and utilized by musicians 
and composers. However, the characteristics of MIDI  data make this protocol attractive not 
only for composers or performers, but also for computer applications that produce sound, 

I See http : //www . midi . org/, the home page of the MIDI Manufacturer's Association. 

647 



648 PREPARING MUSIC SCORES 

Vc Va 
Allegro Allegro 

'h e  J### zffl l IfflIttt l_J J I Jj E I 
j 

VI II 
Allegro 

haydn1 . pmx 
VI I 

Allegro 

" " ; J IJ d I JMHD"I M';J ! 
haydn3 . pmx haydn4 . pmx 

Figure 9.3: Individual voices created by scor2prt from a PMX score 

such as multimedia presentations or computer games . The "standard MIDI  file" is used to 
distribute music playable on MIDI  players. Today practically all computer platforms can play 
such files, with hundreds of Web sites offering (free) downloads. 

It is not surprising, then, that music editing systems, such as abcPlus and the abc2midi 
program (see Section 9.3.2) ,  can handle MIDI files. Similarly, PMX offers a convenient way to 
generate MIDI  output from the score. 

Due to its lack of expressivity (rhythmic accents, dynamics, intonation, etc. ) ,  you 
should not expect the generated MIDI  files to be of a quality that comes close to the per
formance by a human player. Moreover, the PMX MID I  processor ignores graces, ornaments, 
repeats, voltas, octaviation, etc. Only simple ties, coded as s or (, are recognized. Neverthe
less, the generated MIDI  files can be extremely useful as an acoustic check for detecting errors 
in the notes entered. 

To produce a MIDI  file concurrently with the MusiXTEX output, it is sufficient to enter the 
symbol I ,  plus a series of options in the header of the PMX file. This will generate a MIDI  
file with the extension . mid (an I symbol can also appear at the beginning of subsequent 
blocks) .  In most cases the order of the options matters-so it is advisable to adhere to the 
order in which they are given here. 

1 .  t [x] sets the tempo to x quarter notes per minute (default 96).  The tempo can be 
changed as often as needed at the start of an input block. 

2. p [x] inserts a pause of x quarter notes for all instruments at the beginning of the input 
block. 

3 .  i [ i l  i2 . . .  in] assigns the MIDI  instrument names i l ,  i2,  . . .  , in to the staves of 
the respective PMX instruments. Table 9.7 on the facing page displays a list of recognized 
two-letter mnemonics, along with their corresponding identifiers in the range 1 - 1 28, 
as specified in the General Midi standard (see the PMX manual) .  In fact, numbers and 
mnemonics may be mixed, but consecutive pairs of numbers must be separated by : 
(colon) .  



9.5 The PMX preprocessor 

Table 9.7: MIDI  mnemonics and identifiers for instruments recognized by PMX 

pi Acoustic Grand Piano ( 1 )  tr Trumpet (57) 
rh Rhodes Piano (5) tb Trombone (58) 
ha Harpsichord (7) tu Tuba (59) 
ct Clavinet (8) fr French Horn (6 1 ) 
rna Marimba ( 13)  so  Soprano Sax (65 ) 
or Church Organ (20) al Alto Sax (66) 
gu Acoustic Nylon Guitar (25) te  Tenor Sax (67 ) 
ab Acoustic Bass (33) bs Baritone Sax (68 ) 
vI Violin (4 1 ) ob Oboe (69) 
va Viola (42 ) ba Bassoon ( 7 1 )  
vc  Cello (43) cl Clarinet (72) 
cb Contrabass (44) f l  Flute (74) 
vo Synth Voice (55 ) re Recorder (75 ) 

With this option, it is important all instruments be specified. In particular, care is 
needed with multi-stave instruments: there must be one instrument name per stave (for 
instance, a sonata for violin and piano needs the instrument names entry ipipi vI or, 
equivalently, i 1 : 1 :  41 ,  but not ipi vI) .  

4. v [ i 1] : [ i2] : [ . . .  ] : [ in] specifies the relative volume for each instrument. The i 
are integers between 1 and 1 27, separated by colons. When specified, the v option must 
contain exactly as many parameters as there are instruments. The default (no parame
ters given) is 1 27. 

5. b [m1] : [m2] : [ . . .  ] : [mn] sets the stereo balance for each instrument. The usage of 
this option is similar to that of the v option. The integers m must be in the range 1 - 1 28, 
with the default being 64, which represents the center. Smaller numbers increase the left 
stereo channel, larger ones the right. 

6. g [ i] sets the silence between notes in the MIDI  rendering to iMIDI  clock tics. This 
silence (default value is 1 0  tic units, equivalent to two-thirds of a sixty-fourth note), 
is inserted at the end of every note by decreasing the sounding duration by the same 
amount. 

7. MR [ i] starts recording MIDI  macro number i. 

8. M stops recording current MID I  macro (no nesting allowed) . 

9. IMP [ i] plays back MIDI  macro number i. M ID I  macros are needed for repeats or daca
pos; as explained earlier, the MIDI  processor ignores such features when they are coded 
in the PMX score. Only one macro may be active at a time, either for recording or for 
playing, but not for both. 

As an example, It92ivcvavlvl sets the MIDI  tempo to 92 units (quarter notes) per 
minute and defines four instrument names (a cello, a viola, and two violins) .  

649 



650 

644 

Te 
Compo ser 

PREPARING MUSIC SCORES 

Table 9.8: Overview of PMX commands 

Title text 
Tt8 Composer 
Title . . .  

Aa1br e sd84 a+ 11a g4r g g4x5n f es  d+ e II 
r4 

fI![2J c-2 zen zfr za rdBb 

�b j b ; 

� 
�)= �I, 
Text 

rp 

e45 sd e s-7 

[l c1  e8 c1  ] 

E F J 
above 

a44 ae 

* * 
r 1 +4 G3sg a b e4 rm2 2 
:!:f22r 

e84 ot e om e ox e 0+ 

'"' Ai" X + 

J J J J 
e4 t s e8 s s e s t 

[ e e ] [ e e ] 

§ J [1+0+0+ 1 e8 e 1  e] 

F c:r 

r I 

! � • 

b �� j 
Gxf - g2 GlmOsf g2 I iJ FJ 

J 

e oTt . 5 e oT 
e4 og15 

� 

J 
tr __ 

J J 
Cb e03 53 x1 264 

() 
5 6 
3 4 

[-3+3 e e e e ] 

r J J 3 
m3434 ed2 Rl ed24 V1 ed24 Rlr Vb2 ed24 

1 

[ill h+3 1 Vx ed24 
Ca cd 1 1 . 1 1 2 .  Text above Text below 

-e- L6 e04 -e- e04 �. �:�Il I 1 2  IIBI h Text below 
L7 P6441 Cb e43 d e B e43 d e 

')=�I) J r r 

r' I I : r' I r ' 
m0400 e4 

r 

:11 : r' I r' 
m2400 K+0+4 
e43 zbe za zge zf e II 
e43 zfr zg zar zb e I 

, 
.l 
r 

9:1 

II Example 
9-5-38 



9.6 M-Tx-Music from TeXt 

9.6 M-Tx-Music from TeXt 

After describing the PMX language we now turn to Dirk Laurie's M-Tx language,l which 
adds a layer of convenience to PMX, making entering information-in particular, in the 
preamble-more intuitive. By its very conception, it offers also a straightforward way for 
adding words (lyrics) to the music. 

Let us first have another look at Section 9.4 on page 615, especially the example com
paring the coding of the first bars of the Mozart piece. One large difference between PMX 
and M-Tx coding is that, with M-Tx voice (instrument) lines are input as tlley are printed (i.e., 
from top to bottom), whereas with PMX they are entered last line first (i.e.) from bottom to 
top). 

Riff in C 
w. A. Mozart ( 1756-1791) 

Piano 

Title : Riff in C 
Composer : W. A. Mozart ( 1756--1791) 
Style : piano 
Name : Piano 
Meter : 4/4 
Size : 16 
Indent : 0 . 18 

'/,'/. w70m 

c2. 94 g b4d- c1 d c2 

651 

c8 g+ e g c- g+ e g d g f g c- g+ e g 

Example9-6-1 was compiled by the M-Tx processor prepmx, which transforms the M-Tx 
input file into a PMX file to be run through the pmxab processor. 

> prepllU 9-6-1 
:z> This is M-T� 0 . 60 (Music from TeXt) <16 March 2005> 
�=» Input from file 9-6-1.mt� 
Writing to 9-6- 1 . pmx 
instrumentNames : TRUE 
PrePMX done. Now run PMX. 

> pmxab 9-6-1 
This is PMX, Version 2 . 506, 14 Nov 04 
Opening 9-6-1.pm� 
Starting first PMX pass 

Bar 1 Bar 2 
Done with first pass 
Starting second PMX pass 

Bar 1 Bar 2 
Writing . /9-6-1.tex 
Done with second PHX pass. 

The prepmx processor has several options, all of which are described in the M-Tx manual. 

IThe M·Tx entry on the home page http: //icking-music-archi ve. org/software/indexmt6 . html 
of the !eking Music Archive provides pointers to the latest version of the distribution, manual, examples, and 
related utilities. 



652 PREPARING MUSIC SCORES 

Table 9.9: M-Tx preamble elements with examples 

Bars/line : 4 
Composer : Mozart 
Disable : unbeamVocal 
Enable : pedant icWarnings 
Flat s : 3 
Indent : 0 . 1 0 
Meter : 4/4 
Name : Dietrich Gerald 
Octave : 4 4 3 3 
Opt ions : x 
Pages : 2 
Part : Recorder 
Poet : Rilke 
PMX : w4i 
Sharps : 2 
Size : 1 6  
Space : 6 0 3 
Start : ©+ 1 ; ©-3 
Style : Singer Piano 
Systems : 1 1  
Title : Piano concerto 

try to use four bars per typeset line 
name of composer ( set flush right below title) 
disables unbeamVocal feature 
enable pedant icWarnings feature 
key signature has three flats 
indent first system by 10% of music width 
meter for piece 
names of instruments, performers, etc. 
initial octaves for each stave 
uses x option for compilation 
typeset piece on two pages 
part name (set flush left above title) 
name of poet (set flush left below title) 
PMX command (obsolete-use %% feature) 
key signature has two sharps 
size of music (in points-default 20) 
extra interlines of space below staves 
put specified items at start of voice lines 
piece for singer accompanied by piano 
total of 1 1  systems to be used 
title of piece 

The preamble lines in this example are self-explanatory (see Table 9.9 for details ) .  The 
line starting with %% at the top of the music paragraph passes information to PMX-in this 
case, "set the width to 70 millimeters". 

9.6.1  The M-Tx prea mble 
Table 9 .9  gives an example, with explanations, of  built-in M-Tx preamble elements (case 
is ignored for element names). Most of the commands in this table have PMX equivalents, 
and their usage should be straightforward from the examples and the information given in 
the PMX section. The Bars/line declaration should be used only as long as Pages and 
Systems are not defined. In the following discussion we limit ourselves to the supplemen
tary elements introduced in M-Tx. 

The Style element 

The Style line permits us to define the number and the type of the staves in a system. It 
may contain several style elements (e.g., instruments) .  Presently (version 0.6), M-Tx defines 
the following style elements: 

SATB : Vo ices  S , A  T , B ;  Choral ; Clef s G F 
SATB4 : Vo i c e s  S A T  B ;  Choral ; Clef s G G G8 F 
SINGER : Vo i c e s  S ;  Vocal ; Clef s G 



9.6 M-Tx-Music from TeXt 

PIANO : Voices  RH LH ; Cont inuo ; Clef s G F 
ORGAN : Vo i c e s  RH LH Ped ; Cont inuo ; Clef s G F F 
SOLO : Vo ices  V '  , Clef s G 
DUET : Vo i c e s  Vl  Vc ; Clef s G F 
TRI O : Vo i c e s  Vl  Va Vc ; Clef s G C F 
QUARTET : Vo ices  V l  V2 Va Vc ; Clef s G G C F 
QUINTET : Vo ices V l  V2 Va Vel  Vc2 ; Clef s G G C F F 
SEXTET : Vo ices  Vl  V2 Val Va2 Ve l Vc2 ; Clef s G G C C F F 
SEPTET : Vo ices  Vl  V2 Val Va2 Vc l Vc2 Cb ; Clef s G G C C F F F 

In these definitions, Vo i ce  s gives the labels of the voices, which are later used to iden
tify lyrics lines and out-of-sequence music lines (do not use labels such as L, U, C, 1 or L 1  
since they conflict with M-Tx labels for chords, lyrics, etc . ) .  Labels separated by blanks be
long to voices on different staves; labels separated by a comma, to voices on the same stave 
(SATB has four voices on two staves, SATB4 has them on four staves) . The maximum num
ber of voices is 1 5, written in up to 1 5  staves. 

The Clef s part defines the clefs for each of the staves. You can use C ( alto) ,  F (bass) ,  or 
G (treble) ,  as well as any PMX key notation (see Example 9-5-3 on page 62 1 ) .  The symbol 8 
or G8 indicates music written in the treble clef but sounding an octave lower (useful for the 
tenor voice in choral music; see the definition of the SA TB4 style) .  

The Vocal specifier treats the voices as  vocal for the purpose of  beams and lyrics. 
Cont inuo staves belong to a single instrument, and are grouped together by braces. 
Choral means that all voices are vocal and belong to a choir; their staves will be grouped 
together by brackets. (Similarly, instrumental voices can be grouped together with brackets 
by using Group instead of Chor al as a specifier. )  

New styles can be readily defined. For instance, a piano score with four voices on two 
staves could be defined and then referenced as follows: 

Piano4v : Vo ices  RH 1 , RH2 LH 1 , LH2 ; Cont inuo ; Clef s G F 
Style : Piano4v 

Given that the whole preamble is read, and new style elements saved, before any of the com
mands is interpreted, the order in which the commands occur in the input file is irrelevant. 
Note, however, that when an element is defined multiple times, the last instance will be used. 

The Space and Start elements 

In the final fine-tuning stage of a score, the Start element can be useful since it allows you 
to insert additional space after each voice. For instance, you can add space after each system 
of a quartet (after the fourth of the four voices) with Space : 0 0 0 1 .  By contrast, in a 
score for one vocal accompanied by piano, Space : 2 0 0 (or simpler, Space : 2 )  will 
leave two lines (for the lyrics) after the first stave. 

Global adjustments to the lyrics lines are introduced with the Start element, which 
uses @ symbols with a syntax like the one explained with Example 9-6-8. 

The Opt ions element 

The string following an Opt ions : element is transmitted to the M-Tx prepmx preprocessor, 
thus simplifying considerably the command-line sequence needed to run that program (see 
the M-Tx manual for more details ) .  

653 



654 PREPARING MUSIC SCORES 

9.6.2 The body of an M-Tx in put file 
Most PMX commands and symbols are also accepted by M-Tx or  can be  passed through to 
the PMX processor using the %% notation. For instance, global A options ( see Table 9.6 on 
page 643) can be introduced, such as %%Abp. 

Bars and meter changes 

The notation for bars is mostly taken from Chris Walshaw's abc ( see Example 9-3-2)
namely, I for a normal bar line, I I for a simple double bar (section separation), and I ]  
for a thin-thick double bar (end of a movement) .  Repeats are generated by : I (left repeat), 
: : (left-right repeat), and I : (right repeat). 

Normal bar lines, which are usually optional, correspond to actual bar separations, and 
their presence makes life easier. The double line and repeat signs may appear in mid-bar; 
they must appear in the bottom voice and are optional elsewhere, but for readability it is 
advisable to add them in all voices. 

M-Tx handles a pickup as an incomplete "bar 0", which must be coded by a bar line 
in the first voice. When an incomplete bar appears at the end of a final paragraph, M-Tx 
automatically redefines the meter without printing a new time signature. 

Your ability to vary the number of voices per stave and to change the meter is more 
restricted in M-Tx than in PMX; see the M-Tx documentation for details. 

Beams and s lurs 

Like PM X, M-Tx constructs beams in instrumental voices automatically. In vocal music, it is 
customary to use beams only when the notes in question are sung to the same single syllable. 
Hence, when selecting a style like SATB or Singer that involves voices, M-Tx will ensure that 
notes will normally appear unbeamed, except those that appear under slurs. This feature can 
be overridden with PMX's "forced beam" construct (using [ . . .  J ) . 

The slur notation is similar to forced beams, but uses parentheses. 

o van 
o Lam van 
o Lam van 

t 
God, ek kom. 
God, ek kom. 
God, ek kom. 

Style : SATB 
Sharps : 2 
Meter : 3/4 
Space : 9 
Size : 16  

%% w70m 
%% As 

£4 e2 a4 
d4 b2 e4 

I ( d4 c ) b 
I ( £4 e ) d 

L :  0 Lam van God , ek kom . 
L :  0 Lam van God , ek kom . 
L :  0 Lam van God , ek kom . 
a4 I g2s a4 I a2 g4s 
d4 I d2 c4 I ( b4 e ) e 

I a2d 

I c2d 

I a2d 

I a2d 
Example 
9·6·2 



9.6 M-Tx-Music from TeXt 

Slurs can be nested, as in ( c8 d e ( f g ) f d b ) c2 .  Occasionally a slur ends 
at a note and the next one starts immediately. In this case you can use the slur continuation 
code ) ( as a single word after the note. For a tie, use braces { . . .  } instead of parentheses, 
with a continuation tie being coded as }{ .  

With multi-verse lyrics, sometimes a slur should appear in  one verse but not in  another. 
In this case you can start the slur with ( "  or { " , which will produce a slur symbol that is no 
longer solid, but broken like a dotted line. The following example shows how to synchronize 
lyrics by using void syllables and extension rules. 

She is a dan 
You'll get a bra 

:g I j j II 
" ... . .. .. .... 

gerom, woman 
ken heart 

Style : Singer 
Meter : 3/4 
Size : 1 6  

%% w70m 
%% As 

e f g ( a2d a ) ( "  g8 f ) ( "  e4 e ) 
L :  She i s  a dan-ge-rous wo-man 
L :  You ' ll get a bro--ken heart 

The trailing underscore on "heart" takes the place of a syllable of lyrics, and on a longer 
note would produce a lyrics rule that extends to the end of the melisma. Very long melismas 
can be coded with multiple underscores, e.g., Oh _ _ _ _ _ _  or, more conveniently, Oh_6. 

Conversely, when you want to make a melisma but without typesetting a visible slur, 
you can code a "blind" slur, which starts with ( - or { - and ends with ) - or }- . lts effect on 
the lyrics is identical to that of a normal slur. 

Style : ST 
ST : Vo i c e s  S T ; Choral ; Clefs  G G 
Meter : C/ 
Size : 16 
Pages : 1 
Systems : 1 
Space : 2 2 
Name : {\it{Superius}} {\it {Tenor}} 

%%Ab 
%%w120m 
% Superius 
©+1 rp I rp I cO+ I d2 { - ( e I e4 ) c }- ( c 2  I e ) f I 
L :  A-ve ve-rum cor-
% Tenor 
©-2 fO I g2 {- ( a I a4 ) f }- ( f2 I f ) {- ( c+ I c4 ) [ bf8 a ] a4 . f  }- I fO I 
L :  A-ve ve-rum , ve-rum 

655 



656 

I 
fl 

1\ '" I '� r\ � "'-
I t.J  "� 

I -� . ,.. •• -
" '" \ " 

C. 

"'" " )11. '" )II. " -
17C. 

I [)'( '" , )II. "')II. -

PREPARING MUSIC SCORES 

,....II --
Superius 

t. 
A ve ve rum __ cor -

'l i"""'I 
Tenor 

...... --- I I 

A ve ve rum, _ ve rum 

Chords 

As a complement to PMX's z notation for representing chords (see Example 9-5- 1 3  on 
page 628), M-Tx offers the possibility to have a basic melodic line immediately followed by a 
separate line (prefixed with C : ) for the chordal notes. 

The chordal notes are a concatenated sequence of note names in PMX notation, with 
the exception of t for "flat" and 1 for "note head left". The melodic (base) note cannot be 
shifted (i.e., have a displaced note head), and such notes can be present only on the chord 
line (e.g., the f in bar 1 and the e in bar 3 of the top stave are typeset to the right of the staff) . 

Style : Piano 
Meter : m2400 
Flat s : 1 

01 "  /tIII _ /till "' ''I -I-. 01 01'1' )11. 01'1' .101  )II. 
17 '" '-Er- ��'i '!'I 

LL� 
%%Ab 
%%w70m 

c2 df b bn e s  
[)'c - 01 , . C  01,  )II. "I -�� �� 

C :  etfra gtbdt dtertgn engs gs c s  
f 2 - gf I ef I dn cs+ I 

C :  acf bdtgt gnbet bn+en esgs c s  

With M-Tx, the pitch of the melodic line i s  determined by  the base note only, which 
serves as frame of reference for the whole chord. This is different from the situation with 
PM X, where the pitch of each chordal note (using the z . . .  notation) is determined by the 
previous note. The melodic structure of the piece (base line and chordal notes) are thus 
clearly identified, as can be seen in the coding of the introduction to Schubert's song Der 
Tod und das Miidchen, which also has two bass (F)  clefs for the piano score. 

Style : P i anoBass 
PianoBas s :  Vo i c e s  RH LH ; Clef s F F ;  Cont inuo 
Meter : C/ 
Flat s : 1 
Page s : 1 
Systems : 1 
Size : 1 6  

%%w1 10m 

f 2  g4 e I f 2  a4 a I a2 f4 e I 

ro" -
I Example 
I 9-6-4 ! �.........J 

Example 
9-6-5 



Example 
9-6-6 

Example 
9-6-7 

9.6 M-Tx-Music from TeXt 

c :  ad bd gd+ ad gle+ f+ gle+ ad acs 
d2 d4 d I d2 d4 a I a2 a4 a I 

c :  d- d- d- d- d- d a- a- a-

f2 f 4  e I f 2  g4 e f2  a4 a I a2 f4 e I 
c :  ad d+ gd+ ad bd gd+ ad gle+ f+ gle+ ad acs 

a2 d4 d I d2 d4 d I d2 d4 a I a2 a4 a I 
c :  d- d- d- d- d- d- d- d- d a- a- a-

p- . -- P- � e  � �� 2 -- rtt- 2 • rtt- P- � !  
I : 

I I 
: 

� 1II 1II � 1II :::; :::; ::::: -d 1II 1111 c::: 1II 1111 c::: 1II 
-6 .. .. 

� �� 

::::: 
-6 :::; :::; 

.. .. 

Isolated melodic notes (Le. ,  without chordal notes) are noted by - .  A vertical bar I on 
the chord line signifies that all remaining notes in the current bar are isolated notes. There
fore, unless they have that meaning, bar separators should never be used on c :  lines. Notes 
in chords can be tied with no need to close the tie, since M-Tx will tie the chordal note to the 
one at the next pitch in the next chord or generate an error otherwise. 

/ fl 

I � �:::: == j:::�:::: - j:::� -

Organ , 0-- - --0-- - :-0 
: 

I 
, : 
\ 

Expression marks and other annotations 

Style : Organ 
Meter : C 
Flat s : 1 
Size : 16  
Name : Organ 
Indent : 0 . 20 

%%w70m 
%%As 

{ csO  c 
C :  {e{g{b {e{g{b 

{ csO  c 
C :  {e{g{b {e{g{b 

{ csO- c 
C :  {b+ {b+ 

} {  c } 
egb 

}{  c } 
egb 

}{  c } 
b+ 

In PMX, dynamic and other annotations are marked up using the D notation (see Example 9-
5-3 1 on page 638). M-Tx has a different system, using lines with a U :  prefix. Such a U :  line 
is normally placed above the music line to which it applies; otherwise, an identifying label 
must specify the voice name or number. Note that U :  lines are synchronized after taking 
into account both notes and rests. The - and I signs, which have the same meaning as for 
chords, are available for the alignment of the text. 

657 



658 PREPARING MUSIC SCORES 

M-Tx recognizes most usual dynamic indications, such as mp and sf, and will typeset 
them in the correct MusiXTEX font. Unrecognized combinations are typeset in Roman. The 
font for the current voice can be set to bold ( ! bf ) or italic ( ! it) .  Note that such font decla
rations remain in effect beyond the paragraph in which they appear. The same applies to the 
vertical and horizontal adjustment specifications that follow. 

Vertical adjustments are obtained with the help of @ constructs, as follows: 

• @v places the symbols below rather than above the stave. 

• @"  places the symbols above the stave. 

• @=n places the symbols precisely at n\ internote units above or below the stave. 

• @+n and @-n place the symbols n\ internote units higher and lower, respectively, 
than the current default height. In other words, @+4 followed by @-2 will typeset the 
text 2\internote units above the default vertical position. 

Horizontal adjustments are obtained with the help of @< (move left) and @> (move 
right). The default placement is to the right of a note, so that @< centers it on the note, and 
@< @< puts it to the left. To come back to the center or the right, you would use one or two 
@> symbols, respectively. 

For a crescendo or decrescendo sign, type a < or > where the sign starts, and < .  or > . 
where it ends. You can also explicitly specify the length of the sign in units of \elemskip by 
using <n  or >n.  

Tres modere 

Style : Solo 
Meter : 9/8 
Sharps : 4 
Size : 1 6  
Pages : 1 
Systems : 2 
Space : 10  
Name : Flut e 

%%Ab 
%%B 

Flute '##I � i} __ J_J_J_' ¥:.=-i %%It44ifl  
%%w70m 
%%\\nobarnumbers\ 
%%\\ input mus ixpss\relax\ 
%%h+3 
%% Tr\ ' e s mod\ ' er\ ' e  

U :  @+ 1 < - - - - < .  
[ c8 sA d g ] e4 , g- bd4 sBt+0+ . 5  I 

7 7 I I 
U :  @+ 1 > - - > .  
b8 sBt b c as4 sA-2+1+3 r8 r4 r8 I I 

Guitar chords can be entered on a U :  line. For convenience, on such lines the characters 
# (sharp) and % (flat) can be entered as normal text. 



9.6 M-Tx-Music from TeXt 

9.6.3 Lyrics 
PMX does not directly allow the inclusion of lyrics in a score. One of the major novelties that 
Dirk Laurie introduced when developing M-Tx was a convenient interface to Rainer Dunker's 
musixlyr.tex package for handling lyrics. 

In M-Tx, each line of lyrics starts with the sequence L :  followed by the text to be as
sociated with the voice immediately preceding it in the input score. Syllables are indicated 
by hyphens, and multiple notes that belong to a single syllable are handled by slurring or 
beaming the notes together. 

,./fl J.+ H, 
S 

u 

fl J.+ H, 
A 

u 

f') .J.i.  lo! 
T 

'" 

il 
B 

"'" 

,/ fl .J.i. lo!  

u 
Got 

Gna 

fl .J.i. H  

u 
Got 

Gna 
fl .J.i. H, 

� Got 

GIla 

"" 
Got 

Gna 

I 

1 .  D 1 l '  d £,, 1 . ure 1 ( em ,e angms 

2 .  Dcin Kerker ist der 

1 .  �nreh dein Gefiingnis 

2 .  Dein Kerker ist der 

l .  D 1 1 l '  G C ..... . nre 1 ( em e angnls 

2 .  Dein Kerker ist der 

I I 

I I 
1 .  D ureh dein Gef�ingllis 

2. Dein Kerker ist der 

t:'I 

- tcs S01lIl ,  \ IS 
- den - thron , die 

t:'I 

.. .. - tcs S01lIl , ist 
- den - thron, die 

t:'I 

I 
S(�h n ,  ist - tes - den - th�n,  die .. .. 

tes _ Sohn , ist 
- den - thron. die 

Style : SATB4 
Meter : C 
Sharps : 4 
Size : 1 6  
Pages : 1 
Systems : 2 
Space : 3 3 3 6 
Name : {\it{S}} { \ i t {A}} {\it{T}} {\it{B}} 
Indent : 0 . 1 5 

%%\f ont \rx cmr9 \rx 

%%Asp 

%%\\nobarnumbers\ 

%%It72 ibatuclobb58 : 70 : 60 : 68T+0-1 2+0+0 
%%w55m 

% Bars 1-2  
©+1 [ e8 f ] I g4  a b b I a g f of b I 
L :  1 .  Durch de in Ge-f \ " ang-nis Got -tes Sohn , i s t  
L :  2 .  D e i n  Ker-ker ist  der Gna-den-thron , die 
b4- l e e e e l [ e 8 d ] e4 d of f I 
L :  1 .  Durch dein Ge-f \ " ang-nis Got-tes  Sohn , i s t  
L :  2 .  Dein Ker-ker i s t  der Gna-den-thron , die 
©+ 1 [ g8 a ] I b4 c dn [ c8 b ]  I c4 b b of ds I 
L :  1 .  Durch de in Ge-f \ " ang-nis  Got-tes Sohn , i s t  
L :  2 .  Dein Ker-ker ist  der Gna-den-thron , die 
©+2 e4 I e c g c I f [ g8 a ] b4 of b I 
L :  1 .  Durch dein Ge-f \ " ang-nis Got -tes Sohn , ist  
L :  2 .  Dein Ker-ker ist  der Gna-den-thron , die  

659 



660 

Got 

Gna 

.l 

PREPARING MUSIC SCORES 

The @ symbols followed by a number in the music lines are used to fine-tune the height 
of the lyrics lines, whose global placing with respect to the music score is determined by the 
Space : 3 3 3 6 command in the preamble (the last number is larger since it also includes 
the distance between systems). 

The example also shows that a number followed by a point and a blank at the start of a 
lyrics line is treated separately from the remaining text and will be printed to the left of the 
first lyrics syllable, which will be positioned as though the number was not there. We also 
see various 'lEX commands used to guide the typesetting, which demonstrates how M-Tx, 
PMX, MusiXTEX, and the 'lEX typesetter work closely together. Note, in particular, the font 
specification that sets the font size to nine points. Moreover, a MIDI  output file is prepared by 
the line starting with %% 1 .  

Instead of  mixing the text of  the lyrics with the music lines a s  in  Example 9-6-9, we can 
group all the lyrics for a particular voice together in one paragraph by specifying a name for 
the group of lyrics in braces (e.g., {pA}) .  Afterwards, such lyrics paragraphs can be refer
enced on a lyrics line (e.g., L :  {pA}) ,  where the identifier must be unique to the input file 
(compare Examples 9-6-9 and 9-6- 10) .  

-

r 
Dureh dein Gefangllis, 

Dein Kerker ist cler 

tes Sohn , ist 

den - thron , die 

\:I 

Style : SATB 
Meter : C 
Sharps : 4 
Size : 1 6  
Page s : 1 
Systems : 2 
Space : 1 0  
Name : {\it {S/A}} {\it{T/B}} 

%%\f ont \rx = cmr9 \rx 

{pA} 
Durch de in Ge-f \ " ang-ni s ,  Got -tes Sohn , ist 

{pB} 
Dein Ker-ker i s t  der Gna-den-thron , die 

%%Abp 
%%\ \nobarnumbers\ 
%%w60m 

[ e8 f ] I g4 a b b I a g f of b I 
L :  {pA , pB} 
b4- l e e e e l [ e8 d ] e4 d f I 
[ g8 a ]  I b4 c dn [ c8 b ] I c4 b b ds I Example 

Abp e4 I e c g c I f [ g8 a ] b4 ofd b I 9-6- 10 

M-Tx offers several more possibilities to handle lyrics in a flexible way. For instance, 
you can have multiple voices on a single stave, and you can place lyrics lines above and below 
staves. This behavior, the full command set of the musixlyr.tex package, and a few more dirty 
tricks, are described in the M-Tx manual. 



9.7 The music engraver lilyPond 

9.7 The music engraver LilyPond 

In 1996, in the previous edition of this book, we described Jan Nieuwenhuizcn's MPp 
MusiXTEX preprocessor [89]. Since then, Jan and his colleague Han-Wen Nienhuys haveaban
doned that system and developed LilyPond, I an "automated engraving system that formats 
music beautifully and automatically and has a friendly syntax for its input files". They no 
longer use l}:X as the basic typesetting engine but have developed a large c++ program 
(more than 6000 lines of code); they also use Python and Scheme code, as well as a specially 
designed font family (feta), which is available in various formats (PostScript Type I, Open
Type, and SVG). 

9,7.1 The LilyPond source language 
To typeset one note, four kinds of information can be specified: notenallle, octave, duration, 
and features. Only the Ilotename is mandatory. All this information is coded in the given 
order with no intervening spaces; a blank separates two notes. 

Notes are denoted by lowercase letters. A comma ( , )  following the letter transposes 
the note one octave deeper, while a right quote ( ' )  makes it an octave higher. To generate 
different clefs, use the command \clef followed by either treble, alto, tenor, or bass. 
The following example shows some pitches and ways to generate different kinds of bar Jines. 

{c d \bar " I " e f \bar " I : " g c ' \bar " 1 1 "  
d' e '  \bar It : I "  f '  g ' \bar " . 1  " c ' d' \bar " . 1 1 .  " \break 
e "  f " g" c "  , \bar I t :  I : " 
d' " e " , f '  " g" , \bar " I .  " c ' c c ,  c "  \bar " . " } 

4 

1 The UlyPond home page is at www . lilypond . org,where you can download the latest version of the system. 
There is also a tutorial, the reference guide, and much more. Of particular interest is 1he essay "What is behind 
LilyPond?", which explains the authors' views on problems in music nolalion (software) and Iheir approach to 
solving them. 

661 



662 PREPARING MUSIC SCORES 

By default, Li lyPond uses an absolute system to define the pitch of a note, thus making 
entering music quite tedious. You can also enter the music relative to a reference note, as the 
following example shows, where we reenter the second line in Example 9-7- 1 .  

\relat ive c '  
{ c  e J f g c \bar " : I :  I I  d e f g \bar I I  I . I I  c " , c ,  c ,  c ,  \bar I I . I I  } 

The pitch of a note in a sequence is determined based on the assumption that, without 
the modifier ( , or , ) , a note is less than one quarter away from its predecessor, where the first 
one is considered with respect to the absolute note indicated on the \relati  ve command 
(c '  by default) .  Note expecially in the last bar how we first descend by three octaves, and 
then three times by one more octave. 

In contrast to the situation with abc2mtex and the other preprocessors, accidentals in 
Li lyPond are denoted by extra notenames, such as gis  or be s-not by prefixing the base 
note with a symbol. I The key of the piece is specified with the command \key. 

\relat ive{\key a \maj or a c i s  c c i s  f i s  f g gis al } 

As durations, whole, half, quarter, eighth, sixteenth, thirty-second, and sixty-fourth 
notes are provided; they are specified by placing the corresponding number after the note 
name (e.g., the whole note in the last example) .  For dotted notes, you would place a dot 
following this number. If a sequence is not specified, the last duration entered is used. The 
default duration for the first note, when unspecified, is a quarter. Our next example shows 
a sequence of ever shorter notes and rests. A certain amount of space can be skipped with 
the s notation, as shown on the second line just preceding the sixty-fourth rest at the end of 

I The default names of the accidentals are based on the Dutch-German system: the suffix "is" indicates a 
sharped note (e.g., "cis" means "c sharp') ,  and the suffix "es" indicates a flatted note (e.g., "ges" is "g flat"). How
ever, by loading a language unit you can use the usual note names in that language chosen. For instance, with 
engl ish . ly (English) the preceding examples become "csharp" and "gflat", and with espanol . ly (Spanish) 
"dos" and "solb". 

Example 
9-7-2 



Example 
9-7-4 

Example : 
9- 7-5 

9.7 The music engraver LilyPond 

the bar. Note also the use of the \longa and \breve commands, and observe how LilyPond 
automatically keeps track of the correct number of bars. 

# ( set -global-staf f - s ize 1 3 )  

\relat ive{e\breve e 1  e2 e4 e8 e 1 6  e 3 2  e 6 4  e64\break 
r\longa r\breve r 1  r2 r4 r8 r 1 6  r32 s64 r64 } 

, B I )  J - -e-

5� I '  I - I -
J J 1 ij l  .. 

t 'I f , f l  
This representation of note length has its limitations-namely, you cannot represent 

duplets, triplets, etc, in a natural way_ However, as we see below, these can be specified by 
using a note-grouping mechanism. 

Other information, such as typesetting details and accents or, more generally, subscript 
and superscripts, can be added to the end of the code for a note, as the following example 
shows. 

{\key f \maj or \t ime 2/4 \autoBeamOff 
\ae e i aeeatura f ' 8 f " - - \stemUp e " A- \st emNeutral 
a " - .  \t iny { f "  e '  } \normal size a ' - .  
g ' - - \small { g '  } \t iny { g '  } \normal size g ' 4 .  } 

J ) } I } J .  
The grace note at the beginning is typeset with the \acciaccatura command, while artic
ulations are generated by appending the notation - or � to a note to place a sign below or 
on top of it, respectively. We can override the natural direction of the stem (equivalent to the 
command \stemNeutral, which corresponds to the direction automatically calculated by 
LilyPond) with the \stemUp and \stemDown commands. 

A beam is created by appending [ to the first note and ] to the last note of the sequence 
of notes to be joined together (e.g., c8 [ d8 e8 f 8J ). Similarly, for connecting a sequence 
of notes with a slur, we append ( to the first note of the sequence of notes and ) to the last 
note (e.g., c8 ( d8 e8» ) .  For chords, triangular brackets are used. 

\relat ive e ' " {\key bes \maj or \t ime 2/4 
g8 [ (  f ) es C d) ]  c [ (  d) ] <g , -- bes>4 
<g a e>8 [ <g a e >  <g a e >  <g a e>J 
<f-- a d>4 <f-- a d> } 

663 



664 PREPARING MUSIC SCORES 

Tuplets are constructed with the \ t imes command, which is followed by a fraction 
and a music expression. The duration of the music expression is multiplied by the fraction, 
whose denominator will be printed over the beam or slur that connects the notes. 

\relat ive C " ,  {\t ime 2/4 
\t imes 2/3 { c , 8 [ (  b a) ] }  f4 \t imes 2/3 {f ( a g) } 

} 

, i F j 
3 
� J I J 

-----

3 

J 3 
LilyPond comes with many examples, which are well worth studying. The following ex

ample shows more of its functionality. 

\relative c '  {\t ime 3/4 \key f \maj or \ clef alto 
\ac c iaccatura c ' 8\pp ( \t ime s 2/3 {bes ) [ (  a) bes] } d4 . bes8 

\clef treble 
« {  a [  c f c f c] } \\ 

{ f , 2  r4 } » 
« { d ' 2 . ( d4) \setTextDe cre s c  r4\> d4\ ! }\\  

{ f i s , 2 . ( f 2 . _ > ) } » 
\bar " l I "  \key as \maj or 

\t imes 2/3 {d ' 1 6 [ (  g a) ] }  \t ime s 2/3 { g [ (  a b ) ] }  b4 c ,  
} 

pp " � 
J J J V 

>- deer. 

i J I 

r 
We change key and clef and introduce a second voice in bars 2, 3, and 4 (the stacked 

voices are contained inside « . . .  » and are separated by the \ \ command) .  We also add 
some dynamics markers, the \pp command at the beginning, and the decrescendo in bar 4, 

1 
Example ' 
9-7-6 

Example 
9-7-7 



Example 

9-7-9 

9.7 The music engraver LilyPond 

which is bracketed inside \> and \ ! ,  and typeset as the word deer. , as specified by the 
\setTextDecresc  command. 

9.7.2 Running LilyPond 

Files that contain Li lyPond code are characterized by the extension . 1y. Running them 
through the program LilyPond will generate a PDF file by default. LilyPond has back ends 
for PostScript, SVG, and 'lEX. 

Our moderately complex example from Section 9.2.4 is much easier to write with Li ly
. Pond, as shown in the next example. We have already developed the code for the upper staff 
in Example 9-7-6, but we repeat it here, together with the code for the lower staff. 

\new PianoStaff 
« 

\new Staff { 
\relat ive c ' " { \key bes \maj or \t ime 2/4 

g8 [ (  f )  es C d) ]  c [ ( d)  ] <g , -- bes>4 
<g a c>8 [ <g a c >  <g a c >  <g a c>]  
<f-- a d>4 <f - - a d> }} 

\new Staff { 
\relat ive c "  {\t ime 2/4 \key bes \maj or \clef bas s 

g8 [ (  f )  e s C d) ]  c [ e d) ] <g , bes-->4 

» 
g8 [ (  f )  f (  e ) ]  d4-- d-- } }  

101 [)' _ .  J-
- I -_ J- ..... SI -

� � .f'- .  

• • - ... -- -

� 
- -

• --

-= -

• --

r- J- '---

.. .. - -
• • • • 

-- ---""'" -""'" 
I I 

Copy this example to a file and call it myexamp1e . 1y. You can then run it as follows. 

l i lypond myexample . ly 

By default, Li lyPond generates a PDF file. You can also get an EPS file as follows. 

li lypond --backend=eps --ps myexampl e . ly 

To see all options of the program, just type 1ilypond. 

665 



666 PREPARING MUSIC SCORES 

9.8 TEXmuse-TEX and M ETA FONT working together 

A promising new approach is  Federico Garcia's 'lEXmuse [27] , where 'lEX and METAFONT 
work together to produce a score. First, 'lEX collects the information about the notes (their 
starting points, number of note heads, direction of the stems, possible accidentals or accents, 
stave in a poly tonic piece on which the note occurs, etc.) .  With this information 'lEX builds 
a METAFONT program that does not consist only of single notes but rather combines all 
the notes of a vertical axis into one large character. Based on the characteristics of the next 
note, 'lEX figures out the shortest rhythmic value of the current character and determines 
the spacing, taking into account possible glue. A score is thus typeset as a single line of text 
with its words (vertical columns) automatically designed. 

In summary, a }}TEX run with 'lEXmuse on a music piece typesets musical material by 
creating one new font for each page (consisting of "large" characters), on which META
FONT is run automatically to generate the . tfm and . pk instances. After a change to the 
score, these instances must be deleted so that 'lEX always uses the correct latest version gen
erated on the fly. 

At the time of writing (early 2007) "stage 1 "  of the program has been implemented. )  
This version can typeset the basic musical components of Bach's Inventions, pieces for piano 
featuring two staves with one voice per staff and needing only limited additional interpreta
tive notation. These pieces are ideal material for testing this stage and for preparing further 
developments of'lEXmuse, where improvements for ties, line breaking, time signatures, rest 
typesetting, beam heights, etc ., need to be addressed. 

l The JEXmuse home page http : / /www . f edegarc i a . net/TeX/TeXmuse . html contains information 
about the current status of the system. 



C H A P T E R  1 0  

Playing Games 

10.1 Chess . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . 668 

10.2 Xiangqi-Chinese chess . . . . • . • . • . • • . • • . . • . • . • • • • • • • • . . . .  687 

10.3 Go . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . • . . . . . . . . . . . . . 690 

lOA Backgammon . . . . . . . . . . . . . • . . • . . . . • . . . . • . . . . . . . • . . . . .  696 

10.5 Card games . . . . . . . . . . . . . . • . . • . . . . • . . . . . . . • . . . . • . . . . .  698 

10.6 Crosswords in various forms . . . . • . • . . • . . • . . . . • . . . . • . . • . . . . .  702 

10.7 Sudokus . . . . . . . . . . . . . . . . • . • . . • . • • . . . • • . • . . • . • . . . . . . 709 

Board and card games have a long history, and thousands of books in many languages have 
been dedicated to chess, Go, cards, and the like. These books almost always use diagrams to 
explain the rules or show the evolution of a game. In the present chapter we look at a number 
of examples showing how to prepare such graphical presentations with �TEX. 

Most game packages are concerned with making available either a special font for type
setting the right symbols or macros for producing nice examples of the state of play. The 
highly developed field of chess notation, however, lends itself well to an algorithmic typeset
ting system like �T£,X. The chess packages, with which we begin, keep track of the state of 
moves and allow various forms of output. 

We move next to the rather similar games of Chinese chess and Go, followed by 
backgammon. We then look at cards, where the classic game of bridge has a special pack
age, before concluding the chapter with the esoteric subject of crossword and Sudoku puz
zles. Although crossword design is not a game, it has some similar typesetting problems, 
and �TEX-using crossword makers will enjoy using the sophisticated package to help them. 
In the case of Sudoku, there is even a package that generates new puzzles or solves existing 
ones. 



668 PLAYING GAMES 

1 0. 1  Chess 
Typesetting chess using 1EX started in 1 988, when Wolfgang Appelt developed a number of 

Two decades afhistory macros for this purpose [9 ] . This early attempt was done without a font containing chess fig
ures, so Appelt denoted them with symbols like n. A little later, Zalman Rubinstein [ 107] ) 
produced a first simple chess font with M ETAFONT. Nearly four years later, Piet Tutelaers, 
a Dutch chess enthusiast, designed a rather classical-looking chess font and developed an 
accompanying �TEX package [ 1 22] that turned �TEX for the first time into a mature typeset
ting system for chess journals. 

Piet's chess package internally kept track of the positions of all pieces on the board so 
that it was easy to display the current board once in a while. For doing so, it used a some
what uncommon and verbose notation: moves were denoted by always providing the start 
and end positions on the board (e.g., \move g1f3  g8f6 )  instead of allowing the use of 
Portable Game Notation (PGN; e.g., 1 .  Nf3 Nf6) .  As an alternative, the chess package in
troduced a "tournament style" notation in which a I sign would signal notation in "chess 
mode", similar to the use of $ to indicate inline "math mode" . 

Following these early attempts, several people worked on improving the situation fur-
In the second decade ther. The first package to surface was skak by Torben Hoffmann. Just like the chess package, 

it internally keeps track of the board positions and supports displaying the board or parts 
of it at any point. In contrast to chess, it uses a subset of PGN as its input syntax. It comes 
with a new set of fonts that offers additional symbols needed for game analysis and provides 
a number of bells and whistles to customize layout and style. In addition, it offers import 
and export possibilities in the popular Forsyth-Edwards Notation (FEN) used by many pro
grams, so that it becomes easy to professionally typeset boards and games. 

In contrast, the texmate package by Federico Garcia concentrated on providing a com
pact and easy-to-use input syntax (based on the tournament style of the chess package) .  
Unfortunately, its first implementation lacked the possibility to keep track of the board situ
ation automatically, so that diagrams had to be set up manually. 

Both packages were still confined to use the fonts provided with skak, making it very 
Taday's situation difficult to use any other chess fonts available via the Net. This situation prompted Ulrike 

Fischer to develop the chessfss package. This package provides a number of generic font 
switching and support commands that allows the user to switch between different chess 
fonts with ease, based on NFSS (New Font Selection Scheme) methods. Of course, as long 
as packages use hard-wired direct font calls, this isn't going to help. Thus the next step in 
the evolution was to modify existing packages to rely on chessfss rather than doing their 
own font setup. This became reality with skak version 1 .4 (described in Section 1 0. 1 . 3  on 
page 673) and texmate version 2. In fact, texmate did undergo an even larger set of modifi
cations: it now uses skak to keep track of board positions and thus provides the features of 
all three packages together. The new texmate is described in Section 10 . 1 .4 on page 680. 

1 0. 1 . 1  ch essboa rd-Coloring you r  boards 

Ulrike also developed the chessboard package, which allows you to produce sophisticated 
chessboard diagrams with ease, including colored boards. At the moment it works as a stand
alone package but perhaps we'll see a future version of this package forming the basis for 



Example 
IO- J - I  

1 0.1 Chess 

board diagrams for skak and texmate. As chessboard is still being actively developed, it is 
not described in this book, but it might be worth checking out its documentation found on 
CTAN. As a teaser, here is an example prepared by Ulrike for this book. It uses chessboard 

version 1 .3. 

\usepackage [LSBC 1 , T l] {f ont enc } \usepackage { chessboard} 

\setches sboard{border=false , vlabe l l ift=2 . 8ex , l inewidth=0 . 0 1ex , padding=0 . 05ex , pgfborder , 
l inewidth=0 . 1 ex , padding=0 . 25ex , pgfborder , showmover=f al se , bo ardf ont encoding=LSBC 1 }  

\chessboard [ 
%% pieces 

setpi ece s={Ka8 , qd7 , kc6} , addpiece s={ka l , Kb3 , Rc3} , 
addpiece s={khl , Nf 3 , Rg4} , addpiece s={kh8 , ph7 , Rg6 , Bg5} , 

%% l ines between the f our part s 
l inewidth=O . l ex , padding=Opt , markstyle=leftborder , markf ile=e , 
markstyle=t opborder , markrank=4 , 

%% marks mat ing moves 
markstyle=straightmove , color=blue , l inewidth=0 . 2ex , 
short enst art=O . 4em , arrow=t o ,  markmoves={d7-b7 , c3-c 1 , g4-g1 , g5-f6} , 

%% coloring the mat ing f igure 
piececolor=blue , coloremph , emphf ields={d7 , g5 , c3 , g4} , 

%% borders 
addpgf =\pgf s etdash{{O . l ex}{O . l ex}}{ . 05ex} , markstyle=border , 
l inewidth=O . 05ex , markf i elds={b7 , a8 , c l , b l , a1 , g l , h l , f 6 , g7 , h8}] 

a b c d e f 9 h 

1 0.1 .2 chessfss-A generic font mechanism fo r chess 

The chessfss package by Ulrike Fischer provides an interface for other packages to use a 
variety of chess fonts available on the Net. It uses the standard NFSS mechanisms, so that 
you can easily change the size, or switch to boldface or italic, provided the selected chess 

669 



670 

skaknew 

alpha 

berlin 

pirat 

PLAYING GAMES 

font family offers the corresponding series or shape. For this very reason you might see a lot 
of font substitution warnings if you make use of this feature, as most chess fonts come in 
only one shape and series, such that switching to bold generates such a warning. 

To use a chess font family with N FSS, it needs to be made available in certain font en
codings, which can be done by providing suitable virtual fonts or by reencoding the fonts by 
other means. For some freely available font families, this work has already been done (see 
the first block in the next example) .  For other fonts, the enpassant package documentation 
describes the recipe for doing the conversion to Type 1 fonts in the right encoding. The fol
lowing example shows a number of available fonts; the commands used to access them are 
explained later. 

W�M.tCZJ� ��M.ttiJ� \usepackage{che s s f s s }  

ill�§§l <dE, <j{t¥�£l 'lJR \newc ommand\test [ 1 ] {\ttfamily #1& 

dJ,*Ei��8 OO�B��8 
\setf igf ontfamily{# 1}\f igf ont KQRBNp& 
\setf igf ont f ami ly{# 1}\figf ont \Large 

� lMJ fi:  � �§, w 1.W ;g  � ttJ �  KQRBNp\\} 

Fonts that need conversion to Type J first 
\begin{tabular}{lll} 

\test{ skaknew} 

alf onso 

aventurer 

cases 

condal 

harlequin 

kingdom 

leipzig 

line 

lucena 

magnet i c  

mark 

marroquin 

maya 

mediaeval 

merida 

millennia  

mot if  

�g�Bdl� 
��bJ�flA 

W���l2J� 

e'e'i"l��� 
'f:1��'1l�b 

��1.t<£l0 

��ILt�g, 
WW�D�� 
m�SmflA 

�;g ill\!2�� 
6Y1�(!)aD. 
6 0,; = 0 8 °  
������ 

:gMi:��ii 

1\lW�1:t @fZp � 
'\9�:S�lZ:J8 
8��rhlJ�©l 
����<Zla 

�§�B�� 
��kLg,�� 
w!f��ttJ� 
e'@'g��� 
���ll�� 
<W�MiJ2J� 
<i'�Ii.-�� 
�*ElD� D 

c c c c 

m�nillfl A  �o o o """0(J � ®ill:.. · � 
6Y1El(i)�.o. 
6 W � � 2:l Q  

gggggg 

�����ji 
���@fZ18 
��E��b 
8����� 
���&�L:l 

\test{alpha} 
\test {berlin} 
\test{pirat }  

[3pt] % opt ional arg o f  \\ i n  \test 
\mul t i c olumn{3}{c}{\it shape Font s that 

need conversion t o  Type 1 f irst }\\ [4pt] 
\test {alf onso}  
\test{aventurer} 
\test{cases} 
\test{condal} 
\test {harlequin} 
\test {kingdom} 
\test{leipzig} 
\test{line} 
\test{ lucena} 
\test {magne t i c }  
\test {mark} 
\test {marroquin} 
\test {maya} 
\test{mediaeval} 
\test{merida} 
\test{millennia} 
\test{mot i f }  

\end{tabular} 

When documenting chess games, various types of glyphs come into play. The chessfss 

package distinguishes three categories and provides standard encodings for each: figurine 
fonts (which are used to record games) ,  board fonts (which show the pieces behind black 

Example 
10 - 1 - 2  



Example , 

L��l_:�1 

: Example 
1 0- 1 -4 

1 0.1 Chess 

and white fields) ,  and informator fonts (which hold additional "information symbols" used 
to produce commented games) .  We will look at each group and its support separately. 

\setf igfontfamily{name} \f igf ont \f igsymbol{g�ph�)}  

You can choose the font family to use for figurine symbols through the declaration 
\setf igfontfamily . Afterwards, you can use \f igfont to select this family and the 
appropriate font encoding. The scope of the command has to be limited by a group; i.e., it 
behaves similarly to font commands like \ ttfamily, except that it also switches the encod
ing. For situations where a command with one argument is more appropriate, you would use 
\f igsymbol, which is comparable to \t ext sf .  These commands can be combined with 
other font commands such as \bfseries and \small, and will yield the expected results, 
provided the chosen font family offers the corresponding variants. To address the figurine 
symbols in this way, the ASCII  letters KQRBNp can be used. 

In the previous example we saw that the fonts obey font size commands. Here we show 
the switch to boldface and italic. Note that skaknew doesn't have an italic variant, so NFSS 

substitutes an upright shape. 

skaknew: 

WIjfM.tQJ� �iVtt.,t tZJ � 

� � l:tt lZJ� �iV tt.,t l2J � 
pirat :  

� \W �  � tiJB W tW � � �1l 
c1> tJ!J � � 4J A rjJ l/Jl ;g � cfJ 11 

\usepackage{che s s f s s }\setlength\parindent {Opt } 

\newc ommand\t est [ 1 ]  {\ setf igf ont f ami ly{# 1 } %  
\ text t t {# 1 } : \ \ 
\f igsymbol{KQRBNp \LARGE KQRBNp\ \ [5pt ] 

\t extbf {KQRBNp} \t ext it {KQRBNp}}\par} 

\test{ skaknew} 
\test{pirat }  

\symking \symqueen \symrook \symbishop \symknight \sympawn 

The main reason for the development of chessfss was to provide a standard interface to chess 
fonts that can be used by other packages. But, as we have seen already, it can be used on its 
own as well. The commands \symking, etc. support this stand-alone usage further: they 
can be used in normal text and produce the corresponding figurine glyph. 

The � got promoted to fJ. 

\us epackage{ che s s f s s }  
\setf igfontfami ly{aventurer} 

The \ sympawn{} got promoted t o  \symknight . 

In some situations, we don't want to use figurine symbols but rather normal charac
ters to represent pieces in a game notation (for example, when teaching children) .  For this 
scenario, a similar set of commands is available. 

\textking \textqueen \textrook \textbishop \textknight \textpawn 

These commands produce letters, such as "K" for king. However, in contrast to the symbols, 

67l 



672 

Be l , Na l 
Fe l ,  Ca l 
Le I ,  Sa l  

�e l ,  tlJa l 
Be l , Na l 
Be l ,  Na l 
�e I ,  tUa l 

PLAYING GAMES 

those characters are language specific, so we need a way to specify which characters to use 
for individual languages and a possibility to choose the target language. 

\ set t extf igchars [language] {king HqueenH rookH bishop Hknight Hpawn} 
\settext f iglanguage{language} 

The \settextf igchars declaration specifies for a language (default engl ish) the let
ters to use for the individual pieces. The package contains predefined values for several 
languages (using the babel naming conventions), and others are expected to follow in the 
future. Typical declarations would be 

\sett extf igchars [engl i sh] {K}{Q}{R}{B}{N}{P} 
\ sett extf igchars [german] {K}{D}{T}{L}{S}{B} 

To select a specific language, use \settext f iglanguage as shown in the next exam
ple. Of course, normally you would select only a single language per document. 

\us epackage{ che s s f s s }  

\t extbi shop e 1 , \t extknight a1 \par 
\sett extf iglanguage{french} \t extbi shop e 1 , \t extknight a1 \par 
\sett extf iglanguage{german} \t extbi shop e 1 , \textknight a1  \par 

So far we have seen two sets of commands for explicitly selecting figurine symbols or 
letters, but, in fact, there exists a third set that allows us to switch between the two rep res en -
tations for the chess pieces. 

\king \queen 
\usetext f ig 

\rook \bishop 
\usesymf ig 

\knight \pawn 
\setf igstyle{style-commands} 

By default, \king , \queen, etc. produce the figurine symbols. After issuing a 
\usetext f ig declaration, however, they change to produce letters and \us esymf ig 
switches back to figurine symbols. In addition, it is generally possible to set the style for 
both cases via \setf igstyle (in the example we use boldface and underline) .  The last of 
the macros defining the style is allowed to take an argument (e.g., \underline). 

\usepackage {che s s f s s }  
\setf igfontfami ly{cases} 

\bi shop e 1 , \knight a1 \par 
\usetextfig \bi shop e 1 , \knight a1 \par 
\setfigstyle{\bf series\underline} 

\bi shop e 1 , \knight a1  \par 
\us esymf ig \bi shop e 1 , \knight a1 \par 

! Example 
10 - 1 - 5  

Example 
1 0- 1 -6 



· · · ········· ····· 1 
Ex.a .. m. pie 

J 10 - \ -7  

1 0.1  Chess 

\setboardfontfamily{name} \boardsymbol{glyph(s)} \boardf ont 
\setboardf ont size{s�e} 
\set inffontfamily{name} \ inf symbol{glyph(s)} \ inff ont 

If you want to individually select the font family used for board symbols or informational 
symbols, a corresponding set of interface commands is available for this purpose. However, 
while using figurine fonts directly is an option for small documents, it is not really advisable 
to try building chess boards manually. This is better done through the interfaces provided 
by skak, texmate , or chessboard . Thus the three most important declarations to remember 
are \setboardfontfamily and \set inffontfamily , which can be used to direct the 
other packages to choose the specified font family, and \setboardf ont size , which al
lows you to specify the size of the board squares. 

\usepackage {che s s f s s }  
\setboardfont farni ly{maya} 
\setboardf ont size { 1 5pt} 

\no indent 
{\boardf ont rmblkans\\ opopOpOp\\ OZOZOZOZ} 

\ inf symbol{A C D E 0 q r s t }  

I n  the previous example we accessed the informational symbols through their font po
sitions. These are difficult to memorize and make the source document more or less un
readable. For that reason chessfss provides individual commands to access each symbol, as 
shown in Table 1 0. 1  on the following page. When referring to these symbols, it is best to use 
these commands. 

I \setchessfontfamily{name} I 
It is also possible to set all three font encodings with a single \set chessf ontfamily dec
laration. However, as most chess font families lack the information symbols, this will most 
likely result in a number ofNFSS substitutions (the fallback family is skaknew). 

The chessfss package offers a number of additional commands, including command 
versions for all board glyphs and several commands that are only of interest to package writ
ers. One of the recent additions is the ability to produce colored boards (used by chessboa rd ) .  
For details, consult the package documentation. 

1 0. 1 .3 ska k-The successor to the chess package 

The skak package by Torben Hoffmann allows you to document chess games, by intermixing 
details of the game with commentaries. This package internally keeps track of the board sit
uation, so that it is possible to print the state of the board at any time during the game. Game 
positions can be stored and loaded from external files, using the popular Forsyth-Edwards 
Notation (FEN). The first distribution of this package contained a new set of chess fonts, 
written in M ETAFONT. Since then, these fonts have been further improved and converted 
to Type 1 by Ulrich Dirr; they are now available under the name skaknew. While earlier 

673 



674 

Symbol 

+ 
-+ 
0 
@ 
+ 
x 

I±l 
+ 

00 

'=i 

C 
� 
0 0 
� 

¢:::> 

» 
X 
0 

PLAYING GAMES 

Table 1 0. 1 :  Informational symbols for chess 

Command Font Position Symbol Command Font Position 
\bbetter g # \mate m 
\bde c i s ive i > \morepawns S 
\betteris b 0 \moreroom U 
\bishoppair a D \onlymove F 
\bupperhand e � \opposbi shops 0 
\capturesymbol X 6 \pas sedpawn r 
\ cast linghyphen « \qs ide M 
\centre I .. \samebishops s 
\ checksymbol + 0· ·0 \seppawns q 
\ chesssee  1 ffi \t imelimit T 
\compensat ion n 00 \unclear k 
\ counterplay V 00 \unitedpawns u 
\devadvantage t ± \wbetter f 
\diagonal G +- \wde c i s ive h 
\doublepawns d X \weakpt J 
\ending L L \with v 
\equal j \withattack A 
\et c p D. \withidea E 
\file  H i \withinit C 
\ks ide 0 � \without w 
\markera x ± \wupperhand c 
\markerb y 0 \zugzwang D 

releases of skak hard-wired the used fonts, the current release delegates the font setup to 
the chessfss package, thereby enabling the use of any chess font that is set up for use with 
chessfss. 

Specifying and displaying the board 
To enter a game, you first have to initialize the board-Le., place all pieces in their appropri
ate position. This is normally done with \newgame , which places all pieces in their standard 
positions. Alternatively, you can set up an arbitrary position by using \f enboard. 

I \newgame \f enboard{FEN-notation} I 
The \f enboard declaration expects the game state to be specified in FEN (Forsyth
Edwards Notation), a notation that can be generated by most chess programs. It is also pos
sible to save and load positions from external files, as we will see later. No checks are made to 
validate the specified board situation, so it is up to you to ensure that everything is specified 

I Example 
I 1 0- 1 -8 



1 0.1 Chess 

correctly. The \newgame declaration is, in fact, just an abbreviation for the following: 

\f enboard{rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1 }  

I \showboard \showinverseboard l 
Once the initialization is done, moves can be recorded and the board can be printed at any 
point in the game by issuing a \showboard or \showinverseboardcommand. The latter 
command shows the board with the white figures on top. 

Solution in later examples. 

\usepackage{ skak} 
\setboardfontfami ly{maya} 

White to move without mat ing black ! 

\f enboard{B5KR/ 1r5B/6R1/% 
2b 1p1p1 /2P 1k1P 1 /% 
1p2P2p/ 1P2P2P/3N 1N2 
w - - 0 1 2 }  

\showboard 

Solut ion in later examples . 

As we see, the standard size of the printed board is fairly large. In some situations this 
may not be appropriate, so skak offers a number of commands and options to manipulate 
this display, including highlighting of fields or moves. 

\setupboard{jield-size}{annotation-size} 
\t inyboard \smallboard \normalboard \largeboard 
\notat ionOn \notat ionOff 

To define the board size displayed by \showboard or \showinverseboard , you can use 
a \setupboard declaration. The jield-size specifies the width of each field on the board, 
and the annotation-size defines the font size used for board annotations. A small num
ber of board sizes are predefined and can be called up by \t inyboard , \smallboard , 
\normal board , or \large board . Alternatively, the board size can be initialized through 
the options t iny, small, normal, or large. The default is the normal board size, which 
corresponds to \setupboard{20pt}{ 10pt } .  

Board annotations (numbers on the left, letters at the bottom) are displayed by 
default. Through \notat ionOn and \notat ionOff  or the options notat ionon and 
notat ionoff, they can be activated and deactivated, respectively. 

675 



676 PLAYING GAMES 

ps option needed � 
for highlighting Y 

The preceding possibilities are always available. In contrast, the highlighting com
mands offered by skak make use of PSTricks and, therefore, do not work out of the box if 
the target format is PDF. In that case, the solution is to use the pst-pdf package, which is 
described in Section A.2 on page 800. 

8 

7 

6 

5 

4 

3 

2 

1 

\showmoverOn \showmoverOff 
\printarrow{startHtarget} 

\highlight [symbol] {jield(s)} 
\printknightmove{start}{ target} 

To indicate who moves next, issue a \showmoverOn declaration or load the package with 
the mover option. This will display an indicator to the right of the board. To prevent this 
behavior, use \showmoverOff  or the option moveroff (the default) .  

Highlighting of  fields is done with a \highlight declaration. The field(s) are given 
as a comma-separated list, and the form of highlighting is controlled by the optional argu
ment symbol. Without the optional argument, a square is used; 0 or 0 produces a smaller 
or larger circle; and x or X produces a smaller or larger cross as shown in the next exam
ple. It is also possible to indicate movements by using \printarrow (for straight arrows) 
or \printknightmove. Note that the order of highlighting can be important: if you first 
print an arrow and then highlight the target field, the field symbol overprints the arrow as 
shown in the example. 

������������� 

a b c  d e 9 h 

\showonlyblack 
\ showonl y{figures} 

t 
o 

\usepackage [ps] { skak} 

\f enbo ard{B5KR/ lr5B/6Rl/2blp lpl /2P l k l P l /% 
lp2P2p/ 1P2P2P/3N 1N2 w - - 0 12}  

\showmoverOn 
\showboard 
\highlight {a6 , b6 , c6 , d6 , e6 , f 6 , h6 , g7} 
\highlight [x] {f7 , f 8 , g7} 
\printknightmove{f l }{g3} 
\printknightmove{g3}{e4} 
\highl ight [X] { c3 , g3} 
\printknightmove {dl}{c3} 
\printknightmove{ c3}{e4} 
% order of highl ight ing i s  important 
\highlight [O] {g6} \printarrow{h7}{e4} 
\print arrow{a8}{e4} \highl ight [o] {c6} 

\showonlywhite 
\showall but {figures} \showall 

When discussing openings or complicated positions in the middle game, it is sometimes 
helpful to present only certain important pieces to clearly show lines of influence or other 
aspects of the game. For this purpose, skak offers four commands. With \showonlyblack 
and \showonlywhi te , the figurines of only one color are shown. More granular control 
is available through \showonly and \showallbut . In their argument, the figurines that 
should (or should not) be shown are specified as a comma-separated list of the letters "K", 

Example 
1 0· 1 - 1 0  



1 0.1  Chess 

"Q", "R", "B", "N", and "P" (representing King, Queen, Rook, Bishop, kNight, and Pawn, 
with uppercase denoting white and lowercase denoting black figurines) .  

Once made, a selection will apply to all further diagrams until the point at which a new 
selection is made. To show all pieces again in the next diagram, specify \ showall, which is 
a shorthand for \ showonly with all necessary letters in the argument. 

As can be seen in the last two diagrams of the next example, an empty argument 
to either \showonly or \showallbut gives a somewhat strange result in the current 
implementation-the opposite of what would be expected. It's better not to rely on this be
havior, as it might get corrected one day. 

\usepackage{ skak} 
\t inyboard 

677 

\f enboard{r lbqlrk l / 2plbppp% 
/p2p ln2/np l Pp3/4P3/ 2P2N 1P% 
/PPB2PP 1 /R 1BQRNK l w - - 0 1} 

\ showonly{B , N , b , n}% 

\ showall 

\ showboard \quad 
\ showboard \quad 
\ showboard 

\ showallbut {B , N , b , n}% 

Documenting a game 

\ showboard \quad 
% strange behavior : 
\showallbut {}\ showboard \quad 
\showonly{} \ showboard 

Once the board is initialized internally, you can record and print moves with \mainl ine, 
just record moves without printing by using \hidemoves ,  or discuss variations with 
\ variat ion intermixed with textual comments. 

\mainline{move(s)} \variation{move(s)} \hidemoves{move(s)} 

All three commands take the same data in their argument. The differences between them are 
that the commands \mainl ine and \hidemoves update the board (while \variat ion 
does not) and that \mainl ine and \variat ion print the moves in different styles (by 
default, bold and regular typeface) to allow the reader to distinguish progress in the game 
and variations being discussed. 

The movers) in the argument of \mainl ine , \variat ion ,  and \hidemoves are 
given in a restricted form of PGN (Portable Game Notation) ,  which is a big improvement Specifying moves 

in comparison to the predecessor package chess. For one thing, it allows for more concise 
input. It also offers the possibility to comfortably enter the game in any chess editor that can 
store a game in this notation. The argument consists of one or more moves and has to start 
with the correct move number followed by a period (in case of a move by white) or with the 



678 PLAYING GAMES 

move number followed by three periods (to denote a continuation move by black). Move 
numbers and individual moves are separated by blanks. Castling is denoted using the letter 

"0" not zero "0". 

1 d4 �f6 2 c4 cS 3 dS A possible continuation is  the 
Benko Gambit. 3 . . .  b5 4 cxb5 a6 5 bxa6 �xa6 6 �c3 d6 
7 e4. Here the game follows the Classical Benoni opening 
3 . . .  e6 4 �c3 exdS 5 cxdS d6 6 e4 g6 leading after some 
additional moves . . .  to 9 0-0 a6 10 a4 �g4. 

\usepackage{skak} 
\smallboard 
\setche s s f ont family{magnetic}  

\newgame 
\mainline { l . d4 Nf6 2 .  c4 c5 3 .  d5} 
A pos s ible c ont inuat ion is the Benko 
Gambit . 
\variat i on{3 . . .  b5 4 .  cxb5 a6 

5 .  bxa6 Bxa6 6 .  Nc3 d6 
7 .  e4} . 

Here the game follows the Clas si cal 
Benoni opening 
\mainl ine{3 . . .  e6 4 .  Nc3 exd5 

5 . cxd5 d6 6 .  e4 g6} 
leading af ter some additional move s 
\ldot s\hidemoves{7 . Nf 3 Bg7 8 .  Be2 O-O} 
t o  \mainl ine{9 . 0-0 a6 10 . a4 Bg4} . 
\begin{center} \ showboard \end{ center} 

All three commands will analyze their input to some extent and reject obviously wrong 
moves (though not all mistakes are detected) .  With \mainl ine and \hidemoves, a correct 
move number must be given and the move must fit the internal state of the board. With 
\ variat ion , it is required only that the argument is formally correct and that the moves 
are, in principle, possible (e.g., not a diagonally moving rook) . The state of the board is not 
taken into account, however, so incorrect moves of that nature will not be detected. 

PGN has a complex syntax and, as a result, the skak package is somewhat unforgiving in 
case of errors and currently does not support all syntax possibilities. In particular, you can
not use NAG (Numeric Annotation Glyphs) comments, text comments (denoted in PGN by 
braces) ,  or variations (done in PGN by square brackets) .  NAGs are numbers that are prefixed 
with a dollar sign and represent symbolic comments (e.g., $ 1 3  stands for "unclear": 00).  
Many of  them can be represented by information symbol commands provided by chessfss; 

see Table 1 0. 1  on page 674. However, you need to enter them as �Tp)C commands and you 
must place them after the full or half moves and not before them (i.e., not following a blank), 
as this confuses skak's parsing algorithm. In a \ variat ion you can place appropriate sym
bols, such as \betteris , before the move number, as the next example shows. 

Here we see 1 e4 d6 2 d4 ZZ±Nf6 3 �c3 
g6 incorrect output as the NAG symbol in the 
input was preceded by a space. Correct is 1 
e4 d6 2 d4± �f6 3 �c3 g6 or in a variation 
03 . . .  

\usepackage{ skak} \setf igfont f amily{line} 

\newgame Here we see 
\mainl ine { l . e4 d6 2 . d4 \wbetter Nf6 3 .  Nc3 g6} 
incorrect output as the NAG symbol in the input 
was prec eded by a space . \newgame Corre ct is  
\mainl ine { l . e4 d6  2 . d4\wbetter{} Nf6 3 .  Nc3 g6} 
or in a variat ion \var iat i on{\bet teris 3 . . .  } 

Example 
1 0- 1 - 1 2  



Example 
10- 1 - 14 

1 0. 1  Chess 

The skak package only distinguishes between the main game (specified by \mainl ine 
and \hidemoves commands) and one level of variations. If a more detailed analysis is nec
essary, try the texmate package, which offers up to three levels of nested variations. 

I \wmove{move} \bmove{move} \lastmove I 
For commentaries, skak offers a few additional commands to typeset individual moves. The 
command \lastmove typesets the last move in the main game including its move numbers, 
while \wmove and \bmove typeset a single move notation (for white or black) without the 
number. 

\storegame{label} \restoregame{label} \savegame{name} \loadgame{name} 

Another way to document variations is to save the board position at a certain point and 
return to it later. This can be done in memory (using \storegame) or externally in a file 
(using \savegame). With \storegame , the current board situation is saved in memory 
and can be referenced through its label. Thus, to return to this position, you would use 
\restoregame with the same label. 

The commands \savegame and \loadgame work in a similar manner but use the 
external file name . f en for storing or retrieving the game state. The current state of the game 
is stored in FEN notation, so this is the way to generate this notation from within skak. 

Changing the style 
The ska k package offers three predefined styles for presenting the moves of a game. They 
can be selected with \styleA , \styleB ( the default) , and \styleC , respectively. Alterna
tively, or in addition, a default style for the whole document can be defined by giving one of 
the options styleA , styleB , or styleC. 

As the package analyzes each move and splits it into its components, it is possible to 
provide highly granular control with respect to spacing, fonts, and punctuation characters. 
The next example shows the standard styles in action. 

Style A: 1 .  e4, d6 2. d4, �f6 3. �c3 3 .  
D ,  eS  4. dS , c6  S .  c4, '�'b6 

Style B: 1 e4 d6 2 d4 �f6 3 �c3 3 D eS 
4 dS c6 S c4 'S'b6 

Style C :  

1 
2 
3 

e4 
d4 
�c3 

d6 
�f6 

3 D eS 4 dS c6 S c4 '§'b6 

\us epackage{ skak} \setche s sf ontf amily{condal} 

Style A :  \styleA\newgame 
\mainl ine { 1 . e4 d6 2 . d4 Nf6 3 .  Nc3} 

\variat i on{3 . f 3 eS 4 .  dS c 6  S .  c4 Qb6} \par 
Style B :  \styleB\newgame 

\mainl ine { 1 . e4 d6 2 . d4 Nf6 3 .  Nc3} 
\variat i on{3 . f 3 eS 4 .  dS c6 S .  c4 Qb6} \par 
Style C :  \styleC\newgame 

\mainl ine { 1 . e4 d6 2 . d4 Nf6 3 .  Nc3} 
\variat i on{3 . f 3 eS 4 .  dS c 6  S .  c4 Qb6} 

Unfortunately, the package offers no user interface to define new styles or adjust exist
ing ones-to do so you have to copy the definitions for, say, \styleA into the preamble or 
a separate package and adjust them there. 

679 



680 PLAYING GAMES 

1 0. 1 .4 texmate-The power of th ree 

The texmate package was developed by Federico Garcia because he was not satisfied with 
the syntax and typesetting flexibility offered by early versions of skak. For a while, both pack
ages were developed independently, focusing on different aspects of chess typesetting. When 
chessfss became available and with it the ability to readily use different chess fonts, Federico 
reimplemented texmate to make use of it. At this point he decided to delegate the task of 
board management to the skak package so that all such commands, such as \showboard , 
are available the moment texmate is loaded. In this respect the new texmate combines the 
power of all three packages. 

Move notations 
The texmate package supports the PGN input notation ( similar to the "tournament nota
tion" developed for the chess package) to denote moves in a chess game. However, in con
trast to the former package, it is more flexible in the supported syntax: Essentially it requires 
only that moves are separated by spaces; the user is free to add punctuation marks and/or 
move numbers at will. The input is given in "chess mode", which is entered and exited us
ing a I sign, similar to the use of $ to indicate inline "math mode". In situations where 
I should not indicate chess mode (e.g., in tabular environments) ,  you can disable it via 
\makebarother and then later reenable it with \makebarchess. As an alternative to this 
short notation, you can use the environment texmat e to denote chess mode. 

If move numbers are given, they are normally verified when texmate passes the input to 
skak. In the next example, we have to explicitly disable that behavior with \SkakOff .  After 
all, the moves are nonsensical if they are considered to belong to a single game. 

Input as 1. e4 cS 2. Lbf3 d6 3. d4 cxd4 or as 
1. e4 cS 2. Lbf3 d6 3. d4 cxd4 or as 1. e4 cS 2. Lbf3 
d6 3. d4 cxd4 

\usepackage{texmat e} \SkakOff 

Input as l e4 cS Nf3 d6 d4 cxd4 1 
or as 1 1 e4 c S  2 Nf3 d6 3 d4 cxd4 1 
or as 1 1 .  e4 cS ; 2 .  Nf3 d6 ; 3 .  d4 cxd4 1 

I [movers)] \ [ comments-in-chess-mode \J 

Within chess mode, the notation [. . .  J denotes a variation. The texmate package then ex
pects it to contain an alternative move or sequence of moves. If no move numbers are given, 
it will automatically label them accordingly, as can be seen in the next example. Such com
ments can be nested up to three levels. The formatting differs from level to level and can be 
adjusted. 

Some variants of the Italian game (Greco attack) : 
1 .  e4 eS 2. c:2.)f3 c:2.)c6 3. J..c4 J..cS [Hungarian de
fence 3 . . .  J..e7 4 .  d4] 4. c3 [Canal variation 4. d3 
�f6 5. �c3 d6 6 .  J..g5 (6.  J..e3)]  4 . . .  �f6 S. d4 
exd4 6. cxd4 J..b4+ 7. c:2.)c3 

\usepackage{texmate} 
\ s e t chessf ontfami ly{le ipzig} 

Some variant s of the Italian game 
(Gre co att ack) : 

1 1 .  e4 eS ; 2 .  Nf3 Nc6 ; 3 .  Bc4 
BcS [ I Hungari an defence I Be7 d4] 

4 .  c3 [ I Canal variat i on I d3 Nf6 Nc3 d6 
BgS [ Be3] ] Nf6 ; 

S .  d4 exd4 ; 6 .  cxd4 Bb4+ ; 7 .  Nc3 

Example 
10- 1 - 1 5  

Example 
1 0- 1 - 1 6 



1 0.1  Chess 

I \ [ comments-in-chess-mode \]  I 
For free commentaries that include text, the automatically produced punctuation symbols 
at either side are usually not necessary or wanted. For this case \ [. . .  \] is provided. The 
difference is that, by default, no parentheses or other punctuation is added on either side and 
it is left to the reader to provide whatever is necessary. The comment is still interpreted as a 
variation; i.e., moves within it will not be considered part of the game. In contrast, simply 
ending chess mode with I ,  typesetting the comment, and then restarting it would not work 
if moves are present within the comment. 

The commentary is still parsed in chess mode, so if it should start out with normal text, 
you must cancel this mode inside via \ [ I  and resume it at the end via I \] . 

Accelerated Benoni Defense analysis :  \usepackage{texmate} 
\setchessfontf amily{ c ase s}  

Accel erated Benoni Def ense analy s i s : \\  

1 d4  Nf6 ; Nf3 c5 ; d5 g6  ; Nc3 Bg7 ; e4 d6 ; 
Bb5+ \ [ 1 thi s i s  not very ambit ious : the main 
goal is  to set the trap 1 \ahead Nbd7? ! ; a4 

68 1 

1 .  d4 lbf6 2. lbf3 c5 3. d5 g6 4. lLlc3 iig7 
5. e4 d6 6. iib5+ this is not very ambitious: 
the main goal i s  to set the trap 6 . . .  lLlbd7? !  
7 .  a4a6 iie2 and white i s  quite strong. The 
right answer is 6 . . .  iid7! 7. a4! The bishop 
exchange would ease black's development and 
going back with 7. iie2 is weak because of 
7 . . .  bS ! +  

a6 ; Be2 I and whit e  i s  quite strong . The right 
answer is 1 \] Bd7 ! ; a4 ! \ [ 1 The bi shop exchange 
would ease black ' s  development and go ing back 
with 1 Be2 1 is we ak because of 1 b5 ! \bbetter \] 1 

When a commentary is opened with either [ or \ [ ,  it is assumed that a variation is 
discussed (i.e., an alternative move for the last move made) .  Therefore texmate temporarily 
undoes the last move on the board so that the first move inside the commentary will show the 
same move number as used outside the commentary. However, sometimes you might want 
to talk about developments that may come. For this texmate offers different possibilities. 

\ threat<threat> \ Threat<numbered-move(s}> 

With \ threat, simple threats can be denoted. The texmate package inserts a triangle (pro
duced by \ wi thidea) and typesets threat without a move number. Note the special way of 
denoting the argument to this command. In contrast, \ Threat typesets a threatening vari
ation induding move numbers. In this case, neither the symbol \ wi thidea nor any spaces 
are added automatically. If necessary, you can force a space with \u and typeset the symbol 
in front of the numbered-movers}. 

Steinitz - Walsh, London 1 870: 
1 .  e4 c5 2. lbc3 lbc6 3. lbf3 h6 4. d4 cxd4 
5. lbxd4 'li'b6 6. iie3! 'li'xb2 7. lbdb5 D�b 1 ! 
'li'b4 S. c7+ wdS 9. iid2 DlbdS + �bS l0. �bl 
'li'd4 1 1 .  iid3 lbb4? 12. lb3b5 lbxd3+ 13. cxd3 
'li'xd3 14. lbe6+ ! ! D 1 S .  iiaS + . . .  1 6 . �xd3 
WeS 15. lbbc7# 

\usepackage {texmat e }  
\setche s s f ontf amily{cases} 

St e initz -- Walsh , London 1 870 : \\ 

1 e4 c5  ; Nc3 Nc6 ; Nf3 h6 ; d4 cxd4 ; Nxd4 Qb6 
Be3 ! Qxb2 ; Ndb5 \threat<Rb 1 ! >  Qb4 ; c7+ Kd8 ; 
Bd2 \threat <Nd5+> Rb8 ; Rb 1 Qd4 ; Bd3 Nb4? ; 
N3b5 Nxd3+ ; cxd3 Qxd3 ; Ne6+ ! ! \Threat <\withidea 

Ba5+ \dummy\ , \dot s Qxd3> Ke8 ; Nbc7 \# 1 



682 PLAYING GAMES 

I \ahead \dummy \ddummyl 
It is, of course, also possible to talk about the next move in a commentary started with \ [ or 
[: simply prefix the first move inside with\ahead. 

If certain moves are irrelevant for the analysis you can use \dummy or \ddummy to ad
vance the game state by one or two half-moves. respectively. This means that skak can't fol
low the position on the board any longer, so texmate immediately disables this functionality 
with \SkakOff upon encountering these commands for the remainder of the variation. 

French Defense analysis: 
I. e4 e6 2. d4 d5 3. �3 .i.d4 4. exd5 exd5 5 . .i.d3 
�6 6. 03 .i.e7 7 . .i.r4! l7 . . .  flxd4?! S . .i.b5+!  
�6 9.  flxdS .i.d6 10.  1!l'e2+ flge7 I I . l!!d I .i.d7 
1 2  . .i.xc6 .i.xc6 1 3 .  flxc7+!+-] 7 . . .  06! [7 . . .  .i.e6 
S. flG flf6 (S . . .  .i.g4 9. h3! .i.hS 10. flbS!l!!cS 
.i.fS!+-) 9. flbS! l!!cs 10. �S! flxeS I I . dxeS . . .  
12 .  flxa7] 8. flf3! 

\usepackage{texmate} 
\setchessfontfamily{leipzig} 

French Defense analysi s : \\ 
I e4 e6 ; d4 d5 ; Nc3 Bd4 ; exd5 exd5 ; 
Bd3 Nc6 ; a3 Be7 ; Bf4! [ \ahead Nxd4? ! 
Bb5+! Nc6 ; Nxd5 Bd6 ; Qe2+ Nge7 
Rdl Bd7 ; Bxc6 Bxc6 ; Nxc7+! \wdecisive ] 
a6!  [ Be6 ; Nf3 Nf6 [ Bg4 ; h3! Bh5 Nb5! 
RcB ; Bf5! \wdecisive] ; Nb5! RcB ; 
Ne5! Nxe5 ; dxe5 \dummy\ , \dots Nxa7 ] Nf3! 

If there are multiple variations to discuss as alternatives at a certain point in the game, 
you can use the variations environment or its starred form. 

\begin{ variations} \ var variation\ \ var variation2 . . .  \end{ variations} 
Inside the variations environment, each variation is introduced with a \ var command. 
This will typeset the first move of a variation in boldface and separate variations by a semi
colon. Alternatively, you can use \ var*, in which case no special formatting is applied. The 
starred form variations* of the environment is equivalent to using \var* for all varia
tions. 

Mate in 3 moves by Bayersdorfer, 1888 

I. fld3!L.2. 1!l'a8+ 'lId4 3. 1!l'a4# [I. . .  fld4 
2. �S+ 'lieS (2 . . .  'lIf4 3. 1!l'bS#) 3. 1!l'b8# ; 
I. . .  cxd2 2. flfS' L.1!l'xe6# 'lidS (2 . . . 'lIxf5 
3. 1!l'g6#) 3. 1!l'aS#] 

\usepackage{texmate} 
\setchessfontfamily{leipzig} 

\position{4Q3/4N3/4nplK/B/4kNpl/1Pp5/3PPlbl/8} 
\shortstack{\showboard\\ 

Mate in 3 moves by Bayersdorfer, 188B} 

Nd3! \Threat<\withidea Qa8+ Kd4 Qa4 \#> 
[\ahead\begin{variations} 

\var Nd4 Nc5+ Ke5 [Kf4 QbB \#] Qb8 \# 
\var cxd2 Nf5! \threat<Qxe6 \#> 

Kd5 [Kxf5 Qg6 \#] Qa8 \# 
\end{variations}] I 



1 0.1 Chess 

How the variations are formatted within the paragraph depends on whether the envi
ronment is used within [ or \ [ . In short commentaries the variations are typeset inline, but 
within \ [ they are formatted as itemize environments. The environment can be nested 
and its formatting can be changed by using a \ Variat ionsEnvironment as shown in the 
next example. Here we make use of the extended capabilities of the para l i st package by spec
ifying the format of items for the list. 

Main variations in the Orang-Utang opening: 
1 .  b4 

a) 1 . . .  c6 2 .  �b2 "eib6 

\usepackage {texmat e , paral i s t }  
\ set chessf ont f amily{condal} 
\Variat i onsEnvironment 

683 

b) 1 .  . .  d5 2. �b2 �d6 
{\begin{enumerat e }  [a) ] }{\end{enumerate}} 

c) 1 . . .  d5 2 .  �b2 cDf6 3 .  g3 

d) 1 . . .  d5 2. �b2 cDf6 3. e3 

e) 1 .  . . e5 2. a3 

f) 1 .  . .  d5 2. �b2 f6 

Main variat ions in the Orang-Ut ang opening : \\ 
1 b4 \ [ \ ahead \begin{variat i ons} 

\var c6 Bb2 Qb6 
\var d5 Bb2 Qd6 
\var d5 
\var d5 
\var e5 
\var d5 

Bb2 Nf6 
Bb2 Nf6 
a3 
Bb2 f 6  

g 3  
e3  

Example : � � � � 
10- \ -2 1  I g) I . . . d5 2 .  '21"b2 '21"xb4 3 .  '21"xe5 '2-lIf6 

\var d5 Bb2 Bxb4 ; Bxe5 Nf6 
\end{variat i ons} \]  1 

Example 
10- \ -22 : 

Starting and ending a game 
To start a new game in your document, you can use \newgame , as known from skak. As an 
alternative, texmate offers \makegamet i tIe, which both initializes the board and typesets 
a title from previously specified information. This data is entered using the following com
mands (each taking one argument) :  \whi tename , \blackname , \ chessevent , \ECO , 
\ chessopening , \welo , and \belo. If you document more than one game, you need to 
update this information (if necessary using an empty argument) ;  otherwise, it will be car
ried forward from game to game. 

To record the outcome of the game, you can place \res igns after the last move. This 
will show "0 : 1 "  or " 1 : 0" depending on which player resigns (i.e., does not move) .  

D Paul Morphy 
• Duke Karl & Count Isouard 

Pari s 1 858  

\usepackage {texmat e} 
\setche s s f ont f amily{condal} 

\whit ename{Paul Morphy} 
\bl ackname{Duke Karl \& Count I souard} 
\ che ssevent {Par i s  1858} 

\makegamet i t l e  
l e4 e 5  Nf3 d 6  d 4  Bg4 dxe 5 Bxf3 

5. dxe5 �c4 6. cDf6 "�b3 7. V!ife7 cDc3c6 S. �g5 Qxf3 dxe5 Bc4 Nf6 Qb3 Qe7 Nc3 
b5 9. �xb5 cxb5 10. �xb5+ cDbd70-0-0 11.  lddS c6 Bg5 b5 Nxb5 cxb5 Bxb5+ Nbd7 
ldxd7 12. ldxd7 lddl 13. "t:!Ye6�xd7 + �xd7 14. 'S"bS+ 0-0-0 Rd8 Rxd7 Rxd7 Rd1 Qe6 

1 .  e4 e5 2. cDf3 d6 3. d4 �g4 4. dxe5 �xf3'S"xf3 

�xbS 15. lddS# 1 : 0 Bxd7+ Nxd7 Qb8+ Nxb8 Rd8\# \res igns 1 



684 PLAYING GAMES 

Setting up position 
As texmate loads skak, it should, in principle, be possible to directly use skak's \fenboard 
command to set up the board position. However, in that case texmate's mechanism for type
setting moves wouldn't know the current move number or who is next to play. For this reason 
texmate has its own implementation of \f enboard. It also offers a second command to set 
up the board in situations where detailed status information is not needed. 

\f enboard{FEN-notation} \posi  t i on [next] {board-setup} 

The \fenboard command expects a complete FEN-notation, analyzes that input to enable 
texmate's mechanisms, and then passes the data to skak to update the board position. 

Ifit doesn't matter who can castle, where, etc. you can use the simpler \pos i  t ion com
mand instead. This command also expects the board-setup in FEN notation, but to simplify 
the input you can leave out information on empty squares on the right of each line. The posi
tion can then be visualized with \ showboard as usual. If moves following the position setup 
should be typeset, you need to inform texmate who is next by also specifying in the optional 
argument something like «b 9" (i .e. , the color of the next player and the move number) . 

Solution to Example 1 0- 1 -9 

\usepackage {texmat e }  
\setche ssf ont f amily{condal} 

\po s i t ion [w 1 ] {B5KR/ lr5B/6R/% 
2blp lp/2P lklP/% 
lp2P2p/ 1P2P2P/3N1N} 

\begin{center} 
\ short stack{\ showboard \\ [5pt] 

Solut ion t o  Example 10- 1 -9} 
\end{center} 

1 .  g6c [ any other move results in immediate 
checkmate J 1 .  . .  gx7h 

R6c [ I any other move re sult s 
in immediate checkmate I J Rx7h 

There also exists a command called \diagram , which is a shorthand for \posi  t i on 
followed by \showboard . It accepts the same arguments as \pos i t i on .  

Typesetting diagrams 
As mentioned earlier, texmate uses the skak package to keep track of the position on the 
board. Thus, to typeset a diagram of the current situation on the board, \showboard or 
any other of the skak  commands can be used. In addition, texmate offers commands to save 
the status for typesetting at a later stage (e.g., several diagrams in a float) .  



Example 
10 - 1 -24 

1 0.1  Chess 

\ t oD{move} \ toD*{move} 
\rnakediagrams [diagrams-to-print] 

\preparediagram{header Hfooter} 
\di agramcache{diagrams-in-memory} 

The command \toD indicates that the status at this point will be shown in a diagram and 
then saves the board state in memory. It takes one argument which will be printed below 1 

the board; normally it contains the last move made. In the game, this command typesets the 
content of \diagramsign (default "(D)" ) .  The starred form \ t oD* has the same behavior 
but omits typesetting \diagrams ign .  

Another way to save the current state in memory is to call \preparediagram at the 
appropriate point. The difference between this approach and the use of \ toD* is that the 
header and footer of the diagram are explicitly given as arguments and not automatically 
constructed from game data. 

Diagrams saved in this way are eventually typeset by issuing \rnakediagrams. If the 
optional argument is given, only the first diagrams- to-print are typeset. Diagrams printed 
will be erased from memory so that you can print all diagrams held in memory by repeat
edly calling \rnakediagrams with suitable values for its optional argument. By default, 
three diagrams can be held in memory. If this is not enough, issue a \diagramcache 
declaration in the preamble to specify the maximum diagrams-in-memory you need. The 
\rnakediagrams command is best used in a paragraph by its own or in a f igure environ
ment. 

Larsen - Spassky, Belgrade 1 970: 
1.  b3 e5 2. �b2 q)c6 3. c4 �f6 4. q)f3 e4 5. q)d4 
�c5 6. q)xc6 dxc6! 7. e3 �f5 8. '�'c2 -e'e7 9. �e2 
0-0-0 10. f4? (D) q)g4 ! 1 1 .  g3 h5 ! 12. h3 h4 ! !  
13. hxg4 hxg3 14. l"igl (D) l"ihl ! ! !  15. l"ixhl g2 16. l"ifl 
'�'h4+ 17. edl gxfl=D+ and White resigns.  

1 4. l"lg l 

\usepackage {t exmat e }  
\ setche s s f ontf amily{c ondal} 
\t inyboard 

Larsen -- Spas sky , Belgrade 1 970 : \\ 

I b3 e5 ; Bb2 Nc6 ; c4 Nf6 ; Nf3 e4 
Nd4 Bc5 ; Nxc6 dxc6 ! ; e3 Bf5 ; 
Qc2 Qe7 ; Be2 0-0-0 ; 
f4? \toD{f4?} Ng4 ! ; 
g3 h5 ! ; h3 h4 ! !  ; hxg4 hxg3 j 
Rg 1 \t oD{Rg 1 }  Rh1 ! ! !  ; Rxh1 g2 
Rf 1 Qh4+ ; Kd1 gxf 1 =D+ I 

and Whi t e  res igns . 

\medskip \makedi agrams 

\nextdiagramt op{ text} \nextdiagrambottorn{text} \ bname \ wname 

Instead of using \preparediagram to control the header and footer of the diagram, you 
can explicitly specify either of them for use with the next \ toD or \ toD* command. For this 
purpose, the commands \nextdiagramt op and \nextdiagrambottorn are provided. 
These declarations have to be made outside of chess mode. Within their argument, you can 

I This is customizable, as explained later on. 

685 



686 PLAYI NG GAMES 

make good use of \ bname and \ wname, which hold the players' names as given in the title 
specification. 

1 .  e4 e5 2. l2Jf3 l2Jc6 3 . .tc4 .tc5 4. d3 l2Jf6 
5 . .tg5?!  [ 5 .  ttJc3] 5 . . .  d6 6. O-O?!  h6 7 . .th4 

Player X - Player Y 

Position after 
5 . .tg5 

Adjusting the layout 

\usepackage {texmat e }  
\t inyboard 

\nextdiagramt op{Player X -- Player Y} 
\nextdiagrambottom{Posit ion after} 

I e4 e5 Nf3 Nc6 Bc4 Bc5 d3 Nf6 Bg5? ! 
\toD* {Bg5} [Nc3] d6 O-O? !  h6 Bh4 1 

\medskip 
\makediagrams 

The look and feel of the diagrams can be customized in a number of ways. By default, players' 
. . .  of diagrams names are shown (black above, white below).  The command \topdiagramnames places 

both names above, \bott omdiagramnames places them below, and \nodiagramnames 
omits them altogether. With \diagramnumber , the diagrams get numbers on top; the 
default (\nodiagramnumber) is to omit them. The last move is normally shown at the 
bottom (\diagrammove), but issuing \nodiagrammove will prevent its display. To indi
cate who is next to play, issue \leftdiagramturn or \rightdiagramturn. The default 
(\nodiagramturn) is to omit this information. The command \makediagramsfont 
holds the font setting used for the text around the diagram; it defaults to \small. 

Diagrams that belong to a commentary-Le., those saved within [ and J or \ [ and 
\J  -show the text stored in \analysistop ( the default is ''Analysis'' ) on top and the last 
move at the bottom. 

The output formatting can be tailored by redefining one or more commands: 
. . .  ofmoves \bef oreno specifies the punctuation before the move number (default empty) and 

\afterno the one after the number (default . - ) .  The command \afterw specifies 
the material between white's and black's moves (default \u)  and \afterb holds the 
material to place between complete moves (default \u) .  The command \beforeb is 
placed before black's move when resuming the move after discussing a variation (default 
\ the \move \dots ) .  

Some variants o f  the Italian game (Greco 
attack) : l e4 e5; 2 l2Jf3 l2Jc6; 3 .tc4 .tc5 
[Hungarian defence 3 . . .  il.e7 ; 4 d4] 4 c3 
[Canal variation 4 d3 ttJf6 ;  5 ttJc3 d6; 6 ii.g5 
(6 il.e3)] 4 . . .  l2Jf6;  5 d4 exd4; 6 cxd4 .tb4 + ;  
7 l2Jc3 

\usepackage{texmat e} 
\renewcommand\af terno{\ , }  % only small space 
\renewcommand\aft erb{ ; } % semi colon + space 

Some variant s of the Italian game (Greco attack) : 
l e4 e 5  ; Nf3 Nc6 ; Bc4 
Bc5 [ I Hungari an def ence I Be7 d4] 

c3 [ I Canal variat ion I d3 Nf6 Nc3 d6 Bg5 [Be3] ] 
Nf6 ; d4 exd4 ; cxd4 Bb4+ ; Nc3 1 

Example 
, 10 - 1 -25 

Example 
10 - 1 -26 



Example i 
10 - 1 -27 ' 

1 0.2 Xiangqi-Chinese chess 687 

The fonts used for the main game (level ! )  and the three levels of commentaries can be 
adjusted by redefining the commands \ifont to \i vfont corresponding to the four levels. . . .  offonts and of 

Similarly, there are a number of commands to produce the punctuation around the variant opening and closing 

levels. For example, the default definitions for level 2 (first -order variants) are punctuations 

\newc ommand\ i i open{ [} \newc ommand\ i i close{\leavevmode \unskip] } 

Note the use of \leavevmode \ unski p to remove any preceding space on the line before 
typesetting the closing bracket. By redefining these commands other conventions can be 
implemented. 

Some variants of the Ital ian game (Greco 
attack) : 1. e4 eS 2. lbf3 lbc6 3 . .tc4 .tcS 
(Hungarian defence 3 . . .  Jie7 4. d4) 4. c3 
(Canal variation 4. d3 Qjf6 5 .  Qjc3 d6 6. Jig5 
6. Jie3) 4 . . .  lbf6 S. d4 exd4 6. cxd4 .tb4+ 
7. lbc3 

1 0. 1 .5 Onl ine resou rces for ch ess 

\usepackage{t exmat e }  
\renewcommand\ i i open{ ( }  
\renewcommand\ii close{\leavevmode\unskip ) } 
\renewc ommand\ i i i open{} \renewc ommand \ i i i c l o s e { }  
\renewcommand\ i i i f ont { \ it shape} 

Some variant s of the Ital i an game (Greco att ack) : 
l e4 e 5  ; Nf3 Nc6 ; Bc4 
Bc5  [ I Hungar ian defence I Be7 d4] 
c3 [ I Canal variat i on I d3 Nf6 Nc3 d6 Bg5 [Be3] ] 
Nf 6 ; d4 exd4 ; cxd4 Bb4+ ; Nc3 1 

There are several chess-related databases containing complete games, such as ChessBase 
and NicBase. Information about these formats can be found on CTAN in support/ 
chesstools .  That directory also contains some Pasca l programs by Jiirgen Lamers that can 
convert these formats to �TEX. As the programs are quite old, they are intended to work with 
the chess package notation. They can, however, generate "short" notation that should be pro
cessable by texmate with little or no correction. These programs, together with some exam
ple databases, are available as binaries and source files on CTAN in support/ chesstools .  

Besides the material available on  CTAN, there are a number of  online resources 
for chess that contain free material (e.g., news items, theory discussions, fonts, games) .  
An important source for news and games is  http : //www . che ss center . com/twic/  
twic  . html. The site http : //www . enpassant . dk/chess/homeeng . htm covers mate
rial for chess publishing, including the fonts used in this chapter. At http : //pgn21 tx . 
sourceforge . net/  you will find the pgn21tx program by Dirk Bachle to convert PGN into 
�TEX. A free chess database with export to �TEX is scid, see http : //scid  . sourceforge . 
net/.  Its potential successor can be found at http : //sourceforge . net/proj ects/  
chessx/. 

1 0.2 Xiangqi-Chinese chess 
The Chinese chess game, xiangqi, has the same roots as the European chess game but shows 
extensive differences. For example, the two armies are separated by a river that some pieces 
cannot cross. Also interesting is the fact that the two armies have different pieces: the white 



688 

k 

g 

b 

n 

r 

c 

p 

PLAYING GAMES 

Table 1 0.2: Coding for xiangqi pieces in the cches s46 font 

White Black Alternate Black Common Names 

@ 

@ 

® 

® 

@ 

@ 

® 

K 

G 

B 

N 

R 

c 

p 

CD 

o 

e 

e 

o 

e 

e 

s 

T 

u 

v 

w 

x 

y 

@ 

® 

® 

@ 

@ 

@ 

@ 

King, General 

Guard, Assistant 

Bishop, Elephant 

Knight, Horse 

Rook, Chariot, Car 

Cannon, Gun, Gunner 

Pawn, Foot-soldier 

elephants are replaced by ministers on the opposite side; and while the white general is ac
companied by advisors, the black commander has officers at his side. In European versions 
of this game in which the Chinese characters are replaced by pictograms, these differences 
are often ignored. 

Jacques Richer l has written M ETA FONT code for the Chinese chess pieces that 
produces stones with traditional Chinese characters (shown in Table 1 0.2) .  This font, 
cchess46, has a set of black and white stones (uppercase letters denote black, lowercase 
denote white) .  The letters chosen correspond to the common names for comparable pieces 
of European chess; e.g., the general is accessible as the letter "k" for king. In addition, the 
font contains a third set of stones: an alternate set for black in which the characters also 
have a white background. This third set is useful in producing colored game diagrams
traditionally all stones are white with green and red characters. 

The distribution originally did not offer a package with environments and commands 
to typeset games. But it did contain a �TEX document called cches sboard . tex to produce 
a board with the stones in their initial positions, as shown in Figure 1 0. 1  (except that we used 
the alternate set of stones for the black player) . 

Rearranging the code in this document, Frank Mittelbach produced a small package 
called cchess that displays arbitrary positions with the help of a posi  t i on environment 
and the commands \piece  and \ textpiece. 

I \textpiece{name} I 
Within running text, the command \ textpiece  can be used. Possible values for name are 
the characters shown in Table 1 0.2. With this and, for example, the tabbing environment, 
one can easily document and annotate games. 

I While we were preparing to go to press with this book, Stephan Weinhold announced that he is working on 
his xq package for typesetting xiangqi games. It contains M ETA FONT code for drawing the chess pieces as well 
as a support package called xq . sty. 

i Example 
i 1 0-2- 1 , l ' 



10.2 Xiangqi-Chinese chess 

& }-----l--+----+-----'+----+---1 & 

*HH*HH* r--H*HH* 

&}-+--+--+------,t-+-{ & 

Figure 10 . 1 :  Initial setup of Chinese chess game (x:iangqi) 

The following listing, a mate situation after four moves, gives an ex:ample of the use of 
this command. The board situation after these four moves is shown in Ex:ample 10-2-4 on 
the following page. 

\usepackage{cchess} 

689 

@ e 
\newcommand\x:{$\times$} 'l. a shortcut to denote capture 

I .  h3-c3 bO-a8 \begin{tabbing} 

@ 0 
1 .  \= \textpiece{c}h3--e3 \qquad 

2. e3 xe7 aO-a9 \=\textpiece{N}bO--a8 

@ e 2 .  \> \textpiece{c}e3\x e7 \>\textpiece{R}aO--a9 
3. b3-b5 hO-g8 3 .  \> \textpiece{c}b3--b5 \>\textpiece{N}hO--g8 

4. @ b5-c5 males! 
4 .  \> \textpiece{c}b5--e5 mates ! 
\end{tabbing} 

The position environment draws a complete board. Within its body, the \piece 
command is used to place the individual pieces. 

\\ 
\\ 
\\ 



690 PLAYING GAMES 

I \piece{fileHrankHname} I 
The \piece  command places a piece name at a certain file and rank (the horizontal and 
vertical position) .  The file argument can take a letter in the range from a to i (left to right) ,  
while the rank is specified by a number between 1 and 10 (bottom to top) .  

\usepackage{ c che ss}  

\ smallboard 
\begin{pos i t i on} 
\piece{a}{ l }{r}\piece{i}{ l }{r} 
\pi e ce{b} { l } {n}\piece{h} { l }{n} 
\piece{c}{ l } {b}\pi ece{g} { l }{b} 
\pi e ce{d} { l }{g}\piece{f } { l }{g} 
\pi ece{e}{5}{ c}\piece{e}{7} { c }  
\pi ece{a}{4}{p}\piece{c}{4}{p} 
\piece{e}{4}{p}\piece{g}{4}{p} 
\pi e c e { i } {4}{p}\pi ece{e } { 1 }{k} 
\piece {a}{9} {R}\piece{i}{ 1 0} {R} 
\piece{a}{8}{N}\piece{g}{8}{N} 
\pi ece{c}{ 1 0}{B}\piece{g} { 10}{B} 
\pi ece{d} { 10}{G}\piece{f } { 10}{G} 
\piece{b}{8}{C}\piece{h}{8}{C} 
\piece{a}{7}{P}\piece{c}{7}{P} 
\piece{g}{7}{P} 
\pi ece{i}{7}{P}\piece{e}{ 1 0} {K} 
\ end{posit i on} 

In addition, the package offers the commands \largeboard, \normalboard, and 
\smallboard that specify the size of the board and pieces. Figure 10. 1  on the previous 
page shows a normal-size board, whereas Example 1 0-2-4 uses \smallboard. 

In the current implementation the cchess package uses \special commands for Post
Script drivers to place the pieces on the board without reconstructing the picture. But this is 
not the only way to program this behavior, as we will see in Section 10 .3 .  Perhaps the future 
will bring us a new and extended implementation of this package that includes concepts used 
in the chess package to allow documenting of tournaments, annotated games, and analysis 
of this interesting Eastern game. 

1 0.3 Go 
Go, which is perhaps the most popular Asian game, is played by two players using black and 
white stones on the intersections of a 1 9  x 1 9  grid. Stones, after being placed, are never 
moved unless they are captured, so in documenting the course of a game you usually show a 
board with numbered stones. If more than one diagram is used to document a game, stones 
from earlier diagrams (i.e., stones placed in earlier parts of the game) are typically shown 
without numbers. An algebraic notation such as we saw for chess is normally not used. 



Example ' 
10-3- 1 

1 0.3 Go 691 

In 1 99 1 ,  Hanna Kolodziejska developed a number of fonts and an accompanying pack-
age go to typeset Go diagrams and document full or partial games. The fonts available in Early attempts 

the three sizes 10pt,  15pt, and 20pt contain numbered stones in the range 1 -252, as well 
as unnumbered stones, various symbols, and intersection and border lines to produce a dis-
play of the board. In addition, a font with a single character shows the traditional symbol for 
the Go game. 

\newf ont \gos ign{gos ign50} 
\begin{center} 

\fbox{\gos ign\symbol{O}} 
\end{ center} 

In principle, more than 250 stones might potentially be used in a game, in which case 
it could not be represented in a single diagram with the currently available fonts. How
ever, since for readability it is usually best to put no more than 100 moves on a single dia
gram (and then restart the numbering) , this theoretical limitation is not that important in 
practice. 

In 200 1 ,  Victor Bos developed the package psgo, which works on top of PST ricks instead 
of deploying its own fonts. Compared to go, it uses a different, but similarly verbose input 
syntax and offers a few additional possibilities for marking stones. 

These early Go packages used a very verbose input syntax, which-while fairly 
consistent-is somewhat painful to enter manually. In addition, at least the go package had A newer package 

a number of technical problems and limitations, as it redefined commands already existing 
in IHEX, thus conflicting with other packages. To improve that situation, in 2003 Etienne 
Dupuis developed the package igo, which built upon the existing fonts (with slight updates) 
but provided a radically changed user interface with additional features. The remainder of 
this section describes the igo package. 

Like the chess package, igo has commands for board initialization, placement of stones 
(which in this case are equivalent to moves), and display of the board or parts of the board. 
The actual syntax, however, is quite different. 

To place stones on the board, each line intersection is identified by a column label (a 
lowercase letter in the set a, b, c, d, e, f ,  g, h, j ,  k, 1, m, n, 0, p, q, r, s, t, note the absence of 
i ! )  and a row number (in the range 1 - 19) ,  with the lower-left corner of the board being the 
starting point. Stones are then added using the \black and \ whi te commands. 

\ black [mark] { intersection-list} \ whi t e  [mark] { intersection-list} 

The commands \black and \ whi te add stones at each intersection point specified in 
the comma-separated intersection-list. This list should contain no spaces and no trailing 
comma; a single intersection point can also be used. 

If the optional mark argument is a positive number or the command \igonone, then 
all stones in the intersection-list will receive alternate colors and the command name simply 



692 

--y I 

PLAYING GAMES 

indicates the color of the first stone being placed. This method is most suitable to record 
games or longer sequences where the order of play needs to be indicated . 

. 
6 8 \usepackage{igo} 

� 
y Y 

\white [\igonone] {q3 , q5,p5,p6,p4,q7} 
\showgoban [m1,t8] 
\white [6]{r5 ,r6,s5,n6 ,m4} 
\showgoban I I 

If\whi te or \black is used without an optional argument or if the optional argument 
is \igotriangle, \igosquare > \igocircle, or \igocross, then all stones typeset 
are of the same color and decorated with the respective glyph as specified by the optional 
argument. This input method is most suitable for documenting Go problems, where the 
order of stones placed previously is unimportant. 

3 
\usepackage{igo} 

\white{o3 .q2.q3.q4.r2.rS.r6.r7} 
\black{pS ,qS.r3,r4 . s4 . sS . t3} 
\ahowgoban 

� --i • 
\black [\igotriangle] {s2} 
\white [\igosquare] {sl} 
\gobansymbol{s3}{a}\gobansymbol{t4}{b} 
\white [1]{t2,tl} YY 

I 

\showgoban 

I\Cleargobansymbolsl 

Once the progress in a game has been shown in a diagram, it is customary to show 
the already placed stones in later diagrams without numbers, achieved by issuing a 
\cleargobansymbols command, This helps in identifying newly placed stones and 
makes the diagrams more readable, Whether numbering is continued is a matter of taste, 
Although igo supports sequentially numbered stones for a full game, for readability it is usu
ally better to restart numbering when three-digit numbers are reached and you can afford 
to typeset more than a single diagram. 

\usepackage{igo} 

b . \white{q3} 
\showgoban [pl,tS] 
\black [1]{qS.pS.p6.p4.q7} 
\gobansymbol{rS}{a}\gobansymbol{o6}{b} 
\showgoban [nl,tS]\cleargobansymbols 
\white [6]{rS .r6.sS.n6 .m4} 

2 a -I-4 
6 8 -{(Ol- ') 

Y 
\showgoban 



Example 
10-3-5 

1 0.3 Go 

\go bans ymbol { intersection-pointHsymbol} 

The previous examples showed the use of \gobansymbol to mark certain free intersection 
points with labels. Currently available are lowercase and uppercase letters ( typically used for 
showing alternative moves when discussing problems or games) and digits (used to indicate 
points of various strength in teaching moves) .  Note that the second argument can receive 
only a single glyph. 

� � 
... � 

�� 
.. II' 

-� • 

• • 
• ,., 

9 3 
I I 

6-
I 

r- 3 -

.. 
,., 

---

6 -k)--

Y 

\usepackage{igo} 
\ igof ont s ize{ 1 2 }  

\black{d4 , d7 , k4 , r l 1 , r 15 , c 13 , %  
c 1 5 , e 1 3 , e 14 , f 1 3 , f 1 5} 

\white{q3 , r5 , d 1 7 , e 1 5 , e 1 6 , %  
f 14 , g1 4 , g 1 5 , q1 7 , o 1 6} 

\gobansymbol{e3}{9} 
\gobansymbol{13}{3} 
\gobansymbol{p5}{6} 
\gobansymbol{g13}{8} 
\gobansymbo l { 1 1 7}{7} 
\gobansymbol{ s 1 7}{3} 
\ short stack{\showfullgoban\\ 

693 

Best move s for  Black} 

Best moves for B lack 

\go bans ize{number} \ showfullgo ban \ showgo ban [ intersection-pair] 

The board onto which Go is played is called a goban; hence the command to display it is 
called \showgoban. Although the standard size is 1 9  x 19 ,  smaller sizes (e.g., 1 3  x 13 )  are 
also common. 

The igo package supports goban sizes up to 50 x 50 (by using capital letters for 
columns 26 to 50) . The board size can be specified through \gobans ize (default 19 ) .  While 
\showfullgoban displays the entire board, \showgoban presents only the part that has 
stones placed, to conserve space. More precisely, by default \ showgo ban displays one rowl 
column free of stones in each direction, unless that brings you too close to edge of the board. 
In the latter case the rowlcolumn at the edge of the board is also shown. If this doesn't 
give the appropriate results, it is possible to specify the part to display manually through 
an intersection-pair that marks the lower-left and upper-right corners of the display. For ex
ample, if we are interested only in the situation in the upper-left corner of the board shown 



694 PLAYING GAMES 

in Example 10-3-5 on the preceding page, we can specify a12 , h19 .  Note that stones or sym
bols placed outside the visible area are ignored and that hoshi points (the specially marked 
intersections where handicap stones can be placed) are shown only for standard goban sizes 
9 x 9, 13  x 1 3, and 19  x 19 .  

Upper left corner 

\usepackage{igo} 

\black{d4 , d7 , k4 , r l l , r 1 5 , c 13 , c 1 5 , e 1 3 , e 1 4 , f 13 , f 1 5}  
\white{q3 , r5 , d1 7 , e 1 5 , e 1 6 , f 14 , g 14 , g 1 5 , q1 7 , o 1 6} 
\gobansymbol{e3}{9} \gobansymbol{13}{3} 
\gobansymbol{p5}{6} \gobansymbol{g13}{8} 
\gobansymbol{1 17}{7} \gobansymbol { s 1 7}{3} 
\ short st ack{\ showgoban [a12 , h1 9] \\ [3pt] 

Upper left corner} 

Each diagram is internally ended by calling \igobreakafterdiagram , which does 
nothing by default. If desired, this command can be redefined to execute code (e.g., a line 
break) after each diagram. If the diagrams need a local caption, a simple way to produce 
them is to use \shortstack as shown in Example 1 0-3-6. 

\igofont size{number} \smallgoban \normalgoban \largegoban 

The goban can be presented in different sizes. Available font sizes are 5, 6, 7, 8, 9, 10, 1 1 , 
1 2, 1 5, and 20 points that can be given as a number to \igof ontsize. Predefined com
mands include \smallgoban ( 1 0  points, the default) , \normalgoban ( 1 5  points) ,  and 
\largegoban (20 points) .  

\cleargoban [intersection-pair] \clear{ intersection-list} 

Once a game or a problem (and perhaps its solution) has been presented, the goban needs to 
be cleared to allow new stones to be placed onto it. This is achieved by calling \cleargoban. 
Without the optional argument, the whole board is cleared; if an intersection-pair is specified, 
the rectangle spanned by it is cleared. Alternatively, it is possible to remove a certain set of 
stones by specifying their positions in the intersection-list given to the \clear command. 
This is sometimes useful when presenting problems with alternative solutions, shown one 
after another. You can also record a certain state in the game by making use of the copying 
features of the igo package. 

\copytogoban{number} \copyfromgoban{number} \usegoban{number} 

The igo package supports several gobans in parallel: the user can copy the goban state from 
one goban to another or change the currently active goban. This is useful for recording cer
tain states in a game-e.g., to discuss a possible variation before returning to main game. 
Internally these gobans are numbered with the one active at the start of the package be
ing labeled as 1 .  To copy the current goban state to another goban numbered number, use 



Example 
10·3·7 

Example 
10-3-9 

1 0.3 Go 

\copytogoban . To copy a saved goban back into the current one, use \copyfromgoban . 
Alternatively, you can change the current goban by using \usegoban . 

\rotategoban 
\hf lipgoban 

\rotategobanleft  
\vflipgoban 

\usepackage{igo} 

\whit e{c4 , e3} \black [ 1 ] {b4 , c 5 , c3 , d3 , c2}  
\ showgoban \cleargobansymbols 
\ copyt ogoban{2} 
\whit e [ 1 ] {d2 , b2} 
\showgoban \c opyfromgoban{2} 
\whit e [ 1 ] {b5 , a3} 
\showgoban 

\rotategobanright 
\mirrorgoban 

The igo package offers commands to perform certain geometric transformations, such as 
rotating the goban. In the next example, the problem was set up using the lower-left corner 
and then flipped over to the right corner before displaying the board. Here the two possible 
solutions were produced by backing up with the \clear command. 

Black to live 

\whi test  one [mark] \blackstone [mark] 

\usepackage{ igo} 

\ short st ack{Black to l ive\\ [4pt] 
\black{b2 , b3 , c3 , d2}\white{b4 , c4 , d5 , d3 , e3} 
\hf l ipgoban \showgoban 
\white [ 1 ] {p2 , r l }  
\showgoban \clear{p2 , r l }  
\white [ 1 ] { r l , s2 , ql , p2 }  
\ showgoban} 

The commands \whi testone and \blackstone are available for typesetting individual 
stones in running text-for example, in commentaries. They obey font size changes, so their 
use in headings or footnotes is possible. Being fragile, they need \protection in moving 
arguments. 

\usepackage{igo} 

695 

Unnumbered stones are typeset as 0 
and .; numbered stones as @ and (i 
and special symbols as @, ®, (9), and 
O. All are obeying font size changes:  0 @J. 

Unnumbered stone s  are type set as \whit estone{} and 
\blackstone{} ; numbered stone s  as \whit e s t one [ 1 6] and 
\blackst one [87] and spec i al symbols as 
\whitestone [\ igotriangle] , \blackst one [\ igo square] , 
\whitestone [\igocircle] , and \blackst one [\ igocro s s ] . 
\footnotesize All are obeying f ont s ize change s :  
\blackst one [\ igocross]  \whitestone [ 123] . 



696 

, 3 , , 

- �  , 
" 

� 
� � I 

I 
2� 73 7) " '" 

PLAYING GAMES 

1 0.4 Backgammon 

JOfg Richter's package bg defines two �TFX environments, position and game, to display 
backgammon games. The position environment draws a single board and is thus conve
nient for discussing a problem, while with the game environment you can enter each move 
individually. In the latter case the board positions are stored internally, allowing the "cur
rent" status to be drawn at any time. 

By convention, the homes of both players are on the left-hand side, with white's home 
at the lOp and black's home at the bottom. Unlike in the other packages discussed so far, 
positions on the board are not denoted with absolute coordinates but rather are numbered 
as viewed by the party whose move is being placed (e.g., white's 24 corresponds to black's I ,  
and so on). Moves are always performed from high to low numbers, and the cube is always 
on the right-hand side of the board. 

I \begin{position} . . .  \end{posi tion} I 
The posi tiOD environment initializes an empty board into which stones are placed by the 
commands described below. Some of these commands also allow you to customize some 
aspects of the board's layout. The board is printed when the \end{posi tion} command 
is encountered. Example 10-4-1 shows the use of various commands of the position envi-
ronment. 

6 I 8 , 10 1 1  

�l 

\ 1 \  
I \ 

\9 \8 \I \6 " " 

White to play 3-2 

\ blackpoint{p }{n} 

" 

\ I 
� 

\3 

\usepackage{bg} 

\begin{position} 
\normalboard 
\whitepoint{3}{2} 
\whitepoint{5}{2} 
\whitepoint{7}{3} 
\whitepoint{ll}{l} 
\blackpoint{24}{1} 
\blackpoint{10}{1} 
\blackpoint{7}{2} 
\blackpoint{5}{2} 
\blackbar{l} 

\whitepoint{4}{2} 
\whitepoint{6}{3} 
\whitepoint{S}{l} 
\whitepoint{22}{1} 
\blackpoint{13}{2} 
\blackpoint{S}{l} 
\blackpoint{6}{3} 
\blackpoint{4}{2} 

\shownumbers \middlecube{l} \showcube 
\whiteonmove 
\boardcaption{White to play 3--2} 
\end{position} 

\whitepoint{p}{lI} 
These two commands are used to place stones on the board; n denotes the number of stones 
to place and p denotes the point where they are positioned. It is important to remember that 
these points are numbered downwards from 24 relative to the home position of each player. 



1 0.4 Backgammon 697 

I \blackbar{n} \whitebar{n} I 
Captured stones are placed on the middle bar. This is done by using the commands 
\blackbar and \whi tebar, where n gives the number of stones to put there. 

\blackcube{n} 
\showcube 

\whitecube{n} 
\dont showcube 

\middlecube{n} 

These commands define the position and state of the cube. By default, the cube is  in the 
middle position (Le., not owned by any player) . It can be moved to either side by using 
\whitecube or \blackcube with n as its current number. If \dont showcube is used, 
the cube is not displayed. 

\smallboard 
\fullboard 
\blackonmove 
\shownumbers 
\boardcapt ion{ text} 

\normalboard 
\halfboard 
\whiteonmove 
\dont shownumbers 

\bigboard 

\togglenumbers 

To denote the size of the board, three commands are available; the default is  \normal board. 
Normally a full board is produced. When discussing problems, however, it is sometimes 
useful to draw only half of it, which can be achieved using \halfboard. The next player to 
move can be specified, which changes the numbering of the board. Numbering of the board 
can be suppressed (\dont shownumbers) or toggled (i.e., shown from the view of the other 
player) . In all cases you can give the board a caption with the \boardcapt ion command. 

\begin{game}{Black}{ White} . . .  \end{game} 

The game environment is used to document the progress of a game. In contrast to the 
pos it ion environment, it is initialized not with an empty board but rather with the stones 
in their starting positions. Its two arguments can be used to specify information about the 
two players, such as their names or current scores. 

\move{die}{moves} 
\printboard \rawboard 

Moves are entered using the \move command. The values of the die are entered as a two
digit number. The moves are specified in the form x-y and separated by commas with x and 
y denoting the start and target points, respectively, and being numbered as viewed by the 
current player. 

All moves are recorded and output is preceded by a small checker of the right color. At 
any time during the game, the \prin t board command shows the current state of the board 
in a diagram centered with a caption, while \rawboard produces the board encapsulated 
in an \mbox without a caption-a version that can be used even in the middle of a text line. 



698 

• Black 

PLAYING GAMES 

[ \ textmove{ text} \takeeube [ 
The \ t extmove command outputs text instead of a move and then switches to the opposite 
player. It can, for example, be used for double/pass actions or in cases where one player is 
unable to move at all. The \ takeeube command passes the cube to the opposite player and 
doubles its value. 

The following example documents the first moves in game showing several of the com
mands discussed above. 

o White 

I . 0 64 : 24- 1 8 ,  1 8- 1 4  
1 .  • 5 5  : 6- 1 * ,  6- 1 ,  8-3 , 8-3 

2 . •  Takes .  
2 .  0 Doubles. 

1 ? 1 � !, (, / fl 9 t o  1 1  1 7  

I , ' 

f , § I 
I I I : . j " 

It! ;:>1 n /1 70 \9 Hl 11 16 1� H 1-1 

Black's turn 3 1  

\full iner 
\half iner 

\ indentwhite 
\dont indentwhite 

\usepackage{bg} 

\begin{game }{Black}{White} 
\ smallboard 
\whiteonmove 

\move {64}{24- 18 , 18- 14} 
\move{55}{6- 1 , 6- 1 , 8-3 , 8-3} 
\t extmove{Doubles . }  
\textmove{Takes . }  
\take cube 
\boardcapt ion 

{Black ' s  turn 3 1 }  
\printboard 
\ end{game} 

\showmoves 
\dont showmoves 

The output of the \move commands can be customized in several ways. By default, the move 
number is incremented after every move; if \half iner is used, it is updated after every 
second move. The indentation of the moves by white can be suppressed if desired, and the 
output is fully suppressed if \ don t showmove s is used. 

In addition to these commands, the customization commands of the posi t i on envi
ronment (e.g., \dont showeube) are available. 

1 0.5 Card games 
The symbols " , " \/, and V are already part of standard (15\)1EX: for some reason Don
ald Knuth included them into his mathematical fonts and made them accessible via the 
commands \elubsui t, \spadesui t, \heart sui t, and \diamondsui t. As these com-

Example 
10-4-2 



Example 
10-5- 1 

1 0.5 Card games 

mands have long names and are available only in mathematical formulas, using them re
peatedly in normal text is rather awkward. In such a case it might be best to define new 
commands to reduce the amount of typing: 

\newcommand\c lub{\ensuremath{\c lubsuit}} 
\newcommand\diam{\ensuremath{\diamondsuit}} 
\newcommand\heart{\ensuremath{\heart suit }} 
\newcommand\spade{\ensuremath{\ spade suit }} 

These definitions can be used both in formulas and normal text, so \heartuA produces 
vA. Adding a few more definitions like the ones in Example 1 0-5- 1 enables you to document 
rules and annotate games for any game that uses standard playing cards. 

% card commands as def ined above 
\newcommand{\hand} [4] {% 

\begin{minipage} [t] {8em} 
\begin{tabbing} 

\spade{} \= # 1 \ \  \heart \> #2\\ 
\diam \>  #3\\ \ club \>  #4 

\end{tabbing} 
\end{minipage }} 

\hand{A}{A}{A 9}{Q} 

The above definition shows the cards in the order suitable for poker or bridge games. In 
other card games, " is usually the highest color, in which case you should modify the defini
tion accordingly. 

1 0.5.1  Bridge 

Using the ideas outlined in the previous section, Kees van der Laan developed MTEX macros 
and a bidding environment for typesetting annotated bridge games in the fashion often 
found in bridge literature [ 1 24] . In the following sections we show the commands that can 
be found in the file bridge . t ex and develop some additional commands for special situa
tions. 

Card deals 
The distribution of cards among the players is often shown in bridge literature as a diagram 
that shows the position and the hand of each player. Players are traditionally designated by 
the four points of the compass N, E, S, and W in the center of the graphic that symbolizes a 
play table. Such a graphic can be produced by the \ crdima command. 

\crdima{dealer HinfoHnorthH westHeastHsouth} 

The first parameter dealer provides information about dealer and vulnerability (e.g., 
N/None for "North" dealer and vulnerability "none") .  The second parameter info is text de-

699 



700 

S/None 

. Q J I 0 9 7  
V 1 0 6 

o Q 9 7 2  
. J 5 

S/None 

. J 1 0 9 7  
V 1 0 6 
o Q 9 7  2 
. J 

PLAYING GAMES 

scribing the game. The final four parameters describe the hands of each player in the order 
N, W, E, S . I  Usually they all contain a call to the \hand command, but it is also possible to 
put other or additional information into them. 

Both commands together then produce diagrams like the one in Example 10-5- 1-a 
start situation showing the hands of all players . 

• A 6  
v 7 4 2  
O J  6 3 
. A 8 6 4 3  

I w : E I  
. K 4 
v A K 9 5  
O A 1 0 8 5  
. K 7 2  

Start 
distribution 

' 8 5 3 2  
v Q J  8 3 
O K 4  
. Q 1 0 9 

\usepackage{bridge } 

\ crdima{S/None} 
{\begin{tabular} [t] {l}  

St art\\distribut ion 
\ end{tabul ar}} 

{\hand{A 6}{7 4 2}{J 6 3}{A 8 6 4 3}} 
{\hand{Q J 10 9 7}{ 10 6}{Q 9 7 2}{J 5}} 
{\hand{8 5 3 2}{Q J 8 3}{K 4}{Q 1 0  9}} 
{\hand{K 4}{A K 9 5}{A 1 0  8 5}{K 7 2}} 

When discussing defense play, two hands-your own and the hand of the dummy
are often shown. This data can be displayed with the \ crdima command by using empty 
arguments for the hands to be omitted. The example below shows an early situation in the 
game in Example 10-5- 1 .  

. A  
v 7 4 2  
O J  6 3 
. A  8 6 4 

I w : E I  

E plays '3 

\usepackage{bridge } 

\ crdima{S/None} 
{E plays \ spade 3} 
{\hand{A}{7 4 2}{J 6 3}{A 8 6 4}} 
{\hand{J 1 0  9 7}{ 1 0  6}{Q 9 7 2}{J}} 
{}{}  

An en dash (i.e., -- , which produces - ) i s  customarily used to denote a void. Its use is 
shown in the next example, which documents the same game after some more cards have 
been played. 

I In the original article [ 1 24 ] ,  the order is described as clockwise (i .e. , N, E, S, W), but the macros as stored on 
CTAN in the file bridge .  tex use a different sequence. 

Example 
10-5-2 

: Example 
10-5-3 



10.5 Card games 

• J 1 0 9  

v 1 0 6  

¢ Q 9 7 2  

"' -

. -
v 7 4 2  

¢ J 6 3 

'" 8 6 

CNJ 
� 

. -
v A  K 9 5  

¢ A 1 0 8 5  

"' -

• 8 5  

v Q J  8 3  

¢ K 4  

"' -
\usepackage{bridge} 

\crdima{}{} 
{\hand{--}{7 4 2}{] 6 3}{S 6}} 
{\hand{] 10 9}{10 6}{Q 9 7 2}{--}} 
{\hand{S 5}{Q ] S 3}{K 4}{--}} 
{\hand{--}{A K 9 5}{A 10 S 5}{--}} 

In discussing certain techniques of play, often only the card distribution in a single suit 
is shown. In that case it would be nice not to use the \hand command in the arguments of 
\crdima, but unfortunately the result is not quite what we would expect. 

"' A Q  \usepackage{bridge} 

'" J 5 

Iw : EI 
'" K 6 \crdima{}{} 

{\club{} A Q} 
{\club{} J 5}{\club{} K 6} 
{\club{} 7 4} 

'" 7 4 

In this case a solution using the tabular environment gives better results. The first ar
gument specifies the suit of interest, and the other arguments correspond to the four players 
(with the same order as in the \crdima command). Note the use of the \multicolumn 
command to suppress the vertical lines in the first and last rows. 

\usepackage{bridge} 
\newcommand{\Crdexa} [5] {{\renewcommand\arraystretch{1 . 2}% 

\begin{tabular}{l l �{}c�{} l l} 
\multicolumn{l}{c}{} & \multicolumn{l}{c}{#l #2} \\ 
\cline{2-2} 

Bidding 

\cline{2-2} 

N 
#1 #3 &W\hfill\hfill E& #1 #4 

& S & 

\multicolumn{l}{c}{} & \multicolumn{l}{c}{#l #5} 
\end{tabular}} } 

\Crdexa{\club}{A Q}{J 5}{K 6}{7 4} 

An important part of the bridge game is the initial bidding phase, in which the players decide 
who plays the contract. To document such a bidding sequence, Kees van der Laan introduced 
a bidding environment as an application ofIH£X's standard tabbing environment. 

\\ 
\\ 
\\ 

701 



702 

West 

no 
a.p. 

_ 3 2 
v K J 1 0 8 5 2  
<> Q 6 3 
" K  3 

_ Q J 1 0 5 
\? A 1 0 9 6 3  
<> A 5 2  
" 3  

PLAYING GAMES 

\usepackage{bridge} 

North East South \begin{bidding} 

1 "  1 _  
-- \> l \ c lub\> no \>  l \ spade \\ 

no 
no \>  2 \ spade\> no \>  4\spade \ \  

2_ no 4_ a . p .  
\end{bidding} 

In discussing the theory of bidding, the bridge literature often shows such a bidding 
sequence together with the hand of one player. This can be achieved as follows: 

\usepackage{bridge} 

\hand{3 2}{K J 1 0  8 5 2} 
{Q  6 3}{K 3} \qquad 

\begin{minipage} [t] {8em} 
\begin{bidding} 

West North East South -- \> l \diam\> l \heart \> no \\  
2\heart 1 <> 1 \? no 
\end{bidding} 
\end{minipage} 

2\? 

An alternative form in which the bidding of only two partners is shown can be produced 
by defining a simple command \ bid as follows. Here the \hand command shows one hand 
and the bidding sequence is maintained with a tabular environment, so that this time we 
must use & characters in the fifth argument. 

self partner 
1 "  

I v  1 _  
4_ 

\us epackage{bridge } 
\newc ommand\bid [5] {\hand{#1 }{#2}{#3}{#4}% 

\qquad \begin{tabular} [t] {ll}% 
self & partner \\  #5% 

\end{tabular}} 

\bid{Q J 1 0  5}{A 10 9 6 3}{A 5 2}{3} 
{ & l \ club \\  l \heart & l \ spade \\ 4\ spade } 

1 0.6 Crosswords in various forms 
In an article in TUGboat [45] , Brian Hamilton Kelly introduced a set ofIHEX macros to draw 
crosswords. His system is conceived so as to ensure that the "grid" comes together correctly. 
For example, Figure 1 0.2 on the next page shows a crossword grid I to be completed from the 
clues given (the solution is found in Example 1 0-6-5 on page 706) .  To input the crossword, 
one specifies the clues, their placement, and their solution. The actual grid is then built and 

I We thank Gerd Neugebauer for generating the puzzle from the index of this book. The clues (added by the 
authors) sometimes deliberately disguise this origin to increase the challenge. 

Example 
10-5-8 

: Example 
10-5-9 



1 0.6 Crosswords in various forms 

ACROSS 
2 Gap between tree node labels and the node in PSTricks 

(5) 

4 Modern replacement for scissors and glue (4) 
6 A Unicode Tpc variant (5) 

7 . . .  you always wanted to know but never dared to ask 

(3) 

8 A graphics key that needs four numbers (2) 
10 Called bb in  Karl Berry 's font-naming schemes (5) 

12 A way to make your pages i nto thumbnai l s  (5) 

15 You can do it to a box but it i sn ' t  proper ffiTPC (5)  

19 In ffiTPC denotes p; i n  other circumstances might mean 

a word processor (2) 
20 Result of a TPC run (3) 

21  A language whose name should probably have five 

letters, but then it was developed for Unix (4) 
24 It's not Intel (5) 

25 A poi nter misspelled (3)  

27 Testing your ffiTPC knowledge: -< (4) 
28 Label for a s ignal l ine (3)  

29 Another name for the ffiTEX3 project team on C . t . t .  (4) 
30 One way to get a sharp in MusiXTEX (2) 
31  A figure o r  plan intended to explain rather than 

represent actual appearance (7) 
' Exa��i; 1 33 72.27 to an inch (2) 

10·6· 1 ' 34 see Id (5) 

703 

DOWN 
1 & a34 Grand wizard of Tpc (3,5)  

2 A ready-to-run Tpc for Unix (5) 

3 A novice golfer' s  dream (3)  

4 J.6.TPC 2c name for document style (5) 

5 Double beam above notes in MusiXTEX (4) 
9 Either/or-mathematical ly speaking (3) 

10 German beer (3)  

1 1  S ave your coordinates (PSTricks) (5) 

12 Approximation of TPC' s  version number (2) 
13 A PostScript operator (7) 
14 Probabil ity function (2) 
16 A divine messenger misspelled (5) 

17 How do you get an A? (2) 
18 � (2) 
22 J.6.TPC has rigid and rubber ones (6) 
23 Amor uses them and XV-Pic cal l s  them (2) 
24 Length of the l ine segment where the connector 

joins the first node (4) 
25 Files containing ffiTPC font-definition 

documentation (3)  

26 71-do n ' t  say this is all Greek to you (3)  

27 ..l,  also the first letters of everlasting (4) 
30 We plot it in Chapter 4 (3) 

32 TPC' s  name for inch (2) 
33 Lula i s  chief of (2) 

Figure 1 0.2: A sample crossword for you to fill in (done with crosswrd ) 



704 PLAYING GAMES 

verified automatically. For example, the input for the first two clues from Figure 1 0.2 would 
be 

\ c lue{2}{A}{3}{ 1 }{TNSEP}{Gap between tree node labe l s  and 
the node in \textsf {PSTr i cks}}{5} 

\ clue { 1  \& a34} {D} { 1 } { 1 } {DON}{Grand wizard of \TeX{}}{3 , 5} 

The downside of this approach is that the input source does not show the actual layout of 
the crossword. To produce one, you have to translate back from a finished puzzle (on paper) 
into \ c lue statements like the above. 

A different approach has been taken in the cwpuzzle package by Gerd Neugebauer, 
where the crossword puzzle is graphically represented in the source and the specification 
of clues is done in a separate step. This package supports classical crossword puzzles, num
ber puzzles, and fill-in puzzles. (In number puzzles, all letters are replaced by numbers and 
the task is to figure out which number represents which letter; in fill-in puzzles, the list of 
clues is replaced by a list of all words in the puzzle and the task is to find the correct places 
for the words) .  In all cases the puzzle is constructed using the Puzzle environment. 

I \begin{Puzz le}{columns} {rows} I 
The arguments columns and rows specify the horizontal and vertical numbers of cells, re
spectively. Each line in the body of the environment describes the contents of the cells in one 
row. Cells are surrounded by vertical bars and the end of the line is marked with a dot. The 
contents of a cell can be a *, denoting a black box or a single character, possibly prefixed by 
a number in brackets, to denote the start of a clue. For number puzzles you would put such 
a number in each cell; for fill-in puzzles no such numbers are needed. For instance, 

\usepackage{ cwpuzzle} 

\begin{Puzzle}{7}{3} 

I [1]  T I A I [2]  B I U I L I [3] A R I . 

I A I * I [4] 1 I M I * I X * I . 
I [5] N I E I G I * I [6] D I E T I . 
\end{Puzzle} 

As a final possibility, you can put { }  in a cell, in which case this cell is left completely 
empty and not even a frame is produced. This lets you produce non-rectangular puzzles or 
leave space for an ad or a picture in the middle of the puzzle. The latter output is produced us
ing the \Frame command. As the name indicates it produces a frame and typesets material 
inside. 

\Frame{horizontal} {vertical} {width} {height} {content} 

The arguments horizontal and vertical specify the lower-left corner of the frame and width 
and height the extension towards the right and the top-all in units of crossword cells. The 
content can contain any material and is typeset as centered. If it is too large it will overlap 
with other elements of the puzzle. 

Example 
10-6-2 



Example 
10-6-4 

1 0.6 Crosswords in various forms 

\usepackage{ cwpuzzle} 

\begin{Puzzle}{7}{3} 
\Frarne{2}{ 1 }{3}{ 1 } { \ s f f arnily Cros sword} 

I [ l ] T I A I B I u I L I [3] A R I . 

I A I * I {} I {} I { }  I X I * I . 

I [4] N I E I G I * I [5] 0 I E I T I . 
\put ( 7 , -O . 1 ) {\makebox ( O , O)  [rt] {\t iny 

\LaTeX{} Graphi c s  Companion}} 
\end{Puzzle} 

As you may have guessed from the preceding description, the grid is internally typeset 
using a picture environment, with ( 0 , 0 ) indicating the lower-left corner and the unit 
length being the cell width. With a bit of care you can annotate it using standard picture 
commands, which is what we did in the previous example. The \PuzzleHook command 
also comes in handy if such annotations should be used for several crosswords. 

Two commands determine how any following puzzles are typeset. The command 
\PuzzleUnsol ved (the default) presents the empty grid together with the clues. The 
command \PuzzleSolution shows the puzzle with the words filled in and any clues (if 
present) suppressed. It takes an optional argument that determines whether clue numbers 
are shown (value true) or suppressed (value f alse ,  the default) in the filled-out grid. Ex
ample 1 0-6-5 on page 706 shows the result with the value being set to true. 

1 0.6.1 Classical puzzles 
For a classical crossword puzzle, the cwpuzzle package offers the PuzzleClues environ
ment to typeset the list of clues. The individual clues are entered in the body using the com
mand \Clue, as in the following example: 

\usepackage{ cwpuzzle} 

\begin{Puzzle}{7}{3} I [ l ] T 

I A 

I [5] N 

A 1 [2] B I u 
* I [4] I I M 
E I G I * 

\begin{PuzzleClues}{\t extbf {Acro s s : }} 

I L I [3] A I R I . 

I * I X I * I . 
I [6] 0 I E I T I . \end{Puzzle} 

\Clue { l }{TABULAR}{environment t o  produce t able s }  \Clue{4}{IM}{$\ Im$ } 
\Clue{5}{NEG}{$\neg$} \Clue{6}{OET}{ logl ike funct i on} 

\end{PuzzleClues} 
\begin{PuzzleClue s}{\textbf{Down : } } 

\Clue { l }{TAN}{not the pin} \Clue { 2}{BIG}{not small }  \Clue{3} {AXE}{ a  Brit ish ax} 
\end{PuzzleClue s} 

Across: 1 environment t o  produce ta- Down: 1 not the pin 2 not small 3 a 

bles 4 'J 5 -. 6 loglike function British ax 

705 



706 PLAYING GAMES 

In contrast to the behavior of the crosswrd package, your input is not checked for cor
rectness but rather is used only to typeset the clue list-in fact, the second argument of 
\Clue is currently not used at all. Technically, this means that it is not necessary to use 
that markup at all. If you do not like the way the clues are presented, you can typeset them 
manually instead. The only functionality you lose this way is that the clues are no longer 
suppressed by \PuzzleSolut i oIL 

For illustration purposes, the next example was created using cwpuzzle syntax (includ
ing the clues, which are suppressed by adding \PuzzleSo lut ion) , while the earlier presen
tation of this puzzle was marked up using the crosswrd package. The interested reader can 
compare both approaches on the source level by comparing the example files. 

\usepackage{ cwpuzzle} 

\setlength\PuzzleUnitlength{ 18pt} 
\renewcommand\PuzzleNumberFont { \ s f f amily\t iny} 
\renewcommand\PuzzleClueFont {\s cript size} 
\PuzzleSolut i on [true] 
\begin{Puzzle}{ 12}{ 12}  

1 [ 1 ] D I * I [2] T I N I S I E I [3] P I * I [4] C I L 1 [5] I I P I . 

I [6] 0 I m l E I G I A I * I [7] A I L I L I * I [8] B I B I . 
I N I * I T I * I * I [9] L I R I * I A I * I B I * I . 
I * I [ 1 0] B I E I [ l 1 ] M I B I 0 1 * I [ 1 2] P I S I [ 1 3] N I U I [ 14] P I . 

I * I I I X I S I * I [ 1 5] R I [ 1 6] A 1 I I S I E I * I R I . 

I [ 1 7] A I T I * I A I [ 1 8] X I * I N I * I * I [ 19] W I P I * I . 
I A I * I [20] D I V I I I * I [21 ]  G I R I A I p i * I [22] L I . 
I * I [23] A I * I E I * I [24] A I L I P I H I A I * I E I . 

further code omitted 

. .... . , Example 
10-6-5 



Exam�ie I 
10-6-6 . 1 

1 0.6 Crosswords in various forms 

1 0.6.2 Fi l l - in  puzzles 
Fill-in puzzles are those where all "words" (even if they are not meaningful) are listed with
out any other clue where to place them. The task is then to determine the right placement 
through the word length and possible combinations at the intersections. Thus the actual puz
zle grid is produced as usual, but without using the optional argument to add clue numbers. 
The "word" lists are generated by using the PuzzleWords environment as often as neces
sary. It takes one argument that specifies the word length in the current list and in its body 
the \ Word command is used to enumerate all words of that length. 

\usepackage{cwpuzzle} 

\begin{minipage}{ . 38\textwidth} 
\begin{Puzzle}{7}{3} 

I T I A I B I U I L 

I A I * I I I M I * 
I N I E I G I * I 0 

A I R I . 
X I * I .  
E I T I .  

\end{Puzzle}\end{minipage} 
\begin{minipage}{ . 6\textwidth} 
\begin{PuzzleWords }{2} \Word{IM} \Word{UM} \end{PuzzleWords} 
\begin{PuzzleWords }{3} 

\Word{AXE} \Word{BIG} \Word{DET} 
\Word{NEG} \Word{TAN} 

\end{PuzzleWords} 
\begin{PuzzleWords}{7} \Word{TABULAR} \end{PuzzleWords} 
\end{minipage} 

Words of length 2: 1M UM 
Words of length 3 :  AXE BIG DET NEG TAN 
Words of length 7 :  TABULAR 

To customize the generated text, you can redefine the command \PuzzleWordsText. 
It takes one argument, which receives the current word length (i.e., the argument given to the 
PuzzleWords environment) .  For example, a typical redefinition for the German language 
could look as follows: 

\renewcommand\PuzzleWordsText [ 1 ] {W\ " orter der L\ " ange # 1 : } 

1 0.6.3 N u m ber puzzles 

Number puzzles are crosswords in which each square is labeled with a number, and the task 
is to determine which number represents which letter. Again the puzzle grid is created using 
the Puzzle environment, this time using the bracket syntax all over the place to add the 
numbers. 

707 



708 PLAYING GAMES 

In addition, the \PuzzleLetters declaration shows the list of all letters appearing in 
the puzzle (preferably in alphabetic order) ,  while \PuzzleNumbers produces a list of boxes 
so that the reader can fill in the solution. The text generated by \PuzzleLetters can be 
customized by redefining \PuzzleLettersText as indicated. 

\us epackage{ cwpuzzle} 

\begin{minipage } { . 3S\textwidth} 
\begin{Puzzle}{7}{3} 

1 [1]  T 1 [2] A 1 [3] B 1 [4] U 1 [5] L 1 [2] A 1 [6] R I . 

1 [2] A 1 * 1 [7] I 1 [S] M 1 * 1 [9] X 1 * I . 
1 [ 1 0] N 1 [ l 1 ] E I [ 1 2] G I * 1 [ 1 3] 0 1 [ l 1 ] E 1 [ 1 ]  T I . 

\end{Puzzle} \end{minipage} 
\begin{minipage}{ . 6\t extwidth} 

\renewc ommand\PuzzleLettersText{Letters used : } 
\PuzzleLetters{ABOEGILMNRTUX} \medskip \PuzzleNumbers{TABULRIMXNEGO} 

\end{minipage} 

Letters used: ABDEGILMNRTUX 

1 0.6.4 General  adjustments to the layout 

Beside the customizations related to the clue representation, the cwpuzzle package offers a 
number of parameters and macros to influence the typesetting of the main puzzle grid. 

The size of a grid cell is determined by the parameter \PuzzleUni tlength. It de-
Grid size and fonts faults to 20pt . If the cell size is changed, it is usually advisable to adjust the font size for clue 

numbers in the grid as well, by redefining the macro \PuzzleNumberFont (the default is 
\sf\script s ize ) , and to modify the font size for letters in the solution display, by con fig
uring through \PuzzleClueFont (the default is \footnotesize) .  For example, the grid 
displayed in Example 1 0-6-5 on page 706 was produced using the following settings: 

\setlength\PuzzleUnitl ength{ l Spt } 
\renewc ommand\PuzzleClueFont { \ s cript s ize} 
\renewc ommand\PuzzleNumberFont { \ s f f ami ly\t iny} 
\PuzzleSolut i on [true] 

The documentation also mentions a \PuzzleFont. It is defined but never used by the pack
age, so don't expect any miracles from changing it. 

Two other mildly interesting hooks are \PuzzleBlackBox, which defines the look and 
feel of cells marked as unusable ( i.e., produced by a * ) , and \PuzzleHook, which stores 
picture commands that are executed when the grid is being built. Using these hooks is 
equivalent to issuing these commands within each Puzzle environment as shown in Exam
ple 1 0-6-3 on page 705. 



Example 
10-7- \ 

1 0.7 Sudokus 

1 0.6.5 External  puzzle generation 
One of the most popular puzzle formats of the Internet is the Across Lite® format from Liter
ate Software Systems. !  Many electronic versions of daily newspapers, such as the New York 
Times and USA Today, provide their puzzles in this format. On CTAN three small C pro
grams are available (directory AcrossLi te )  to convert this format into cwpuzzle syntax 
for off-line printing. 

1 0.7 Sudokus 
The origins ofSudoku puzzles can be traced back to the Swiss mathematician Leonard Euler, 
who developed similar puzzles under the name "Latin Square". The modern form became 
popular in Japan in the 1 980s, and in recent years it started to conquer the world, with Su
doku puzzles appearing in many newspapers. It comes as no big surprise that the first tool 
for typesetting Sudokus with M-JEX appeared in 2005. 

Today's Sudoku puzzles usually consist of a table with nine rows and columns subdi
vided into nine 3 x 3 regions. Some of the cells are prefilled with numbers between 1 and 9. 
The player's task is to fill the remaining cells such that in each row, column, and region every 
number appears exactly once. Sometimes one sees Sudokus with 4 x 4 sub-regions so that 
1 6  different symbols have to be placed. The puzzle derives its name from the Japanese words 
Su, meaning "number", and Doku, meaning "singular" or "solitary". 

1 0.7.1  sudoku-Typesetting Sudokus 
The first sudoku package that was published on CTAN in 2005 was written by Paul Abraham. 
It provides the environment sudoku-block , which allows for typesetting puzzles with a 
fairly natural syntax. Each puzzle row is represented by 1 0  vertical bars (indicating the grid 
lines) and followed by a dot. The cell content is entered between these bars, either as a space 
(empty cell) or as a number between 1 and 9. 

709 

4 

2 6 

1 

4 

\usepackage{ sudoku} 
\setlength\ sudokus ize{5cm} 
\renewc ommand\ sudokuf ormat [ l ] {\text s f { # l } }  

\begin{sudoku-block} 
6 7 9 2 1 4 1 I I I I I 1 1 1  I .  

2 4 I I 1 2 1 6 1 I 1 4 1 1 I .  
1 6 1 7 1 I I I I 1 9 1 2 1 . 

1 7 9 6 I 1 2 1 I I 1 4 1 I I I .  

3 2 I 1 1 1 1 7 1 1 9 1  1 6 1 I .  

1 3 7 9 
I I I 1 3 1 I I 1 2 1 I .  
1 1 1 3 1 I I I I 1 7 1 9 1 . 

7 5 3 I I 1 7 1 I 1 5 1 3 1 I I .  

8 1 
I I 1 8 1 I I I I 1 1 1 . 
\end{sudoku-block} 

1 Software to solve such puzzles is available at http : //www . litsoft . com/across/ ali tel download . 
htm. 



710 

9 
4 
I 3 

4 6 
9 

2 
9 2 

3 4 

PLAYING GAMES 

The size of the grid can be adjusted by setting \sudokusize (the default value is iDem), 
and the size and font for the numbers can be manipulated by redefining \sudokuformat 
as shown in Example 10-7-1. The default definition uses \Huge to fit the larger grid size. 
The package also offers the environment sudoku, which is simply an abbreviation for 
sudoku-block inside a center environment. 

1 0.7.2 sudokubundle-Solving and generating Sudokus 
In 2006, Petcr Wilson published a bundle of three packages that not only typeset but also 
attempt to solve existing Sudokus or generate new ones. In contrast to the sudoku package, 
with Wilson's bundle the puzzles have to be stored in external files and require a somewhat 
different input syntax. 

In these external files, only the first nine lines are relevant. Each must consist of nine 
characters, either a dot (representing an empty cell) or one ofthe numbers 1 to 9 (indicating 
prefilled cells). Any further lines can be used for comments and will not be read by LATEX-. 

The printsudoku package provides the command \sudoku for typesetting such files. It 
also offers a \wrri tepuzzle command to write external Sudokus into separate files, but for 
this purpose a filecontents* environment, as used in the next example, or a simple text 
editor is equally or even more suitable. 

6 

6 7 

3 
5 4 

5 7 

6 

4 

2 
9 

8 
5 

\usepackage{printsudoku} 
\begin{filecontents*}{sample . sud} 
. .  9 . . . .  64 
4 . . . . . . .  . 
1 .  .36 . . 72 
. .  46 . . . .  9 

. .  9 . 3 . .  . 
2 . . . . 54 . .  
92 . . 57 . . 8 
. . . . . . . .  5 
34 . . . . 6 . .  
A moderate challenge 
\end{filecontents*} 

\cluefont{\small} 
\cellsize { 1 . 2\baselineskip} 
\sudoku{sample. sud} 

As seen in the previous example, the size of the puzzle and the numbers in
side are controlled through \cluefont (default \Huge) and \cellsize (default 
2 .  5\baselineskip), respectively. Note that compared to the sudoku package these are 
declarations, rather than length registers or macros, and thus are changed in a different way. 
For example. to get sans serif numbers, we would need to use \sffamily instead of using 
\textsf. 

The solvesudoku package attempts to solve a given puzzle and prints the solution as far 
as it was able to produce it. Given that lEX isn't the best language in which to implement 
complicated algorithms. it does a surprisingly good job and is able to fully resolve most 



Example 
10-7-4 

1 0.7 Sudokus 

puzzles rated medium or higher. As a high-level command it offers \sudokusol ve, which 
first prints the original puzzle in large size, then resolves it, and finally typesets the result in 
a smaller grid below. Rather than using this interface we use the more low-level commands 
for solving puzzles below and then print the result so that not so much space is taken up by 
the next example. 

7 3 9 5 2 

4 6 2 8 7 

1 5 8 3 6 

5 1 4 6 8 

6 8 7 9 4 

2 9 3 7 1 

9 2 6 1 5 

8 7 1 4 3 

3 4 5 2 9 

1 8 6 

9 1 5 

4 9 7 

2 7 3 

3 5 2 

5 4 8 

7 3 4 

6 2 9 

8 6 1 

4 

3 

2 

9 

1 

6 

8 

5 

7 

\usepackage{s olve sudoku} 
% use previously def ined s ample . sud f ile 

% produce the solut i on : 
\getproblem{ sample . sud} 
\reduceallcells  \keepreduc ing 
\writ egame 
% print it (us ing print sudoku) : 
\ c luefont { \ small\sff amily} 
\cells ize{ 1 . 2\base l ineskip} 
\ sudoku{sud . out} 

The third package in the bundle, createsudoku, can be used to generate new puzzles 
from existing ones. Its command \generategrid takes a solution file as its optional argu
ment, randomly permutes an arbitrary number of rows and columns, and then removes a 
number of clues until it reaches a grid that cannot be solved any longer through the algo
rithm implemented by solvesudoku. The last valid puzzle is stored in \genf ile  (default 
gensud . sud) and then printed using \sudokusol ve. If \generat egrid is called with
out an argument, a puzzle solution defined within the package is used as a starting point. 

To demonstrate we use the output from the previous example, sud . out , to generate a 
puzzle. As the output of \sudokusol ve (showing puzzle and result) takes up a lot of space, 
we disable that once more and print the puzzle manually. 

5 8 6 

7 2 5 8 

4 6 7 8 

1 4 7 

2 3 4 

2 

5 3 

7 3 2 

3 5 

3 

8 

7 1 

4 

5 

\usepackage{ create sudoku} 
% previous example is needed as input 

% Expl i c itly initialize the random 
% generat or to always get the same 
% output . Comment out if you want t o  
% get diff erent puzzles each t ime ! 
\ set sudrandom{ 1682604876} 
% do not type set solut i on 
\renewcommand\ sudokusolve [ l ] {} 

% produce the puzzle : 
\generat egrid [sud . out] 
% print it (us ing print sudoku) : 
\ c luef ont { \ small\sffamily} 
\cellsize{ 1 . 2\basel ine skip} 
\ sudoku{\genf ile} 

7 1 1 



7 1 2  PLAYING GAMES 

Since the permutation of rows and columns is created using a random generator that, 
by default, is initialized using the current date and time, a huge number of different puzzles 
can be generated from code like the above. Of course, the complexity of the puzzles is limited 
by the capabilities of the puzzle solver algorithm, but as the examples show it will produce 
reasonably difficult puzzles. 

Besides explicitly initializing the random number generator (as we did in the previous 
example),  the puzzle generation can be influenced by manipulating the initial selection of 
clues that are removed from the grid before the elimination algorithm starts; details can be 
found in the package documentation. 



C H A P T E R  1 1  

The World of Color 

1 1 .1 Anintroductionto color . . . . . . . . . . . . . . . . . . . . . • • • • • • • • . . . .  714 

1 1 .2 Colors with �EX - The color and xcolor packages . . . . . . . . . . . • . . . . . 719 

1 1 .3 Coloring tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . .  737 

1 1 .4 Color slides with �EX - The beamer class . . . . . . . . . . • • • • • • • • . . . . 752 

For many people, color is indispensable for effective graphics. AU of the modern interactive 
drawing packages support coloring oflines, filling objects with color, etc., and all of the stan
dard bitmap file formats such as GIF (Graphics Interchange Format), PNG (Portable Net
work Graphjc), JPEG (Joint Photographic Experts Group), rBM (Portable Bitmap), TIFF 
(Tagged Image File Format), 8MP (Windows Bitmap), SVG (Scalable Vector Graphic), and 
Encapsulated PostScript support color. Thus, if you generate a picture with a drawing pack
age, and then import it into your LATEX document using the packages described in Chapter 2, 
you should have no problems if your printing or viewing device supports color. However, 
you do have to know something about how color is represented and which color model you 
are using. We discuss these issues in the first part of this chapter. 

If you prepare your graphics using �1EX itself or simply want colored text, you need 
some special support from both LKfEX and your driver. The main body of this chapter de
scribes the extended LATEX xcolor package, which we believe is powerful enough to meet 
almost all needs and is capable of working with most other packages. xcolor extends the old 
color package with features such as color mixing, color sequences, and tabular shading. 

�TEX users often request color for use in presentations. The xcolor package can, of 
course, be used with old LATEX slides classes, but we devote some space to explaining a more 
sophisticated class, beamer, and give lots of examples of its facilities. 

As the book is printed in two colors, it is possible to show some color effects in examples. 
An other colors will appear in grayscale throughout the text. However, we repeat selected ex
amples in the color plates. We indicate when the reader should refer to the full-color version. 
You can also take the example source code, run it through �TEX or pdillTEX. and view the 
PostScript or PDP output. 



C H A P T E R  1 1 

The World of Color  

1 1 . 1 An introduction to color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 1 4  

1 1 .2 Colors with �EX - The color and xco lor packages . . . . . . . . . . . . . . . . .  7 1 9 

1 1 .3 Coloring tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  737 

1 1 .4 Color s l ides with �EX - The beamer c lass . . . . . . . . . . . . . . . . . . . . . .  752 

For many people, color is indispensable for effective graphics. All of the modern interactive 
drawing packages support coloring oflines, filling objects with color, etc., and all of the stan
dard bitmap file formats such as GIF (Graphics Interchange Format), PNG (Portable Net
work Graphic) ,  JPEG (Joint Photographic Experts Group) ,  PBM (Portable Bitmap) ,  TIFF 
(Tagged Image File Format), BMP (Windows Bitmap) ,  SVG (Scalable Vector Graphic) ,  and 
Encapsulated PostScript support color. Thus, if you generate a picture with a drawing pack
age, and then import it into your MTEX document using the packages described in Chapter 2, 
you should have no problems if your printing or viewing device supports color. However, 
you do have to know something about how color is represented and which color model you 
are using. We discuss these issues in the first part of this chapter. 

If you prepare your graphics using M1EX itself or simply want colored text, you need 
some special support from both MTEX and your driver. The main body of this chapter de
scribes the extended MTEX xcolor package, which we believe is powerful enough to meet 
almost all needs and is capable of working with most other packages. xcolor extends the old 
color package with features such as color mixing, color sequences, and tabular shading. 

MTEX users often request color for use in presentations. The xcolor package can, of 
course, be used with old MTEX s l ides classes, but we devote some space to explaining a more 
sophisticated class, beamer, and give lots of examples of its facilities. 

As the book is printed in two colors, it is possible to show some color effects in examples. 
All other colors will appear in grayscale throughout the text. However, we repeat selected ex
amples in the color plates. We indicate when the reader should refer to the full-color version. 
You can also take the example source code, run it through MTEX or pdffi\1F)C, and view the 
PostScript or PDF output. 



714 

1 1 . 1 An introduction to color 

TH E WORLD O F  COLOR 

You should think about color in a document as being a tool, not a gadget to merely make the 
pages look "prettier". The French painter Eugene Delacroix wrote [ 1 9] : 

Color is above all that part of art which bestows the gift of magic; while subject, 
form, and line are concerned firstly with reasoning, color has no relationship with 
intelligence; it has power over feeling, and invades your senses. 

This sentence summarizes perfectly the role that color plays in the construction of the visual 
image. By choosing the right color, the typographer or painter can add an affective value to 
the message, thus making it understood more clearly. 

1 1 . 1 . 1 Color theories 

Since prehistoric times, color has played an important role in visual communication, as the 
colored depictions of animals in the caves of Altamira or Lascaux clearly indicate. The Egyp
tians, Assyrians, and other ancient Middle East cultures, and later the Phoenicians, knew 
how to produce paint and dyes, and they loved colored stones. But it was the Greek philoso
pher Aristotle who first, in the 4th century B .C . ,  tried to actually "understand" color by 
studying the mixing of colors in different-colored glass. To explain his observations he pos
tulated that each color was a mixture of white and black, the dark colors being produced 
by the reflection of light by the medium. This interpretation, in which colors were ordered 
on a straight line from the lightest to the darkest, starting with white and ending with black, 
lasted for almost 2200 years. It was was only in the 1 7th century, thanks to Isaac Newton's 
experiments with glass prisms, that the spectral theory of light was discovered. Newton or
dered the colors on a closed circular ring, a representation still in use today. 

Gcethe at the beginning of the 1 9th century dedicated much of his life to the study of 
physics and chemistry, and he was particularly fascinated by color. Even though his color 
theory is no longer accepted today, his discussion of the matter served as the basis of some 
significant progress in the field. Thomas Young, an English doctor, introduced in 1801 the 
three-color theory oflight; this concept was further developed by Hermann von Helmholtz, 
and their theory of three-color vision is called the Young-Helmholtz Law. 

It was the work of Maxwell, Helmholtz and Grassmann that formed the basis of the sci
ence of colorimetry. The laws of mixing colored light were first formulated by Grassmann 
( 1 853) ,  who was the first to show clearly the relationship between light and color. He sum
marized his findings in three theorems, called Grassmann's laws: 

(a) Colors obtained by additive color mixing are completely determined by their three
color components and do not depend on their spectral composition (color mixing 
theorem) .  

(b) Three numbers are necessary and sufficient to fully describe a color (additivity theo
rem).  

(c)  In daylight conditions, color sensation does not depend on light intensity (proportion
ality theorem) .  



1 1 . 1 An introduction to color 

Recent studies and experiments have consolidated our knowledge in the field of color; 
see, e.g., [29, 87] for more details. 

1 1 . 1 .2 Color systems 

Today we know that several representations may be used to describe colors, any of which 
can be chosen depending on the targeted application domain-for instance, additive or sub
stractive color mixing, color perception theory, television, artwork, dyes, or gray levels. In 
particular, PostScript subdivides color spaces into three categories: 

• Device color spaces: colors or gray levels are directly expressed in units that the output 
device understands. Examples of such models are RGB (Red, Green, Blue) and a variant 
for television YIQ, CMYK (Cyan, Magenta, Yellow, Black), and HSB, also called HSV 
(Hue, Saturation, Brightness or Value). See Color Plate XI a) and Color Plate XIII a) for 
demonstrations of the RGB and HSB models. 

• CIE color spaces: colors are specified in a device-independent way. In 1 93 1  the Com
mission lnternationale de l'Eclairage (CIE) established a colormetric system defining 
all colors in an unambiguous and objective way. In 1 964 (CIEVCS) and 1976 (CIELAB/
CIELVV), extensions were introduced in the CIE model to correct certain shortcomings 
of the original version. 

• Special color spaces: these are used for special applications, such as patterns, color maps, 
and separations. 

An introduction to the use of color with PostScript can be found in [ 77] and [82] . A detailed 
description of all the models and algorithms to transform colors from one space to another 
is beyond the scope of this book. More details can be found in [5 , 22, 6 1 , 1 08 ] ;  [29] classi
fies all the color models that have been proposed into groups; see also [ 87 ] . We deal simply 
with the RGB and CMYK models, since these are widely used in the printing and computer 
industries. 

The additive RGB color space 

In RGB space, all colors are obtained by the superposition (addition) of three primary com
ponents, defined by the CIE as red (700 nm), green (546. 1 nm), and blue (435.8 nm). In this 
model the electrons of the cathode ray tube hit phosphorus elements that emit light of the 
right wavelength, and combine (add) to give the desired color (see Color Plate XI a) . 

The subtractive CMYK color space 

The printing industry does not use the RGB primary colors, but rather their complements: 
cyan, magenta, and yellow. This is because inks "subtract" their complementary colors from 
the white light that falls on the surface; e.g., cyan ink absorbs the red component of white 
light and thus, in terms of the additive primaries, cyan is white minus red i.e., blue plus green. 
Similarly, magenta absorbs the green component and corresponds to red plus blue, while yel
low, which absorbs blue, is red plus green (see Color Plate XI a) .  In practice, the printing in
dustry uses a process called "undercolor removal" in which a fourth "color", black, is added 
so as to create a darker black than is available by mixing the three colored inks. This color 

7 1 5  



716 TH E WORLD OF COLOR 

Table 1 1 . 1 :  Symbolic connotation of colors in different countries 

Red Blue Green Yellow White 

China happiness sky, clouds Ming dynasty, birth, riches, purity, 
sky, clouds power death 

Egypt death, virtue, faith, fertility, happiness, joy 
truth force prosperity 

France aristocracy freedom, criminality worldliness neutrality 
peace 

India creativity, prosperity, success purity, 
life fertility death 

Japan anger, infamy future, nobility, death 
danger youth, grace 

energy 
U.S.A. danger masculinity security cowardice purity 

model is called the CMYK model, where the final "K" stands for the black component. The 
effect of the black component is handled as follows: 

• Calculate black component: it is the minimum of the components C, Y, and M, because 
this number corresponds to the value of which all three inks are superimposed to yield 
black: K=min (C , Y , M) . 

• Undercolor removal: subtract this black component K from the three components C, M, 
and Y to compensate for the amount of black introduced by the use of black ink: C 
C-K ; Y = Y-K ; M = M-K. 

1 1 . 1 .3 Symbolic val ues of color 

The significance of color, like symbols, varies greatly across cultures. Table 1 1 . 1  shows some 
cultural connotations for various colors (following [37) ) .  For example, red means danger in 
the United States, as in most Western cultures, but it is a symbol for life and creativity in 
India. It is important to be aware of these differences when designing a poster, book cover, 
or computer interface. 

To minimize ambiguity, international standards groups have chosen colors with gener
ally understood significances. In the field of traffic signs, for instance, red is a sign for danger, 
while green indicates health services or says that the road is clear. Blue, white, and black are 
only secondary colors in such contexts, used for information on road surfaces, rest areas, etc. 
Similar standards have been developed for plumbing and electrical wiring. 

A color with a generally recognized significance can help to reinforce an idea and can 
play an important psychological role in creating an atmosphere or conveying a cultural, re
ligious, or political message. It should be noted, however, that every human activity, profes
sion, and interest group, even within the same culture, has its own "color" jargon. Thus you 
should always be aware of possible side effects of using a color in any given context. 



1 1 . 1 An introduction to color 

1 1 . 1 .4 Color harmon ies 

Color harmonies are arrangements of color pleasing to the eye. Scores of books have been 
written on color harmony, and the conclusions of many of these works are often contradic
tory. Reasons for this disagreement are not hard to find [65 ] :  

• Color harmony is a matter of individual emotional response, oflikes and dislikes. Even 
the same person can change his or her mind about colors over time, since old combi
nations can become boring while frequent exposure to new combinations can make us 
appreciate them. 

• Color harmony depends on the absolute size of the areas covered by the colors as well 
as on the design and the colors themselves. For instance, a nice-looking mosaic pattern 
can become quite unattractive when magnified by a factor of 1 0. 

• Color harmony depends on the relative sizes of the areas as well as on their colors. 

• Color harmony depends on the shape of the elements as well as on their colors. 

• Color harmony depends on the meaning or interpretation of the design as well as on 
the colors. Clearly, color harmony for a portrait painter is quite a different matter from 
color harmony in abstract design or typography. 

Nonetheless, it is still interesting to try to formulate a few principles for the construction 
of color harmonies. 

• Color harmony results from the juxtaposition of colors selected on an orderly plan that 
can be recognized and emotionally appreciated. 

• When comparing two similar sequences of color, observers choose the one most famil
iar as the most harmonious. 

• Groups of colors that seem to have a common aspect or quality are considered to be 
harmonious. 

• Colors are perceived as harmonious only if the combination of colors has a selection 
plan that is unambiguously recognizable. 

It has been observed experimentally that the eye prefers combinations in which primary 
colors are in equilibrium with their complementary colors, and that our perception of a color 
changes in relation to its environment. Color Plate XI c shows the effects of saturation or 
absorption of the three primary colors with respect to white (leftmost column) and black 
(second column) ,  and with respect to its complementary color (third column) and a gray 
tone of the primary color itself (rightmost column) .  

Itten [57]  uses a model based on a harmonic color circle subdivided into 12  equal parts 
to explain his theory of colors (see Color Plate XI b) .  It contains the three primary colors 
yellow, red, and blue, 120 degrees apart. Their complementary colors purple, green, and 
orange, also called the secondary colors, are positioned diametrically opposite their respec
tive primaries. The circle contains six more colors, intermediate between each primary and 
its adjacent secondaries. The harmonic color circle is merely a simplification. Indeed, all 
possible colors can be represented on the surface of a sphere that has the harmonic colors 
at its equator, white at the north pole, and black at the south pole. Thus moving from the 
equator towards the south (north) pole yields darker (lighter) variants of a given color. This 

7 1 7  



7 1 8  TH E WORLD OF COLOR 

also means that for each point on the color sphere, there exists a diametrically opposed point 
with complementary characteristics-e.g., light greenish blue is opposed to dark orange red. 
Centuries of artistic experience have shown that a few simple basic rules let artists construct 
effective color harmonies in their works. Following Itten, we discuss a few of them below. 

Two-color harmonic combinations 

Complementary colors lying at diametrically opposite points of the color circle (sphere) de
fine two-color harmonies, like the 2-tuples (red, green) and (blue, orange), plus the almost 
infinite number constructed using possible combinations on the sphere. 

Three-color harmonic combinations 

When an equilateral triangle is constructed inside the color circle, the colors at each edge 
form a three-color harmony. The most fundamental 3-tuple (yellow, red, blue) is well known 
in all forms of art, publishing, and publicity for its effectiveness; it can be used in a wide 
variety of patterns and layouts, and in all kinds of light and dark combinations. The sec
ondary color 3-tuple (purple, green, orange) has also a strong character and is frequently 
used. Other 3-tuples are also possible and you can construct harmonic 3-tuples by replacing 
the equilateral triangle by an isosceles triangle, or by working on the color sphere and com
bining light and dark variants. As a special case, you can put one edge of the triangle at the 
white point (north pole) to create the harmony (white, dark greenish blue, dark orange red), 
or on the black point (south pole) to create the harmony (black, light greenish blue, light 
orange red) . 

Four-color harmonic combinations 

You can construct a four-color harmony by taking the colors lying on the edges of a square 
in the color circle-e.g., the 4-tuple (yellow, orange red, purple, greenish blue) .  It is also 
possible to use a rectangle combining two pairs of complementary colors. 

Higher-order harmonies (like six-color) are equally easy to obtain using similar geo
metric models, on the color circle or the color sphere. Note, however, that each combination 
has its own character and set of basic laws, and only long experience can show which of the 
various sets of harmonies is most efficient for a given application. 

1 1 . 1 .5 Color and reada bi l ity 
The readability of a message or sign is closely linked to how our visual system processes the 
information presented to it. The following factors influence the visibility of colors: 

• Intensity: pure colors of the spectrum have the highest intensity. 

• Contrast: between the different colors. 

• Purity: pure colors are more visible than graded variants, in which white has been 
added, making them fainter, or black, making them darker. 

Color Plate XII shows some of the most effective color contrasts for maximum readabil
ity or visibility, e.g., on slides, road signs, or publicity leaflets. 



1 1 .2 Colors with I!ITEX - The color and xcolor packages 

1 1 .2 Colors with I!\TEX - The co lor  and xco lor  packages 

When e.1EX 2E was released in 1994, it provided for the first time some abstraction layers for 
graphics (see Chapter 2) and color (in shape of the color package by David Carlisle) .  

e.TEX'S color support i s  built around the idea of  a system of  color models. The color 
models supported by a driver may vary, but typically include the following: 

rgb red green blue. A comma-separated list of three real numbers between 0 and 1 (the 
color components in function of the additive RGB model) . 

cmyk cyan magenta yellow black. A comma-separated list of four real numbers between 
o and 1 gives the components of the color according to the subtractive CMYK model 
used in most printers. 

gray grayscale. A single real number between 0 (black) and 1 (white) .  

hsb hue saturation brightness. A comma-separated list of three real numbers between 0 
and 1 .  This model is understood only by some drivers. 

named A name selected from a list of predefined colors is used. Here the actual color is 
defined in the driver, e.g., through special profiles; this method is supported by only 
some drivers. 

When the named color model is available then the driver may predefine the color for 
each name according to one of the other color models, or refer to color names supported 
by the printer or page-description language like PostScript. The dvips driver, for example, 
offers 64 "Crayola" colors, as originally proposed by Jim Hafner in his colordvi and foi ltex 
packages (see the file colordvi . tex coming with your 1FX distribution for a list) . It is im
portant to realize that these colors are defined not according to fixed CMYK or RGB values 
in the document, but rather at the PostScript level in a replaceable header file that can be cus
tomized for different printers. The idea was to allow some independence from fixed CMYK 
or RGB values that may not look right on your device. 

The abstraction layer provided by the color package hides the \special syntax that 
differs between device drivers, but otherwise passes color model information to the driver 
for execution. Therefore a document containing, for example, colors specified as CMYK val
ues would only work with drivers supporting that color model, thereby reducing the device 
independence-in case of "named" colors, sometimes even to a single driver. 

This "partial device" dependency asked for some future development-which hap-
pened in 2003 in the form of the package xcolor by Uwe Kern. Uwe's xcolor implements an Enter the xcolor 
upward-compatible version of the color user interface while adding a number of useful func- package 

tions such as extended color model support. Thus documents written for use with the color 
package can be processed unmodified with the xcolor package (with additional functional-
ity in the back end, such as outputting all colors in a certain color model regardless of the 
model specified on input) .  

In the opposite direction (though it is not normally necessary) , documents written with 
xcolor can usually be processed with color with only some small declaration adjustments, un
less heavy use of extended specification possibilities has been made in document commands 
rather than in declarations. The latter, while allowed, is discouraged, as it makes documents 
difficult to maintain. 

7 1 9  



720 TH E WORLD OF COLOR 

Common features of We therefore discuss both packages together in this chapter, pointing out the differences 
both packages as necessary as we go along. In summary, common to both packages are the following fea

tures: 

• The basic document-level commands for selecting color in various circumstances, i.e., 
\color, \textcolor, \colorbox, \fcolorbox, and \pagecolor. 

• The declaration \def ine color for specifying new colors. xcolor offers addition decla
rations here. 

• The basic color models rgb, cmyk, gray, hsb, and named. 

The additional � The xcolor package also provides the following features: 
xcolor features Y 

• Support for an extended set of color models for specifying color input such as 

Reason (s) for not � 
choosing the xcolor Y 

package? 

- Color notation as in HTML. 

- Defining colors by their wavelength. 

• Converting any color from one color model into another one, e.g., from RGB to CMYK. 

• documentwide transformation of all color definitions into one model e.g., always using 
the CMYK model without rewriting existing color definitions using other models. 

• Extended color specification possibilities, such as 

- Choosing a proportional value of a given color definition e.g. , 80% of an existing 
color. 

- Mixing colors or parts of them to a new one e.g., 80% of red with 20% of blue. 

- Using the complementary color of a given one. 

• Coloring alternate tabular rows using the colortbl package. 

• Full support of all PSTricks packages (see Chapter 5 on page 2 1 3) .  

Are there any reason to use the color package at all? As far as the authors can see, there 
is only one: xcolor is still under active development, making it more likely that newly de
fined features or bug fixes may not be available everywhere. Of course, this also means that 
support for new drivers e.g., xetex becomes available more quickly than with the color 
package. 

1 1 .2 . 1  Options supported by co lor  and xco lor  
As discussed in  Section 2. 1 . 1  with reference to the graphics commands, i t  i s  ultimately 

Options to specify the the output driver for your particular output device that paints the colors on the output 
target device medium. Therefore the driver must be declared as an option on the \document class or 

\usepackage commands or specified in the configuration file color . cfg (common to 
both color and xcolor) ,  using, for instance, the command 

\ExecuteOpt ions{dvips }  

Use of  a configuration file i s  the recommended method. 



1 1 .2 Colors with ItlTEX - The color and xcolor packages 72 1 

The following driver options are supported: dvipdfmx, l dvipdfm, dvipdf, 
dvipsone, dvips, dviwin, emtex, pctex32, pctexhp, pctexps, pc texwin, pdftex, 
t c idvi,  textures, truetex, vtex, and xetex. 1 

A few options control the behavior of the named model. By default, the named color 
model has no predeclared names; the dvi psnames option defines a set of 68 CMYK colors Options for the named 

(Color Plate XIV d) that are defined in the color prologue of dvips.2 The xco lor package ad- model 

ditionally offers a set of 1 47 RGB color names according to the SVG 1 . 1  specification and a 
set of3 1 7  RGB color names according to Unix/XI I  standards. These sets are made available 
by specifying the svgnames (Color Plate XV b) or xl lnames option respectively. Note that 
there is a certain overlap in the names of these sets, which makes it important to specify the 
right order if the sets should be used together. With xcolor the colors in the named model 
become immediately available when one of the previously mentioned options is given.3 

There is an important difference between the color and xcolor packages regarding how 
the dvipsnames option is handled. The color package implicitly invokes the dvipsname s 
option with certain device drivers (dvips and others) .  This makes documents less portable, 
since the use of the corresponding color names without an explicit dvipsname s option will 
result in "unknown color" errors if the document is processed with a different driver such 
as pdftex. Therefore, xcolor always requires an explicit dvi psname s option to use these 
names-which then works in all cases. 

With the color package the colors are passed unmodified to the output device (i.e. , the 
target model corresponds to the input model) .  In this situation it is up to the driver to inter- Options for the target 

pret the color model specification; if that operation fails, the document cannot be printed color model 

on that particular device. With the xcolor package it is also possible to specify an explicit 
target color model through an option. If this is done, all color specifications are internally 
converted to the target model prior to passing them to the driver-specific code.4 This way 
the document can effectively use any color model, yet still remains printable on any output 
device that supports at least one basic color model, such as rgb or cmyk. Target color mod-
els are rgb, cmy, cmyk, hsb, gray, RGB, HTML, HSB, and Gray (these color models are ex-
plained in Section 1 1 .2.4 on page 728) .  The default pass-through can be explicitly requested 
using the option natural. 

With both packages it is possible to turn off the effect of all color commands by speci- Black and white 

fying the monochrome option. This ability can be useful when you are previewing the docu- requested 

ment prior to printing it. 
The remaining options are specific to the xco lor package. To provide support for 

other packages or extend them in a suitable way, there are currently two options available: Miscellaneous options 

hyperref enables support for the hyperref package and table loads the colortbl package. 
By default (option showerrors ) , an undefined color results in an error. When using 

the option hide errors, the color is replaced by black and only a warning is displayed. 
When the prologue option is used, xcolor writes all color definitions into a PostScript 

prologue file with the extension . xcp. This feature can be useful in conjunction with the 

1 Not available with the color package. 
2To use these with color commands from the color package, you have to specify the usenames option. Other

wise they are available only for definitions with \def inecolor.  
3 If the option name is  suffixed by a star, (e.g., svgnames * )  the set  is loaded without defining the names for 

use. In that case they have to be explicitly defined using \definecolors or a similar declaration. 
4 Section 1 1 .2.4 on page 728 explains how this setting can be overridden at any point in a document. 



722 TH E WORLD OF COLOR 

named color model, where the actual color definitions are under the control of a device 
driver such as dvips. Details can be found in the package documentation. 

1 1 .2.2 Using colors with in  the document 

The syntax for color changes is similar to that of font changes. It has two forms, one declar
ative and the other with arguments for local changes. The commands in this section are 
available with both color and xco lor. 

The simplest and most portable way of using color is specifying it by name. With this 
Using predefined colors approach, the user does not need to know the color model used. All drivers define the colors 

by name black and whi te; if they support the RGB model, they define red, green, and blue, and 
if they support the CMYK model, they also define cyan, magent a, and yellow. 

Additional colors can be defined either through options (Section 1 1 .2. 1 on page 720) or 
through color declarations (Section 1 1 .2 .3 on page 726) . 

\ color{color} \ textcolor{color }{ text} 

The first form, \color, is a state-changing command that sets colors to remain "active" un
til the end of the current (implicit or explicit) group. The second form, \ textcolor, is a 
command suitable for short colored text fragments: \ text color{color }{text} is equiva
lent to {\color{color} text} .  This example is also printed in Color Plate XIII b. 

\usepackage{ color} 

I n  a l it t le red 
nested blue text re tu rn l  

{\ color{green} Text st art s o f f  i n  green 
\text c olor{red}{a little red} 
{\color{blue}nested blue text} 
returning t o  green . }  

Using explicit color 

model values 

nested blue text 

If the predefined colors are not sufficient, you can specify a color explicitly with respect 
to a given color model. 

\color [model] {specification} \ t extcolor [model] {specijication}{text} 

Note that the meaning of the first mandatory argument (specification) to the \color and 
\ text color commands changes when the option model is given; instead of a predefined 
color name, you supply the appropriate values for the model. 

With xcolor the specification possibilities are further extended as explained in Sec
tion 1 1 .2 .5 on page 730. 

The example in the previous section (with predefined colors) can be rewritten in terms 
of the RGB model as follows (see also Color Plate XIII b) :  

I n  a litt le red 

\usepackage {c olor} 

{\color [rgb] {O , l , O} Text start s off in green 
\t ext color [rgb] { l , O , O}{a little red} 
{\color [rgb] {O , O , l }nested blue t ext} 
returning t o  green . }  

I Example : i 1 1 -2 - 1  , 



Example 

1 1 -2-3 

Example
" 1 

1 1 -2-4 i . .. .. .. ...... .. .. 1 

Example I 1 1 -2-5 1 

1 1 .2 Colors with NEX - The color and xcolor packages 

Another example (also in Color Plate XIII b) that mixes predefined and local color spec
ifications is the following list: 

1 .  magenta e myk black 

2_  predefined blue g ray It'xl 

\us epackage {c olor} 

\begin{enumerat e} 
\item \text color [cmyk] {O , 1 , O , O}{magent a cmyk} black 
\ it em \color [gray] {O . 5} 

\text color{blue}{predef ined blue } 
gray t ext 

\end{enumerat e} 

As the use of local color specifications throughout a document reduces its portability 
and makes updating it cumbersome, it is usually best to avoid using this feature. A better 
approach is to define your own colors in the preamble and then refer to them by name, as 
discussed in Section 1 1 .2.3 on page 726. 

Two commands similar to \fbox produce boxes with backgrounds shaded in a given Colored boxes 

color. 

\ colorbox [model] {background color } { text} 

The \colorbox command puts the text into a box and colors the background. This back
ground extends \fboxsep in all four directions. If the optional model argument is given, 
the background color has to be specified in the syntax for this model, exemplified with the 
two levels of gray below. 

\usepackage {color} 

\colorbox{blue}{Black t ext on blue background} 
\par\colorbox [gray] { _ 80}{% 

\textcolor{blue}{Light background}} 

\par\ colorbox [gray] { . 20}{% 
\text color{white}{Dark background}} 

\f colorbox [model] {frame color} [background model] {background color Htext} 

The \fcolorbox command puts a frame (in the color specified) around the colored box 
(this example is also in Color Plate XIII b ) .  If the model argument is used it applies to both 
the frame color and the background color; i.e., both need to be specified in the syntax for the 
given model. With xcolor it is possible to specify a separate background model. 

\usepackage{color} 

\fcolorbox{red} {green}{Black t ext , 
green background , red frame} 

\par\smallskip 
\fcolorbox{red}{green} {\color{white}% 

White t ext , green background , red f rame} 

723 



724 

Fun with color 

Fun with color 

THE WORLD OF COLOR 

Some further examples (also in Color Plate XIII b) show how to control the exact form 
of the box with the \fbox parameters \fboxrule and \fboxsep, which specify the thick
ness ofthe rule and the size of the shaded area respectively. 

Fun with color 

\usepackage{color} 

\setlength{\fboxrule}{6pt}% 
\setlength{\fboxsep}{10pt}% 
\colorbox{yellow}{Fun with color}\qquad 
\fcolorbox{red}{yellow}{Fun with color} 
\par\bigskip\par 
\setlength{\fboxrule}{2pt}'l. 
\setlength{\fboxsep}{5pt}% 
\colorbox{green}{Fun with color}\qquad 
\fcolorbox{red}{green}{Fun with color} 

Fun with color 

Combining the use of PostScript fonts and color, you can construct lists with colorful 
elements; the \ding command is part of the pifont package described in [83, p. 378]. 

\usepackage{pifont , color} 
\newenvironment{coldinglist}(l) 

{\begin{list}{\textcolor{blue}{\ding{#l}}}{}} 
{\end{list}} 

\newcommand\OnThe [l] {On the \textcolor{blue}{#l} day of 

o On the first day of Christmas my 

true love sent 10 me 

Christmas my true love sent to me} 

\begin{coldinglist}{113} 

.. a partridge in a pear tree 

o On the second day of Christmas 

my true love sent to me 

.. two turtle doves 

.. and a partridge in a pear tree 

o On the third day of Christmas my 

true love sent to me 

.. three French hens 

.. two turtle doves 

.. and a partridge in a pear tree 

\item \OnThe{first} 
\begin{coldinglist}{42} 

\item a partridge in a pear tree 
\end{coldinglist} 
\item \OnThe{second} 
\begin{coldinglist}{42} 

\item two turtle doves 
\item and a partridge in a pear tree 

\end{coldinglist} 
\item \OnThe{third} 
\begin{coldinglist}{42} 

\item three French hens 
\item two turtle doves 
\item and a partridge in a pear tree 

\end{coldinglist} 
\end{coldinglist} 

More complicated color support can be obtained in the framework of the colortbl package, 
which allows you to produce colored tables (see Section \ \ .3) or the beamer class, which 
makes color slides (see Section 11.4). 



1 1 .2 Colors with NEX - The color and xcolor packages 

\pagecolor [model] {background color} 

You can set background color of the whole page by using \pagecolor, which takes the same 
arguments as \ color but sets the background color for the current and all subsequent 
pages. Since it is a global declaration, you must use \page color{whi te}  to return to a 
white background (the default setting) and it makes no sense to use it inside a mini-page. 

Using colors from the named model 

Using the named color model has certain advantages over using other color models. First, 
since the output file contains a request for a color by name, the actual mix of primary colors 
used to obtain the color requested can be tuned to the characteristics of a particular printer. 
In particular, the dvips driver uses an external header file color . pro that contains the def
initions of the color names. To ensure constant colors when printing on different devices, 
you should ideally produce a different version of this file for each output device that is to be 
used. 

Second, apart from the "process colors" which are produced by mixing primary colors 
during the print process, you may want to use "spot" or "custom" colors for which a partic
ular color name refers not to a mix of primaries, but rather to a particular ink. The parts of 
the document using this color are printed separately with this named ink color. 

Special concerns with color in �EX 

You need to be aware of some special situations relating to stored boxes in �TEX. The follow
ing example (also printed in Color Plate XIII b) shows that color is defined when the box 
is created with the \sbox command, not when it is used (i .e. , the color characteristics are 
stored with the box and the surrounding color does not influence that color) .  

\usepackage {xcolor} 
\newsavebox{\X} 

\sbox{\X}{ [black text] and 
\color [cmyk] {O , O . 6 , O . 8 , O} [orange t ext] } 

725 

Start with [black text] and l orangt: 
to black 

I ,  and return 
Start with \usebox{\X} , and return to black 

[black text] and I orange le x !  I ;wd {\col or{green} Start in green , see 
\usebox{\X} and once again green} 

This parallels mEX's handling of font attributes, which are also fixed when the box is created. 
However, the internal mechanisms used are quite different, which can lead to unpleasant 
surprises if new commands are not carefully designed. 

When text is stored inside a box such as with the \sbox or the low-level \hbox com
mand, each character carries with it a note about the font in which it is set. In contrast, color 
is handled by putting "start color" and "end color" messages into the output. Thus, if such a 
constructed box is decomposed with 10w-level 1EX commands, the correspondence between 
color and text can be lost. As an example of the problems this can cause, consider a situation 
in which "red" starts at the bottom of one page and continues on the next; when a 'lEX for-



726 THE WORLD OF COLOR 

mat that is not aware of "color", such as plain1FX (but not E'-TEX 2<:: ) ,  comes to format these 
pages, the footer and header on the page break in question are also printed in red. Similar 
situations arise when such a format handles lists (e.g., the item labels might be printed in 
the wrong color) . 

Standard E'-TEX goes a long way to support color, and many of the potential problems are 
circumvented in the main e.1E,X code ( in practice you do not have to worry about coloring 
headers and footers by accident) .  Nevertheless, but you may get unexpected color effects if 
you use packages that were not written with the restrictions of color support in mind. These 
problems are discussed in detail in the document EJTp)( 2<:: for class and package writers dis
tributed with E\1E,X, and in [ 103 ) .  Unless you are a confident E'-1E,X programmer, it is sensible 
to confine your use of color to simple situations using official E'-TEX rather than 10w-level 1FX 
commands (e.g., \savebox instead of \setbox, \mbox rather than \hbox), so you can be 
sure to obtain the expected result. 

1 1 .2 .3  Defining colors 

When you use the color package, the colors black, white,  red, green, blue, cyan, 
magenta, and yellow should be always available. With xco lor the colors orange, violet,  
purple,  brown, darkgray, and l ightgray are also predefined (see Color Plate XIV c) .  A 
lot of E\TEX packages define other colors. 

Defining single colors 

To define new colors yourself, you can use the \def inecolor declaration, which is avail
able with both the color and xco lor packages. If you use xco lor, a number of other declaration 
possibilities are available as well. 

\def inecolor [type] {nameHmodel}{colorspecification} 

The \def inecolor declaration associates the name with a color model and a color specifi
cation so that it can be used afterwards in any color command. 1 The name should consist of 
letters and digits (even though certain other characters currently work) . This avoids misun
derstandings and ensures compatibility with future extensions of xcolor. Thus valid names 
include be red20 and LGC2blue. 

The declaration is local to the current group (unless it is preceded by an \xglo bal 
command) . Thus, if the color should be available throughout the document, the declaration 
is best placed in the preamble. 

The xcolor package offers additional declarations. 

\providecolor [type] {nameHmodelHcolor specification} 
\colorlet{name} [new model] {color} 

\providecolor works like \def inecolor, except that it will not overwrite a color defi
nition if it already exists. 

I The optional type argument is available only with xcolor and enables you to define colors in the "named" 
model. This is of interest only in special circumstances; see the xcolor package documentation for details. 



1 1 .2 Colors with J!tTEX - The color and xcolor packages 

The \colorlet declaration takes an existing color name and assigns it to a new name. 
If the optional new model argument is present, the color is first transformed into that model 
and then saved under the new name; otherwise, this is a straight copy. 

In the example below, five new colors are defined: MyOrange defines an orange color 
in the cmyk model; the next line translates that color into the rgb model and assigns it to 
MyRGBOrange; the third line "provides" a definition for blue (which would actually pro
duce red due to the setting) , but that declaration is ignored because there already exists 
a definition for blue; the fourth line defines a gray value; and the final definition makes 
the color Black from the named model available as MyBlack. Because of that declaration, 
xcolor must be loaded with the dvipsnames option. After these declarations the new colors 
can be used in addition to the built-in colors. 

Defining sets of colors 

\us epackage [dvipsname s] {xcolor} 
\definecol or{MyOrange }{ cmyk}{O , O . 42 , 1 , O} 
\ colorlet{MyRGBOrange} [rgb] {MyOrange} 
\provide color{blue}{rgb} { l , O , O} 
\def ine color{MyGrey}{gray}{O . 75} 
\def ine color{MyBlack}{named}{Black} 

\newcommand\blob [ l ]  { { \ color{#1 }\rule{3cm}{5mm} } }  
\blob{MyOrange} \\  \blob{MyRGBOrange}\\ 
\blob{blue} \ \  \blob{MyGrey} \\ \bl ob{MyBlack} 

To simplify the declaration of several colors with the same color model (but otherwise inde
pendent), xcolor offers two declarations that are short forms for calling \def inecolor or 
\providecolor multiple times. It also provides support for specifying color series where 
each color in the series is built according to some algorithm; this feature is covered in Sec
tion 1 l .2.6 on page 734. 

\def inecolorset [type] {modelHprefixHsuffix} {set specification} 
\providecolorset [ type] {modelHprefixHsuffixHset specification} 

The \def inecolorset declaration defines a set of colors in a specified model according 
to the set specification. This specification consists of a semicolon-separated list of individual 
color definitions. Each such color definition consists of a name for the new color and a color 
specification in the chosen color model separated by a comma. For example, 

\def ine colorset {rgb} {}{}{red , l , O , O ; green , O , l , O ; blue , O , O , l } 

defines the three rgb base colors red, green, and blue. The arguments prefix and suffix 
are used to make up the color name, so that it is possible to specify common name parts in 
them if so desired. 

727 



728 THE WORLD OF COLOR 

Table 1 1 .2: Color models supported by xcolor 

Name Base Colors/Notions Parameter Range Default Target model 

rgb red, green, blue [0, 1 ] 3 yes 

cmyk cyan, magenta, yellow, black [0, 1 ] 4 yes 

hsb hue, saturation, brightness [0 , 1 ] 3 yes 

gray gray [0 , 1 ]  yes 

cmy cyan, magenta, yellow [0 , 1 ] 3 yes 

HTML RRGGBB {OOOOOO, . . .  , FFFFFF} HTML � rgb 
RGB red, green, blue {O , I ,  . . .  , LP L = 255 RGB � rgb 
Gray gray {O , I ,  . . .  , N} N = 15  Gray � gray 
HSB hue, saturation, brightness {O , I ,  . . .  , MP Iv! = 240 HSB � hsb 
Hsb hueD, saturation, brightness [0, H] x [0 , 1 ]

2 
H = 360 no 

tHsb hueD, saturation, brightness [0 , H] x [0 , 1 ]
2 

H = 360 no 

wave lambda (nm) [363 , 8 14] no 

L, M, and N are positive integers; H is a positive real number. 

The \providecolorset declaration works in the same way, but uses the command 
\providecolor to set up the individual colors. Thus the colors will be defined only if there 
isn't already a definition for them. 

\usepackage{xcolor} 
\provide colorset {gray}{Gray}{}{9 , O . 9 ; 6 , O . 6 ; 3 , O . 3} 

\newcommand\blob [ l ]  { { \ color{# 1 } \rule{3cm}{5mm}} }  
\blob{Gray9}\\ \blob{Gray6}\\ \bl ob{Gray3} 

1 1 .2 .4 Color models with xco lor 
As mentioned earlier, the color package copies the color specifications straight into the . dvi 
file, requiring the device driver to interpret this information correctly. Consequently, it can 
support only "base" color models that are supported at least by some driver, and a document 
using colors models will print only on output drivers supporting those models. 

By contrast, xcolor can convert between different color models and decide which color 
model information to pass to the output driver, thereby allowing any document to print with 
any driver. In addition, it supports other models for input purposes only (e.g., specifying 
colors by their wavelength) .  

The models currently supported by xcolor are listed in Table 1 1 .2 with an indication 
about their parameter ranges and whether they can serve as target models. Some models 
are only intermediate target models-e.g., specifying HTML results in all color specifications 
being converted into HTML and then afterwards into rgb. 



Example 

1 1 -2- 1 1  

Example ; 

1 1 .2 Colors with NEX - The color and xcolor packages 

The first four models-rgb, cmyk, hsb, and gray-are the ones directly supported 
by PostScript. The cmy model is a simple complement of rgb, mainly used internally for 
transformation purposes. HTML is a model derived from rgb to enable color specifications 
as used in CSS or Web pages. 

dante 

\usepackage{xcolor} 
\newcornmand* \DANTE{% 

{\usefont{OT1} {dant e}{m}{n} \selectfont DANTE}} 

\colorbox [HTML] {E5E5E5}{% 
\color [HTML] {2BOOFO}\Huge\DANTE} 

RGB, Gray, and HSB correspond to the base models with the same names in lowercase, 
except that the input ranges are not in the range 0 to 1 but instead are discrete integer values 
in adjustable intervals (default values are shown in Table 1 1 .2 ) .  Hsb and tHsb are variations 
of hsb where the hue value is represented by a range different from [0 , 1 ] .  With the default 
of H = 360, one can think of this model as representing the 360 degrees of a color wheel. 
The tHsb corresponds to Hsb after applying a set of piecewise linear transformations, a 
useful feature when you are working with different types of color wheels (for details, see 
the package documentation [68] ) .  Finally, the wave model is an attempt to enter a color 
specification by its wavelength in the visible light spectrum. It is an input model only, with 
no conversions set up to transform any of the other models to this one. 

The next example shows an application of the wave model displaying the entire spec
trum by placing small vertical lines side by side, each of which is colored in the color corre
sponding to the wavelength of the position (also shown in Color Plate XIV a). 

\usepackage {xcolor} 

\newcounter{WL} \setlength\unitlength{ . 75pt} 
\begin{pi cture} (460 , 60 )  (355 , - 1 0 )  
\sffamily \t iny \l inethickness { 1 . 25\unitlength} 
\setcount er{WL}{360} 
\mult iput (360 , 0 ) ( 1 , 0 ) {456}% 

{{\color [wave] {\theWL}\l ine ( O , 1) {50}}\st epcount er{WL}} 
\l inethi ckness{0 . 25\unitlength}% 
\setcounter{WL}{360} 
\multiput (360 , 0) (20 , 0 ) {23}% 

{\pi cture ( O , O ) 
\line (0 , - 1 ) {5} \mult iput ( 5 , 0 ) ( 5 , 0 ) {3}{\line (0 , - 1 ) {2 . 5 }} 
\put ( 0 , - 1 0 ) {\makebox ( 0 , 0 ) {\theWL}}\addt o count er{WL}{20} 
\endpi cture} 

\end{picture} 

1 1 -2- 1 2  360 380 400 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740 760 780 800 

729 



730 THE WORLD OF COLOR 

So how do we specify the target color model? One possibility is to set it as a pack
age option as described in Section 1 1 .2. 1 on page 720. Alternatively, it can be set using 
\selectcolormodel or \subst itutecolormodel. 

I \selectcolormodel{model} I 
The \selectcolormodel declaration takes one of the model names suitable as a target 
model from Table 1 1 .2 as its argument. From that point on, all color specifications will be 
converted into that model (or the corresponding base model as described earlier) .  The dec
laration is local to the current group. 

A useful technique is to set cmy k as the target model, which is often required by printing 
houses. Another interesting technique is to use gray, as it allows you to simulate how your 
document looks on a black-and-white printer. 

Transformation from one color model into another is not always 100% accurate, as 
some of the color models represent different color spaces. In addition, all the calculations 
performed by xco lor are done within the somewhat limited accuracy of the 'lEX engine. Thus, 
if you have a certain color specification in some model, it might be best to pass it on un
changed to the driver if that driver supports this model. 

In the situation where your driver has a broken or nonexistent implementation of 
a certain model while other models are properly supported, you can use the command 
\subst i tutecolormodel to transform that one color model, leaving the handling of oth
ers unchanged. 

\subst i tutecolormodel{source modelHtarget model} 

The \subst i tutecolormodel declaration directs xco lor to transform any color specifica
tion given in the source model into the corresponding form in the target model. The declara
tion is local to the current group. 

1 1 .2.5 Extended color specification with xco lor  
The advantages of  xcolor over the old color package become obvious when you look at the 
color specification possibilities. With color you can only specify colors by giving their values 
in a some color model, but what happens if you don't have the right values available? In that 
case, a calculator, patience, and a good knowledge of the formulas behind the color models 
are required-the latter being something the average user will lack! 

The xco lor package offers an extended specification syntax that allows you to perform 
many tasks without knowing these internal details. We will introduce this syntax first with 
a number of practical examples and only afterwards give the precise syntax and algorithm 
used. The examples use \ color as the command for demonstration even though this syntax 
is available for all color commands-including the \ colorlet declaration, where it is most 
useful. 

If a document is printed in two colors (like the book you are currently reading) , it may 
Printing in two colors be possible to mix the second color with white or black at no extra cost (just as you are 

normally able to produce gray by mixing the black color with white) .  To mix white into a 
specific color (a process called tinting), you append an exclamation mark to the color name 



1 1 .2 Colors with �EX - The color and xcolor packages 

followed by a number. This number describes the percentage of this color to use in the mix, 
with the remainder being white. 

\usepackage{xcolor} 

\newcommand\blob[l] {{\color{#l}\rule{l Scm}{Smm}}} 
\blob{blue} \blob{blue !7S} \\ \blob{blue ! SO} \blob{blue ! 2S} 

What we see in this example is actually an abbreviation of the more general syntax for 
mixing colors: if the second color in the mix is not white, you have to specify it as well by 10ne and shade 

adding it to the right, again separated by an exclamation mark. The next example shows the 
mixing of blue with black (called adding tone) and gray (called shading). 

\usepackage{xcolor} 

\newcommand\blob[l] {{\color{#1}\rule{1 .5cm}{Smm}}} 
\blob{blue} \blob{blue}\ \ 
\blob{blue !75!black} \blob{blue !7S! gray}\\ 
\blob{blue !50!black} \blob{blue !50! gray}\\ 
\blob{blue!25!black} \blob{blue !2S!gray} 

It is also possible to mix more than two colors in this way, but you have to understand 
how the algorithm works to do it successfuUy. Assume you have the three colors in individual Colorful mix 

buckets and some empty buckets for mixing. You mix the first two colors according to the 
specified percentage into a free bucket. That gives you a new color in that bucket. Then you 
use this color and mix it with the third color again into a free bucket, etc. 

!fyou want to mix several colors with a specific percentage in the final mix, that can still 
be quite tricky. The next example reimplements the mix of blue and gray (which is a 50% 
mix of black and white) from the previous example. Here it is clearly simpler to first mix 
black and white and then blue to obtain the same results as before. 

\usepackage{xcolor} 

\newcommand\blob[l] {{\color{#1}\rule{1 .5cm}{5mm}}} 
\blob{blue} \blob{blue} \\ 
\blob{white ! 50 ! black !2S!blue} \blob{blue ! 75 ! gray}\\ 
\blob{whit e ! 50 !black!50!blue} \blob{blue ! SO ! gray}\\ 
\blob{white!50!black!7S!blue} \blob{blue ! 25 ! gray} 

It is also possible to specify the complement of a color or color mix with this syntax, 
by putting a minus sign before the specification. The complement is the color that, if com
bined with the original color, yields white. However, in the example below, mixing the colors 
test and anti yields gray due 10 the fact that each of the colors in the mix consists of50% 
white. Only the extended specification in the third row (explained afterwards) allows us to 
use 1 00% of each color, i.e., combine them. 

I I I-I 

1-11-1 

1 1 

\usepackage{xcolor} 
\colorlet{test}{yellow! 90} \colorlet{anti}{-test} 

\newcommand\blob[l] {\fbox{\color{#l}\rule{l . Scm}{Smm}}} 
\blob{test} \blob{anti} \ \ 
\blob{test ! 50 ! anti} \blob{gray} \\ 
\blob{rgb , l : test , l ; anti , l} 

731 



732 THE WORLD OF COLOR 

As an alternative (or rather an extension as we will see) ,  xcolor allows us to mix colors 
Mixing in the painters by adding defined portions of different colors in the mix. For instance, 2 parts blue plus 

way 3 parts black and white should result in the color in the last line of the example. All colors 
participating in the mix are first converted into a specified core model (the next example uses 
rgb) and are then mixed according to the factor specified after each color and an optional 
divisor specified after the core model (as in the previous example) . 

\usepackage{xcolor} 

\newcommand\blob [ 1 ] {{\color{# 1 } \rule{ 1 . 3cm}{5mm}}} 
\blob{blue} \blob{blue} \\ 
\blob{rgb : blue , 6 ; white , 1 ; black , 1 } \blob{blue ! 75 ! gray}\\ 

\blob{rgb : blue , 2 ; white , 1 ; black , 1 } \blob{blue ! 50 ! gray}\\ 
\blob{rgb : blue , 2 ; white , 3 ; black , 3} \blob{blue ! 25 ! gray} 

This example uses named colors in the mix. However, each color can be replaced by a 
color mix (as introduced in the earlier examples) ,  allowing very flexible specifications. 

Standard color expressions 

The examples so far (see also Color Plate XIV b) have probably introduced the syntax of 
color expressions well enough for most practical situations. Here we formally define it and 
explain the algorithm that is used to produce the result color. 

(prefix) (coloro / ! (valuel / ! (colorl / ! . . .  ! (valuen l ! (colorn l {j>ostfix) 

The algorithm starts by extracting the color model and parameters from (coloro l to define 
a temporary color ( temp) . If the (postfix) has the form ! ! [num] , then the ( temp) color will 
be the corresponding color ( numl from the color series named (coloro ) ;  see Section 1 1 .2.6 
on page 734 for details. 

It then takes ( temp) , (valuel ) ,  and (colorl ) to mix a new color by taking (valuel )% 
of  ( temp) and ( 100 - (valuel ) ) %  of  (colorl ) ,  saving the result a s  the new (temp) color. If 
(colorl l is defined in a different model than temp, it is first transformed into the latter model 
and then mixed. This step is then repeated for all remaining color pairs. 

Finally, ( temp) is changed to its complementary color if the (prefix) consists of an odd 
number of minus signs (- ) .  At this point temp contains the result color, which is then either 
used or serves as input to other operations depending on the calling command. 

The (postfixl can also take the form ! ! followed by zero or more + signs. This syntax 
is used in conjunction with color series (explained in Section 1 1 .2.6 on page 734) .  It has no 
influence on the color produced. 

Extended color expressions 

Example 1 1 -2- 1 7  introduced the extended color expressions of xcolor. In this section we 
formally define them. 

(core model) .{dlv) : (exprl / ' lfacl / ; (expr2 / '  lfac2 / ; ' " ; (exprn l ' lfaCnl  

Each (expri l in  the extended expression i s  a color expression as  discussed earlier. These 
expressions are all evaluated according to the algorithm above and then converted into the 

Example 

1 1 -2- 1 7  



Example 

1 1 -2 - 1 8  

Example 

1 1 -2- 1 9  

1 1 .2 Colors with �EX - The color and xcolor packages 

specified (core model) , resulting in a vector Ci in that model. Each color (expri ) has an 
associated weight factor lfaci ) .  The result color is then calculated as 

� lfaci ) ---+ (result color) = � 
(div) 

C i 

That is, each color vector from the first step is multiplied with a weight based on its lfaci ) 
value and then all the results are summed. 

If (div) is not present, it is calculated automatically as (div) = L�=l lfaci ) i=- 0 and 
required to be non-zero. In most cases (div) will probably be implicit; if explicitly given 
it is not required to equal the sum of all factors. Example 1 1 -2 - 16  on page 73 1 used 1 = 

(div) = lfaci ) (adding each color at full strength to the mix) to superimpose a color and its 
complement. 

The current color in color expressions 

There also exists a reserved color name " . " (a dot) for use in color expressions. It is declared 
implicitly and denotes what PostScript calls the current color. This notation can be useful 
when calculating colors based on each other; e.g., in the next example the background color 
moves from dark towards white, while the text color changes in the opposite direction. 

This effect is achieved by using an expression based on the current color inside the 
definition of \CBox: with every call to this command, the new current color is set to 80% 
of the old one (\c olor{ . ! 80}) .  The following \colorbox then uses this color for the 
background and its complement for the text. 

\usepackage {xcolor , multido} 
\newcommand\CBox [ l ] {% 

733 

\ color{ . ! 80}\colorbox{ . }{{\color{- . }# 1 } } }  

Color expressions within PSTricks 

\mult ido{\iCol= 1 + 1 } { 1 0}{% 
\CBox{\Huge\strut \ iCol}} 

Many commands in PSTricks support keywords to set the color of some part of the current 
object or to fill the background, for example. PSTricks loads xcolor by default and allows all 
the color-related keywords to take an xcolor expression instead of a previously declared color 
if so desired. 

\usepackage{pstricks} 

\psframebox [linecolor={ [rgb] {O , O , l } } , 
f illcolor=yellow ! 90 ! cyan , 
doublecolor=-yellow ! 90 ! cyan , 
f i l l style=solid , doublel ine=true , 
doublesep=10pt , frame s ep= 10pt] 

{\Huge Test\t ext color{red ! 75}{Test}} 

The only potential problems you have to watch out for are that the square brackets 
around the color model might be mistaken for the end of the optional argument holding 



734 THE WORLD OF COLOR 

the key value list. Similarly, commas used in the extended color expressions might be mis
taken for a comma separating the key/value pairs in the argument. In that case you have 
to surround the color expression with an extra set of braces, as we did for the linecolor 
value in the example above. 

1 1 .2.6 Support for color series 

With the declarations given in Section 1 1 .2.3 on page 726, it is possible to assign specific 
colors to names. Sometimes, however, a large number of different colors are needed, each 
built according to some algorithm. In this case it may be impractical to predeclare all color 
names individually. For this situation xco lor offers a color series declaration. 

A color series declaration defines a base color and an algorithm for generating in
dividual colors from this base. Once such an algorithm is defined with the command 
\def inecolorseries, it has to be initialized with \resetcolorseries. From that 
point on it is possible to access the colors within the series using the standard color expres
sion (page 732) .  By using a special postfix form in such an expression we can step through 
the series as well as explicitly access a specific component. 

There is an important difference between a color series and a single color defined by the 
commands in Section 1 1 .2.3: a color series is global for the document, whereas a color, when 
declared by \def inecolor and friends, is local in its group. 

\def inecolorseries{name}{core-model}{method} 
[base-model] {base-spec} [step-model] {step-spec} 

\resetcolorseries [divisor] {name} 

The algorithm and the base color for a color series are declared with the command 
\def inecolorseries and associated with name. This has to happen exactly once per 
series and usually occurs in the document preamble. The initialization is done with 
\resetcolorseries. This command can appear as often as necessary to restart the se
ries, such as with a different divisor. 

\resetcolorseries initializes the series with the declared base color specified 
through the base-model and base-spec converted to the core-model. Furthermore, it cal
culates a step vector that defines, given one color within the series, how to obtain the 
next color. This step vector depends on the chosen method as well as on the arguments 
step-model, step-spec, and divisor. If the optional divisor argument is missing, it defaults 
to \colorseriescycle (which, in turn, has a default definition of 16 ) .  The available 
methods last, grad, and step are discussed below. 

The last method When last is specified in \def inecolorseries, the arguments step-model and step-
spec denote the last color in the series and the step vector s is calculated as 

----.. ----.. 

----.. 1 ----.. ----.. 
s = -.-. - ( £ - b )  

dlvlsor 
( 1 Ll  ) 

where b and £ are the color vectors of the base and last colors, respectively, expressed in 
the core-model. Thus when stepping through the series, the color gradually transforms from 
the base color to the last color, with the amount of change depending on the size of divisor. 



Example 

1 1 -2-2 1 

1 1 .2 Colors with INEX - The color and xcolor packages 

In the next example we transform black into white in 200 steps. Each of the color expres
sions explicitly requests a color in the sequence using the syntax ! ! [num] . Later examples 
show different methods to access the colors in a color sequence. 

\usepackage{xcolor , mult ido} 
\def inecolorseries{te stA} 

{rgb}{last}{black}{whit e} 

\resetcolorseri e s [200] {te stA}% series of 200 col 
\l inethickness{O . 005\l inewidth} 

\noindent 

\multido{\nC= 1 + 1 }{200}{\color{t estA ! ! [\nC] }% 
\line ( O , 1 ) {50}\hspace{O . 005\l inewidth}} 

With the grad method the step vector s is given by 

-. 1 -. 
S = -

d
" step-spec 
IVlsor 

( 1 1 .2 )  

In this case the optional argument step-model i s  ignored and the mandatory argument step
spec denotes a transformation vector in the core-model. Combining Equations ( 1 1 . 1 )  and 
( 1 1 .2), it follows that 

-. -. � jI = b + step-spec 
-. 

In other words the last color in the color series is given by adding step-spec to its base color. 
In the example below, two color series are defined: testB runs gradually from yellow 

( [rgb] ( 1 , 1 , 0 ) to black ( [rgb] (0 , 0 , 0 ) defined by using the vector ( - 1 , - 1 , 0 ) and 
the method grad, and teste transforms yellow into cyan ( [rgb] ( 0 , 1 , 1 ) , again using 
grad and an appropriate transformation vector. 

This time we use the ! ! + . . .  syntax to step through the color series. With the postfix 
! ! the current color in the series is chosen. Afterwards, for each +, one step in the color 
series is calculated. Thus testB ! ! + selects each color in the series testB one by one, while 
teste ! ! +++ prints every third step. Whenever we reach the end of the series, the series 
restarts at the beginning. Thus t est B is traversed twice (as the \mul t i do has 200 steps but 
the series only 100) and teste three times (200 steps in the series but jumping ahead three 
steps each time) .  This is also printed on Color Plate XV(a) .  

The grad method 

735 

\usepackage{xcolor , multido} 
\define c olorseri es{te stB}{rgb} {grad} [rgb] { l , l , O } { - l , - l , a} 
\definecolorseries{te stC} {rgb}{grad} [rgb] { l , l , O} { - l , O , 1 } 
\resetcolorseries [90] {testB}\re set colorseri e s [ 1 80] {testC} 
\ l inethi ckness{O . 005\linewidth} 

\no indent 
\mult ido{\nC= 1 + 1 } { 180}{\color{testB ! ! +}% 

\line ( O , 1 ) {50}\hspace{O . 005\l inewidth}}\\ [2pt] 
\mult ido{\nC= 1 + 1 } { 180}{\color{testC !  ! +++}% 

\l ine ( O , 1 ) {50}\hspace{O . 005\linewidth}} 



736 THE WORLD OF COLOR 

The step method In contrast to grad, the step method interprets step-spec directly as the step vector 
and applies it each time. 

\usepackage{xcolor , multido} 
\de f inecolorseries{te stC}{rgb}{step} 

[rgb] {0 . 85 , 0 . 1 5 , 0 . 55}{0 . 37 , 0 . 47 , 0 . 17} 

\re setcolorser ies [ 1 00] {testC} 
\l inethi ckne s s {O . O l \ l inewidth} 

\no indent 
\multido{\nC= 1 + 1 } { 1 00}{\color{testC ! ! +}% 

\ l ine ( 0 , 1 ) {50}\hspace{0 . 0 1 \ l inewidth}} 
\\ [2pt] 
\ linethi ckness{0 . 02\l inewidth} 
\mult ido{\nC= 1 + 1 } {50}{\color{testC ! ! ++}% 

\line (0 , 1 ) {50}\hspace{0 . 02\linewidth}} 

Obviously, when applying a step vector (Xl , _ . .  , Xn ) such as ( 0 . 37 , 0  _ 47 , 0 .  17 )  
multiple times, the resulting vector components will quickly go outside the [0 , 1 ]  interval. 
To prevent this and ensure that each step results in a defined color vector in the core-model, 
the resulting vector is always remapped into the unit cube using the mapping 

The general algorithm is described in the xcolor package documentation. 

if X = 1 

iLE -=J 1 

In the last example of this section, we visualize the HSB (Hue, Saturation, Brightness) 
model, which is well suited for graphics artists. In this model colors are given by one num
ber (the hue), and saturation and brightness can easily be varied, independently of the color. 
This model is also well suited to color calculations. In the example (also printed in Color 
Plate XIII a) , we vary each of the three HSB parameters in turn, in 10 steps of 0 to 1 by defin
ing a suitable color series. The numbers are printed with the complementary color, which is 
available by the minus sign: \color{ -testH ! ! [\nColr] } .  

\usepackage {xcolor , multido} 
\definecolorseries{te stH}{hsb}{last} [hsb] {O , l , l } [hsb] { 1 , 1 , 1 } 
\de f inecolorseries{testS}{cmyk}{last} [hsb] { . l , O , l } [hsb] { . 1 , 1 , 1 } 
\de f ine colorseries{testB}{cmyk}{last } [hsb] { l , l , O} [hsb] { 1 , 1 , 1 } 
\re setcolorserie s [ 10] {testH} \resetcolorseries [ 10] {testS} 
\resetcolorserie s [ 10] {testB} 
\newcommand\dot est [2] {\makebox [25mm] [1] { # 1 : }  

\mult ido{\nColr=0+ 1 } { 10}{\c ol orbox{#2 ! ! [\nColr] } 
{\ color{-#2 ! !  [\nColr] }\strut . \nColr}}} 

\dot e st {Hue (H) }{te stH} \\ 
\dot est {Saturat ion ( S ) }{testS} \\ 
\dot est {Brightne s s  (B) }{testB} 

Example 

1 1 -2-22 



Example : 
1 1 -2-23 i 

1 1 .3 Coloring tables 

Hue (H) : 

Saturation (S) :  

Brightness (B) :  

1 1 .2.7 Color blending and masking 

The xcolor package offers an  number of  auxiliary features such a s  color blending and color 
masking. The process of color blending involves adding a certain color expression to all 
subsequent color commands. With color masking, a specified color is masked out from all 
following color specifications. A special application of this technique is color separation, in 
which all colors in the document are separated into the base colors of a specific color model 
(e.g., cmyk) .  Details can be found in the package documentation. 

1 1 .3 Coloring tables 

Adding color to tables is not as straightforward as one might like. The basic problem is that 
color support for lines and cells cannot be provided at the 'lEX level but must be added in the 
code of the various packages. Table packages are complex and varied, and the standard ones 
do not directly provide color. E'-TE,X's color or (even better) the xcolor package can provide a 
standard interface to the color facilities of drivers, but a good deal of work must still be done 
on the internal commands of the table-building environment (t abul ar or arr a y). 

1 1 .3 . 1  The colortbl package 

The colortbl package was written by David Carlisle to provide basic facilities for coloring 
table cells and lines. It can be used with other E'-TEX table add-on packages such as longtable,  
dcolumn, and hh l ine, I and loads the standard color and a rray packages to provide basic fa
cilities. 

To combine colortbl with xco lor (which offers some extended functionalities for tables) ,  
load xcolor with the option table, which then automatically loads co lortbl and adds some 
additional commands for use in tables. 

\columncolor [color model] {color} [left overhang] [right overhang] 

This is the basic command of the co lortbl package. It can be used only in the argument 
of a > column specifier, either in a table preamble or in the column specification of a 
\multicolumn. It provides a background color for that column or cell. The color model 
and color specifications are just as in normal use of the color/xcolor package. The "overhang" 
arguments determine how far the color spreads beyond the column contents; they default to 
the values of \ tabcolsep ( in tabular) or \arraycolsep (in array); i.e., the color fills 
the entire column. 

1 You can also use colortbl with tabular* ,  but see the documentation for examples of border conditions 
where this does not yield the expected results. 

737 



738 THE WORLD OF COLOR 

As our first example we show a multicolor table with interesting proposals for a few days' 
trip to Australia, also printed as Color Plate XIII c: 

\usepackage{colortbl} 
\setlength{\extrarowhe ight } {2mm} \setlength{ \tabcol sep} {2mm} 

\begin{tabular}{l *{2}{>{\columncolor{yellow}}c  c} 
>{\columnc olor{red}\bf series}c<{\ , \textsterl ing}} 

\hline 
\mult i column{3}{>{\columncolor{red}}1}{\color{white}\text sf {LONDON}} 

& \mult i c olumn{3}{>{\columncolor{red}}r}{\color{white}\text s f {Price}} 
\ \ [ 1pt] 
\hline 
Sydney & OG4G &Thu Oct 10 &Mon Oct 21 or 28 & 1 1  or 18 days 

& &Thu Oct 17 &Mon Oct 
& OG7A &Sun Oct 13  &Mon Oct 
& &Sun Oct 20 &Mon Oct 

\hline 
\end{t abular} 

2 1  or 28 & 4 
2 1  or 28 & 8 
28 & 8 

or 1 1  
or 15 
days 

days 
days 

&999\\ 
&999\\ 
&999\\ 
&999\\ 

Contrast this with the following simpler version, in which the \newcolumntype com
mand defines a column with gray background and the colors cover only the text in the cells, 
not the white space on either side: 

\usepackage{colortbl} 
\setl ength{ \extrarowhe ight }{2mm} \setlength{ \tabcol sep}{2mm} 
\newcolumntype{G}{>{\columncolor [gray] {0 . 8} [Opt ] [Opt] }c} 

\begin{tabular}{l c G c G >{\bf serie s}c<{\ , \textsterl ing}} 
\hl ine 

\multicolumn{3}{>{\columncolor [gray] {0 . 5}}1}{\t ext sf {LONDO N}} 

&\multicolumn{3}{>{\columncolor [gray] {0 . 5}}r}{\text s f {Pri c  e}} 
\ \ [ 1pt] 
\hl ine 

Sydney & OG4G &Thu Oct 10 &Mon Oct 21 or 28 & 1 1  or 18 days 
& &Thu Oct 17 &Mon Oct 
& OG7A &Sun Oct 13 &Mon Oct 
& &Sun Oct 20 &Mon Oct 

\hline 
\end{tabular} 

2 1  or 28 & 4 
2 1  or 28 & 8 
28 & 8 

or 1 1  
or 15 
days 

days 
days 

&999\\ 
&999\\ 
&999\\ 
&999\\ 

I · · · ·· .......... . 
i Example 

1 1 -3 - 1  



�---, 
'
" 

Example I : 1 1 -3-2 

1 1 .3 Coloring tables 

This system is fine for vertically colored tables, but how do we handle tables where rows 
have alternate colors? Using \mul t i column would be very clumsy, so co lortbl has an extra 
command. 

\rowcolor [color model] {color} [left overhang] [right overhang] 

This command can be used only at the start of a row; it overrides any current 
\columncolor specifications (in the preamble or \mult icolumn specification) ,  but its 
scope is limited to the current row as shown in the next example. Since all rows except the 
fourth use \rowcolor the blue color specified for the last column appears only on that line. 

\usepackage {colortbl} 
\setlength{ \extrarowhe ight }{2mm} 

\begin{tabular}{l c c c c >{\columncolor{blue}}c<{\ , \text sterl ing}} 
\hline \rowcolor [gray] {0 . 5} 
\mult icolumn{3}{1}{\textsf {LONDON}} & & & \text s f {Price} \\ [ 1pt] 
\hline \rowcolor [grayJ {0 . 9} 
Sydney & OG4G &Thu Oct 10 &Mon Oct 21 or 28 & 1 1  o r  1 8  days &999\\ 
\hl ine \rowcolor [gray] {0 . 7} 

& &Thu Oct 17 &Mon Oct 2 1  o r  2 8  & 4 or 1 1  days &999\\ 
\hline 

&OG7A &Sun Oct 13 &Mon Oct 21 or 28 & 8 or 15 days &999\\ 

\hline \rowcolor [gray] {0 . 7} 
& &Sun Oct 20 &Mon Oct 28 & 8 days &999\\ 

\hline 
\end{tabular} 

739 



740 

These commands � 
are provided by the Y 

xcolor package 

THE WORLD OF COLOR 

While the \rowcolor command improves the input situation, it still takes a lot of effort 
to color the rows of a long table with alternate colors, and adding or deleting a row will then 
require major rearrangements. This situation is improved by extra commands currently of
fered through xco lor. 

\rowcolors* [commands] {start}{odd row color Heven row color} 
\hiderowcolors \ showrowcolors 

The \rowcolors declaration has to appear outside the table. It applies odd row color to odd 
rows and even row color to even rows. An empty color argument means that the background 
is left uncolored. 

The first row on which coloring starts is given by start row. By setting this value to any
thing other than 1 ,  you can prevent the table header from being colored with \rowcolors. 
Later on in the table you can stop coloring for subsequent rows by \hiderowcolors and 
start it again with \ showrowcolors. 

The commands argument can contain commands like \hl ine that are applied to 
every row. In the starred form of \rowcolors, these commands are suppressed when 
\hiderowcolors is in effect; in the non-starred form, they are always applied. 

\usepackage [table] {xcolor} 
\setlength{\extrarowhe ight }{2rnm} 

\rowcolors [\hline] {2}{black ! 30}{black ! 1 0 }  
\begin{tabular}{l c c c c >{\columncolor{blue}}c<{\ , \text sterl ing}} 
\rowcolor [gray] {0 . 5} 
\multic olumn{3}{1}{\text sf {LONDON}} & & & \textsf{Price} \\ [ 1pt] 
Sydney & OG4G &Thu Oct 10  & Mon Oct 21 or 28 & 1 1  or 18 days &999\\ 

& &Thu Oct 17 & Mon Oct 21 or 28 & 4 or 11 days &999\\ 

% \colomcolor ignored everywhere except in the next row : 
\hiderowcolors 

&OG7A &Sun Oct 13  & Mon Oct 2 1  or 28 & 8 or 15 days &999\\ 
\ showrowcolors 

& &Sun Oct 20 & Mon Oct 28 & 8 days &999\\ 
\ end{tabular} 



I 
Example ! 

I \ \ -3-5 i 
: ___ u _. __ _ -.J 

1 1 .3 Coloring tables 

As coloring through \rowcolors or \rowcolor takes precedence over colors spec
ified through \columncolor, the previous examples showed a uniform line appearance 
whenever a row color was used. To change the background color for individual cells in such 
lines (and elsewhere) ,  the colortbl package offers \cellcolor. 

I \ cellcolor [color model] {color} I 
This command takes the same arguments as \color and defines the background color for 
the current table cell. It takes precedence over any other background color specification 
(through \rowcolor or \columncolor). As can be seen in the next example it can appear 
anywhere in the cell. 

\usepackage [table] {xcolor} 
\setlength{\extrarowhe ight }{2mm} 

\rowcolors [\hline] {2}{black ! 30}{black ! 10} 
\begin{tabular}{l c c c c c<{\ , \textsterl ing}} 
\rowcolor [gray] {0 . 5} 
\mult icolurnn{3}{1}{\t ext sf {LONDON}} & & & \text s f {Price} 
Sydney & OG4G &Thu Oct 10  & Mon Oct 2 1  or 28 & 

\ \ [ lpt] 

\cellcolor {white} 11 or 18 days &999\\ 
& &Thu Oct 17 & Mon Oct 2 1  or 28 & 4 or 11 days &999\\ 
&OG7A &Sun Oct 1 3  & Mon Oct 21 or 28 & 

8 or \cellcolor{white}  1 5  days &999\\ 
& &Sun Oct 20 & Mon Oct 28 & 8 days &999\\ 

\end{tabular} 

\arrayrulecolor [color model] {color} 

To color the lines in a tabular environment, including \ vline, \cl ine, and \hline, the 
colortbl package provides the \arrayrulecolor declaration, which has the same argu
ments as \color and colors all subsequent horizontal and vertical rules in tables. It can be 
set outside the table, at the start of a row, or in a > specification in a table preamble. Its effects 
are not limited to the current scope, but do not override specifications in the table preamble. 

741 



742 THE WORLD OF COLOR 

Thus, in the following table (also printed in Color Plate XIII c) ,  the vertical rules are set to 
green at the start and are unaffected by the subsequent \arrayrulecolor commands: 

\usepackage{colortbl} 

\renewc ommand{\arraystret ch} { l . l } 
\setlength{\arrayrulewidth}{ 2pt} 
\arrayrul e color{green} 
\begin{tabular}{ l l l c l r l }  
\arrayrul ecol or{black}\hl ine 

United Kingdom & London & Thames \\ 
\arrayrulecol or{blue} \hl ine 

France & Paris & Se ine \\ 

United Kingdom London Thames 
\arrayrul ecolor{black}\cline { l - l }  
\arrayrulecolor{red}\cline{2-3} 

Rus sia & Moscow & Moskva 
\hl ine 

France 

Russia 

Paris Seine 

Moscow = Moskva 

\\ 

\end{tabular} 

There is one problem: if colored rules are combined with colored cells, partial \cline 
rules are covered by the cell shading and thus are invisible. If necessary, you can use the more 
complicated hh l ine package with colortbl to achieve the desired effect. 

\doublerulesepcolor [color model] {color} 

This declaration colors the remaining area that can be colored in tables-the gap between 
rules created by using I I in a table preamble or \hline \hline in a table body. It works like 
\arrayrulecolor. Note, however, that when you color the space between two \hline 
commands in the longtable package, �TEX no longer allows a page break at this point. This 
is one of the situations in which adding color to your document may produce different page 
breaks. 

1 1 .3 .2 Exam ples 

Here we show how to color elements of tables by using the various coloring commands de
scribed above. Support of color with �TFX is not yet optimal, so that some complex con
structs must sometimes be used to obtain a particular effect. These tables are reproduced in 
color in Color Plate XVI. 

We invite our readers to study Color for the Electronic Age [ l 37 ] ,  an excellent book on 
many aspects of color, for ideas about how colors can add value to tabular material. In the 
chapter on charts and graphs, Jan White shows how to introduce variety in table presenta
tions by using a single color in different ways. In the following variations, we implement 
some of his suggestions. 



Example , 
i 1 1 -3-7 I 

Example 

1 1 -3-8 

1 1 .3 Coloring tables 

Let us start by looking at the generic table that will be the basis of our discussion (not 
reproduced on Color Plate XVI) :  

Table title 
Description Column 1 Column 2 

Row one mmmmmm mmmmm 
Row two mmmmm mmmm 
Row three mmmmmm mmmmmm 
Row four mmmmmm mmmmm 
Totals mmmmmm mmmmmm 

\usepackage{colortbl} 

\begin{tabular}{lrr} 
\ l arge \textbf {Table t itle} 

\ \ [2rnm] 
\textbf {De s cripti on} 

& \t extbf {Column 1 }  
& \textbf {Column 2 }  

\ \ [ lrnm] 
Row one & rnmrnmrnm & IIlIIllIl1IIIll \ \  
Row two & IIlIIllIl1IIIll & rnmrnm \\ 
Row three& rnmrnmrnm & rnmrnmrnm \\ 
Row f our & rnmrnmrnm & IIlIIllIl1IIIll \\ 

\ c l ine{2-3} 

Totals & rnmrnmrnm & rnmrnmrnm 
\end{tabular} 

First, let us put the table completely inside a colored box-orange, say, by defining that 
color with \def inecolor and then using the simple \colorbox command (see Color 
Plate XVI a) :  

\usepackage {colortb l }  

\def ine color{orange }{ cmyk}{O , O . 6 1 , O . 87 , O} 
\colorbox{orange}{% 

} 

\begin{t abular}{lrr} 
\large \textbf {Table title}  

\ \ [2rnm] 
\textbf {De scr ipt ion} 

& \t extbf {Column 1 }  
& \t extbf {Co lumn 2 }  

\ \ [ lrnm] 
Row one & rnmrnmrnm & IIlIIllIl1IIIll \ \  
Row two & IIlIIllIl1IIIll & rnmrnm \\ 
Row three& rnmrnmrnm & rnmrnmrnm \\ 

Row f our & rnmrnmrnm & IIlIIllIl1IIIll \\ 
\cline{2-3} 

Tot al s & rnmrnmrnm & rnmrnmrnm 
\end{tabular}% 

743 



744 THE WORLD OF COLOR 

Not only does this not add much information to the table, but you may also feel that the text 
is too dark to read easily. We can, therefore, print the text in white (Color Plate XVI b) :  

\usepackage {colortbl} 

\colorbox [cmyk] {O , O . 6 1 , O . 87 , O}{\color{white}% 

\begin{tabular}{lrr} 
\large\textbf {Table t itle} 

\ \ [2mm] 
\textbf {De script i on} 

& \textbf {Column 1 }  
& \t extbf {Column 2 }  

\ \ [ lmm] 
Row one & mmmmmm & mmmmm \ \  
Row two & mmmmm & mmmm \ \  

Row three& mmmmmm & mmmmmm \\ 
Row f our & mmmmmm & mmmmm \\ 

\ c l ine {2-3} 

Totals & mmmmmm & mmmmmm 

\end{tabular}% 
} 

This does not, of course, affect the color of the horizontal rule drawn with \ cl ine. 
Depending on the circumstances, you might or might not consider this an improve

ment. If you do want to set light text like this on a dark background then it is usually better 
to render the text in a heavier font, or the same font in bold (Color Plate XVI c) :  

\usepackage {colortbl} 

\colorbox [cmyk] {O , O . 6 1 , O . 87 , O}{% 
\color{white}\bf series% 
\begin{tabular}{lrr} 

\large \textbf {Table title} 
\ \ [2mm] 

\textbf {De script ion} 
& \textbf{Column 1 }  

& \textbf {Column 2} 
\ \ [ lmm] 

Row one & mmmmmm & mmmmm \\ 
Row two & mmmmm & mmmm \ \  
Row three& mmmmmm & mmmmmm \\ 
Row f our & mmmmmm & mmmmm \ \  

\cline{2-3} 
Totals & mmmmmm & mmmmmm 

\end{tabular}% 
} 

Example 

1 1 -3-9 

, 
Example 

, 1 1 -3- 10  



I 
Example I 1 1 -3- 1 2  I 

1 1 .3 Coloring tables 

So far no elements of the table have been highlighted, so the color is only an embel
lishment, not a functional tool. Let us see how by coloring some elements we can focus the 
reader's attention (not reproduced on Color Plate XVI) :  

Table title 

Description Column 1 Column 2 

Row one mmmmm mmmm 
Row two mmmm mmm 
Row three mmmmm mmmmm 
Row four mmmmm mmmm 
Total s mmmmm mmmmm 

\usepackage {colortbl} 

\begin{t abular}{lrr} 
\color{blue} 

\large \textbf {Table title}\\ [3mm] 
\textbf {De script ion} 

& \textbf {Column 1} 

& \textbf {Colwnn 2}\\ [ lmm] 
Row one & mmnunm & mmmm \\ 
Row two & mmmm & mmm \\ 
Row three& mmnunm & mmnunm \\ 
Row f our & mmnunm & mmmm \\ 

\cline{2-3} 
\color{blue} Totals 

& \color{blue } mmnunm 

& \color{blue}mmnunm 
\end{tabular} 

The title and bottom line have been set in blue for emphasis. We can also invert the 
procedure by coloring the text you do not want to stress, thereby bringing out the black text 
elements (Color Plate XVI d) :  

Table title 

mmmmm mmmrmn 

\usepackage {colortbl} 

{\color{green}% 
\begin{t abular}{lrr} 

\color{black} 

\large \textbf{Table t itle}\\ [3mm] 
\textbf {De script ion} 

& \t extbf {Column 1} 
& \t extbf {Colwnn 2}\\ [ lmm] 

Row one & mmnunm & mmmm \\ 
Row two & mmmm & mmm \\ 
Row three& mmnunm & mmmmm \\ 
Row f our & mmnunm & mmmm \\ 

\arrayrulecolor{black}\ c l ine{2-3} 
\color{black} Total s 

& \ color{black}mmnunm 
& \color{black}mmnunm 

\ end{t abular}% 
} 

Note the \arrayrulecolor command that colors in black the horizontal line separating 
the body from the last line. 

745 



746 

Table title 
Description 
Row one 

Row two 

Row four 

Totals 

THE WORLD OF COLOR 

To draw attention to individual rows of a table. we can put a band of color behind them 
(Color Plate XVI e): 

Column 1 Column 2 
mmmmrn mlllml11 

mmmm mmm 

mmmmrn mmmm 
mmmmm mmmmm 

\usepackage{colortbl} 

\newcommand\panel [1] {\multicolumn{l}% 
{>{\columncolor{magenta}}#l}} 

\begin{tahular}{lrr} 
\large\textbf{Table title}\\ [2mm] 
\textbf{Description} 

& \textbf{Column 1} 
& \textbf{Column 2}\\ [lmm] 

Row one & mmmmm & mmmm \\ 
Row two & mmmm & mmm \\ 
\panel{l}{Row three} 

& \panel{r}{mmmmm} 
& \panel{r}{mmmmm} \\ 

Row four& mmmmm & mmmm \\ \cline{2-3} 
Totals & mmmmm & mmmmm 

\end{tabular } 

But we can do even better: color the whole table, and leave the row to be emphasized 
with a white background (Color Plate XVI f): 

\usepackage{colortbl} 

\newcommand\panel[l]{\multicolumn{l}% 
{>{\columncolor{white}}#l}} 

\colorbox{magenta}{% 
\arrayrulecolor{black} 
\begin{tabular}{lrr} 

\large\textbf{Table title}\\ [2mm] 
\textbf{Description} 

& \textbf{Column 1} 
& \textbf{Column 2}\\ [lmm] 

Row one & mmmmm & mmmm \\ 
Row two & mmmm & mmm \\ 
\panel{l}{Row three} 

& \panel{r}{mmmmm} 
& \panel{r}{mmmmm} \\ 

Row four& mmmmm & mmmm \\ \cline{2-3} 
Totals & mmmmm & mmmmm 

\end{tabular}} 

This is completely analogous to the previous example except that the \columncolor com
mand now uses the color white, whil e the \colorbox at the beginning makes the whole 
table magenta. 



1 1 .3 Coloring tables 

Now we look at ways to highlight columns rather than rows. We lise the \columncolor 
command to specify the color of the columns (Color Plate XVI g): 

Table title 
Description Column I 
Row one mmmmm 
Row two mmmlll 
Row three mllllllllllll 
Row four mJl1mlllll1 
Totals mmmmm 

Column 2 

mmmm 
Illlllm 

mmlllllllll 
1ll1l11ll1ll 

mmmmm 

\usepackage{colortbl} 
\definecolor{Bluec}{cmyk}{ . 60.0,O,O} 

\begin{tabular}{l>{\columncolor{Bluec}}rr} 
\large\textbf{Table title}\\ [2mm] 
\textbf{Description} & \textbf{Column 1} 

& \textbf{Column 2} \\[lmm) 
Roy one & mmmmm & mmmm \\ 
Roy tyO & mmmm & mmm \\ 
Roy three& mmmmm & mmmmm \\ 
Roy four & mmmmm & mmmm \\ 
Totals & mmmmm & mmmmm 
\end{tabular} 

Colored panels of this type are often used to highlight connected regions in a table. The blue 
shade (Blue c) is defined at the beginning with the standard \definecolor command, 
although we could also have combined it with \columncolor as 

\columncolor [cmyk) { . 60 , O , O , O} 

Another feature often encountered in color work is the color gradient (Color 
Plate XVI h). Here we use various levels of cyan defined at the start for successive rows. We 
use the extended mixing possibilities of xc 01 or 10 achieve this effect: 

one 
Rowlwo 
Row three 
Row four 

mmmm 
mmmmm 
mmmmm 

mmm 
mmmmm 

mmmm 

\usepackage [table] {xcolor} 
\definecolor{Cyan}{cmyk}{ l , O , O ,O . 3} 

\begin{tabular}{l rr} 
\roycolor{Cyan}\multicolumn{3}{1} 

{\large\textbf{\strut Table title}}\\ [2mm) 
\rovcolor{Cyan} 
\textbf{Description} & \textbf{Column 1} 

& \textbf{Column 2} \\[lmm) 
\roYcolor{Cyan! 20}RoY one & mmmmm & mmmm \\ 
\rovcolor{Cyan!40}RoY tvo & mmmm & mmm \\ 
\roYcolor{Cyan! 60}RoY three& mmmmm & mmmmm\\ 
\rowcolor{Cyan! 80}RoY four & mmmmm & mmmm \\ 
\rowcolor{Cyan} Totals & mmmmm & mmmmm 
\end{tabular} 

Although this task requires specifying colors for each row. the result can be quite pleas� 
ing. This technique is certainly one of those most often used to produce attractive and easily 
readable tabular material. 

One might expect to be able to achieve the same effect by defining a color series and 
stepping it through each row. However. as it turns out, this approach results in the color 
changing for every cell: due to the implementation, the color expression is evaluated each 

747 



748 

Table title 

THE WORLD OF COLOR 

time (rather than once per row). Nevertheless, this also results in an interesting application 
(Color Plate XVI i) . 

\usepackage [table] {xcolor} 
\def ine color{Cyan}{cmyk}{ 1 , 0 , 0 , 0 . 3} 
\de f inecolorseries{XXX}{ cmyk}{last}{white}{Cyan} 

\resetcolorseries [20] {XXX} 
\rowcolors{2}{XXX ! ! +}{XXX ! ! +} 
\begin{tabular}{lrr} 
\rowcolor{Cyan}\mult icolumn{3}{1} 

{\large\t extbf {\ strut Table t itle}}\\ [2mm] 
\rowcolor{Cyan} 
\textbf {De script i on} & \t extbf {Column 1} 

& \textbf {Column 2} \\ [ lmm] 
Row one & mmmmm & mmmm \\ 

Row two & mmmm & mmm \ \  
Row three& mmmmm & mmmmm\\ 
Row f our & mmmmm & mmmm \\ 

Totals & mmmmm & mmmmm 
\end{tabular} 

To emphasize the titles and headings, we can color fields we consider less important. To 
further guide the eye, we can add some vertical and horizontal lines (Color Plate XVI j ) :  

\us epackage{colortbl} 

\begin{tabular}{l 
*2{ 1 >{\c olumncolor [cmyk] { . 40 , 0 , 0 , 0}}r}} 

\rowcolor{white} 
\large \textbf {Table t itle} \\ [2mm] 
\rowcolor{white} 
\t extbf {Des cript ion} & \textbf {Column 1} 

& \t extbf{Column 2} \\ [ lmm] \hl ine 
Row one & mmmmm & mmmm \ \ \hline 
Row two & mmmm & mmm \\\hl ine 
Row three& mmmmm & mmmmm\ \ \hl ine 
Row f our & mmmmm & mmmm \\\hl ine 
\rowcolor{white} 
Totals & mmmmm & mmmmm 
\ end{tabular} 

As already remarked, we can color the region containing the important text and leave 
the less important text region white. As we want the surrounding region to extend a bit be
yond the table limits, we reset the \fboxsep width to 3 mm, and we choose a lightish blue 
tint as the background color. The rest is similar to the previous example, although here we 
used the approach in which we recolor individual cells with \cellcolor rather than using 
\row-color and \columncolor ( to show a different coding approach, even though it is 

Example 

1 1 -3- 1 7  

Example 

1 1 -3 - 1 8  



Example 

1 1 -3 - 1 9  
_ . ... 1 

Example 

1 1 -3-20 

1 1 .3 Coloring tables 

less efficient here) .  It is interesting to compare the examples to see which is better at getting 
the message across (Color Plate XVI k): 

\usepackage {colortbl} 

\newcommand{ \panel} [ l ] {% 
\mult icolumn{ l } { ! >{\cellc olor{white}}r}{# l } }  

\ setlength\fboxsep{3mm} 
\colorbox [cmyk] { . 40 , O , O , O}{% 
\begin{t abular}{l ! r ! r} 
\mult ico lumn{ l}{l ! }  

{\large\t extbf {Table t itle}}\\ [2mm] 
\t extbf {De script i on} & \t extbf {Co lumn 1 }  

749 

& \t extbf {Column 2} \\ [ lmm] \hline 
Row one & \panel{mmmmm} & \panel{mmmm} \\\hl ine 

Row two & \panel{mmmm} & \panel{mmm} \\ \hline 
Row three& \panel{mmmmm} & \panel {mmmmm}\\\hl ine 
Row f our & \panel{mmmmm} & \panel {mmmm} \ \\hline 
Totals & mmmmm & mmmmm 

\end{tabular}} 

We need not always color the column cells themselves; coloring the rules inside the table 
can sometimes be enough to highlight the relevant information. We can do this with the 
co lortbl facilities. First we replace the default black rules with colored ones; this is done with 
the \arrayrulecolor command and affects the vertical rules defined in the table pream
ble. After the preamble, we switch to a slightly different blue for all horizontal rules, but the 
rightmost part of the last rule is switched back to black with a new \arrayrulecolor dec
laration before the \cl ine (Color Plate XVI I ) :  

Table title 
Description Column 1 
Row one mmmmm 
Row two mmmm 
Row three mmmmm 
Row four mmmmm 

Totals mmmmm 

Column 2 

mmmm 
mmm 

mmmmm 
mmmm 

mmmmm 

\usepackage{colortbl} 

\newcommand\rule s {% 
\arrayrulecolor [cmyk] { . 80 , O , O , O}\cline{2-3}} 

\setlength\arrayrul ewidth{ lpt } 

\arrayrulecolor [cmyk] { . 80 , O , O , O} 
\begin{tabular}{l ! r ! r} 
\large\textbf {Table title}\\ [2mm] 
\textbf {Descript i on} & \t extbf {Column 1 }  

& \textbf {Column 2} \\ [ lmm] 
\hline 
Row one & mmmmm & mmmm \ \ \rules 
Row two & mmmm & mmm \ \ \rule s  

Row three& mmmmm & mmmmm \\\rule s  
Row f our & mmmmm & mmmm \ \  

\arrayrulecolor{black}\hline 
Totals & mmmmm & mmmmm 
\end{tabular} 



750 

Row one 
Row two 
Row three 
Row four 
Totals 

TH E WORLD OF COLOR 

Alternatively, we can go back to a blue-colored background for some rows, and draw 
only a few of the rules to guide the reader through the information (Color Plate XVI m): 

mmmmm mmmm 
mmmm mmm 

mmmmm mmmmm 
mmmmm mmmm 
mmmmm mmmmm 

\usepackage{colortbl} 

\arrayrulecolor{black} 
\begin{tabular}{l l r l r} 
\mult icolumn{3}{>{\columncolor [cmyk] { 1 , O , O , O}}I} 

{\large \textbf {Table t itle}}\\ [2mm] 
\rowcolor [cmyk] {O . 2 , O , O , O} 
\textbf {De s cript i on} & \textbf {Column 1 }  

& \textbf {Column 2 }  \\ [ lmm] \hline 
Row one & mmmmm & mmmm \\ 
Row two & mmmm & mmm \ \  
Row three& mmmmm & mmmmm \ \  
Row f our & mmmmm & mmmm \\\cline{2-3} 
Totals & mmmmm & mmmmm 
\ end{tabular} 

To construct a more complicated arrangement that subdivides the table into different re
gions, we can use a combination of row, column, and cell colors. As we noted on page 742, the 
standard method for creating partial horizontal rules does not work correctly with colortbl, 
so hh l ine is used in the following example (Color Plate XVI n) :  

\usepackage{ c olortbl , hhline} 
\def ine c olor{Light }{cmyk} { . 4 , O , O , O} \def ine color{Dark}{cmyk}{ . 8 , O , O , O} 

\begin{tabular}{>{\columncolor{Light}}1 >{\columncolor{Dark}}r 
>{\columncolor{Dark}}r } 

\mult i c olumn{3}{>{\cellcolor{Light}}I}{\large\t extbf {TabIe t itle}}\\ [2mm] 
\rowcolor{white} 

\textbf {De s cr ipt i on} & \textbf {Column 1 }  & \textbf {Column 2} \\ [ lmm] 
\rowcolor{Light } 

Row one & mmmmm & mmmm \\  
\arrayrulecolor{white}\hline\arrayrulecolor{black} 

Row two & mmmm & mmm \\ \hhl ine{---} 
Row three & mmmmm & mmmmm\\\hhline{---}  Row f our & mmmmm & mmmm\\ 

\rowcolor{white} Totals & mmmmm & mmmmm 
\ end{tabular} 

Example 
1 1 -3-2 1 

Example 
1 1 -3-22 



Example 

1 1 -3-23 

1 1 .3 Coloring tables 

The interplay among the various styles of typesetting titles, coloring rules, and shades 
of the background color gives you a rich palette of possibilities for presenting complex data. 
As a last effect, we can consider altering the width of the rules; in the example below, a thick 
horizontal rule highlights the title and header lines (Color Plate XVI 0) .  

Note the supplementary columns in the table to extend the color by one \quad to the 
left and right. Wider margins are not easy to achieve otherwise, as the \rowcolors declara
tion doesn't support explicit overhang of the background color. 

\usepackage [table] {xcolor} 
\def ine color{Light }{ cmyk}{ . 40 , O , O , O} 
\def ine col or{Dark}{ cmyk}{ . 80 , O , O , O} 

\usepackage{hhl ine} 
\setlength\arrayrulewidth{ lmm} 

\rowcolors{2}{Dark}{Dark} 
\begin{tabular}{llrrl} 
\rowcolor{Light } 
\qquad & \mult icolumn{3}{1}{\l arge 

\textbf {Table title}}  &\qquad \ \ [2mm] 
&\textbf {De script ion} &\textbf {Column 1 }  

& \textbf {Column 2} & \\ [ lmm] 
\hline 
& Row one & mmmmm & mmmm & \\ 
& Row two & mmmm & mmm & \\ 
& Row three& mmmmm & mmmmm& \\ 
& Row f our & mmmmm & mmmm & \ \  
\doublerulesepcolor{Dark}\hhline { - - - - - }  
& Total s & mmmmm & mmmmm&\\ [2mm] 
\end{tabular} 

Another interesting aspect in this example is the use of \hhline to achieve 
a partial rule. The - notation generates no rule segment coloring the space in 
\doublerulesepcolor. So, by setting this color to the background color, we achieve the 
desired result. An alternative solution, which comes in handy if you need even more com
plicated arrangements, is the use of the > notation for \hhl ine. This extension is pro
vided by colortbl and is not available with the original package; it allows you to set the 
\arrayrulecolor for further rule segments. The rule in the previous example could have 
been achieved by this method with 

\hhl ine{>{\arrayrulecolor{Dark}}--% 
>{\arrayrulecolor{black}}--% 
>{\arrayrulecolor{Dark}}-}  

We hope these examples have shown how flexible the color commands are in creating 
almost any possible layout. The only caveat is that you should not get carried away by the 
wealth of options. The purpose of using color is to help the reader understand material 
better-don't let your use of color stand in the way of comprehension. 

751 



752 THE WORLD OF COLOR 

1 1 .4 Color sl ides with �EX - The beamer class 

Many t'-'JEX users want to take advantage of1EX's high-quality typesetting to produce slides 
for a presentation. This facility was originally provided by a separate package, SI iTEX, but it 
had a number of disadvantages. In this section we discuss the powerful beamer class which 
can be used to make presentation slides with a huge variety of facilities. It is just one of a 
number oft'-TFX packages for presentations-we do not have enough space here to describe 
them all. 

beamer is a t'-TEX class that can be used with almost all other t'-TEX packages, such as 
those to change fonts, include graphics, or add mathematical facilities. It's main job is to 
produce slides for display using a data projector, but it can also generate output for printing 
or a handout from the same source file. 

The main features of beamer are as follows: 

• You can create PDF slides with pdflatex or dvips and ps2pdf. 

• You can use nearly all t'-TEX macros inside beamer e.g., \ tableof contents. 

• Predefined themes let you produce professional-looking slides without knowing too 
much of the internals of the package. 

• You can change most color and font options globally or locally. 

• You can take advantage of a special style file to use a source in an article or book docu
ment class. 

• You can write beamer files with a special layout file for the LyX (http : / /www . lyx . 
org) document processor. 

1 1 .4.1  Using the bea mer class 
To create your first slides, begin your document in the usual way with beamer as the docu
ment class name, perhaps with some optional arguments from those listed in Table 1 l .3. You 
can load additional packages e.g., fontenc, inputenc, or amsmath as usual. 

\document c l as s [ class opt ions ] {beamer} 
\usepackage [T l ]  {f ont enc} 
\usepackage [lat inl] { input enc} 
\us epackage {amsmath} 

You can use beamer to write a document with different modes from the same source
a presentation, an article or a handout. Due to space limitations, only the default presen
tation mode is used and described in following sections. The possible modes are listed 
in Table 1 l .3 and in Section 1 l .4. 10  with examples showing how to switch between these 
modes. 



1 1 .4 Color slides with IN"EX - The beamer class 

Option Name 

ucs 

utfS  

8pt . . .  20pt 
smaller 
bigger 
draft 

hyperref={ . . .  } 
usepdfti  tle={ . . .  } 

xcolor={ . . .  } 
c 
t 
compress 
trans 
noamsthm 

notheorems 

envcount sec 

ignoreonframetext 

handout 
notes={ . . .  } 

Mode Name 

beamer 
handout 
trans 
art icle 

presentat ion 
all 

Table 1 1 .3: beamer class options and modes 

Meaning 

Loads the package ucs and the Unicode pages 0 and 1 .  Also passes 
the correct options to the hyperref package. 
Same as option ucs with an additional loading of the i nputenc 
package with option utf S. 
Uses the extsizes package for Spt, 9pt ,14pt , 17pt, and 20pt. 
Same as option 10pt. 
Same as option 1 2pt. 
Replaces all headlines, footlines, and sidebars with empty rectan
gles, similar to the draft option of the graph icx package. 
Options for the hyperref package. 
true (default) or false.  If false, the title is not passed into the 
information field of the generated PDF file. 
Options for the xcolor package. 
Makes text in a frame vertically centered. 
Makes text in a frame top aligned. 
Makes navigation bars as small as possible. 
Uses the trans overlay specification. 
Does not load the packages amsthm and amsmath. proof and 
theorem must be defined by another package or the user, if 
needed. 
Loads the packages amsthm and amsmath, but does not define 
the block style of the environments. 
Sets the counting to depend on sections, so that a new section 
resets all counters. 
Ignores all text and code outside frames (same as executing the 
macro \mode*; see Section 1 1 .4. 10) .  
Sets options to be suitable for a handout. 
hide (default) ,  show, only or onlysl ideswi thnotes. De
fines how notes should be handled by beamer. 

Meaning 

Default mode. 
Create handouts. 
Create transparencies. 
This is the mode when beamer creates the document with any 
other class than the beamer documentclass e.g., the book class. 
Define sections for the art ic le and handout mode. 
Create all possible modes. 

753 



754 THE WORLD OF COLOR 

1 1 .4.2 Your first slides 

The beamer class comes with lengthy documentation, example files, and a lot of ready-made 
templates for different colors and layouts. The following example shows the default output. It 
is difficult to choose the right layout for the presentation-when people are morc impressed 
by the fancy layout than by the contents, then there is something wrong! For a first-time user, 
it is sensible to use some of the predefined themes of beamer, and to attempt to write your 
own only after gaining some experience with this class. 

Let us start with a simple pair of slides: 

The Declar3\"'" of Independence of the n,rt<!<!n 

ColonIe!' 

.". -.-.. Jrif....,., .. . 1. 

My', lin. 

\documentclass{beamer} 

\title{The Declaration of Independence of 
the Thirteen Colonies . }  

\author{by Thomas Jefferson et al . }  
\date{July 4,  1776} 
\frame{\maketitle} 

\section{The unanimous Declaration} 
\begin{frame} 

\frametitle{Self-evident truths . }  
We hold these truths t o  be self-evident, 
\begin{itemize} 

\item \textbf{that} all men are created equal, 
\item \textbf{that} they are endowed by their 

Setr·evident tfulhs 
Creator with certain inalienable rights, 

\item \textbf{that} among these are Life, 

W. MId ,t- 'Mho to bo 00II_,0", •. Liberty and the Pursuit of Happiness. 
• 'h.' .II ___ .... ' ... ...... 1. \item \textbf{That} .  to secure these rights .  

Governments are instituted among Men, deriving 
their just powers from the consent of the governed. 

\item \textbf{That}, when any form of government 
becomes destructive of these ends , it is the Right 
of the People to alter or abolish it . 

• ,h., ,...,. ... ...oo....;J "" '"- { ... ""_h<M. ... 
, ...... 010 ""'  .. , 

• , .. , • ...,.. , __ lifo. Ub«t, -' ,ho Po ...... 01 
"-

• T ..... ",. ...... ,_ "IIh .... Go..mmon .. ... ""'"""" 
• ...,.. _ """ .... '''"'', .... ...,..... '_ '''" '''''''"''' 01 
'''"'''''"'''"'' 

• T ..... _ ""' IomI oI_"""' -.. """'''''' ... oI 
, ..... ..,do. " .. ,ho RoV' oI ,ho f'ooo>Io '" ..l'" ... . ...." " 

\end{itemize} 
\end{frame} 

We can change appearance of the slides by choosing variants in five style levels for 
beamer: the theme, the outer layout. the inner layout, the color theme, and the font theme. 
In each case you can use the standard 0-TFX \usepackage mechanism by preceding 
the style name with the word beamertheme, beameroutertheme, beamerinnertheme, 
beamerca!artheme. or beamerf ant theme respectively. 

Table 1 1 .4 lists the predefined styles that come with beamer. These themes are not offi
cial. and their contents and layout depend on what users have contributed to the community. 

In the next step we choose the Malmoe main theme; this is just a name for the theme 
and not the official layout of the Swedish university! 

[ Exampk [ 
11-4-1 



Example 

�
1 l -4-2 i 

1 1 .4 Color slides with NEX - The beamer class 

Table 1 1 .4: Predefined themes and layouts in beamer 

Type Name 

themes Antibes, Bergen, Berkeley, Berlin, Boadilla, boxes, Copenhagen, 
Darmstadt, default, Dresden, Frankfurt, Goettingen, Hannover, 
Ilmenau, JuanLesPins, Luebeck, Madrid, Malmoe, Marburg, 
Montpellier, Palo Alto, Pittsburgh, Rochester, Singapore, Szeged, 
Warsaw 

outer themes default, info lines, miniframes, shadow, sidebar, smoothbars, 
smoothtree, split, tree 

inner layouts circles, default, inmargin, rectangles, rounded 

color themes albatross, beetle, crane, default, dolphin, dove, fiy, lily, orchid, rose, 
seagull, seahorse, sidebartab, structure, whale 

font themes default, professionalfonts, serif, structurebold, structureitalicserif, 
structuresmallcapsserif 

The example shows the second slide of our simple presentation. The contents are the 
same, the view different: 

Self-evident truths 

W e  h o l d  these truths t o  be self�evldent, 

.. that all men are created equal ,  

.. that they are endowed by their  Creator with certa i n  
I n a l ienable rights, 

to that among these are Life, Liberty and the P u rsuit of 
Happi ness 

.. That, to secure these rights, Governments are Instituted 
among Men, denvlng their Just powers from the consent of 
the governed 

.. That, when any form of government becomes destructive of 
these ends, It IS the Right of the People to alter or abol ish It 

\do cument class{beamer} 
\usepackage{beamerthemeMalmoe} 

\title{The Declarat ion of Independence of 

the Thirteen Coloni es . }  
\author{by Thomas Jeff erson et al . }  
\dat e { July 4 ,  1776} 
\frame{\maket itle} 
\section{The unanimous Declarat i on} 
\begin{frame} 

\framet itle{Self-evident truths . }  

We hold the s e  truths t o  be self-evident , 

\begin{itemize} 

755 

i·W Mt 
\item \textbf {that } all men are created equal , 

. . .  further code omitted . . .  

The outer theme, or layout, styles control everything to do with the frame layout: 

• The head- and footline. 

• The sidebars. 

• The logo. 

• The frame title. 



756 THE WORLD OF COLOR 

Since we often use a rectangular display with a width greater than the height (in general, 
a proportion of 4:3) ,  it is often a good idea to have a menu on the side. The theme "sidebar" 
in the next example demonstrates this: 

\document class{beamer} 
\us epackage{beamerthemeMalmoe} 

\usepackage{beamerout erthemesidebar} 

\title {The Declarat ion of Independence of 
the Thirt een Colonies . }  

\author{by Thomas Jefferson et al . }  

\date{July 4 ,  1776} 
\frame{\maket itle} 

\section{The unanimous Declarat ion} 
\begin{frame} 

\f ramet itle{Self -evident truths . }  
We hold the s e  truths to be self-evident , 

. . .  further code omitted . . .  

Choosing the right colors for a presentation is not easy and often comes down to per
sonal preference. Try to avoid choosing a color for its own sake, and focus on the information 
in the slide. We show the "dove" color theme in the next example: 

\documentclass{beamer} 
\usepackage{beamerthemeMalmoe} 

\usepackage{beameroutertheme sidebar} 
\usepackage{beamercol orthemedove} 

\title{The Declarat i on of Independence of 
the Thirt een Colonie s . }  

\author{by Thomas Jeff erson et al . }  
\date{July 4 ,  1776} 
\frame{\maketitle} 

\section{The unanimous Declarat i on} 
\begin{frame} 

\framet itle{Self-evident truths . }  
We hold the s e  truths to be self-evident , 

further code omitted 

The inner theme controls the layout of the frame contents. It implements the following 
features: 

• Title and part pages. 

• Itemize environments. 

• Enumerate environments. 

• Description environments. 

Example I 
: 1 1 -4-3 I l _ _ _ __ .-J 



Example 
1 1 -4-5 i 

1 1 .4 Color slides with INEX - The beamer class 

• Block environments. 

• Theorem and proof environments. 

• Figures and tables. 

• Footnotes. 

• Bibliography entries. 

757 

In the next example we demonstrate the user of the "rounded" inner theme (notice the 
change in the bullets) :  

\document class{beamer} 
\usepackage{beamerthemeMalmoe} 
\usepackage{beameroutertheme sidebar} 
\usepackage{beamercolorthemedove} 
\usepackage{beamerinnertheme circles} 

\title{The Declarat i on of Independence of  
the Thirteen Colonie s . }  

\author{by Thomas Jeff erson et al . }  
\date{July 4 ,  1776} 
\frame{\maket itle} 

\section{The unanimous Declarat i on} 
\begin{irame} 

\frametitle{Self -evident truths . }  
We hold the s e  truths t o  be  self-evident , 

. . .  further code omitted . . .  

Finally, we can vary the font setup. Here we demonstrate the "structureitalicserif" style: 

\do cument class {beamer} 
\usepackage {beamerthemeMalmoe }  
\us epackage {beamerout ertheme s idebar} 
\usepackage {beamercolorthemedove } 
\usepackage{beamerinnertheme circles} 
\usepackage{beamerf ontthemestructure ital i c serif } 
\title{The Declarat i on of Independence of 

the Thirteen Coloni es . }  
\author{by Thomas Jefferson et al . }  
\date{July 4 ,  1776} 

\frame{\maketitle} 

\section{The unanimous Declarat ion} 
\begin{irame} 

\framet itle{Self -evident truths . }  
We hold the s e  truths t o  be self-evident , 

. . .  further code omitted . . .  



758 TH E WORLD OF COLOR 

Instead of loading the style packages with \ usepackage, you also can use the follow
ing macros in the preamble: 

\usetheme [aptlQrzsl { theme name} 
\usef onttheme Qopttonsl {font theme name} 
\usecolortheme tQPt�PtlSl {color theme name} 
\useinnertheme iUoptionsl { inner theme name} 
\useouthertheme(ODtioltSl {outer theme name} 

In the following examples we often use 

\usetheme{Malmoe} 
\usecolortheme{dove} 

which is equivalent to 

\useoutertheme{ s idebar} 

\usepackage{beamerthemeMalmoe , beamerouterthemes i debar , %  

beamercolorthemedove} 

1 1 .4.3 The structu re of a presentation 
A presentation consists of a series of "frames". Inside a frame there can be one or more slides; 
thus, for example, a presentation with a six item list that is revealed point by point will be 
regarded in bea mer as one frame containing six slides. There is no limit to the number of 
frames and slides. However, you should not make one frame with hundreds of slides in it. 

Frames are created in beamer with the \frame macro or frame environment: 

\frame <overlaXispec.> « de!au.ltoverlaysper,. » [keyword/ist] { . . .  } 

\ begin {f r ame } <overlay spec.> [<dejaultollerlayspec; >] [keyword list] 

\end{frame} 

By default, the frame is in landscape mode for slides, with a dimension of 128mlIl x 96mlIl, 
which is a ratio of 4:3 and should be optimal for modern data projectors. 

Each frame may have one or more of the following components: 

• A headline and a footline. 

• Left and a right sidebars. 

• A navigation bar. 

• Navigation symbols. 

• A logo. 

• A frame title. 

• A background. 

• Usually some frame contents. 



1 1 .4 Color slides with NEX - The beamer class 759 

Table 1 1 .5: Keywords for the frame environment of beamer 

Name Values Default Meaning 

allowdisplaybreaks 0 . . .  4 4 The value is passed to the \allowdisplaybreaks com-
mand of amsmath. This keyword makes sense only when it is 
used together with the allowsframebreaks keyword and, 
of course, amsmath. 

allowframebreaks 0 . . .  1 0 .95 This keyword controls the amount of material that appears 
on the slide until a page break is inserted and a new frame cre-
ated. The default of 0.95 starts a new page when 95% of the 
free vertical space is filled. See the package documentation for 
the details and the restrictions of this keyword. 

b, c or t c Vertical alignment of the frames, maybe bottom/center/top. 
This overrides the placement setting by the class option. 

fragile singleslide Handling fragile macros. This is especially important for ver-
batim text, which causes special problems in processing. With 
this keyword beamer writes the contents of a frame to a file 
named j obname . vrb and reads it back. 

environment <name> This keyword makes sense only when it is used in conjunc-
tion with fragile. The environment <name> is used to de-
tect the end of the scanning when gathering the frame con-
tents. This is important when the frame environment is part 
of another environment. 

label <name> The frame contents are saved under the given name and can 
be used again later with the macro \againframe. 

plain Headlines, footlines, and sidebars of this frame are sup-
pressed. 

shrink 0 . . .  1 00 0 If the text of the frame is too large to fit on the frame, it can be 
shrunk by a minimum of the shr ink percentage. 

squeeze All vertical space in the text is minimized as much as possible. 

Most frames will have a title, set by \framet i tIe, and a subtitle, set by 
\framesubt itle. The short form of the main title is not used by beamer itself, but 
rather is accessed via \insert shortframet i tIe. There is no short form for the subtitle. 

\ beg in {f r ame} .<overlayspec.> e<def�lJf�o!��ltlMf1?�f. >Jt�e)lW()rd#st} 
\f rame t it Ie <overlaM spec.> [shdri#t1eJ {long title} 
\framesubt i tIe  <ove#ayspec;')r {long subtitle} 

\end{frame} 

Commonly used keywords for the frame environment are allowframebreaks, and 
allowdisplaybreaks, especially for a bibliography or large equations that do not fit on a 
single slide. Table 1 1 .5 shows the keywords available for frame. 



760 

Outline 

Contents 
I Intr(Jduction 

1 I Wh)' markup text ) 

1 2 Choosing Wh,lt to em,ude 

1 '1 En<.-oding ldngudgc� 

I 4 Rcpre�cnting non-LlILn lharallcp., 

2 XML 
2 I The ongln\ of XML 

2 2 Rule ... of XML elcrncnb ,md ,lttrihutc ... 

2 '\ Rule ... at XML (.{lmment�, enllties and Ph 

2 4  Mdklllg rule ... lor XML DTD ... "nd v.::hcmd' 

3 TEl 
1 1 The histor) of the TEl pmlCd 

'\ 2 TEl core mdrkup 

1 1  TEl extr.! module .. 

'\ 4 MJktng your own ... chelTl.! 

A Appendix 
A I Weh rC\Oll[lC\ 

A 2 Tooh 

A :;  Pr,u.:lildJ exerClse ... 

THE WORLD OF COLOR 

Figure 1 1 . 1 :  Table of contents in presentation and article display 

Let us look at some practical examples of how to change beamer's behavior with com
mands in the preamble. 

\document class [xcolor=tables] {bearner} 
\mode<art icle>{ 

\usepackage{fullpage} 
\usepackage{hyperref } }  

\mode<presentat ion>{ 

\setbearnertemplat e{background canvas} [vert i c al shading] 
[bottom=red ! 10 , top=blue ! 10] 

\usetheme{Warsaw} 
\usef onttheme [onlysmall]  { structurebold}} 

\ setbearnercolor{math t ext}{fg=green ! 50 ! black} 
\setbearnercolor{normal text in math t ext}{parent=math text} 
\ setbearnercovered{dynarnic} 

The option xcolor=table is  an example of beamer's way of passing options to other 
packages. beamer itselfloads the extended color package by default, but without any options 
set. 

One powerful feature of beamer is the ability to set different options depending on the 
output mode. If you have set the class options to make a printable version of the slides, the 
"article" \mode macro is activated, which can load additional packages. The "presentation" 
mode is the default. 

Figure 1 1 . 1  shows how the table of contents is typeset differently in the presentation and 
article versions. 

Overlay specifications Another very important tool is the overlay specification, which determines which slide 
components of a frame to typeset. In the simplest case, it consists simply of a slide number 
(e.g., 3 ) .  This causes beamer to show only the third slide of that frame. There are many other 
ways to use overlays, as described in more detail in Section 1 1 .4.4 on page 762. 



1 1 .4 Color slides with I!ITEX - The beamer class 

Creating a title page 

A title is normally placed in its own frame, and the \ tit  lepage macro puts it in a frame if 
you have not already done so. Thus the following two statements are equivalent: 

\titlepage 
\frame{\t itlepage} 

For compatibility with other packages, the macro \maket it le is also supported, with 
the same effect. 

Presentat ions with Ii\T6X 
fhe bcamcr cJ.l$S 

Jana VoBl Herbert VoB2 

l lnstltut fur Frankreichwissensch"ften 

2ZEDAT 
Frel!' Unlversitat Berlin 

Conference on Presentations with �TEX, 2005 

Saving and reusing a frame 

\document clas s{beamer} 
\usepackage{beamerthemeBerl in} 

\title [Beamer] {Present at i ons with \LaTeX} 
\subt itle{The \texttt {beamer} class} 
\author [Vo\ss] {Jana Vo \ s s \ inst { l }  \and 

Herbert Vo \ s s \ inst {2}} 
\ inst itute [FU-Berl in] { 

\ inst { 1 }% 
Inst itut f \ " ur Frankrei chwis sens chaft en\\ 
Fre i e  Universit \ " at Berlin 
\ and 
\ inst{2}% 
ZEDAT\\ 

Fre ie Universit \ " at Berl in} 
\date [\TeX\ 2005] {Conf erence on Pre sentat ions 

with \LaTeX , 2005} 

\frame{\titlepage} 

A frame can be saved and used again, as an alternative to putting in links to allow the reader 
to jump back and forth. The optional argument to frame provides a way to name a frame 
and refer to it later. 

In the following example we label the first frame with the label FrameI and give it the 
overlay specification < 1-2>, which says that only the first two slides are to be shown in this 
frame. The second frame has some simple text. The third frame reloads FrameI and starts 
with the third slide. The output shows the first slide of each frame. The \alert macro is 
used to create multiple slides within one frame; it is explained in Section 1 1 .4.4. 

\document class{beamer} 
\usetheme{Malmoe} 
\useout ertheme {sidebar} 
\usecolortheme{dove} 

\begin{frame } < 1 -2> [label=Frame I]  
\framet itle{A demonstrat ion of saving and 

reusing frame s . }  
\framesubt itle{Thi s  i s  the f irst f rame . }  

761 



762 

\begin{ itemize} [<+->] 
\item<alert@+> First item . 
\item<alert@+> Second item . 
\ i t em<alert@+> Third item . 
\item<alert@+> Fourth item . 

\end{ itemize} 
\end{frame} 
\begin{frame} 

Thi s is the second frame in a series of three . 
\end{frame} 
\againframe<3->{Frame I }  

THE WORLD OF COLOR 

1 1 .4.4 Hiding and showing materia l on s l ides - overlays 
An important facility you can use in creating presentation slides is making "overlays"; this 
may mean adding successive bullets to a list, superimposing graphics, or highlighting words 
and phrases. It is implemented as a set of separate slides within a frame, and the user can 
step back and forth through successive slides with a mouse or keyboard. 

beamer supports several ways of creating such overlays. Recall that in beamer a frame is 
what we would call a page in other styles; inside a frame we can have none or several overlays, 
which may be thought of as a kind of sub-page. 

Here are some examples of overlay specifications: 

\frame<O> Show no slides 

\frame< l >  Show only slide 1 

\frame<2-> Show slide 2 and following 

\frame<-4> Show all slides up to 4 

\frame< 1 , 3-5> Show slides 1 and 3, 4, 5 

\only<+> Show only the current slide 

\only<+-> Show only the current slide and those following 

\only<art icle  : 2> Show slide 2, but only in the article mode 

\begin{frame}<all : 2-3> Show slides 2 and 3 only in all modes 

���:I Example I 
1 1 -4-8 I 



i Example , 
1 1 -4-9 

1 1 .4 Color slides with Jt(J'EX - The beamer class 

I \pause<overlay spec. > I 
The \pause command is the easiest way to create overlays. It stops the presentation of a 
frame and waits for a "continue" command, such as pressing the Enter key or clicking the 
mouse on the continue button. The following example shows what it looks on the second and 
fourth slides of the sequence. The effect of the \onslide macro is to make items visible 
from the very beginning; thus the phrase "this is the cycle of the seasons" appears on all 
slides. 

\document class {beamer} 

\usetheme{Malmoe} 
\useout ertheme{sidebar} 
\usecolortheme{dove} 

\begin{frame} 
\begin{ itemize} 

763 

\item The leaves start to appe ar in the spring \pause 
\ it em you can see  the effect 

\begin{enumerat e} 
\item on the trees  \pause 
\ it em and on the f l owers 
\end{enumerat e} 

\onslide % t o  make it v i s ible f or the f irst s l ide 

\item \textbf {this is the cycle of the seasons} 
\pause 
\ item The leaves are at the ir stronge st in the summer 
\pause 

\it em The leaves start t o  turn color in the autumn 
\pause 
\item The leaves f all off the trees in the wint er 
\ end{ itemize} 

\end{frame} 

The second example shows how the \pause macro can be used inside a table. It is 
useful only when the rows of the table are colored, because it cannot work with horizontal 
and vertical lines separating rows, since they are not drawn at the same time as a row is 
colored. You will have to learn to work with colors instead of horizontal and vertical lines in 
your presentation tables. 

\document class [xcolor=table] {beamer} 
\usetheme{Malmoe} 
\useout ertheme{sidebar} 
\usecolortheme{dove} 

\newcommand\bfrm [ 1 ]  {\textbf {\textrm{\t ext c o lor{whit e}{# 1 }}}} 

\section{Reveal a table row by row} 
\begin{frame} 

\frametitle{Reveal rows and columns in a t able }  
\framesubt itle{Us ing the pause macro} 



764 

\rowcolors [] { 1 } {blue ! 40}{blue ! 1 0} 
\begin{t abular}{>{\ttfamily}l I >{\ttfamily}ll} 

\rowcolor{gray}\bfrm{package} & \bf rm{dat e} & 
pstricks . tex & 2004 & bas i c  package 
pst-3d . tex & 1999 & bas i c  3-D macro s  
pst-char . t ex & 1999 & charact er manipulat ion 
pst-coil . tex & 1 999 & coils  and zig zags 

pst-eps . t ex & 1999 & EPS export 
pst - f i l l . t ex & 2004 & f i l l ing and t i l ing 
pst-grad . t ex & 2004 & color gradient s 
pst -xkey . tex & 2005 & key sett ing 
pst -node . tex & 200 1 & nodes and connect ions 
pst-plot . t ex & 2000 & plott ing functions 
pst-text . t ex & 1999 & t ext manipulat i ons 
pst-tree . t ex & 2004 & trees 

\end{tabular} 
\end{frame} 
. . .  further code omitted . . .  

THE WORLD OF COLOR 

\bfrm{funct ion}\\ 
\pause \\ 
\pause \\ 
\pause \\ 
\pause \\ 
\pause \\ 
\pause \\ 
\pause \\ 
\pause \\  

\pause \\ 
\pause \\  
\pause \\  

Alternatively, we can use \ons1ide instead of \pause, and uncover successive 
columns rather than rows. 

\onsl ide lll0(ijner <overlay spec. > {text} 

The behavior of this macro depends on whether the optional argument {text}  is present. If 
it is present, the modifier can be either + or * ;  if not present, all text following the macro will 
be shown only on the specified slides. If no slide specification is given, then the text is shown 
on all slides, as in the previous example. The text still occupies space on all slides, whether it 
is shown or not. 

In the following example, the table header is used to insert \ons1ide commands, 
one for each column, using the array package, which is automatically loaded by beamer. 
>{\  ttf amily}l <{\ons1ide<2->} produces a a left-aligned column ( 1 )  with the macro 
\ ttfamily run before (» the column definition, and the macro \ons lide<2-> after « )  
that. The effect is that the column, typeset in a monospace font, appears only on slide 2. At 

Example , 
. 1 1 -4- 1 0  



1 1 .4 Color slides with �EX - The beamer class 

the end of the last column. the use of\onslide without a specification ensures that the first 
column on the next row is once more shown normally, so that the whole first column is seen 
(the last slide is also shown in Color Plate XVI x). 

R ..... I "'W I  .<><1 001"",,, in • ,,� 
_ ... _-

R .... I " •• , • •  <><1 ooIumnl in • "bIo 
_ ... _-

R .... I """" .<><1 001"",,,,, in , ,,1>10 
_ .. _-

\documentclass[xcolor=table] {beamer} 
\usetheme{Malmoe} 
\useoutertheme{sidebar} 
\usecolortheme{dove} 
\newcommand\bfrm[1] 

{\textbf{\textrm{\textcolor{white}{#1}}}} 

\section{Reveal a table row by row} 
\begin{frame} 

\frametitle{Reveal rows and columns in a table} 
\framesubtitle{Using the pause macro} 

\end{frame} 
\section{Uncover a table columnwise} 
\begin{frame} 

\frametitle{Reveal rows and columns in a table} 
\framesubtitle{Using the onslide macro} 
\roycolors [] {1}{blueI 40}{yellow ! 20} 
\begin{tabular}{>{\ttfamily}l<{\onslide<2->} I Y.  

>{\ttfamily}l<{\onslide<3->}l<{\onslide}e{}} 
\rowcolor{gray} 

\bfrm{package}&\bfrm{date}&\bfrm{function} \\ 
pstricks . tex & 2004 & basic package \\ 
pst-3d .tex & 1999 & basic 3-D macros \\ 
pst-char . tex & 1999 & character manipulation\\ 
pst-coil . tex & 1999 & coils and zig zags \\ 
pst-eps. tex & 1999 & EPS export \ \ 
pst-fill . tex & 2004 & filling and tiling \\ 

further code omitted . . .  

\onslide can also be used to show specific rows of a table, as we saw earlier with 
\pause. The following example shows the third and fifth slides of the frame. Note that in 
the example the \onslide commands are added at the end of the rows (affecting the next) 
and not at the beginning, as that would trigger the coloring of the row. 

\documentclass [xcolor=table]{beamer} 
\usetheme{Malmoe} \useoutertheme{sidebar} \usecolortheme{dove} 
\newcommand\bfrm (1){\textbf{\textrm{\textcolor{white}{#1}}}} 

\section{Reveal a table row by row} 
\section{Uncover a table columnwise} 
\section{Uncover a table rowvise II} 
\begin{frame} 

\begin{frame} 
\begin{frame} 

\frametitle{Reveal rows and columns in a table} 

\end{frame} 
. . .  \end{frame} 

765 



766 

\framesubt itle{Us ing the ons l ide macro} 
\rowcolors [] { 1 }{blue ! 40} {blue ! 10} 
\begin{tabular}{>{\ttfamily}l I >{\ttfamily}ll} 

THE WORLD OF COLOR 

\rowcolor{gray}\bfrm{package } & \bfrm{dat e }  & \bfrm{funct ion} \\ 
pstricks . t ex & 2004 & bas i c  package \onslide<2-> \\ 
pst-3d . t ex & 1999 & bas ic  3-D macros \onslide<3-> \\ 
pst- char . t ex & 1999 & charact er manipulat ion \onslide<4> \\ 
pst-co il . tex & 1999 & coils and zig zags \ons l ide<5-> \\ 
pst-eps . t ex & 1999 & EPS export \onsl ide<6 , 4> \\ 
pst-f ill . tex & 2004 & f illing and t i l ing \onsl ide<7-> \\ 

pst -grad . tex & 2004 & color gradi ent s \onsl ide<2-8> \\ 

pst -xkey . tex & 2005 & key sett ing \ons l ide<9-> \\ 
pst -node . tex & 200 1 & node s and conne ctions \onslide < 1 , 5 , 10->\\ 
pst-plot . tex & 2000 & plott ing funct i ons \onslide < l l->  \\ 

pst-text . tex & 1999 & t ext manipulat ions \onslide < 12-> \\ 
pst-tree . t ex & 2004 & trees 

\end{tabular} 
\end{frame} 

The \only macro provides a way to hide and reveal material within the body of the 
slide. 

I \only<overlay spec. >{ text} I 
The first argument determines the slide numbers on which the contents of the second argu
ment appear. Almost any combination is possible: 

• An absolute number for a single slide. 

• Absolute numbers for different slides, separated by commas. 

• A range for an interval of slides. 

• An open range for a defined start/end of the slides. 



1 1 .4 Color sl ides with �EX - The beamer class 

The output shows the third and sixth slides. Note that the words have not yet been re
vealed. 

Opaqueness 

\document class{beamer} 
\usetheme{Malmoe} 
\useoutertheme{sidebar} 
\usecol ortheme{dove} 

\begin{frame} 

\frametitle{The Pythagorean The orem} 
\only< 1 , 8>{OK , let ' s  start \ldot s }  

\ [  \only<2->{aA2} \only<3->{ + } 
\only<4->{bA2} \only<5->{ } 
\only<6->{cA2} \] 

\only<7>{Or in words : }\par 
\only<8>{The Pythagorean Theorem ass ert s that 

f or a \textbf {right } triangle , the square 
of the hypotenuse is equal to the sum of 
the squares of the other two s ides ! }  

\end{frame} 

In addition to simply hiding or showing slides, you can show them partially, with a degree 
of transparency. 

\uncover<overlay spec. >{ text} 
\setbeamercovered{argument} 
\ opaquene s s< overlay spec. > {percentage of opaqueness} 

Like \only and \onslide, \uncover shows some text under the conditions of the 
overlay specification. In this case text that is not being shown on the current slide is 
rendered opaquely. The background is rendered in a transparent way, determined by 
\setbeamercovered This command can take the following values: 

invis ible The default; the text is visible or not. 

transparent= (value) Typesets the inactive material in a "transparent" way with a 
opaqueness of 0 . .  100%, where 0 is totally transparent. 

dynami c Defines the value for the opaqueness depending on the slide number. 

highly dynami c Same with stronger differences in the slides. 

767 



768 THE WORLD OF COLOR 

still  covered= (opaqueness list) Lets the user define the opaqueness. 

again covered= (opaqueness list) Lets the user define the opaqueness of slides, which 
are again covered. 

The degree of opaqueness is set by \opaqueness. The following example shows the 
fourth slide. The [- 1 5pt ] spacing is used here to force text to overlap and demonstrate 
how the transparency works. 

\ vis ible<overlay spec. > { text} 
\ invis ible<overlay spec. >{ text} 

\document class{bearner} 
\usetheme {Malmoe} 
\use out ertheme {sidebar} 
\usecolortheme {dove} 
\newcommand\HText { \Huge Gett ing started} 

\begin{frarne} 
\frarnet itle{The transparent 

\texttt {uncover} macro} 
\setbearnercovered{transparent} 

\uncover< l>{ \HText } \\ [- 15pt] 
\uncover<2>{\color{red}\HText } \\ [- 15pt] 
\uncover<3>{\color{green}\HText}\\ [ - 1 5pt] 
\uncover<4>{\color{blue}\HText} \\ [- 15pt] 
\uncover<5>{\color{ cyan}\HText} 

\end{frarne} 

\vi sible is similar to \uncover, except that the opaqueness setting has no effect. 
\ invis ible is the other way round. 

Sometimes you want to change some text in a frame depending on which slide is being 
shown. 

\al t<overlay spec. > {default textHalternative text} < overlay spec. > 

On the slide determined by the overlay specification, the default text is shown; otherwise, the 
alternative is shown. The overlay specification can appear only once, before or after the text 
arguments. 

You can also display different text before and after a particular slide. 

\ t emporal <overlay spec. > {before textHdefault textHafter text} 

The arguments do not have to be just text, but can contain anything that is legal E\T£X, such 
as color definitions: 

\t emporal<3>{\color{red}}{\color{green}}{\color{blue}} 



:xample 
1 1 -4 - 1 5  

1 1 .4 Color slides with I5TEX - The bea mer class 

Overlays using existing (!ITEX environments 

Some commonly used �TEX constructs are redefined as follows in the beamer class, allowing 
for overlays to be used with them. 

\ begin {theorem} <ol'erlayspec.> [optionaltextl <O)leflayspec.> . . . \end {theorem} 
\begin{corollory} <overlay spec. > Eoptiona(textl <oyeriayspec.> . . .  \end{corollory} 
\begin{def ini t ion} <overlay spec.> [optionfll textl <01lerla)'Specl). . . .  \end{def ini t ion} 
\begin{def ini t i ons} <overlayspec;> [opti()t/altext] <6verlayspei:l> . . .  \end{def ini t ions} 
\begin{fact} <overlayspec.> [optional textl <overla),spec.> . . .  \end{fact}  
\begin{proof } <overlay spec.> [op#onaItext) <overlayspec.> . . . \end{proof } 
\begin{example} <overlayspec.> [optionaltext} <overlay spec. > . . .  \end{example} 

An example of  the usefulness of  the changes i s  shown below, where parts of a theorem are 
revealed in successive slides. The top picture is the third slide of the first frame. You can see 
that the proof environment is invisible but still takes up space. In the third slide of the second 
frame the space has vanished due to the use of the \onlyenv environment. 

\document class{beamer} 
\usetheme{Malmoe} \usecolortheme{dove} 
\useout ertheme{sidebar} 

\begin{frame} 
\f ramet itle{Overlay Environment s} 
\begin{theorem}< 1 - >  [PythagorasJ 

\ [  5�2 = 4�2 + 3�2 \J 
\end{theorem} 

\begin{proof}<2> 
\ [  25 = 16  + 9 = 25 \J  

\end{proof } 
\begin{example}<3> [Derivat i onJ 

\begin{al ign} 
f ( x)  &= \tan x\\ 
f � \prime &= 1+\tan�2 x 

\end{al ign} 
\end{example} 

\end{frame} 
\begin{frame} 

\frametitle{Overlay Environment s} 
\begin{theorem}< 1 - >  [PythagorasJ 

\ [  5�2 = 4�2 + 3�2 \J 
\end{theorem} 
\begin{onlyenv}<2> 

\begin{proof } 
\ [  25 = 16 + 9 = 25 \J  

\ end{proof} 
\ end{onlyenv} 

. . .  further code omitted . . .  

769 



770 THE WORLD OF COLOR 

The beamer class also includes the following new environments onlyenv, al tenv, 
v isi  bleenv, uncoverenv, and invis  i bleenvwhich have the same effect as the macros 
defined earlier. An example of onlyenv appears in the second frame of the previous exam
ple (bottom picture) . 

Overlay areas 

When the text changes dynamically, it can be annoying when text that appears on every 
slide moves to a different position on different slides within the same frame. beamer has two 
environments to hold such texts in a static way. 

\begin{overlayarea}{area width} {area height} 
\ begin {overprint Harea width} 

Actions on overlays 

\end{overlayarea} 
\end{overprint }  

Every overlay specification can have an additional action specification with the following 
syntax: 

<overlay specification I (action) @overlay specification> 

The space after the I character is important. The action can have one of five values: 

uncover Uncovers the text item or text block (default) .  

alert Changes the appearance of  the text item or  text block (the default is bold) . 

onl y The text item or text block is inserted only in the specified slide( s) .  

vis ible Makes the item or text block visible for the specified slide(s) .  

invis ible The other way round. 

In the following example, the first item must appear at the start of the list to ensure that 
the enumerate starts with the number O. We see here all three slides in the frame, showing 
the sequence in which items appear. 

\document class{beamer} 
\usetheme {Malmoe} 
\useoutertheme { s idebar} 
\usecolortheme{dove } 

\begin{frame} 
\frametit le{Alerted text} 
\begin{enumerate} 

\item<3- 1 alert©3> [O . ]  
The last item t o  be shown , even though it i s  
at the top o f  the l i st . 

\item< 1- 1 alert © 1 >  

The f irst main item , alert ed only o n  s lide 1 ,  
but appearing on all s l ides . 



1 1 .4 Color slides with ItI'TEX - The beamer class 

\item<2 1 alert©2> 
The second item , shown and alerted only on s lide 2 .  

\end{enumerate} 
\end{irame} 

It is also possible to use the alert option as a macro in its own right to highlight parts of 
an item. In the following example, the first and last slides are shown; the text "important" is 
highlighted only on the first slide. For the meaning of the overlay specification < . >, see Sec
tion 1 1 .4 .7 on page 786. It uses the value of the beamerpause counter without incrementing 
it. This makes it possible to synchronize the alert with the item. 

\do cument class{beamer} 
\usetheme{Malmoe} 
\useoutertheme {sidebar} 
\usecol ortheme{dove} 

\begin{irame} 
\frametitle{Opti onal increment with alert ed text} 
\begin{ itemize} [<+->] 

\item Thi s  i s  \alert < . >{important } . 
\item We want t o  \alert<2->{highlight } not this but \alert < . >{that } . 

\item Where i s  the \alert < . > {sense}? 
\ end{ itemize} 

\end{frame} 

\end{document } 

.. !Ol> This IS itnportant. 
.. 

77l 



772 

.. !'irrX 
.. Sill1i;X 

THE WORLD OF COLOR 

Often an itemized list should have every active item highlighted, which is possible with 
the optional argument of the itemize environment. This example shows the third slide of 
the frame: 

\document class{beamer} 
\usetheme {Malmoe} 
\useout ertheme{ s idebar} 
\usecolortheme {dove} 

\begin{frame} 
\begin{ itemize} [<+- 1 alert@+>] 
\item \TeX 
\item \LaTeX 
\item \BibTeX 
\item and so  on 
\end{ itemize} 

\end{frame} 
\end{document } 

1 1 .4.5 Additional  faci l ities in  bea mer 
Navigation bar 

In most of the examples we have seen in this chapter, an area of navigation symbols has 
appeared in the lower-right corner of the slides, which is seen enlarged in Figure 1 1 .2. The 
symbols are as follows: 

• A slide icon as a single rectangle with left and right arrows 

• A frame icon as three slide icons stacked on top of one another, with left and right ar
rows 

• A subsection icon as a highlighted subsection entry in a table of contents with left and 
right arrows 

• A section icon as a highlighted section entry (together with all subsections) in a table of 
contents with left and right arrows 

• A presentation icon as a completely highlighted table of contents 

• An appendix icon as a highlighted table of contents consisting of only one section (this 
icon is shown only if there is an appendix) 

• Back and forward icons as circular arrows 

• A search/find icon as a magnifier 

Figure 1 1 .2: The default navigation bar with the symbols for (from left to right) slide, frame, 
subsection, section, document, and back/search/forward navigation 

Example 
, 1 1 -4- 1 8  ' 



1 1 .4 Color slides with t'TEX - The beamer class 

The navigation bar can be modified. For instance, you can suppress all the symbols with 
the following command: 

\setbeamert emplate {navigat ion symbols}{} 

The predefined symbols are available through these macros: 

• \insert slidenavigationsymbol (slide navigation symbol with hyperlinked left 
and right arrows) 

• \insertframenavigat ionsymbol (frame navigation symbol with hyperlinked left 
and right arrows) 

• \insert subsectionnavigat ionsymbol ( subsection navigation symbol with hy
perlinked left and right arrows) 

• \insertsectionnavigat ionsymbol (section navigation symbol with hyperlinked 
left and right arrows) 

• \insertdocnavigat ionsymbol (presentation navigation symbol and, if needed, 
the appendix navigation symbol) 

• \insertbackf indf orwardnavigationsymbol (back, find, and forward naviga
tion symbol) 

It is also possible to define your own symbols or to resize the existing ones. The follow
ing example first deletes the default navigation bar and then puts the first two navigation 
symbols for the slides and the frames at the bottom of the left sidebar. These two navigation 
symbols should meet most of your needs for a presentation. The example shows the last slide 
in the first frame. 

\document class [xcolor=table] {beamer} 
\usetheme{Malmoe} 

\useout ertheme [width=42pt , left]  {sidebar} 
\us e colortheme{dove} 
\ setbeamertemplate{footline}{} 

\ s etbeamertemplat e{navigat ion symbols}{} 
\setbeamertemplate{s idebar left}{% 

} 

\vspace*{\fill}  
\scalebox{ l }  [2]  { \ insert sl idenavigat ionsymbol} 
\ s c alebox{ l }  [2] {\ insertframenavigat ionsymbol} 

773 

\newcommand\bfrm [ l ]  
{\t extbf {\t extrm{\t ext color{white}{#l}}}}  

\section{Uncover a t able rowwi s e }  
\begin{frame} 

\framet itle{Uncover rows and columns in t able s }  
. . .  further code omitted . . .  



774 THE WORLD OF COLOR 

Here, the optional argument of the style package beamerouterthemesideba r deter
mines the position and size of the sidebar. One \setbeamertemplate suppresses the 
default navigation bar, and another creates a new navigation bar inside the left sidebar. 
\scalebox is used to stretch existing symbols in the vertical direction. 

Animation, sound, and movies 

The beamer class comes with mu ltimedia, a style file for using sound or video in a presen
tation. These kinds of effects obviously depend on which PDF viewer you use when playing 
sounds or viewing movies. If your viewer supports sound and video, you would load the 
package as usual with 

\usepackage{mult imedia} 

The multimedia package provides the following macros: 

\animat e <OverUiji�pei:'> 
\ anima t ev al ue<start slide>-<end slide> {name} {start value} {end value} 
\movie  lfeylllal.U {poster textHfile name} 
\hyperl inkmovieTke)'/ValSJ {movie labelHtext} 
\sound[key!vals} {poster textHfile name} 
\hyperl inksoundTkeylvalsJ {sound labelHtext} 
\hyperlinkmute{ text} 

Transitions 

Presentations can look nicer if a slide seems to dissolve slightly while a new one appears, 
instead of making an abrupt change from one slide to the next. You can set this preference 
with the following macros: 

\transbl indshorizontal<l:01leriayspec.> {keylvals} 
\transblindsvert ical«overlay spec.> {keylvals} 
\ t ransboxin<oyerlay spec. > {keylvals} 
\ transboxout <overlayspef.> {keylvals} 
\ transdissol  ve «oYerlay §Pe�. > {keylvals} 
\ transdurat ion<:()yerlayspef.> {keylvals} 
\ transgl i tter <qverUiy spec.> {keylvals} 
\ transspli tverticalin<::overlayspec.> {keylvals} 
\ trans spl i  tverticalout <overlayspec.> {keylvals} 
\ transspli thorizontalin <overlay spec. > {keylvals} 
\ transspli thorizontalout <overlay spec.> {keylvals} 
\ transwipe<overlayspec.> {keylvals} 



1 1 .4 Color slides with �EX - The beamer class 

Table 1 1 .6: Keywords for \ transdissol ve 

Keyword Meaning 

durat ion= ( time) Time in seconds for the transition effect. The default is Is ,  but 
smaller values may be better. 

direct ion= (degree) Allowed values are 0 , 90, 1 80 , 270, and, for a glitter effect, 315 .  

The possible keywords for dissolving are listed in Table 1 1 .6. The following example shows 
the second slide of the first frame when its first slide dissolves and the second appears. It 
shows only how the macro \ transdissol  ve works, because it is not really possible to 
demonstrate this kind of animation in a static book. 

Boxed and colored text 

\document class{beamer} 
\usetheme{Malmoe} \usecolortheme {dove} 
\useoutertheme {sidebar} 

\begin{frame} 
\transdi ssolve<2> [durat i on=O . 74] 
\framet itle{Transdi s s olve} 
\frame subt itle{make s things nicer . . .  } 
\begin{ columns} 

\only< 1->{\begin{c olumn}{ . 4\textwidth} 
We hold these truths to be self-evident , 

that all men are created equal , 
that they are endowed by the ir 
Creat or with certain inal ienable right s , 
that among the se are Lif e , 

Liberty and the Pursuit of Happiness . 
\end{ column}} 

\only<2->{\begin{ column}{ . 4\textwidth} 
That , to se cure these right s , government s are 
instituted among Men , deriving the ir j ust 
powers from the c onsent of the governed . 
That , when any f orm of government becomes 
destruct ive of the s e  ends , it i s  the Right 
of the People to alter or abo l i sh it . 

\end{ column}} 
\end{columns} 

\end{f rame} 

In addition to the standard IfIEX macros for framing or boxing text, beamer provides two 
new environments for this purpose: 

\begin{beamercolorbox} [keylvals] {beamer color} . . .  \end{beamercolorbox} 
\begin{beamerboxesrounded}[k'ey!valsl { title} . . .  \end{beamerboxesrounded} 

775 



776 THE WORLD OF COLOR 

There are a lot of keywords for beamercolorbox, which are shown in Table 1 1 .7. The key
words for beamerboxesrounded are shown in Table 1 1 .8 on page 778. 

Logos 

\document class {beamer} 
\usetheme{Malmoe} \usecolortheme {dove} 
\useoutertheme{ s idebar} 

\begin{frame} 
\f ramet itle{A demonstrat ion of beamer boxe s} 
\ setbeamercolor{postit}{fg=black , bg=yellow} 
\begin{beamercolorbox} [sep= l em , wd=5cm] {postit} 

this i s  a \texttt{beamercolorbox} 

\end{beamercolorbox} 
\ s etbeamercolor{headerCol}{fg=black , bg=lightgray} 
\ s etbeamercolor{bodyCol}{fg=whit e , bg=gray} 

\begin{beamerboxesrounded} [upper=headerCol , %  
l ower=bodyCol , shadow=true] {Example} 

\texttt{beamerboxesrounded}\\ 
with a shadow\\ and some nonsense text \ldot s\\ 

\ end{beamerboxesrounded} 
\end{frame} 

Often the corporate layout design for a company, university, or institute includes a logo, 
which can be easily defined: 

I \logo{object} I 
The object can be anything-maybe some text or more often a graphic. It is placed by the 
theme packages using the \insertlogo macro; there are no optional arguments to posi
tion the logo, as it is always set at 'IEX's current point. Unlike all other frame objects, the logo 
must be defined before the f rame environment, usually in the preamble. In the following 
example, the logo is placed by the theme package in the upper-left corner; in other themes, 
such as the Malmoe theme we use elsewhere, it goes to the lower-left corner. 

\document class{beamer} 
\usetheme {Malmoe} \useout ertheme{sidebar} 
\usecolortheme{dove} 
\pgfdeclare image [width= 1 . 5cm] {uni -logo}{fu-berl in} 
\logo{\pgfuse image{uni -logo}} 

\title{Quantum mechanics f or beginners} 
\author{Herbert Vo\ s s }  
\ inst itute{ZEDAT} \date{\t oday} 
\begin{frame}{A demonstrat ion of a logo} 
The logo is placed by the chosen theme . It can 
al so be used with the \texttt{\textbackslash 
insertlogo} macro at the current point . 
\ end{frame} 

Example 
1 1 -4-2 1 

Example , 
1 1 -4-22 



1 1 .4 Color slides with I5T'EX - The beamer class 777 

Keyword 
wd= (dimen) 

dp= (dimen) 
ht=(dimen) 
left 

right 
center 
leftskip= (dimen) 
rightskip= (dimen) 
sep= (dimen) 
cOlsep= (dimen) 
colsep*= (dimen) 
shadow= (bool) 
rounded= (bool) 
ignorebg 
vmode 

Table 1 1 .7: Keywords for the beamercolorbox environment 

Meaning 
The width of the box. Using a mini page inside this environment may be a good idea, if 
you have problems with the box width. If the dimension is greater than \ textwidth, 
then bea mer does wd=\ text width. 
The depth of the box. 
The height of the box. 
Typesets the box text left-aligned and with a ragged right border. This is the default. To 
get a better ragged right border, use the r igh t ski p keyword. 
Typesets the box text right-aligned with a (very) ragged left border. 
Centers the text inside the box. 
lEX's left skip is a glue that is inserted at the left end of every line. 
Same for the right skip. A good value may be right skip=Opt plus 4em. 
Separation between text and border. 
Separation between text and border for a colored background. 
Adds some space if the box text is greater than the defined width. 
Draws a shadow behind the box. 
Causes the borders of the box to be rounded off if there is a background installed. 
Ignores the background color. 
Causes lEX to be in vertical mode when the box starts. 

Inserting a second logo is not possible with the \insertlogo macro. You can in
stead tweak the theme, as we do in the following example, where we override the template's 
sidebar left ,  use foot l ine to position the second logo, and make sidebar right 
empty. 

\do cument class{beamer} 
\usetheme {Malmo e} \usecolortheme{dove} 
\useoutertheme { s idebar} 
\pgf declare image [height=2 . 25ex , 

width=2 . 5\basel ineskip] { institute-logo}{zedat } 
\pgf de clare image [he ight= 1 . 3cm] {uni }{fu-berl in} 
\logo{ \pgfuse image{uni }} 
\ setbeamertemplate{footline}{% 

\raisebox{-2ex}{ \pgfuse image{inst i tut e-logo}} 
\usebeamerf ont {dat e in head/foot} 
\insert shortdate{} \hf ill 

\usebeamert emplate {navigat ion symbols}\hf i l l  
\ insertf ramenumber{}/\ inserttotalf ramenumber} 

\ s etbeamertemplat e{sidebar right }{} 

\title{ Introduct i on t o  Quantum Computers} 
. . .  further code omitted . . .  

The two logos-one for the university and one for the institute-are declared with 
the \pgfdeclare image macro. The main logo is passed to the internal template with the 
macro \logo. Then the footline is defined as a horizontal line with the objects "institute 
logo - date - navigation symbols - framenumber/totalnumber". 



778 THE WORLD OF COLOR 

Table 1 1 .8: Keywords for the be amerboxesrounded environment 

Keyword Meaning 

lower= (beamer color) Sets the color to be used for the lower (main) part of the box. 
upper= (beamer color) Same for the header. 
width= (dimen) The width of the text inside the box. 
shadow= (bool) If set to true, a shadow will be drawn. 

Block environments 

A special block environments is defined for beamer, containing a header and a frame. The 
syntax is 

\ begin {blo ck}<action specification>{header text }<action specification> 

\end{block} 

Only one of the two action specifications is possible. The following example shows two block 
environments. The first one has the default layout; the second one has a modified template, 
colors, and font because of the declarations placed in front of it. Section 1 1 .4.8 provides more 
information about the details of template style setting. 

\do cument class{beamer} 
\usetheme{Malmoe} 
\useoutertheme { s idebar} 

\usecolortheme{dove} 

\begin{frame} 
\f ramet itle{A demonstrat i on of a block environment . }  
\f ramesubt itle{The def ault and a modified layout . }  

\begin{blo ck}< l -> {Pythagoras Theorem} 
$c "2=a"2 + b"2$ 

\end{blo ck} 

\setbeamert emplat e{bl ocks} [rounded] [shadow=true] 
\ s etbeamercolor{block body} {bg=normal t ext . bg ! 90 ! black} 
\setbeamercolor{block title} {bg=normal text . bg ! 90 ! red} 
\setbeamerf ont {block t itle}{s ize=\footnot e s ize , 

parent={structure , block 
\begin{block}<2-> {Pythagoras Theorem} 

$ c " 2=a"2 + b"2$ 
\end{block} 

\ end{f rame} 

body}} 

There are two more block environments apart from block, called alertblock and 
example block. All of these environments can be modified in different ways and are shown 
in the following example, which uses the Berkeley theme with predefined block environ
ments (the next example is also shown in Color Plate XVI y) 

Example 
1 1 -4-24 . 

. . . .. .. .. . .. .. .. .! 



1 1 .4 Color slides with It'TEX - The beamer class 

\do cument class{beamer} 
\usetheme{Berkeley} 

\begin{irame} 

779 

\frametitle{Demonstrat ion of block environment s} 
\framesubt itle{\t exttt{block} , 

\texttt{alertblock} , \texttt{exampleblock}} 
\begin{block}{Pythagorean Theorem} 

$ c � 2=aA2 + bA2$ 
\ end{blo ck} 
\begin{alertblock}{Wrong Pythagoras} 

$c=a + b$ 
\end{alertblock} 
\begin{exampleblock}{Square of negat ive numbers} 

$-3>-4\rightarrow ( -3 ) A2« -4) A2$ 
\end{exampleblock} 

\end{irame} 

1 1 .4.6 Using �TEX stru ctura l  components in bea mer 
Sectioning commands 

The normal IHE'( sectioning (\sect ion, \subsecti on etc) commands can be used out
side the frame environment, but do not generate any visible slides. They do have an effect 
on the table of contents and some title layouts, depending on the style requested. Perhaps 
surprisingly, the normal effect of the section macros is reversed, with the optional argument 
appearing on screen and the default one going into the table of contents file. The normal 
macros are redefined as follows: 

\section <mOdeP�CiJicatiM> [navigation bar name] {frame name} 
\subsection�mode speciJication> [navigation bar name] {frame name} 
\sect ion <m(}d¢$pecifit4ticin> * {navigation bar name} 
\subsection<tnOde SPecifici:ltion> * {navigation bar name} 

The starred versions create no entry in the table of contents file and no heading title, only a 
possible entry in the navigation bar. 

The philosophy of beamer is that an appendix in not shown in a presentation, but can 
be useful to answer questions at the end of the talk. The \appendix command therefore 
starts a new part. 

In general, there is no real need for parts in a presentation. However, you can use the 
\part macro with the following syntax if needed: 

\part <mQd� specific4ttOn> .�. [navigation bar name] {frame name} 

The starred version creates no entry in the table of contents file and no heading. 



780 TH E WORLD OF COLOR 

I \AtBeginPart{. . .  } I 
This is a special declaration to insert some code before each part. 

Figu res and tables 

beamer supports figures and tables in the usual way, except that they cannot float. This 
makes it possible to use all the overlay facilities inside the f igure or t able environment. 

It usually looks strange to see captions on figures or tables in a presentation. However, 
if you are going to print a handout or an article from your slides, you may want to put them 
m. 

Multiple columns 

Often one needs to place text and an image or a table side by side. This positioning can be 
achieved as usual in IHEX with two minipages or parboxes, but beamer offers a better and 
easier solution-the column environment. 

\begin{ columns }[�cylva#l 
\begin{ column} [placement] <column width> 
\ begin {col  umn} [placement] <column width> 

\end{columns} 

\end{ column} 
\end{column} 

The number of columns inside the main columns environment is limited only by the frame 
size. The following examples show the first and third slides of a frame. The column envi
ronments can be inside an \only macro (first and last columns) or the other way round 
(middle column) .  

\do cument class{beamer} 

\usetheme {Malmo e} \usecol ortheme{dove} \useoutertheme{sidebar} 
\setlength\unitlength{ lmm} 

\begin{f rame} 

\framet itle{Mult iple co lumns in a frame} 
\frame subt itle{\texttt{columns} and \texttt{column}} 
\begin{columns } [b] % bottom al igned 

\only< l->{% 
\begin{ column}{ . 4\textwidth} 

\TeX\ is the world ' s  premi\ ' ere markup-based typesett ing syst em , 
and PostScript i s  the leading language for describing the print ed 
page . We des cribe how they can produce even more beaut iful result s 

when they work t ogether . 
\ end{ column}} 

\begin{ co lumn}{ . 2\textwidth} 
\only<2->{\rule{20mm}{25mm} 
\put ( - 1 3 , 20 ) {{\color{white}\TeX}}} 

\ end{ column} 



1 1 .4 Color slides with It'TEX - The beamer class 

\only<3>{% 
\begin{ column}{ . 2\textwidth} 

{\color{red}\rule{20mm}{40mm}} 
\put ( - 1 3 , 20 ) {\LaTeX} 

\end{ column}} 
\end{ columns} 

\end{frame} 

In addition to the column environment, there is a \ col umn macro, which starts a new 
column that remains active until another column macro or environment appears, or until 
the end of the main column. The keywords for the columns and column environments are 
listed in Table 1 1 .9. 

Bibl iography 

A bibliography in a presentation looks a little odd. However, sometimes it may be useful to 
refer to additional literature or if the presentation will be printed as an article or handout. 

Table 1 1 .9: Keywords for the columns environment 

Keyword 
b 
c 

onlytextwidth 
t 

T 

totalwidth= (dimen) 

Meaning 
Aligned at the bottom line of the columns. 
Vertically centered relative to each column. The default, unless 
the global option t is used. 
Same as totalwidth=\ textwidth. 
Aligned at the baseline of the first line. The default if the global 
option t is used. 
Similar to the t keyword, except that it is really aligned at the top 
of the first line and not only the baseline. 
Total width of all columns. 

78 1 



782 THE WORLD OF COLOR 

\beamertemplatebookbibitems \beamertemplateart i clebibitems 

The following example demonstrates some useful commands for inserting icons in a bibli
ography. 

Table of contents 

\document class {beamer} \usetheme{Malmoe} 
\useoutertheme {s idebar} \usecolortheme{dove} 

\appendix 
\section<pre sentat ion>*{\appendixname} 
\subsection<presentat i on>*{Bibliography} 

\begin{frame} [allowframebreaks] 
\frametitle<present at ion>{For Further Reading} 
\begin{theb ibli ography}{ 10} 
\beamertemplat ebookbibitems 
\bibitem{kilp : 1 925} 

W . H .  Kilpatrick . 
\newblock Foundat ions of method : Inf ormal 
talks on t eaching . 
\newblock Macmillan , New York , 1925 . 

\bibit em{bruner : 1 960} 
Jerome Seymour Bruner . 
\newblock The process  of educat ion . 
\newblock Cambridge , 
Harvard University Pre ss , 1960 . 

\beamertemplat e art i clebibitems 
\bibit em{Kilp : 1 918}  

W . H .  Kilpatrick . 
. . .  further code omitted 

The table of contents for a presentation can be generated as usual with the macro 
\ tableof contents placed in its own frame: 

\begin{frame} 
\f rametitle{Table of content s }  \tabl eofcont ent s 

\end{f rame} 

The beamer class adds optional arguments for \ tableofcontents, all of which are listed 
in Table 1 1 . 10. The following example shows how to code a table of contents with a pause 
between the section entries. 

\section* {Table of c ontent s }  
\begin{frame} 

\frametitle {Table of contents} 
\tableof content s [part= l , paus esect ions] 

\end{f rame} 

Example 
1 1 -4-27 



1 1 .4 Color slides with �EX - The beamer class 

Table 1 1 . 10 : Keywords for the \tableofcontents command 

Keyword Meaning 

783 

currentsection Causes all sections except the current one to be shown in a semi-transparent way. 
Also, all subsections except those in the current section are shown in the 
semi-transparent way. This command is a shorthand for specifying the following 
keywords: 

sect ionstyle=show/shaded , subsectionstyle=show/show/shaded. 
currentsubsection Similar to currentsect ion. 
f irstsect ion= (section number) 

Specifies which section should be numbered as section " 1 ". This is useful if you 
have a first section (like an overview section) that should not be numbered. 
Section numbers are not shown by default. To show them, you must use a 
different table of contents template. 

hideallsubsect ions Causes all subsections to be hidden. 
hideothersubsections 
part=(part number) 

pausesect ions 

Causes the subsections of sections other than the current one to be hidden. 

Causes the table of contents of part <part number> to be shown, instead of the 
table of contents of the current part (which is the default) .  

Causes a \pause command to be  issued before each section. This i s  useful i f  you 
wish to show the table of contents in an incremental way. 

pause subsections Same for subsections. 

se ct i ons= (overlay specification) 
Causes only the sections mentioned in the overlay specification to be shown. 

sectionstyle= (current/other) 
Specifies how sections should be displayed. Possible styles are show, shaded, 
and hide. 

subse ct ionsty le= (current/other/subsections in other sections) 
Specifies how subsections should be displayed. 

1 1 .4.7 Using INEX i n  l ine components i n  bea mer 
All of  the usual �Tp)C macros can be  used inside beamer frames, but many of  them are rede
fined to add extra power. 

Hyperl inks 

beamer loads the hyperref package by default, except when the presentation mode is set 
to "article". In the latter case the package must be loaded manually in the preamble via 
\usepackage{hyperref } .  

A target for a hyperlink can be created in the normal way by a \hypertarget or 
\label command. This i s  no problem when writing an article, where all targets are perma
nently visible. In a presentation, however, a target may be invisible or in a transparent mode, 
so a jump to it may be possible but meaningless. This makes it tricky to create hyperlinks in 
a presentation which uses the overlay technique. 



784 THE WORLD OF COLOR 

In the following example the frame starts with the first item and buttons for jumping 
to the second and third items. The first button becomes invisible when slide 2 is visible, as 
seen in the second screenshot, where a new link appears as the second item. In the third 
screenshot the third item appears, and the link reappears at the bottom of the second item. 

\document class {beamer} 
\usetheme{Malmoe} \useout ertheme{sidebar} \usecolortheme {dove} 

\begin{irame} 
\frametitle{Hyperlinks and -target s }  
\begin{ itemize} 
\item< l - >  First item . 

\ it em<2> \hyperl ink{j umptof ourth} 
{\beamergotobutton{Jump to f ourth it em}} 

\hypertarget<4> { j umptof ourth}{} 
\ it em<3-> Third item . \item<4-> Fourth item . 
\end{ itemize} 
\inv i s ible<2>{ \hyperl ink{j umptosecond} 

{\beamergotobutton{ Jump to second item}}} 

\ invis ible<3>{\hyperl ink{j umpt othird} 
{\beamergotobutt on{Jump to third item}}} 

\hypert arget <2>{j umptosecond}{} 
\hypertarget<3>{jumptothird}{ }  
\hyperlink{frame I I <2>}{\beamergotobutt on{ Jump to next frame}} 

\ end{irame} 

1 

I i 
I 
1 

'-�._,� __ ,, __ , __ ._._. __ • ____ ... __ . ___ ..l L. __ ._._ •. __ , ... � __ •• __ ._._.�_�_._..l !� _____ . _��, __ ., ____ .� ___ _ 

To make it simplier for you to do hyperlinking, the frame environment has an op
tional argument for labels (see Table 1 1 .5 on page 759) .  The beamer class constructs tar
gets for each slide in labelled frames. Thus, for a frame with the label frameII ,  a target 
frame I I  <2> is created automatically for the second slide of the frame, which we can link to 
as follows: 

\hyperlink{frame I I < 2>}{\beamergot obutt on{ Jump t o  second frame }} 

beamer knows about a lot of predefined targets (shown in Table 1 1 . 1 1  on page 786), 
which makes hyperlinking very easy. The links are created for sections and subsections 
as well as for frames, with the frame in the macro name simply being replaced with the 



Example 
1 1 -4-29 I 

1 1 .4 Color slides with J!lTEX - The beamer class 

section or subsection. All of these macros also accept an overlay specification at the 
end, rather than at the beginning. 

\document class{beamer} \usetheme{Malmoe} 
\useoutertheme{ s i debar} \us ecolortheme{dove} 

\title {The Declarat i on of Independence of 
the Thirteen Colonie s . }  

\author{by Thomas Jeff erson et al . }  
\date{July 4 ,  1776} 
\begin{frame} 

\framet itle{Hyperl inks and -target s }  
\begin{itemize} 
\item< l - >  all men are created equal , 
\item<2-> they are endowed by their 

Creat or with certain inal ienable right s , 
\item<3-> among the se are Lif e , 

Liberty and the Pursuit of Happine s s . 
\item<4-> to se cure these right s , 

785 

Government s are instituted among Men , deriving 
their j ust powers f rom the consent of the governed . 

\end{itemize} 
\hyperl ink{j umpt o I }  

{\beamergotobutt on{Jump back t o  f irst frame }} 
\hypertarget <2>{j umptoI}{}  

\ end{frame} 

Targets are defined for a frame with the name j umpt 0 followed by the number of the 
frame. 

Labels 

\label <overlayspec.> {label name} 

Without an overlay specification, only the active slide gets the label. This behavior is impor
!ant when you are jumping from a reference point to a slide. In this case it makes sense only 
when the text referring to the label is visible. 

\begin{frame} 
\begin{al ign} 

c�2  &= a�2 + b�2 \label{Pythagoras}\\  
c�2  &=  a�2  + b�2-2ab\cos\gamma \label{cos in-theorem} 

\end{al ign} 
Start \uncover<2>{end} 

\only<3>{The spe c i f i cat i on is needed now . \label<3>{mylabel}} 
\end{frame} 



786 

Command Meaning 

Table 1 1 . 1 1 :  Hyperlink commands 

\hyperl inkslideprev����rl�j spe'c.:> {object} 
Mouse click on the object jumps one slide back. 

\h yper 1 inks 1 i denextr4;ort!e1+l�)":$p¢c.> {objeLargbct} 
Mouse click on the object jumps one slide forward. 

\hyperlinkframestart <o�er-Iaj':spec.> {object} 

THE WORLD OF COLOR 

Mouse click on the object jumps to the first slide of the current frame. 
\hyperlinkframeend<p��1'laj$p�c.> {object} 

Mouse click on the object jumps to the last slide of the current frame. 
\hyperlinkframestartnext �pverl#Y $p�F'> {object} 

Mouse click on the object jumps to the first slide of the next frame. 
\hyperl inkframeendprev*o��rl#y,,:sp�.:> {object} 

Mouse click on the object jumps to the last slide of the previous frame. 
\hyperlinkpresentat i onstart <01!er'a�$pe:d.:> {object} 

Mouse click on the object jumps to the first slide of the presentation. 
\hyperl inkpresentat ionendi(overla)"spec.> {object} 

Mouse click on the object jumps to the last slide of the presentation. This excludes 
the appendix. 

\hyperlinkappendixstart <overlayspec.> {object} 
Mouse click on the object jumps to the first slide of the appendix. If there is no ap
pendix, this will jump to the last slide of the document. 

\hyperlinkappendixend<overlayspec.> {object} 
Mouse click on the object jumps to the last slide of the appendix. 

\hyperlinkdocument start <rJveflayspec.> {object} 
Mouse click on the object jumps to the first slide of the presentation. 

\hyper 1 inkdo cumentend<�vefraJ'spec.> {object} 
Mouse click on the object jumps to the last slide of the presentation or, if an appendix 
is present, to the last slide of the appendix. 

List items 

Items in the list environments enumerate, descript ion and i t ernize are, in general, a 
good choice for a presentation, as a lot of useful information can be presented in an easy and 
effective way. As usual, \i tern is extended to support overlays. 

\i tern <overlayspec.> [item label] <over14J' spec.> 

The redefinition of the \i t ern macro makes it easy to affect the sequence of slides, without 
needing to use the \only macro. 

\begin{frame} 
\begin{itemize} 
\item< l->  First item , shown on all slides . 



1 1 .4 Color slides with tl'TEX - The beamer class 

\item<2-> Second item , shown on s l ide 2 and f o llowing . 
\ item<2-> Third item , also shown on sl ide 2 and f O ll owing . 
\item<3-> Fourth item , shown on s lide 3 .  
\end{itemize} 

\end{frame } 

The problem with this macro is that the overlap specifications force us to effectively per
form a manual enumeration. Luckily, beamer supports a more practical way to increment 
the overlay numbers. 

\item<+-> [item label] 

Here beamer accesses the counter beamerpauses,  increments it, and then uses its 
value. The itemized list can now be edited in an easy way, so that adding or deleting an item 
is no longer a problem. 

\begin{frame} 
\begin{ itemize} 

\item<+-> First item , shown on all slides . 
\item<+-> Second item , shown on sl ide 2 and f o llowing . 
\item<+-> Third item , shown on s lide 3 and fOllowing . 
\item<+-> Fourth item , shown on sl ide 4 .  
\end{itemize} 

\end{frame} 

In the following example all items have the same overlay specification. In this case the 
short form can be used. 

\begin{frame} 
\begin{itemize} [<+->] 

\item First item , shown on all slide s . 
\item Second item , shown on s lide 2 and f o ll owing . 
\item Third item , shown on s l ide 3 and following . 
\item Fourth item , shown on sl ide 4 .  
\end{itemize} 

\end{frame} 

Coming back to the original definition of the first itemized example, where the third 
item should appear on the second slide, the automatic increment can be avoided with a dot: 

\item< . -> [item label] 

In this case the counter beamerpauses will not be incremented for the third item, but is 
also active for the second slide. 

\begin{frame} 
\begin{itemize} 

787 



788 THE WORLD OF COLOR 

\item<+-> First item , shown on all slide s . 
\item<+-> Second item , shown on s lide 2 and following . 
\item< . -> Third item , also shown on sl ide 2 and fOllowing . 
\item<+ -> Fourth item , shown on s lide 3 .  
\end{itemize} 

\end{frame} 

The dot symbol merely stops the counter from being incremented; it cannot be used for 
the case "fourth item shown together with the first one". The counter has to be decreased or 
the increment must be a negative number in such cases. beamer supports this behavior with 
an optional increment: 

\ item<+ « increment » - > [item label]  

\begin{frame} 
\begin{ itemize} 
\item<+-> First item , shown on all slide s . 
\item<+> Second item , shown only on s lide 2 .  

\item<+> Third item , shown only on sl ide 3 .  
\item<+ ( - \value {beamerpaus e s } ) -> Fourth item , 

shown on s l ide 1 and following . 
\end{itemize} 

\end{frame} 

This demonstrates elegantly how to make the last item visible at the same time as the 
first one without knowing how many items are in the list. The second and third items are 
shown only on one specific slide; on all other slides they are invisible (but do occupy space) . 

Text styles 

As expected, the standard macros for changing the text style are redefined to support over
lays: 

\ t extbf <overiayspec.> { text} 
\ t ext it <ovetlay spec;> { text} 
\ textsl  <overJayspec.> { text} 
\ t ext rm<ov�rlayspec'> { text} 
\ textsf  <,orerldyspeo:.i> { text} 
\ color <ovet1t'ljspec§ E��lotw�ilelJ {value(s)}{ text} 
\structure<oll¢rlil)lspec.t> { text} 

The effect is the same on all of these macros. If there is an overlay specification, the text 
style is changed for only the specified slide(s) ,  but has no effect on the other slides. Thus 
\text i t<3>{This i s  in italic}  causes the text to appear in italic on the third slide. 
The \structure macro provides a generic facility, which sets the style for the specified 
slides to whatever is defined by \setbeamerf ont. The display of the following example 
shows the last slide of the frame. 



Example 
1 1 -4-30 

1 1 .4 Color slides with INEX - The beamer class 

\do cument class{beamer} 
\usetheme{Malmoe} \usecolortheme{dove} 
\useout ertheme {sidebar} 
\ setbeamerfont { structure}{shape=\sc shape} 

\begin{frame} 
\frametitle{Text macros} 
\frame subt itle{Other t ext macros} 
Start . \textbf < l - >{This i s  in bold f ont . }  

789 

Finish\\ 
Start . \text it<2->{Thi s  i s  in ital i c  f ont . }  Finish\\ 
Start . \text sl<3->{Thi s  i s  slanted . }  Finish\\ 
Start . \textrm<4->{Thi s i s  in Roman f ont . }  Finish\\ 

Footnotes 

St art . \text sf<5-> {Thi s  is s ans serif . }  
Start . { \color<6-> [rgb] {O , O , 1 }Colorized} 
Start . \structure<7>{Thi s  i s  structured . }  
Start . Thi s  i s  only t ext . Finish 

\end{frame} 

Having footnotes in a presentation is usually unwise, and they should be used with caution. 
As usual, the macro is redefined to support overlays. 

I \footnote <overlllyspec.> '[key] {text} I 
Footnotes appear at the bottom of the current frame and cannot be moved to another frame. 
There is only one keyword possible, frame, which causes beamer to typeset the footnote 
right at the bottom of the frame. This is important for minipages, where the footnote is nor
mally placed at the bottom of the minipage itself. 

\document class {beamer} 
\usetheme{Malmoe} \useoutertheme{ s i debar} \usecolortheme{dove} 

\begin{frame} \f ramet itle{A demonstrat ion of f ootnote s }  
\framesubt itle{A bad idea in presentat i ons} 

\only<l->{Cat s , dogs and l ions\footnot e < l >{all carnivores }  are scary}\\ [4ex] 
\only<2->{\fbox{\begin{minipage} [t] {O . 4\l inewidth} shee p 

and goats\footnote [frame] {herbivores} are dull \ end{minipage}}} 
\only<3->{\fbox{\begin{minipage} [t] {O . 45\ l inewidth} 

pigs and men\footnote{omnivore s} are interest ing \end{minipage}}} 
\end{frame} 

Finish\\ 
Finish\\ 
Finish\\ 



790 THE WORLD OF COLOR 

On the third slide of the previous example you see that the first footnotemark is  still 
there, while the footnote text has disappeared. Nevertheless, it still occupies the vertical 
space. The last footnote has no frame keyword, so it is placed inside the minipage with 
an alpha footnote mark. 

Verbatim text 

Verbatim text written with the \ verb macro or the verbat im environment cannot be used 
directly inside a frame. You must use fragi le keyword on the frame, which comes with 
some restrictions: 

• frame must be used as an environment and not as a macro. 

• \end {frame} must be in a single line. 

• \alert< l>  and similar macros are not allowed inside the verbat im environment. 

The fragi le keyword causes beamer to write the content of the frame environment to a 
file and read it back. Typically the verbat im mode is used to typeset fragments of code, 
which can often be done in a better way by packages such as a l ltt and l istings. However, 
beamer offers a limited verbatim environment called semi verbat im without any optional 
arguments, which removes the third restriction above: 

\begin{semiverbat im} . . .  \ end{semiverbat im} 

\document class{beamer} 
\usetheme{Malmoe} 
\use out ertheme { s idebar} 
\us ecolortheme {dove} 

\begin{f rame} [fragile] 
\setbeamercovered{transparent=25} 
\f ramet itle{A demonstrat ion of verbat im text} 

\frame subt itle{Whi ch needs spe c i al code} 
\unc over< 1 - >{A demo of semiverbat im : }  
\begin{semiverbat im} 

\unc over<2->{<xd : cvsId>$Id : sprits_totest . xs l  
2007-0 1 - 1 1  rahtz $</xd : cvsId>} 

\end{semiverbat im} 

A demo of verbat im :  
\begin{verbat im} 

This is verbat im text : 
<xd : cvsId>$Id : sprits_totest . xsl 

2007-0 1 - 1 1  rahtz $< /xd : cvsId> 
\end{verbat im} 

\end{frame} 
Example , 
1 1 -4-32 : 



Example , 
1 1 -4-33 . 

1 1 .4 Color slides with IttT'EX - The beamer class 

The semi verbat im environment does a good job for a presentation of source code, 
when parts of it should be uncovered and alerted. The next example shows the second slide 
of a frame. It is easy to change the alert color-in this case, blue ( see also Color Plate XVI z) .  

\document class{beamer} 
\usetheme {Malmoe} 
\useout ertheme{sidebar} 

\usecolortheme{dove} 

\begin{frame} [fragi le] 
\f ramet itle{An Algorithm For Finding Prime Number s . }  
\framesubt itle{Use of semiverbat im} 
\ setbeamercolor{alerted t ext}{fg=blue} 
\begin{ semiverbat im} 

\uncover< l->{\alert <O>{ int main (void) }} 
\uncover < l ->{\alert<O>{\{}} 

79 1 

\uncover< l->{\alert < l>{ 
\uncover< l->{\alert < l>{ 
\uncover<2->{\alert <2>{ 
\uncover<2->{\alert <0>{ 

\uncover<3->{\alert <3>{ 
\uncover<3->{\alert <3>{ 

\alert <4>{\color{red} std : : }vector<bool> i s _prime ( 1 00 , true ) ; } } 
f or ( int i = 2 ;  i < 100 ; i++) }}  

if ( i s _prime [i] ) }} 
\{}} 

\alert <4>{\color{red} std : : }c out « i « " " ; }} 
for  ( int j = i ;  j < 100 ; }} 

\uncover<3->{\alert <3>{ 
\uncover<2->{\alert <0>{ \}}} 
\uncover<l->{\alert <O>{ return O ; }} 
\uncover< l->{\alert<O>{\}}} 

\end{ semiverbat im} 

i s _prime [j ] = false , j += i ) ; }} 

\vi s ible<4>{Note the use of \alert{\color{red}\texttt{std : : }} . }  
\end{frame} 

Graphics 

Images can be created and manipulated in the usual way of�TEX with the graph ics package. 
In addition, beamer comes with a basic drawing facility, the pgf package (Portable Graphics 
Format), which is similar to the picture macros and can be used with pdfIEX as well as ordi
nary lEX. It also has some macros to save and reuse images, which have the advantage that 
some transparency is possible. The \includegraphics  macro is redefined by beamer to 
get the additional argument for the overlay specifications. 



792 

\includegraphic s<:Qverlayspec.> TkejlvaLH {file name} 
\pgfdeclare image{keylvalsHbeamer name Hfile name} 
\pgf us e image{keylvals} {beamer name} 

THE WORLD OF COLOR 

The following example shows both ways of using a graphic. The screenshot is the thirteenth 
slide, which is easy to control because each line has five pictures. The automatic slide control 
is done by the option <+-> together with the \only and \includegraphics  macros. 

\document class{beamer} \usetheme{Malmoe} 
\useoutertheme{ s idebar} \usecolortheme{dove} 

\pgfdeclare image [width=2cm] {fu}{fu-berl in} 
\newc ommand\FU{\only<+->{ \pgfuse image {fu}}} 
\newcommand\fu 

{\ includegraphics<+-> [width=2 cm] {fu-berlin}} 
\logo{\ includegraphi c s [width= 1 . 5cm] {fu-berl in}} 

\begin{frame} 
\framet itle{A demonstrat ion of us ing a graphic} 

\frame subtitle{inc ludegraphics  and pgfuse image} 
\FU \fu \FU \fu \FU\par \fu \FU \fu \FU \fu\par 
\FU \fu \FU \fu \FU 

\end{frame } 

Often a full-screen graphic is needed, which is possible with an empty frame (keyword 
plain) and filling the background canvas with the graphic. 

\documentclass {beamer} \usetheme {Malmoe} 
\useout ertheme{sidebar} \usecolortheme {dove} 

\ setbeamert emplat e{background canvas }{% 

\ inc ludegraphics [width=\paperwidth] % 
{fu-berlin- air}} 

\begin{frame } [plain] 
\end{frame } 

This image shows the main campus of the Free University of Berlin and is courtesy of 
Foster & Partners. 

1 1 .4.8 Managing you r  tem plates 
The beamer class is totally driven by templates, and nearly everything can be overwritten or 
simply defined by the user. In general there are three kinds of templates: 

Example 
1 1 -4-34 

Example : 
: 1 1 -4-35 

' 



1 1 .4 Color slides with ttrEX - The beamer class 

Keyword Meaning 

size= (HTEX font size; 

Table 1 1 . 1 2 : Font attributes for beamer 

793 

Sets the size of the beamer font. The f ont s ize must be a standard J:l.Tp)( command (\t iny, 
\script s ize,  \footnotesize,  \small, \normals ize,  \large, \Large, \huge, and \Huge . )  
used for setting the font size; otherwise it should be  empty. beamer itself defines two more font sizes, 
\ Tiny and \ TINY, for very small text. Note that an empty definition is different than \normals ize.  
An empty definition doesn't change anything, the current font setting is  valid. 

s ize*={ (size in pt; H (baselineskip; } 
Sets the size attribute of the font to the given size in points and the baseline skip to the given value. 
Note that not all font sizes are available. 

shape= (jont shape; 
Sets the shape attribute of the font. The command must be a default J:l.Tp)( shape: \ i  t shape, 
\slshape, \scshape, or \upshape. 

shape*= (HTEX abbreviation; 
Sets the shape attribute of the font using the J:l.TP)('s abbreviations for attributes (n , it , sl  , sc , u), 
which is the same as shape= \f ont shape { . . .  } . 

series= (HTEX series name; 
Sets the series attribute of the font; it must be \bf series or \mdseries .  

series*= (HTEX abbreviation; 
Same effect as series=\font series { . . .  }. 

family= (HTEX font family) 
Sets the font family attribute, which must be either \rmf ami ly, \ttfamily, or \sffamily. 

f am i 1 y*= (HTEX abbreviation; 
Same effect as family=\fontf amily { . . .  }. 

parent= (parent list; 
Specifies a list of parent fonts. 

\setbeamertemplate{beamer element} [predejihedkeywordsJ [. . .  ] { (definition; } 
\setbeamercolor * {beamer elementHdefinition} 
\setbeamerf ont * {beamer elementHattributes} 

The starred versions reset all attributes to the default values to make only the new definitions 
active. The default is, in general, the empty definition. 

With the optional argument for the \setbeamertemplate macro, you can use prede
fined values e.g., a circle or a square for itemized lists. The package documentation describes 
all of the beamer elements (there are a lot of them! ) .  Here we show only a few examples to 
see how it works. 

Table 1 1 . 1 2  shows all attributes that are possible when setting the fonts. 
The next example defines its own title header for the main-title and sub-title of the 

frame. The first beamer element, which is redefined with default values, is the background. 
With \setbeamercolor, the element framet i tIe  gets the foreground color whi t e  and 
the background color gray. With \setbeamerf ont, the element framet i tIe  gets the 



794 THE WORLD OF COLOR 

font series \bf series and the element framesubt itle ,  then the size small and the 
\bf series .  Finally, the template framet i tle  is redefined. To make the header indepen
dent of the normal font size, the width and the height are hard-coded; both titles in the ex
amples are of the same height. The logo is defined and positioned by the default theme. 

Not all templates can be easily changed like the one for the frame title; others are more 
complex and need some experience to modify them effectively. 

\document clas s{beamer} 
\setbeamert emplate {background} [grid] [O . 5 cm] 
\s etbeamercolor{f rametitle} {fg=whit e , bg=gray} 
\setbeamerf ont {f ramet itle}{serie s=\bf series} 

\setbeamerf ont {f rame subt itle}{s ize=\ small , serie s=\bf series} 
\setbeamertemplate{frametitle}{% 

\begin{beamercolorbox} [wd=\paperwidth , ht=5 . 2ex , left skip = . 3cm , %  

right skip= . 3 cm plus lf i l , vmode] {framet itle} 
\usebeamerf ont *{f rametitle}\ insertf ramet itle\ strut 

\hf ill\Huge \raisebox{ - l ex}{FU}% 

\ ifx\ insertframesubt itle\empty\else\par 
{\usebeamerf ont *{frame subt itle}{% 

\fi 

\usebeamercolor [fg] {f rame subt itle}% 
\ insertframe subt itle} \strut \par}% 

\end{beamercolorbox}} 
\logo{\ includegraphics [width= l . 5cm] {fu-berlin}} 

\begin{frame} [fragi le] 

\f ramet itle {The macro \texttt{\t extbackslash setbeamert emplate}} 
\frame subt itle{how it works . . .  } 

. . .  further code omitted . . .  

1 1 .4.9 Backgrounds and colors 
Each frame has a background, which can consist of anything: an image, some text, or noth
ing. Superimposed on that element is a background canvas, which appears before the nor-



1 1 .4 Color slides with �EX - The beamer class 

mal slide components are built up on top. The next example shows the specific background 
canvas, a background with a grid, and the effect of changing the default text color. 

\us epackage {beamerthemeMalmoe} 

\usepackage {beamerout ertheme s i debar} 
\usepackage {beamercol orthemedove} 

\section{The Canvas} 
\ setbeamert emplat e{background c anvas} 

795 

{\put ( 120 , -230) {\rotat ebox{45} 
{\s calebox{5}{\text c o lor{gray ! 20}{DRAFT}}}}} 

\begin{frame} 
\framet itle{The canvas background} 

A wat ermark on all s lides unt i l  redef ined . 
\end{frame} 

\section{The background} 
\ setbeamertemplate {background} [grid] 

[step=O . 5cm , c olor=red ! 20] 
\begin{frame} 

\f ramet itle{The background sett ing} 
Second and third s lide addit ionally get s a grid . 

\end{frame} 

\section{Shaded canvas} 

\ setbeamertemplat e{background c anvas} 
[vert i cal shading] [top=blue ! 25] 

\ setbeamercolor{normal text}{fg=red} 
\usebeamercolor [fg] {normal text }  
\begin{frame} 

\frametitle{Text on the frame background} 
\f rame subt itle{Text f oreground and background color} 
Here background color shading i s  used and the 
text color i s  changed t o  red---Not a very 
useful combinat i on .  

\end{frame} 
\end{document} 

This example includes three frames. The first slide has a watermark for the canvas back
ground, defined before the first frame, which means that it will persist until a new global or 
local redefinition of the canvas happens. 

For the second and third slides, a grid is defined for the background. 
On the third slide the background canvas is changed to a color shading and the default 

text color to red. This requires the use of two commands: one to define the "normal text" 
color and one to use it. 



796 TH E WORLD OF COLOR 

1 1 .4. 1 0  Document modes 

Table 1 1 .3 listed the possible modes of a document. Switching between these different modes 
is possible with the \mode macro: 

\mode<mode specification>{object} \mode<mode specification> \mode* 

In the first case the object, which can be simple text or anything else, is set in the specified 
mode. For example, 

\mode <art icle>{Thi s  t ext is print ed only in the art icle mode} 

The other cases are more sophisticated, working more like switches. The second macro form 
allows you to switch between the different modes. 

\mode <art icle> 

Thi s  text i s  typeset only in \verb+art i cle+ mode . 

\verb ! verbat im t ext i s  ok { !  

\mode 
<pres entat i on> 
{ % this t ext is inserted only in present at ion mode 
\frame{\tableofcontent s [currentsect i on] }} 

Here we are back t o  art icle mode . Thi s  t ext i s  not insert ed in 
pre s entat i on mode . 

\mode 
<present at ion> 

Thi s  text is insert ed only in pre sent at ion mode . 
[ . . .  ] 

The final usage pattern for the \mode macro, with a star, causes beamer, if in presen
tation mode, to ignore all text and code outside of a \frame macro or environment. In the 
article mode, the starred version has no effect. There is also a class option to activate this 
behavior right from the beginning of a document (see Table 1 1 .3 ) .  

1 1 .4.1 1 The bea mer project 

In this book we have merely been able to give an overview of beamer, which is a hugely 
complex package. If we have whetted your appetite for learning more, the main Web page at 
https : / / sourcef orge . net/proj ects/latex-beamer has many more details; you 
can also subscribe to the beamer mailing list there to keep up-to-date with changes. 



A p p e n d  x A 

Prod uci ng PDF 
from Va rious Sou rces 

A. l  dvipdfm and dvipdfmx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  798 

A.2 pst-pdf-From PostScri pt to PDF . . . . . . . . . . . . . . . . . . . . . . . . . . . .  800 
A.3 Generati ng PDF from �EX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  803 

The only graphical object that �1EX can handle internally is the pi cture environment, 
which is very easy to use but rather restrictive. All other graphical material must be encap
sulated in \special commands and later extracted by the DVI processor (e.g., dvips) ,  and 
transformed into PostScript code. Alternatively, we can use an extended lEX, such as pdf
tex, in which we can directly embed PDF code. Packages such as pst ricks can produce the 
\special commands for DVI, but this method does not work with pdflatex. Depending 
on whether you need to include EPS graphics files in your �1EX document, one or more 
strategies can be used to obtain PDF output: 

• latex creates a DVI file, which is read by dvips, which creates a PostScript file, which is 
finally translated into PDF by ps2pdf or Acrobat Disti l ler (this is the traditional way) . 

• The package pst -pdf is used. 

• dvipdfm creates the DVI file and generates PDF directly. 

• pdflatex, or another lEX variant such as Michael Vulis's VTeX, l  reads the �TEX source 
and creates PDF directly. 

In this appendix we first describe the dvipdfm and dvipdfmx programs, which generate 
PDF from a DVI file. Then we turn our attention to the pst-pdf package, which automates 
the translation of EPS images and PSTricks PostScript code into PDF. The final part of the 
appendix looks at an example of a mEX file that is translated into PDF using each of the first 
four alternatives mentioned above. 

I Visual IEX: see http : //www . mi cropres s- inc . com/ 



798 PRODUCI NG PDF FROM VARIOUS SOURCES 

A.1 dvipdfm and dvi pdfmx 

Mark A. Wicks's program dvipdfm (http : //gaspra . kettering . edu/dvipdfm/) sup
ports the following features: 

• Bookmarks, named destinations, and annotations (many of Acrobat Dist i l ler's 
pdf mark features) 

• dvips specials 

• Inclusion of METAPOST output and of arbitrary PostScript files with help from an 
external program 

• Thumbnails (generated by ghostscript) 

• Arbitrary, nested linear transformations ( including scaling and rotation) of typeset ma-
terial 

• Inclusion of PDF images, including cropping by supplying a bounding box 

• Inclusion ofJPEG and PNG images 

• A color stack for keeping track of the current color 

• Partial font embedding and Flate compression to reduce file size 

• Balancing of page and destination trees to speed up reader access for very large docu
ments 

A detailed description of how these functions are supported can be found in the program 
documentation (CTAN: dviware/dvipdfm/dvipdfm- O . 13 .  2c . pdf ) . To take advan
tage of these functions when running dvipdfm on a DVI file, you must specify the dvi pdfm 
option with �TFX (and hyperref) . 

Shunsaku Hirata and Jin-Hwan Cho extended dvipdfm to enhance its Unicode capa
bilities, adding support for multibyte character encodings and large character sets for East 
Asian languages by CID-keyed fonts. Their dvipdfmx program (http : //proj ect . ktug . 
or . kr / dvipdfmx/)  also has support for many features of mm Th� Thanh's pdfJEX pro
gram. 

dvipdfmx is a must if you want to deal with large character sets, since all traditional 
methods-especially pdftex-cannot handle those natively. For instance, dvipdfmx lets you 
extract and search 1 6-bit characters. Full support for PostScript Type 1 ,  TrueType, and Open
Type is provided, and if the font resides on the system you can instruct dvipdfmx not to 
embed it. dvipdfmx is used by the lEX variant xetex. PDF encryption and multiple page 
sizes in a single document are possible. 

The following command-line options are available for dvipdfm: 

- c  Disable color specials. 
This option forces all color commands to be ignored. Useful for printing a color 
document on a black-and-white printer. 

-e  Disable partial font embedding. 
Useful for forms that need complete fonts, or for PFB files that dvipdfm cannot 
parse. 



A.l dvipdfm and dvipdfmx 

-f Set font map file name (default t 1font 8 . map) .  

- 1  Select landscape. Only meaningful for paper sizes specified on the command line. 

-m number Specify additional magnification for document. 

- 0  filename Output PDF file name (default dvif ile . pdf) .  

-p papersize Output paper size (default "lett er") .  
Possible other values are "legal", "ledger", "tabloid", "a4", and "a3"; 
papersize can also be specified as w<uni t>  , h<uni t> (e.g. , "20cm , 30cm") .  

-8 pageJanges Select a subset of pages from the DVI file. 
Similar to dvips's -pp option, but with the colon range indicator replaced by a hy
phen; e.g., dvipdfm -8  10 , 2 1 , 73-92 prints pages 1 0, 2 1 ,  and 73 through 92. 
If the first page in a range is empty, PDF generation starts at the beginning of the 
document (dvipdfm -8 -20) .  If the last page in a range is empty, the end of the 
document is taken (dvipdfm -8  97-) .  

-t Embed thumbnail images. Thumbnails must be generated by a separate program. 

-d Delete thumbnail images after embedding. 

-x number Horizontal offset for document (default 1 in) .  

-y number Vertical offset for document (default 1 in) .  

- z  number zlib compression level. 
The value of number must be in the range 0 (no compression) to 9 (maximal com
pression, the default) .  

-v Verbose. Display complete file. 

-vv Superverbose. Display maximal log messages. 

To the preceding options, dvipdfmx adds the following options: 

-d number PDF decimal digits. The value of number must be in the range 0-5 (default 2 ) .  

-r number Resolution for raster fonts. In DPI (default 600) .  

-c number Option flags (default 0) .  

OxOOOl  
Ox0002 

Ox0004 
Ox0008 

Reserved. 
Use semi-transparent filling for tpic shading command, instead of opaque 
gray color (requires PDF 1 .4) .  
Treat all em Fonts as fixed-pitch fonts. 
Do not replace duplicate font map entries. 

Positive values are always ORed with previously given flags, while negative values re
place old values. 

-0 number Maximum depth of open bookmark items (default 0) .  

799 



800 PRODUCING PDF FROM VARIOUS SOURCES 

-P number Permission flags for PDF encryption (default Ox003C).  

-s Enable PDF encryption. 

-T Embed thumbnail images. Like -t, but image files are removed when finished. 

-v number PDF minor version (default 3 ) .  

A.2 pst-pdf-From PostScri pt to PDF 

The pst-pdf package uses the �TEX package preview, which i s  part of  the preview [66, 88) 
bundle. The preview package extracts all "marked" parts in a �TEX document into a DVI file, 
in which each such part is saved on a separate page. This makes it easy to convert the DVI 
file into PDF format and then include these parts in a subsequent pdflatex run. 

A.2.1  Package options 
act i ve Enables the extraction modus of the preview package; the DVI output col-

lects only the images (default) .  

inact i ve Only the packages pstricks and graphicx are loaded; all macros are disabled. 

pstri cks The package pstricks i s  loaded (default) .  

nopstri cks The package pstricks is not loaded; however, if the macro detects any 
PSTricks macro, then pst ricks will be loaded automatically nevertheless. 

draft Same meaning as for package graph icx, but only valid for the last pdflatex 
run. 

f inal In the last pdflatex mode the container file is used (default) .  

t ightpage White space around images is cut (default) .  

not ightpage White space around images is not cut. 

di splaymath Treats displaymath, eqnarray, equat ion, and $$ or \ c .  . .  \ )  as im
ages. 

other All other options are passed to the package pstricks. 

When you specify the inact i ve option, all the pst-pdf macros will be disabled, apart 
from the trimming function, so that latex can be run in the usual way and PostScript output 
can be generated (with dvips) ,  if desired. 

A.2.2 Usage 
pst-pdf was originally designed for PSTricks. This fact explains why it supports by default 
the pspi cture and psmatrix environments, as well as all commands that are internally 
defined through \pst©o b j e ct. The pst-pdf package works with the help of the package 
preview completely in the background; you simply have to load the package in the preamble 
of a document. 



rxample ' .. jA-2- 1 , 

A.2 pst-pdf-From PostScript to PDF 

The process of generating a PDF file from a �TEX source consists of two stages: the 
creation of the graphics container and the subsequent pdflatex run to create the PDF. These 
stages are described next. 

Creation of the graphics container 
latex file . t ex 

Initial run of latex, where preview extracts all known objects and saves them into 
file . dvi, where each object is on its own page. The DVI file created in this way has a 
special internal format and is unsuited for user purposes, such as viewing the file with 
a DVI viewer. 

dvips -Ppdf - 0  file-pies . ps  file . dvi 

dvips run to convert the DVI file to PostScript, where the -Ppdf option tells dvips to 
load the config file for PDF-related output. dvips creates the new file file-pies . ps. 

ps2pdf file-pies . ps file-pies . pdf 
ps2pdf run to convert the PostScript file to PDF, with each image on a separate page. 

Creation of the final PDF output document 
pdflatex file . t ex First run of pdflatex run, where pst-pdf is not active. 

bibtex file bibtex run. 

Any other additional runs ( e.g., index, glossary) . 

pdf latex file . t ex Ultimate pdflatex run, where all generated PDF images are included. 

A simple example with PSTricks follows. 

This is a PDF-document ! 
\usepackage{pst -plot , pst-t ext } 
\usepackage{pst -pdf } 

Thi s  i s  a \textbf {PDF}--document ! 

\begin{pspi cture} ( -O . 25 , -2 . 25 )  ( 6 . 25 , 2 . 5 ) 
\pst extpath [linestyle=none] % 

{ \psplot [linewidth= lpt , %  
l inestyle=dotted , %  
plotpoints=300 , %  
xunit=O . 0 15 , %  
yunit=2] {O}{400}{x s in}} 

{\large The \LaTeX\ Graphics 
Companion , $2�{nd} $ Edition} 

\end{pspi cture}% 

pst-pdf provides a macro called \PreviewEnvironment that lets you define addi
tional environments, which are then scanned by the preview package and also written as 
an image into the DVI file. In the following example, PSTricks is used to connect some nodes 

80 1 



802 PRODUCING PDF FROM VARIOUS SOURCES 

in a tabular format. With the command \PreviewEnvironment{ tabular}, this environ
ment is also written into the DVI file. There are no restrictions in declaring environments 
for preview. 

\usepackage{bigdelim , mult irow , array} 
\usepackage [table] {pstricks} \usepackage{pst -node , pst-pdf } 
\PreviewEnvironment {tabular} 

\def inecolor{Gray}{gray} {O . l } 
\renewcommand\arraystret ch{ l . l } 
\begin{tabular}{ c l c l l} \mult icolumn{ l}{ c}{\textbf {Segment s}} 

& \multicolumn{ l }{c}{\t extbf {Usage}} & \\\cline {2-2} 

OxO & \cell color{gray}Kernel t ext and dat a & \\\cline{2-2} 
Oxl & \cellcolor{gray}User text & \\\cline{2-2} 
Ox2 & \cellcolor{red}User stack , dat a & \\\cline{2-2} 
Ox3 & \pnode{A} 

& \rdel im\}{5}{5 . 5cm} [\parbox{7 . 5 cm}{Avai lable for the user process\\ 
\hspace*{O . 25cm} \pnode{A2} - if \texttt{ shmat ( ) }or 

\texttt{mmap ( ) }  i s  called}] \\\cline{2-2} 

Ox4 & & \\\cline{2-2} Ox5--0xA & & \\\cline{2-2} 
OxB & & \\\cline{2-2} oxe & \pnode {B} & \\\cline{2-2} 
OxD & \cellcolor{gray}Shared library text & \\\cline{2-2} 
OxE & & \pnode{B2} \\\cline{2-2} 
\ncl ine [arrows=-> , l inewidth=2pt , l ine color=blue , doublel ine=true] {A}{B}% 
\ncdiag [arrows=-> , l inewidth= 1 . 25pt , l inearc=O . 2 , %  

angleA= 180 , angleB=O , armA=O . 2cm , nodesepB=-O . 25cm , armB=O . 6 25cm] {A2}{B2}% 
OxF & \cellcolor{gray}\f ootnote s ize Per-pro cess shared library dat a 

\end{tabular} 

Segments 
OxO 
Ox l 
Ox2 
Ox3 
Ox4 

OxS-OxA 
OxB 
oxe 
OxD 
OxE 
OxF 

Usage 

& \\\cline{2-2} 

Available for the user process 
if shrnat 0 or mmap 0 is called 

The package pst-pdf also supports EPS images with the help of a postscri pt environ
ment, whose contents are scanned by preview, written into the DVI file, and then converted 
to PDF. This approach is sometimes easier to use than ps2pdf, because the conversion of the 
EPS image occurs in the background. 

Example 
A-2-2 



A.3 Generating PDF from �EX 

It is important to realize that pst-pdf numbers all images consecutively. If anything 
changes in the order of the images, when an image is added, deleted, or just edited, the first 
three runs for building the graphics image container must be repeated. By contrast, if only 
the text was edited, then rerunning pdflatex once is sufficient, as long as the PDF image con
tainer exists, since all images are taken from there. 

A.3 Generating PDF from INEX 

As explained at the beginning of this appendix, a PDF file may be generated from a �TFX 
source in several different ways. The route that you should follow depends mostly on the 
graphics material that you want to include. If most of it is in EPS format, the easiest way is to 
use latex, followed by dvips and finally ps2pdf. If all of your graphics files are already in PDF 
format, with some JPEG and PNG images, the more direct route is to run pdflatex. You can 
also combine both approaches by running latex and the dvipdfmx program. The xetex lEX 
variant, which is designed to work with Unicode text internally, depends on dvipdfmx. 

If you make a lot of use of PSTricks, you should look at the technique introduced in 
Section A.2 based on the pst-pdf package. 

As an example of these four possibilities, we will use a medium-size file exa . tex, 
where we also are interested in taking advantage of PDF's hypertext capabilities by loading 
the hyperref package in the �TFX source. Given that the way the �TFX structural informa
tion is translated into PDF hypertext commands differs for each program (dvips, dvipdfm, 
and pdflatex) ,  we have to indicate which program will generate the final PostScript or PDF 
output (see the three first lines of the �TFX source of the file exa . t ex). l 

\document class [a4paper , dvipdfm] {art icle} 

%\document class [a4paper , dvips] {art icle} 
%\document class [a4paper , pdft ex] {art icle} 
\usepackage{graphicx} 
\usepackage{url} 
\usepackage{make idx} 
\usepackage [backref ] {hyperref} 
\make index 

% us ing dvipdfm 
% us ing dvips & ps2pdf 
% us ing pdflatex with pdf graphics  

\title{Simulat ion of  Energy Loss Straggl ing} 
\author{Maria Phys icist}  
\begin{document } 
\maketitle 
\tableofcontent s 
\section{Introduct ion} 

Running the example with latex and dvipdfmx 
For the first run we use dvipdfmx to generate the PDF. Therefore we must ensure that we 
have the images also available as . pdf files and that each image is accompanied by a small 

I This example is more or less identical-a few hyperref and PDF-related lines have been added-to the IHEX 
code described in Appendix A of the LaTeX Web Companion[35]  and is available as inf o/examples /lwc/apa/ 
latexex a .  tex on CTAN. 

803 



804 PRODUCING PDF FROM VARIOUS SOURCES 

text file that specifies its bounding box (dvipdfmx assumes that for each image fig . pdf there 
exists a file fig . bb) .  For transforming EPS files into PDF, we can use the script epstopdf (part 
of the 'lEX Live distribution). Information about the resulting PDF file can be obtained with 
the pdfinfo utility (part of the xpdf distribution) .  

> l s  * . eps 

phys332- 1 . eps phys332-2 . eps 
> more phys332- 1 . bb 
%%BoundingBox : 0 0 567 567 
> epst opdf phys332- 1 . eps 

> pdf inf o phys332- 1 . pdf 
Producer : GNU Gho sts cript 
Tagged : no 
Pages : 1 
Encrypt ed : no 
Page size : 567 x 567 pts 
File s ize : 1 1 549 bytes  
Opt imized : no 
PDF version : 1 . 3  

7 . 05 

We observe that the bounding box of the PDF corresponds to the bounding box of the 
EPS source. If this were not the case, the PDF image could be cropped to the correct size with 
the pdfcrop utility, which is part of the 'lEX Live distribution (see Appendix B) .  

Next we run the I:'-TEX source exa . tex the correct number of times through latex, be
fore generating the PDF file with dvipdfmx. 

> latex exa 

> latex exa 

> make index exa 

> latex exa 

> dvipdfmx - 0  exadvipdfmx . pdf exa 
exa . dvi ->  exadvipdfmx . pdf 
[ 1 ]  [2] [3] [4] [5] [6] [7] [8] [9] [10]  [ 1 1 ]  
130030 bytes  written 

The resulting file is written to exadvipdfmx . pdf and can be viewed with ghostview, 
Adobe Reader, etc. Since we activated the hyperref package in the I:'-TEX source, the viewer 
can navigate conveniently through the document. 

Running the exa mple with latex, dvips, and ps2pdf 
Ifwe activate the dvips option on the \documentclass command in the I:'-TP)( source and 
run latex the correct number of times, we can use dvips and ps2pdf (or its explicit variant 
ps2pdf1 3 )  to obtain the PDF output file exadvips . pdf. This file has the same (hypertext) 
characteristics as exadvipdfmx . pdf in the previous example. 



A.3 Generating PDF from INEX 

> rm * . aux 

> latex exa 

> latex exa 

> make index exa 

> latex exa 

# get rid of program- spe c i f i c  entries in aux f i l e  

> dvips -j O e x a  -oexadvips . ps 

> ps2pdf 13 -sPAPERS IZE=a4 exadvips . ps 

Running the exa mple with pdflatex 
Since we already have all images in PDF format, we can run pdflatex directly and obtain the 
file exapdflatex . pdf, which is functionally equivalent to the PDF output files generated 
in the two previous cases. 

> rm * . aux 

> pdf latex exa 

> pdf latex exa 

> make index exa 

> pdf latex exa 

# get rid of program- spe cific  entries in aux file  

> mv exa . pdf exapdf l atex . pdf 

Running the example with pdflatex, using the pst-pdf package 
As the fourth alternative for generating PDF, we load the pst-pdf package in the preamble of 
our example �TEX file exa . tex (see page 803 ) .  

\do cument class [a4paper , dvips] {art icle} 
%\do cumentclass [a4paper , pdft ex] {art i cle} % . .  once graphics are in pdf 
\us epackage{graphicx} 
\usepackage{url} 
\usepackage{makeidx} 
\usepackage{pst -pdf }%« « «  line added 
\us epackage [backref] {hyperref} 

First we produce the PDF version of the EPS images by running the example with the 
dvips option for the hyperlinks (see Section A.2 for the details of the procedure) .  

> latex exa 

Output written on exa . dvi (2 pages , 3344 byt es ) . 
Transcript wr itten on exa . log . 

> dvips -Ppdf -0 exa-pi c s . ps exa . dvi 
Thi s is dvips (k) 5 . 95b Copyright 2005 Radical Eye Sof tware 
, TeX output 2006 . 05 . 30 : 1 632 ' -> exa-pi cs . ps 
<tex . pro><alt -rule . pro><pstricks . pro><pst-dot s . pro ><special . pro> . 
[1 <phys332- 1 . eps>] [2<phys332-2 . eps>] 
> ps2pdf exa-pics . ps exa-pi cs . pdf 

805 



806 PRODUCI NG PDF FROM VARIOUS SOURCES 

EPS graphics CD or @  CD epstopdf 
PDF (PNG, JPEG) @ lat ex (with pst-pdf package) 

, - - - - - - ..., graphics @ pdftops I I -eps @ or @ I BB info I 
@ convert I 

( 

-C 

I 

IHEX file 

/� 
latex ( pdf latex 

� 
1 

DVI file ( dvipdfmx PDF file \. 

dvips ( ps2pdf Add �TEX markup 

PostScript file 

Figure A. I :  Four ways to generate PDF from �TEX 

The file exa-pics  contains the PDF instances of the two EPS pictures referenced in 
the example document. So that we can run this file with pdflatex, we activate the line with 
the pdftex option on the \document class  command, and process the file exa . tex the 
relevant number of times, with, if needed, runs of makeindex and bibtex interspersed to 
generate index and bibliographic references. 

> pdf latex exa 

> make index exa 

> pdf latex exa 

> pdf lat ex exa 

In summary (see Figure A. I ) ,  when deciding which method to use to generate PDF out
put when starting from a �TEX source file, the latex ---+ dvips ---+ ps2pdf route is appropriate 
for cases where most of the external graphics files are in EPS format. When a lot of PSTricks 
images are present in the source, the use of the pst-pdf package and pdflatex is to be seri
ously considered. The more direct pdflatex route seems more attractive if the graphics files 
are available as . pdf, . j peg, or . png files. Finally, the choice of dvipdfmx seems necessary 



A.3 Generating PDF from ItIT'EX 

Simulation of Energy Ul-iS Straggling 

Contents 
II liitmauaJiijil 
12 9'@In !heol'Yl 

tl l  Rm!ridiOiiiil • . . .  

13 Vav iIOv theory! 
fI G_IM thooiji 

llaria Ph)'!\ieist 
.May i, 2006 

�:-::;-;::r.r:::-:-:::=:::1 . ' " . ' . .  , . 
"':;::;:"'="--"':':':;"":�'-'==.:::J " . . . . .  . ,  . 

1 Introduction 

1 

.. 

Ii 
7 
!I 

1>1., In It.. .lalislir,,1 .... Iu'e ill inn .... !i"" �nc,gy Ln. Ia'gr "urtualiOlJ' <'811 
'lIXur ill Ib,- IIIDOUlK of P�rgy dcpaii1l'<1 by 8 flUlidr 1m_sing aD abwrlwr 
eI",ncnt. C<H.lilllJotl< plmm_ ..... " ". multip" "" ltUpr;ug alld ClIPtgy .m rial' 
It �1l1 roI.- in Ibr kmgiludiDal and lateral d.-vrlopmprg 01 vlcciromaglll't ir 
anrl barI,mlic '/ll""". 8nd in Ib� ra� nf ....... ptillg r,alorilOOlrl' thr ml'A'llll'l'd 
... "Oliliou fall fir Hig"ilii'ant ly alfrrted by ,urb fllltltJlllions in IhM. adil'(' I�,..". 
'I'll" ,fr!l<Tiplion 01 ;oll .... lioll 8urlllali:mM is rharw�e'ml by the "ignitirnll'x' 
fIU,,_trr K. whid . .. pmpo.tlulld '0 Ih. ratio of mr"" mrrg)' I,ll<' to Ih<
maximum "lk,,,,,,,1 " lIl'rgy ''''"'''', ill a .ingle mllt!km wi! h au alom;" e"rtltm 

( ttl = "''''w"''''' f':IHD 
J';"'� i. thl' m".imUlIl Ira ... ff'T"blr mf'Tg)' in " .ingle "" I I." "" wi th an RIOOI;" 
,'''<1n"" 

whrr. "I � Hlmr• lo' " .""rg,)" aml m,. Ih. m&"" ..r (hI' '.ddt'nI ""rtir�. J" � 

I - I h" ,.",1 m, ., tire ''''''\roll m ....... { mm"" ['fUll tI ... Hili h .... "d _U.!'ring 
rJ'_ """lioll 311d .. , .. tin<J<1 "" 

2r.:',· .Vo�.Zl'fu , . ::" Z ""  Ire\'. 
� � ---;;;;'7p';.I- - � la.Hj1 A"'" 

Figure A.2: Hypertext document generated with pdflatex 

only if large, multibyte font sets (e.g., for handling Far-East Asian languages) are required. 
The PDF files generated by the four methods discussed in this section are completely 

functionally equivalent. Figure A.2 shows the first page of the PDF file exapdflatex . pdf 
as displayed by a PDF viewer. The hyperlinks (surrounded by boxes) allow you to jump from 
the various entries in the table of contents to the start of the corresponding sections in the 
document body. 

807 





A p p e n d i x B 

I!\TEX Softwa re a nd User 
G rou p I nformation 

B.l Getting help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  809 
B.2 How to get those TEX fi les? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 1 0 
B.3 Using (TAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 1 0  
B.4 F inding the documentation o n  your TEX system . . . . . . . . . . . . . . . . . . . .  8 1 5 

B.5 TEX user groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 1 7 

We hope that, when reading this book, you will actually be tempted to get one or more of the 
packages and programs we describe onto your computer and try them out yourself, see how 
useful they are to your work-or perhaps just have some fun. 

The files and packages that are described in this book are available in most 1EX distri
butions, such as the 1EX Live DVD or on the 1EX Collection DVD of DANTE. The newest 
versions can also be downloaded directly from the Internet. The aim of this appendix is to 
provide you with the information necessary to obtain current releases of these DVDs (CD
ROMs are available on demand) and to give hints on how to locate and get the files you need 
directly from the Internet. 

B.l Getting help 

While we certainly hope that your questions have been answered in  this book, we know that 
this cannot be the case for all of them. For additional information related to specific packages 
discussed in the book, it can be helpful to read the original documentation provided with the 
package. Appendix BA suggests ways to find that documentation on your system. 

The existing "Frequently Asked Questions" (FAQ) documents are particularly valuable 
resources. The most important one is the UK-TUG FAQ by Robin Fairbairns, which is avail
able at http : //www . tex . ac . uk/faq (or http : //faq .  tug . �rg) . 



8 1 0  �TEX SOFTWARE AND USER GROUP I N FORMATION 

If precomposed answers are not enough to answer your questions, several news groups 
are devoted to general lEX and �TEX questions: news : / / comp . text . tex is perhaps the 
most important one, with usually more than 100 messages posted each day. Many of the 
authors mentioned in this book are regular contributors on the news groups and help with 
answering questions and requests. Thus there is a vast amount of helpful material on the In
ternet that can be conveniently searched using any search engine that indexes news entries. 

If you post to any of these news groups, please adhere to basic netiquette. The com
munity is friendly but sometimes direct and expects you to have done some research of 
your own first (e.g., read the FAQ first and searched the archived news, such as via go ogle . 
groups )  and not ask questions that have been answered several hundred times before. You 
should perhaps read Eric Raymond's "How To Ask Questions The Smart Way", available 
at http : //www . catb . org/ -esr /faqs/smart- questions . html , as a starter. Also, if 
applicable, provide a minimal and usable example of your problem that allows others to eas
ily reproduce the symptoms you experience-this will save others time and might get you a 
faster reply. 

B.2 How to get those TEX fi les? 

A useful entry point to the lEX world is  the TUG home page (http : //www . tug . org; see 
Figure B. l ) .  From there you can reach most information sources about lEX worldwide. 

In particular, from the TUG home page you can go to one of the CTAN (Comprehensive 
lEX Archive Network) nodes. CTAN is a collaborative effort initiated in 1 992 by the TUG 
Technical Working Group on lEX Archive Guidelines and is currently maintained by Jim 
Hefferon, Robin Fairbairns, and Rainer Schopf (as of early 2007). Its main aim is to provide 
easy access to up-to-date copies of all nonproprietary versions of lEX, �TEX, M ETA FO NT, 
and ancillary programs, as well as their associated files. 

Presently, three backbone machines act as FTP servers: in the United Kingdom ( cam .  
ctan . org) ,  in Germany (dante . ctan .  org) ,  and in the United States (tug . ctan . org) .  
These sites are mirrored worldwide and all have a Web interface (see Figure B.2). 

The material on CTAN is regularly (currently on a yearly basis) made available on a 
DVD and and distributed by various lEX user groups to their members (if needed, the corre
sponding material is also available on several CD-ROMs) .  These days this DVD also contains 
ready-to-run distributions oflEX for various platforms. One is the lEX Live distribution (see 
www . tug . org/texli ve) . lEX Live CD-ROMs have been developed since 1996 through a 
collaboration between various lEX user groups. 

B.3 Using CTAN 
I n  Section B.2, we described lEX Live and the CTAN DVD. Obtaining the latest version of 
this DVD is an optimal way to gain access to recent versions of �TEX software. 

Nevertheless, for readers with an Internet connection, it makes sense to query one of 
the CTAN nodes every now and then to see whether one of the �TEX components you need 
has been updated. In particular, the TUG home page includes an area that gives a list of the 
latest updates available on CTAN (see Figure B. 1 ,  bottom oval) .  If you find updates, you can 



B.3 Using ClAN 

1FX catalogue CTAN latest updates CTAN entry point 

Figure B. l :  The TUG Web home page 

download the latest version of the package of interest directly from a CTAN archive (see 
Section B.3.2 for how this can be done) .  

Although network connections get faster all the time, i t  is  often wise to connect to a site 
that is not too distant geographically from your location (consult the Web page http : / / 
www . tug . org/tex-archi ve/CTAN . s i  tes  for a list of mirror sites for the CTAN nodes). 

B.3 . 1  Using the TEX file cata logue 

A catalogue of1F)C- and e.TFX-related packages maintained by Graham Williams can be con
sulted at http : //texcatalogue . sarovar . org/. The catalogue is also directly reach
able from the TUG home page ( see the second oval in Figure B. l ) .  

Moreover, the 1F)C catalogue is directly searchable from the CTAN interface (e.g., 
http : //www . tug . org/ ctan . html) .  In Figure B.2 we show how, after typing the string 
"graphicx" in the "Search Catalogue" area, we get the page shown in the bottom part of 
that figure. From this second page we can choose directly which of the proposed entries we 
want to investigate further (left side of the page) or we can follow a link to the associated 
CTAN directory (right side of the page) .  

8 1 1 



8 1 2  J!lTEX SOFTWARE AND U S E R  GROUP I N FORMATION 

Figure B.2: CTAN home page and 1EX catalogue entry 



B.3 Using CTAN 

8.3.2 Finding fi les on the arch ive and transferring them 

Returning to Figure B.2, we see that an easy way to find a file on CTAN is to use the Web 
interface. Indeed, we merely have to type our search string in the CTAN search area. In this 
case, we specified the string "graphicx" ( top oval in Figure B.2) .  The search engine returns 
the list of all files in the CTAN archive matching the given search criterion (see top part of 
Figure B.3 ) .  We can now browse this directory and decide to get one file. We can also transfer 
a complete directory by clicking on the link "entire directory" (rightmost oval in Figure B.3) ,  
which leads us to the page shown in the bottom part of Figure B.3 .  Here we are given the 
choice between a gzipped tar or a zip archive. By right-clicking on one of the two pointers 

8 1 3  



814 ItI'TEX SOFTWARE AND USER GROUP I N FORMATION 

(bottom ovals in Figure B.3) ,  we download the archive in the desired format to our local 
machine so that we can install the files. 

These search facilities are actively maintained and updated and, in fact, differ in look 
and feel between different CTAN nodes or mirrors. By the time you read this book, they may 
show different output compared to the figures in the book. However, they all follow a similar 
logic, so you should not find it difficult to obtain the desired information. 

B.3.3 Getting fi les from the command l ine 

If you know the Internet address of  the package that you want to  transfer (for instance from 
a Web search) ,  it is perhaps more convenient to access the archive from the command line, 
without going through a Web interface. In this case you can use FTP or the wget program. 
The latter program allows you to download files from the Web non-interactively. It supports 
the HTTP, HTTPS, and FTP protocols, and CTAN offers zipped archives of the packages. An 
example follows (commands input by the user are underlined) . 

> wget ftp : / /ftp . dante . de/tex-archive/macros/latex/required/graphics . zip 
- - 18 : 13 : 27-- ftp : //ftp . dant e . de/tex-archive/macros/lat ex/required/graphics . zip 

�> ' graphics . z ip ' 
Resolving ftp . dante . de . . .  80 . 237 . 2 1 0 . 73 
Connect ing to ftp . dante . de [80 . 237 . 2 1 0 . 73] : 2 1 . . .  connected . 
Logging in as anonymous . . .  Logged in ! 
==> SYST . . .  done . ��> PWO . . .  done . 

��> TYPE I . . .  done . ��> CWO /tex-archive/macros /latex/required . . .  done . 
��> PASV . . .  done . ��> RETR graphics . z ip . . .  done . 
Length : 361 , 065 (unauthoritat ive ) 

1 00% [������������������������������������>] 361 , 065 378 . 48K/s 

18 : 13 : 28 (377 . 84 KB/ s )  - ' graphics . z ip ' saved [36 1 , 065] 

Alternatively, you can use the FTP protocol. To demonstrate this technique, 
we first connect to the CTAN site (ftp . dante . de) and specify ftp as a login 
name. The password should be your e-mail address. As we decidedto transfer the 
graphics package, we first position ourselves in the directory where the file resides 
( cd  tex-archi ve/macros/latex/required) .  We have a look at the files in that 
directory (Is ) ,  transfer the zip archive, and close the FTP session (qUi t) .  

> f t p  ftp . dant e . de 
Connected to ftp . dante . de (80 . 237 . 2 10 . 73 ) . 

220 ProFTPO 1 . 2 . 10 Server (CTAN) [80 . 237 . 2 10 . 73] 
Name (ftp . dant e . de : goossens ) : ftp 

331 Guest login ok , s end your complete e-mail address as password . 
Pas sword : uuu . vvv@xxx . zz (use  your emai L address  here ! )  
230 Anonymous access grant ed , restrictions apply . 
Remote system type i s  UNIX . 
Us ing binary mode to trans fer f iles . 
ftp> cd tex-archive/macro s/latex/required 
250 CWO command succes sful 
ftp> ls 



B.4 Finding the documentation on your  lEX system 

227 Ent er ing Pass ive Mode (80 , 237 , 2 1 0 , 73 , 145 , 185) . 

150 Opening ASC I I  mode data connect ion f or f i l e  l i st 
drwxrwxr-x 6 ftpmaint server 94 Oct 22 2004 arnslatex 
-rw-rw-r-- 1 ftpmaint server 2 1 2 1853 May 1 17 : 26 arnslatex . zip 
drwxrwxr-x 2 ftpmaint server 4096 Apr 1 22 : 03 babel 
-rw-rw-r-- 1 ftpmaint server 3098 120 May 1 1 7 : 25 babel . z ip 
drwxrwsr-x 2 ftpmaint server 4096 Mar 1 2004 cyr i l l i c  
-rw-rw-r-- 1 ftpmaint server 37586 May 1 17 : 25 cyrill ic . zip 

drwxrwsr-x 2 ftpmaint server 4096 Dec 20 14 : 43 graphics 
-rw-rw-r-- 1 ftpmaint server 361065 May 1 17 : 2 5 graphi cs . zip 

drwxrwxr-x 2 ftpmaint server 4096 Apr 1 2  15 : 26 psnf ss 
-rw-rw-r-- 1 ftpmaint server 1068096 May 1 17 : 25 psnf s s . zip 
drwxrwsr-x 2 ftpmaint server 4096 Mar 1 2004 tools 
-rw-rw-r-- 1 ftpmaint server 280673 May 1 17 : 25 tools . zip 
226 Transfer complete .  
ftp> get graphics . zip 
local : graphi cs . zip remote :  graphics . z ip 
227 Entering Pas s ive Mode (80 , 237 , 2 1 0 , 73 , 145 , 193) . 

150 Opening BINARY mode data connect ion f or graphi cs . zip (361065 byt e s )  
2 2 6  Transfer complete . 
361065 bytes received in 0 . 832 secs (4 . 2e+02 Kbytes/sec)  
ftp> quit 
221 Goodbye . 

8.4 Finding the documentation on you r  TEX system 

When you want to use a IHEX package, it  would be nice if you could study the documentation 
without having to remember where the relevant files are located on your 'lEX system. Two 
ways exist to help you in your search: texdoc and its derivative texdoctk. 

B.4.1 texdoc-Command-I ine interface for a search by name 

Thomas Esser developed the program texdoc, which i s  part of the 'lEX Live distribution. If 
you know the name of the file describing a package, you can find the relevant documentation 
files as follows: 

texdoc -1 pspicture 

/TeXl ive/t17/texmf /doc/latex/car l i s le/pspicture . dv i  
/TeXlive/t17/t exmf /doc /html/catalogue/entries/pspi cture . html 

The -1 option tells texdoc to list only the paths to the files that fulfill the selection crite
rion (in this case, files called pspicture regardless of their extension) .  If you do not specify 
the -1 option, texdoc will show you the entire contents of the documentation file (in this 
case, pspi cture . dvi )  with the help of the relevant display program (for instance, xdvi or 
Windvi ) .  

I f  you do not know the precise name of  the file, you can specify the - s option and pro
vide a wildcard-like specification as a search pattern. 

texdoc -s *pi cture* 

/TeXl ive/t17/texmf /doc/gener i c /mfpi c/exarnpl es/lapi ctures . t ex 

8 1 5  



8 1 6  (!(fEX SOFTWARE A N D  USER GROUP I N FORMATION 

Figure B.4: Finding documentation with the texdoctk program 

/TeXl ive/t17/t exmf /doc/generic/mfpic/examples/pi ctures . tex 

/TeXl ive/t17/texmf /doc/latex/carl i sle/pspi cture . dvi 
/TeXl ive/t17/t exmf /doc/html/catalogue/entries /pspicture . html 
/TeXl ive/t17/texmf/doc/html /cat alogue/entries /pspicture . xml 

Here we have picked up files that have the string picture in their name-among them the 
"pspi cture" files we found previously. 

The texdoc utility is quite useful, but it has a drawback: you must know the name of 
the file describing the package that you want to use. This is not always just the name of the 
package itself (as with pspicture in the previous examples). 

B.4.2 texdoctk-Panel  interface for a search by subject 

Thomas Ruedas took a somewhat different approach to provide easy access to the documen
tation for files present on your 1EX system. His texdoctk program uses a graphical user inter
face based on perl and Tk. It relies on a database that groups documentation files included 
in Thomas Esser's tetex distribution (1EX Live uses some components of tetex) into a 
number of categories. As with texdoc, the display or print programs present on the system 
will be used for viewing (e.g., xdvi, dvips ) .  



8.S lEX user groups 

Figure B.4 on the facing page shows how we used the texdoctk system to display the doc
umentation for the graph ics package. We navigated from the main panel, where we chose 
the "Graphics"  category ( 1 ) , which opened the "Graphics"  menu (lower left), where 
we selected "PS and other graphics  (graphics/  graphi cx) ". We then clicked the 
"View" button (2) ,  which called the PostScript viewer Adobe Reader (3 ) ,  which displayed 
the text of the documentation. 

Figure B.4 on the preceding page also shows all available documentation categories 
(note the button labeled "Mi scellaneous" in the lower-right corner for special cases) as 
well as the "Search", "Settings", and "Help/About" buttons for more advanced use. 

8.5 lEX user groups 

'lEX users in several countries have set up 'lEX user groups, mostly based on language affini
ties. If you need help, you should contact your local user group first, since its members might 
be able to come up with an answer that is most suited to your language-dependent work
ing environment. Here we give some information about groups that have a formal existence 
(see http : //www . tug . org/usergroups . html for up-to-date and more complete lists) .  
They can help you obtain lEX-related material on DVDs or other publications. 

cn: China PR esc: Spain (Catalan) 
name: Chinese TeX Users Group name: Catalan TeX Users Group 

language: Chinese language: Catalan 
Web site: www . rons . net . cn e-mail: val ient e©l s i . upc . es 

e-mail: inf o©rnail . rons . net . cn Web site: www- l s i . upc . es/-val iente/ 

cz: Czech Republic 
tug- catalan . htrnl 

language: Czech fr: France 
name: CsTUG name: GUTenberg 

e-mail: cstug©cstug . cz language: French 
Web site: www . cstug . cz e-mail: gut©irisa . fr 

de: Germany Web site: www . gutenberg . eu . org 

name: DANTE e.V. fra: France (Astex) 
language: German short name: AsTEX 

e-mail: dante©dante . de language: French 
Web site: www . dante . de e-mail: astex- adrnin©univ- orleans . f r 

dk: Denmark Web site: www . univ- orleans . fr/EXT/ 

name: DK-TUG ASTEX/astex/doc/en/web/htrnl/ 

language: Danish astexOOO . htrn 

e-mail: board©tug . dk gr: Greece 
Web site: www . tug . dk name: Greek TeX Friends Group 

ee: Estonia language: Greek 

name: Estonian User Group e-mail: eft©oceanl . ee . duth . gr 

e-mail: saar©aai . ee Web site: obelix . ee . duth . gr/eft/ 

es: Spain (CervanTeX) hu: Hungary 

name: CervanTeX name: MaTeX 
language: Spanish language: Hungarian 

e-mail: se cretario©cervantex . org e-mail: rnatex©rnath . klte . hu 

Web site: www . cervant ex . org Web site: www . rnath . klte . hu/ -rnatex/ 

8 1 7  



8 1 8  lNeX SOFTWARE AND USER GROUP I N FORMATION 

in: India pt: Portugal 
name: TUGlndia name: GUTpt 

e-mail: tugindia�river- val ley . com language: Portuguese 
Web site: www . river-valley . com/tug/ e-mail: GUTpt�hilbert . mat . uc . pt 

kr: Korea Web site: http : 

name: KTUG / /hilbert . mat . uc . pt/-GUTpt/ 

language: Korean 
Russia 

e-mail: info�mail . ktug . or . kr 
ru: 

name: CyrTUG 
Web site: www . ktug . or . kr 

e-mail: cyrtug�mir . msk . su 
It: Lithuania Web site: www . cemi . rssi . ru/ cyrtug/ 

name: Lietuvos TeX'o Vartotoj\l Grupe discussion: CyrTeX- en�vsu . ru 
e-mail: vyt as s �kt l . mi i . lt subscription: CyrTeX- en- on�vsu . ru 

mx: Mexico 
name: TeX Mexico si: Slovenia 

e-mail: tex©c ienc i a . dcc . umich . mx name: TeXCeH 

Web site: c ienc i a . dcc . umich . mx . /tex/ e-mail: Tex . Ceh©fmf . uni- lj . s i 

nl: Netherlands, Belgium (Flemish part) 
Web site: vlado . fmf . uni - l j . s i/texceh/ 

texceh . htm 
name: NTG 

language: Dutch uk: United Kingdom 
e-mail: info�ntg . nl name: UKTUG 

Web site: www . ntg . nl language: British English 
no: Nordic countries e-mail: uktug- enquir ies�tex . ac . uk 

name: NTUG Web site: uk . tug . org 
language: Scandinavian languages e-mail: enxtw1�nott ingham . ac . uk 

e-mail: dag©i f i . uio . no 

Web site: www . i f i . uio . no/-dag/ntug/ us: TeX User Group 

discussion: nordictex©if i . uio . no (international) 

ph: Philippines 
name: TUG 

e-mail: offi ce�tug . org 
name: TUG- Philippines 

e-mail: fpmuga�admu . edu . ph 
Web site: www . tug . org 

pi: Poland vn: Vietnam 
name: GUST name: VietTUG 

language: Polish e-mail: kyanh�o2 . pl 
e-mail: sekretariat ©gust . org . pl Web site: www . viettug . org 

Web site: www . GUST . org . pl 



Bibliography 

[ I ]  Adobe Systems Inc. (Glenn C. Reid), PostScript Language Program Design. Addi
son-Wesley, Reading, MA, 1988. 
This so-called "Green BookH introduces programming techniques for designing efficienl l'ostScripl programs 
with the help of I'xamples in the areas of typesetting text, constructing graphks, writing calculators, debug
ging programs, etc. Thesedirectly usable examples accomplish specific practical tasks and have been carefully 
designed and debugged to show in detail how the language works. Each oflhl' fifteen chapters addresses a spe
cific aspect of top-Io-bottom program design or prohll'm solving and contains soml' useful advice. Available 
electronically from 

http: //partners . adobe ,com/public!developer/ps!sdk/sample/index�psbooks . btml 

[2] Adobe Systems Inc. PostScript Language Tutorial and Cookbook. Addison-Wesley, 
Reading, MA, 1985. 
This so·called �Blue Book" has a Tu/orial section with numerous annotated examples and short programs, 
and a Cookbook section which is a collection of useful techniques and procedures for the Post&ript language. 
Available electronically from 

http: //partners . adobe . com/public/developer/ps/sdk/sample/index�psbooks . btml 

[3] Adobe Systems Inc. "Encapsulated PostScript File Format Specification (Version 
3.0)". Technical Note 5002, 1992. 
This technical note details the Encapsulated PostScript file (EPSF) format, a standard format for importing 
and exporting Post&ript language files among applications in a variety of heterogeneous environments. The 
EPSF format is based on and conforms to the document structuring conventions (DSC) [41. 

http: / /partners . adobe . com/public/developer/en/ps/S002 . EPSF_Spec . pdf 

[4[ Adobe Systems Inc. "PostScript Document Structuring Conventions Specification 
(Version 3.0)". Technical Note 5001) 1992. 
This technical note defines a standard set of document structuring conventions (DSC), which will help ensure 
that a Post&ript document is device independent. DSC allows PostScript language programs to communicate 
their document structure and printing requirements to document managers in a way that does not affect the 
PostScript language page description. 

bttp : llpartners.adobe . com/public/developer/enlps/S001 . DSC_Spec. pdf 



820 81BlIOGRAPHY 

[51 Adobe Systems Inc. PostScript Language Reterence Manual, Third Edition. Addi
son-Wesley, Reading, MA, 1999. 
This so·called "Red Book" describes the syntax and semantics of the complete PostScript language. The book 
documents the imaging modd and the graphics, fonts, deviet', and rendering operators. Available electroni
cally from http: //w.HJ . adobe . com/products!postscript!pdfs!PLRH . pdf 

[6] Adobe Systems Inc. PDP Reference (Version 1.6), Fifth Edition. Addison-Wesley, 
Reading, MA, 2005. 
This is the spe-cificalion of Adobe's Porlah!!· Document Format (PDF). Th .... book introduces and explains all 
aspe<:ts of the PDF format, including its architecture and imaging model (allowing transparency and opacity 
for text, images, and graphics), the command syntax, the graphics operators, fonts, and rendering, and the 
relation between PostScript and PDF. 

http ://partners . adobe . com/public/developer/en/pdf/PDFReference 16 . pdf 

17] Alfred V. Aho. Monica S. Lam. Ravi Sethi, and Jeffrey D. Ullman. Compilers: 
Principles, Techniques and Tools, Second Edition. Addison-Wesley, Reading, MA, 
2007. 
This book is the standard reference about compiler construction and is widely regarded as the classic definitive 
compiler technology text. It not only provides a thorough introduction to compiler design but it alS<l shows 
how to apply compiler technology to a broad range of problems in software design and development. This 
second edition includes the most recent developments in compiling. See also 

http: //en . vikipedia. org/viki/Compilers : _Principles . _Techniques_and_Tools 

]8] Dwight Aplevich. "Circuit_macros". MAPS. 31: 19-24. 2005. 
This article describes macros for drawing electrical circuits. On CTAN at: graphics/circui t_macros 

]9] Wolfgang Appelt. "Typesetting chess". TUGboat. 9(3):284-287, 1988. 
This article describes how TEX can be used to typeset chess games and chess diagrams. 

http : //vwv . tug. org/TUGboat/Articles/tb09-3/tb22appelt.pdf 

] 10]  Gustavo S. Bustamante Argafiaraz. makecirc: A METAPOST library for electrical 
circuit diagrams drawing. 
This manual is the documentation ofmake<:irk, a METAPOsTlibrarycontaining diverse symbots for use in 
(electric) circuit diagrams. The system can be easily integrated in L� documents and combined with other 
M ETA POST drawings and graphics. 

On CTAN at: graphics/metapost/contrib/macros/makecirc/MakeCirc-en. pdf 

] 1 1 ]  Jon Bentley and Brian Kernighan. "Grap - a language for typesetting graphs". 
Computing Science Technical Report 1 14. AT&T Bell Laboratories. Murray Hill. NJ. 
1984. 
Grap is a language for describing graphical displays of data. It provides automatic scaling, labeling of axes, 
some programming constructs, and a macro facility. It is intended primarily for including graphs in docu
ments prepared for the Unix operating system. Document available electronically as: 

http : //cm.bell-labs . com/cm/cs/cstr/114 .ps gz 

] 12] Piotr Bolek. "METAPOST and patterns". TUGboat. 19(3):276�283, 1998. 
This article presents M ETR POST macros for defining and using patterns. 

http: //w�w.tug. org/TUGboat /Articles/tb19-3/tb60bolek.pdf 
On CTAN at: graphics/metapost/contrib/macros/mpattern 

] 13 ]  Anne BrOggemann-Klein and Derrick Wood. "Drawing trees nicely with l1:X" .  
Electronic publishing - origin. dissemination and design. 2(2), 1989. 
This article describes a solution to Ihe tree·drawing problem that integrates an excellent tree·drawing algo
rithm implemented as a 1FX package (Tree1FX). Also available on pages 185-206 of 1181. 

] 14] Wlodzimierz Bzy!. "The Tao of fonts". TUGboat, 23( 1) :27�40. 2002. 
This article presents a new technique for creating fonts. It is based on META POST, and is able to produce 
Type I and Type 3 fonts. http: //www . tug . org/TUGboat/ Articles/tb23- 1/bzyl . pdf 



BIBLIOGRAPHY 

[ 15] David Carlisle. "Packages in the "graphics" bundle (The �1£X3 Projcct)", 2006. 
Part of the L"TEX distribution, the documentation describes a collection of laTeX packages for: producing 
color, including graphics (e.g., PostScript) files and how to rotat!' and scale ObjKIS. 

On CTAN at: late;r;/required/graphics/ grfguide. pdf 

[ 16] Bill Casselman. Mathematical Illustrations. A manual of geometry and PostScript. 
Cambridge University Press, Cambridge, United Kingdom, 2005. 
This book shows how to usc PostScript for producing mathematical graphics at several levels of sophistica
tion. It discusses some o( the mathematics involved in computer graphics and gives some hints about good 
style in mathematical illustration. After providing a short introduction to the basic features of the PostScript 
language, the author describes several 2-D and 3-D graphics techniques and algorithms. The appendices deal 
with more technical matters (see http://'''''' . aIDS. org/notices/200701/rev-roegel. pdf for a de
tailed review). http: //l,/l,/l,/ . math . ubc . ca/-cass/graphics/manuall 

[ 17 ]  Adrian F. Clark. "Halftone Output from lEX". TUGboat, 8(3):270-274, 1987. 
This article presents results that the author obtained while doing experiments with halftone production on an 
early laser printer device. http: //Il''Il . tug . orglTUGboatl Articles/tb08-3/tb19clark . pdf 

[ 18]  Malcolm Clark, editor. lEX Applications. Uses, Methods. Ellis Horwood, Chich
ester, 1990. 
Papers from the t988 !EXeter Conference. 

[ 19 ]  Pierre Duplan, Roger Jauneau, and Jean-Pierre Jauneau. Maquette et mise en page, 
Fifth Edition. Electre - l?ditions du Cercle de la Librarie. Paris. 2004. 
This book (in French) presents the results of an analysis by the authors of the layout of over 400 documents
on paper as weU as on screen. From this study they derive a set of fundamental rules for making a graphical 
composition look well balanced geometrically and color-wise. The importance of fully integrating image and 
text is emphasized. When designing for the Internet its space- and timeless communication aspects should be 
fully integrated from the start. 

[20] Hagen Eck and Sepp Kilblbeck. "Generating Feynman graphs and amplitudes with 
FeynArts 3". Computer Physics CommunicatiotlS, 140:418-43 1 , 2001. 
This article describes FeynArts (http: //w,,w . feynarts . del), a Mathematica package that can be used for 
the generation and visualization of Feynman diagrams and amplitudes. The main features of version 3 are: 
generation of diagrams at three levels, user-definable model files, support for supersymmetric models, and 
publication-quality Feynman diagrams in PostScript or laTeX. 

http: //arxiv . org/abs/hep-ph/OO12260 

[21 ]  Philippe Esperet and Denis Girou. "Coloriage du pavage dit (( de Truchet »". 

Calliers GUTenberg, 31:S-1S, 1 YYS. 
This article presents the results of a contest to solve an algorithmic problem on tiling of a plane. A presenta
tion of the main answers received is followed by an implementation of the algorithms in M ETA POST and 
PSTricks. http ; l/w"w . gutenberg. eu. org/pub/GlTTenberg/publicationsPDF 131-girou . pdf 

[22] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. Computer 
Graphics, Principles and Practice, Second Edition. Addison-Wesley, Reading, MA. 
1990. 
This standard reference work is one of the most comprehensive and authoritative in the field of computer 
graphics. Current concepts as well as practical applications are dealt with. The text also provides a thorough 
presentation of the mathematical principles of grometric transformations and viewing. Lecture notes on com
puter graphics are available from van Dam's web site 

http: //Ill,/Il . cs.brovn . edu/courses/cs123/1ectures . shtml 

[23] Shinsaku Fujita and Nobuya Tanaka. "x1'fvrIEx (Version 2.00) as Implementation of 
the x1M Notation and the x1M Markup Language". TUGboat, 21 (1):7-14. 2000. 
This article presents some of the new features added in versions 1.01 and 2 ofXIMIEX. Version 2 implements 
the xlM notation, a linear notation for representing organic structures. The XIM notation removes layout data 
by virtue of the newly introduced concepts of yI-function, substitution derivation, atom derivation, and bond 
derivation. The article also describes the XIMMl markup language. It shows how XIMML markup can be used 
for representing organic structures and how it translates into the XIM notation, which, in turn, can be typeset 
with xT,\fI"EX. http : //wllli/ . tug. org/l1JGboatl Articles/tb21- 1/tb66fuj i .  pdf 

821 



822 81BlIOGRAPHY 

[241 Shinsaku Fujita and Nobuya Tanaka. "Size reduction of chemical structural 
formulas in XlMItx (Version 3.00)". TUGboat, 22(4):285-289, 2001. 
This article shows how XIMTEX system (Version 3.00) provides a method for permitting the size reduction of 
structural formulas within the scope of the L"IEX picture environment and tht' epic package. 

http : //www, tug, orgfTUGboat!Articles!tb22-4!tb72fuji . pdf 

[251 Shinsaku Fujita. "x1Mlt;X for drawing chemical structural formulas". TUGboat, 
16(1 ):80-88, 1995. 
This article introduces xy�, a package consisting of a set of L'I'EX style files. The pacbgl' has be-en devel
oped for drawing a wide variety of chemical structural formulas. Its commands offer an ensemble of system
atic arguments for specifying substituents and their positions, endocyclic double bonds, and bond patterns. 
In some cases, they have an additional argumt'nt for specifying hetno-atoms on the vt'rtices of heterocy
cles. As a result of this systematic feature, X1MI'EX fits perfectly well in the device-independent concept of 
lEX. bttp : llwww.tug.org/TUGboat/Articles/tb16- t/tb46fuji.pdf 

[26] Shinsaku Fujita. "x"IfvnEx: a macro package for typesetting chemical structural 
formulas". 2006. 
The manual of successive X1MfEX. versions as well as information about the latest developments are available 
from the URL http : //imt . cbem . ki t . ac. jp/fuj i ta/fuji tas3h:;ymtexl inde;r;e . btml 

[27] Federico Garda. "On musical typesetting: Sonata for 1tX and METAFONT, Op. 2". 
TUGboat, 24(2): 169-182, 2003. 
[n this article the author explains why he thinks that existing typesetting systems for music cannot cope with 
several aspects of music compostion, such as new music and its non-standard representation, musicology, 
which needs some parts of a score to bt' circled, highlightt'd, tied together, etc. He first details the naturt' of 
musical typt'setting with tht' problem of horizontal spacing, lint' brt'aking, and the llse of glue. He then shows 
how his program lEXmllse deals with the challenges mentioned and ends with a description of its implemen
tation. http : //www . tug . org/TUGboat/Articles/tb24- 2!tb77garcia. pdf 

[28] Hubert GaGiein and RolfNiepraschk. The pict2e - package, 2004. 
This new package extends the existing LKJEX picture environment, using the familiar technique of driver 
files. On CTAN at: macros/latex/contrib/pict2el 

[29] Frans Gerritsen. Evolution in Color. Schiffer Publishing Ltd, West Chester, PA, 
1988. 
This book is an overview of the theory of color from antiquity to the present. Thanks to its many iUustrations 
the book clearly explains how the concept of color perc .. ption evolved Over th .. ages. More information On 
color is on Bruce MacEvoy's Wt'b page (bttp:/ /www. bandprint . com/HP/WCL/wcolor . btml)or Charles 
Poynton's color Web page (bttp: / /www .poynton. com/ColorFAQ . html). 

[30J Ovidiu Gheorghie�. "An Introduction to MetaUML: Exquisite UML Diagrams in 
META POST". MAPS, 32:2-15, 2005. 
This article provides an introduction (0 tht' Mt'taUML package, a METAPOST for drawing UML diagrams. 

On ClAN at: grapbics!metapost/contrib!macros/metauml 

[ 3 1 ]  Denis Girou. pst-f i ll-A PSTricks package for filling and tiling, 2006. 
This is the documentation of a PSTricks-based package for filling and tiling areas or characters. 

On CTAN at: graphics/pstricks!contrib/pst-filll 

[32J Luis Nobre GonlYalves. "FEATPOST and a Review of 3D METAPQST Packages". 
volume 3130 of Lecture Notes ;n computer Science, pp. 1 12-124. Springer-Verlag, 
Berlin, Germany I Heidelberg, Germany I London, UK I etc., 2004. 
This article is a description ofFEATPOST, a META POST package for 3-D graphics. 

On CTAN at: graphics/metapost/contrib/macros/featpost/doc 

[33 J Luis Nobre Gonlj:alves. "FEAT POST macros", 2004. 
Manual of the METAPOST FEAT?OST macros for 3·0 graphics. 

On CTAN at: graphics/metapost!contrib/macros!featpost/latex/macroMan . tex 



BIBLIOGRAPHY 

[34] Michel Goossens and Eric van Herwijnen. "The elementary Particle Entity Nata
lion (PEN) scheme". TUGboat, 13(2):201-207, 1992. 
This article introduces a scheme for marking up elementary particle names in L"IEX and SGML. The scheme 
assures the typographic correctness oflhe printed symbols. It also allows automatic extraction of information 
about the entities used in the text. 

http : //www . tug . org/TUGboat/Articles!tb13-2/tb35goossens .pdf 

[351 Michel Goossens, Sebastian Rahtz, Eitan M. GuraL Ross Moore, and Robert S. 
Sutor. The IHEX Web Companion: Integrating lEX, HTML, and XML. Addison
Wesley, Reading, MA, 1999. 
This book teaches (scientific) authors how to publish on the Web or other hypertext presentation systems, 
building on their experience with L"'JEX and taking into account their specific needs in fields such as mathe
matics, non-European languages, and algorithmic graphics. The book explains how to make full use of the 
Adobe Acrobat format from L"'JEX, convert legacy documents to HTML or XML, make use of math in Web 
app lications, use L'TE,X as a tool in preparing Web pages, read and write simple XML/SGML, and produce 
high-quality printed pages from Web-hosted XML or HTML pages using TEX or PDF. 

[36] Michel Goossens and Vesa Sivunen. "t'-TEX, SVG, Fonts". TUGboat, 22(4):269-280, 
2001. 
This art ide gives a short overview of SVG and points out its advantages for desuibing in a portable way the 
graphics content of electronic documents. The conversion of lYpe 1 font instances into SVG outlines is de
scribed, and it is shown how these SVG font glyphs can be used in SVG instances of documents typeset with 
TEX. http : //www . tug. org/TUGboat/Articles/tb22-4/tb72goos .pdf 

[37] Timothy G. Greenwood. "International cultural differences in software". Digital 
'/(xl1flical Journal, 5( 16} :8-20, 1993. 
Throughout the world, computer users approach a computer system with a specific set of cultural require
ments. In all cultures, they expect computer systems to accommodate their needs, including when interacting 
with computers through written language where culture influences the way computer systems must operate. 
The article gives examples of various national conventions for the presentation of date, time, and numbers. 
It then explains how the design of an adequate user interface must take into account these conventions in the 
way it uses images, color, sound, and in the overall layout of the screen. The author concludes that successful 
computer systems must respond to the multicultural needs of users. 

http: //www . hpl .hp . com/hpjournal/dtj /vo15num3/vo15num3artl . pdf 

[38] Sranko Griinbaum and Geoffrey Sheppard. Tilings and Patterns. W.H. Freeman, 
New York, 1987. 
This is the definitive book on ways to tile the two-dimensional plane. The authors treat well·known periodic 
tilings such as those in a bathroom, the patterns of bricks on walls, or the wonderful geometries created by 
Islamic artists. They also desuibe aperiodic tilings, such as Penrose tiles, which use a five-way symmetry to 
cover the plane without ever repeating; Amman constructs using a four-way plan to define tiles that forever 
create new patterns; and spiral tiles, which are perfectly regular, but different at every scale. For more on 
tilings see: http: //en . wikipedia. org/wiki!Category : Tiling 

[39] Eitan M Gurari. T£X and M-T£X: Drawing and Literate Programming. McGraw-Hili, 
New York, 1994. 
This book describes device--independent tools for drawing figures with (lJI)TEX. Supported are drawing basic 
shapes, such as lines, rectangles and Sexier curves, as well as utilities for producing more complex graphs, 
such as charts and diagrams. Also described are packages that allow (It-)TEX to support literate programming. 

[40] Eckhart Guthorlein. "Object-Oriented Graphics with MetaObj". MAPS, 31 :77-86, 
2005. 
This art ide is an introduction to the M ETROBJ package, and provides some interesting examples. 

[41]  RoswiLha T. Haas and Kevin C. O'Kane. "Typesetting chemical structure formulas 
with the text formatter ltX/LKfEX". Computers and Chemistry, I I  (4):25 1-27 I. 1987. 
This art ide describes how to incorporate chemical structure diagrams into compuscripts prepared with L"'TEX. 
With the help of some 30 L'T&< macros it is easy to typeset common structural fragments such as branching 
patterns and alicyclic and heterocyclic rings. These macros permit optional substituents and multiple bonds. 
Fragments from different macros can be combined. 

823 



824 81BlIOGRAPHY 

[42] Hans Hagen. "Pretty printing lEX, MetaPost, Perl and JavaScript". MAPS, 20:286-
289, 1998. 
This article explains that, although one has to use CWEB- like environmtnlS for real pretty printing of sources, 
TEX can also do a rathtr good job. CONTEXT's verbatim environment has pretty printing built in, and t'ither 
specific colors or fonts can be used. http: //loIvw . ntg . nl/maps/pdf/20_ 43. pdf 

[431 Hans Hagen. meta fun, 2002. 
This is the metafun manual. The metafun system provides an interface belwcm META POST and TEX. 
The Te-quired T£X macros are included in CONl'EXT, and the META PQST code comes with metaiun. 
Thanks to metafun, METAPQST definitions can be easily integrated in TEX code, thus adding large graph
ics capabilities to TEX. Available eliXlronically from 

http: //www .pragma-ade . com/general/manuals/metafun-p . pdf 

[44[ J. Hagen and A. F. Otten. "PPCHl'EX: typesetting chemical formulas in l}Y(". 
TUGboat, 17(1) :54-66, 1996. 
This article describes PPCHTEX, a package for typesetting chemical formulas with a multi-lingual inter
face. The manual is at the URL http: //www . pragma-ade. com/general/manuals/mp- ch-en. pdf. The 
package can ust" PlCTEX or PSTricks, is compatiblt" with otht"r macro packages, and falls back on a few gt"nt"ric 
context modules. It supports typesetting chemical structure formulas like six-rings at different sizes, parts of 
which can be reused. (t also can deal with reaction mechanisms. 

http : //www . tug. org/TUGboat/Articles/tb17-1/tbSOhage .pdf 

[45] Brian Hamilton Kelly. "Some macros to draw crosswords". TUGboat, 1 1  (1 ):103-
1 19, 1990. 
This is a description of a package to typest"t crossword diagrams. 

http://www . tug . org/TUGboat/Articles/tbl1- 1/tb27kelly.pdf 

[46] Andy Hammerlindl, John Bowman, and Tom Prince. Asymptote, 2005. Version 
0.76. 
Tht" manual of tht" Asymptote systt"m, a system similar to META POST, is availahlt" electronically from 

http: //asymptote . sourceforge. net 

[47] John D. Hobby. "A user's manual for METAPOST" . Computing Science Technical 
Report 162, AT&T Bell Laboratories, 1992. 
The META POST system implemt"nts a picture-drawing language very much like Knuth's METAFONT 
except that it outputs PostScript commands instead of bitmaps. M ETA POST is a powerful language for 
producing figures for documents targetted to PostScript output devices. It provides easy access to all features 
of PostScript and it indudes facilities for integrating text and graphics. The appendix of this user's manual 
.,xplains th.,diff",.,ne.,s bdw.,.,n M ETA POST and M ETA FONT. Th., documcnt is availabk d.,ctronically 
as: http : //em.bell-Iabs . eom/cm/cs/cstr/162 . ps . gz 

[48] John D. Hobby. "Drawing graphs with METAPOST". Computing Science 
Technical Report 164, AT&T Bell Laboratories, 1993. 
This report describes a graph-drawing package that has been implemented as an extension to the META
POST graphics language, which has a powerful macro facility for implementing such extensions. A few 
new language features to support the graph macros are introduced. The proposed features for generating and 
manipulating pictures allow the user to perform actions that would be difficult to achieve in a stand-alone 
package. The document is available electronically as: 

http : //cm.bell-Iabs .com/cm/cs/cstr/164.ps . gz 

[49] Alan Hoenig. lEX Unbound: Strategies for Fonts, Graphics, and More. Oxford 
University Press, New York, 1998. 
This book describes how to produce good typography with L"TEX, in particular how to set up and make proper 
use of PostScript fonts, and create high-quality graphics illustrations with TE,X-friendly methods. [t contains 
many examples and summaries of procedures to follow. Tht" book starts with a good overview ofTEX, L'1EX, 
METAFONT, and META POST, explaining how they all fit together. Tht" second part of the book de· 
scribes TEX's font mechanisms. The author does not limit himself to a description of how to set up a standard 
font family, but includes a lot of more advanced material. Examples included are using special effect fonts, 
specifying font families that contain alternate character sets or symbols, integrating high-quality commercial 
fonts, and typesetting mathematics with fonts other than the original TE,Xfonts (there is a 30-page overview 
on how to combine available mathematics font families with various often-used typefaces). The final part of 



BIBLIOGRAPHY 

the book discusses graphics applications, in particular META FONT, METAPOST, PSTricks, P:lClEX, and 
mfpi(. 

[501 Jan Holecek and Petr Sojka. "Animations in pdfIF;X-generated PDF: A new method 
for directly embedding animation into PDF". volume 3130 of Lecture Notes in 
computer Science, pp. 179-191. Springer-Verlag, Berlin, Germany I Heidelberg, 
Germany I London, UK I etc., 2004. 
This article describes a method for producing real animations within a PDF file. 

[ 5 1 ]  Andrew D. Hwang. "ePiX: A utility for creating mathematically accurate figures". 
TUGboat, 25(2):172-176, 2004. 
This article describes ePiX, a collection of command line utilities for creating mathematically accurate, logi
cally structured, camera-quality 2- and 3-dimensional figures and animations in L"1'EX. ePiX provides a bridge 
between the powerful numerical capabilities of C++ and the high-quality typesetting of l"1'EX. 

http; llwww. tug.org/TUGboat/Articles/tb25-2/tbSlhwang. pdf 

[52[ International Organization for Standardization, Geneva, Switzerland. Quantities 
and Units (Parts 0 to 13), 1992. International Standard ISO 31-0: 1 992. 
Part 0; General principles (1992, Amd 1:1998, Amd 2:2005); Part ]: Space and time (1992, Amd ]:1998): Part 
2: Periodic and relate<! phenomena (1992, Amd ]:]998); Part 3: Mechanics (1992, Amd ]:1998); Part 4: Heat 
(]992, Amd ];]998): Part 5: Electricity and magnetism (]992, Amd 1:1998): Part 6: Light and relate<! electro
magnetic (1992, Amd 1:1998): Part 7; Acoustics (1992, Amd 1:1998); Part 8: Physical chemistry and molecular 
(1992, Amd 1:1998): Part 9: Atomic and nudear physics (1992, Amd 1:1998); Part 10: Nuclear reactions and 
ionizing (1992, Amd 1:1998); Part 11: Mathematical signs and symbols for for use in the physical sciences 
and technology (]992, Amd ]:]998): Part 12: Characteristic numbers (1992, Amd I: 1998); Part 13: Solid state 
physics (1992, Amd 1:]998). 

[53 [ International Organization for Standardization, Geneva, Switzerland. SI Units and 
Recommendations for the Use of their Multiples and of Certain Other Units, 1992. 
International Standard ISO 1000: 1992. 

[54] International Organization for Standardization, Geneva, Switzerland. Information 
Technology-Computer graphics - Metafile for the Storage and Transfer of Picture 
Description Information, 1999. International Standard ISO 8632: 1999. 
Part I: Functional spedfication (1999, Cor 1:2006); Part 2; Character Encoding (1999); Part J: Binary encoding 
(1999); Part 4: Clear text encoding (1999). In part freely downloadable from http : //isotc . iso . orgl 
livelink/livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStandards . btm 

[55] International Union of Pure and Applied Chemistry. Nomenclature of Organic 
Chemistry. Pergamon, Oxford, 1979. 
Many recommendations on organic and biochemical nomenclature, symbols and terminology, etc. are avail
able at thl' IUPAP Web sitl': http: //www . cbem. qmul . ac . uk/iupac/ 

[56] International Union of Pure and Applied Physics. "Symbols, units, nomenclature 
and fundamental constants in physics". Physica, 146A: 1-67, 1 987. 
Information is availabll' on the IUPAP Wl'b site (www. iupap.org). The IUPAP Heport number is 25. For thl' 
latest on thl' values of fundamental constants consult the NIST website: 

bttp : /lphysies. nist . gov/euu/Constants 

]57] Johannes Itten. The Art of eo lor: The Subjective Experience and Objective Ratio
nale of Co lor. Wiley, New York, 1974. 
The author introduces two approaches to understanding the art of color. Subjective feelings and objective 
color principles are described in detail and clarified by color reproductions. 

825 



826 81BlIOGRAPHY 

[58] Boguslaw Jackowski. "A METAFONT-cps interface". TUGboat, 16(4):388-395, 
1995. 
This article explains that one of the best features of the TEXlM ETA FONT system is its openness, i.e., its ca
pability of collaboration with other systems. This is illustrated by preSt"nting a META FONT -to-PostScript 
interface, mftoeps, based on a M ETA FONT kernel with the necessary definitions for translating the de
scription of graphic objects from META FONT to PostScript. The PostScript output code is written to a file 
from which it can be extracted. Two utilities that address the task of further manipulation of META FONT 
graphics objects in PostScript are described. 

http : //vww. tug. org/TUGboat!Articles!tb16-4/tb49jack .pdf 

[59] Laura E. Jackson and Herbert VoK "Die mathematischen Funktionen von Post
Script". Die 'l}jXnische Komodie, 1/02:40-47,2002. 
This art ide summerizes all PostScript functions that can be used to calculate mathematical expressions and 
can be used with the \psplot macro from the PSTricks package bundle. 

[60[ Laura E. Jackson and Herbert VoK "Die plot-funktionen von pst-plot". Die 
T&\nische Komodie, 2/02:27-34, 2002. 
This artide describes the use of the plotting macros of pst-plot from the PSTricks package bundle. [t gives 
examples for plotting mathematical functions and external data files that can be read by a special macro. 

[61 J Richard Jackson, Lindsay MacDonald, and Ken Freeman. Computer Generated 
Color: A Practical Guide to Presentation and Display. Wiley. New York. 1994. 
This book offers practical advice on how to use color effectively for presentation on computer screens and for 
printing on paper. 

[621 Fran�ois Jalbert. "MulEX user's guide", 1989. 
Mul}:,X, based on work for their Master's Thesis by Andrea Steinbach and Angelika Schafer, is a set of macros 
allowing l}:,X to typeset beautiful music. http: //ieking-musie-arehive . org/softllare/muter/ 

[631 Christophe Jorssen and Herbert VoK The pst-eire - package. 2004. 
pst-circ is a package built above PSTricks and, in particular, pst-node_ [t can easily draw current dipoles, some 
tripoles, and quadrupoles used in elecronic or electric throry. 

On CTAN at; graphies/pstrieks/ eontdb/pst-eire/ 

[64] Christophe Jorssen. pst-math - a PST ricks package for mathematical function, 
2004. 
PostScript lacks a lot of basic operators. p�t-rlldlll provides all the operators in a PostScript-header file. In 
addition, sine, gauss, gammaln, and bessel are implemented (only partially forthe latter). pst-math is designed 
essentially to work with pst-plot but can be used in whatever PostScript code. 

On CTAN at: grapbies/pstrieks!contrib/pst-matb/ 

]65] Deane B. Judd and Gunter Wyszecki. Color in Business, Science, and Industry, 
Second Edition. Wiley, New York, 1963. 
The perception of color permeates our daily lives. The color of soil, vegetables, fruit, meat, textiles, minerals, 
the sky, or a human face, informs us about their value or state. Color management is an essential tool to 
effectively control all aspects of color in the commercial process. 

[66J David Kastrup. preview-Iatex, 2003. 
preview-latex allows appropriately selected parIS of a L"fEX document to be formatted and displayed within 
your Emacs editor, allowing you to view what it looks like while still allowing you to edit it. 

On CTAN at: support/preview-latex/ 

[67] Brian Kernighan. "PIC - a graphics language for typesetting". Computing Science 
Technical Report 1 16, AT&T BelJ Laboratories. Murray Hill. NJ. 1984. 
Pic is a language for drawing simple figures on a typesetter. The basic objects in piC are boxes, ellipses, lines, 
arrows, arcs, spline curves, and text. These may be placed anywhere, at positions spedfied absolutely or in 
terms of previous objects. Pic is a troff preprocessor. 
Document available electronically as: http : //em .bell- labs . com/em/es/estr/116 . ps.  gz 



BIBLIOGRAPHY 

[68] Uwe Kern. Color extensions with the xcolor package, 2006. 
Provides easy driver-independent access to several kinds of color tints, shades, tones, and mixes of arbitrary 
colors. [t allows a user to select a document-wide targ!'! color modd and offers complete tools for conversion 
between eight color models. Additionally, there is a command for alternating row colors and repeated non
aligned material (like horizontal lines) in tables. On CTAN at: macros/latex/contrib/xcolor/ 

[69] Jorg Knappen. "Changing the appearance of math". In Zlatuska [ 140], pp. 212-216. 
Mathematical typesetting is based on many conventions, which can vary by country and by area of scientific 
activity. [n particular American and European mathematics and physics journals often use different nota· 
tions for idt"nticai itt"ms. The author presents his �European math" package, which makes it easy to adapt the 
notation needed for publishing in a givt"n journal. 

[70[ Donald E. Knuth. The ltXbook, volume A of Computers and 'IJpeserring. Addison
Wesley, Reading, MA, 1986. 
This book is tht" definitive user's guide and complett" refert"nce manual for TEX. 

[71]  Donald E. Knuth. ltX: The Program, volume B of Computers and 'fypesetting. 
Addison-Wesley, Reading, MA, 1 986. 
This book contains the complete source code for the lEX program, typeset with several indices. 

[72] Donald E. Knuth. The META FONT Book, volume C of Computers and 'lypesetting. 
Addison-Wesley, Reading, MA, 1986. 
This is the user's guide and reference manual for META FONT ,the companion program to TEX for designing 
fonts. 

[73] Donald E. Knuth. META FONT: The Program, volume D of Computers and 
Typesetting. Addison-Wesley, Reading. MA, 1986. 
This book contains the complete source code listing of the METAFoNT program. 

[74] Donald E. Knuth. Computer Modern Typefaces, volume E of Computers and 
'lypeserring. Addison-Wesley, Reading, MA, 1986. 
This book depicts graphically more than 500 Greek and Roman letterforms, together with punctuation marks, 
numerals, and many mathematical symbols. The META FONT code to generate each glyph is given and 
it is explained how, by changing the parameters in the META FONT code, aU characters in the Computer 
Modern family of typefaces can be obtained. 

[75] Donald E. Knuth. "Fonts for digital halftones". TUGboat, 8(2):135-160, 1987. 
This article explains how small pictures can be �typeset" on raster devices in a way that simulates the screens 
used to print fine books on photography. This article describes an experiment with M ETA FONT to generate 
halftone fonts to create such pictures on laser printt"rs. 

http : //vww .tug . org/TUGboat/Articles/tb08-2/tb18knut .pdf 

[76] Helmut Kopka and Patrick W. Daly. Guide to LATEX, Fourth Edition. Addison-Wes
ley. Reading, MA, 2004. 
This introductory book, which shows how to bt"gin using L"TEX to create high.quality documents, serves also 
as a handy reference for all L"'fEX. users. The book covers the L'lEX 2" standard and provides many details, 
examples, exercises, tips, and tricks. It goes beyond the base installation by describing important contributed 
packages that have become essential to L"'fEX. processing. This book can be advantageously complt"mented by 
11re rTEX CompuniOlr [83]. 

[77] Gerard Kunkel. Graphic Design with PostScript. Scott, Foresman, Glenview, IL. 
1990. 
This book is a hands·on guide to using PostScript containing complete coded examples for many practically 
relevant applications, including (pseudo) 3-D effects for graphs, etc. 

[78] Leslie Lamport. LATEX: A Document Preparation System, Second Edition. Addison
Wesley, Reading, MA, 1994. 
This book is the definitive user's guide and reference manual for L"1'!;X 2e written by L"1'!;X's original author. 

827 



828 81BlIOGRAPHY 

[791 Michael J. S. Levine. "A IHEX graphics routine for drawing feynman diagrams". 
Computer Physics Communications, 58: 181-198, 1990. 
This article describes a package that uses L"JE.X's picture t"flvironment for drawing Feynman diagrams. The 
package and its manual are available On CTAN at: macros/latex209/contrib/feynman 

[801 Manuel Luque. The pst-vue3d - package, 2004. 
Three-dimensional objects like cubes, spheres, and othtrs can be viewed from different points. The distribu
tion includes a comprehensive set of examples of usage. 

Oil CTAN al: graphicsfpstricks! contrib!pst-vue3d! 

]81]  M. P. Madenan and G. M. Burns. ''An approach to drawing circuit diagrams for text 
books". TUGboat, 12(1):66-69, 1991.  
This article describes a library of pictograms, which are defined using macros embodied in PJCIEX. These 
pictograms are used to create applications that enable high-definition circuit diagrams to be easily included 
in TEX documents. http; //wvw .tug . org/TUGboat/Artieles/tb12- 1/tb31maelenan .pdf 

[82] Henry McGilton and Mary Campione. PostScript by Example. Addison-Wesley. 
Reading. MA. 1992. 
This book first introduces the basic concepts ofPostScriptlanguage(paths, graphic states, text, clipping, trans· 
formations, arcs, curves, and images). It then presents a set of tools to construct fonts, patterns, forms, and 
manage your printing environment. PostScript Level 2 issues such as patterns, forms, images, composite fonts, 
halftones, and color models are covered. With its many hands-on exercises and step· by· step instructions, this 
book becomes a genuine toolkit, for building effective PostScript programs. 

[83] Frank Mittelbach. Michel Goossens. lohannes Braams. David Carlisle, and Chris 
Rowley. The LKfE,X Companion. Second Edition. Addison-Wesley, Reading, MA, 
2004. 
This book describes over 2()() l<'J'EX packages and presents a whole series of tips and tricks for using l<ffj: in 
both traditional and modern typesetting, in particular how to customize layout features to your own needs
from phrases and paragraphs to headings, lists, and pages. It provides expert advice on using LaTeX's basic 
formatting tools to create all types of publication, from memos to encyclopedias. It covers in depth important 
extension packages for tabular and te<:hnical typesetting, floats and captions, multi·column layouts, including 
reference guides and discussion of the underlying typographic concepts. It details techniques for generating 
and typesetting indexes, glossaries, and bibliographies, with their associated citations. 

[84] Alun Moon. "Digital Illumination". TUGboat, 24( 1 ):18-22, 2003. 
This article explains how Donald Knuth's programs TEX and META FONT (META POST) have made dig
ital typography and calligraphy a reality. The author, an amateur calligrapher in Celtic artwork, explores how 
these tools can be used for digital illumination. He shows some nice examples of knotwork and keypalterns 
that he was able to draw. http; //www.tug. org/TUGboat/Artieles/tb24- 1/moon-eel tie. pdf 

[85] Jens-Uwe Morawski. piechartMP: Drawing pie-charts with MetaPost, 2002. 
This is the manual for the pieehartHP M ETA POST package. 

On CTAN at: graphics/metapost/contrib/maeros/pieehartmp 

[86] Santiago Muelas. "A macro routine for writing text along a path in MetaPost". 
MAPS, pp. 103-113, 2000. 
This article describes a general macro written in pure M ETA POST for putting any text using any font over 
any path. The routine is explained in detail and some graphics examples 3re given. 

http : //www .ntg.nl/maps/pdf/2S_14 .pdf 
On CTAN at: graphics/metapost/contrib/maeros/t"p 

[87] Antal Nemcsics. Colour Dynamics: Environmental Colour Design. Prentice Hall, 
New York, 1993. 
The book defines color dynamics and their effects on the environment. After explaining the fundamentals of 
chromatics (color spaces, color vision, color harmony) the psychosomatic etfe<:ts of color, such as the relation 
between color and space, color and function, and color and illumnination, are discussed. 

[88] RolfNiepraschk. "Anwendungen des �TFX-pakets preview". Die 'f"FXnische 
Komodie. 112003:60-65.2003. 
This article describes how PostScript·related code can be integrated into sources, which will be compiled with 
pdfl'JEX. 



BIBLIOGRAPHY 

[89] Jan Nieuwenhuizen and Han-Wen Nienhuys. "MusiXlE,X pre-processor-using 
lEX and the MusiXlt,X macro package to write parts and scores of music", 1996. 
Dt"precated package, re-placed by lilyPond. http: //icking-music-arcbi ve . org/sOftlolare/mpp/ 

[90] A. C. Norris and A. L. Oakley. "Electronic publishing and chemical text processing". 
In Clark [ 18[, pp. 207-225. 
This article describes strategies to combine high-quality computer-based scientific typesetting of chemical 
structures with low cost. Results are reported of how to interface an interactive chemical editor with PostScript 
and TEX. 

[91]  Thorsten Ohl. "Drawing feynman diagrams with LATEX and METAFONT", Com
puter Physics Communications, 90:340-354, 1995. 
This arlide describes FeynMF, a package for easy drawing of professional-quality Feynman diagrams with 
M ETA FONT (or META POST). Most diagrams are drawn satisfactorily from the structure of the graph 
without need for manual intervention. Nevertheless all the power of METRFONT (or METRPOST) is 
available for the more complicated cases or for fine tuning the layout. 

bttp ://www . cpc . cs. qub . ac . uk/summaries/ADCD_vl_0 . html 

[92[ Thorsten Ohl. "feynMF, Drawing Feynman Diagrams with �1EX and META
FONT", 1996. 
Some information is available at the URL http://nn-l. cern. ch/te;r;tproc/feynmf . html. 

On CT AN at: macros/late;r;/contrib/feynmf 

[93[ Premshree Pillai. infix-postf ix . py, 2003. 
This package provides a solution with Python for an Infix-Postfix converter. 

http : //aspn . activestate . com/ASPN/Cookbook/Pytbon/Recipe/228915 

[94[ Sunil Podar. "Enhancements to the picture environment of�TEX". Technical 
Report 86-17, Dept. of Computer Science, State University of New York, Stony 
Brook, NY, 1 986. 
This report describes the epic macros, which extend the capabilities of L'1E,X picture without requiring new 
facilities. On ClAN at: macros/latex/contrib/epic/picman . tex 

[95[ Sebastian Rahtz. "The Protestant Cemetery, Rome". Opuscula Romana, 16:149-
167, 1987. 
This article discusses a study undertaken under the auspices of the Unione Internazionale degli lstituti di 
Archeologia, Storia e Storia dell'Arte in Roma. 

[96] Michael Ramek. "Chemical structure formulae and x/y diagrams with '!tX". In 
Clark [ 18[, pp. 227-258. 
Macros are presented to easily generate ,hemical structure formulae and x/y diagrams. Plain lEX and a DV! 
driver that ,an handle rules are sufficient to generate the graphics output. 

[97] Denis Roegel. "Creating 3D animations with META POST". TUGboat, 18(4):274-
283, 1997. 
This article describes the METRPOST 3d package for representing and animating objects in space. 

http : //www . tug.org/TUGboat/Articles/tb18-4/tb57roeg .pdf 
On CTAN at: graphics/metapost/ contrib/macros/3d 

[98[ Denis Roegel. "METAPOsT, I'intelligence graphique". CalJiers GU'/enberg, 
41:5-16,2001. 
This article, in French, explains the advantages of a text·oriented approach to graphics, as provided by the 
M ETA POST language. 

http : //www. gutenberg. eu. org/pub/GUTenberg/publicationsPDF/41-roegel . pdf 

[99[ Denis Roegel. "Space geometry with METAPOST". TUGboat, 22(4):298-314, 
2001 .  
This article describes the author's package for drawing space geometry figures in M ETRPOST. 

http : //www.tug. org/TUGboat/Articles/tb22-4/tb72roeg.pdf 

829 



830 81BlIOGRAPHY 

[1001 Denis Roegel. "METAOBJ: Very high-level objects in METAPOST". TUGboat, 
23(1 ):93-100, 2002. 
This article summarizes the main features of METAOBJ, a M ETA POST package for manipulating graph
ics in a structured way. http: //www . tug. org/TUGboat! Articles/tb23-1/roegel . pdf 

On CTAN al; graphics/metapost!contrib!macros/metaobj 

[ 10 1 1  Denis RoegeL "Kissing Circles: A French Romance in METAPOST". TUGboat, 
26(1 ):10-17, 2005. 
This article describes META POST macros for drawing the Apollonian gasket, a well known fractal. 

http : //www . tug . org/TUGboat/Articles/tb26- 1/tb82roegel pdf 

[ 1021 Denis Roegel. The METAOBJ tutorial and reference manual, 2007. 
This is the METAOBJ manual, describing a METRPOST package for the manipulation of structured 
objects, boxes, trees, matrices, connections, etc. 

On CTAN at: graphics/metapost/contrib/macros/metaobj 

[103] Tom Rokicki. "Driver Support for Color in 1t;X: Proposal and Implementation". 
TUGboat, 15(3):205-212, 1994. 
This article presents a new implementation of color support, with a proposal for an initial standard for color 
and color-like specials. Examples show the difficulties to be addressed when supporting color. An implemen
tation of a driver providing a solution to these problems is described. 

http: //www. tug. org/TUGboat/Articles/tb15-3/tb44rokicki.pdf 

[ 1 04] Kristoffer H. Rose and Ross Moore. "Xy-pic reference manual. version 3.7", 1 999. 
This document describes in detail the capabilit ies of the Xy -pic package for typesett ing graphs and diagrams in 
TEX. The packagt' works with most TEX formats, including plain TEX, L"'TEX, and A.,w.S-L"'TEX. St'Veral styles 
of input for various diagram types are supported; they all share a mnemonic notation based on the logical 
composition of visual components. Tht' el<'(tronic version of the manual is distributed with the package. 

On CTAN at: macros/generic/diagramslxypic/xy-3 . 7/doc/xyrefer. pdf 

[105] Kristoffer H. Rose. "How to typeset pretty diagram arrows with 1t;X-design 
decisions used in Xy-pic". In Zlatuska [ 140], pp. 183-190. 
This article givt's a non-technical overview of how to draw arrows with TEX, and in particular with tht' author's 
XV-pic system. The article shows how a large variety of arrows can be obtained by combining a few special 
fonts. 

[ 1 06] Kristoffer H. Rose. "Xy-pic user's guide. version 3.7", 1999. 
Xv-pic is a package for typesetting graphs and diagrams with TfX. This user guide concentrates on how to 
typeset matrix-like diagrams. The electronic vt'rsion of tht' manual is distributed with the package. 

On CTAN at: macros/generic/diagramslxypic/xy-3 . 7/doc/xyguide pdf 

[1071 Zalman Rubinstein. "Chess printing via METAFONT and 1t;X". TUGboat, 
10(2):170-172, 1989. 
This article presents a M ETA FONT -TfX system to enable printing chess positions with ease by incorporat
ing them in arbitrary TfX output. The cht'ss board is integrated with tht' chess pit'ces. 

http : //�w . tug. org/TUGboat/Articles/tbl0- 2/tb24rubinstein . pdf 

[108] Rod Salmon and Mel Slater. Computer Graphics - Systems & Concepts. Addison
Wesley Europe, Amsterdam, 1987. 
A practical guide to the construction and implementation of computer graphics systems. The basic princi
ples for building such systems for a range of 2-D and 3-D applications are t'xplained. Tht' Graphical Kernel 
System (GKS) is treated in detail and its characteristics are compared with those of other systems, including 
PostScript. Aspects of human-computer interaction, equipment, and systems design are discussed. 

[109] Andreas Scherer. "Smoothing augmented paths in METAPOST". TUGboat, 
20(2):142, 1999. 
This article shows a slight change to the M ETA POST graph package in order to produce smooth curves in 
graphs drawn from data. http : //�w . tug. org/TUGboatl Articles/tb20-21tb63gibb . pdf 



BIBLIOGRAPHY 

[ 1 10] Angelika Schafer and Andreas Steinbach. "Automatisierter Notensatz mit lEX". 
Technical report, Rheinische Friedrich-Wilhelms-Universitat, Bonn, 1987. 
This report, which combined and updated the content of the masters theses of both authors, demonstrated that 
music typesl"tling was possible. Tht'ir mutex package was rather limited, and is hardly ever used nowadays. 
However, it inspired Daniel Taupin, who took up the baton, and developed MusixTEX (see Ref. [116)). 

On CTAN at: macros/lllte)!; 

[ 1 1 1 ]  Claus Schonleher and Frank Klinkenberg-Haa6. "Goldene Schnittmuster". mc
Extra, 2:21-25, 1995. 
This article covers metalic alloys, non-pt'riodic tiliogs and Penrose-tilings. 

[ 1 12] Don Simons. "PMX, a preprocessor for MusiXTEX. Version 0.92", 1995. 
PMX facilitates typesetting music scores and parts that have an almost professional appearance. It is easier 
to learn than MusiXTEX, of which it is a preprocessor. PMX automatically takes care of grouping nott'S, se
lecting groups of notes to be beamed, defining beam heights and slopes, spreading the entire piece evenly 
over specified numbers of systems and pages, and inserting extra spaces where needed to make room for 
accidentals, flags, dots, and new clefs. Note values, rests, ornaments, slurs, and limited ttxt strings can 
be specified. Every voice in every bar must have exactly the correct number of beats in the current meter, 
but you may change the meter at the beginning of any measure, with or without printing the new time sig
nature. PMX checks the timings and other aspects of the input for consistency before generating its out
put. http: //icking-music-archi va . org/softwara/pmx/pmx250 . pdf 

[ 1 13]  Ian Stewart. "Ungewohnliche Kachelungen". Spektrum der Wissenschaft, p. 1 14, 
200 I .  
This article explains how, starting with a very simple construction, one can get very complicated tilings and 
patterns. http: //www . wissenschaft- online . de/spektrum/index . php?action"'rubrik_ 
detail�artikel_id-5811 

[ 1 14] Sebastian Tannert and Andreas Tille. "The eiRe package", 2005. 
This is a description ofClRe, a tool for typesetting circuit diagrams and block schematics. The package defines 
a large set of electrical symbols including resistors, capacitors, and transistors, which can be connected with 
wires in a very easy way. All symbols are drawn with META FONT and the symbol set can be easily extended 
by the user. On CfAN at: macros/generic/diagrams/circ/circ. pdf 

[ 1 15] Till Tantau. The TikZ and PGF Packages. 
rGF is a TEX macro package for generating graphics. It is platform- and format-independent. It comes with a 
user.friendly syntax layer called TikZ. It is somewhat less powerful than PSTricks, which can use the full power 
of the PostScript lanRuage (e.g., for inline function plotting) and has a nice libraryof extra packages for specific 
application areas. However, it works together with most important TEX backend drivers, including pdftex 
(which is not directly possible with PSTricks) and dvips. Moreover, since it is a recent development, its syntax 
is somewhat more consistent that PSTricks'. The home page is at http: //sourceforge . net/projects/ 
pgf /. On CfAN at: graphics/pgf /doc/generic/pgf tversion-for-pdftex/en/pgfmanual . pdf 

[ 1 16] Daniel Taupin, Ross Mitchell, and Andreas Egler. "MusiXTEX, using TEX to write 
polyphonic or instrumental music, Version T.1 13", 2005. 
MusiXTEX is a set ofTEX macros to typeset orchestral or polyphonic music. This guide containsa technical and 
detailed description of all features of the system. The main author of MusiXTEX, Daniel Taupin, passed away 
in 2003. Two years later the MusiX'J'EX community decided to help keep his excellent work alive and current 
by assembling a new release (T.113), correcting various minor bugs, updating some references and providing 
dynamic links to archived versions where possible. No new functionality was introduced but a few additional 
packages were added to the basic distribution. 

http : //icking-music-archive . org/soft�are/musixtex/musixdoc . pdf 

[ 1 1 7] Daniel Taupin. "Music1EX: using ltX to write polyphonic or instrumental music". 
In Ziatulka [ 140[, pp. 257-272. 
This article gives a short overview of MusicTEX, a set of (If.)TFX macros 10 nicely typeset polyphonic, in
strumental, or orchestral music. Many voices or instrument lines, as well as up to four staffs per voice aTe 
supported. Several note sizes, most usual ornaments, and such features as grace notes and cadenzas are also 
available. It is explained that the major typesetting difficulty resides in the handling of glue and of breaking 
lines when meeting irregular music and slurs. 

831 



832 81BlIOGRAPHY 

[ 1 181 Daniel Taupin. "Music1EX: using lEX to write polyphonic or instrumental music". 
TUGboat, 14(3):203-21 1 ,  1993. 
This article is a short introduction to MusicTEX, a set ofTEX and l"JEX macros to typeset polyphonic. in
strumental or orchestral music. It handles an important number of instruments or voices (up to nint'j and 
staffs (up 10 four for each instrument). Most usual ornaments are available, including several note sizes, grace 
nOles, and cadenzas. Several staff sizes can coexist in the same score 10 combine full-size staffs with smaller 
«reminder� staffs. The L� version is not suited for prodUCing full scores but it can be used to typeset mu
sic excerpts in musicographic texts. Spedal attention has to be given to glue and line breaking in the case of 
irregular music and slurs. http: //v,,,, .tug. org/TUGboat/A:rticles/tb14-3/tb40ml,lsicte� . pdf 

[ 1 19J Daniel Taupin. "Using TEX and META FONT to build complicated maps". TUG
boat, 14(3):196-202, 1993. 
The article descibes the procedure to publish a catalog of 1500 crags and climbable rocks in France. AU relevant 
information, such as name, location, and importance, are stored in a large l'EX master file. The marks and their 
associated te�t, as well as their optimal position are calculated from thl'sl'data and arl' sup�rimposed on a map 
generated in META FONT. 

http : //vwv . tug . org/TUGboat/Articles/tb14- 3/tb40taupin-maps . pdf 

[1201 Daniel Taupin. "MusiXTEX, even more beautiful than Music1bX for music type
setting". In Wietse Dol, editor, "Proceedings of the 9th European TEX Conference, 
September 4-8 1995, Arnhem, The Netherlands", pp. 351-358, Nederiandstalige 
1FX Gebruikersgroep, 1995. 
This article is a description of MusiXl'EX as a new musk typesetting package derived from Music'lEX. 
MusiXTEX is a three-pass system and produces more beautiful scores than MusicTEX, which was a one-pass 
system. The first pass p�rforms a rough TEXing which reports the spacings of each music section, the sec
ond pass uses an external program to compute optimal note spadngs, and the third pass lets 'lEX include 
this information to typeset the final score. This results in more visually attractive slurs and regularly spaced 
notes. http: //,,,,v . ntg. nl/maps/pdf IE_23. pdf 

[ 1 2 1 ]  Daniel Taupin, "MusicTEX, using TEX to write polyphonic and instrumental music, 
Version 5,17", 1996. 
This is a deprecated package. Use MusiXTEX instead. Old files are still available at the VRL 

http: //icking-music-archive. org/softvare/musicte�/ 

[ 122] Piet Tutelaers, "A font and a style for typesetting chess using IHEX or 1tX", TUG
boat, 13(1):85-90, 1992. 
The author decribes how he built a 26-character chess font with M ETA FONT. The font consists of a chess 
board and separate sets of black and white chess pieces and empty squares. The 'lEX macros for typesetting 
chess using the font are described. 

http : //www.tug. org/TUGboat/Articles/tb13-1/tb34tutelaers .pdf 

[123J Gabriel Valiente Feruglio. "Typesetting commutative diagrams", TUGboat, 
15(4):466-484, 1994. 
This article presents a review of macro packages for typesetting commutative diagrams, which are compared 
according to several criteria, such as capability to produce complex diagrams, ease of use, quality of the output 
diagrams, readability of the documentation, installation procedures, resource requirements, availability, and 
portability. The compatibility of the different macro packages is also analyzed. 

http : //www.tug. org/TUGboat/Articles/tb15-4/tb45vali .pdf 

[ 124] Kees van der Laan. "Typesetting bridge via LKfJ;X". TUGboat, 10(1):1 13-1 16, 1989. 
Macros and a bidding environment ror types ... tting bridge card distributions and bidding sequences ar ... de-
scribed complemeted by examples borrowed from the bridg ... literature. 

http: //wvw. tug. org/TUGboat/Articles/tbl0- 1/tb231aan pdf 

[ 125 1  Kees van der Laan. "Tiling in PostScript and METAFONT - Escher's wink". 
MAPS, 19:39-67, 1997. 
This article describes programs for various tilings, both in META FONT and in PostScript. 

http: //www . ntg.nl/maps/pdf/19_12 .pdf 



BIBLIOGRAPHY 

[ 126] Timothy Van Zandt and Denis Girou. "Inside PSTricks". TUGboat, 15(3):239-246, 
1994. 
The macro-commands of the PSTrieks package offer impressive additional capabilities to (�}TEX users, by 
giving th{'m direct access to much of tht' power of PostScript, including full support for color. The article 
describes the implementation of a few of the features of PST ricks (version 0.94), 

http: //www . tug . org/TUGboat/Articles/tb15- 3/tb44tv� . pdf 

[1271 Timothy Van Zandt. "PSTricks user's guide", 1993. 
This is the official PSTricks documentation. http;//tug . orgfPSTricks/doc/pst-usrfull .pdf 

[ 128] Timothy Van Zandt. PSTricks - PostScript macros for Generic lEX, Documented 
Code, 1 997. 
PSTricks is a collection of PostScript macros that is compatible with most TEX macro packages, including Plain 
TEX and LKJEX. Included art" macros for color, graphics, rotation, and overlays. This is the documented code. 
Thert" is also a User's Guide and a read-me file. 

On CfAN at: graphics/pstricks/doc/code/pst- code . pdf 

[129[ Timothy Van Zandt. The mul tido package, 2004. 
Fixed·point arithmetic is used when working on the loop variable, so that the package is equally applicable in 
graphics applications like PSTricks as it is with the more common integer loops. 

On CfAN at: graphics/pstricks/base/generic/ 

[130] Boris Veytsman and Leila Akhmadeeva. "Drawing Medical Pedigree Trees with lEX 
and PSTricks". Tlte Prac1bX Journal, 2006(4). 
The package provides a set of macros based on PSTricks to draw medical pedigrees according to the recom
mendations for standardited human pedigree nomenclaltlre. The drawing commands place the symbols on a 
pspicture canvas. An interface for making trees is also provided. 

http : //tug. org/pracjourn/2006-4/veytsman 

[ 13 1 ]  Herbert Vog and Jana VoK "The plot functions of  pst-plot". TUGboat, 22-
4:314-318,2001. 
Plotting of external data records is one of tht" standard problems of ttxhnical-industrial publications. Very 
often the data files are imported into gnuplot, provided with axes of coordinates and further references and 
finally exported to LKJEX. This article explains ways to get proper data plotting without using external applica
tions. http : //wlilW . tug . org/ntCboat/ Articles/tb22-4/tb72vossplot . pdf 

[ 132] Herbert VoK "Three-dimensional plots with pst-3dplot". TUGboat, 22-4:319-
329, 2001. 
There exist several packages for plotting three-dimensional graphical objects. This article describes 
pst-3d plot, which is similiar to the pst-plot packagt" for two dimensional objects, matht"matical functions and 
datafiles. http : //wlilW . tug . org/ntCboat/ Articles/tb22-4/tb72voss3d. pdf 

[133] Herbert VoK The pstricks-add - package, 2006. 
This packagt" collects togt"ther examples that have been posted to the PSTricks mailing list, together with some 
additional features for PSTricks . The package also includes additions and bugfixes for PSTrieks, pst-plot, 
pst·node and pst-tree. On CfAN at: graphics/pstricks/contrib/pstricks-add/ 

[ 134] Herbert VaK The pst-3dplot - package, 2006. 
A package using PSTricks to draw a large variety of graphs and plots, including 3-D math functions. Data can 
be read from external data files, making this package a generic tool for graphing within lEX/LKJEX without the 
need for external tools. On CTAN at: grapbics/pstricks/ contrih/pst-3dplot/ 

[135] Herbert VoK PSTricks: Grafik fur lEX und LA'fP}{, Fourth Edition. DANTE 
Lehmanns, Heidelberg/Hamburg, 2007. 
This book explains all keywords and macros of the basic packages of the PSTricks bundle uing examples. A lot 
of the additional packages including pst-vue3d, pst-3dplot or pst-euc1, are also mentioned. 

833 



834 81BlIOGRAPHY 

[ 136] Helene Wanske. "Notenproduktion im Umbruch. Gedanken zur gegenwartigcn 
und zuktinftigen Musikalienherstellung". In Hans�Joachim Koppitz, editor. 

"Gutenberg-Jahrbuch 1990", pp. 237-243. Gutenberg-Gesellschaft, Internationale 
Vcreinigung fur Geschichtc und Gcgenwart def Druckkunst c.Y., Mainz, Germany, 
1990. 

[137] Jan V. White. Color for the Electronic Age. Watson-Guptil Publications, New York, 
1990. 
This book is about the functional use of color in charts, graphs, typography, and pictures. It shows how color 
can be used as a practical and efficient tool to focus attention, explain relationships, and analyze data; how 
color helps the reader comprehend information faster; and how it can establish identity by associating a cer
tain color with a given element thus easing recognition and turning information into knowledge. Colors can 
have psychological ami emotional efft"Cts, carry cultural connotations, ami must thus be used with great care. 
With the help of hundreds of "right� and "wrongH examples the author shows practically and clearly what 
works and what does not in many of the important areas of written communication. 
Useful rules about color patterns can also be found on the Web in Susan Fowler's "Color and patterns" 
(http: //lIlIlI . fast�consul ting. com/color Icp_ toc. htm), Jan White's �Full color" (http://lIlIlI. 
insideoutdesign. com/fu1l3010r. pdf), Ann L. Wiley's "Effective colorH (http://\/IIII. tee. ufl. 
edu/-kdtn/effcol. pdf), or Aries Arditi's "Effective color contrast" (http : //w\/II . lighthouse .orgl 
color _contrast . htm). 

[138] Michael }. Wichura. The PICIt:X Manual. Number 6 in 'JEXniques: publications for 
the TEX community. TEX Users Group, Providence, R1, 1987. 
This book describes the P1C1F.X language. The syntax of each command is fully detailed. With the help of 
many examples it is explained how to setup a graph, draw rules, lines, curves, dots and dashes, and generate 
shadings. Inclusion of P1CTEX pictures in a pagt', the rotation of images, and how to uSt' L"'JEX and P1CTEX 
together are dt'scribt'd. Tht' level of reader understanding can be tested with tht' help of several dozen exercises, 
whose answers are induded in an appendix. 

[139] Michael J. Wichura. "Macros for drawing PiCtures". TUGboat, 9(2): 193-197, 1988. 
This article is a short ovt'Tview of PICTEX, a collection ofT[X macros that 11."1 TEX users easily instruct TEX to 
typeset bt'autifu[ pictures, and in particular matht'matical figures, as a part of th!'ir books. 

http : //www . tug . org/TUGboat/Artieles/tb09-2/tb21wichura-pietex . pdf 

[ 140] Jific Zlatuska, editor. EurolEX '92: Proceedings of the 7th European 1tx Confer
ence, Prague, Czechoslovakia, September 14-18, 1992. Masarykova Universita, 
Brno, 1992. 



I ndexes 

General lndex . . . . . . . . . . . . 
METRFONT and METRPOST . 

PSTricks 

XV-pic . 

People . 

· . 837 

. . .  · . 879 

· . 897 

· . 919 

· . 924 

The index has been split into five parts. We start with a general index that covers all 
entries apart from those of the three large graphics languages, METAPOST, PSTricks. and 
XV-pic, that are described in chapters 3, 5, and 7 respectively. These three languages each 
have their own separate index, in order to do justice to the specific terms they use to denote 
their native constructs. This also helps the reader to avoid mistakenly finding a solution 
offered by one language when creating a graphic in one of the other languages. Important 
general concepts are additionally cross-referenced from the general index. We end with an 
index of authors. 

To make the indexes easier to use, the entries are distinguished by their "type", and this 
is often indicated by one of the following "type words" at the beginning of the main entry or 
a sub-entry: 

boolean, counter, document class, env., file. file extension, font, key, key value, 
option, package, program, rigid length, or syntax. 

The absence of an explicit "type word" means that the "type" is either a �T£X "command" 
or simply a "concept". 

Use by, or in connection with, a particular package is indicated by adding the package 
name (in parentheses) to an entry or sub-entry. There is one "virtual" package name, tlgc, 
that indicates commands introduced only for illustrative purposes in this book. 

A blue italic page number indicates that the command or concept is demonstrated in 
an example on that page. 



836 

-Q. j\ 
"T"% 

T 

" 

I V  
" 

v '-

INDEXES 

When there are several page numbers listed, bold face indicates a page containing im
portant information about an entry. such as a definition or basic usage. 

When looking for the position of an entry in the index, you need to realize that, when 
they come at the start of a command or file extension, both the characters \ and . are ig
nored. All symbols come before all letters and everything that starts with the � character 
will appear immediately before A. 

(� I"
�

I" ii· � 
. 

g 
� 

.., / 



Symbols 

! syntax (xcolor), 731, 732 
\ !  (LilyPond),665 

! ! syntax (xcolor), 735 
! ! + syntax (xcolor), 735 
! ! [lIum) syntax (xcolor). 732, 735 
" . . .  " syntax 

(abc), 608 
(pic), 19 

) syntax 
(UlyPond), 661, 662 
(MusiXTEX), 592 
(abc), 603 

, , syntax 
(lilyPond), 661, 665 
(MusiXTEX), 592 

> , , syntax 
(lilyPond), 661, 663, 665 
(MusiXTEX), 592 

\ ( (pst-pdf}, 800 
( "  syntax (M-Tx), 65S 
( .  . .  ) syntax 

(LilyPond), 663, 664, 665 
(M-Tx), 654, 655 
(PMX), 634, 635-638, 648 
(abc), 607, 608 

(2 syntax (abc), 605 
(3 syntax (alx), 605 
(4 syntax (abc), 605 
(5 syntax (abc), 605 

Genera l  I ndex 

(6 syntax (abc), 60S 
(7 syntax (abel, 60S 
(8 syntax (abc), 605 
(- . . .  ) - syntax (M-Tx), 655 

\) (pst-pdf), 800 
) ( syntax (M-Tx), 655 
• syntax (cwpuzzle), 704, 705 
+ syntax 

(PMX), 623, 624, 625 
(m-ch-en}, 544 
(texmate), AAJ 

, syntax 
(UlyPond), 661, 662 
(PMX), 624, 625 
(abc), 603 

- syntax 
(UlyPond), 663 
(M-Tx), 655 
(PMX), 623, 624, 625, 628 
(abc), 607, 608, 61 I 
(m-eh-en), 544 
(xeolor), 731, 732 

\- (eire), 579 
-- syntax 

(UlyPond), 665 
(M-Tx), 655 

. syntax 
(MusiXTE>(), 594 
(PMX), 624, 625 
(abc), 607 
(cwpuule), 704, 705 



838 (Symbols) 

· syntax (Wilt.) 
(printsudoku), 7/O 
(sudoku), 709 
(xmlor), 7JJ 

\ .  (eire),579 
· PE syntax (pic), 17, 583 
.PSsyntax (pic), 17,583 
· c syntax (pic), 19 
· n syntax (pic), 19 
· ne syntax (pic), 19 
.nw syntax (pic), 19 
· se syntax (pic), 19 
. 511 syntax (pic), 19 
· I syntax (UlyPond), 661, 662 
· I I  . syntax (LilyPond), 66I, 662 

/ syntax (abc), 608 
: syntax 

(lilyPond), 66/, 662 
(PMX),631 
(xeolor), 732 

: : syntax 
(M-Tx),654 
(alx), 603 

: I syntax 
(lHyPond), 66J, 662 

(M-Tx),654 
(abc), 603, 604 

: I : syntax (LilyPond), 66J, 662 
; syntax (xeolor), 732 
< syntax 

(M-Ix), 658 
(MusiXTEX), 592 
(PMX), 624, 625 
(abc), 604, 605 

( .  syntax (M-Ix), 658 
< . . .  > syntax (LilyPond). 663, 665 
« syntax (abc), 604, 605 
« . . . » syntax (lilyPond), 664, 665 
<<< syntax (alx), 604 
- syntax 

(MusiXTEX), 592 
(alx), 605 

> syntax 
(M-lx), 658 
(MusiXTEX), 592 
(PMX), 624, 625 
(alx), 604, 605 
(colortbl),751 

\> (lilyPond),665 
> .  syntax (M-lx), 658 
» syntax (alx), 604, 605 
»> syntax (alx), 604 
? syntax (PMX), 629 

\ [ (texmate), 680, 681, 682, 683, 686 

[ .  . .  ] syntax 
(lily Pond), 663, 664, 665 
(M-lx), 654 
(PMX), 631, 632, 634 
(alx), 608 
(cwpuzzle), 704, 705 
(texmate), 680, 681-683, 686, 687 

[ . . .  ] / syntax (lilyPond), 664 
[1 syntax (alx), 603, 604 
[2 syntax (alx), 603, 604 
[j syntax (PMX). 633 

\# (texmate), 681-683 

&: syntax (MusiXTEX), 591, 596 
� syntax 

(lilyPond), 663 
(MusiXTEX), 592, 593 
(alx), 605, 607 
(chemsym),517 

� �  syntax (alx), 605 
- syntax 

(M-lx), 657 
(alx), 607 
(colortbl), 751 

\ syntax (alx), 604, 608 
{" syntax (M-lx), 655 
{ . . .  } syntax 

(M-lx), 655, 657 
(abc), 607 

{� . . .  }� syntax (M-lx), 655 
{} syntax (cwpuzzle), 704, 705 
}{ syntax (M-lx), 655, 657 
_ syntax 

(lilyPond), 663, 664 
(M-lx), 655 
(MusiXTEX), 592, 593 
(alx), 60S, 6/ / 
(chemsym),517 

__ syntax (alx), 605 
\] (texmate),680, 68/ 

] - [ syntax (PMX), 632 
] [ syntax (PMX), 632 
] j syntax (PMX), 633 
, syntax 

(MusiXTEX), 592 
(dvips). 35 

I syntax, 668 
(lilyPond), 661, 662 
(M-lx), 654, 657 
(MusiXTEX).591, 596 
(abc), 601, 603, 604, 605, 607, 608 
(cwpuzzle), 704, 705 
(sudoku), 709 
(texmate), 680, 681, 683, 686 

I . syntax (lilyPond), 661, 662 

GENERAL INDEX 



GENERAL INDEX 

I : syntax 
(LilyPond), 66I, 662 
(M-Tx),654 
(abc), 603 

I )  syntax 
(M-T)(), 654 
(abc), 60/, 603, 604, 60S, 607, 6()8 

I I  syntax 
(lilyPond), 66I, 662 
(M-Tx), 654 
(abc), 603 

0-0 syntax (texrnate), 686 
0-0-0 syntax (texmate), 683 
I ,4-dibromobenzene, 521, 523 
lOpt option (beamer), 753 
12pt option (beamer), 753 
14pt option (beamer), 753 
17pt option (beamer), 753 
20pt option (beamer), 753 
3-0, see META and PSTric1\5 iudex 
apt option (beamer), 753 
9pt option (beamer), 753 

@ 

1»+ syntax (M-Tx), 658, 659 
1»- syntax (M-Tx), 658 
1»< syntax (M-h), 658 
1»'" syntax (M-Tx), 658 
1»> syntax (M-Tx), 658 
I»� syntax (M-Tx), 658 
I»v syntax (M-Tx), 658 

A 
A syntax (PMX), 630 

\A (eirc), 577, 581 
a syntax (PMX), 625, 631 
Aa syntax (PMX), 643 
Ab syntax (PMX), 632, 643 
abbreviations, scientific texts, 513 

. abc file extension, xxxi 
abc enll. (abc), 612, 614, 615 
abc language, xxlliii, 600-615, 654 
abc package, 612-615 
abc notation system, see music scores (abc2mtex) 
abc2rnidi program, 610, 648 
abc2mtex program, 590, 600-612, 662 

\abcinput (abc), 612, 615 
abcm2ps program, 602, 610, 611, 614, 615, 617 
abcPlus language, 600, 609, 610, 617, 648 

. abcplus file extension, xxxi 
Abp syntax (PMX), 633 
absorption, color, 717 
accents (musical), 592, 607 

UlyPond, 663 

\acciaccatura (UlyPond), 66J, 664 
accidentals (musical) 

attaching to note names, 622 
examples, 592 
positioning. 624, 628 
symbols, 605 

Acrobat Distiller program, 797, 798 
actions, slides, 770 
active option (pst-pdf), 800 

\ACtoDC (eire), 578 
Ad syntax (PMX), 643 

\adamantane (ccycle), 531 
additive color space, 715 
addpgf key (chessboard), 669 
addpieces key (chessboard), 669 
ADJ syntax (m-ch-en), 544, 545 
Adobe Acrobat prognml, 2] 
Adobe Reader program, 12, 804, 817 
Adobe Illustrator program, 1, 4, 21 
Adobe Pholoshop program, 17 
Ae syntax (PMX), 643 

\afterb (texmate), 686 
\afterno (texmate), 686 
\after'ol (texmate), 686 

againcovered key (beamer), 768 
\againframe (beamer), 759, 761 
\ahead (texmate), 68/, 682, 683 

AI syntax (PMX), 643 
Ai syntax (PMX), 643 
AlDraTex package, 15 

\alert (beamer), 761, 771, 790, 791 
alertblock env. (beamer), 778, 779 
algorithmic display drawings, S 
algorithmic structural drawings, S 
alignment 

nucleotide sequences, 548-550 
peptide sequences, 548-550 

aliphat package, 520, 532 
aliphatic compounds, 532, 533 
all option (bearner), 753 

\allabreve (MusiXTEX), 592 
allegro (musical), 646 
a1kgro vivace (musical), 644 

\allmatchspecial 
(texshade), 548 

(Symbols-A) 839 

(textopo), 552 
\allo'oldisplaybreaks (beamer), 759 

allowdisplaybreaks key (bearner), 759 
allowframebreaks key (bearner), 759, 782 
allowsframebreaks key (bearner), 759 
alltt package, 790 

\alt (beamer), 768 
al tenv enll. (beamer), 770 
alto syntax (UlyPond), 661, 664 

\al toclef (MusiXTEX), 592 



840 (A-B) 

\Amp (eire), 578 
\ampere (Slunits), 514, 515, 5/6 
\amperemetresecond (Slunits), 516 

amsmath package, 752, 753, 759 
amssymb package, 515 
amsteK package,S  17 
amsthm package, 753 

\analysistop (texmate), 686 
\AND (eire), 578 

angle key (graphicx), 28, 31, 32 
\animate (bearner), 774 
\animatevalue (bearner), 774 

animation, see METR iJ/dex 
animation, slides, 774 
annotations, see also commentaries 

chemical formulas, 547 
chess, 675 
music scores, 657. 658 
timing diagrams, 573 

anthracene derivatives, 525 
\anthracenev (carom), 524, 525 

Ap syntax (PMX), 636, 643 
\appendi;r; (beamer), 779 
\applyshading (textepe),552 

Ar syntax (PMX), 643 
\Arc (curve2e), 47, 50 

arc (pic), 17 
arcs (Feynman diagrams) 

edges, 572 
segments with arrows, 560 

aromatic carbocycles, 525 
\arpeggio (MuSiXTEX), 592 

arpeggio (musical), 629 
array env_, 8, 737 
array package, 737, 764 

\arrayrulecolor (colonbl), 741, 742, 745, 746, 749-751 
\arrayrulewidth rigid length, 742 

arrow (pic), 17 
\ArrowArc (axodraw), 558, 560 
\ArrowArcn (axodraw), 558 
\ArrowLine (axodraw), 558, 559-561 

arrows 
Feynman diagrams, 559-561 
styles, 44 
timing diagrams, 575 

art graphics, 4, 22 
article option (bearner), 753 
anide document class, xxxi 
AS syntax (PMX), 643 
As syntax (PMX), 643 
aspect ratio, keeping, 29, 31, 38 

\at (eire), 580 
atan (pie), 19 

\AtBeginPart (bearner), 780 
atom derivation, 539 

atoms, aligning with bonds, 546 
\atpin (eire), 580, 581 
\atto (Slunits), 515 
\author (bearner), 754, 757, 761 
\autoBeamOff (lilyPond),663 

Auto(AD program, 17,21 
automata, see META alld PSTricks illdex 
automata drawings, 15 
Av syntax (PMX), 643 
axodraw package, 555, 558-561 

B 

B syntax (rn-ch-en), 542, 544 
b key (hearner), 759, 781 
b syntax (PMX), 635, 637 

\B2Text (axodraw),558 
babel package, 515 
Bach musical example, 590, 6/0 
backgammon, 696, 697, 698 

GENERAL INDEX 

background syntax (bearner), 794, 795 
background color, documents, 723, 724, 725 
background canvas syntax (bearner), 792, 795 

\backturn (MusiXTEX), 592 
\b� 

(lilyPond), 661, 662 
(MusiXTEX), 591, 59-/-596, 599 

bar package, 15 
bar charts, see META and PSTricks index 
bar codes, see PSTricks iudex 
bars (musical) 

changes, 654 
double, 603 
repeats, 603, 639 
symbols, 603, 639 
thick, 603 
thin, 603 

Bars/line: syntax (M-Tx), 652 
Bartok musical example, 596 
base units, 514 
basic option (eire), 577, 578 
basic duration (musical), 622 

\bass (MusiXTEX), 596 
bass syntax (lilyPond), 661, 665 

\bassc1ef (MusiXTEX), 592 
bb key (graphicx), 28, 29, 30 

\bbetter (texrnate), 680, 681 
\BBox (axodraw), 558 
\BBoxe (axodraw), 558 
\BCire (axodraw), 558 

beamer option (bearner), 753 
heamer document class, xxxi, 752, 753, 754-758, 759, 760-796 
beamerboxesrounded enl'. (bearner), 775, 776. 778 
beamereolorbox enl'. (beamer), 775, 776, 777, 794 

\beamergotobutton (bearner), 784, 785 
beameroutenhemesidebar package, 774 



GENERAL INDEX 

beamerpauses counter (beamer), 788 
\beamertemplateartic1ebibi terns {beamer), 782 
\beamertemplatebookbibitems (beamer), 782 

beams (musical) 
grouping notes, 606 
jumping staves, 633 

lilyPond,663 
M-Tx, 654, 655 
MusiXTEX.597 

PMX, 631, 632, 633 

xtuplelS, 627, 628 
\becquerel (Slunits), 514 
\beforeb (texrnate),686 
\beforeno {texmate),686 
\bela (texmate), 683 
\benzofuranev (hetarom), 530 
\benzofuranevi (hetarom), 530 
\benzoxazolev (hetarom), 530 
\benzoxazolevi (hetarom), 530 

bes syntax (LilyPond), 662, 66J 
\betteris (skak), 678 

Btzier curves 
cubic, 47 

quadratic, 46, 47 

\bfseries (chessfss), 671 
bg key (beamer), 776, 778, 79./ 
bg package. 696-698 

\Bi (chemsym), 518 

\bibitem (beamer), 782 

bibliographies, slides, 782 

bibtex program, 801, 806 
\bicycheph (ccycle), 531 

\bicychepv (ccycle), 531 

\bid (tlgc), 702 

bidding env. (bridge), 699, 701, 702 

\bigboard (bg), 697 
bigger option (beamer), 753 
bioinformatics, see also scientific texts 

membrane protein topology plots, 551-553 

nucleotide sequences 
aligning, 548-550 
highlighting, 548-550 

sequence fingerprints, 550 

shading, 548-550 
peptide sequences 

aligning, 548-550 
highlighting, 548-550 

sequence fingerprints, 550 

shading, 548-550 
\bishop (chessfss), 672 
\black (lgo),691, 692-695 

black syntax (xcolor), 722, 726 
"black box" drawings, 3, 4 
black-and-white, 721 

\blackbar (bg), 696, 697 

\blackcube (bg),697 
\blackname (texmate),683 
\blackonmove (bg), 697 

\blackpoint (bg), 696 
\blackstone (igo), 695 

blending color, 737 
\BLens (circ), 580, 581 

blobs (FeYllman diagrams), 566 
block enll. (beamer), 777, 778, 779 

block environments, s lides, 778, 779 
block body syntax (beamer), 778 
block t i  tie syntax (beamer), 778 
blocks (musical), 622 
blue syntax (xcolor), 722, 723, 726, 727 

\bluefbox (tlgc),26 
bm2font program, 7 

\bmove (skak), 679 
\bname (texmate), 685, 686 

board games, see backgammon, see chess, see Go 
\boardcaption (bg), 696, 697, 698 
\boardfont (chessfss), 673 

boardfontencoding key (chessboard), 669 
\boardsymbol (chessfss), 673 

booyeol syntax (beamer), 776 

bonds (chemical) 
aligning atoms or molecules, 546 
between C atoms, 542 

derivation, 539 
description, 543 
directions, 535, 536 
identifiers, 544 
modifiers, 522 

border key (chessboard), 669 

\bornane (ccycle), 531 

\bottomdiagramnames (texmate),686 
bounding box 

aspect ratio, keeping, 29 
clipping graphics 10, 29, 30 
comments, 25, 28 
draft mode, 25, 29, 30 

final mode, 25 
fitting to graphics, 26, 27 

height, 28, 29, 32 
\includegraphics syntax, 28-32 
resizing, 27 
rotated material, hiding, 25 
rotating, 27, 31, 32 

scaled material, hiding, 25 
scaling, 27, 29 
specifying, 28, 30 

trimming space, 28, 30 

viewports, 28, 30 

width, 28, 29 
BoundingBox (PostScript), 25, 26, 28, 34, 35 
box (pic), 17, 19 

(B) 841 



842 (B-C) 

box option (eire), 577 
\Boxe (axodraw), 558 
boxes, see also frames 

colored, in documents, 723, 724 
slides, text in, 775. 776 

\boxit (MusiXTEX), 592 
\bracket (MusiXTEX), 592 
\break (lllyPond), 661 
\breve (LilyPond), 663 

bridge package, 699-702 
bridge (card game) 

bidding, 702 
dealing, 699, 700, 70/ 

bridge . tex file (bridge), 699, 700 
broken musical rhythms, 604 
brown syntax (x(olor), 726 

\BSpli t (eire), 580, 581 
\BText (axodraw), 558 
\BTri (axodraw), 558 
\BUF (eire), 578 
\bundle (eire), 579 
\bupperhand (texmate), 680 
\bzdrh (carom),52l, 523, 524, 525, 534, 535, 536 
\bzdrv (carom), 521, 522, 524, 525, 536 

c 
C syntax 

(PMX), 639 
(m-ch-en),544 

\C (eire), 577 
c key (beamer), 759, 781 
c aption (beamer), 753 

\C2Text (axodraw), 558 
C :  syntax 

(M-Tx1. 656 
(abc), 608, 610 

\ca (MusiXTEX), 593, 594, 595 
\caesura (MusiXTEX), 592 

calc program, 21 
calculations, drawing tools for, I 
calendars, see PSTrieks index 

\Cam (eirc), 580, 581 
\candela (Slunils), 514 

captions 
chess, 684-686 
Go board, 694 

carbocycles, 524 
carbocyclic compounds, 527 
CARBON syntax (m-eh-en), 541, 542 

\CArc (axodraw), 558, 560 
card games 

bridge 
bidding, 702 
dealing, 699, 700, 701 

suits, representing, 698, 699 

caret (1\), sharp symbol, 605 
carets (All), double flat symbol, 605 
carom package, 520, 524 
CB syntax (m-<h-en), 541 

\cbezier (pict2e), 46, 47 
\CBox 

(axodraw), 558 
(tlge), 733 

\CBoxc (axodraw), 558 
\cbreath (MusiXTEX), 592 
\cc (eire), 579, 581 
\cca (MusiXTEX), 593, 594, 595 
\ccccl (MusiXTEX), 592, 594 
\ccccu (MusiXTEX), 592, 594 
\cccl (MusiXTEX), 592, 594 
\cccu (MusiXTEX), 592, 593 
eehess package, 687-690 
cchessboard . tax file (cchess), 688 

\CCirc (axodraw), 558 
\eel (MusiXTEX), 592, 593, 594, 595 
\eeu (MusiXTEX), 592, 593, 594, 595 

eeycle package, 520, 530 
\cdfl (MusiXTEX), 592 

edot option (Slunits), 515 
\cdsh (MusiXTEX), 592 
\Cel (eire), 577 
\eellcolor (colortbl), 741, 748, 749 

cells (table), color, 741 
\cellsize 

{createsudoku), 711 
(printsudoku), 7/O 
(solvesudoku), 711 

\celsius (Slunits), 514 
center key (bcilmcr), 777 

\centerto (eire), 581 
\centi (Stunits), 515, 516 
. cfg file extension (graphics), 25 
\cfl (MusiXTEX), 592 

CGM language, 13 
CGM (CompUlerGraphics Metafile), 13 
CGM-Open Consortium, 13 

\CH (chemsym), 517 
\chair (ecycle), 531 
\changeunitlength 

(xymtexps), 538, 539, 540 

{KymteK),538 

GENERAL INDEX 

character-based diagrams and pictures, 13 
charges on atoms, 524, 526 
charts, see also METR and PSTricks index, see graphs 
ChemDraw program, 21 
chemeqn eny. (chemist), 540 

\chemical (m-ch-en), 541, 542, 543-545, 546, 547 
chemical bonds, see bonds (chemical) 



GENERAL INDEX 

chemical formulas, see a/so scientific texts 
1,4-dibromobellzene, 521,523 
aliphatic compounds, 532, 533 
annotation, 547 
anthracene derivatives, 525 
aromatic carbocycles, 525 
atom derivation, 539 
bonds 

aligning atoms or molecules, 546 
derivation, 539 
description, 543 
directions, 535, 536 
identifiers, 544 
modifiers, 522 

carbocydes, 524 
C"drbocydic compounds, 527 
charges on atoms, 524, 526 
combinations, 543 
command syntax, 520-522 
configuration. 540 
conformations, 540 
conventions, 520 
cyclohexane chair forms, 531 
decaline derivatives, 525 
definitions, 543 
derivation, 539 
elements, symbols for, SI2 
endocyclic bonds, 523 
ethylene derivatives, 533 
four-member carbon cycles, 528 
furanoses, 532 
fused five- and six-member rings, 530 
fused rings, 524 
fusing ring units, 536 
handidness of substituents, 522, 531, 535 
heterocyclic compounds, 528-530 
indane derivatives, 528 
inside paragraphs, 547 
lower-order cycles, 527, 528 
Periodic Table of the Elements, 519 
phenanthrene derivatives, 525 
polymethylene commands, 538 
PostScript output, 537, 538 
pyranoses derivatives, 532 
reaction schemes, 540 
stereochemical compounds, 530-532 
stereochemistry effects, 538 
steroid derivatives,525, 526 
structures 

atoms, aligning with bonds, 546 
basic commands for, 541, 542 
bond identifiers, 544 
bonds, 543 
bonds, aligning atoms or molecules, 546 
chemical bonds, 542 

chemical formulas (COl1t.) 
combinations, 544, 545 
combining, 534 
complex, 534, 535 
libraries of, 543 
molecules, aligning with bonds, 546 
moving, 544, 545 
positioning,544, 545 
reaction equations, 545 
rotating, 544, 545 
substructures, 543 

substitution derivation, 539 
tetrahedral compounds, 532, 533 
tetrahedron carbon configurations, 533 
tetraline derivatives, 525 
three-member carbon cycles, 528 
tricyclic carbocydes, 525 
trigonal units, 532, 533 

chemical symbols, 517, 518 
chemist package, 537, 540 
(hemstr package, 520 
chemsym package, 512, 517, 518, 519 
chess 

$ (dollar sign), comment indicator, 678 
board 

annotations, 675 
displaying, 674, 675, 676, 677 
hiding pieces, 676 
highlighting, 676 
next move indicator, 676 
printing, 675 
size, 675 
specifying, 674-677 

captions, 684-686 
Chinese. 6117, 688-690 

pieces, 688 
coloring the board, 668, 669 
diagnlllls 

adjusting layout, 686, 687 
typesetting, 684, 685, 686 

documenting a game, 679 
ending games, 683 
FEN (Forsyth-Edwards-Notation), 674 
fonts 

Figurine symbols, 671 
generic mechanism, 669-673 
list of, 670 
normal characters, 671 
selecting, 672, 673 
switching, 672 

informational symbols, 674 
moves 

efror detection, 678 
printing, 677 
recording, 675 

(e) 843 



844 (el 

chess (COllt.) 

specifying, 677, 678 
style. changing, 679 

nested variations, 679 
notation 

commentaries, 58J, 682 
overview, 680-683 
threats, 681 
variations, 680, 682, 683 

online resources, 687 
Qverview,668 
setting up position, 684 
slarting games, 683 
titles, 683 

chess package, 668, 677, 680, 687, 690, 691 
\chessboard (chessboard), 669 

chessboard package, 668, 669, 673 
\chessevent (texmate), 683 

chessfss package, 668, 669-673, 674, 678, 680 
\chessopening (texmate),683 
\chl (MusiXT!;X), 592 

chmst-ps package, 537 
chords (musical) 

abc2mtex, 608 
lily Pond, 663 
M-Tx, 656. 657 
MusiXTEX. 594 
PMX, 628, 629 

\chu (MusiXTEX), 592 
CIE (Commission Jllternationale de ['Edairage), color spaces, 

715 
\cinnolinev (hetaroml, 530 
\cinnolinevi (hetarom),530 
\eire, 39 

cire package. 576-5112 
\circle, 43 

(eurve2e), 49 

(piet2e), 43, 45, 47 
circle (pie), 17 

\circle*, 43 
(piet2e), 43, 45 

\circleit (MusiXTEX), 592 
circles 

drawing, 45 
circuit env. (eire), 578, 581 

\cl (MusiXTEX), 592, 593, 599 
\clear Ogo), 694, 695 
\cleargoban {igo), 694 
\cleargobansymbols (igo), 692, 695 

clearing, Go board, 694 
\clef (UlyPond),66I, 664, 665 

clef changes (musical), 639 
clefs (musical), 592, 653 

\cline (colonbl), 741 
clip key (graphicx), 28, 29, 30 

GENERAL INDEX 

clipping graphics to bounding box, 29, 30 
clock\lise option (rotating), 42 

\club 
(bridge), 701, 702 
(tlge), 699 

\clubsuit, 698, 699 
\Clue (cwpuzzle), 705, 706 
\clue (erosswrd), 703, 704 
\cluefont 

(ereatesudoku), 711 
(printsudoku), 7/o 
(solvesudoku), 711 

cmy option (xeolor), 721 
cmy syntax (xcolor), 728, 729 
cmyk option (xeolor), 721 
cmyk syntax 

(color), 720 
(xcolor), 720, 723, 725, 727-730 

CMYK (Cyan, Magenta, Yellow, B[ack) color, 715, 719 
\cna (MusiXTEX), 592 
\Co (chemsym). 518 

collision option (chemsym), 517 
color 

absorption,717 
adding tone, 731 
additive color space, 715 
and light. 714 
and readability, 718 
black-and-white, 721 
b[ending,737 
categories of (Post&ript), 715 
color package 

dellningcolors, 726-728 
options, 720-722 
overview. 719, 720 

Commission Internationa[e de ['Edairage, 715 
complement, specifying, 731 
contrast,718 
core model, 732 
Crayola colors, 719 
cultural connotations, 716 
defining 

assigning to names, 734, 735, 736 
sets of colors, 727 
single colors, 726, 727 

device color spaces, 715 
error warnings, 721 
expressions 

current color, 733 
extended, 732 
PSTricks. 733 
standard, 732 

Feynman diagrams, 567 
four-color harmonics, 718 
Grassman's Law, 714 



GENERAL INDEX 

color (COlli.) 
harmonic color circle, 717 
harmonies, 717, 718 
intensity. 718 
masking, 737 
mixing, 73J 
models supported, 719 
monochrome, 721 
overview, 719, 720 
primary colors, 717 
purity, 718 
saturation, 717 
secondary colors, 717 
series, 734, 735, 736 
shading, 731 
slides, see slides (color) 
special color spaces, 715 
spectrum, displaying, 729 
subtractive color space, 715 
symbolic values, 716 
tables, see tables, color 
lext 

documents, 725 
slides, 775, 776 
tables, 745, 748 

theories, 714, 715 
three-color harmonics, 718 
three-color theory, 714 
tinting, 731 
two-color harmonics, 718 
undefined colors, 721 
within documents 

background, 723, 724, 725 
colored boxes, 723, 724 
lisg, 724 
mixing colors, 723, 725 
named colors, 725 
portability, 723 
special concerns, 725 
specifying by color model, 722 
specifying by name, 722 
stored boxes, 725 
tables, 724 
text inside a box, 725 

xeolor package 
color models, 728-730 
extended specification, 734 
options, 720-722 
overview, 719, 720 

Young-Helmholtz Law, 714 
\color 

(beamer), 788, 789 
(coiortbl),741 
(eoJor), 741, 744, 745 
(curve2e), 48-50 

\color (cont.) 
(xcolor), 720, 722, 723, 725 

color key 
(beamer), 795 
(chessboard), 669 

color package, 719-722. 726,728, 730, 737 
color models 

(IE color spaces, 715 
CMYK (Cyan, Magenta, Yellow, Black), 715, 719 
gray. 719 
HSB (Hue, Saturation, Brightness) color, 715, 719 
HSV (Hue, Saturation, Value) color, 715 
named 

behavior options, 721 
in L"TEX documents, 725 
support for, 719 

overview, 715 
RGB (Red, Green, Blue) color, 715, 719 
target, specifying, 730 
xcolor package, 728-730 

color. cfg file (xcolor), 720 
color .pro file (dvips), 725 

\colorbox 
(color), 743, 744, 746, 749 
(xcolor), 720, 723, 724, 729, 733 

colordvi package, 719 
coloremph key (chessboard), 669 

\colorlet (xcolor), 726, 727, 730 
\colorseriescycle (xcolor), 734 

colortbl package, 720, 721, 737-751 
colsep key (beamer), 777 
colsep. key (beamer), 777 

\column (beamer), 781 
column env. (beamer), 780, 781 

(e) 845 

\columncolor (eolortbl). 737, 738, 739, 741, 746-748, 750, 751 
columns cnv. (beamer), 780, 78 1  
columns (table), color, 738, 747 

\columnwidth rigid length, 33 
comma (,), octave indicator, 603 
command key (graphicx), 29 
commentaries, chess, 681, 682, see also annotations 
Commission Internationale de l'Edairage (eIE), color spaces, 

715 
complementary color, specifying, 731 
complex numbers, representing, 49, SO 
complex vertices (Feynman diagrams), 567 
Composer : syntax (M-Tx), 651, 652 
compound time signatures (musical), 605 
Comprehensive lEX Archive Network, see CTAN 
compress option (beamer), 753 
computer generated drawings, 5 
Computer Graphics Metafile (CGM), 13 

\connection (eire), 581 
contrast, 718 

\conttimingcounter (timing), 573 



846 (C-D) 

convert program, 806 
\eaOH (chemsym), 517 
\copyfromgoban (i90), 694, 695 

copying, Go board, 694, 695 
\copytogoban (i90), 694, 695 
\CopyVect (curve2e), 49, 50 

Corel Draw program, I 
corollory env. (beamer), 769 
cos (pic), 19 

\coulomb (Slunits), 514 
\coulombpercubicmetrenp (5IuniI5),516 

counterclockwise option (rotating), 42 
\COval (axodraw), 558 
\cql (MusiXTEX), 592 
\cqu (MusiXTeXl, 592 

Crayola colors, 719 
\Crdexa (tlge), 701 
\crdima (bridge), 699, 700, 701 

createsudoku package, 710-712 
crossword env. (crosswrd), 703 
crosswords 

{} (curly braces), empty cell indicator, 704, 70S 
classical puzzles, 705, 706 
creating, 702, 703, 704, 705 
external puzzle generation. 709 
fill· in puzzles, 707 
layout adjustment, 708 
number puzzles, 707, 708 

crosswrd package, 702-704 
CRZ syntax (m-ch-enl, 546 

\csh (MusiXTEX), 592 
CTAN (Comprehensive ltX Archive Network) 

archived files, finding and transferring, 813 
descr iption, 810 
files, from the command line. 814 
ltX fiJe c.ltaJogue. 8 1 1  
web access, 810, 81 1, 812, 813, 814 

\CText (axodraw), 558 
\CTri (axodraw). 558 
\cu (MusiXTEX). 592. 593, 594, 595 

cubic B�zier curves, 47 
cultural connotations of color, 716 
curly braces ({}) 

around arguments (musical), 596 
empty crossword cell indicator, 704, 705 
grace notes (musicall, 607 

currentsection key (beamer), 783 
currentsubsection key (beamer), 783 

\Curve 
(axodraw),558 
(curve2e), 47, 48, 49 

wrve2e package, 47-50 
curves 

B�zier 
cubic, '17 

curves (COlli.) 
quadratic, 46, 47 

drawing, 47, 48-50 
curves package, 15,47 

\Cvar (eirc), 577 
cwpuule package, 704-708, 709 
cyan syntax (xcolor), 722, 726 

GENERAL INDEX 

Cyan, Magenta, Yellow, Black (CMYK) color, 715, 719 
\cyclobutane (lowcyc1e), 527, 528 

cyclohexane chair forms, 531 
\cyclohexaneh {carom), 523, 524, 527, 535 
\cyclohexanev {carom), 522. 523, 524, 527. 535, 538 
\cyclopentaneh (Iowcycle), 526, 527 
\cyclopentanehi (lowcycle), 527 
\cyclopentanev (Iowcycle), 526, 527 
\cyclopentanevi (lowcycle), 526, 527 
\cyclopropane (Iowcycle), 528 
\cyclopropaneh (Iowcycle), 527 
\cyclopropanehi (lowcycle), 527 
\cyclopropanev (Iowcycle), 527, 539 
\cyclopropanevi (lowcycle), 527 

D 
D syntax (PMX), 638 

\D (eirc), 577 
d syntax 

(M-Tx), 654 
(PMX), 624, 625 

"d" in integronds, 513 
D" , , . " syntax (PMX), 638 
D<, , .D> syntax (PMX). 638 

\DANTE (tI9C), 729 
darkgray syntax (xcolor), 726 

\DashArro\olArc (axodraw),558 
\DashArrowArcn (axodraw), 558 

\DashArrowLine (axodraw), 558 
\DashCArc (axodraw), 558 
\DashCurve (axodraw), 558 
\dashed (eire), 579 

dashed (pic), 19 
\dashhasheddash (xymtexps), 538 
\DashLine (axodraw), 559 
\date (beamer), 754, 757, 761 

date in head/foot syntax (beamer), 777 
DB syntax (m-ch-en), 544 

\Dcap (eirc), 577 
dcolumn package, 737 

\dcqu (MusiXTEX). 592 
dd syntax (PMX), 624, 625 

\ddummy (texmate), 682 
\deca (Slunits), 515 
\decaheteroh (hetarom), 529 
\decaheterohi {hetarom), 529 
\decaheterov (hetarom), 529, 530 
\decaheterovb {hetarom), 529 



GENERAL INDEX 

\decaheterovi (hetarom),529 
\decaheterovt (hetarom),529 

decaline derivatives, 525 
\decalineh (carom), 524, 527 
\decalinev (carom). 524, 527 
\decalinevb (carom),527 
\decalinevt (carom), S27 
\decamethylene (methylen), S38 
\decamethylenei (methylen), 538 
\deci (Slunits), 515 
\DeclareGraphicsExtensions (graphicslgraphicx), 33, 34 
\DeclareGraphicsRule (graphics/graphkx), 29, 34, 35 

dedicated drawing tools, see drawing tools (dedicated) 
. def file extension (graphicsfgraphiex), 24 
\defconsensus (texshade), 548 

define (pic), 19 
\definechemical (m·ch-en), 543 
\definecolor 

(color), 743, 747, 748, 751 
(xeolor), 720, 721, 726. 727, 734 

\definecolorseries (xcolor), 734, 735, 736 
\definecolorset (xeolor), 727, 728 

definition env. (beamer), 769 
definitions env. (beamer), 769 

\DEP (MusiXTEX), 592 
\depth (graphics/graphicx), 38 

depth key (graphicx), 29 
derivation, 539 
derived units, 514 
description env. (beamer), 786 
device color spaces, 715 

\DFF (eire), 579 
\dhqu (MusiXTEX), 592 

dia program, 1 , 6  
\Diagram (feyn), 556, 557 
\diagram (texmate),684 
\diagramcache (texmate),685 
\diagrammove (texmate), 686 
\diagramnumber (texmate),686 

diagrams, see also graphs 
character-based, 13 
typesetting, 16 

\diagramsign (texmate), 685 
\diam 

(bridge), 702 
(tlgc), 699 

\diamondsuit, 698, 699 
\dimethylene (methylen), 538 
\dimethylenei (methylen),538 
\ding (pifont), 724 

direction key (beamer), 775 
\DirFromAngle (curve2e), 49, 50 

Disable ; syntax (M-Tx), 652 
displaymath env. {pst-pdf}, 800 
displaymath option (pst-pdf), 800 

dissolves, slides, 774, 775 
diversity package, 549 

\DividE (curve2e), 49 
\DividECurve (curve2e), 49, 50 
\dmass (circ), S80 

document env., xxxi 
documentation, sec also online resources 

cOmmand-line interface, 815 
panel interface, 816 
search by name, 81S 
search by product, 816 
texdoc, 815 
texdock, 816 

\documentclass, xxxi 
dollar sign (S), comment indicator (chess), 678 

\dontindentwhite (bg),698 
\dontshowcube (bg), 697, 698 
\dontshowmoves (bg), 698 
\dontshownumbers (bg),697 
\doqu (MusiXTEX), 592 

dotted notes (musical), 622 
dotted rhythms (musical), 604 

\dottedline (epic), 521 
double bars (mllsical), 603 
double flat symbol (musical), 605 
double quotes (" . . .  "j, guitar chords, 608 

\doublerulesepcolor (colortbl), 742, 751 
doublets (musical), 605 

doubly dotted nOles (musical), 622 
down (pic), 19 
down fermata ornaments (musical), 630 

\downbow (MusiXTEX), 592 
\downtrio (MusiXTEX), 592 

dp key (beamer), 777 
dpic program, 583 

\dqu (MusiXTEX), 592 
DR syntax (m-ch-en), 544 
draft key (graphicx), 29, 30 
draft option 

(beamer),753 
(graphics/graphiexj,25 
(pst-pdf},800 

DraTex package, 5, 15 
drawing graphic objects, see graphics languages, see 

manipulating graphic objects 
drawing tools (dedicated), see a/so graphics languages 

calculations, 1 
Corel Draw, 1 
dia, 1 
for plotting, 2, 1 7  
gnuplot, 17 
Maple, 2 
Mathematica,2 
MATLAB,2 
Octave, 2 

(D) 847 



848 (D-E) 

drawing tools (dedicated) (COlli.) 
Octaviz,2 
Octplot, 2  
overview, 1 , 2  
xfig, I 

drawing types 
algorithmic display, 5 
algorithmic structural, S 
art graphics 

choosing a language for, 22 
description, 4 

"black box", 3, 4 
computer generated, 5 
derived from textual representation, S 
free-hand pictures, 3, " 
object-oriented, 4, 5 
overview, 3-6 
photographs, " 
self-contained object-oriented, 4 
single object, 3, 4 

\drumclef (MuSiXTEX), 592 
\ds (MusiXTEX), 592, 594 
\dtetrastereo (aliphat),S33 
\Dtext (eire), 581 
\Dtrigonal (aliphat),53J 
\dtrigonal (atiphat),53J 
\dtrigpyramid (xymtexps), 540 
\duevol te (MusiXTEX), 592 
\dummy (texmate), 68I, 682 

duration key (beamer), 775 
duration of musical notes, 622, 662 
Dusty Miller musical example, 608 
dvi2svg program, 13  
dvipdf option 

(graphic.s/graphicx),24 
(xeolor),721 

dvipdf program, 24 
dvipdfm option 

(graphic.s/graphioc),24 
(pict2e),43 
(xeolor),721 

dvipdfrn program, 24, 797, 798, 803 
dvipdfmx option (xeolor), 721 
dvipdfrnx program, 797-799, 803, 804, 806 
dvips option 

(graphics/graphiex),24 
(piet2e),43 
(xeolcr),721 

dvips program, xxviii, 1 1 ,  16, 17, 24, 25, 558, 614, 618, 637, 719, 
721, 722,725, 797-801, 803-806 

dvips . def file (graphics/graphicx), 24 
dvipsnames option (xeolor), 721, 727 
dvipsone option 

(graphics/graphicx),24 
(xcolor),721 

dvipsone program, 17,24 
dvisvg program, 13 
dvisvgrn program, 13 
dviwin option 

(graphies!graphicx), 24 
(xeolor),721 

dviwin program, 24 
dynamic key (bearner), 767 
dynamical marks (musical), 638 

E 
e syntax (PMX), 625, 628 
E; syntax (abc), 602, 608 
EB syntax (m-<h-en), 544 

\EBox (axodraw), 558 
\ECO (texrnate), 683 

edges (Feynman diagrams), 572 
eepie package, 17, 20, 511,521,522 

GENERAL INDEX 

electrical circuits, see META ulld PSTricks illdex 
ele<tronic box symbols, 578 
ele<:tronics diagrams 

drawing position, moving, 580 
ele<:tronic box symbols, 578 
font for, 576-582 
gate symbols, 578 
integrated circuit symbols, 579 
interactive generation, 586 
junctions, 579 
rn4 macro processor, 583-585 
npn transistor, 581 
optics, 581 
pin connections, 579 
symbol conne<:tions, 579 
symbols, 577 
trigger symbols, 578 

\elemskip rigid length (MusiXTEX), 595, 597, 602 
ellipse (pic), 17, 19 
emphfields key (chessboard), 669 

\empty, xxxi 
ernTeX program, 24 
emtex option 

(graphieslgraphicx),24 
(xeolor),721 

Enable: syntax (M-Tx), 652 
encapsulation, 35, 36 
Encore program, 588 

\endextract (MusiXTEX), 594, 596 
endocyclic bonds, 523 

\endpiece (MusiXTEX), 594, 599 
engineering drawings, see bioinformatics, see chemical formulas, 

see Feynman diagrams, see scientific texts 
\enotes (MusiXTEX), 591, 594-596, 599 

enpassont package, 670 
\ensuremath, 699 

enumerate env. (bearner), 770, 786 



GENERAL INDEX 

envcountsec option (beamer), 753 
environment key (bearner), 759 
Environment Variables 

TEX (METAPOST),63,64 
epic package, IS, 5] 1, 520-522, 537 
ePiX language, 20 
ePiX program, 20 

. eps file extension, 35 
(graphics/graphicx), JS 

EPS (Encapsulated PostScript), 35, 36 
epsfig package, 42 
epslopdf program, 804, 806 
eqnarray el\v. (pst-pdf), 800 
equal sign (=), natural symbol (musical), 605 
equation env. (pst-pdf), 800 
EQUILIBRIUM syntax (m-ch-en), 542, 546 
ER syntax (m-ch-en), 544 
etex program, 14 

\ethanestereo (aliphat), 533 
\ethylene {aliphat),S33 

ethylene derivatives, 533 
\Ethylenev (aliphat), 533 
\ethylenev (aliphat),533 
\ETri (axodraw), 558 

evince program, 12 
\exa (Slunits), 515 

example env. (beamer), 769 
example block env. (bearner), 778, 779 
examples, this book, xxxi, xxxiii 
heel program, 21 
exclamation points (n), color expression, 732 

\ExecuteOptions,25 
expression marks (musical), 657, 658 
ext key (graphicx), 29 
external vertices (Feynman diagrams), 564 

\extrarowheight rigid length (array), 738-741 
extsizes package, 753 

F 

\f (MusiXTEX), 599 
f syntax (PMX), 624, 625, 631, 636 
fact env. (beamer), 769 
family key (beamer), 793 
family. key (beamer), 793 
FAQs (Frequently Asked Questions), 809, see also online 

resources 
\farad (5Iunlts), 514 
\fboxrule rigid length (xcolor), 723, 724 
\fboxsep rigid length (xeolor), 724, 748 

f c syntax (PMX), 625 
\fcolorbox (x(olor), 720, 723, 724 
\fdmass (cire), 580 
\feature (texshade), 549 
\featureslarge (texshade), 549 
\femto (5Iunits),515 

\femtobarn (hepunits), 516 
FEN (Forsyth-Edwards-Notation), 674 

\fenboard 
(skak), 674, 675-677 
(texmate), 684 

\fermatadown (MusiXTEX), 592 
\Fermataup (MusiXTEX), 592 
\fermataup (MusiXTEX), 592 
\Feyn (feyn), 557 
\feyn (feyn), 555-557 

feyn package, 555-558 
FeynArts package, 555 
feynman package, 555 
Feynman diagrams, see also scientific texts 

arc segments with arrows, 560 
arrows, 559-561 
dire<:\ use of M ETA commands, 572 
font for, 555-557 
history of, 555 
immediate mode 

arcs, 572 
definition, 563 
diagrams in equations, 570 
edges, 572 
freezing diagrams, 570 
labels, 571 
loop diagrams, 569 
overview, 569-572 

overview, 561-563 
photons, 561 
PostScript, 558-56\ 
transformers, 572 
vertex dots, 560 
vertex mode 

algorithmic layout, 563-569 
blobs, 566 
coloring diagrams, 567 
complex vertices, 567 
definition, 563 
external vertices, placing, 564 
fill styles, 564 
freezing a diagram, 567 
internal vertices, 566 
labels, 567, 568, 569 
line styles, 565 
line thickness, 566 
line-drawing keywords, 566 
polygon keywords, 567, 568 
vertex slyles, 564 
vertex-drawing keywords, 567 
vertices, as dots, 566 
vertices, connecting, 565 

zigzag lines, 559, 560 
feynmf package, 561-572 
feynmp package, 562, 572 

(E-F) 849 



850 (F) 

ff syntax (PMX), 625 
ftc syntax (PMX), 625 

\fff (eire), 579 
fg key (bearner), 776, 79-1, 795 

\f igfont (chessfss), 670, 671 
\f igsymbol (chessfss), 671 

figure env. (bearner), 780 
figures, slides, 780 
Figurine chess symbols, 671 
file extensions 

search order, 33, 34 
specifying, 29, 34, 35 

file name parsing, suppressing, 29 
file type, specifying, 34 
filecontents* env., 7/0 
fit! styles (Feynman diagrams), 564 
fill-in puzzles, 707, see a/so crosswords 
final option 

(graphics/graphicx),25 
(pst-pdf), 800 

Finale program, 588 
\f ingerprint (texshade), 550 

finite state diagrams, see META aud PSTrick5 il/dex 
firstsection key (beamer), 783 
FIVE syntax (m-ch-en), 542 

\fivefuseh (fusering), 537 
\f i vefusehi (fuse ring), 537 
\f i vefusev (fuse ring), 537 
\f i vefusevi (fusering), 537 
\fiveheteroh (hetarorn),529 
\f i veheterohi (hetarom),529 
\f i veheterov (hetarorn),528, 529, 539 
\f i veheterovi (hetarorn),529 
\fi veuni tv (hetarorn), 534 
\f i veuni tvi (hetarorn), 534 
\f1a (MusiXTEX), 593 
\f1ageolett (MusiXTEX), 592 

flat symbol (musical), 605 
Flats ; syntax (M-Tx), 652, 656 
flow program, 16 
flow charts, /6, see also META index 
flow language, 1 6  

\fmf (feynrnf), 561, 565, 567-572 
\fmfblob (feynrnf), 566 
\fmfblobn (feynrnf), 566 
\fmfbottom (feynrnf), 565 
\fmfbottomn (feynrnf), 565 
\fmfcmd (feynrnf), 572 
\fmfcurved (feynrnf), 565 
\fmfcyclen (feynrnf), 565, 572 
\fmfdot (feynrnf), 561, 566, 568, 569 
\fmfdotn (feynrnf), 566, 570 

fmff He env_ (feynrnf), 562 
\fmff ixed (feynrnf), 569, 570 
\fmffreeze (feynrnf), 567, 569, 570 

GENERAL INDEX 

fmfgraph env. (feynrnf), 568, 569 
fmfgraph"¥ env. (feynrnf), 561,568, 570-572 

\fmfi (feynrnf), 569, 570 
\fmf iequ (feynrnf), 569 
\fmf ipair (feynrnf), 570 
\fmfipath (feynrnf),569, 570 
\fmf iv (feynrnf), 569, 570 
\fmflabel (feynrnf), 568, 570 
\fmfleft (feynrnf), 561, 565, 569-572 
\fmfleftn (feynrnf), 565, 568, 569 

\fmfn (feynrnf), 565 
\fmfpen (feynrnf), 566 
\fmfpoly (feynrnf), 567 
\fmfrcyclen (feynrnf), 565 
\fmfright (feynrnf),561, 565, 569-572 
\fmfrightn (feynrnf), 565, 568, 569 
\fmfstraight (feynrnf), 565 
\fmfsurround (feynrnf), 565 
\fmftop (feynrnf), 565 
\fmftopn (feynrnf), 565 
\fmfv (feynrnf), 566 
\fmfvn (feynrnf), 566 
\fmpolyn (feynrnf), 567 
. fmt file extension (abc), 612 
foiltex package, 719 
fontene package, 752 
fonts 

cchess46 (cchess), 688 
chess 

Figurine symbols, 671 
generic mechanism, 669-673 
list of, 670 
normal characters, 671 
selecting, 672, 673 
switching, 672 

electronics diagrams, 576-582 
feyn (feyn), 555-557 
Feynrnan diagrams, 555-557 
gosign50 (go), 691 
optics diagrams, 576-582 
skaknew (skak),673 
slides, 758 
Symbol (pstricks), 250 
timing diagrams, 573 
ZapfDingbats (pstricks), 249, 250 

footline syntax (bearner), 773, 777 
\footnote (beamer), 789 

footnotes, slides, 789 
Forsyth-Edwards-Nolation (FEN), 674 
FOUR syntax (m-ch�en), 542 
four-color harmonics, 718 
four-member carbon cycles, 528 

\fourhetero (hetarorn), 528, 529 
fractals, see META and PSTricks index 
fragile key (beamer), 759, 790, 79J 



GENERAL INDEX 

\Frame (cwpuzzle), 704, 705 
\frame (bearner), 754, 758, 761 

frame env. (bearner), 754, 758, 759, 761, 776, 784, 790 
frame key (beamer), 789, 790 

\frameblock (texshade), 549 
frames, see also boxes 

slides, creating, 758 
text in slides, 775, 776 

\framesubtitle (bearner), 759 
framesubtitle syntax (bearner), 794 

\frametitle (!>earner), 754, 755, 759 
frametitle syntax (bearner), 79,1 
free-hand pictures, 3, 4 
freezing a Feynman diagram, 567, 570 
Frequently Asked Questions (FAQs), see online resources 

\from (eire), 580 
from (pic), /9 

\frompin (eire), 580, 581 
\fullboard (bg), 697 
\fullincr (bg), 698 
\furanose {hcycie), 532, 539 

furanoses,SJ2 
fused five- and six-member rings. 530 
fused rings, 524 
fusering package, 537 
fusing ring units, 536 

G 

\G (eire), 578 
\G2Text (axodraw), 558 

game env. (bg), 696, 697, 698 
games, see backgammon, see bridge, see chess, see crosswords, 

see Go, see Sudoku 
\gapchar (texshade), 550 

gastex package, 15 
gate option (cire), 577 
gate symbols, 578 

\gauss (hepunits),51 6  
\GBox (axodraw), 558 
\GBoxc (axodraw), 558 
\GCirc (axodraw), 558 
\generalmeter (MusiXTEX), 596, 599 
\generalsignature (MusiXTEX), 593, 596 
\generategrid (createsudoku), 711 
\genfile (createsudoku), 7 1 1  

gensud. sud file (createsudoku), 711 
\geometricskipscale (MusiXTEX),595 

geometry, see META and PSTricks illdex 
\getproblem (solvesudoku), 7/1 
\getsequence (textopo), 551, 552 
\GeV (hepunits), 516 
. gf file extension (feynmf), 563 
gftopk program, 563 
ghostscript program, xxv, xxvi, xxviii, II, 12, 798 
ghostview progmnJ, xxvi, xxviii, 10, 36, 804 

\GHz (hepunits), 516 
\giga (S[units), 515 

GIMP program, 4, 17 
gis syntax (lilyPond), 662 
GIVES syntax (m-ch-en), 546 
global A options (musical), 643 

\GlueArc (axodraw), 558 
\Gluon (axodraw), 558 
\GND (eire), 581 

gnuplot program, 17, 18 
Go 

goban (board) 
captions,694 
dearing, 694 
copying, 694, 695 
displaying, 693, 694 
rotating, 695 
size, 694 

history of, 690, 691 
stones 

identifying, 692 
placing, 691, 692, 693 
typesetting, 695 

go package, 690, 691 
\gobansize (igo),693 
\gobansymbol (igo), 692, 693, 694 
\gosign (tlgc), 691 
\GOval (axodraw), 558 

gpie program, 16, 17, 19, 583, 584 
grace notes (musical) 

{} (curly braces), 607 
- (tilde), 6()7 
in xtuplets, 627 
UlyPond,663 
PMX, 627, 629, 630 

gracings (musical), 607 
grad syntax (xeolor), 734-736 
gradients (table), color, 747, 748 

\gram (Slunits), 516 
graphic objects 

conflicting requirements, 3 
definition, 2 

(F-G) SSI 

drawing, see graphics languages, see manipulating graphic 
objects 

manipulating, see manipulating graphic objects 
typesetting, 2, 3 

graphics 
elements, SVG, 12 
files, including, see including graphics files 
rotating 

bounding box, 27, 31, 32 
graphic objects, 39-42 
\indudegrapbics keys, 29 
reference points, 40-42 



852 (G-H) 

graphics (COl1t.) 
scaling 

bounding box, 27, 29 
graphic objects. 37 
\includegraphics keys. 29, 30 
text, 37 

slides, 792 
systems, typesetting, 2, 3 

graphics package, 2, 3, 7, 8, 10, 23-27, 30, 33-40, 791 
graphics languages, see a/so drawing tools 

AIDraTex package, 15 
DraTex package, 15 
CGM (Computer Graphics Metafile), 13 
character-based diagrams and pictures, 13 
choosing, 21, 22 
diagrams, typesetting, 16 
ePix, 20 
flow language, 16 
for basic objects, 17, 18, 19, 20 
for plotting, 17, 18 
gnuplot, 17 
pic, 17, 19 
graphs 

drawing, 17, 18 
typesetting, 16 

kernel drawing language, 16 
L.\'IEX picture mode extensions, 15, 16 
METAPOST,see META iudex 
PDF {Porlable Document Format}, II, 12 
pic, 17-20 
PICTEX, I), 14 
pictures, 17-20 
pictures from fonls, \3 
Postxript, 10, I I  
PSTrieks, see PSTricks iudex 
structured drawing, 20 
SVG (xalable Vector Graphics), 12, 13 
TEX-based, 13-17 
WebCGM,13 
Xy-pic, 16 

graphics . cfg file (graphies/graphiex), 25 
\graphicspath (graphies!graphicx), 33 

graphicx package, 23-25, 28-42, 800 
graphs, see also META, PSTrieks, and XV-pic index, see also 

diagrams, see a/so plaiting 
drawing, 17, 18 
graphics languages 

drawing, 17, IS 
typesetting, 16 

histogram, /4 
piechart, /5 
typesetting, 16 

GRASS program, 21 
Grassman's Law, 714 
Gray option (xeolor), 721 

Gray syntax (xeolor), 728, 729 
\gray (Slunits), 514 

gray option (xeolor), 721 
gray syntax 

(eolor), 720 
(xeolor), 720, 723, 728-730 

gray color model, 719 
\grcl (MusiXTEX), 592 
\grcu (MusiXTEX), 592 

green syntax (xcolor), 722, 726, 727 
\gregorianCclef (MusiXTEX), 592 
\gregorianFclef (MusiXTEX), 592 

grid key (heamer), 794 
grids, see META and PSTrieks il/dex 

\GText (axodraw), 558 
\GTri (axodraw), 558 

guitar chords, 6()S, 61/, 612 
guitar diagrams, drawing, 6/1 
gunzip program, 35 

\Gvar (eire), 578 

H 
H syntax (PMX), 636 

\H (chemsym), 5/7 
\h (ehemsym), 517 

h syntax (PMX), 631, 632, 636 
\ha (MusiXTEX), 593 
\halfboard (bg), 697 
\halfincr (bg), 698 
\hand 

(bridge), 700-702 
(tlge), 699 

handidness of substituents, 511, 53/, 535 
handout option (heamer), 753 

\hanthracenev (Iowcycle), 527 
\hanthracenv (carom), 524 

harmonic color circle, 717 
harmonies, color, 717, 718 

\HBLens (eire), 580 
\hbox,725 

hcycle package, 520, 532 
headerCol syntax (heamer), 776 
headings (table), color, 748 

\heart 
(bridge), 702 
(tlge), 699 

\heartsuit, 698, 699 
\hecto (Slunits), 515 
\height (graphics/graphb), 38 

height (pic), 19 
height key (graphicx), 29, 3/, 32 
helicallolheel enl'. (textopo), 551,552 
helixwheel enl'. {teKtopo}, 552 
help, see online resources 

\henry (S1units), 514 

GENERAL INDEX 



GENERAL INDEX 

hepnicenames package, 512, S60 
heppennames package, 512, 560 

\heptamethylene (methylen), 538 
\heptamethylenei (methylen), 538 

hepunits package, 516, 517 
\hertz (Slunits), 514 

hetarom package, 520, 528, 530, 534 
hetaromh package, 520, 528, 534 
heterocyclic compounds, 528-530 

\hexamethylene (methylen),538 
\hexamethylenei (methylen), 538 
\hflipgoban (ige), 695 

HH syntax (PMX), 636 
\hhline 

{colortbl),751 
(hhline), 75O 

hhline package, 737, 742, 750 
hide key value (bearner), 753 
hideallsubsections key (bearner), 783 

\hideconsensus (texshade), 548 
hideerrors option (xcolor), 721 

\hidelegend (textopo), S53 
\hidemoves (skak), 677, 678, 679 
\hidenumbering (texshade), 549 

hideothersubsections key (beamer), 783 
hiderotate option (graphics/graphicx), 25 

\hiderowcoiora (xcolor), 740 
hide scale option (graphies/graphiex), 25 

\hideTMlabeis (textopo), 551 
hidingfshowing 

chess pieces, 676 
slides 

alternative text, 769 
opaqueness, 768 
slide elements, 767 
specific rows, 765 
successive columns, 763 
successive rows, 763 
transparency, 768 

high-energy physics, units, 516 
\highlight (skak), 676 

highlighting 
chess, 676 
nucleotide sequences, 548-550 
peptide sequences, 548-550 
slides, parts of elements, 771 
table elements, with color, 745, 749, 750 
text in tables, 744 

highiydynamic key (beamer), 767 
hiresbb key (graphicx), 28 
hiresbb option (graphks/graphicx), 25 
HiResBoundingBox (PostScript), 25, 28 

\hi (MusiXTEX), 592, 593 
\hUne (coiortbl), 741 

How To Ask Questions The Smart Way, 810 

\Hpause (MusiXTEX), 592 
\hpauae (MusiXTEX), 592, 594, 599 
\hpauaep (MusiXTEX), 592 
\hphenanthrenev 

(carom), 524 
(lowcycle), 517 

\HR(tlgc),26 
\ba (MuSiXTEX), 592 

HSB option (xcolor), 721 
HSB syntax (xcolor), 728, 729 
Hah syntax (xcolor), 728, 729 
bah option (xcolor), 721 
bab syntax 

(color),720 
(xcolor), 720, 728, 729 

HSB (Hue, Saturation, Brightness) color, 715, 719 
\HSLens (cire), 580 

HSV (Hue, Saturation, Value) color, 715 
bt key (beamer), 777, 79.; 
HTML option (xcolor), 721 
HTML syntax (xcolor), 728, 719 

\htopin (circ), 579, 58/ 
\hu (MuSiXTEX), 592, 593, 594 
\HVLena (circ),580 
\hyperlink (beamer), 78';, 785 
\hyperlinkappendixend (beamer), 786 
\hyperlinkappendixstart (beamer), 786 
\hyperlinkdocumentend (beamer), 786 
\hyperlinkdocumentatart (beamer),786 
\hyperlinkframeend (beamer), 786 
\hyperlinkframeendprev (beamer), 786 
\hyperlinkframestart (beamer), 786 
\hyperlinkframestartnext (beamer), 786 
\hyperlinkmovie (beamer), 774 
\hyperlinkmute (beamer), 774 
\hyperlinkpresentationend (beamer), 786 
\hyperlinkpresentationatart (beamer), 786 

hyperlinks, slides, 784-818 
\hyperlinkslidenext (beamer), 786 
\hyperlinkslideprev (beamer), 786 
\hyperlinksound (beamer), 774 

hyperref option 
(beamer), 753 
(xcolor),721 

hyperref package, 721, 753, 783, 798, 803-805 
\hypertarget (beamer), 783, 784, 785 

hyphen (-), tie symbol, 607, 608 

I syntax (PMX), 648 
\1 (cire), 577 

i syntax (pic), 19 
I: syntax (abc), 608 

\ib (MusiXTEX), 599 
\ibbu (MusiXTEX), 597 

(H-I) 853 



854 (I) 

\ibl (MusiXTEX), 596, 597 
\ibu (MusiXTEX), 596, 597 

ic option (cire), 577 
\ifont (texmate), 687 

ignorebg key (beamer), 777 
ignoreonfraroetext option (beamer), 753 
igo package, 691-695 

\igobreakafterdiagraro (lgo), 694 
\igocircle (i90),692 
\igocross (i90),692, 695 
\igofontsize (i90), 693, 694 
\igonone (lgo), 691, 692 
\igosquare (igo), 692, 695 
\igotriangle (igo), 692, 695 
\iiclose (texmate}, 687 
\iiic1ose (texmate), 687 
\iiifont (texmate),687 
\iiiopen (texmate),687 
\iiopen (texmate), 687 

illustrations, see drawing 
Illustrator program, 586 
image file location, specifying, 33 
ImageMagick program, 7, 17 
images, see drawing 

\imidazolev (hetarom), 530 
\imidazolevi (hetarom). 530 

immediate mode (Feyruuan diagrams) 
arcs, S72 
definition, 563 
diagrams in equations, 570 
edges. 572 
freezing diagrams, 570 
labels, 571 
loop diagrams, 569 
overview, 569-572 

\Impulse (eire), 578 
inactive option (pst-pdf), 800 

\includegraphics 
(bearner), 791, 792, 794 
(graphics), 26, 27. 33-35 
(graphiex). 24, 25, 28, 30-32, 33-35 

\includegraphics* 
(graphics), 25, 27 
(graphiex).28 

induding graphics files 
aspect nltio, keeping, 29, 3/ 
bounding box 

aspect ratio, keeping. 29 
dipping graphics to, 29, 30 
comments, 25, 28 
draft mode, 25, 29, 30 
final mode, 25 
fitting to graphics, 26, 27 
height, 28, 29, 32 
\includegraphics syntax,28-32 

indudinggraphics files (COl/f.) 
resizing. 27 
rotated material, hiding, 25 
rotating, 27, 31, 32 
scaled material. hiding, 25 
scaling, 27, 29 
specifying, 28, 30 
trimming space, 28, 30 
viewporls, 28. 30 
width, 28, 29 

commands, inserting, 35 
dedar.Jtions, 33-35 
default key values, setting, 32, 33 
draft mode, 25, 30 
encapsulation, 35, 36 
file extensions 

search order, 33, 34 
specifying, 29, 34, 35 

file name parsing, suppressing, 29 
file type, specifying, 34 
final mode, 25 
height, 28, 29, 31, 32 
image size, 29 

GENERAL INDEX 

\includegraphics syntax. 25-32 
location of image files, 33 
options, 24, 25 
rotated malerial, hiding, 25 
rotation, 29, 31, 32 
scaled material, hiding, 25 
scaling, 29, 30 
scaling factor, 29, 30 
trimming space, 28, 30 
view ports, 28, 30 
width, 28, 29, 3/ 

indane derivatives, 528 
\indaneh (Iowcycle), 527 
\indanehi (Iowcycle). 527, 528 
\indanev (lowcycle), 526, 527, 528 
\indanevi (towcycle), 527 

Indent ; syntax (M-Tx), 651, 652 
\indentwhi te (bg), 698 
\indolev (hetarorn). 530 
\indolevi (hetarorn}, 530 
\indolizinev (hetarorn), 530 
\indolizinevi (herarorn). 530 
\inffont (ehessfss), 673 
\infsymbol (chessfss), 673 

inpulenc package, 752, 753 
\insertbackfindforwardnavigationsymbol (bearner), 

77J 
\insertdocnavigationsymbol {bearner), 773 
\insertframenavigationsymbol (bearner), 773 
\insertframenumber (bearner), 777 
\insertframesubtitle (bearner), 79-1 
\insertlogo (bearner), 776, 777 



GENERAL INDEX 

\insertsectionnavigationsymbol {beamer), 773 
\insertshortdate (beamer), 777 
\insertshortfrrunetitle (beamer), 759 
\insertslidenavigationsymbol (beamer), 773 
\insertsubsectionnavigationsymbol (beamer), 773 
\inserttotalframenumber (beamer), 777 
\inst (beamer), 761 
\institute (beamer), 761 
\instrumentnumber (MusiXTEX), 596 

instruments (musical) 
clefs, 621 
definition, 617 
names,62l 
number of, 596, 619 

integrated circuit symbols, 579 
intensity. cotor, 718 
internal vertices (Feynman diagrams), 566 
International System of Units (51), 512-516 
internole spacing (musical), 602 

\invfemtobarn (hepunitS), 516 
\invisible (beamer), 768, 784 

invisible key (beamer), 767 
invisibleenv env. (beamer), 770 

\invpicobarn (hepunits), 516 
\islurd (MusiXTEX), 597 
\isluru (MusiXTEX), 596, 597, 599 
\isobenzofuranev (hetarom), 530 
\isobenzofuranevi (hetarom), 530 
\isoindolev (hetarom), 520, 530 
\isoindolevi (hetarom), 530 
\isoquinolinev (hetarom), 530 
\isoquinolinevi (hetarom), 530 
\isotope (isotope), 518 

isotope package, 518 
\isotopestyle (isotope), 51 R 

\isoxazolev (hetarom), 530 
\isoxazolevi (hetarom), 530 
\item (beamer), 770, 786, 787, 788 

itemize env. (beamer), 771, 772, 786, 787 
\i tenu (MusiXTEX), 599 
\IvaR (eircl,577 
\ivfont (texmatel,687 

J 
j syntax (PMX), 631 

\JKMSFF (eire), 579 
\joule (Slunits), 514, 516 
\jouleperkilogramkel vinnp (Slunits), 516 
. jpeg file extension (pst-pdf), 806 
\junction {circ) ,579 

junctions, 579 

K 
K syntax (PMX), 640, 641 

K type slurs (musical), 636 
K :  syntax (abc), 601, 603, 604-606 

\kat (Slunits), 514 
keepaspectratio key (graphioc), 29, 31, 32 

\keepreducing (solvesudoku), 711 
\kel vin (Slunits), 514, 516 
\kemtkn (chemsym), 517 

kernel drawing language, 16 
\key (LilyPond), 662, 663-665 

key (musical) 
changes, 641 
LilyPond, 662 
notation, 601 
signature, 620 

keyval package, 33 
\kilo (Slunits), 515 
\kilogram (Slunits), 514 
\kilogrampersecondcubicmetrenp (Slunits),516 
\king (chessfss), 672 
\kinveV (hepunits), 516 
\knight (chessfss), 672 
\kqu (MusiXTEX), 592 

L 

L syntax (PMX), 642 
\L (circ), 577 
\1 (MusiXTEX), 592 

1 syntax (PMX), 625, 631, 633, 637, 641 
\1 . . .  (MusiXTEX), 594 

L: syntax 
(M-Tx), 655, 659, 660 
(abc), 601, 603, 604 

\La (cire), 577 
lab apparatus, see PSTricks index 

\label (beamer), 783, 785 
label key (beamer), 759, 761 

\labelregion (textopo),553 
labels 

Feynman diagrams, 567, 568, 569, 571 
slides, 785 
timing diagrams, 573 

\labelstyle (textopo), 553 
large option (skak), 675 

\largeboard 
(cchess),690 
(skak),675 

\largegoban (igo),694 
\larw (timing), 575 
\Laser (circ), 580, 581 

last syntax (x(Qlor), 734 
\lastmove (skak),679 

latex program, 797, 800, 801, 803, 804, 806 
lKfEX files, obtaining 

web access, SIO, 81 1, 812, 8/3, SI 4  
\LED (cire), 577 

(I-L) SSS 



856 (L-M) 

left (pic), 19 
left key (beamer), 777 

\leftdiagramturn (texmate),686 
\leftrepeat (MusiXTEX), 592 
\leftrightrepeat (MusiXTEX), 592 

leftskip key (beamer), 777, 794 
libc,t .m4 file (pic), 583 

\liftbpause (MusiXTEX), 592 
\liftpause (Mu$iXTEX), 592 
light, and color, 714 
lightgray syntax (xeolor), 726 
UlyPond language, 66\-665 
UlyPond program, xxviii, 661-665 
UlyPond notation system, see music scores (LilyPond) 

\LinAxis (axodraw), 559 
\LINE (curve2e), 47, 48-50 
\Line 

{axodraw),559 
(curve2e), 47, 48-50 

\line, 43 
(curve2e), 47, 48-50 
(pictle), 43, 44 

line (pic), 17 
line graphics 

arrow styles, 44 
Bl!zier curves 

cubic, 47 
quadratic, 46, 47 

circles, 45 
curves, 47, 48-SO 
limitations, 42, 43 
ovals, 45, 46 
overview, 42, 43 
radii, specifying, 45, 46 
representing complex numbers, 49, 50 
slope arguments, 44 

line styles (Feynman diagrams), 565 
line-drawing keywords (Feynman diagrams), 566 
lines (musical) 

breaks,642 
definition, 617 

lines (rules), see (liso connections 
slyles 

Feynman diagrams, 564, S6S, 566 
thickness, S66 

tables, color 
adding, 748 
inside the table, 749 
partial, 751 
selected, 750 
whole table, 741 
width, 751 

\linethickness,47 
(pict2e),44, 45, 46 
(timing),576 

\linewidth rigid length, 33 
linewidth key (chessboard), 669 
linguistics, see PSTricks al1d Xy-pic illdex 
list env" 724 
list items, slides, 786-788 
listings package, 790 
lists, colored, 724 

\lmoiety (chemSlr), 522, 526 
\In (eire), 579 
\loadgame (skak), 679 

locant package, 520 
. log file extension (feynmf), 562, 567 
\LogAxis (axodraw), 559 

logical circuit diagrams, see Xy-pic illdex 
logical meter (musical), 620 

\logo (heamer), 776, 777, 792, 794 
logos. slides, 776, 777 

\longa (UlyPond), 663 
\LongArrow (axodraw), 559 
\LongArrowArc (axodraw), 559 
\LongArrowArcn (axodraw), 559 

longtable package, 517. 737, 742 
loop diagrams (Feynman diagrams), 569 

\loopextent (textopo),552, 553 
\loopfoot (textopo),553 

lowcyde package, 520, 526 
lower key (beamer), 778 
lower-order cycles, 527, 528 

\lppz (MusiXTEX), 592 
\lpz (MusiXTEX), 592 
\lpzst (MusiXTEX), 592 
\lsf (MusiXTEX), 592 
\lsfz (MusiXTEX), 592 
\lsqu (MusiXTEX), 592 
\lst (MusiXTEX), 592 
\ltetrahedralS {aliphat),540 
\ltrigona (aliphat),533 
. ltx file extension, xxxi 

1 txarrows option (pict2e), 44 
. ltxb file extension, xxxi 
\lumiunits (hepunits), 516 
.ly file extension, xxxi 

(UlyPond),665 
\lyl (chemstr), 535, 536 

lyrics (musical) 

M 

global adjustment, 653 
M-Tx, 659, 660 
PMX,647 

m syntax (PMX), 629, 630, 631, 640 
M type slurs (musical), 637, 638 
m-ch-en package, 541-547 

GENERAL INDEX 

M-Tx notation system, see music scores (M-Tx) 
M-Tx language, xxviii, 616, 617, 651-660 



GENERAL INDEX 

M-Tx program, 647 
. m4 file extension, xxxi 
m4 program, 576, 583, 584 
M ;  syntax (abc), 601, 604, 605, 606 
magenta syntax (x(olor), 722, 726 
magnifying glass effect, see PSTricks il/dex 

\mainline (skak), 677, 678, 679 
\major (lilyPond),66J-66S 
\makeatletter, xxxii, xxxiii 
\makeatother, xxxii, xxxiii 
\makebarchess (texmate),680 
\makebarother (texmatel,680 
\makebox 

zero-width, 37 
(cwpuzzle), 705 

makedrc package. 576 
\makediagrams (texmate),685, 686 
\makediagramsfont (texmate),686 
\makegametitle (texmate). 683 

makeindex program, 806 
\maketitle (beamer), 754, 757, 761 

manipulating graphic objects 
aspect ratio, keeping, 38 
height, changing, 38, 39, see also bounding box 
line graphics 

arrow styles, 44 
cirdes, 45, see alS{) cirdes, see also ollals 
cubic Bttzier curves, 47 
curves, 47, 48-50 
limitations, 42, 43 
ovals, 45, 46 
overview, 42, 43 
quadratic B6der curves, 46, 47 
radii, specifying, 45, 46 
representing complex numbers, 49, 50 
slope arguments, 44 

resizing, 38, 39 
rotating 

LKIE;X box, 39-42 
reference point, 40-42 

scaling, 37 
width, changing, 38, 39 

Maple program, 2 
markfields key (chessboard), 669 
markfile key (chessboard), 669 
markstyle key (chessboard), 669 
maskingco[or,737 
Mathematiea program, 1 , 2 1  
mathematical functions, symbols for, 512 
mathematical plots, see PSTricks il/dex 

\mathrm, 511 
MATlAS program, 2 
matrices, see PSTricks and XV-pic index 

\maxovalrad (pict2e), 45, 46 
mechanical drawings, see META jl/dex 

mediumqspace option (Slunits), SIS 
mediumspace option (Slunits), SIS 

\mega (Slunits), SIS 
membrane protein topology plots, 551-553 
META language, 11, see also META jl/dex 
METAFONT,sJ!e META jl/dex 
METAOS J package, see META index 
METAPOST,see META il/dex 
meter (musical) 

abc notation system, 601 
changes, 640, 654 
logical, 620 
M-Tx, 654 
PMX, 640 
representation, 620 

Meter: syntax (M-T)(), 651, 652 
\meterC (MusiXTEX), 592 
\meterfrac (MusiXTEX), 596, 599 
\meterplus (MusiXTEX), 592 

methylen package, 537 
\metre (Slunits), 514, 516 
\metron (MusiXTEX), 592 
\Mev (hepunits), 516 
\MeVoverc (hepunits),516 
\meVoverc (hepunits),516 
\MeVovercsq (hepunits), 516 

mfpic package, 21, 583 
\MHz (hepunits), 516 
\micro (Slunits), 515, 516 
. mid file extension (PMX). 648 
\middlecube (bg), 696, 697 

MlDl language, 610, 647-649, 660 
MIDI mnemonics, 649 

\milli (Slunits), 515 
minus sign (-), color expression, 732 

\Mirror (circ), 580, 581 
\mirrorgoban (igo),695 

mi)(ingcolor, 731 
\mode (beamer), 760, 796 
\mode. (beamer),  753, 796 
\mole (Slunits), 514, 516 

molecules, aligning with bonds, 546 
\momentum (feyn), 556, 557 

monochrome, 721 
monochrome option {)(color), 721 

\Mordent (MusiXTEX), 592 
\mordent (MusiXTEX), 592 

MOV syntax (m-eh-en), 544 
\move (bg), 697, 698 

move (pic), 19 
mover option (skak), 676 

\moverel (eire), 580 
moveroff option (skak),676 

\movie (beamer),  774 
movies, slides, 774 

(M) 857 



858 (M) 

Mozart example, 651 
. mp file extension, xxxi 

mpost program, 637 
\mrad (hepunits), 51 6 
\MRs (textopo), 551, 553 

. mtx file extension, xxxi 
\multicolumn, 701 

(colortbl), 737, 739 
\multido (multido), 45 

multimedia package, 774 
\MultVect (curve2e). 49, 50 

music env. (MusiXTEX), 594, 595, 596, 599 
music scores, overview, 587-589 
music scores (abc2mtex) 

abc notation system, 600 
, (right quote), octave indicator, 603 
( . . .  ) ,  slur symbol, 607, 608 
, (comma), octave indicator, 603 
- (hyphen), tie symbol, 607, 608 
= (equal sign), natural symbol, 605 
[] (square brackets), chord symbols. 608 
" . .  " (double quotes), guitar chords, 608 
{} (curly braces), grace notes, 607 
- {tilde}, grace notes, 607 
"(carel), sharp symbol, 605 
""(carets), double flat symbol, 605 
_ (underscore), flat symbol, 605 
__ (underscores), double flat symbol, 605 
accents, 607 
accidentais, 605 
bar symbols, 603 
bars, 603 
beams, 606 
broken rhythms, 604 
changing key, 606 
chords, 608 
compound time signatures, 605 
dotted rhythms, 604 
double bars, 603 
doublets, 605 
Dusty Miller e:t:ample, 608 
fiddler instructions, 607 
gracings, 607 
guitar chords, 60S 
information fields, description of, 601, 602 
information fields, table of, 602 
internote spacing, 602 
key, 601 
lowercase lettrrs, 603 
meter, 601 
musical information, 601 
note length, 601, 603, 604 
note pitch, 603 
order of symbols, 60S 
pitch, 603, 604 

music scores (abc2mtex) (COlli.) 
quadruplets, 605 
repeat symbols, 603 
sequence number, 602 
sluTS, 607 
song title, 602 
staccato marks, 6(}7 
tempo, 602 
ties, 6(}7 
triplets, 6(}5 
uppercase letters, 603 
writing source, 6(}1 

abcPlus extensions, 609-612 
Bach e:t:ample, 6/0 
external programs, calling, 615 
guitar chords, 611, 612 
guitar diagrams, drawing, 612 

GENERAL INDEX 

including in L"l'EX docllments, 612-614, 615 
overview, 600 
PostScript definitions, 612 
writing to PDF, 614 

music scores (lily Pond) 
accents, 663 
chords, 663 
notes 

accents, 663 
beams, 663 
chords, 663 
duration, 662, 663 
grace notes, 663 
key, 662 
notation, 661 
ornaments, 664 
pitch, 662 
slurs, 663, 664 
triplets, 664 

ornaments, 664 
rests, 663 
running lily Pond, 665 
slurs, 663, 664 
source language, 661-665 
triplets, 664 

music scores (M-Tx) 
annotations, 657, 658 
bar changes, 654 
beams, 654, 655 
body of file, 654-658 
chords, 656, 657 
clefs, 653 
expression marks, 657,658 
horizontal adjustment, 658 
instruments, definition, 617 
lines, definition, 617 
lyrics, 659, 660 

global adjustment, 653 



GENERAL INDEX 

music scores (M-Tx) (COlli.) 
meter changes, 654 
Mozart example, 651 
overview, 651, 652 
pickups, 654 
preamble of file, 652, 653 
slurs 

blind, 655 
broken, 6SS 
description, 654, 655 
dotted, 655 
notation, 654 

slaves, 617, 652 
symbols, definition, 617 
systems, definition, 617 
vertical adjustment, 658 
voice 

definition, 617 
labels, 653 
spacing after, 653 

words, definition, 617 
music scores (MusiXTEX) 

{} (curly braces), around arguments, 596 
Bach example, 590 
Bartok example. 596 
beams, 597 
chords, 594 
commands, 592 
instruments, number of, 596 
notes 

commands, 595 
pitch, 590, 593 
spacing, 595 
symbols, 592, 593, 594 
liming, 590 

preprocessors, 615, 616, 617 
running MusiXTEX., 597, 598, 599 
slurs, 597 
source structure, 591 
type sizes, 5% 

music scores (PMX) 
% (percent sign), comment indicator, 619 
allegro, 646 
allegro vivace, 644 
blocks, 622 
body offile,621 
horizontal spacing, manual adjustment, 643 
inline lEX commands, 646 
instruments 

clefs, 621 
definition, 617 
names, 621 
numberof, 619 

key signature, 620 
lines, definition, 617 

music scores (PMX) (COllt.) 
logical meter, 620 
lyrics, 647 
meter representation, 620 
MIOI,647 
MIDI mnemonics, 649 
notation, all voices 

bar symbols, 639 
bars, 639 
global A options, 643 
keychanges, 641 
line breaks, 642 
meter changes, 640 
page breaks, 642 
page layout, 642 
page numbering, 642 
repeats, 639 
text blocks, 641 
title blocks, 641 
voltas, 640 

notation, staves 
accidentals, 622, 624, 628 
arpeggio, 629 
basic duration, 622 
beams, 63 J, 632, 633 
beams for xtuplets, 627, 628 
chords, 628, 629 
clef changes, 639 
definition, 617 
dotted notes, 622 
doubly dotted notes, 622 
down fermata ornaments, 630 
duration of notes, 622 
dynamical marks, 638 
grace notes, 629, 630 
grace notes, in xtuplets. 627 
height,620 
horizontal displacement, 624 
note parameters, 624, 625 
notes, 622, 623, 624 
numberof, 619 
octaves, 623 
on staves, 622-624 
ornaments, 630, 631 
parameters, 623. 624, 625 
pitch, 622 
pointed rhythms, 624 
rests, 625, 626 
slurs, 634-638 
staccato ornaments, 630 
stems, 623, 624 
tenuto ornaments, 630 
ties, 634, 635, 637 
xtuplets, 626, 627. 628 

(M) 859 



860 (M-N) 

music scores (PMX) (COl1t.) 
notes 

accidcntals, 622, 624, 628 
basic duration, 622 
dOlted,622 
doubly dotted, 622 
duration, 622 
grace notes, 629, 630 
horizontal displacement, 624 
octaves, 623 
on staves, 622-624 
parameters, 623, 624, 625 
pitch, 622 
pointed rhythms, 624 
stems, 623, 624 

numerical parameters, 619, 620 
output path, 621 
overview,618 
page height and width, 642 
pages, number of, 620 
parts of, 619 
pickup bar length, 620 
pickups, 620 
PMX commands, 650 
preamble oflile, 619, 620, 621 
signature, 620 
splitting apart, 647, 648 
structure of a score, 619 
symbols, definition, 617 
systems 

definition, 617 
indentation, 620 
number of, 620 

voice, definition, 617 
words, definition, 617 

music scores (W) 
inline commands, 646 
overview, 589, 590 
with METAFONT,666 

music scores (TEXmuse), 666 
MusicTEX package, 589 
musixflx program, 595, 597, 599, 618 
musixlyr.tex package, 647, 659, 660 
musixpss program, 637 
MusiXTEJ( package, xxvi, xxviii, xxxi, 588, 589-599, 602, 615-617, 

623,628,634,635, 646-648, 658, 660, 661 
MusiXTEX notation system, see music scores (MusiXTEX) 

. mxl file extension (MusiXTEX), 597, 598, 599 

. mx2 file extension (MusiXTEX), 597, 598 
myhexagon . sty file (tlge), xxxiii 

\MyRot (tlge), 39 

N 

n syntax (PMX), 62,1, 625 
Name: syntax (M-Tx), 651, 652 

named syntax 
(color), 720 
(xcolor), 720, 722, 727 

named colors 
behavior options, 721 
support for, 719 
within documents, 725 

\nameseq (texshade), 549 
\namesit (texshade), 549 
\namesrm (texshade), 549 
\NAND (circ), 578 
\nano (Slunits), SIS 

\naphdrh (earom), 524, 525, 535, 536 
\naphdrv (earom),524, 525 
\naphdrvb (carom),525 
\naphdrvt (carom),525 

nassflow package, IS 

natheight key (graphicx), 28 
natural option (xcolor), 721 
natural symbol (musical), 605 
nat\lidth key (graphio:), 28 
navig<ltion bar, slides, 772, 773, 774 

GENERAL INDEX 

navigation symbols syntax (bearner), 773, 777 
\nbb (MusiXTEX), 599 

nc syntax (PMX), 625 
nesting chess variations, 679 
netpbm program, 7 
nets, drawing, 15 

\ne\lcolumntype (array), 738 
\newgame 

(skak), 674, 675, 678, 679 
(texmate), 683 

NEWMAN syntax (rn-eh-en),542 
news groups, 810, see also online resources 

\ne\lton (Slunits). 514 
Newtonian mechanics symbols, 580 

\nextdiagrambottom (texrnate), 685, 686 
\nextdiagramtop (texmate), 685, 686 
\nfet (cire), 577 

nicefrac package, 5 13 
\nl (eire), 581 

noamsthm option (bearner), 753 
\nobarnumbers (MusiXTEX), 599 
\nodiagrammove (texmate), 686 
\nodiagramnames (texmate), 686 
\nodiagramnumber (texmate), 686 
\nodiagramturn (texmate), 686 
\nonaheteroh (hetarom), 529 
\nonaheterohi (hetarom), 529 
\nonaheterov (hetarom), 520, 529, 530 
\nonaheterovi (hetarom), 529, 539 
\nonamethylene (methylen), 538 
\nonamethylenei (methylen), 538 

nopstricks option (pst-pdf), 800 
\NOR (circ), 578 



GENERAL INDEX 

normal option (skak), 675 
normal text syntax (beamer), 795 

\normalboard 
(bg), 697, 698 
«(chess), 69O 
(skakl, 675 

\normalgoban (igo), 694 
\normalsize (lilyPond), 663 

notation (chess) 
commentaries, 681, 682 
overview, 680-683 
threats, 681 
variations, 680, 682, 683 

notation (musical), see also music scores (aoc2mtex) 
all voices 

bar symbols. 639 
bars, 639 
global A options, 643 
key changes, 641 
line breaks, 642 
meter changes, 640 
page breaks, 642 
page layollt, 642 
page numbering, 642 
repeats, 639 
lext blocks, 641 
title blocks, 64/ 
vollas, 640 

staves 
accidenlals, 622, 62·1, 628 
arpeggio, 629 
basic duration, 622 
beams, 631, 632, 633 
beams for xtuplets, 627, 628 
chords, 628. 629 
clef changes, 639 
definition, 617 
dOlled notes, 622 
doubly dotted noles, 622 
down fermata ornaments, 630 
duration of notes, 622 
dynamical marks, 638 
grace notes, 629, 630 
grace notes, in xtuplets, 627 
height, 620 
horizontal displacement, 624 
note parameters, 624, 625 
notes, 622, 623, 624 
numherof, 619 
octaves, 623 
on staves, 622-624 
ornaments, 630, 631 
parameters, 623, 624, 625 
pitch,622 
pointed rhythms, 624 

notation (musical) (cont.) 
rests, 625, 626 
slurs, 634-638 
staccato ornaments, 630 
stems, 623, 624 
tenuto ornaments, 630 
ties, 634, 635, 637 
xtuplets, 626, 627, 628 

\notationOff (skak), 675 
notationoff option (skak),675 

\notationOn (skak), 675 
notationon option (skak),675 
noteedit program, 588 

\NOTEs (MuSiXTEX), 595 
\NOTes (MuSiXTEX), 595, 599 
\NOtes (MusiXTEX), 591, 595, 596, 599 
\Notes (MusiXTEX), 591, 594, 595, 596, 599 
\notes (MusiXTEX), 591, 595, 596, 599 

notes option (hearner), 753 
notes (annotations), see annotations, see commentaries 
notes (musical) 

accents (UlyPond), 663 
accidentals, 622, 624, 628 
basic duration, 622 
hearns, 663 
chords (UlyPond), 663 
commands, 595 
describing staves, 622, 623, 624 
dotted, 622, 624 
doubly dotted, 622 
duration, 622 

LilyPond,662, 663 
examples. 592 
grace notes 

{} (curly braces), 607 
- (tilde), 607 
in xtuplets, 627 
LilyPond.663 
PMX, 627,629, 630 

horizontal displacement, 624 
internote spacing, 602 
key (LilyPond), 662 
length, 601, 603, 604 
notation, 661 
octaves, 623 
on slaves, 622-624 
ornaments (lilyPond), 664 
parameters, 623, 624, 625 

accidentals, 624, 625 
heam inhibit, 624, 625 
dotted notes, 624, 625 
shift of position, 624, 625 
sterns, 624, 625 
xtuplets, 625 

(N) 861 



862 (N-O) 

notes (musical) (COItt.) 
pitch 

abc2mtex, 603, 604 
LilyPond, 662 
MusiXTEX, 590 
specifying, 593, 622 

pointed rhythms, 624 
slurs (lilyPond), 663, 664 
spacing. 595 
siems, 623, 624 
symbols, 592, 593, 594 
timing, 590 
triplets (Lily Pond), 664 

\noteskip rigid length (MusiXTEX), 595 
\NOTesp (MusiXTEX), 595 
\NOtesp (MusiXTEX), 595, 599 
\Notesp (MusiXTE>Cl. 595 
\notesp (MusiXTEX), 595 

notheorems option (beamer), 753 
notightpage option (pst-pdt), 800 

\npn {eifel, 577, 581 
\NRSFF (cirel, 579 
\Nterm (textopo), 55J 

nucleotide sequences 
aligning, 548-550 
highlighting, 548-550 
sequence fingerprints, 550 
shading, 548-550 

\NULL (circ), 579 
number puzzles, 707, 708, see also crosswords 
numbers, symbols for, 512 

\nv (cire), 579 
\nvmos (eire), 577 

o 
\0 (chemsym), 517 

o( syntax (PMX), 630, 631 
0) syntax (PMX), 630, 631 
0+ syntax (PMX), 630, 631 
o .  syntax (PMX), 630, 631 
o .  : syntax (PMX), 630 
0 :  syntax (abc), 608 
0 :  syntax (PMX), 630 
0> syntax (PMX), 630, 631 
o� syntax (PMX),631 
0_ syntax (PMX), 630, 631 
o� syntax (PMX), 630 

\oa (cire), 581 
ob syntax (PMX), 630, 631 
object-oriented drawings, 4, 5 
oc syntax (PMX), 630, 631 

\octamethylene (methylen), 538 
\octamethylenei (methyJen), 538 

Octave program, 2 
Octave : syntax (M-lx), 652 

octaves (musical), 623 
Octaviz program, 2 

\octfindololIl (MusiXTEX), 592 
\octfinup (MusiXTEX), 592 

Octplot program, 2 
oe? syntax (PMX), 630, 631 
oef syntax (PMX), 630, 631 
oef? syntax (PMX), 631 
oen syntax (PMX), 630, 631 
oen? syntax (PMX), 631 
oeg syntax (PMX), 630, 631 
oeg? syntax (PMX), 630, 631 
of syntax (PMX), 630, 631 
ofd syntax (PMX), 630, 631 
OFF syntax (m-eh-en), 546 
og syntax (PMX), 630, 631 

\OH (ehemsym), 517 
\ohm (Slunits), 514 

oldgate option (eire), 577 
\oldGclef (MusiXTEX), 592 
\OM (eire), 581 

Olll syntax (PMX), 630, 631 
ONE syntax (m-eh-en), 542, 546 

GENERAL INDEX 

online access to CTAN, 810, 811, 812, 813, 814 
online resources 

Adobe Illustrator, I 
Adobe Photoshop, 17 
archived files, finding and transferring, 813 
automata diagrams, 15 
CGM-Open Consortium, 13 
CTAN (Comprehensive TEX Archive Network), 810 

web access, 810, 811, 812, 813, 814 
dedicated drawing tools, I, 2 
documentation 

command-line interface, 8/5 
panel interface, 816 
search by name, 815 
search by product, 816 
texdoc, 815 
texdock, 816 

DV[ to SVG conversion, 13 
FAQs (Frequently Asked Questions), 809 
files, gelting from the command line, 814 
How To Ask Questions The Smart Way, 810 
nets, drawing, 15 
news groups, 810 
PDF viewers, 12 
plotting programs, 17 
program files, obtaining 

web access, SID, 811, 812, S13, 814 
TEX file catalogue, SII 
TEX files, 810 
1'EX user groups, 817, 818 
TUG home page, 810, 811 

\only (beamer), 766, 767, 775, 780, 785, 786, 792 



GENERAL INDEX 

only key value (beamer), 753 
\onlyenv (beamer), 769 

onlyenv env. (beamer), 769, 770 
onlyslideswi thnotes key value (beamer), 753 
onlytextwidth key (beamer), 781 

\onslide (beamer), 763, 764, 765, 767 
\00 (chemsym), 517 

op syntax (PMX), 630, 631 
\opaqueness (beamer), 767, 768 

opaqueness, slides, 768 
openoffice program, 21 
optics option (eire), 577 
optics diagrams, see also META ulld PSTricks index 

example, 58/ 
font for, 576--582 
symbols, 580 

Options: syntax (M-Ix), 652 
\OR (circ), 578 

orange syntax (Keolor), 726 
origin key (graphicx), 28, 33, 40, 41 
original option (pict2e), 43 
ornaments (musical) 

description, 630, 631 
example, 630 
Li ]yPond, 664 
tab1e of,631 

\oscillograph (eire), 578 
oscilloscope channels, see PSTricks index 
oT syntax (PMX), 630, 631 
ot syntax (PMX), 630, 631 
oTO syntax (PMX), 630 
oTi syntax (PMX), 630 
oTO syntax (PMX), 631 
ott syntax (PMX), 630, 631 
ou syntax (PMX). 630, 631 

\Oval (axodraw), 559 
\oval, 43 

(pict2e), 43, 'IS, 46 
ovals, drawing. 45, 46 
overlayarea env. (beamer), 770 
overlays, slide, see slides (color), overlay specification 
overprint env. (beamer), 770 
ox syntax (PMX), 630, 631 

\oxazolev (hetarom), 530 
\oxazolevi (hetarom),530 
\oxqu (MusiXTEX), 592 

oztex option (pict2e), 43 

P 
P syntax (PMX), 642 

\ P  (chemsym), 517 
packages 

P!CTEX, 5, 13, 14, 541 
Xy-pic, xxvi, xxviii, 5, 9, 16, see also Xy-pic il1dex 
X1MfEX, 520-540 

packages (COlli.) 
abc,612-615 
AlDraTex, 15 
aliphat, 520, 532 
allt!,790 
amsmath, 361, 483, 484, 752, 753, 759 
amssymb,515 
amstex, 517 
amsthm, 753 
array, 737, 764 
array job, 322 
axodraw, 555, 558-561 
babel, 124, 515 
bar, 15, 162 
beamerouterthemesidebar,774 
bg, 696-698 
bridge,699-702 
calc,323 
carom, 520, 524 
cchess, 687-690 
ccyde, 520, 530 
chemist, 537, 540 
chemstr, 520 
chemsym, 512, 517, 518, 519 
chess, 668, 677, 680, 687. 690, 691 
chessboard,668, 669, 673 
chessfss, 668, 669-673, 674, 678, 680 
chmst-ps, 537 
eire, 576-582 

(O-P) 863 

color, 21 5, 216, 235, 304, 719-722, 726, 728, 730, 737 
colordvi,719 
colortbl, 720, 721, 737-751 
createsudoku,710-712 
crosswrd, 702-704 
curve2e. 47-5O 
curves, 15,47 
cwpuzzle, 704-708, 709 
dcolumn,737 
diagram, 482 
diagxy,482 
diversity, 549 
DraTex, 5, 15 
cepic, 17, 20, 511, 521, 522 
emp, 120, 121, 167 
enpassant, 670 
epic, 15, 511, 520-522, 537 
epsfig,42 
extsizes, 753 
feyn, 555-558 
FeynArts, 555 
feynman, 555 
feynmf, 120, 561-572 
feynmp, 120,562, 572 
foiltex,719 
fontenc, 752 



864 (P) 

packages (COlli.) 
fp, 458 
fusering, 537 
gastex, 15, 438. 439 
90,690, 691 
graphics, 2, 3, 7, 8, 10, 23-27, 30, 33-40, 72, 277, 791 
graphkx, 23-25, 28-42, SOO 
heyde, 520, 532 
hepnicenames, 512, 560 
heppennames, 512, 560 
hepunits, 516, 517 
hetarom, 520, 528, 530, 534 
hetaromh, 520, 528, 534 
hhline, 737, 742, 750 
hyperref, 721, 753, 783, 798, 803-805 
if\hen, 136. 323, 503 
igo. 691-695 
infix-RPN,430 
inpulenc, 752, 753 
isotope, 518 
keyval, 33, 217 
listings, 790 
locant, 520 
longtable, 517, 737, 742 
lowcyde, 520, 526 
m-(h-en, 541-547 
makecirc,576 
make plot, 430 
mathptm,65 
methylen, 537 
mfpic, 21,52, 120, 122-136, 1)9, 583 
mproof, 73, 74 
mpsproof, 73, 74 
multido, 216, 458, 459 
multimedia, 774 
MusicTEX, 589 
MusiXTEX, xxvi, xxviii, xxxi, 588, 589-599, 602, 615-617, 

623, 628,634,635, 646-648, 658,660,661 
musixlyr.tex, 647, 659, 660 
nassflow,15 
nicefrac, 513 
paralist,683 
pict2e,7, 15, 42-47, 511  
piClexwd,14 
pifont,724 
polymers, 537 
ppchtex, 541-547 
preview, 458, 800-802 
printsudoku, 710-712 
psfrag,5 
psgo,691 
pspieture. 47, 511  
pst-3d, 216, 388-400 
pst-3dplot, 217, 234, 313, 388, 400-416 
pst-all, 216, 313 

packages (cont.) 
pst-asr, 217, 424 
pst-bar, 450 
pst-barcode, 453 
pst-blur, 449, 450 
pst-calendar, 452 
pst-eire, 309, 435 
pst-coil, 216, 455, 456 
pst-dbicons, 445 
pst-eps, 216, 457 
pst-eud, VIII,426 
pst-fill, 216, 255, 257, 383-387 
pst-fr3d, 388, 447 
pst-fractal, 456, 457 
pst-fune, 427 
pst-geo, 437, 438 
pst-gr3d, 388, 447 
pst-grad, 216. 448 
pst-infixplot. 429. 430 
pst-jtree. 425 
pst-labo,433 
pst-lens, 452 
pst-light3d.447 
pst-map2d,438 
pst-map2dll,438 
pst-map3d,438 
pst-map3dll, 388, 438 
pst-math, 224, 428, 429 

GENERAL INDEX 

pst-node, 214, 216, 313, 334-366, 379, 424 
pst-ob3d, 388, 446 
pst-optic, 434 
pst-osci, 434 
pst-pdf, 457, 458, 797, 800-803, 805, 806 
pst-pdgr, 431 
pSI-plot, 214. 216, 266, 313-334, 400, 406, 424, 426 
pst-poly, 43 I 
pst-Slpe, 449 
pst-spe<tra, 432 
pst-stru, 436 
pst-text, 216. 451 
pst-tree, 214, 216, 366-382, 424 
pst-uml, 442, 443 
pst-view3d,400 
pst-vue3d, 388, 393, 445 
pst-xkey, 217, 310-312 
pstcOI,215 
pstricks, 213-466, 515, 797, 800 
pstricks-add, 224, 257, 318, 323, 418-424 
rotating, 42, 392 
rrgtrees, 424, 425 
sfg, 442 
Slstyle, 513 
Slunits, 513-516 
sizeredc, 537 
skak, 668, 669, 673-679, 680, 682 



GENERAL INDEX 

packages (COllt.) 
slashed,557 
5liTEX,752 
solvesudoku, 710-712 
sudoku, 709, 710 
texmate, 668, 669, 673, 679, 680-687 
texshade, 547-SS0, 552 
textopo, 547, 551-555 
tikz, 5 
timing, 572-576 
tI9(, 835 
uC5,753 
uml, 443 
units, 513 
unitsdef, 513 
vau(anson-g, 439, 440 
)((olor, 7, 215, 216, 235, 258, 304, 406, 713, 719-737, 740, 

747. 753 
xkeyval,217,3IQ 
xq, 688 
KYling,491 
xymtex, 520, 537 
xymtexps, 537 
)(ymtx-ps, 537 
K)'tree, 491 

padding key (chessboard), 669 
\pagecolor (xcolor), 720, 725 

Pages syntax (M-Tx), 655 
pages (musical) 

breaks, 642 
layout, 642 
numbering, 642 

Pages : syntax (M-Tx), 652 
pilrillist package, 683 

\parbox, 37, 40 
parens ( { .  _ _  ) j. slur symbol, 607, 608 
parent key (bearner), 778, 793 

\part (bearner), 779 
part key (bearner), 782, 783 
Part : syntax (M-Tx), 652 

\pascal (Slunits), 514 
\PAUSe (MusiXTEX), 592 
\PAuse (MusiXTEX), 592 
\pause 

(MusiXTEX), 592, 594 
(beamer), 763, 764, 765, 783 

\pausep (MusiXTEX), 592 
pausesections key (beamer), 782, 783 
pausesubsections key (beamer), 783 

\pawn (ehessfss), 672 
PBM (portable bitmap) format, 7 
pbmtopk program, 7 
PCTeX program, I I  

pctex32 option 
(graphies!graphicx),24 
(x(Qlor),721 

pctex32 program, 24 
pctexhp option 

(graphics!graphicx),24 
(xeolor),721 

pctexhp program, 24 
pctexps option 

(graphicsfgraphicx},24 
(xeolor), 721 

pctexps program, 24 
pctexwin option 

(graphics!graphicx),24 
(xeolor),721 

pctexwin program, 24 
PDF language, I I ,  12 

. pdf file extension (pst-pdf), 806 
pdferop program, 804 
pdfinfo program, 804 

(P) 865 

pdflatex program, xxvi, xxviii, 6, 7, 797, 800, 801, 803, 80S, 806 
PDFs 

creating 
dvjpdfm program, 798-800 
dvjpdfmx program, 798-800 
from LKfEX,803-807 
from PostScript, 800, SOl, 802, 803 
music scores, 614 
overview, 797 
pst-pdf package, 800, SOl, S02, 803 

description, I I ,  12 
viewers, 12 
vs. PostScript, I I ,  12 

pdftex option 
(graphics!graphicx),24 
(pict2e),43 
(xeolor),721 

pdftex program, 14,24,618, 721, 797, 798 
pdftops program, 806 

\PED (MusiXTEX), 592 
\pentamethylene (methylen), 53S 
\pentamethylenei (methylen), 538 

peptide sequences 
aligning, 54S-55O 
h igh lighting, 54S-550 
sequence fingerprints, 550 
shading, 548-550 

\per (Slunits), 516 
percent sign (%), comment indicator, 619 
Periodic Table of the Elements, 519 
pertab . tex file (ehemsym), 517 

\peta (Slunits), 5 IS 
\pfet (eire), 577 

pgfborder key (chessboard), 669 
\pgfdeclareimage (beamer), 776, 777, 792 



866 (P) 

\pgfuseimage (beamer), 777, 792 
pgn2Jtx program, 687 
phenanthrene derivatives, 525 

\phenanthrenev (carom), 524, 525 
photographs, 4 

\Photon (axodraw), 559, 561 
\PhotonArc (axodr3w), 559 

photons (Feynman diagrams), 561 
physics option (cire), 577 
physics diagrams, see METR iudex 

\PianoStaff (LilyPond), 665 
. pic file extension, xxxi 
pic language, 17-20 
pic program, 17, 583,585 
pickups (musical), 620, 654 

bar length, 620 
\pico (Slunits), 515 
\picobarn (hepunits), 516 

pict2e package,7,15, 42-47, 511 
PtCTEX package. 5, 13, 14, 541 
pictexwcl package, 14 
picture env., xxvii, 5-7, 9, 15, 16, 19, 20,44, 520, 534,541, 555, 

568, 573,797 
(axodraw),559 
(cwpuzzle). 70S, 708 
(pict2e),42 

pictures, see a/50 drawing 
character-based, 13 
from fonts, 13 
photographs, 4 
pic language, 17-20 

pie charts, see META il/dex 
\piece (cchess), 688, 689, 690 

piececolor key (chessboard), 669 
pifont package, 724 
pin conne.:tions, 579 

\Pinhole (circ), 580, 581 
pitch (musical) 

abc notalion system, 603 
abc2mtex, 603 
LityPond, 662 
MusiXTEX, 590, 593 
PMX, 622 

,pk file extension (feynmf), 563 
placement, see positioning 
plain key (beamer), 759, 792 
plotting, see a/so graphs 

drawing tools for, 2, 17 
gnuplot, 17, 18 
programs for, 17 

PLUS syntax (m-ch'en), 546 
plus sign (+), color expression, 732 

\PM (eirc), 580 
PMX language, xxviii, 616, 617, 618-649, 651-654, 656, 657, 659, 

660 

GENERAL INDEX 

. pmx file extension, xxxi 
(PMX), 618, 6<\7 

PMX notation system, see music scores (PMX) 
PHX ; syntax (M-Tx), 652 
pmxab program, 59{J, 618-649, 651 
pmxaerr . dat file (PMX), 618 

. png file extension (pst-pdf), 806 
\pnp (circ), 577 

Poet ; syntax (M-Tx), 652 
pointed rhythms (musical), 624 

\Polar (cire), SM, 581 
polygon keywords (Feynman diagrams), 567, 568 

\polyline (curve2e), 47, 49 
polymers package, 537 
polymethylene commands, 538 
portable bitmap (PBM) format, 7 

\position {texmate), 682, 684 
position env. 

(bg), 696, 697, 698 
(cchess), 688, 689, 690 

posti t syntax (beamer), 776 
PostScript 

description, 10, 1 I 
drivers, 1 1  
Feynman diagrams, 558-561 
from TEX DVI, 11 
PDFs from, 800, 801 , 802, 803 
viewing, 10, 1 1  
vs. PDF, 11,  12 

PostScript language, 10, I I  
postscript env. (pst·pdf), 802 

\power (Slunits), 516 
\PP (chemsym), 517 
\pp (LilyPond), 664 

ppchtex package, 541-547 
\Pr (ehemsym), 517 
\pr (chemsym), 517 
\preparediagram (texmate), 685 

prepmx program, 651-660 
presentation option (beamer), 753 
presentations, see slides 
preview package, B00-802 

\PreviewEnvironment {pst-pdf), 801 
primary colors, 717 

\printarrow (skak), 676 
\printboard (bg),697, 698 

printing 
chess board, 675 
chess moves, 675, 677 

\printknightmove (skak), 676 
printsudoku package, 710-712 
program files, obtaining 

web access, 810, 811, 812, 813, 814 
prologue option (xcolor), 721 
proof env. (beamer), 753, 769 



GENERAL INDEX 

\protect (190),695 
\providecolor (xcolor), 726, 727. 728 
\providecolorset (x(olor), 727, 728 

· ps file extension (graphics/graphicx), 35 
ps option (skak), 676 

· ps. bb file extension (graphics/graphicx), 35 
· ps. gz file extension (graphics/graphicx), 35 
ps2eps program, 615 
ps2epsi progrum, 615 
ps2pdf program, 797, 801-806 
ps2pdf1 3 program, 804, 80S 
psfrag package. 5 

\psframebox (xcolor), 733 
psgo package, 691 
psmatrix enll. (pSI-pdf), 800 
pspicture enll, (pst-pelf), 800 
pspicture package, 47, 511 
pst-euel package, VIII 
pst-pdf package, 797. 800-803, 80S, 806 

\psUobject (pst-pdf), 800 
pstarrows option (pict2e), 44 
PSTricks, see PSTricks index 
pstricks option (pst-pelf), 800 
pstricks package, 515, 797, 800 

\pt (MusiXTEX), 594 
\pteridinev (hetaroml, 530 
\pteridinevi (hetaroml, 530 
\PText (axodrawl, 559 
· ptx file extension, xxxi 
\purinev (hetarom), 520, 530 
\purinevi {hetarom),530 

purity of color, 718 
purple syntax (xeolor), 726 

\put 
(curve2e), 48. 49 
(cwpuzzle), 705 

Puzzle env. (cwpuzzle), 704, 705, 707, 708 
\PuzzleBlackBox (cwpuzzle), 708 
\PuzzleClueFont (cwpuzzle), 708 

PuzzleClues env. (cwpuzzle), 705 
\PuzzleFont (ewpuzzle), 708 
\PuzzleHook (ewpuzzle), 705, 708 
\PuzzleLetters (cwpuzzle), 708 
\PuzzleLettersText (cwpuzzle), 708 
\PuzzleNumberFont (cwpuzzle), 708 
\PuzzleNumbers (cwpuzzle), 708 

puzzles, see crosswords, see Sudoku 
\PuzzleSolution (cwpuzzle), 705, 706, 708 
\PuzzleUnitlength rigid length (cwpuzzle), 708 
\PuzzleUnsolved (cwpuzzle), 705 

PuzzleWords env. (cwpuzzle), 707 
\PuzzleWordsText (cwpuzzle), 707 
\pvmos (eire), 577 
\pyranose (hcycie), 532 

pyranoses derivatives, 532 

\pyrazinev (hetarom), 524, 530 
\pyrazolev (hetarom), 530 
\pyrazolevi (hetarom), 530 
\pyridazinev (hetarom), 530 
\pyridazinevi (hetarom), 530 
\pyridinev (hetarom), 530 
\pyridinevi (hetarom), 530 
\pyrimidinev (hetarom), 530 
\pyrimidinevi (hetaroml, 530 
\pyrrolev (hetarom), 530 
\pyrrolevi (hetarom), 530 

Python program, 661 

Q 
\0 (eire), 577 

Q :  syntax (abc), 602, 610 
\qa (MusiXTEX), 593, 594, 595 
\qb (MusiXTEX), 596, 597, 599 
\qbezier, 46, 47 

(pid2e), 46, 47 
\qbeziermax, 46 
\ql (MusiXTEXl, 592, 593, 596, 597, 599 
\qlp (MusiXTEX), 599 
\qp (MusiXTEX), 592, 594, 599 
\qqs (MusiXTEX), 592 
\qs (MusiXTEX), 592 
\qu (MusiXTEX), 592, 593, 594-596, 597 

quadratic Beziercurves, 46, 47 
quadruplets (musiCllI), 605 

\queen (ehessfss), 672 
\quinazolinev (hetarom), 530 
\quinazolinevi (hetarom), 530 
\quinolinev (hetarom), 530 
\quinolinevi (hetarom), 530 
\quinoxalinev (hetarom), 530 
\qupp (MusiXTEX), 592 

R 

R syntax 
(PMX), 639 
(m-eh-en), 542, 544 

\R (cire), 577, 581 
r syntax (PMX), 625, 626, 628 

\r . . .  (MusiXTEX), 594 
R :  syntax (abc), 608 
radii, specifying, 45, 46 
rand (pic), 19 

\ranl (timing), 575 
\rawboard (bg), 697 

Rb syntax (PMX), 639, 640 
rb syntax (PMX), 625, 626 
RD syntax (PMX), 639, 640 
Rd syntax (PMX), 639, 640 
Rdl syntax (PMX), 640 

(P-R) 867 



868 (R-S) 

\Re (chemsym), 517 
\re (chemsym), 517 

reaction equations, 545 
rea(tion schemes, 540 

\reactrarroll' (chemist), 540 
read key (graphicx), 29, 34 
readability, and color, 718 

\reciprocal (Slunits), 516 
rect (pic), 19 
red syntax (xcolor), 722, 726, 727 

\reduceallcells (solvesudoku), 7/1 
\reducedsizepicture (xymtex),5J8 
\reflectbox (graphics/graphicx), 37 
\relat ive (LityPond), 662-665 

repeat symbols (musical), 603 
repeats (musical), 639 

\RequirePackage, xxxii 
\resetcolorseries (xcoiorl, 734, 735, 736 
\resigns (texmate), 683 
\resizebox 

(graphiC5/graphicx), 38, 39 
(graphics), 27 

\resizebox* (graphics/graphiex), 38, 39 
resizing 

bounding box, 27 
graphic objects, 38, 39 
text,JS, 39 

\restoregame (skak), 679 
rests (musical), 592, 625, 626 

LityPond, 663 
\reverseallabreve (MusiXTEX), 592 
\reverseC (MusiXTEX), 592 

RGB option (xeolor), 721 
RGB syntax (xcotor), 728, 729 
rgb option (xeotor), 721 
rgb syntax 

(color), 720 
(xeotor), 720, 722, 727-729, 732 

RGB (Red, Green, Blue) color, 715, 719 
\rh (MusiXTEX), 594 

right (pic), 19 
right key (bearner), 777 

\rightdiagramturn (texmate), 686 
\rightrepeat (MusiXTEX), 592 

rightskip key (bearner), 777, 794 
Rl syntax (PMX), 640 
Rlr syntax (PMX), 640 
rm syntax (PMX), 625, 626 

\rmoiety (chemstr), 522 
\rook (ehessfss), 672 
\roqu (MusiXTEX), 592 

Rosegarden program, 588 
ROT syntax (m-eh-en), 544, 545 
rotate env. (rotating), 42 

\rotatebox 
(graphies/graphicx), 36, 39, 40 
(graphies),27 
(graphicx), 24, 33, 39, 40, 42 

rotated material, hiding, 25 
\rotategoban (igO), 695 
\rotategobanleft (igo),695 
\rotategobanright (igO),695 

rotating 
bounding box, 27, 31, 32 
chemical structures, 544, 545 
Go board, 695 
graphic objects, 39-42 
\includegraphics keys, 29 
reference points, 40-42 

rotating package,42 
rounded key (beamer), 777, 778 

\rowcolor 

GENERAL INDEX 

(eolortbl), 739, 740, 741, 747, 748, 750, 751 
(xeolor), 763, 765 

\rowcolors (xeolor), 740, 741, 751, 763, 765 
rows (table), color 

alternate, 739, 740 
selected, 746 

rp syntax (PMX), 625, 626 
\rpcubed (Slunits), 516 

rpo syntax (PMX), 625, 626 
\rq (MusiXTEX). 596 

Rr syntax (PMX). 640 
\rsqu (MusiXTEX), 592 
\rtetrahedral5 (aliphat), 540 
\rText (axodraw), 559 
\rtrigonal (aliphat).533 
\Rvar (eire), S77 
\ryl (ehemstr). 535, 536 

RZ syntax (m-ch-en), 542, 543, 544 
Rz syntax (PMX). 640 

S 

5 syntax (m-ch-en), 544 
'S 

(chemsym),517 
(eire), S77 

s syntax 
(LilyPond),662 
(PMX), 624, 625, 630, 634, 648 

sample. sud file (tgle), 710, 711 
saturation, 717 

\savegame (skak). 679 
58 env. (chemsym). 517 
58 syntax (m-ch-en), 544 
5b env. (amstex), 517 

\sbox, 725 
sc syntax (PMX), 625 
Scalable Vector Graphics (SVG), 12, 13 



GENERAL INDEX 

scale key (graphkxj, 29, 30 
\scalebox 

(bearner), 774 
(graphics/graphicx), 37 
(graphics), 2? 

scaled material, hiding, 25 
\scaletopo (textopo), 551, 553 

scaling 
bounding box, 27, 29 
graphic objects, 37 
\includegraphics keys, 29, 30 
text, 37 

scaling factor, 29, J() 
5<heme program, 661 
scid program, 687 
science diagrams, see PSTricks i/ldex 
scientific texIs, see also bioinformatics, see a/so chemical 

formulas, see also Feynman diagrams 
abbreviations, 513 
chemical elements, symbols for, 512 
chemical symbols, 517, 5/8 
consistency, 512 
�d" in integrands, 513 
electronics diagrams 

drawing position, moving, 580 
electronic box symbols, 578 
examples, 581, 582 
font tor, 576-582 
gate symbols, 578 
integrated circuil symbols, 579 
interactive generation, 586 
junctions, 579 
m4 macro processor, 583-585 
pin connections, 579 
symbol connections, 579 
symbols, 577 
trigger symbols, 578 

mathematical functions, symbols for, 512 
Newtonian mechanics symbols, 580 
numbers, symbols for, 512 
optics diagrams 

experimental setup, 581 
font for, 576-582 
symbols, 580 

state names, symbols for, 513 
symbols, 512 
tablcof, 512 
timing diagrams 

annotation, 573 
arrows,575 
customizing, 576 
fonts, specifying, 573 
labels, 573 
overview, 572-576 
separation between lines, 576 

scientific texts (cont.) 
signal lines, 573 
symbols argument, 573, 575 
timing values, 573 
vertical line adjustment, 576 
vertical lines, 576 

units 
base, 514 
combining, 516 
derived,514 
high-energy physics, 516 
prefixes, 514 
SI (International System of Units), 512-516 
spacing between, 5/5 
symbols for, 512 
typeset style, 515 

wave names, symbols for, 513 
Scientific Word program, 24 
seor2prt program, 647 

\ScrL (eire), 580, 58/ 
\ScrTL (eirel,580 
\sDEP (MuSiXTEX), 592 
\second (Slunits), 514, 516 

secondary colors, 717 
\section (beamer), 779 

sectioning commands, slides, 779 
sections key (beamerl, 783 
sectioDstyle key (beamer), 783 

\segno (MusiXTEX), 592 
\selectcolonnodel (xeolor), 730 

self-contained object-oriented drawings, 4 
semiverbatim env. (beamer). 790, 791 
sep key (bearner), 776, 777 

\seqtype (teKshade). 549 
\sequence (textopa). 551. 553 

sequence fingerprints, 550 
series key (beamer), 793, 794 
series ... key (beamer), 793 

\setbeamercolor (beamer), 760, 776, 778, 793, 794 
\setbeamercovered (bearner), 760, 767 

(S) 869 

\setbeamerfont (beamer), 778, 788, 789, 793, 79·/ 
\setbeamertemplate (beamer), 773, 774, 777, 778, 793, 794, 

795 
\setboardfontfamily 

(chessfss). 673 
(skak). 675 

\setboardfontsize (chessfss), 673 
\setchessboard (chessboard), 669 
\setchessfontfamily 

(ehessfss), 673 
(skak), 678, 679 
(texmate), 683, 686 

\setclef (MusiXTEX),596 
\SetColor (axodraw), 559 
\setends (teKshade). 548-550 



870 (5) 

\setfigfontfamily 
(chessfss), 670, 671 
(skak), 678 

\setfigstyle (chessfss), 672 
\setinffontfamily (CheSSBS), 673 
\setkeys 

(graphicx), JJ 
(keyval),33 

\SetOffset (axodraw), 559 
\SetPFont (a�odraw), 559 

set pieces key (chessboard), 669 
\SetSca!e (axodraw), 559 
\SetScaledQffset (axodraw).559 
\setstaffs (MuSiXTEX), 596 
\setsudrandom (createsudoku). 711 
\setTextDecresc (lilyPond), 664, 665 
\settextfigchars (chessfss), 672 
\settextfigfontfamily (chessfss), 672 
\settextfiglanguage (chessfss), 672 
\setupboard (skak), 675 
\setupchemical (m-ch·en},54I, 545 
\setvolta (MusiXTEX), 592 
\setvoltabox (MusiXTEX), 592 
\SetWidth (axodraw), 559 
\sh (MusiXTEX), 593 
\shadincolors (texshade), 550 

shading 
color, 731 
nucleotide sequences, 548-550 
peptide sequences, 548-550 

\shadingmode (teKshade), 549, 550 
shadow key (bearner), 776, 777, 778 

\Shake (MusiXTEX), 592 
\shake (MusiXTEX), 592 
\Shakel (MusiXTb(). 592 
\Shakene (MusiXTEX), 592 
\Shakenw (MusiXTEX), 592 
\Shakesw (MusiXTEX), 592 

shape key (bearner), 789, 793 
shape* key (bearner), 793 
sharp symbol (musical), 605 
Sharps:  syntax (M-Tx), 652, 658, 660 

\shift (eire), 580, 581 
shortenstart key (chessboard), 669 

\shortstack Ogo), 693-695 
show key value (beamer), 753 

\showall (skak), 676, 677 
\showallbut (skak), 676, 677 
\showboard 

(skak), 675, 676-678 
(texmate), 680, 684 

\showconsensus (texshade), 548 
\showcube (bg), 696, 697 

showerrors option (xcolor), 721 
\showfullgoban (1go), 693 

\showgoban (igo), 692, 693, 694, 695 
showing, see hiding/showing 

\showinverseboard (skak),675 
\showlegend (texshade), 550 

showmover key (chessboard), 669 
\showmoverOff (skak), 676 
\showmoverOn (skak), 676 
\showmoves (bg),698 
\shownames (texshade), 549 
\shownumbers (bg), 696, 697 
\showonly (skak), 676, 677 
\showonlyblack (skak), 676 
\showonlywhi te (skak), 676 
\shoWTowcolors (xcolor), 740 
\shoWTuler (texshade), 549 

shrink key (beamer), 759 

GENERAL INDEX 

SI (International System of Units), 512-516 
5ibelius program, 588 
sidebar left syntax (beamer), 773 
sidebar right syntax (beamer), 777 
sidewaysf igure env. (rotating), 42 
sidewaystable enll. (rotating),42 

\sievert (5Iunits), 514 
signal lines, 573 
sin (pic), 19 
single-object drawings, 3, 4 
51style package, 513 

\SIunits (5Iunit5), 515 
51units package, 513-516 
SIunits .  cfg file (Slunits), 516 
SIX syntax (m-ch-en), 542 

\sixfuseh (fusering). 537 
\sixfusehi (fusering), 537 
\sixfusell (fusering), 537 
\sixfuselli (fusering), 537 
\sixheteroh (hetarom), 529 
\sixheterohi (hetarom),529 
\sixheterov (hetarom), 523, 528, 529 
\sixheterovi (hetarom), 529 
\sixunitv (hetarom),534 

Size syntax (M-Tx), 655 
size key (bearner), 778, 793, 794 
size. key (beamer), 793 
Size : syntax (M-Tx), 652 
sizeredc package, 537 

\sk (MusiXTEX), 595 
skak package, 668, 669, 673-679, 680, 682 

\SkakOff (texrnate), 680, 682 
\slashed (slashed), 557 

slashed package, 557 
\SLens (eire), S/W, 581 
\slide (MusiXTEX), 592 

slides document class, 713 



GENERAL INDEX 

slides (color) 
choosing colors, 756 
creating, 754-758 
fonts, 758 
frames, creating, 7.58 
hiding/showing, see slides (color), overlay specification 
macros, 758 
main features, 752 
modes, 752 
options 

beamer class, 752 
conditional, 760 
frame environment, 759 

presentation structure, 758, 759, 760, 761 
slyles,754 
tables, 780 
templates, 754 
themes, 754-757 
litle pages, 761 
litles, 759 

slides (color), overlay specification 
actions, 770 
animation, 774 
bibliographies, 782 
block environments, 778. 779 
boxed text, 775, 776 
colored text, 775, 776 
creating, 763 
definition, 760, 762 
dissolves, 774, 775 
dynamic text, holding static, 770 
figures, 780 
footnotes, 789 
for existing LXJEX environments, 769 
framing text, 775, 776 
graphics, 792 
hiding/showing 

alternative text, 769 
opaqueness, 768 
slide elements, 767 
spedfic rows, 765 
successive columns, 763 
successive rows, 763 
transparency, 768 

highlighting parts of elements, 771 
hyperlinks, 784-818 
labels, 785 
list items, 786-788 
logos, 776, 777 
movies, 774 
multiple columns, 780 
navigation bar, 772, 773. 774 
overlay areas, 770 
preformatted text, 79(), 791 
sectioning commands, 779 

slides (color), overlay specification (COllt.) 

sound, 774 
source code representation, 791 
specifying, 765 
table of contenls, 782 
tables, 780 
text styles, 789 
transitions, 774, 775 
verbatim text, 79(), 791 
video, 774 

\slice (timing), 574, 576 
SliTEX package, 752 
slope arguments, 44 
slurs (musical) 

abc2mte)(, 607 
blind, 655 
broken, 655 
description, 654, 655 
dolled, 655 
K type, 636 
LilyPond, 663, 664 
M type, 637, 638 
MusiXTE.X commands, 597 
notation, 654 
PMX. 634, 635, 636-638 

\small 
(UlyPond), 663 
(chessfss), 671 

small option (skak), 675 
\smallaltoc1ef (MusiXTEX), 592 
\smallbassclef (MusiXTEX), 592 
\smallboard 

(bg), 696, 697 
(cchess), 69() 
(skak), 675, 678 

smaller option (beamer), 753 
\sma1lgoban (igo), 694 
\smallmusicsize (MusiXTEX), 596 
\smalltrebleclef (MusiXTEX), 592 

solvesudoku package, 710-712 
song litle, 602 

\sound (beamer), 774 
sound, slides, 774 
source code representation, slides, 791 
SPACE syntax (m-ch-en), 546 
Space syntax (M-T.), 655 
space, trimming, 28, 30 
Space : syntax (M-T.), 652, 659, 660 

\spade 
(bridge), 700, 702 
(Ugc), 699 

\spadesui t, 698, 699 
\special, 6-8, 9, 15-17, 20, 22, 35, 583, 690, 797 

(tpic), 583 
()(color),719 

(S) 871 



872 (5) 

special color spaces, 715 
spectrum, displaying, 729 

\sPED (MusiXTEX), 592 
\spind (eire), 580 
\spinu (eire), 580 

spline (pic), 17, 19 
\spring (eire), 580 

SPSS prognllll, 21 
sqrt (pic), 19 

\squ (MusiXTEX), 592 
\square 

(Slunits), 516 
(aliphat), 532 

square brackets ([])  
chord symbols (musical). 608 

\squared (Slunits), 5J6 
\squaremetrepersquaresecondnp (Slunits), 516 

squeeze key (beamer), 759 
SR syntax (m-ch-en), 544 

\55 (chemsym), 517 
55 syntax (PMX), 624, 625 
sse syntax (PMX), 625 

\ST (eire), 578 
staccato marks (musical), 607 
staccato ornaments (musical), 630 

\Staff (LilyPond), 665 
Start : syntax (M-Tx), 652 

\startchemical (m-ch-en),54I, 542, 543-546 
\startextract (MusiXTEXl, 594, 596 
\startpiece (MusiXTEX), 594, 599 

state names, symbols for, 513 
staves (musical) 

accidcntals, 622, 624, 628 
arpeggio, 629 
basic duration, 622 
beams, 631, 632, 633 
beams for xtuplets, 627, 628 
chords, 628, 629 
clef changes, 639 
defining, 652 
definition, 617 
dotted notes, 622 
doubly dotted notes, 622 
down fermata ornaments, 630 
duration of notes, 622 
dynamical marks, 638 
grace nOles, 629, 630 
grace notes, in xtuplets, 627 
height, 620 
horizontal displacement, 624 
note parameters, 624, 625 
notes, 622, 623, 624 
number of,619 
octaves, 623 
on staves, 622-624 

staves (musical) (COllI.) 
ornaments, 630, 631 
parameters, 623, 624, 625 
pilCh,622 
pointed rhythms, 624 
rests, 625, 626 
slurs, 634-638 
staccato ornaments, 630 
stems, 623, 624 
tenuto ornaments, 630 
ties, 634, 635, 637 
xtuplets, 626, 627, 628 

\stemDown (lilyPond), 663 
\stemNeutral (LilyPond),663 
\stemNeutraltiny (LilYPond), 663 

stems (musicai), 623, 624 
\stemUp (LilyPond), 663 

step key (beamer), 795 
step synlax (xcolor), 734, 736 
stereochemical compounds, 530-532 
stereochemistry effects, 538 

\steroid (carom), 524, 526 
steroid derivatives, 525, 526 

\steroidchain (carom), 524 
stillcovered key (beamer), 768 

\STINV {circ), 578 

GENERAL INDEX 

\stopchemical (m-ch-en), 541, 542, 51/3-546 
\storegame {skak),679 
\structure (beamer), 788, 789 

structure syntax (beamer), 789 
structured drawing, 20 
structures, chemical 

atoms, aligning with bonds, 546 
basic commands for, 541, 542 
bonds 

aligning atoms or molecules. 546 
chemical,542 
description, 543 
identifiers, 544 

combinations, 54,1, 545 
combining, 534 
complex, 534, 535 
libraries of, 543 
molecules. aligning with bonds, 546 
moving, 544. 545 
positioning, 544. 545 
reaction equations, 545 
rotating, 544, 545 
substructures, 543 

Style: syntax (M-Tx),65I, 652 
\styleA (skak), 679 

styleA option (skak), 679 
\styleB (skak), 679 

styleB option (skak), 679 
\styleC (skak), 679 



GENERAL INDEX 

styleC option (skak), 679 
styles 

arrows (pict2e), 44 
chess moves, 679 
fills, 564, 565 
lines 

Feynman diagrams, 564, 565, 566 
thickness, 566 

slide text, 789 
s lides, 754 
units typeset, 515 
vertices, 564, 565 

SUB syntax (m-ch-en), 544, 545 
\subsection (beamer), 779 

subsectionstyle key(beamer), 783 
\substfont ()(ymte)(ps), 540 
\substfontsize ()(ymtexps), 540 
\substitutecolormodel (xcolor), 730 

substitution derivation, 539 
\subti tIe (beamer), 761 

subtractive color space, 715 
sud _ out file (solvesudoku), 711 
Sudoku, 709-71 1, 71 2  

\sudoku 
(createsudoku), 71 1 
(printsudoku), 710 
(solvesudoku), 711 

sudoku env. (sudoku), 710 
sudoku package, 709, 710 
sudoku-block env. (sudoku), 709, 710 

\sudokuformat (sudoku), 709, 710 
\sudokusize rigid length (sudoku), 709, 710 
\sudokusolve 

(createsudoku), 71 I 
(solvesudoku),711 

SVG language, 12, 13 
SVG (Scalable Vector Graphics), 12, 13 
svgnames option (xmlor), 721 
svgnames* option ()(color), 721 

\symbishop (chessfss), 671 
\symbol, 691 

symbols 
chemical diagrams, 512, 517, 518 
electronics diagrams 

connections, 579 
electronic box, 578 
gate, 578 
integrated circuits, 579 
stale names, 513 
table of, 577 
trigger, 578 
wave names, 513 

mathematical functions, 512 
musical 

( . . .  ) ,  slur symbol, 607, 608 

symbols (COl1t.) 
- (hyphen), lie symbol, 607, 608 
= (equal sign), natural symbol, 605 
[] (square brackets), chord symbols. 608 
A(caret), sharp symbol, 605 
AII(carets), double flat symbol, 605 
_ (underscore), flat symbol, 605 
_ _  (underscores), double flat symbol, 605 
accidenlais, 605 
bar symbols. 603, 639 
definition, 617 
notes, 592. 593, 594 
order of, 608 
repeal, 603 

Newtonian mechanics, 580 
numbers, 512 
optics diagrams, 580 
scientific texts, 512 
unils, 511 
wave names, 513 

symbols argument, 573, 575 
\symking (chessfss), 671 
\symknight (chessfss), 671 
\sympawn (chessfss), 671 
\symqueen (chessfss), 671 
\symrook (chessfss), 671 

Systems syntax (M-Tx), 655 
systems (musical) 

definition, 617 
indentation, 620 
numberof, 620 

Systems : syntax: (M-h), 652 

T 
T key (beamer), 781 
t key (beamer), 759, 781 
t option (beamer), 753 
T :  syntax: (abc), 601, 602, 603, 606, 608 
tabbing env., 688, 701 
table en .... (beamer), 780 
table option (x:color), 721, 737 
table of contents, slides, 782 

\tableofcontents (beamer), 752, 782, 783 
tables, color 

cells, 741 
columns, 738, 747 
entire table, 743 
gaps between lines, 742 
gradients, 747, 748 
headings, 748 
highlighting elements, 745, 749, 750 
lightlex:t on dark background, 744 
lines (rules) 

adding, 748 
inside the table, 749 

(S-T) 873 



874 (T) 

tables,color (collf.) 
partial, 751 
selected, 750 
whole table, 741 
width, 751 

rows 
alternate, 739, 740 
selected, 746 

slides, 780 
text, 745, 748 
titles, 748 

tabular env., 8, 39, 702, 737, 741 
(texmate},680 

tabular ... env. (colortbl), 737 
\takecube (bg), 698 

TB syntax (m-ch-en), 544 
\ tb (Mu$iXTEX), 599 
\ tbl (MusiXTEX1. 596, 597 
\ tbu (MusiXTEX). 596, 597 

Te syntax (PMX), 641 
tcidvi option 

(graphics/graphicx),24 
(xcolor),721 

templates, slides, 754 
tempo (musical), 602 

\temporal (beamer), 768 
tenor syntax (LilyPond), 661 
tenuto ornaments (musical), 630 

\tera (Slunits), 515 
\ tesla (Slunits), 514 
\ tetrahedral (aliphat), 532, 535, 540 

tetrahedral compounds, 532, 533 
tetrahedron carbon configurations, 533 
tetraline derivatives, 525 

\ tetralineh (carom), 524, 525 
\tetralinev (carom), 524, 525 
\tetralinevb (carom), 525 
\tetralinevt (carom),525 
\tetramethylene (methylen), 538 
\tetramethylenei (methylen), 538 
\ tetrastereo (aliphat),533 
\ TeVovercsq (hepunits), 516 
. tex file extension (PMX), 621 
tex program, 618, 637 
1FX file archives, 810, see also CTAN 
1FX files, obtaining 

web access, 810, 81 1, 812, 8/3, 814 
1FX, interfaces 

generating graphics, 8, 9 
graphic hooks 

\special commands, 9 
built-in commands, 8 
fonts, 8 

graphics integration 
\special commands, 6, 7 

TEX, interfaces (cont.) 
fonlS, 7,8 
half-tones, 7, 8 

manipulating graphics, 8 
overview, 6 

TEX-based drawing languages, \3-17 
texdoc program, 815, 816 
lexdoctk program, 815-817 
texmate env. (texmate), 680 

GENERAL INDEX 

texmate package, 668, 669, 673, 679, 680-687 
texshade env. (teKshade), 548, 549, 550 
texshade package, 547-550, 552 

\ Text (axodraw), 559-561 
texl 

blocks, 641 
colored, inside a box, 725 
in documents, 725 
resizing, 38, 39 
scaling, 37 
slides 

alternative, 769 
boxed, 775, 776 
colored. 775, 776 
framing, 775, 776 
holding static, 770 
preformatted, 790, 791 
styles, 789 
verbatim, 790, 791 

tables 
color, 745, 748 
light on dark background, 744 

\textbf (beamer), 788, 789 
\textbishop (chessfss), 671, 672 
\textcolor (xcolor), 720, 722, 723, 724 
\textit (beamer), 788, 789 
\textking (chessfss), 671 
\textknight (chessfss), 671, 672 
\textmove (bg),698 

textopo eny. (textopo), 551, 552, 553 
textopo package, 547, 551-555 

\textpa\lD (chessfss), 671 
\textpiece (cchess), 688, 689 
\ textqueen (chessfss), 671 
\textrm (beamer), 788, 789 
\textrook (chessfss), 671 
\textsf (beamer), 788, 789 
\textsl (beamer), 788, 789 

textstyle option (Slunits), 515 
texttopo env. (textopo), 551 
Textures program, II,  17, 24 
textures option 

(graphics/graphiex),24 
(xcolor),721 

\text\lidth rigid length (beamer), 777 
. tfm file extension, 666 



GENERAL INDEX 

\ tgqu (MusiXTEX), 592 
thebibliography env. (beamer), 782 
themes, slides, 754-757 
then (pic), 19 
theorem env. (beamer), 753, 769 

\thicklines 
(curve2e), 49 
(pict2e),45 

thickqspace option (Slunits), 515 
thickspace option (Slunits), 515 

\thinlines 
(curve2e), 48-5O 
(pict2e),45 

thinqspace option (Slunits). 515 
thinspace option (Slunils), 515 

\ Threat (texmate), 681, 682 
\ threat (texmate), 681, 682 

THREE syntax (m-<h-en), 542 
three-color harmonics, 718 
three-color theory, 714 
three-member carbon cycles, 528 

\threefuseh (fusering), 537 
\threefusehi (fusering), 537 
\ threefusev (fusering), 537 
\ threefusevi (fuseringl.537 
\ threehetero (hetarom). 523, 528 
\ threeheteroh (hetarom), 529 
\threeheterohi (hetarom), 529 
\threeheterov (hetarom), 529 
\threeheterovi (hetarom),529 

tHsb syntax (xcolor), 728, 729 
\THz (hepunits), 516 

Ti syntax (PMX), 641 
ties (musical), 607, 637 

PMX, 634, 635 
tightpage option (pst-pdf), 800 
tikz package, 5 

\til (timing),573 
tilde (-), grace notes, 607 

\timadjust (timing).576 
\ time (lily Pond), 663, 664, 665 
\times (lilyPond), 664 
\ timescalefactor (timing), 576 

timing env. (timing), 573, 574 
timing package. 572-576 
timing diagrams 

annotation, 573 
arrows,575 
customizing, 576 
fonts, specifying, 573 
labels, 573 
overview, 572-576 
separalion belweenlines, 576 
signal lines, 573 
symbols argument, 573, 575 

liming diagrams (COllt.) 
timing values, 573 
vCftical line adjustment, 576 
vertical lines, 576 

liming values, 573 
\timingcounter (timing),573 
\ tin (timing), 573, 574 

tinting, 731 
\TinveV (hepunits), 516 
\ tiny (lityPond), 663 

tiny option (skak),675 
\tinyboard 

(skak), 675, 677 
(teKmate), 686 

\title (beamer), 754, 757, 761 
title blocks (musical), 641 
title pages, slides, 761 
Title: syntax (M-TK),652 

\titlepage (beamer), 761 
titles 

chess, 683 
slides, 759 
tables, 748 

\tnote (timing), 573, 574 
to (pic), 19 

\too (texmate), 685 
\ toO. (texmate), 685, 686 
\ togglenumbers (bg),697 

top key (beamer), 795 
\topdiagramnames (texmate),686 
\ totalheight (graphics/graphi(x), 38 

totalheight key (graphicx), 29, 32 
totalwidth key (beamer), 781 
tpic prograrn, 583, 584 
trans option (beamer), 753 

\transblindshorizontal (beamer), 774 
\transblindsvertical (beamer), 774 
\transboxin (heamer), 774 
\transboxout (beamer), 774 
\transdissolve (beamer), 774, 775 
\transduration (beamer), 774 

transfig program, 13 
\transglitter (bearner), 774 

transitions, slides, 774, 775 
transparency, slides, 768 
transparent key (bearner), 767 

\transsplithorizontalin (beamer),774 
\transsplithorizontalout (beamer), 774 
\transsplitverticalin (beamer), 774 
\transsplitverticalout (bearner), 774 
\transwipe (heamer), 774 
\treble (MU5iXTEX), 596 

treble syntax (UlyPond), 661, 664 
\trebleclef (MusiXTEX), 592 

trees, see METR alld PSTricks illdex 

(T) 875 



876 (T-V) 

\triazinev (hetarom), 530 
\ triazinevi (hetarom), 530 

tricyetic carbocydes, 515 
trigger symbols, 578 
trigonal units, 532, 53) 

\Trille (MusiXTEX), 592 
\ trille (MusiXTEX), 592 

trim key (graphicx), 28, 29, 30 
\trimethylene (methyien), S38 
\trimethylenei (methylen),538 

trimming space, 28, 30 
triplets (musical), 605 

LifyPond, 664 
troff program, ] 7 
TrueTeX program, 24 
truetex option 

(graphic5igraphicx),24 
(xcolor),721 

\ tslur (MusiXTEX), 596, 597,599 
Tt syntax (PMX), 641 

\ttfamily (!>earner), 764 
TUG home page, BID, 811 

\turn (MuSiXTE;X), 592 
turn env. (rotating), 42 
turtle graphics. see META il/dex 
two-color harmonics, 718 
type key (graphicx), 29, 35 
typesetting, overview, 2, 3 
typographic conventions, this book, xxix, xxxi 

U 
\U (eire), 577 

u syntax 
(PMX), 625, 631, 633, 634, 636 
(abc), 6(l7 

U:  syntax (M-Tx), 657, 658 
ucs option (beamer), 753 
ues package, 753 
UML diagrams, see M£TRalld PSTricks index 

\uncover (beamer), 767, 768, 785 
uncoverenv env. (beamer), 770 

\underline, 672 
underscore L), flat symbol (musica]), 6(J5 
underscores L�), double flat symbol (musical), 6(J5 

\unit 

(Slunits), 515, 516 
(hepunits), 516 

\uni tlength rigid length 
(eurve2e), 48 
(piet2e), 45, 46 
(timing),573 

units 
base, 514 
combining, 516 
derived, 514 

units (COlli.) 
high-energy physics, 516 
prefixes, 514 

GENERAL INDEX 

SI (International System of Units), 512�516 
spacing between, 515 
symbols for, 512 
typeset style, 515 

units key (graphicx), 40, 42 
units package, 513 
unitsdef package, 513 

\upbo'ol (MusiXTEX), 592 
upper key (beamer), 776, 778 

\uppz (MusiXTEX), 592 
\Uptext (MusiXTEX), 599 
\uptrio (MusiXTEX), 592 
\upz (MusiXTEX), 592 
\upzst (MusiXTEX), 592 
\usebeamercolor (beamer), 79-1 
\usebeamerfont (beamer), 777, 79-1 
\usebeamertemplate (beamer), 777 
\usecolortbeme (beamer), 758 
\usefonttheme (beamer), 758, 76(J 
\usegoban (igo), 694, 695 
\useinnertheme (beamer), 758 

usenames option (xcolor), 721 
\useoutertbeme (beamer), 758, 773 
\useouthertheme (beamer), 758 
\usepackage, xxxii 

(beamer), 754, 758 
usepdftitle option (beamer), 753 

\usesymf ig (ehessfss), 672 
\usetextf ig (ehessfss), 672 
\usetheme (beamer), 758, 76(J 
\usf (MusiXTEX), 592 
\usfz (MusiXTEX), 592 
\usk (Slunits),  515, 516 
\ust (MusiXTEX), 592 

utfB option 
(beamer), 753 
(inputenc),753 

\Utrigonal (aliphat), 533 
\utrigonal (aliphat), 533 
\Uvar (eire), 577 

v 
V syntax (PMX), 640 

\ V (eire), 577 
v syntax (abc), 6(J7 
V: syntax (abc), 610 

\ var (texmate), 682, 683 
\ var. (texmate),682 
\variation (skak), 677, 678, 679 

variations env. (texmate), 682, 683 
variations. env. (texmate),682 

\ VariationsEnvironment (texmate), 683 



GENERAL INDEX 

\VECTOR (curvele), 47,50 
\Vector «(Urvc2e), 47, 48 
\vector, 43 

(curvele), 47, 48 
(pict2e), 43, 44, 46 

\VectorARC (curve2e), 50 
WectorArc «(Urve2e), 50 
\verb 

rotating output, 42 
(beamer), 790 

verbatim env" 13 
(beamer), 790 

\Vertex (axodraw), 559, 560 
vertex dots (Feynman diagrams), 5&J 
vertex mode (Feynman diagrams) 

algorithmic layout, 563-569 
blobs, 566 
coloring diagrams. 567 
complex vertices, 567 
definition, 563 
external vertices, placing, 564 
fill styles, 564, 565 
freezing a diagram, 567 
internal vertices, 566 
labels, 567, 568, 569 
line styles, 564, 565 
line thickness, S66 
line-drawing keywords, 566 
polygon keywords, 567,568 
vertex styles, 564, 565 
vertex-drawing keywords, 567 
vertices. as dots, 566 
vertices, connecting. 565 

vertex styles (Feynman diagrams), 564, 565 
vertex-drawing ke}'\vords (Feynman diagrams). 567 

\vertexlabel (feyn), 557 
vertical shading syntax (bearner), 795 
vertices (Feynman diagrams), 565. 566 

\vflipgoban (igo). 695 
video, slides, 774 
viewport key (graphiex), 28, 29, 30 
viewports, 28, 30 
violet syntax (xeolor), 726 

\visible (hearner), 768, 791 
visibleenv env. (hearner), 770 
vlabellift key (chessboard), 669 

\VLens (eire), 580 
\vline (eofortbl), 741 

vmode key (bearner), 777, 794 
voice (musical) 

definition,617 
labels, 653 
spacing after, 653 

\volt (Slunits), 514. 515 
vollas (musical), 640 

VTeX program, 1 1 , 24, 797 
vtex option 

(graphics/graphiex),24 
(pict2e).43 
(x(olor), 721 

\ vtopin (eire), 579, 581 
Vx syntax (PMX), 640 

w 
W syntax (PMX), 630 
W. syntax (PMX), 643 
w .  eps file (tlgc), 26 
W: syntax (abc), 608 
v:  syntax (abc). 611 

\va11 (eire), 580 
watermarks, see PSTrieks index 

\watt (Slunits), 5 14, 516 
\vattpersquaremetresteradiannp (SlunitS), 516 

vave syntax (xeolor). 728, 729 
wave names, symbols for, 513 

\wbetter (skak). 678 
vd key (hearner), 776, 777, 794 

\wdecisive (texmate}, 682 
WebCGM.13 

\veber (Slunits), 514 
\wedgehashedwedge (xymtexps), 538, 539 
\velo (texrnate),683 
wget program, 814 

\wh (MusiXTEX), 592, 593, 594 
\vhite (igo), 691, 692-695 

vhi te syntax (xeolor), 722, 723, 726 
\vhitebar (bg},697 
\vhitecube (bg),697 
\vhitename (texmate),683 
\whi teOnDlove (bg). 696, 697. 698 
\vhitepoint (bg), 696 
\vhitestone (igo), 695 
\vhp (MusiXTEX), 592 
\vidth (graphics!graphicx),38 
vidth (pie), 19 
width key 

(hearner), 778, 792 
(graphiex), 28, 29, 31-33 

\wire (eire), 579 
\vithidea (texrnate),681 
\VIllove (skak), 679 
\wname (texmate), 685, 686 
\Word (cwpuzzle), 707 
words (musical),617 

\writegame (solvesudoku), 711 
\writepuzzle (printsudoku), 710 
\vvire (eire), 579 

X 

X syntax (PMX), 632, 633, 643 

(V-X) 877 



878 (X-Z) 

x key (graphicx), 40, 41 
x syntax (PMX), 625, 627, 628, 630 
x11names option (xcolor), 721 
X :  syntax 

(PMX), 643 
(abc), 601, 602,603, 608 

XCircuit program, 576, 586 
xcolor option (beamer), 753 
xcolor package, 7, 713, 719-737, 740, 747, 753 

. xcp file extension (xeolor), 721 
xdvi option (pict2e), 43 
xdvi program, 24 
xetex option (xcolor), 720, 721 
xetex program, 798, 803 
rlig program, 1 , 6, 13,21, S86 

\xglobal (xcolor), 726 
xiangqi chess, 687, 688-690 

\XNOR (eire), 578 
\XOR (eire). 578 

xpdf program, 12, 804 
xq package, 688 

\xqu (MusiXTEX), 592 
xtuplets (musical), 626, 627. 628 
X1MTEX package. 520-540 
xymtex package, 520, 537 
xymtexps package, 537 
xymtx-ps package, 537 
Xy-pic package, xxvi, xxviii, S, 9, 16, see also Xy-pic index 

y 
y key (graphicx), <W, 41 

Lions 

Wanhogs 

,.\', 
" 

GENERAL INDEX 

yellow syntax (xeolor), 722, 724, 726 
\yocto (Slunits), 515 
\yotta (Slunits), SIS 

Young-Helmholtz law, 714 
\yqu (MusiXTEX), S92 

Z 

Z syntax (m-eh-en), S44 
z syntax 

(PMX), 628 
(abc), 603, 604, 607 

\z • . .  (MusiXTEX), 594 
ZO syntax (m-ch-en), 544, 546 

\zbreve (MusiXTEX). S92 
\zcharnote (MusiXTEX), 599 
\ZD (eire), 577 
\zepto (Slunits), SIS 
\zetta (SJunits), SIS 
\zh (MusiXTEX), 594 
\ZigZag (axodraw). 559, 560 

zigzag lines (Feynman diagrams), 559, 560 
zlib program, 799 

\zlonga (MusiXTEX), 592 
\zmaxima (MuSiXTEX), 592 
\znotes (MusiXTEX).595 
\zq (MusiXTEX), 596 
\zqb (MusiXTEX), 596 
\zw (MusiXTEX), 594 
\zwq (MusiXTEX), 592 

D, 

i(t) 

�I 

22W LJ 

GJ 

I 

D, 

Learn MetaUML-

3000 

User 

the McmPost UML tibrary 

z,. 

V <TV 



Symbols 

\ ( {pst-pdf}, 800 
\) {pst-pdf}, 800 

++ syntax (META), 52 
+-+ syntax (META), 52 

- syntax (META), 54 
. .  syntax (META),54 

_T (METAOBJ), 114 
3-D extensions 

animations, 209 
cubes, 210 
curve intersections, computing, 211 
globes, 209 
hexagonal meshes, 210 
labels in space, 211 

METAPOST files, creating, 209 
overview, 207 
packages for, 208-212 
perspective projection, 208 
physics diagrams, 209 
projected segments, 211 

requirements, 207 
3DLDF program, 211, 212 
3d METAPOST package, 68, 207-209 
3dgeom META POST package, 208 

M �TR�ONT and 
M�TRPO�T 

A 

abs (META),56 
Acrobat Distiller program, 797, 798 
active option (pst-pdf), 800 
activities, UML 

beginning, 187 
constructing, 1117 
ending, 187 

Activity (metaUML), 187 
Actor (metaUMl), 187 
actors, 187 
addto (META), 143, 146, 150, 176 

\addtocounter (mfpic), /36 
Adobe Reader program, 804, 817 
Adobe Illustrator program, 65, 137, 138 
affine transforms 

mfpi(, 136 
META language, 53 

align key (METAOBJ), 101-103 
alignment (METAOBJ) 

boxes 
horizontal, 101 
horiwntal separation, 102 
mixed objects, 102, 103 
vertical, IOJ, IOJ 
within frames, 104 



880 (A-B) 

alignment (METAOB J) (cont.) 
trees, 107, J08 

analytical curves (mfpicJ, 133 
angle (METRl, S3, 142, 191, 205 
angle key (M ETAOBJ), 86 
angle dimensions (mfpic), 127 
angleA key (METAOBJ), 85, 87-92, 9</, 177 
angleB key (METAOBJ), 85, 87, 88-91, 92, 94 
animation 

3d package, 208 
U13d package. 209 
META POST techniques, 156, 157 

annotations 
mfpic, 134 
drawings, 134 
pictures, 6/-64, 65 

\arc (mfpic), 127, 128 
arcangle key (METAQB J), 86 
arcangleA key (METAOBJ),8S, 88, 93 
arcangleB key (METAOBJ), 85, 88, 93 
arclength (META POST), 142, 191 
arcs 

mfpic, 128 
METAOBJ, 88 

arctime (METR POST), 142 
ann key (METROBJ), 86 
annA key (METROBJ), 85, 89-91, 177 
armB key (METROBJ),85, 89-9/ 

\arrow (mfpic), 127, 132, 135 
arrows 

mfpic 
drawing, 132 
length,132 
shape, 132 

cmarrows, 188 
connections (METAOBJ), 87 

arrows key (METAOBJ), 84, 85, 87, 94, 118 
METAPOST geometry, /95 
associations, UML, 186 
augment (graph), 161, 162, 164, 167, 169 
Auto(AD program, 137 
autogrid (graph), 158, 159, 163, 165-167 

\axes (mfpic), 123, /24, 127, 128, /30, J31, 132 
axes, drawing (mfpic), 128 

\axis (mfpie), 128 
\axisheadlen rigid length (mfpic). 128, 132 
\axismarks (mfpic), 129 

B 

babel package, 124 
bar package, 162 
bar charts 

mfpic, 130 
graph, 162, 163, 164, 166 

\barchart (mfpic), 130, 131 

base (exteps), 156 
basic objects, 82, 83 

META FONT AND METAPOST 

battery (make(irc), 197, 199 
bbox {METAPOST), 62, 163, 165 
bcircle (metafun), 74 

\bclosed (mfpic), /27, 132 
Begin (metaUMl), /87, 188 
beginchar (META),68, 72 
begineps (e)(teps), 156 
beginfig (M ETRPOST), 72, 73, SO, 156 
begingraph (graph), 157, 158, 169 
Bezier curves (METAOB J), 87, 88 
Bezier paths (mfpic), 128 
bibte)( program, SOl, 806 
Bigbrace (cmarrows), 189 
bigbrace (cmarrows), /89 
Biggbrace (cmarrows), 189 
biggbrace (cmarrom), 189 
bitmap ( . gf) output files, 69, 70 
black (METAPOST),60 
block drawing, 177 
blockdraw METR POSTpackage, 177 
blue {METAPOST),60 
bluepart (M ETRPOST), 150 
blurred effects, 152 

\bmarks (mfpic), 129 
Bond graphs, 177 
boolean (META), 53, 56 
border key (METROBJ},85 
bordercolor key {METAOB J), 85 
bot syntax (META POST),61 
bounded {METAPOST), 67, 150 
bounding box (mfpic), 124 
BoundingBox (PostSuipt), 72 
Box (METAOBJ class), 95, 96, 99 
box-line diagrams, 178-180, 181 
boxdepth key (METAOBJ),85, 92 
boxes 

alignment (METROBJ) 
centering, 103 
horizontal, IOl 
horizontal separation, 102 
mixed objects, 102, 103 
vertical, 101, /03 
within frames, /0./ 

empty, 82, 83 
boxes METRPOSTpackage, 57, 75, 76, 79-81, 177 
boxheight key (METAOBJ), 85, 92 
boxit (boxes), 76, 77, 78 
boxjoin (boxes), 76, 77, 78, 79 
boxsize key (METROBJ),85, 92, 93 
bpath (METAPOST), 77, 78, 79 
btex (METAPOST), 6J-63, 95, 157, 158, 159, 162, /64 

\btwnfcn (mfpic), \33 



META FONT AND META POST 

buildcycle (META POST), 165 

C 

capacitor (makecirc), 196, 197, 198, 199, 201 
capacitors, J 96 

captions. centering, 124, 134 
card boxes, 180 

\cbclosed (mfpicj, 132 
Celtic artwork, 148 
centering (mfpic) 

captions, 124, 134 
ellipses, 128 
symbols, 129 

centerto (makedrc), 198, 199, 200, 202 
centreof (make<irc), 196, 198, 199, 202 

\chartbar (mfpic), 130 
Circle (METAOBJ class), 114 

\circle (mfpic), 127, 128 
circleit (bo�es), 76, 77, 78, 79 
circles 

connections (METAOBJ), 92 
diagrams, 179 
diameter (mfpic), 132 
drawing (mfpic), 128 
filled and centered, 129 
filling (mfpic), 132 
nine points circle of a triangle, 190 
wedge of (mfpic), 129 

circmargin (boxes), 76, 79 
circmargin key (METROBJ), 98, 100 
circular 

containers (M ETROBJ), 98-/00 
gradients, 143, 144 

Class (metaUML), 181, 182, 183-186 
class 

relations (UML diagrams), 184 
templates (UML diagrams), 183 

classStereotypes (metaUML), 183 
ClassTemplate (metaUML), 183 
clearing (mfpic) 

closed objects, 133 
symbols, 124 

clearObj {METAOBJ),81 
\clearsymbols (mfpicJ, 124 

clink (metaUML), 186 
clip (METR POST),63, 143, 145, 148, ISO, 206 

\clipmfpic (mfpic), 124 
clipped (METAPOST),67, ISO 

clipping 
figures (mfpic), 124 
tools, 148 

clipping (exteps), 156 

dosed 
obja:ls 

clearing, 133 
filling, 133 

polygons (mfpicj, 129 
closefrm (METAP05T),67 

\closegraphsfile (mfpic), 125 
closing objects 

mfpic, 132 
META language, 54 

(marrows META POST package, 188 
CMYK color, 75 
(oilarm key (METAQBJ),86 
ccilannA key {METAQBJ), 85, 94 
coilarmB key (METAOBJ), 85, 94 
coilaspect key (METAOBJ), 85, 94 
coilheight key (METAOBJ), 85, 94 
coiline key (M ETAOBJ), 85, 94 
coils, connections (METAoe J), 9-1 
coilwidth key (METAQBJ), 85, 9·/ 
color 

mfpic, 127 
CMYK, 75 
drawing.�, 127 
graying, 75 
labels, 120 
METAFONT ... s. METAPOST,60 
transparency, 75 

color (METAPOST),60, 64, 79, 209 
commands (mfpic), 127 
comments (mfpic), 134 
Comprehensi ... e 1'EX Archi ... e Network, see CTAN 
connect en .... (mfpic), 126, 132, 133 
connections (METAOBJ) 

arcs, 88 
arrow style, 87 
behind objects, 90 
Bezier curves, 87, 88 
circles, 92 
coils, 94 
cur ... ed boxes, 93 
double straight line, 87 
inside boxes, 92, 93 
labels for, 95 
line starting point, 87 
line style, 86 
line thickness, 86 
looping lines, 91, 92 
multi-segment lines, 89-91 
overview, 84-86 
rounded corners, 93 
straight lines, 86, 87 
zigzags, 9·/ 

connectors, diagrams, 180 
Container (METAOBJ class), 104 

(B-C) 881 



882 (C-D) 

containers (METAOBJ) 
circular, 98-100 
description, 95 
double·wal1ed 

box, 99, /OO 
cirde, loo 
ellipsis, /00 

elliptical, 98-IOO 
margins, 96, 97 
oval boxes, 96 
polygons, 97 
rounded corners, 96 
simple box, 95 
square box, 95 

contour (META), 1 43, 150 
control points, 53 
convert progf;lm, 806 
coordinate dimensions (mfpic), 127 
coordinate system, specifying (mfpic), 126 
coords env. (mfpic), 136 
(orel Draw program, 137, 138 
coad (METAl, 53, 195 
CTAN (Comprehensive TFX Archive Network) 

archived files, fInding and transferring, 813 
description, 810 
files, from the command line, 814 
TEX file catalogue, 811  
web access, 810, 811, 812, 813, 814 

ctext (makecirc), 200, 201 
cubes, 210 
curl (METAl,54,55 
current (makecirc), 197, 199, 201, 102 
current pen (META), 146 
current picture (META),62, 65, 66, 155, 156, 176 

\curve (mfpic). 127. 128, 136 
curved box connections (METAOBJ),93 
curves 

function drawing, 168, 169 
intersections, computing, 211  
META language 

3-0, 57. 58 
controlling, 55 
drawing, 54 
path data, 53 

polar coordinates, 169 
through points (mfpic), 128 

cutafter (METAPOsT), 77, 78, 79 
cutbefore (META POST), 77, 78, 79 
cycle (META), 54, 56, 151, 162, 164 

\cyclic (mfpic), 128 

D 
Dalign key (METAOBJ), 107, 110, III, 114 

\darkershade (mfpic), 132 
dashed (META POST), 79, 86. 88, /57. 158, 162 

META FONT AND METAPOST 

dashed lines (mfpic), 133 
dashes (expressg), /80 
dashes (mfpic) 

gap between, 131, 133 
length, 132 
length of, 131 
lines, 133 
spacing, 132 

\dashlen rigid length (mfpic), 131-133 
\dashlineset (mfpic), 132 
\dashspace rigid length (mfpie), 131-133 

data types, META language, 53 
DBox (METAOBJ class), 99 
debugging figures (mfpic), 125 
def (METAl,57 
defaultdx (boxes), 76 
defaultdy (boxes), 76 
defaultfont (METAPOsT), 61, 79, 163, 165, 174 
defaultscale {METAPOsT),61, 62, 78, 79, 163, 165-167 
DefinePattern (piechartMP), 175, 176 
diagrams 

block drawing, 177 
Bond graphs, 177 
box-line, 178-180, 181 
card boxes, 180 
circles, /79 
connectors, /80 
diamond boxes, 180 
embedding in LATEX, 120, 121, 122 
flowcharts, 177, 181 
graphs, 176 
index boxes, 180 
ovals, 179 
relations, 180 
rounded boxes. 179 
slanted rectangles, 179 

diamond-shaped boxes, 180 
diode (makedrc), 197, 199, 202 
dir (META), 54,55, 77-79 
direction (META), 142, 205 
disadvantages, 139 
displaymath env. (pst-pdf), 800 
displaymath option (pst-pdf), 800 
distance dimensions (mfpie), 127 

\doaxis (mfpic), 128 
documentation, see a/so online resources 

command-line interface, 815 
panel interface, 816 
search by name, 815 
search by product, 816 
texdoc, 815 
texdock, 816 

dotlabel (METAPOsT),61 
dotlabels (METAPOsT),62 

\dotlineset (mfpie). 132 



META FONT AND META POST 

dots (shading), gap between (mfpic), 131, 133, 134 
\dotted (mfpicj, 127, ]33 

dotted lines (mfpic), 133 
double-walled containers (METAOB J) 

box, 99, I{)() 
circle, 100 
ellipsis, 100 

doublearrow (cmarrows), 189 
double line key (METROBJ),8S, 87, 88, 94 
doublesep key (METROBJ),85 
dpi (dols per inch), 70 
draft option (pst-pdf), 800 

\draw (mfpie), 133, 134 
draw (METAl, 54, 55, 56, 76, 84, 87, 158, 189 
draw_hatched_band (hatching), 150 
draw_Dbj (METAOBJ), J 14, 118 
drawarrow (META POST), 77, 78, 79, 84, 87, 189 
drawBINARY (expressg), 178 
drawBOOLEAN (expressg), 178 
drawboxed (boxes), 76, 77, 78 
drawboxes (boxes), 76, 77 
drawcardbox (expressg), 180 
drawcirclebo)( (expressg), 179, 181 

\drawcolor (mfpicj, 127 
drawCOMPLEX (eKpressg), 178 
drawdashA (eKpressg), 180 
drawdashcircle (eKpressg), 179 
drawdashellipse (eKpressg), 179 
drawdashO (expressg), 180 
drawdashOA (expressg), 180 
drawdblarrow (META POST), 77 
drawdiamondbox (expressg), 180, 181 
drawEXPRESSION (expressg), 178 
drawGENERIC (expressg), 178 
drawGEVENT (expressg), 179 
drawindexbox (expressg), 180 
drawing 

animation, 156, 157 
blurred effects, 152 
boxes 

commands for, 76 
committing to the page, 76 
joining, 77 
labeling connections, 78, 79 
relationships between, 76 

Celtic artwork, 148 
circles, 74 
circular gradients, 143, 144 
clipping, 148 
diamonds, 74 
gradients, 143, 144 
grids, 147, 148-150 
hatching, 148-150 
lines 

creating grids, 147 

drawing (cont.) 
hiding, 145 
repeating, 147 

morphing, 152 
multipaths, 145 
parallel gradients, 143. 144 
paths 

interrupting, 145, 146 
multipaths, 145, 146 

patterns, 147-150 
PostScript commands, 155, 156 
rounded corners, 75 
simplified paths, 75 
squares 

creating grids, 147 
repeating, 147 

squeezing shapes, 74 
text along a curve, 142 
tilings, 147-150 
transparency, ISO, 151 
turtle graphics 

classic style, 153 
turtle style, 153, 154 

drawing (mfpic) 
affine transforms, 136 
analytical curves, 133 
angle dimensions, 127 
annotations, 134 
arcs, 128 
arrowheads 

drawing, 132 
length, 132 
shape, 132 

axes, 128 
bar charts, 130 
basic commands, 128-130 
Bezier paths, 128 
bounding box, 124 
centering 

captions, 124, 134 
ellipses, 128 
symbols, 129 

circles 
diameter, 132 
filling, 132 
simple, 128 

clearing 
closed objects, 133 
symbols, 124 

clipping figures, 124 
closed polygons, 129 
closing open objects, 132 
color, 127 
commands, 127 
comments, 134 

(D) 883 



884 (D-E) 

drawing (mfpic) (COllf.) 
coordinate dimensions, J 27 
coordinate system, specifying, 126 
curves through points, 128 
dashed lines, 133 
dashes 

gap between, 131, 133 
length,132 
length of, 131 
spacing, 132 

debugging figures, 125 
distance dimensions, 127 
dols (shading), gap between, 131, 133, /34 
dotted lines, I33 
figure modifiers, 132, 133 
filled centered circles, 129 
filling closed objects, 133 
functions, 133 
global modifiers, 132 
grids, 129 
hash marks, length of, 131 
hatching, line spacing, 131, 133, 134 
joining objects. 126 
labels, 124, 134 
line segments, 129 
looping, 136 
META FONT mode, 123 
METAPOST mode, 124 
modifiers, 127 
numbering pictures. 126 
object outlines, 133 
options, 124, [25 
pen,seuingwidth,132 
pie charts, 131 
plotting function� and parametric curves. 133, 135 
pretty printing, 137 
primitives, 126 
processing, 123 
rectangles, 129 
regular polygons, 129 
repetitive, 134 
reversing objects, 133 
rotating objects, 133, 135 
shading, doupacing, 131, 132, /34 
size, specifying, 126 
spirals, 136 
symbolic names, 129 
syntax, 125-127 
unit length, basic, 132 
wedge ofa cirde, 129 

draliINTEGER (eKpressg), 178 
draliLEVENT (eKpressg), 179, 181 
draliLOGICAL (expressg), 178 
dralinormalCA (expressg), 180 
dralinormalCD (eKpressg), ISO 

META FONT AND METAPOST 

dra\lnormalD (eKpressg), 180 
dralffiormalDCA (eKpressg), 180 
dra\lDormalF (eKpressg), 180 
dralinormalOA (eKpressg), 1Sf) 
dralffiormalOD (eKpressg), 180 
dra\lNUMBER (eKpressg), 178 
dra\lObj (METAOB J), 81, 82, 83, 95, 177 
dra\lObject (metaUML), 182, 183, 186-188 
dra\lObjects (metaUML), 183, 184, 185-187 
dra\loptions (METAPOST), 148 
dra\lovalbo1; (eKpressg), 179, 181 
dra\lREAL (eKpressg), 178 
drallroundedbox (eKpressg), 179 
dra\lSTRING (eKpressg), 178 
dra\lthickO (eKpressg). 180 
drawunboxed (boKes), 76, 77, 79 
dual bar charts, 164 
duplicateObj (METAOBJ), 117 

.dvi file extension (META),63 
dvipdfm program, 797, 798, 803 
dvipdfmK program, 797-799, 803, 8M, 806 
dvips program, 62, 65, 797-801 ,  803-806 
dvitomp program, 63 
dx key (METAOBJ), 96, 100, 104 
dy key (METAOBJ), 96, 100, 104 

E 
electrical circuits 

capacitors, 196 
centering elements, 198 
centering lexl, 200-202 
command syntax, 199 
element abbreviations, 198 
elementlypes, 199 
elements of, 196-199 
inductors, 196 
pin connections, 200 
resistors, 196 
symbols, 196, 197, 198 
wiring type, 198 

\ellipse (mfpic), 128, 136 
ellipses 

centered, 128 
in a parallelogram, 191 

elliptical containers (METAOBJ), 98-100 
empenv. (emp), 121 
emp package, 120, 121, 167 
empcmds env. (emp), 121 
empdef env. temp), 121 
empfile env. temp), 121 
empgraph env. (emp), 122 

\empprelude (emp), 122 
empty boxes (METAOBJ), 82, 83 
EmptyBox (METROBJ class), 82, 83, 95 

\empuse temp), 121 



META FONT AND META POST 

End (metaUMl), 187, 188 
end (META), 72 
endchar (META),68, 72 
endeps (extepS), I56 
endfig (METAPOST),65, 72, 73, 80 
endior (META), 52, 55 
endgraph (graph), 157, 158, /69 
EntryPoint (metaUML), 188 
EPS output files, 72, 73 
epsdrawdot (exteps), 156 
epstopdf program, 804, 806 
eqnarray enll. (pst-pdf), 800 
equation enll. (pst-pdf), 800 
etex (METAPOST),61-63, 95, 157, 158, 159, 162, 164 
exitif (META),56.204 
ExitPoint (metaUMl), 188 
M ETA POST, 137, 138 
expr (META), 57 
expressg METAPOST package, 177, 178, 181, 182 
extendObjLeft (METAOBJ), J08 
extendQbjRight (METAOBJ), lOB, 109 
extensiblebrace (cmarrows), 189 
eKteps METAPQST package, 155 

F 
fanlinearc key (METAOBJ), 114 
fanlinestyle key (METAQBJ), 114 
FAQs (Frequently Asked Questions), 809, see also online 

resources 
\fcncurve (mfpic), 128 

featpost META POST package, 207, 209 
feynmf package, 120 
feynmp package, 120 
figure modifiers (mfpic), 132, 133 
file input/output, 67, 68 
fill (META), 56, 76, 150, 151, 158 

\fillcolor (mfpic), 127 
fillcolor key (METAOBJ),83, 104, 114 
filled (METAPOST),67 
filled key (METAOBJ), 83, 96, 98, 100, 104, 114 
fills (mfpic) 

centered cirdes, 129 
dosed objects, 133 

fills, dosed obje.:ts, 133 
final option (pst-pelf), 800 
finite state diagram, 79 
fit key (METAOBJ), 97, 98, 100, 102, 103, 177 
flipping trees (METAOBJ), 110 
floor (META),S3 
flowcharts, 177, lSI 
font files, 69 
fonts 

encoding, 65 
magsteps, 70, 71 
PostScript, 7] 

fonts (COlli,) 
size, 70, 71 

for (META), 52, 55, 59, 66, 150 
forever (METAl,56, 204 
format (graph), 159 
fractals 

Hilbert's cur lie, 19,/ 
Koch flake, 105 
METAOBJ, 104, 105 
META POST, 194, 195 
Sierpinski's curve, 194 
Verhulst diagrams, 195 

frame (graph), 158, 159, 160-/62, 164-166 
framecolor key (METAOBJ), S3, 104 
framed key (METAOBJ),82, 83, /04 
frames 

aligning boxes (METAOBJ), 104 
graphs, 158, 159 
trees (METAOBJ), 112, 113 

framestyle key (METAOBJ), 177 
framewidth key (METAOBJ), 83 

(E-G) 885 

Frequently Asked Questions (FAQs), see online resources 
fullcircle (META), 63, 66, 74, 165 
fulldiamond (metafun), 74 
fullsquare (metafun), 74 

\function (mfpic), 123, 124, 133 
functions 

G 

drawing, 168, 169 
plotting (mfpic), 133, 135 

\gc1ear (mfpic), 133, 134 
gdata (graph), 160, 161, 162, 163, 165, 166, 167 
gdotlabel (graph), 158 
gdraw (graph), 157, 158, 1 60, 162, 164-166, 169 
gdrawarrow (graph), ]58 
gdrawdblarrow (graph), 158 
generator (makecire), 197, 199 
geometriesyr16 M ETA POST package, 192 
geometry 

art, 195 
ellipse in a parallelogram, 191 
fractals, 194, 195 
golden ratio, 192 
hand-drawn figures, 192 
Hilbert's curve, 194 
nine points circle of a triangle, 190 
plane, 190, 191, 192 
space, 192 
Verhulst diagrams, /95 

.gf file extension (META),69-71 
\gfill (mfpie), 127, lJl, 133, 134 

gfill (graph), 159, 160, 161-165, 167 
gftopk program, 70 
ghostseript program, 798 



886 (G-I) 

ghostview program, 804 
glabel (graph), 157, 158, /62-/67, /69 
global modifiers (mfpic), 132 
globes, 209 
gnuplot program, 137 
golden ratio, 192 
gpdata M ETA POST package, 167 
gradients, tools, 143, 144 
grap program, 157 
graph META POST package, 75, 122, 157, 158, 159, 162, 

167-169 
graphics package, 72 
graphicx package, 800 
graphs 

bar charts, 162, 163, 164, 166 
Bond, l77 
data files 

comment lines, 167 
reading, 160-/62 

dual bar charts, 164 
frames, 158, 159 
grids, J 58, 159 
inserting in 1;ITf,X. 167 
labels 

aligning, 173 
annotations, 134 
creating, 159, 160 
pie charts, 173, 174 
positioning, 173 
shifting, 173, 174 

overview, 157, 158 
pie charts 

drawing, 165, 171-173 
height, 171 
labels, 173, 174 
observation angle, 171 
offsets, 171 
radius, 171 
segments, 170, 171, 172, 175, 176 
setup for, 174, 175 
text handling, 174 

scales, 158, 159 
text, printing, 167 
ticks, 158, 159 
types of, 162-167 

graying, 75 
green (METAPOST),60 
greenpart (META POST), 150 

\grid (mfpic), 129 
grid 

grids 

(eKteps), I56 
(graph), 158, 159 

mfpic, 129 
from lines, 147 

META FONT AND METAPOST 

grids (COllt.) 
from multiple base patterns, 147 
from squares, 147 
graphs, 158, 159 

ground (makecirc), 197, 199 

H 

halign key (METAOSJ), 116 
hand-drawn figures, 192 
hash marks, length of (mfpk), 131 

\hashlen rigid length (mfpic), 129, 131 
\hatch (mfpic), 131, 133 

hatch_match (hatching), 149 
hatchfill (hatching), 149, 150 
hatching 

hatch macro, 148 
hatching package, 149, 150 
line spacing (mfpic), 131, 133, 134 

hatching META POST package, 149 
hatchoptions (hatching), 149 

\hatchspace rigid length (mfpic), 131, 133 
HBox (METAOBJ class), 100. 102, 106 
hbsep key (M ETAOB J), /02, /07, I/O, III 

\headlen rigid length (mfpic), 132 
\headshape (mfpic), 132 

help. see online resources 
hexagonal meshes, 210 
hexagonaltrimesh (featpost), 210 
HFan (METAOBJ class), 113, 1 14  
hideleaves key (METAOBJ), 1/0-114 
hiding/showing lines, 145 
Hilbert's curve, 194 
History (metaUMl), 188 
hookleftarrow (cmarrows), 189 
hookrightarrow (cmarrows), 189 
horizontal 

box alignment (METAOBJ), 101 
box separation (METAOBJ), /02 
fans, trees (METAOBJ), 113, 114, 115 

How To Ask Questions The Smart Way, 810 
HRazor (METAOBJ class), 82, 1 14  
hsep key {METAOBJ), /02, 108-113, 118 
hyperlinks, slides, 797-818 
hyperref package, 798, 803-805 

I 
ifthen package, 136 
image {METAPOST), 95, 146, 148, 149, 163, 165, 176 
imesh (makecirc), 199, 202 
impedance (makecirc), 197, 199, 202 
METAPOST,137,138 
inactive option (pst·pdf), 800 
index boxes, 180 
inductor (makecirc), 196, 197, 198, 199, 200 



META FONT AND META POST 

inductors, 196 
infont (M ETAPQST), 163, 165 
init_numbers (graph), 159 
initlatex 

(latex),64 
(makecirc), I96 

input (META),67, 75 
internal structures, 65, 66, 67 
interpath (META), 152 
interpol META POST package, 167 
interpolate (metafun), 152 
interpolating (M ETRPOST), 167 
intersectionpoint (META), 191 
intersectiontimes (META), 148, 205 
introspection, 66, 67 
item (metaUMl), /86 
itick (graph), 158, 159 

J 
joining objects (mfpic), J 26 

. jpeg file extension (pst-pdf), 806 
junction (makecirc). 197, 199, 2()()-202 

K 
kindofcube (featpost), 210, 21/ 
Koch flake, /05 

L 

labangle key (METAoBJ), 95, 1l9 
labcard key (METAoBJ). 119 
labcolor key {METAoBJ), 119, 120 
labdir key (METAOBJ), 95, 1 18, 1 19 
labdist key (METAoBJ), 95 
Lahel (pieo::hartMP), 170, 173, 174 
label (METAPosT), 61, 64, 78, 119, 158, 200 
labelinspace (feat post}. 211 
labeloffset (META Po sT), 61 
labels 

mfpie, 124, 134 
color, 120 
connections (METAOBJ), 95 
erasing beneath, 120 
graphs 

aligning, 173 
creating, 159, 160 
positioning, 173 
shifting, 173, 174 

in pictures, 61, 62, 63, 64, 65 
in space,211 
METAoBJ, /18, 1 19, 120 
METAPosT,124 
on graphs (mfpie), 134 
pie charts, 173, 174 
positioning, 1 1 9  

labels (COlli.) 
rotating, 120 
shifting, 120 

laberase key (METAOBJ), 1 19, 120 
labpathid key (METAOBJ), 118, 119 
labpathname key (METAOBJ), 119 
labpic key (M ETAOBJ), 95 
labpoint key (METAOBJ), 119 
labpos key (METAQBJ). 95, 119 
labrotate key (METAOBJ), 119, 120 
labshift key (META08J), 119, 120 
Lalign key (METAOBJ), lOS, I/O-I /J 
lamp (makecirc), 197, 199 
latex METAPosT package, 64, 196 
latex program, 797, 800, 801, 803, 804, 806 
L"TEX files, obtaining 

web access, 810, 811, 812, 813, 814 
latex.mp M ETA POST package, 64 
latexMP M ETA POST package, 59, 64, 151 
lcirde (metafun), 74 

\ldosed (mfpic), 132 
leftha1farroll (cmarrows), 189 
length (META), 52, 66, 78, 79, 142 
1ft syntax (M ETAPosT),61 
libraries 

boxes package, 75-79 
metafun package, 74, 75 

\lightershade (mfpie), 132 
linear equations, solving, 53 
linear transformation (METAoBJ), 81 
linearc key (METAOBJ), 85, 93, 9.J 
linecolor key (METAoBJ), 85, 88-93 
lines 

creating grids, 147 
hiding, 145 
repealing, 147 
segments (mfpie), 129 
starting point ( M ETAoBJ), 87 
styles (METAoBJ), 86 
thickness (METAoBJ), 86 
UML diagrams, l85 

\lines (mfpie), 127, 129, 135 
linestyle key (METAoBJ), 85, 86, 88, 93 
linetension key (METAoBJ), 86, 88, 94 
linetensionA key (METAOBJ),85,88 
linetensionB key (METAoBJ),85, 88 
linellidth key (METAoBJ), 85, 86, 88-94 
link (metaUML), 184, 185, 188 
11cirde (metafun),74 
11corner (META POST), 150 
11ft syntax (METAPosT),61 
11triangle (metafun), 74 

\lmarks (mfpic), 129 
. log file extension (mfpicj, 124 

(I-L) 887 



888 (L-M) 

looping 
mfpic, 136 
commands, 56 
cOllllectiolllines, 91, 92 
lines (METAOBJ), 91, 92 

loopsize key (METAOBJ), 85, 91 
lrcirc1e (metafun), 74 
lrt syntax (METAPQST),61 
lrtriangle (metafun), 74 

M 

m3d META POST package, 209 
macros, META language 

arguments, 59 
default behavior, 59 
defining. 57-60 
key=value pairs, 59, 60 
paranteters, 57 
string evaluation, 57 
types of, 57 
variable names, 57 

magsteps, 70, 71 
makedrc META POST package, 196, 198 
makeindex program, 123, 806 
makempx program, 63 
makepen (META), 53 
Manhattan paths, 184 
mapstoarrow (cmarrows), 189 
margins, containers (METAOBJ), 96, 97 
mathptm package, 65 
matlab META POST package, 167 
matpos (METAOBJ), I 18 
Matrix (METAOBJ class), liS 
mcangle (METAoBJ), 118 
mcangles (METAOBJ), 118 
mcarc (METAOBJ), I 1 8  
mcarcbox (METAOBJ), 1 1 8  
mcbox (METAOBJ), 1 1 8  
mccircle (METAOBJ), 1 1 8  
mccoil (METAoBJ), 1 1 8  
mccurve (METAOBJ),1 1 8  
mcdiag (METAOBJ), 1 1 8  
mcdiagg (METAoBJ), 1 1 8  
mcline (METAOBJ), 84, 1 1 8  
mcloop (METAOBJ), 1 1 8  
mczigzag (METAOBJ), 1 1 8  
meains (makecirc), 197, 199 
mechanical drawings, 203 
message (META),68 
META language, 51-167 

affine transforms, 53 
closing objects, 54 
control points, 53 
curves 

3-0,57, 58 

META FONT AND METAPOST 

META language (COllt.) 
controlling, 55 
drawing, 54 
path data, 53 

data types, 53 
description, 52, S3 
drawing commands, storing, 53 
linear equations, solving, 53 
looping commands, 56 
macros 

arguments, 59 
default behavior, 59 
defining. 57-60 
key=value pairs, 59, 60 
parameters, 57 
string evaluation, 57 
types of, 57 
variable names, 57 

pair data, 53 
path data, 53 
paths. transforming, 56 
pen data, 53 
pens, 53, 55 
picture data, 53 
point representation, 53 
segments, 53 
straight lines, drawing, 54 
transform data, 53, 56 

META FONT mode (mfpic), 123 
metafun META POST package, 61, 73-75, 138, 143, 151, 152 
Metagraf program, 209 
METAOBJ METAPosT package, 80-120 

basic objects, 82, 83 
box alignment 

centering. /03 
horizontal, /01 
horizontal separation, /02 
mixed objects, 102, /03 
vertical, /01, /03 
within frames, /04 

concepts, 81 
connections 

arcs, 88 
arrow style, 87 
behind objects, 90 
Belier curves, 87, 88 
circles, 92 
coils, 94 
curved boxes, 93 
double straight line, 87 
inside boxes, 92, 93 
labels tor, 95 
line starting point, 87 
line style, 8fj 
line thickness, 86 



META FONT AND META POST 

METAOBJ META POST package (COllt.) 
looping lines, 91, 92 
multi-segment lines, 89-91 
overview, 84-86 
rounded corners, 93 
straight lines. 86, 87 
zigzags, 94 

containers 
circular, 98-100 
description,95 
double-walled box, 99, /()() 
double-walled circle, 100 
double-walled ellipsis, I()() 
elliptical, 98-/00 
margins. 96, 97 
oval boxes, 96 
polygons, 97 
rounded corners, 96 
simple box, 95 
square box, 95 

description, 80 
empty boxes, 82, 83 
fractals, 104, /05 
labels, 118, 119, 120 
linear transformation, 81 
principles, 80 
recursive objects, /04, 105 
trees 

aligning, /07, J08 
Ripping, 1/0 
framing, 112, 113 
horizontal fans, 113, 114, 115 
left to right, /09 
mixed directions, I JO 
mixed objects. 1 1 1  
overlapping subtrees, J I I  
overview, 105 
righl lo left, /08 
root at the bottom, 109 
separating, III 
vertical fans, 113, 114, 115 

META POST mode (mfpic), 124 
MetaUML METAPOsT package, 181 
metric ( . tfm) output files, 69 

\mfpdefinecolor (mfpic), 128 
\mfpic (mfpic), 124, 125 

mfpic env. (mfpic), 124, 125, 126, 135 
mfpic package, 52, 120, 122-136, 139 

\mfpicdebugfalse (mfpic), 124 
\mfpicdebugtrue (mfpic), 124 
\mfpiedraft (mfpic), 125 
\mfpicfinal (mfpic). 125 
\mfpicnowrite (mfpic), 125 
\mfpicnumber (mfpic), 126 
\mfpieunit rigid length (mfpic), 126, \32 

\mfpverbtex (mfpic), 124 
mn program, 137 
mftoeps META FONT package, 138 
mode, 69, 70 
mode (META),69 
mode_setup (META), 70 
modifiers (mfpic), 127 
morphing, 152 
motor (makecirc), 197, 199 

.mp file extension (METAPOsT),63 
mpattern METAPOsT package, 148 
mpcirc META POST package, 196,203 
mpos (METAOBJ), 1 1 8  
mproof package, 73, 74 

.mps file extension (META POST), 72 
mpsproof package, 73, 74 
mpt program, 137 
mptopdf program, 73, 75 
mptotex program, 63 

.mpx file extensiOn (METAPOsT),63 
Hreadpath (graph), 167 
Illulti-segment Jines (METAOB J), 89-91 
Illultipaths, 145 

N 

\name (mfpic), 129 
name key (METAOBJ), 85, J I 9  
naming output files, 70 
nb (METAOBJ), 1 16, 117 
neangle (M ETAOB J), 89, 9O 
neangles (M ETAOBJ), 89, 90, 91 
ncarc (METAOBJ), 88,93 
ncarcbox (METAOBJ), 85, 92, 93 
nebar (METAOBJ), 88, 89, 177 
ncbox (META08 J),85, 92, 93 
nccircle (METAOBJ),84, 92 
neeoil (METAOB J), 94 
nccurve (METAOBJ), 85, 87, 88 
ncdiag (M ETAOBJ), 90 
ncdiagg (METAOB J), 90 
ncline (M ETAOBJ}, 84, 86, 87, 95, 119, 177 
ncloop (METAOBJ), 85, 90, 91 
nczigzag (METAOBJ), 94 
new_Box (METAOBJ),81 
new_Box_ (METAOBJ),81 
new_Circle (METAOBJ), 114 
new_HFan (METAOBJ), 1 14 
new_HFan_ (METAOBJ), 1 1 4  
new_RBox (METAOBJ), 1 14 

(M-N) 889 

newBox (METAOBJ),81, 95, 96, 100, 101, /02-104, J 14, 177 
newCircle ( METAOBJ), 86, 99, 104, 177 
newContainer (METAOBJ), 104 

\newcounter (mfpic), 136 
newDBox (METAOB J), 99, 100 
newDEllipse (METAOBJ), 81, /00, 112, 113 



890 (N-P) 

newEllipse (METAOBJ), 98, 100, /04, 1/3, 177 
newEmptyBox (METAOBJ),82 
newHBox (METROBJ), 100, 101, 102 
newHFan (METAOBJ), 114 
newHRazor (META08J),82, 83, 102 
newMatrix (METAQBJ), 115, 116, 117 
newPolygon (METAOBJ), 96, 97, 102, /03, 177 
newPTree (METAOBJ), 105 
newRandomBox (METAOBJ),83 
newRBox (METAOBJ), %, /04, 114 
newRecursiveBox (METAOBJ), /04 
news groups, 810, see also online resources 
neliTree (METAOBJ), 105, 107, /08-1/3 
newVBox (METAOBJ), 102, /03 
newVFan (METROBJ), 114 
newVonKochFlake (METAOBJ), /05 
newVRazor (METAOBJ), 82, 83, 103 
nine points circle of 3 triangle, 190 

\nocenteredcaptions (mfpic), 124 
\noclearsymbols (mfpic), 124 
\noclipmfpic (mfpie), 124 

nodesep key (METAOBJ),86 
nodesepA key (METAoBJ), 85, 87, 92, 93 
nodesepB key (METAoBJ),8S, 87, 92, 93 

\nomplabels (mfpic) , 124 
\nooverlaylabels (mfpic), I24 

nopstricks option (pst-pdf), 800 
normaldeviate (META),S3 
notightpage option (pst-pdf), 800 

\notruebbox (mfpic), 124 
ntreepos (METAoBJ), 120 
null pen (META), 53 
nullpicture (META),66, 150 
numbering pictures (mfpic), 126 
numeric (META), 53 

o 
Obj (METAoBJ), 81, 84, 114, 118, 120 
object outlines (mfpic), 133 
ObjLabel (METAoBJ), 118, 1 1 9  
observation angle, pie charts, 171 
offset key (METAoBJ), 86 
offsetA key (METAoBJ), 85, 87, 90, 91, 120 
offsetB key (METAoBJ), 85, 87, 91, 120 
offsets, pie charts, 171 
oldtexarrow (cmarrows), 189 
online access to CTAN, 810, 81 1, 812, 813, 814 
online resources 

archived files, finding and transferring, 813 
(TAN (Comprehensive TEX Archive Network), 810 

web access, 810, 811 , 812, 813, 814 
documentation 

command-line interface, 815 
panel interface, 816 
search by name, 815 

META FONT AND METAPOST 

online resources (COlli.) 
search by product, 8/6 
texdoc, 815 
texdock, 816 

FAQs (Frequently Asked Questions), 809 
files, getting from the command line, 814 
How To Ask Questions The Smart Way, 810 
news groups, 810 
program files, obtaining 

web access, 810, 811,  812, 813, 814 
TEX file catalogue, 81 1 
TEX files, 810 
TEX user groups, 817, 818 
TUG home page, 810, 8/ 1 

open obj«ts, dosing, 132 
\opengraphsfile (mfpic), 124,125 

optical drawings, 204, 205, 206 
origin (META), 160, 161 
otick (graph), 158, 159, 166 
OUT syntax (META POST), 158 
output files 

bitmap ( .gf), 69, 70 
EPS (Encapsulated PostScript), 72, 73 
metric ( . tfm), 69 
naming, 70 
PDF (Portable Document Format), 72, 73 

oval box containers (METAOB J), 96 

ovals, 179 
overlapping subtrees (METAOB J), 11/ 

\overlaylabels (mfpi(), 124 

P 
pair (META), 53, 56, 60, 84 

\parafcn (mfpic), 133, 136 
parallel gradients, 143, 144 
parallelarrows «(marrows), 189 
paralleloppositearrows (cmarrom), 189 
paralleloppositelefthalfarrows (cmarrows), 189 
paralleloppositerighthalfarrows (cmarrows), 189 
parametric curves, plotting, 133, /35 
path (META), 53, 55, 56 
pathCut (metaUMl), 185 
pathfillcolor key (METAOBJ).85 
pathfilled key (METAOBJ), 85 
pathHorizontal (metaUMl), 185 
pathManhattanX (metaUMl), 184 
pathManhattanY (metaUMl), 184 
pathofstraightline (featpost), 2/ 1 
pathpart (METAPOsT),66, ISO 
paths 

between object centers, 186 
between objects, /85 
B�zier, 128 
interrupting, 145, 146 
multipaths, 145, 146 



META FONT AND META POST 

paths (COIlt.) 
transforming, 56 
UML diagrams 

arbitrary, relations between, \84 
between object cenlers, lM 
between obj«ts, 185 
lines, 185 
Manhattan, 184 
rectangular, 184 
stair-like, 184, 185 

pathStepX (metaUMl), 184 
pathStepY (metaUMl), 184 
pathVertical (metaUML), 185 
patterns, 147-150 

. pdf file extension (pst-pdf), 806 
PDF output files, 72, 73 
pdfcrop program, 804 
pdfinfo program, 804 
pdflatex program, 797, 800, SOl, 803, 805, 806 
PDFs 

creating 
dvipdfm program, 798-800 
dvipdfmx program, 798-800 
from IHEX, 803-807 
from PostScript, 800, 801, 802, 803 
overview, 797 
pst-pdf package, 800, 801, 802, 803 

pdftex program, 797, 798 
pdftops program, 806 

\pen (mfpic), 127, 132, /34 
pen (META), 53 
pencircle (META), 53, 55, 56, 79, 162 

"'"' 
META language. 53, 55 
selling width (mfpic), 132 

pensquare ( M ETA), 166 
perspective projection, 208 
physics diagrams, 209 
pic (boxeS), 76, 77, 79 
pic language, 75 
pickup (META), 55, 56, 79, 162, 166 
picture (META), 53, 62, 63, 65, 66, 95, 146, 206 
picture cnv., 797 

(emp), 121 
pictures 

annotating, 6/, 62, 63, 64, 65 
numbering, ] 26 
size, sp<'cifying, ] 26 
text in, 61-64, 65 

pie charts 
mfpic, /31 
drawing, /31, 165, 171-]73 
height, 171 
labels, 173, 174 
observation angle, 171 

pie charts (COlli.) 
offsets, 171 
radius, 171 
segmenls, 170, 171, 172, 175, 176 
setup for, 174, 175 
text handling, 174 

PieChart (piechartMP), 170, 171, 172-174 
\piechart (mfpic), /31 

PiechartBBox (piechartMP), 176 
piechartMP META POST package, 143, 170, 176 

\piewedge (mfpic), 131 
pin connections, 200 

.pk file extension (META), 69, 70 
plain M ETA POST package, 74, 75 
plane geometry, 190, 191, 192 

\plot (mfpic), 125 
plot (graph), 158 

\plotnodes (mfpic), 125 
\plotsymbol (mfpic), 124, 125, 129 

(P) 891 

plotting functions and parametric curves (mfpic), 133, 135 
\plrfcn (mfpic), 133 
\plrregion (mfpic), 133, 134 
. png file extension (pst-pdf), 806 
\point (mfpic), 124, 125, 129, 132 
point (META), 78, 79, 142 
point representation, 53 

\pointdef (mfpic), 129 
pointfilled boolean (mfpic), 132 

\pointfillfalse (mfpic), 125 
\pointfilltrue (mfpic), 125 
\pointsize rigid length (mfpic), 129, 132 

polar coordinates, 169 
Polygon (METAOBJ class), 97 

\polygon (mfpic), 129 
polygons 

dosed, 129 
containers (METAQBJ), 97 
regular, 129 

\polylines (mfpic), 129 
polymargin key (METAOBJ), 97, 102, 103, 177 
pos key (METAOBJ), 84, 86 
posA key (METAOBJ), 81, 84-86, 87 
posB key (M ETAOBJ), 81, 84-86 
positioning labels 

connections, 95 
overview, 119 

PostScript 
commands, 155, 156 
fonts, 65 
PDFs from, 800, 801, 802, 803 

postscript env. (pst-pdf), 802 
pretty printing (mfpic), 137 
preview package, 800-802 

\PreviewEnvironment (pst-pdf), 80] 



892 (P-S) 

previewing 
characters, 69 
drawings, 73, 74 

primitives (mfpic). 126 

printing text, 167 
PrivatePattern (pie(hartMP), 176 
program files, obtaining 

web access, 810, 811, 811, 813, 814 
projected segments, 211 
prologues ( METAPOST), 64, 65 

ps2pdf program, 797, 801-806 
ps2pdf1 3 program, 804, 805 
pafonts .map file (dvips), 65 

psmatrix env. (pst-pdf), 800 

pspicture env. (pst-pdf), 800 

pst-pdf package, 797, 800-803, 805, 806 

\pstillobject (pst-pdf), 800 

pstricks option (pst-pdf), 800 

pstrkks package. 797,800 

R 

radius, pie charts, 171 
Ralign key (METAoBJ), 109-/13 
random number generators, 203 
RandomBox (METAoBJ class), 83 

randomized (metafun), 74 
rbox_radius key (METAoBJ), 96 
rboxes META POST package, 76 

rboxit (rboxes), 76 
rcircle (metafun), 74 

rdrawarrow (METAoBJ), 84 

readfrom ( METAPosT),67, 68 

rebindrelativeObj (METAoBJ), 108, 109 
rebindVisibleObj (METAoBJ), 112, 113 

\rect (mfpic), 129 

rectangles 
slanted, 179 
with corners (mfpic), 129 

rectangular paths, 184 
recursive objects (METAoBJ), 104, 105 

RecursiveBox (METAoBJ class), 104 

red (METAPosT),60 

redpart (META POST), 150 
reflectedabout (META), 62 

\regpolygon (mfpic), 129 

regular polygons (mfpic), 129 
relations, diagrams, 180 
repeating lines, 147 
repetitive drawings (mfpic), 134 
resistor (makecirc), 196, 197, 198, 199, 200, 201 
resistors, 196 

\reverse (mfpic), 133 
reversing objects (mfpic), 133 
rheostat (makecirc), 197, 199 
righthalfarrow (cmarrows), 189 

META FONT AND METAPOST 

\rmarks (mfpic), 129 
rncangle (METAOSJ), 118 
rncangles (METROSJ), liS 
rncarc (METAOSJ), 118 

rncarcbox (METROSJ), 118 
rncbar (METAOSJ), 118 

rncbox (METAOSJ), 118 

rnccoil (METAOBJ), 118 

rnccurve (ME:TAOBJ), 118 
rncdiag (METAOSJ), 118 

rncdiagg (METAoBJ), 118 
rncline (METAoBJ), 118 

rncloop (METAoBJ), 118 

rnczigzag (METAoBJ), 1 18 
rotated (META), 55, 56, 63, 162-165 
rotatedabout (META), 62, 194 
rotatedaround (META), 56 

rotateObj {METAoBJ),81 
\rotatepath (mfpic), 133 

rotating 
labels, 120 

objects (mfpic), 133, 135 
round (META), 161 
rounded boxes, 179 
rounded corners (METAoBJ) 

connections, 93 
containers, 96 

rpathHorizontal (metaUML), 185 

rpathManhattanX (metaUML), 184 

rpathManhattanY (metaUML), 184 
rpathVertical (metaUMl), 185 

rt syntax (META POST), 61 

running, 68-73 

S 
scaled (META), 55, 56, 62, 63, 66, 74, 79, 162, 163, 165, 166 
scaleObj (METAoBJ),81, 104, 105, 107-112, 113, 117 
scales, 158, 159 
scantokens (META), 57, 68, 160, 161-165, 166, 167 
science and engineering drawings 

electrical circuits 
capacitors, 196 
centering elements, 198 
centering text, 200-202 
command syntax, 199 
element abbreviations, 198 

element types, 199 
elements of, 196-199 
inductors, 196 
pin connections, 200 

resistors, 196 
symbols, 196, 197, 198 
wiring type, 198 

mechanical drawings, 203 

optics, 204, 205, 206 



META FONT AND META POST 

science and engineering drawings (COlli.) 
random number generators, 203 
simulation, 203 

\sclosed (mfpic), 132 
\sector (mfpic), 129 

Segment (piechartMP), 170, 171-174, 176 
segments 

META language, 53 
pie charts, 170-172, 175, 176 
projected, 211 

SegmentState (piechartMP), 171, 172, 173, 174 
setbounds (METAP05T), 155, 156 
setcoords (graph), 160 

\setcounter (mfpicj, 136 
setCurveDefaultOption (METAQBJ), 84, 86 
setObjectDefaultOption (META08J), 110, 1/4 
setrange (graph), 160, 161, 162, 163, 166, 167 

\setrender (mfpicj, 126 
SetupColors (piechartMP), 173, 174 
setupLaTeXMP (latexMP), 64 
SetupName (piechartMP), 175 
SetupNumbers (piechanMP), 174 
SetupPercent (piechartMP), 1 70, 174, 175 
SetupText (piechartMP), 174, 175 
SetupValue (piechartMP), 175 

\shade (mfpic), /27, 131, 133 
\shadespace rigid length (mfpic), 131� 133 

shading, dot spacing (mfpic), 131� 133, 134 
shifted (META), 56, 62, 66, 142 
shifting labels, 120 
shortaxisarrow (cmarrows), 189 
show�empty�boxes (METAOBJ), 82, 83 
Sierpil'lski'scurve, /94 
simplified (metafun), 75 
simulation, 203 
sind (META), 53 
slanted rectangles, 179 
slides (color), overlay spedfication 

hyperlinks, 797�818 
smoothed (metafun), 75 
source (makecirc), 197, 199, 201, 202 
space geometry, 192 
spatialhalf circle (fealpost), 209 

\special, 797 
special (META), ISS, 156 
spirals (mfpic), /36 
sqrt (META), S3, 195 
square box containers (METAOBJ), 95 
squares 

creating grids, 147 
repeating, 147 

squeezed (metafun), 74 
stair-like paths, 184, 185 
State (metaUMl), 187, 188 

states, UML 
composite, 188 
defining, 187 
internal transitions, 188 
special, 188 

stateTransitions (metaUMl), 188 
step (META), 55, 205 
stereotypes, UML, 183 
straight lines 

connections ( M ETAOBJ), 86, 87 
drawing. 54 

string (META), 53, 142 
stroked (METAPOST), 66, 67 
styles 

arrows, 188 
lines 

connections, 86 
thickness, 86 

turtle graphics 
classic, 153 
turtle, 153, 154 

subpath (META), 146 
substring (META), 142 
suffix (META),S7 
switch (makecirc), 197, 199 
symbolic names (mfpic), 129 
symbols 

centered, 129 
clearing, 124 
electrical circuit diagrams, 1%, 197, 198 

syntax (mfpic), 125�127 

T 

T� (METAOBJ), 1 1 8  
tailarroll (cmarrows), 189 
TC (METAOBJ), 1 1 4, 118 
Tc (METAOBJ), 118 
tcangle (METAOBJ), 1 1 8  
tcangles (METAOBJ), liS 

\tcaption (mfpic), 124, 134, 135 
teare (METAOBJ), 1 1 8  
tcarcbox (METAOBJ), liS 
tcbox (METAOBJ), I I S  
tccirele (METAOBJ), 1 1 8  
tecurve (METROBJ), 1 1 8  
tcdiag (METROBJ), 1 1 8  
tediagg (METROBJ), 1 1 8  
tcircle (metafun), 74 
tcline (METROBJ},84, 1 1 8  
teloop (METROBJ), 1 1 8  
Template (metaUMl), 184 
template objects, UML, 18<1 
tension (M ETR), 54, 78, 79 
Terminate (metaUMl), 188 
TEX (lEX), 64 

(S-T) 893 



894 (T-U) 

TEX METRPOST package, 64 

lEX file archives, 8\0, see aisvCTAN 
TfX files, obtaining 

web access, 810, 811, 812, 813, 8 14 
texarrOIi «(marrows), 189 
texdoc program, 815, 816 
texdoctk program, 815-817 
text 

along a (urve, 142 
centering. 200-202 
in pictures, 6/, 62, 63, 64, 65 
pie charts, 174 
printing, 167 

text (METAl,57,59 
textext (latexMP), 64 
textual (METAPOST),67 
Tf (METAOBJ), 96, 114 

. tfm file extension (META). 61, 70 
thelabel ( METAPQST), 62, 63, 142, 206 
licks, 158, 159 
tightpage option (pst-pdf), 800 
tiling, 147-150 
time (META),6B 

\tlabel (mfpic), 134, 135 
\tmarks (mfpic), 129 

Tn(METAOBJ),82 
top syntax (METAPOST),61 
Toval_ (METAOBJ), 98 
Tr_ (METAOBJ), 96 
transform (META), 53 
transformer (make<irc), 197, 199, 202 
transistor (make<irc), 197, 199, 201 
transparency, 75, 150, /51 
Tree (METAOBJ class), 86, 106, I 13 
treemode key (METAOBJ), /08-/ /3, //8 
trees (METAOBJ) 

aligning, /07, 108 
flipping, 110 
framing, 112, 113 
horizontal fans, 113, 114, 1 1 5  
left to right, 109 
mixed directions, 110 
mixed objects, 1 1 1  
overlapping subtrees, 1 1 1  
overview, 105 
right to left, 108 
root at the bottom, /09 
separating, 111 
vertical fans, 113, 114, 1 1 5  

tripplearrow (cmarrows), 189 
troff program, 64, 65, 75 
tropicalglobe (featpost), 209 
true (M ETA), 56 
TUG home page, SID, 811 

\turn (mfpic), 134, 136 

META FONT AND METAPOST 

\turtle (mfpic), 129 
turtle graphics 

classic style, /S3 
turtle style, 153, 154 

twobeadarrow {(marrows), 189 
twowayarrow «(marrows), 189 
two\laydoublearrow (cmarrows), 189 
twowayoldarrow «(marrows), 189 
txp METAPQST package. 142 

U 
Ualign key (METAOBJ), 109, 110 
ulcircle (metafun), 74 
ulft syntax (METAPOST),61 
ultriangle (metafun), 74 
UML diagrams 

activities 
beginning, 187 
constructing, 187 
ending, 187 

actors, 187 
arrows, 188 
associations, 186 
between object centers, 186 
between objects. 185 
braces, 188 
class relations, 184 
class templates, typesetting, 183 
overview, 181 
paths 

arbitrary, relations between, 184 
between object centers, 186 
between objects, 185 
lines, 185 
Manhattan, 184 
rectangular, 184 
stair-like, 184, 185 

rectangular, 184 
sample, 181 
stair-like, 184 
states 

composite, 188 
defining, 187 
internal transitions, 188 
special, 188 

stereotypes, defining, 183 
template objects, creating, 184 
use cases, 186 

unfil! (META), 56, 151, 163, 165, 206 
uniformdeviate (META), 53, 204, 210 
unit length, basic (mfpie), 132 
unitcircle (metafun), 74 
unitdiamond (metafun), 74 

\unitlength (emp), 121 
unitsquare (META), 74, 75, 151, 153 



META FONT AND META POST 

unitvector (META), /9/ 
until ( M ETA l, 55 
upto (METAl, 56 
urcircle (metafun), 74 
urcorner (METAP05T), 142, 150 
urt syntax (METAPQST),61 
urtriangle (metafun), 74 
use cases, UML, 186 
Use case (metaUML), 186 

\usecenteredcaptions (mfpic), 124 
\usemetapost (mfpic), 124 
\usemplabels (mfpic), 124 
\usetruebbox (mfpic), 124 

V 

valign key (METAOBJ), 116 
yarde! (META), 57, 78 
VBox (METAOBJ class), 100, 102, 106 
vbsep key (METAOBJ), 103 
verbatimtex (META POST), 63, 124, 17S 
Verhulst diagrams, 195 
vertical fans, trees (METAOBJ), 113, 114, liS 
VFan (METAOBJ class), 1 13, 114 
viewcentr (featpost), 209 
visible key (METAOBJ),8S 
VonKochFlake (METAOBJ class), lOS 
VRazor (METAOBJ class), 83, 114 
vsep key (M ETAOBJ ), / 10-/13 
VTeX program, 797 

w 
wedge of a circle (mfpie), 129 
wget program, 814 

\/hatever (M ETA), 160, 162, 166, 190 
\whiledo (mfpic), 136 

white (METAPOST),60 
wire (makecirc), 196, 198, 199-202 
wireU (makedrc), 200, 202 
wiring type, 198 

(U-Z) 895 

withcolor (METRPOST), 62, 66, 74, 79, 149, 158, 159, 
161-163, 165, 167 

withdots (M ETA PQST), 88, 162 
within (M ETR POST), 66, 67, 146, 150 
withpen (META), 158 
write (METRPOST),6B 

X 
\xaxis (mfpic), 128 

Ketex program, 798, 803 
\xmarks (mfpic), 129, 130 

xpart (META), 53, 56, 198 
Kpdf program, 804 
xscaled (M ETA), 149 
. gf (bitmap) output files, 69, 70 
. tfm (metric) output files, 69 

y 
\yaxis (mfpic), 128 
\ymarks (mfpic), 129 

ypart (METAl, 53, 56, 198 
yscaled (METAl, 55, /49 

Z 
zigzag lines (METAOBJ), 94 
zlib program, 799 



.... - . ::;, 
(1) 

I, '" 

• '" 
g. 

• <;!. 
BOB 

� 

<;<;j, 
"-?O' J'O� el-D magic 
----::t:-----

I 

, 

I 
I 

, 

y 

AOS 
• 

I, 



Symbols 

\ ( (pst-pdf), 800 
(-) kty value (pstricks), 261 

\) (pst-pdf). 800 
) -( key value (pst ricks), 261 
* keyvaluc (pstricks), 252 
u-u key value (pstricks), 261 
.-* key value (pstricks), 261 
*0 key value (pstricks), 267 
*0 key value (pstricks), 270, 271 
*L key value (pstricks), 270, 271 
*R key value (pst ricks), 270, 271 
.U key value (pst ricks), 270, 271 
+ key value (pst ricks), 252 
- key value (pst ricks). 261 
-) key value (pstricks), 263, 264 
-« key value (pstricks), 26(1 
-> key value (pstricks), 259, 260, 262, 164 
-) key value (pst ricks), 260, 264 
-0 key value (pst ricks). 264 
(-) key value (pstricks), 261 
«- key value (pstricks), 260 
«-» key value (pstrkks), 261 
> syntax (pst-node), 356 
)- key value (pstricks), 26(J 
)-< key value (pstricks), 261 
»-« key value (pstricks). 261 
[-J key value (pstricks), 261 
\j obname , tmp file (pst-tree), 376 

t I (curly braces), 304 

A syntax (pst-node), 356 
_ syntax (pst-node), 356 
] - key value (pstricks), 260 

PSTricks 

] - { key value (pstricks), 261 
] -0 key value (pstricks), 260 
] -I key value (pstricks), 260 
I key value (pSUicks), 252 
1 ... - 1 '"  key value (pslricks), 261 
I-I key value (pslricks),26l 
1<->1 key value (pstricks), 261 
I >-< I key v�hle (pstricks), 261 
3-D coordinates, 219 
3-D parallel projections 

3-D lines, 402 
boxes, 4().1 
circles, 405 
coordinate axes, specifying. .wI, 4fJ2 
dotted lines, 402 
ellipses, 405 
keywords for 

axes labels, moving, renaming, 413 
circular arcs, 4/2 
coordinate system rotation, 4/0 
dimension scale, changing, 4/ I 
drawingstyle, 414,4IS 
edb>e appearance, 412 
elliptical arcs, 412 
hidden lines, drawing, 41S, 416 
list of, 410 
plane, specifying, 413 
plot points, 411 



898 (Symbols-A) 

3-D parallel projections (COlli.) 
positioning the origin, 414 
spherical coordinates, 4/6 
suppressing coordinate axes, 411 

plotting mathematical fUllctions and data, 407-409 
rectangles, 404 
spheres, 406 
square, 403 
triangle, 40J 

3-D representation 
buttons, 447 
framed objects, 447 
geometric obje<ts. 445, 446 
grids, 447 
hidden lines or surfaces, 445 
keywords, 395 
light effects, 447 
normal vector direction, 397-399 
rotaling. 397, 399 
shading. 39'1 
sides hiding sides, 397 
types of objects, 393 
view angle, 397 
viewpoint, 395, 396, 397 
views, 219, 397 

3-Dviews, 219 

@ 
\�ifnextchar, 328 

A 

a key value (pst-tree), 380 
\AAJ (rrgtrees), 425 

absolute key value (pstricks), 235, 239 
absorption key (pst-spectra), 432 
absorption spectra, 432 
Acrobat Distiller program, 797, 798 
active option (pst-pdf), 800 
Add key value (pst ricks), 252 
addfillstyle key (pstricks), 253, 257 

\addto�pscode (pstricks), 292, 305 
Adobe Reader program, 804, 817 
affected key (pst-pdgr), 431 
algebraic key (pstricks-add), 423 
alignment, tree node labels, 379, 381, 382 
all key value (pst-plot), 315, 318, 319 
Alpha key (pst-3dplot), 401, 408, 409, 410, 411 

\AltClipMode (pstricks), 276 
\al tcolormode (pst ricks), 304 

ampli tudel key (pst-osci), 434 
amsmath package, 361 
angle key (pst-node), 297, 299, 300, 343, 349, 351, 352 
angleA key (pst-node), 342-345, 346, 348, 349, 351, 352, 360, 

361 

PSTricks 

angleS key (pst-node), 338, 342-345, 348, 349, 351, 352, 353, 
360, 361 

angles 
connections, 351 
in arguments, 218 
specific.ltions, 218, 302 

Apollonius circles, 456 
arcangle key (pst-node), 341, 347, 349, 351, 355 
arcangleA key (pst-node), 349, 351 
arcangleB key (pst-node), 349, 351 
arced box connections, 347 

\ArcL (vaucanson-g), 440 
arcs 

3-D parallel projections 
circular, 412 
elliptical, 412 

bent lines, 238 
commands for, 241, 242 
ellipses, 243 
separation, 247 

arcsep key (pstricks), 247, 248 
arcsepA key (pstricks), 247 
arcsepB key (pstricks), 247 

\ARG (rrgtrees), 425 
arm key (pst-node), 341, 349, 351, 352, 360 
armA key (pst-node), 343, 344, 349, 351, 352, 360 
armS key (pst-node), 344, 345, 349, 351, 352 
armS key value (pst-node), 342 
array enl'., 361 

\arraycolsep rigid length, 364 
array job package, 322 

\arraystretch, 364 
ArrowA (PostScript), 294, 295 
ArrowS (PostScript), 294, 295 
ArrowF"ill key (pstricks-add), 418, 419. 420 
arrowinset key 

(pstricks-add), 419 
(pstricks), 260, 262 

Arrowlnside key (pst ricks-add), 418, 419, 420 
ArrowlnsideNo key (pst ricks-add), 419 
ArrowlnsideOffset key (pstricks-add), 4 19 
ArrowInsidePos key (pstricks-add), 419 
arrow length key (pstricks), 260, 262 
arrows 

creating your own, 264, 265 
custom style. 295, 418, 419, 420 
inside lines and curves, 419 
keywords for, 260-264, 418 
lenglh.262 
line termination, 259, 260, 261,263 

notch depth, 262 
pre-defined,259-261 
round bracket termination, 263 
rounded ends, 261 
scaling factor, 264 



PSTricks 

arrows (cont.) 
size, 261 
square bracket termination, 263 
strut width, 263 
transparent, unfilled, 4/9 
unfilled, inside, 420 

\arrows (pslricks), 294, 295 
arrows key (pstricks), 235, 237, 259, 260, 262-264 
arrowscale key (pst ricks), 260, 263, 264, 365, 419 
arrowsize key (pst ricks), 260, 261, 262 
art, geometry, 456, 457 
Asterisk key value (pst ricks), 252 
asterisk key value (pst ricks), 252 

\attributeof (pst-dbicons), 445 
auto key value (pst-fill), 386 
automata, 438, 439-442 
aux file (pst-tree), 376 
axes 

3-D parallel projections 
labels, moving, 4/3 
renaming,413 
specifying, 401, 402 
suppressing, 41 1  

plots 
origin, 316 
specifying, 319 

axes key value (pst-plot), 314, 315 
axesstyle key (pst-pIOI), 3 14, 315, 316, 321, 322, 391, 392 

B 

b key value (pst-tree), 380 
B+ key value (pstricks), 252 
B-cp key value {tlgc), 265 
BALLON key (pst-Iabo), 433 
Bar key value (pstricks). 252 

\Bar (pst-3d), 390 
bar charts, 450 
bar codes, 453 
barstyle key (pst-bar), 450 
baseColor key (psI-fractal), 456 
Basterisk key value (pstricks), 252 
bbd key (pst-tree), 370, 378 
bbh key (psI-tree), 370, 378 
bbl key (psI-tree), 370, 378 
bbllx key (pSI-CpS), 457 
bblly key (pst-cps), 457 
bbr key (pst-tree), 370, 378 
bburx key (pSI-CpS), 457 
bbury key (pSI-CpS), 457 
Bdiamond key value (pst ricks), 252 
beamcr document class, 440 

\begin®Al tOpenObj (pstricks), 307 
\begin®ClosedObj {pstricks),307 
\begin�OpenObj (pstricks), 307 
\begin®SpeciaIObj (pstricks), 307 

beginAngle key (pst-3dplot), 405, 410, 412, 416 
belo\ltext key (pst-pdgr), 431 
bending lines, 238 
Beta key (pst-3dplot), 401, 408, 409, 410, 411 
Bhier curves 

connections, 345, 352 
drawing, 244, 245, 291 

\bhpBox (tlgc), 274 
bibtex program, 801, 806 
black key value (pst ricks), 216, 235 
blank spaces, tree nodes, 369 

\blue (pstricks), 216 
blue key value (pst ricks), 216, 221, 232 
blur key (pst-blur), 450 
blurradius key (pst-blur), 450 
blurred shadows, 450 
Bo key value (pst ricks), 252 
BoldAdd key value (pstricks), 252 
BoldAsterisk key value (pst ricks), 252 
BoldBar key value (pstricks), 252 
BoldCircle key value (pstricks), 252 
BoldDiamond key value (pst ricks), 252 
BoldHexagon key value (pst ricks), 252 
BoldMul key value (pstricks), 252 
BoldOplus key value (pstricks), 252 
BoldOtimes key value (pstricks), 252 
BoldPentagon key value (pst ricks), 252 
BoldSquare key value (pst ricks), 252 
BoldTriangle key value (pstricks), 252 
Boolean keys, 311, 312 
border key (pstricks), 235, 239, 281, 346, 347 
bordercolor key (pst ricks), 235. 239 
borders, 239 
bottom key value (psI-plot), 315, 320 
bounding boxes 

creating. 220, 221 
shifting, 22 I -223 
tree nodes, 378 

boxes, see also frames 
% (percent sign), comment character, 277 
3-D parallel projections, 404 
dipping, 274, 275, 276 
commands for, 271-273 
connection lines 

drawing, 346, 347 
size, 353 

diamond-shaped, 273 
double frame, 272 
equilateral triangle, 273 
framing, 270 
ignoring spaces, 277 
internal margins, 270 
isosceles triangle, 273 
keywords for, 270, 271 
math, 278, 279 

(A-B) 899 



900 (B-C) 

boxes (COlli.) 
oval-shaped, 273 
rotating, 276, 277 
scaling, 276, 277 
separation, 270 
shadows, 272 
simple, 271 
size, 270, 273, 274 
triangular frames, 271, 273 
verbatim, 278, 279 

boxfill key value (pstricks), 253, 255, 257 
boxfill option (pst-fill), 383 
boxsep key (pstricks), 270, 273 
boxsize key (pst-node), 346. 347, 349, 353, 355 
Bpentagon key value (pst ricks), 252 
br key value (pst ricks), 267 
bracketlength key (pstricks), 260, 263, 265 
Bsquare key value (pstricks), 252 
Btriangle key value (pstrieks), 252 
Bullet key value (pstricks), 252 
buttons, 3-0, 447 
B I key value (pstricks), 252 

c 
C key value (pst-node), 362, 363 
C syntax (pstricks), 260, 261 
e key value (pst-node), 362 
e syntax (pstricks), 260, 261 
C-C key value (pst ricks), 261 
c-c key value (pst ricks), 261 
calc package, 323 
calendars, 452 
Cartesian coordinates, 224-226, 296 
cc syntax (pstricks), 260 
ec-cc key value (pstricks), 261 
ccurve key value (pst-plot), 332, 333, 334 
cells, matrices 

empty cells, nodes for, 363 
names, 364 
spacing, 364 

changeOrder key (pst ricks-add), 422 
charts, see graphs 
Circle key value (pstricks), 252 

\Circle (tlgc), 255, 257 
circle key value (pst-node), 362, 363 

\circledipole (pst-eire), 435 
\circlenode {pst-node), 338, 363 

circles 
3-D parallel projections, 405 
center, specifying, 241, 242 
degrees in, specifying, 218 
fills, 241 
keywords for, 247-249 
overview, 240 
sectors, 242 

CircMultiply key value (tlgc), 250 
CircPlus key value (tlge), 250 
circular 

connection lines, 346 
nodes, 337, 338, 350 

civil engineering analysis, 436 
\CLAUSE (rrgtrees), 425 
\elipbox (pstricks), 274, 275 

dipping boxes, 274, 275, 276 
\elosedshadoll (pstricks), 289, 290 
\elosepath (pstricks), 284 

closepath (PostScript), 284, 294 
closing paths, 284 
em-> key value (tlge), 264 
em-em key value (tlgc), 264 
em-cp key value (tlgc), 264 
cmyk key (pst-lens), 452 

\Cnode (pst-node), 338, 350-352, 363, 365 
\cnode (pst-node), 273, 337, 338, 351, 353-361 
\cnodeput (psI-node), 338 
\code (pstricks), 234, 280, 292, 293-295, 305, 327 

eoilaspect key (pst-coil), 455 
coilheight key (pst-coil), 455 
coils, 455 
coilllidth key (pst-coil), 455 
color 

conflicts, resolving, 304 
fills, 255 
gradients, 448-450 
lines, 235 
overview, 216 
setting, 295 

\eolor, 216 
color package, 215, 216, 235, 304 
colsep key (pst-node), 362, 363-365 
columns, matrices 

combining, 362 
hooks, 362 
width, 365 

comma key (pst ricks-add), 418 
command summary, 459-466 
commands, 219, 220 
comment indicator, percent sign (%), 277 
commenting out grids, 230, 231 
components 

basic packages, loading, 215, 216 
color, 216 
kernel, 214, 215 

Comprehensive 1'EX Archive Network, see CTAN 
connections, see a/so lines, see abo nodes 

labels 
above the line, 357-359 
below the line, 357-359 
horizontal center, 359 
middle of line, 353, 354 

PSTricks 



PSTricks 

connections (COllf.) 
on specified segments, 355 
on the line, 357-359 
positioning, 357-359 
relative position, 356 
rotating, 354, 357 
short forms, 356 
vertical center, 359 

package description (pst-node), 334, 335 
pst-coil, 455 
to node center, 347, 348 
to node edge 

angle, 351 
arced box, 347 
Bbiercurves, 345, 351 
box lines, 346, 347 
box size, 353 
circular lines, 346 
curved, 341, 351 
diagonal lines, 341, 343 
gradient angle, 351 
looped lines, 345, 352 
multiple per node, 360, 361 
paralJel lines, 353 
railroad diagrams, 345 
segment arms, 352 
segmented line, 341, 344 
segments, counting, 355 
segments, maximum number of, 354 
separation from nodes, 350, 351 
straight line, 341 

continuum spectra, 431 
convert program, 806 

\coor (pstricks), 293, 294 
coordinates 

3-D,219 
3-D parallel projections, rotating, 410 
angle specifications, 302 
axes, specifying, 401, 402 
cdlculating with PostScript, 296, 297, 298 
Cartesian, 296 
default, 219, 296 
determining, 296 
double, 298, 299 
overview, 223, 224 
plolting functions and data, 314 
polar, 296 
relative translations, 299, 3()() 
saving and restoring, 288, 305 
units, calculating, 421, 422 

\CORE (rrgtrees), 415 
Corners key (pst-ob3d), 446 
CornersColor key (pst-ob3d), 446 
cornersize key (pstricks), 233, 235, 238, 239 

\cput 
(pst-node), 338 
(pstricks), 269, 272 

crosshatch key value (pstricks), 253, 255-257, 258 
crosshatch fills, 255 
crosshatch+; key value (pstricks), 253, 155 
crossing lines, 239 
CTAN (Comprehensive TEX Archive Network) 

archived flies, finding and transferring, 81) 
description, 810 
files, from the command line, 814 
TEX file catalogue, 811 
web access, 810, 811, 812, 813, 814 

curly braces ({ 1), 304 
curvature key 

(pst-plot), 333 
(pstricks), 247, 148, 249 

curve key value (pst-plot), 323, 332, 333 
curved line connections, 341, 351, 369, 376 
curves 

arc separation, 247 
Bc!zier, 244, 245, 291 
coordinates relative to current point, 192 
curvature control, 247 
gradients, 248, 249 
keywords for, 247-249 
mathematical plots, closing, j3) 
overview, 240 
parabolas, 245 
pen behavior, 240 
points, displaying, 237 
smooth 

Bc!zier curves, 244, 245 
overview, 244 
through a list of points, 245, 246 

\curveto (pst ricks), 291, 292 
curveto (PostScript), 291, 295 
cyan key value (pst ricks), 216 

\CylindreThreeD (pst-vue3d), 445 

D 
D key value (pstricks), 270, 171 
d key value (pstrieks), 269 
darkgray key value (pstrieks), 216, 235 
dash key (pstrieks), 235, 136, 300 

(C-D) 901 

dashed key value (pstrieks), 220, 221, 235, 136, 240, 281, 3()(), 301 
dashed lines, 235, 240 

\dashedV (tlge), 280 
dashes, 236 

\Data (tlge), 328 
dataError. dat file (tlgc), 328, 329 

\dataplot (pst-plot), 323, 315 
\dataplotThreeD (psHdplot), 409 

deceased key (pst-pdgr), 431 
Decran key (pst-vue3d), 445 



902 (D-E) 

\def, 328 
\defineCOboolkey (pst-xkey). 31 J 
\defineCOkey (pst-xkey), 3 1 1 ,  312 
\definecolor (color), 235, 258, 259 
\definecolorseries (xeolor), 459 
\defineTColor (pstricks-add), 257 
\DefList (pst-asr), 424 
\degrees (pstricks), 218, 219, 296, 297 

degrees. specifying for cirdes, 2 [8 
dia key value (pst-node), 362, 363 
diagonal connections, 342, 343, 377 
diagrams 

ER, 442-445 
graphs 

rotating, 327 
within text, 439-442 

UML, 442-445 
Diamond key value (pstricks), 252 
diamond key value (pstricks), 252 
diamond. key value (pstricks), 252 
diamond-shaped boxes, 273, 339 
diamonds, 233 

\dianode (pst-node), 339, 363 
differential equations. plotting, 424 

\dim (pstricks), 292, 293 
dimen key 

(pst-node), 344 
(pSlricks), 235, 237 

dimension keys, 312 
dimension scale, changing, 411 

\diode (pst�cire), 435 
dirA key (pst-jtree), 425 
displaymath env. (pst-pdf), 800 
displaymath option (pst-pdf), 800 

\displaystyle (teK). 278 
\Distillation (pst-labo), 433 

dlter key (pst-fradal), 456, 457 
dl key value (pst ricks), 269 

\DoCoordinate (tlgc), 329 
documentation, see also online resources 

command-line interface, 815 
panel interface, 8/6 
search by name, 815 
search by product, 816 
texdoc, 815 
texdock, 816 

\dolinks (rrgtrees), 425 
\DontKillGlue (pstricks), 223, 303 

dot key value (pst-node), 362, 363 
dotangle key (pstricks), 251, 252 
dotGrid key value (tlge), 228, 229 

\dotnode (pst-node), 339, 340, 363 
dots 

as nodes, 340 
defining, 25O, 251 

dots (COllt.) 
definition, 249, 250 
keywords for, 251 
pre-defined styles, 251 
rotating coordinates, 252 
size, 251 

dots key value (pst-plot), 332, 333 

PSTricks 

dot scale key (pstricks), 236, 238, 251, 252, 298, 300, 302, 340 
dotsep key (pstricks), 235, 236 
dotsize key (pstricks), 236, 238, 250�252, 340 
dot style key (pstricks), 249, 250-252, 298, 340 
dotted key value (pstricks), 221, 235, 236, 240, 281, 3()() 
dOlled lines, 235, 236, 240, 402 
double coordinates, 298, 299 
double frame boxes, 272 
double lines, 236 
doublecolor key (pstricks), 235, 236, 241 
doubleline key (pstricks), 235, 236, 238, 269, 281 
doublesep key (pstricks), 235, 236, 241 
dr key value (pstricks), 269 
draft option (pst-pdf), 800 
drawCoor key (pst-3dplot), 402-404, 411 

\drawedge (gastex), 439 
drawing key (pst-3dplot), 410, 411 

\drawloop (gastex), 439 
drawStyle key (pst-3dplot), 410, 414, 415, 416 
duplicate macro names, 458 
dvipdfm program, 797, 798, 803 
dvipdfmx program, 797-799, 803, 804, 806 
dvips program, 305, 306, 797-801, 803-806 
Ox key (pst-plot), 224, 315, 3 17, 318, 324, 325 
dx key (pst-plot), 315, 317, 318, 319, 324, 325 
Oy key (pst-plot), 315, 317, 318 
dy key (pst-plot), 315, 317, 318, 319 

E 

ecurve key value (pst-plot), 332, 333, 334 
ED (PostScript), 365 

\edef (tex), 304 
edge key (pst-tree), 370, 376, 377 

\EdgeL (vaueanson-g), 440 
edges, 3-D parallel projections, 412 
electrical circuits, pst-eire package. 435 
element key (pst-spectra), 432 
ellipses 

3-D parallel projections, 405 
arcs, 243 
drawing, 243 
keY'vords for, 247-249 
overview, 240 
sectors, 243, 244 

embedangle key (pst-3d). 395, 399 
emission spectra, 432 
emnode key (pst-node), 362, 363 

\empty, 380 



PSTricks 

\endIDCIosedObj (pstricks), 307 
\endlDOpenObj (pstridu), 307 

\endlDSpecialObj (pstricks), 307 

endAngle key (pst-3dplot), 405, 410, 412, 416 
endX key (makeplot), 430 
endY key (makeplot), 430 

\enti ty (pst-dbicons), 445 
. eps file extension (pst-eps), 457 
epstopdf program, 804, 806 
eqnarray env. (pst-pdf), 800 
equation env. (pst-pdf). 800 
equilateral triangle boxes, 273 
ER diagrams, 442-445 
error margins, mathematical plots, 329 
error messages, mathematical plots, 330 
Euclidean geometry, 426 

\everypsbox (pstri(ks), 278, 359 
extensions, lines, 234 

F 
f key value (pst-node), 362, 363 

\FanEnd (rrgtrees), 425 
fanned tree nodes, 369 
fansize key (pst-tree), 370 
FAQs (Frequently Asked Questions), 809, see a/S{) online 

resources 
\fbox, 270, 272 

\fboxrule rigid length, 272 
\fboxsep rigid length, 270, 272 

female key (pst-pdgr), 431 
\file (pstricks). 280, 294 
\fiIeplot (pst-plot), 323, 324, 325 
\fileplotThreeD (pst-3dplot), 408, 409 

files, inserting, 294 
\fill (pstricks), 285, 286 

fill (PostScript). 285 
fillangle key (pst-fill), 384 
filleolor key (pstricks), 220, 233, 253, 254-256, 285, 289, 338, 

392 
filleyele key (psl-fill), 384, 385 
filleyclex key (pst-fill), 384, 385, 387 
filleyeley key (pst-fill), 384, 385 
fillloopadd key (pst-filn, 383, 384, 386, 387 
fillloopaddx key (pst-fill), 384, 386 
fillloopaddy key (pst-fill), 384, 386 
fillmove key (pst-fill), 384, 385 
fillmovex key (pst-fill), 384, 385, 386 
fillmovey key (pst-fill), 384, 385. 386 
filloopadd key (psl-filll,386 
fills, see a/sQ tiling 

automatic vs. manual, 383, 386 
circles, 241 
color, 255 
complex patterns, 386 
creating your own, 257 

fills (COllt.) 
crosshatch, 255 
debugging, 387 
horizontal lines, 254 
keywords for, 253, 383-387 
line color, 257 
line distance, 256 
line gradient, 257 
line width, 256 
overview, 253 
package description (pst-fiU), 383 
paths, 285 
rotating patterns, 384 
row/column shifting, 385 
simple patterns, 383 
solid, 254 
standard styles for, 253 
tile separation, 384 
vertical lines, 254 
whitespace, 256 
with graphics, 387 
with objects, 255 
without marginal lines, 286 

f illsep key (pst-fill), 384 
f illsepx key (pst-fill). 384, 385 
f illsepy key (pst-fill), 384, 385 
f illsize key (pst-fill), 384, 386 
fillstyle key 

(pst-fill), 383-387 

(E-F) 903 

(pstrieks), 220, 233, 253, 254-257, 279, 281, 284, 285, 289, 
392, 448, 449, 451 

final option (pst-pdf), 800 
finite state diagrams, 438-442 
Aoating point number keys, 312 

Flower key value (tlge), 250 
\fmark (gastex), 439 
\fnode (pst-node), 340, 350, 363 
\foealPoint (tlge), 310, 311 

four corner node definition, 336 
fp package, 458 
fractals, 456, 457 
frame key value (pst-plot), 314-316 
frameare key (pstrieks), 233, 235, 238, 239, 258, 271, 272 

FrameBoxThreeDColorHSB key (pst-fr3d), 447 
FrameBoxThreeDOn key (pst-fr3d), 447 
frames, see a/sQ boxes 

3-D objects, 447 
boxes, 270 
nodes, 340, 350 
rounded corners, 238. 239 

framesep key (pstrkks), 270, 271, 272 

framesize key (pst-node), 340, 349. 350 
\FrameThreeD (pst-vue3d), 445 
\FReetangle (dge), 383 

Frequently Asked Questions (FAQs), see online resources 



904 (F-I) 

\FSquare (tlgc), 383 
full key value (pst-plot), 315, 320 

\func (tlge), 406 

G 
gangle key (pstricks), 233, 235 
gastex package, 438, 439 
geographical representations, 438 
geometric objects, 3-0, 445, 446 
geometry 

ApoJlonius cirdes, 456 
fractals, 456, 457 
Koch flake, 456 
MandelbrOI set, 456 
Phyllotaxis, 457 
Sierpinski triangle, 456 

ghost script program, 330, 798 
ghostview program, 804 
glue, 3D3 
gnuplot program, 330 
gradient angle connections, 351 
gradients 

color, 448-450 
curves, 248, 249 

graphics package, 277 
graphiex package, 800 
graphs, see also diagrams, see also plolling 

rotating, 327 
within text, 439-442 

gray key value (pstrieks), 216 
green key value (pstrieks), 216, 241 

\grestore (pstrieks), 285, 286, 288, 290 
grestore (PostScript), 276, 284, 285, 286, 305, 306 
gridcolor key 

(pst-gr3d), 447 
(pstrieks), 226, 227, 228 

griddots key 
(pst-plot),332 
(pstrieks), 226, 227, 228 

gridlabelcolor key (pstrieks), 227 
gridlabels key (pst ricks), 227, 228, 394 
grids 

3-0, 447 
Cartesian coordinate system, 224-226 
commands, defining new, 228 
commenting out, 230, 231 
creating, 225 
embellishing pictures, 229, 230 
highlighting, 226 
labels 

font size, 227 
positioning, 215, 226 

lines 
color, specifying, 226, 227 
dotted, 226, 227 

grids (COllt.) 
width, specifying, 226 

overview, 224-226 
subdivisions 

creating, 227, 228 
line color, 228 
line width, 228 

gridstyle key value (pstricks), 222 
GridThreeDNodes key (pst-gr3d), 447 
GridThreeDXPos key (pst-gr3d), 447 
GridThreeDYPos key (pst-gr3d), 447 
gridwidth key (psuicks), 226. 227,228 

\gsave (pstricks), 285, 286, 288, 290 
gsave (PostScript), 276, 284, 285, 286, 305, 306 

H 
H�non attractor, 326. 327 

PSTricks 

hatchangle key (pstricks), 253, 254, 255-257 
hatchcolor key (pstricks), 253, 255, 256, 257, 279, 285 
hatchsep key (pstrieks), 253, 256, 279 
hatchsepinc key (pstricks), 253, 256 
hatchwidth key (pSlricks), 253, 255, 256, 279, 285 
hatchwidthinc key (pstrieks), 253, 255, 256 

\hbox (lex), 270 
header files, 302, 303 
help, see online resources 
Hexagon key value (pstrieks), 252 
hexagons, 308, 309 
hidden lines 

3-0, 445 
algorithms, 414 
drawing, 415, 416 

hidden surfaces, 3-D, 445 
hiddenLine key (pSI-3dplol), 406, 410, 41 1, 414 
hiding/showing tick marks, JIb 
high level macros, 309, 310 
highlighting grids, 226 
hlines key value (pstrieks), 253, 254, 255, 256, 257, 281 
hlines. key value (pstrieks), 253, 254, 255 
hooklength key (pstrieks-add), 418 
hookwidth key (pstrieks-add), 418 
horizontal lines, fills, 254 
How To Ask Questions The Smart Way, 810 
href key (pst-node), 348, 349 
HRInner key (tlge), 308, 309 

\ht (tex), 229-231 
hyperlinks, slides, 797-818 
hyperref package, 798, 803-805 

I 
iangle key (gastex), 439 

\IBox (tlge), 229-231 
\ifcase, 322 

ifthen package, 323 



PSTricks 

illustrations, see pictures 
images, see pictures 

\imark (gastex), 439 
inactive option (pst-pdf), SOO 

infix (algebraic) notation, 429, 430 
infix-RPN package, 430 

\infixtoRPN (pst-infixplot), 430 
information theory, 439-442 

\Ini tial (vaueanson-g), 440 
inner key value (pSlricks), 237 

\input (lex), 214 
integer keys, 312 
intensi tycolor key (pst-dre), 435 
intensi tylabelcolor key (pst-eire), 435 
intensi tywidth key (pst-eire), 435 
invisibleLineStyle key (pSI-3dplol), 4 10, 415 
isosceles triangle boxes, 273 
isosceles triangles, 233 

J 
\jobname (pst-tree), 376 
. jpeg file extension (pst-pdf), 806 
\jtlong (pst-jtree), 425 
\jtree (pst-jtree), 425 

K 

key key (pst-dbicons), 445 
key/value interface 

Boolean keys, 3 I I, 312 
defining commands with, 310-312 
defining new keywords, 3 1 1  
dimension keys, 312 
floating point number keys, 312 
integer keys, 312 
low-level declaration, 310-312 
real number keys, 312 
stringkeys,312 

key/value specification, 217 
keyval package, 217 
keywords 

3-0 parallel projections 
axes labels, moving, renaming, 413 
circular arcs, 412 
coordinate system rotation, 410 
dimension scale, changing, 411 
drawing style, 414, 415 
edge appearance, 412 
elliptical arcs, 412 
hidden lines, drawing, 415, 416 
list of, 410 
plane, specifying, 413 
plot points, 411 
positioning the origin, 414 
spherical coordinates, 416 

keY"'·ords (COllt.) 
suppressing coordinate axes, 411 

3-D representation, 395 
arrows, 260-264, 418 
boxes, 270, 271 
circles, 247-249 
curves, 247-249 
dots, 251 
ellipses, 247-249 
fills, 253, 383-J87 
lines, 234 
nodes, 370-378 
polygons, 234 
pspicture environment, 221-223 
PSTrieks, summary, 459-466 
symbols, 251 
trees, 370-378 

\KillGlue (pstrieks), 223, 303 
Koch flake, 456 

L 

L key value (pstricks), 270, 271 
1 key value 

(pst-node), 362 
(pst-tree), 380 
(pstrieks), 269 

lab apparatus, 433 
labels 

3-D parallel projection axes, moving, 4/3 
centering on objects, 269 
commands for, 267 
connections 

above the line, 357-359 
below the line, 357-359 
horh.onlal cenler, 359 
middle ofline, 353, 354 
on specified segments, 355 
on the line, 357-359 
positioning, 357-359 
relative position, 356 
rotating, 354, 357 
short forms, 356 
vertical center, 359 

coordinate axes, 268 
directions, short forms, 238 
grids 

font size (labels), 227 
positioning, 225, 226 

overwriting, 267 
plots 

axis origin, 3/6 
axis, specifying, 318 
fonts (labels), 318 
hiding, 316 
omitting, 319 

(I-L) 905 



906 (ll 

labels (COlli.) 
origin, hiding, 319 
placing. 3lS 
point of origin, 316 
spacing, 317 
symbols as, 322, 323 
lexl as, 322, 323 

points in a graphic. 268 
reference points, 266 
rotation angle, 266 
tree nodes 

aligning, 379, 381, 382 
creating, 379 
examples of, 380 
positioning. 378 
separation, 381 

labels key (pst-plot), 315, 318, 319-322 
labelsep key (pstricks), 240, 265, 268, 314, 315, 318, 345, 357 
latex program, 797, 800, 80 I, 803, 804, 806 
LKfEX files, obtaining 

web access, 810, 811, 812, 813, 814 
IB key value (pst ricks), 167 
Ib key value (pst ricks), 229, 231, 267 
length 

arrows, 262 
ticks, 321 
units 

converting to TEX, 293 
selling and changing, 217 

\lens (pst-optic), 434 
tenses, 434 
lensGlass key (pst-optic), 434 
LensMagnification key (psI-lens), 452 
lensScale key (pst-optic), 434 
levelsep key (pst-tree), 370, 372, 373, 374, 375-377, 382 
liftpenkey(pmicks), 235, 240, 282, 283, 286-288 
light effects, 3-D, 447 
lightgray key value (pstricks), 216, 223 
LightThreeDColorPsCommand key (pst-light3d), 447 
line key value (pst-plot), 323, 332, 333 
lineAngle key (pst ricks-add), 418 
linear rays, 434 
linearc key (pstricks), 232, 235, 238-240, 343, 345, 352, 355, 

360 
lineColor key (pst-3d plot), 402 
linecolor key 

(pst-node), 346, 347 
(pst ricks), 219, 231-23·1, 235, 236, 239, 241, 281, 283, 285, 

296, 298 
linejoin key (pst-3dplot), 234, 410, 4/2 
lines, see also connections, see also paths 

3-D parallel projections, 402 
bending, 238 
borders, 239 

lines (COllt.) 
color 

fills, 257 
grid subdivisions, 228 
user defined, 235 

crossing, 239 
custom styles, 282, 283, 285-291 
double, 236 
drawing, 231, 232 
end markings, 237, 238 
extensions, 234 
fills, distance, 256 
from current point, 285-291 
gradient fills, 257 
grids 

color, specifying, 226, 227 
dotted, 226, 227 
width, specifying, 226 

hidden line algorithm, 414 
hidden, drawing, 415, 416 
keywords for, 234 
mathematical plots, customized, 328 
positioning, 237 
styles 

custom, 282, 283, 285-291 
dashed, 235, 236, 240 
dotted, 235, 236, 240, 402 
fills, 256 
grid subdivisions, 228 
solid, 235 
width, 228, 256 

width, 228, 234,256 
zigzag, 455 

lines key value (pst'plot), 330 

PSTricks 

linestyle key (pstricks). 220, 235, 236, 276, 285, 315. 316, 332 
\lineto (pstricks), 291 

lineto (PostScript), 291, 294 
linetype key (pstricks), 235, 240 
linewidth key (pstricks), 220, 230, 232, 234, 235, 236, 239, 241, 

248, 249, 251,259, 261, 262, 268, 269, 281, 285 
linguistics, 424, 425 
Lissajou figures, 332 

\listplot 
(pst-plot), 323, 325, 326, 327 
(pstricks-add), 421 

\listplotThreeD (pst-3dplot), 409 
\loop (pstricks·add), 422 

looped connection lines, 345, 352 
looping, 422 

\LoopL (vaucanson-g), 440 
\LoopN (vaucanson-g), 440 
\LoopS (vaucanson-g), 440 

loopsize key (pst-node), 344, 345, 349, 352 
loose key (pst-tree), 373 
low level macros, 307-309 



PSTricks 

lozenges, horizontal, 233 
lR (restricted horizontal l.eft-Right) mode, 269 
lrbox env_, 276 

M 

macros 
assigned to tree node edges, 377 
duplicate names, 458 
high levd, 309, 310 
low level, 307-309 
sp«ial, 303-307 

magenta key value (pstrkks), 216, 235, 279 
magnifying glass effect, 452 

\makeatletter, 264,365 
\makeatother,264,365 
\makebox, 337 

makeindex program, 806 
makeplot env_ (makeplot), 430 
makeplot package, 430 
male key (pst-pdgr), 431 
Mandel key value (pst-fractal), 456 
Manddbrot set, 456 
mapCountry key (pst-geo), 438 
maps, 438 
markZeros key (pst-rune), 427 
math boxes, 278, 279 
mathematical plots 

adding values to data poinls, 327 
curves, dosing, 333 
customized lines, 328 
dala delimiters, 324 
data file, size limilS, 325 
error margins, 329 
error messages, 330 
external data, 324 
functions, 332 
Hc!non allraclor, 326, 327 
Lissajou figures, 332 
loading data records, 328 
maximum upperllower deviations, 328 
package description (pst-plot), 323, 324, 325, 326 
plot points, 334 
plot style. 332, 333, 334 
printing, 330 
rdative mean power values, 331 
rotating a graph, 327 
RPN (Reverse Polish Notation), 329 
saving data records, 328 
stack system, 329 
symbols in data files, 324 
tab characters, 324 
third degree parabola with inverse function, 331 
watermarks, 326 

mathematics 
drawing polygons, 43/ 
Euclidean geometry, 426 
infix (algebraic) notation, 429, 430 
plolling matlab files, 430 
plotting special functions, 427 
Poisson distribution, 427 
PostScript extensions, 428 
RPN (Reverse Polish Notation), 430 

\mathrm, 361 
matlab files, plaiting, 430 
matrices 

nodes 
cell names, 3M 
cell spacing, 3M 
column width, 365 
combining columns, 362 
empty cells, nodes for, 363 
node type, defining, 363 
overview, 361 
positioning, 364 
row spacing, 364 
row/column hooks, 362 

plolting, 422 
meol key (pst-node), 362, 364 
medical pedigrees, 43/ 
middle key value (pstricks), 237 
minipage env_, 393 
mirrors, 434 
mnode key (pst-node), 362, J63, 364 
mnodesize key (pst-node), 362, 364, 365 
Moire effect. 258 
Illonohedralliling, 383 
Month key (pst-calendar), 452 

\movepath (pstrieks), 290 
\moveto (pstrkks), 283, 284, 291, 292 

moveto (PostScript), 283, 294 
\mrestore (pstrieks), 288 
\msave (pstricks), 288 

Mul key value (pst ricks), 252 
\mul tidipole (pst-cire), 435 
\mul tido (multido),236, 258, 296, 458, 459 

multido package, 216, 458, 459 
\mul tips (pst ricks), 269, 298 
\multirput 

(pst-fill), 383 
(pstrieks), 267, 268, 269 

mv key (pst-dbicons), 445 
\myCoil (Ugc), 269 
\myGrid (Uge), 229 

N 

\n ?put (pst-tree), 380 
nab key value (pst-node), 349, 355 
nAdjust key (gastex), 439 

(L-N) 907 



908 (N) 

nAdjustdist key (gastex), 439 
name key (pst-node), 361, 362, 363, 364 
narneX key (pst-3dplot), 410, 413 
nameY key (pst-3dplot), 410, 413 
narneZ key (pst-3dplot), 410, 413 
naming nodes, 335 

\naput (pst-node), 343, 356, 357, 358 
nArrow key (pstricks-add), 418 

\nbput (pst-nocle), 345, 355, 356, 357, 358 
\DC???? (pst-node),340 
\ncangle (pst-node), 343, 344, 351, 355 
\ncangles (pst-node), 344 
\ncarc (pst-node), 273, 337, 341, 350, 351, 355 
\ncarcbox (pst-node), 346, 347, 353, 355 
\ncbar (pst-node), 343, 352, 355, 360, 377, 378 
\nebox (pst-node),346, 353, 355 
\nccarcbox (pst-node), 346 
\nccircle (pst-node), 345, 346, 355 
\nccurve (pst-node), 338, 345, 351, 352, 355, 360, 361 

nccurve key (pst-node), 338 
\ncdiag 

(pst-node), 341, 342, 343, 355 
(pstricks-add),418 

\ncdiagg (pst-node), 342, 343, 355, 377 
\ncline (pst-node), 230, 23/, 335, 336, 338-340, 341, 342, 345, 

349-351, 353-359, 362-365, 370, 374 
\ncloop (pst-node), 344, 345, 352, 354, 355 
\ncput (pst-node), 230, 23/, 344, 345, 353-356, 357, 358, 359, 374 
\ncputicon (pst-uml), 442 
\ncSE (pst-uml), 442 
\ncSXE (pst-uml), 442 

ncurv key (pst-node), 345, 349, 352 
ncurvA key (pst-node), 349, 352 
ncurvB key (pst-node), 349, 352 
nEnd key (pstricks-add), 418 
nesting nodes, 335 

\newcommand, 228 
\newit, 3 1 1  
\newpath (pstricks), 284 

newpath (PostScript), 284 
\newpsfontdot (pstricks), 250, 251 
\newpsobject (pstricks), 228, 280 
\newpsstyle (pstricks), 222, 228, 279, 280 
\newpssytle (pst-3dplot), 414 

news groups, 810, see aiso online resources 
\newtier (pst-asr), 424 

nil tree nodes, 368 
Nmarks key (gastex), 439 
Nmr key (gastex), 439 

\node (gastex), 439 
nodealign key (pst-node), 362, 3M 

\nodeBetween (Ugc), 337 
nodes 

center, determining, 335, 336 
center, moving, 348, 349 

nodes (cant.) 
circular, 337, 338, 350 
connections, 455 
connector separation, 350, 351 
defined radius, 337 
diamond shaped, 339 
dots, 340 
four corner definition, 336 
frames, 340, 350 
in a matrix 

ceU names, 364 
cell spacing, 364 
column width, 365 
combining columns, 362 
empty cells, nodes for, 363 
node type, defining, 363 
overview,361 
positioning, 364 
row spacing, 364 
row/column hooks, 362 

in running text, 337 
multiple connections, 36(), 361 
naming, 335 
nesting nodes, 335 
oval shaped, 339 
placing, 335 
plotting curves, 336 
positioning, 336, 337, 361 
radius, setting, 338 
simple, 335 
symbol size, 340 
trees 

blank spaces, inserting, 369 
bounding boxes, 378 
command names, 367 
curved connectors, 369, 376 
diagonal connectors, 377 
distance between, 372-376 
fanned, 369 
keywords for, 370-378 
level separation, 375, 376 
macros, assigned to edges, 377 
nil, 368 
order, changing, 371 
predecessors, 367-369 
reference points, setting, 368 
reserving space for, 368 
sets of branches, combining, 370 
successors, 367-369 
tree direction, specifying, 371 
types, 367 

trees, labels 
alignment, 379, 381, 382 
creating, 379 
examples of, 380 

PSTricks 



PSTricks 

nodes (COllt.) 
positioning, 378 
separation, 381 

triangular, 339 
nodesep key (pst-node), 251, 297, 299, 300, 335, 336, 340, 34/, 

343, 346, 348, 349, 350, 351, 353-356, 359, 360, 
362-364, 368,374 

nodesepA key (pst-node), 349, 350, 360 
nodesepB key {pst-node}, 349, 350, 360, 368, 374, 377 
nodeWidth key (pst·geo), 438 
none key value 

(pst·node), 349, 355, 362, 363 
(pst-plot), 314, 315, 316, 318, 319 
(pstricks), 220, 235, 236, 253, 276, 289, 290 

nopstricks option (pst-pelO, 800 
normal key (pst-3d), 395, 397 
normal vector direction, 3-D, 397-399 

\NormalCoor (pstricks), 219, 296 
normaleLatitude key (pst-vue3d), 445 
normaleLongi tude key (pst-vue3d), 445 
notightpage option (pst-pelO, 800 
noxcolor option (pstricks), 215, 216 
npos key (pst-node), 344, 345, 349, 354, 357, 358, 442 

\nput (pst-node), 344, 357, 359 
nrot key (pst-node), 344, 345, 349, 354, 358, 442 
nStart key (pstricks-add), 418 
nStep key (pstricks-add), 418 

\NUC (rrgtrees), 425 
Nw key (gastex), 439 

o 
o key value (pst ricks), 251, 252 
0-0 key value (pstricks), 261 
object types, 307 
objects, as fills, 255 
offset key (pst-node), 297, 299, 300, 349, 353, 354, 355, 360 
offsetA key {pst-node}, 349, 353, 360 
offsetB key (pst-node), 349, 353, 360 
online access to CTAN, 810, 81 1, 812, 813, 814 
online resources 

archived files, finding and transferring, 813 
CTAN (Comprehensive'IF,X Archive Network), 810 

web access, 810, 81 1, 812, 813, 814 
documentation 

command-line interface, 815 
panel interface, 816 
search by name,815 
search by product, 816 
texdoe, 815 
texdoek, 816 

FAQs (Frequently Asked Questions), 809 
files, getting from the command line, 8/4 
How To Ask Questions The Smart Way, 8\0 
news groups, 8\0 

online resources (COllI.) 
program files, obtaining 

web access, 810, 811, 812, 813, 814 
'IF,X file catalogue, 8 1 1  
'IF,X files, 810 
'IF,X user groups, 817, 818 
TUG home page, 810, 811 

onset key (pst-asr), 424 
00-00 key value (pst ricks), 261 

\openshadow (pstricks), 289, 290 
operation key (pst-osci), 434 
Oplus key value (pstricks), 252 
oplua key value (pst ricks), 252 

\OPR (rrgtrees), 425 
optical systems, 434 
origin key 

(pst-Jdplot),410 
(pstricks), 223, 224, 281 

origin (3-0), positioning, 414 
origin of ordinates, translating, 286 
oscilloscope channels, 434 
Otimea key value (pstricks), 252 
otimes key value (pstricks), 252 
outer key value (pstricks), 235, 237 
oval key value (pst-node), 362, 363 
oval-shaped boxes, 273, 339 

(N-P) 909 

\ovalnode (pst-node), 339, 342, 345, 348, 352, 353, 363 
Ox key (pst-plot), 315, 3/6 
Oy key (pst-plot), 315, 316, 317 

P 

p key value (pst-node), 362, 363 
\parabola (pstricks), 224, 245 

parabolas, 245 
parallel connection lines, 353 

\parametricplot (pst-plot), 330, 332 
\parametrieplotThreeD (pst-3dplot),405, 407, 408 
\parbox, 272, 389, 393 

paths, see a/so lines 
dosing, 284 
creating, 284 
deleting, 284 
filling, 285 
moving, 290 
stroke, 284, 285 

\pc???? (pst-node), 348 
\peangle (pst-node), 348 
\pcangles (pst-node), 348 
\peare (pst-node), 348 
\pearebox (pst-node), 348, 353 
\pcbar (pst-node), 348 
\pcbox: (pst-node), 348 
\peeurve (pst-node), 348, 360 



910 (P) 

\pediag 
(psl-node), 348 
(pstricks-add), 418 

\pcdiagg (pst-node), 348 
\peline (pst-node), 251, 348 
\peloep (pst-node), 348 
. pdf file extension (pst-pdf), 806 

PDF files, 458 
pdfcrop program, 804 
pdfinfo program, 804 
pdflatex program, 457, 458, 797, 800, SOl, 803, 805, 806 
PDPs 

creating 
dvipdfm program, 798-800 
dvipdfmx progrnm, 798-800 
from LKfEX. 803-807 
from PostScript, 800, 801, 802, 803 
overview, 797 
pst-pdf package, 800, 801, 802, 803 

pdftex program, 797, 798 
pdftops program, 806 
pen behavior, 240 
Pentagon key value (pstricks), 252 
pentagon key value (pstricks), 252 
pentagon* key value (pstricks), 252 
percent sign (%), comment indicator, 277 
period1 key (pst-osci), 434 
perspective projection, see tilting 
phB key (pst-asr), 424 
PHI key (pst-vue3d), 445 
Phyllotaxis, 457 
picture env., 223, 303, 797 
pictures, embellishing with grids, 229, 230 
placement, see positioning 
plain option (pstricks), 215 
plane key (pst�3dplot), 4 10, 413, 414 
plot points, 3·0 parallel projections, 411 
plotpoints key (pst-plot), 224, 330, 332, 334, 405, 406 
plot style key (pst-plot), 224, 323, 324-327, 330--334, 411 
plotting, see also graphs 

coordinate system, 314 
coordinate units, calculating, 421, 422 
differential equations, 424 
labels 

axis origin, 316 
axis, spedfying, 318 
fonts,318 
hiding, 316 
omitting, 319 
origin, hiding, 319 
placing, 315 
point of origin, 316 
spadng, 317 
symbols as, 322, 323 
text as, 322, 323 

plotting (COllt.) 
looping, 422 
mathematical plots 

3�0 parallel projections, 407-409 
adding values to data points, 327 
curves, dosing, 333 
customized lines, 328 
data delimiters, 324 
data file, size limits, 325 
error margins, 329 
error messages, 330 
external data, 324 
functions, 332 
Henon attractor, 326, 327 
Lissajou figures, 332 
loading data records, 328 
maximum upperllower deviations, 328 

PSTricks 

package description (pst-plot), 323, 324, 325, 326 
plot points, 334 
plot style, 332, 333, 334 
printing, 330 
relative mean power values, 331 
rotating a graph, 327 
RPN (Reverse Polish Notation), 329 
saving data records, 328 
stack system, 329 
symbols in data files, 324 
tab characters, 324 
third degree parabola with inverse function, 331 
watermarks, 326 

matlab files, 430 
matrices, 422 
package description, 313 
special functions, 427 
step functions, 423 
ticks 

axes, specifying, 319 
axis origin, 316 
hiding, 316 
length, 321 
point of origin, 316 
position, 321 
size, 322 
style, 320, 321 

. png file extension (pst·pdf), 806 
\pnode (psI-node), 230, 231, 299, J{)(), 3/0, 336, 337,363, 436 

points 
current, moving, 283 
curves, displaying, 237 
displaying, 237, 238 

Poisson distribution, 427 
polar coordinates, 296 
polarplot key (pst·func), 427 
polygon key value (pst·pIOI), 332, 333 



PSTricks 

polygons, see alS{} pecific polygons 
drawing, 232, 431 
keywords for, 234 

PolyNbSides key (pst-poly), 431 
pOrigin key (pst-3dplot), 414 
PosAngle key (pst-eucl), 426 
positioning 

labels 
connections, 357-359 
tree nodes, 378 

lines, 237 
nodes, 336, 337, 361 

PostScript 
% (percent sign), comment character, 265 

code, in PostScript output, 292, 305, 306, 307 
coordinates, converting to TEX, 293, 294 
mathematical extensions, 428 
PDFs from, 800, 801, 802, 803 

sending intormation to TEX, 365, 366 

stack state, saving, 28(i 
postscript env. (pst-pdf), 802 

prede<:essor tree nodes, 367-369 
preview package, 458, 800-802 

\PreviewEnvironment (pst-pdf), 801 
printing plots, 330 

printValue key (pst-func), 427 
. pro file extension (pst ricks), 302 

program files, obtaining 
web access, 810, 81 1, 812, 813, 814 

\protect (pst-node), 335, 337 
ps2pdf program, 797, 801-806 
ps2pdf13 program, 804, 805 

\psaddtolength (pstricks), 218 

\psAppolonius (pst-fractal),456 

\psarc (pstricks), 241. 242, 247, 2'18, 281, 302. 344 
\psarcn (pstricks), 241, 242, 247, 28/, 344 
\psArrowCi vi! (pst-strU),436 
\psaxes 

(pst-plot), 224, 266, 276, 314. 315-327, 329-334, 391, 392, 
459 

(pstricks-addl,418 
\psbarchart (pst-bar), 450 
\psbarcode (pst-calendar), 453 
\psbarscale (pst-bar), 450 
\psbezier (pstricks), 244, 245, 282, 290, 291 
\psBinomialN (pst-func), 427 
\psboxfill (pst-fill), 255, 257, 383, 384-387 
\psCalDodecaeder (pst-calendar), 452 
\psCalendar (pst-calendar), 452 
\psccurve (pstricks), 246, 336 
\pscharpath (pst-text), 450 
\pscircle (pstricks), 234, 238, 241, 247, 255, 257, 259, 275, 308, 

309 
\pscirclebox 

(pst-node), 338 

\pscirclebox (COlli.) 
(pst ricks), 269, 270, 272 

\psclip (pst ricks), 276 
psclip env. (pstriCks), 259, 275, 276 

\psCoil (pst-coil), 455 
\pscolhook (pst-node), 362 
\pscolhook ???? (pst-node),362 

(P) 911  

\pscurve (pst ricks), 245, 246, 248, 249, 282, 283, 284 
\pscustom (pstricks), 234, 240, 276, 280, 28/-290, 293, 29·1, 295, 

305,327, 436 
\psdblframebox (pstricks), 271, 272 
\psdiabox 

(pst-node),339 
(pstricks), 273 

\psdiamond (pstricks), 233 
\psdot (pst ricks), 236, 249, 250-252, 296, 298, 300, 302, 339 
\psdot* (pstricks), 252 

\psdots (pst ricks), 249, 250, 282, 296 
\psecurve (pstricks), 246 
\psedge (pst-tree), 369, 376 
\psellipse (pstricks), 239, 243 
\psellipticarc (pstricks), 243 
\psellipticarcn (pstricks), 243 

\psellipticwedge (pstricks), 244 
\pserrorLine (tlgc), 329 
\psFArrow (pst-fractal), 456 

\psFern (pst-fractall, 456 

\psforeach (pstricks-add), 422 
\psFractal (pst-fractal), 456 
\psfractal (pst-fractal),456 
\psframe (pstricks), 232, 233, 237, 238, 239, 267, 270, 303, 306, 

340, 383, 393 
\psframebox (pstricks), 258, 270, 271, 272, 274, 278, 279, 352, 

448, 449 
\psgraph (p$tricks-add), 421 

psgraph env. (pstricks-add), 421 
\psgrid (pstricks), 225, 226, 227-230, 282, 324, 325, 33/ 
\psHexagon (tlgc), 307, 308, 309 
\pshlabel (pst-plot), 318, 322 
\psKochflake (pst-fractal), 456 

\pslabelsep rigid length (pstricks), 240 

\psLame (pst-func), 459 
\pslbrace (pstricks), 304 

\psline (pst ricks), 218, 219, 231, 232, 234-236, 237, 238, 239, 
247, 259-263, 268, 28/-283, 291, 299, 300, 302, 365 

\psline$ (pstricks), 220 

\pslinecolor (pstricks), 220 
\pslinewidth (pstricks), 235, 261, 263 

\psmathboxfalse (pstricks), 278 
\psmathboxtrue (pstricks),278 

psmatrix ellv. 
(pst-node), 361, 362-365 
(pst-pdf),800 

\psMatrixPlot (pstricks-add), 422 
\psovalbox (pstricks), 270, 272, 273, 339 



912 (P) 

\psPhyllotaxis (pst-fractal), 456. 457 
pspicture env. 

(pst-pdf),800 
(pstricks), 218, 220-223, 225, 229, 303, 457 

pspicture environment 
bounding boxes 

creatillg, 220, 221 
shifting, 22/-223 

keywords for, 221-223 
missing values, determining, 221 
whitespace between commands, 223 

pspicture* env. (pstricks), 220, 275 
\psPlot (pst-infixplot), 429 
\psplot (pst-plot), 224, 276, 283, 285-289, 306, 323, 330, 331, 

333, 334, 428 
\psplotDiffEqn (pstricks-add), 423, 424 
\psplotlmp (pst-func), 427 
\psplotThreeD (pst-Jdplot),406, 407, 411 
\pspalygon 

(pst-plot), 320, 333 
(pstricks). 232, 237, 238, 248, 271, 3/0 

\pspolygonbox (pst-poly), 43/ 
\pspred (pst-tree), 369, 376, 379 
\psPTree (pst-fractal), 456, 457 
\psrbrace (pstricks), 304 
\psrowhook (pst-node), 362 
\psrowhook ???? (pst-node),362 
\psrunit (pstricks), 218 
\psscalebox (pstricks), 277 
\psscaleboxto (pstricks), 277 
\psset (pst ricks), 217, 218, 232, 259, 311, 418 
\pssetlength (pstriCks), 218 
\psshadow (pst-3d), J88, 389 
\psshadowbox 

(pst-tree), 378 
(pstricks), 272, 378 

\psSier (pst-fractal), 456 
\psspan (pst-node), 361, 362 
\psspectrum (pst-spectra), 432 
\psStep (pst ricks-add), 423 
\pssucc (pst-tree), 369, 376, 379 

pst-3d package, 216, 388-400 
pst-3dplot package, 217, 234, 313, 388, 400-416 
pst-all package. 216, 313 
pst-asr package. 217, 424 
pst-bar package, 450 
pst-barcode package, 453 
pst-blur package, 449, 450 
pst-<alendar package, 452 
pst-<irc package. 309, 435 
pst-coil package, 216, 455, 456 
pst-dbicons package, 445 
pst-dots . pro file (pstricks), 250, 302 
pst-eps package, 216, 457 
pst-eucl package. 426 

pst-fill package, 216, 255, 257, 383-387 
pst-fr3d package, 388, 447 
pst-fractal )Xlckage, 456, 457 
pst-func package, 427 
pst-geo package, 437, 438 
pst-gr3d package. 388, 447 
pst-grad package, 216, 448 
pst-infix plot package, 429. 430 
pst-jtree package, 425 
pst-Iabo package, 433 
pst-lens package. 452 
pst-light3d package,447 
pst-map2d package,438 
pst-map2dll package, 438 
pst-map3d package, 438 
pst-map3dll package, 388, 438 
pst-math package, 224, 428, 429 
pst-node package, 214, 216, 313, 334-366, 379, 424 
pst-node. pro file (pstricks), 302 
pst-ob3d package, 388, 446 
pst-()ptic package, 434 
pst-osci package, 434 
pst-pdf package, 457, 458, 797, B00-803, 805, 806 
pst-pdgr package, 431 

PSTricks 

pst-plot package. 214. 216, 266. 313-334, 400, 406. 424, 426 
pst-poly package, 431 
pst-slpe package, 449 
pst-spectra package, 432 
pst-stru package, 436 
pst-text package, 216, 451 
pst-tree package, 214, 216, 366-382. 424 
pst-uml package, 442, 443 
pst-view3d package, 400 
pst-vue3d package. 388, 393, 445 
pst-Kkey package, 217,310-312 

\pstillarrolltable (pstricks), 264 
\pstillchecknum 

(pst-Kkey),312 
(pstricks),312 

\pstilldef (pstricks), 307 
\pstillgetcoor (pstricks), 310 
\pstillgetint 

(pst-Kkey),312 
(pstricks),312 

\pstillgetlength 
(pst-KkeY),312 
{pstricks),312 

\pstillobj ect (pstricks), 253 
\pstillVerb (pstricks), 305 
\pstillobj ect (pst-pdf). 800 

pstcol package, 215 
PstDebug key (pst-fill), 384, 387 

\PstDie (pst-ob3d), 446 
\pstextpath (pSI-text), 451 
\PstFrameBoxThreeD (pst-fr3d). 447 



PSTricks 

\PstGridThreeD (pst-9r3d), 447 
\pstheader (pst ricks), 302, 303 
\psTil t (pst-3d), 389, 390, 391, 392 
\pstil t (pst-3d), 389, 390, 391, 392 
\psTil t{30}{\Bar} (pst-3d), 390 
\pstH t{30}{\Bar} (pst-3d), 390 
\pstlnterLL (pst-euel), 426 
\PstLens (pst-lens), 452 
\PstLightThreeDGraphic (pst-light3d),447 
\PstLightThreeDText (pst-light3d), 447 
\pstPlanePut (pst-3dplot), 413-415 
\PstPolygonNode (pst-poly), 431 
\pstPrOjection (pst-euel), 426 

psTree env. (pst-trE�@), 366 
\pstree (pst-tree), 366, 367-382 
\pstree , TC, Toval (pst-tree), 372 
\pstRelationship (pst-pdgr), 431 
\pstriangle (pstricks), 233 
\pstribox 

(pst-node),339 
(pstricks), 271, 273 

pstricks option (pst-pdf), 800 
pstricks package, 213-466, 797, 800 
PSTricks packages, see 3-D parallel projections, see 3-D 

representation, see specific packages, see arrows, see 
connections, see fills, see nodes, see plotting, see 
sciences, see trees 

pst ricks-add package, 224, 257, 318, 323, 418-424 
pstricks. pro file (pstricks), 302, 305, 307, 365 
pstricks . sty file (pstricks), 215 
pstricks . tex file (pstricks), 214, 215 

\PSTricksfalse (pstricks), 303 
\PSTricksOff (pstricks), 303 
\PSTricksOn (pstricks), 303 
\pstScalePoints (pstricks-add), 421 
\pstThreeDBox (pst-3dplot), 404, 415, 416 
\pstThreeDCircle (pst-3dplot), 405 
\pstThreeDCoor (pst-3dplot), 401, 402-1116 
\pstThreeDDot (pst-3dplot),402, 403-405, 411, 416 
\pstThreeDEllipse (pst-3dplot),404, 405, 412, 416 
\pstThreeDLine (pst-3dplot), 402, 403 
\pstThreeDNode (pst-3dplot),402 
\pstThreeDPut (pst-3dplot),401, 402, 414 
\pstThreeDSphere (pst-3dplot), 405, 406 
\pstThreeDSquare (pst-3dplot), 403, 404 
\pstThreeDTriangle (pst-3dplot), 403, 4/2 
\PSTtoEPS (pst-@ps), 457 
\pstTriangle (pst-euel), 426 
\pstVerb (pstricks), 221, 224, 234, 303, 305, J()6 
\pstverb (pstricks), 280, 303, 305, 306 
\pstverbscale (pstricks), 221, 305 
\psuni t (pstricks), 218, 292 
\psverbboxfalse (pstricks), 279 
\psverbboxtrue (pstricks), 279 
\psvlabel (pst-plot), 318, 322 

\pswedge (pstricks), 237, 242, 244 
\psxW'lit (pstricks), 218 
\psyuni t (pst ricks), 218, 222 

Q 
\qdisk (pstricks), 224, 241, 268, 282 
\qline (pst ricks), 232, 282 

R 
R key value 

(pst-node), 362, 363 
(pstricks), 270, 271 

r key value 
(pst-node), 362, 363 
(pst-tree), 380 
(pstricks), 269 

\radians (pst ricks), 218, 219 
radius key 

(pst-node), 338, 349, 350, 35/, 352 
(pst-tree), 366, 369-374, 376, 379-382 

railroad diagrams, 345 
\raisebox, 22\ 

rand (PostScript), 298 
RandomFaces key (pst-ob3d), 446 
rB key value (pstricks), 267 
rb key value 

(pst-node), 353 
(pst ricks), 267 

rbracketlength key (pstricks), 260, 263 
rC key value (pstricks), 231 

\rcoor (pstricks), 294, 295 
\rcurveto (pstricks), 292 

rcurveto (PostScript), 292 
\readdata 

(pst-3dplot),409 
(pst-plot),325, 328, 329 

\readpsbardata (pst-bar), 450 
real number keys, 312 
rectangles 

3-D parallel projections, 404 
horizontal, 232, 233 

\red (pstricks), 216 
red key value (pstricks), 216 
ref key 

(pst-node), 349, 353 
(pst-tree), 368 

\reflectbox (graphics), 277 
refrigerantBoulles key (pst-Iabo), 433 

\relationshipbetween (pst-dbicons),445 
relative key value (pstricks), 235, 239 
relative mean power values, 331 

\resetOptions (pstricks-add), 424 
restricted horizontal Left-Right (LR) mode, 269 

\rlineto (pstricks), 291 

(P-R) 913 



914 (R-S) 

rlineto (PostScript), 291, 294 
\Rnode (pst-node), 336, 348, 349, 359-36/, 363 
\rnode 

(pst-node), 299, 335, 336, 337, 341-348, 352, 353, 355, 360, 
363, 364 

(pst-tree), 374-377 
rot key (pst-node), 349, 356, 357 

\rotate (pstri(ks), 287 
rotate (PostScript), 287 

\rotatebox (graphicx), 277, 397 
Rotatedown cnv. (pstricks), 277 

\rotatedown (pstricks), 276 
Rotateleft env. (pstricks), 277 

\rotateleft (pstricks), 276 
Rotateright cnv. (pstricks), 277 

\rotateright (pstricks), 276 
rotaling 

3-D objects, 397, 399 
boxes, 276, 277 
connection labels, 354, 357 
coordinate system, 4/0 
dol coordinates, 252 
fill patterns, 384 
graphs, 32? 
objects, 287 
symbols, 252 
text, 392 

rotating package, 392 
rows, matrices, 362, 364 
rowsep key (pst-node), 362, 364, 365 

\rPERIPH (rrgtrees), 425 
RPN (Reverse Polish Notation), 329, 430 

\rput (pst ricks), 229-231, 261, 266, 267, 268, 269, 271, 299, 331, 
341, 342, 355, 368 

rrgtrces package, 424, 425 
\Rrnode (pst-node), 360 

runi t key (pstricks), 218, 296 

S 

\savedata (pst-plot), 328 
saving 

coordinates, 288, 305 
data records, 328 
PostScript stack state, 286 

\sbox, 229 
\scale (pstricks), 287, 288 

scale (PostScript), 287 
Scalebox env. (pstricks), 277 

\scalebox (graphics), 277 
Scaleboxto env. (pstricks), 277 

\ScalePoints (pst-plot),326 
scaling 

boxes, 276, 277 
objects, 287 

sciences 
absorption spectra, 432 
civil engineering analysis, 436 
continuum spectra, 432 
electrical circuits, 435 
emission spectra, 432 
geographical representations, 438 
lab apparatus, 433 
lenses, 434 
linear rays, 434 
maps, 438 
medical pedigrees, 431 
mirrors, 434 
optical systems, 434 
oscilloscope channels, 434 

sectors 
circles, 242 
ellipses, 243, 244 

SegmentColor key (pst-3d plot), "06 
segmented connections 

arms, 352 
counting, 355 
drawing, 342, 344 
maximum number of, 354 

SegmentSymbol key (pst-euel), 426 
setcmykcolor (PostScript), 298 

\setcolor (pstricks), 295 
setlinej oin (PostScript), 234, 294, 412 
setlinewidth (PostScript), 294 
sfg package, 442 

\sfgbranch (sfg),442 
\sfgcurve (sfg), 442 
\sfgnode (sfg), 442 
\sfgtermnod (sfg), 442 

shading 
2-D 

as highlighting, 239, 240 
boxes, 272 
custom styles, 289 
packages, 388, 389 

3-0, 394 

PSTricks 

shadow key (pstricks), 233, 235, 239, 240, 272-274, 281, 303 
shadowangle key (pstricks), 233, 235, 239, 240, 289, 303 
shadowcolor key (pstricks), 233, 235, 239, 289, 303 
shadows 

as highlighting, 239, 240 
boxes, 272 
custom styles, 289 
packages, 388, 389 

shadowsize key (pstricks), 235, 239, 289, 290, 303 
shift key (pstricks), 221, 222 
shortput key (pst-node), 273, 349, 355, 356, 359 
showbbox key (pst-tree), 370 
showbox key (pst-tree), 378 
showFP key (tlgc), 311 



PSTricks 

showgrid key (pstrkks), 222, 223 
showing, see hiding/showing 
showorigin key (pst-plot), 315, 319, 323 
showpoints key (pst ricks), 235, 237, 238, 243, 281, 323, 326, 

327, 330, 331, 334, 405 
Sierpillski triangle, 456 

\skiplevel (pst-tree), 382 
\skiplevels (pst-tree), 382 

skiplevels env. (pst-tree), 382 
slanting, see tilting 
slides (color), overlay specification 

hyperlinks, 797-818 
smooth curves 

Belier curves, 244, 245 
overview, 244 
through a list of points, 245, 246 

solid key value (pstricks), 220, 235, 236, 253, 255, 279, 283, 285 
solid fills, 254 
SolidAsterisk key value (pstricks), 252 
SolidDiamond key value (pstricks), 252 
SolidHexagon key value (pstricks), 252 
SolidOplus key value (pstricks), 252 
SolidOtimes key value (pstricks), 252 
SolidPentagon key value (pstricks), 252 
SolidSquare key value (pstricks), 252 
SolidTriangle key value (pstrkks), 252 
space 

as fill, 256 
between commands, 223 
ignoring/preserving. 277, 303 
inserting, 304 

\space 
{pst-tree), 374 
(tex),304 

\special,797 
(tex), 214, 280, 292, 302, 303, 304, 306 

special. pro file, 305 
\SpecialCoor (pstrkks), 219, 296, 298-300, 302, 310, 336, 337, 

347, 348, 365 
SpericalCoor key (pst-3dplot), 410 
spheres, 3-0, 406 
spherical coordinates, 416 
SphericalCoor key (pst-3dplot), 41 1, 416 
spotX key (pst-3dplot), 410, 413 
spotY key (pst-3dplot), 410, 413 
spotZ key (pst-3dplot), 410, 413 
Square key value (pstricks), 252 
square key value (pstricks), 251, 252 
square* key value (pstricks), 252 
squares, 3-D parallel projections, 403 
stack system, 329 
startX key (makeplot), 430 
startY key (makeplot), 430 

\State (vaucanson-g), " .. /0 
step functions, 423 

StepType key (pstricks-add), 423 
straight connection line, 341 
string keys, 312 

\stroke (pmkks), 284, 285 
stroke (PostScript), 284, 294 
stroke, paths, 284, 285 
style key 

styles 

(pst-calendar), 452 
(pst-jtree), 425 
(pstricks), 229, 258, 279 

3-0 parallel projections, 414, 415 
arrows, 295, 418, 419, 420 
dots, 251 
fills, 253 
lines 

custom, 282, 283, 285-291 
dashed, 235,236,240 
dotted, 235, 236, 240, 402 
fills, 256 
grid subdivisions, 228 
solid,235 
width, 228, 256 

mathematical plots, 332, 333, 334 
shadows, 289 
symbols, 251 
symbols, pre-defined, 251 
ticks, 320, 321 
user-defined 

dosed curves, concatenating, 281 
defining, 279, 280 
fills, 281 
lines, 281 
PostScript output, 280 

subgridcolor key (pstricks), 227, 228 
subgriddiv key 

(pst-plotl, 332 
(pstricks), 227, 228 

subgriddots key (pstricks), 227, 228 
subgridwidth key (pslricks), 226, 227, 228 

successor tree nodes, 367-369 
\swapaxes (pstricks), 287,288 

swapaxes key (pstricks), 224, 232, 281 
swapping axes, 288 
syB key (pst-asr), 424 
symbols 

defining, 250, 251 
definition, 249, 250 
in data files, 324 
keywords for, 251 
pre-defined styles, 251 
rotating, 252 
sile, 251 

(S) 915 



916 (T) 

T 

tab key value (pst-node), 349, 355, 3.56 
lab characters, 324 

\ tabcolsep rigid length, 272 
tablr key value (pst-node), 349, 355, 356 
tabular env., 272 

\taput (pst-node), 356, 358 
tbarsize key (pstricks). 260, 262, 263, 352 

\tbput (psI-node), 356. 358 
\ TC (pst-tree), .366, 367, 369-371, J73, 374, 376, 378-382 
\ Tc (pst-tree), 367, 378-382 
\ TCircle (pst-tree), 367 
\ Tcircle (pst-tree), 367. 371-373 
\ Tdia (pSI-tree), 367 
\Tdot (psi-tree), 367 

tensioncolor key (psi-cire), 435 
tensionlabelcolor key (pst-<irc), 435 
tessellation, see tiling 
TEX 

'*' (percent sign), comment character, 265 
getting information from PostScript, 365, 366 

TEX file archives, 810, see a/so CTAN 
TEX files, obtaining 

web access, 810, 811, 812. 813, 814 
lexdoc program, 815, 816 
texdoctk program, 815-817 
text 

along a path, 451 
rotating, 392 
shapes, 448-450 
slanting, 392 

\ text (amsmath), 361 
\textcolor, 216 
\ T! (pst-tree), 367 
\Tfan (pU-tree), 368, 369, 370 

THETA key (pst-vue3d), 445 
third degree panlbola with inverse function, 331 
thislevelsep key (pst-tree), 370, 374, 376, 379, 380 
thistree!i t key (pst-tree), 370, 372, 373 
thistreenodesize key (pst-tree), 370, 373, 374 
tbistreesep key (pst-tree), 370, 371, 379, 3M 

\thput (pst-node), 358, 359 
three dimensional, see 3-D 

\ TbreeDput (pst-3d), 393, 394, 397, 399, 44{j 
ticks 

axes, specifying, 319 
axis origin, 316 
hiding, 316 
length, 321 
point of origin, 316 
position, 321 
size, 321 
style, 320, 321 

ticks key (pst-plot), 315, 319, 320 
ticksize key (pst-plot), 315, 321, 322 

tickstyle key (pst-plot), 315, 320, 32/, 322 
tight key (pst-tree), 373 
tightpage option (pst-pdf), 800 
tiling, 383, see also fills 
tiling option (pst-fill), 383, 386 
tilting, 3�-392 

\ tlput (pst-node), 356, 358 
\ Tn (pst-tree), 367, J68 

tndeptb key (pst-tree), 380, 381 
tnbeight key (pst-tree), 380, J81 
topos key (pst-tree), 380, 381 
tosep key (pst-tree), 380, 381 
toyre! key (pst-tree), 380, 381, 382 

\TOP (rrgtrees), 425 
top key value (pst-plot), 315, 320 

\ Toval (pst-tree), 366, 367, 369-380 
\ Tp (pst-tree), 367 

tpos key 
(pst-node), 349, 356 
(pst-tree), 378 

\ TR (pst-tree), 367, 368, 369, 374, 377 
\ Tr (pst-tree), 367, 368, 374-377 

transforms, see specific mmsform5 
\translate (pstricks), 286, 287-290 

translate (PostScript), 286 
tr,Ulsparency, 257. 258 
TransparentMagenta key value (tlge), 279 

\ transy (pst-calendar), 453 
tree! it key (pst-tree), 370, 372 
treeflip key (pst-tree), 370, 371, 372 

PSTricks 

treemode key (pst-tree), 367, 370, 371, 372, 374-377, 379, 380, 
382 

treenodesize key (pst-tree), 367, 370, 373, 374 
trees 

general syntax, 366 
nodes 

blank spaces, inserting, 369 
bounding boxes, 378 
command names, 367 
curved connectors, 369, 376 
diagonal connectors, 377 
distance bet .... ffn, 372-376 
fanned, 369 
key ..... ords for, 370-378 
level separation, 375, 376 
macros, assigned to edges, 377 
nil, J68 
order, changing, 371 
predecessors, 367, 369 
reference points. selling, 368 
reserving space for, 368 
sets of branches, combining, 370 
successors, 367-369 
tree direction, specifying, 371 
types, 367 



PSTricks 

trees (COl1t.) 
nodes, labels 

aligning, 379 
alignment, 381, 382 
creating, 379 

examples of, 380 
positioning, 378 
separation, 381 

skipping levels, 381 
treesep key (pst-tree), 369, 370, 372, 373, 380�381 

\ Tri (pst-tree), 367 
tri key value (pst-node), 362, 363 
Triangle key value (pstricks), 252 

triangle key value (pst ricks), 151, 251 
trianglM key value (pstricks), 252, 198 
triangles, 3-D parallel projections, 403 
triangular frames, 271, 173 
triangular nodes, 339 
trimode key 

(pst-node), 339 
(pstricks), 270, 271, 273 

\trinode (pst-node), 339, 363 
\ trput (pst-node), 356, 358 

Tshadowangle key (pst-3d), 388, 389 
Tshadowcolor key (pst-3d), 388, 389, 390, 391 
Tshadowsize key (pst-3d), 388, 389 

\ tspace (pst-tree),369 
\ Ttri (pst-tree), 367 

TUG home page, 810, 81 / 
\ tvput (pst-node), 358 

tx�NodeDict (PostScript),365 

type key (pst-fractal), 456 

u 
U key value (pst ricks), 27U, 11/ 
u key value (pst ricks), 269 
ul key value (pslricks), 269 

uml package, 443 

UML diagrams, 442�445 
\umlArgument (uml), 443 
\umlAttribute (uml), 443 
\umlClass (pst-uml), 442 
\umlSchema (uml), 443 
\umlSubClass (uml), 443 

unit key (pstricks), 218, 262, 269 
\uput (pst ricks), 224, 230, 231, 268, 300, 320, 331, 333 

ur key value (pslricks), 269 
\usebox, 229�131 
\usepackage, 215 

v 
vaucanson-g package, 439, 440 

VCPicture env. (vaucanson-g), 440 
\verb, 277, 279 

verbatim env., 277 

verbatim boxes, 278, 279 

vertical lines as fills, 154 
view angle, 3-D objects, 397 
viewangle key (pst-3d), 395, 397, 399 

(T-X) 917 

viewpoint key (pst-3d), 393, 394, 395, 396, 397, 398, 399 
viewpoint, 3-D objects, 395, 396, 397 
views (3-D), order of, 397 

visibleLineStyle key (pst-3dplot), 410, 415 
vlines key (pstricks), 391 
vlines key value (pstricks), 253, 254, 255, 256, 279, 281, 285 
vlines. key value (pstricks), 253, 254, 255 

vref key 
(pst-node), 348, 349, 360 

(pst-tree), 381 

\ vspace (pst-tree), 366 
VTeX program, 365, 797 

w 
watermarks, 326 

\wd (tex), 219�231 
wget program, 814 

white key value (pstricks), 216, 235 
whites pace, see space 

\wire (pst-eire), 435 
WORD (rrgtrees), 425 
WorldMap (pst-geo), 438 
\write (lex), 304 

writing objects into files, on the fly, 457 

x 

x key value 
(pst-plot), 315, 318, 319 

(pst ricks), 252 
xAxisLabel key (pstricks-add), 421 
xAxisLabelPos key (pstricks-add), 41 I 
xbbd key (pst-tree), 370, 378 

xbbh key (pst-tree), 370, 378 

xbbl key (pst-tree), 370, 378 
xbbr key (pst-tree), 370, 378�380 
xeolor package, 215, 216, 235, 258, 304, 406 

xEnd key (pst ricks-add), 418 

xetex program, 798, 803 

xgap key (pst-asr), 424 
xkeyval package, 217,310 

xLines key value (pst-3dplot), 414 

xHax key (pst-3dplot), 401, '110, 411 

xHin key (pst-3dplot), '101, 410, 411 
Xnodesep key (pst-node), 297, 300, 349, 350, 351 

XnodesepA key (pst-node), 349, 350 

XnodesepB key (pst-node), 349 

xpdf program, 804 

xPlotPoints key (pst-3dplol), 407, 408 
xPlotpoints key (pst-3dplol), 406, 410, 41 J, 415 



918 (X-Z) 

xStart key (pstricks-addl, 418 
xStep key (pstricks-add), 418 
xThreeDuni t key (pst-3d plot), 410, 411  
xuni t key (pstricks), 218, 22-1, 227, 296, 298,323 
xWidth key (pst-fractal), 456 
xyAxes key (pstricks-addl, 418 
xyDecimals key (pst ricks-add), 418 
xyLines key value (pst-3dplot), 414 

y 
y key (pst-plot),319 
y key value (pst-plot), 315, 318, 319 
yAxisLabel key (pstricks-add), 421 
yAxisLabelPos key (pstricks-add), ·121 
Year key (pst-calendar), 452 
yellow key value (pstricks), 216 
yEnd key (pst ricks-add), 418 
yLines key V\llue (pst-3dplot), 414 

�� � t, 

.�.�. 
WW 

. � .  

.�./�\ � ts 

� �  \/ � o � 
• • 0. 

� C " � " " 

- E  
E
L 

.' ) E
R 

/ 1  L '  
i, <Lr , > R  � 

i'I 'P'" }. Iia 'P'" • 

Lm ( " J(" nt , ) R.n-

1 1 "'1 

"'
}?

EH m /

E
C

--

.' 
.... ),H 

e ,  i5 <Gr· " 
> H  

'" 

PSTricks 

yHax key (pst-3dplot), 401, 410, 4] I 
y,",in key (pst-3dplot), 401, 410, 4/ I 

Ynodesep key (pst-node), 297, 300. 349, 350, 351, 361 
YnodesepA key (pst-node), 349, 361 
YnodesepB key (pst-node), 349 
yPlotpoints key (pst-3dplot), 406, 407, 410, 411, 415 
yStart key (pst ricks-add), 418 
yThreeDuni t key (pst-3dplot), 410, 4 1 1  
yunit key (pstricks), 218, 214, 227, 296, 298, 306 
ywidth key (pst-fractal), 456 
yltLines key value (pst-3dplot), 4\4 

Z 
zigzag lines, 455 
zlib program, 799 
zMax key (pst-3dplotl, 401, 4/0, 411 
zMin key (pst-3dplotl, 401, 410, 4] ] 
zThreeDuni t key (pst-3dplot), 4 10, 411  

dill 
dl21 -"\-., 
d13] � 

S 

A saved d[2] 

'---> 8 saved d12] 
C saved d[3] 

� 0. "  
o " 
0 -

,-- � 

0 

" 

"" 

-' 

• 

" 

" 

"Q. 
b 

[ a I 
b ill 

U b a 
a 



Symbols 

! syntax, 472, 473, 488, 489, 494 
" syntax, 494 
" . . .  " syntax, 470 

, syntax, 480, 482, 494 
( . .  , . .  ) syntax, 470 
(O. xx) syntax, 482 

• syntax, 468-470, 471, 472, 473, 475, 476--478, 481, 488, S03 

•• syntax, 470, 471, 472, 475, 476, 477, 498 
+ syntax, 468, 471, 473, 47.� 

++ syntax, 471, 473, 485 

+- syntax, 473 

, syntax, 469 
- syntax, 473, 480, 487 
- syntax, 47J 

1 . . .  1 syntax,472 

r . . .  I syntax, 472 
1_ . .  ' / syntax,472 

Id . . .  I syntax, 485 

II . . .  I syntax, 486, 487 

Ir . . .  I syntax, 470, 486 

lu . . .  I syntax, 485 

: syntax, 470, 487 

; syntax, 470, 477, 479 
< syntax, 471, 504, S05 
< . .  , . .  > syntax, 469 

«« syntax, 482 

- syntax, 470, 473, 479, 494 
> syntax,47l, 504, S05 
? syntax, 471, 475, 476 

? !  syntax, 471 

?< syntax, 471 

?>>> syntax, 471 

XV-pic 

[F] syntax, 468, 469, 471-473, 474, 478, 479, 485, 486, 488, 500 

[0] syntax, 471, 473, 475, 479, 485, 488, 499 

l syntax. 468, 475. 481, 487 
\{c)cross,504 

\{c)tvist. 504 

\{cc)COl!lposi tel!lap, 493 
\{cc)10wertvocell, 493 
\{cc)tvocell, 493 

\(cc)uppertwocell, 493 

- syntax, 478, 480, 494, 502, 506 

- syntax, 495, 507, 509 
-. syntax, 476, 496, 497, 499, 507, 508 

-•• syntax, 476 

- :  syntax, 497, 498, 499, 507, 508 

-< syntax, 496, 498, 499 

-<> syntax, 496, 497-499 

-« syntax.4%, 497 

-- syntax, 496, 499, 500, 508 

-> syntax, 496, 497, 499, S07, 508 
->< synlax, 496, 497 

-» syntax, 496, 497 

\ \, 468, 473, 481 

_ syntax, 478, 480, 494, 506 

, syntax, 480, 482, 490, 494 

I syntax, 480, 504, 505 
o syntax, 470, 478 

1 syntax, 478 



920 (Symbols-D) 

2 syntax, 478 
2cell option, 493 
3 syntax, 478 

@ 

� syntax, 472, 478 
ID* [F] syntax, 486, 487 
Ill* [r] syntax, 481. 482 
I!l{.} syntax, 472, 473 
I!l{ +} syntax, 472, 475, 476 
I!l{ -} syntax, 470, 471, 500, 501 
I!l{ -} syntax, 470, 471, 488, 490, 498, 499 
tZI{.} syntax, 470, 471, 498, 499 
I!l{ «} syntax, 471 
I!l{ .. _} syntax, 476 
I!l{"} syntax, 470, 497 
I!l{>} syntax, 471 
Ill{o} syntax, 472 
I!l{x} syntax, 472 
Ill ' { . . .  } syntax, 479, 508 
IllH syntax, 486, 487 
iIlM syntax, 486 
I!lR syntax, 486 
illW syntax, 486, 487 

A 

Adobe Reader program, 817 
all option, 468, 478 
amsmath package, 483, 484 

\ar, 468, 472, 478, 479-481, 485, 486, 488, 494, 495, S()()-50J 
arc option, SOO 
arcs, SO 1, 502 
arrow option, 468, 478, 479, 480, 481, 487, 495, 503 
arrows 

cuslOm, 478, 479, 4SO 
in commutative diagrams, 481-484 

B 
braids, 509 

c 
C syntax, 472 
category theory, S09 
circles, 500, SOl 

\circlli t (private), 4S9, 49() 
CMacTeX program, 468 
cobordism of Morse theory, 510 
color option, 468, 474 
commutative diagrams 

3 x 2 diagrams, 484 
3 x 3 diagrams, 484 
annotations, 483 
cubical, 481 
description,4SI 

commutative diagrams (COllt.) 
pullbacks, 484 
square, 482, 483 
triangular, 483 

Comprehensive TEX Archive Network, see CTAN 
connections, 470, 471 

\croplattice, 503 
crossings 

knots, 504, 505 
links, 504, S05 

\crv, 475, 476 
CTAN (Comprehensive TEX Archive Network) 

archived files, finding and transferring, SI3 
description, SIO 
files, from the command line, 814 
TEX file catalogue, SII 
web access, S\O, 81 1, 812, 813, 814 

curly braces ({ }), 477 
curve option, 468, 474, 475, 479, 500, 503 
curves, 475, 476 

o 
o syntax, 472 
diagram package, 482 
diagxy package, 4S2 
documentation, see also online resources 

command-line interface, 815 
panel interface, 816 
search by name, 815 
search by product, 816 
texdoc, SIS 
texdock, SI6 

drawing 
arcs, 501, S02 
arrows 

cUSlom, 478, 479, 480 
in commutative diagrams, 481-484 

braces, 477 
brackets, 476, 477, 478 
braids, 509 
category theory, 509 
circles, 500, SOl 
cobordism of Morse theory, 5/0 
connections, 470, 471 
constructing pictures, 468 
curves, 475, 476 
ellipses, 500, SOl 

extensions, 468 
features, 468 
frames, 476, 477, 478 
globular 3-morphisms, 509 
graphic notions, 467 
graphs 

basic principle, 487 
hidden layers, 489 

XV-pic 



XV-pic 

drawing (COlli.) 
input layers, 489 
linguistics trees, 491, 492 
logical circuit diagrams, 489, 490 
neural network diagrams, 488, 489 
output layers, 489 
tree branching, 488 

kernel,467 
knots 

crossings, 504, 5()5 
joins, 505-5()8, 509 

lattices, 5()2, 503 
links 

crossings, 504, 5()5 
joins, 5()5-508, 509 

matrix-like diagrams 
3x 2, 484 
3 x 3, 484 
annotations, 483 
command syntax, 480 
commutative diagrams, 481-484 
finite state diagrams, 485, 486, 487 
homology, 484 
pullback effect, 484 
square, 482, 483 
stack diagrams, 485, 486, 487 

modules, 468 
object margins, 473 
objects 

bounding box, 473 
definition, 468 
dropping, 471, 472, 473 
edge, 473 
shifting. 472 
sizing, 473 

options, 468 
pentagonal sphere, 510 
polygons 

3-D. 498 
cubes, 499 
general form, 495 
hexagons, 496, 497 
nesting, 499 
perspective drawings, 498 

positions 
absolute, 469 
definition, 467 
initial,469 
spedfying, 469, 470 

spline curves, 475, 476 
string diagram, 5/0 
text, in pictures, 47J 
two-cell diagrams, 493-495 
web structures, S02, S03 

\drop, 502, 503 

E 
\ellipse. 490, 500, 501, 5()2 

ellipses, 500, 5()1 
\endxy, 469, 479 
\entrymodifiers, 485 

F 

(D K) 921 

FAQs (Frequently Asked Questions), 809, see a/so online 
resources 

frame option, 468, 474, 476, 477, 479 
frames, 476, 477, 478 
Frequently Asked Questions (FAQs), see online resources 

\frm, 472, 476, 477, 478, 507 

G 

globular 3-morphisms, 509 
graph option, 468, 487, 488, 506 
graphs 

basic principle, 487 
hidden layers, 489 
input layers, 489 
linguistics trees, 491, 492 
logical circuit diagrams, 489, 490 
neural network diagrams. 488, 489 
output layers, 489 
tree branching, 488 

H 

\heap, 506 
help, see online resources 
hidden graph layers, 489 
How To Ask Questions The Smart Way, 810 

hyperlinks, slides, 809-818 

ifthen package, 503 
\ifthenelse (ifthen), 5()J 
\iiixii (diagxy), 484 
\iiixiii (diagxy), 484 

import option, 474 
input graph layers, 489 

J 
joins 

K 

knots, 505-508, 509 
links, 505-508, 509 

kernel,467 
knot option, 478, 503 

\knotholesize, 507, 508 



922 (K-R) 

knots 

L 

crossings, 504, 505 
joins, 505-50B, 509 

L syntax, 472 
\labelstyle, 494, 504-508 

LKJEX files, obtaining 
web access, 810, 811, 812, 813, 814 

\latticeA, 503 
\latticeB, 503 
\latticebody, 502, 503 

lattices, 502, 503 
\latticeX, 503 
\latticeY, 503 

Lc syntax, 476 
line option, 468, 474 
linguistics trees, 491, 492 
links 

crossings, 504, 505 
joins, 505-508, 509 

logical circuit diagrams, 489, 490 

M 

matrix option, 468, 478, 480, 481, 487 
matrix-like diagrams 

3 x 2, 484 
3 x 3, 484 
annotations, 483 
command syntax, 480 
commutative diagrams, 481-484 
finite stale diagrams, 485, 486, 487 
homology, 484 
pullback effect, 484 
square, 482. 483 
stack diagrams, 485, 486, 487 

\morphism (diagxy), 482, 483 

N 
nesting, polygons, 499 
neural network diagrams, 488, 489 

\newdir, 470, 481, 482 
\newgraphescape, 488, 489, 490 

news groups, 810, see also online resources 

o 
object margins, 473 

\objectmargin rigid length, 496 
objects 

bounding box, 473 
definition, 468 
dropping, 471, 472, <173 
edge, 473 
shifting, 472 
sizing, 473 

\objectstyle, 494, 497, 499, 504, 507, 508 
\omit, 493, 49-1, 495 

online access to CTAN, 810, 81 1, 812, 813, 814 
online resources 

archived files, finding and transferring. 813 

XV-pic 

CTAN (Comprehensive TEX Archive Network), 810 
web access, 810, 811, 8/2, 813, 814 

documentation 
command-Jine interface, 815 
panel interface, 816 
search by name, 815 
search by product, 816 
texdoc, 815 
texdock, 816 

FAQs (Frequently Asked Questions), 809 
files, getting from the command line, 814 
How To Ask Queslions The Smart Way, 810 
news groups, 810 
program files, obtaining 

web access, 810, 811, 812, 813, 814 
lEX file catalogue, 811  
TEX files, 810 
TEX user groups, 817, 818 
TUG home page, 810, 811 

output graph layers, 489 

p 
pentagonal sphere, SIO 
pic program, 487 

\place (diagxy),483 
poly option, 495, 507 
polygons 

3-D, 498 
cubes, 499 
general form, 495 
hexagons, 496, 497 
nesting, 499 
perspective drawings, 498 

\POS, 480, 486, 488, 490 
positioning 

absolute, 469 
definition, 467 
initial,469 

specifying, 469, 470 
program files, obtaining 

web access, 810, 81 1, 812, 813, 814 
ps option, 475 

\pullback (diagxy), 484 

R 
R syntax, 472 

\restore, 486, 487, 488, 49Q, 507 
rotate option, 468, 474, 489 

\rrtwocell, 494, 495 



XV-pic 

\rtwoeell, 493, 494 

s 
\save, 486, 487, 488, 490, 507 

slides (color), overlay specification 
hyperlinks, 809-8/8 

\SloppyCurves, 476 
spline curves, 475, 476 

\splinetolerance, 476 
\Square (diagxy), 483 
\square (diagxy), 482, 483 

square brackets ( (]),  476, 477, 478 
string diagram, 5/0 

T 

lEX file archives, 810, see also CTAN 

TFX files, obtaining 
web access, 810, 811,  8/2, 813, 814 

texdoc program, 815, 816 
texdoctk program, 815-817 
text, in pictures, 473 
tile option,474 
tips option, 468, 474, 481 

\Tree (xyling), 491 
tree branching, 488 
TUG home page, 810, 811 

\turnradius,487 
two-cell diagrams, 493-495 

\twoar (diagxy), 483 
\txt, 473 

u 

U syntax, 472 
\UseAIITwocells, 493, 494 
\UseCompositeMaps,493 
\UseHalfTwocells, 493 
\UseTwocells, 493, 495 

v 
\veap, 507 

\ veross, 504 
\vloOp, 508, 509 
\ vover, 504, 506, 508 
\Vtrianglepair (diagxy), 483 
\vtwist, 504 
\ vunder, 504 

w 
web option, 502 
web structures, 502, 503 
wget program, 814 

x 

\xoverv, 508 
\xtwocell, 493, 494, 495 
\xunderv, 507, 508, 509 
\xy, 469 

xy eny., 469, 495 
\xybox, 497, 502, 503 
\xyconnect (xytree), 492 
\xygraph, 487, 488, 489, 490, 506-508 
\xylattice, 502 

xyling package, 491 
\xymatrix, 468, 480, 481. 482, 485, 486. 493-495 
\xynode (xytree), 49], 492 
\xyoption,468 
\xypolygon, 495, 496-499, 507 
\xypolyname. 499 
\xypolynode. 497, 499, 507, 508 
\xypolynum, 497 
\xytree (xytreeJ. 492 

xytree package,491 

Y 
\yynode (xytree), 49], 492 
\yytree (xytree), 492 

(R-Y) 923 



Abraham, Paul, 709 

Akhmadeeva, Leila, 431 

Aplevich, Dwight, 203, 583 

Apol1onius, 192, 194 

Appelt, Wolfgang, 668 

Arnold, Doug, 491 

Biichle, Dirk, 687 

Barnard, Frederick R., I 
Barr, Michael, 482 

Bauke, Heiko, 518 

Beccari, Claudio, 47 

Beitz, Eric, xxxiv, 547, 551 

Berners-Lee, Tim, 12 

Berry, Karl, 69 

Bibby, Duane, 7 

Bleser, Joachim, 1 5  

Bolek, Piotr, 148 

Bos, Victor, 691 

Braams, Johannes, 15 

Brown, Terry, 16 

Buckley, Andy, 512, 516, 560 

Burton, Terry, 453 

Bustamante Argafiaraz, Gustavo S., 
196,576 

Carlisle, David, 7, 47, 557, 719, 737 

Charpentier, Jean-Come, 429 

Cho, Jin-Hwan, 798 

Cholewo, Tomasz, 203 

Chupin, Maxime, II I 
Clark, Adrian, 8 

Clark, James, 1 7  

Coulon, Jean-Pierre, 588 

Coxeter, Harold Scott MacDonald, 
192 

Diaz, Jose Luis, 64, 196 

Dahlgren, Mats, 517 

Deutsch, L. Peter, I I  

Diamantini, Maurice, 442 

Dirr, Ulrich, xxxiv, 673 

Duggan, Angus, 7 

Dunker, Rainer, 647, 659 

Dupuis, ftienne, 691 

Edwards, Tim, 586 

Egler, Andreas, 589 

Ekola, Tommy, 188 

Els, Danie, 513 

Esser, Thomas, 815, 816 

People 

Fairbairns, Robin, 809, 810 

Finston, Laurence D., 211,  212 

Fischer, Ulrike, xxxiv, 668, 669 

Frampton, John, 424, 425 

Fraser, lames, III 
Frischauf, Adrian, 13 

Fujita, Shinsaku, 520 

GaBiein, Hubert, xxxiv, 43, 457 

Gabo, Naum, 57, 58 

Garcia, Federico, xxxiv, 666, 668, 680 

Gardner, D. J., 424 

Gastin, Paul, 15, 438 

Geisler, Martin, 194 

Gheorghie�, Ovidiu, 181 

Giese, Martin, 449 

Gieseking, Martin, 13 

Gilg, lurgen, xxiv 
Girou, Denis, 214, 431, 446, 447, 452, 

457 

Gjelstad, Ellef, 443 
Gonzato, Guido, 609 

Gray, Norman, 555 

Gregorio, Enrico, 612 

Gurari, Eitan M., 15 



PEOPLE 

Han, Th� Thanh, 24, 798 
Haas, Roswitha T., 518 
Hafner. Jim, 719 
Hagen, Hans, 73, 138, 520, 541 
Hamilton Kelly, Brian, 702 
Happel, Patrick, 513 
Hefferon, Jim, 810 
Heldoom, Marcel, 513 
Hilbert, David, 52, 194 
Hirata, Shullsaku, 798 
Hobby, John, 21, 71, 75, 80, 157 
Hoenig, Alan, 52, 56 
Hoffmann, Torbell, 668, 673 
Hwang. Andrew D., 20 

Jackowski, Boguslaw, 138, 149 
Jalbert, FraJl(;ois, 589 
Jeffrey, Alan, 65 
Jorssen, Christophe, 428, 429, 434, 

435 
J0fgensen, Palle, 155 

Kane, Kevin c., 518 
Kelley, Colin, 17 
Kern, Uwe, xxxiv, 719 
Kernighan, Brian, 17 
Kiffe, Thomas, 468 
Kinch, Richard, 24 
Kneifi, Stanislav, 636 
Knuth, Donald, 6-9, 51, 137, 698 
Koch, Helge von, 105, 194 
Kolodziejska, Hanna, 691 
Krysztofiak, Claudia, xxxiv 

Lamers, lUTgen, 687 
Lamport, Leslie, 7, 8 
Lauda, Aaron, xxxiv, 509 
Laurie, Dirk, 590, 616, 647, 651, 659 
Leathrum, Thomas E., 122 
Leech O'Neaie, Susan, xxxiv 
Leilich, jens, 572 
Lesenko. Sergey. 24 
Lester, Paul Martin, I 

Levine, Michael, 555 
Lindenmayer, Aristid, 154 
Lombardy. Sylvain, 439 
Luecking, Daniel H .• 73. 122 
Luque, Manuel, 433, 434, 437, 445, 

452 

Maclaine-cross, lan, 15,47 
Matarazzo. Giuseppe. 436. 437 
Mattes. Eberhard, 24 
May. Ludwig, 572 
May, Wolfgang, 445 
Milne. james. 481 
Mitchell, Ross, 589 
Mittelbach, Frank, 7, 688 
Moon, Alun, 148 
Moore, Ross, xxxiv, 16, 467, 488 
Morawski, jens-Uwe, 59, 60. 64, 170 
Morimoto, Hiroaki, 637 
Muelas, Santiago, 142, 209 

Navarria, Janice, xxxiv 
Neugebauer, Gerd, 702, 704 
Newton, Isaac, 714 
Nienhuys. Han-Wen. xxxiv. 661 
Niepraschk, Rolf, 43, 457 
Nieuwenhuizen. jan, 661 
Nobre Gon�alves, Luis, 209 

Ohl, Thorsten, 120, 555, 561, 566 
Oswald, Urs, 194 
Otten, A. E, 520, 541 

Phan, Anthony, 11, 66. 150,209 
Pianowski, Piotr, 138 
Pipping, Nils johan, 193 
Podar, Sunil, 15 
Poulain, Christophe, 148, 192 

Rahtz, Sebastian, 7,42 
Ramek, Michael, 518 
Raymond, Eric, 810 
Reichert, Axel, 513 
Richer, jacques, 688 
Richter, jorg, 696 
Ristow. Alan, 450 
Rodriguez, Dominique, 423, 426 
Roegel, Denis, 80, 207, 208 
Rokicki, Tom, 1 1 ,  24, 65 
Rose, Kristoffer H., 16,467 
Rowley, Chris, 7 
Rubinstein, Zalman, 668 
Ruedas, Thomas, 816 
Rycko, Marek, 138 

Sabo, Rudolf, 13 
Sakarovitch, Jacques, 439 

Sarlat, Jean-Michel, IV, 195 
Schopf, Rainer, 810 
Scherer, Andreas, 167 
Schmid, Hanspeter. 442 
Schmittbuhl, Arnaud, 432 
Schnell, Andreas, 14 
Schofer, Angelika, 589 
Sendoukas, Hippocrates. 24 
Sierpillski, Wadaw, 52, 194 
Simons, Don, 590, 616, 618 
Smith, Brian, 13 
Sowa, Friedheim, 7 
Steinbach, Andrea, 589 

Tannen, Sebastian. 576 
Taupin, Daniel, v, vi, 589, 591, 592 
Tidefelt, Henrik, 177 
Tille, Andreas, 576 
Tobin, Geoffrey, 122 
Tutelaers, Piet, 668 

Un, Koaungli, 491 

van der Laan, Kees, 57, 58, 147, 699, 
701 

Van Zandt, Timothy, 214, 448, 451, 
455, 458 

Verhulst, Ferdinand, 195 
Vermaseren, jos, 555, 558 
Veytsman, Boris, 431 
Vieth, Ulrik,67, 137, 167 
Vila- Forcen, Jose-Emilio, 430 

Voll, Herbert, 214, 434, 435, 437, 453 
Vogel, Ralf, xxxiv, 491 
Vulis, Michael, 1 1 , 797 

Walshaw, Chris, 600, 654 
Wanske, Helene, 587 
Weinhold, Stephan, 688 
White, jan, 742 
Wichura, Michael, 13 
Wicks, Mark A., 24, 798 
Williams, Graham, 811  
Williams, Thomas, 17 
Wilson, Peter, 178, 181,710 
Wyart, Damien, xxxiv 
Wythoff, Willem Abraham, 192 

Yang, Yang, 167 
Young, Thomas, 714 

925 


