
http://www.cambridge.org/9780521836579

The Text Mining Handbook

Text mining is a new and exciting area of computer science research that tries to

solve the crisis of information overload by combining techniques from data mining,

machine learning, natural language processing, information retrieval, and knowledge

management. Similarly, link detection – a rapidly evolving approach to the analysis of

text that shares and builds on many of the key elements of text mining – also provides

new tools for people to better leverage their burgeoning textual data resources. Link

detection relies on a process of building up networks of interconnected objects through

various relationships in order to discover patterns and trends. The main tasks of link

detection are to extract, discover, and link together sparse evidence from vast amounts

of data sources, to represent and evaluate the significance of the related evidence, and

to learn patterns to guide the extraction, discovery, and linkage of entities.

The Text Mining Handbook presents a comprehensive discussion of the state of the art

in text mining and link detection. In addition to providing an in-depth examination of core

text mining and link detection algorithms and operations, the work examines advanced

preprocessing techniques, knowledge representation considerations, and visualization

approaches. Finally, the book explores current real-world, mission-critical applications

of text mining and link detection in such varied fields as corporate finance business

intelligence, genomics research, and counterterrorism activities.

Dr. Ronen Feldman is a Senior Lecturer in the Mathematics and Computer Science

Department of Bar-Ilan University and Director of the Data and Text Mining Laboratory.

Dr. Feldman is cofounder, Chief Scientist, and President of ClearForest, Ltd., a leader

in developing next-generation text mining applications for corporate and government

clients. He also recently served as an Adjunct Professor at New York University’s Stern

School of Business. A pioneer in the areas of machine learning, data mining, and unstruc-

tured data management, he has authored or coauthored more than 70 published articles

and conference papers in these areas.

James Sanger is a venture capitalist, applied technologist, and recognized industry expert

in the areas of commercial data solutions, Internet applications, and IT security products.

He is a partner at ABS Ventures, an independent venture firm founded in 1982 and

originally associated with technology banking leader Alex. Brown and Sons. Immediately

before joining ABS Ventures, Mr. Sanger was a Managing Director in the New York

offices of DB Capital Venture Partners, the global venture capital arm of Deutsche Bank.

Mr. Sanger has been a board member of several thought-leading technology companies,

including Inxight Software, Gomez Inc., and ClearForest, Inc.; he has also served as an

official observer to the boards of AlphaBlox (acquired by IBM in 2004), Intralinks, and

Imagine Software and as a member of the Technical Advisory Board of Qualys, Inc.

THE TEXT

MINING HANDBOOK

Advanced Approaches in

Analyzing Unstructured Data

Ronen Feldman
Bar-Ilan University, Israel

James Sanger
ABS Ventures, Waltham, Massachusetts

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13 978-0-521-83657-9

ISBN-13 978-0-511-33507-5

© Ronen Feldman and James Sanger 2007

2006

Information on this title: www.cambridge.org/9780521836579

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

ISBN-10 0-511-33507-5

ISBN-10 0-521-83657-3

Cambridge University Press has no responsibility for the persistence or accuracy of urls
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

hardback

eBook (NetLibrary)

eBook (NetLibrary)

hardback

http://www.cambridge.org/9780521836579
http://www.cambridge.org

In loving memory of my father, Issac Feldman

Contents

Preface page x

I. Introduction to Text Mining 1

I.1 Defining Text Mining 1
I.2 General Architecture of Text Mining Systems 13

II. Core Text Mining Operations 19

II.1 Core Text Mining Operations 19
II.2 Using Background Knowledge for Text Mining 41
II.3 Text Mining Query Languages 51

III. Text Mining Preprocessing Techniques 57

III.1 Task-Oriented Approaches 58
III.2 Further Reading 62

IV. Categorization 64

IV.1 Applications of Text Categorization 65
IV.2 Definition of the Problem 66
IV.3 Document Representation 68
IV.4 Knowledge Engineering Approach to TC 70
IV.5 Machine Learning Approach to TC 70
IV.6 Using Unlabeled Data to Improve Classification 78
IV.7 Evaluation of Text Classifiers 79
IV.8 Citations and Notes 80

V. Clustering 82

V.1 Clustering Tasks in Text Analysis 82
V.2 The General Clustering Problem 84
V.3 Clustering Algorithms 85
V.4 Clustering of Textual Data 88
V.5 Citations and Notes 92

vii

viii Contents

VI. Information Extraction 94

VI.1 Introduction to Information Extraction 94
VI.2 Historical Evolution of IE: The Message Understanding

Conferences and Tipster 96
VI.3 IE Examples 101
VI.4 Architecture of IE Systems 104
VI.5 Anaphora Resolution 109
VI.6 Inductive Algorithms for IE 119
VI.7 Structural IE 122
VI.8 Further Reading 129

VII. Probabilistic Models for Information Extraction 131

VII.1 Hidden Markov Models 131
VII.2 Stochastic Context-Free Grammars 137
VII.3 Maximal Entropy Modeling 138
VII.4 Maximal Entropy Markov Models 140
VII.5 Conditional Random Fields 142
VII.6 Further Reading 145

VIII. Preprocessing Applications Using Probabilistic

and Hybrid Approaches 146

VIII.1 Applications of HMM to Textual Analysis 146
VIII.2 Using MEMM for Information Extraction 152
VIII.3 Applications of CRFs to Textual Analysis 153
VIII.4 TEG: Using SCFG Rules for Hybrid

Statistical–Knowledge-Based IE 155
VIII.5 Bootstrapping 166
VIII.6 Further Reading 175

IX. Presentation-Layer Considerations for Browsing

and Query Refinement 177

IX.1 Browsing 177
IX.2 Accessing Constraints and Simple Specification Filters

at the Presentation Layer 185
IX.3 Accessing the Underlying Query Language 186
IX.4 Citations and Notes 187

X. Visualization Approaches 189

X.1 Introduction 189
X.2 Architectural Considerations 192
X.3 Common Visualization Approaches for Text Mining 194
X.4 Visualization Techniques in Link Analysis 225
X.5 Real-World Example: The Document Explorer System 235

XI. Link Analysis 244

XI.1 Preliminaries 244

Contents ix

XI.2 Automatic Layout of Networks 246
XI.3 Paths and Cycles in Graphs 250
XI.4 Centrality 251
XI.5 Partitioning of Networks 259
XI.6 Pattern Matching in Networks 272
XI.7 Software Packages for Link Analysis 273
XI.8 Citations and Notes 274

XII. Text Mining Applications 275

XII.1 General Considerations 276
XII.2 Corporate Finance: Mining Industry Literature for

Business Intelligence 281
XII.3 A “Horizontal” Text Mining Application: Patent Analysis

Solution Leveraging a Commercial Text Analytics
Platform 297

XII.4 Life Sciences Research: Mining Biological Pathway
Information with GeneWays 309

Appendix A: DIAL: A Dedicated Information Extraction Language for

Text Mining 317

A.1 What Is the DIAL Language? 317
A.2 Information Extraction in the DIAL Environment 318
A.3 Text Tokenization 320
A.4 Concept and Rule Structure 320
A.5 Pattern Matching 322
A.6 Pattern Elements 323
A.7 Rule Constraints 327
A.8 Concept Guards 328
A.9 Complete DIAL Examples 329

Bibliography 337

Index 391

Preface

The information age has made it easy to store large amounts of data. The prolifera-
tion of documents available on the Web, on corporate intranets, on news wires, and
elsewhere is overwhelming. However, although the amount of data available to us
is constantly increasing, our ability to absorb and process this information remains
constant. Search engines only exacerbate the problem by making more and more
documents available in a matter of a few key strokes.

Text mining is a new and exciting research area that tries to solve the information
overload problem by using techniques from data mining, machine learning, natural
language processing (NLP), information retrieval (IR), and knowledge management.
Text mining involves the preprocessing of document collections (text categorization,
information extraction, term extraction), the storage of the intermediate represen-
tations, the techniques to analyze these intermediate representations (such as distri-
bution analysis, clustering, trend analysis, and association rules), and visualization of
the results.

This book presents a general theory of text mining along with the main tech-
niques behind it. We offer a generalized architecture for text mining and outline the
algorithms and data structures typically used by text mining systems.

The book is aimed at the advanced undergraduate students, graduate students,
academic researchers, and professional practitioners interested in complete cov-
erage of the text mining field. We have included all the topics critical to people
who plan to develop text mining systems or to use them. In particular, we have
covered preprocessing techniques such as text categorization, text clustering, and
information extraction and analysis techniques such as association rules and link
analysis.

The book tries to blend together theory and practice; we have attempted to
provide many real-life scenarios that show how the different techniques are used in
practice. When writing the book we tried to make it as self-contained as possible and
have compiled a comprehensive bibliography for each topic so that the reader can
expand his or her knowledge accordingly.

x

Preface xi

BOOK OVERVIEW

The book starts with a gentle introduction to text mining that presents the basic
definitions and prepares the reader for the next chapters. In the second chapter we
describe the core text mining operations in detail while providing examples for each
operation. The third chapter serves as an introduction to text mining preprocess-
ing techniques. We provide a taxonomy of the operations and set the ground for
Chapters IV through VII. Chapter IV offers a comprehensive description of the
text categorization problem and outlines the major algorithms for performing text
categorization.

Chapter V introduces another important text preprocessing task called text clus-
tering, and we again provide a concrete definition of the problem and outline the
major algorithms for performing text clustering. Chapter VI addresses what is prob-
ably the most important text preprocessing technique for text mining – namely, infor-
mation extraction. We describe the general problem of information extraction and
supply the relevant definitions. Several examples of the output of information extrac-
tion in several domains are also presented.

In Chapter VII, we discuss several state-of-the-art probabilistic models for infor-
mation extraction, and Chapter VIII describes several preprocessing applications
that either use the probabilistic models of Chapter VII or are based on hybrid
approaches incorporating several models. The presentation layer of a typical text
mining system is considered in Chapter IX. We focus mainly on aspects related
to browsing large document collections and on issues related to query refinement.
Chapter X surveys the common visualization techniques used either to visualize the
document collection or the results obtained from the text mining operations. Chap-
ter XI introduces the fascinating area of link analysis. We present link analysis as
an analytical step based on the foundation of the text preprocessing techniques dis-
cussed in the previous chapters, most specifically information extraction. The chapter
begins with basic definitions from graph theory and moves to common techniques
for analyzing large networks of entities.

Finally, in Chapter XII, three real-world applications of text mining are consid-
ered. We begin by describing an application for articles posted in BioWorld magazine.
This application identifies major biological entities such as genes and proteins and
enables visualization of relationships between those entities. We then proceed to
the GeneWays application, which is based on analysis of PubMed articles. The next
application is based on analysis of U.S. patents and enables monitoring trends and
visualizing relationships between inventors, assignees, and technology terms.

The appendix explains the DIAL language, which is a dedicated information
extraction language. We outline the structure of the language and describe its exact
syntax. We also offer several code examples that show how DIAL can be used to
extract a variety of entities and relationships. A detailed bibliography concludes the
book.

ACKNOWLEDGMENTS

This book would not have been possible without the help of many individuals. In
addition to acknowledgments made throughout the book, we feel it important to

xii Preface

take the time to offer special thanks to an important few. Among these we would
like to mention especially Benjamin Rosenfeld, who devoted many hours to revis-
ing the categorization and clustering chapters. The people at ClearForest Corpora-
tion also provided help in obtaining screen shots of applications using ClearForest
technologies – most notably in Chapter XII. In particular, we would like to mention
the assistance we received from Rafi Vesserman, Yonatan Aumann, Jonathan Schler,
Yair Liberzon, Felix Harmatz, and Yizhar Regev. Their support meant a great deal
to us in the completion of this project.

Adding to this list, we would also like to thank Ian Bonner and Kathy Bentaieb
of Inxight Software for the screen shots used in Chapter X. Also, we would like to
extend our appreciation to Andrey Rzhetsky for his personal screen shots of the
GeneWays application.

A book written on a subject such as text mining is inevitably a culmination of
many years of work. As such, our gratitude is extended to both Haym Hirsh and
Oren Etzioni, early collaborators in the field.

In addition, we would like to thank Lauren Cowles of Cambridge University
Press for reading our drafts and patiently making numerous comments on how to
improve the structure of the book and its readability. Appreciation is also owed to
Jessica Farris for help in keeping two very busy coauthors on track.

Finally it brings us great pleasure to thank those dearest to us – our children Yael,
Hadar, Yair, Neta and Frithjof – for leaving us undisturbed in our rooms while we
were writing. We hope that, now that the book is finished, we will have more time
to devote to you and to enjoy your growth. We are also greatly indebted to our dear
wives Hedva and Lauren for bearing with our long hours on the computer, doing
research, and writing the endless drafts. Without your help, confidence, and support
we would never have completed this book. Thank you for everything. We love you!

I

Introduction to Text Mining

I.1 DEFINING TEXT MINING

Text mining can be broadly defined as a knowledge-intensive process in which a user
interacts with a document collection over time by using a suite of analysis tools. In
a manner analogous to data mining, text mining seeks to extract useful information
from data sources through the identification and exploration of interesting patterns.
In the case of text mining, however, the data sources are document collections, and
interesting patterns are found not among formalized database records but in the
unstructured textual data in the documents in these collections.

Certainly, text mining derives much of its inspiration and direction from seminal
research on data mining. Therefore, it is not surprising to find that text mining and
data mining systems evince many high-level architectural similarities. For instance,
both types of systems rely on preprocessing routines, pattern-discovery algorithms,
and presentation-layer elements such as visualization tools to enhance the browsing
of answer sets. Further, text mining adopts many of the specific types of patterns in
its core knowledge discovery operations that were first introduced and vetted in data
mining research.

Because data mining assumes that data have already been stored in a structured
format, much of its preprocessing focus falls on two critical tasks: Scrubbing and
normalizing data and creating extensive numbers of table joins. In contrast, for text
mining systems, preprocessing operations center on the identification and extrac-
tion of representative features for natural language documents. These preprocessing
operations are responsible for transforming unstructured data stored in document
collections into a more explicitly structured intermediate format, which is a concern
that is not relevant for most data mining systems.

Moreover, because of the centrality of natural language text to its mission, text
mining also draws on advances made in other computer science disciplines concerned
with the handling of natural language. Perhaps most notably, text mining exploits
techniques and methodologies from the areas of information retrieval, information
extraction, and corpus-based computational linguistics.

1

2 Introduction to Text Mining

I.1.1 The Document Collection and the Document

A key element of text mining is its focus on the document collection. At its simplest,
a document collection can be any grouping of text-based documents. Practically
speaking, however, most text mining solutions are aimed at discovering patterns
across very large document collections. The number of documents in such collections
can range from the many thousands to the tens of millions.

Document collections can be either static, in which case the initial complement
of documents remains unchanged, or dynamic, which is a term applied to document
collections characterized by their inclusion of new or updated documents over time.
Extremely large document collections, as well as document collections with very high
rates of document change, can pose performance optimization challenges for various
components of a text mining system.

An illustration of a typical real-world document collection suitable as initial input
for text mining is PubMed, the National Library of Medicine’s online repository of
citation-related information for biomedical research papers. PubMed has received
significant attention from computer scientists interested in employing text mining
techniques because this online service contains text-based document abstracts for
more than 12 million research papers on topics in the life sciences. PubMed represents
the most comprehensive online collection of biomedical research papers published
in the English language, and it houses data relating to a considerable selection of
publications in other languages as well. The publication dates for the main body
of PubMed’s collected papers stretch from 1966 to the present. The collection is
dynamic and growing, for an estimated 40,000 new biomedical abstracts are added
every month.

Even subsections of PubMed’s data repository can represent substantial doc-
ument collections for specific text mining applications. For instance, a relatively
recent PubMed search for only those abstracts that contain the words protein or gene

returned a result set of more than 2,800,000 documents, and more than 66 percent
of these documents were published within the last decade. Indeed, a very narrowly
defined search for abstracts mentioning epidermal growth factor receptor returned
more than 10,000 documents.

The sheer size of document collections like that represented by PubMed makes
manual attempts to correlate data across documents, map complex relationships,
or identify trends at best extremely labor-intensive and at worst nearly impossible
to achieve. Automatic methods for identifying and exploring interdocument data
relationships dramatically enhance the speed and efficiency of research activities.
Indeed, in some cases, automated exploration techniques like those found in text
mining are not just a helpful adjunct but a baseline requirement for researchers to
be able, in a practicable way, to recognize subtle patterns across large numbers of
natural language documents.

Text mining systems, however, usually do not run their knowledge discovery algo-
rithms on unprepared document collections. Considerable emphasis in text mining is
devoted to what are commonly referred to as preprocessing operations. Typical text
mining preprocessing operations are discussed in detail in Chapter III.

Text mining preprocessing operations include a variety of different types of tech-
niques culled and adapted from information retrieval, information extraction, and

I.1 Defining Text Mining 3

computational linguistics research that transform raw, unstructured, original-format
content (like that which can be downloaded from PubMed) into a carefully struc-
tured, intermediate data format. Knowledge discovery operations, in turn, are oper-
ated against this specially structured intermediate representation of the original doc-
ument collection.

The Document

Another basic element in text mining is the document. For practical purposes, a
document can be very informally defined as a unit of discrete textual data within a
collection that usually, but not necessarily, correlates with some real-world document
such as a business report, legal memorandum, e-mail, research paper, manuscript,
article, press release, or news story. Although it is not typical, a document can be
defined a little less arbitrarily within the context of a particular document collection
by describing a prototypical document based on its representation of a similar class
of entities within that collection.

One should not, however, infer from this that a given document necessarily exists
only within the context of one particular collection. It is important to recognize that a
document can (and generally does) exist in any number or type of collections – from
the very formally organized to the very ad hoc. A document can also be a member of
different document collections, or different subsets of the same document collection,
and can exist in these different collections at the same time. For example, a docu-
ment relating to Microsoft’s antitrust litigation could exist in completely different
document collections oriented toward current affairs, legal affairs, antitrust-related
legal affairs, and software company news.

“Weakly Structured” and “Semistructured” Documents

Despite the somewhat misleading label that it bears as unstructured data, a text
document may be seen, from many perspectives, as a structured object. From a lin-
guistic perspective, even a rather innocuous document demonstrates a rich amount
of semantic and syntactical structure, although this structure is implicit and to some
degree hidden in its textual content. In addition, typographical elements such as
punctuation marks, capitalization, numerics, and special characters – particularly
when coupled with layout artifacts such as white spacing, carriage returns, underlin-
ing, asterisks, tables, columns, and so on – can often serve as a kind of “soft markup”
language, providing clues to help identify important document subcomponents such
as paragraphs, titles, publication dates, author names, table records, headers, and
footnotes. Word sequence may also be a structurally meaningful dimension to a
document. At the other end of the “unstructured” spectrum, some text documents,
like those generated from a WYSIWYG HTML editor, actually possess from their
inception more overt types of embedded metadata in the form of formalized markup
tags.

Documents that have relatively little in the way of strong typographical, layout, or
markup indicators to denote structure – like most scientific research papers, business
reports, legal memoranda, and news stories – are sometimes referred to as free-

format or weakly structured documents. On the other hand, documents with extensive
and consistent format elements in which field-type metadata can be more easily
inferred – such as some e-mail, HTML Web pages, PDF files, and word-processing

4 Introduction to Text Mining

files with heavy document templating or style-sheet constraints – are occasionally
described as semistructured documents.

I.1.2 Document Features

The preprocessing operations that support text mining attempt to leverage many
different elements contained in a natural language document in order to transform
it from an irregular and implicitly structured representation into an explicitly struc-
tured representation. However, given the potentially large number of words, phrases,
sentences, typographical elements, and layout artifacts that even a short document
may have – not to mention the potentially vast number of different senses that each
of these elements may have in various contexts and combinations – an essential task
for most text mining systems is the identification of a simplified subset of document
features that can be used to represent a particular document as a whole. We refer to
such a set of features as the representational model of a document and say that indi-
vidual documents are represented by the set of features that their representational
models contain.

Even with attempts to develop efficient representational models, each document
in a collection is usually made up of a large number – sometimes an exceedingly large
number – of features. The large number of features required to represent documents
in a collection affects almost every aspect of a text mining system’s approach, design,
and performance.

Problems relating to high feature dimensionality (i.e., the size and scale of possible
combinations of feature values for data) are typically of much greater magnitude in
text mining systems than in classic data mining systems. Structured representations of
natural language documents have much larger numbers of potentially representative
features – and thus higher numbers of possible combinations of feature values – than
one generally finds with records in relational or hierarchical databases.

For even the most modest document collections, the number of word-level fea-
tures required to represent the documents in these collections can be exceedingly
large. For example, in an extremely small collection of 15,000 documents culled from
Reuters news feeds, more than 25,000 nontrivial word stems could be identified.

Even when one works with more optimized feature types, tens of thousands of
concept-level features may still be relevant for a single application domain. The
number of attributes in a relational database that are analyzed in a data mining task
is usually significantly smaller.

The high dimensionality of potentially representative features in document col-
lections is a driving factor in the development of text mining preprocessing operations
aimed at creating more streamlined representational models. This high dimension-
ality also indirectly contributes to other conditions that separate text mining systems
from data mining systems such as greater levels of pattern overabundance and more
acute requirements for postquery refinement techniques.

Another characteristic of natural language documents is what might be described
as feature sparsity. Only a small percentage of all possible features for a document
collection as a whole appears in any single document, and thus when a document
is represented as a binary vector of features, nearly all values of the vector are zero.

I.1 Defining Text Mining 5

The tuple dimension is also sparse. That is, some features often appear in only a few
documents, which means that the support of many patterns is quite low.

Commonly Used Document Features: Characters, Words,

Terms, and Concepts

Because text mining algorithms operate on the feature-based representations of
documents and not the underlying documents themselves, there is often a trade-
off between two important goals. The first goal is to achieve the correct calibration
of the volume and semantic level of features to portray the meaning of a document
accurately, which tends to incline text mining preprocessing operations toward select-
ing or extracting relatively more features to represent documents. The second goal
is to identify features in a way that is most computationally efficient and practical
for pattern discovery, which is a process that emphasizes the streamlining of repre-
sentative feature sets; such streamlining is sometimes supported by the validation,
normalization, or cross-referencing of features against controlled vocabularies or
external knowledge sources such as dictionaries, thesauri, ontologies, or knowledge
bases to assist in generating smaller representative sets of more semantically rich
features.

Although many potential features can be employed to represent documents,1 the
following four types are most commonly used:

� Characters. The individual component-level letters, numerals, special characters
and spaces are the building blocks of higher-level semantic features such as words,
terms, and concepts. A character-level representation can include the full set of all
characters for a document or some filtered subset. Character-based representa-
tions without positional information (i.e., bag-of-characters approaches) are often
of very limited utility in text mining applications. Character-based representations
that include some level of positional information (e.g., bigrams or trigrams) are
somewhat more useful and common. In general, however, character-based rep-
resentations can often be unwieldy for some types of text processing techniques
because the feature space for a document is fairly unoptimized. On the other
hand, this feature space can in many ways be viewed as the most complete of any
representation of a real-world text document.

� Words. Specific words selected directly from a “native” document are at what
might be described as the basic level of semantic richness. For this reason, word-
level features are sometimes referred to as existing in the native feature space of
a document. In general, a single word-level feature should equate with, or have
the value of, no more than one linguistic token. Phrases, multiword expressions,
or even multiword hyphenates would not constitute single word-level features.
It is possible for a word-level representation of a document to include a feature
for each word within that document – that is the “full text,” where a document is
represented by a complete and unabridged set of its word-level features. This can

1 Beyond the three feature types discussed and defined here – namely, words, terms, and concepts – other
features that have been used for representing documents include linguistic phrases, nonconsecutive
phrases, keyphrases, character bigrams, character trigrams, frames, and parse trees.

6 Introduction to Text Mining

lead to some word-level representations of document collections having tens or
even hundreds of thousands of unique words in its feature space. However, most
word-level document representations exhibit at least some minimal optimization
and therefore consist of subsets of representative features filtered for items such
as stop words, symbolic characters, and meaningless numerics.

� Terms. Terms are single words and multiword phrases selected directly from the
corpus of a native document by means of term-extraction methodologies. Term-
level features, in the sense of this definition, can only be made up of specific words
and expressions found within the native document for which they are meant to
be generally representative. Hence, a term-based representation of a document
is necessarily composed of a subset of the terms in that document. For example,
if a document contained the sentence

President Abraham Lincoln experienced a career that took him from log cabin

to White House,

a list of terms to represent the document could include single word forms such as
“Lincoln,” “took,” “career,” and “cabin” as well as multiword forms like “Presi-
dent Abraham Lincoln,” “log cabin,” and “White House.”

Several of term-extraction methodologies can convert the raw text of a native
document into a series of normalized terms – that is, sequences of one or more
tokenized and lemmatized word forms associated with part-of-speech tags. Some-
times an external lexicon is also used to provide a controlled vocabulary for term
normalization. Term-extraction methodologies employ various approaches for
generating and filtering an abbreviated list of most meaningful candidate terms

from among a set of normalized terms for the representation of a document. This
culling process results in a smaller but relatively more semantically rich document
representation than that found in word-level document representations.

� Concepts.2 Concepts are features generated for a document by means of man-
ual, statistical, rule-based, or hybrid categorization methodologies. Concept-level
features can be manually generated for documents but are now more commonly
extracted from documents using complex preprocessing routines that identify sin-
gle words, multiword expressions, whole clauses, or even larger syntactical units
that are then related to specific concept identifiers. For instance, a document col-
lection that includes reviews of sports cars may not actually include the specific
word “automotive” or the specific phrase “test drives,” but the concepts “auto-
motive” and “test drives” might nevertheless be found among the set of concepts
used to to identify and represent the collection.

Many categorization methodologies involve a degree of cross-referencing
against an external knowledge source; for some statistical methods, this source
might simply be an annotated collection of training documents. For manual
and rule-based categorization methods, the cross-referencing and validation of
prospective concept-level features typically involve interaction with a “gold
standard” such as a preexisting domain ontology, lexicon, or formal concept

2 Although some computer scientists make distinctions between keywords and concepts (e.g., Blake and
Pratt 2001), this book recognizes the two as relatively interchangeable labels for the same feature type
and will generally refer to either under the label concept.

I.1 Defining Text Mining 7

hierarchy – or even just the mind of a human domain expert. Unlike word- and
term-level features, concept-level features can consist of words not specifically
found in the native document.

Of the four types of features described here, terms and concepts reflect the fea-
tures with the most condensed and expressive levels of semantic value, and there
are many advantages to their use in representing documents for text mining pur-
poses. With regard to the overall size of their feature sets, term- and concept-based
representations exhibit roughly the same efficiency but are generally much more
efficient than character- or word-based document models. Term-level representa-
tions can sometimes be more easily and automatically generated from the original
source text (through various term-extraction techniques) than concept-level rep-
resentations, which as a practical matter have often entailed some level of human
interaction.

Concept-level representations, however, are much better than any other feature-
set representation at handling synonymy and polysemy and are clearly best at relat-
ing a given feature to its various hyponyms and hypernyms. Concept-based rep-
resentations can be processed to support very sophisticated concept hierarchies,
and arguably provide the best representations for leveraging the domain knowledge
afforded by ontologies and knowledge bases.

Still, concept-level representations do have a few potential drawbacks. Possi-
ble disadvantages of using concept-level features to represent documents include
(a) the relative complexity of applying the heuristics, during preprocessing opera-
tions, required to extract and validate concept-type features and (b) the domain-
dependence of many concepts.3

Concept-level document representations generated by categorization are often
stored in vector formats. For instance, both CDM-based methodologies and Los
Alamos II–type concept extraction approaches result in individual documents being
stored as vectors.

Hybrid approaches to the generation of feature-based document representations
can exist. By way of example, a particular text mining system’s preprocessing oper-
ations could first extract terms using term extraction techniques and then match or
normalize these terms, or do both, by winnowing them against a list of meaning-
ful entities and topics (i.e., concepts) extracted through categorization. Such hybrid
approaches, however, need careful planning, testing, and optimization to avoid hav-
ing dramatic – and extremely resource-intensive – growth in the feature dimensional-
ity of individual document representations without proportionately increased levels
of system effectiveness.

For the most part, this book concentrates on text mining solutions that rely on
documents represented by concept-level features, referring to other feature types
where necessary to highlight idiosyncratic characteristics or techniques. Neverthe-
less, many of the approaches described in this chapter for identifying and browsing
patterns within document collections based on concept-level representations can also

3 It should at least be mentioned that there are some more distinct disadvantages to using manually
generated concept-level representations. For instance, manually generated concepts are fixed, labor-
intensive to assign, and so on. See Blake and Pratt (2001).

8 Introduction to Text Mining

be applied – perhaps with varying results – to document collections represented by
other feature models.

Domains and Background Knowledge

In text mining systems, concepts belong not only to the descriptive attributes of a
particular document but generally also to domains. With respect to text mining, a
domain has come to be loosely defined as a specialized area of interest for which
dedicated ontologies, lexicons, and taxonomies of information may be developed.

Domains can include very broad areas of subject matter (e.g., biology) or more
narrowly defined specialisms (e.g., genomics or proteomics). Some other noteworthy
domains for text mining applications include financial services (with significant sub-
domains like corporate finance, securities trading, and commodities.), world affairs,
international law, counterterrorism studies, patent research, and materials science.
Text mining systems with some element of domain-specificity in their orientation –
that is, most text mining systems designed for a practical purpose – can leverage
information from formal external knowledge sources for these domains to greatly
enhance elements of their preprocessing, knowledge discovery, and presentation-
layer operations.

Domain knowledge, perhaps more frequently referred to in the literature as
background knowledge, can be used in text mining preprocessing operations to
enhance concept extraction and validation activities. Access to background knowl-
edge – although not strictly necessary for the creation of concept hierarchies within
the context of a single document or document collection – can play an important
role in the development of more meaningful, consistent, and normalized concept
hierarchies.

Text mining makes use of background knowledge to a greater extent than, and
in different ways from, data mining. For advanced text mining applications that can
take advantage of background knowledge, features are not just elements in a flat
set, as is most often the case in structured data applications. By relating features
by way of lexicons and ontologies, advanced text mining systems can create fuller
representations of document collections in preprocessing operations and support
enhanced query and refinement functionalities.

Indeed, background knowledge can be used to inform many different elements
of a text mining system. In preprocessing operations, background knowledge is
an important adjunct to classification and concept-extraction methodologies. Back-
ground knowledge can also be leveraged to enhance core mining algorithms and
browsing operations. In addition, domain-oriented information serves as one of the
main bases for search refinement techniques.

In addition, background knowledge may be utilized by other components of a
text mining system. For instance, background knowledge may be used to construct
meaningful constraints in knowledge discovery operations. Likewise, background
knowledge may also be used to formulate constraints that allow users greater flexi-
bility when browsing large result sets.

I.1.3 The Search for Patterns and Trends

Although text mining preprocessing operations play the critical role of trans-
forming unstructured content of a raw document collection into a more tractable

I.1 Defining Text Mining 9

concept-level data representation, the core functionality of a text mining system
resides in the analysis of concept co-occurrence patterns across documents in a col-
lection. Indeed, text mining systems rely on algorithmic and heuristic approaches
to consider distributions, frequent sets, and various associations of concepts at an
interdocument level in an effort to enable a user to discover the nature and relation-
ships of concepts as reflected in the collection as a whole.

For example, in a collection of news articles, a large number of articles on politician
X and “scandal” may indicate a negative image of the character of X and alert his or
her handlers to the need for a new public relations campaign. Or, a growing number
of articles on company Y and product Z may indicate a shift of focus in company
Y’s interests – a shift that should be noted by its competitors. In another example,
a potential relationship might be inferred between two proteins P1 and P2 by the
pattern of (a) several articles mentioning the protein P1 in relation to the enzyme
E1, (b) a few articles describing functional similarities between enzymes E1 and E2

without referring to any protein names, and (c) several articles linking enzyme E2

to protein P2. In all three of these examples, the information is not provided by any
single document but rather from the totality of the collection. Text mining’s methods
of pattern analysis seek to discover co-occurrence relationships between concepts as
reflected by the totality of the corpus at hand.

Text mining methods – often based on large-scale, brute-force search directed
at large, high-dimensionality feature sets – generally produce very large numbers of
patterns. This results in an overabundance problem with respect to identified patterns
that is usually much more severe than that encountered in data mining applications
aimed at structured data sources.

A main operational task for text mining systems is to enable a user to limit pattern
overabundance by providing refinement capabilities that key on various specifiable
measures of “interestingness” for search results. Such refinement capabilities prevent
system users from getting overwhelmed by too many uninteresting results.

The problem of pattern overabundance can exist in all knowledge discovery activ-
ities. It is simply heightened when interacting with large collections of text documents,
and, therefore, text mining operations must necessarily be conceived to provide not
only relevant but also manageable result sets to a user.

Text mining also builds on various data mining approaches first specified in
Lent, Agrawal, and Srikant (1997) to identify trends in data. In text mining, trend

analysis relies on date-and-time stamping of documents within a collection so that
comparisons can be made between a subset of documents relating to one period and
a subset of documents relating to another.

Trend analysis across document subsets attempts to answer certain types of ques-
tions. For instance, in relation to a collection of news stories, Montes-y-Gomez,
Gelbukh, and Lopez-Lopez (2001b) suggests that trend analysis concerns itself with
questions such as the following:

� What is the general trend of the news topics between two periods (as represented

by two different document subsets)?

� Are the news topics nearly the same or are they widely divergent across the two

periods?

� Can emerging and disappearing topics be identified?

� Did any topics maintain the same level of occurrence during the two periods?

10 Introduction to Text Mining

In these illustrative questions, individual “news topics” can be seen as specific con-
cepts in the document collection. Different types of trend analytics attempt to com-
pare the frequencies of such concepts (i.e., number of occurrences) in the docu-
ments that make up the two periods’ respective document subcollections. Additional
types of analysis, also derived from data mining, that can be used to support trend
analysis are ephemeral association discovery and deviation detection. Some specific
methods of trend analysis are described in Section II.1.5.

I.1.4 The Importance of the Presentation Layer

Perhaps the key presentation layer functionality supported by text mining systems
is browsing. Most contemporary text mining systems support browsing that is both
dynamic and content-based, for the browsing is guided by the actual textual content
of a particular document collection and not by anticipated or rigorously prespecified
structures. Commonly, user browsing is facilitated by the graphical presentation of
concept patterns in the form of a hierarchy to aid interactivity by organizing concepts
for investigation.

Browsing is also navigational. Text mining systems confront a user with extremely
large sets of concepts obtained from potentially vast collections of text documents.
Consequently, text mining systems must enable a user to move across these concepts
in such a way as to always be able to choose either a “big picture” view of the
collection in toto or to drill down on specific – and perhaps very sparsely identified –
concept relationships.

Visualization tools are often employed by text mining systems to facilitate navi-
gation and exploration of concept patterns. These use various graphical approaches
to express complex data relationships. In the past, visualization tools for text min-
ing sometimes generated static maps or graphs that were essentially rigid snapshots
of patterns or carefully generated reports displayed on the screen or printed by an
attached printer. State-of-the-art text mining systems, however, now increasingly rely
on highly interactive graphic representations of search results that permit a user to
drag, pull, click, or otherwise directly interact with the graphical representation of
concept patterns. Visualization approaches, like that seen in Figure I.1, are discussed
more fully in Chapter X.

Several additional types of functionality are commonly supported within the front
ends of text mining systems. Because, in many respects, the presentation layer of a
text mining system really serves as the front end for the execution of the system’s core
knowledge discovery algorithms, considerable attention has been focused on provid-
ing users with friendlier and more powerful methods for executing these algorithms.
Such methods can become powerful and complex enough to necessitate developing
dedicated query languages to support the efficient parameterization and execution
of specific types of pattern discovery queries. The use of the presentation layer for
query execution and simple browsing is discussed in Chapter IX.

At the same time, consistent with an overall emphasis on user empowerment,
the designers of many text mining systems have moved away from limiting a user to
running only a certain number of fixed, preprogrammed search queries. Instead,
these text mining systems are designed to expose much of their search functionality
to the user by opening up direct access to their query languages by means of query

language interfaces or command-line query interpreters.

I.1 Defining Text Mining 11

alfred goldman

bette massick

bill milton
bill vogel

gil amelio

greg nie

jeffrey logsdon

jill krutick
kleinwort benson

ladenburg thalmann
laura lederman

lawrence cohn
louis gerstner
marco landi
marty kearney
michael spindler

philip anschutz
pieter hartsook

ralph bloch
roxane googin

samuel zell
scott mcadams

stephen wozniak

steve mcclellan
tim bajarin

tony dwyer

william blair

goldman sachs
paine webber inc

morgan stanley inc

merrill lynch inc
smith barney inc
bear stearns co

international business machine inc
sun microsystems inc

Computer Companies

Brokerage Houses

people

Figure I.1. Example of a visualization tool – mapping concepts (keywords) within the context

of categories by means of a “category graph.” (From Feldman, Kloesgen, Ben-Yehuda, et al.

1997.)

Furthermore, text mining front ends may offer a user the ability to cluster concepts
through a suite of clustering tools (discussed in Chapter V) in ways that make the
most cognitive sense for a particular application or task. Text mining systems can
also allow a user to create customized profiles for concepts or concept relationships
to produce a richer knowledge environment for interactive exploration.

Finally, some text mining systems offer users the ability to manipulate, create,
or concatenate refinement constraints to assist in producing more manageable and
useful result sets for browsing. Like other aspects relating to the creation, shaping,
and parameterization of queries, the use of such refinement constraints can be made
much more user-friendly by incorporating graphical elements such as pull-downs,
radio boxes, or context- or query-sensitive pick lists.

I.1.5 Citations and Notes

Sections I.1–I.1.1

Useful introductions to text mining include Feldman and Dagan (1995), Dixon (1997),
Rajman and Besancon (1997b), Feldman (1998), Rajman and Besancon (1998),
Hearst (1999a), Tan (1999), and Porter (2002).

Feldman (1998) points out some of the distinctions between classic data mining
preprocessing operations, such as table joins, and those of text mining systems. Feld-
man and Hirsh (1996) discusses text mining’s indebtedness to information retrieval.
Feldman, Fresko, Hirsh et al. (1998) and Nahm and Mooney (2000), among other
works, indicate text mining’s dependence on information extraction methodologies –
especially in terms of preprocessing operations. Hearst (1999) notes text mining’s
relatedness to some elements of corpus-based computational linguistics.

PubMed, developed by the National Center for Biotechnology Information
(NCBI) at the National Library of Medicine (NLM), a division of the U.S. National
Institutes of Health (NIH), is the overall name given to the NLM’s database
access system, which provides access to resources such as the MEDLINE and

12 Introduction to Text Mining

OLDMEDLINE databases. Full information on PubMed can be found at <www.
ncbi.nih.gov/entrez/ query.fcgi>.

Hirschman et al. (2002) and Blake and Pratt (2001) both highlight PubMed’s
attractiveness as a data source for text mining systems. The estimate that 40,000
new biomedical abstracts are being added to PubMed every month comes from
Pustejovsky et al. (2002).

Rajman and Besancon (1998) introduced the notion of a prototypical document
with respect to text mining document collections.

Freitag (1998b) makes the point that a text document can be viewed as a struc-
tured object and discusses many of the semantic and syntactical structures that lend
structure to a document. Freitag (1998b) and Zaragoza, Massih-Reza, and Galli-
nari (1999) both indicate that word sequence may also be a structurally meaningful
dimension in documents.

Section I.1.2

Blake and Pratt (2001) presents a discussion of document features in a light useful to
understanding text mining considerations. The definition of feature dimensionality
that we rely on in Chapter II is shaped by the notion as it is described in Pedersen and
Bruce (1997). Statistics for the number of word-level features in a collection of 15,000
documents come from Feldman (1998). Yang and Pedersen (1997) points out that
tens of thousands of concept-level features may be relevant for a single application
domain.

Blake and Pratt (2001) and Yang and Pedersen (1997) are generally valuable for
understanding some distinctions between different types of document features. The
phrase native feature space was borrowed from Yang and Pedersen (1997). Term-
extraction methodologies in text mining are fully treated in Feldman, Fresko, Hirsh
et al. (1998). Feldman et al. (2002), Hull (1996), and Brill (1995) are classic works
on information extraction useful for understanding lemmatized forms, normalized
terms, and so on.

Although some computer scientists make distinctions between keywords and
concepts (e.g., Blake and Pratt 2001), this book recognizes the two as relatively
interchangeable labels for the same feature type and will generally refer to either
under the label concept.

It should at least be mentioned that there are some more distinct disadvantages
to using manually generated concept-level representations. Manually generated con-
cepts, for example, are fixed and labor-intensive to assign (Blake and Pratt 2001).
CDM-based methodologies are discussed in Goldberg (1996).

Feldman and Hirsh (1996a) presents one of the first formal discussions regard-
ing the use of background knowledge in text mining. Other relevant works include
Kosmynin and Davidson (1996); Zelikovitz and Hirsh (2000); and Hotho, Staab, and
Stumme (2003).

Section I.1.3

Feldman, Kloesgen, Ben-Yehuda, et al. (1997) provides an early treatment of knowl-
edge discovery based on co-occurrence relationships between concepts in documents
within a document collection. Lent, Agrawal, and Srikant (1997) is the seminal
early work for identifying trends in large amounts of textual data. The high-level

I.2 General Architecture of Text Mining Systems 13

questions important to trend analysis identified in Section I.1.3 are based on similar
questions presented in Montes-y-Gomez et al. (2001b). The terms ephemeral asso-

ciation discovery and deviation detection are used here in the manner introduced in
Montes-y-Gomez et al. (2001b).

Section I.1.4

Treatments of browsing germane to text mining and related applications include
Chang and Rice (1993); Dagan, Feldman, and Hirsh (1996); Feldman, Kloesgen,
Ben-Yehuda, et al. (1997); Smith (2002); and Dzbor, Domingue, and Motta (2004).
Browsing is discussed in Chapter IX, while a detailed discussion of more elaborate
visualization approaches for supporting user interactivity in text mining applications
can be found in Chapter X.

I.2 GENERAL ARCHITECTURE OF TEXT MINING SYSTEMS

At an abstract level, a text mining system takes in input (raw documents) and gener-
ates various types of output (e.g., patterns, maps of connections, trends). Figure I.2
illustrates this basic paradigm. A human-centered view of knowledge discovery, how-
ever, yields a slightly more complex input–output paradigm for text mining (see
Figure I.3). This paradigm is one in which a user is part of what might be seen as a
prolonged interactive loop of querying, browsing, and refining, resulting in answer
sets that, in turn, guide the user toward new iterative series of querying, browsing,
and refining actions.

I.2.1 Functional Architecture

On a functional level, text mining systems follow the general model provided by
some classic data mining applications and are thus roughly divisible into four main
areas: (a) preprocessing tasks, (b) core mining operations, (c) presentation layer
components and browsing functionality, and (d) refinement techniques.

� Preprocessing Tasks include all those routines, processes, and methods required
to prepare data for a text mining system’s core knowledge discovery operations.
These tasks typically center on data source preprocessing and categorization

Documents

Input Output

Patterns

Connections

Trends

Figure I.2. Simple input–output model for text mining.

14 Introduction to Text Mining

Documents

Input Output

Patterns

Connections

Trends
User

Iterative Output:
New Result-Sets,
Result Subsets

Iterative Input:
Queries, Browsing,

Added or Subtracted
Constraints

Figure I.3. Iterative loop for user input and output.

activities. Preprocessing tasks generally convert the information from each orig-
inal data source into a canonical format before applying various types of feature
extraction methods against these documents to create a new collection of doc-
uments fully represented by concepts. Where possible, preprocessing tasks may
also either extract or apply rules for creating document date stamps, or do both.
Occasionally, preprocessing tasks may even include specially designed methods
used in the initial fetching of appropriate “raw” data from disparate original data
sources.

� Core Mining Operations are the heart of a text mining system and include pat-
tern discovery, trend analysis, and incremental knowledge discovery algorithms.
Among the commonly used patterns for knowledge discovery in textual data are
distributions (and proportions), frequent and near frequent concept sets, and
associations. Core mining operations can also concern themselves with compar-
isons between – and the identification of levels of “interestingness” in – some of
these patterns. Advanced or domain-oriented text mining systems, or both, can
also augment the quality of their various operations by leveraging background
knowledge sources. These core mining operations in a text mining system have
also been referred to, collectively, as knowledge distillation processes.

� Presentation Layer Components include GUI and pattern browsing functionality
as well as access to the query language. Visualization tools and user-facing query
editors and optimizers also fall under this architectural category. Presentation-
layer components may include character-based or graphical tools for creating or
modifying concept clusters as well as for creating annotated profiles for specific
concepts or patterns.

� Refinement Techniques, at their simplest, include methods that filter redundant
information and cluster closely related data but may grow, in a given text mining
system, to represent a full, comprehensive suite of suppression, ordering, pruning,
generalization, and clustering approaches aimed at discovery optimization. These
techniques have also been described as postprocessing.

Preprocessing tasks and core mining operations are the two most critical areas for
any text mining system and typically describe serial processes within a generalized
view of text mining system architecture, as shown in Figure I.4.

I.2 General Architecture of Text Mining Systems 15

Preprocessing

Tasks
Categorization,
Feature/Term

Extraction

Processed

Document

Collection
(categorized,

keyword-labeled,

time-stamped)Text

Documents

Core Mining

Operations and

Presentation
Pattern Discovery,

Trend Analysis,

Browsing,

Visualization User

Figure I.4. High-level text mining functional architecture.

At a slightly more granular level of detail, one will often find that the processed
document collection is, itself, frequently intermediated with respect to core mining
operations by some form of flat, compressed or hierarchical representation, or both,
of its data to better support various core mining operations such as hierarchical tree
browsing. This is illustrated in Figure I.5. The schematic in Figure I.5 also factors in
the typical positioning of refinement functionality. Further, it adds somewhat more

Preprocessing

Tasks
Categorization,
Feature/Term

Extraction

Processed

Document
Collection
(categorized,

keyword-labeled,
time-stamped)

 Text Mining Discovery

Algorithms
Pattern Identification,

Trend Analysis

Browsing Functionality
Simple Filters, Query
Interpreter, Search

Interpreter, Visualization
Tools, GUI, Graphing

News and
Email

WWW & FTP
Resources

Other Online
Resources

Document
Fetching/
Crawling

Techniques

User

Compressed or
Hierarchical

Representation

 Refinement

Techniques
Suppression, Ordering,
Pruning, Generalization,

Clustering

Figure I.5. System architecture for generic text mining system.

16 Introduction to Text Mining

Preprocessing

Tasks
Categorization,
Feature/Term

Extraction

Processed

Document

Collection
(categorized,

keyword-labeled,

time-stamped)

 Text Mining Discovery

Algorithms
Pattern Identification,

Trend Analysis

Browsing Functionality
Simple Filters, Query
Interpreter, Search

Interpreter, Visualization
Tools, GUI, Graphing

News and
Email

WWW & FTP

Resources

Other Online
Resources

Document

Fetching/
Crawling

Techniques

User

Compressed and/or
Hierarchical

Representation

 Refinement

Techniques
Suppression, Ordering,

Pruning, Generalization,
Clustering

Parsing Routines

Knowledge

Sources

Background
Knowledge

Figure I.6. System architecture for an advanced or domain-oriented text mining system.

detail with respect to relative functioning of core data mining algorithms. Many
text mining systems – and certainly those operating on highly domain-specific data
sources, such as medicine, financial services, high tech, genomics, proteomics, and
chemical compounds – can benefit significantly from access to special background or
domain-specific data sources. See Figure I.6.

Background knowledge is often used for providing constraints to, or auxiliary
information about, concepts found in the text mining collection’s document collec-
tion. The background knowledge for a text mining system can be created in various
ways. One common way is to run parsing routines against external knowledge sources,
such as formal ontologies, after which unary or binary predicates for the concept-
labeled documents in the text mining system’s document collection are identified.
These unary and binary predicates, which describe properties of the entities rep-
resented by each concept deriving from the expert or “gold standard” information
sources, are in turn put to use by a text mining system’s query engine. In addition,
such constraints can be used in a text mining system’s front end to allow a user to
either (a) create initial queries based around these constraints or (b) refine queries
over time by adding, substracting, or concatenating constraints.

Commonly, background knowledge is preserved within a text mining sys-
tem’s architecture in a persistent store accessible by various elements of the sys-
tem. This type of persistent store is sometimes loosely referred to as a system’s

I.2 General Architecture of Text Mining Systems 17

Preprocessing

Tasks
�������������	

�����������

���������	

Processed
Document

Collection
������������

���������������

�������������

 Text Mining Discovery

Algorithms
������	 ���	�� ������	

���	� !	������

Browsing Functionality
"����� �������
 #����

�	���������
 "����$

�	���������
 %�����������	

�����
 &'�
 &���$�	�

(��� �	�

�����

))) * ���

+��������

,�$�� ,	��	�
+��������

-�����	�

����$�	�

������	�

���$	�.���

'���

������������������

�	����������

+������	�����	

 Refinement

Techniques
"���������	
 ,�����	�

���	�	�
 &�	����������	

��������	�

�����	� +����	��

Knowledge

Sources

/�������	�

0	�������

��	����

���	�� ����

Background

Knowledge

Base

Figure I.7. System architecture for an advanced text mining system with background knowl-

edge base.

knowledge base. The typical position of a knowledge base within the system archi-
tecture of a text mining system can be seen in Figure I.7.

These generalized architectures are meant to be more descriptive than prescrip-
tive in that they represent some of the most common frameworks found in the present
generation of text mining systems. Good sense, however, should be the guide for
prospective system architects of text mining applications, and thus significant vari-
ation on the general themes that have been identified is possible. System architects
and developers could include more of the filters typically found in a text mining
system’s browser or even within subroutines contained among the system’s store of
refinement techniques as “preset” options within search algorithms included in its
main discovery algorithms. Likewise, it is conceivable that a particular text mining
system’s refinement techniques or main discovery algorithms might later find a very
fruitful use for background knowledge.

I.2.2 Citations and Notes

Section I.2

The view of human-centered knowledge discovery introduced in Brachman and
Anand (1996) and to some degree echoed in Grinstein (1996) influences much

18 Introduction to Text Mining

of the discussion of text mining systems in Chapter II and indeed throughout
this book.

Section I.2.1

The architectural elements of the systems elaborated on here reflect a composite
of operations developed in several widely described real-world text mining appli-
cations, most especially the KDT (Feldman and Dagan 1995), FACT (Feldman and
Hirsh 1996a; Feldman and Hirsh 1996b; Feldman and Hirsh 1997), and Document
Explorer (Feldman, Kloesgen, Ben Yehuda, et al. 1997; Feldman, Kloesgen, and
Zilberstein 1997a) systems. Besides these text mining applications, other systems at
least referentially contributing in some way to this composite include the TEXTRISE
system (Nahm and Mooney 2000), the SYNDICATE system (Hahn and Schnattinger
1997), the Explora System (Kloesgen 1995b), and the LINDI project (Hearst 1999).

In particular, Feldman, Kloesgen, and Zilberstein (1997a) includes a pertinent
discussion of the architecture of the Document Explorer System. Tan (1999) also
proposes a generalized architecture for text mining systems, using the term “knowl-
edge distillation processes” in roughly the same way as this section refers to “core
mining operations.” The term “postprocessing” – as a general label for what this
book refers to as refinement techniques – comes from Hotho et al. (2002).

II

Core Text Mining Operations

Core mining operations in text mining systems center on the algorithms that underlie
the creation of queries for discovering patterns in document collections. This chapter
describes most of the more common – and a few useful but less common – forms
of these algorithms. Pattern-discovery algorithms are discussed primarily from a
high-level definitional perspective. In addition, we examine the incorporation of
background knowledge into text mining query operations. Finally, we briefly treat
the topic of text mining query languages.

II.1 CORE TEXT MINING OPERATIONS

Core text mining operations consist of various mechanisms for discovering patterns
of concept occurrence within a given document collection or subset of a document
collection. The three most common types of patterns encountered in text mining are
distributions (and proportions), frequent and near frequent sets, and associations.

Typically, when they offer the capability of discovering more than one type of
pattern, text mining systems afford users the ability to toggle between displays of
the different types of patterns for a given concept or set of concepts. This allows
the richest possible exploratory access to the underlying document collection data
through a browser.

II.1.1 Distributions

This section defines and discusses some of text mining’s most commonly used dis-
tributions. We illustrate this in the context of a hypothetical text mining system that
has a document collection W composed of documents containing news wire stories
about world affairs that have all been preprocessed with concept labels.

Whether as an initial step, to create a baseline, or to create more meaningful
subdivisions of a single document collection for comparison purposes, text mining
systems generally need to refer to some subcollection of a complete document collec-
tion. This activity is commonly referred to as concept selection. Given some collection

19

20 Core Text Mining Operations

of documents D, a text mining system will have a requirement to refer to some sub-
collection of D that is labeled by one or more given concepts.

Definition II.1. Concept Selection: If D is a collection of documents and K is a set
of concepts, D/K is the subset of documents in D labeled with all of the concepts in
K. When it is clear from the context, given a single concept k, rather than writing
D/{k} we use the notation D/k.

For example, the collection W contains a subset of the World Affairs collection –
namely those documents that are labeled with the concepts iran, nicaragua, and
reagan; W/bush contains the subset of documents that are labeled (at least) with
reagan; and W/G8 contains those documents that are labeled with any terminal
node under G8 (i.e., labeled with any G8 country). G8 is treated as a concept here
when is being performed concept selection (rather than being viewed as the set of
concepts under it, in which case it would have required all of its descendants to be
present).

Text mining systems often need to identify or examine the proportion of a set of
documents labeled with a particular concept. This analytic is commonly referred to
as concept proportion.

Definition II.2. Concept Proportion: If D is a collection of documents and K is a set
of concepts, f (D, K) is the fraction of documents in D labeled with all of the concepts
in K, that is, f (D, K) = |D/ k|

|D| . Given one concept k, rather than writing f (D, {k}), we
use the notation f (D, k). When D is clear from context, we drop it and write f (k).

Thus, for example, f (W, {iran, nicaragua, reagan} is the fraction of documents in
the World Affairs collection labeled with iran, nicaragua, and reagan; f (reagan) is
the proportion of the collection labeled with the concept reagan; and f (G8) is the
proportion labeled with any (G8) country.

By employing definitions of selection and proportion, text mining systems can
already begin identifying some useful quantities for analyzing a set of documents.
For example, a text mining system might want to identify the proportion of those
documents labeled with K2 that are also labeled by K1, which could be designated
by expression f(D/K2, K1).

This type of proportion occurs regularly enough that it has received an explicit
name and notation: conditional concept proportion.

Definition II.3. Conditional Concept Proportion: If D is a collection of documents
and K1 and K2 are sets of concepts, f (D, K1 | K2) is the proportion of all those
documents in D labeled with K2 that are also labeled with K1, that is, f (D, K1 | K2) =
f (D/K2, K1). When D is clear from context, we will write this as f (K1 | K2).

Applying this definition, we find that f(reagan | iran) would represent the proportion
of all documents labeled by the concept iran that are also labeled by the concept
reagan.

Commonly, a text mining system needs to analyze the distribution of concepts
that are descendents of a particular node in a concept hierarchy. For example, a
text mining system might need to allow the analysis of the distribution of concepts
denoting finance topics – that is, descendents of the finance topics node in an example
concept hierarchy. To accomplish this, a text mining system could use the expression

II.1 Core Text Mining Operations 21

PK(x) to refer to such distributions – it will assign to any concept x in K a value
between 0 and 1 – where the values are not required to add up to 1.

This type of proportion can be referred to as a concept distribution. In the follow-
ing sections we present several specific examples of such PK(x) distributions.

One particularly important concept distribution for knowledge discovery opera-
tions is the concept proportion distribution, which gives the proportion of documents
in some collection that are labeled with each of a number of selected concepts:

Definition II.4. Concept Proportion Distribution: If D is a collection of documents
and K is a set of concepts, FK(D, x) is the proportion of documents in D labeled with
x for any x in K. When D is clear from context, we will write this as FK(x).

Note the distinction between PK(x) and FK(x). PK(x) refers generically to any func-
tion that is a concept distribution. FK(x) is a specific concept distribution defined by
a particular concept-labeled set of documents.

Thus, for example Ftopics(R, x) would represent the proportions of documents
in W labeled with keywords under the topics node in the concept hierarchy. In this
expression, topics is used as shorthand for referring to a set of concepts – namely, all
those that occur under the topics node – instead of explicitly enumerating them all.

Also, note that F{k}(D, k) = f (D, k) – that is, FK subsumes the earlier defined f

when it is applied to a single concept. Unlike f, however, FK is restricted to refer
only to the proportion of occurrences of individual concepts (those occurring in the
set K).1 Thus f and F are not comparable.

Mathematically, F is not a true frequency distribution, for each document may
be labeled by multiple items in the set K. Thus, for example, a given document may
be labeled by two (or more) G8 countries because occurrences of concepts are not
disjoint events. Therefore, the sum of values in FG8 may be greater than one.

In the worst case, if all concepts in K label all documents, the sum of the values in
a distribution F can be as large as |K|. Furthermore, because some documents may
contain none of the concepts in a given K, the sum of frequencies in F might also
be smaller than one – in the worst case, zero. Nonetheless, the term “distribution” is
used for F, for many of the connotations this term suggests still hold true.

Just as was the case for concept proportions, text mining systems can also leverage
conditional keyword-proportion distributions, which are probably one of the most
used concept distributions in text mining systems.

Definition II.5. Conditional Concept Proportion Distribution: If D is a collection
of documents and K and K′ are sets of concepts, FK(D, x | K′) is the proportion of
those documents in D labeled with all the concepts in K′ that are also labeled with
concept x (with x in K), that is, FK(D, x | K′) = FK(D/K | K′, x). We often write this
as FK(x | K′) when D is clear from context.

Thus, for example, Ftopics(x | Argentina) would assign any concept x under topics in
the hierarchy with the proportion of documents labeled by x within the set of all
documents labeled by the concept Argentina, and Ftopics(x | {UK, USA) is the similar
distribution for those documents labeled with both the UK and USA concepts.

1 It is also quite simple to define a similar notion for sets of concepts, for example, by computing the
proportions for each subset of a set K (Feldman, Dagan, and Hirsh, 1998).

22 Core Text Mining Operations

One of the baseline distributions text mining systems use to compare distributions
is the average distribution over a set of sibling nodes in the hierarchy. For example,
when looking at the proportions of loan within South American countries such as
f (W, loan | Argentina), f (W, loan | Brazil), and f (W, loan | Columbia)), an end user
may be interested in the average of all proportions of this form for all the South
American countries – that is, the average of all proportions of the form f (W, loan |k),
where k ranges over all South American countries.

Definition II.6. Average Concept Proportion: Given a collection of documents D,
a concept k, and an internal node in the hierarchy n, an average concept proportion,
denoted by a(D, k | n), is the average value of f (D, k | k′), where k′ ranges over all
immediate children of n – that is, a(D, k | n) = Avg{k′ is a child of n}{ f (D, k | k′)}. When
D is clear from context, this will be written a(k|n).

For example, a(loan | South America) is the average concept proportion of
f(loan | k′) as k′ varies over each child of the node South America in the concept
hierarchy; that is, it is the average conditional keyword proportion for loan within
South American countries.

This quantity does not average the values weighted by the number of documents
labeled by each child of n. Instead, it equally represents each descendant of n and
should be viewed as a summary of what a typical concept proportion is for a child
of n.

An end user may be interested in the distribution of averages for each economic
topic within South American countries. This is just another keyword distribution
referred to as an average concept distribution.

Definition II.7. Average Concept Distribution: Given a collection of docu-
ments D and two internal nodes in the hierarchy n and n′, an average con-

cept distribution, denoted by An(Dx | n′), is the distribution that, for any x

that is a child of n, averages x’s proportions over all children of n′ – that is,
An(D, x | n′) = Avg{k ′ is a child of n′}{Fn(D, x | k′)}. When clear from context, this will
be written An(x | n′).

For example Atopics(x|South America), which can be read as “the average dis-
tribution of topics within South American countries,” gives the average proportion
within all South American countries for any topic x.

A very basic operation for text mining systems using concept-distributions is the
display of conditional concept-proportion distributions. For example, a user may be
interested in seeing the proportion of documents labeled with each child of topics

for all those documents labeled by the concept Argentina, that is, the proportion of
Argentina documents that are labeled with each topic keyword.

This distribution would be designated by Ftopics(W, x | Argentina), and a correlat-
ing graph could be generated, for instance, as a bar chart, which might display the fact
that 12 articles among all articles of Argentina are annotated with sorghum, 20 with
corn, 32 with grain, and so on, providing a summary of the areas of economical activ-
ity of Argentina as reflected in the text collection. Conditional concept-proportion
distributions can also be conditioned on sets of concepts.

In some sense, this type of operation can be viewed as a more refined form of
traditional concept-based retrieval. For example, rather than simply requesting all

II.1 Core Text Mining Operations 23

documents labeled by Argentina or by both UK and USA, the user can see the doc-
uments at a higher level by requesting documents labeled by Argentina for example,
and first seeing what proportions are labeled by concepts from some secondary set
of concepts of interest with the user being able to access the documents through this
more fine-grained grouping of Argentina-labeled documents.

Comparing with Average Distributions

Consider a conditional proportion of the form Fk(D, x | k) f , the distribution over K

of all documents labeled with some concept k (not necessarily in K). It is natural to
expect that this distribution would be similar to other distributions of this form over
conditioning events k′ that are siblings of k. When they differ substantially it is a sign
that the documents labeled with the conditioning concept k may be of interest.

To facilitate this kind of comparison of concept-labeled documents with the aver-
age of those labeled with the concept and its siblings, a user can specify two internal
nodes of the hierarchy and compare individual distributions of concepts under one
of the nodes conditioned on the concept set under the other node – that is, compute
D(Fn(x | k)||An(x | n′)) for each k that is a child of n ′.

In addition to their value in finding possible interesting concept labelings, com-
parisons of this type also provide a hierarchical browsing mechanism for concept
co-occurrence distributions. For example, an analyst interested in studying the topic
distribution in articles dealing with G8 countries may first browse the average class
distribution for G8. This might reveal the major topics that are generally common
for G8 countries. Then, an additional search could be used to reveal the major char-
acteristics specific for each country.

Comparing Specific Distributions

The preceding mechanism for comparing distributions with an average distribution
is also useful for comparing conditional distributions of two specific nodes in the
hierarchy. For example, one could measure the distance from the average topic dis-
tribution of Arab League countries to the average topic distribution of G8 countries.
An answer set could be returned from a query into a table with countries sorted in
decreasing order of their contribution to the distance (second column) – namely
d(Atopics(K | Arab League) || Atopics(k | G8)).

Additional columns could show, respectively, the percentage of the topic in the
average topic distribution of the Arab League countries (Atopics(x | G8)) and in
the average topic distribution of the G8 countries (Atopics(x | G8)). One could also
show the total number of articles in which the topic appears with any Arab League

country and any G8 country. This would reveal the topics with which Arab League

countries are associated much more than G8 countries such as grain, wheat, and crude
oil. Finally, one could show the comparison in the opposite direction, revealing the
topics with which G8 countries are highly associated relative to the Arab League.

II.1.2 Frequent and Near Frequent Sets

Frequent Concept Sets

In addition to proportions and distributions, another basic type of pattern that can
be derived from a document collection is a frequent concept set. This is defined as

24 Core Text Mining Operations

a set of concepts represented in the document collection with co-occurrences at or
above a minimal support level (given as a threshold parameter s; i.e., all the concepts
of the frequent concept set appear together in at least s documents). Although origi-
nally defined as an intermediate step in finding association rules (see Section II.1.3),
frequent concept sets contain a great deal of information of use in text mining.

The search for frequent sets has been well treated in data mining literature,
stemming from research centered on investigating market basket–type associations
first published by Agrawal et al. in 1993. Essentially, a document can be viewed as a
market basket of named entities. Discovery methods for frequent concept sets in text
mining build on the Apriori algorithm of Agrawal et al. (1993) used in data mining
for market basket association problems. With respect to frequent sets in natural
language application, support is the number (or percent) of documents containing
the given rule – that is, the co-occurrence frequency. Confidence is the percentage of
the time that the rule is true.

L1 = {large 1 − itemsets}
for (k = 2; Lk−1 �= Ø; k ++) do begin

Ck = apriori-gen (Lk−1) // new candidates
forall transactions t ∈ D do begin

C1 = subset (Ck, t) // candidates contained in t

forall candidates c ∈ Ct do

c.count ++;
end

Lk = {c ∈ Ck | c.count ≥ minsupport}
end

Answer =
⋃

k

Lk;

Algorithm II.1: The Apriori Algorithm (Agrawal and Srikant 1994)2

A frequent set in text mining can be seen directly as a query given by the conjunc-
tion of concepts of the frequent set. Frequent sets can be partially ordered by their
generality and hold the simple but useful pruning property that each subset of a
frequent set is a frequent set. The discovery of frequent sets can be useful both as a
type of search for patterns in its own right and as a preparatory step in the discovery
of associations.

Discovering Frequent Concept Sets

As mentioned in the previous section, frequent sets are generated in relation to
some support level. Because support (i.e., the frequency of co-occurrence) has been
by convention often expressed as the variable σ , frequent sets are sometimes also
referred to as σ -covers, or σ -cover sets. A simple algorithm for generating frequent
sets relies on incremental building of the group of frequent sets from singleton σ -

covers, to which additional elements that continue to satisfy the support constraint

2 In data mining, the expression item is commonly used in a way that is roughly analogous to the expression
feature in text mining. Therefore, the expression item set can be seen here, at least, as analogous to the
expression concept set.

II.1 Core Text Mining Operations 25

are progressively added. Algorithm II.2 is a typical algorithm for discovering frequent
concept sets.

L1 = {{A} | A ∈ R and [A] ≥ σ}

i = 1
While Li �= Ø do

Li+1 = {S1 ∪ S2 | S1, S2 ∈ Li , | S1 ∪ S2 | = i + 1,
all subsets of S1 ∪ S2 are in Li}

i = i + 1
end do

return ({X | X ∈
⋃

i

Li and |[X]| ≥ σ })

Algorithm II.2: Algorithm for Frequent Set Generation

Near Frequent Concept Sets

Near frequent concept sets establish an undirected relation between two frequent sets
of concepts. This relation can be quantified by measuring the degree of overlapping,
for example, on the basis of the number of documents that include all the concepts of
the two concept sets. This measure can be regarded as a distance function between
the concept sets. Several distance functions can be introduced (e.g., based on the
cosine of document vectors, Tanimoto distance, etc.).

Directed relations between concept sets can also be identified. These are consid-
ered types of associations (see Section II.1.3).

II.1.3 Associations

A formal description of association rules was first presented in the same research on
“market basket” problems that led to the identification of frequent sets in data mining.
Subsequently, associations have been widely discussed in literature on knowledge
discovery targeted at both structured and unstructured data.

In text mining, associations specifically refer to the directed relations between
concepts or sets of concepts. An association rule is generally an expression of the
form A ⇒ B, where A and B are sets of features. An association rule A ⇒ B indicates
that transactions that involve A tend also to involve B.

For example, from the original market-basket problem, an association rule might
be 25 percent of the transactions that contain pretzels also contain soda; 8 percent of all

transactions contain both items. In this example, 25 percent refers to the confidence

level of the association rule, and 8 percent refers to the rule’s level of support.
With respect to concept sets, association rule A⇒B, relating two frequent concept

sets A and B, can be quantified by these two basic measures of support and confidence.
Confidence is the percentage of documents that include all the concepts in B within
the subset of those documents that include all the concepts in A. Support is the
percentage (or number) of documents that include all the concepts in A and B.

More precisely, we can describe association rules as follows:

� Let r = {t1, . . . , tn} be a collection of documents, each labeled with some subset
of concepts from the m-concept set R = {I1, I2, . . . , Im}.

26 Core Text Mining Operations

� Given a concept A and document t, we write t(A) = 1 if A is one of the concepts
labeling t, and t(A) = 0 otherwise.

� If W is a subset of the concepts in R, t(W) = 1 represents the case that t(A) = 1
for every concept A ∈ W.

� Given a set X of concepts from R, define (X) = {i | ti(X) = 1}; (X) is the set of
all documents ti that are labeled (at least) with all the concepts in X.

� Given some number σ (the support threshold), X is called a σ -covering if
|(X)| ≥ σ .

W ⇒ B is an association rule over r if W ⊆ R and B ⊆ R\W. We refer to W as
the left-hand side (LHS) of the association and B as the right-hand side (RHS).

Finally, we say that r satisfies W ⇒ B with respect to 0 < γ ≤ 1 (the confidence
threshold) and σ (the support threshold) if W ∪ B is a σ -covering (i.e., |(W ∪ B)| ≥ σ

and |(W ∪ B)|/|(W)| ≥ γ). Intuitively, this means that, of all documents labeled with
the concepts in W, at least a proportion γ of them are also labeled with the concepts
in B; further, this rule is based on at least σ documents labeled with all the concepts
in both W and B.

For example, a document collection has documents labeled with concepts in the
following tuples: {x, y, z, w}, {x, w}, {x, y, p}, {x, y, t}. If γ = 0.8 and σ = 0.5, and
{x}, {y}, {w}, {x, w}, and {x, y} are coverings, then {y} ⇒ {x} and {w} ⇒ {x} are
the only associations.

Discovering Association Rules

The discovery of association rules is the problem of finding all the association rules
with a confidence and support greater than the user-identified values minconf (i.e.,
γ , or the minimum confidence level) and minsup (i.e., σ , or the minimum support
level) thresholds.

The basic approach to discovering associations is a generally straightforward two-
step process as follows:

� Find all frequent concept sets X (i.e., all combinations of concepts with a support
greater than minsup);

� Test whether X \B ⇒ B holds with the required confidence.

The first step – namely the generation of frequent concept sets (see
Algorithm II.2) – has usually been found to be by far the most computationally
expensive operation. A typical simple algorithm for the second step – generating
associations (after the generation of maximal frequent concept sets has been com-
pleted) – can be found below in Algorithm II.3.

foreach X maximal frequent set do

generate all the rules X \ {b} ⇒ {b}, where b ∈ X, such that
∣

∣[X\{b}]
∣

∣

∣

∣[X]
∣

∣

≥ σ

endfch

Algorithm II.3: Simple Algorithm for Generating Associations (Rajman and

Besancon 1998)

II.1 Core Text Mining Operations 27

Thus, essentially, if{w, x}and{w, x, y, z}are frequent concept sets, then the association
rule {w, x} ⇒ {y, z} can be computed by the following ratio:

c =
support ({w, x, y, z})

support ({w, x})
.

Again, however, in this case the association rule will only hold if c ≥ σ .
Given these steps, if there are m concepts in a document collection, then, in

a single pass, all possible 2m subsets for that document collection can be checked.
Of course, in extremely large, concept-rich document collections, this can still be
a nontrivial computational task. Moreover, because of the implications of generat-
ing an overabundance of associations, additional procedures – such as structural or
statistical pruning, redundancy elimination, and so on – are sometimes used to sup-
plement the main association rule extraction procedure in order to limit the number
of generated associations.

Maximal Associations

Association rules are very useful in helping to generally describe associations rel-
evant between concepts. Maximal associations represent a more specialized type
of relationship between concepts in which associations are identified in terms of
their relevance to one concept and their lack of relevance to another. These asso-
ciations help create solutions in the particular problem space that exists within text
document collections, where closely related items frequently appear together. Con-
ventional association rules fail to provide a good means for allowing the specific
discovery of associations pertaining to concepts that most often do not appear alone
(but rather together with closely related concepts) because associations relevant only
to these concepts tend to have low confidence. Maximal association rules provide a
mechanism for discovering these types of specialized relations.

For example, in a document collection, the concept “Saddam Hussein” may most
often appear in association with “Iraq” and “Microsoft” most often with “Windows.”
Because of the existence of these most common relationships, associations especially
relevant to the first concept in the association, but not the other, will tend to have
low confidence. For instance, an association between “Iraq” and the “Arab League”
would have low confidence because of the many instances in which “Iraq” appears
with “Saddam Hussein” (and not “Arab League”). Likewise, an association between
“Microsoft” and “Redmond” would potentially be left unidentified because of the
many more instances in which “Microsoft” appears with “Windows.” Maximal asso-
ciations identify associations relevant to one concept but not the other – that is,
associations relating to “Iraq” or “Microsoft” alone.

Maximal Association Rules: Defining M-Support and M-Confidence

Fundamentally, a maximal association rule X
max⇒ Y states that, whenever X is the

only concept of its type in a transaction (i.e., when X appears alone), then Y also
appears with some confidence. To understand the notion of a maximal association
rule it is important define the meaning of alone in this context. We can do so with
respect to categories of G:

Definition II.8. Alone with Respect to Maximal Associations: For a transaction t, a
category g, and a concept-set X ⊆ gi, one would say that X is alone in t if t ∩ gi = X.

28 Core Text Mining Operations

That is, X is alone in t if X is the largest subset of gi that is in t. In such a case, one
would say that X is maximal in t and that t M-supports X. For a document collection
D, the M-support of X in D, denoted as s max

D
(X), is the number of transactions t ∈ D

that M-support X.

A maximal association rule, or M-association, is a rule of the form X
max⇒ Y, where

X and Y are subsets of distinct categories that could be identified as g (X) and
g (Y), respectively. The M-support for the maximal association X

max⇒ Y, which can
be denoted as s max

D
(X

max⇒ Y), can be defined as

s max

D
(X

max⇒ Y) = |{t : t M-supports X and t supports Y}|.

That is, (X
max⇒ Y) is equal to the number of transactions in D that M-support X and

also support Y in the conventional sense, which suggests that, whenever a transaction
M-supports X, then Y also appears in the transaction with some probability.

In measuring this probability, we are generally interested only in those transac-
tions in which some element of g(Y) (i.e., the category of Y) appears in the transac-
tion. Thus, we define confidence in the following manner. If D(X, g(Y)) is the subset
of the document collection D consisting of all the transactions that M-support X and
contain at least one element of g(Y), then the M-confidence of the rule X

max⇒ Y,
denoted by c max

D
(X

max⇒ Y), is

c max

D
(X

max⇒ Y) =
s max

D
(X

max⇒ Y)

|D(X, g(Y))|
.

A text mining system can search for associations in which the M-support is higher than
some user-specified minimum M-support, which has been denoted by the designation
s, and the M-confidence is higher than some user-specified minimum M-confidence,
which has been denoted by c. A set X that has M-support of at least s is said to be
M-frequent.

M-Factor

Any maximal association rule is also a conventional association with perhaps differ-
ent levels of support and confidence. The M-factor of the rule X

max⇒ Y is the ratio
between the M-confidence of the maximal association X

max⇒ Y and the confidence
of the corresponding conventional association X ⇒ Y. Specifically, if D is a subset of
the transaction that contains at least one concept of g(Y), then, the M-factor of the
association X

max⇒ Y is

M-factor (X
max⇒ Y) = c max

D
(X

max⇒ Y) =
c max

D
(X

max⇒ Y)

cD′(X ⇒ Y)
.

Here, the denominator is the confidence for the rule X ⇒ Y with respect to D′. This
is because, given that the M-confidence is defined with respect to D′, the comparison
to conventional associations must also be with respect to the set.

From a practical perspective, one generally seeks M-associations with a higher
M-factor. Such M-associations tend to represent more interesting rules.

II.1 Core Text Mining Operations 29

II.1.4 Isolating Interesting Patterns

The notion of interestingness with respect to knowledge discovery in textual data has
been viewed from various subjective and contextual perspectives. The most common
method of defining interestingness in relation to patterns of distributions, frequent
sets, and associations has been to enable a user to input expectations into a system
and then to find some way of measuring or ranking patterns with respect to how far
they differ from the user’s expectations.

Text mining systems can quantify the potential degree of “interest” in some piece
of information by comparing it to a given “expected” model. This model then serves
as a baseline for the investigated distribution.

For example, a user may want to compare the data regarding Microsoft with an
averaged model constructed for a group of computer software vendors. Alternatively,
a user may want to compare the data relating to Microsoft in the last year with a
model constructed from the data regarding Microsoft in previous years.

Interestingness with Respect to Distributions and Proportions

Because text mining systems rely on concept proportions and distributions to describe
the data, one therefore requires measures for quantifying the distance between an
investigated distribution and another distribution that serves as a baseline model
(Feldman, Dagan, and Hirsh 1998). So long as the distributions are discrete, one can
simply use sum-of-squares to measure the distance between two models:

D(p′ || p) =
∑

x

(p′(x) − p(x))
2
,

where the target distribution is designated by p and the approximating distribution
by p′ and the x in the summation is taken over all objects in the domain. This measure
is always nonnegative and is 0 if and only if p′ = p.

Given this measure, one can use it as a heuristic device. With respect to
distribution-based patterns, this could be used as a heuristic for judging concept-
distribution similarities. This measure is referred to as concept distribution distance.

Definition II.9. Concept Distribution Distance: Given two concept distributions
P ′

K(x) and PK(x), the distance D(P ′
K || PK) between them is defined by

D(P ′
K(x) || PK(x)) =

∑

x∈K (P ′
K(x)−PK(x))2.

Text mining systems are also sometimes interested in the value of the difference
between two distributions at a particular point. This measure is called concept pro-

portion distance.

Definition II.10. Concept Proportion Distance: Given two concept distributions
P ′

K(x) and PK(x), and a concept k in K, the distance d(P ′
K(k) || PK(k)) between

them is defined by D(P′
K(k) || PK(k)) = P′

K(k) − PK(k).

Thus, another way to state D(P ′
K || PK) would be

∑

x∈K

[d(PK(x) || PK(x))] 2
.

30 Core Text Mining Operations

As an example, the distance between the distribution of topics within Argentina

and the distribution of topics within Brazil would be written as D(Ftopics

(x | Argentina) || Ftopics(x | Brazil)), and the distance between the distribution of
topics within Argentina and the average distribution of topics within South America

would be written as D(Ftopics(x | Argentina) || A topics(x | South−America)).

II.1.5 Analyzing Document Collections over Time

Early text mining systems tended to view a document collection as a single, mono-
lithic entity – a unitary corpus consisting of one coherent and largely static set of
textual documents. Many text mining applications, however, benefit from viewing
the document collection not as a monolithic corpus but in terms of subsets or divi-
sions defined by the date and time stamps of documents in the collection. This type of
view can be used to allow a user to analyze similarities and differences between con-
cept relationships across the various subdivisions of the corpus in a way that better
accounts for the change of concept relationships over time.

Trend analysis, in text mining, is the term generally used to describe the analysis
of concept distribution behavior across multiple document subsets over time. Other
time-based analytics include the discovery of ephemeral associations, which focuses
on the influence or interaction of the most frequent or “peak” concepts in a period on
other concepts, and deviation, which concentrates on irregularities such as documents
that have concepts differing from more typical documents in a document collection
(or subcollection) over time. In addition, text mining systems can enable users to
explore the evolution of concept relationships through temporal context graphs and
context-oriented trend graphs.

Although trend analysis and related time-based analytics attempt to better
account for the evolving nature of concept relationships in a document collection,
text mining systems have also developed practical approaches to the real-world chal-
lenges inherent in supporting truly dynamic document collections that add, mod-
ify, or delete documents over time. Such algorithms have been termed incremen-

tal algorithms because they tend to be aimed at more efficient incremental update
of the search information that has already been mined from a document collec-
tion to account for new data introduced by documents added to this collection
over time.

Both trend analysis and incremental algorithms add a certain dynamism to text
mining systems, allowing these systems to interact with more dynamic document
collections. This can be critical for developing useful text mining applications targeted
at handling time series–type financial reports, topical news feeds, text-based market
data, time-sensitive voter or consumer sentiment commentary, and so on.

Trend Analysis

The origin of the problem of discovering trends in textual data can be traced to
research on methods for detecting and presenting trends in word phrases. These
methods center on a two-phase process in which, in the first phase, phrases are created
as frequent sequences of words using the sequential patterns mining algorithm first

II.1 Core Text Mining Operations 31

mooted for mining structured databases and, in the second phase, a user can query
the system to obtain all phrases whose trend matches a specified pattern (i.e., “recent
upward trend”).

More recent methods for performing trend analysis in text mining have been
predicated on the notion that the various types of concept distributions are functions
of document collections. It is therefore possible to compare two distributions that
are otherwise identical except that they are for different subcollections. One notable
example of this is having two collections from the same source (such as from a news
feed) but from different points in time.

For instance, one can compare the distribution of topics within Argentina-labeled
documents, as formed by documents published in the first quarter of 1987, with
the same distribution formed by documents from the second quarter of 1987. This
comparison will highlight those topics whose proportion changed between the two
time points, directing the attention of the user to specific trends or events in these
topics with respect to Argentina. If R1 is used to designate a portion of a Reuters
newswire data collection from the first quarter of 1987, and R2 designates the portion
from the second quarter of 1987, this would correspond to comparing Ftopics(R1, x |
Argentina) and Ftopics(R2, x | Argentina).

This knowledge discovery operation can be supplemented by listing trends that
were identified across different quarters in the time period represented by the
Reuters collection by computing R(Fcountries(R1, x | countries) || Fcountries(R2, x |
countries)), where R1 and R2 correspond to different subcollections from different
quarters.3 A text mining system could also calculate the percentage and absolute
frequency for Fcountries(x | countries) for each such pair of collections.

Ephemeral Associations

An ephemeral association has been defined by Montes-y-Gomez et al. (2001b) as
a direct or inverse relation between the probability distributions of given topics
(concepts) over a fixed time span. This type of association differs notionally from the
more typical association form A ⇒ B because it not only indicates the co-occurrence
of two topics or sets of topics but primarily indicates how these topics or sets of topics
are related within the fixed time span.

Examples of ephemeral associations can be found in news feeds in which one very
frequently occurring or “peak” topic during a period seems to influence either the
emergence or disappearance of other topics. For instance, news stories (documents)
about a close election that involve allegations of election machine fraud may correlate
with the emergence of stories about election machine technology or vote fraud stories
from the past. This type of ephemeral association is referred to as a direct ephemeral

association.
On the other hand, news stories relating to the victory of a particular tennis

player in a major tournament may correlate with a noticeable and timely decrease in
stories mentioning other tennis players who were formerly widely publicized. Such

3 It would also be quite fair to ask for a distribution FK(x | K), which analyzes the co-occurrences of
different keywords under the same node of the hierarchy. Thus, for example, Fcountries(x | countries)
would analyze the co-occurrences of country labels on the various documents.

32 Core Text Mining Operations

momentary negative influence between one topic and another is referred to as an
inverse ephemeral association.

One statistical method suggested by Montes-y-Gomez et al. (2001b) to detect
ephemeral associations has been the correlation measure r. This method has been
expressed as

r =
S01√
S00S01

,

Skl =
n

∑

i=1

(

pi
k, pi

l

)

−
1

n

(

n
∑

i=1

pi
k

) (

n
∑

i=1

pi
l

)

,

k, l = 0, 1.

Within this method, pi
0 is the probability of the peak topic, and pi

1 is the probability
of the other topic in the period i. The correlation coefficient r attempts to measure
how well two variables – here, topics or concepts – are related to one another. It
describes values between −1 and 1; the value −1 means there is a perfect inverse
relationship between two topics, whereas the value 1 denotes a perfect direct
relationship between two topics. The value 0 indicates the absence of a relation.

Deviation Detection

Users of text mining systems are sometimes interested in deviations – that is, the
identification of anomalous instances that do not fit a defined “standard case” in
large amounts of data. The normative case is a representation of the average ele-
ment in a data collection. For instance, in news feed documents and the topics (con-
cepts) that they contain, a particular topic can be considered a deviation if its prob-
ability distribution greatly diverges from distributions of other topics in the same
sample set.

Research into deviation detection for text mining is still in its early, formative
stages, and we will not discuss it in detail here. However, work has been done by
Montes-y-Gomez, Gelbukh, and Lopez-Lopez (Montes-y-Gomez et al. 2001b) and
others to examine the difficult task of detecting deviations among documents in
large collections of news stories, which might be seen as an application of knowledge
discovery for distribution-type patterns. In such applications, time can also be used
as an element in defining the norm.

In addition, one can compare norms for various time-based subsets of a document
collection to find individual news documents whose topics substantially deviate from
the topics mentioned by other news sources. Sometimes such deviating individual
documents are referred to as deviation sources.

From Context Relationships to Trend Graphs

Another approach to to exploring the evolution of concept relationships is to exam-
ine temporal context relationships. Temporal context relationships are most typi-
cally represented by two analytical tools: the temporal context graph and the trend

graph.
Before describing these time-based, context-oriented analytical tools, we expend

a little effort explicating the more general notions of context in document collections.

II.1 Core Text Mining Operations 33

Indeed, both temporal context graphs and trend graphs build on the notion of the
context relationship and its typical visual representation in the form of the context

graph.

Context Phrases and Context Relationships

Generally, a context relationship in a document collection is the relationship within a
set of concepts found in the document collection in relation to a separately specified
concept (sometimes referred to as the context or the context concept). A context
relationship search might entail identifying all relationships within a set of company
names within the context of the concept “bankruptcy.” A context phrase is the name
given to a subset of documents in a document collection that is either labeled with
all, or at least one, of the concepts in a specified set of concepts.

Formal definitions for both context phrases and the context relationship are as
follows:

Definition II.11. Context Phrase: If D is a collection of documents and C is a set of
concepts, D/A(C) is the subset of documents in D labeled with all the concepts in C,

and D/O(C) is the subset of documents in D labeled with at least one of the concepts

in C. Both A(C) and O(C) are referred to as context phrases.

Definition II.12. Context Relationship: If D is a collection of documents, c1 and c2

are individual concepts, and P is a context phrase, R(D, c1, c2 | P) is the number
of documents in D/P which include both c1 and c2. Formally, R(D, c1, c2 | P) =
|(D/A({c1, c2}))|P|.

The Context Graph

Context relationships are often represented by a context graph, which is a graphic rep-
resentation of the relationship between a set of concepts (e.g., countries) as reflected
in a corpus respect to a given context (e.g., crude oil).

A context graph consists of a set of vertices (also sometimes referred to as nodes)
and edges. The vertices (or nodes) of the graph represent concepts. Weighted “edges”
denote the affinity between the concepts.

Each vertex in the context graph signifies a single concept, and two concepts are
connected by an edge if their similarity, with respect to a predefined similarity func-
tion, is larger than a given threshold (similarity functions in graphing are discussed
in greater detail in Chapter X). A context graph is defined with respect to a given
context, which determines the context in which the similarity of concepts is of interest
(see Figure II.1).

A context graph also has a formal definition:

Definition II.13. Context Graph: If D is a collection of documents, C is a set of con-
cepts, and P is a context phrase, the concept graph of D, C, P is a weighted graph G =
(C, E), with nodes in C and a set of edges E = ({c1, c2} | R(D, c1, c2 | P) > 0).
For each edge, {c1, c2} ∈ E, one defines the weight of the edge, w{c1, c2} =
R(D, c1, c2 | P).

n
y
n
e
c

c
o
rp

m
c
a
 i
n
c

s
e
a
g
ra

m
c
o
.
lt
d

fo
rd

m
o
to

r
c
o
.

g
e
n
e
ra

l
m

o
to

r
c
o
rp

.c
h
ry

s
le

r
c
o
rp

.

c
o
m

p
u
s
e
rv

e
in

c

a
m

e
ri

c
a

o
n
lin

e
 i
n
cb
e
rt

e
ls

m
a
n
n

a
q

in
te

rn
a
ti
o

n
a
l

b
u
s
in

e
s
s
 m

a
c
h

in
e
 c

o
rp

.

p
ro

d
ig

y
s
e
rv

ic
e
 c

o
.

a
p
p
le

c
o
m

p
u
te

r
in

c
m

ic
ro

s
o
ft

c
o
rp

b
o
e
in

g
c
o

g
e
n
e
ra

l
e
le

c
tr

ic
 c

o

h
 r

 b
lo

c
k

in
c

d
o
w

 c
o
m

in
g

in
c

d
o
w

 c
o
m

in
g

c
o
rp

c
o
m

in
g

in
c

d
o
w

 c
h
e
m

ic
a
l

c
o
 i
n
c

d
o
w

 c
h
e
m

ic
a
l

in
c

d
e
u
ts

c
h
e

te
le

k
o
m

 a
g

fr
a
n
c
e

te
le

c
o
m

 s
as
p
ri

n
t

c
o
rp

m
c
i
c
o
m

m
u
n
ic

a
ti
o
n

c
o
rp

n
e
w

s
c
o
rp

 l
td

.
b
e
ll

a
tl
a
n
ti
c

c
o
rp

2
1

2
5

2
92

0
1
6

2
7

2
7

3
6

3
5

3
5

3
8

3
4

2
0

2
1

1
5

2
4

2
0

2
4

2
2

2
9

2
6

2
2

3
1

1
9

1
6

1
6

4
0

2
9

3
02

3

1
9

1
5

2
0

F
ig

u
re

II
.1

.
C

o
n
te

xt
g
ra

p
h

fo
r

c
o
m

p
a
n
ie

s
in

th
e

c
o
n
te

xt
o
f

“j
o
in

t
ve

n
tu

re
.”

(F
ro

m
Fe

ld
m

a
n
,

Fr
e
s
k
o
,

H
ir
s
h
,

e
t

a
l.

1
9
9
8
.)

34

II.1 Core Text Mining Operations 35

It is often useful to be able to examine not just concept relationships within a given
concept context but also to analyze the similarities and differences in context rela-
tionships across different temporal segments of the corpus. A temporal context rela-

tionship refers specifically to the relationship between a set of concepts, as reflected
across these segments (identified by individual document date and time stamps) with
respect to specified contexts over time. For investigation across segments, a selected
subset of documents must be created that constitute a given temporal “segment” of
the document collection as a whole.

Definition II.14. Temporal Selection (“Time Interval”): If D is a collection of doc-
uments and I is a time range, date range, or both, DI is the subset of documents
in D whose time stamp, date stamp, or both, is within I. The resulting selection is
sometimes referred to as the time interval.

The formal definition for temporal context relationship builds on both this defi-
nition and that supplied earlier for a generic concept relationship (Definition II.12).

Definition II.15. Temporal Context Relationship: If D is a collection of documents,
c1 and c2 are individual concepts, P is a context phrase, and I is the time interval,
then RI(D, c1, c2 | P) is the number of documents in DI in which c1 and c2 co-occur
in the context of P – that is, RI(D, c1, c2 | P) is the number of DI/P that include both
c1 and c2.

A temporal context graph, then, can be defined as follows:

Definition II.16. Temporal Context Graph: If D is a collection of documents, C is a
set of concepts, P is a context phrase, and I is the time range, the temporal concept

graph of D, C, P, I is a weighted graph G = (C, EI) with set nodes in C and a set of
edges EI, where EI = ({c1, c2} | R(D, c1, c2 | P) > 0). For each edge, {c1, c2} ∈ E, one
defines the weight of the edge by wI{c1, c2} = RI(D, c1, c2 | P).

The Trend Graph

A trend graph is a very specialized representation that builds on the temporal context
graph as informed by the general approaches found in trend analysis. A trend graph
can be obtained by partitioning the entire timespan covered by a time- or date-
stamped document collection, or both, into a series of consecutive time intervals.
These intervals can then be used to generate a corresponding sequence of temporal
context graphs.

This sequence of temporal context graphs can be leveraged to create combined
or cumulative trend graphs that display the evolution of concept relationships in a
given context by means of visual cues such as the character and relative weight of
edges in the graph. For instance, several classes of edges may be used to indicate
various conditions:

� New Edges: edges that did not exist in the previous graph.
� Increased Edges: edges that have a relatively higher weight in relation to the

previous interval.

36 Core Text Mining Operations

� Decreased Edges: edges that have a relatively decreased weight than the previous
interval.

� Stable Edges: edges that have about the same weight as the corresponding edge
in the previous interval.

Handling Dynamically Updated Data

There are many situations in which the document collection for a text mining system
might require frequent – perhaps even constant – updating. This regularly occurs in
environments in which the maintenance of data currency is at a premium such as
when a user wants iteratively run searches on topical news, time-sensitive financial
information, and so on. In such situations, there is a need for documents to be added
dynamically to the document collection and a concurrent need for a user of the text
mining system always – that is to say, at every instance of a new document’s being
added to the collection – to know the full and current set of patterns for the searches
that he or she has run.

An obvious solution is simply to rerun the search algorithm the user is employing
from scratch whenever there is a new data update. Unfortunately, this approach is
computationally inefficient and resource intensive (e.g., I/O, memory capacity, disk
capacity), resulting in unnecessary performance drawbacks. Additionally, users of
text mining systems with large document collections or frequent updates would have
to endure more significant interruptions in their knowledge mining activities than if
a quicker updating mechanism employing methods of modifying search results on
an increment-by-increment basis were implemented.

The more useful and sophisticated approach is to leverage knowledge from previ-
ous search runs as a foundation to which new information can be added incrementally.
Several algorithms have been described for handling the incremental update situ-
ations in data mining, and these algorithms also have applicability in text mining.
These include the FUP, FUP2, and Delta algorithms, which all attempt to minimize
the recomputation required for incremental updating of Apriori-style, frequent set,
and association rule search results. Another algorithm, based on the notion of bor-

der sets in data mining, however, also offers a very efficient and robust mechanism
for treating the incremental case when dealing with discovered frequent sets and
associations from natural language documents.

The Borders Incremental Text Mining Algorithm

The Borders algorithm can be used to update search pattern results incrementally.
It affords computational efficiency by reducing the number of scans for relations,
reducing the number of candidates, and then performing no scan if there is no fre-
quent set. This algorithm is also robust because it supports insertions and deletions
as well as absolute and percentage-based thresholds.

The Borders algorithm is based on the notions of border sets and negative borders.
In a sense, a border set can be seen as a notion related to that of a frequent set and
may be defined as follows:

Definition II.17. Border Set: X is a border set if it is not a frequent set, but any
proper subset Y ⊂ X is a frequent set (see also Figure II.2).

II.1 Core Text Mining Operations 37

R = {(a,b,c), (a,b,d), (a,c), (b,c)} s* = 2

a b c

a,b a,c b,c a,d b,d c,d

a,b,c,d

a,b,c b,c,d a,b,d a,c,d

d

Figure II.2. Illustration of border sets.

The full benefit of the Borders algorithm can be appreciated when one attempts to
accommodate incremental data updates of association rules. The Apriori algorithm
for generating associations entails two main steps, beginning with the discovery of
frequent sets through multiple scans of relations. This “first-step” search for frequent
sets is very often the most computationally expensive part of association discovery.
For each of the relation scans, a set of candidates is assembled and, during each scan,
the support of each candidate is computed. The Borders algorithm functions initially
to reduce the number of relation scans. Generally this serves to reduce the number
of candidates. In addition, the algorithm does not perform a scan if no frequent set
is identified.

Some important notational elements for discussing of the Borders algorithm are
described below.

� Concept set A = {A1, . . . , Am}

� Relations over A:
Rold: old relation
Rinc: increment
Rnew: new combined relation

� s(X/R): support of concept set X in the relation R

� s *: minimum support threshold (minsup).

The Borders algorithm also makes use of two fundamental properties.

� Property 1: if X is a new frequent set in Rnew, then there is a subset Y ⊆ X such
that Y is a promoted border.

� Property 2: if X is a new k-sized frequent set in Rnew, then for each subset Y ⊆
X of size k − 1, Y is one of the following: (a) a promoted border, (b) a frequent
set, or (c) an old frequent set with additional support in Rinc.

The Borders algorithm itself can be divided into two stages.

38 Core Text Mining Operations

R = {(a,b,c), (a,b,d), (a,c), (b,c)} s* = 2, add: (a,b,d)

a b c

a,b a,c b,c a,d b,d c,d

a,b,c,d

a,b,c a,b,d a,c,d

d

b,c,d

Figure II.3. Illustration of promoted borders and new borders.

� Stage 1: Finding Promoted Borders and Generating Candidates.
Maintain the support for all borders and frequent sets.
When new data arrive for each border B of Rold,

Compute s(B, Rinc)
s(B, Rnew) = s(B, Rold) + s(B, Rinc)

If s(B, Rnew) ≥ s∗, then B is a promoted border.

If a promoted border does exist,
Run an Apriori-like algorithm, and
Generate candidates using the Property 1 and Property 2.

� Stage 2: Processing Candidates.

L0 = PB(1), i = 1
Although (L1 �= Ø or i ≤ the largest promoted border)

Candidates (I + 1) = {X | |X| = i + 1

∃ Y ⊂ X, |Y| = 1, Y ∈ PB(i) ∪ Li

∀ Z ⊂ X, |Z| = 1, Z ∈ PB(i) ∪ F(i) ∪ Li }
Scan relation and compute s(X, Rnew) for each candidate X

Li+1 = {X candidate: s(X, Rnew) ≥ s *}.

See Figure II.3 for an illustration of promoted borders. With the Borders algorithm,
full relations are never scanned if there is no new frequent set. Moreover, because
of its parsimony in scanning for relations, the algorithm is likely to yield a small
candidate set.

Percentage thresholds can be incorporated into incremental update schemes for
text mining systems in conjunction with the Borders algorithm. For instance, we can
define a threshold as σ percent of the size of the relations, and thus S ∗ = σ |R|. The
key point for this type of operation is to redetermine the type of each set according
to the new threshold before running the algorithm.

II.1 Core Text Mining Operations 39

Deletions with absolute thresholds for incremental data can be accommodated
relatively straightforwardly:

s(X, Rnew) = s(X, Rold) − s(X, Rinc).

For percentage-type thresholds, the approach to handling deletions is perhaps a bit
less intuitive but not too complex. In these cases, one can simply look at a deletion
as a decrease in the absolute threshold and approach the deletion with the following
equation:

s∗
new = σ (|Rold| + |Rinc|) = s∗

old − s∗
inc.

General changes to the threshold value should also be generally supported. Increas-
ing the threshold is relatively easy, for only borders and frequent sets need be consid-
ered. On the other hand, an approach to decreasing the threshold might be to view
border X with s(B, Rnew) ≥ s∗

new as a promoted border before running the Borders
algorithm.

II.1.6 Citations and Notes

Section II.1.–II.1.1

The primary source leveraged for information throughout Section II.1 is Feldman,
Dagan, et al. (1998). Although focused more on visualization, Hearst (1995) also pro-
vides some interesting general background for the topic. Definitions II.1. through II.7.
derive from descriptions of distribution and proportion types identified in Feldman,
Dagan, et al. (1998).

Section II.1.2

Agrawal, Imielinski, and Swami (1993) and Agrawal and Srikant (1994) introduce
the generation of frequent sets as part of the Apriori algorithm. Beyond Agrawal
et al.’s seminal research on investigating market basket–type associations (Agrawal
et al. 1993), other important works shaping the present-day understanding of frequent
concept sets include Agrawal and Srikant (1994) and Silverstein, Brin, and Motwani
(1999). In addition, Clifton and Cooley (1999) provides a useful treatment of market
basket problems and describes how a document may be viewed as a market basket
of named entities. Feldman, Aumann, Amir, et al. (1997); Rajman and Besancon
(1997b); and Rajman and Besancon (1998) discuss the application of elements of the
Apriori algorithm to textual data.

Algorithm 1 in Section II.1.2. was taken from Agrawal and Srikant (1994).
Rajman and Besancon (1997b) provides the background for Section II.1.2.’s dis-

cussion of the discovery of frequent concept sets. Although Algorithm 2 in Section
II.1.2 is a generalized and simple one for frequent set generation based on the notions
set forth in Agrawal et al. (1993) and Agrawal and Srikant (1994), Rajman and Besan-
con (1997b) provides a slightly different but also useful algorithm for accomplishing
the same task.

40 Core Text Mining Operations

Section II.1.3

In addition to presenting the framework for generating frequent sets, the treatment of
the Apriori algorithm by Agrawal et al. (1993) also provided the basis for generating
associations from large (structured) data sources. Subsequently, associations have
been widely discussed in literature relating to knowledge discovery targeted at both
structured and unstructured data (Agrawal and Srikant 1994; Srikant and Agrawal
1995; Feldman, Dagan, and Kloesgen 1996a; Feldman and Hirsh 1997; Feldman and
Hirsh 1997; Rajman and Besancon 1998; Nahm and Mooney 2001; Blake and Pratt
2001; Montes-y-Gomez et al. 2001b; and others).

The definitions for association rules found in Section II.1.3. derive primarily from
Agrawal et al. (1993), Montes-y-Gomez et al. (2001b), Rajman and Besancon (1998),
and Feldman and Hirsh (1997). Definitions of minconf and minsup thresholds have
been taken from Montes-y-Gomez et al. (2001b) and Agrawal et al. (1993). Rajman
and Besancon (1998) and Feldman and Hirsh (1997) both point out that the discovery
of frequent sets is the most computationally intensive stage of association generation.

The algorithm example for the discovery of associations found in Section II.3.3’s
Algorithm 3 comes from Rajman and Besancon (1998); this algorithm was directly
inspired by Agrawal et al. (1993). The ensuing discussion of this algorithm’s implica-
tions was influenced by Rajman and Besancon (1998), Feldman, Dagan, and Kloesgen
(1996a), and Feldman and Hirsh (1997).

Maximal associations are most recently and comprehensively treated in Amir
et al. (2003), and much of the background for the discussion of maximal associations
in Section II.1.3 derives from this source. Feldman, Aumann, Amir, et al. (1997) is
also an important source of information on the topic. The definition of a maximal
association rule in Section II.1.3, along with Definition II.8 and its ensuing discussion,
comes from Amir, Aumann, et al. (2003); this source is also the basis for Section
II.1.3’s discussion of the M-factor of a maximal association rule.

Section II.1.4

Silberschatz and Tuzhilin (1996) provides perhaps one of the most important discus-
sions of interestingness with respect to knowledge discovery operations; this source
has influenced much of Section II.1.5. Blake and Pratt (2001) also makes some gen-
eral points on this topic.

Feldman and Dagan (1995) offers an early but still useful discussion of some of the
considerations in approaching the isolation of interesting patterns in textual data, and
Feldman, Dagan, and Hirsh (1998) provides a useful treatment of how to approach
the subject of interestingness with specific respect to distributions and proportions.
Definitions II.9 and II.10 derive from Feldman, Dagan, and Hirsh (1998).

Section II.1.5

Trend analysis in text mining is treated by Lent et al. (1997); Feldman and Dagan
(1995); Feldman, Dagan, and Hirsh (1998); and Montes-y-Gomez et al. (2001b).
Montes-y-Gomez et al. (2001b) offers an innovative introduction to the notions of
ephemeral associations and deviation detection; this is the primary recent source for
information relating to these two topics in Section II.1.5.

The analysis of sequences and trends with respect to knowledge discovery in struc-
tured data has been treated in several papers (Mannila, Toivonen, and Verkamo 1995;

II.2 Using Background Knowledge for Text Mining 41

Srikant and Agrawal 1996; Keogh and Smyth 1997; Bettini, Wang, and Joiodia 1996;
Mannila et al. 1995; and Mannila, Toivonen, and Verkamo 1997). Algorithms based
on the identification of episodes (Mannila et al. 1995) and sequential patterns (Srikant
and Agrawal 1996) in large data repositories have been described as mechanisms for
better mining of implicit trends in data over time. Related work on the discovery of
time series analysis has also been discussed (Agrawal and Srikant 1995; Keogh and
Smyth 1997).

Lent et al. (1997) and Feldman, Aumann, Zilberstein, et al. (1997) emphasize that
trend analysis focused on text mining relates to collections of documents that can be
viewed as subcollections defined, in part, by time. These two works are among the
most important entry points for the literature of trend analysis in text mining. Montes-
y-Gomez et al. (2001b) also makes very interesting contributions to the discussion
of the topic.

Definitions related to ephemeral associations come from Montes-y-Gomez
et al. (2001b); the terms ephemeral association and deviation detection are used in
this chapter within the general definitional context of this source. Use of the cor-
relation measure r in the detection of ephemeral associations also comes from this
source, building on original work found in Freund and Walpole (1990). Finally, the
examples used to illustrate direct and inverse ephemeral associations are based on
the discussions contained in Montes-y-Gomez et al. (2001b).

The discussion of deviation detection in Section II.1.5 has been shaped by sev-
eral sources, including Montes-y-Gomez et al. (2001b); Knorr, Ng, and Tucatov
(2000); Arning, Agrawal, Raghavan (1996); Feldman and Dagan (1995); and
Feldman, Aumann, Zilberstein, et al. (1997). Much of the terminology in this section
derives from Montes-y-Gomez et al. (2001b). The term deviation sources was coined
in Montes-y-Gomez et al. (2001b).

Much of Section II.1.5’s discussion of context and trend graphs derives directly
from Feldman, Aumann, Zilberstein, et al. (1997) as do Definitions II.11, II.12, II.13,
II.14, II.15, and II.16. The trend graph described in Section II.3.5 has also, in a general
way, been influenced by Lent et al. (1997).

Feldman, Amir, et al. (1996) was an early work focusing on measures that would
support a text mining system’s ability to handle dynamically updated data. The FUP

incremental updating approach comes from Cheung et al. (1996), the FUP2 is for-
malized in Cheung, Lee, and Kao (1997), and the Delta algorithms were identified in
Feldman, Amir, et al. (1996).

The notion of border sets was introduced, with respect to data mining, in Mannila
and Toivonen (1996). Much of the discussion of border sets in this section is an
application of the border set ideas of Mannila and Toivonen (1996) to collections of
text documents. The Apriori algorithm for generating associations was identified in
Agrawal et al. (1993) and Agrawal and Srikant (1994).

II.2 USING BACKGROUND KNOWLEDGE FOR TEXT MINING

II.2.1 Domains and Background Knowledge

As has already been described in Section II.1, concepts derived from the representa-
tions of documents in text mining systems belong not only to the descriptive attributes

42 Core Text Mining Operations

of particular documents but generally also to domains. A domain can be loosely
defined as a specialized area of interest for which formal ontologies, lexicons, and
taxonomies of information may be created. Domains can exist for very broad areas of
interest (e.g., economics or biology) or for more narrow niches (e.g., macroeconomics,

microeconomics, mergers, acquisitions, fixed income, equities, genomics, proteomics,

zoology, virology, immunology, etc.).
Much of what has been written about the use of domain knowledge (also referred

to as background knowledge) in classic data mining concerns its use as a mecha-
nism for constraining knowledge discovery search operations. From these works, it
is possible to generalize three primary forms of usable background knowledge from
external sources for data mining applications: (a) constraints, (b) attribute relation-
ship rules, and (c) “hierarchical trees” or “category domain knowledge.” More recent
literature, however, suggests that other types and implementations of background
knowledge may also be useful in data mining operations.

Text mining systems, particularly those with some pronounced elements of
domain specificity in their orientation, can leverage information from formal external
knowledge sources for these domains to greatly enhance a wide variety of elements
in their system architecture. Such elements include those devoted to preprocessing,
knowledge discovery, and presentation-layer operations. Even text mining systems
without pronounced elements of domain specificity in their design or usage, how-
ever, can potentially benefit by the inclusion of information from knowledge sources
relating to broad but still generally useful domains such as the English language or
world almanac–type facts.

Indeed, background knowledge can be used in text mining preprocessing oper-
ations to enhance concept extraction and validation activities. Furthermore, access
to background knowledge can play a vital role in the development of meaningful,
consistent, and normalized concept hierarchies.

Background knowledge, in addition, may be utilized by other components of
a text mining system. For instance, one of the most clear and important uses of
background knowledge in a text mining system is the construction of meaningful
constraints for knowledge discovery operations. Likewise, background knowledge
may also be used to formulate constraints that allow users greater flexibility when
browsing large result sets or in the formatting of data for presentation.

II.2.2 Domain Ontologies

Text mining systems exploit background knowledge that is encoded in the form of
domain ontologies. A domain ontology, sometimes also referred to less precisely as a
background knowledge source or knowledge base, might be informally defined as the
set of all the classes of interest and all the relations between these classes for a given
domain. Perhaps another way of describing this is to say that a domain ontology
houses all the facts and relationships for the domain it supports. Some see a grouping
of facts and relationships as a vocabulary constructed in such a way as to be both
understandable by humans and readable by machines.

A more formal – albeit very generic – definition for a domain ontology can be
attempted with the following notation proposed by Hotho et al. (2003) derived gen-
erally from research into formal concept analysis:

II.2 Using Background Knowledge for Text Mining 43

Definition II.18. Domain Ontology with Domain Hierarchy: A domain ontology is
a tuple O := (C, ≤ c) consisting of a set C whose elements are called concepts and a
partial order ≤ c on C, which is labeled a concept hierarchy or taxonomy.

One example of a real-world ontology for a broad area of interest can be found in
WordNet, an online, public domain ontology originally created at Princeton Univer-
sity that has been designed to model the domain of the English language. Version 1.7
of WordNet contains approximately 110,000 unique concepts (referred to as synsets

by WordNet’s designers); the ontology also has a sophisticated concept hierarchy
that supports relation-type information.

WordNet can be used as a “terminological knowledge base” of concepts, con-
cept types, and concept relations to provide broadly useful background knowledge
relating to the domain of the English language. A WordNet synset represents a sin-
gle unique instance of a concept meaning related to other synsets by some type of
specified relation.

Interestingly, WordNet also supports a lexicon of about 150,000 lexical entries
(in WordNet’s terminology “words”) that might more generally be viewed as a list
of lexical identifiers or “names” for the concepts stored in the WordNet ontology.
Users of WordNet can query both its ontology and its lexicon.

Another ontology implementation that models a narrower subject area domain
is the Gene OntologyTM or GO knowledge base administered by the Gene Ontology
Consortium. The GO knowledge base serves as a controlled vocabulary that describes
gene products in terms of their associated biological processes, cellular components,
and molecular functions. In this controlled vocabulary, great care is taken both to
construct and define concepts and to specify the relationships between them. Then,
the controlled vocabulary can be used to annotate gene products.

GO actually comprises several different structured knowledge bases of infor-
mation related to various species, coordinates, synonyms and so on. Each of these
ontologies constitutes structured vocabularies in the form of directed acyclic graphs
(DAGs) that represent a network in which each concept (“term” in the GO terminol-
ogy) may be the “child” node of one or more than one “parent” node. An example of
this from the GO molecular function vocabulary is the function concept transmem-

brane receptor protein-tyrosine kinase and its relationship to other function concepts;
it is a subclass both of the parent concept transmembrane receptor and of the parent
concept protein tyrosine kinase. Figure II.4 provides a high-level view of the Gene
Ontology structure.

Several researchers have reported that the GO knowledge base has been used for
background knowledge and other purposes. Moreover, the Gene Ontology Consor-
tium has developed various specialized browsers and mapping tools to help devel-
opers of external systems leverage the background knowledge extractable from the
GO knowledge base.

II.2.3 Domain Lexicons

Text mining systems also leverage background knowledge contained in domain lexi-

cons. The names of domain concepts – and the names of their relations – make up a
domain ontology’s lexicon. The following definitions come from Hotho et al. (2003).

44 Core Text Mining Operations

Top of ontology

Parent term

Child term

Genes to which

these GO terms

are annotated

This term

has two

parents

Directed

acyclic graph

e.g. Lamin B

receptor

e.g. Werner syndrome

helicase

e.g. Bloom's syndrome

protein

AT Pase

DNA-dependent

AT Pase

ATP-dependent

helicase

Holliday-junction

helicase

DNA helicase

Enzyme

Helicase

Molecular function

Binding

Nucleic acid binding

DNA binding

Chromatin binding

Lamin chromatin binding

Figure II.4. Schematic of the Gene Ontology structure. (From GO Consortium 2001.)

Definition II.19. Domain Lexicon: A lexicon for an ontology O is a tuple Lex: =
(SC, RefC) consisting of a set SC, whose elements are called names of concepts, and
a relation RefC ⊆ SC × c called lexical reference for concepts for which (c, c) ∈ RefC

holds for all c ∈ C ∩ SC.
Based on RefC, we define, for s ∈ SC, RefC (s): = {c ∈ C | (s, c) ∈ RefC} and, for

c ∈ C, Ref−1
C (c): = {s ∈ SC | (s, c) ∈ RefC}.

For the typical situation – such as the WordNet example – of an ontology with a
lexicon, one could also use a simple notation:

Definition II.20. Domain Ontology with Lexicon: An ontology with lexicon is a pair
(O, Lex), where O is an ontology and Lex is a lexicon for O.

A lexicon such as that available with WordNet can serve as the entry point to
background knowledge. Using a lexicon, a text mining system could normalize the
concept identifiers available for annotation of documents in its corpus during prepro-
cessing in a way that supports, by means of the lexicon’s related ontology, both the
resolution of synonyms and the extraction of rich semantic relationship information
about concepts.

II.2.4 Introducing Background Knowledge into Text Mining Systems

Background knowledge can be introduced into text mining systems in various ways
and at various points in a text mining system’s architecture. Although there are may
be any number of arguments about how background knowledge can enrich the value
of knowledge discovery operations on document collections, there are three main
practical reasons why background information is so universally important in text
mining systems.

II.2 Using Background Knowledge for Text Mining 45

First, background knowledge can be used in a text mining system to limit pattern
abundance. Background knowledge can be crafted into constraints that allow for
more efficient and meaningful queries; such constraints can be used for a variety
of other purposes as well. Second, background knowledge is an extremely efficient
mechanism for resolving questions of concept synonymy and polysemy at the level
of search. Access to an ontology that stores both lexical references and relations
allows for various types of resolution options. Third, background knowledge can be
leveraged in preprocessing operations to create both a consistent lexical reference
space and consistent hierarchies for concepts that will then be useful throughout
other subsequent query, presentation, and refinement operations.

Perhaps the simplest method to integrate background knowledge into a text
mining system is by using it in the construction of meaningful query constraints. For
instance, with respect to association discovery, concepts in a text mining system can
be preprocessed into either some hierarchical form or clusters representing some
limited number of categories or classes of concepts. These categories can then be
compared against some relevant external knowledge source to extract interesting
attributes for these categories and relations between categories.

A tangible example of this kind of category- or class-oriented background knowl-
edge constraint is a high-level category like company, which might, after reference
to some commercial ontology of company information, be found to have com-
monly occurring attributes such as ProductType, Officers, CEO, CFO, BoardMem-

bers, CountryLocation, Sector, Size, or NumberOfEmployees. The category com-

pany could also have a set of relations to other categories such as IsAPartnerOf,

IsACustomerOf, IsASupplierTo, IsACompetitorTo, or IsASubsidiaryOf. These cate-
gory attributes and relations could then be used as constraints available to a user on
a pick list when forming a specific association-discovery query relating either to the
class company or to a concept that is a particular member of that class.

The resulting query expression (with constraint parameter) would allow the user
to specify the LHS and RHS of his or her query more carefully and meaningfully.
The inclusion of these types of constraints not only increases user interactivity with
a text mining system because the user will be more involved in specifying interesting
query parameters but can also limit the amount of unwanted patterns resulting from
underspecified or inappropriately specified initial queries.

Further, background information constraints can be used in an entirely different
way – namely, in the formatting of presentation-level displays of query results. For
instance, even if a user did not specify particular constraints as parameters to his or
her query expression, a text mining system could still “add value” to the display of the
result set by, for instance, highlighting certain associations for which particular preset
constraint conditions have been met. An example of this might be that, in returning
a result set to a query for all companies associated with crude oil, the system could
highlight those companies identified as suppliers of crude oil in blue whereas those
companies that are buyers of crude oil could be highlighted in red. Such color coding
might aid in users’ exploration of data in the result set because these data provide
more information to the user than simply presenting a bland listing of associations
differentiated only by confidence level.

Another common use of background knowledge is in the creation of consis-
tent hierarchical representations of concepts in the document collection. During

46 Core Text Mining Operations

preprocessing – or even during a query – groups of concepts can be compared against
some normalized hierarchical form generated from an ontology. The resulting con-
cept hierarchy has the benefit of being both informed by the domain knowledge
about relationships collected in the ontology and more consistently integrated with
the external source in the event that other types of system operations require refer-
ence to information contained in the ontology.

II.2.5 Real-World Example: FACT

FACT (Finding Associations in Collections of Text) was a text mining system devel-
oped by Feldman and others during the late 1990s. It represented a focused effort at
enhancing association discovery by means of several constraint types supplied by a
background knowledge source. In this, it created a very straightforward example of
how background knowledge could be leveraged to clear practical effect in knowledge
discovery operations on document collections.

General Approach and Functionality

The FACT system might essentially be seen as an advanced tool focused specifically
on the discovery of associations in collections of keyword (concept)-labeled text
documents. Centering on the association discovery query, the FACT system provided
a robust query language through which a user could specify queries over the implicit
collection of possible query results supported by the documents in the collection.

Rather than requiring the specification of an explicit query expression in this
language, FACT presented the user with a simple-to-use graphical interface in which
a user’s various discovery tasks could be specified, and the underlying query language
provided a well-defined semantics for the discovery actions performed by the user
through the interface (see Figure II.5).

Perhaps most importantly, FACT was able to exploit some basic forms of back-
ground knowledge. Running against a document collection of newswire articles,
FACT used a simple textual knowledge source (the CIA World Factbook) to exploit
knowledge relating to countries. FACT was able to leverage several attributes relating
to a country (size, population, export commodities, organizational memberships, etc.)
as well as information about relationships between countries (e.g., whether countries
were neighbors or trading partners, had a common language, had a common border,
etc.).

Using this background knowledge to construct meaningful constraints, FACT
allowed a user, when making a query, to include constraints over the set of desired
results. Finally, FACT also exploited these constraints in how it structured its search
for possible results. This background knowledge thus enabled FACT to, for example,
discover associations between a G7 country, for instance, that appeared as a concept
label of a document and some other nonbordering G7 countries that also appeared
as concept labels of the document.

System Architecture

FACT’s system architecture was straightforward. In a sense, all system components
centered around the execution of a query (see Figure II.6). The system’s query

II.2 Using Background Knowledge for Text Mining 47

Figure II.5. FACT’s query specification interface. (From Feldman and Hirsh 1997. Reprinted

with permission of John Wiley and Sons.)

execution core operations took three inputs – the annotated document collection,
distilled background knowledge, and a user’s knowledge-discovery query – to create
output that was passed to a presentation-layer tool that formatted the result set for
display and user browsing.

The system provided an easy-to-use interface for a user to compose and execute
an association discovery query, supplemented by constraints for particular types of
keywords that had been derived from an external knowledge source. The system
then ran the fully constructed query against a document collection whose documents
were represented by keyword annotations that had been pregenerated by a series of
text categorization algorithms.

Result sets could be returned in ways that also took advantage of the background
knowledge–informed constraints. A user could explore a result set for a query and
then refine it using a different combination of constraints.

Implementation

The document collection for the FACT system was created from the Reuters-22173
text categorization test collection, a collection of documents that appeared on the
Reuters newswire in 1987. This collection obviated the need to build any system
elements to preprocess the document data by using categorization algorithms.

The Reuters-22173 documents were preassembled and preindexed with cate-
gories by personnel from Reuters Ltd. and Carnegie Group, Inc., and some final
formatting was manually applied. The Reuters personnel tagged each document

48 Core Text Mining Operations

Parsing Graphical User Interface
Text Categorization

Algorithms

Query Execution

Presentation Module

Keyword
Annotated

Documents

Backgroud
Knowledge

Knowledge
Sources

Text Collections

Query

Associations

Figure II.6. System architecture of FACT. (From Feldman and Hirsh 1997. Reprinted with

permission of John Wiley and Sons.)

with a subset of 135 keywords that fell into five overarching categories: countries,
topics, people, organizations, and stock exchanges.

The 1995 CIA World Factbook that served as the FACT system’s ostensible ontol-
ogy amd background knowledge source was a structured document containing infor-
mation about each of the countries of the world and was divided into six sections:
Geography, People, Government, Economy, Communications, and Defense Forces.
For experimentation with the Reuters-22173 data, the following background infor-
mation was extracted for each country C:

� MemberOf: all organizations of which C is a member (e.g., G7, Arab League,
EC),

� LandBoundaries: the countries that have a land border with C,
� NaturalResources: the natural resources of C (e.g., crude, coal, copper, gold),
� ExportCommodities: the main commodities exported by C (e.g., meat, wool,

wheat),
� ExportPartners: the principal countries to which C exports its ExportCommodi-

ties,
� ImportCommodities: the main commodities imported by C (e.g., meat, wool,

wheat),

II.2 Using Background Knowledge for Text Mining 49

Figure II.7. FACT’s background knowledge viewer showing the countries having land bound-

aries with Saudi Arabia. (From Feldman and Hirsh 1997. Reprinted with permission of John

Wiley and Sons.)

� ImportPartners: the principal countries from which C imports its Import Com-
modities,

� Industries: the main industries of C (e.g., iron, steel, machines, textiles, chemi-
cals), and

� Agriculture: the main agricultural products of C (e.g., grains, fruit, potatoes,
cattle).

The first boldfaced element before the colon defines a unary predicate, and the
remainder of each entry constitutes a binary predicate over the set of keywords that
can label the documents in the Reuters-22173 collection. Users could browse this
background knowledge in FACT by means of a utility (see Figure II.7).

For its main association-discovery algorithm, FACT implemented a version of the
two-phase Apriori algorithm. After generating σ -covers, however, FACT modified
the traditional association-discovery phase to handle the various types of constraints
that had been generated from the CIA World Factbook.

Upon completion of a query, FACT executed its query code and passed a
result set back to a specialized presentation tool, the FACT system’s association
browser. This browser performed several functions. First, it filtered out redun-
dant results. Second, it organized results hierarchically – identifying commonalties
among the various discovered associations and sorting them in decreasing order of
confidence.

Further, the tool housed this hierarchical, sorted representation of the result
set in a screen presentation that enabled a user to browse the titles of documents
supporting each of the individual associations in the result set simply by pointing and
clicking on that association (see Figure II.8).

50 Core Text Mining Operations

Figure II.8. FACT’s association browser presentation module showing a result set for asso-

ciations of Arab League countries with countries sharing a border. (From Feldman and Hirsh

1997. Reprinted with permission of John Wiley and Sons.)

Experimental Performance Results

FACT appeared to perform well on queries of the form “find all associations between
a set of countries including Iran and any person” and “find all associations between
a set of topics including Gold and any country” as well as more complex queries that
included constraints. One interesting – albeit still informal and crude – experiment
performed on the system was to see if there was any performance difference (based on
a comparison of CPU time) between query templates with and without constraints. In
most cases, the queries involving constraints extracted from background knowledge
appeared to be noticeably more efficient in terms of CPU time consumption.

Some practical difficulties were encountered when trying to convert the CIA
World Factbook into unary and binary predicates when the vocabulary in the
Factbook differed from the universe of keywords labeling the Reuters documents
(Feldman and Hirsh 1997). This is a problem that can creep into almost any text
mining system that attempts to integrate background knowledge. FACT’s designers
put in place a point solution to resolve this problem by including additional back-
ground knowledge from a standard reference dictionary to help at least provide a
basic definition of synonyms.

Obviously, today, advanced text mining systems involving background knowl-
edge can integrate with more sophisticated dictionary-type ontologies like WordNet
to resolve problems with synonymy. Further, today’s designers of text mining sys-
tems can also consider various strategies for including background knowledge in
preprocessing routines to help create more consistency in the concept tags that

II.3 Text Mining Query Languages 51

annotate document collections before the execution of any knowledge discovery
algorithms.

II.2.6 Citations and Notes

Section II.2.1

For general discussion of the use of background knowledge to construct constraints
in classic data mining, see Anand, Bell, and Hughes (1995) and Yoon et al. (1999).
Kopanis, Avouris, and Daskalaki (2002) discusses other uses for background knowl-
edge in data mining systems. Feldman and Hirsh (1996a) provides an early discussion
of various uses of background knowledge within a text mining system.

Section II.2.2

The informal definition for a domain ontology in Section II.2.2 comes from Craven
and Kumlien (1999). The definition for a domain vocabulary was derived from
Gruber (1993). Definition II.18 has been taken from Hotho et al. (2003); this source
provides much of the background and definitional information for the topics dis-
cussed throughout Sections II.2.2 through II.2.4.

A large body of literature exists on the subject of WordNet, but the basic overview
is contained in Martin (1995); the identification of WordNet as a “terminologi-
cal knowledge base” also comes from this source. Descriptions of WordNet’s lex-
icon, concept hierarchy, and ontological structure rely on information published in
Rodriguez, Gomez-Hidalgo, and Diaz-Agudo (1997) and Hotho et al. (2003).

The Gene Ontology knowledge base is described in GO Consortium (2000).
The schematic of the GO knowledge base displayed in Figure II.4 comes from GO
Consortium (2001); the example in Section II.2.2 involving the function concept
transmembrane receptor protein-tyrosine kinase was also taken from this source.
Hill et al. (2002) and Hirschman et al. (2002) have both reported use of the
GO knowledge base for background knowledge purposes in knowledge discovery
systems.

Section II.2.3

Definitions II.19 and II.20 as well as the WordNet examples used in discussing these
definitions come from Hotho et al. (2003).

Sections II.2.4.–II.2.5

The FACT system is described in Feldman and Hirsh (1996a), Feldman and Hirsh
(1996b), and Feldman and Hirsh (1997), and it influenced a substantial amount of
later discussion of text mining systems (Landau, Feldman, Aumann, et al. 1998; Blake
and Pratt 2001; Montes-y-Gomez et al. 2001b; Nahm and Mooney 2001; and others).
Most of the descriptions of the FACT system found in Section II.2.5 derive from
Feldman and Hirsh (1997).

II.3 TEXT MINING QUERY LANGUAGES

Query languages for the type of generalized text mining system described in this chap-
ter must serve several straightforward purposes. First, these languages must allow

52 Core Text Mining Operations

for the specification and execution of one of the text mining system’s search algo-
rithms. Second, they generally need to allow for multiple constraints to be appended
to a search argument; such constraints need to be specifiable by a user. Third, the
query languages typically also need to perform some types of auxiliary filtering and
redundancy to minimize pattern overabundance in result sets.

Most text mining systems offer access to their query language either through a
more abstracted and “friendly” interface that acts to assist the user by means of pick
lists, pull-down menus, and scroll bars containing preset search types and constraints
or through more direct “command-line” access to the query language that exposes
query language expressions in their full syntax. Some text mining systems offer both.

It is important in any implementation of a query language interface for designers
of text mining systems to consider carefully the usage situations for the interfaces they
provide. For instance, having a user-friendly, graphically oriented tool may greatly
enhance a system’s ease of use, but if this tool severely limits the types of queries
that may be performed it may not meet a strict cost–benefit analysis.

Similarly, direct access to a text mining system’s query language to support the
construction of ad hoc queries can be very advantageous for some users trying to
experiment with queries involving complex combinations of constraints. If, however,
such a direct query interface does not allow for robust storage, reuse, renaming, and
editing of ad hoc queries as query templates, such “low level” access to the query
language can become very inefficient and frustrating for users.

II.3.1 Real World Example: KDTL

The text mining query language KDTL (knowledge discovery in text language) was
first introduced in 1996 as the query language engine supporting the FACT system and
was subsequently more fully described as a central element of Feldman, Kloesgen,
et al.’s later Document Explorer system.

KDTL’s primary function is to provide a mechanism for performing queries that
isolate interesting patterns. A Backus Naur Form (BNF) description of KDTL is
shown in Figure II.9.

KDTL supports all three main patter-discovery query types (i.e., distributions,
frequent sets, and associations) as well as less common graphing outputs (i.e., key-
word graph, directed keyword graph). Also notice that each query contains one
algorithmic statement and several constraint statements.

The constraint part of the query is structured in such a way that the user needs
first to select a single relevant component – that is, the left-hand side (LHS) of the
association, right-hand side (RHS), frequent set, or a path in a keyword graph. Then,
all subsequent constraint statements are applied to this component.

When specifying set relations, the user can optionally specify background pred-
icates to be applied to the given expressions. KDTL intentionally contains some
redundancy in the constraints statements to facilitate easier specification of queries.

II.3.2 KDTL Query Examples

Here are some typical examples of KDTL queries executed on the Reuters-22173
document collection used by FACT and described in Section II.5.

II.3 Text Mining Query Languages 53

Algorithmic statements:

gen_rule() : generate all matching association rules
gen_frequent_set(): generate all matching frequent sets
gen_kg() : generate a keyword graph
gen_dkg() : generate a directed keyword graph
gen_dist() : generate a distribution

Constraint statements:

set_filter(<Set>) - the set MUST meet the following
constraints
set_not_filter(<Set>) - the set MUST NOT meet the following
constraints

<Set> ::= frequent_set | left | right | path

contain([<background predicate>], <Expression>) –
the designated set must contain <expression> (or
<background predicate>(<expression>))

subset([<background predicate>],<Expression>) –
the designated set is a subset of <expression> (or
<background predicate>(<expression>))

disjoint([<background predicate>],<Expression>) –
the designated set and <expression> are disjoint (or
<background predicate>(<expression>))

equal([<background predicate>],<Expression>) –
the designated set is equal to <expression> (or
<background predicate>(<expression>))

all_has(<Expression>) –
all members of the designated set are descendents of
<expression> in the taxonomy

one_has(<Expression>) –
at least one of the members of the designated set is a
descendent of <expression>

property_count(<Expression>,<low>,<high>) –
of members that are descendents of <expression> is in
the specified range

size(<Expression>,<low>,<high>) –
size of the designated set is in the specified range

Set_conf(real)
Set_supp(integer)

<Expression> ::= Keyword | Category |
<Expression>,<Expression> |

 <Expression> ; <Expression>
<high> ::= integer
<low> ::= integer

Figure II.9. BNF description of KDTL. (From Feldman, Kloesgen, and Zilberstein 1997a.

Reprinted with permission of Springer Science and Business Media.)

54 Core Text Mining Operations

In order to query only those associations that correlate between a set of countries
including Iran and a person, the KDTL query expression would take the following
form:

set filter(left); all has({“countries”}); contain({“iran”});
set filter(right); all has({“people”}); property count(“people”,1,1);
set supp(4); set conf(0.5); gen rule();

Run against the Reuters collection, the system would find four associations as a
result of this particular query, all of which would have Reagan in the RHS.

(6.54%) Iran, Nicaragua, USA ⇒ Reagan
(6.50%) Iran, Nicaragua ⇒ Reagan
(18.19%) Iran, USA ⇒ Reagan
(19.10%) Iran ⇒ Reagan

The interesting associations are those that include Iran and Nicaragua on the
LHS. Upon querying the document collection, one can see that, when Iran and
Nicaragua are in the document, then, if there is any person in the document, Rea-
gan will be in that document too. In other words, the association Iran, Nicaragua,
<person> ⇒ Reagan has 100-percent confidence and is supported by six documents.
The <person> constraint means that there must be at least one person name in the
document.

As another example, if one wanted to infer which people were highly correlated
with West Germany (Reuters collection was from a period before the reunion of
Germany), a query that looked for correlation between groups of one to three people
and West Germany would be formulated.

set filter(“left”); size(1,3); all has({“people”});
set filter(“right”); equal({“west germany”});
set supp(10); set conf(0.5); gen rule();

The system found five such associations; in all them the people on the LHS were
senior officials of the West German government. Kohl was the Chancellor, Poehl
was the president of the Central Bank, Bangemann was the Economic Minister,
and Stoltenberg was the Finance Minister. If one wanted to infer from a document
collection who the high officials of a given country are, a similar query would probably
yield a reasonably accurate answer.

This type of example can also be used to show how background knowledge can
be leveraged to eliminate trivial associations. For instance, if a user is very famil-
iar with German politics and not interested in getting these particular associations,
he or she might like to see associations between people who are not German cit-
izens and Germany. Adding the constraints set filter not(“left”); equal(nationality,

“west germany”); will eliminate all the associations shown below.

(8.100%) Poehl, Stoltenberg ⇒ West Germany
(6.100%) Bangemann ⇒ West Germany
(11.100%) Kohl ⇒ West Germany
(21.80%) Poehl ⇒ West Germany
(44.75%) Stoltenberg ⇒ West Germany

II.3 Text Mining Query Languages 55

II.3.3 KDTL Query Interface Implementations

In Figures II.10 and II.11, one can see two elements of a sample GUI for defining
KDTL queries. In the KDTL Query Editor (see Figure II.10), a user builds a query
expression with one constraint at a time.

The tabbed dialog boxes in Figure II.11 demonstrate how the user defines a
single constraint. Several different types of set constraints are supported, including
background and numerical size constraints.

The results of a typical query – of the kind defined in Figures II.10 and II.11 – can
be seen in Figure II.12.

In this query, the object was to find all associations that connect a set of countries
and a set of economical indicator topics if trade is not in the set. Only one association
satisfies all these constraints. If the last constraint had been lifted – and one allowed
“trade” to be in the RHS of the association – the system would have returned 18
associations.

II.3.4 Citations and Notes

Sections II.3–II.3.2

The descriptions of KDTL in Section II.3, as well as the example of the language and
the various screen shots of query interfaces, primarily come from Feldman, Kloesgen,
and Zilberstein (1997a). See also Feldman and Hirsh (1997).

Figure II.10. Defining a KDTL query. (From Feldman, Kloesgen, and Zilberstein 1997a.

Reprinted with permission of Springer Science and Business Media.)

56 Core Text Mining Operations

Figure II.11. Defining a KDTL set constraint. (From Feldman, Kloesgen, and Zilberstein 1997a.

Reprinted with permission of Springer Science and Business Media.)

Figure II.12. Interface showing KDTL query results. (From Feldman, Kloesgen, and Zilberstein

1997a. Reprinted with permission of Springer Science and Business Media.)

III

Text Mining Preprocessing Techniques

Effective text mining operations are predicated on sophisticated data preprocess-
ing methodologies. In fact, text mining is arguably so dependent on the various
preprocessing techniques that infer or extract structured representations from raw
unstructured data sources, or do both, that one might even say text mining is to a
degree defined by these elaborate preparatory techniques. Certainly, very different
preprocessing techniques are required to prepare raw unstructured data for text min-
ing than those traditionally encountered in knowledge discovery operations aimed
at preparing structured data sources for classic data mining operations.

A large variety of text mining preprocessing techniques exist. All in some way
attempt to structure documents – and, by extension, document collections. Quite
commonly, different preprocessing techniques are used in tandem to create struc-
tured document representations from raw textual data. As a result, some typical
combinations of techniques have evolved in preparing unstructured data for text
mining.

Two clear ways of categorizing the totality of preparatory document structuring
techniques are according to their task and according to the algorithms and formal

frameworks that they use.
Task-oriented preprocessing approaches envision the process of creating a struc-

tured document representation in terms of tasks and subtasks and usually involve
some sort of preparatory goal or problem that needs to be solved such as extracting
titles and authors from a PDF document. Other preprocessing approaches rely on
techniques that derive from formal methods for analyzing complex phenomena that
can be also applied to natural language texts. Such approaches include classification
schemes, probabilistic models, and rule-based systems approaches.

Categorizing text mining preprocessing techniques by either their task orientation
or the formal frameworks from which they derive does not mean that “mixing and
matching” techniques from either category for a given text mining application are
prohibited. Most of the algorithms in text mining preprocessing activities are not
specific to particular tasks, and most of the problems can be solved by several quite
different algorithms.

57

58 Text Mining Preprocessing Techniques

Each of the preprocessing techniques starts with a partially structured document
and proceeds to enrich the structure by refining the present features and adding new
ones. In the end, the most advanced and meaning-representing features are used for
the text mining, whereas the rest are discarded.

The nature of the input representation and the output features is the principal
difference between the preprocessing techniques. There are natural language pro-
cessing (NLP) techniques, which use and produce domain-independent linguistic
features. There are also text categorization and IE techniques, which directly deal
with the domain-specific knowledge.

Often the same algorithm is used for different tasks, constituting several different
techniques. For instance, hidden Markov models (HMMs) can successfully be used
for both part-of-speech (POS) tagging and named-entity extraction.

One of the important problems, yet unsolved in general, is to combine the
processes of different techniques as opposed simply to combining the results. For
instance, frequently part-of-speech ambiguities can easily be resolved by looking at
the syntactic roles of the words. Similarly, structural ambiguities can often be resolved
by using domain-specific information.

Also, the bulk of any document does not contain relevant information but still
must pass all of the processing stages before it can be discarded by the final one,
which is extremely inefficient. It is impossible to use latter information for influencing
the former processes. Thus, the processes must run simultaneously, influencing each
other.

The algorithms used for different tasks are, however, usually very different and are
difficult to redesign to run together. Moreover, such redesigning makes the algorithms
strongly coupled, precluding any possibility of changing them later.

Because there are several widely different algorithms for each of the separate
tasks, all performing at more or less the same level, the designers of preprocessing
architectures are very reluctant to commit themselves to any specific one and thus try
to design their systems to be modular. Still, there have recently been some attempts
to find an algorithm, or a mutually consistent set of algorithms, to perform most of
the preprocessing task in a single big step.

III.1 TASK-ORIENTED APPROACHES

A document is an abstract entity that has a variety of possible actual representa-
tions. Informally, the task of the document structuring process is to take the most
“raw” representation and convert it to the representation through which the essence
(i.e., the meaning) of the document surfaces.

A divide-and-conquer strategy is typically employed to cope with this extremely
difficult problem. The problem is separated into a set of smaller subtasks, each of
which is solved separately. The subtasks can be divided broadly into three classes –
preparatory processing, general purpose NLP tasks, and problem-dependent tasks.
The complete hierarchy of text mining subtasks is shown in Figure III.1. Preparatory
processing converts the raw representation into a structure suitable for further lin-
guistic processing. For example, the raw input may be a PDF document, a scanned
page, or even recorded speech. The task of the preparatory processing is to convert
the raw input into a stream of text, possibly labeling the internal text zones such

III.1 Task-Oriented Approaches 59

Preprocessing

Tasks

NLP Problem

dependent

Tokenization

PoS tagging

stemming

Shallow

Parsing

Full

Parsing

NP

Extraction
Constituency Dependency

Categorization Information

Extraction

Entity

Extraction

Relation

Extraction

Coreference

Resolution

Preparatory

Perceptual

Grouping

Figure III.1. A taxonomy of text preprocessing tasks.

as paragraphs, columns, or tables. It is sometimes also possible for the preparatory
processing to extract some document-level fields such as <Author> or <Title> in
cases in which the visual position of the fields allows their identification.

The number of possible sources for documents is enormous, and the number of
possible formats and raw representations is also huge. Very complex and powerful
techniques are sometimes required to convert some of those formats into a conve-
nient form. Optical character recognition (OCR), speech recognition, and conversion
of electronic files from proprietary formats are described elsewhere at length and are
beyond the scope of the discussion here. However, one generic task that is often crit-
ical in text mining preprocessing operations and not widely covered in the literature
of knowledge discovery might be called perceptual grouping.

The general purpose NLP tasks process text documents using the general knowl-
edge about natural language. The tasks may include tokenization, morphological
analysis, POS tagging, and syntactic parsing – either shallow or deep. The tasks are
general purpose in the sense that their output is not specific for any particular prob-
lem. The output can rarely be relevant for the end user and is typically employed for
further problem-dependent processing. The domain-related knowledge, however,
can often enhance the performance of the general purpose NLP tasks and is often
used at different levels of processing.

Finally, the problem-dependent tasks prepare the final representation of the docu-
ment meaning. In text mining, categorization and information extraction are typically
used.

III.1.1 General Purpose NLP Tasks

It is currently an orthodox opinion that language processing in humans cannot be
separated into independent components. Various experiments in psycholinguistics
clearly demonstrate that the different stages of analysis – phonetic, morphological,
syntactical, semantical, and pragmatical – occur simultaneously and depend on each
other.

60 Text Mining Preprocessing Techniques

The precise algorithms of human language-processing are unknown, however,
and although several systems do try to combine the stages into a coherent single
process, the complete satisfactory solution has not yet been achieved. Thus, most of
the text understanding systems employ the traditional divide-and-conquer strategy,
separating the whole problem into several subtasks and solving them independently.

In particular, it is possible to get quite far using only linguistics and no domain
knowledge. The NLP components built in this way are valued for their generality.
The tasks they are able to perform include tokenization and zoning, part-of-speech
tagging and stemming, and shallow and deep syntactic parsing.

Tokenization

Prior to more sophisticated processing, the continuous character stream must be
broken up into meaningful constituents. This can occur at several different levels.
Documents can be broken up into chapters, sections, paragraphs, sentences, words,
and even syllables or phonemes.

The approach most frequently found in text mining systems involves breaking
the text into sentences and words, which is called tokenization. The main challenge
in identifying sentence boundaries in the English language is distinguishing between
a period that signals the end of a sentence and a period that is part of a previous
token like Mr., Dr., and so on.

It is common for the tokenizer also to extract token features. These are usually
simple categorical functions of the tokens describing some superficial property of
the sequence of characters that make up the token. Among these features are types
of capitalization, inclusion of digits, punctuation, special characters, and so on.

Part-of-Speech Tagging

POS tagging is the annotation of words with the appropriate POS tags based on the
context in which they appear. POS tags divide words into categories based on the
role they play in the sentence in which they appear. POS tags provide information
about the semantic content of a word. Nouns usually denote “tangible and intangible
things,” whereas prepositions express relationships between “things.”

Most POS tag sets make use of the same basic categories. The most common set
of tags contains seven different tags (Article, Noun, Verb, Adjective, Preposition,
Number, and Proper Noun). Some systems contain a much more elaborate set of
tags. For example, the complete Brown Corpus tag set has no less than 87 basic tags.

Usually, POS taggers at some stage of their processing perform morphological
analysis of words. Thus, an additional output of a POS tagger is a sequence of stems
(also known as “lemmas”) of the input words.

Syntactical Parsing

Syntactical parsing components perform a full syntactical analysis of sentences
according to a certain grammar theory. The basic division is between the constituency

and dependency grammars.
Constituency grammars describe the syntactical structure of sentences in terms

of recursively built phrases – sequences of syntactically grouped elements. Most con-
stituency grammars distinguish between noun phrases, verb phrases, prepositional
phrases, adjective phrases, and clauses. Each phrase may consist of zero or smaller

III.1 Task-Oriented Approaches 61

phrases or words according to the rules of the grammar. Additionally, the syntactical
structure of sentences includes the roles of different phrases. Thus, a noun phrase
may be labeled as the subject of the sentence, its direct object, or the complement.

Dependency grammars, on the other hand, do not recognize the constituents as
separate linguistic units but focus instead on the direct relations between words. A
typical dependency analysis of a sentence consists of a labeled DAG with words for
nodes and specific relationships (dependencies) for edges. For instance, a subject
and direct object nouns of a typical sentence depend on the main verb, an adjective
depends on the noun it modifies, and so on.

Usually, the phrases can be recovered from a dependency analysis – they are the
connected components of the sentence graph. Also, pure dependency analyses are
very simple and convenient to use by themselves. Dependency grammars, however,
have problems with certain common language constructions such as conjunctions.

Shallow Parsing

Efficient, accurate parsing of unrestricted text is not within the reach of current
techniques. Standard algorithms are too expensive for use on very large corpora
and are not robust enough. Shallow parsing compromises speed and robustness of
processing by sacrificing depth of analysis.

Instead of providing a complete analysis (a parse) of a whole sentence, shallow
parsers produce only parts that are easy and unambiguous. Typically, small and simple
noun and verb phrases are generated, whereas more complex clauses are not formed.
Similarly, most prominent dependencies might be formed, but unclear and ambiguous
ones are left unresolved.

For the purposes of information extraction, shallow parsing is usually suffi-
cient and therefore preferable to full analysis because of its far greater speed and
robustness.

III.1.2 Problem-Dependent Tasks: Text Categorization

and Information Extraction

The final stages of document structuring create representations that are meaningful
for either later (and more sophisticated) processing phases or direct interaction of
the text mining system user. The text mining techniques normally expect the docu-
ments to be represented as sets of features, which are considered to be structureless
atomic entities possibly organized into a taxonomy – an IsA-hierarchy. The nature
of the features sharply distinguishes between the two main techniques: text catego-

rization and information extraction (IE). Both of these techniques are also popularly
referred to as “tagging” (because of the tag-formatted structures they introduce in a
processed document), and they enable one to obtain formal, structured representa-
tions of documents. Text categorization and IE enable users to move from a “machine
readable” representation of the documents to a “machine understandable” form of
the documents. This view of the tagging approach is depicted in Figure III.2.

Text categorization (sometime called text classification) tasks tag each document
with a small number of concepts or keywords. The set of all possible concepts or key-
words is usually manually prepared, closed, and comparatively small. The hierarchy
relation between the keywords is also prepared manually.

62 Text Mining Preprocessing Techniques

Raw Content
Actionable
Information

Machine Readable Machine Understandable

Web Pages

News Stories

CRM

Email

Technical
documentation

Document
Management
Systems

Search

Personalization

Analysis

Alerting

Decision Support

Tagging

Figure III.2. Bridging the gap between raw data and actionable information.

IE is perhaps the most prominent technique currently used in text mining pre-
processing operations. Without IE techniques, text mining systems would have much
more limited knowledge discovery capabilities.

IE must often be distinguished from information retrieval or what is more infor-
mally called “search.” Information retrieval returns documents that match a given
query but still requires the user to read through these documents to locate the rele-
vant information. IE, on the other hand, aims at pinpointing the relevant information
and presenting it in a structured format – typically in a tabular format. For analysts
and other knowledge workers, IE can save valuable time by dramatically speeding
up discovery-type work.

III.2 FURTHER READING

POS Tagging

Please refer to Maltese and Mancini (1991), Brill (1992), Kupiec (1992), Schutze
(1993), and Brill (1995) for further details about POS tagging.

Shallow Parsing

The following papers discuss how to perform shallow parsing of documents:
Tzoukermann, Klavans, and Jacquemin (1997); Lager (1998); Daelemans, Buchholz,
and Veenstra (1999); Lewin et al. (1999); Munoz et al. (1999); and Punyakanok and
Roth (2000).

Constituency Grammars

Information on constituency grammers can be found in Reape (1989), Keller (1992),
and Pollard and Sag (1994).

III.2 Further Reading 63

Dependency Grammars

The following papers provide more information about dependency grammars:
Lombardo (1991), Carroll and Charniak (1992), Rambow and Joshi (1994), Lin
(1995), and Neuhaus and Broker (1997).

General Information Extraction

A general overview of the information extraction field can be found in Cowie and
Lehnert (1996), Grishman (1996), Cardie (1997), and Grishman (1997).

IV

Categorization

Probably the most common theme in analyzing complex data is the classification, or
categorization, of elements. Described abstractly, the task is to classify a given data
instance into a prespecified set of categories. Applied to the domain of document
management, the task is known as text categorization (TC) – given a set of categories
(subjects, topics) and a collection of text documents, the process of finding the correct
topic (or topics) for each document.

The study of automated text categorization dates back to the early 1960s (Maron
1961). Then, its main projected use was for indexing scientific literature by means
of controlled vocabulary. It was only in the 1990s that the field fully developed with
the availability of ever increasing numbers of text documents in digital form and the
necessity to organize them for easier use. Nowadays automated TC is applied in a vari-
ety of contexts – from the classical automatic or semiautomatic (interactive) indexing
of texts to personalized commercials delivery, spam filtering, Web page categoriza-
tion under hierarchical catalogues, automatic generation of metadata, detection of
text genre, and many others.

As with many other artificial intelligence (AI) tasks, there are two main
approaches to text categorization. The first is the knowledge engineering approach in
which the expert’s knowledge about the categories is directly encoded into the sys-
tem either declaratively or in the form of procedural classification rules. The other
is the machine learning (ML) approach in which a general inductive process builds
a classifier by learning from a set of preclassified examples. In the document man-
agement domain, the knowledge engineering systems usually outperform the ML
systems, although the gap in performance steadily shrinks. The main drawback of
the knowledge engineering approach is what might be called the knowledge acqui-

sition bottleneck – the huge amount of highly skilled labor and expert knowledge
required to create and maintain the knowledge-encoding rules. Therefore, most
of the recent work on categorization is concentrated on the ML approach, which
requires only a set of manually classified training instances that are much less costly to
produce.

This chapter is organized as follows. We start with the description of several
common applications of text categorization. Then the formal framework and the

64

IV.1 Applications of Text Categorization 65

issues of problem representation are described. Next we survey the most commonly
used algorithms solving the TC problem and wrap up with the issues of experimental
evaluation and a comparison between the different algorithms.

IV.1 APPLICATIONS OF TEXT CATEGORIZATION

Three common TC applications are text indexing, document sorting and text filtering,
and Web page categorization. These are only a small set of possible applications, but
they demonstrate the diversity of the domain and the variety of the TC subcases.

IV.1.1 Indexing of Texts Using Controlled Vocabulary

The topic of most of the early research in the TC field is text indexing. In Boolean
information retrieval (IR) systems, each document in a big collection is assigned one
or more key terms describing its content. Then, the IR system is able to retrieve
the documents according to the user queries, which are based on the key terms.
The key terms all belong to a finite set called controlled vocabulary, which is often a
thematic hierarchical thesaurus such as the NASA aerospace thesaurus or the MESH
thesaurus for medicine.

The task of assigning keywords from a controlled vocabulary to text documents
is called text indexing. If the keywords are viewed as categories, then text indexing
is an instance of the general TC problem and can be addressed by the automatic
techniques described in this chapter.

Typically, each document should receive at least one, and not more than k, key-
words. Also, the task can be solved either fully automatically or semiautomatically,
in which case the user selects a set of keywords from a ranked list supplied by a TC
system.

Automatic indexing can be a part of automated extraction of metadata. The meta-
data describe a document in a variety of aspects, some of which are thematic –
related to the contents of the document – the bibliographic codes, key terms, and
so on. Extraction of this metadata can be viewed as a document indexing problem,
which can be tackled by TC techniques.

IV.1.2 Document Sorting and Text Filtering

Another common problem related but distinct from document indexing is sorting the
given collection of documents into several “bins.” For instance, in a newspaper, the
classified ads may need to be categorized into “Personal,” “Car Sale,” “Real Estate,”
and so on. Another example is e-mail coming into an organization, which may need
to be sorted into categories such as “Complaints,” “Deals,” “Job applications,” and
others.

The document sorting problem has several features that distinguish it from the
related tasks. The main difference is the requirement that each document belong to
exactly one category. Other typical features are relatively small numbers of categories
and the “online” nature of the task: The documents to be categorized are usually
presented to the classifier one by one, not as a single batch.

66 Categorization

Text filtering activity can be seen as document sorting with only two bins – the
“relevant” and “irrelevant” documents. Examples of text filtering abound. A sports-
related online magazine should filter out all nonsport stories it receives from the news
feed. An e-mail client should filter away spam. A personalized ad filtering system
should block any ads that are uninteresting to the particular user.

For most of the TC systems, recall errors (which arise when a category is missing
some document that should have been assigned to it) and precision errors (which
occur when a category includes documents that should not belong to it) are con-
sidered to have about the same cost. For many of the filtering tasks, however, the
recall errors (e.g., an important letter is considered spam and hence is missing from
the “good documents” category) are much more costly than precision errors (some
of the spam still passes through, and thus the “good documents” category contains
some extra letters).

For personalized filtering systems it is common for the user to provide the feed-
back to the system – by marking received documents as relevant or irrelevant.
Because it is usually computationally unfeasible to fully retrain the system after
each document, adaptive learning techniques are required (see Bibliography).

IV.1.3 Hierarchical Web Page Categorization

A common use of TC is the automatic classification of Web pages under the hierar-
chical catalogues posted by popular Internet portals such as Yahoo. Such catalogues
are very useful for direct browsing and for restricting the query-based search to pages
belonging to a particular topic.

The other applications described in this section usually constrain the number of
categories to which a document may belong. Hierarchical Web page categorization,
however, constrains the number of documents belonging to a particular category to
prevent the categories from becoming excessively large. Whenever the number of
documents in a category exceeds k, it should be split into two or more subcategories.
Thus, the categorization system must support adding new categories and deleting
obsolete ones.

Another feature of the problem is the hypertextual nature of the documents. The
Web documents contain links, which may be important sources of information for
the classifier because linked documents often share semantics.

The hierarchical structure of the set of categories is also uncommon. It can be
dealt with by using a separate classifier at every branching point of the hierarchy.

IV.2 DEFINITION OF THE PROBLEM

The general text categorization task can be formally defined as the task of approx-
imating an unknown category assignment function F : D × C → {0, 1}, where D

is the set of all possible documents and C is the set of predefined categories. The
value of F(d, c) is 1 if the document d belongs to the category c and 0 otherwise.
The approximating function M : D × C → {0, 1} is called a classifier, and the task
is to build a classifier that produces results as “close” as possible to the true category
assignment function F.

IV.2 Definition of the Problem 67

IV.2.1 Single-Label versus Multilabel Categorization

Depending on the properties of F, we can distinguish between single-label and
multilabel categorization. In multilabel categorization the categories overlap, and a
document may belong to any number of categories. In single-label categorization,
each document belongs to exactly one category. Binary categorization is a special case
of single-label categorization in which the number of categories is two. The binary
case is the most important because it is the simplest, most common, and most often
used for the demonstration of categorization techniques. Also, the general single-
label case is frequently a simple generalization of the binary case. The multilabel
case can be solved by |C| binary classifiers (|C| is the number of categories), one for
each category, provided the decisions to assign a document to different categories
are independent from each other.

IV.2.2 Document-Pivoted versus Category-Pivoted Categorization

Usually, the classifiers are used in the following way: Given a document, the classifier
finds all categories to which the document belongs. This is called a document-pivoted

categorization. Alternatively, we might need to find all documents that should be filed
under a given category. This is called a category-pivoted categorization. The difference
is significant only in the case in which not all documents or not all categories are
immediately available. For instance, in “online” categorization, the documents come
in one-by-one, and thus only the document-pivoted categorization is possible. On
the other hand, if the categories set is not fixed, and if the documents need to be
reclassified with respect to the newly appearing categories, then category-pivoted
categorization is appropriate. However, most of the techniques described in this
chapter allow both.

IV.2.3 Hard versus Soft Categorization

A fully automated categorization system makes a binary decision on each document-
category pair. Such a system is said to be doing the hard categorization. The level
of performance currently achieved by fully automatic systems, however, may be
insufficient for some applications. Then, a semiautomated approach is appropriate
in which the decision to assign a document to a category is made by a human for
whom the TC system provides a list of categories arranged by the system’s estimated
appropriateness of the category for the document. In this case, the system is said to
be doing the soft or ranking categorization. Many classifiers described in this chapter
actually have the whole segment [0, 1] as their range – that is, they produce a real
value between zero and one for each document-category pair. This value is called
a categorization status value (CSV). Such “continuous” classifiers naturally perform
ranking categorization, but if a binary decision is needed it can be produced by
checking the CSV against a specific threshold.

Various possible policies exist for setting the threshold. For some types of clas-
sifiers it is possible to calculate the thresholds analytically, using decision-theoretic
measures such as utility. There are also general classifier-independent methods. Fixed

thresholding assigns exactly k top-ranking categories to each document. Proportional

thresholding sets the threshold in such a way that the same fraction of the test set

68 Categorization

belongs to a category as to the corresponding fraction of the training set. Finally, the
most common method is to set the value of the threshold in such a way as to maxi-
mize the performance of the classifier on a validation set. The validation set is some
portion of the training set that is not used for creating the model. The sole purpose
of the validation set is to optimize some of the parameters of the classifier (such as
the threshold). Experiments suggest that the latter method is usually superior to the
others in performance (Lewis 1992a, 1992b; Yang 1999).

IV.3 DOCUMENT REPRESENTATION

The common classifiers and learning algorithms cannot directly process the text doc-
uments in their original form. Therefore, during a preprocessing step, the documents
are converted into a more manageable representation. Typically, the documents are
represented by feature vectors. A feature is simply an entity without internal struc-
ture – a dimension in the feature space. A document is represented as a vector in this
space – a sequence of features and their weights.

The most common bag-of-words model simply uses all words in a document as
the features, and thus the dimension of the feature space is equal to the number of
different words in all of the documents. The methods of giving weights to the features
may vary. The simplest is the binary in which the feature weight is either one – if the
corresponding word is present in the document – or zero otherwise. More complex
weighting schemes are possible that take into account the frequencies of the word
in the document, in the category, and in the whole collection. The most common
TF-IDF scheme gives the word w in the document d the weight

TF-IDF Weight (w, d) = TermFreq(w, d) · log (N / DocFreq(w)),

where TermFreq(w, d) is the frequency of the word in the document, N is the num-
ber of all documents, and DocFreq(w) is the number of documents containing the
word w.

IV.3.1 Feature Selection

The number of different words is large even in relatively small documents such as
short news articles or paper abstracts. The number of different words in big docu-
ment collections can be huge. The dimension of the bag-of-words feature space for a
big collection can reach hundreds of thousands; moreover, the document represen-
tation vectors, although sparse, may still have hundreds and thousands of nonzero
components.

Most of those words are irrelevant to the categorization task and can be dropped
with no harm to the classifier performance and may even result in improvement
owing to noise reduction. The preprocessing step that removes the irrelevant words
is called feature selection. Most TC systems at least remove the stop words – the
function words and in general the common words of the language that usually do
not contribute to the semantics of the documents and have no real added value.
Many systems, however, perform a much more aggressive filtering, removing 90 to
99 percent of all features.

IV.3 Document Representation 69

In order to perform the filtering, a measure of the relevance of each feature
needs to be defined. Probably the simplest such measure is the document frequency
DocFreq(w). Experimental evidence suggests that using only the top 10 percent
of the most frequent words does not reduce the performance of classifiers. This
seems to contradict the well-known “law” of IR, according to which the terms with
low-to-medium document frequency are the most informative. There is no contra-
diction, however, because the large majority of all words have a very low document
frequency, and the top 10 percent do contain all low-to-medium frequency words.

More sophisticated measures of feature relevance exist that take into account the
relations between features and the categories. For instance, the information gain

IG(w) =
∑

c∈C∪C

∑

f∈{w,w}
P(f , c) · log

P(c | f)

P(c)

measures the number of bits of information obtained for the prediction of categories
by knowing the presence or absence in a document of the feature f. The probabilities
are computed as ratios of frequencies in the training data. Another good measure is
the chi-square

χ2
max(f) = max

c∈C

|Tr | · (P(f, c) · P(f̄ , c̄) − P(f, c̄) · P(f̄ , c))2

P(f) · P(f̄) · P(c) · P(c̄)
,

which measures the maximal strength of dependence between the feature and the
categories. Experiments show that both measures (and several other measures) can
reduce the dimensionality by a factor of 100 without loss of categorization quality –
or even with a small improvement (Yang and Pedersen 1997).

IV.3.2 Dimensionality Reduction by Feature Extraction

Another way of reducing the number of dimensions is to create a new, much smaller
set of synthetic features from the original feature set. In effect, this amounts to creat-
ing a transformation from the original feature space to another space of much lower
dimension. The rationale for using synthetic features rather than naturally occur-
ring words (as the simpler feature filtering method does) is that, owing to polysemy,
homonymy, and synonymy, the words may not be the optimal features. By transform-
ing the set of features it may be possible to create document representations that do
not suffer from the problems inherent in those properties of natural language.

Term clustering addresses the problem of synonymy by grouping together words
with a high degree of semantic relatedness. These word groups are then used as
features instead of individual words. Experiments conducted by several groups of
researchers showed a potential in this technique only when the background infor-
mation about categories was used for clustering (Baker and McCallum 1998; Slonim
and Tishby 2001). With unsupervised clustering, the results are inferior (Lewis 1992a,
1992b; Li and Jain 1998).

A more systematic approach is latent semantic indexing (LSI). The details of this
method are described in Chapter V. For the TC problem, the performance of the LSI
also improves if the categories information is used. Several LSI representations, one
for each category, outperform a single global LSI representation. The experiments
also show that LSI usually performs better than the chi-square filtering scheme.

70 Categorization

IV.4 KNOWLEDGE ENGINEERING APPROACH TO TC

The knowledge engineering approach to TC is focused around manual development
of classification rules. A domain expert defines a set of sufficient conditions for a
document to be labeled with a given category. The development of the classification
rules can be quite labor intensive and tedious.

We mention only a single example of the knowledge engineering approach to the
TC – the well-known CONSTRUE system (Hayes, Knecht, and Cellio 1988; Hayes
et al. 1990; Hayes and Weinstein 1990; Hayes 1992) built by the Carnegie group for
Reuters. A typical rule in the CONSTRUE system is as follows:

if DNF (disjunction of conjunctive clauses) formula then category else ¬category

Such rule may look like the following:

If ((wheat & farm) or
(wheat & commodity) or
(bushels & export) or
(wheat & tonnes) or
(wheat & winter & ¬soft))

then Wheat
else ¬Wheat

The system was reported to produce a 90-percent breakeven between precision
and recall on a small subset of the Reuters collection (723 documents). It is unclear
whether the particular chosen test collection influenced the results and whether the
system would scale up, but such excellent performance has not yet been unattained
by machine learning systems.

However, the knowledge acquisition bottleneck that plagues such expert systems
(it took several man-years to develop and fine-tune the CONSTRUE system for
Reuters) makes the ML approach attractive despite possibly somewhat lower quality
results.

IV.5 MACHINE LEARNING APPROACH TO TC

In the ML approach, the classifier is built automatically by learning the properties
of categories from a set of preclassified training documents. In the ML terminology,
the learning process is an instance of supervised learning because the process is
guided by applying the known true category assignment function on the training
set. The unsupervised version of the classification task, called clustering, is described
in Chapter V. There are many approaches to classifier learning; some of them are
variants of more general ML algorithms, and others have been created specifically
for categorization.

Four main issues need to be considered when using machine learning techniques
to develop an application based on text categorization. First, we need to decide on
the categories that will be used to classify the instances. Second, we need to provide
a training set for each of the categories. As a rule of thumb, about 30 examples are
needed for each category. Third, we need to decide on the features that represent
each of the instances. Usually, it is better to generate as many features as possible

IV.5 Machine Learning Approach to TC 71

because most of the algorithms will be able to focus just on the relevant features.
Finally, we need to decide on the algorithm to be used for the categorization.

IV.5.1 Probabilistic Classifiers

Probabilistic classifiers view the categorization status value CSV(d, c) as the prob-
ability P(c | d) that the document d belongs to the category c and compute this
probability by an application of Bayes’ theorem:

P(c | d) =
P(d | c)P(c)

P(d)
.

The marginal probability P(d) need not ever be computed because it is constant for all
categories. To calculate P(d | c), however, we need to make some assumptions about
the structure of the document d. With the document representation as a feature
vector d = (w1, w2, . . .), the most common assumption is that all coordinates are
independent, and thus

P(d | c) =
∏

i

P(wi | c).

The classifiers resulting from this assumption are called Naı̈ve Bayes (NB) classi-
fiers. They are called “naı̈ve” because the assumption is never verified and often is
quite obviously false. However, the attempts to relax the naı̈ve assumption and to
use the probabilistic models with dependence so far have not produced any signif-
icant improvement in performance. Some theoretic justification to this unexpected
robustness of the Naı̈ve Bayes classifiers is given in Domingos and Pazzani (1997).

IV.5.2 Bayesian Logistic Regression

It is possible to model the conditional probability P(c | d) directly. Bayesian logistic
regression (BLR) is an old statistical approach that was only recently applied to
the TC problem and is quickly gaining popularity owing to its apparently very high
performance.

Assuming the categorization is binary, we find that the logistic regression model
has the form

P(c | d) = ϕ(β · d) = ϕ

(

∑

i
βi di

)

,

where c = ±1 is the category membership value (±1 is used instead of {0, 1} for
simpler notation), d = (d1, d2, . . .) is the document representation in the feature
space, β = (β1, β2, . . .) is the model parameters vector, and ϕ is the logistic link

function

ϕ(x) =
exp(x)

1 + exp(x)
=

1

1 + exp(−x)
.

Care must be taken in order for a logistic regression model not to overfit the
training data. The Bayesian approach is to use a prior distribution for the param-
eter vector β that assigns a high probability to each β i’s being at or near zero.
Different priors are possible, and the commonly used are Gaussian and Laplace
priors.

72 Categorization

The simplest is the Gaussian prior with zero mean and variance τ :

p(βi | τ) = N(0, τ) =
1

√
2πτ

exp

(

−β2
i

2τ

)

.

If the a priori independence of the components of β and the equality of variances τ

for all components are assumed, the overall prior for β is the product of the priors
for β i. With this prior, the maximum a posteriori (MAP) estimate of β is equivalent
to ridge regression for the logistic model.

The disadvantage of the Gaussian prior in the TC problem is that, although it
favors the parameter values’ being close to zero, the MAP estimates of the parameters
will rarely be exactly zero; thus, the model will not be sparse. The alternative Laplace
prior does achieve sparseness:

p(βi | λ) =
λ

2
exp(−λ |βi |).

Using this kind of prior represents a belief that a small portion of the input variables
has a substantial effect on the outcome, whereas most of the other variables are
unimportant. This belief is certainly justifiable for the TC task. The particular value
of the hyperparameter λ (and τ for the Gaussian prior) can be chosen a priori or
optimized using a validation set.

In an “ideal” setting, the posterior distribution of β would be used for the actual
prediction. Owing to computational cost constraints, however, it is common to use
a point estimate of β, of which the posterior mode (any value of β at which the
posterior distribution of β takes on its maximal value) is the most common.

The log-posterior distribution of β is

l(β) = p(β | D) = −

⎛

⎝

∑

(d,c)∈D

ln(exp(−c β · d) + 1)

⎞

⎠ + ln p(β),

where D = {(d1, c1), (d2, c2) . . .} is the set of training documents di and their true
category membership values ci = ±1, and p(β) is the chosen prior:

ln p(β) = −

(

∑

i

(

ln
√

τ +
ln 2π

2
+

β2
i

τ

)

)

, for Gaussian prior, and

ln p(β) = −

(

∑

i

(ln 2 − ln λ + λ | βi |)

)

, for Laplace prior.

The MAP estimate of β is then simply arg maxβ l(β), which can be computed by any
convex optimization algorithm.

IV.5.3 Decision Tree Classifiers

Many categorization methods share a certain drawback: The classifiers cannot be
easily understood by humans. The symbolic classifiers, of which the decision tree
classifiers are the most prominent example, do not suffer from this problem.

A decision tree (DT) classifier is a tree in which the internal nodes are labeled
by the features, the edges leaving a node are labeled by tests on the feature’s weight,
and the leaves are labeled by categories. A DT categorizes a document by starting
at the root of the tree and moving successively downward via the branches whose

IV.5 Machine Learning Approach to TC 73

Negative

Examples

Positive
Examples

Hyperplane

Figure IV.1. A Decision Tree classifier.

conditions are satisfied by the document until a leaf node is reached. The document
is then assigned to the category that labels the leaf node. Most of the DT classifiers
use a binary document representation, and thus the trees are binary. For example,
the tree that corresponds to the CONSTRUE rule mentioned in Section IV.4 may
look like Figure IV.1.

Most of the DT-based systems use some form of general procedure for a DT
induction such as ID3, C4.5, and CART. Typically, the tree is built recursively by
picking a feature f at each step and dividing the training collection into two subcol-
lections, one containing f and another not containing f, until only documents of a
single category remain – at which point a leaf node is generated. The choice of a fea-
ture at each step is made by some information-theoretic measure such as information
gain or entropy. However, the trees generated in such a way are prone to overfit the
training collection, and so most methods also include pruning – that is, removing the
too specific branches.

The performance of a DT classifier is mixed but is inferior to the top-ranking
classifiers. Thus it is rarely used alone in tasks for which the human understanding
of the classifier is not essential. DT classifiers, however, are often used as a baseline
for comparison with other classifiers and as members of classifier committees.

IV.5.4 Decision Rule Classifiers

Decision rule (DR) classifiers are also symbolic like decision trees. The rules look
very much like the disjunctive normal form (DNF) rules of the CONSTRUE system
but are built from the training collection using inductive rule learning. Typically, the
rule learning methods attempt to select the best rule from the set of all possible
covering rules (i.e., rules that correctly classify all training examples) according to
some optimality criterion. DNF rules are often built in a bottom-up fashion. The
initial most specific classifier is built from the training set by viewing each training
document as a clause

d1 ∧ d2 ∧ . . . ∧ dn → c,

where di are the features of the document and c its category. The learner then
applies a series of generalizations (e.g., by removing terms from the clauses and

74 Categorization

by merging rules), thus maximizing the compactness of the rules while keeping the
covering property. At the end of the process, a pruning step similar to the DT pruning
is applied that trades covering for more generality.

Rule learners vary widely in their specific methods, heuristics, and optimality
criteria. One of the prominent examples of this family of algorithms is RIPPER
(repeated incremental pruning to produce error reduction) (Cohen 1995a; Cohen
1995b; Cohen and Singer 1996). Ripper builds a rule set by first adding new rules
until all positive category instances are covered and then adding conditions to the
rules until no negative instance is covered. One of the attractive features of Ripper
is its ability to bias the performance toward higher precision or higher recall as
determined by the setting of the loss ratio parameter, which measures the relative
cost of “false negative” and “false positive” errors.

IV.5.5 Regression Methods

Regression is a technique for approximating a real-valued function using the knowl-
edge of its values on a set of points. It can be applied to TC, which is the problem
of approximating the category assignment function. For this method to work, the
assignment function must be considered a member of a suitable family of continuous
real-valued functions. Then the regression techniques can be applied to generate the
(real-valued) classifier.

One regression method is the linear least-square fit (LLSF), which was first
applied to TC in Yang and Chute (1994). In this method, the category assignment
function is viewed as a |C| × |F| matrix, which describes some linear transformation
from the feature space to the space of all possible category assignments. To build a
classifier, we create a matrix that best accounts for the training data. The LLSF model
computes the matrix by minimizing the error on the training collection according to
the formula

M = arg minM||MD − O||F ,

where D is the |F| × |TrainingCollection| matrix of the training document represen-
tations, O is the |C| × |TrainingCollection| matrix of the true category assignments,
and the || · ||F is the Frobenius norm

||A||F =
√

∑

A2
i j .

The matrix M can be computed by performing singular value decomposition on the
training data. The matrix element mij represents the degree of association between
the ith feature and the jth category.

IV.5.6 The Rocchio Methods

The Rocchio classifier categorizes a document by computing its distance to the pro-
totypical examples of the categories. A prototypical example for the category c is a
vector (w1, w2, . . .) in the feature space computed by

wi =
α

∣

∣POS(c)
∣

∣

∑

d∈POS(c)

wdi −
β

∣

∣NEG(c)
∣

∣

∑

d∈NEG(c)

wdi ,

IV.5 Machine Learning Approach to TC 75

where POS(c) and NEG(c) are the sets of all training documents that belong and
do not belong to the category c, respectively, and wdi is the weight of ith feature in
the document d. Usually, the positive examples are much more important than the
negative ones, and so α >> β. If β = 0, then the prototypical example for a category
is simply the centroid of all documents belonging to the category.

The Rocchio method is very easy to implement, and it is cheap computationally.
Its performance, however, is usually mediocre – especially with categories that are
unions of disjoint clusters and in, general, with the categories that are not linearly
separable.

IV.5.7 Neural Networks

Neural network (NN) can be built to perform text categorization. Usually, the input
nodes of the network receive the feature values, the output nodes produce the cat-
egorization status values, and the link weights represent dependence relations. For
classifying a document, its feature weights are loaded into the input nodes; the acti-
vation of the nodes is propagated forward through the network, and the final values
on output nodes determine the categorization decisions.

The neural networks are trained by back propagation, whereby the training doc-
uments are loaded into the input nodes. If a misclassification occurs, the error is
propagated back through the network, modifying the link weights in order to mini-
mize the error.

The simplest kind of a neural network is a perceptron. It has only two layers – the
input and the output nodes. Such network is equivalent to a linear classifier. More
complex networks contain one or more hidden layers between the input and output
layers. However, the experiments have shown very small – or no – improvement
of nonlinear networks over their linear counterparts in the text categorization task
(Schutze, Hull, and Pederson 1995; Wiener 1995).

IV.5.8 Example-Based Classifiers

Example-based classifiers do not build explicit declarative representations of cate-
gories but instead rely on directly computing the similarity between the document to
be classified and the training documents. Those methods have thus been called lazy
learners because they defer the decision on how to generalize beyond the training
data until each new query instance is encountered. “Training” for such classifiers
consists of simply storing the representations of the training documents together
with their category labels.

The most prominent example of an example-based classifier is kNN (k-nearest
neighbor). To decide whether a document d belongs to the category c, kNN checks
whether the k training documents most similar to d belong to c. If the answer is
positive for a sufficiently large proportion of them, a positive decision is made; oth-
erwise, the decision is negative. The distance-weighted version of kNN is a vari-
ation that weighs the contribution of each neighbor by its similarity to the test
document.

In order to use the algorithm, one must choose the value of k. It can be optimized
using a validation set, but it is probable that a good value can be picked a priori.

76 Categorization

Larkey and Croft (Larkey and Croft 1996) use k = 20, whereas Yang (Yang 2001) has
found 30 ≤ k ≤ 45 to yield the best effectiveness. Various experiments have shown
that increasing the value of k does not significantly degrade the performance.

The kNN is one of the best-performing text classifiers to this day. It is robust in the
sense of not requiring the categories to be linearly separated. Its only drawback is the
relatively high computational cost of classification – that is, for each test document,
its similarity to all of the training documents must be computed.

IV.5.9 Support Vector Machines

The support vector machine (SVM) algorithm is very fast and effective for text
classification problems.

In geometrical terms, a binary SVM classifier can be seen as a hyperplane in
the feature space separating the points that represent the positive instances of the
category from the points that represent the negative instances. The classifying hyper-
plane is chosen during training as the unique hyperplane that separates the known
positive instances from the known negative instances with the maximal margin. The
margin is the distance from the hyperplane to the nearest point from the positive and
negative sets. The diagram shown in Figure IV.2 is an example of a maximal margin
hyperplane in two dimensions.

It is interesting to note that SVM hyperplanes are fully determined by a relatively
small subset of the training instances, which are called the support vectors. The rest
of the training data have no influence on the trained classifier. In this respect, the
SVM algorithm appears to be unique among the different categorization algorithms.

The SVM classifier has an important advantage in its theoretically justified
approach to the overfitting problem, which allows it to perform well irrespective
of the dimensionality of the feature space. Also, it needs no parameter adjustment

wheat?

farm?

Wheat

yes

yes

commodity?

no

Wheat

yes

tonnes?

no

Wheat

yes

winter?

no

yes

soft?

Wheat

no

¬Wheat

yes

no

¬Wheat

no

bushels?

no

¬Wheat

yes

tonnes?

¬Wheat

no

Wheat

yes

Figure IV.2. Diagram of a 2-D Linear SVM.

IV.5 Machine Learning Approach to TC 77

because there is a theoretically motivated “default” choice of parameters that has
also been shown experimentally to provide the best performance.

IV.5.10 Classifier Committees: Bagging and Boosting

The idea of using committees of classifiers stems from the intuition that a team
of experts, by combining their knowledge, may produce better results than a single
expert alone. In the bagging method of building committees, the individual classifiers
are trained in parallel on the same training collection. In order for the committee
to work, the classifiers must differ significantly from each other – either in their
document representation or in their learning methods. In text categorization, the
latter method is usually chosen. As this chapter suggests, there is certainly no shortage
of widely different learning methods.

Assume there are k different classifiers. To build a single committee classifier,
one must choose the method of combining their results. The simplest method is
the majority vote in which a category is assigned to a document iff at least (k+1)/2
classifiers decide this way (k must be an odd number, obviously). Another possibility,
suited for continuous output, is the weighted linear combination, whereby the final
CSV is given by a weighted sum of the CSVs of the k classifiers. The weights can be
estimated on a validation dataset. Other methods of combining classifiers are also
possible.

Boosting is another method of improving the quality of categorization by using
several classifiers. Unlike the bagging method, in boosting the classifiers are trained
sequentially. Before training the ith classifier, the training set is reweighed with
greater weight given to the documents that were misclassified by the previous clas-
sifiers. The AdaBoost algorithm is the best known example of this approach. It is
defined as follows:

Let X be the feature space, and let D = {(d1, c1), (d2, c3), . . .} be the training
data, where di ∈ X are the training document representations and ci ∈ {+1, −1}
the category assignment (binary). A weak learner is some algorithm that is able
to produce a weak hypothesis (classifier) h : X → { ± 1} given the training data D

together with a weight distribution W upon it. The “goodness” of a hypothesis is
measured by its error

ε(h, W) =
∑

i : h(di)�=ci

W(i),

which is the sum of weights of misclassified documents.
The AdaBoost algorithm

� Initializes weights distribution W1(i) = 1/|D|for all i, and
� Repeats for t = 1, . . . , k.

Train a weak classifier ht using the current weights Wt.
Let αt = 1

2
ln 1−ε(ht ,Wt)

ε(ht ,Wt)
.

78 Categorization

Update the weights: Wt+1(i) = Zt · Wt (i)·
{

exp(−αt), if ht (di) = ci ,

exp(αt), otherwise.

(Zt is the normalization factor chosen so that
∑

i Wt+1(i) = 1).
� The final classifier is H(d) = sign

(
∑

t=1..k αt ht (d)
)

.

It can be proved that, if the weak learner is able to generate classifiers with error
ε < 1

2
− λ for any fixed λ > 0 (which means, if the weak classifiers are any better

than random), then the training error for the final classifier drops exponentially fast
with the number k of algorithm steps. It can also be shown that AdaBoost has close
relations with SVM, for it also maximizes the margin between training instances.
Because of this, AdaBoost also has a similar resistance to overfitting.

IV.6 USING UNLABELED DATA TO IMPROVE CLASSIFICATION

All of the ML classifiers require fairly large training collections of preclassified doc-
uments. The task of manually labeling a large number of documents, although much
less costly than manually creating a classification knowledge base, is still usually quite
a chore. On the other hand, unlabeled documents usually exist in abundance, and any
amount of them can be acquired with little cost. Therefore, the ability to improve the
classifier performance by augmenting a relatively small number of labeled documents
with a large number of unlabeled ones is very useful for applications. The two com-
mon ways of incorporating knowledge from unlabeled documents are expectation
maximization (EM) and cotraining.

EM works with probabilistic generative classifiers such as Naı̈ve Bayes. The idea
is to find the most probable model given both labeled and unlabeled documents. The
EM algorithm performs the optimization in a simple and appealing way:

� First, the model is trained over the labeled documents.
� Then the following steps are iterated until convergence in a local maximum

occurs:
E-step: the unlabeled documents are classified by the current model.
M-step: the model is trained over the combined corpus.

In the M-step, the category assignments of the unlabeled documents are assumed to
be fractional according to the probabilities produced by the E-step.

Cotraining works with the documents, for which two views are available, providing
two different document representations, both of which are sufficient for classifica-
tion. For example, a Web page may have its content as one view and the anchor
text appearing in the hyperlinks to the page as another. In the domain of MedLine
papers, the abstract may be one view and the whole text another. The cotraining is a
bootstrapping strategy in which the unlabeled documents classified by means of one
of the views are then used for training the classifier using the other view, and vice
versa.

Both EM and cotraining strategies have experimentally shown a significant reduc-
tion (up to 60%) in the amount of labeled training data required to produce the same
classifier performance.

IV.7 Evaluation of Text Classifiers 79

IV.7 EVALUATION OF TEXT CLASSIFIERS

Because the text categorization problem is not sufficiently well-defined, the perfor-
mance of classifiers can be evaluated only experimentally.

Any TC experiment requires a document collection labeled with a set of cate-
gories. This collection is divided into two parts: the training and test document sets.
The training set, as the name suggests, is used for training the classifier, and the
test set is the one on which the performance measures are calculated. Usually, the
test set is the smaller of the two. It is very important not to use the test set in any
way during the classifier training and fine-tuning. When there is a need to optimize
some classifier parameters experimentally, the training set is further divided into two
parts – the training set proper and a validation set, which is used for the parameter
optimizations.

A commonly used method to smooth out the variations in the corpus is the
n-fold cross-validation. In this method, the whole document collection is divided
into n equal parts, and then the training-and-testing process is run n times, each time
using a different part of the collection as the test set. Then the results for n folds are
averaged.

IV.7.1 Performance Measures

The most common performance measures are the classic IR measures of recall and
precision. A recall for a category is defined as the percentage of correctly classified
documents among all documents belonging to that category, and precision is the
percentage of correctly classified documents among all documents that were assigned
to the category by the classifier.

Many classifiers allow trading recall for precision or vice versa by raising or
lowering parameter settings or the output threshold. For such classifiers there is a
convenient measure, called the breakeven point, which is the value of recall and
precision at the point on the recall-versus-precision curve where they are equal.
Alternatively, there is the F1 measure, equal to 2/(1/recall + 1/precision), which
combines the two measures in an ad hoc way.

IV.7.2 Benchmark Collections

The most known publicly available collection is the Reuters set of news stories,
classified under economics-related categories. This collection accounts for most of
the experimental work in TC so far. Unfortunately, this does not mean that the
results produced by different researchers are directly comparable because of subtle
differences in the experimental conditions.

In order for the results of two experiments to be directly comparable, the following
conditions must be met:

(1) The experiments must be performed on exactly the same collection (mean-
ing the same documents and same categories) using the same split between
training and test sets.

(2) The same performance measure must be chosen.

80 Categorization

(3) If a particular part of a system is compared, all other parts must be exactly
the same. For instance, when comparing learning algorithms, the docu-
ment representations must be the same, and when comparing the dimension
reduction methods, the learning algorithms must be fixed together with their
parameters.

These conditions are very difficult to meet – especially the last one. Thus, in
practice, the only reliable comparisons are those done by the same researcher.

Other frequently used benchmark collections are the OHSUMED collection of
titles and abstracts of papers from medical journals categorized with MESH thesaurus
terms, 20 Newsgroups collection of messages posted to newsgroups with the news-
groups themselves as categories, and the TREC-AP collection of newswire stories.

IV.7.3 Comparison among Classifiers

Given the lack of a reliable way to compare classifiers across researchers, it is possible
to draw only very general conclusions in reference to the question Which classifier
is the best?

� According to most researchers, the top performers are SVM, AdaBoost, kNN,
and Regression methods. Insufficient statistical evidence has been compiled to
determine the best of these methods. Efficiency considerations, implementa-
tion complexity, and other application-related issues may assist in selecting from
among these classifiers for specific problems.

� Rocchio and Naı̈ve Bayes have the worst performance among the ML classifiers,
but both are often used as baseline classifiers. Also, NB is very useful as a member
of classifier committees.

� There are mixed results regarding the neural networks and decision tree clas-
sifiers. Some of the experiments have demonstrated rather poor performance,
whereas in other experiments they performed nearly as well as SVM.

IV.8 CITATIONS AND NOTES

Section IV.1

Applications of text categorization are described in Hayes et al. (1988); Ittner, Lewis,
and Ahn (1995); Larkey (1998); Lima, Laender, and Ribeiro-Neto (1998); Attardi,
Gulli, and Sebastiani (1999); Drucker, Vapnik, and Wu (1999); Moens and Dumortier
(2000); Yang, Ault, Pierce, and Lattimer (2000); Gentili et al. (2001); Krier and Zaccà
(2002); Fall et al. (2003); and Giorgetti and Sebastiani (2003a, 2003b).

Section IV.2

For a general introduction to text categorization, refer to Sebastiani (2002) and Lewis
(2000), which provides an excellent tutorial on the subject.

Section IV.3

Approaches that integrate linguistic and background knowledge into the categoriza-
tion process can be found in Jacobs (1992); Rodriguez et al. (1997); Aizawa (2001);
and Benkhalifa, Mouradi, and Bouyakhf (2001a, 2001b).

IV.8 Citations and Notes 81

Section IV.5.3–IV.5.4

The following papers discuss how to use decision trees and decision lists for text
categorization: Apte, Damerau, and Weiss (1994a, 1994b, 1994c); Li and Yamanishi
(1999); Chen and Ho (2000); and Li and Yamanishi (2002).

Section IV.5.5

The use of regression for text categorization is discussed in Zhang and Oles (2001),
Zhang et al. (2003), and Zhang and Yang (2003).

Section IV.5.8

The kNN algorithm is discussed and described in Yavuz and Guvenir (1998); Han,
Karypis, and Kumar (2001); Soucy and Mineau (2001b); and Kwon and Lee (2003).

Section IV.5.9

The SVM algorithm is described and discussed in Vapnik (1995); Joachims (1998);
Kwok (1998); Drucker, Vapnik, et al. (1999); Joachims (1999); Klinkenberg and
Joachims (2000); Siolas and d’Alche-Buc (2000); Tong and Koller (2000); Joachims
(2001); Brank et al. (2002); Joachims (2002); Leopold and Kindermann (2002);
Diederich et al. (2003); Sun, Naing, et al. (2003); Xu et al. (2003); and Zhang and
Lee (2003).

Section IV.5.10

Approaches that combine several algorithms by using committees of algorithms
or by using boosting are described in Larkey and Croft (1996); Liere and Tade-
palli (1997); Liere and Tadepalli (1998); Forsyth (1999); Ruiz and Srinivasan (1999a,
1999b); Schapire and Singer (2000); Sebastiani, Sperduti, and Valdambrini (2000);
Al-Kofahi et al. (2001); Bao et al. (2001); Lam and Lai (2001); Taira and Haruno
(2001); and Nardiello, Sebastiani, and Sperduti (2003).

Additional Algorithms

There are several adaptive (or online) algorithms that build classifiers incrementally
without requiring the whole training set to be present at once. A simple perceptron

is described in Schutze et al. (1995) and Wiener (1995). A Winnow algorithm, which
is a multiplicative variant of perceptron, is described in Dagan, Karov, and Roth
(1997). Other online algorithms include Widrow Hoff, Exponentiated Gradient

(Lewis et al. 1996), and Sleeping Experts (Cohen and Singer 1999).
Relational and rule-based approaches to text categorization are discussed in

Cohen (1992); Cohen (1995a, 1995b); and Cohen and Hirsh (1998).

Section IV.7

Comparisons between the categorization algorithms are discussed in Yang (1996)
and Yang (1999).

V

Clustering

Clustering is an unsupervised process through which objects are classified into groups
called clusters. In categorization problems, as described in Chapter IV, we are pro-
vided with a collection of preclassified training examples, and the task of the system
is to learn the descriptions of classes in order to be able to classify a new unlabeled
object. In the case of clustering, the problem is to group the given unlabeled collec-
tion into meaningful clusters without any prior information. Any labels associated
with objects are obtained solely from the data.

Clustering is useful in a wide range of data analysis fields, including data mining,
document retrieval, image segmentation, and pattern classification. In many such
problems, little prior information is available about the data, and the decision-maker
must make as few assumptions about the data as possible. It is for those cases the
clustering methodology is especially appropriate.

Clustering techniques are described in this chapter in the context of textual data
analysis. Section V.1 discusses the various applications of clustering in text analysis
domains. Sections V.2 and V.3 address the general clustering problem and present
several clustering algorithms. Finally Section V.4 demonstrates how the clustering
algorithms can be adapted to text analysis.

V.1 CLUSTERING TASKS IN TEXT ANALYSIS

One application of clustering is the analysis and navigation of big text collections such
as Web pages. The basic assumption, called the cluster hypothesis, states that relevant
documents tend to be more similar to each other than to nonrelevant ones. If this
assumption holds for a particular document collection, the clustering of documents
based on the similarity of their content may help to improve the search effectiveness.

V.1.1 Improving Search Recall

Standard search engines and IR systems return lists of documents that match a user
query. It is often the case that the same concepts are expressed by different terms
in different texts. For instance, a “car” may be called “automobile,” and a query for

82

V.1 Clustering Tasks in Text Analysis 83

“car” would miss the documents containing the synonym. However, the overall word
contents of related texts would still be similar despite the existence of many synonyms.
Clustering, which is based on this overall similarity, may help improve the recall of a
query-based search in such a way that when a query matches a document its whole
cluster can be returned.

This method alone, however, might significantly degrade precision because often
there are many ways in which documents are similar, and the particular way to cluster
them should depend on the particular query.

V.1.2 Improving Search Precision

As the number of documents in a collection grows, it becomes a difficult task to
browse through the lists of matched documents given the size of the lists. Because
the lists are unstructured, except for a rather weak relevance ordering, he or she must
know the exact search terms in order to find a document of interest. Otherwise, the
he or she may be left with tens of thousands of matched documents to scan.

Clustering may help with this by grouping the documents into a much smaller
number of groups of related documents, ordering them by relevance, and returning
only the documents from the most relevant group or several most relevant groups.

Experience, however, has shown that the user needs to guide the clustering pro-
cess so that the clustering will be more relevant to the user’s specific interest. An
interactive browsing strategy called scatter/gather is the development of this idea.

V.1.3 Scatter/Gather

The scatter/gather browsing method (Cutting et al. 1992; Hearst and Pedersen 1996)
uses clustering as a basic organizing operation. The purpose of the method is to
enhance the efficiency of human browsing of a document collection when a specific
search query cannot be formulated. The method is similar to the techniques used for
browsing a printed book. An index, which is similar to a very specific query, is used
for locating specific information. However, when a general overview in needed or a
general question is posed, a table of contents, which presents the logical structure of
the text, is consulted. It gives a sense of what sorts of questions may be answered by
more intensive exploration of the text, and it may lead to the particular sections of
interest.

During each iteration of a scatter/gather browsing session, a document collection
is scattered into a set of clusters, and the short descriptions of the clusters are presented
to the user. Based on the descriptions, the user selects one or more of the clusters that
appear relevant. The selected clusters are then gathered into a new subcollection with
which the process may be repeated. In a sense, the method dynamically generates
a table of contents for the collection and adapts and modifies it in response to the
user’s selection.

V.1.4 Query-Specific Clustering

Direct approaches to making the clustering query-specific are also possible. The hier-
achical clustering is especially appealing because it appears to capture the essense

84 Clustering

of the cluster hypothesis best. The most related documents will appear in the small
tight clusters, which will be nested inside bigger clusters containing less similar doc-
uments. The work described in Tombros, Villa, and Rijsbergen (2002) tested the
cluster hypothesis on several document collections and showed that it holds for
query-specific clustering.

Recent experiments with cluster-based retrieval (Liu and Croft 2003) using lan-
guage models show that this method can perform consistently over document col-
lections of realistic size, and a significant improvement in document retrieval can be
obtained using clustering without the need for relevance information from by the
user.

V.2 THE GENERAL CLUSTERING PROBLEM

A clustering task may include the following components (Jain, Murty, and Flynn
1999):

� Problem representation, including feature extraction, selection, or both,
� Definition of proximity measure suitable to the domain,
� Actual clustering of objects,
� Data abstraction, and
� Evaluation.

Here we describe the representation of a general clustering problem and several
common general clustering algorithms. Data abstraction and evaluation of clustering
results are usually very domain-dependent and are discussed in Section V.4, which is
devoted to clustering of text data.

V.2.1 Problem Representation

All clustering problems are, in essence, optimization problems. The goal is to select
the best among all possible groupings of objects according to the given clustering
quality function. The quality function maps a set of possible groupings of objects
into the set of real numbers in such a way that a better clustering would be given a
higher value.

A good clustering should group together similar objects and separate dissimilar
ones. Therefore, the clustering quality function is usually specified in terms of a sim-

ilarity function between objects. In fact, the exact definition of a clustering quality
function is rarely needed for clustering algorithms because the computational hard-
ness of the task makes it infeasible to attempt to solve it exactly. Therefore, it is suffi-
cient for the algorithms to know the similarity function and the basic requirement –
that similar objects belong to the same clusters and dissimilar to separate ones.

A similarity function takes a pair of objects and produces a real value that is a
measure of the objects’ proximity. To do so, the function must be able to compare
the internal structure of the objects. Various features of the objects are used for
this purpose. As was mentioned in Chapter I, feature extraction is the process of
generating the sets of features representing the objects, and feature selection is the
process of identifying the most effective subset of the extracted features.

V.3 Clustering Algorithms 85

The most common vector space model assumes that the objects are vectors in the
high-dimensional feature space. A common example is the bag-of-words model of
text documents. In a vector space model, the similarity function is usually based on
the distance between the vectors in some metric.

V.2.2 Similarity Measures

The most popular metric is the usual Euclidean distance

D(xi, xj) =
√

∑

k

(xi k − x j k)2,

which is a particular case with p = 2 of Minkowski metric

Dp(xi, xj) =

(

∑

k

(xi k − x j k)p

)1/p

.

For the text documents clustering, however, the cosine similarity measure is the
most common:

Sim(xi, xj) = (x′
i · x′

j) =
∑

k

x′
i k · x′

j k,

where x′ is the normalized vector x = x/|x|.
There are many other possible similarity measures suitable for their particular

purposes.

V.3 CLUSTERING ALGORITHMS

Several different variants of an abstract clustering problem exist. A flat (or partitional)

clustering produces a single partition of a set of objects into disjoint groups, whereas
a hierarchical clustering results in a nested series of partitions.

Each of these can either be a hard clustering or a soft one. In a hard clustering,
every object may belong to exactly one cluster. In soft clustering, the membership is
fuzzy – objects may belong to several clusters with a fractional degree of membership
in each.

Irrespective of the problem variant, the clustering optimization problems are
computationally very hard. The brute-force algorithm for a hard, flat clustering of
n-element sets into k clusters would need to evaluate kn/ k! possible partitionings.
Even enumerating all possible single clusters of size l requires n!/ l!(n − l)!, which is
exponential in both n and l. Thus, there is no hope of solving the general optimiza-
tion problem exactly, and usually some kind of a greedy approximation algorithm is
used.

Agglomerative algorithms begin with each object in a separate cluster and succes-
sively merge clusters until a stopping criterion is satisfied. Divisive algorithms begin
with a single cluster containing all objects and perform splitting until a stopping
criterion is met. “Shuffling” algorithms iteratively redistribute objects in clusters.

The most commonly used algorithms are the K-means (hard, flat, shuffling), the
EM-based mixture resolving (soft, flat, probabilistic), and the HAC (hierarchical,
agglomerative).

86 Clustering

V.3.1 K-Means Algorithm

The K-means algorithm partitions a collection of vectors {x1, x2, . . . xn} into a set of
clusters {C1, C2, . . . Ck}. The algorithm needs k cluster seeds for initialization. They
can be externally supplied or picked up randomly among the vectors.

The algorithm proceeds as follows:

Initialization:

k seeds, either given or selected randomly, form the core of k clusters. Every
other vector is assigned to the cluster of the closest seed.

Iteration:

The centroids Mi of the current clusters are computed:

Mi = |Ci |−1
∑

x∈ci

x.

Each vector is reassigned to the cluster with the closest centroid.

Stopping condition:

At convergence – when no more changes occur.

The K-means algorithm maximizes the clustering quality function Q:

Q(C1, C2, . . . , Ck) =
∑

C1

∑

x∈Ci

Sim(x − Mi).

If the distance metric (inverse of the similarity function) behaves well with respect to
the centroids computation, then each iteration of the algorithm increases the value
of Q. A sufficient condition is that the centroid of a set of vectors be the vector that
maximizes the sum of similarities to all the vectors in the set. This condition is true
for all “natural” metrics. It follows that the K-means algorithm always converges to
a local maximum.

The K-means algorithm is popular because of its simplicity and efficiency. The
complexity of each iteration is O(kn) similarity comparisons, and the number of
necessary iterations is usually quite small.

A major problem with the K-means algorithm is its sensitivity to the initial selec-
tion of seeds. If a bad set of seeds is used, the generated clusters are often very
much suboptimal. Several methods are known to deal with this problem. The sim-
plest way is to make several clustering runs with different random choices of seeds.
Another possibility is to choose the initial seeds utilizing external domain-dependent
information.

Several algorithmic methods of dealing with the K-means suboptimality also
exist. One possibility is to allow postprocessing of the resulting clusters. For instance,
the ISO-DATA algorithm (Jensen 1996) merges clusters if the distance between
their centroids is below a certain threshold, and this algorithm splits clusters having
excessively high variance. Another possibility is employed by the Buckshot algorithm
described at the end of this section.

The best number of clusters, in cases where it is unknown, can be computed by
running the K-means algorithm with different values of k and choosing the best one
according to any clustering quality function.

V.3 Clustering Algorithms 87

V.3.2 EM-based Probabilistic Clustering Algorithm

The underlying assumption of mixture-resolving algorithms is that the objects to be
clustered are drawn from k distributions, and the goal is to identify the parameters of
each that would allow the calculation of the probability P(Ci | x) of the given object’s
belonging to the cluster Ci.

The expectation maximization (EM) is a general purpose framework for estimat-
ing the parameters of distribution in the presence of hidden variables in observable
data. Adapting it to the clustering problem produces the following algorithm:

Initialization:

The initial parameters of k distributions are selected either randomly or exter-
nally.

Iteration:

E-Step: Compute the P(Ci |x) for all objects x by using the current parameters of
the distributions. Relabel all objects according to the computed probabilities.

M-Step: Reestimate the parameters of the distributions to maximize the likeli-
hood of the objects’ assuming their current labeling.

Stopping condition:

At convergence – when the change in log-likelihood after each iteration
becomes small.

After convergence, the final labelings of the objects can be used as the fuzzy
clustering. The estimated distributions may also be used for other purposes.

V.3.3 Hierarchical Agglomerative Clustering (HAC)

The HAC algorithm begins with each object in separate cluster and proceeds to
repeatedly merge pairs of clusters that are most similar according to some chosen
criterion. The algorithm finishes when everything is merged into a single cluster. The
history of merging provides the binary tree of the clusters hierarchy.

Initialization:

Every object is put into a separate cluster.

Iteration:

Find the pair of most similar clusters and merge them.

Stopping condition:

When everything is merged into a single cluster.

Different versions of the algorithm can be produced as determined by how the
similarity between clusters is calculated. In the single-link method, the similarity
between two clusters is the maximum of similarities between pairs of objects from
the two clusters. In the complete-link method, the similarity is the minimum of simi-
larities of such pairs of objects. The single-link approach may result in long and thin
chainlike clusters, whereas the complete-link method results in tight and compact
clusters. Although the single-link method is more versatile, experience suggests that
the complete-link one produces more useful results.

Other possible similarity measures include “center of gravity” (similarity between
centroids of clusters), “average link” (average similarity between pairs of objects of

88 Clustering

clusters), and a “group average” (average similarity between all pairs of objects in
a merged cluster), which is a compromise between the single- and complete-link
methods.

The complexity of HAC is O(n2s), where n is the number of objects and s the
complexity of calculating similarity between clusters. For some object similarity mea-
sures it is possible to compute the group average cluster similarity in constant time,
making the complexity of HAC truly quadratic. By definition, the group average
similarity between clusters Ci and Cj is

Sim(Ci , C j) =
1

|Ci ∪ C j |(|Ci ∪ C j | − 1)

∑

x,y∈Ci ∪C j ,x �=y

Sim(x, y).

Assuming that the similarity between individual vector is the cosine similarity,
we have

Sim(Ci , C j) =
(Si + Sj) · (Si + Sj) − (|Ci | + |C j |)

|Ci ∪ C j |(|Ci ∪ C j | − 1)
,

where Si =
∑

x∈Ci x is the sum of all vectors in the ith cluster. If all Si’s are always
maintained, the cosine similarity between clusters can always be computed in a con-
stant time.

V.3.4 Other Clustering Algorithms

Several graph-theoretic clustering algorithms exist. The best known is based on con-
struction of the minimal spanning tree (MST) of the objects and then deleting the
edges with the largest lengths to generate clusters. In fact, the hierarchical approaches
are also related to graph theoretic clustering. Single-link clusters are subgraphs of
the MST, which are also the connected components (Gotlieb and Kumar 1968).
Complete-link clusters are the maximal complete subgraphs (Backer and Hubert
1976).

The nearest neighbor clustering (Lu and Fu 1978) assigns each object to the
cluster of its nearest labeled neighbor object provided the similarity to that neighbor
is sufficiently high. The process continues until all objects are labeled.

The Buckshot algorithm (Cutting et al. 1992) uses the HAC algorithm to generate
a good initial partitioning for use by the K-means algorithm. For this purpose,

√
kn

objects are randomly selected, and the group-average HAC algorithm is run on the
set. The k clusters generated by HAC are used to initialize the K-means algorithm,
which is then run on the whole set of n objects. Because the complexity of HAC is
quadratic, the overall complexity of Buckshot remains O(kn) linear in the number
of objects.

V.4 CLUSTERING OF TEXTUAL DATA

The clustering of textual data has several unique features that distinguish it from
other clustering problems. This section discusses the various issues of representation,
algorithms, data abstraction, and evaluation of text data clustering problems.

V.4 Clustering of Textual Data 89

V.4.1 Representation of Text Clustering Problems

The most prominent feature of text documents as objects to be clustered is their very
complex and rich internal structure. In order to be clustered, the documents must
be converted into vectors in the feature space. The most common way of doing this,
the bag-of-words document representation, assumes that each word is a dimension
in the feature space. Each vector representing a document in this space will have
a component for each word. If a word is not present in the document, the word’s
component of the document vector will be zero. Otherwise, it will be some positive
value, which may depend on the frequency of the word in the document and in the
whole document collection. The details and the different possibilities of the bag-
of-words document representation are discussed in Section IV. One very important
problem arises for clustering – feature selection.

With big document collections, the dimension of the feature space may easily
range into the tens and hundreds of thousands. Because of this, feature selection
methods are very important for performance reasons. Many good feature selection
methods are available for categorization, but they make use of the distribution of
features in classes as found in the training documents. This distribution is not available
for clustering.

There are two possible ways of reducing the dimensionality of documents. Local

methods do not reduce the dimension of the whole feature space but simply delete
“unimportant” components from individual document vectors. Because the complex-
ity of calculating the similarity between documents is proportional to the number of
nonzero components in the document vectors, such truncation is effective. In practice,
the document vectors themselves are already quite sparse, and only the centroids,
which can be very dense, need truncation.

The alternative approach is a global dimension reduction. Its disadvantage is that it
does not adapt to unique characteristics of each document. The advantage is that this
method better preserves the ability to compare dissimilar documents because every
document undergoes identical transformation. One increasingly popular technique
of dimension reduction is based on latent semantic indexing (LSI).

V.4.2 Dimension Reduction with Latent Semantic Indexing

Latent semantic indexing linearly maps the N-dimensional feature space F onto
a lower dimensional subspace in a provably optimal way, in the following sense:
among all possible subspaces V ∈ F of dimension k, and all possible linear maps
M from F onto V, the map given by the LSI perturbs the documents the least, so
that the

∑

d ∈ documents

|D − M (d)|2 is minimal. LSI is based upon applying the singular

value decomposition (SVD) to the term-document matrix.

V.4.3 Singular Value Decomposition

An SVD of a real m×n matrix A is a representation of the matrix as a product

A = UDVT,

90 Clustering

where U is a column-orthonormal m×r matrix, D is a diagonal r×r matrix, and V

is a column-orthonormal n×r matrix in which r denotes the rank of A. The term
“column-orthonormal” means that the column vectors are normalized and have a
zero dot-product; thus,

UUT = VTV = I.

The diagonal elements of D are the singular values of A and can all be chosen to
be positive and arranged in a descending order. Then the decomposition becomes
unique.

There are many methods of computing the SVD of matrices. See Berry (1992)
for methods adapted to large but sparse matrices.

Using SVD for Dimension Reduction

The dimension reduction proceeds in the following steps. First, a terms-by-documents
rectangular matrix A is formed. Its columns are the vector representations of doc-
uments. Thus, the matrix element Atd is nonzero when the term t appears in the
document d.

Then, the SVD of the matrix A is calculated:

A = UDVT.

Next the dimension reduction takes place. We keep the k highest values in the
matrix D and set others to zero, resulting in the matrix D′. It can be shown that the
matrix

A′ = UD′VT

is the matrix of rank k that is closest to A in the least-squares sense.
The cosine similarity between the original document vectors is given by the dot

product of their corresponding columns in the A matrix. The reduced-dimensional
approximation is calculated as the dot product of the columns of A′. Of course, the
A′ itself need never be calculated. Instead, we can see that

A′T A′ = VD′TUTUD′VT = VD′T D′VT,

and thus the representation of documents in the low-dimensional LSI space is given
by the rows of the VDT matrix, and the dot product can be calculated between those
k-dimensional rows.

Medoids

It is possible to improve the speed of text clustering algorithms by using medoids

instead of centroids (mentioned in Section V.3). Medoids are actual documents that
are most similar to the centroids. This improves the speed of algorithms in a way
similar to feature space dimensionality reduction because sparse document vectors
are substituted for dense centroids.

Using Naı̈ve Bayes Mixture Models with the EM Clustering Algorithm

For the EM-based fuzzy clustering of text documents, the most common assump-
tion is the Naı̈ve Bayes model of cluster distribution. This model has the following

V.4 Clustering of Textual Data 91

parameters: the prior cluster probability P(Ci) and the probabilities P(fi | Ci) of
features in the cluster.

Given the model parameters, the probability that a document belongs to a
cluster is

P(Ci |x) = P(Ci)
∏

f

P(f |Ci)
/

∑

C

P(C)
∏

f

P(f |C).

On the assumption that the current document labeling is L(x), the maximum
likelihood estimation of the parameters is

P(Ci) = |{x : L(x) = Ci }|/N,

P(f |Ci) = |{x : L(x) = Ci and f ∈ x }|/|{x : L(x) = Ci }|,

where N is the number of documents.
Using this method it is possible to improve categorization systems in cases in

which the number of labeled documents is small but many unlabeled documents are
available. Then the labeled documents can be used to train the initial NB models,
which are then used within the EM algorithm to cluster the unlabeled documents.
The final cluster models are the output classifiers produced by this technique. The
experiments have shown a significant improvement in accuracy over the classifiers
that are trained only on labeled data (Nigam et al. 2000).

V.4.4 Data Abstraction in Text Clustering

Data abstraction in clustering problems entails generating a meaningful and concise
description of the cluster for the purposes of further automatic processing or for user
consumption. The machine-usable abstraction is usually easiest; natural candidates
are cluster centroids or probabilistic models of clusters.

In the case of text clustering, the problem is to give the user a meaningful cluster
label. For some applications, such as scatter/gather browsing, a good label is almost
as important as good clustering. A good label would consist of a very small number
of terms precisely distinguishing the cluster from the others. For instance, after clus-
tering documents about “jaguar,” we would like one cluster to be named “Animal”
and another “Car.”

There are many possibilities of generating cluster labels automatically:

� A title of the medoid document or several typical document titles can be
used.

� Several words common to the cluster documents can be shown. A common heuris-
tic is to present the five or ten most frequent terms in the centroid vector of the
cluster.

� A distinctive noun phrase, if it can be found, is probably the best label.

V.4.5 Evaluation of Text Clustering

Measuring the quality of an algorithm is a common problem in text as well as data
mining. It is easy to compare the exact measures, such as time and space complexity,

92 Clustering

but the quality of the results needs human judgment, which introduces a high degree
of subjectivity.

The “internal” measures of clustering quality are essentially the functions we
would like to optimize by the algorithms. Therefore, comparing such measures for
clusterings produced by different algorithms only shows which algorithm results in
a better approximation of the general optimization problem for the particular case.
This makes some sense, but what we would like to see is a measure of how good the
clustering is for human consumption or for further processing.

Given a set of categorized (manually classified) documents, it is possible to use
this benchmark labeling for evaluation of clusterings. The most common measure is
purity. Assume {L1, L2, . . . , Ln} are the manually labeled classes of documents, and
{C1, C2, . . . , Cm} are the clusters returned by the clustering process. Then,

Purity(Ci) = max j |Lj ∩ Ci |/|Ci |.

Other measures include the entropy of classes in clusters, mutual information

between classes and clusters, and so on. However, all these measures suffer from the
limitation that there is more than one way to classify documents – all equally right.

Probably the most useful evaluation is the straightforward measure of the utility of
the resulting clustering in its intended application. For instance, assume the clustering
is used for improving the navigation of search results. Then it is possible to prepare
a set of queries and the intended results manually and to measure the improvement
produced by clustering directly using simulated experiments.

V.5 CITATIONS AND NOTES

Section V.1

The scatter/gather method was introduced by Cutting in Cutting et al. (1992) and fur-
ther expanded in Cutting, Karger, et al. (1993). Application and analysis of the scat-
ter/gather methods are described in Cutting, Karger, et al. (1992); Cutting, Karger,
and Pedersen (1993); Hearst, Karger, and Pedersen (1995); and Hearst and Pedersen
(1996).

Section V.3

Descriptions of general clustering algorithms and comparisons between them can be
found in the following papers: Mock (1998); Zhong and Ghosh (2003); Jain and Dubes
(1988); Goldszmidt and Sahami (1998); Jain et al. (1999); and Steinbach, Karypis, and
Kumar (2000). Algorithms for performing clustering on very large amount of data
are described in Bradley, Fayyad, and Reina (1998) and Fayyad, Reina, and Bradley
(1998).

Section V.4

Clustering by using latent semantic indexing (LSI) is described in the following
papers: Deerwester et al. (1990); Hull (1994); and Landauer, Foltz, and Laham (1998).
In many cases there is a need to utilize background information and external knowl-
edge bases. Clustering using backround information is described in Hotho et al.

V.5 Citations and Notes 93

(2003), and clustering using ontologies is described in Hotho, Staab, and Maedche
(2001). Clustering using the popular WordNet resource is mentioned in Benkhalifa,
Mouradi, and Bouyakhf (2001a, 2000b).

Specific clustering algorithms adapted for textual data are described in Iwayama
and Tokunaga (1995a, 1995b); Goldszmidt and Sahami (1998); Zamir and Etzioni
(1999); El-Yaniv and Souroujon (2001); and Dhillon, Mallela, and Kumar (2002).

VI

Information Extraction

VI.1 INTRODUCTION TO INFORMATION EXTRACTION

A mature IE technology would allow rapid creation of extraction systems for new
tasks whose performance would approach a human level. Nevertheless, even systems
without near perfect recall and precision can be of real value. In such cases, the results
of the IE system would need to be fed into an auditing environment to allow auditors
to fix the system’s precision (an easy task) and recall (much harder) errors. These
types of systems would also be of value in cases in which the information is too vast
for the users to be able to read all of it; hence, even a partially correct IE system would
be preferable to the alternative of not obtaining any potentially relevant information.
In general, IE systems are useful if the following conditions are met:

� The information to be extracted is specified explicitly and no further inference is
needed.

� A small number of templates are sufficient to summarize the relevant parts of
the document.

� The needed information is expressed relatively locally in the text (check Bagga
and Biermann 2000).

As a first step in tagging documents for text mining systems, each document is
processed to find (i.e., extract) entities and relationships that are likely to be meaning-
ful and content-bearing. The term relationships here denotes facts or events involving
certain entities.

By way of example, a possible event might be a company’s entering into a joint
venture to develop a new drug. An example of a fact would be the knowledge that
a gene causes a certain disease. Facts are static and usually do not change; events
are more dynamic and generally have a specific time stamp associated with them.
The extracted information provides more concise and precise data for the mining
process than the more naive word-based approaches such as those used for text
categorization, and the information tends to represent concepts and relationships
that are more meaningful and relate directly to the examined document’s domain.

94

VI.1 Introduction to Information Extraction 95

��������

��������

	
��
 �������

�����������

���������� �����

�����������

	�
��
���
 	���
�

Figure VI.1. Schematic view of the information extraction process.

Consequently, IE methods allow for mining of the actual information present
within the text rather than the limited set of tags associated with the documents.
The IE process makes the number of different relevant entities and relationships

on which the text mining is performed unbounded – typically thousands or even
millions, which would be far beyond the number of tags any automated catego-
rization system could handle. Thus, preprocessing techniques involving IE tend to
create more rich and flexible representation models for documents in text mining
systems.

IE can be seen as a limited form of “complete text comprehension.” No attempt
is made to understand the document at hand fully. Instead, one defines a priori the
types of semantic information to be extracted from the document. IE represents
documents as sets of entities and frames that are another way of formally describing
the relationships between the entities.

The set of all possible entities and frames is usually open and very big compared
with the set of categorization keywords. It cannot be created manually. Instead, the
features are extracted directly from the text. The hierarchy relation between the
entities and frames is usually a simple tree. The root has several children – the entity
types (e.g., “Company,” “Person,” “Gene,” etc.) under which the actual entities are
automatically added as they are being discovered.

The frames constitute structured objects, and so they cannot be directly used
as features for text mining. Instead, the frame attributes and its label are used for
features. The frame itself, however, may bypass the regular text mining operations
and may be fed directly to the querying and visualization components.

The simplest kind of information extraction is called term extraction. There are
no frames, and there is only one entity type – simply “term.”

Figure VI.1 gives a schematic view of the IE process. At the heart of the process
we have the IE engine that takes a set of documents as input. The engine works by
using a statistical model, a rule module, or a mix of both.

96 Information Extraction

The output of the engine is a set of annotated frames extracted from the docu-
ments. The frames actually populate a table in which the fields of the frame are the
rows of the table.

VI.1.1 Elements That Can Be Extracted from Text

There are four basic types of elements that can, at present, be extracted from text.

� Entities. Entities are the basic building blocks that can be found in text documents.
Examples include people, companies, locations, genes, and drugs.

� Attributes. Attributes are features of the extracted entities. Some examples of
attributes are the title of a person, the age of a person, and the type of an orga-
nization.

� Facts. Facts are the relations that exist between entities. Some examples are an
employment relationship between a person and a company or phosphorylation
between two proteins.

� Events. An event is an activity or occurrence of interest in which entities partici-
pate such as a terrorist act, a merger between two companies, a birthday and so
on.

Figure VI.2 shows a full news article that demonstrates several tagged entities
and relationships.

VI.2 HISTORICAL EVOLUTION OF IE: THE MESSAGE

UNDERSTANDING CONFERENCES AND TIPSTER

The Defense Advanced Research Project Agency (DARPA) has been sponsoring
efforts to codify and expand IE tasks, and the most comprehensive work has arisen
from MUC-6 (Message Understanding Conference) and MUC-7 conferences. We
now describe the various tasks introduced during the MUC conferences.

VI.2.1 Named Entity Recognition

The named entity recognition (NE, sometimes denoted also as NER) phase is the
basic task-oriented phase of any IE system. During this phase the system tries to
identify all mentions of proper names and quantities in the text such as the following
types taken from MUC-7:

� People names, geographic locations, and organizations;
� Dates and times; and
� Monetary amounts and percentages.

The accuracy (F1) of the extraction results obtained on the NE task is usually
quite high, and the best systems manage to get even up to 95-percent breakeven
between precision and recall.

The NE task is weakly domain dependent – that is, changing the domain of the
texts being analyzed may or may not induce degradation of the performance levels.
Performance will mainly depend on the level of generalization used while developing
the NE engine and on the similarity between the domains.

VI.2 Historical Evolution of IE 97

Figure VI.2. A tagged news article.

Proper names usually account for 70 percent of the named entities in the MUC
corpuses, dates and times account for 25 percent, and monetary amounts and per-
centages account for less than 5 percent of the total named entities. Out of the named
entities, about 45–50 percent are organization names, 12–32 percent are location tags,
and 23–39 percent are people tags.

The MUC committee stipulated that the following types of noun
phrases should not be extracted because they do not refer to any specific
entity:

� Artifacts (e.g., Wall Street Journal, MTV, etc.),
� Common nouns used in anaphoric reference (such as the plane, the company,

etc.),
� Names of groups of people and laws named after people (e.g., Republicans,

“Gramm–Rudman amendment,” “the Nobel Prize,” etc.),
� Adjectival forms of location names (e.g., “American,” “Japanese,” etc.),

and
� Miscellaneous uses of numbers that are not specifically currency or percentages.

98 Information Extraction

VI.2.2 Template Element Task

Template element tasks (TEs) are independent or neutral with respect to scenario
or domain. Each TE consists of a generic object and some attributes that describe
it. This enables separating domain-independent from domain-dependent aspects of
extraction.

The TE following types were included in MUC-7:

� Person
� Organization
� Location (airport, city, country, province, region, water)
� Artifact.

Here are examples of TEs. A typical paragraph of text from a press release is
as follows below (taken from <http://www.itl.nist.gov/iaui/894.02/related projects/
muc/>):

Fletcher Maddox, former Dean of the UCSD Business School, announced the

formation of La Jolla Genomatics together with his two sons. La Jolla Genomat-

ics will release its product Geninfo in June 1999. L.J.G. is headquartered in the

Maddox family’s hometown of La Jolla, CA.

One can extract various entities and descriptors. For instance, some of the entities
and descriptors that can be automatically extracted from this paragraph by using
information extraction algorithms include the following:

entity {

ID = 1,

NAME = “Fletcher Maddox”

DESCRIPTOR = “Former Dean of USCD Business School”

CATEGORY = person

}

entity {

ID = 2

NAME = “La Jolla Genomatics”

ALIAS = “LJG”

DESCRIPTOR = “”

CATEGORY = organization

}

entity {

ID = 3

NAME = “La Jolla”

DESCRIPTOR = “the Maddox family hometown”

CATEGORY = location

}

VI.2 Historical Evolution of IE 99

VI.2.3 Template Relationship (TR) Task

The Template relationship task (TR) expresses a domain-independent relationship
between entities as compared with TEs, which just identify entities themselves. The
goal of the TR task is to find the relationships that exist between the template ele-
ments extracted from the text (during the TE task). Just like the definition of an entity,
entity attributes depend on the problem and the nature of the texts being analyzed;
the relationships that may exist between template elements is domain dependent
too. For example, persons and companies may be related by employee of relation,
companies and locations may be related by located of relations, and companies may
be interrelated by subdivision of relations.

The following TRs were extracted from the sample text:

employee of (Fletcher Maddox, UCSD Business School)

employee of (Fletcher Maddox, La Jolla Genomatics)

product of (Geninfo, La Jolla Genomatics)

location of (La Jolla, La Jolla Genomatics)

location of (CA, La Jolla Genomatics)

VI.2.4 Scenario Template (ST)

Scenario templates (STs) express domain and task-specific entities and relations.
The main purpose of the ST tasks is to test portability to new extraction problems
quickly. This task gives advantage to technologies that are not so labor intensive and
hence can port the extraction engine to a new domain in a short time (couple of
weeks).

Here are a few events that were extracted from the sample text:

company-formation-event {

PRINCIPAL = “Fletcher Maddox”

DATE = “”

CAPITAL = “”

}

product-release-event {

COMPANY = “La Jolla Genomatics”

PRODUCS = “Geninfo”

DATE = “June 1999”

COST = “”

}

VI.2.5 Coreference Task (CO)

The coreference task (CO) captures information on coreferring expressions (e.g.,
pronouns or any other mentions of a given entity), including those tagged in the NE,
TE tasks. This CO focuses on the IDENTITY (IDENT) relation, which is symmet-
rical and transitive. It creates equivalence classes (or coreference chains) used for
scoring. The task is to mark nouns, noun phrases, and pronouns.

100 Information Extraction

“It's a chance to think about first-level

q u e s t i o n s " , s a i d M s . < e n a m e x t y p e =

"PERSON">Cohn</enamex>, a partner in the <enamex type=

"ORGANIZATION"> McGlashan & Sarrail</enamex> firm in

<enamex type= "LOCATION">San Mateo</enamex>, Senamex

type= "LOCATION">Calif.</enamex>

Figure VI.3. MUC-style annotation.

Consider the following sentence:

David1 came home from school, and saw his1 mother2,

Rachel2. She2 told him1 that his1 father will be late.

The correctly identified pronominal coreference chains are (David1, his1, him1,
his1) and (mother2, Rachel2, She2).

This is not a high-accuracy task for IE systems but properly resolving some kinds
of coreference is usually difficult even for humans annotators, who achieved about
80 percent.

An MUC-style tagging is shown in Figure VI.3, and a sample template extracted
from that text fragment is shown in Figure VI.4.

VI.2.6 Some Notes about IE Evaluation

We follow here the discussion of Lavelli et al. (2004) about various problems in
the common evaluation methodology of information extraction. The main prob-
lem is that it is very hard to compare different IE experiments without comparing
the exact settings of each experiment. In particular the following problems were
raised:

� The exact split between the training set and test set: considering both the propor-
tions between the two sets (e.g., a 50/50 versus a 90/10 split) and the repetition
procedure adopted in the experiment (e.g., a single specific split between training
and test versus n repeated random splits versus n-fold cross-validations).

� Determining the test set: the test set for each point on the learning curve can be
the same (hold-out set) or be different and based on the exact split.

� What constitutes an exact match: how to treat an extraneous or a missing
comma – that is, should it be counted as a mistake or is it close enough and
does not miss any critical information.

� Feature Selection: many different types of features can be used, including ortho-
graphic features, linguistic features (such as POS, stemming, etc.), and semantic
features based on external ontologies. In order to compare any two algorithms
properly they must operate on the same set of features.

<ORGANIZATION-9303020074-1> :=

 ORG_NAME: "McGlashan & Sarrail"

 ORG_ALIAS: "M & S"

 ORG_LEADER: <PERSON-9303020074-57>

 ORG_TYPE: COMPANY

Figure VI.4. MUC-style templates.

VI.3 IE Examples 101

Counting the Correct Results

� Exact Matches: Instances generated by the extractor that perfectly match actual
instances annotated by the domain expert.

� Contained Matches: Instances generated by the extractor that contain actual
instances annotated by the domain expert and some padding from both sides.

� Overlapped Matches: Instances generated by the extractor that overlap actual
instances annotated by the domain expert (at least one word is in the intersection
of the instances).

Another aspect is how to treat entities that appear multiple times in a document.
One option is to extract all of them, and then any omission will result in lower recall.
Another option is to extract each entity just once; hence, it is enough just to identify
one occurrence of each entity. There are situations in which the latter option will
actually make sense if we are just interested in knowing which entities appear in
each document (and we do not care how many times it appears).

VI.3 IE EXAMPLES

This section provides several real-world examples of input documents and the results
obtained by performing information extraction on them. The examples have been
culled from a variety of domains and demonstrate a broad range tagging standards to
give the reader an exposure to the different ways to approach coding the information
exaction process.

VI.3.1 Case 1: Simplistic Tagging, News Domain

Consider a system that extracts business events from news articles. Such a system is
useful for business analysts or even casual users interested in keeping abreast of the
current business events. Consider the following text fragment:

“TeliaSonera, the Nordic region’s largest telecoms operator, was formed in 2002

from the cross-border merger between Telia and Finland’s Sonera,”

One can extract the following frame from it:

FrameName: Merger
Company1: Telia
Company2: Sonera
New Company: TeliaSonera

This frame actually provides a concise summary of the previous text fragment.
The following cases will show the types of summary information that can be extracted
from other text fragments.

VI.3.2 Case 2: Natural Disasters Domain

4 Apr Dallas – Early last evening, a tornado swept through an area northwest

of Dallas, causing extensive damage. Witnesses confirm that the twister occurred

without warning at approximately 7:15 p.m. and destroyed the mobile homes.

102 Information Extraction

The Texaco station, at 102 Main Street, Farmers Branch, TX, was severely dam-

aged, but no injuries were reported. Total property damages are estimated at

$350,000.

Event: tornado

Date: 4/3/97

Time: 19:15

Location: Farmers Branch : “northwest of Dallas” : TX : USA

Damage: mobile homes

Texaco station

Estimated Losses: $350,000

Injuries: none

VI.3.3 Case 3: Terror-Related Article, MUC-4

19 March – a bomb went off this morning near a power tower in San Salvador leav-

ing a large part of the city without energy, but no causalities have been reported.

According to unofficial sources, the bomb – allegedly detonated by urban guerrilla

commandos – blew up a power tower in the northwestern part of San Salvador at

0650 (1250 GMT).

Incident Type: Bombing

Date: March 19th

Location: El Salvador: San Salvador (City)

Perpetrator: urban guerrilla commandos

Physical Target: power tower

Human Target: –

Effect of Physical Target: destroyed

Effect on Human Target: no injury or death

Instrument bomb

VI.3.4 Technology-Related Article, TIPSTER-Style Tagging

Here is an article from the MUC-5 evaluation dealing with microelectronics.

<doc>

<REFNO> 000019641 </REFNO>

<DOCNO> 3560177 </DOCNO>

<DD> November 25, 1991 </DD>

<SO> News Release </SO>

<TXT>

Applied Materials, Inc. today announced its newest source technology, called

the Durasource, for the Endura(TM) 5500 PVD system. This enhanced source

includes new magnet configurations, giving the industry’s most advanced

VI.3 IE Examples 103

sputtered aluminum step coverage in sub-micron contacts, and a new one

piece target that more than doubles target life to approximately 8000 microns

of deposition compared to conventional two-piece “bonded” targets. The Dura-

source enhancement is fully retrofittable to installed Endura 5500 PVD sys-

tems. The Durasource technology has been specially designed for 200 mm

wafer applications, although it is also available for 125 mm and 1s0mm wafer

sizes. For example, step coverage symmetry is maintained within 3% between

the inner and outer walls of contacts across a 200 mm wafer. Film thickness

uniformity averages 3% (3 sigma) over the life of the target.

</TXT>

</doc>

<TEMPLATE-3560177-1> :=
DOC NR: 3560177
DOC DATE: 251192
DOCUMENT SOURCE: “News Release”
CONTENT:
<MICROELECTRONICS CAPABILITY-3560177-1>

DATE TEMPLATE COMPLETED: 021292
EXTRACTION TIME: 5
COMMENT: “article focuses on nonreportable target source
but reportable info available”
/“TOOL VERSION: LOCKE.3.4”
/“FILLRULES VERSION: EME.4.0”

<MICROELECTRONICS CAPABILITY-3560177-1> :=
PROCESS: <LAYERING-3560177-1>

MANUFACTURER: <ENTITY-3560177-1>

<ENTITY-3560177-1> :=
NAME: Applied Materials, INC
TYPE: COMPANY

<LAYERING-3560177-1> :=
TYPE: SPUTTERING
FILM: ALUMINUM
EQUIPMENT: <EQUIPMENT-3560177-1>

<EQUIPMENT-3560177-1> :=
NAME OR MODEL: “Endura(TM) 5500”
MANUFACTURER: <ENTITY-3560177-1>

EQUIPMENT TYPE: PVD SYSTEM
STATUS: IN USE
WAFER SIZE: (200 MM)

(125 MM)
COMMENT: “actually three wafer sizes, third is error 1s0mm”

104 Information Extraction

VI.3.5 Case 5: Comprehensive Stage-by-Stage Example

� Original Sentence: Mr. Eskew was Vice President of Worldwide Sales for Sand-
piper Networks, which was recently acquired by Digital Island where he created
the worldwide sales strategy.

� After Part of Speech Tagging:

<Prop>Mr. Eskew</Prop> <Verb>was</Verb> <Prop>Vice
President</Prop> <Prep>of</Prep> <Prop>Worldwide Sales</Prop>

<Prep>for</Prep> <Prop>Sandpiper Networks</Prop> which
<Verb>was</Verb> <Adv>recently</Adv> <Verb>acquired</Verb>

<Prep>by</Prep> <Prop>Digital Island</Prop> where <Pron>he</Pron>

<Verb>created</Verb> <Det>the</Det> <Adj>worldwide</Adj>
<Nn>sales strategy.</Nn>

� After Shallow Parsing:

NP:{Mr. Eskew}was NP:{Vice President of Worldwide Sales} for NP:{Sandpiper
Networks} which was ADV:{recently} V:{acquired} by NP:{Digital Island}
where NP:{he} V:{created} NP:{the worldwide sales strategy}

� After Named Entity Recognition:

Person:{Mr. Eskew} was Position:{Vice President of Worldwide Sales} for
Company:{Sandpiper Networks} which was ADV:{recently} V:{acquired} by
Company:{Digital Island} where Person:{he} V:{created} NP:{the worldwide
sales strategy}

� After Merging (Anaphora Resolution):

Person:{Mr. Eskew} was Position:{Vice President of Worldwide Sales} for
Company:{Sandpiper Networks} which was ADV:{recently} V:{acquired} by
Company:{Digital Island} where Person:{Mr. Eskew} V:{created} NP:{the
worldwide sales strategy}

� Frames Extracted:

Frame Type: Acquisition

Acquiring Company: Digital Island
Acquired Company: Sandpiper Networks
Acquisition Status: Historic

FrameType: PersonPositionCompany

Person: Mr. Eskew
Position: Vice President of Worldwide Sales
Company: Sandpiper Networks
Status: Past

VI.4 ARCHITECTURE OF IE SYSTEMS

Figure VI.5 shows the generalized architecture for a basic IE system of the type
that would be used for text mining preprocessing activities. The subcomponents are
colored according to their necessity within the full system.

A typical general-use IE system has three to four major components. The
first component is a tokenization or zoning module, which splits an input doc-
ument into its basic building blocks. The typical building blocks are words,

VI.4 Architecture of IE Systems 105

Tokenization

Morphological and
Lexical Analysis

Syntactic Analysis

Domain Analysis

Zoning

Part of Speech Tagging

Sense Disambiguiation

Deep Parsing

Shallow Parsing

Anaphora Resolution

Integration

Must

Advisable

Nice to have

Can pass

Figure VI.5. Architecture of a typical information extraction system.

sentences and paragraphs. Rarely we may have higher building blocks like sections
and chapters.

The second component is a module for performing morphological and lexical

analysis. This module handles activities such as assigning POS tags to the document’s
various words, creating basic phrases (like noun phrases and verb phrases), and
disambiguating the sense of ambiguous words and phrases.

The third component is a module for syntactic analysis. This part of an IE system
establishes the connection between the different parts of each sentence. This is done
either by doing full parsing or shallow parsing.

A fourth and increasingly more common component in IE systems performs what
might be termed domain analysis, which is a function in which the system combines all
the information collected from the previous components and creates complete frames
that describe relationships between entities. Advanced domain analysis modules also
possess an anaphora resolution component. Anaphora resolution concerns itself with
resolving indirect (and usually pronomic) references for entities that may appear in
sentences other than the one containing the primary direct reference to an entity.

VI.4.1 Information Flow in an IE System

Most information extraction systems use a deterministic bottom-up approach to
analyzing the document. Initially, one identifies the low-level elements and then
identifies higher level features that are based on the low-level features identified in
the previous phases.

106 Information Extraction

Processing the Initial Lexical Content: Tokenization and Lexical Analysis

The first two phases of an IE system really both concern themselves with processing
a document to identify various elements of its basic lexical content. As a first pass,
a document is divided into tokens, sentences, and possibly paragraphs. Then, each
word is tagged by its part of speech and lemma.

In addition, an IE system can use specialized dictionaries and gazetteers to tag
words that appear in those word lists. Typical dictionaries include names of coun-
tries, cities, people’s first names, public companies, company suffixes, common titles
in companies, and so on. Dictionary support during initial tagging creates richer
document representations. For example, using appropriate dictioniaries, the word
“Robert” would be tagged as a “first name,” “IBM” would be tagged as a company,
and the acronym “spa” could be tagged as “company suffix.”

Proper Name Identification

Commonly, the next phase is proper name identification. After an IE system per-
forms the basic lexical analysis, it is typically designed to try to identify a variety
of simple entity types such as dates, times, e-mail address, organizations, people
names, locations, and so on. The entities are identified by using regular expressions
that utilize the context around the proper names to identify their type. The regular
expressions can use POS tags, syntactic features, and orthographic features such as
capitalization.

Proper name identification is performed by scanning the words in the sentence
while trying to match one of the patterns in the predefined set of regular expressions.
Each proper name type has its associated set of regular expressions. All patterns are
attempted for each word. If more than one pattern is matched, the IE system picks
the pattern that matches the longest word sequence. If there is a tie, the IE system
usually just uses the first pattern. If no pattern matches, the IE system moves to the
next word and reapplies the entire set of patterns. The process continues until the
end of the sentence is reached.

To illustrate how such regular expressions are constructed, we present several
regular expressions for identifying people names below.

1. @Honorific CapitalizedWord CapitalizedWord
a. @Honorific is a list of honorific titles such as {Dr., Prof., Mr., Ms., Mrs.

etc.)
b. Example: Mr. John Edwards

2. @FirstNames CapitalizedWord
a. @FirstNames is a list of common first names collected from sites like the

U.S. census and other relevant sites
b. Example: Bill Hellman

3. CapitalizedWord CapitalizedWord [,] @PersonSuffix
a. @PersonSuffix is a list of common suffixes such as {Jr., Sr., II, III, etc.}
b. Example: Mark Green, Jr.

4. CapitalizedWord CapitalLetter [.] CapitalizedWord
a. CapitalLetter followed by an optional period is a middle initial of a person

and a strong indicator that this is a person name
b. Example: Nancy M. Goldberg

VI.4 Architecture of IE Systems 107

Element Grammatical Function Type

E1 NP Company

E2 VG

E3 NP Person

E4 NP Position

E5 NP Position

E6 NP Company

E7 NP Location

E8 VG

E9 NP Position

Figure VI.6. Identifying a text element’s grammatic function and type.

5. CapitalizedWord CapitalLetter @PersonVerbs
a. @PersonVerbs is a list of common verbs that are strongly associated with

people such as {said, met, walked, etc.}

A more expansive treatment of the topic of manual rule writing and pattern
development is offered in Appendix A.

Shallow Parsing

After identifying the basic entities, an IE system moves to shallow parsing and iden-
tification of noun and verb groups. These elements will be used as building blocks
for the next phase that identifies relations between these elements. As an example,
consider the following annotated text fragment:

Associated Builders and Contractors (ABC)E1 today announcedE2 that Bob

PiperE3, co-ownerE4 and vice president of corporate operationsE5, Piper Elec-

tric Co., Inc.E6, Arvada, Colo.E7, has been namedE8 vice president of workforce

developmentE9.

Essentially, at this point, an IE system focuses on creating a comprehensive listing
of the types of elements found in such a text fragment in the manner shown in
Figure VI.6.

The next step performed by an IE system is the construction of noun groups based
on the noun phrases (NPs) that were constructed before. The construction is based
on common patterns developed manually. Essentially, this works in the following
manner. On the basis of a few typical patterns such as

1. Position and Position, Company
2. Company, Location,

one can construct the following noun groups (NGs):

1. co-ownerE4 and vice president of corporate operationsE5, Piper Electric Co.,
Inc.E6

2. Piper Electric Co., Inc.E6, Arvada, Colo.E7.

Already, even at the conclusion of the initial tokenization and lexical analysis
stages of the IE system’s preprocessing operations, a relatively rich amount of struc-
ture has been created to represent the text of a particular document. This structure

108 Information Extraction

will be useful as a building block for further phases of IE-related preprocessing
operations.

Building Relations

The construction of relations between entities is done by using domain-specific pat-
terns. The generality of the patterns depends on the depth of the linguistic analysis
performed at the sentence level. If one just performs this analysis against individual
noun or verb phrases, or both, then one will need to develop five to six times more
patterns than if simply the subject, verb, and object of each sentence were identified.
To extract an executive appointment event from the text fragment above, one could
use the following pattern:

Company [Temporal] @Announce Connector Person PersonDetails @Appoint

Position

This pattern can be broken down in the following way:

� Temporal is a phrase indicating a specific date and/or time such as {yesterday,
today, tomorrow, last week, an hour ago}

� @Announce is a set of phrases that correspond to the activity of making a public
announcement like {announced, notified, etc.}

� Connector is a set of connecting words like {that, . . . }
� PersonDetails is a phrase describing some fact about a person (such as his or her

age, current position, etc.); it will be usually surrounded by commas
� @Appoint is a set of phrases that correspond to the activity of appointing a person

to a position like {appointed, named, nominated, etc.}

One of the main tasks during the relation extraction is coreference resolu-
tion, which is introduced in Section VI.5. We expand on coreference resolution in
Section VI.5.

Inferencing

In many cases, an IE system has to resort to some kind of common sense reasoning
and infer missing values to complete the identification of events. The inference rules
are written as a formalism similar to Prolog clauses. Common examples include
family relations, management changes, spatial relations, and so on.

Below are two examples, one related to location of a person and the other to
the position a person is going to fill. The first example is a simple two-sentence text
fragment.

Example 1: John Edgar was reported to live with Nancy Leroy. His Address is 101

Forest Rd., Bethlehem, PA.

From this, it is possible to extract the following entities and events:

1. person(John Edgar)
2. person(Nancy Leroy)
3. livetogether(John Edgar, Nancy Leroy)
4. address(John Edgar, 101 Forest Rd., Bethlehem, PA)

VI.5 Anaphora Resolution 109

Using the following rule, one can infer that Nancy Leroy lives at 101 Forest Rd.,
Bethlehem, PA.

address(P1,A) :- person(P1), person(P2), livetogether(P1,P2), address(P1,A).

The second example is also a two-sentence text fragment.

Example 2: RedCarpet Inc. announced that its President, JayGoldman, has

resigned. The company appointed Fred Robbins to the position.

From this one can extract the following entities and events:

1. company(RedCarpet)
2. person(Jay Goldman)
3. personLeftPosition(Jay Goldman, RedCarpet, President)
4. personReplacesPerson(Fred Robbins, Jay Goldman)

Using the following rule in this second example, one can infer that Fred Robbins
is the new President of RedCarpet:

newposition(P2,Pos) :- person(P1), person(P2), company(C1), personLeftPosi-

tion(P1,C1,Pos), personReplacesPerson (P2,P1).

VI.5 ANAPHORA RESOLUTION

Anaphora or coreference resolution is the process of matching pairs of NLP expres-
sions that refer to the same entity in the real world. It is a process that is critical to
the proper function of advanced text mining preprocessing systems.

Below is an example of an annotated text fragment that includes chains of coref-
fering phrases. We can see here two chains referring to a person (#1, #5), one chain
referring to an incident (#2), one chain referring to groups of people (#4), two chains
referring to locations (#3, #7), and one chain referring to an organization (#6).

HADERA, Israel3 (AP) – A Palestinian gunman1 walked into a wedding hall

in northern Israel3 late Thursday and opened fire, killing six people and injuring

302, police6 said. . . . Police6 earlier said the attacker1 threw hand grenades but

witnesses and later police6 accounts said the attacker1 opened fire with an M-16

and was1 stopped before he1 could throw a grenade. The Al Aqsa Brigades4,

a militia4 linked to Yasser Arafat’s Fatah claimed responsibility. The group4 said

that Abed Hassouna1 from a village7 near the Palestinian town of Nablus carried

out the attack2 to avenge the death of Raed Karmi5, (the militia)4’s leader5 in

the town of Tulkarem. Hassouna1 had been a Palestinian policeman1 but left1 the

force two years ago, residents of his1 village7 said.

There are two main approaches to anaphora resolution. One is a knowledge-
based approach based on linguistic analysis of the sentences and is coded as a rigid
algorithm. The other approach is a machine learning approach based on an annotated
corpus.

110 Information Extraction

VI.5.1 Pronominal Anaphora

Pronominal anaphora deals with resolving pronouns such as he, she, and they, It is
the most common type of coreference. There are three types of pronouns:

� Reflexive pronouns: himself, herself
� Personal pronouns: he, him, you
� Possessive pronouns: her, his, hers

It should be pointed out that not all pronouns in English are anaphoric. For
instance, “it” can often be nonanaphoric as in the case of the previous sentence.
Other examples of nonanaphoric “it” include expressions such as “It is important,”
“It is necessary,” or “It has to be taken into account.” A nonanaphoric “it” is described
as pleonastic.

VI.5.2 Proper Names Coreference

The task here is to link together all the variations of a proper name (person, organi-
zation, location) that are observed in text. For example,

Former President Bush1 defended the U.S. military Thursday during a speech at
one of the nation’s largest Army posts, where one private accused of abusing Iraqi
prisoners awaits a court-martial. “These are difficult times for the Army as the
actions of a handful in Iraq violate the soldier’s code,” said George H. W. Bush1.

Additional examples can be observed in the example above.

VI.5.3 Apposition

Appositives are used to provide auxiliary information for a named entity. This infor-
mation is separated from the entity by a comma and either precedes it or comes
directly after it as in the following example:

said George H. W. Bush1, the father of President Bush1. the father of President

Bush1, George H. W. Bush1 said. . . .

A necessary condition for an appositional phrase to corefer to a named entity is
that they occur in different noun phrases. If the apposition is a modifier of the named
entity within the same noun phrase, then they are not considered coreferring as in
the following phrase “Former President Bush.” In this case Former President is not
coreferring to Bush.

VI.5.4 Predicate Nominative

A predicate nominative occurs after a copulative verb (is, seems, looks like, appears,
etc.) and completes a reference to the subject of a clause.

An example follows:

Bill Gates1 is the Chairman of Microsoft Corporation1

Subject: Bill Gates

Predicate Nominative: the Chairman of Microsoft Corporation

VI.5 Anaphora Resolution 111

A predicate nominative is a candidate for coreference only if it is stated in a firm
way. If it is stated in a speculative or negative way, then it is not a candidate for
coreference.

VI.5.5 Identical Sets

In this type of coreference the anaphor and the antecedent both refer to sets that are
identical or to identical types. In the following example, “The Al Aqsa Brigades,” “a
militia,” and “The group” all refer to the same set of people.

The Al Aqsa Brigades4, a militia4 linked to Yasser Arafat’s Fatah claimed respon-

sibility. The group4 said that Abed Hassouna1 from a village7 near the Palestinian

town of Nablus carried out the attack2 to avenge the death of Raed Karmi5,

(the militia)4’s leader5

Identifying identical sets is usually extremely difficult because deep knowledge about
the domain is needed.

If we have a lexical dictionary such as WordNet that include hyponyms and hyper-
nyms, we may be able to identify identical sets. We can deduce, for instance, that
“militia” is a kind of “group.”

VI.5.6 Function–Value Coreference

A function–value coreference is characterized by phrases that have a function–value
relationship. Typically, the function will be descriptive and the value will be numeric.

In the following text there are two function–value pairs:

Evolved Digital Systems’s Revenues1 were $4.1M1 for the quarter, up 61% com-

pared to the first quarter of 2003. Net Loss2 declined by 34% to $5.6M2.

Function: Evolved Digital Systems’s Revenues
Value: $4.1M
Function: Net Loss
Value: $5.6M

VI.5.7 Ordinal Anaphora

Ordinal anaphora involves a cardinal number like first or second or an adjective such
as former or latter as in the following example:

IBM and Microsoft1 were the final candidates, but the agency preferred the

latter company1.

VI.5.8 One-Anaphora

A one-anaphora consists of an anaphoric expression realized by a noun phrase con-
taining the word “one” as in the following:

If you cannot attend a tutorial1 in the morning, you can go for an afternoon one1.

112 Information Extraction

VI.5.9 Part–Whole Coreference

Part–whole coreference occurs when the anaphor refers to a part of the antecedent
as in the following:

John has bought a new car1. The indicators1 use the latest laser technology.

As in the case of identifying identical sets discussed in Section VI.5.5, a lexical
resource such WordNet is needed. In particular, WordNet includes the meronymy–
holonymy relationship, which can help us identify that indicators are a part of
a car.

VI.5.10 Approaches to Anaphora Resolution

Most of the work on coreference resolution focuses on pronominal resolution
because that is the most common type of coreference and is also one of the eas-
ier types to resolve.

Most of the approaches to pronominal resolution share a common overall
structure:

� Identify the relevant paragraphs (or sentences) around the pronoun in which one
will search for candidates antecedents.

� Using a set of consistency checks, delete the candidates that to do meet any of
the checks.

� Assign salience values to each of the surviving candidates according to a set of
predefined rules.

� Pick the candidate with the highest salience value.

Some of these approaches require heavy preprocessing and rely on full parsers,
whereas others are fairly knowledge-poor and rely on shallow parsing. The focus
here will be on approaches that do not require full parsing of the sentences
because doing this is too time-consuming and hence prohibitive in a real-world IE
system.

VI.5.10.1 Hobbs Algorithm

The most simplistic algorithm is the Hobbs algorithm, which is also called the Naive

algorithm (Hobbs 1986). This algorithm works by specifying a total order on noun
phrases in the prior discourse and comparing each noun phrase against a set of
constraints imposed by the features of the anaphor (i.e., gender, number). The first
antecedent to satisfy all the constraints is chosen.

A few points to note about this algorithm are as follows:

� For two candidate antecedents a and b, if a is encountered before b in the search
space, then a is preferred over b.

� The salience given to the candidate antecedents imposes a total ordering on the
antecedents – that is, no two antecedents will have the same salience.

� The algorithm can not handle ambiguity and will resolve a pronoun as if there
were at least one possible antecedent.

VI.5 Anaphora Resolution 113

VI.5.11 CogNIAC (Baldwin 1995)

CogNIAC is a pronoun resolution engine designed around the assumption that there
is a subclass of anaphora that does not require general purpose reasoning. Among the
kinds of information CogNIAC does require are POS tagging, simple noun phrase
recognition, and basic semantic category information like gender and number.

The system is based on a set of high-confidence rules that are successively applied
over the pronoun under consideration. The rules are ordered according to their
importance and relevance to anaphora resolution. The processing of a pronoun stops
when one rule is satisfied. Below are listed the six rules used by the system. For each
of them, the sentence prefix of anaphor is defined as the text portion of the sentence
from the beginning of the sentence to the position of the anaphor.

1. Unique Antecedent.

Condition: If there is a single valid antecedent A in the relevant discourse.
Action: A is the selected antecedent.

2. Reflexive Pronoun.

Condition: If the anaphor is a reflexive pronoun.
Action: Pick the nearest valid antecedent in the anaphor prefix of the current

sentence.
3. Unique in Current + Preceding.

Condition: If there is a single valid antecedent A in the preceding sentence
and anaphor prefix of the current sentence.

Action: A is the selected antecedent.
Example: Rupert Murdock’s News Corp. confirmed his interest in buying back

the ailing New York Post. But analysts said that if he winds up bidding for
the paper,

4. Possessive Pronoun.

Condition: If the anaphor is a possessive pronoun and there is a single exact
copy of the possessive phrase in the previous sentence.

Action: The antecedent of the latter copy is the same as the former.
Example: After he was dry, Joe carefully laid out the damp towel in front of

his locker. Travis went over to his locker, took out a towel and started to dry
off.

5. Unique in Current Sentence.

Condition: If there is a single valid antecedent A in the anaphor-prefix of the
current sentence

Action: A is the selected antecedent.
6. Unique Subject–Subject Pronoun.

Condition: If the subject of the previous sentence is a valid antecedent A and
the anaphor is the subject of the current sentence.

Action: A is the selected antecedent.

VI.5.11.1 Kennedy and Boguraev

This approach is based on Lappin and Leass’s (1994) method but without the need for
full parsing. This algorithm was used to resolve personal pronouns, reflexives, and
possessives. The algorithm works by constructing coreference equivalence classes.

114 Information Extraction

Each such class has a salience that is computed based on a set of 10 factors. Each
pronoun is resolved to the antecedent that belongs to the class with the highest
salience.

Here are the factors used by the salience algorithm. All the conditions refer to
the current candidate for which we want to assign salience. GFUN is the grammatical
function of the candidate

SENT-S: 100 iff in the current sentence
CNTX-S: 50 iff in the current context
SUBJ-S: 80 iff GFUN = subject

EXST-S: 70 iff in an existential construction
POSS-S: 65 iff GFUN = possessive

ACC-S: 50 iff GFUN = direct object

DAT-S: 40 iff GFUN = indirect object

OBLQ-S: 30 iff the complement of a preposition
HEAD-S: 80 iff EMBED = NIL
ARG-S: 50 iff ADJUNCT = NIL

As an example of the salience assignment, consider the following text fragment:

Sun’s prototype Internet access device uses a 110-Mhz MicroSPARCprocessor,

and is diskless. Its dimensions are 5.5 inches × 9 inches × 2 inches.

Anaphors and candidates are represented using their offset in the text (from the
beginning of the document), their grammatical function, and several other syntactic
features.

The structure of each candidate is Element: Offset/Salience

ANAPHOR: Its : 347
CANDIDATES:
Internet access device: 335/180 (=50+85+50)
MicroSPARCprocessor: 341/165 (=50+65+50)
Sun’s: 333/140 (=50+40+50)

The first sentence in this fragment includes three candidates with different gram-
matical functions. The second sentence, which includes that anaphor, does not include
any candidate satisfying the basic constraints. The three candidates in the first sen-
tence are ranked according to their salience.

The main factor determining the salience is the grammatical function of each
candidate. Internet access device is the subject of the sentence and hence satisfies the
SUBJ-S condition, is the optimal candidate, and is selected as the antecedent of Its.

VI.5.11.2 Mitkov

In contrast to the previous approaches that use mostly positive rules, Mitkov’s
approach (Mitkov 1998) is based on a set of boosting and impeding indicators applied
to each candidate. The approach takes as an input the output of a text processed by
a part-of-speech tagger, identifies the noun phrases that precede the anaphor within
a distance of two-sentences, checks them for gender and number agreement with the
anaphor, and then applies the genre-specific antecedent indicators to the remaining
candidates.

VI.5 Anaphora Resolution 115

The boosting indicators assign a positive score to a matching candidate, reflecting
a positive likelihood that it is the antecedent of the current pronoun. In contrast, the
impeding indicators apply a negative score to the matching candidate, reflecting a
lack of confidence that it is the antecedent of the current pronoun. The candidate
with the highest combined score is selected.

Here are some of the indicators used by Mitkov:

� Definiteness. Definite noun phrases in previous sentences are more likely
antecedents of pronominal anaphors than indefinite ones (definite noun phrases
score 0 and indefinite ones are penalized by −1).

� Givenness. Noun phrases in previous sentences representing the “given informa-
tion” are deemed good candidates for antecedents and score 1 (candidates not
representing the theme score 0). The given information is usually the first noun
phrase in a nonimperative sentence.

� Indicating Verbs. If a verb in the sentence has a stem that is a member of {discuss,
present, illustrate, identify, summarize, examine, describe, define, show, check,
develop, review, report, outline, consider, investigate, explore, assess, analyze,
synthesize, study, survey, deal, cover}, then the first NP following the verb is the
preferred antecedent.

� Lexical Reiteration. Lexically reiterated noun phrases are preferred as candi-
dates for antecedent (an NP scores 2 if is repeated within the same paragraph
twice or more, 1 if repeated once, and 0 if it is not repeated). The matching is done
in a loose way such that synonyms and NPs sharing the same head are considered
identical.

� Section Heading Preference. If a noun phrase occurs in the heading of the sec-
tion containing the current sentence, then we consider it the preferred candi-
date.

� “Nonprepositional” Noun Phrases. A “nonprepositional” noun phrase is given
a higher preference than a noun phrase that is part of a prepositional
phrase (0, −1). Example:Insert the cassette into the VCR making sure it is
suitable for the length of recording. Here VCR is penalized for being part
of a prepositional phrase and is resolved to the cassette.

� Collocation Pattern Preference. This preference is given to candidates hav-
ing an identical verb collocation pattern with a pronoun of the pattern
“noun phrase (pronoun), verb” and “verb, noun phrase (pronoun).” Example:
Press the key down and turn the volume up . . . Press it again. Here key is
preferred antecedent because it shares the same verb (press) with the pronoun
(“it”).

� Immediate Reference. Given a pattern of the form “ . . . You? V1 NP . . . con you?
V2 it (con you? V3 it)”, where con ∈ {and/or/before/after . . . }, the noun phrase
immediately after V1 is a very likely candidate for the antecedent of the pronoun
“it” immediately following V2 and is therefore given preference (scores 2 and 0).
Example:

To print the paper1, you can stand the printer2 up or lay it2 flat. To turn on the

printer2, press the Power button3 and hold it3 down for a moment. Unwrap

the the paper1, form it1 and align it1 then load it1 into the drawer.

116 Information Extraction

� Referential distance. In complex sentences, noun phrases receive the following
scores based on how close they are to the anaphor:

previous clause: 2
previous sentence: 1
2 sentences: 0
3 sentences further back: −1

In simple sentences, the scores are as follows:
previous sentence: 1
2 sentences: 0
3 sentences further back: −1

� Domain Terminology Preference. NPs representing domain terms are more likely
to be the antecedent (score 1 if the NP is a term and 0 if not).

VI.5.11.3 Evaluation of Knowledge-Poor Approaches

For many years, one of the main problems in contrasting the performance of the
various systems and algorithms had been that there was no common ground on
which such a comparison could reasonably be made. Each algorithm used a different
set of documents and made different types of assumptions.

To solve this problem, Barbu (Barbu and Mitkov 2001) proposed the idea of the
“evaluation workbench” – an open-ended architecture that allows the incorporation
of different algorithms and their comparison on the basis of the same preprocess-
ing tools and data. The three algorithms just described were all implemented and
compared using the same workbench.

The three algorithms implemented receive as input the same representation of
the input file. This representation is generated by running an XML parser over the
file resulting from the preprocessing phase. Each noun phrase receives the following
list of features:

� the original word form
� the lemma of the word or of the head of the noun phrase
� the starting and ending position in the text
� the part of speech
� the grammatical function (subject, object . . .)
� the index of the sentence that contains the referent
� the index of the verb related to the referent.

In addition, two definitions should be highlighted as follows:

� Precision = number of correctly resolved anaphors / number of anaphors
attempted to be resolved

� Success Rate = number of correctly resolved anaphors / number of all anaphors.

The overall results as reported in Mitkov are summarized in the following table:

K&B Cogniac Mitkov

Precision 52.84% 42.65% 48.81%

Success 61.6% 49.72% 56.9%

VI.5 Anaphora Resolution 117

VI.5.11.4 Machine Learning Approaches

One of the learning approaches (Soon et al. 2001) is based on building a classifier
based on the training examples in the annotated corpus. This classifier will be able
to take any pair of NLP elements and return true if they refer to the same real-
world entity and false otherwise. The NLP elements can be nouns, noun phrases, or
pronouns and will be called markables.

The markables are derived from the document by using the regular NLP prepro-
cessing steps as outlined in the previous section (tokenization, zoning, part of speech
tagging, noun phrase extraction and entity extraction). In addition to deriving the
markables, the preprocessing steps make it possible to create a set of features for
each of the markables. These features are used by the classifier to determine if any
two markables have a coreference relation.

Some Definitions

� Indefinite Noun Phrase. An indefinite noun phrase is a phrase that is used to
introduce a specific object or set of objects believed to be new to the addressee
(e.g., a new automobile, some sheep, and five accountants).

� Definite Noun Phrase. This is a noun phrase that starts with the article “the.”
� Demonstrative Noun Phrase. This is a noun phrase that starts with “this,” “that,”

“those,” or “these.”

Features of Each Pair of Markables

� Sentence Distance: 0 if the markables are in the same sentence.
� Pronoun: 1 if one of the markables is a pronoun; 0 otherwise.
� Exact Match: 1 if the two markables are identical; 0 otherwise.
� Definite Noun Phrase: 1 if one of the markables if a definite noun phrase; 0

otherwise.
� Demonstrative Noun Phrase: 1 if one of the markables is a demonstrative noun

phrase.
� Number Agreement: 1 if the both markables are singular or plural; 0 otherwise.
� Semantic Agreement: 1 if the markables belong to the same semantic class (based

on the entity extraction component).
� Gender Agreement: 1 if the two markables have the same gender (male, female),

0 if not, and 2 if it is unknown.
� Proper Name: 1 if both markables are proper names; 0 otherwise.
� Alias: 1 if one markable is an alias of the other entity (like GE and General

Motors).

Generating Training Examples

� Positive Examples. Assume that in a given document we have found four
markables that refer to the same real-world entity, {M1,M2,M3,M4}. For
each adjacent pair of markables we will generate a positive example. In this
case, we will have three positive examples – namely {M1,M2}, {M2,M3} and
{M3,M4}.

� Negative Examples. Assume that markables a,b,c appear between M1 and M2;
then, we generate three negative examples {a,M2}, {b,M2}, {c,M2}.

118 Information Extraction

The Algorithm

Identify all markables

For each anaphor A

Let M1 to Mn be all markables from the

beginning of the document till A

For i=n;i=1;i - -

if PairClassifier(A,Mi)=true then

A, Mi is an anaphoric pair

exit

end if

end for

end for

Evaluation

Training on 30 documents yielded a classifier that was able to achieve precision of
68 percent and recall of 52 percent (F1 = 58.9%).

Ng and Cardie (Ng and Cardie 2002) have suggested two types of extensions to
the Soon et al. corpus-based approach. First, they applied three extralinguistic mod-
ifications to the machine learning framework, which together provided substantial
and statistically significant gains in coreference resolution precision. Second, they
expanded the Soon et al. feature set from 12 features to an arguably deeper set
of 53.

Ng and Cardie have also proposed additional lexical, semantic, and knowledge-
based features – most notably, 26 additional grammatical features that include a
variety of linguistic constraints and preferences. The main modifications that were
suggested by Ng and Cardie are as follows:

� Best-first Clustering. Rather than a right-to-left search from each anaphoric NP
for the first coreferent NP, a right-to-left search for a highly likely antecedent

was performed. As a result, the coreference clustering algorithm was modified
to select as the antecedent of NP the NP with the highest coreference likelihood
value from among preceding NPs with coreference class values above 0.5.

� Training Set Creation. Rather than generate a positive training example for each
anaphoric NP and its closest antecedent, a positive training example was gener-
ated for its most confident antecedent. For a nonpronominal NP, the closest non-

pronominal preceding antecedent was selected as the most confident antecedent.
For pronouns, the closest preceding antecedent was selected as the most confident
antecedent.

� String Match Feature. Soon’s string match feature (SOON STR) tests whether
the two NPs under consideration are the same string after removing determiners
from each. Rather than using the same string match for all types of anaphors,
finer granularity is used. Exact string match is likely to be a better coreference
predictor for proper names than it is for pronouns, for example. Specifically, the
SOON STR feature is replaced by three features – PRO STR, PN STR, and
WORDS STR – that restrict the application of string matching to pronouns,
proper names, and nonpronominal NPs, respectively.

VI.6 Inductive Algorithms for IE 119

Overall, the learning framework and linguistic knowledge source modifications boost
performance of Soon’s learning-based coreference resolution approach from an F-
measure of 62.6 to 70.4 on MUC-6 and from 60.4 to 63.4 on MUC-7.

VI.6 INDUCTIVE ALGORITHMS FOR IE

Rule Induction algorithms produce symbolic IE rules based on a corpus of annotated
documents.

VI.6.1 WHISK

WHISK is a supervised learning algorithm that uses hand-tagged examples for learn-
ing information extraction rules. WHISK learns regular expressions for each of the
fields it is trying to extract. The algorithm enables the integration of user-defined
semantic classes. Such classes enable the system to adjust to the specific jargon of
a given domain. As an example, consider the domain of apartment rental ads. We
want to accommodate all types of spellings of bedroom, and hence we introduce the
following semantic class: Bdrm = (brs |br |bds | bdrm | bd| bedroom| bed). WHISK
learns the regular expressions by using an example-covering algorithm that tries
to cover as many positive examples while not covering any negative example. The
algorithm begins learning a single rule by starting with an empty rule; then we add
one term at a time until either no negative examples are covered by the rule or
the prepruning criterion has been satisfied. Each time we add the term that mini-
mizes the Laplacian, which is (e + 1)/(n + 1), where e is the number of negative
examples covered by the rule as a result of the addition of the term and n is the
number of positive examples covered by the rule as a result of the term addition.
The process of adding rules repeats until the set of learned rules covers all the pos-
itive training instances. Finally, postpruning removes some of the rules to prevent
overfitting.

Here is an example of a WHISK rule:

ID::1
Input:: * (Digit) ‘BR’ * ‘$’ (number)
Output:: Rental {Bedrooms $1} {Price $2}

For instance, from the text “3 BR, upper flr of turn of ctry. Incl gar, grt N. Hill loc
995$. (206)-999-9999,” the rule would extract the frame Bedrooms – 3, Price – 995.

The “*” char in the pattern will match any number of characters (unlimited jump).
Patterns enclosed in parentheses become numbered elements in the output pattern,
and hence (Digit) is $1 and (number) is $2.

VI.6.2 BWI

The BWI (boosted wrapper induction) is a system that utilizes wrapper induction
techniques for traditional Information Extraction. IE is treated as a classification
problem that entails trying to approximate two boundary functions Xbegin(i) and
Xend(i). Xbegin(i) is equal to 1 if the ith token starts a field that is part of the frame
to be extracted and 0 otherwise. Xend(i) is defined in a similar way for tokens that

120 Information Extraction

end a field. The learning algorithm approximates each X function by taking a set of
pairs of the form {i, X}(i) as training data. Each field is extracted by a wrapper W =
<F, A, H> where

F is a set of begin boundary detectors
A is a set of end boundary detectors
H(k) is the probability that the field has length k

A boundary detector is just a sequence of tokens with wild cards (some kind of
a regular expression).

W(i, j) =
{

1 if F(i)A(j)H(j − i + 1) > σ

0 otherwise

F(i) =
∑

k

CFk
Fk(i), A(i) =

∑

k

CAk
Ak(i).

W(i, j) is a nave Bayesian approximation of the probability that we have a field
between token i and j with uniform priors. Clearly, as σ is set to be higher we get
better precision and lower recall, and if we set σ to be 0 we get the highest recall but
compromise precision.

The BWI algorithm learns two detectors by using a greedy algorithm that extends
the prefix and suffix patterns while there is an improvement in the accuracy. The sets
F(i) and A(i) are generated from the detectors by using the AdaBoost algorithm.
The detector pattern can include specific words and regular expressions that work
on a set of wildcards such as <num>, <Cap>, <LowerCase>, <Punctuation> and
<Alpha>.

When the BWI algorithm was evaluated on the acquisition relations from the
Reuters news collection, it achieved the following results compared with HMM:

Slot BWI HMM

Acquiring Company 34.1% 30.9%

Dollar Amount 50.9% 55.5%

VI.6.3 The (LP)2 Algorithm

The (LP)2 algorithm learns from an annotated corpus and induces two sets of rules:
tagging rules generated by a bottom-up generalization process and correction rules
that correct mistakes and omissions done by the tagging rules.

A tagging rule is a pattern that contains conditions on words preceding the
place where a tag is to be inserted and conditions on the words that follow the
tag. Conditions can be either words, lemmas, lexical categories (such as digit,
noun, verb, etc), case (lower or upper), and semantic categories (such as time-id,
cities, etc).

VI.6 Inductive Algorithms for IE 121

The (LP)2 algorithm is a covering algorithm that tries to cover all training exam-
ples. The initial tagging rules are generalized by dropping conditions.

A sample rule for tagging the stime (start time of a seminar) is shown below.

Condition

Word Index word lemma LexCat Case SemCat Tag Inserted

3 at <stime>

4 digit

5 time-id

The correction rules take care of incorrect boundaries set for the tags and shift
them to fix the errors. An example is “at <stime> 4 </stime> pm,” where the
</stime> tag should be shifted one token to the right. The correction rules learn
from the mistakes of the tagging processing on the training corpus. The action taken
by a correction rule is just to shift the tag rather than introduce a new tag. The
same covering algorithm used for learning the tagging rules is used for learning the
correction rules.

(LP)2 was also tested on extracting information from financial news articles and
managed to obtain the following results:

Tag F1 Tag F1

Location 70% Organization 86%

Currency 85% Stock Name 85%

Stock Exchange Name 91% Stock Category 86%

Stock Exchange Index 97% Stock Type 92%

These results are not on par with the results achieved by the probabilistic extrac-
tion algorithms such as HMM, CRF, and MEMM. It seems that the inductive algo-
rithms are suitable for semistructured domains, where the rules are fairly simple,
whereas when dealing with free text documents (such as news articles) the proba-
bilistic algorithms perform much better.

VI.6.4 Experimental Evaluation

All four algorithms were evaluated on the CMU seminar announcement database
and achieved the following results (F1results):

Slot BWI HMM (LP)2 WHISK

Speaker 67.7% 76.6% 77.6 18.3%

Location 76.7% 78.6% 75.0% 66.4%

Start Time 99.6% 98.5% 99.0% 92.6%

End Time 93.9% 62.1% 95.5% 86%

122 Information Extraction

VI.7 STRUCTURAL IE

VI.7.1 Introduction to Structural IE

Most text mining systems simplify the structure of the documents they process by
ignoring much of the structural or visual characteristics of the text (e.g., font type,
size, location, etc.) and process the text either as a linear sequence or as a bag of
words. This allows the algorithms to focus on the semantic aspects of the document.
However, valuable information is lost in these approaches, which ignore information
contained in the visual elements of a document.

Consider, for example, an article in a journal. The title is readily identifiable based
on its special font and location but less so based on its semantic content alone, which
may be similar to the section headings. This holds true in the same way for the author
names, section headings, running title,and so on. Thus, much important information
is provided by the visual layout of the document – information that is ignored by
most text mining and other document analysis systems.

One can, however, leverage preprocessing techniques that do not focus on the
semantic content of the text but instead on the visual layout alone in an effort to
extract the information contained in layout elements. These type of techniques entail
an IE task in which one is provided a document and seeks to discover specific fields
of the document (e.g., the title, author names, publication date, figure captions, bibli-
ographical citings, etc.). Such techniques have been termed structural or visual infor-

mation extraction.
Of course, it goes without saying that, within the overall context of text mining

preprocessing, a structural or visual IE approach is not aimed at replacing the seman-
tic one. Instead, the structural IE approach can be used to complement other more
conventional text mining preprocessing processes.

This section describes a recently developed general algorithm that allows the IE
task to be performed based on the visual layout of the document. The algorithm
employs a machine learning approach whereby the system is first provided with a
set of training documents in which the desired fields are manually tagged. On the
basis of these training examples, the system automatically learns how to find the
corresponding fields in future documents.

VI.7.2 Overall Problem Definition

A document D is a set of primitive elements D = {e1, . . . , en}. A primitive element
can be a character, a line, or any other visual object as determined by the document
format. A primitive element can have any number of visual attributes such as font size
and type, physical location, and so on. The bounding box attribute, which provides
the size and location of the bounding box of the element, is assumed to be available
for all primitive elements. We define an object in the document to be any set of
primitive elements.

The visual information extraction (VIE) task is as follows. We are provided with
a set of target fields F = {f1, . . . , fk} to be extracted and a set of training documents

T = {T1, . . . , Tm} wherein all occurrences of the target fields are annotated. Specifi-
cally, for each target field f and training document T, we are provided with the object

VI.7 Structural IE 123

f(T) of T that is of type f (f(T) = 0 if f does not appear in T). The goal, when pre-
sented with an unannotated query document Q, is to annotate the occurrences of
target fields that exist in Q (not all target fields need be present in each document).

Practically, the VIE task can be decomposed into two subtasks. First, for each
document (both training and query) one must group the primitive elements into
meaningful objects (e.g., lines, paragraphs, etc.) and establish the hierarchical struc-
ture among these objects. Then, in the second stage, the structure of the query doc-
ument is compared with the structures of the training documents to find the objects
corresponding to the target fields.

It has also proven possible to enhance the results by introducing the notion of
templates, which are groups of training documents with a similar layout (e.g., articles
from the same journal). Using templates, one can identify the essential features of
the page layout, ignoring particularities of any specific document. Templates are
discussed in detail in the sections that follow.

A brief examination is also made of a real-world system that was implemented for
a typical VIE task involving a set of documents containing financial analyst reports.
The documents were in PDF format. Target fields included the title, authors, publi-
cation dates, and others.

VI.7.3 The Visual Elements Perceptual Grouping Subtask

Recall that a document is a set of primitive elements such as characters, figures, and
so on. The objects of a document are sets of primitive elements. Target fields, in
general, are objects.

Thus, the first step in the visual IE task is to group the primitive elements of
the documents into higher level objects. The grouping should provide the con-
ceptually meaningful objects of the document such as paragraphs, headings, and
footnotes.

For humans, the grouping process is easy and is generally performed uncon-
sciously based on the visual structure of the document. As with other types of IE
perceptual grouping requirements, the goal is to mimic the human perceptual group-
ing process.

VI.7.4 Problem Formulation for the Perceptual Grouping Subtask

One can model the structure of the objects of a document as a tree, of which the
leaves are primitive elements and the internal nodes are (composite) objects. This
structure is called the object tree or O-Tree of the document.

The O-Tree structure creates a hierarchal structure among objects in which higher
level objects consist of groups of lower level objects. This hierarchal structure reflects
the conceptual structure of documents in which objects such as columns are groups
of paragraphs, which, in turn, are groups of lines, and so on. The exact levels and
objects represented in the O-Tree are application and format dependent.

For an HTML document, for example, the O-Tree may include objects represent-
ing tables, menus, the text body, and other elements, whereas for PDF documents
the O-Tree may include objects representing paragraphs, columns, lines, and so on.
Accordingly, for each file format and application we define the object hierarchy, H,

124 Information Extraction

which determines the set of possible object types, and a hierarchy among these objects.
Any object hierarchy must contain an object of type document, which is at the root
of the hierarchy. When constructing an O-Tree for a document, each object is labeled
by one of the object types defined in the object hierarchy, and the tree structure must
correspond to the hierarchical structure defined in the hierarchy.

Formally, an object hierarchy H is a rooted DAG that satisfies the following:

� The leaf nodes are labeled by primitive element types.
� Internal nodes are labeled by objects types.
� The root node is labeled by the document object type.
� For object types x and y, type y is a child of x if an object of type x can (directly)

contain an object type y.

For a document D = {e1, . . . , en} and an object hierarchy H, an O-Tree of D according
to H is a tree O with the following characteristics:

� The leaves of O consist of all primitive elements of D.
� Internal nodes of O are objects of D.
� If X and X′ are nodes of O (objects or primitive elements) and X ⊂ X′, then X′

is an ancestor (or parent) of X.
� Each node X is labeled by a label from H denoted label(X).
� If X′ is a parent of X in T, then label(X′) is a parent of label(X) in H.
� label(root) = Document.

VI.7.5 Algorithm for Constructing a Document O-Tree

Given a document, one constructs an O-Tree for the document. In doing so, the
aim is to construct objects best reflecting the true grouping of the elements into
“meaningful” objects (e.g., paragraphs, columns, etc.). When constructing an object
we see to it that the following requirements are met:

� The elements of the objects are within the same physical area of the page. Specif-
ically, each object must be connected – that is, an object X cannot be decomposed
into two separate objects X1 and X2 such that any line connecting X1 and X2
necessarily crosses an element in a different object.

� The elements of the object have similar characteristics (e.g., similar font type,
similar font size, etc.). Specifically, one must assume a fitness function fit(.,.) such
that for any two objects X and Y, where label(Y) is child of label(X), fit(Y,X)
provides a measure of how fit Y is as an additional member to X (e.g., if X is a
paragraph and Y a line, then how similar is Y the other lines in X). One adds Y

to X only if fit(Y;X) is above some threshold value, ◦. The exact nature of the
function fit(¢; ¢) and the threshold value are format and domain dependent.

Given these two criteria, the O-Tree can be constructed in a greedy fashion,
from the bottom up, layer by layer. In doing so, one should always prefer to enlarge
existing objects of the layer, starting with the largest object. If no existing object can
be enlarged, and there are still “free” objects of the previous layer, a new object
is created. The procedure terminates when the root object, labeled Document, is

VI.7 Structural IE 125

completed. A description of the algorithm is provided in the following pseudocode
algorithm:

Input: D - Document

Output: O-Tree for D

1. For each type t ∈ H do

let level(t) be the length of the longest path from t to a leaf

2. Let h = level(Document)

3. Objects(0) ← D

4. For i = 1 to h do

5. Objects(i) ← 0

6. free ← Objects(i − 1)

7. While free =/ 0 do

8. For each X ∈ Objects(i) in order of descending size do

9. For each Y ∈ free in order of increasing distance from X do

10. If Y is a neighbor of X and fit(Y, X) ≥ γ then

11. X ← X ∪ Y

12. make Y a child of X

13. Remove Y from free

14. Break (go to line 7)

15. For each t ∈ H such that level(t) = i do

16. if Objects(i) does not include an empty object of type t

17. Add an empty set of type t to Objects(i)

18. end while

19. Remove empty objects from Objects(i)

20. end for

21. return resulting O-Tree

VI.7.6 Structural Mapping

Given a Visual Information Extraction task, one first constructs an O-Tree for each of
the training documents as well as for the query document, as described in the previous
section. Once all the documents have been structured as O-Trees, it is necessary to
find the objects of Q (the query document) that correspond to the target fields. This is
done by comparing the O-Tree of Q, and the objects therein, to those of the training
documents.

This comparison is performed in two stages. First, the training document that
is visually most similar to the query document is found. Then, one maps between
the objects of the two documents to discover the targets fields in the query
document.

VI.7.6.1 Basic Algorithm

� Document Similarity. Consider a query document Q and training documents
T = {T1, . . . , Tn}. We seek to find the training document Topt that is visually

126 Information Extraction

most similar to the query document. We do so by comparing the O-Trees of the
documents. In the comparison we only concentrate on similarities between the
top levels of the O-Tree. The reason is that even similar documents may still differ
in the details.

Let O(Q) and O(T1), . . . , O(Tn) be the O-Trees, the query document and the
training documents, respectively, and let H be the type hierarchy. We define a
subgraph of H, which we call the Signature Hierarchy, consisting of the types
in H that determine features of the global layout of the page (e.g., columns,
tables). The types that are included in the signature is implementation dependent,
but generally the signature would include the top one or two levels of the type
hierarchy. For determining the similarity between the objects we assume the
existence of a similarity function sim(X,Y), which provides a measure of similarity
between objects of the same type based on object characteristics such as size,
location, and fonts (sim(X,Y) is implementation dependent).

Given a query document Q and a training document T, for each object X

in the signature of T we find the object X0 of Q (of the same type as X) that
is most similar to X. We then compute the average similarity for all objects in
the signature of T to obtain the overall similarity score between the documents.
We choose the document with the highest similarity score. A description of the
procedure is provided below.

Input: Q, T1. . . , T n ., and their respective O-Trees

Output: Topt (training document most similar to query document)

1 for i = 1 to n do

1. total ← 0

2. count ← 0

3. For each t ∈ S do

4. For each X ∈ O(Ti) of type t do

5. s(X) ← max {sim(X,X’) | X’ ∈ O(Q), X’ of type t}

6. total ← total + s(X)

7. count ← count + 1

8. score (i) ← total = count

9. end for

10. opt ← argmax{score (i) g}

11. return Topt

� Finding the Target Fields. Once the most similar training document Topt has been
determined, it remains to find the objects of Q that correspond to the target fields,
as annotated in the document Topt. One does so by finding, for each target field
f, the object within O(Q) that is most similar to f(Topt) (the object in O(Topt)
annotated as f). Finding this object is done in an exhaustive manner, going over
all objects of O(Q). One also makes sure that the similarity between this object
and the corresponding object of Topt is beyond a certain threshold α, or else one
decides that the field f has not been found in Q (either because it is not there or
we have failed to find it).

VI.7 Structural IE 127

A description of the procedure for finding the target fields is provided in the
algorithm below. Note that the annotation of the training documents is performed
before (and independent) of the construction of the O-Trees. Thus, annotated
objects need not appear in the O-Tree. If this is the case, line 2 sees to it that one
takes the minimal object of the O(Topt) that fully contains the annotated object.

Input:

�Q, Topt (and their respective O-Trees)

� { f(Topt) | f ∈ F }(target fields in Topt)

Output: { f (Q) | f ∈ F }(Target fields in Q)

1 For each f ∈ F do

1. Let f (Topt) ∈ O(Topt) be minimal such that f(Topt) ⊆ −f(Topt)

2. f(Q) ← argmax{sim(f (Topt), X) | X ∈ O(Q);X of type t}

3. if sim(−f(Topt), f(Q)) < α then f(Q) ← 0

VI.7.7 Templates

The preceding algorithm is based on finding the single most similar document to
the query document and then extracting all the target fields based on this document
alone. Although this provides good results in most cases, there is the danger that
particularities of any single document may reduce the effectiveness of the algorithm.

To overcome this problem, the notion of templates has been introduced; these
templates permit comparison of the query document with a collection of similar
documents. A template is a set of training documents that have the same general
visual layout (e.g., articles from the same journal, Web pages from the same site,
etc.). The documents in each template may be different in details but share the same
overall structure.

Using templates, one finds the template most similar to the query document
(rather than the document most similar). This is accomplished by – for each template –
averaging the similarity scores between the query document and all documents in
the template.

One then picks the template with the highest average similarity. Once the most
similar template is determined, the target fields are provided by finding the object of
Q most similar to a target field in any of the documents in the template. A description
of the process by which one can find target fields through the use of templates is
provided below.

Input:

� Q and its O-Tree

� Topt = {T1,..., Tk.}(most similar template) and respective O-Trees

� {f(T) | f ∈ F,T ∈ Topt}(target fields in Topt)

Output: {f(Q) | f ∈ F }(Target fields in Q)

1 For each f ∈ F do

1. For each T ∈ Topt do

128 Information Extraction

2. Let −f(T) ∈ O(T) be minimal such that f(T) ⊆ −f(T)

3. XT ← (argmax{sim(−f(T), X) | X ∈ O(Q), X of type t}

4. s(T) ← sim(−f(T), XT)

5. if max{s(T) | T ∈ Topt} ≥ α then

6. f(Q) ← (argmax{s(XT) | T ∈ Topt }

7. else f(Q) ← 0

VI.7.8 Experimental Results

A system for Visual Information Extraction, as described above, was recently imple-
mented on documents that are analyst reports from several leading investment banks.
The training data consisted of 130 analyst reports from leading investment banks: 38
from Bear Stearns, 14 from CSFB, 15 from Dresdner, and 63 from Morgan Stanley.
All the documents were in PDF format. The training documents were divided into
a total of 30 templates: 7 from the Bear Stearns data, 4 from the CSFB data, 5 from
the Dresdner data, and 14 in the Morgan Stanley data. All the training documents
were manually annotated for the target fields. The target fields included the fol-
lowing fields: Author, Title, Subtitle, Company, Ticker, Exchange, Date, Geography,
Industry Info. Not all documents included all target fields, but within each template
documents had the same target fields.

The system was tested on 255 query documents: 33 from Bear Stearns, 12 from
CSFB, 14 from Dresdner, and 196 from Morgan Stanley. With regard to the imple-
mentation, the type hierarchy (H) used in the system is provided in Figure VI.7. The
signature hierarchy contained the objects of type column and paragraph. The imple-
mentation of the fitness function fit(.,.) (for the fitness of one object within the other)
takes into account the distance between the objects and the similarity of font type.

Document

Image Graphic lineColumn

Paragraph

Text line

Text

Figure VI.7. The type hierarchy.

VI.8 Further Reading 129

PrecisionRecall
80%

85%

90%

95%
Basic

Templates

Figure VI.8. Overall recall and precision rates for basic algorithm and for algorithm using

templates.

For the fitness of a line within an existing paragraph, it also takes into account the
distance between lines. The similarity function sim(.,.), which measures the similarity
between objects in different documents, is primarily based on similarity between the
sizes and locations of the respective objects.

With an emphasis on the results, the performance of the system was measured
with the basic algorithm and the use of templates. The overall average recall and
precision values are given in Figure VI.8.

On the whole the introduction of templates improved the performance of the
algorithm, increasing the average accuracy from 83 to 90 percent. Note that for both
algorithms the recall and precision values are essentially identical. The reason for
this is that, for any target field f, on the one hand, each document contains only one
object of type f, and, on the other hand, the algorithm marks one object as being of
type f. Thus, for every recall error there is a corresponding precision error. The slight
difference that does exist between the recall and precision marks is due to the cases
in which the algorithm decided not to mark any element, signifying a recall error but
not a precision error.

Some target fields are harder to detect than others. It is interesting to note that,
although the introduction of templates improves accuracy in most cases, there are
some target fields for which it reduces accuracy. Understanding the exact reasons for
this and how to overcome such problems is a topic for further research.

VI.8 FURTHER READING

Section VI.1

For a full list of definitions related to information extraction, see <http://www.itl.
nist.gov/iaui/894.02/related˙projects/muc/info/definitions.html>.

Section VI.4

Descriptions of rule-based information extraction systems can be found in Hobbs
et al. (1991); Appelt, Hobbs, Bear, Israel, and Tyson (1993); Grishman (1996); Freitag
(1997); Grishman (1997); Wilks (1997); and Ciravegna et al. (1999).

130 Information Extraction

Section VI.5

Algorithms on anaphora resolutions can be found in Rich and LuperFoy (1988);
Lappin and Leass (1994); McCarthy and Lehnert (1995); Humphreys, Gaizauskas,
and Azzam (1997); Kehler (1997); Kennedy and Boguraev (1997); Barbu and Mitkov
(2001); Klebanov and Wiemer-Hastings (2002); Ng and Cardie (2002); and Ng and
Cardie (2003).

Discussions about evaluation of anaphora resolution algorithms can be found in
Aone and Bennett (1995) and Azzam, Humphreys, and Gaizauskas (1998).

Section VI.6

More details about the whisk algorithm can be found in Soderland (1999). The
description of the BWI algorithm can be found in Freitag and Kushmerick (2000).
The (LP)2 algorithm is described in Ciravegna (2001).

VII

Probabilistic Models for Information

Extraction

Several common themes frequently recur in many tasks related to processing and ana-
lyzing complex phenomena, including natural language texts. Among these themes
are classification schemes, clustering, probabilistic models, and rule-based systems.

This section describes some of these techniques generally, and the next section
applies them to the tasks described in Chapter VI.

Research has demonstrated that it is extremely fruitful to model the behavior
of complex systems as some form of a random process. Probabilistic models often
show better accuracy and robustness against the noise than categorical models. The
ultimate reason for this is not quite clear and is an excellent subject for a philosophical
debate.

Nevertheless, several probabilistic models have turned out to be especially useful
for the different tasks in extracting meaning from natural language texts. Most promi-
nent among these probabilistic approaches are hidden Markov models (HMMs),
stochastic context-free grammars (SCFG), and maximal entropy (ME).

VII.1 HIDDEN MARKOV MODELS

An HMM is a finite-state automaton with stochastic state transitions and symbol
emissions (Rabiner 1990). The automaton models a probabilistic generative process.
In this process, a sequence of symbols is produced by starting in an initial state,
emitting a symbol selected by the state, making a transition to a new state, emitting
a symbol selected by the state, and repeating this transition–emission cycle until a
designated final state is reached.

Formally, let O = {o1, . . . oM} be the finite set of observation symbols and Q =
{q1, . . . qN} be the finite set of states. A first-order Markov model λ is a triple (π , A, B),
where π : Q → [0, 1] defines the starting probabilities, A : Q × Q → [0, 1] defines
the transition probabilities, and B : Q × O → [0, 1] denotes the emission probabil-
ities. Because the functions π , A, and B define true probabilities, they must satisfy

�q∈Q π(q) = 1,

�q′∈Q A(q, q′) = 1 and �o∈OB(q, o) = 1 for all states q.

131

132 Probabilistic Models for Information Extraction

A model λ together with the random process described above induces a proba-
bility distribution over the set O* of all possible observation sequences.

VII.1.1 The Three Classic Problems Related to HMMs

Most applications of hidden Markov models can be reduced to three basic problems:

1. Find P(T | λ) – the probability of a given observation sequence T in a given
model λ.

2. Find argmaxS∈Q
|T | P(T, S | λ) – the most likely state trajectory given λ and T.

3. Find argmaxλ P(T, | λ) – the model that best accounts for a given sequence.

The first problem allows us to compute the probability distribution induced by the
model. The second finds the most probable states sequence for a given observation
sequence. These two tasks are typically used for analyzing a given observation.

The third problem, on the other hand, adjusts the model itself to maximize
the likelihood of the given observation. It can be viewed as an HMM training
problem.

We now describe how each of these three problems can be solved. We will start by
calculating P(T | λ), where T is a sequence of observation symbols T = t1t2 . . . tk ∈
O∗. The most obvious way to do that would be to enumerate every possible state
sequence of length |T |. Let S = s1s2 . . . s|T| ∈ Q|T| be one such sequence. Then we can
calculate the probability P(T | S, λ) of generating T knowing that the process went
through the states sequence S. By Markovian assumption, the emission probabilities
are all independent of each other. Therefore,

P(T | S, λ) = πi=1..|T| B(si , ti).

Similarly, the transition probabilities are independent. Thus the probability P(S|λ)
for the process to go through the state sequence S is

P(S | λ) = π(s1) · πi=1..|T|−1 A(si , si+1).

Using the above probabilities, we find that the probability P(T|λ) of generating the
sequence can be calculated as

P(T | λ) = �
|T|
S∈QP(T | S, λ) · P(S | λ).

This solution is of course infeasible in practice because of the exponential number
of possible state sequences. To solve the problem efficiently, we use a dynamical
programming technique. The resulting algorithm is called the forward–backward

procedure.

VII.1.2 The Forward–Backward Procedure

Let αm(q), the forward variable, denote the probability of generating the initial seg-
ment t1t2 . . . tm of the sequence T and finishing at the state q at time m. This forward
variable can be computed recursively as follows:

1. α1(q) = π(q) · B(q, t1),
2. αn+1(q) = �q′∈Q αn(q′) · A(q′, q) · B(q, tn+1).

VII.1 Hidden Markov Models 133

Then, the probability of the whole sequence T can be calculated as

P(T | λ) = �q∈Qα|T|(q).

In a similar manner, one can define βm (q), the backward variable, which denotes the
probability of starting at the state q and generates the final segment tm+1 . . . t|T| of
the sequence T. The backward variable can be calculated starting from the end and
going backward to the beginning of the sequence:

1. β|T|(q) = 1,

2. βn−1(q) = �q′∈Q A(q, q′) · B(q′, tn) · βn(q′).

The probability of the whole sequence is then

P(T | λ) = �q∈Q π(q) · B(q, t1) · β1(q).

VII.1.3 The Viterbi Algorithm

We now proceed to the solution of the second problem – finding the most likely state
sequence for a given sequence T. As with the previous problem, enumerating all
possible state sequences S and choosing the one maximizing P(T, S | λ) is infeasible.
Instead, we again use dynamical programming, utilizing the following property of the
optimal states sequence: if T ′ is some initial segment of the sequence T = t1t2 . . . t|T|
and S = s1s2 . . . s|T| is a state sequence maximizing P(T, S | λ), then S′ = s1s2 . . . s|T ′|
maximizes P(T ′, S′ | λ) among all state sequences of length |T ′| ending with s|T|. The
resulting algorithm is called the Viterbi algorithm.

Let γ n(q) denote the state sequence ending with the state q, which is optimal for
the initial segment Tn = t1t2 . . . tn among all sequences ending with q, and let δn(q)
denote the probability P(Tn, γ n(q) | λ) of generating this initial segment following
those optimal states. Delta and gamma can be recursively calculated as follows:

1. 1.δ1(q) = π(q) · B(q, t1), γ1(q) = q,

2. δn+1(q) = maxq′∈Q δn(q′) · A(q′, q) · B(q, tn+1), γn+1(q) = γ1(q′)q,

where q′ = argmaxq′∈Qδn(q′) · A(q′, q) · B(q, tn+1).

Then, the best states sequence among {γ |T|(q) : q ∈ Q} is the optimal one:

argmaxS∈Q
|T| P(T, S | λ) = γ|T|(argmaxq∈Qδ|T|(q)).

Example of the Viterbi Computation

Using the HMM described in Figure VII.1 with the sequence (a, b, a), one would
take the following steps in using the Viterbi algorithm:

πi =
(

0.5 0 0.5
)

, Ai j =

⎛

⎜

⎝

0.1 0.4 0.4

0.4 0.1 0.5

0.4 0.5 0.1

⎞

⎟

⎠
,

Bi (a) =
(

0.5 0.8 0.2
)

, Bi (b) =
(

0.5 0.2 0.8
)

First Step (a):

� δ1(S 1) = π(S 1) · B(S 1, a) = 0.5 · 0.5 = 0.25

134 Probabilistic Models for Information Extraction

S1 S2

S3

0.1

0.1
0.1

0.
5

0.4

0.4

0.
50.

5

0.
20.

8

0.
80.

2

a
b

a
b

a
b

0.5

0.5

Figure VII.1. A sample HMM.

� δ1(S 2) = π(S 2) · B(S 2, a) = 0

� δ1(S 3) = π(S 3) · B(S 3, a) = 0.5 · 0.2 = 0.1

Second Step (b):

� δ2(S1) = maxq′∈Qδ1(q′) · A(q′, S1) · B(S1, b)
= max(δ1(S1) · A(S1, S1) · B(S1, b),

δ1(S2) · A(S2, S1) · B(S1, b),
δ1(S3) · A(S3, S1) · B(S1, b))

= max(0.25 · 0.1 · 0.5,

0,

0.1 · 0.4 · 0.5)
= max(0.0125, 0, 0.02) = 0.02

� γ2(S1) = S3

In a similar way, we continue to calculate the other δ and γ factors. Upon reaching
t3 we can see that S1 and S3 have the highest probabilities; hence, we trace back
our steps from both states using the γ variables. We have in this case two optimal
paths: {S1, S3, S1} and {S3, S2, S3}. The diagram of the computation of the Viterbi
Algorithm is shown in Figure VII.2.

Note that, unlike the forward–backward algorithm described in Section VII.1.2
the Viterbi algorithm does not use summation of probabilities. Only multiplica-
tions are involved. This is convenient because it allows the use of logarithms of
probabilities instead of the probabilities themselves and to use summation instead
of multiplication. This can be important because, for large sequences, the proba-
bilities soon become infinitesimal and leave the range of the usual floating-point
numbers.

VII.1 Hidden Markov Models 135

state

Time slice t ->

S1

S2

S3

0.25 0.02 0.016

0 0.04
0.008

0.1 0.08 0.016

t2 t3

a ab

t1

Figure VII.2. Computation of the optimal path using the Viterbi algorithm.

VII.1.4 The Training of the HMM

The most difficult problem of the three involves training the HMM. In this section,
only the problem of estimating the parameters of HMM is covered, leaving the
topology of the finite-state automaton fixed.

The training algorithm is given some initial HMM and adjusts it so as to maximize
the probability of the training sequence. However, the set of states is given in advance,
and the transition and emission probabilities, which are initially zero, remain zero.
The adjustment formulas are called Baum–Welsh reestimation formulas.

Let µn(q) be the probability P(sn = q | T, λ) of being in the state q at time n

while generating the observation sequence T. Then µn(q) · P(T | λ) is the probability
of generating T passing through the state q at time n. By definition of the forward
and backward variables presented in Section VII.1.2, this probability is equal to
αn(q) · βn(q). Thus,

µn(q) = αn(q) · βn(q) / P(T | λ).

Also letϕn(q, q ′) be the probability P(sn = q, sn+1 = q ′ | T, λ) of passing from state q

to state q ′ at time n while generating the observation sequence T. As in the preceding
equation,

ϕn(q, q ′) = αn(q) · A(q, q ′) · B(q ′, on+1) · βn(q)/P(T | λ).

The sum of µn(q) over all n = 1 . . . | T | can be seen as the expected number of
times the state q was visited while generating the sequence T. Or, if one sums
over n = 1 . . . | T | −1, the expected number of transitions out of the state q results
because there is no transition at time |T|. Similarly, the sum of ϕn(q, q′) over all n =
1 . . . | T | −1 can be interpreted as the expected number of transitions from the state
q to q ′.

136 Probabilistic Models for Information Extraction

The Baum–Welsh formulas reestimate the parameters of the model λ according
to the expectations

π ′(q) : = µ1(q),

A ′(q, q ′) : = �n=1..|T|−1ϕn(q, q ′)/�n=1..|T|−1µn(q),

B ′(q, o) : = �n:Tn=oµn(q)/�n=1..|T|µn(q).

It can be shown that the model λ′ = (π ′, A ′, B ′) is equal either to λ, in which case the
λ is the critical point of the likelihood function P(T | λ), or λ′, which better accounts
for the training sequence T than the original model λ in the sense that P(T | λ′) >

P(T | λ). Therefore, the training problem can be solved by iteratively applying the
reestimation formulas until convergence.

VII.1.5 Dealing with Training Data Sparseness

It is often the case that the amount of training data – the length of the training
sequence T – is insufficient for robust estimation of parameters of a complex HMM.
In such cases, there is often a trade-off between constructing complex models with
many states and constructing simple models with only a few states.

The complex model is better able to represent the intricate structure of the task
but often results in a poor estimation of parameters. The simpler model, on the other
hand, yields a robust parameter estimation but performs poorly because it is not
sufficiently expressive to model the data.

Smoothing and shrinkage (Freitag and McCallum 1999) are the techniques typi-
cally used to take the sting out of data sparseness problems in probabilistic modeling.
This section describes the techniques with regard to HMM, although they apply in
other contexts as well such as SCFG.

Smoothing is the process of flattening a probability distribution implied by a
model so that all reasonable sequences can occur with some probability. This often
involves broadening the distribution by redistributing weight from high-probability
regions to zero-probability regions. Note that smoothing may change the topology
of an HMM by making some initially zero probability nonzero.

The simplest possible smoothing method is just to pretend that every possible
training event occurrs one time more than it actually does. Any constant can be used
instead of “one.” This method is called Laplace smoothing. Other possible methods
may include back-off smoothing, deleted interpolation, and others.1

Shrinkage is defined in terms of some hierarchy representing the expected
similarity between parameter estimates. With respect to HMMs, the hierarchy
can be defined as a tree with the HMM states for the leaves – all at the same
depth.

This hierarchy is created as follows. First, the most complex HMM is built and its
states are used for the leaves of the tree. Then the states are separated into disjoint
classes within which the states are expected to have similar probability distributions.
The classes become the parents of their constituent states in the hierarchy. Note that
the HMM structure at the leaves induces a simpler HMM structure at the level of

1 Full details outlining the smoothing technique can be found in Manning and Schutze (1999).

VII.2 Stochastic Context-Free Grammars 137

the classes. It is generated by summing the probabilities of emissions and transitions
of all states in a class. This process may be repeated until only a single-state HMM
remains at the root of the hierarchy.

Training such a hierarchy is straightforward. The emission and transition proba-
bilities of the states in the internal levels of the hierarchy are calculated by summing
the corresponding probabilities of their descendant leaves. Modeling using the hier-
archy is also simple. The topology of the most complex HMM is used. However,
the transition and emission probabilities of a given state are calculated by linearly
interpolating between the corresponding probabilities for all ancestors of the state
in the shrinkage hierarchy. The weights of the different models in the interpolation
can be fixed at some reasonable value, like 1/2, or can be optimized using held-out
training data.

VII.2 STOCHASTIC CONTEXT-FREE GRAMMARS

An SCFG is a quintuple G = (T, N, S, R, P), where T is the alphabet of terminal
symbols (tokens), N is the set of nonterminals, S is the starting nonterminal, R is the
set of rules, and P : R → [0.1] defines their probabilities. The rules have the form

n → s1s2 . . . sk,

where n is a nonterminal and each si is either a token or another nonterminal.
As can be seen, SCFG is a usual context-free grammar with the addition of the P

function.
As is true for a canonical (nonstochastic) grammar, SCFG is said to generate (or

accept) a given string (sequence of tokens) if the string can be produced starting from
a sequence containing just the starting symbol S and expanding nonterminals one by
one in the sequence using the rules from the grammar. The particular way the string
was generated can be naturally represented by a parse tree with the starting symbol
as a root, nonterminals as internal nodes, and the tokens as leaves.

The semantics of the probability function P are straightforward. If r is the rule
n → s1s2 . . . sk, then P(r) is the frequency of expanding n using this rule, or, in
Bayesian terms, if it is known that a given sequence of tokens was generated by
expanding n, then P(r) is the a priori likelihood that n was expanded using the
rule r. Thus, it follows that for every nonterminal n the sum

∑

P(r) of probabilities
of all rules r headed by n must be equal to one.

VII.2.1 Using SCFGs

Usually, some of the nonterminal symbols of a grammar correspond to meaning-
ful language concepts, and the rules define the allowed syntactic relations between
these concepts. For instance, in a parsing problem, the nonterminals may include
S, NP, VP, and others, and the rules would define the syntax of the language. For
example, S → NP VP. Then, when the grammar is built, it is used for parsing new
sentences.

In general, grammars are ambiguous in the sense that a given string can be gener-
ated in many different ways. With nonstochastic grammars there is no way to compare
different parse trees, and thus the only information we can gather for a given sentence

138 Probabilistic Models for Information Extraction

is whether or not it is grammatical – that is whether it can be produced by any parse.
With SCFG, different parses have different probabilities; therefore, it is possible to
find the best one, resolving the ambiguity.

In designing preprocessing systems around SCFGs, it has been found neither
necessary nor desirable (for performance reasons) to perform a full syntactic parsing
of all sentences in the document. Instead, a very basic “parsing” can be employed for
the bulk of a text, but within the relevant parts the grammar is much more detailed.
Thus, the extraction grammars can be said to define sublanguages for very specific
domains.

In the classical definition of SCFG it is assumed that the rules are all independent.
In this case it is possible to find the (unconditional) probability of a given parse tree
by simply multiplying the probabilities of all rules participating in it. Then the usual
parsing problem is formulated as follows: Given a sequence of tokens (a string), find
the most probable parse tree that could generate the string. A simple generalization
of the Viterbi algorithm is able to solve this problem efficiently.

In practical applications of SCFGs, it is rarely the case that the rules are truly
independent. Then, the easiest way to cope with this problem while leaving most
of the formalism intact is to let the probabilities P(r) be conditioned on the context
where the rule is applied. If the conditioning context is chosen reasonably, the Viterbi
algorithm still works correctly even for this more general problem.

VII.3 MAXIMAL ENTROPY MODELING

Consider a random process of an unknown nature that produces a single output value
y, a member of a finite set Y of possible output values. The process of generating
y may be influenced by some contextual information x – a member of the set X of
possible contexts. The task is to construct a statistical model that accurately represents
the behavior of the random process. Such a model is a method of estimating the
conditional probability of generating y given the context x.

Let P(x, y) be denoted as the unknown true joint probability distribution of the
random process, and let p(y | x) be the model we are trying to build taken from
the class ℘ of all possible models. To build the model we are given a set of training
samples generated by observing the random process for some time. The training
data consist of a sequence of pairs (xi, yi) of different outputs produced in different
contexts.

In many interesting cases the set X is too large and underspecified to be used
directly. For instance, X may be the set of all dots “.” in all possible English texts. For
contrast, the Y may be extremely simple while remaining interesting. In the preceding
case, the Y may contain just two outcomes: “SentenceEnd” and “NotSentenceEnd.”
The target model p(y | x) would in this case solve the problem of finding sentence
boundaries.

In such cases it is impossible to use the context x directly to generate the output y.
There are usually many regularities and correlations, however, that can be exploited.
Different contexts are usually similar to each other in all manner of ways, and similar
contexts tend to produce similar output distributions.

VII.3 Maximal Entropy Modeling 139

To express such regularities and their statistics, one can use constraint func-

tions and their expected values. A constraint function f : X × Y → R can be any
real-valued function. In practice it is common to use binary-valued trigger functions
of the form

f (x, y) =

{

1, if C(x) and y = yi ,

0, otherwise.

Such a trigger function returns one for pair (x, y) if the context x satisfies the condition
predicate C and the output value y is yi. A common short notation for such a trigger
function is C → yi. For the example above, useful triggers are

previous token is “Mr” → NotSentenceEnd,
next token is capitalized → SentenceEnd.

Given a constraint function f, we express its importance by requiring our target
model to reproduce f ’s expected value faithfully in the true distribution:

p(f) = �x,y p(x, y) f (x, y) = P(f) = �x,y P(x, y) f (x, y).

In practice we cannot calculate the true expectation and must use an empirical

expected value calculated by summing over the training samples:

pE(f) = �i=1..N�y∈Y p(y | xi) f (xi , y)/N = PE(f) = �i=1..N f (xi , yi)/N.

The choice of feature functions is of course domain dependent. For now, let us
assume the complete set of features F = { fk} is given. One can express the complete-
ness of the set of features by requiring that the model agree with all the expected
value constraints

pE(fk) = PE(fk) for all fk ∈ F

while otherwise being as uniform as possible. There are of course many models satis-
fying the expected values constraints. However, the uniformity requirement defines
the target model uniquely. The degree of uniformity of a model is expressed by its
conditional entropy

H(p) = −
∑

x,y

p(x) · p(y | x) · log p(y | x).

Or, empirically,

HE(p) = −�i=1..N�y∈Y p(y | xi) · log p(y | xi)/N.

The constrained optimization problem of finding the maximal-entropy target
model is solved by application of Lagrange multipliers and the Kuhn–Tucker theo-
rem. Let us introduce a parameter λk (the Lagrange multiplier) for every feature.
Define the Lagrangian �(p, λ) by

�(p, λ) ≡ HE(p) + �kλk(pE(fk) − PE(fk)).

Holding λ fixed, we compute the unconstrained maximum of the Lagrangian over
all p ∈ ℘. Denote by pλ the p where �(p, λ) achieves its maximum and by �(λ) the

140 Probabilistic Models for Information Extraction

value of � at this point. The functions pλ and �(λ) can be calculated using simple
calculus:

pλ(y | x) =
1

Zλ(x)
exp

(

∑

k

λk fk(x, y)

)

,

�(λ) = −
∑

i=1..N

log Zλ(x)/N +
∑

k

λkPE(fk),

where Zλ(x) is a normalizing constant determined by the requirement that
�y∈Y pλ(y | x) = 1. Finally, we pose the dual optimization problem

λ∗ = argmaxλ�(λ).

The Kuhn–Tucker theorem asserts that, under certain conditions, which include
our case, the solutions of the primal and dual optimization problems coincide. That
is, the model p, which maximizes HE(p) while satisfying the constraints, has the
parametric form pλ*.

It is interesting to note that the function �(λ) is simply the log-likelihood of the
training sample as predicted by the model pλ. Thus, the model pλ* maximizes the
likelihood of the training sample among all models of the parametric form pλ.

VII.3.1 Computing the Parameters of the Model

The function�(λ) is well behaved from the perspective of numerical optimization, for
it is smooth and concave. Consequently, various methods can be used for calculating
λ*. Generalized iterative scaling is the algorithm specifically tailored for the problem.
This algorithm is applicable whenever all constraint functions are non-negative: fk(x,

y) ≥ 0.
The algorithm starts with an arbitrary choice of λ’s – for instance λk = 0 for all

k. At each iteration the λ’s are adjusted as follows:

1. For all k, let �λk be the solution to the equation

PE(fk) = �i=1..N�y∈Y pλ(y | xi) · fk(xi , y) · exp(�λk f #(xi , y))/N,

where f #(x, y) = �k fk(x, y).
2. For all k, let λk := λk + �λk.

In the simplest case, when f # is constant, �λk is simply (1/f #) ·
log PE(fk)/pλE(fk). Otherwise, any numerical algorithm for solving the equation
can be used such as Newton’s method.

VII.4 MAXIMAL ENTROPY MARKOV MODELS

For many tasks the conditional models have advantages over generative models like
HMM. Maximal entropy Markov models (McCallum, Freitag, and Pereira 2000), or
MEMM, is one class of such a conditional model closest to the HMM.

A MEMM is a probabilistic finite-state acceptor. Unlike HMM, which has sep-
arate transition and emission probabilities, MEMM has only transition probabili-
ties, which, however, depend on the observations. A slightly modified version of the

VII.4 Maximal Entropy Markov Models 141

Viterbi algorithm solves the problem of finding the most likely state sequence for a
given observation sequence.

Formally, a MEMM consists of a set Q = {q1, . . . , qN} of states, and a set of
transition probabilities functions Aq : X × Q → [0, 1], where X denotes the set of
all possible observations. Aq(x, q′) gives the probability P(q′ | q, x) of transition
from q to q′, given the observation x. Note that the model does not generate x but
only conditions on it. Thus, the set X need not be small and need not even be fully
defined. The transition probabilities Aq are separate exponential models trained
using maximal entropy.

The task of a trained MEMM is to produce the most probable sequence of states
given the observation. This task is solved by a simple modification of the Viterbi
algorithm. The forward–backward algorithm, however, loses its meaning because
here it computes the probability of the observation being generated by any state
sequence, which is always one. However, the forward and backward variables are still
useful for the MEMM training. The forward variable [Ref->HMM] αm(q) denotes
the probability of being in state q at time m given the observation. It is computed
recursively as

αn+1(q) = �q′∈Qαn(q′) · Aq(x, q′).

The backward variable β denotes the probability of starting from state q at time m

given the observation. It is computed similarly as

βn−1(q) = �q′∈Q Aq(x, q′) · βn(q′).

The model Aq for transition probabilities from a state is defined parametrically using
constraint functions. If fk : X × Q → R is the set of such functions for a given state
q, then the model Aq can be represented in the form

Aq(x, q′) = Z(x, q)−1exp(�kλk fk(x, q′)),

where λk are the parameters to be trained and Z(x, q) is the normalizing factor
making probabilities of all transitions from a state sum to one.

VII.4.1 Training the MEMM

If the true states sequence for the training data is known, the parameters of the
models can be straightforwardly estimated using the GIS algorithm for training ME
models.

If the sequence is not known – for instance, if there are several states with the
same label in a fully connected MEMM – the parameters must be estimated using
a combination of the Baum–Welsh procedure and iterative scaling. Every iteration
consists of two steps:

1. Using the forward–backward algorithm and the current transition functions
to compute the state occupancies for all training sequences.

2. Computing the new transition functions using GIS with the feature frequencies
based on the state occupancies computed in step 1.

It is unnecessary to run GIS to convergence in step 2; a single GIS iteration is
sufficient.

142 Probabilistic Models for Information Extraction

VII.5 CONDITIONAL RANDOM FIELDS

Conditional random fields (CRFs) (Lafferty, McCallum, et al. 2001) constitute
another conditional model based on maximal entropy. Like MEMMs, which are
described in the previous section, CRFs are able to accommodate many possibly
correlated features of the observation. However, CRFs are better able to trade off
decisions at different sequence positions. MEMMs were found to suffer from the
so-called label bias problem.

The problem appears when the MEMM contains states with different output
degrees. Because the probabilities of transitions from any given state must sum to
one, transitions from lower degree states receive higher probabilities than transitions
from higher degree states. In the extreme case, transition from a state with degree
one always gets probability one, effectively ignoring the observation.

CRFs do not have this problem because they define a single ME-based distribu-
tion over the whole label sequence. On the other hand, the CRFs cannot contain
“hidden” states – the training data must define the sequence of states precisely. For
most practical sequence labeling problems this limitation is not significant.

In the description of CRFs presented here, attention is restricted to their sim-
plest form – linear chain CRFs, which generalize finite-state models like HMMs and
MEMMs. Such CRFs model the conditional probability distribution of sequences
of labels given the observation sequences. More general formulations are possible
(Lafferty et al. 2001; McCallum and Jensen 2003).

Let X be a random variable over the observation sequences and Y a random
variable over the label sequences. All components Yi of Y are assumed to range over
a finite set L of labels. The labels roughly correspond to states in finite-state models.
The variables X and Y are jointly distributed, but CRF constructs a conditional model
p(Y | X) without explicitly modeling the margin p(X).

A CRF on (X, Y) is specified by a vector f = (f1, f2, . . . fm) of local features

and a corresponding weight vector λ = (λ1, λ2, . . . λm). Each local feature fj(x, y, i)
is a real-valued function of the observation sequence x, the labels sequence y =
(y1, y2, . . . yn), and the sequence position i. The value of a feature function at any given
position i may depend only on yi or on yi and yi+1 but not on any other components
of the label sequence y. A feature that depends only on yi at any given position i is
called a state feature, and if it depends on yi and yi+1 it is called a transition feature.

The global feature vector F(x, y) is a sum of local features at all positions:

F(x, y) = �i=1..nf(x, y, i).

The conditional probability distribution defined by the CRF is then

pλ(y | x) = Zλ(x)−1exp(λ · F(x, y)),

where

Zλ(x) = �y exp (λ · F(x, y)).

It is a consequence of a fundamental theorem about random Markov fields
(Kindermann and Snell 1980; Jain and Chellappa 1993) that any conditional distri-
bution p(y/x) obeying the Markov property p(yi | x, {yj } j �=i) = p(yi | x, yi−1, yi+1)

VII.5 Conditional Random Fields 143

can be written in the exponential form above with a suitable choice of the feature
functions and the weights vector.

Notice also that any HMM can be represented in the form of CRF if its set of
states Q coincide with the set of labels L. If A : L × L → [0, 1] denotes the transition
probability and B : L × O → [0, 1] denotes is the emission probability functions, the
corresponding CRF can be defined by the set of state features

fyo(x, y, k) ≡ (yk = y) and (xk = o)

and transition features

fyy′(x, y, k) ≡ (yk = y) and (yk+1 = y′)

with the weights λyo = log B(y, o) and λyy′ = log A(y, y′).

VII.5.1 The Three Classic Problems Relating to CRF

As with HMMs, three main problems are associated with CRFs:

1. Given a CRF λ, an observation sequence x, and a label sequence y, find the
conditional probability pλ(y | x).

2. Given a CRF λ and an observation sequence x, find the most probable label
sequence y = argmaxy pλ(y | x).

3. Given a set of training samples (x(k), y(k)), find the CRF parameters λ that
maximize the likelihood of the training data.

At least a basic attempt will be made here to explain the typical approaches for
each of these problems.

VII.5.2 Computing the Conditional Probability

For a given x and a given position i define a |L| × |L| transition matrix Mi(x) by

Mi (x)[y, y′] = exp (λ · f(x, {yi = y, yi+1 = y′}, i)).

Then, the conditional probability pλ(y | x) can be decomposed as

pλ(y | x) = Zλ(x)−1πi=1..n Mi (x)[yi , yi+1].

The normalization factor Zλ(x) can be computed by a variant of the forward–
backward algorithm. The forward variables αi(x, y) and the backward variables β i(x,
y), for y ∈ L, can be computed using the recurrences

α0(x, y) = 1,

αi+1(x, y) = �y′∈Lαi (x, y′)Mi (y′, y, x),

βn(x, y) = 1,

βi−1(x, y) = �y′∈LMi−1(y, y′, x)βi (x, y′).

Finally, Zλ(x) = �y∈Lαn(x, y).

144 Probabilistic Models for Information Extraction

VII.5.3 Finding the Most Probable Label Sequence

The most probable label sequence y = argmaxy pλ(y | x) can be found by a suitable
adaptation of the Viterbi algorithm. Note that

argmaxy pλ(y | x) = argmaxy (λ · F(x, y))

because the normalizer Zλ(x) does not depend on y. F(x, y) decomposes into a sum
of terms for consecutive pairs of labels, making the task straightforward.

VII.5.4 Training the CRF

CRF is trained by maximizing the log-likelihood of a given training set {(x(k), y(k))}:

L(λ) = �k log pλ(y(k) | x(k)) = �k[λ · F(x(k), y(k)) − log Zλ(x(k))].

This function is concave in λ, and so the maximum can be found at the point
where the gradient L is zero:

0 = ∇L = �k[F(x(k), y(k)) − �yF(x(k), y)pλ(y | x(k))].

The left side is the empirical average of the global feature vector, and the right
side is its model expectation. The maximum is reached when the two are equal:

(∗)�kF(x(k), y(k)) = �k�yF(x(k), y)pλ(y | x(k)).

Straightforwardly computing the expectations on the right side is infeasible,
because of the necessity of summing over an exponential number of label sequences
y. Fortunately, the expectations can be rewritten as

�yF(x, y)pλ(y | x) = �i=1,n�y,y′∈Lpλ(yi = y, yi+1 = y′ | x)f(x, y, i),

which brings the number of summands down to polynomial size. The probabilities
pλ(yi = y, yi+1 = y′ | x) can be computed using the forward and backward variables:

pλ(yi = y, yi+1 = y′ | x) = Z(x)−1αi (x, y)Mi (y′, y, x)βi+1(x, y′).

GIS can be used to solve the equation (*). A particularly simple form of it further
requires that the total count of all features in any training sequence be constant. If
this condition does not hold, a new slack feature can be added, making the sum equal
to a predefined constant S:

s(x, y, i) = S − �i� j f j (x, y, i).

If the condition holds, the parameters λ can be adjusted by

λ: = λ + �λ,

where the ∆λ are calculated by

�λ j = S−1 log (empirical average of f j/ modelexpectation of f j).

VII.6 Further Reading 145

VII.6 FURTHER READING

Section VII.1

For a great introduction on hidden Markov models, refer to Rabiner (1986) and
Rabiner (1990).

Section VII.2

Stochastic context-free grammars are described in Collins (1997) and Collins and
Miller (1998).

Section VII.3

The following papers elaborate more on maximal entropy with regard to text
processing: Reynar and Ratnaparkhi (1997); Borthwick (1999); and Charniak (2000).

Section VII.4

Maximal entropy Markov models are described in McCallum et al. (2000).

Section VII.5

Random markov fields are described in Kindermann and Snell (1980) and Jain and
Chellappa (1993). Conditional random fields are described in Lafferty et al. (2001)
and Sha and Pereira (2003).

VIII

Preprocessing Applications Using

Probabilistic and Hybrid Approaches

The related fields of NLP, IE, text categorization, and probabilistic modeling have
developed increasingly rapidly in the last few years. New approaches are tried
constantly and new systems are reported numbering thousands a year. The fields
largely remain experimental science – a new approach or improvement is conceived
and a system is built, tested, and reported. However, comparatively little work is
done in analyzing the results and in comparing systems and approaches with each
other. Usually, it is the task of the authors of a particular system to compare it
with other known approaches, and this presents difficulties – both psychological and
methodological.

One reason for the dearth of analytical work, excluding the general lack of sound
theoretical foundations, is that the comparison experiments require software, which
is usually either impossible or very costly to obtain. Moreover, the software requires
integration, adjustment, and possibly training for any new use, which is also extremely
costly in terms of time and human labor.

Therefore, our description of the different possible solutions to the problems
described in the first section is incomplete by necessity. There are just too many
reported systems, and there is often no good reason to choose one approach against
the other. Consequently, we have tried to describe in depth only a small number
of systems. We have chosen as broad a selection as possible, encompassing many
different approaches. And, of course, the results produced by the systems are state
of the art or sufficiently close to it.

VIII.1 APPLICATIONS OF HMM TO TEXTUAL ANALYSIS

VIII.1.1 Using HMM to Extract Fields from Whole Documents

Freitag and McCallum (Freitag and McCallum 1999, 2000) implemented a fields
extraction system utilizing no general-purpose NLP processing. The system is
designed to solve a general problem that can be specified as follows: find the best

unbroken fragment of text from a document that answers some domain-specific

146

VIII.1 Applications of HMM to Textual Analysis 147

prefix states suffix states

initial state final state

background
state

target
state

background
state

target
state

final state

initial state

Figure VIII.1. Possible topologies of a simple HMM.

question. The question is stated implicitly in the form of a set of labeled training
documents, each of them containing a single labeled field.

For example, if the domain consists of a collection of seminar announcements, we
may be interested in the location of the seminar described in a given announcement.
Then the training collection should contain the labeled locations. It is of course
possible to extract several fields from the same document by using several separately
trained models. Each model, however, is designed to extract exactly one field from
one document.

The system does its task by modeling the generative process that could gen-
erate the document. The HMM model used for this purpose has the following
characteristics:

� The observation symbols are the words and other tokens such as numbers.
� The HMM takes an entire document as one observation sequence.
� The HMM contains two classes of states: background states and target states. The

background states emit words in which we are not interested, whereas the target
states emit words that constitute the information to be extracted.

� The HMM topology is predefined and only a few transitions are allowed between
the states.

The hand-built HMM topology is quite simple. One background state exists,
which produces all irrelevant words. There are several prefix and suffix states, which
are by themselves irrelevant but can provide the context for the target states. There
are one or more parallel chains of target states – all of different lengths. And finally,
there is an initial state and a final state. The topology has two variable parameters –
the size of the context window, which is the number of prefix and suffix states, and the
number of parallel paths of target states. Several examples of topologies are shown
in Figures VIII.1 and VIII.2.

Training such HMMs does not require using the Baum–Welsh formulas because
there is only one way each training document can be generated. Therefore, the max-
imum likelihood training for each state is conducted simply by counting the number
of times each transition or emission occurred in all training sequences and dividing
by the total number of times the state was visited.

148 Preprocessing Applications Using Probabilistic and Hybrid Approaches

prefix states
suffix states

background

state

target

states

final state

initial state

Figure VIII.2. A more general HMM topology.

The data sparseness problem, however, is severe – especially for the more com-
plex topologies with bigger number of states. This problem is solved by utilizing the
shrinkage [Crossref -> shrinkage] technique. Several possible shrinkage hierarchies
were attempted. The best results were produced by shrinking straight to the simple
topology shown in the left of Figure VIII.1. All prefix and suffix states are shrunk
together with the background state, and all target states are also shrunk into a single
target state.

This simple topology is further shrunk into a single-state HMM. The system also
uses a uniform level, where the root single-state HMM is further shrunk into a single-
state HMM with all emission probabilities equal to each other. This uniform level
does the job of smoothing the probabilities by allowing previously nonencountered
tokens to have a small nonzero probability. The interpolation weights for different
levels were calculated by expectation maximization, using held-out data.

The system achieved some modest success in the task of extracting speaker, loca-

tion, and time fields from the seminar announcements, achieving respectively 71-,
84- and 99-percent F1-measure in the best configuration, which included the window
size of four as well as four parallel target paths of different sizes.

VIII.1.2 Learning HMM Structure from Data

The next work (Freitag and McCallum 2000) by the same authors explores the idea of
automatically learning better HMM topologies. The HMM model works in the same
way as the model described in the previous section. However, the HMM structure is
not predefined and thus can be more complex. In particular, it is no longer true
that every document can be generated by exactly one sequence of states. Therefore,
Baum–Welsh formulas, adjusted for label constraints, are used for HMM parameter
estimation.

The optimal HMM structure for a given task is built by hill climbing in the space
of all possible structures. The initial simplest structure is shown in Figure VIII.3.

VIII.1 Applications of HMM to Textual Analysis 149

Figure VIII.3. Initial HMM topology.

At each step, each step of the following set of operations is applied to the current
model:

� Lengthen a prefix. A single state is added to the end of a prefix. The penultimate
state now undergoes transition only to the new state; the new state changes to
any target states to which the penultimate state previously changed.

� Split a prefix. A duplicate is made of some prefix. Transitions are duplicated so
that the first and last states of the new prefix have the same connectivity to the
rest of the network as the old prefix.

� Lengthen a suffix. The dual of the prefix-lengthening operation.
� Split a suffix. Identical to the prefix-splitting operation except that it is applied

to a suffix.
� Lengthen a target string. Similar to the prefix lengthening operation, except that

all target states, in contrast to prefix and suffix states, have self-transitions. The
single target state in the simple model in Figure VIII.1 is a target string of length
one.

� Split a target string. Identical to the prefix-splitting operation except that it is
applied to a target string.

� Add a background state. Add a new background state to the model, with the same
connectivity, with respect to the nonbackground states, as all other background
states: the new state has outgoing transitions only to prefix states and incoming
transitions only from suffix states.

The model performing best on a separate validation set is selected for the
next iteration. After 25 iterations, the best-performing (scored by three-fold cross-
validation) model is selected from the set of all intermediate models as the final
model.

The experiments show that the models learned in this way usually outperform
the simple hand-made models described in the previous section. For instance, in the
domain of seminar announcements, the learned model achieves 77- and 87.5-percent
F1-measure for the tasks of extracting speaker and location fields, respectively.

VIII.1.3 Nymble: An HMM with Context-Dependent Probabilities

A different approach was taken by BBN (Bikel et al. 1997) in the named entity
extraction system Nymble (later called IdentiFinder). Instead of utilizing complex

150 Preprocessing Applications Using Probabilistic and Hybrid Approaches

HMM structures to model the complexity of the problem, Nymble uses a simple,
fully connected (ergodic) HMM with a single-state-per-target concept and a single
state for the background. However, the emission and transition probabilities of the
states are not permanently fixed but depend on the context. The system achieved a
very good accuracy, outperforming the handcoded rule-based systems.

Nymble contains a handcrafted tokenizer, which splits the text into sentences and
the sentences into tokens. Nymble represents tokens as pairs <w,f>, where w is the
lowercase version of the token and f is the token feature – a number from 1 to 14
according to the first matching description of the token in the following list:

1. digit number (01)
2. digit number (1996)
3. alphanumeric string (A34–24)
4. digits and dashes (12–16–02)
5. digits and slashes (12/16/02)
6. digits and comma (1,000)
7. digits and period (2.34)
8. any other number (100)
9. all capital letters (CLF)

10. capital letter and a period (M.)
11. first word of a sentence (The)
12. initial letter of the word is capitalized (Albert)
13. word in lower case (country)
14. all other words and tokens (;)

The features of the tokens are choosen in such a way as to maximize the similarities
in the usage of tokens having the same feature. The Nymble model is designed
to exploit those similarities. Note that the list of features depends on the problem
domain and on the language. The list of features for different problems, different
languages, or both, would be significantly different.

The named entity extraction task, as in MUC evaluation (Chinchor et al. 1994:
MUC), is to identify all named locations, named persons, named organizations, dates,
times, monetary amounts, and percentages in text. The task can be formulated as a
classification problem: given a body of text, to label every word with one of the name
class tags such as Person, Organization, Location, Date, Time, Money, Percent, or
Not-A-Name.

Nymble utilizes an HMM model, which contains a state per each name class.
There are two additional states for the beginning and the end of sentence. The
HMM is fully connected (ergodic), and thus there is a nonzero probability of tran-
sition from any state to any other state. The HMM topology of Nymble is shown in
Figure VIII.4.

Unlike the classical formulation, however, the transition and emission proba-
bilities of the states in Nymble HMM depend on their context. The probability of
emitting a first token in a name class is conditioned on the previous name class. The
probability of emitting any other token inside a name class is conditioned on the
previous token, and the probability of transition to a new name class is conditioned
on the last word in the previous name class.

VIII.1 Applications of HMM to Textual Analysis 151

EndEnd
Start

Company

Name

Person

Name

No Name

Figure VIII.4. Nymble HMM topology.

Formally, such a model can be described as a classical HMM by substituting
|V| new states for each nameclass state, where V is the vocabulary of the system.
Each new state will emit the token it corresponds to with the probability one, and
the fixed transition probabilities between the states would then be conditioned as
required. The nonstandard formulation, however, allows enormously more efficient
processing, cleaner formulation of the back-off models below, and the possibility
of improving the system by conditioning the probabilities on additional context
clues.

As described earlier, there are three different classes of probabilities that the
model must be able to estimate:

� The probability P(<w, f> | NC, NC−1) of generating the first token in a name
class (NC) conditioned on the previous name class,

� The probability P(<w, f> | NC, <w−1, f−1>) of generating the subsequent tokens
inside a name class with each token conditioned on the previous one, and

� The probability P(NC | NC−1, w−1) of transition to a new name class conditioned
on the previous word.

The model is trained by maximum likelihood. There is no need for Baum–
Welsh reestimation because for each sentence there is only one way it can be gen-
erated. Thus, the probabilities above are calculated using events/sample-size. For
instance,

P(< w, f > | NC, NC−1) = c(< w, f >, NC, NC−1)/c(NC, NC−1),

where the c(. . .) represents the number of occurrences of a particular event in the
training data.

152 Preprocessing Applications Using Probabilistic and Hybrid Approaches

The training data sparseness problem manifests itself here especially as the prob-
abilities are conditioned on context. There are two separate cases: tokens that do
not appear in the training data (the unknown tokens) and other events for which the
training data are insufficiently representative.

We deal with unknown token <w, f> robustly by substituting for it a pair
< UNK , f> having the same feature and a new UNK word. Statistics for the
unknown tokens are gathered in a separate model built specifically for dealing with
them. The model is trained in the following way: The whole training set is divided
into two halves. Then the tokens in the first half that do not appear in the second
and the tokens in the second half that do not appear in the first are substituted by
the UNK tokens. The unknown words model is trained on the resulting dataset. In
this way, all of the training data participate.

For dealing with the general data sparseness problem, several layers of backoff
are employed:

� The probability of generating the first word in a name class P(<w, f> | NC, NC−1)
is interpolated with P(<w, f> | NC <any>) and further with P(<w, f> | NC),
with P(w | NC) · P(f | NC), and with |V|−1|F|−1.

� The probability of generating subsequent tokens P(<w, f> | NC, <w−1, f−1>)
is interpolated with P(<w, f> | NC), with P(w | NC) · P(f | NC), and with
|V|−1|F|−1.

� The transition probability P(NC | NC−1, w−1) is interpolated with P(NC | NC−1),
with P(NC), and with 1/(number of name classes).

The weights for each back-off model are computed on the fly, using the following
formula:

λ =
(

1 −
c(Y)

bc(Y)

)

1

1 + #(Y)
bc(Y)

,

where c(Y) the count of event Y according to the full model, bc(Y) is the count of
event Y according to the backoff model, and #(Y) is the number of unique outcomes
of Y. This λ has two desirable properties. If the full model and the backoff have
similar levels of support for an event Y, then the λ will be close to zero and the full
model will be used.

The number of unique outcomes is a crude measure of uniformity, or uncertainty,
of the model. The more uncertainty the model has, the lower is the confidence in the
backoff model, the lower λ is then used.

The experimental evaluation of the Nymble system showed that, given sufficient
training, it performs comparably to the best hand-crafted systems (94.9% versus
96.4% F1-measure) for the mixed-case English Wall Street Journal documents and
significantly outperforms them for the more difficult all-uppercase and speech-form
(93.6% and 90.7% versus 89% and 74%, respectively).

VIII.2 USING MEMM FOR INFORMATION EXTRACTION

Very recently the conditional models trained using the maximal entropy approach
received much attention. The reason for preferring them over the more traditional
generative models lies in their ability to make use of arbitrary features of the

VIII.3 Applications of CRFs to Textual Analysis 153

observations, possibly overlapping and interdependent, in a consistent and math-
ematically clean way.

The MEMM is one formalism developed in McCallum et al. (2000) that allows the
power of the ME approach to be used. They tested their implementation of MEMMs
on the problem of labeling the lines in a long multipart FAQ file according to their
function as a head, a question, an answer, and a tail.

The problem is especially well suited for a conditional model because such a
model can consider each line a single observation unit described by its features. In
contrast, a generative model like HMM would have to generate the whole line (i.e.,
to estimate its probability), which is clearly infeasible.

The 24 binary features (trigger constraint functions) used for classifying lines in
the particular problem are shown below:

begins-with-number contains-question-mark
begins-with-ordinal contains-question-word
begins-with-punctuation ends-with-question-mark
begins-with-question-word first-alpha-is-capitalized
begins-with-subject indented
blank indented-1-to-4
contains-alphanum indented-5-to-10
contains-bracketed-number more-than-one-third-space
contains-http only-punctuation
contains-non-space prev-is-blank
contains-number prev-begins-with-ordinal
contains-pipe shorter-than-30

As can be seen, the features of a line do not define the line completely, nor are they
independent.

The MEMM was compared with three other learners:

� Stateless ME classifier, which used the 24 features to classify each line separately.
� Traditional, fully connected HMM with four states emitting individual tokens.

Similar four-state HMM emitting individual features.
� Each line was converted to a sequence of features before training and testing.

It was found that MEMM performed best of all four, and Feature HMM was
second but had significantly worse performance. The other two models functioned
poorly.

VIII.3 APPLICATIONS OF CRFs TO TEXTUAL ANALYSIS

VIII.3.1 POS-Tagging with Conditional Random Fields

CRFs were developed in Lafferty et al. (2001) as a conditional ME–based version
of HMM, which does not suffer from label bias problems. Lafferty et al. applied the
CRF formalism to POS tagging in Penn treebank style and compared its performance
with that of HMM and MEMM.

In the first set of experiments, the two types of features were introduced – tag–
word pairs, and tag–tag pairs corresponding to HMM observation and transition fea-
tures. The results are consistent with the expectations: HMM outperforms MEMM as

154 Preprocessing Applications Using Probabilistic and Hybrid Approaches

a consequence of the label bias problem, whereas CRF and HMM perform similarly
with CRF slightly better overall but slightly worse for out-of-vocabulary words.

In the second set of experiments, a set of simple morphological features was
added: whether a word begins with a digit or uppercase letter, whether it contains a
hyphen, and whether it ends in one of the following suffixes: -ing -ogy -ed -s -ly -ion
-tion -ity -ies. Here the results also confirm the expectations: Both CRF and MEMM
benefit significantly from the use of these features – especially for out-of-vocabulary
words.

VIII.3.2 Shallow Parsing with Conditional Random Fields

Shallow parsing is another sequence labeling problem. The task is to identify the non-
recursive cores of various types of phrases. The paradigmatic shallow parsing problem
is NP chunking, finding the nonrecursive cores of noun phrases, the base NPs. Sha
and Pereira (2003) adapt CRFs to this problem and show that it beats all known
single-model NP chunkers, performing at the level of the best known chunker –
voting arrangement of 24 forward- and backward-looking SVM classifiers.

The input to an NP chunker consists of a sentence labeled with POS tags. The
chunker’s task is to further label each word indicating whether the word is (O)utside
the chunk, (B)egins a chunk, or (C)ontinues a chunk.

The chunking CRF in Sha and Pereira (2003) has a second-order Markov depen-
dency between chunk tags. This is encoded by making the labels of CRF pairs of
consecutive chunk tags. That is, the label at position i is yi = ci−1ci where ci is the
chunk tag of word i, one of O, B, or C. Because B must be used to start a chunk,
the label OC is impossible. In addition, successive labels are constrained. These con-
traints on the model topology are enforced by giving appropriate features a weight
of –∞, forcing all the forbidden labelings to have zero probability.

The features of the chunker CRF are represented as

f (x, y, i) = g(x, i)h(yi , yi+1),

where g(x, i) is a predicate on the input sequence and position, and h(yi yi+1) is a
predicate on pairs of labels. The possibilities for the predicates are as follows:

g(x, i) true

wi=w

wi−1=w wi+1=w

wi−2=w wi+2=w

(wi=w) and (wi−1=w′) (wi=w) and (wi+1=w′)

ti=t

ti−1=t ti+1=t

ti−2=t ti+2=t

(ti=t) and (ti−1=t′) (ti=t) and (ti+1=t′)

(ti−1=t) and (ti−2=t′) (ti+1=t) and (ti+2=t′)

(ti=t) and (ti−1=t′) and (ti−2=t′′)

(ti=t) and (ti−1=t′) and (ti+1=t′′)

(ti=t) and (ti+1=t′) and (ti+2=t′′)

h(yi, yi+1) yi=y

(yi=y) and (yi+1=y′)

c(yi)=c.

VIII.4 TEG: Using SCFG Rules for Hybrid Statistical–Knowledge-Based IE 155

The wi , ti , yi mean, respectively, the word, the POS tag, and the label at position
i; c(yi) means the chunk tag, and thus c(OB) = B. The w, w′, t, t ′, t ′′, y, y′, c are
specific words, tags, labels, and chunk tags chosen from the vocabulary generated by
the training data.

A Gaussian weight prior was used to reduce overfitting, and thus the log-
likelihood of the training data was taken as

L(λ) = �k[λ · F(x(k), y(k)) − log Zλ(x(k))] − ||λ||2/2σ 2.

The experimental evaluation demonstrates the state-of-the-art performance of the
CRF chunk tagger. Interestingly, the GIS training method was shown to perform less
well than some other general-purpose convex optimization algorithms – especially
when many correlated features are involved. The convergence rate of GIS turns out
to be much slower.

VIII.4 TEG: USING SCFG RULES FOR HYBRID

STATISTICAL–KNOWLEDGE-BASED IE

Another approach has been described that employs a hybrid statistical and
knowledge-based information extraction model able to extract entities and relations
at the sentence level. The model attempts to retain and improve the high accuracy
levels of knowledge-based systems while drastically reducing the amount of manual
labor by relying on statistics drawn from a training corpus. The implementation of
the model, called trainable extraction grammar (TEG), can be adapted to any IE
domain by writing a suitable set of rules in a SCFG-based extraction language and
training them using an annotated corpus.

The system does not contain any purely linguistic components such as a POS
tagger or parser. We demonstrate the performance of the system on several named
entity extraction and relation extraction tasks. The experiments show that our hybrid
approach outperforms both purely statistical and purely knowledge-based systems
and require orders-of-magnitude less manual rule writing and smaller amounts of
training data. The improvement in accuracy is slight for named entity extraction tasks
and more pronounced for relation extraction.

By devoting some attention to the details of TEG, we can provide a concrete
sense of how hybrid-type systems can be employed for text mining preprocessing
operations.

VIII.4.1 Introduction to a Hybrid System

The knowledge engineering (mostly rule-based) systems traditionally were the top
performers in most IE benchmarks such as MUC (Chinchor, Hirschman, and Lewis
1994), ACE (ACE 2004), and the KDD CUP (Yeh and Hirschman 2002). Recently,
though, the machine learning systems became state of the art – especially for simpler
tagging problems such as named entity recognition (Bikel, Schwartz, and Weischedel
1999) or field extraction (McCallum et al. 2000).

Still, the knowledge engineering approach retains some of its advantages. It is
focused around manually writing patterns to extract the entities and relations. The
patterns are naturally accessible to human understanding and can be improved in a
controllable way, but improving the results of a pure machine learning system would

156 Preprocessing Applications Using Probabilistic and Hybrid Approaches

require providing it with additional training data. However, the impact of adding
more data soon becomes infinitesimal, whereas the cost of manually annotating the
data grows linearly.

TEG is a hybrid entities and relations extraction system, which combines the
power of knowledge-based and statistical machine learning approaches. The system
is based on SCFGs. The rules for the extraction grammar are written manually, and
the probabilities are trained from an annotated corpus. The powerful disambiguation
ability of PCFGs allows the knowledge engineer to write very simple and naive rules
while retaining their power, thus greatly reducing the required labor.

In addition, the size of the needed training data is considerably smaller than
that of the training data needed for a pure machine learning system (for achieving
comparable accuracy results). Furthermore, the tasks of rule writing and corpus
annotation can be balanced against each other.

VIII.4.2 TEG: Bridging the Gap between Statistical and Rule-Based

IE Systems

Although the formalisms based on probabilistic finite-state automata are quite suc-
cessful for entity extraction, they have shortcomings that make them harder to use
for the more difficult task of extracting relationships.

One problem is that a finite-state automaton model is flat, and so its natural task
is assignment of a tag (state label) to each token in a sequence. This is suitable for the
tasks in which the tagged sequences do not nest and there are no explicit relations
between the sequences. Part-of-speech tagging and entity extraction tasks belong
to this category, and indeed the HMM-based POS taggers and entity extractors are
state of the art.

Extracting relationships is different because the tagged sequences can and must
nest and there are relations between them, which must be explicitly recognized.
Although it is possible to use nested automata to cope with this problem, we felt
that using a more general context-free grammar formalism would allow for greater
generality and extendibility without incurring any significant performance loss.

VIII.4.3 Syntax of a TEG Rulebook

A TEG rulebook consists of declarations and rules. Rules basically follow the classical
grammar rule syntax with a special construction for assigning concept attributes.
Notation shortcuts like [] and | can be used for easier writing. The nonterminals
referred by the rules must be declared before usage. Some of them can be declared as
output concepts, which are the entities, events, and facts that the system is designed
to extract. Additionally, two classes of terminal symbols also require declaration:
termlists and ngrams.

A termlist is a collection of terms from a single semantic category written either
explicitly or loaded from external source. Examples of termlists are countries, cities,
states, genes, proteins, people’s first names, and job titles. Some linguistic concepts
such as lists of propositions can also be considered termlists. Theoretically, a termlist
is equivalent to a nonterminal symbol that has a rule for every term.

VIII.4 TEG: Using SCFG Rules for Hybrid Statistical–Knowledge-Based IE 157

An ngram is a more complex construction. When used in a rule, it can expand to
any single token. The probability of generating a given token, however, is not fixed
in the rules but learned from the training dataset and may be conditioned on one
or more previous tokens. Thus, using ngrams is one of the ways the probabilities of
TEG rules can be context-dependent. The exact semantics of ngrams is explained in
the next section.

Let us see a simple meaningful example of a TEG grammar:

output concept Acquisition(Acquirer, Acquired);

ngram AdjunctWord;

nonterminal Adjunct;

Adjunct:- AdjunctWord Adjunct | AdjunctWord;

termlist AcquireTerm = acquired bought (has acquired) (has bought);

Acquisition :- Company → Acquirer [”,”Adjunct ”,”]

AcquireTerm

Company → Acquired;

The first line defines a target relation Acquisition, which has two attributes,
Acquirer and Acquired. Then an ngram AdjunctWord is defined followed by a non-
terminal Adjunct, which has two rules separated by “|” that together define Adjunct

as a sequence of one or more AdjunctWord-s. Then a termlist AcquireTerm is defined
containing the main acquisition verb phrase. Finally, the single rule for the Acqui-

sition concept is defined as a Company followed by optional Adjunct delimited by
commas that are followed by AcquireTerm and a second Company. The first Com-

pany is the Acquirer attribute of the output frame and the second is the Acquired

attribute.
The final rule requires the existence of a defined Company concept. The following

set of definitions identifies the concept in a manner emulating the behavior of an
HMM entity extractor:

output concept Company();

ngram CompanyFirstWord;

ngram CompanyWord;

ngram CompanyLastWord;

nonterminal CompanyNext;

Company:- CompanyFirstWord CompanyNext |
CompanyFirstWord;

CompanyNext:- CompanyWord CompanyNext |
CompanyLastWord;

Finally, in order to produce a complete grammar, we need a starting symbol
and the special nonterminal that would match the strings that do not belong to any

158 Preprocessing Applications Using Probabilistic and Hybrid Approaches

of the output concepts:

start Text;

nonterminal None;

ngram NoneWord;

None:- NoneWord None | ;

Text:- None Text | Company Text | Acquisition Text;

These 20 lines of code are able to find a fair number of Acquisitions accurately
after very modest training. Note that the grammar is extremely ambiguous. An ngram
can match any token, and so Company, None, and Adjunct are able to match any
string. Yet, using the learned probabilities, TEG is usually able to find the correct
interpretation.

VIII.4.4 TEG Training

Currently there are three different classes of trainable parameters in a TEG rulebook:
the probabilities of rules of nonterminals, the probabilities of different expansions
of ngrams, and the probabilities of terms in a wordclass. All those probabilities are
smoothed maximum likelihood estimates calculated directly from the frequencies of
the corresponding elements in the training dataset.

For example, suppose we have the following simple TEG grammar that finds
simple person names:

nonterm start Text;
concept Person;
ngram NGFirstName;
ngram NGLastName;
ngram NGNone;
termlist TLHonorific = Mr Mrs Miss Ms Dr;
(1) Person :- TLHonorific NGLastName;
(2) Person :- NGFirstName NGLastName;
(3) Text :- NGNone Text;
(4) Text :- Person Text;
(5) Text :-;

By default, the initial untrained frequencies of all elements are assumed to be 1. They
can be changed using “<count>” syntax, an example of which is shown below. The
numbers in parentheses on the left side are not part of the rules and are used only
for reference. Let us train this rulebook on the training set containing one sentence:

Yesterday, <person> Dr Simmons, </person> the distinguished scientist, pre-

sented the discovery.

VIII.4 TEG: Using SCFG Rules for Hybrid Statistical–Knowledge-Based IE 159

The difference is in the expansion of the Person nonterminal. Both Person rules
can produce the output instance; therefore, there is an ambiguity. This is done in
two steps. First, the sentence is parsed using the untrained rulebook but with the
constraints specified by the annotations. In our case the constraints are satisfied
by two different parses that are shown in Figure VIII.5 (the numbers below the
nonterminals refer to the rules used to expand them):

The ambiguity arises because both TLHonorific and NGFirstName can generate
the token “Dr.” In this case the ambiguity is resolved in favor of the TLHonorific

interpretation because in the untrained rulebook we have

P (Dr | TLHonorific) = 1/5

(choice of one term among five equiprobable ones),

P (Dr | NGFirstName) ≈ 1/N, where N is the number

of all known words (untrained ngram behavior).

After the training, the frequencies of the different elements are updated, which
produces the following trained rulebook (only lines that were changed are shown).
Note the “<Count>” syntax:

termlist TLHonorific = Mr Mrs Miss Ms <2> Dr;

Person :- <2>TLHonorific NGLastName;

Text :- <11>NGNone Text;

Text :- <2>Person Text;

Text :- <2>;

Additionally, the training will generate a separate file containing the statistics for the
ngrams. It is similar but more complex because the bigram frequencies, token feature
frequencies, and unknown word frequencies are taken into consideration. In order
to understand the details of ngrams training it is necessary to go over the details of
their internal working.

An ngram always generates a single token. Any ngram can generate any token,
but naturally the probability of generating one depends on the ngram, on the token,
and on the immediate preceding context of the token. This probability is calculated
at the runtime using the following statistics:

Freq(*) = total number of times the ngram was encountered in the training
set.

Freq(W), Freq(F), Freq(T) = number of times the ngram was matched to the
word W, the feature F, and the token T, respectively. Note that a token T is a
pair consisting of a word W(T) and its feature F(T).

Freq(T | T2) = number of times token T was matched to the ngram in the training
set and the preceding token was T2.

Freq(* | T2) = number of times the ngram was encountered after the token T2.

,

T
e
x
t

,

3

3

4

1
3

,3

3

4

2
3

N
G
N
o
n
e

T
e

x
t

Y
e
s
te

rd
a
y

T
e
x
t

N
G
N
o
n
e

T
e
x
t

P
e
rs

o
n

T
L
H

o
n
o
ri
fi
c

N
G

L
a
s
tN

a
m

e

D
r

S
im

m
o
n
s

T
e
x
t

N
G
N
o
n
e

T
e
x
t

N
G
N
o
n
e

Y
e

s
te

rd
a

y

T
e
x
t

T
e
x
t

N
G
N
o
n
e

T
e
x
t

P
e

rs
o

n

N
G

F
ir
s
tN

a
m

e
N

G
L
a
s
tN

a
m

e

D
r

S
im

m
o
n
s

T
e
x
t

N
G
N
o
n
e

,

F
ig

u
re

V
II
I.
5

.
P
o
s
s
ib

le
p
a
rs

e
tr

e
e
s
.

160

VIII.4 TEG: Using SCFG Rules for Hybrid Statistical–Knowledge-Based IE 161

Thus, on the assumption all those statistics are gathered, the probability of the ngram’s
generating a token T given that the preceding token is T2 is estimated as

P(T|T2) = 1/2 · Freq(T|T2)/Freq(∗|T2)

+ 1/4 · Freq(T)/Freq(∗)

+ 1/4 · Freq(W) · Freq(F)/Freq(∗)2.

This formula linearly interpolates between the three models: the bigram model, the
backoff unigram model, and the further backoff word+feature unigram model. The
interpolation factor was chosen to be 1/2, which is a natural choice. The experiments
have shown, however, that varying the λ’s in reasonable ranges does not significantly
influence the performance.

Finally, matters are made somewhat more complicated by the unknown tokens.
That a token was never encountered during the training gives by itself an important
clue to the token’s nature. In order to be able to use this clue, the separate “unknown”
model is trained. The training set for it is created by dividing the available training
data into two halves and treating one-half of the tokens, which are not present in
the other half, as special “unknown” tokens. The model trained in this way is used
whenever an unknown token is encountered during runtime.

VIII.4.5 Additional features

There are several additional features that improve the system and help to customize it
for other domains. First, the probabilities of different rules of a nonterminal need not
be fixed but may depend on their context. Currently, the rules for a specific nontermi-
nal can be conditioned on the previous token in a way similar to the dependencey of
ngram probabilities on the previous token. Other conditioning is of course possible –
even to the extent of using maximal entropy for combining several conditioning
events.

Second, an external tokenizer, token feature generator, or both can be substituted
for the regular one. It is even possible to use several feature generators simultaneously
(different ngrams may use different token feature sets). This is useful for languages
other than English as well as for special domains. For instance, in order to extract the
names of chemical compounds or complex gene names it may be necessary to provide
a feature set based on morphological features. In addition, an external part-of-speech
tagger or shallow parser may be used as a feature generator.

For real-life IE tasks it is often necessary to extract very rare target concepts.
This is especially true for relations. Although there could be thousands of Persons
or Organizations in a dataset, the number of Acquisitions could well be less than 50.
The ngrams participating in the rules for such concepts will surely be undertrained. In
order to alleviate this problem, the shrinkage technique can be used. An infrequent
specific ngram can be set to shrink to another more common and more general
ngram. Then the probability of generating a token by the ngram is interpolated
with the corresponding probability for the more common “parent” ngram. A similar
technique was used with a great success for HMM, and we found it very useful for
TEG as well.

162 Preprocessing Applications Using Probabilistic and Hybrid Approaches

VIII.4.6 Example of Real Rules

This section demonstrates a fragment of the true rules written for the extraction of
the PersonAffiliation relation from a real industry corpus. The fragment shows a
usage of the advanced features of the system and gives another glimpse of the flavor
of rule writing in TEG.

The PersonAffiliation relation contains three attributes – name of the person,
name of the organization, and position of the person in the organization. It is declared
as follows:

concept output PersonAffiliation(Name, Position, Org);

Most often, this relation is encountered in the text in the form “Mr. Name,
Position of Org” or “Org Position Ms. Name.” Almost any order of the components
is possible with commas and prepositions inserted as necessary. Also, it is common
for Name, Position, or both to be conjunctions of pairs of corresponding entities:
“Mr. Name1 and Ms. Name2, the Position1 and Position2 of Org,” or “Org’s Position1
and Position2, Ms. Name.” In order to catch those complexities, and for general
simplification of the rules, we use several auxiliary nonterms: Names, which catches
one or two Names; Positions, which catches one or two Positions; and Orgs, which
catches Organizations and Locations. These can also be involved in PersonAffiliation
as in “Bush, president of US”:

nonterms Names, Positions, Orgs;

Names :- PERSON->Name | PERSON->Name “and” PERSON->Name;

Positions :- POSITION->Position | POSITION->Position “and”

POSITION-> Position;

Orgs :- ORGANIZATION->Org | LOCATION->Org;

We also use auxiliary nonterms that catch pairs of attributes:

PosName, and PosOrg:
nonterms PosName, PosOrg;

PosName :- Positions Names | PosName “and” PosName;

wordclass wcPreposition = “at” “in” “of” “for” “with”;

wordclass wcPossessive = (“’ ” “s”) “’ ”;

PosOrg :- Positions wcPreposition Orgs;

PosOrg :- Orgs [wcPossessive] Positions;

Finally, the PersonAffiliation rules are as follows:

PersonAffiliation :- Orgs [wcPossessive] PosName;

PersonAffiliation :- PosName wcPreposition Orgs;

PersonAffiliation :- PosOrg [“,”] Names;

PersonAffiliation :- Names “,” PosOrg;

PersonAffiliation :- Names “is” “a” PosOrg;

The rules above catch about 50 percent of all PersonAffiliation instances in the texts.
Other instances depart from the form above in several respects. Thus, in order to
improve the accuracy, additional rules need to be written. First, the Organization
name is often entered into a sentence as a part of a descriptive noun phrase as in
“Ms. Name is a Position of the industry leader Org.” To catch this in a general way,
we define an OrgNP nonterm, which uses an external POS tagger:

VIII.4 TEG: Using SCFG Rules for Hybrid Statistical–Knowledge-Based IE 163

ngram ngOrgNoun featureset ExtPoS restriction Noun;

ngram ngOrgAdj featureset ExtPoS restriction Adj;

ngram ngNum featureset ExtPoS restriction Number;

ngram ngProper featureset ExtPoS restriction ProperName;

ngram ngDet featureset ExtPoS restriction Det;

ngram ngPrep featureset ExtPoS restriction Prep;

nonterm OrgNounList;

OrgNounList :- ngOrgNoun [OrgNounList];

nonterms OrgAdjWord, OrgAdjList;

OrgAdjWord :- ngOrgAdj | ngNum | ngProper;

OrgAdjList :- OrgAdjWord [OrgAdjList];

nonterm OrgNP;

OrgNP :- [ngDet] [OrgAdjList] OrgNounList;

OrgNP :- OrgNP ngPrep OrgNP;

OrgNP :- OrgNP “and” OrgNP;

The external POS tagger provides an alternative token feature set, which can be
used by ngrams via the ngram featureset declaration. The restriction clause in the
ngram declaration specifies that the tokens matched by the ngram must belong to
the specified feature. Altogether, the set of rules above defines an OrgNP nonterm in
a way similar to the to the definition of a noun phrase by a syntax-parsing grammar.
To use the nonterm in the rules, we simply modify the Orgs nonterm:

Orgs :- [OrgNP] ORGANIZATION->Org | LOCATION->Org;

Note that, although OrgNP is internally defined very generally (it is able to match
any noun phrase whatsoever), the way it is used is very restricted. During training,
the ngrams of OrgNP learn the distributions of words for this particular use, and,
during the run, the probability that OrgNP will generate a true organization-related
noun phrase is much greater than for any other noun phrase in text.

Finally, we demonstrate the use of ngram shrinkage. There are PersonAffiliation
instances in which some irrelevant sentence fragments separate the attributes. For
example, “‘ORG bla bla bla’, said the company’s Position Mr. Name.” In order
to catch the “bla bla bla” part we can use the None nonterm, which generates all
irrelevant fragments in the text. Alternatively, we can create a separate ngram and a
nonterm for the specific use of catching irrelevant fragments inside PersonAffiliation.
Both these solutions have their disadvantages. The None nonterm is too general and
does not catch the specifics of the particular case. A specific nonterm, on the other
hand, is very much undertrained. The solution is to use a specific nonterm but to
shrink its ngram to None:

nonterm BlaBla;

ngram ngBlaBla -> ngNone;

BlaBla :- ngBlaBla [BlaBla];

PersonAffiliation :- Orgs BlaBla PosName;

The rules described above catch 70 percent of all PersonAffiliation instances,
which is already a good result for relationship extraction from a real corpus. The
process of writing rules, moreover, can be continued to further improve the accuracy.

164 Preprocessing Applications Using Probabilistic and Hybrid Approaches

Recall Prec F1 Recall Prec F1 Recall Prec F1 Recall Prec F1

Person 86.91 85.1 86.01 86.31 86.83 86.57 81.32 93.75 87.53 93.75 90.78 92.24

Organization 87.94 89.8 88.84 85.94 89.53 87.7 82.74 93.36 88.05 89.49 90.9 90.19

Location 86.12 87.2 86.66 83.93 90.12 86.91 91.46 89.53 90.49 87.05 94.42 90.58

HMM Emulation using TEG Manual Rules Full TEG system

Figure VIII.6. Accuracy results for MUC-7.

VIII.4.7 Experimental Evaluation of TEG

The TEG techniques were evaluated using two corpora: MUC-7 and ACE-2.
The results show the potential of utilizing hybrid approaches for text mining
preprocessing.

The MUC-7 Corpus Evaluation – Comparison with HMM-based NER

The MUC-7 named-entity recognition (NER) corpus consists of a set of news
articles related to aircraft accidents, containing about 200 thousand words with
the named entities manually categorized into three basic categories: PERSON,
ORGANIZATION, and LOCATION. Some other entities are also tagged such as
dates, times, and monetary units, but they did not take part in our evaluation.

The corpus does not contain tagged relationships, and thus it was used to evaluate
the difference in the performance between the four entity extractors: the regular
HMM, its emulation using TEG, a set of handcrafted rules written in DIAL, and a
full TEG system, which consists of the HMM emulation augmented by a small set of
handcrafted rules (about 50 lines of code added).

The results of the experiments are summarized in Figure VIII.6: The small accu-
racy difference between the regular HMM and its emulation is due to slight differ-
ences in probability conditioning methods. It is evident that the handcrafted rules
performed better than the HMM-based extractors but were inferior to the perfor-
mance of the TEG extractor. Significantly, the handcrafted rules achieved the best
precision; however, their recall was far worse.

The HMM named-entity recognition results published in Bikel et al. (1997) are
somewhat higher than we were able to produce using our version of an HMM entity
extractor. We hypothesize that the reason for the difference is the use of additional
training data in the Nymble experiments. The paper (Bikel et al. 1997) mentions using
approximately 750K words of training data, whereas we had only 200K. Regardless
of the reasons for the difference, the experiment clearly shows that the addition
of a small number of handcrafted rules can further improve the results of a purely
automatic HMM-based named-entity extraction.

ACE-2 Evaluation: Extracting Relationships

The ACE-2 was a follow-up to ACE-1 and included tagged relationships in addition
to tagged entities. The ACE-2 annotations are more complex than those supported
by the current version of our system. Most significantly, the annotations resolve
all anaphoric references, which is outside the scope of the current implementation.
Therefore, it was necessary to remove annotations containing anaphoric references.
This was done automatically using a simple Perl script.

VIII.4 TEG: Using SCFG Rules for Hybrid Statistical–Knowledge-Based IE 165

Full TEG system (with 7 ROLE rules)

Recall Prec F

Role 83.44 77.30 80.25

Person 89.82 81.68 85.56

Organization 59.49 71.06 64.76

GPE 88.83 84.94 86.84

HMM entity extractorMarkovian SCFG

Recall Prec F Recall Prec F

Role 67.55 69.86 68.69

Person 85.54 83.22 84.37 89.19 80.19 84.45

Organization52.62 64.735 58.05 53.57 67.46 59.71

GPE 85.54 83.22 84.37 86.74 84.96 85.84

Figure VIII.7. Accuracy results for ACE-2.

For evaluating relationship extraction we choose the ROLE relation (ACE 2002).
The original ACE-2 annotations make finer distinctions between the different kinds
of ROLE, but for the current evaluation we felt it sufficient just to recognize the
basic relationships and find their attributes.

The results of this evaluation are shown in Figure VIII.7. For comparison we
also show the performance of the HMM entity extractor on the entities in the same
dataset.

As expected, the accuracy of a purely Markovian SCFG without additional rules is
rather mediocre. However, by adding a small number of handcrafted rules (altogether
about 100 lines of code), accuracy was raised considerably (by 15% in F1). The
performances of the three systems on the named entities differ very little because
they are essentially the same system. The slight improvement of the full TEG system
is due to better handling of the entities that take part in ROLEs.

In Figure VIII.8 we can see how the accuracy of the TEG system changes as a
function of the amount of available training data. There are three graphs in the figure:
a graph that represents the accuracy of the grammar with no specific ROLE rules, a
graph that represents the accuracy of the grammar with four ROLE rules, and finally
a graph that represents the accuracy of the grammar with seven ROLE rules.

Analysis of the graphs reveals that, to achieve about 70-percent accuracy the sys-
tem needs about 125K of training data when using all of the specific ROLE rules,
whereas 250k of training data are needed when no specific rules are present. Thus,
adding a small set of simple rules may save 50 percent of the training data require-
ments.

The seven ROLE rules used by the third TEG are shown below. The rules use
nonterminals and wordclasses, which are defined in the rest of the grammar. The
whole grammar, which has a length of about 200 lines, is too long to be included
here.

1. ROLE :- [Position Before] ORGANIZATION->ROLE 2

Position [“in” GPE] [“,”] PERSON→ROLE 1;

2. ROLE :- GPE→ROLE 2 Position [“,”]

PERSON→ROLE 1;

3. ROLE :-PERSON→ROLE 1 “of” GPE→ROLE 2;

166 Preprocessing Applications Using Probabilistic and Hybrid Approaches

0.00

20.00

40.00

60.00

80.00

100.00

50K 100K 150K 200K 250K

0 rules

4 rules

7 rules

Figure VIII.8. Accuracy (F1) of the TEG system (with different grammars) as a function of the

size of the training corpus (ACE-2).

4. ROLE :- ORGANIZATION→ROLE 2 “’” “s” [Position]

PERSON→ROLE 1;

5. ROLE :- GPE→ROLE 2 [Position] PERSON→ROLE 1;

6. ROLE :- <5> GPE->ROLE 2 “’” “s””

ORGANIZATION→ROLE 1;

ROLE :- PERSON→ROLE 1 “,” Position WCPreposition

ORGANIZATION→ROLE 2;

VIII.5 BOOTSTRAPPING

VIII.5.1 Introduction to Bootstrapping: The AutoSlog-TS Approach

One of the main problems of the machine learning–based systems is that they rely on
annotated corpora. A bootstrapping approach to IE takes a middle ground between
the knowledge engineering and machine learning approaches. The main idea behind
this approach is that the user provides some initial bias either by supplying a small
initial lexicon or a small number of rules for inducing the initial examples. The boot-
strapping approach attempts to circumvent the need for an annotated corpus, which
can be very expensive and time consuming to produce.

One of the first approaches to bootstrapping was developed by Ellen Riloff
and implemented in the AutoSlog-TS system (Riloff 1996a). Based on the original
AutoSlogsystem developed previously by Riloff (Riloff 1993a), AutoSlog-TS uses a
set of documents split into two bins: interesting documents and noninteresting doc-
uments. In contrast, the original AutoSlog required all relevant noun phrases within
the training corpus to be tagged and, hence, put a much bigger load on the task of the
training corpus construction. Palka (Kim and Moldovan 1995) was another system
similar to AutoSlog, but it required a much heavier tagging in the training corpus:

VIII.5 Bootstrapping 167

Sentence Analyzer

S: World Trade Center
V: was bombed
PP: by terrorists

AutoSlog Heuristics

Extraction

Patterns
<w> was killed
bombed by <y>

Sentence Analyzer

Extraction Patterns

<w> was killed
<x> was bombed
bombed by <y>

<z> saw

EP REL %

<x> was bobmed 87%
bombed by <y> 84%
<w> was killed 63%
<z> saw 49%

Figure VIII.9. Flow of the AutoSlog-TS system.

Each frame had to be fully tagged, and an ontology had to be provided along with
the related lexicons.

AutoSlog-TS starts by using a parser that analyzes the sentences, determines
clause boundaries, and marks subjects, verbs, direct objects, and prepositional phrases
of each clause. It then uses a set of extraction pattern templates and generates an
extraction pattern for each noun phrase in the corpus. The extraction patterns are
graded by using the two bins of documents provided by the user. Extraction patterns
that appear mostly in the bin of the important documents are ranked higher. An
example of the flow of the AutoSlog-TS system is shown in Figure VIII.9.

The main steps within AutoSlog-TS can be broken down as follows:

1. The user provides two sets of documents, interesting (I) and noninteresting
(N).

2. Shallow Parsing is performed for all the documents, and, on the basis of the
predefined templates all patterns that match one of the templates are extracted
(EP).

3. For each extraction pattern in EP, we compute the relevance of the pattern:

Rel(Pat) = Pr(D ∈ I|Pat ∈ D) =
#(I, Pat)

#(I
⋃

N)
,

where #(I, Pat) is the number of documents in the document collection I that
contain pattern P.

4. We compute the importance of each extraction pattern in EP according to the
following formula and rank them in a decreased order:

Imp(Pat) = Rel(Pat) log2(#(D, Pat)).

5. The system presents the top-ranked rules to the user for evaluation.

168 Preprocessing Applications Using Probabilistic and Hybrid Approaches

<subj> exploded Murder of <np> Assassination of

<np>

<subj> was killed <subj> was

kidnapped

Attack on <np>

<subj> was injured Exploded in <np> Death of <np>

<subj> took place Caused <dobj> Claimed <dobj>

<subj> was

wounded
<subj> occurred <subj> was

loctated

Took place on
<np>

Responsibility for
<np>

Occurred on <np>

Was wounded in

<np>
Destroyed <dobj> <subj> was

murdered

One of <np> <subj> kidnapped Exploded on <np>

Figure VIII.10. Table of the top 24 extraction patterns in the AutoSlog-TS evaluation.

The system was evaluated on MUC-4 documents. A total of 1,500 MUC-4 documents
were used, and 50 percent of them were relevant according to the user. The system
generated 32,345 patterns and after patterns supported only by one document were
discarded, 11,225 patterns were left. The top 24 extraction patterns are shown in
Figure VIII.10.

The user reviewed the patterns and labeled the ones she wanted to use for actual
extraction. So, for instance, “<subj> was killed” was selected for inclusion in the
extraction process, and <subj> was replaced by <victim>. It took the user 85 minutes
to review the top 1,970 patterns.

Certainly this approach shows much promise in building new extraction systems
quickly because very little manual effort is needed in terms of rule writing and corpus
annotation. The primary drawback is that a fairly strong parser needs to be used for
analyzing the candidate sentences.

VIII.5.2 Mutual Bootstrapping

Riloff and Jones (Riloff and Jones 1999) took this idea of bootstrapping even further
by suggesting mutual bootstrapping. Here the starting point is a small lexicon of
entities (seed) that share the same semantic category.

In a way similar to AutoSlog-TS, the corpus is processed and all possible extraction
patterns are generated along with the noun phrases that are extracted by them. The
main purpose of this approach is to extend the initial lexicon and to learn accurate
extraction patterns that can extract instances for the lexicon.

Initialization

� N = total number of extraction patterns
� EPi = one extraction pattern (i = 1..N)
� EPData = a list of pairs (EPi , Noun Phrases generated by the EPi)
� SemLex = the list of seed words (the initial lexicon)
� EPlist = {}

Loop

1. Score all extraction patterns in EPData : Find for each EPi how many items
from SemLex it can generate.

VIII.5 Bootstrapping 169

www location www company terrorism location

offices in <x> owned by <x> living in <x>

facilities in <x> <x> employed traveled to <x>

operations in <x> <x> is distributor become in <x>

operates in <x> <x> positioning Sought in <x>

seminars in <x> motivated <x> presidents of <x>

activities in <x> sold to <x> parts of <x>

consulting in <x> Devoted to <x> To enter <x>

outlets in <x> <x> thrive ministers of <x>

customers in <x> Message to <x> part in <x>

distributors in <x> <x> request

information

taken in <x>

services in <x> <x> has positions returned to <x>

expanded into <x> offices of <x> process in <x>

Figure VIII.11. Table of extraction patterns from mutual bootstrapping.

2. Best EP = highest scoring extraction pattern (extracted the highest number
of items from SemLex)

3. Add Best EP to EPList
4. Add Best EP’s extractions to SemLex
5. Goto 1

The top 12 extraction patterns in each of 3 problems (locations mentioned in
company home pages, company names mentioned in company home pages, and
locations mentioned in terrorist-related documents) are shown in Figure VIII.11.

VIII.5.3 Metabootstrapping

One of the main problems encountered with mutual bootstrapping is that once a word
is added to the lexicon that does not belong to the semantic category, a domino effect
can be created, allowing incorrect extraction patterns to receive high scores and thus
adding many more incorrect entries to the lexicon. To prevent this problem, Riloff
and Jones suggest using another method called metabootstrapping, which allows finer
grain control over the instances that are added to the lexicon.

In metabootstrapping, only the top five instances that are extracted by using the
best extraction pattern are retained and added to the permanent semantic lexicons.
All other instances are discarded. The instances are scored by counting, for each
instance, how many extraction patterns can extract it.

Formally, the score of instance Ij is computed as follows:

score(I j) =
Nj
∑

k=1

1 + (.01∗Imp(Patternk)),

where Nj is the number of extraction patterns that generated Ij.
After the new instances are added to the permanent semantic lexicon, the mutual

bootstrapping starts from scratch. A schematic view of the flow of the metabootstrap-
ping process is presented in Figure VIII.12.

170 Preprocessing Applications Using Probabilistic and Hybrid Approaches

Seed Words

Permanent Semantic
Lexicon

Candidate Extraction Patterns
and their Extractions

Temporary Semantic
Lexicon

Category EP List

Initialize

Add 5 Best
NPs

Mutual
Bootstrapping

Figure VIII.12. Flow diagram of metabootstrapping.

Evaluation of the Metabootstrapping Algorithm

Two datasets were used: one of 4,160 company Web pages, and one of 1,500 articles
taken from the MUC-4 corpus. Three semantic categories were extracted from the
Web pages (locations, company names, and titles of people), and two semantic cate-
gories were extracted from the terror-related articles (locations and weapons). The
metabootstrapping algorithm was run for 50 iterations. During each iteration, the
mutual bootstrapping was run until it produced 10 patterns that extracted at least
one new instance that could be added to the lexicon.

In Figure VIII.13, one can see how the accuracy of the semantic lexicon changes
after each number of iterations. The easiest category is Web location, and the most
difficult categories are weapon and Web title (titles of people mentioned on the Web
page).

Semantic Lexicons Accuracy

0

0.1

0.2

0.3

0.4

0.5
0.6

0.7

0.8

0.9

1

10 20 30 40 50

of iterations

A
c

c
u

ra
c

y

web company

web location

web title

terrorist location

weapon

Figure VIII.13. Accuracy of the semantic lexicons as a function of the number of mutual

bootstrapping iterations.

VIII.5 Bootstrapping 171

Seed Words

Proper NP

Lexicon

Generic NP

Lexicon

Syntactic

Heuristics

Candidate

Proper NPs

Candidate

Generic

NPs

Document

Collection

E
x
c
lu

s
iv

e

N
o

n
E

x
c
lu

s
iv

e

N
o

n
E

x
c
lu

s
iv

e

E
x
c
lu

s
iv

e

Figure VIII.14. Heuristic-based bootstrapping.

VIII.5.4 Using Strong Syntactic Heuristics

Phillips and Riloff (Phillips and Riloff 2002) took a different approach to building
semantic lexicons. They learned two lexicons; one contained proper noun phrases
(PNP) and the other generic noun phrases (GN). The lexicons were acquired by
using a set of syntactic heuristics. In particular, they used three types of patterns. The
architecture of the heuristic-based bootstrapping is shown in Figure VIII.14.

The first type included appositives such as “the president, George Bush,” or
“Mary Smith, the analyst.” The second type consisted of IS-A clauses, which are NP
followed by “to be” VP followed by NP. An example of an IS-A clause is “Bill Gates,
the chairman of Microsoft.” The last type comprised compound nouns that have the
form GN + PNP. An example of such a construct is “the senator John Kerry.”

A mutual property of all three types is that they establish a relationship between
at least one GN and one PNP. The bootstrapping algorithm will infer relationships
between an element that is already in one of the lexicons and an element that is
not yet in any of the lexicons. These relations enable the algorithm each time to
extend either the PNP lexicon or the GN lexicon. The algorithm alternates between
learning a new GN based on the PNP lexicon and learning a new PNP based on the
GN lexicon.

As an example, if one is trying to extend the people lexicons and we have in our
PNP person lexicon the name “John Kerry” and the sentence “senator John Kerry”
is encountered, one would learn that “senator” is a generic noun that stands for a

172 Preprocessing Applications Using Probabilistic and Hybrid Approaches

person; it will be added to the GN person lexicon. We can now learn new names of
people that come after the GN “senator.”

Normally, when a proper noun phrase is added to the PNP lexicon, the full phrase
is used, whereas typically a generic noun phrase is added to the GN lexicon when just
the head noun is used. This is done to increase the generality of the lexicon without
sacrificing accuracy.

Take, for instance, the generic noun phrase “financial analyst.” It is enough just to
add analyst to the GN lexicon, and no harm will result. On the other hand, consider
the proper noun phrase “Santa Barbara.” Clearly, we can not add just Santa or just
Barbara to the PNP lexicon of locations.

One of the main problems of bootstrapping approaches in general is that some
generic phrases are ambiguous and can be used with a variety of semantic classes.
An example is the generic noun “leader.” This noun can designate either a company
(which is a leader in its area) or a person (in the political domain or in the financial–
corporate domain). If we add “leader” to the GN lexicon of people, in the next
iteration it will add many corporations and contaminate our PNP people lexicon.

To alleviate this problem, the authors suggested using an exclusivity measure that
is attached to each of the noun phrases. Only noun phrases that have an exclusivity
measure exceeding some predefined threshold are added to the lexicon.

Given a phrase P and a semantic category C,

Exclusivity(P, C) =
#(P, C)

#(P, ¬C)
,

where #(P, C) is the number of sentences in which P is collocated with at least
one member of C, and #(P, C) is the number of sentences in which P is colloca-
ted with at least one member of all the semantic classes other than C. A typical
exclusivity threshold is 5.

VIII.5.4.1 Evaluation of the Strong Syntactic Heuristics

This approach was tested on 2,500 Wall Street Journal articles (People and Organi-
zations) and on a set of 1,350 press releases from the pharmacology domain (People,
Organizations, and Products). The heuristics that added the highest number of entries
to the PNP semantic lexicons were the compounds heuristics, whereas the appositives
heuristics added the highest number of entries to the GN lexicons. The accuracy for
the Wall Street Journal articles was between 80 percent and 99 percent for the PNP
lexicons and between 30 and 95 percent for the GN lexicons. The accuracy results
dropped when tested against the pharmaceutical press releases (77–95% for the PNP
and 9–91% for the GN).

VIII.5.4.2 Using Cotraining

Blum and Mitchell (Blum and Mitchell 1998) introduced the notion of cotraining – a
learning technique that tries to learn from a variety of views and sources simultane-
ously. Clearly, because there are three heuristics for learning the semantic lexicons,
cotraining can be used after each boot-strapping cycle. All three lexicons will be
joined after each step, and will a richer lexicon will result for each of them. A simple
filtering mechanism can be used to eliminate entries with low support.

VIII.5 Bootstrapping 173

Semantic Lexicon

Pattern Pool

Candidate Phrase
Pool

Seed Phrases
Extraction Patterns and Their

Extractions

initialize

Add 5 best candidate
phrases (based on

score (phrase))

Select best patterns
(based on RlogF (pattern))

Add extractions of best
patterns

Figure VIII.15. The Basilisk algorithm.

It is common to add just entries supported by at least three sentences to the
combined lexicon. Using the cotraining method results in a much more rapid learning
of the lexicons (between 20 and 250% more entries were acquired) without much
loss in accuracy.

VIII.5.5 The Basilisk Algorithm

Following in the footsteps of Riloff and Jones, Thelen and Riloff (Thelen and
Riloff 2002) suggested a similar algorithm called Basilisk (Bootstrapping Approach
to SemantIc Lexicon Induction using Semantic Knowledge). Differing from the
metabootstrapping approach that uses a two-level loop (with mutual bootstrapping
in the inner loop), Basilisk uses just a one-level loop and hence is more efficient.
It solves the accuracy problem of the mutual bootstrapping by utilizing a weighted
combination of extraction patterns. In particular, the approach utilizes 20 + i (where
i is the index of the bootstrapping loop) extraction patterns as the pattern pool. The
general architecture of Basilisk is shown in Figure VIII.15.

RlogF(pattern) was defined when we discussed the AutoSlog system. Score of
phrase PH is defined as average log of the number of valid extraction patterns (for
the given semantic category). The rationale is that a pattern is more trusted if it
extracts a higher number of valid members of the semantic category. The log of the
number of extractions is used so that a small number of extraction patterns having a
particularly high number of valid extraction will not affect the average too drastically.

Formally,

� #(PHi) is the number of extraction patterns that extract phrase PHi.
� Fj = the number of valid extractions that were extracted by pattern Pj.

score(PHi) =

#(PHi)
∑

j=1

log2(F j + 1)

#(PHi)
(1.1)

174 Preprocessing Applications Using Probabilistic and Hybrid Approaches

Note that here the assumption is that we have just one semantic category. If we
are dealing with several semantic categories, then we will change score (PHi) to be
score(PHi , C).

VIII.5.5.1 Evaluation of Basilisk on Single-Category Bootstrapping

Basilisk was compared against metabootstrapping on 1,700 MUC-4 documents. In the
specific experiment performed by Thelen, just single nouns were extracted in both
systems. Basilisk outperformed metabootstrapping in all six categories (building,
event, human, location, time, weapon) by a considerable margin.

VIII.5.5.2 Using Multiclass Bootstrapping

Rather than learning one semantic category at a time, it seems that it will be beneficial
to learn several semantic classes simultaneously. Clearly, the main hurdle would be
those words that are polysemic and could belong to several semantic classes. To
alleviate this problem we make the common assumption of “one sense per domain,”
and so our task is to find a conflict resolution strategy that can decide to which
category each polysemic word should belong. The conflict resolution strategy used
by Thelen preferred the semantic category assigned in a former iteration of the
boot-strapping algorithm to any given phrase, and if two categories are suggested
during the same iteration the category for which the phrase got the higher score is
selected.

Another change that was able to boost the results and distinguish between
the competing categories is to use mscore(PHi, Ca), as defined below, rather than
score(PHi, Ca), as in equation (1.1).

mscore(PHi , Ca) = score(PHi , Ca) − max(
b�=a

score(PHi , Cb)) (1.2)

This definition will prefer phrases or words that are highly associated with one cat-
egory, whereas they are very loosely (if at all) associated with any of the other cate-
gories.

VIII.5.5.3 Evaluation of the Multiclass Bootstrapping

The performance of Basilisk improved when using the conflict resolution with the
mscore function. The improvement was more notable on the categories BUILDING,
WEAPON, and LOCATION. When the same strategy was applied to the metaboot-
strapping, the improvement was much more dramatic (up to 300% improvement in
precision).

In Figure VIII.16 we can see the precision of the Basilisk system on the various
semantic categories after 800 entries were added to each of the lexicons. The recall
for these categories was between 40 and 60 percent.

VIII.5.6 Bootstrapping by Using Term Categorization

Another method for the semiautomatic generation of thematic lexicons by means
of term categorization is presented in Lavelli, Magnini, and Sebastiani (2002). They
view the generation of such lexicons as an iterative process of learning previously

VIII.6 Further Reading 175

Semantic Category Number of Correct Entries Precision

Building 109 13.6%

Event 266 26.6%

Human 681 85.1%

Location 509 63.6%

Time 43 5.4%

Weapon 88 11.0%

Figure VIII.16. Precision of the multicategory bootstrapping system Basilisk.

unknown associations between terms and themes. The process is iterative and gen-
erates for each theme a sequence of lexicons that are bootstrapped from an initial
lexicon. The terms that appear in the documents are represented as vectors in a
space of documents and then are labeled with themes by using classic categorization
techniques. Specifically, the authors used the AdaBoost algorithm. The intermediate
lexicons generated by the AdaBoost algorithm are cleaned, and the process restarts
by using the cleaned lexicon as the new positive set of terms. The authors used subsets
of the Reuters RCVI Collection as the document corpus and some of WordNetDo-
mains’s synsets as the semantic lexicons (split into training and test). The results
for various sizes of corpora show that quite an impressive precision (around 75%)
was obtained, and the recall was around 5–12 percent. Clearly, because there is no
inherent connection between the corpus selected and the semantic lexicons, we can
not expect a much higher recall.

VIII.5.7 Summary

The bootstrapping approach is very useful for building semantic lexicons for a variety
of categories. The approach is suitable mostly for semiautomatic processes because
the precision and recall we can obtain are far from perfect. Bootstrapping is beneficial
as a tool to be used in tandem with other machine learning or rule-based approaches
to information extraction.

VIII.6 FURTHER READING

Section VIII.1

More information on the use of HMM for text processing can be found in the follow-
ing papers: Kupiec (1992); Leek (1997); Seymore, McCallum, and Rosenfeld (1999);
McCallum, Freitag, and Pereira (2000); and Sigletos, Paliouras, and Karkaletsis
(2002).

Section VIII.2

Applications of MEMM for information extraction are described in the following
papers: Borthwick (1999), Charniak (2000), and McCallum et al. (2000).

Section VIII.3

Applications of CRF for text processing are described in Lafferty et al. (2001) and
Sha and Pereira (2003).

176 Preprocessing Applications Using Probabilistic and Hybrid Approaches

Section VIII.4

TEG is described in Rosenfeld et al. (2004).

Section VIII.5

More details on bootstrapping for information extraction can be found in the fol-
lowing papers: Riloff (1993a), Riloff (1996a), Riloff and Jones (1999), Lavelli et al.
(2002), Phillips and Riloff (2002), and Thelen and Riloff (2002).

IX

Presentation-Layer Considerations

for Browsing and Query Refinement

Human-centered knowledge discovery places great emphasis on the presentation
layer of systems used for data mining. All text mining systems built around a human-
centric knowledge discovery paradigm must offer a user robust browsing capabilities
as well as abilities to display dense and difficult-to-format patterns of textual data in
ways that foster interactive exploration.

A robust text mining system should offer a user control over the shaping of
queries by making search parameterization available through both high-level, easy-
to-use GUI-based controls and direct, low-level, and relatively unrestricted query
language access. Moreover, text mining systems need to offer a user administrative
tools to create, modify, and maintain concept hierarchies, concept clusters, and entity
profile information.

Text mining systems also rely, to an extraordinary degree, on advanced visualiza-
tion tools. More on the full gamut of visualization approaches – from the relatively
mundane to the highly exotic – relevant for text mining can be found in Chapter X.

IX.1 BROWSING

Browsing is a term open to broad interpretation. With respect to text mining sys-
tems, however, it usually refers to the general front-end framework through which
an enduser searches, queries, displays, and interacts with embedded or middle-tier
knowledge-discovery algorithms.

The software that implements this framework is called a browser. Beyond their
ability to allow a user to (a) manipulate the various knowledge discovery algorithms
they may operate and (b) explore the resulting patterns, most browsers also generally
support functionality to link to some portion of the full text of documents underlying
the patterns that these knowledge discovery algorithms may return.

Usually, browsers in text mining operate as a user interface to specialized query
languages that allow parameterized operation of different pattern search algorithms,
though this functionality is now almost always commanded through a graphical user
interface (GUI) in real-world text mining applications. This means that, practically,

177

178 Presentation-Layer Considerations for Browsing and Query Refinement

Figure IX.1. Example of an interactive browser for distributions. (From Feldman, Fresko, Hirsh,

et al. 1998.)

many discovery operations are “kicked off” by a query for a particular type of pattern
through a browser interface, which runs a query argument that executes a search
algorithm. Answers are returned via a large number of possible display modalities
in the GUI, ranging from simple lists and tables to navigable nodal trees to complex
graphs generated by extremely sophisticated data visualization tools.

Once a query is parameterized and run, browsers allow for the exploration of
the potentially interesting or relevant patterns generated by search operations. On a
basic level, the search algorithms of the core mining operations layer have to process
search spaces of instances for a selected pattern type.

This search, however, is structured in relation to certain specified search con-
straints, and appropriate refinement strategies and pruning techniques are chosen.
Such constraints and pruning approaches can be partly or fully specified through a
browser interface, though the logic of such refinement techniques may, from a system
architecture perspective, reside in as a separate set of services that may be invoked
by both presentation-layer and search algorithm components.

All patterns can be studied in the context of a conditioning concept set or context
free (i.e., for the general domain of the whole collection). Conditioning a search
task therefore means selecting a set of concepts that is used to restrict an analysis
task (e.g., a restriction to documents dealing with USA and economic issues or IBM

and hard drive components). For example, Figure IX.1 shows a simple distribution
browser that allows a user to search for specific distributions while looking at a
concept hierarchy to provide some order and context to the task.

IX.1 Browsing 179

Many text mining systems provide a heterogeneous set of browsing tools cus-
tomized to the specific needs of different types of “entities” addressed by the system.
Most text mining systems increase the opportunities for user interactivity by offering
the user the ability to browse, by means of visual tools, such entities as documents,
concept distributions, frequent sets, associations, trends, clusters of documents, and
so on. Moreover, it is not uncommon for text mining systems to offer multiple meth-
ods for browsing the same entity type (e.g., graphs, lists, and hierarchical trees for
documents; maps and hierarchical trees for concept names, etc.).

Although all knowledge discovery operations are susceptible to overabundance
problems with respect to patterns, it is typical for text mining systems, in particular, to
generate immense numbers of patterns. For almost any document collection of more
than a few thousand documents, huge numbers of concept distributions, relations
between distributions, frequent concept sets, undirected relations between frequent
concept sets, and association rules can be identified.

Therefore, a fundamental requirement for any text mining system’s browsing
interface is the ability to robustly support the querying of the vast implicit set of
patterns available in a given document collection. Practically, however, text mining
systems often cope best – and allow users to cope best – with the challenges of pattern
overabundance by offering sophisticated refinement tools available while browsing
that allow the shaping, constraining, pruning, and filtering of result-set data. Another
extremely critical point in managing pattern overabundance is ensuring that the user
of a text mining system has an adequate capability for inputting and manipulating
what has been referred to as the measures of interestingness of patterns in the system.

IX.1.1 Displaying and Browsing Distributions

Traditional document retrieval systems allow a user to ask for all documents contain-
ing certain concepts – UK and USA, for example – but then present the entire set of
matching documents with little information about the collection’s internal structure
other than perhaps sorting them by relevance score (which is a shallow measure com-
puted from the frequency and position of concepts in the document) or chronological
order.

In contrast, browsing distributions in a text mining system can enable a user
to investigate the contents of a document set by sorting it according to the child
distribution of any node in a concept hierarchy such as topics, countries, companies,
and so on. Once the documents are analyzed in this fashion and the distribution is
displayed, a user could, for instance, access the specific documents of each subgroup
(see Figure IX.2).

One way to generate a distribution is to provide two Boolean expressions. The
first expression could define the selection condition for the documents. The second
expression would define the distribution to be computed on the set of chosen docu-
ments.

For instance, the user can specify as the selection criteria the expression “USA

and UK” and only documents containing both concepts will be selected for further
processing. The distribution expression can be “topics,” in which case, a set of rules
that correlated between USA and UK and any of the concepts defined under the

180 Presentation-Layer Considerations for Browsing and Query Refinement

Figure IX.2. Topic (concept) distribution browser from the KDT system selecting for USA and

UK. (From Feldman, Dagan, and Hirsh 1998. Reprinted with permission of Springer Science

and Business Media.)

node “topics” in the taxonomy will be obtained. The results could be shown in a
hierarchical way based on the structure of the taxonomy underneath “topics.”

One can see, for instance, an association rule such as

USA, UK ⇒ acq 42/19.09%.

This rule means that in 19.09 percent of the documents in which both USA and UK are
mentioned, the topic acquisition is mentioned too, which amounts to 42 documents.
The user could then click on that rule to obtain the list of 42 documents supporting
this rule.

A second association rule could be

USA, UK ⇒ currency 39/17.73%.

In this example, let us assume that currency is an internal node and not a concept
found in the documents. The meaning of the rule, therefore, is that, in 17.73 percent
of the documents in which both USA and UK are mentioned, at least one of the topics
underneath the node “currency” in the taxonomy is mentioned too, which amounts
to 39 documents.

The user could then expand that rule and get a list of more specialized rules, where
the right-hand side (RHS) of each of them would be a child of the node “currency.”
In this case, one would find UK and USA to be highly associated with money fx

(foreign exchange), dlr (US Dollar), and yen.

IX.1.2 Displaying and Exploring Associations

Even when data from a document collection are moderately sized, association-finding
methods will often generate substantial numbers of results. Therefore, association-
discovery tools in text mining must assist a user in identifying the useful results out
of all those the system generates.

IX.1 Browsing 181

Figure IX.3. An example of an advanced tool for browsing and filtering associations. (From

Feldman, Kloesgen, Ben-Yehuda, et al. 1997.)

One method for doing this is to support association browsing by clustering asso-
ciations with identical left-hand sides (LHSs). Then, these clusters can be displayed
in decreasing order of the generality of their LHS.

Associations that have more general LHSs will be listed before more specific
associations. The top-level nodes in the hierarchical tree are sorted in decreasing
order of the number of documents that support all associations in which they appear.

Some text mining systems include fully featured, association-specific browsing
tools (see Figures IX.3 and IX.4) geared toward providing users with an easy way for
finding associations and then filtering and sorting them in different orders.

This type of browser tool can support the specification of simple constraints on
the presented associations. The user can select a set of concepts from the set of all
possible concepts appearing in the associations and then choose the logical test to be
performed on the associations.

In even a simple version of this type of tool, the user can see either all associations
containing either of these concepts (or), all of these concepts (and), or that the
concepts of the association are included in the list of selected concepts (subset). He
or she could then also select one of the internal nodes in the taxonomy, and the list
of concepts under this node would be used in the filtering.

For instance, if one set the support threshold at 10, and the confidence threshold
at 10 percent, an overwhelming number of associations would result. Clearly, no user
could digest this amount of information.

An association browser tool, however, would allow the user to choose to view
only those associations that might contain, for instance, both the concepts USA and
acq (a shorthand concept label for “company acquisition”). This would allow him or
her to see what countries are associated with USA with regard to acquisition along
with all the statistical parameters related to each association.

182 Presentation-Layer Considerations for Browsing and Query Refinement

Figure IX.4. An example of another GUI tool for displaying and browsing associations.

(From Feldman, Kloesgen, Ben-Yehuda, et al. 1997.)

The utility afforded by even relatively simple techniques, such as sorting, and
browsers can provide a user with several sorting options for associations. Two options
are rather obvious: sorting the associations in alphabetical order, and sorting the
associations in decreased order of their confidence. A third ordering scheme is based
on the chi-square value of the association. In a way, this approach attempts to measure
how different the probability of seeing the RHS of the association is given that one
saw its LHS from the probability of seeing the RHS in the whole population.

IX.1.3 Navigation and Exploration by Means of Concept Hierarchies

Concept hierarchies and taxonomies can play many different roles in text mining sys-
tems. However, it is important not to overlook the usefulness of various hierarchical
representations in navigation and user exploration.

Often, it is visually easier to traverse a comprehensive tree-structure of nodes
relating to all the concepts relevant to an entire document collection or an individual
pattern query result set than to scroll down a long, alphabetically sorted list of con-
cept labels. Indeed, sometimes the knowledge inherent in the hierarchical structuring
of concepts can serve as an aid to the interactive or free-form exploration of con-
cept relationships, or both – a critical adjunct to uncovering hidden but interesting
knowledge.

A concept hierarchy or taxonomy can also enable the user of a text mining system
to specify mining tasks concisely. For instance, when beginning the process of gener-
ating association rules, the user, rather than looking for all possible rules, can specify
interest only in the relationships of companies in the context of business alliances.

IX.1 Browsing 183

Figure IX.5. A simple graphical interface for creating, exploring, and manipulating a Taxonomy.

(From Feldman, Dagan, and Hirsh 1998. Reprinted with permission of Springer Science and

Business Media.)

To support this, the text mining system could display a concept hierarchy with
two nodes marked “business alliances” and “companies,” for instance. The first node
would contain terms related to business alliances such as “joint venture,” “strategic
alliance,” “combined initiative,” and so on, whereas the second node would be the
parent of all company names in the system (which could be the result of human effort
specifying such a higher level term, but in many text mining systems a set of rules
is employed with knowledge extracted from Internet-based or other commercial
directories to generate company names).

In this example, the user could perform a comprehensive search with a few clicks
on two nodes of a hierarchical tree. The user would thus avoid the kind of desultory,
arbitrary, and incomplete “hunting and pecking” that might occur if he or she had
to manually input from memory – or even choose from a pick list – various relevant
words relating to business alliances and companies from memory to create his or her
query. A very simple graphical display of a concept hierarchy for browsing can be
seen in Figure IX.5.

In addition, concept hierarchies can be an important mechanism for support-
ing the administration and maintenance of user-defined information in a document
collection. For instance, entity profile maintenance and user-specified concept or
document clustering can often be facilitated by means of the quick navigational
opportunities afforded by tree-based hierarchical structures.

IX.1.4 Concept Hierarchy and Taxonomy Editors

Maintaining concept hierarchies and taxonomies is an important but difficult task for
users of the text mining systems that leverage them. Therefore, presentation-layer

184 Presentation-Layer Considerations for Browsing and Query Refinement

Figure IX.6. User interface for a taxonomy editor showing views of source and target taxonomy

trees. (From Feldman, Fresko, Hirsh, et al. 1998.)

tools that allow for easier and more comprehensive administration serve an important
role in increasing the usability and effectiveness of the text mining process.

Concept hierarchy editing tools build on many of the same features a user needs
to employ a concept hierarchy as a navigational tool. The user must be able to
search and locate specific concepts as well as hypernyms and hyponyms; fuzzy search
capability is an important adjunct to allowing a user to scrub a hierarchy properly
when making major category changes. An example of a graphical hierarchy editing
tool appears in Figure IX.6.

Moreover, an important feature in such an editor can be the ability to view the
existing source concept hierarchy in read-only mode and to edit a target concept
hierarchy at the same time. This can help a user avoid making time-consuming errors
or creating inconsistencies when editing complex tree-structures or making wholesale
modifications.

IX.1.5 Clustering Tools to Aid Data Exploration

Although several methods for creating smaller subset-type selections of documents
from a text mining system’s main document collection have already been discussed,
there are numerous situations in which a user may want to organize groups of docu-
ments into clusters according to more complex, arbitrary, or personal criteria.

For instance, a user of a text mining system aimed at scientific papers on can-
cer research may want to cluster papers according to the biomedical subdiscipline

IX.2 Accessing Constraints and Simple Specification Filters at the Presentation Layer 185

Figure IX.7. Clustering associations using a category hierarchy. (From Feldman, Dagan, and

Hirsh 1998. Reprinted with permission of Springer Science and Business Media.)

(e.g., immunology, microbiology, virology, molecular biology, human genetics, etc.)
of each paper’s lead author. Similarly, a user of a document collection composed of
news feeds might want to leverage his or her text mining system’s concept hierarchy
to cluster patterns involving individual countries under labels representing larger,
intercountry groupings (see Figure IX.7).

Clustering operations can involve both automatic and manual processes. Unlike
classic taxonomies, groupings of clusters do not need to be strictly hierarchical in
structure; individual text mining systems may adopt more or less flexible approaches
to such groupings. For this reason, it is generally a requirement that a text mining
system offer robust and easy interfaces for a user to view, scrub, and maintain cluster
information. Moreover, because both document collections and users’ needs can
change over time, it is especially important for text mining clustering capabilities to
allow flexible reorientation of clusters as a system evolves and matures.

Some text mining systems perform the majority of their manual or unsupervised
clustering during preprocessing operations. In these cases, it is still often important
to provide users with administrative capability to tweak clusters over the lifetime of
a text mining application’s use.

IX.2 ACCESSING CONSTRAINTS AND SIMPLE SPECIFICATION

FILTERS AT THE PRESENTATION LAYER

Given the immense number of prospective potential patterns that they might identify,
text mining systems generally provide support for some level of user-specifiable
constraints. These constraints can be employed to restrict the search to returning
particular patterns, to limit the number of patterns presented, to offer options for
specifying the interestingness of results, or to accomplish all of these objectives.

186 Presentation-Layer Considerations for Browsing and Query Refinement

From a system architecture perspective, the logic of such constraints should be
seen more as refinement techniques, and not so much as presentation-layer ele-
ments. From a user perspective, however, such constraints and filters are invoked
and modulated through the user interface. Therefore, constraint types can be dis-
cussed in relation to other elements that can be employed to shape queries through
a presentation-layer interface.

Four common types of constraints are typical to text mining browser interfaces:

� Background Constraints refer to the knowledge of the domain that is given in
the form of binary relations between concepts. For example, rules associating
persons and countries can be constrained by the condition that an association
between a person and a country excludes the nationality of that person. Back-
ground constraints typically require a set of predicates to be created relating to
certain types of concepts (e.g., entities) in the text mining system’s document
collection. Binary predicates can allow one input argument and one output argu-
ment. Such predicates are usually extracted from some expert or “gold standard”
knowledge source.

� Syntactical Constraints generally relate to selections of concepts or keywords
that will be included in a query. More specifically, they can refer to the components
of the patterns, for example, to the left- or right-hand side of a rule or the number
of items in the components.

� Quality Constraints most often refer to support and confidence thresholds that
can be adjusted by a user before performing a search. However, quality con-
straints can also include more advanced, customized statistical measures to pro-
vide qualities for patterns. An association rule, for instance, can be additionally
specified by the significance of a statistical test, or a distribution of a concept
group can be evaluated with respect to a reference distribution. These qualities
are then used in constraints when searching for significant patterns.

� Redundancy Constraints have been described as metarules that determine when
a pattern is suppressed by another pattern. For example, a redundancy rule could
be used to suppress all association rules with a more special left-hand side than
another association rule and a confidence score that is not higher than that of the
other more general rule.

Constraints are important elements in allowing a user to efficiently browse pat-
terns that are potentially either incrementally or dramatically more relevant to his or
her search requirements and exploration inclinations. Moreover, they can be essen-
tial to ensuring the basic usability of text mining systems accessing medium or large
document collections.

IX.3 ACCESSING THE UNDERLYING QUERY LANGUAGE

Although graphical interfaces make text mining search and browsing operations eas-
ier to conduct for users, some search and browsing activities are facilitated if users
have direct access to the text mining system’s underlying query language with well-
defined semantics. Many advanced text mining systems, therefore – in addition to

IX.4 Citations and Notes 187

Figure IX.8. Defining a distribution query through a simple GUI in the KDT system. (From

Feldman, Kloesgen, Ben-Yehuda, et al. 1997.)

offering pick lists of prespecified query types and common constraint parameters –
support direct user access to a query command interpreter for explicit query compo-
sition.

Clearly, it is the query language itself that allows a user to search the vast implicit
set of patterns available in a given document collection. However, the user envi-
ronment for displaying, selecting, running, editing, and saving queries should not be
given short shrift in the design of a text mining system. Figure IX.8 shows one exam-
ple of a graphical query construction tool. Regardless of the specific combination of
graphical and character-based elements employed, the easier it is for a user to specify
his or her query – and understand exactly what that query is meant to return – the
more usable and powerful a text mining system becomes.

A more comprehensive discussion of text mining query languages can be found
in Section II.3.

IX.4 CITATIONS AND NOTES

Section IX.1

Many of the ideas in Section IX.1 represent an expansion and updating of ideas
introduced in Feldman, Kloesgen, Ben-Yehuda, et al. (1997). Methods for display of
associations are treated partially in Feldman and Hirsh (1997). Navigation by concept
hierarchies is treated in Feldman, Kloesgen, Ben-Yehuda, et al. (1997); and Feldman,
Fresko, Hirsh, et al. (1998). Taxonomy editing tools are briefly discussed in Feldman,
Fresko, Hirsh, et al. (1998).

188 Presentation-Layer Considerations for Browsing and Query Refinement

Section IX.2

Presentation-level constraints useful in browsing are considered in Feldman,
Kloesgen, and Zilberstein (1997a, 1997b).

Section IX.3

Feldman, Kloesgen, and Zilberstein (1997b) discusses the value of providing users
of text mining systems with multiple types of functionality to specify a query.

X

Visualization Approaches

X.1 INTRODUCTION

Human-centric text mining emphasizes the centrality of user interactivity to the
knowledge discovery process. As a consequence, text mining systems need to pro-
vide users with a range of tools for interacting with data. For a wide array of tasks,
these tools often rely on very simple graphical approaches such as pick lists, drop-
down boxes, and radio boxes that have become typical in many generic software
applications to support query construction and the basic browsing of potentially
interesting patterns.

In large document collections, however, problems of pattern and feature over-
abundance have led the designers of text mining systems to move toward the cre-
ation of more sophisticated visualization approaches to facilitate user interactivity.
Indeed, in document collections of even relatively modest size, tens of thousands of
identified concepts and thousands of interesting associations can make browsing with
simple visual mechanisms such as pick lists all but unworkable. More sophisticated
visualization approaches incorporate graphical tools that rely on advances in many
different areas of computer and behavioral science research to promote easier and
more intensive and iterative exploration of patterns in textual data.

Many of the more mundane activities that allow a user of a text mining system
to engage in rudimentary data exploration are supported by a graphic user interface
that serves as the type of basic viewer or browser discussed in Chapter IX. A typical
basic browsing interface can be seen in Figure X.1.

This type of basic browsing often combines a limited number of query-building
functions with an already refined or constrained view of a subset of the textual data
in the document collection. In addition, sometimes a basic browsing interface sup-
plements its more character-oriented display elements by supporting the simplified
execution of subroutines to draw static graphs of query results.

Text mining visualization approaches, on the other hand, generally emphasize
a set of purposes different from those that underpin basic browsing interfaces.
Although both basic browsers and visualization tools aim at making interaction
with data possible, visualization tools typically result in more sophisticated graphical

189

190 Visualization Approaches

Figure X.1. Basic category browsing in a text mining system. (From Feldman, Kloesgen, Ben-

Yehuda, et al. 1997.)

interfaces that attempt to stimulate and exploit the visual capacities of users to iden-
tify patterns.

For instance, an interactive circle graph – a common visualization tool in text min-
ing systems – might be tailored specifically to allow cancer researchers to explore an
entire corpus of medical research literature broadly in a single graph (see background
graph in Figure X.2). By having concepts extracted from the literature represented
as nodes on the periphery of the circle and associations between concepts identified
by linking lines of various thicknesses that bisect the circle, a researcher could very
quickly navigate high-level concepts and then zero-in on relationships emanating
from more granular concepts – all while gaining at least a generalized sense of the
totality of relationships within the corpus.

breast cancer

carcinoma

Hypoxia

Disease

HIV-1

cancer

retinoblastoma

leukemia

Gene

TUMOUR NECROSIS F...

opidermal growth...

Nef
p53

Leptin
cita

RT

optical

NCPT
BRCA1

Bcl-2

CALCITONIN
NCP
CPP
APC

DP120

PURT

PUN

PUL

poc

obesity

Parkinson's disease

optic cencer

Hydroclorine120

Hydrogene

p53 leukemia

glioblastoma

LUNG CANCER

melanomaskin cancer

glioma

colon cancer

osteosarcoma

breast cancer

Hypoxia

carcinoma

cancer

retinoblastoma

Figure X.2. Circle graph–based category connection map of medical literature relating to AIDS

with inset of graphically driven refinement filter. (From Feldman, Regev, et al. 2003.)

X.1 Introduction 191

This type of visualization tool enables a researcher to appraise, handle, and nav-
igate large amounts of data quickly and with relative ease. Moreover, “control ele-
ments” – such as refinement filters or other constraint controls – can be embedded
into the overall operations of the visualization interface being executed by as little
as a mouse click on a highlighted concept label (see inset in Figure X.2).

Certainly, some kinds of refinement constraints lend themselves to being set quite
adequately by character-driven menus or pull-down boxes. By facilitating context-
sensitive and graphical refinement of query results, however, more sophisticated
visual presentation tools can add to the speed and intuitive ease with which a user
can shape knowledge-discovery activities.

Critical advantages that individual visualization approaches can have over
character-oriented browsing formats in presenting patterns in data include the
following:

� Concision: the capability of showing large amounts of different types of data all
at once;

� Relativity and Proximity: the ability to easily show clusters, relative sizes of
groupings, similarity and dissimilarity of groupings, and outliers among the data
in query results;

� Focus with Context: the ability to interact with some highlighted feature while
also being able to see the highlighted feature situated in some of its relational
context;

� Zoomability: the ability to move from micro to macro quickly and easily in one
big step or in increments;

� “Right Brain” Stimulation: the ability to invite user interaction with textual
data that is driven not only by premeditated and deliberate search intentions but
also as a result of intuitive, reactive, or spatially oriented cognitive processes for
identifying interesting patterns.

On the other hand, adding an overabundance of complex graphical features to
a visualization interface does not necessarily make the interface more appropriate
to its search tasks. Overly complex visualization tools can overdetermine or even
inhibit exploration of textual data – particularly if designers of text mining systems
lose sight of the main advantages that graphic presentation elements have over more
prosaic form- or table-based browser formats.

The evolution from simple, primarily character-based browsers to more powerful
and more specialized visualization interfaces has helped transform the orientation
of text mining systems. Text mining systems have moved from a focus on the pre-
meditated search for suspected patterns to a broader capability that also includes
more free-form and unguided exploration of textual data for implicit, obscure, and
unsuspected patterns.

X.1.1 Citations and Notes

A seminal discussion of human-centered knowledge discovery can be found in
Brachman and Anand (1996). Grinstein (1996) also offers a relevant treatment of
related topics.

192 Visualization Approaches

Pre-

processing
Tasks

Categorization,
Feature/Term

Extraction

Processed

Document
Collection
(categorized,

concept-labeled,
time-stamped)Text

Documents

Core Mining

Operations
Pattern

Discovery,
Trend

Analysis

User

Presentation
Browsing,

Visualization

Figure X.3. High-level functional architecture of a text mining system showing position of

visualization.

General overviews of information visualization can be found in Tufte (1983),
Tufte (1990), Cleveland (1994), Shneiderman (1997), and Spence (2001). Useful
works on information visualization techniques in information retrieval and the visual
presentation of query results include Rao et al. (1992), Spoerri (1999), Ahlberg
and Schneiderman (1994), Masui et al. (1995), Hearst (1999), Lagus (2000b), and
Hearst (2003). Important early treatments of information navigation and exploration
approaches include Goldstein and Roth (1994), Ahlberg and Wistrand (1995), and
Jerding and Stasko (1995).

There really is not yet a comprehensive treatment of visualization techniques
specific to text mining. However, several works – including Feldman, Kloesgen,
Ben-Yehuda, et al. (1997); Feldman, Kloesgen, and Zilberstein (1997a); Landau
et al. (1998); Aumann et al. (1999); Lagus et al. (1999); Wong, Whitney, and Thomas
(1999); Lagus (2000a); and Wong et al. (2000) – provide relevant discussions of a
limited number of specific visual techniques and their application to text mining
activities.

X.2 ARCHITECTURAL CONSIDERATIONS

In the high-level functional architecture of a text mining system illustrated in
Figure X.3, visualization tools are among those system elements situated closest to
the user. Visualization tools are mechanisms that serve to facilitate human interactiv-
ity with a text mining system. These tools are layered on top of – and are dependent
upon – the existence of a processed document collection and the various algorithms
that make up a text mining system’s core mining capabilities.

The increased emphasis on adding more sophisticated and varied visualization
tools to text mining systems has had several implications for these systems’ archi-
tectural design. Although older text mining systems often had rigidly integrated
visualization tools built into their user interface (UI) front ends, newer text mining
systems emphasize modularity and abstraction between their front-end (i.e., pre-
sentation layer) and middle-tier (i.e., core discovery and query execution elements)
architectures.

X.2 Architectural Considerations 193

 Preprocessing

Tasks
Categorization,

Feature/Term
Extraction

Processed

Document

Collection
(categorized,

keyword-labeled,

time-stamped)

 Text Mining Discovery

Algorithms
Pattern Identification,

Trend Analysis

Browsing Functionality
Simple Filters, Query
Interpreter, Search

Interpreter, GUI

News and
Email

WWW & FTP
Resources

Other Online

Resources

Document
Fetching/

Crawling
Techniques

User

Prepared/Compressed

Intermediate
Representation

 Refinement

Techniques
Suppression, Ordering,
Pruning, Generalization,

Clustering

Parsing Routines

Knowledge

Sources

Background
Knowledge

Concept

 Identifiers

Background

Knowledge

Base

Visualization, Graphing

Figure X.4. Situating visualization within text mining system architecture.

Indeed, there are several good reasons for architects of text mining systems to
abstract the front and middle tiers of their software platforms. First, visualization
tools and knowledge discovery algorithms tend to be modified and upgraded on
an ever more iterative basis. A “decoupled” or “loosely coupled” front end and
middle tier in text mining system – abstracted from each other by an intermediary
connection layer based on a formal and well-defined software interface – allow much
better for such unsynchronized development of different elements of the text mining
system. Figure X.4 illustrates the general position of visualization components in a
text mining system’s architecture.

Second, text mining systems are moving from having a few limited visualization
and graphing tools to supporting whole suites of different kinds of presentation layer
utilities. This is both a reflection of the movement toward facilitating greater user
interactivity through more customized (even personalized) UIs and the proliferation
of more mature, sophisticated, and specialized visualization tools. With many more
types of different visualization approaches now available, architects of text mining
systems are probably well advised to keep their options open; instead of scrapping
a whole text mining system when its UI has become hopelessly outdated, develop-
ers can leverage a more loosely coupled front end and middle-tier architecture to
continue to add additional visualization components.

194 Visualization Approaches

Finally, from a practical perspective, the wider availability of RDF and XML-
oriented protocols makes such loose coupling of front ends and middle tiers much
more feasible. This fact is underscored by the current availability of a whole spate of
specialized and very powerful commercial off-the-shelf visualization software with
defined interfaces or feed formats that support various RDF or XML data inter-
change approaches.

Visualization tools have increasingly played a crucial, even transformative role
in current state-of-the-art text mining systems. As with data mining systems, sophis-
ticated visualization tools have become more critical components of text mining
applications because of their utility in facilitating the exploration for hidden and
subtle patterns in data.

X.2.1 Citations and Notes

For obvious reasons, the architectural discussion in this section is highly generalized.
The architectural descriptions have been informed by the visualization elements
found in the KDT (Feldman and Dagan 1995), Explora (Kloesgen 1995b), Document
Explorer (Feldman, Kloesgen, and Zilberstein 1997a), and TextVis (Landau et al.
1998) knowledge discovery systems.

X.3 COMMON VISUALIZATION APPROACHES FOR TEXT MINING

X.3.1 Overview

A substantial and mature literature already exists relating to the use of visualiza-
tion tools in a wide range of generic and specific computer science applications.
The aim of the next few sections is to illustrate how a select number of commonly
seen visualization approaches have been put to good use supplementing text mining
functionality.

The potential number of combinations of visual techniques that can be applied to
problems in unstructured data is probably limitless. With such a wide array of possible
visual techniques, coupled with the subjective nature of assessing the efficacy of
visualization approaches across different types of knowledge-discovery problem sets
and user groups, it would be problematic to attempt to rate, to any precise degree, the
success of a specific visual approach or set of approaches. Nevertheless, several visual
approaches have suggested themselves more informally as useful enhancements to
knowledge discovery operations involving textual data. These include simple concept
graphs, histograms, line graphs, circle graphs, self-organizing maps, and so-called
context + focus approaches – like the hyperbolic tree – as well as various derivative
and hybrid forms of these main approaches.

Thus, perhaps it should be stated clearly that the intention here is not so much to
be prescriptive – detailing the circumstances when a particular visualization approach
is decidedly more appropriate, more powerful, or more effective than another for
a given task – as descriptive, or describing how a particular tool has typically been
employed to supplement text mining systems.

X.3 Common Visualization Approaches for Text Mining 195

X.3.2 Simple Concept Graphs

Even rather bare-bones visualization tools such as simple concept graphs provide
an efficient exploration tool for getting familiar with a document collection. The
two main benefits of these types of visualizations are their abilities to organize the
exploration of textual data and to facilitate interactivity – that is, the user can click
on each node or edge and get the documents supporting them or can initiate various
other operations on the graphs. There is a relationship between these two benefits
as well: offering user-friendly organization approaches can do much to promote
increased user interactivity with textual data.

This latter type of exploration can be further supported by linking several graphs.
Thus, the relevance of selected aspects of one graph can be efficiently studied in
the context of another graph. Simple concept graphs have been used, with many
variations, in several real-world text mining systems.

Simple Concept Set Graphs

One of the most basic and universally useful visualization tools in text mining is the
simple “root and branches” hierarchical tree structure. Figure X.5 shows a classic
visualization for a concept taxonomy in a document collection. The root and leaf
vertices (nodes) of such a visualization are concept identifiers (i.e., name labels for
concepts). The special layout of the presentation elements allows a user to traverse
the hierarchical relationships in the taxonomy easily either to identify sought-after
concepts or to search more loosely for unexpected concepts that appear linked to
other interesting concepts in the hierarchy.

Figure X.5. Interactive graph used to illustrate a concept taxonomy as a hierarchical tree

structure. (From Feldman, Dagan, and Hirsh 1998. Reprinted with permission of Springer

Science and Business Media.)

196 Visualization Approaches

This kind of visualization tool can also easily be made to allow a user to click on a
node concept and either move to the underlying documents containing the concept
or to connect to information about sets or distributions of documents containing
the concept within the document collection. This latter type of information – the
answer set to a rather routine type of query in many text mining systems – can be
demonstrated by means of a concept set graph.

Formally, a concept set graph refers to a visual display of a subset of concept sets
with respect to their partial ordering. Perhaps the most common and straightforward
way to display concept sets graphically is also by means of a simple hierarchical tree
structure.

Figure X.5 shows a set graph for frequent sets arranged in a tree structure. The
user can operate on this graph by selecting nodes, opening and closing nodes, or
defining new search tasks with respect to these nodes, for instance, to expand the
tree.

The first level in Figure X.5 relates to country concepts sorted by a simple quality
measure (support of the frequent set). The node “USA” (support: 12,814 documents)
is expanded by person concepts. Further expansions relate to economical topic con-
cepts (e.g., expansion of the node “James Baker”: 124 documents, 0%) and country
concepts.

Of course, a hybrid form could be made between the “root and branches”–type
visual display format shown in Figure X.5 and the simple concept set graph illustrated
in Figure X.6. For some applications, having the percentage support displayed within
a concept node on the root and branches visualization might prove more useful to

Figure X.6. A hierarchical concept set graph. (From Feldman, Kloesgen, and Zilberstein

1997b.)

X.3 Common Visualization Approaches for Text Mining 197

navigation and exploration than the “long indented list” appearance of the vertical
tree structure in Figure X.6. This form would be a directed graph, the edges of which
(usually depicted with directional arrow heads) indicate the hierarchical relationship
between nodes at the graph vertices.

Although a hierarchical concept graph may represent a very basic approach to
visualizing sets of concepts, it can be also used as the entry point for jumping to
more complex visualizations or graphically driven refinement controls. For instance,
by clicking on a concept identifier, a user may be able to navigate to another graph
that shows associations containing the highlighted concept, or a graphic box could
be triggered by clicking on a concept allowing the user to adjust the quality measure
that drove the original query.

Another related, commonly used visualization approach applicable to simple
concept sets is the organization of set members into a DAG. Formally, a DAG can
be described as a directed graph that has no path and that begins and ends at the same
vertex. Practically, it might be viewed as a hierarchical form in which child nodes can
have more than one parent node.

DAGs can be useful in describing more complex containership relations than
those represented by a strict hierarchical form, in that the DAG represents a gen-
eralization of a tree structure in which a given subtree can be shared by different
parts of the tree. For instance, a DAG is often used to illustrate the somewhat more
complex relations between concepts in an ontology that models a real-world rela-
tionship set in which “higher level” concepts often have multiple, common directed
relationships with “lower level” concepts in the graph. Described in a different way,
DAGs permit lower level containers to be “contained” within more than one higher
level container at the same time.

A very simple DAG is shown in Figure X.7. Traditional, rigidly directed hierar-
chical representations might be both much less obvious and less efficient in showing
that four separate concepts have a similar or possibly analogous relationship to a
fifth concept (e.g., the relationship that the concepts motor vehicles, cars, trucks, and
power tillers have with the concept engines). Because of their ability to illustrate
more complex relationships, DAGs are very frequently leveraged as the basis for
moderately sophisticated relationship maps in text mining applications.

A more complex and well-known application of a DAG to an ontology can be
seen in Zhou and Cui’s (Zhou and Cui 2004) visual representations of the Gene
Ontology (GO) database. Zhou and Cui created a DAG to visually model a small
subset of the GO ontology, focusing only on the root node and three child nodes.
When using a DAG to show biological function for 23 query genes, the DAG still
ended up having 10 levels and more than 101 nodes.

Motor

Vehicles

Power

Tillers
TrucksCars Engines

Figure X.7. A simple DAG modeling a taxonomy that includes multiple parent concepts for a

single-child concept.

198 Visualization Approaches

Start

Finish

Figure X.8. Visualization of a generic DAG-based activity network.

Visualization techniques based on DAGs have proven very useful for visually
modeling complex set-oriented or container-type relationships, such as those found
among concepts in the GO ontology, in a relatively straightforward and understand-
able way. However, Zhou and Cui find DAGs to be limited when illustrating more
granular or functional relationship information (such as one finds when exploring
concept associations) or when the number of concepts in play becomes large. In
these cases, other types of visualization techniques, such as circular graphs or net-
work models, can sometimes provide greater expressive capabilities.

Beyond their use in modeling concept hierarchies, DAGs can also be employed
as the basis for modeling activity networks. An activity network is a visual structure
in which each vertex represents a task to be completed or a choice to be made and
the directed edges refer to subsequent tasks or choices. See Figure X.8.

Such networks provide the foundation for more advanced types of text mining
knowledge discovery operations. DAG-based activity networks, for instance, form
the basis for some of the more popular types of visualizations used in critical path

analysis – often an important approach in knowledge-discovery operations aimed at
link detection.

Simple Concept Association Graphs

Simple concept association graphs focus on representing associations. A simple
association graph consists of singleton vertex and multivertex graphs in which the
edges can connect to a set of several concepts. Typically, a simple association graph
connects concepts of a selected category. At each vertex of a simple association graph,
there is only one concept. Two concepts are connected by an edge if their similarity
with respect to a similarity function is larger than a given threshold.

A simple concept association graph can be undirected or directed, although undi-
rected graphs are probably more typical. For example, one might use an undirected
graph to model associations visually between generic concepts in a document col-
lection generated from corporate finance documentation. On the other hand, if one

X.3 Common Visualization Approaches for Text Mining 199

Microsoft

Google

Yahoo

IBM

Sun

Convera

Overture

Autonomy

Verity
Lycos

Findwhat

3

4

6

32
11

36

17

37

11

7

7

24

21

6

9

MSN

29

Figure X.9. Concept association graph: single vertex, single category (software companies in

the context of search engine software).

were seeking to produce a tool to visualize associations between proteins in a cor-
pus of proteomics research literature, one might want to employ a directed graph
with directed edges (as denoted by directional arrowheads) between concept nodes.
This type of directed graph would be useful in visually indicating not just general
association relationships but also the patterns of one protein’s acting upon another.

Figure X.9 shows a concept association graph for the company category in the
context of search engine software and a simple similarity function based on the num-
ber of documents in which the companies co-occur. The figure allows a user to quickly
infer conclusions about data that might be possible only after a much more careful
investigation if that user were forced to make his or her way through large lists or
tables of textual and statistical data. Such inferences might include the following:

� Microsft, Google, and IBM are the most connected companies;
� Lycos and Findwhat are the only members of a separate component of the graph;
� MSN is connected only to Microsoft, and so on.

Another type of simple concept association graph can present the associations
between different categories such as companies and software topics. The singleton
vertex version of this graph is arranged like a map on which different positions of
circles are used to include the concepts of categories, and edges (between companies
and software topics) present the associations. Often, these singleton vertex graphs

200 Visualization Approaches

8797 78 2 3 138 11323

MicrosoftGoogle Yahoo IBM SunVerity

Search Database
Office

Automation
OEM

Software

191 1

Figure X.10. Concept association graph: single vertex, several categories.

are designed as bipartite graphs displaying two categories of concepts by splitting
one category to the top of the graph and another category to the bottom with edges
representing connections linking individual pairs of vertices. Figure X.10 shows an
example of this kind of concept association graph.

Similarity Functions for Simple Concept Association Graphs

Similarity functions often form an essential part of working with simple concept asso-
ciation graphs, allowing a user to view relations between concepts according to differ-
ing weighting measures. Association rules involving sets (or concepts) A and B that
have been described in detail in Chapter II are often introduced into a graph format
in an undirected way and specified by a support and a confidence threshold. A fixed
confidence threshold is often not very reasonable because it is independent of the sup-
port from the RHS of the rule. As a result, an association should have a significantly
higher confidence than the share of the RHS in the whole context to be considered
as interesting. Significance is measured by a statistical test (e.g., t-test or chi-square).

With this addition, the relation given by an association rule is undirected. An asso-
ciation between two sets A and B in the direction A ⇒ B implies also the association
B ⇒ A. This equivalence can be explained by the fact that the construct of a statisti-
cally significant association is different from implication (which might be suggested
by the notation A ⇒ B). It can easily be derived that if B is overproportionally
represented in A, then A is also overproportionally represented in B.

As an example of differences of similarity functions, one can compare the undi-
rected connection graphs given by statistically significant association rules with the
graphs based on the cosine function. The latter relies on the cosine of two vectors
and is efficiently applied for continuous, ordinal, and also binary attributes. In case
of documents and concept sets, a binary vector is associated to a concept set with
the vector elements corresponding to documents. An element holds the value 1 if
all the concepts of the set appear in the document. Table X.1 (Feldman, Kloesgen,
and Zilberstein 1997b), which offers a quick summary of some common similarity
functions, shows that the cosine similarity function in this binary case reduces to the
fraction built by the support of the union of the two concept sets and the geometrical
mean of the support of the two sets.

A connection between two sets of concepts is related to a threshold for the cosine
similarity (e.g., 10%). This means that the two concept sets are connected if the
support of the document subset that holds all the concepts of both sets is larger than
10 percent of the geometrical mean of the support values of the two concept sets.

X.3 Common Visualization Approaches for Text Mining 201

Table X.1. Some Commonly Used Similarity Functions for Two Concept Sets A, B

(a = support(A), b = support(B), d = support(A,B))

Function Similarity Characteristic

Support threshold d > d0 (step function) evaluates only d, independent from

a − d, b − d

Cosine s = d/
√

a · b Low weight of a − d, b − d

Arithmetical mean s = 2d/(a + b) middle point between cosine and Tanimoto

Tanimoto s = d/(a + b − d) high weight of a − d, b − d

Information measure weighted documents only applicable if weights are reasonable

Statistical test threshold statist. quality typically for larger samples and covers

The threshold holds a property of monotony: If it is increased, some connections
existing for a lower threshold disappear, but no new connections are established.
This property is used as one technique to tune the complexity of a simple concept
graph.

One can derive a significance measure (factor f) for this situation in which tuning
is required in the following way.

Let f be the following factor:

f = Ns(A, B)/s(A)s(B).

Given the support s for the two concept sets A resp. B and N the number of documents
in the collection (or a subcollection given by a selected context), we can calculate the
factor. In the case of the independence of the two concept sets, f would be expected
around the value 1. Thus, f is larger than 1 for a statistically significant association
rule.

The cosine similarity of concept sets A and B can now be calculated as

S(A, B) = f ·
√

q(A) · q(B);

that is, as the geometrical mean of the relative supports of A and B (q(A) = s(A)/N)
multiplied by the factor f, thus combining a measure for the relative support of the
two sets (geometrical mean) with a significance measure (factor f).

The cosine similarity therefore favors connections between concept sets with a
large support (which need not necessarily hold a significant overlapping) and includes
connections for concept sets with a small support only if the rule significance is
high. This means that the user should select the cosine similarity option if there is a
preference for connections between concept sets with a larger support.

On the other side, the statistically based association rule connection should be
preferred if the degree of coincidence of the concepts has a higher weight for the anal-
ysis. Similar criteria for selecting an appropriate similarity function from Table X.1
can be derived for the other options.

Equivalence Classes, Partial Orderings, Redundancy Filters

Very many pairs of subsets can be built from a given category of concepts, (e.g., all
pairs of country subsets for the set of all countries). Each of these pairs is a possi-
ble association between subsets of concepts. Even if the threshold of the similarity

202 Visualization Approaches

function is increased, the resulting graph can have too complex a structure. We now
define several equivalence relations to build equivalence classes of associations. Only
a representative association from each class will then be included in the keyword
graph in the default case.

A first equivalence is called cover equivalence. Two associations are cover-
equivalent iff they have the same cover. For example (Iran, Iraq) => (Kuwait, USA)
is equivalent to (Iran, Iraq, Kuwait) => USA because they both have the same cover
(Iran, Iraq, Kuwait, USA). The association with the highest similarity is selected as
the representative from a cover equivalence class.

Context equivalence is a next equivalence relation. Two associations are context-
equivalent iff they are identical up to a different context. That means that two asso-
ciations are identical when those concepts that appear on both sides are eliminated
from each association. For example, (Iran, Iraq) => (Iran, USA) is equivalent to
(Kuwait, Iraq) => (Kuwait, USA). The first association establishes a connection
between Iraq and USA in the context of Iran, whereas the second association is
related to the context of Kuwait. The context-free associations are selected as the
representatives from this equivalence class (e.g., Iraq => USA).

The next definition relates to a partial ordering of associations, not an equivalence
relation. An association A1 is stronger than an association A2 if the cover of A1 is a
subset of the cover of A2. As special cases of this ordering, the right- and left-hand
sides are treated separately.

Selecting the representative of an equivalence class or the strongest associa-
tions can be applied as a basic redundancy filter. Additionally, criteria can refine
these filters (for instance, for the context-equivalence, a context-conditioned asso-
ciation can be selected in addition to the context-free association iff the similarity
of the context-conditioned association is much higher with respect to a significance
criterion).

There is a duality between frequent sets of concepts and associations. For a given
set of frequent concepts, the implied set of all associations between frequent concepts
of the set can be introduced. On the other hand, for a given set of associations, the
set of all frequent concepts appearing as left- or right-hand sides in the associations
can be implied.

In the application area of document collections, users are mainly interested in
frequent concept sets when concentrating on basic retrieval or browsing. These fre-
quent concepts are considered as retrieval queries that are discovered by the system
to be interesting.

When attempting to gain some knowledge of the domain represented by a docu-
ment collection, users are often drawn to interacting with association rules, shaping
the various measures and refinement filters to explore the nature of the concept
relations in the domain. In the simple concept graphs, the concept sets are there-
fore included as active nodes (activating a query to the collection when selected
by the user). Complementary and intersection sets (e.g., related to the cover of an
association) can also appear as active nodes.

Typical Interactive Operations Using Simple Concept Graphs

One of the key drivers for employing visualization tools is to promote end user
interactivity. Concept graphs derive much of their value from facilitating interactive

X.3 Common Visualization Approaches for Text Mining 203

operations. A user can initiate these operations by manipulating elements in the
graphs that execute certain types of system activities.

Some interactive operations relating the concept graphs have already been dis-
cussed – or at least suggested – in the previous sections. However, a more systematic
review of several types of these operations provides useful insights into kinds of sec-
ondary functionality that can be supplemented by simple concept graph visualization
approaches.

Browsing-Support Operations

Browsing-support operations enable access to the underlying document collections
from the concept set visual interface. Essentially, a concept set corresponds to a query
that can be forwarded to the collection retrieving those documents (or their titles as
a first summary information), which include all the concepts of the set.

Therefore, each concept set appearing in a graph can be activated for brows-
ing purposes. Moreover, derived sets based on set operations (e.g., difference and
intersection) can be activated for retrieval.

Search Operations

Search operations define new search tasks related to nodes or associations selected
in the graph. A graph presents the results of a (former) search task and thus puts
together sets of concepts or sets of associations. In a GUI, the user can specify the
search constraints: syntactical, background, quality, and redundancy constraints.

The former search is now to be refined by a selection of reference sets or asso-
ciations in the result graph. Some of the search constraints may be modified in the
GUI for the scheduled refined search.

In refinement operations, the user can, for example, increase the number of
elements that are allowed in a concept set. For instance, selected concept sets in
Figure X.6 or selected associations in Figure X.9 can be expanded by modifying
restrictions on the maximum number of elements in concept sets.

Link Operations

Link operations combine several concept graphs. Elements in one graph are selected
and corresponding elements are highlighted in the second graph. Three types of
linked graphs can be distinguished: links between set graphs, between association
graphs, and between set and association graphs.

When linking two set graphs, one or several sets are selected in one graph and
corresponding sets are highlighted in the second graph. A correspondence for sets
can rely, for instance, on the intersections of a selected set with the sets in the other
graph. Then all those sets that have a high overlap with a selected set in the first
graph are highlighted in the second graph.

When selected elements in a set graph are linked with an association graph,
associations in the second graph that have a high overlap with a selected set are
highlighted. For instance, in a company graph, all country nodes that have a high
intersection with a selected topic in an economical topic graph can be highlighted.

Thus, linkage of graphs relies on the construct of a correspondence between two
set or association patterns. For example, a correspondence between two sets can be
defined by a criterion referring to their intersection, a correspondence between a set

204 Visualization Approaches

and an association by a specialization condition for the more special association
constructed by adding the set to the original association, and a correspondence
between two associations by a specialization condition for an association constructed
by combining the two associations.

Presentation Operations

A first interaction class relates to diverse presentation options for the graphs. It
includes a number of operations essential to the customization, personalization, cali-
bration, and administration of presentation-layer elements, including

� sorting (e.g., different aspects of quality measures)
� expanding or collapsing
� filtering or finding
� zooming or unzooming nodes, edges, or graph regions.

Although all these presentation-layer operations can have important effects on facil-
itating usability – and as a result – increased user interaction, some can in certain
situations have a very substantial impact on the overall power of systems visualization
tools.

Zoom operations, in particular, can add significant capabilities to otherwise very
simple concept graphs. For instance, by allowing a user to zoom automatically to
a predetermined focal point in a graph (e.g., some concept set or association that
falls within a particular refinement constraint), one can add at least something rem-
iniscent of the type of functionality found in much more sophisticated fisheye and
self-ordering map (SOM) visualizations.

Drawbacks of Simple Concept Graphs

A few disadvantages of simple concept graphs should be mentioned. First, the func-
tionality and usability of simple concept graphs often become more awkward and
limited with high levels of dimensionality in the data driving the models. Hierarchies
with vast numbers of nodes and overabundant multiple-parent-noded relationships
can be difficult to render graphically in a form that is legible – let alone actionable –
by the user of a text mining system; moreover, undirected concept association graphs
can become just as intractable for use with large node counts.

In addition, although the streamlined nature of simple concept graphs has its
benefits, there are some built-in limitations to interactivity in the very structure of the
graph formats. Clearly, tree diagrams can have “hotspots” that allow linking to other
graphs, and the type of linked circle node graphs that constitute most simple concept-
association graphs can be made to support pruning and other types of refinement
operations. However, both forms of simple concept graphs are still relatively rigid
formats that are more useful in smaller plots with limited numbers of nodes that can
be visually traversed to understand patterns.

As a result, simple concept graphs are far less flexible in supporting the explo-
ration of complex relationships than some other types of visualization approaches.
Indeed, other approaches, such as some three-dimensional paradigms and visual
methodologies involving greater emphasis of context + focus functionality have been

X.3 Common Visualization Approaches for Text Mining 205

Figure X.11. Early text mining visualization implementation based on a histogram (topic dis-

tribution graph from the KDT system ca. 1998). (From Feldman, Kloesgen, and Zilberstein

1997b.)

specifically designed to offer greater flexibility in navigation and exploration of query
results than have data with more abundant or complex patterns.

X.3.3 Histograms

In addition to basic “bread and butter” approaches like simple concept graphs, early
text mining systems often relied on classic graphing formats such as histograms, or
bar charts, to provide visualization capabilities. Although architects of text mining
systems have shown an increasing willingness to integrate more exotic and complex
interactive graphic tools into their systems, histograms still have their uses in explor-
ing patterns in textual data. A very simple histogramatic representation can be seen
in Figure X.11.

Histograms still have their uses in text mining systems today and seem particularly
well-suited to the display of query results relating to distributions and proportions.
However, although two-dimensional (2-D) bar charts themselves have changed little
over the last several years, the overall presentation framework in which these bar
charts are displayed has become substantially more refined.

Histogrammatic representations are often situated in GUIs with split screens,
which also simultaneously display corresponding lists or tables of concept distribution
and proportion information of the type described in Chapter II. Histograms are
useful in presentation of data related to distributions and proportions because they
allow easy comparison of different individual concepts or sets across a wider range
of other concepts or sets found within a document collection or subcollection. See
Figure X.12. This is not, however, to say that histograms are only useful in displaying
results for distribution- or proportion-type queries; for instance, associations can

In
it
ia

l
Q

u
e
ry

D
o
n
a
ld

 R
u
m

s
fe

ld
:
1
4
5

C
o
lin

 P
o
w

e
ll:

 1
3
5

P
e
rv

e
z
 M

u
s
h
a
rr

a
f:
 1

1
6

J
o
h
n
 A

s
h
c
ro

ft
:
8
5

T
o
n
y
 B

la
ir

:
8
4

A
ri

 F
le

s
c
h
e
r:

 6
4

M
u
lla

h
 M

o
h
a
m

m
a
d
 O

m
a
r:

 6
3

G
e
o
rg

e
 W

.
B

u
s
h
:
5
5

G
e
o
rg

e
 B

u
s
h
:
2
9

V
la

d
im

ir
 P

u
ti
n
:
5
0

M
o
h
a
m

e
d
 A

tt
a
:
4
4

D
ic

k
 C

h
e
n
e
y
:
4
4

Y
a
s
s
e
r

A
ra

fa
t:
 4

1
T
o
m

 D
a
s
c
h
le

:
3
3

B
ill

 C
lin

to
n
:
3
3

A
ri

e
l
S

h
a
ro

n
:
3
0

D
o
n
a
ld

 H
.
R

u
m

s
fe

ld
:
3
0

J
o
h
n
 D

ia
m

o
n
d
:
2
7

A
b
d
u
l
S

a
la

m
 Z

a
e
e
f:
 2

6

T
a

lib
a

n

A
l
Q

a
e

d
a

C
IA

F
B

I

S
ta

te
 D

e
p

a
rt

m
e

n
t

N
o

rt
h

e
rn

 A
lli

a
n

c
e

T
re

a
s
u

ry
 D

e
p

a
rt

m
e

n
t

H
A

M
A

S

U
.N

.

M
o

n
te

re
y
 I
n

s
ti
tu

te

U
.S

.
S

ta
te

 D
e

p
a

rt
m

e
n

t

P
a

le
s
ti
n

ia
n

 A
u

th
o

ri
ty

O
P

E
C

U
n

iv
e

rs
it
y
 o

f
H

o
u

s
to

n

N
a

ti
o

n
a

l
S

e
c
u

ri
ty

 A
g

e
n

c
y

J
u

s
ti
c
e

 D
e

p
a

rt
m

e
n

t

IR
S

A
rm

e
d

 I
s
la

m
ic

 G
ro

u
p

A
b
u

 S
a
y
y
a

f

W
o

rl
d

 T
ra

d
e

 O
rg

a
n

iz
a

ti
o

n

S
a
d
d
a
m

 H
u
s
s
a
in

:
2
6

R
o
b
e
rt

 M
u
e
lle

r:
 2

5
R

ic
h
a
rd

 M
y
e
rs

:
2
5

T
o
m

 R
id

g
e
:
2
5

J
im

 L
a
n
d
e
rs

:
2
5

G
re

g
g
 J

o
n
e
s
:
2
5

R
ic

h
a
rd

 B
o
u
c
h
e
r:

 2
4

T
o
m

 H
u
n
d
le

y
:
2
3

R
u
d
o
lp

h
 G

lu
lia

n
i:

2
2

G
.R

o
b
e
rt

 H
ill

m
a
n
:
2
2

J
a
c
q
u
e
s
 C

h
ir
a
c
:
2
1

D
ie

g
o
 G

a
rc

ia
:
2
1

T
o
d
 R

o
b
b
e
rs

o
n
:
2
1

P
a
u
l W

o
lfo

w
it
z
:
2
0

B
o
b

K

e
m

p
e
r:

 2
0

G
lo

ri
a
 A

rr
o
y
o
:
2
0

B
o
b
 G

ra
h
a
m

:
1
9

D
a
v
id

 J
a
c
k
s
o
n
:
1
9

R
ic

h
a
rd

 W
h
it
tl
e
:
1
9

S
h
im

o
n
 P

e
re

s
:
1
8

G
re

g
o
ry

 K
a
tz

:
1
8

G
e
o
rg

e
 T

e
n
e
t:
1
7

J
o
h
n
 S

tu
ff
le

b
e
e
m

:
1
7

A
n
w

a
r

S
a
d
a
t:
 1

7
R

a
m

z
i Y

o
u
s
e
f:
 1

7
W

a
rr

e
n
 P

.
S

tr
o
b
e
l:

1
7

M
o
h
a
m

m
a
d
 Z

a
h
ir
 S

h
a
h
:
1
7

M
o
h
a
m

m
a
d
 Z

a
h
ir
 S

h
a
h
:
1
5

A
h
m

e
d
 R

e
s
s
a
m

:
1
6

H
o
s
n
i
M

u
b
a
ra

k
:
1
6

M
ic

h
a
e
l
K

ili
a
n
:
1
5

P
a
u
l
O

'N
e
ill

:
2
1

O
s
a
m

a
 b

in
 L

a
d
e
n
:
1
0

3
3

10
20
30
40
50
60
70
80
90
10

0 11
0 12
0 13
0 14
0 15
0 16
0 17
0 18
0 19
0 20
0 21
0 22
0 23
0 24
0

26
0

25
0

27
0 28
0 29
0 30
0 31
0 32
0 33
0

0
F
ig

u
re

X
.1

2
.

G
U

I’s
le

ft
p
a
n
e

s
h
o
w

s
re

s
u
lt
s

o
f
c
o
n
c
e
p
t
d
is

tr
ib

u
ti
o
n

q
u
e
ry

in
li
s
t
fo

rm
a
n
d

ri
g
h
t
p
a
n
e

w
it
h

h
is

to
g
ra

m
m

a
ti
c

re
p
re

s
e
n
ta

ti
o
n

o
f

th
is

s
a
m

e
d
is

tr
ib

u
ti
o
n
.

206

X.3 Common Visualization Approaches for Text Mining 207

also be compared according to various measures and plotted in stacks. It is true,
however, that histograms are more commonly employed to display distribution- and
proportion-related results.

Users can thus very easily sort or traverse these lists of concepts (typically along
with details pertaining to some measure of quality) while quickly scanning the bar
charts for visual cues that suggest relative comparisons of distribution or proportion
information, outliers, concepts closer to the average distribution, and so on.

Indeed, histograms now tend to be more interactive inasmuch as users are able
to manipulate refinement constraints. The incorporation of pop-ups or separate win-
dows allow filters to be adjusted by means of sliders, dials, buttons, or pull-down
boxes to give users a more “real-time” feel for how constraint changes affect query
results.

Radical fluctuations in the height of individual bars on a chart are visually much
more immediately noticeable to a user than the changes in numerical values in long
lists or table grids. Still, smaller differences between bars are harder to discern. Thus,
histograms can sometimes be more useful for examining outliers and baseline values
among charted items. They are less useful for helping a user visually distinguish
between more minute differences in the relative values of individually graphed items.

X.3.4 Line Graphs

Like histograms, line graphs may not at first seem to be the most advanced of visual-
ization approaches for text mining applications. However, these graphs have many
advantages. Many academic and commercial text mining systems have at one time
or other employed line graphs to support knowledge discovery operations.

Line graphs represent what might be described as “cheap and cheerful” visu-
alization solutions for text mining. They are “cheap” because they combine the
virtues of relatively low system overhead and development expense in that there
are many widely available free or low-cost line graphing software libraries that can
be leveraged to create specific competent presentation elements. They are “cheerful”
because many of these mature, prebuilt libraries have been specifically developed to
be embedded into a wide range of software applications. As a result, integration and
customization of the libraries are often relatively straightforward.

These advantages make line graphs a good choice for developing uncomplicated
graphs during the prototyping and early-release stages of text mining systems. The
ease of implementing such graphs is helpful because it permits very quick feedback
to system developers and users about the performance of text mining algorithms.

Beyond their use as prototyping tools, line graphs have been employed to provide
visualizations for numerous tasks relating to a wide array of text mining operations.
Two types of visualization approaches relying on line graphs are particularly common.

The first approach involves comparisons across a range of items. By using one axis
of the graph to show some measure and the other to itemize elements for comparison,
line graphs have been applied to three common analysis techniques:

� Comparisons of the results of different sets of queries,
� Comparisons of a set of common queries run against different document subsets,

and

208 Visualization Approaches

0

5

10

15

20

25

30

35

UN OAS NATO ANZAC AU EU Arab

League

Assoc1

Assoc2

Assoc3

Figure X.13. Line graph showing number of associations for three sets of queries.

� Comparisons of the numbers of concepts that appear under different constraint
or quality-measure conditions.

Figure X.13 illustrates the first of these three common techniques in which a line
graph displays a comparison of the number of associations for two sets of queries.
Note the use of the two axes and the plotting of two distinct lines with different
symbols (squares and diamonds) identifying data points.

The second and arguably most prevalent current use of line graphs in text mining
is that of graphs displaying trends or quantities over time. Line charts provide a
very easily understood graphical treatment for periodicity-oriented analytics with
the vertical axis showing quantity levels and the horizontal axis identifying time
periods. See Figure X.14.

Line graphs can also be used in hybrids of these two approaches. Using multiline
graphs, one can compare various types common to text mining tasks in the context
of the time dimension. See example in Figure X.15.

Such applications of line graphs benefit from their concision, for a large amount
of information can be displayed simultaneously with clarity. Line graphs, however,
may not be the most appropriate visualization modality when a text mining analytical
task calls for inviting more immediate interactivity from a user.

X.3.5 Circle Graphs

A circle graph is a visualization approach that can be used to accommodate a large
amount of information in a two-dimensional format. It has been referred to as an
“at-a-glance” visualization approach because no navigation is required to provide a
complete and extremely concise visualization for potentially large volumes of data.

X.3 Common Visualization Approaches for Text Mining 209

200

190

180

170

160

150

140

130

120

110

100

90

80

70

60

50

40

30

20

10

0

D
o

c
u

m
e

n
ts

1
2

/2
4

/2
0

0
0

1
/2

1
/2

0
0

1

2
/1

8
/2

0
0

1

3
/1

8
/2

0
0

1

4
/1

5
/2

0
0

1

5
/1

3
/2

0
0

1

8
/1

0
/2

0
0

1

7
/8

/2
0

0
1

8
/5

/2
0

0
1

9
/2

/2
0

0
1

9
/3

0
/2

0
0

1

1
0

/2
8

/2
0

0
1

Date

Osama bin Laden

Figure X.14. Line graph showing number of documents containing the entity Osama bin Laden

over time.

A circle graph is especially useful in visualizing patterns of association rules,
though it is also very adaptable to displaying category information (Aumann,
Feldman, et al. 1999). The format has been popularized by the widely used commer-
cial data mining visualization tool NetMap (Duffet and Vernik 1997). Figure X.16
shows a basic circle graph.

Essentially, a circle graph is, as the name suggests, a circular graph around the
circumference of which are mapped items. Relations between these items are repre-
sented by edges that connect the items across the interior area of the circle.

140

120

100

80

60

40

20

0

1975 1980 1985 1990 1995 2000

Year

N
u

m
b

e
r

o
f

p
a

p
e

rs

30

25

20

15

10

5

0

1975 1980 1985 1990 1995 2000

Year

A
v

e
ra

g
e

 c
it

a
ti

o
n

s
 p

e
r

p
a

p
e

r

citation analysis

bibliometrics

semantics

visualization

Figure X.15. Two examples of multiline graphs comparing trend lines of quantities over time.

(From Borner et al. 2003. Reprinted with permission.)

210 Visualization Approaches

A

B

C

D

E

F

G

H

Figure X.16. Circle graph.

Style elements, such as the color and thickness of the connecting lines, can be
used to correspond to particular types of information about the connection. In addi-
tion, color gradients in the connecting lines can be used to show the direction of a
relationship.

Circle graphs excel at modeling association rules that appear in the answer sets
to queries (see Figure X.17). It is common for individual concepts to appear as
points around the rim of the circle in association-oriented circle graphs. And their
association with another concept is demonstrated by a connecting edge.

Several additional visual enhancements are common in association-oriented cir-
cle graphs to enable users to have a richer graphic model of underlying textual data.
First, it is common for connecting lines to use color gradients (e.g., going from yellow
to blue) to show the directionality of an association. Second, a single distinct color
(e.g., bright red) might also be used for a connecting line to denote a bidirectional
association.

Third, the relative thickness of connecting edges may be used to suggest some
corresponding information about values relating to the association. Finally, the size,
color, and font type chosen for the depiction of concept names around the circum-
ference of the circle graph can be used to communicate information visually about
particular concepts in a query result set.

One method that has been used for enhancing the interactivity of an association-
oriented circle graph is to make the graph’s peripheral concept names and interior
connecting lines “click-sensitive” jumping points to other information. A user could
click or mouse-over a concept name and obtain additional ontological information

X.3 Common Visualization Approaches for Text Mining 211

Caffeine

Collagen

mmp-2

Collagenase

app

Nicotine

decorn

Figure X.17. Association-oriented circle graph.

relating to the concept, or, by clicking on a linking edge, a user could see the high-
lighted association’s position in a list of associations ranked according to some quality
measure.

Although circle graphs are particularly well-suited to modeling large volumes
of association data, it is important to recognize that this visualization approach –
like most others – can still have its effectiveness impaired by too many concepts or
associations. Therefore, with circle graphs, it is often advisable to offer users easy
access to controls over refinement constraints. This allows users to calibrate a circle
graph’s own visual feature dimensionality quickly to a level most suitable to a given
search task and a particular user’s subjective ability to process the visual information
in the graph.

Category-Connecting Maps

Circle graphs often serve as the basis for category-connecting maps, another visual-
ization tool useful in text mining. Beyond the basic taxonomical view afforded by
a more traditional information retrieval-type category map, a category-connecting
map builds on an association-oriented circle graph by including the additional dimen-
sion of category context for the concepts in the graph.

Category-connecting maps generally show associations between concepts in sev-
eral categories – all within a particular context. For instance, Figure X.18 shows
a category-connecting map with associations between individuals in the category
People and entities in the category Organization – all within the context of Terrorism.

212 Visualization Approaches

Osama bin Laden

Organization

Mullah Mohammed Omar

Person

Justice Department

Abu Sayyaf
HAMAS
Palestinian Autho...
Northern Alliance
Treasury Department

U.N.

State Department

FBI

CIA

Al Qaeda

Taliban

Pervez Musharraf

Jesse Jackson
Michael Kilian

Mohammad Hasham Saad
Mohammad Zahir Shah

Loren Thompson

Lee Hancock

Ari Fleischer
Alan Greenspan

Ahmed Rashid
Ahmed Shah Massood

Rifaat Hussain
Tommy Franks

Tom Hundley
Salem Alhamzi
George Bush
Dan Goure

Kim Schmitz
John D. Stufflebeem

John Stufflebeem
Hamid Karzai

Wakil Ahmed Mutta...
Vincent Cannistraro

Tod Robberson
Richard Whittle
Richard Myers

Mohammed Zahir Shah

Gloria Arroyo

Jim Landers
Mohamed Atta

Richard Boucher
Nabil al-Marabh

Abdul Haq
Gregg Jones

Kofi Annan

Yasser Arafat
Stephanie Bunker

Mullah Mohammad Omar
Donald H. Rumsfeld

George Tenet

Colin Powell
Tony Blair

John Ashcroft
Abdul Salam Zaeef

Robert Mueller
Donald Rumsfeld

Fatah
Laxington Institute

Federal Reserve

Figure X.18. Category-connecting map of associations in the context of person and

organization.

In creating category-connecting maps, special attention is typically paid to the for-
matting of graphical and text elements on the periphery of the circle. In Figure X.18,
concepts are plotted around the periphery of the circle in a way that concentrates con-
cepts within each category together. Such concentration of concepts on the periph-
ery of the circle can leverage preprocessed hierarchical ordering of concepts within
broader “contexts” to speed rendering. However, context concepts and categories
for category-connecting maps can also be generated on the fly by various algorith-
mic techniques ranging from the leveraging of association rules to more specialized
approaches like those discussed in Chapter II relating to the generation of context
graphs.

Concepts within a given category will typically have their concept labeling all
formatted in the same color or font type to reinforce the visual layout technique
of showing concepts within categories, and this color or font type will contrast with
those used for other categories displayed in the graph. Finally, higher level category
labels are often displayed to the center and outside of the “cluster” of their concepts
(e.g., the category names Person and Organization are underlined and offset from
the circle in Figure X.18).

Multiple Circle Graph and Combination Graph Approaches

Often, text mining applications that employ circle graphs have graphical interfaces
supporting the generation and display of more than one complete circle graph at

X.3 Common Visualization Approaches for Text Mining 213

a time. One reason for this is that, because of a circle graph’s strength in showing
a large amount of data about a given query set at a glance, multiple circle graphs
displayed together can have tremendous value in helping establish explicit or implicit
comparisons between different query results.

This advantage might be leveraged in a text mining set through the plotting of two
or more circle graphs on screen at the same time, each having different refinement
constraint values. Another example of this approach is category-connecting maps run
against the same document collection and same main category groupings but with
different contexts. Each of these examples would allow a user to make side-by-side
assessments of differences and similarities in the graphing patterns of multiple graphs.
Figure X.19 illustrates the use of multiple circle graphs in a single visualization.

Another technique that relies on showing multiple circle graphs on screen at the
same time results from trying to emphasize or isolate “subgraphs,” or to do both,
from within a circle graph. For instance, because circle graphs can be used to model
so much data all at once, some more subtle relationships can become de-emphasized
and obscured by the general clutter of the graph. By allowing a user to click on
several items that are part of a main circle graph, a text mining system can offer
subgraphs that display only the relationships between these items. Being able to see
such subgraphs discretely while viewing the main circle graph as a whole can lead to
new forms and levels of user interactivity.

Similarly, circle graphs can benefit from side-by-side comparisons with other
graphs. For instance, instead of limiting a text mining system’s graphing options
to circle graphs and their subgraphs, one could also use simple concept association
graphs to graph highlighted relationships shown within an association-oriented circle
graph or concept-connecting map.

X.3.6 Self-Organizing Map (SOM) Approaches

Text mining visualization has benefited from contributions made by research into
how artificial neural networks can aid information visualization. Perhaps one of the
most important of these contributions is the paradigm of self-organizing maps, or
SOMS, introduced by Kohonen in 1982 and first applied in 1991 to problems in
information visualization in Lin, Soergel, and Marchionini (1991).

SOMs are generated by algorithms that, during a learning phase, attempt to
iteratively adjust weighting vectors derived from the relationships found in a high-
dimensional statistical data input file into various forms of two-dimensional output
maps. Because of this approach, SOMs have advantages in treating and organizing
data sets that are extremely large in volume and connecting relationships.

WEBSOM

One of the most widely known and used applications of SOMs to textual data is WEB-
SOM. WEBSOM uses an adapted version of Kohonen’s original SOM algorithm to
organize large amounts of data into visualizations that applications designers refer to
as “document maps,” which are essentially graphical models similar to topographical
maps (see Figure X.20).

Shading on the map face displays concentrations of textual data around or near
a particular keyword or concept; lighter areas show less concentration. Hence, the

in
te

rl
e
u
k
in

 6

T
U

M
O

U
R

 N
E

C
R

O
S

IS
 F

..
.

T
N

F
-[

a
lp

h
a
]

in
te

rl
e
u
k
in

in
te

rl
e
u
k
in

-1
[b

e
ta

]

in
te

rl
e

u
k
in

 1
IN

T
E

R
L
E

U
K

IN
 1

[b
e
ta

]

IL
-1

IL
-1

0
T

N
F

In
te

rf
e

ro
n IF

N

IF
N

-[
g

a
m

m
a
]

in
te

rl
e
u

k
in

 4

in
te

rf
e

ro
n

 [
g

a
m

m
a

]
IL

-8

IL
-1

[a
lp

h
a
]

N
F

-[
k
a
p

p
a
]B

p
6
5

p
5
0

IL
-1

3

in
te

rl
e
u
k
in

 8

in
te

rl
e
u

k
in

 2

L
IF

in
te

rf
e

ro
n

-[
g

a
m

m
a

]

P
K

C

m
it

o
g

e
n

-a
c
ti

v
a
te

d
..
.

M
A

P
K

e
p

id
e
rm

a
l
g

ro
w

th
 .
..

e
p

id
e

rm
a

l
g
ro

w
th

 .
..

E
G

F
P

K
A

p
ro

te
in

 k
in

a
s
e

 A
E

G
F

R c
A

M
P

-d
e

p
e

n
d

e
n

t
p

r.
..

p
4
2p

4
4R

a
s

M
it
o
g
e
n
-a

c
ti
va

te
d
..
.

k
in

a
s
e

E
G

F
 r

e
c
e
p
to

r

e
x
tr

a
c
e

llu
la

r
s
ig

..
.

p
3

8
R

a
f

p
ro

te
in

 k
in

a
s
e
 C

p
e

ro
x
is

o
m

e

p
e
ro

x
is

o
m

e
 p

ro
lif

..
.

P
P

A
R

[g
a
m

m
a
]

a
p

o
E

O
D

C

a
p

o
lip

o
p

ro
te

in
 E

C
D

4
C

D
8

o
m

it
h
in

e
 d

e
c
a
rb

o
..
.

R
e
c
A

R
a
d
5
1

S
ta

t

J
a
k

J
a
k
-S

T
A

T

fi
b

ro
n

e
c
ti

n

F
N

v
it
ro

n
e

c
ti
n

Ia
m

in
in

g
re

e
n
 f

lu
o
n
s
c
e
n
t.

..
G

F
P

p
ro

s
ta

g
la

n
d

in
 E

2
P

G
E

2
M

y
o

D

m
y
o
g
e
n
in

M
y
1

5
R

b
re

ti
n
o
b
la

s
to

m
a

P
K

B
P

ro
te

in
 k

in
a
s
e
 B

c
-f

o
s

c
-J

u
n

T
T

R
tr

a
n
s
th

y
re

ti
n

G
ro

 E
S

G
ro

E
L

fo
c
a
l
a
d
h
e
s
io

n
 k

i.
..

F
A

K
p

a
x
ill

in

T
G

F
-[

b
e

ta
]

tr
a
n
s
fo

rm
in

g
 g

ro
w

..
.

c
a

lm
o

d
u

lin
C

a
M

IN
O

S
In

d
u

c
ib

le
 n

it
ri
c
 .

..

in
s
u
lin

-l
ik

e
 g

ro
w

..
.

IG
F

H
h

H
e

d
g

e
h

o
g

H
G

F
h
e
p
a
to

o
y
te

 g
ro

w
th

..
.

L
e
p
ti
n

n
e

rv
e

 g
ro

w
th

 f
a

c
to

r
N

G
F

P
D

G
F

P
la

te
le

t-
d
e
ri
v
e
d
 .
..

o
c

o
s
te

o
p
o
n
ti
n

A
lk

a
lin

e
 p

h
o

s
p

h
a

ta
s
e

T
u

m
o

r
S

u
p

p
re

s
s
o

r

p
5
3

B
c
l-

2
B

c
l-
x
L

p
2

1
B

a
x

c
a

s
p

a
s
e

p
6

3

p
7

3

p
2
1
W

a
f1

M
d

m
2

T
P

O
E

7
E

6

A
M

P
-a

c
ti
v
a
te

d
 p

ro
..

.
A

M
P

K

h
ro

m
b
o
c
o
le

ln

h
e
p
ln

re
c
e
p
k
r

o
s
te

o
c
a
lc

in

F
ig

u
re

X
.1

9
.

S
id

e
-b

y-
s
id

e
c
ir
c
le

g
ra

p
h
s

w
it
h

s
u
b
g
ra

p
h
s
.
(F

ro
m

Fe
ld

m
a
n
,
R

e
g
e
v,

e
t

a
l.

2
0
0
3
.)

214

X.3 Common Visualization Approaches for Text Mining 215

Digital oil level sensor

Click any area on the map to get a zoomed view!

Oil filler adapter

F01M11/12; GO1F

F01M11/04D (N);

F01M11/04

F01M

F01M1/1

F01D25/-
F01M11/04D; F16N

Oil metering device for supplying oil to a f

Oil metering device for supplying oil to a f

Oil addition apparatus

Oil to gasoline proportioning device for tw

Apparatus for detecting oil level in oil tank

Apparatus for monitoring engines

Air separation for an oil pump

Motor oil change kit

Oil pressure monitoring system

Oil equalization system for parallel connec-

Figure X.20. WEBSOM – during queries, users are guided by a document map via visual cues

in a GUI that supports both interactive zooming and browsing support functions. (From Lagus

et al. 1999. Reprinted with permission of Springer Science and Business Media.)

graphical approach represented by WEBSOM is particularly suited to text mining
analytics involving some element of reference to a category. However, the system
has proven flexible enough to be applied to other tasks as well. Moreover, although
WEBSOM may initially have been geared more toward solving problems in informa-
tion retrieval for high-dimensionality document collections, academic attention has
been devoted specifically to its uses as a toolkit for building text mining interfaces.
A basic WEBSOM document map can be seen in Figure X.21.

One of the strongest advantages of WEBSOM – and similar SOM-based sys-
tems that it has inspired – has been a proven ability to handle large amounts of
data. WEBSOM has built a document map to address more than one million docu-
ments, and its automatic algorithm for building document maps is reportedly able to
complete a visualization for a small-to-modest document collection (approximately
10,000 documents) in less than a few hours.

Another advantage of WEBSOM is the robustness of the interface’s functionality.
WEBSOM is a fully zoomable interface that enables sections of a full document
map to be repeatedly zoomed at various levels of magnification. The document map
GUI is also very interactive in that clicking on a highlighted concept identifier or a
section of the document map will bring up lists of corresponding documents, statistical
information about the documents, or both typically in a pop-up or separate window.

216 Visualization Approaches

Legend

Dominance of Highest Components

> 40 %

< 5 %

35 - 40 %

30 - 35 %

25 - 30 %

20 - 25 %

15 - 20 %

10 - 15 %

5 - 10 %

Cluster Boundary

SCIENCE >45 Articles in Cluster

SCIENCE 30-45 Articles in Cluster
SCIENCE <30 Articles in Cluster

Figure X.21. WebSOM-like cartographic document map with typical graph legend. (From

Borner et al. 2003. Reprinted with permission.)

SOM Algorithm

Honkela (1997) has summarized the SOM algorithm along the following lines:

� Assume an input dataset of concepts is configured as a table, with the intended
output being the mapping of these data onto an array of nodes. The set of input
data is described by a vector X(t) ∈ Rn, where t is the index of the input data. In
terms of output, each node i in the map contains a model vector mi (t) ∈ Rn; this
model vector has the same number of elements as the input vector X(t).

� The SOM algorithm is stochastic and performs a regression process. Therefore,
the initial values of the elements of the model vector, mi (t), may be selected at
random.

� Input data are mapped into a location in the output array, the mi (t) of which
“matches” best with x(t) in some metric. The SOM algorithm creates an ordered
mapping by repeating the following tasks:

An input vector x(t) is compared with all the model vectors mi (t); the best-
matching element (node) on the map (i.e., the node where the model vector
is most similar to the input vector according to some metric) is discerned. The
best-matching node on the output map is sometimes referred to as the “winner.”
The model vectors of the winner and a number of its neighboring nodes (some-
times called “neighbors”) in the array are changed toward the input vector
according to a customized learning process in which, for each data element
input vector x(t), the winner and its neighbors are changed closer to x(t)
in the input data space. During the learning process, individual changes may

X.3 Common Visualization Approaches for Text Mining 217

actually be contradictory, but the overall outcome in the process results in
having ordered values for mi (t) gradually appear across the array.
Adaptation of the model vectors in the learning process takes place according
to the following equations:

mi (t + 1) = mi (t) + α(t)[(t) − mi (t)] for each i ∈ Nc(t);

otherwise, mi (t + 1) = mi (t),

where t is the discrete-time index of the variables, the factor α(t) ∈ [0, 1] is a
scalar that defines the relative size of the learning step, and Nc(t) describes
the neighborhood around the winner node in the map array. Typically, at the
beginning of the learning process, the radius of the neighborhood can be quite
large, but it is made to consolidate during learning.

One suggested method for examining the quality of the output map that results
from the running the SOM algorithm is to calculate the average quantization error
over the input data, which is defined as E {‖X − mc(X)‖}, where c indicates the
best-matching unit (sometimes referred to as the BMU) for x. After training, for
each input sample vector, the BMU in the map is searched for, and the average of
the individual quantization errors is returned.

Several deficiencies, however, have been identified in WEBSOM’s approach.
Some have pointed out that WEBSOM’s algorithm lacks both a cost function and
any sophisticated neighborhood parameters to ensure consistent ordering. From a
practical standpoint some have commented that a user can get “lost” in the interface
and its many zoomable layers. In addition, the generalized metaphor of the topo-
graphical map is not a precise enough aid in displaying patterns to support all text
mining pattern-identification functions.

X.3.7 Hyperbolic Trees

Initially developed at the Xerox Palo Alto Research Center (PARC), hyperbolic

trees were among the first focus and context approaches introduced to facilitate visu-
alization of large amounts of data. Relying on a creative interpretation of Poincaré’s
model of the hyperbolic non-Euclidean plane, the approach gives more display area
to a part of a hierarchy (the focus area) while still situating it within the entire – though
visually somewhat de-emphasized – context of the hierarchy. A widely known com-
mercial toolkit for building hyperbolic tree visualization interfaces is marketed by
Inxight Software under the name StarTree Studio (see Figure X.22).

Hyperbolic tree visualizations excel at analysis tasks in which it is useful for
an analyst to see both detail and context at the same time. This is especially true in
situations in which an analyst needs to traverse very complex hierarchically arranged
data or hierarchies that have very large amounts of nodes.

Other more common methods for navigating a large hierarchy of information
include viewing one page or “screen” of data at a time, zooming, or panning. How-
ever all of these methods can be disorienting and even distracting during intensive
visual data analysis. A hyperbolic tree visualization allows an analyst always to keep
perspective on the many attached relationships of a highlighted feature.

218 Visualization Approaches

Visualizing National Park Svcs Sites

A through L

M through Z

Walnu
WupatkiN

Alcatraz Island

Cabrillo Nation

California Nation

Channel Island

Death Valley Nation

Devils Postpile Nation

Eugene o'Neil Nation

Fort Point Nation

Golden Gate Nation

John Muir Nation

Joshua Tree Nation

Juan Bautista

Lesson Vocal

Lava Beds Nation

Manzanar

Mojave

M through Z

Big Cypre

Biscaya

A throug

M throug

M through

Virginia

NPS Map Search

Arigona

California A through L

A throug

Utah

Figure X.22. Hyperbolic tree for visualizing National Park Service sites. (From Inxight StarTree

Studio. Copyright Inxight Software.)

Hyperbolic tree visualization tools have from their inception been designed to be
highly dynamic aids for textual data exploration. Initially, a hyperbolic tree diagram
displays a tree with its root at the center of a circular space. The diagram can be
smoothly manipulated to bring other nodes into focus. The main properties that
support the capabilities of the hyperbolic tree are that

� elements of the diagram diminish in size as they move outward, and
� there is an exponential growth in the number of potential components.

Effectively, these two properties might be described as a form of fisheye distortion
and the ability to uniformly embed an exponentially growing structure. Together, they
allow the hyperbolic tree visualization tool to leverage Poincaré mapping of the non-
Euclidean plane to explore very large hierarchies in a visualization frame relatively
limited in size.

The hyperbolic tree’s peculiar functionality does more than simply allow a user to
interact with a larger number of hierarchical nodes than other more traditional meth-
ods or to view a highlighted feature with reference to a richer amount of its context.
It also very much encourages hands-on interaction from a user with a hierarchical
dataset. Figure X.23 shows another example of a hyperbolic tree.

By enabling a user to stretch and pull a complex hierarchy around a focused-
on item with a mouse and then skip to another node with a mouse click and view
the rest of its hierarchy context at various angles, a hyperbolic tree diagram pro-
motes dynamic, visualization-based browsing of underlying data. Instead of being

X.3 Common Visualization Approaches for Text Mining 219

economy, business, and finance

education
health

politics

entrance
teachers preschool

parent organization

further education

adult education tourism and leisure

process industry

metal and mineral

metal goods and engineer

media

chemicals

macroeconomics

construction and property

company information

consumer goods

financial and business servicecomputing and

energy and resource

organized crime
international law

corporate crime
Crime

police

prison

Crime, law and justice

rest, conflicts, and war

social issues

environmental issues

lifestyle and leisure

News Navigator

punishment

ciary(system of justice)

Figure X.23. Hyperbolic tree visualization of a document collection composed of news

articles. (Courtesy of Inxight Software.)

semipassive viewers and inputters of query data, users become fully engaged partic-
ipants in pattern exploration.

X.3.8 Three-Dimensional (3-D) Effects

Many text mining systems have attempted to leverage three-dimensional (3-D)
effects in creating more effective or flexible visualization models of the complex
relationships that exist within the textual data of a document collection. 3-D visualiza-
tions offer the hope that, by increasing the apparent spatial dimensionality available
for creating graphic models of representations such as those produced by more com-
plex, second-generation, multiple-lattice SOMs, users may be able to examine and
interact with models that make fewer compromises than are required by traditional
(2-D) hierarchical or node-and-edge representations.

Moreover, higher powered 3-D rendering algorithms and wider availability of
sophisticated workstation graphics cards create the conditions for making such 3-D
visualizations more practical for use in text mining systems than ever before. In

220 Visualization Approaches

Figure X.24. A 3-D overview of a scientific author cocitation map suggesting a diverse, uncon-

centrated domain. (From Borner et al. 2003.)

addition, to supplement navigation in a non-2-D environment, many relatively light-
weight VR rendering and exploration environments are available now that can easily
be embedded into front-end interfaces. An example of a 3-D network map can be
seen in Figure X.24.

Despite all of the potential opportunities offered by 3-D treatments of models
for information visualization, these models also introduce several new challenges
and problems. Two significant problems for using 3-D visualization approaches in
text mining are occlusion and effective depth cueing (see example in Figure X.25).
Both of these problems are exacerbated in situations in which presentation of high-
dimensional data is required. Unfortunately, such situations are precisely those in
which text mining applications will be likely to incorporate 3-D visualization tools.

Moreover, 3-D visualizations do not generally simplify the process of navi-
gating and exploring textual data presentations. Often, some level of specialized
navigational operations must be learned by the user of a 3-D projection or VR-
based visualization. This can become something of a barrier to inspiring intuitional

X.3 Common Visualization Approaches for Text Mining 221

RSN

Figure X.25. Presentation from a visualization suggested by Gall et al. (1999). Visualization

represents hierarchies over time. However, challenges of element occlusion occur at lower

levels of the various hierarchies. Such a presentation may also not be understood intuitively

by users. (From Graham 2001. Reprinted with permission, C© 2001 IEEE.)

navigation of a data presentation. Increased complexity in navigation is generally
inversely proportional to stimulating high levels of iterative user interaction.

There is no doubt that the verdict will be out for some time on the impact of
3-D treatments on text mining visualization. Certainly, there will be a great deal
of continued research and experimentation in an effort to make 3-D approaches
more practically useful. Currently, the disadvantages of 3-D approaches outweigh the
proposed advantages; 3-D visualization may never be very useful in comprehending
nonspatial information like that encountered in text mining.

In the short term, designers of text mining systems should carefully evaluate
the practical benefits and drawbacks inherent in the potential inclusion of a 3-D
visualization tool in their applications before being carried away by the theoretical
advantages of such new graphical tools.

X.3.9 Hybrid Tools

In the discussion of circle graphs in Section X.3.5, it was noted that sometimes com-
binations of identical multiple graphs or different types of multiple graphs have a
special role in providing analytical information about the results from a text mining
query’s answer set. Designers of visualization tools often come up with presentation
techniques that might be seen as hybrid forms incorporating components of different
visualization formats into a coherent, new form. Three creative examples of hybrid
visualization approaches can be seen in Figures X.26, X.27, and X.28.

222 Visualization Approaches

22 21 20 19
18

17

16

15

14

13

12

11

10

9

8

7

6

5

Sat

Fri

Thu

Wed
Tue

MonSun40 to
30 to

25 to 3

20 to 2

15 to 20

10 to 1

5 to 1

0 to 5

Call

Dial

Mail

Carrie

Reset

Ring

Fail

OK

Tim
e -

Hour

O
K

 o
r F

a
il

Fault Type

Conn

8

54
66

28
4 5 2 27 8

01
9

12
6

4
15

16
8

4
2

4
2

1

8

4

18

9

11

11

10

42

6

6

6

1

01

16

18

16
21

11

14

00

47

27
57

24

29
9 08

16
125

2
4

145

6

6

01

8

51

54

15

14

1

1

1

5

5

14

17

19

16

D
a
te

??

Figure X.26. Daisy chart combining aspects of a circle graph and complex comparative his-

togram. (Reprinted with permission from James Miller.)

One critical driver for the innovation of such forms is the desire to achieve more
presentation concision. By supplementing currently well-known graphical formats
with additional new elements, one might at least theoretically be able to increase
dramatically the amount of information communicated by the graphical tool.

One of the possible pitfalls in creating such hybrid forms is overcomplication;
ideally, users should be able to understand the major “messages” communicated by
a presentation approach without too much potential for confusion. Another potential
pitfall is decreased visual clarity of a graph; because text mining visualizations so often
involve overabundance in patterns, more complex visualizations can also result in
greater presentation “clutter” issues.

Because most designers of text mining systems actually implement visualization
approaches initially developed by information visualization specialists, these consid-
erations should be weighed when evaluating the possible graphical tool alternatives

X.3 Common Visualization Approaches for Text Mining 223

ship money-fx
trade

corn
wheat

grain

acq

earn

Low res.

interest

crude

Figure X.27. View of an HSOM or hyperbolic self-organizaing map that projects 3-D elements

on a triangularly tesselated hyperbolic tree grid. (From Ontrup and Ritter 2001a. Reprinted

with permission of The MIT Press.)

Scholarly
Communication

Crane72
Borgman90,92
White90

White81

Garvey79
Culnan86
McCain90

McCain86

Visualization

Kruskal78
Persson94

Olsen93
Tufte83,90
Lorensen97

Robertson93
Foley90

Automatic

Indexing
Deerwester90
Salton89,90,93
van Rijsbergen79

Landauer97,98

Small94,97

Social Studies of

Science
Callon83,86,91
Small 85,90
Rip84

van Raan86

van Raan93

Hicks87

Document Co-Citation

Small73,74,77,85

Lin97

Figure X.28. Specialized network diagram that includes elements of nodes and links graphs

and histogrammatic presentation with 3-D effects and character-based tables. From the Arist

Co-Citation Project. (From Borner et al. 2003. Reprinted with permission.)

224 Visualization Approaches

for a given text mining application. Designers of text mining systems need to be
able to consider several commercial or freeware visualization alternatives from the
perspective of their text mining system’s intended functionality.

Above all, these system designers need to be careful to avoid the temptation
of having “a visualization solution in search of a text mining problem.” Creating
the conditions for maximum interaction from a user depends on ensuring a more
seamless, compatible fit between a visualization approach’s strengths and the algo-
rithmic search techniques that form the core of the text mining situation a particular
presentation layer is meant to support.

For this reason, it sometimes does pay to look for hybrid approaches. A special-
purpose hybrid visualization form may meet the needs of a very specific text mining
application in ways better than more generic forms.

X.3.10 Citations and Notes

Sections X.3.1–X.3.3

The Document Explorer application is described in Feldman, Kloesgen, and
Zilberstein (1997a) and Feldman, Fresko, Hirsh, et al. (1998) and summarized in
Section VI.5.1.

Discussions of relevant hierarchical visualization approaches can be found in Kar-
rer and Scacchi (1990); Johnson and Shneiderman (1991); Robertson, Mackinlay, and
Card (1991); and Hearst and Karadi (1997). Simple concept graphs are an updating
of the simple keyword graphs introduced in Feldman, Kloesgen, and Zilberstein
(1997a).

A good general discussion of some of the considerations employing DAGs in
information visualization can be found in Melancon and Herman (2000), in which
the authors make several useful points, including the following: (a) DAGs might be
seen as a natural generalization of tree structures, (b) aesthetically pleasing drawings
of DAGs are those with the minimum possible number of edge crossings (though this
can sometimes be difficult to manage in graphing large datasets), and (c) DAGs can
serve as a a kind of intermediary form between tree structures and general graphs. For
a review of a DAG-generating program that creates the type of DAG visualizations
described and illustrated in Section X.3.2, see Gansner, North, and Vo (1988). See
also Gansner et al. (1993).

All references to Zhou and Cui’s DAG-based representations of elements of data
from the GO Consortium’s Gene Ontology are from Zhou and Cui (2004). Infor-
mation on the Gene Ontology can be found in GO Consortium (2001).

Sections X.3.4–X.3.7

The two examples of the multiline graphs shown in Figure X.15 are directly from
Borner, Chen, and Boyack (2003). At least one examination of 2-D histograms in
text mining has suggested that they are not especially useful at displaying some basic
types of query results relating to association rules (Wong et al. 2000).

Aumann et al. (1999) provides an early treatment of circle graphs in text-oriented
knowledge discovery. Rainsford and Roddick (2000) underscores the comprehen-
sive “at-a-glance” property that circle graphs have in concisely showing an entire
representation of relationships in large amounts of data. The NetMap circle graph

X.4 Visualization Techniques in Link Analysis 225

information visualization tool is described in Duffet and Vernik (1997). Information
about commercial Netmap products is available at <www.netmap.com>.

Important background reference materials on SOMs include Kohonen (1981),
Kohonen (1982), Lin et al. (1991), Lin (1992), Kohonen (1995), Kohonen (1997),
Lin (1997), Kohonen (1998), and Lagus (2000b). Background reference materials on
WEBSOM include Honkela et al. (1997); Honkela, Lagus, and Kaski (1998); Lagus
(1998); and Lagus et al. (1999). The SOM algorithm described in Section VI.3.6. has
been summarized from Honkela (1997).

Beyond WEBSOM, many systems and computer science research projects have
incorporated SOM-style visualizations. Some representatives of the wide influence
of SOM-style interfaces can be seen in Merkl (1998), Borner et al. (2003), and Yang,
Chen, and Hong (2003).

Hyperbolic trees are introduced and discussed in Lamping and Rao (1994); Lamp-
ing, Rao, and Pirolli (1995); and Munzner and Burchard (1995). StarTree Studio
is a product of Inxight Software; additional product information can be found at
<www.inxight.com>. All images from StarTree Studio are the property of Inxight
Software. The hyperbolic tree representation of the Internet comes from Munzner
and Burchard (1995). Another interactive “focus + context” approach, the Table
Lens, is discussed in Rao and Card (1994).

Section X.3.8–X.3.9

Borner et al. (2003) provides a brief but practical review of some 3-D approaches
used in visualizing knowledge domains that would also be applicable to text mining
activities Koike (1993) is another useful source. The effects of such things as potential
drawbacks as occlusion and effective depth cueing in 3-D visualizations are discussed
in Rokita (1996) and Hubona, Shirah, and Fout (1997).

The visualization in Figure X.25 appears as a reference in Graham (2001) that
originally appeared in Gall et al. (1999). Graham (2001) points out that there is
growing consensus that 3-D visualizations are not that useful in comprehending non-
spatial information, whereas Cockburn (2004) seems to suggest the opposite view.

The Daisy Chart displayed in Figure X.26 is a visualization copyrighted by James
Miller of Daisy Analysis (<www.daisy.co.uk>). The daisy chart also appears in
Westphal and Bergeron (1998).

Figure X.27 illustrates one application of the hyperbolic self-organizing map or
HSOM. The HSOM is discussed in Ontrup and Ritter (2001a, 2000b).

The hybrid 3-D network diagram illustrated in Figure X.28 comes from Borner
et al. (2003).

X.4 VISUALIZATION TECHNIQUES IN LINK ANALYSIS

Although the discipline of link analysis encompasses many activities, several spe-
cific tasks are frequently addressed by a few specialized visualization approaches. In
particular, these tasks include

� analysis of a single known concept for the relatedness to, or degrees of separation
from, other concepts, and

� the identification and exploration of networks or pathways that link two (or more)
concepts.

226 Visualization Approaches

Although various generic text mining activities generally involve, as a primary
exploratory approach, the investigation of query result sets in a browser supple-
mented by visualization techniques, current, state-of-the-art link analysis methods
almost always depend on the visualization approach as a central operation. The
exploration of pathways and patterns of connectedness is substantially enhanced
by visualizations that allow tracking of complex concept relationships within large
networks of concepts.

Chapter XI focuses on essential link analysis concepts such as paths, cycles, and
types of centrality and also offers a detailed, running example involving the con-
struction of a model of a social network appropriate to link analysis activities in the
form of a spring graph. Although spring graphs are certainly one of the more com-
mon graphing forms used in link analysis, many visualization techniques have been
applied in this quickly evolving discipline. This section surveys some visualization
approaches that have been adapted to support link analysis.

X.4.1 Practical Approaches Using Generic Visualization Tools

Developers of graphical interfaces to aid in link detection and analysis often slightly
modify more generic visualization formats to orient these graphic approaches more
toward link detection activities. In particular, simple concept graphs, circle graphs,
and hyperbolic trees have been applied to and, in some cases, modified for the support
of link detection tasks. Even histograms and line graphs have been put into service
for link analytics.

For example, a common simple concept association graph could be used to show
persons associated with organizations within the context of some other concept. Such
a graph could be oriented toward link detection activities by centering the graph on
a single known person and allowing the outwardly radiating edges and vertices to
constitute a relationship map.

In a sense, this type of manipulation of the simple concept association graph cre-
ates at least an informal focus for the graph. Ease of following the relationships in the
map can be enhanced by stylistic devices: person nodes and labels and concept nodes
and labels could be drawn in contrasting colors, edge thickness could be determined
by the number of documents in which an association between two linked concepts
occurs, and so on.

Figure X.29 shows the results of a query for all person concepts with associations
to organization concepts within the context of the concept terrorism within a given
document collection. After a simple concept association graph was generated from
the results of the query, a single person concept, Osama bin Laden, was highlighted
and drawn to form a central “hub” for the diagram. All person concepts were identi-
fied in a darker typeface, whereas all organization concepts were denoted by a lighter
typeface.

An analyst can traverse relationships (associations) emanating from Osama bin
Laden in a quick and orderly fashion. The methodology also has the advantages of
being relatively quick to implement and, often, requiring only some customization
of the more standard visualization approaches found bundled with most text mining-
type applications.

X.4 Visualization Techniques in Link Analysis 227

Taliban

Colin Powell

Osama bin

Laden

Mullah

Omar

Treasury

Dept HAMAS

CIA

State

Dept

FBI

Northern

Alliance

Richard

Boucher

Greg Jones

Donald

Rumsfeld

Jim Landers

Tony Blair

Pervez

Musharaff
Abdul Haq

Abdul Zaeef

Al Qaeda

George

Tenet

Robert

Mueller

John

Ashcroft

Figure X.29. Graphing results to a search query for all Person concepts with associations to

organization concepts within the context of the concept terrorism with the concept Osama

bin Laden as central vertex.

Of course, there are some notable limitations to this approach. First, there are a
rather limited number of nodes radiating out from a central “hub” node that a user
can take in at any one time. This limitation can be offset somewhat by zooming and
panning capabilities.

Second, there is no sophisticated or automatic weighting methodology for empha-
sizing stronger or more interesting associations by some sort of visual proximity cue
within a confined and manageable visualization space. This is a particularly limit-
ing factor in the case of very large node-and-edge graphs. Certainly, one can easily
increase line density between nodes or prune nodes from the graph altogether based
on some quality measures.

In graphs in which very large numbers of nodes and associations are present, there
is significant risk that these two limitations will prevent the user from maintaining
his or her focus on the central node (because of the need to pan, page down, or
zoom to a very large graph) and receiving much information about the comparative
relatedness of nodes to the central focus node by means of strong spatial or proximic
visual cues. Other types of specialized visualization formats do relatively better jobs
in addressing these limitations.

X.4.2 “Fisheye” Diagrams

Fisheye diagrams show a distorted, lenslike view of a graph to highlight ostended
“focal point” detail while maintaining relatively easy viewing of its broader, more
global visual context. The term “fisheye” derives from the diagram’s analogy to
the super-wide-angle or fisheye lens used in photography (fisheye lenses magnify
the image at the focal point while de-emphasizing, but still showing, images at the

228 Visualization Approaches

periphery). Fisheye views of data were first proposed by Furnas in 1981 and substan-
tially enhanced by Sarkar and Brown (1992).

The best fisheye approaches to visualizing data attempt to balance local or high-
lighted detail with a global context. Fisheye approaches have been described as being
divisible into two categories: distorting and filtering fisheyes. Distorting fisheyes
adjust the size of various graphical elements in a diagram to correspond to their
interestingness, whereas filtering fisheyes de-emphasize or suppress the display of
less interesting data.

Distorting Fisheye Views

Fisheye diagrams have vertices and edges, like node-and-edge graphs, but must
accommodate three main ideas:

� The position of a given vertex in a fisheye view depends on its position in the

“normal view” of the diagram and its distance from the fisheye view’s focus.
� The size of a given vertex in the fisheye view depends on its distance from the

focus, its size in the normal view, and a value representing the relative importance

of this vertex in the global structure.
� The amount of detail in a vertex depends on its size in the fisheye view.

Sarkar and Brown (1992) formalized these concepts in the following way:

1. The position of vertex v in the fisheye view is a function of its position in normal
coordinates and the position of focus f:

Pfeye(v, f) = F1(Pnorm(v), Pnorm(f)).

2. The size of the vertex in the fisheye view is a function of its size and position
in normal coordinates, the position of the focus, and its a priori importance, or
API, which is a measure of the relative importance of the vertex in the global
structure:

Sfeye(v, f) = F2(Snorm(v), Pnorm(v), Pnorm(f), API(v)).

3. The amount of detail to be shown for a vertex depends on the size of a vertex
in the fisheye view and the maximum detail that can be displayed:

DTLfeye(v, f) = F3(Sfeye(v), DTLmax(v)).

4. The visual worth of a vertex depends on the distance between the vertex and
the focus in normal coordinates and on the vertex’s API:

VW(v, f) = F4(Pnorm(v), Pnorm(f), API(v)).

Fisheye diagrams represent a good fit with the visualization requirements of many
link analysis tasks. By applying a fisheye treatment to vertices of a graph that are
interesting to a user, he or she can scan, without visual interruption or panning, among
many contextual relationships, as shown in the diagrammatic elements presented in
the periphery of the graph. Figure X.30 shows some fisheye treatments of a SOM.

X.4 Visualization Techniques in Link Analysis 229

(a) (b)

(d)(c)

Figure X.30. Fisheye treatments of a SOM mapped onto a 20 × 20 grid with various distortion

values; this type of display is commonly used in maps of concepts within categories. (From

Yang, Chen, and Hong 2003. Reprinted with permission from Elsevier.)

Filtering Fisheye Views

Filtering fisheye approaches, such as fractal approaches, focus on the control of infor-
mation in the creation of display layouts. Such approaches attempt, through approx-
imation, to create simpler abstractions of complex structures by filtering the amount
of information displayed in a way corresponding to some system- or user-defined
threshold. Examples of filtering view approaches are found in Figure X.31.

witnesses(13)premises(10)
witnesses(13)

properly(14)

dotts(14)

aut(0)

Redress(11)

premises(10)

guy(2)

Redess (11)

XXXX

XXXX

XXXX

XXXX XXXXXXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXXXXXX

XXXX

XXXX

ayt(11)

Figure X.31. Filtering view approaches (fractal view) applied to the same category map at

different threshold settings. (From Yang, Chen, and Hong 2003. Reprinted with permission

from Elsevier.)

230 Visualization Approaches

Yang, Chen, and Hong (2003) has summarized an approach to creating a fractal
view of a category map:

� The fractal dimension of a structure D is the similarity dimension of a structure,
which is controlled by a scale factor and a branching factor,

D = − logrx
Nx,

where rx represents the scale factor and Nx represents the branching factor.
� Solving the fractal requirement requires that the relation between the number of

branches and the scale factor at each node of the structure shown below exist:

logrx
Nx = constant.

� Formalizing the fractal views entails taking the focus point into account and
regarding it as root. Fractal values are propagated to other nodes based on the
following formulation:

Fractal value of focus point = Ffocus = 1.
Fractal values of the child of region x in a category map = Fchild of x = rx Fx,
where Fx is the fractal value of x, rx = C × N

−1/D
x , C is a constant, 0 ≤ C ≤ 1,

D is the fractal dimension, and Nx is the branching factor.

Control in this type of view is maintained by the setting of the threshold values.
Regions of the category map with fractal values below the threshold disappear or
become diminished.

Applications to Link Detection and General Effectiveness

of Fisheye Approaches

Both distorting and filtering fisheye approaches are particularly useful to link detec-
tion operations aimed at performing degree-of-relatedness or degree-of-separation
analyses. By being able to maintain a focal point on vertices representing known
data, users substantially enhance their ability to identify and explore connections
with vertices on the diminished but still viewable periphery of the graph.

Moreover, the ability – supported by many fisheye-type interfaces – to move an
item that is on the periphery to the focal point quickly through direct manipulation
of graph elements while not completely losing sight of the earlier focused-upon
vertex (which will have moved, in turn, to the periphery) can be quite important.
Indeed, beyond just generally acting to encourage greater interaction with the text
mining system, this type of functionality allows users to sift more confidently through
relationship data without a feeling of disorientation or “getting lost.”

Distorting and filtering fisheye approaches are not mutually exclusive. When
dealing with very large volumes of data, link detection operations aimed at discov-
ering the network of truly interesting relationships linked to a known concept can
be greatly enhanced by being able both (a) to see as much of a peripheral context
as possible (via a distorting view approach) and (b) to winnow the overall display of
data by means of the threshold setting (via a filtering view algorithm).

Yang, Chen, and Hong (2003) found that both distorting and filtering view
approaches were substantially more effective (speed measure) in helping users dis-
cover information versus having no visualization tool at all. Yang et al. also found
that users achieved faster discovery results employing filtering view approaches
versus distorting view approaches but found that visualizations incorporating both

X.4 Visualization Techniques in Link Analysis 231

witnesses (13)

...(8)

...(0)

British (2)

Properly (14)

Premises (10)

 Jussdc(8)

Redress (11)

...(7)

In...(18)

Figure X.32. Visualization of a category map relying on both distorting view and filtering view

techniques. (From Yang, Chen, and Hong 2003. Reprinted with permission from Elsevier.)

distorting view and filtering view functionality were the most effective at increasing
the speed of discovering useful data. An example of a visualization incorporating
both distorting view and filtering view approaches can be seen in Figure X.32.

X.4.3 Spring-Embedded Network Graphs

Link analysis activities benefit from visualization approaches that offer quick spatial
and layout cues to the relative proximity that certain relations between concepts
possess. Spring embedding is a graph generation technique first described by Eades
(and later refined in significant ways by both Kamada and Kawai and Fruchterman
and Rheingold) that distributes nodes in a two-dimensional plane with some level
of separation while attempting to keep connected nodes closer together relative to
some form of weighting scheme. Spring graphs are a common form in many academic
and commercial text mining applications with an orientation toward link detection
such as ClearForest’s ClearResearch (see Figure X.33) and Paul Mutton’s PieSpy

social network visualization software (Mutton 2004) (see Figure X.34).
In generating a spring-embedded network graph, or spring graph, we regard each

node as a kind of “charged particle” within a graph model that simulates a closed-
force system. This formulation creates a repulsive force between every pair of nodes
in the system. Each edge in the graph, on the other hand, is modeled as a spring that
applies an attractive force between the pair of nodes it links.

Ultimately, the full spring graph is drawn in iterations that calculate the totality
of repulsive and attractive forces acting on nodes within the closed system. At the

232 Visualization Approaches

Colin Powell

Mullah Mohammad Omar

Gregg Jones
Donald Rumsfeld

Jim Landers

Tony Blair

Pervez Musharraf

Abdul Haq

Abdul Salam Zaeef

Yasser Arafat

Gloria ArroyoAbu Sayyaf

Palestinian Autho...Kofi Annan

George Tenet

U.N.

Stephanie Bunker

CIA

Al Qaeda

HAMAS

Treasury Department

FBI

Northern AllianceRobert Mueller

Nabil al-Marabh

Mohamed Atta

John Ashcroft

Richard Boucher

State Department

Osama bin Laden

Taliban

Figure X.33. Spring graph of person concepts associated with organization concepts in the

context of terrorism.

close of each iteration, all the nodes in the system are moved according to the forces
that were applied during that iteration’s calculations.

Typically, in most practical situations, the creation of spring graphs occurs in
a multistage process. Running a spring-embedder algorithm is only one stage in

Troubadour

s1x

cilquirm

Fox_1_

tmcnulty

The_Vulture

Mark T-

spuer

pandora-

iXian_

reynir

Figure X.34. Simple social network of Internet Relay Chart (IRC) users depicted in a spring

graph by the PieSpy social network visualization application. (From Mutton 2004. Reprinted

with permission, C© 2001 IEEE.)

R
a
m

ri
 B

in
a
ls

a
h
ib

h

B
a
la

ji

M
a
rw

a
n
 A

l-
S

h
e
h
h
i

M
o
h
a
m

e
d
 A

tt
a

G
e
o
rg

e
 W

.B
u
s
h

G
e
o
rg

e
 B

u
s
h

T
o
m

 H
u
n
d
le

yA
h
m

e
d
 S

h
a
h
 M

a
s
s
o
o
d

B
o
b
 G

ra
h
a
m

V
la

lia
ir
 P

u
ti
n

K
im

 S
c
h
m

it
z

J
a
m

e
l
A

h
m

e
d
 A

l-
F

e
d
i

C
a
rl

 L
e
v
in

S
te

ve
n
 E

n
e
rs

o
n

Y
a
s
s
e
r

A
ra

fa
t

J
im

 L
a
n
d
e
rs H

a
m

id
 M

ir

K
h
a
lid

 A
h
a
id

h
a
r

R
u
d
o
lp

h
 G

ir
u
lia

n
i

R
o
b
e
rt

 M
u
e
lle

r

N
a
w

a
f
A

lb
e
rm

i

G
e
o
rg

e
 P

a
ta

k
i

M
o
h
a
m

m
e
d
 J

a
ve

d
 A

z
m

a
th

A
h
m

e
d
 H

a
n
n
a
n

J
o
h
n
 A

s
h
c
ro

ft

K
a
y
 N

e
h
m

M
u
lla

h
 M

o
h
a
m

e
d
 O

m
a
r

S
a
d
d
a
m

 H
u
s
s
a
in

B
ill

 C
lin

to
n

J
e
s
s
e
 J

a
c
k
s
o
n

A
ri

 F
le

is
c
h
e
r

D
o
n
a
ld

 H
.R

u
m

s
fe

ld

A
b
d
u
l
S

a
le

m
 Z

a
e
e
f

G
re

g
o
ry

 K
a
tz

T
o
n
y
 B

la
ir

J
a
c
q
u
e
s
 C

h
ir
a
c

A
ri

e
l
S

h
a
ro

n

P
e
rv

e
z
 M

u
s
h
a
rr

a
f

Ig
o
r

lv
a
n
o
v

C
o
lin

 P
o
w

e
ll

D
ic

k
 C

h
e
n
e
y

D
o
n
a
ld

 R
u
m

s
fe

ld

R
ic

h
a
rd

 M
y
e
rs

T
o
m

 B
ro

k
a
w

T
re

n
t
L
o
tt

T
o
m

 D
a
s
c
h
le

A
y
u
b
 A

li
K

h
a
n

K
a
ri

m
 K

o
u
b
ri

ti

R
a
m

z
i Y

o
u
s
e
f

L
o
rd

 R
o
b
e
rt

s
o
n

O
s
a
m

a
 b

in
 L

a
d
e
n

S
h
im

o
n
 P

e
re

s

D
a
y
n
a
 C

u
rr

y
H

e
a
rh

e
r

M
e
rc

e
r

F
ig

u
re

X
.3

5
.

G
U

I
w

it
h

vi
s
u
a
li
za

ti
o
n

o
f

d
is

c
o
n
n
e
c
te

d
s
p
ri
n
g

g
ra

p
h

s
h
o
w

in
g

p
e
rs

o
n

c
o
-o

c
c
u
rr

e
n
c
e

p
a
tt

e
rn

s
.

233

234 Visualization Approaches

this process, which would customarily also include some customized preprocessing
routines to reduce complexity and heuristics to help establish clusters and perform
other processes to promote faster generation of spring graphs in real-time graph-
rendering situations. A full example of the construction of a social network spring
graph can be found in Chapter XI.

Spring graphs can range in size from a handful of nodes to the hundreds of
thousands. Spring graphs whose nodes are all linked by edges are called connected

spring graphs; those in which discrete networks of nodes appear are referred to as
disconnected spring graphs (see Figure X.35).

Link detection applications leverage spring graphs to provide visual cues in net-
work maps in which edge length corresponds to the actual relatedness of two nodes.
These visual cues allow a user to visually trace out degrees of relatedness and sep-
aration quickly, making pattern exploration more effective. Moreover, the spring
graphs’ ability to model extremely large networks makes them doubly useful in link
detection activities involving very large data collections.

X.4.4 Critical Path and Pathway Analysis Graphs

Link analysis can also be visualized through directed graphs that show the linked
events or paths of interrelated actions. Critical path diagrams are typically based on
a graphical model called an activity network, which is a form of DAG. Unlike most
DAGs, in which emphasis is usually placed on the vertices of the graph, critical path
diagrams equally emphasize the nodes – which typically represent either entities or
events – and the edges – which can represent tasks, actions, or decisions. Figure X.36
shows a rudimentary critical path diagram.

In such diagrams, a critical path is a chain of specific nodes and edges – or entities
events, and the tasks or actions that connect them – that demonstrate some level
of interestingness. As in Figure X.36, the patterns formed by such chains of nodes

Start

Finish

Task

Critical Path

Figure X.36. Critical path diagram.

X.5 Real-World Example: The Document Explorer System 235

and edges can be highlighted by stylistic elements in the visualization process (e.g., a
different color for edges that link nodes in this chain, etc.). Frequently, though not
always, these critical paths will have an identifiable start and finish and thus constitute
a directed subgraph that is part of a wider activity network.

Critical path graphs are a staple part of link detection activities aimed at investiga-
tions of criminal activities. In crime analysis visualization graphs, nodes may represent
both entities (persons, places, items) and events (crimes, pretrial proceedings, trials).
Also, a timeline may be introduced to frame actions that occur over time.

Visualizations that support critical path analysis share similarities with the
graphic approaches used in pathways analysis for genomics and proteomics
research, though there are also some differences. Link detection systems emphasize
the search for chains or pathways of interactions between proteins, drugs, and
diseases in directed graphs. Edges in these directed graphs are often highlighted in
color coding to identify a pathway – but this color coding of edges is also used to
specify different types of interactions.

X.4.5 Citations and Notes

Sections X.4–X.4.3

Fisheye views were introduced by G. Furnas; probably the best early description is
in Furnas (1986). Subsequently, Sarkar and Brown (1992) added useful upgrades
to fisheye views of data and abstracted the general algorithmic approach used to
generate fisheye views. The algorithmic formulation for fisheye views comes from
Sarkar and Brown (1992). Yang, Chen, and Hong (2003) provides a good treatment
of distorting and filtering approaches taken with fisheye views; Noik (1996) also
contains a useful discussion.

Figures X.30, X.31, and X.32, as well as the generalized approach to creating a
fractal view of a category map discussed in Section VI.4.2, have been summarized
from Yang, Chen, and Hong (2003). Yang et al. apply various fisheye approaches
to a category map generated using a Kohonen-style SOM. Koike (1995) offers very
useful background on the use of fractal approaches as filtering-view techniques.

Sections X.4.4–X.4.5

Spring-embedded network graphs were introduced in Eades (1984) and refined in
several subsequent papers – perhaps most notably, Kamada and Kawai (1989) and
Fruchterman and Reingold (1991). More on ClearForest’s ClearResearch product
can be found at <www.clearforest.com>. Further discussion of PieSpy can be found
in Mutton and Rodgers (2002) and Mutton (2004).

Mutton and Golbeck (2003) suggests the formulation of a spring graph as a
closed-force system in which every node is a “charged particle.” The spring graph in
Figure X.34 comes from Mutton (2004).

X.5 REAL-WORLD EXAMPLE: THE DOCUMENT EXPLORER SYSTEM

Initially developed in 1997, Document Explorer is a full-featured text mining system
that searches for patterns in document collections. Such a collection represents an
application domain, and the primary goal of the system is to derive patterns that

236 Visualization Approaches

provide knowledge about this domain. The derived patterns can be used as the basis
for further browsing and exploration of the collection.

Document Explorer searches for patterns that capture relations between concepts
in the domain. The patterns that have been verified as interesting are structured and
presented in a visual user interface allowing the user to operate on the results, to
refine and redirect mining queries, or to access the associated documents. Like many
general text mining systems, Document Explorer focuses on the three most common
pattern types (e.g., frequent sets, associations, distributions); however, it also supports
exploration of textual data by means of keyword graphs.

Perhaps most notably for a real-world system of its time frame, Document
Explorer provides a well-rounded suite of complementary browsing and visualization
tools to facilitate interactive user exploration of its document collection. Examination
of Document Explorer with this in mind can provide useful insights into how a prac-
tical text mining system leverages presentation-layer tools.

The Document Explorer system contains three main modules. A diagram of the
overall Document Explorer system architecture is shown in Figure X.37. The first
module is the backbone of the system and includes the KDTL query front end (see
Section II.3), into which the user can enter his or her queries for patterns; the inter-
preter, which parses a query and translates it into function calls in the lower levels; and
the data mining and the data management layer. These two layers are responsible for
the actual execution of the user’s query. The data mining layer contains all the search
and pruning strategies that can be applied for mining patterns. The main patterns
offered in the system are frequent concept sets, associations, and distributions.

The embedded search algorithms control the search for specific pattern instances
within the target database. This level also includes the refinement methods that filter
redundant information and cluster closely related information. The data manage-
ment layer is responsible for all access to the actual data stored in the target database.
This layer isolates the target database from the rest of the system.

The second module performs source preprocessing and categorization functions.
This module includes the set of source converters and the text categorization soft-
ware. It is responsible for converting the information fetched from each of the avail-
able sources into a canonical format for tagging each document with the prede-
fined categories, and for extracting all multiword terms from the documents. In this
preprocessing component, the system extracts all the information that will subse-
quently be used by the data mining methods.

The target database is represented as a compressed data structure. Besides the
target database, the text mining methods in Document Explorer exploit a knowledge
base on the application domain. The terms of this domain are arranged in a DAG and
belong to several hierarchically arranged categories. In the Reuters newswire col-
lection used in this example, the main categories correspond to countries, economic
topics, persons, and so on. Each category (e.g., economic topics) has, for example,
subcategories such as currencies and main economic indicators. Relations between
these categories give further background knowledge. The knowledge base for the
Reuters collection includes relations between pairs of countries (such as countries
with land boundaries), between countries and persons, countries and commodities,
and so on. These relations can be defined by the user or transformed by special

X.5 Real-World Example: The Document Explorer System 237

User

Preprocessing
Tasks

Categorization,

Feature/ Term

ExtractionNews and

Email

WWW FTP

Resources

Other Online

Resources

Processed
Document

Collection

Prepared/Compressed
Intermediate

Representation

 Text Mining
Discovery
Algorithms

Background

Knowledge Base
DAG

Presentation Layer
GUI, Visualization

KDTL Query
Interpreter

Y
-A

x
is

X-Axis

Explore

K
D

T
L Q

uery

Figure X.37. Architecture of the Document Explorer system.

utilities from generally available sources such as the CIA World Fact Book or com-
panies’ home pages.

Finally, the third module performs presentation-layer functions and is responsi-
ble for providing an attractive set of GUI-based text mining tools and graph-based
visualization techniques that give the user a much easier access to the system. Simple
concept graphs are a special interactive visualization technique to present data min-
ing results. Simple concept graphs extend the notion of association rules to relations
between keywords and phrases occurring in different documents. The focus of the
following functional descriptions is on this presentation layer module.

X.5.1 Presentation-Layer Elements

Visual Administrative Tools: Term Hierarchy Editor

To make full use of Document Explorer’s knowledge discovery tools, the docu-
ments’ annotations are grouped into categories of related terms (e.g. country names,
machine parts, etc.) and placed in a hierarchical structure. The Term-Hierarchy editor,
included in Document Explorer, provides a graphical tool for easy construction and

238 Visualization Approaches

manipulation of such hierarchies. Document Explorer also comes with a predefined
term hierarchy for common topics.

The Knowledge Discovery Toolkit

Document Explorer places extensive visualization and browsing tools at the user’s
disposal for viewing the results of the discovery process. The user is provided with
dynamic browsers, which allow dynamic drill-down and roll-up in order to focus on
the relevant results. Any part of the discovery process can either be applied to the
entire collection or to any subsets of the collection.

Throughout the mining operation, the system maintains the links to the original
documents. Thus, at any stage in the discovery process, the user can always access
the actual documents that contributed to the discovered pattern.

Document Explorer tools can be grouped into four main categories: Browsers,
Profile Analysis, Clustering, and Pattern Discovery. In addition, the system provides
novel visualization techniques.

Browsers

The Document Explorer discovery process starts at the browsing level. Browsing is
guided by the actual data at hand, not by fixed, rigid structures.

Document Explorer provides two dynamic, content-based browsers: distribution

browser, and the interactive distribution browser.

� Distribution Browser. The distribution browser presents the user with the fre-
quency of all terms (concepts) in the collections grouped by category and allows
the collection to be browsed based on these frequencies. In addition, the user
can specify a base concept, and the browser will present him or her with the dis-
tribution of all other concepts with respect to the base concept. With this tool,
the user can immediately find the most relevant term related to whatever he or
she is interested in. For example, given a collection of news articles, the user
may immediately learn that the main business of Philip Morris is tobacco, or that
Wang Yeping is strongly affiliated with China (she is the President’s wife). This
information is obtained before even reading a single document. At any time, the
user may drill down and access the actual documents of interest.

� Interactive Distribution Browser. The interactive distribution browser provides
the user with a flexible, interactive browsing facility, allowing him or her to navi-
gate through the data while being guided by the data itself (see Figure X.38). This
browser allows the user to zoom in and out on sets of concepts in the collection
and obtain online information on the distribution of these concepts within the
collection and their relation to other concepts. At any time, the user may drill
down and access any document of interest by first clicking on a term in the inter-
active distribution browser’s distribution tree GUI, hitting a button to locate all
documents containing the term, and then choosing from a list of titles for these
documents to access the full text of the document.

Visualization Tools

Document Explorer is equipped with a suite of visualization tools. These aid the
user in gaining a quick understanding of the main features of the collection. The

X.5 Real-World Example: The Document Explorer System 239

Figure X.38. The GUI for Document Explorer’s interactive distribution browser. (From Feldman,

Kloesgen, and Zilberstein 1997b.)

visualization tools afford a graphical representation of the connection between terms
(concepts) in the collection. The graphical representations provide the user with a
high-level, bird’s-eye summary of the collection. Three of Document Explorer’s main
visualization tools – simple concept graphs, trend graphs, and category connection

maps – are described here.

� Simple Concept Graphs. As described in Section IV.3.1, a simple concept graph
in Document Explorer consists of a typical set of graph vertices and edges rep-
resenting concepts and the affinities between them. A simple concept graph in
Document Explorer is generally defined with respect to a context, which deter-
mines the context in which the similarity of keywords is of interest. Figure X.39
shows a simple concept graph for the “country” category in the context of
“crude oil,” while Figure X.40 illustates a simple concept association graph with
multiple categories but only one vertex.

In Document Explorer, simple concept graphs can either be defined for the
entire collection, or for subsets of the collection, and for arbitrarily complex
contexts (see Figure X.41). The system provides the user with an interactive tool
for defining and refining the graphs.

� Trend Graphs. Trend graphs (see Section II.1.5) provide a graphical represen-
tation of the evolution of the collection. The user is presented with a dynamic
picture whose changes reflect the changes in the collection.

The user can focus on any slice in time and obtain the state of the information
at the given time. The user can also define the granularity at which the information
is analyzed and presented.

� Category Connection Maps. This visualization tool enables the user to view the
connections between several different categories in relation to a given context.

240 Visualization Approaches

saudi_arabia

6

6

6

6

6

6

6

6

kuwait

iraq

10

18 uk

8

8

8

9 9

17

25

8

japan

iran

bahrain

canada

usa

ussr

ecuador

venezuela turkey

12

12

10

greece

41

cyprus

Figure X.39. A Document Explorer simple concept graph – “Countries” in the context of “Crude

Oil.” (From Feldman, Kloesgen, and Zilberstein 1997b.)

Figure X.42 presents the connections between the categories: people, brokerage

houses, and computer companies within the context of mergers. (Some similar
sample implementations of the circle graph as category connection map are
described in Section XII.2.2.)

X.5.2 Citations and Notes

For a comprehensive overview of Document Explorer, see Feldman, Kloesgen, and
Zilberstein (1997a, 1997b). The original Document Explorer development team
included Ronen Feldman, Yonatan Aumann, David Landau, Orly Lipshtat, Amir
Zilberstien, and Moshe Fresko.

uk canada japan france usa

housingmoney supplybopgnptrade

44 36 207 21 18 28 21 329 23 26 17 76 18

west germany

Figure X.40. Simple concept association graph from Document Explorer – many categories

but one vertex. (From Feldman, Kloesgen, and Zilberstein 1997b.)

X.5 Real-World Example: The Document Explorer System 241

0.77 10

iraq kuwait 0.31 10iraq 32

0.52 25

iran 71 iran kuwait 0.36 17

0.49 13
kuwait 32

0.19 18

0.35 7

iran usa 0.3 41

usa 290

Figure X.41. Simple concept graph from Document Explorer – interesting concept sets and

their associations context: crude oil; categories: countries. (From Feldman, Kloesgen, and

Zilberstein 1997b.)

alfred goldman

bette massick

bill milton
bill vogel

gil amelio

greg nie

jeffrey logsdon

jill krutick
kleinwort benson

ladenburg thalmann
laura lederman

lawrence cohn
louis gerstner
marco landi

marty kearney
michael spindler

philip anschutz
pieter hartsook

ralph bloch
roxane googin

samuel zell
scott mcadams

stephen wozniak

steve mcclellan

tim bajarin

tony dwyer

william blair

goldman sachs

paine webber inc
morgan stanley inc

merrill lynch inc
smith barney inc
bear stearns co

international business machines inc
sun microsystems incComputer Companies

Brokerage Houses

people

Figure X.42. Category map for “People,” “Brokerage Houses,” and “Computer Companies”

with respect to “Mergers.” (From Feldman, Fresko, Hirsh, et al. 1998.)

XI

Link Analysis

Based on the outcome of the preprocessing stage, we can establish links between enti-
ties either by using co-occurrence information (within some lexical unit such as a doc-
ument, paragraph, or sentence) or by using the semantic relationships between the
entities as extracted by the information extraction module (such as family relations,
employment relationship, mutual service in the army, etc.). This chapter describes
the link analysis techniques that can be applied to results of the preprocessing stage
(information extraction, term extraction, and text categorization).

A social network is a set of entities (e.g., people, companies, organizations, univer-
sities, countries) and a set of relationships between them (e.g., family relationships,
various types of communication, business transactions, social interactions, hierarchy
relationships, and shared memberships of people in organizations). Visualizing a
social network as a graph enables the viewer to see patterns that were not evident
before.

We begin with preliminaries from graph theory used throughout the chapter. We
next describe the running example of the 9/11 hijacker’s network followed by a brief
description of graph layout algorithms. After the concepts of paths and cycles in
graphs are presented, the chapter proceeds with a discussion of the notion of cen-
trality and the various ways of computing it. Various algorithms for partitioning and
clustering nodes inside the network are then presented followed by a brief description
of finding specific patterns in networks. The chapter concludes with a presentation
of three low-cost software packages for performing link analysis.

XI.1 PRELIMINARIES

We model the set of entities and relationships as a graph, and most of the operations
performed on those sets are modeled as operations on graphs. The following notation
is used throughout the chapter:

Let V = {V1, V2, V3, . . . Vn} be a set of entities extracted from the documents.
A binary relation R over V is a subset of V × V.

242

XI.1 Preliminaries 243

1

2

3

4

5

Figure XI.1. A simple undirected network with V = {1, 2, 3, 4, 5}, R1 = {(1, 2), (1, 3), (2, 3),

(3, 4), (3, 5)} and N = (V , R1).

We use the prefix notation for relations – that is, if X and Y are related by relation
R1, then it will be denoted by R1(X, Y).

Examples of such binary relations are friendship, marriage, school mates, army
mates, and so on.

A network N is a tuple (V, R1, R2, R3 . . . Rm), where Ri (1 ≤ i ≤ m) is a binary
relation over V.

A visual representation of N is shown in Figure XI.1.
We can also describe a binary relation R using a binary matrix M, where Mi j = 1

if R(Vi , Vj), and 0 otherwise. For example, the matrix that represents the relation R

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 1 1 0 0

1 0 1 0 0

1 1 0 1 1

0 0 1 0 0

0 0 1 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

shown in Figure XI.1 is as follows:
Each row in the matrix corresponds to the connection vector of one of the ver-

tices. The ith row (Mi1, . . . ,Min) corresponds to the connection vector of the ith
vertex.

The set of edges connecting all vertices in the undirected graph is denoted by E,
and |E| is the number of edges in the graph. If the graph is directed, then the lines
that connect the vertices are called arcs. Our focus is mostly on undirected networks
and hence also on undirected graphs, and so we use vertices and edges. The network
can also have weights or values attached to each of its edges. The weight function
denoted W : E → R (the real numbers) is attaching a real value to each edge. If there
are no values for any of the edges, then ∀e ∈ E, W(e) = 1.

If the relations R are not symmetric, then G = (V, E) is a directed graph:
A sequence of vertices (v1, v2, . . . , vk) in G is called a walk if (vi , vi+1) ∈ E; i =

1 . . . k − 1.
A sequence of vertices (v1, v2, . . . , vk) in G is called a chain if ((vi , vi+1) ∈

E||(vi+1, vi) ∈ E)i = 1 . . . k − 1.
In a walk, we care about the direction of the edge, whereas in a chain we do not.
A path is a walk in which no vertices, except maybe the initial and terminal ones,

are repeated.
A walk is simple if all its edges are different.
A cycle is a simple path of at least three vertices, where v1 = vk.
The length of the path (v1, v2, . . . , vk) is k−1.

244 Link Analysis

A special type of network is a two-mode network. This network contains two
types of vertices, and there are edges that connect the two sets of vertices. A classic
example would be a set of people and a set of events as vertices with edges connecting
a person vertex to an event vertex if the person participated in the event.

If there are no self-loops in the network (i.e., a vertex can not connect to itself),
then the maximal number of edges in an undirected network with n vertex is n(n −
1)/2. Such network, in which each vertex is connected to every other vertex, is also
called a clique. If the number of edges is roughly the same as the number of vertices,
we say that the network is sparse, whereas if the network is close to being a clique
we say that it is dense.

We can quantify the density level of a given undirected network by using the
following formula:

ND (Network Density) = |E|
n(n−1)

2

= 2|E|
n(n−1)

Clearly 0 ≤ ND ≤ 1.
Similarly, ND for a directed network would be |E|

n(n−1)

For example ND for the network of Figure XI.1 is 2·5
5·4 = 0.5.

XI.1.1 Running Example: 9/11 Hijackers

We have collected information about the 19 9/11 hijackers from the following
sources:

1. Names of the 19 hijackers, and the flights they boarded were taken from the FBI
site <http://www.fbi.gov/pressrel/pressrel01/091401hj.htm> (see Table XI.1).

2. Prior connections between the hijackers are based on information col-
lected from the Washington Post site given below. If there was a connection
between n ≥ 2 people, it was converted to C(n, 2) symmetric binary rela-
tions between each pair of people. <http://www.washingtonpost.com/wp-srv/
nation/graphics/attack/investigation 24.html.>

The undirected graph of binary relations between the hijackers is shown in
Figure XI.2. The graph was drawn using Pajek dedicated freeware link analy-
sis software (Batagelj and Mrvar 2003). More details on Pajek are presented in
Section XI.7.1.

The 19 hijackers boarded 4 flights, and in Table XI.1 we can see the names of the
hijackers who boarded each flight. The flight information is used when we discuss
the various clustering schemes of the hijackers.

XI.2 AUTOMATIC LAYOUT OF NETWORKS

To display large networks on the screen, we need to use automatic layout algo-
rithms. These algorithms display the graphs in an aesthetic way without any user
intervention.

The most commonly used aesthetic objectives are to expose symmetries and to
make the drawing as compact as possible or, alternatively, to fill the space available for

XI.2 Automatic Layout of Networks 245

Ahmed Alnami

Fayez Ahmed

Ahmed Alhaznawi

Nawaq Alhamzi

Khalid Al-Midhar

Mohamed Atta

Marwan Al-Shehhi

Hani Hanjour
Majed Moqed

Salem Alhamzi

Abdulaziz Alomari

Ahmed Alghamdi

Ziad Jarrahi

Hamza Alghamdi

Mohald Alshehri

Saeed Alghamdi

Satam Al Suqami

Waleed M. AlshehriWail Alshehri

Figure XI.2. Connections between the 9/11 hijackers.

the drawing. Many of the “higher level” aesthetic criteria are implicit consequences
of the

� minimized number of edge crossings,
� evenly distributed edge length,
� evenly distributed vertex positions on the graph area,
� sufficiently large vertex-edge distances, and
� sufficiently large angular resolution between edges.

XI.2.1 Force-Directed Graph Layout Algorithms

Force-directed or spring-based algorithms are among the most common automatic
network layout strategies. These algorithms treat the collection of vertices and edges
as a system of forces and the layout as an “equilibrium state” of the system. The edges
between vertices are represented as an attractive force (each edge is simulated by

Table XI.1. The 19 Hijackers Ordered by Flights

Flight 77: Pentagon Flight 11: WTC 1 Flight 175: WTC 2 Flight 93: PA

Khalid Al-Midhar Satam Al Suqami Marwan Al-Shehhi Saeed Alghamdi

Majed Moqed Waleed M. Alshehri Fayez Ahmed Ahmed Alhaznawi

Nawaq Alhamzi Wail Alshehri Ahmed Alghamdi Ahmed Alnami

Salem Alhamzi Mohamed Atta Hamza Alghamdi Ziad Jarrahi

Hani Hanjour Abdulaziz Alomari Mohald Alshehri

246 Link Analysis

Nawaq Alhamzi

Hani HanjourKhalid Al-Midhar

Salem Alhamzi

Majed Moqed

Ahmed Alghamdi

Abdulaziz Alomari
Mohamed Atta

Marwan Al-Shehhi

Wail Alshehri

Waleed M. Alshehri

Satam Al Suqami
Ziad Jarrahi

Fayez Ahmed

Mohald Alshehri

Hamza Alghamdi Saeed Alghamdi

Ahmed Alnami

Ahmed Alhaznawi

Figure XI.3. KK layout of the hijackers’ graph.

a spring that pulls the vertices together), whereas distinct vertices are pushed apart
by some constraint to help prevent them from being drawn at the same point. The
method seeks equilibrium of these contradicting constraints. The first such algorithm
was introduced by Eades (Eades 1984). Following Eades, two additional layout algo-
rithms were introduced by Kamada and Kawai (KK) (Kamada and Kawai 1989) and
Fruchterman and Reingold (FR) (Fruchterman and Reingold 1991).

Kamada and Kawai’s (KK) Method

Utilizing Hooke’s law, Kamada and Kawai modeled a graph as a system of springs.
Every two vertices are connected by a spring whose rest length is proportional to
the graph-theoretic distance between its two endpoints. Each spring’s stiffness is
inversely proportional to the square of its rest length. The optimization algorithm
used by the KK method tries to minimize the total energy of the system and achieves
faster convergence by calculating the derivatives of the force equations. One of the
main benefits of the KK method is that it can be used for drawing weighted graphs
if the edge lengths are proportional to their weights. The KK method proceeds by
moving a single vertex at a time, choosing the “most promising” vertex – that is, the
one with the maximum gradient value.

In Figure XI.3 we can see the graph shown in Figure XI.2 drawn by using the KK
layout. Unlike the circular drawing of Figure XI.2 in which it is hard to see who the
leaders of the groups are, we can see here that the main leaders are Mohamed Atta,
Abdulaziz Alomari, and Hamza Alghamdi.

Fruchterman–Reingold (FR) Method

This method utilizes a simple heuristic approach to force-directed layout that works
surprisingly well in practice. The underlying physical model roughly corresponds to
electrostatic attraction in which the attractive force between connected vertices is
balanced by a repulsive force between all vertices. The basic idea is just to calculate
the attractive and repulsive forces at each vertex independently and to update all
vertices iteratively. As in simulated annealing, the maximum displacement of each

XI.2 Automatic Layout of Networks 247

Saeed Alghamdi

Ahmed Alnami

Ahmed Alhaznawi

Hamza Alghamdi

Ahmed Alghamdi

Mohald Alshehri

Abdulaziz Aloman

Ziad Jarrahi

Fayez Ahmed

Mohamed Atta

Satam Al Suqami

Waleed M.Alshehri

Wail Alshehri

Marwan Al-Shehhi

Khalid Al-Midhar

Salem Alhamzi

Majed Moqed

Nawaq Alhamzi

Hani Hanjour

Figure XI.4. FR layout of the hijackers’ graph.

vertex in any iteration is limited by a constant that is slightly decreased with each
iteration. In Figure XI.4 we can see the graph shown in Figure XI.2 drawn by using
the FR layout.

For both KK and FR, the relations between vertices must be expressed as dis-
tances between the vertices. For both algorithms we need to build a “dissimilar-
ity” matrix. In the KK algorithm this matrix is constructed from geodesic distances
between vertices, whereas in the FR algorithm the matrix is constructed directly
from adjacencies between the vertices. Spring-based methods are very successful
with small-sized graphs of up to around 100 vertices.

Simulated annealing has also been successfully applied to the layout of general
undirected graphs (Davidson and Harel 1996).

Although force-directed methods are quite useful in automatically exposing most
of the symmetries of the given graphs, they share several disadvantages:

� They are computationally expensive, and hence minimizing the energy function
when dealing with large graphs is computationally prohibitive.

� Because all methods rely on heuristics, there is no guarantee that the “best”
layout will be found.

� The methods behave as black boxes, and thus it is almost impossible to integrate
additional constraints on the layout (such as fixing the positions of certain vertices
or specifying the relative ordering of the vertices)

� Even when the graphs are planar it is quite possible that we will obtain edge
crossings.

248 Link Analysis

� The methods try to optimize just the placement of vertices and edges while ignor-
ing the exact shape of the vertices or the possibility the vertices have labels (and
hence the labels, vertices, or both may overlap each other).

XI.2.2 Drawing Large Graphs

A fast algorithm for drawing general graphs with straight edges was proposed by
Harel and Koren based on the work of Hadany and Harel (Hadany and Harel 2001).
Their algorithm works by producing a sequence of improved approximations of the
final layout. Each approximation allows vertices to deviate from their final place by
an extent limited by a decreasing constant r. As a result, the layout can be com-
puted using increasingly coarse representations of the graph in which closely drawn
vertices are collapsed into a single vertex. Each layout in the sequence is generated
very rapidly by performing a local beautification on the previously generated layout.
The main idea of Hadany and Harel’s work is to consider a series of abstractions of
the graph called coarse graphs in which the combinatorial structure is significantly
simplified but important topological features are well preserved. The energy mini-
mization is divided between these coarse graphs in such a way that globally related
properties are optimized on coarser graphs, whereas locally related properties are
optimized on finer graphs. As a result, the energy minimization process considers
only small neighborhoods at once, yielding a quick running time.

XI.3 PATHS AND CYCLES IN GRAPHS

Given two vertices in a directed graph, we can compute the shortest path between
them. The diameter of a graph is defined as the length of the longest shortest path
between any two vertices in the graph. Albert et al. (Albert, Jeong, and Barabasi
1999) found that, when the Web contained around 8 × 108 documents, the average
shortest path between any 2 pages was 19. The interpretation of the shortest path in
this case is the smallest number of URL links that must be followed to navigate from
one Web page to the other.

There are many kinds of paths between entities that can be traced in a dataset. In
the Kevin Bacon game, for example, a player takes any actor and finds a path between
the actor and Kevin Bacon that has less than six edges. For instance, Kevin Costner
links to Kevin Bacon by using one direct link: Both were in JFK. Julia Louis-Dreyfus
of TV’s Seinfeld, however, needs two links to make a path: Julia Louis-Dreyfus
was in Christmas Vacation (1989) with Keith MacKechnie. Keith MacKechnie was
in We Married Margo (2000) with Kevin Bacon. You can play the game by using the
following URL: <http://www.cs.virginia.edu/oracle>.

A similar idea is also used in the mathematical society and is called the Erdös
number of a researcher. Paul Erdös (1913–1996) wrote hundreds of mathematical
research papers in many different areas – many in collaboration with others. There
is a link between any two mathematicians if they coauthored a paper. Paul Erdös is
the root of the mathematical research network, and his Erdös number is 0. Erdös’s
coauthors have Erdös number 1. People other than Erdös who have written a joint
paper with someone with Erdös number 1 but not with Erdös have Erdös number 2,
and so on.

XI.4 Centrality 249

In Figure XI.5 we can see the split of the hijackers into five levels according to
their distance from Mohammed Atta. The size of the little circle associated with
each hijacker manifests the proximity of the hijacker to Atta; the larger the cir-
cle, the shorter the geodesic (the shortest path between two vertices in the graph)
between the hijacker and Atta. There are ten hijackers who have a geodesic of size 1,
four hijackers who have a geodesic of size 2, one hijacker who has a geodesic of size 3,
one hijacker who has a geodesic of size 4, and finally two hijackers who have a geodesic
of size 5. A much better visualization of the different degree levels can be seen in
Figure XI.6. The diagram was produced by using Pajek’s drawing module and select-
ing Layers | in y direction. The various levels are coded by the distance from the nodes
with the highest degree. Connections are shown just between entities of different
levels.

XI.4 CENTRALITY

The notion of centrality enables us to identify the main and most powerful actors
within a social network. Those actors should get special attention when monitoring
the behavior of the network.

Centrality is a structural attribute of vertices in a network; it has nothing to do
with the features of the actual objects represented by the vertices of the network
(i.e., if it is a network of people, their nationality, title, or any physical feature).
When dealing with directed networks we use the term prestige. There are two types
of prestige; the one defined on outgoing arcs is called influence, whereas the one
defined on incoming arcs is called support. Because most of our networks are based
on co-occurrence of entities in the same lexical unit, we will confine our attention to
undirected networks and use the term centrality. The different measures of centrality
we will present can be adapted easily for directed networks and measure influence or
support.

Five major definitions are used for centrality: degree centrality, closeness central-
ity, betweeness centrality, eigenvector centrality, and power centrality. We discuss
these in the next several sections.

XI.4.1 Degree Centrality

If the graph is undirected, then the degree of a vertex v ∈ V is the number of other
vertices that are directly connected to it.

Definition: degree(v) = |{(v1, v2) ∈ E | v1 = v or v2 = v}|
If the graph is directed, then we can talk about in-degree or out-degree. An edge

(v1, v2) ∈ E in the directed graph is leading from vertex v1 to v2.
In-degree(v) = |{(v1, v) ∈ E}|
Out-degree(v) = |{(v, v2) ∈ E}|
If the graph represents a social network, then clearly people who have more

connections to other people can be more influential and can utilize more of the
resources of the network as a whole. Such people are often mediators and dealmakers
in exchanges among others and are able to benefit from this brokerage.

When dealing with undirected connections, people differ from one another only
in how many connections they have. In contrast, when the connections are directed,

H
a
m

z
a
 A

lg
h
a
m

d
i

A
h
m

e
d
 A

lg
h
a
m

d
i

S
a
e
e
d
 A

lg
h
a
m

d
i

A
h
m

e
d
 A

ln
a
m

i

A
h
m

e
d
 A

lh
a
z
n
a
w

i

A
b
d
u
la

z
iz

 A
lo

m
a
ri

M
o
h
a
ld

 A
ls

h
e
h
ri

F
a
y
e
z
 A

h
m

e
d

Z
ia

d
 J

a
rr

a
h
i

S
a
ta

m
 A

l
S

u
q
a
m

i

W
a
le

e
d
 M

.
A

ls
h
e
h
ri

W
a
il

A
ls

h
e
h
ri

M
a
rw

a
n
 A

l-
S

h
e
h
h
i

M
o
h
a
m

e
d
 A

tt
a

K
h
a
lid

 A
l-
M

id
h
a
r

S
a
le

m
 A

lh
a
m

z
i

M
a
je

d
 M

o
q
e
d

H
a
n
i
H

a
n
jo

u
r

N
a
w

a
q
 A

lh
a
m

z
i

F
ig

u
re

X
I.
5

.
C

o
m

p
u
ti
n
g

th
e

s
h
o
rt

e
s
t

d
is

ta
n
c
e

b
e
tw

e
e
n

A
tt

a
a
n
d

a
ll

o
th

e
r

1
8

h
ija

c
k
e
rs

.

250

XI.4 Centrality 251

Ahmed Alnami Ahmed Alhaznawi

Saeed Alghamdi

Hamza Alghamdi

Ahmed Alghamdi Mohald AlshehriHani HanjourNawaq Alhamzi

Khalid Al-Midhar Marwan Al-Sher Majed Moqed Salem Alhamzi Abdulaziz Aloma Ziad Jarrahi Satam Al Suqan Waleed M. Alshe Wail Alshehri Fayez Ahmed

Mohamed Atta

Figure XI.6. Layered display of the geodesic distance between Atta and the other hijackers.

it is important to distinguish centrality based on in-degree from centrality based on
out-degree. If a person has a high in-degree, we say that this person is prominent and
has high prestige. Many people seek direct connections to him or her, indicating that
persons’s importance. People who have high out-degree are people who are able to
interact with many others and possibly spread their ideas. Such people are said to
be influential. In Table XI.2, we can see the hijackers sorted in decreasing order of
their (undirected) degree measures. We can see that Mohamed Atta and Abdulaziz
Alomari have the highest degree.

XI.4.2 Closeness Centrality

Degree centrality measures might be criticized because they take into account only
the direct connections that an entity has rather than indirect connections to all other
entities. One entity might be directly connected to a large number of entities that
might be rather isolated from the network. Such an entity is central only in a local
neighborhood of the network.

To solve the shortcomings of the degree measure, we can utilize the closeness cen-
trality. This measure is based on the calculation of the geodesic distance between the
entity and all other entities in the network. We can either use directed or undirected
geodesic distances between the entities. In our current example, we have decided to
look at undirected connections. The sum of these geodesic distances for each entity

252 Link Analysis

Table XI.2. All Degree Measures of the Hijackers

Name Degree

Mohamed Atta 11

Abdulaziz Alomari 11

Ziad Jarrahi 9

Fayez Ahmed 8

Waleed M. Alshehri 7

Wail Alshehri 7

Satam Al Suqami 7

Salem Alhamzi 7

Marwan Al-Shehhi 7

Majed Moqed 7

Khalid Al-Midhar 6

Hani Hanjour 6

Nawaq Alhamzi 5

Ahmed Alghamdi 5

Saeed Alghamdi 3

Mohald Alshehri 3

Hamza Alghamdi 3

Ahmed Alnami 1

Ahmed Alhaznawi 1

is the “farness” of the entity from all other entities. We can convert this into a mea-
sure of closeness centrality by taking its reciprocal. We can normalize the closeness
measure by dividing it by the closeness measure of the most central entity.

Formally, let d(v1, v2) = the minimal distance between v1 and v2 – that is, the
minimal number of vertices we need to pass on the way from v1 to v2.

The closeness centrality of vertex vi is defined as Ci = |V|−1
∑

j �=i d(vi ,v j)
. This is the

reciprocal of the average geodesic distance between vi and any other vertex in the
network. In Table XI.3, we can see the hijackers sorted in decreasing order of their
closeness.

XI.4.3 Betweeness Centrality

Betweeness centrality measures the effectiveness in which a vertex connects the var-
ious parts of the network. Entities that are on many geodesic paths between other
pairs of entities are more powerful because they control the flow of information
between the pairs. That is, the more other entities depend on a certain entity to
make connections, the more power this entity has. If, however, two entities are con-
nected by more than one geodesic path and a given entity is not on all of them, it
loses some power. If we add up, for each entity, the proportion of times this entity
is “between” other entities for transmission of information, we obtain the betwee-
ness centrality of that entity. We can normalize this measure by dividing it by the
maximum possible betweeness that an entity could have had (which is the number
of possible pairs of entities for which the entity is on every geodesic between them
= (|V|−1)(|V|−2)

2
).

XI.4 Centrality 253

Table XI.3. Closeness Measures of the Hijackers

Name Closeness

Abdulaziz Alomari 0.6

Ahmed Alghamdi 0.5454545

Ziad Jarrahi 0.5294118

Fayez Ahmed 0.5294118

Mohamed Atta 0.5142857

Majed Moqed 0.5142857

Salem Alhamzi 0.5142857

Hani Hanjour 0.5

Marwan Al Shehhi 0.4615385

Satam Al Suqami 0.4615385

Waleed M. Alshehri 0.4615385

Wail Alshehri 0.4615385

Hamza Alghamdi 0.45

Khalid Al Midhar 0.4390244

Mohald Alshehri 0.4390244

Nawaq Alhamzi 0.3673469

Saeed Alghamdi 0.3396226

Ahmed Alnami 0.2571429

Ahmed Alhaznawi 0.2571429

Formally,
g j k = the number of geodetic paths that connect vj with vk;
g j k(vi) = the number of geodetic paths that connect vj with vk and pass via vi.

Bi =
∑

j<k

g j k(vi)

g j k

NBi =
2Bi

(|V| − 1)(|V| − 2)

In Table XI.4, we can see the hijackers sorted in decreasing order of their between
measures.

XI.4.4 Eigenvector Centrality

The main idea behind eigenvector centrality is that entities receiving many commu-
nications from other well-connected entities will be better and more valuable sources
of information and hence be considered central. The eigenvector centrality scores
correspond to the values of the principal eigenvector of the adjacency matrix M.

Formally, the vector v satisfies the equationλv = Mv, whereλ is the corresponding
eigenvalue and M is the adjacency matrix.

The score of each vertex is proportional to the sum of the centralities of neighbor-
ing vertices. Intuitively, vertices with high eigenvector centrality scores are connected
to many other vertices with high scores, which are, in turn, connected to many other
vertices, and this continues recursively. Clearly, the highest score will be obtained

254 Link Analysis

Table XI.4. Betweeness Measures of the Hijackers

Name Betweeness (Bi)

Hamza Alghamdi 0.3059446

Saeed Alghamdi 0.2156863

Ahmed Alghamdi 0.210084

Abdulaziz Alomari 0.1848669

Mohald Alshehri 0.1350763

Mohamed Atta 0.1224783

Ziad Jarrahi 0.0807656

Fayez Ahmed 0.0686275

Majed Moqed 0.0483901

Salem Alhamzi 0.0483901

Hani Hanjour 0.0317955

Khalid Al-Midhar 0.0184832

Nawaq Alhamzi 0

Marwan Al-Shehhi 0

Satam Al Suqami 0

Waleed M. Alshehri 0

Wail Alshehri 0

Ahmed Alnami 0

Ahmed Alhaznawi 0

by vertices that are members of large cliques or large p-cliques. In Table XI.5 we
can see that the members of the big clique (with eight members) are those that got
the highest scores. Atta and Al-Shehhi got much higher scores than all the other
hijackers mainly because the connection between them is so strong. They were also
the pilots of the planes going into WTC1 and WTC2 and are believed to have been
the leaders of the hijackers.

XI.4.5 Power Centrality

Power centrality was introduced by Bonacich. Given an adjacency matrix M, the
power centrality of vertex i (denoted ci) is given by

ci =
∑

j �=i

Mi j (α + β · c j),

where α is used to normalize the score (the normalization parameter is automatically
selected so that the sum of squares of the vertices’s centralities is equal to the number
of vertices in the network) and β is an attenuation factor that controls the effect that
the power centralities of the neighboring vertices should have on the power centrality
of the vertex.

As in the eigenvector centrality, the power centrality of each vertex is determined
by the centrality of the vertices it is connected to. By specifying positive or negative
values to β, the user can control whether a vertex’s being connected to powerful
vertices should have a positive effect on its score or a negative effect. The rationale
for specifying a positive β is that, if you are connected to powerful colleagues it
makes you more powerful. On the other hand, the rationale for a negative β is

XI.4 Centrality 255

Table XI.5. Eigenvector Centrality Scores of

the Hijackers

Name E1

Mohamed Atta 0.518

Marwan Al-Shehhi 0.489

Abdulaziz Alomari 0.296

Ziad Jarrahi 0.246

Fayez Ahmed 0.246

Satam Al Suqami 0.241

Waleed M. Alshehri 0.241

Wail Alshehri 0.241

Salem Alhamzi 0.179

Majed Moqed 0.165

Hani Hanjour 0.151

Khalid Al-Midhar 0.114

Ahmed Alghamdi 0.085

Nawaq Alhamzi 0.064

Mohald Alshehri 0.054

Hamza Alghamdi 0.015

Saeed Alghamdi 0.002

Ahmed Alnami 0

Ahmed Alhaznawi 0

that powerful colleagues have many connections and hence are not controlled by
you, whereas isolated colleagues have no other sources of information and hence are
largely controlled by you. In Table XI.6, we can see the hijackers sorted in decreasing
order of their power measure.

XI.4.6 Network Centralization

In addition to the individual vertex centralization measures, we can assign a number
between 0 and 1 that will signal the whole network’s level of centralization. The
network centralization measures are computed based on the centralization values of
the network’s vertices; hence, we will have for each type of individual centralization
measure an associated network centralization measure. A network structured like a
circle will have a network centralization value of 0 (because all vertices have the same
centralization value), whereas a network structured like a star will have a network
centralization value of 1. We now provide some of the formulas for the different
network centralization measures.

Degree

Degree∗(V) = Maxv∈VDegree(v)

NETDegree =
∑

v∈V Degree∗(V) − Degree(v)

(n − 1) ∗ (n − 2)

256 Link Analysis

Table XI.6. Power Centrality for the Hijackers Graph

Power : β = 0.99 Power : β = −0.99

Mohamed Atta 2.254 2.214

Marwan Al-Shehhi 2.121 0.969

Abdulaziz Alomari 1.296 1.494

Ziad Jarrahi 1.07 1.087

Fayez Ahmed 1.07 1.087

Satam Al Suqami 1.047 0.861

Waleed M. Alshehri 1.047 0.861

Wail Alshehri 1.047 0.861

Salem Alhamzi 0.795 1.153

Majed Moqed 0.73 1.029

Hani Hanjour 0.673 1.334

Khalid Al-Midhar 0.503 0.596

Ahmed Alghamdi 0.38 0.672

Nawaq Alhamzi 0.288 0.574

Mohald Alshehri 0.236 0.467

Hamza Alghamdi 0.07 0.566

Saeed Alghamdi 0.012 0.656

Ahmed Alnami 0.003 0.183

Ahmed Alhaznawi 0.003 0.183

Clearly, if we have a circle, all vertices have a degree of 2; hence, NETDegree = 0. If
we have a star of n nodes (one node in the middle), then that node will have a degree
of n−1, and all other nodes will have a degree of 1; hence,

NETDegree =
∑

v∈V\v∗ (n − 1) − 1

(n − 1)(n − 2)
=

(n − 1)(n − 2)

(n − 1)(n − 2)
= 1.

For the hijackers’ graph, NETDegree = 0.31

Betweenness

NB∗(V) = Maxv∈VNB(v)

NETBet =
∑

v∈V NB∗(V) − NB(v)

(n − 1)

For the hijackers’ network, NETBet = 0.24

XI.4.7 Summary Diagram

Figure XI.7 presents a summary diagram of the different centrality measures as
they are applied to the hijacker’s network. We marked by solid arrows the hijackers
who got the highest value for the various centrality measures and by dashed arrows

XI.5 Partitioning of Networks 257

Degree,

Eigenvector,

Power

Eigenvector

Power(+beta)

Degree

Degree,

Closeness

Power (−beta)

Betweenness

Betweenness

Closeness

Mohald Alshehri

Ahmed Alhaznawi

Ahmed Alnami

Fayez Ahmed

Ziad jarrahi

Marwan Al-Shehhi

Waleed M. Alshehri Wail Alshehri

Satam Al Suqami

Mohamad Atta

Majed Moqed

Hani Hanjour

Nawaq Alhamzi

Khalid Al-Alhamzi

Salem Alhamzi

Hamza Alghamdi

Saeed Alghamdi

Abdulezz Alomeri

Figure XI.7. Summary diagram of centrality measures (solid arrows point to highest value;

dashed arrows point to second largest (done using Netminer (Cyram 2004)).

the runners-up. We can see for instance that Atta has the highest value for degree
centrality, eigenvector centrality, and power centrality, whereas Alomari has the
highest value for degree centrality (tied with Atta) and closeness centrality and is
the runner-up for power centrality (with a negative beta).

On the basis of our experience the most important centrality measures are power
and eigenvector (which are typically in agreement). Closeness and, even more so,
betweeness centrality signal the people who are crucial in securing fast communica-
tion between the different parts of the network.

XI.5 PARTITIONING OF NETWORKS

Often we obtain networks that contain hundreds and even thousands of vertices. To
analyze the network effectively it is crucial to partition it into smaller subgraphs.

We present three methods below for taking a network and partitioning it into
clusters. The first method is based on core computation, the second on classic graph
algorithms for finding strong and weak components and biconnected components,
and the third on block modeling.

258 Link Analysis

Satam Al Suqami
Ziad Jarrahi

Fayez Ahmed
Waleed M. Alshehri

Wail Alshehri

Marwan Al-Shehhi

Mohamed Atta

Majed Moqed

Khalid Al-Midhar

Salem Alhamzi

Nawaq Alhamzi

Hani Hanjour

Ahmed Alghamdi

Abdulaziz Alomari

Mohald Alshehri

Hamza Alghamdi Saeed Alghamdi

3

4
1

2

Ahmed Alnami

Ahmed Alhaznawi

Figure XI.8. Core partitioning of the hijackers’ graph.

XI.5.1 Cores

Definition: Let G = (V, E) be a graph. A subgraph S = (W, E | W) induced by
the vertex set W is a k-core or a core of order k iff ∀n ∈ W : degS(n) ≥ k and S

is a maximal with respect to this property. The main core is the core of highest
order. The core number of vertex n is the highest order of a core that contains this
vertex.

Algorithm for finding the main core

Given a graph G = (V, E), delete all vertices n and edges attached to them such that
degS(n) < k and repeat until no vertices or edges can be deleted. The subgraph that
remains after the iterative deletion is a core of order k. If an empty graph results,
we know that no core of order k exists. We can perform a simple log |V| search for
the order of the main core. After the main core is discovered, we can remove these
vertices and the associated edges from the graph and search again for the next core
in the reduced graph. The process will terminate when an empty graph is reached. In
Figure XI.8, we can see the cores that were discovered in the hijacker’s graph. When
a core was discovered, it was deleted from the graph and the search for the biggest
core in the remaining graph started again.

We can see that four cores were found. The main core contains eight nodes and
is of order seven (each vertex is connected to all other seven vertices), the second
largest core has six vertices in it and an order of 3, the third core has three vertices
and an order of 1, and the fourth one has two vertices and an order of 1.

We then used the shrinking option of Pajek (Operations | Shrink Network |
Partition) to obtain a schematic view of the network based on the core partition.
Each core is reduced to the name of its first member. For instance, the first member
in the core marked 1 is Mohammed Atta, and hence the core is reduced to him. If
there is at least one edge between the vertices of any two cores, then we will have
an edge between the associated vertices in the reduced graph. The reduced graph,

XI.5 Partitioning of Networks 259

Nawaq Alhamzi

Ahmed Alghamdi

#Hamza Alghamdi

#Saeed Alghamdi

#Mohamed Atta

Figure XI.9. Shrinking the hijackers’ graphs based on the core partition.

which is based on the shrinking of the core partitioning, is shown in Figure XI.9. A
layered display of the cores is shown in Figure XI.10.

Alternatively, we can use a layered display of the network to see the different cores
and the relations between them better. Each core is shown in a different y-level. This
representation mainly enables us to focus on the intraconnections between the cores.

Fayez AhmedWail AlshehriWaleed M. AlshehriSatam Al SuqamiZiad JarrahiAbdulaziz AlomariMarwan Al-ShehhiMohamed Atta

Nawaq Alhamzi Khalid Al-Midhar Hani Hanjour Majed Moqed Salem Alhamzi Ahmed Alghamdi

Mohald AlshehriHamza Alghamdi

Saeed Alghamdi Ahmed Alnami Ahmed Alhaznawi

Figure XI.10. Layered display of the cores.

260 Link Analysis

XI.5.2 Classic Graph Analysis Algorithms

Another way of partitioning a network is to use classic graph algorithms such as weak
and strong component analysis and identification of bidirectional components.

Strong and Weak Components

Whether the network is directed or undirected is crucial to the component analysis
of the network. A subset of vertices is called a strongly connected component if there
is at least one walk from any vertex to any other vertex in the subset. A subset of
vertices is called a weakly connected component if there exists at least one chain
from any vertex to any other vertex in the subset.

A subset of vertices is called a biconnected component if there exist at least two
chains from any vertex to any other vertex in the subset, where the chains share no
common vertex.

Biconnected Components and Articulation Points

A vertex d of the network is an articulation point of the network if there exist two
additional vertices b and c so that every chain between b and c also includes d. It
follows that vertex d is an articulation point if the removal of d from the network dis-
connects it. A network is termed biconnected if, for every triple of vertices d, b, and
c, there is a chain between b and c that does not include d. This means that a bicon-
nected network remain connected even after any vertex from it is removed. There are
no articulation points in a biconnected network. Articulation points expose weak-
nesses of networks, and elimination of articulation points will cause the network to be
fragmented. The articulation points of the hijackers’ graph are shown in Figure XI.11.

XI.5.3 Equivalence between Entities

Given a network of entities, we are often interested in measuring the similarity
between the entities based on their interaction with other entities in the network. This

Saeed AlghamdiHamza Alghamdi

Ahmed Alghamdi

Mohald Alshehri

Ziad Jarrahi

Fayez Ahmed
Wail Alshehri

Marwan Al-Shehhi

Mohamed Atta

Waleed M. Alshehri

Abdulaziz Alomari

Majed Moqed

Hani Hanjour

Nawaq Alhamzi

Khalid Al-Midhar

Salem Alhamzi

Satam Al Suqami

Ahmed Alnami

Ahmed Alhaznawi

Figure XI.11. Articulation points of the hijackers’ network (the number above the arrow signals

the number of components that will result after removing the articulation point).

XI.5 Partitioning of Networks 261

section formalizes this notion of similarity between entities and provides examples
of how to find similar entities and how to use the similarity measure to cluster the
entities.

Structural Equivalence

Two entities are said to be exactly structurally equivalent if they have the same
relationships to all other entities. If A is “structurally equivalent” to B, then these
two entities are “substitutable.” Typically, we will not be able to find entities that are
exactly structurally equivalent; hence, we are interested in calculating the degree of
structural equivalence between entities. This measure of distance makes it possible
to perform hierarchical clustering of the entities in our network.

We present two formal definitions for structural equivalence. Both are based
on the connection vectors of each of the entities. The first definition is based on the
Euclidian distance between the connection vectors and other on the number of exact
matches between the elements of the vectors.

EDis(Vi , Vj) =
√

∑

k

(Mi k − Mj k)2

Match(Vi , Vj) =
∑n

k=1 eq(Mi k, Mj k)

n
, where eq(a, b) =

{

1 a = b

0 otherwise

Regular Equivalence

Two entities are said to be regularly equivalent if they have an identical profile of
connections with other entities that are also regularly equivalent. In order to establish
regular equivalence, we need to classify the entities into semantic sets such that each
set contains entities with a common role. An example would be the sets of surgeons,
nurses, and anesthesiologists. Let us assume that each surgeon is related to a set of
three nurses and one anesthesiologist. We say that two such surgeons are regularly
equivalent (and so are the nurses and the anesthesiologist) – that is, they perform
the same function in the network.

Entities that are “structurally equivalent” are also “regularly equivalent.” How-
ever, entities that are “regularly equivalent” do not have to be “structurally equiva-
lent.” It is much easier to examine if two entities are structurally equivalent because
there is a simple algorithm for finding EDis and Match. It is much harder to estab-
lish if two entities are regularly equivalent because we need to create a taxonomy
of semantic categories on top of the entities. In Figure XI.12 we can see two pairs
of people and one triplet that are structurally equivalent. In Table XI.7 we can see
the EDis computed for each pair of entities. Entities that are structurally equiva-
lent will have an EDis of 0. For instance, Waleed M. Alshehri and Wail Alshehri
are structurally equivalent, and hence their EDis is 0. Based on this table, we were
able to use a hierarchical clustering algorithm (via the UCINET software package;
see Section XI.7.2) and generate the dendogram shown in Figure XI.13. People who
are very close in the dendogram are similar structurally (i.e, they have low EDis),
whereas people who are far away in the dendogram are different structurally.

262 Link Analysis

Nawaq Alhamzi

Hani HanjourKhalid Al-Midhar

Salem Alhamzi

Majed Moqed

Ahmed Alghamdi

Abdulaziz Alomari
Mohamed Atta

Satam Al Suqami
Ziad Jarrahi

Fayez Ahmed

Mohald Alshehri

Hamza Alghamdi Saeed Alghamdi

Ahmed Alnami

Ahmed Alhaznawi

Wail Alshehri

Marwan Al-Shehhi

Waleed M. Alshehri

2
3

Figure XI.12. Structural equivalences in the hijackers’ graph.

XI.5.4 Block Modeling

Block modeling is an analysis technique for finding clusters of vertices that behave
in a similar way. Block modeling is based on the notions of structural and regular
equivalence between vertices and as such is far more sensitive to the interconnections
between vertices than the standard clustering techniques introduced before. Block
modeling was introduced by Borgatti and Everett (1993). The technique is fairly
general and can use a variety of equivalence relations between the vertices. The

3

4

5

6

7

8

15

14

16

10

17

1

2

9

12

13

11

18

19

8.8935.3144.3503.5343.0372.8282.7022.4492.3872.2072.0001.4140.000
Mohamed Atta

Marwan Al-Shehhi

Hani Hanjour

Majed Moqed

Salem Alhamzi

Abdulaziz Alomari

Waleed M. Alshehri

Satam Al Suqami

Wail Alshehri

Ziad Jarrahi

Fayez Ahmed

Nawaq Alhamzi

Khalid Al-Midhar

Ahmed Alghamdi

Mohald Alshehri

Saeed Alghamdi

Hamza Alghamdi

Ahmed Alnami

Ahmed Alhaznawi

Figure XI.13. Clustering-based structural equivalence between the hijackers (we can see that

{15,14,16} as well as {10,17} and {18,19} are structural equivalence classes).

T
a
b
le

X
I.
7
.

E
u
c
li
d
ia

n
D

is
ta

n
c
e

(E
d
is

)
b
e
tw

e
e
n

E
a
c
h

P
a
ir

o
f

E
n
ti
ti
e
s

1
2

3
4

5
6

7
8

9
1

0
1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
N

a
w

a
q

A
lh

a
m

zi
0
.0

1
.4

9
.3

9
.6

3
.7

2
.8

3
.7

4
.2

2
.4

4
.9

3
.7

3
.7

3
.7

4
.7

4
.7

4
.7

4
.9

3
.2

3
.2

2
K

h
a
li
d

A
l-M

id
h
a
r

1
.4

0
.0

9
.4

8
.4

4
.0

2
.4

3
.5

4
.0

2
.8

4
.7

4
.0

4
.0

4
.0

4
.5

4
.5

4
.5

4
.7

3
.5

3
.5

3
M

o
h
a
m

e
d

A
tt

a
9
.3

9
.4

0
.0

2
.4

9
.8

9
.7

1
0
.2

7
.5

9
.4

7
.6

9
.8

9
.4

9
.8

7
.5

7
.5

7
.5

7
.6

9
.6

9
.6

4
M

a
rw

a
n

A
l-S

h
e
h
h
i

9
.6

8
.4

2
.4

0
.0

1
0
.7

8
.7

9
.3

7
.6

9
.5

7
.2

9
.5

9
.1

9
.5

7
.1

7
.1

7
.1

7
.2

9
.3

9
.3

5
H

a
n
i
H

a
n
jo

u
r

3
.7

4
.0

9
.8

1
0
.7

0
.0

3
.2

2
.0

5
.3

4
.0

6
.8

6
.0

6
.3

6
.3

6
.6

6
.6

6
.6

6
.8

6
.0

6
.0

6
M

a
je

d
M

o
q
e
d

2
.8

2
.4

9
.7

8
.7

3
.2

0
.0

1
.4

4
.2

3
.2

5
.3

4
.7

5
.1

5
.1

5
.1

5
.1

5
.1

5
.3

4
.7

4
.7

7
S

a
le

m
A
lh

a
m

zi
3
.7

3
.5

1
0
.2

9
.3

2
.0

1
.4

0
.0

4
.9

4
.0

6
.2

5
.7

6
.0

6
.0

6
.0

6
.0

6
.0

6
.2

5
.7

5
.7

8
A
b
d
u
la

zi
z

A
lo

m
a
ri

4
.2

4
.0

7
.5

7
.6

5
.3

4
.2

4
.9

0
.0

4
.0

3
.2

4
.9

4
.5

5
.3

2
.8

2
.8

2
.8

3
.2

4
.9

4
.9

9
A
h
m

e
d

A
lg

h
a
m

d
i

2
.4

2
.8

9
.4

9
.5

4
.0

3
.2

4
.0

4
.0

0
.0

4
.7

3
.5

3
.5

3
.5

4
.5

4
.5

4
.5

4
.7

3
.5

3
.5

1
0

Z
ia

d
Ja

rr
a
h
i

4
.9

4
.7

7
.6

7
.2

6
.8

5
.3

6
.2

3
.2

4
.7

0
.0

4
.2

3
.7

4
.7

1
.4

1
.4

1
.4

0
.0

4
.2

4
.2

1
1

H
a
m

za
A
lg

h
a
m

d
i

3
.7

4
.0

9
.8

9
.5

6
.0

4
.7

5
.7

4
.9

3
.5

4
.2

0
.0

2
.8

2
.8

4
.5

4
.5

4
.5

4
.2

2
.0

2
.0

1
2

M
o
h
a
ld

A
ls

h
e
h
ri

3
.7

4
.0

9
.4

9
.1

6
.3

5
.1

6
.0

4
.5

3
.5

3
.7

2
.8

0
.0

2
.8

3
.5

3
.5

3
.5

3
.7

2
.8

2
.8

1
3

S
a
e
e
d

A
lg

h
a
m

d
i

3
.7

4
.0

9
.8

9
.5

6
.3

5
.1

6
.0

5
.3

3
.5

4
.7

2
.8

2
.8

0
.0

4
.5

4
.5

4
.5

4
.7

2
.0

2
.0

1
4

S
a
ta

m
A
l
S

u
q
a
m

i
4
.7

4
.5

7
.5

7
.1

6
.6

5
.1

6
.0

2
.8

4
.5

1
.4

4
.5

3
.5

4
.5

0
.0

0
.0

0
.0

1
.4

4
.0

4
.0

1
5

W
a
le

e
d

M
.
A
ls

h
e
h
ri

4
.7

4
.5

7
.5

7
.1

6
.6

5
.1

6
.0

2
.8

4
.5

1
.4

4
.5

3
.5

4
.5

0
.0

0
.0

0
.0

1
.4

4
.0

4
.0

1
6

W
a
il

A
ls

h
e
h
ri

4
.7

4
.5

7
.5

7
.1

6
.6

5
.1

6
.0

2
.8

4
.5

1
.4

4
.5

3
.5

4
.5

0
.0

0
.0

0
.0

1
.4

4
.0

4
.0

1
7

Fa
ye

z
A
h
m

e
d

4
.9

4
.7

7
.6

7
.2

6
.8

5
.3

6
.2

3
.2

4
.7

0
.0

4
.2

3
.7

4
.7

1
.4

1
.4

1
.4

0
.0

4
.2

4
.2

1
8

A
h
m

e
d

A
ln

a
m

i
3
.2

3
.5

9
.6

9
.3

6
.0

4
.7

5
.7

4
.9

3
.5

4
.2

2
.0

2
.8

2
.0

4
.0

4
.0

4
.0

4
.2

0
.0

0
.0

1
9

A
h
m

e
d

A
lh

a
zn

a
w

i
3
.2

3
.5

9
.6

9
.3

6
.0

4
.7

5
.7

4
.9

3
.5

4
.2

2
.0

2
.8

2
.0

4
.0

4
.0

4
.0

4
.2

0
.0

0
.0

263

264 Link Analysis

general block modeling problem is composed of two subproblems:

1. Performing clustering of the vertices; each cluster serves as a block.
2. Calculating the links (and their associated value) between the blocks.

Formal Notations

Given two clusters C1 and C2, L(C1, C2) is the set of edges that connect vertices in
C1 to vertices in C2. Formally, L(C1, C2) = {(x, y)|(x, y) ∈ E, x ∈ C1, y ∈ C2}.

Because there are many ways to partition our vertices into clusters, we will intro-
duce an optimization criterion that will help pick the optimal clustering scheme.

Before defining the problem formally, we will introduce a few predicates on the
connections between two clusters. Visualizations of some of these predicates are
shown in Figure XI.14

Predicate name Formula and Acronym Explanation

Null Null (C1, C2) ≡ ∀x ∈ C1, ∀y ∈
C2, (x, y) /∈ E

No connection at all between

the clusters

Com (Complete) Com(C1, C2) ≡ ∀x ∈ C1, ∀y(y �= x) ∈
C2, (x, y) ∈ E

Full connection between the

clusters

Row Regular Rreg(C1, C2) ≡ ∀x ∈ C1, ∃y ∈
C2, (x, y) ∈ E

Each vertex in the first cluster

is connected to at least one

vertex in the second cluster.

Column Regular Creg(C1, C2) ≡ ∀y ∈ C2, ∃x ∈
C1, (x, y) ∈ E

Each vertex in the second

cluster is connected to at

least one vertex in the first

cluster.

Regular Reg(C1, C2) ≡
Rreg(C1, C2) ∧ Creg(C1, C2)

All vertices in both clusters

must have at least one vertex

in the other cluster to which

they are connected.

Row Dominant Rdom(C1, C2) ≡ ∃x ∈ C1, ∀y(y �= x) ∈
C2, (x, y) ∈ E

There is at least one vertex in

the first cluster that is

connected to all the vertices

in the second cluster.

Column Dominant Cdom(C1, C2) ≡ ∃y ∈ C2, ∀x (x �= y) ∈
C1, (x, y) ∈ E

There is at least one vertex in

the second cluster that is

connected to all the vertices

in the first cluster.

Row Functional Rfun(C1, C2) ≡ ∀y ∈ C2, ∃ single x ∈
C1, (x, y) ∈ E

All vertices in the second

cluster are connected to

exactly one vertex in the first

cluster.

Column

Functional

Cfun(C1, C2) ≡ ∀x ∈ C1, ∃ single y ∈
C2, (x, y) ∈ E

All vertices in the first cluster

are connected to exactly one

vertex in the second cluster.

Formally, a block model of graph G = (V, E) is a tuple M = (U, K, T, Q, π , α), where

� U is the set of clusters that we get by partitioning V.
� K is the set of connections between elements of U, K ⊆ U × U.

XI.5 Partitioning of Networks 265

RegularColumn Dominant Null Complete Row Regular Column Regular

Figure XI.14. Visualization of some of the predicates on the connections between clusters.

� T is a set of predicates that describe the connections between the clusters.
� π is a mapping function between the cluster’s connections and the predicates −

π : K → T\{Null}.
� Q is a set of averaging rules enabling us to compute the strength of the connection

between any two clusters.
� α is a mapping function from the connection between the clusters to the averaging

rules – α : K → Q

Averaging rules (Q)

Listed below are a few options for giving a value to a connection between two clusters
C1 and C2 based on the weights assigned to edges in L(C1,C2).

Ave(C1, C2) =
∑

e∈L(C1,C2) w(e)

|L(C1, C2)|
Max(C1, C2) = maxe∈L(C1,C2) w(e)

Med(C1, C2) = mediane∈L(C1,C2) w(e)

Ave − row(C1, C2) =
∑

e∈L(C1,C2) w(e)

|C1|

Ave − col(C1, C2) =
∑

e∈L(C1,C2) w(e)

|C2|

Finding the Best Block Model

We can define a quality measure for any clustering and on the basis of that measure
seek the clustering that will yield the ultimate block model of the network. First, we
compute the quality of any clustering of the vertices.

We start with a fundamental problem. Given two clusters C1 and C2 and a predi-
cate t ∈ T, how can we find the deviation of L(C1, C2) that satisfies t? This deviation
will be denoted by δ(C1, C2, t). The approach here is to measure the number of 1’s
missing in the matrix C1 × C2 from a perfect matrix that satisfies t. Clearly, δ(C1, C2,
t) = 0 iff t(C1, C2) is true.

For example, if the matrix that represents L(C1, C2) is

1 0 1 1
0 1 1 0
1 1 1 1
1 1 0 1,

then, because there are four 0’s in the matrix, δ(C1, C2, Com) = 4.

266 Link Analysis

If we assign some weight to each predicate t, we can introduce the notion of
error with respect to two clusters and a predicate ε(C1, C2, t) = w(t) · δ(C1, C2, t).
This notion can now be extended to the error over a set of predicates. We seek the
minimal error from all individual errors on the members of the predicate set. This
will also determine which predicate should selected to be the value of π(C1, C2).

ε(C1, C2, T) = min
t∈T

ε(C1, C2, t)

π(C1, C2, T) = arg min
t∈T

ε(C1, C2, t)

Now that the error for a pair of clusters has been defined, we can define the total
error for the complete clustering. Basically, it will be the sum of the errors on all pairs
of clusters as expressed by

P(U, T) =
∑

C1∈U,C2∈U

ε(C1,C2, T).

If, for a given U, P(U, T) = 0, we can say that U is a perfect block model of the
graph G = (V, E) with respect to T. In most cases, it will not be possible to find a
perfect block model; hence, we will try to find the clustering U ′ that minimizes the
total error over all possible clustering of V.

If T = {Null, Com} we are seeking a structural block model (Lorrain and White
1971), and if T = {Null, Reg} we are seeking a regular block model (White and Reitz
1983).

Block Modeling of the Hijacker Network

We present two experiments with the hijacker network. In both experiments we seek
a structural block model. The objective of the first experiment is to obtain four blocks
(mainly because there were four flights). Using Pajek to do the modeling, we obtain
the following connection matrix between the blocks (shown in Figure XI.15):

Final predicate matrix for the block modeling of Figure XI.15

1 2 3 4

1 Com – – –

2 null com – –

3 Com com null –

4 null null null Null

We can see that only four almost complete connections were identified (after
removing the symmetric entries). Two of them are the clique of cluster 2 and the
almost clique of cluster 1. In addition, we have almost a complete connection between
clusters 1 and 3 and between clusters 2 and 3. All other connections between clus-
ters are closer to satisfying the null predicate than they are to satisfying the com
predicate.

Z
ia

d
 J

a
rr

a
h

i
S

a
ta

m
 A

l
S

u
q

a
m

i

W
a

il
A

ls
h

e
h

ri

M
a

rw
a

n
 A

l-
S

h
e

h
h

i

W
a

le
e

d
 M

.
A

ls
h

e
h

ri
F

a
y
e

z
 A

h
m

e
d

A
b

d
u

la
z
iz

 A
lo

m
a

ri
M

o
h

a
m

e
d

 A
tt

a

K
h

a
lid

 A
l-
M

id
h

a
r

S
a

le
m

 A
lh

a
m

z
i

M
a

je
d

 M
o

q
e

d

H
a

n
i
H

a
n

jo
u

r

N
a
w

a
q

 A
lh

a
m

z
i

A
h

m
e

d
 A

lg
h

a
m

d
i

H
a

m
z
a

 A
lg

h
a

m
d

i
S

a
e

e
d

 A
lg

h
a

m
d

i

A
h

m
e

d
 A

ln
a

m
i

A
h

m
e

d
 A

lh
a

z
n

a
w

i

2

1

3

M
o

h
a

ld
 A

ls
h

e
h

ri

4

F
ig

u
re

X
I.
1

5
.

B
lo

c
k

m
o
d
e
li
n
g

w
it
h

fo
u
r

b
lo

c
k
s
.

267

268 Link Analysis

Abdulaziz Alomari
3

#Nawaq Alhamzi
1

#Hamza Alghamdi
4

Mohamed Atta
2

Figure XI.16. Shrinking the network based on the 4 blocks of 15.

The final error matrix is shown below; we can see that cluster 2 is a complete clique
because its error is 0, whereas we can see that the connection between clusters 3 and 1
is not complete because three connections are missing – namely, between Abdulaziz
Alomari and any of {Khalid Al-Midhar, Majed Moqed, and Nawaq Alhamzi}. The
total error is 16. In order to see a schematic view of the network, we shrank the
clusters into single nodes. If there was at least one connection between the clusters,
we will see a line between the cluster’s representatives. The name selected for each
cluster is the name of the first member of the cluster (alphabetically based on last
name, first name). The shrunk network is shown in Figure XI.16.

Final error matrix for the block modeling of Figure XI.16

1 2 3 4

1 4 – – –

2 3 0 – –

3 2 0 0 –

4 1 2 0 4

The objective of the second experiment is to see how the clustering and associated
error cost changes when we set a higher number of target clusters. We run the block
modeling of Pajek again specifying that we want to obtain six blocks or clusters. In
this case the total error dropped to 9. The six blocks are shown in Figure XI.14 and
then we show the predicate matrix of the block modeling and the final error matrix.
We can see that five of the six blocks are close to a complete block (clique), whereas
there are only three connections between the blocks.

Z
ia

d
 J

a
rr

a
h
i

S
a
ta

m
 A

l
S

u
q
a
m

i

W
a
il

A
ls

h
e
h
ri

M
a
rw

a
n
 A

l-
S

h
e
h
h
i W

a
le

e
d
 M

.
A

ls
h
e
h
ri

F
a
y
e
z
 A

h
m

e
d

A
b
d
u
la

z
iz

 A
lo

m
a
ri

M
o
h
a
m

e
d
 A

tt
a

K
h
a
lid

 A
l-
M

id
h
a
r

S
a
le

m
 A

lh
a
m

z
i

M
a
je

d
 M

o
q
e
d

H
a
n
i
H

a
n
jo

u
r

N
a
w

a
q
 A

lh
a
m

z
i

A
h
m

e
d
 A

lg
h
a
m

d
i

H
a
m

z
a
 A

lg
h
a
m

d
i

S
a
e
e
d
 A

lg
h
a
m

d
i

A
h
m

e
d
 A

ln
a
m

i

A
h
m

e
d
 A

lh
a
z
n
a
w

i

2

4

6

5

1

3

M
o
h
a
ld

 A
ls

h
e
h
ri

F
ig

u
re

X
I.
1

7
.

B
lo

c
k

m
o
d
e
li
n
g

w
it
h

s
ix

b
lo

c
k
s
.

269

270 Link Analysis

Here are the final predicate matrix and error matrix for the block modeling of
Figure XI.17

1 2 3 4 5 6

1 com – – – – –

2 null Null – – – –

3 null Null com – – –

4 com Com Null com – –

5 com Null Null null Com –

6 null Null Null null Null Com

1 2 3 4 5 6

1 0 – – – – –

2 0 0 – – – –

3 1 0 1 – – –

4 0 0 0 0 – –

5 2 0 1 0 0 –

6 0 1 1 2 0 0

XI.6 PATTERN MATCHING IN NETWORKS

Often we have a pattern expressed as a small graph P and we want to see if it is possible
to find a subgraph of G that will match P. This problem may arise, for instance, when
we want to see if an instance of a given scenario can be found in a large network. The
scenario would be expressed as a small graph containing a small number of vertices
with specific relations that connect them. We then want to see if instances of the
scenario can be found within our network. An example of such a pattern is shown
in Figure XI.18. We have specified a pattern of one person who is connected only

to three other people who have no connections between themselves. We can find
three subgraphs within the hijackers’ graph that contain a vertex connected to only
three other vertices (marked 1, 2, and 3 in the figure); however, only 1 and 2 fully
match the pattern. Subgraph 3 does not match the pattern because Fayez Ahmed
and Ziad Jarrahi are connected. The naı̈ve algorithm for finding exact matches of the
pattern is based on simple backtracking – that is, if a mismatch is found the algorithm
backtracks to the most recent junction in the graph visited before the failure. We can
also search for approximate matches using techniques such as edit distances to find
subgraphs that are similar to the pattern at hand. One of the most common patterns
to be searched in a graph is some form of a directed graph that involves three vertices
and some arcs connecting the vertices. This form of pattern is called a triad, and there
are 16 different types of triads. One of them is the empty triad, in which there are no
arcs at all, and another one is the full triad in which six arcs connect every possible
pair of vertices in the triad.

XI.7 Software Packages for Link Analysis 271

Hamza Alghamdi

Mohald Alshehri

Ahmed Alghamdi

Abdulaziz Alomari

Fayez Ahmed

Ziad Jarrahi
Satam Al Suqami

Wail Alshehri

Waleed M. Alshehri

Marwan Al-Shehhi

Mohamed Atta

Khalid Al-Midhar

Nawaq Alhamzi

Salem Alhamzi

Hani Hanjour

Majed Moqed

Saeed Alghamdi

Ahmed Alhaznawi

Ahmed Alnami

2 1

3

Pattern

Figure XI.18. Pattern matching in the hijackers’ graph.

XI.7 SOFTWARE PACKAGES FOR LINK ANALYSIS

There are several packages for performing link analysis in networks. Some are fairly
expensive and hence are probably out of reach for the causal user. We describe here
three packages that are either totally free or relatively inexpensive.

XI.7.1 Pajek

Pajek is a freeware developed by the University of Ljubljana that can handle net-
works containing hundreds of thousands of vertices. Pajek expects to get the input
networks in a proprietary format, which includes the list of vertices and then lists of
arcs (directed) and edges (undirected) between the vertices. There are programs that
enable converting a simple set of binary connections to the Pajek (.net) format. Pajek
supports a very large number of operations on networks, including centrality com-
putations, path finding, component analysis, clustering, block modeling, and many
other operations. In addition it includes a built-in drawing module that incorporates
most the layout algorithms described in this chapter.

Pajek can be downloaded from
<http://vlado.fmf.uni-lj.si/pub/networks/pajek/>.
The converters can be downloaded from

<http://vlado.fmf.uni-lj.si/pub/networks/pajek/howto/text2pajek.htm> and
<http://vlado.fmf.uni-lj.si/pub/networks/pajek/howto/excel2Pajek.htm>.

XI.7.2 UCINET

UCINET is a fairly robust network analysis package. It is not free, but even for
nonacademics it costs less than 300 dollars. It covers all the operations described
in this chapter, including centrality measures (with a larger variety of options than

272 Link Analysis

Pajek), clustering, path finding, and component analysis. UCINET can export and
import Pajek files. Netdraw is the visualization package of UCINET.

UCINET and Netdraw can be downloaded from <http://www.analytictech.
com/download products.htm>.

XI.7.3 NetMiner

NetMiner is the most comprehensive package of the three, but it is also the most
expensive. The professional version costs a little less than 1,000 dollars for commercial
use. The package offers all the operations included in UCINET and Pajek and is fairly
intuitive to use.

NetMiner can be downloaded from <http://www.netminer.com/NetMiner>.

XI.8 CITATIONS AND NOTES

Section XI.1

For a great introduction to graph algorithms, please refer to Aho, Hopcroft, and
Ullman (1983). For in-depth coverage of the area of social network analysis, see
Wasserman and Faust (1994) and Scott (2000).

Section XI.2

Force-based graph drawing algorithms are described in Kamada and Kawai (1989)
and Fruchterman and Reingold (1991). Algorithms for drawing large graphs are
addressed in Davidson and Harel (1996), Harel and Koren (2000), and Hadany and
Harel (2001).

Section XI.4

The degree centrality was introduced in Freeman (1979). The betweenness central-
ity measure is due to Freeman (1977, 1979). The closeness centrality measure was
introduced in Sabidussi (1966). The power centrality is due to Bonacich (1987). The
eigenvector centrality originates from Bonacich (1972). Good descriptions of basic
graph algorithms can be found in Aho et al. (1983). Cores have been introduced in
Seidman (1983).

Section XI.5

The notions of structural equivalence and regular equivalence were introduced in
Lorrain and White (1971) and further expanded in Batagalj, Doreian, and Ferligoi
(1992) and Borgatti and Everett (1993). Block modeling was introduced in Borgatti
and Everett (1992) and Hummon and Carley (1993). The implementation of block
modeling in Pajek is described in Batagelj (1997) and De Nooy, Mrvar, and Batageli
(2004).

Section XI.6

The notion of edit distance between graphs as vehicles for finding patterns in graphs
is described in Zhang, Wang, and Shasha (1995). Finding approximate matches in
undirected graphs is discussed in Wang et al. (2002).

XII

Text Mining Applications

Many text mining systems introduced in the late 1990s were developed by com-
puter scientists as part of academic “pure research” projects aimed at exploring the
capabilities and performance of the various technical components making up these
systems. Most current text mining systems, however – whether developed by aca-
demic researchers, commercial software developers, or in-house corporate program-
mers – are built to focus on specialized applications that answer questions peculiar
to a given problem space or industry need. Obviously, such specialized text min-
ing systems are especially well suited to solving problems in academic or commer-
cial activities in which large volumes of textual data must be analyzed in making
decisions.

Three areas of analytical inquiry have proven particularly fertile ground for text
mining applications. In various areas of corporate finance, bankers, analysts, and con-
sultants have begun leveraging text mining capabilities to sift through vast amounts
of textual data with the aims of creating usable forms of business intelligence, noting
trends, identifying correlations, and researching references to specific transactions,
corporate entities, or persons. In patent research, specialists across industry verticals
at some of the world’s largest companies and professional services firms apply text
mining approaches to investigating patent development strategies and finding ways
to exploit existing corporate patent assets better. In life sciences, researchers are
exploring enormous collections of biomedical research reports to identify complex
patterns of interactivities between proteins.

This chapter discusses prototypical text mining solutions adapted for use in each
of these three problem spaces. Corporate intelligence and protein interaction analysis
applications are useful as examples of software platforms widely applicable to various
problems within very specific industry verticals. On the other hand, a patent research
application is an example of a single, narrowly focused text mining application that
can be used by specialists in corporations across a wide array of different indus-
try verticals such as manufacturing, biotechnology, semiconductors, pharmaceuti-
cals, materials sciences, chemicals, and other industries as well as patent profession-
als in law firms, consultancies, engineering companies, and even some government
agencies.

273

274 Text Mining Applications

The discussions of applications in this chapter intentionally emphasize those ele-
ments of a text mining system that have the greatest impact on user activities, although
some broader architectural and functional points will at least be peripherally consid-
ered. This emphasis is chosen partly because many text mining applications, by their
very nature, build on generic text mining components (e.g., preprocessing routines,
search algorithms) and create application specificity by means of customizing search
refinement and user-interface elements in ways that are more oriented toward spe-
cialized user activities with particular problem space emphases. This approach also
serves to permit discussion of how some example text mining applications tend to
“look and feel” in the real world to users.

This chapter first discusses some general considerations before exploring in detail
a business intelligence application aimed at addressing corporate finance questions.
Discovery and exploration of biological pathways information and patent search are
more briefly treated.

XII.1 GENERAL CONSIDERATIONS

The three text mining applications examined in this chapter exhibit a fair amount
of commonality in terms of basic architecture and functionality – especially with
respect to the preprocessing operations and core text mining query capabilities on
which they depend. However, the systems differ markedly in their implementations
of background knowledge, their preset queries, and their visualization functionality
as well as specifics of the content they address.

XII.1.1 Background Knowledge

Background knowledge, preset queries, and visualization capabilities are the areas
in which custom text mining applications are most commonly oriented toward the
particularities of a specific problem space. A discussion of general considerations
germane to these three areas is useful in considering how text mining applications
are crafted – especially when they are crafted from – or “on top of” – components
derived from more generic text mining systems.

XII.1.2 Generalized Background Knowledge versus Specialized

Background Knowledge

As has already been discussed in Chapter II, background knowledge can play many
different useful roles in the architecture of text mining systems. However, beyond the
question of how background knowledge is architecturally integrated into a system,
questions of what constitutes the content of the background knowledge most often
relate to the nature of that system’s application.

Indeed, many text mining applications rely on both generalized and specialized
background knowledge. As the name implies, generalized background knowledge
derives from general-information source materials that are broadly useful within a
single language. Generalized background knowledge tends to involve background
knowledge from very broadly applicable knowledge domains.

Generalized background knowledge frequently comes in the form of taxonomies,
lexicons, and whole ontologies derived from widely useful knowledge sources. Such

XII.1 General Considerations 275

sources can be as formalized as the WordNet ontology or as informal as simpler
taxonomies or lexicons based on general-use knowledge sources such as commer-
cial dictionaries, encyclopedias, fact books, or thesauri. The rise of various aids to
ontology creation and translation, including the DARPA Agent Markup Language
(DAML) and Ontology Web Language (OWL), has increased the availability and
number of such generalized background knowledge sources.

Specialized background knowledge originates from knowledge sources that relate
more specifically to a particular problem area or sphere of activity. Such knowledge
need not come from overly complex ontological source materials.

For instance, many text mining applications aimed at solving problems in the
life sciences make use of partial or whole listings of terms and term relationships
from the National Library of Medicine’s controlled vocabulary, MeSH, to create tax-
onomies or refinement constraints useful and consistent with document collections
populated by MEDLINE/PubMed documents. However, text mining applications
can also incorporate more comprehensive background knowledge by integrating
elements of various public domain or commercial formal ontologies; examples of
such sources include the GO Consortium’s ontologies and ontologies developed by
companies such as Reed Elsevier or BioWisdom.

Even the most general-purpose text mining applications can usually benefit from
generalized background knowledge, but text mining applications aimed at niche
activities in particular benefit from the inclusion of specialized background knowl-
edge. Text mining applications may implement both types of background knowl-
edge or may meet application needs modestly with information from only one type
of background knowledge source. Some text mining applications implement spe-
cialized background knowledge from diverse multiple domains. For instance, a text
mining application aimed at investigating patents in the automotive industry might
benefit from specialized background knowledge related to patent-specific activities
as well as topics in the automotive industry. Figure XII.1 illustrates how a taxonomy
of corporate information can help provide context and structure to the browsing of
distributions. Figure XII.2 shows how an interactive visualization graph can be made
more relevant to an industry specialist by leverage background knowledge in the
form of a controlled vocabulary.

Designers of text mining systems need to carefully weigh the real benefits of
including various types of background in their applications. Including too much back-
ground knowledge can have negative impacts on system performance, maintenance,
and usability. Using multiple sources of background knowledge in any text mining
application can increase the likelihood of introducing inconsistencies in terms of
how data are categorized or defined and, as a consequence, increase the mainte-
nance work required to make the background knowledge consistent. Also, larger
amounts of background knowledge – even if internally consistent – can make using
a text mining application more cumbersome for the user.

For instance, an application oriented toward exploring a collection of proteomics
research documents might have available a listing of the chemical terms pertinent to
proteomics as elements of a query or refinement constraint. If, However, one were
to include a comprehensive, controlled vocabulary of terms useful across all of the
various academic disciplines concerned with chemical compounds in this proteomics-
oriented application’s background knowledgebase, users might be forced to navigate
much larger hierarchical trees of less relevant concepts when choosing entities for

276 Text Mining Applications

Figure XII.1. A distribution browser that makes use of a taxonomy based on specialized

background knowledge. (From Feldman, Fresko, Hirsh, et al. 1998.)

queries. Similarly, these users might encounter endlessly scrolling pull-down boxes
when attempting to create refinement conditions. Both of these circumstances would
limit the intuitiveness and speed of knowledge discovery activities for users interested
only in topics pertinent to proteomics research.

Finally, inclusion of larger specialized background knowledge data, in particular,
can lead to much more labor-intensive and difficult data pruning requirements over
time. Complex background knowledge maintenance requirements may also intro-
duce additional overhead in terms of application GUI screens devoted to optimizing
maintenance activities. As a result, there is significant incentive for designers to adopt
a “best overall bang for the buck” approach to employing background knowledge in
their applications.

XII.1.3 Leveraging Preset Queries and Constraints in Generalized

Browsing Interfaces

In addition to leveraging the power of specialized background knowledge, a text
mining system can gain a great deal of de facto domain customization by offering
users lists of prespecified queries and search refinement constraints meaningful to
the problem space they are interested in investigating. With respect to queries, preset
or “canned” query lists commonly make use of two simple approaches to providing
helpful queries to speed along knowledge discovery in a given application domain.

C
D

4
4
 a

n
ti
g
e
n

P
ro

te
in

 k
in

a
s
e
.
c
a
m

p
 -

 d
e
p
e
n
d
e
n
t,
 r

e
g
u
la

to
ry

m
in

e
ra

lo
c
o
rt

ic
 a

c
id

 r
e
c
e
p
to

r
(a

ld
o
s
te

ro
n
e
 r

e
c
e
p
t.
..

tu
m

o
r

p
ro

te
in

 p
5
3

n
o
ve

l
p
ro

te
in

P
a
rv

a
lb

u
rm

in

in
s
u
lin

a
n
g
e
lm

a
n
 s

y
n
d
ro

m
e
 c

h
ro

m
o
s
o
m

e
 r

e
g
io

n

n
u
ts

,
c
.
c
o
b
,
b
o
rn

d
o
g
 o

f,
 2

p
o
s
te

re
io

ti
c
 r

e
g
re

s
s
io

n
 i
n
c
re

a
s
e
d
 2

ju
n
c
ti
o
n
 p

la
ko

g
lo

b
in

T
u
m

e
r

re
je

c
ti
o
n
 a

n
ti
g
e
n
 (

g
p
9
6
)

p
s
c
u
d
e
g
e
n
e
 2

v
 -

 m
y
c
 a

v
ia

n
 m

y
c
l-
y
te

rm
a
to

s
is

 v
ir
a
l
o
n
ro

g
e
n
e
 h

..
.

c
re

g

p
lg

b
re

a
s
t
c
a
n
c
e
r

1
,
e
a
rl

y
 c

o
n
s
e
t

b
re

a
s
t
c
a
n
c
e
r

2
,
e
a
rl

y
 c

o
n
s
e
t

F
U

S
2

d
ic

k
ko

p
f
(s

c
e
n
o
p
u
s
 l
a
e
v
is

)
h
o
m

o
lo

g
 1

H
E

p

G
2

tr
a
n
s
c
ri

p
ti
o
n
 f
a
c
to

r

c
a
th

e
p
s
in

 d
(l
y
s
o
s
c
m

a
l
a
s
p
a
rt

y
l
p
ro

te
a
s
e
)

a
s
tr

o
g
e
n
 -

 i
n
c
h
c
ib

le
 p

ro
te

in
 p

s
2

p
e
a
n
u
t
-

lik
e
 2

P
ro

la
c
ti
n

s
tr

e
s
s
 -

 a
s
s
o
c
ia

te
d
 e

n
o
p
la

s
ti
c
 r

e
ti
c
u
lu

m
 p

ro
te

..
.

re
d
 -

 B

n
u
d
ix

 (
n
u
c
le

o
s
id

e
 d

ir
p
h
o
s
p
h
e
re

 l
in

ke
d
 m

o
ie

ty
 x

..
.

F
ig

u
re

X
II
.2

.
S

p
ri
n
g

g
ra

p
h

o
f

c
o
n
c
e
p
ts

(i
n
fo

rm
e
d

b
y

th
e

M
e
S

H
-c

o
n
tr

o
ll
e
d

vo
c
a
b
u
la

ry
).

(F
ro

m
Fe

ld
m

a
n
,
Fr

e
s
k
o
,

H
ir
s
h
,

e
t

a
l.

1
9
9
8
.)

277

278 Text Mining Applications

Figure XII.3. A constraint filter interface for exploring association rules that leverages corpo-

rate M&A background knowledge.

First, the types of queries typical to a given domain can be made available in a cus-
tom GUI. For instance, if it is frequently true that knowledge workers in proteomics
are looking for associations between proteins, a text mining application aimed at pro-
teomics researchers could use an association-oriented query construction GUI as the
default query interface. This query construction interface can be supplemented to
enable rapid creation of association rule-type queries with a pick list of prespecified
queries to allow quick interrogation of the problem space.

Second, text mining applications often make use of such “canned query” pick
lists to help create templates with which to populate new queries similar to those
common for the domain. Query templates can be enhanced with pull-downs to help
support filling in various entities and parameters in the query to speed along query
construction.

Often, grouping and labeling of preset queries can greatly improve the ease of
query construction and execution. Compared with generic query construction inter-
faces like those illustrated in Section II.5, which provide great flexibility but force
a user to think through each choice of constraint parameters and query variables
(such as entities or events), well-organized and identified picklists of queries appro-
priate for a problem space trade flexibility for speed and ease of use during query
construction.

With regard to query constraints, specialized background knowledge can be used
not only to help create a consistent, domain-specific nomenclature for concepts found
among documents in a document collection and useful taxonomies in which to place
concepts but also to facilitate the use of postquery refinement constraints relevant to
the applications aims (see Figure XII.3). For instance, instead of having all concepts

XII.2 Corporate Finance 279

from a domain within the refinement lists, “pruned” lists of taxonomical groupings
or entities useful as parameters can be used to populate pulldowns of constraints that
are meaningful to specialists.

Designers of text mining applications can also preset variables appropriate to the
text mining application’s realistic universe of potentially useful constraints. Doing so
provides “assisted” constraint creation more relevant to the problem space addressed
by the application.

XII.1.4 Specialized Visualization Approaches

As mentioned in Section X.1, visualization approaches demonstrate strengths and
weaknesses with respect to graphing different types of data. This is a key consid-
eration in determining the types of visualization approaches useful for a given text
mining application. Providing circle graphs to investment bankers interested in track-
ing trends in corporate events over time might not stimulate much exploration of
these trends by users, whereas providing for the quick generation of histograms of
corporate names mentioned in articles for a given period might prove very useful to
this same group of investment bankers when tracking corporate activity and press
coverage.

One important consideration for developers of text mining applications when
considering the best use of visualization methodologies is the integration of special-
ized background knowledge in the generation of graphs. Just as specialized back-
ground knowledge can be used to inform domain-specific constraints, specialized
background knowledge can also be used to help format the information presented
in graphs to make them more relevant to the problem space they model.

For instance, in assigning colors to the elements of a visualization, a text mining
application can offer a GUI a palette of colors associated with concept names derived
from a specialized background knowledge lexicon. Alternatively, a visualization GUI
itself can contain a slider widget that allows constraint filters to switch between values
that come from prespecified thresholds relevant to the text mining application’s
problem space.

XII.1.5 Citations and Notes

Some general introductory materials useful to gaining perspective on text mining
applications include Hearst (1999); Nasukawa and Nagano (2001); and Varadarajan,
Kasravi, and Feldman (2002).

Information resources on the DARPA DAML program can be found at
<www.daml.org>. Resources on MeSH and UMLS are available from the
United States National Library of Medicine Medical Subject Headings Web site
<http://www.nlm.nih.gov/mesh/meshhome.html.>

XII.2 CORPORATE FINANCE: MINING INDUSTRY LITERATURE

FOR BUSINESS INTELLIGENCE

Text mining approaches lend themselves to many of the business intelligence tasks
performed in corporate finance. Text mining tools are particularly well suited to
automating, augmenting, and transforming business intelligence activities more

280 Text Mining Applications

traditionally accomplished by means of labor-intensive, manual reviews of industry
literature for patterns of information. These manual reviews typically entail sifting
through vast amounts of textual data relating to companies, corporate executives,
products, financial transactions, and industry trends.

In the past, such reviews of industry literature have been performed by large
cadres of analysts in investment banks, corporate development departments, man-
agement consultancies, research think tanks, and other organizations that now face
continuing pressure to streamline operational costs while increasing the compre-
hensiveness and quality of their analytical work. Employing text mining applications
customized for use in business intelligence tasks can dramatically improve the speed,
exhaustiveness, and quality of such reviews. As a result, business intelligence systems
based on text mining methodologies are fast becoming a critical part of many corpo-
rate analysts’ professional tool chests.

This section describes a system we will call Industry Analyzer – a simple example
of a business intelligence application based on many of the technical approaches
discussed throughout this book. The example is purposely meant to be a simple one,
using only a small data collection, very simple background knowledge support, and
no link detection functionality, with an emphasis on a high-level, user-oriented view
of the application.

Specifically, Industry Analyzer is an application developed to allow banking ana-
lysts – as well as their peers in corporate development and M&A groups – to explore
industry information about companies, people, products, and events (transactions,
corporate actions, financial reporting announcements) in a given industry vertical.
The implementation example has been configured to support knowledge discovery
in news stories about the life sciences business sector.

The life sciences business sector – which includes a number of constituent indus-
tries such as pharmaceuticals, biotechnology, health care provisioning, and so on –
is a complex sector for small industry groups to follow given the thousands of com-
panies developing and selling tens of thousands of major products to hundreds of
millions of people in the United States alone. Business analysts of the life sciences
sector need to sift through vast numbers of references in news stories quickly to
find information relevant to their concerns: how well a company or a product is
doing, what a company’s strategic partners or competitors are, which companies
have announced corporate actions, what products company managers are pushing
in interviews, which companies’ products are getting the most coverage, and so on.
Some analysts seek information suggesting potential merger or acquisition pairings,
for much investment banking business comes from being an advisor on such trans-
actions. Others look for smaller life sciences companies that show signs of one day
going public, whereas still others seek news that might indicate a company may be
open to divesting itself of a product or division and entering either an asset sale or
structuring a spin-out.

Industry Analyzer assists in allowing industry analysts to comb large amounts of
trade information in their daily work more effectively. In a straightforward way, it
facilitates the creation of simple searches and, perhaps most importantly, supports
visualizations that help analysts better digest and interact with information collected
from numerous individual, industry-specific news stories.

The implementation example of Industry Analyzer presented here has a narrow
focus on biomedical companies involved in cancer research and treatment. This is

XII.2 Corporate Finance 281

 Preprocessing

Routines
Term Extraction,

Information
Extraction Processed

Document
Collection

BioWorld
Documents

Core Mining

Operations
Pattern

Discovery
Algorithms

Analyst

Background

Knowledge
NCI Metathesaurus

GUI
Browsing,

Query
Construction,
Visualization

Refinement
Filters

Figure XII.4. Industry Analyzer functional architecture.

not inconsistent with the types of implementations encountered in reasonable, real-
world scenarios, for banking analysts typically specialize in exploring information
related to particular niches within an overall industry vertical.

XII.2.1 Industry Analyzer: Basic Architecture and Functionality

Industry Analyzer follows the rough architectural outline for a text mining system
illustrated in Section II.2. Because it is not a complex system, it exhibits a relatively
simple functional architecture (see Figure XII.4).

Other than its content, background knowledge sources, and some of its presenta-
tion layer elements, the Industry Analyzer is built around quite generic preprocessing
and core mining components of the type discussed at length in Chapters II, III, IV, V,
VI, VII, and VIII. The application can be described in terms of the main components
that make up its functional architecture.

Data and Background Knowledge Sources

The raw data source for Industry Analyzer’s document collection is a group of 124
news articles from BioWorld, an industry publication that reports news relating to
M&A activities in the life sciences business sector. The articles had a particular focus
on biotech and pharmaceutical companies and their products.

The articles were collected from a period stretching from 11 October 2004 to 17
November 2004. The following is a typical text example from these BioWorld articles:

Biogen Idec Inc. ended its third quarter with $543 million in revenues, slightly

lower than analyst estimates, as it nears the one-year anniversary of a merger that

made it the world’s largest biotech company.

The Cambridge, Mass.-based company reported non-GAAP earnings per share

of 37 cents and net income of $132 million, compared with 35 cents and $123 million

for the quarter last year. Analysts consensus estimate for the quarter was 35 cents.

Industry Analyzer utilizes a very simple specialized background knowledge
implementation primarily consisting of taxonomies of drug names, genes, and

282 Text Mining Applications

Figure XII.5. The taxonomy used by Industry Analyzer supplemented by background knowl-

edge. (Courtesy of the ClearForest Corporation.)

diseases taken from the National Cancer Institute’s NCI Thesaurus, which is in
part based on the National Library of Medicine’s Unified Medical Language Sys-
tem (UMLS) Metathesaurus. The taxonomies can be leveraged with little modifica-
tion from the NCI Thesaurus’s formalized hierarchical nomenclature and positioned
within an overarching taxonomy of entities to support all of Industry Analyzer’s
functional requirements.

The NCI Thesaurus is a generally useful background knowledge source for build-
ing text mining application taxonomies, for although it probably cannot be described
as a full-blown ontology it nevertheless includes true IS A-type hierarchies. These
hierarchies detail semantic relationships among drugs, genes, diseases, chemicals,
organisms, anatomy, and proteins for thousands of defined domain concepts.

The implementation of Industry Analyzer presented in this example also includes
some less formal background knowledge for corporate organizations, locations, and
industry concepts culled from various online sources. An example of an Industry
Analyzer GUI for choosing entities based on a hierarchy informed by background
knowledge can be seen in Figure XII.5.

Preprocessing Operations

Industry Analyzer uses a simple regimen of preprocessing operations to prepare
the application’s processed document collection. The BioWorld documents are
first subjected to a series of term-extraction methodologies like those described in
Section III.4. This involves the labeling of each document (i.e., BioWorld article)
with a set of terms extracted from the document.

XII.2 Corporate Finance 283

Biogen Idec Inc. ended its third quarter with $543 million in revenues,

slightly lower than analyst estimates, as it nears the one-year anniversary of

a merger that made it the world’s largest biotech company.

The Cambridge, Mass.-based company reported non-GAAP earnings per

share of 37 cents and net income of $132 million, compared with 35 cents

and $123 million for the quarter last year. Analysts consensus estimate

for the quarter was 35 cents.

Figure XII.6. Example of output from Industry Analyzer’s term extraction process. (Courtesy

of BioWorld.)

Initially, standard linguistic processing routines are run against each document,
performing various tokenization, POS-tagging, and lemmatization operations with
the aid of an external lexicon and a limited amount of manually tagged data for
training. Then, lists of term candidates are generated for each document, after which
filtering routines are run to create a final list of terms with which to tag each document.
In addition, a date stamp is added to each document based on the publication date
of the article.

Industry Analyzer’s term extraction processes actually save the output and all the
tags generated by the preprocessing routines in an XML-based, tagged file format.
A highly simplified version of the output from the term extraction process can be
seen in Figure XII.6.

Feature extraction at the term level is important for an application like Industry
Analyzer because word-level or even more granular feature-level extraction would
miss or misinterpret many of the multiword terms-of-art used in both corporate
finance and the life sciences. A simple example can be seen in Figure XII.6 in which
the term Biogen Idec Inc. has been extracted. Because Biogen and Idec were both
individual company names before a merger that created Biogen Idec Inc., identifying
Biogen Idec Inc. as a single entity is important information that marks this article’s
content as referring to a time after the two companies merged to become the world’s
largest biotechnology company. Similarly, terms like net income, consensus estimate,

and earning per share all have very specific meanings to corporate finance analysts
that are highly relevant to knowledge discovery activities relating to corporate events.

Term-level extraction also better integrates with concept-level categorization of
documents, which appends concept names descriptive of a particular document that
may not actually appear as terms in that document. For instance, in the fragment
illustrated in Figure XII.6, concept tags such as midcap, earnings report, publicly

held (versus privately held), or company-neutral (as opposed to company-positive or
company-negative) might also be automatically or manually added to the postpro-
cessed document to provide useful supplementary information to the entity-related
data revealed by the term extraction process so as to enhance the quality of subse-
quent information extraction–oriented processing.

After completing the term extraction processes, Industry Analyzer subjects docu-
ments to a rule-based information extraction process based on a simplified version of
the DIAL language described in Appendix A. By taking advantage of sets of formal
financial and biomedical rule bases, Industry Analyzer is able to identify not only
repeated instances of patterns involving entities but to construct basic “facts” (e.g.,
Biogen Idec is the world’s largest biotech company, AlphaCo and BetaCo are strategic

284 Text Mining Applications

FStrategicAllianceCCM(C1, C2) :-
Company(Comp1) OptCompanyDetails "and" skip(Company(x), SkipFail,
10) Company(Comp2)
OptCompanyDetails skip(WCStrategicAllianceVerbs, SkipFailComp, 20)
WCStrategicPartnershipVerbs skip(WCStrategicAlliance,
SkipFail, 20) WCStrategicAlliance
verify(WholeNotInPredicate(Comp1, @PersonName))
verify(WholeNotInPredicate(Comp2, @PersonName))
@% @!
{ C1 = Comp1; C2 = Comp2} ;

Figure XII.7. IE rule for identifying a strategic partnership between two companies. (Courtesy

of the ClearForest Corporation.)

alliance partners, or third quarter net income for Acme Biotech was $22 million) and
“events” (e.g., the Glaxo and Smith Kline merger, the filing of BetaCo’s Chapter 11

bankruptcy, or the Theravance IPO) involving entities derived from these patterns.
An example of a DIAL-like rule can be found in Figure XII.7.

This rule is one of several possible ones for identifying strategic alliances between
companies (within a rule-based language syntax like that of the DIAL language).
Note that the rule also includes a few constraints for discarding any potential pairings
between a company and a person as a strategic alliance.

After rule-based information extraction has been completed, a queryable pro-
cessed document collection is created that not only contains entity-related informa-
tion but also information related to a large number of identified “facts” and “events.”
A formal list of the types of facts and events identified within this document collec-
tion is also stored and made available to support fact- or event-based querying by
Industry Analyzer’s core mining operations.

Core Mining Operations and Refinement Constraints

Industry Analyzer supports a reasonably broad range of common text mining query
types like those discussed in Chapter II. It supports queries to produce various distri-
bution and proportion results as well as the ability to generate and display information
relating to frequent sets and associations found within its document collection. Indus-
try Analyzer can also support the construction and execution of maximal association
queries.

As a general rule, with most current corporate finance–oriented text mining appli-
cations, there is little need for exotic query types. What is more important for the
vast majority of corporate finance users is

(a) a rich and flexible set of entities, fact types, and event types with which to
shape queries, and

(b) a relatively easy way to generate and display results that lead to iterative
exploration of the data stored in the document collection.

For instance, queries, regardless of the kind of result set display chosen by the
user, should be easily constructible on the basis of combinations of entity, fact, and
event information for corporate finance users. To support this, Industry Analyzer
offers GUI-driven query generation with prepopulated pick lists and pull-downs of
entities, fact types, and event types for all of its main forms of queries. Figure XII.8
shows how a query can be generated in industry Analyzer.

XII.2 Corporate Finance 285

Figure XII.8. Generating a query of the type “entity within the context of” in Industry Analyzer.

(Courtesy of the ClearForest Corporation.)

In addition to these ease-of-use features, Industry Analyzer has the capability of
offering a user a menu of common queries. The prototype described here contains
preset, distribution-type queries for querying a company name supplied by the user
in the context of merger, acquisition, and strategic alliance. It also contains a list
of preconfigured association-type queries for a given company name and product,
other company, and person. These extremely easy-to-execute queries allow even less
technically literate analysts or infrequent users of the Industry Analyzer system to
derive some value from it. On the other hand, more experienced users can leverage
such preconfigured queries as a quick way to create a broad “jump-start” query
that can then be shaped through refinement, browsing, and further query-based
search.

Refinement constraints carefully customized to the needs of corporate finance
professionals can also do much to achieve the goal of making knowledge-discovery
query operations intuitive, useful, and iterative. Industry Analyzer supports a wide
range of background, syntactical, quality-threshold, and redundancy constraints.

Presentation Layer – GUI and Visualization Tools

Industry Analyzer approached the design of its GUI and its choice of visualization
approaches with the understanding that industry analysts are savvy computer users
but that they are not typically programmers. As a result, Industry Analyzer’s GUI
can be seen to be more of a dashboard or workbench through which nearly all func-
tionality is available via graphical menus and pop-ups – and, consequently, with less
emphasis on giving the analysts direct, script-level access to the underlying query lan-
guage (or to any of the preprocessing routines such as the rule bases for Information
Extraction, etc.).

A very important part of creating a custom application for a particular audience
of users is ensuring that presentation-layer elements speak to the specific knowledge
discovery needs of that audience. Much of this can be accomplished by having all
knowledge discovery search and display elements “make sense” in terms of the
nomenclature and taxonomical groupings relevant to the audience – that is, by simply
exposing the domain-relevant entity, fact, and event information derived both by
background knowledge sources and by preprocessing extraction routines.

286 Text Mining Applications

Figure XII.9. GUI-enabled pick list for selecting facts and events for a visualization. (Courtesy

of the ClearForest Corporation.)

Industry Analyzer attempts to accomplish this last objective through its reliance
on consistent display of an entity hierarchy for queries including entity names in their
search parameters. The system reinforces this main GUI-enabled search construction
paradigm through an additional emphasis on supporting the construction of fact- and
event-oriented searches via consistent pull-down and pop-up listings of event and
fact types. The application also attempts to use these same pick-lists for formatting
visualizations in an effort to acclimate users further to a familiar listing of these event
and fact types (see Figure XII.9).

In terms of display and visualization of search results, Industry Analyzer defaults
to returning search results in a simple table view display. See the example in Figure
XII.10.

Industry Analyzer also supports a range of more sophisticated visual graphing
and mapping options for displaying query results, including the following:

� Histograms for visualizing absolute occurrence number counts, counts in context,
and distribution-type queries;

� Simple concept graphs for clearly displaying relationship information between
entities, facts, or events; and

� Circle graphs for visualizing associations, associations within context and orga-
nized according to some taxonomical ordering, and large-scale relationship maps
with large numbers of constituent points.

Such visualizations can be executed either from a dedicated pop-up GUI after a
query is run or directly from the table view display for a partial or full set of query

XII.2 Corporate Finance 287

Figure XII.10. Table view of connections between persons and companies in the context of

management changes. (Courtesy of the ClearForest Corporation.)

results. For example, a user could interactively decide to generate a circle graph
visualization after choosing the first two companies from the query results displayed
in the Table View illustrated in Figure XII.10. The resulting circle graph can be seen
in Figure XII.11.

Finally, from any of the result-set displays, a user can interactively navigate
through point-and-click actions to either a summarized or full, annotated version
of the actual document text underlying the query results. This allows a corporate
analyst to move quickly from high-level entity, fact, and event views that consider

Company

Prometheus Labora...Trubion Pharmaceu...

Michael Allen

Toni Wayne Judith Woods

Person

Figure XII.11. Circle graph showing connections between people and companies in the context

of management change. (Courtesy of the ClearForest Corporation.)

288 Text Mining Applications

information based on all or part of a corpus of documents to more specific informa-
tion included in a particular article.

XII.2.2 Application Usage Scenarios

Corporate finance professionals in banks and corporate M&A groups often have
overriding themes for the research that they do. We can examine how a few of these
might be translated into typical interactions with Industry Analyzer’s knowledge
discovery capabilities.

Examining the Biotech Industry Trade Press for Information

on Merger Activity

Much of the time of corporate finance analysts at investment banks and in the corpo-
rate development organizations of companies is spent tracking potential and actual
merger activity. Knowing about specific potential mergers can allow corporate finance
professionals to get involved with the participants in those transactions before a deal
is completed, or better advise existing clients about the prospective ramifications of
a transaction on the overall market in a timely fashion. Having a full and current
sense of completed mergers in an industry vertical is critical to understanding the
competitive landscape within that vertical; this type of knowledge is a necessary com-
ponent to client advisory in a competitive corporate environment in which all public
corporations – and most private – are potential merger targets.

Trends in merger activity can also directly affect many specific areas of a corporate
analyst’s work. For instance, if there is a sudden up-tick in trade journal reports of
merger activity, an overall industry consolidation may be taking place. If mergers are
all clustered around a common set of product types, merger activity may suggest a
hot area for new products because the activity may reflect pent-up customer demand
or failures among some big companies’ in-house R&D efforts on these products.
Conversely, a leveling off of valuations paid in cash and stock for the smaller of the
merged entities may suggest some cooling or maturation of the markets that might
indicate less favorable short- or midterm trends.

To explore merger activity with Industry Analyzer, an analyst might initiate a
broad search for all “merger” events among biotech companies available in the
document collection to see if any look interesting and worthy of further, more detailed
investigation. In Industry Analyzer, this can be done simply through a series of
graphical menus, starting with a pick list of events and facts available for search
selection (see Figure XII.12). A subsequent pop-up menu offers the ability for a user
to add constraints to the query.

In our example, the user chooses not to add any constraints to his or her query
because of the modest number of articles in the document collection. After the user
clicks the OK button to initiate the query, the default table view brings back formatted
results for the query results (see Figure XII.13).

At this stage, the analyst decides that he or she is quite interested in looking
at a reference to the Biogen–Idec merger. The analyst can then simply highlight
the desired event and click on it to “jump” either to a summarized version of the
relevant article or an annotated view of the full text of the article containing the

XII.2 Corporate Finance 289

Figure XII.12. Initiating a query for all merger events in the document collection. (Courtesy

of the ClearForest Corporation.)

highlighted merger reference. Figure XII.14 shows what the analyst would encounter
upon choosing the full, annotated view of the article text.

When moving from the table view entry to the annotated full text of the article,
the analyst is taken to the point in the article containing the reference. A consistent
color-coding coding methodology for identifying event and fact types can be used
throughout Industry Analyzer. This color-key approach can be used to identify event
and fact occurrences visually by type in document text; it can also be used in a way
that is carried over consistently into graph-type visualizations. In both cases, the user
may choose which color-key scheme works best for his or her purposes.

Exploring Corporate Earnings Announcements

Corporate finance analysts also expend a great deal of effort finding financial
reports on companies that they do not typically follow. Unfortunately, although
public company financial announcements are widely available, it is often very

Figure XII.13. Table view of all reported mergers between biotech companies in the document

collection. (Courtesy of the ClearForest Corporation.)

290 Text Mining Applications

Figure XII.14. A merger event in a BioWorld article. (Image courtesy of the ClearForest Cor-

poration. Text in image courtesy of BioWorld.)

time-consuming for the analyst to try to find the needed financial information by wad-
ing through large numbers of inconsistently formatted financial reporting documents
and press releases. Industry Analyzer’s functionality makes it a much easier process
to investigate corporate financial report information in the application’s document
collection.

Indeed, it may not even be practically possible to find certain types of financial
reporting information without an application like Industry Analyzer. Suppose an
analyst vaguely remembers hearing that a biotech company reported net income in
the $130–140 million range for the third quarter of 2004. This analyst, however, does
not remember or never learned the name of the company. In this type of situation –
which represents one potential variation on very common scenario in which an ana-
lyst has only partial bits of tantalizing information about a company but not its name –
the analyst could spend days sifting through voluminous financial reports issued by
larger biotech and pharmaceutical companies before happening upon the right one.

The analyst might further want to know if more than one company met the criteria
for the period. Hunting and pecking through financial reports and online databases
even for a few days might not bring a sense of resolution for this search because so
many traditional corporate information resources are (a) published in various types
of financial reporting documents and are (b), in general, rigidly organized around
explicit knowledge of a company name one is interested in investigating.

The first step in Industry Analyzer would be to execute a query on the event
type called Company Earnings Announcement. The analyst could find this by simply
scrolling the main pick list of fact and event types in Industry Analyzer’s main search
menu (see Figure XII.15).

Unlike the earlier simple search for all companies reporting mergers in the docu-
ment article collections, this query also relies on some adjustment of constraint filters
to help pinpoint potentially useful answers to the analyst’s query. As can be seen in
Figure XII.15, after selecting Company Earnings Announcement as the main event
for his or her query, the analyst is given an opportunity to choose certain types of
constraints. In the current example, the constraint filters are set to allow viewing
of several attributes that have been extracted and identified as relating to Company

Earnings Announcement–type events. The table view of the result set from this query
can be seen in Figure XII.16.

XII.2 Corporate Finance 291

Figure XII.15. Constructing a query around company earnings announcement events. (Cour-

tesy of the ClearForest Corporation.)

Scanning the columns of the table view would show that Biogen Idec meets the
criteria being sought by the analyst. The analyst can then highlight the appropriate
table row, click, and choose to see a summary of the text in the article containing the
original reference (see Figure XII.17).

Of course, the quality of search results for this type of information within a text
mining application like Industry Analyzer will depend on the comprehensiveness
of the data in the documents of the document collection and the sophistication of
the various information extraction rule bases used during preprocessing to identify
events and link relevant attributes properly to these events. However, querying for
partially known corporate information against the vast amounts of text documents
in which it is buried can be made vastly more practical with Industry Analyzer.

Figure XII.16. Table view of company earnings reports. (Courtesy of the ClearForest

Corporation.)

292 Text Mining Applications

Figure XII.17. Browsing the summary view of the article containing the reference to Biogen

Idec’s third-quarter 2004 net income. (Courtesy of the ClearForest Corporation.)

Moreover, the result sets that are returned for queries encourage analysts to browse
related data that may also be interesting and relevant to their overall mission.

Exploring Available Information about Drugs Still in Clinical Trials

Corporate analysts can also turn to the visualization tools of an application like
Industry Analyzer to help explore the available information about a particular
pharmaceutical or biotechnology product. Perhaps a corporate finance analyst is
aware of a potential client’s interest in new cancer treatment drugs – especially
lung cancer treatment drugs that show early signs of promise as products. The ana-
lyst may have only a general awareness of this market niche. He or she may thus
want to leverage Industry Analyzer’s visualization tools more directly to ferret out
potentially interesting information from the articles in the applications document
collection.

As a first step, the analyst may want to generate a query whose result set could
be used to create a visualization of all connections (associations) between drugs and
particular diseases in the BioWorld articles to get a quick sense of the drugs that might
be related to cancer treatment within the overall universe of drugs mentioned in the
trade press. An example of the result set visualization can be seen in Figure XII.18.
After viewing the circle graph visualization that identifies all the relationships, the
analyst might note the relationships between lung carcinoma and the anticancer
drugs Erlotinib and Cisplatin.

Note that by simply highlighting any node along the circumference of the circle
graph, a user can also highlight the edges representing connections with various other
associated nodes in the figure. For instance, as illustrated in Figure XII.18, if the user
highlighted the disease Rheumatoid Arthritis, the four drugs with which this disease
is associated in the underlying document collection would be identified. This type of
visualization functionality would allow the user to bounce quickly among diseases
and drugs and to browse their various relationships at a high level.

After looking at this broad view of drug-disease relationships, the analyst might
want to start focusing on cancer-related drugs and execute a distribution-type query
showing all occurrences of drug names in BioWorld articles given a context of
carcinoma and a proximity constraint of “within the same sentence.” This would
give the analyst a list of the most prominent anticancer drugs (i.e, those most fre-
quently mentioned over a given period of time in the trade press). The analyst
would then be able to generate a result set in a histogram like the type shown in
Figure XII.19.

XII.2 Corporate Finance 293

DiseaseNCI

Lung Carcinoma
Hepatitis C

Colorectal Carcinoma
Diabetes Mellitus

Drug NCI

Antineoplastic Va...

Uridine
Atvogen

Cetuximab
Melanoma Vaccine

Interferon Alfacon-1

Antiviral Agent
Adefovir

Gemcitabine
APC8015 Vaccine

Rituximab
Methotrexate

Infliximab

Etanercept
Cisplatin

Testosterone
Bortezomib

Interferon Beta-1A

Erlotinib
Ribavirin

Therapeutic Insulin

Bevacizumab

Carcinoma
Bipolar Disorder

Arthritis

Chronic Fatigue S...

Crohn's Disease

Melanoma
Hepatitis B

Pancreatic Carcinoma
Prostate Carcinoma

Sexual Dysfunction
Plasma Cell Myeloma

Multiple Sclerosis

Rheumatoid Arthritis

Figure XII.18. Circle graph showing connections between drugs and diseases. (Courtesy of

the ClearForest Corporation.)

Exploring this graph might lead the analyst to the question: What are the cross-
relationships, if any, between these drugs? Again, the analyst could generate a circle-
graph relationship map, this time showing connections between drugs in the context
of carcinoma (Figure XII.20).

Seeing Cisplatin in each of the last two graphs, the analyst might be interested
in generating a query on Cisplatin and related companies within the context of

Bevacizumab

Gemcitabine

Erlotinib

Antineoplastic Vaccine

BAY 43-9006

Cisplatin

Cetuximab

APC8015 Vaccine

Monoclonal Antibody

Motexafin Gadolinium

Nicotine

Opioid

Recombinant Interferon Alfa-2b

Signal Transduction lnhibitor

Sm 153 Lexidronam Pentasodium

Squalamine

Trastuzumab

Vinorelbine

Virulizin

Vitaxin

0 1 2 3 4

Figure XII.19. Histogram showing occurrences of drug names in BioWorld (context of carci-

noma, in the same sentence). (Courtesy of the ClearForest Corporation.)

294 Text Mining Applications

Cetuximab
Erlotinib

Biological Agent

Monoclonal Antibody
Vinorelbine

Cisplatin

Sm 153 Lexidronam... Opioid

Docetaxel

ISIS 3521

Lipid

Gemcitabine

Motexafin Gadolinium

Glufosfamide

Virulizin

Bevacizumab

Recombinant Inter...

Figure XII.20. Circle graph of relations between drugs (context of carcinoma, within the same

sentence). (Courtesy of the ClearForest Corporation.)

carcinoma. A simple concept graph could be generated for the results of this query
(see Figure XII.21). Thicker lines between concepts in this graph are weighted to a
potentially more meaningful connection according to some quality measure.

The analyst could then discover more by clicking on the edge linking Cisplatin
and Isis Pharmaceuticals to jump to a summary of the article containing the two
concepts. See Figure XII.22.

The summary of the article can then be read quickly for business news related to
the two drugs. From this Title Browser interface, the user can also jump to the full
text of the article.

XII.2.3 Citations and Notes

Some resources on text mining applications for finance include Spenke and Beilken
(1999), IntertekGroup (2002), and Kloptchenko et al. (2002).

Industry Analyzer is not a commercial product, and the implementation described
in this chapter, although fully operational, was completed for demonstration pur-
poses. This application, however, does leverage some commercial technologies,
particularly in its presentation-layer elements, derived from ClearForest Corpora-
tion’s commercial product ClearForest Text Analytics Suite. All rights belong to the
owner. Information on ClearForest and its text analytics products can be found at
<www.clearforest.com>.

The Thomson BioWorld Online homepage can be found at <www.bioworld.
com>. Textual content for articles used in the Industry Analyzer examples comes
from BioWorld. All rights to the content from the BioWorld articles used for
the examples in this section are held by their owners. A comprehensive listing
of BioWorld publications can be found at <http://www.bioworld.com/servlet/com.
accumedia.web.Dispatcher?next=bioWorldPubs>.

A public version of the National Cancer Institute’s Metathesaurus is available at
<http://ncimeta.nci.nih.gov.>

Pharmacyclics Inc. Cisplatin Isis Pharmaceutic...

Figure XII.21. Simple concept graph of cisplatin and related companies within the context of

carcinoma. (Courtesy of the ClearForest Corporation.)

XII.3 A “Horizontal” Text Mining Application 295

Figure XII.22. Annotated view of the summary of the article containing both Cisplatin and Isis

Pharmaceuticals within the context of carcinoma. (Courtesy of the ClearForest Corporation.)

XII.3 A “HORIZONTAL” TEXT MINING APPLICATION: PATENT

ANALYSIS SOLUTION LEVERAGING A COMMERCIAL

TEXT ANALYTICS PLATFORM

Patent research and analysis have become the business foci of a growing number of
professionals charged with helping organizations understand how best to leverage
intellectual property – and avoid problems created by other organizations’ intellec-
tual property rights – in their business activities. Patent research encompasses a wide
range of at least partially related activities involving the investigation of the registra-
tion, ownership rights, and usage, of patents. A common denominator among almost
all of these activities, however, is the need to collect, organize, and analyze large
amounts of highly detailed and technical text-based documents.

Patent analysis solutions might be called “horizontal” applications because,
although they have a narrow functional focus on patent-related documents, patent
analysis has wide applicability to many different businesses. Professionals in both
public and private companies across many different industries – not to mention the
intellectual property (IP) departments of many law firms and consultancies – have
responsibility for providing input into corporate patent strategies. Such input needs to
take into account not just the potentially “harvestable” IP that a particular company
may have but also all of the published indications of IP rights that other companies
may already possess.

Patent strategy, however, is not just about the particulars of what is patented
(both in-house or within the larger market) but also relates to which individuals and
companies are creating patents (and for what technologies), which companies are
licensing patents (and for what technologies), and the relationships between these
various market participants. Patent research should yield more than good defensive
information about IP; it should also yield new business opportunities by identifying
new development partners, likely licensers or licensees, or wider market trends about
particular types of patents.

This section describes a patent analysis application called Patent Researcher. One
of the interesting aspects of presenting this application is how it can leverage the
functionality of a more generic commercial text mining platform derived primarily
from components marketed by ClearForest Corporation.

Patent Researcher processes patent-related documents – primarily granted U.S.
patents – to enable a patent manager to mine information related to patented
technologies, patent claims, original patent inventors, original patent owners, and
patent assignees by means of queries and interactive visualization tools.

296 Text Mining Applications

Tags
Entity Discovery, Entity

Recognition, Categorization

Industry Modules
Relationship Discovery,

Relationship Recognition

Analytics
Link Detection,

Visualization, Reporting

Tagging Analytics

Figure XII.23. ClearForest Corporation’s approach to describing the high-level architecture of

the ClearForest text analytics suite.

The implementation of the Patent Researcher application discussed in the follow-
ing sections has been configured to handle typical patent analysis activities. A sample
corpus of patent documents related to commercial defibrillator device technologies
is used as a raw data source. This illustrative implementation reflects the types of
application settings and usage one might encounter among patent professionals in
corporate intellectual property departments, attorneys at patent-oriented law firms,
or patent engineers at specialist engineering consultancies.

XII.3.1 Patent Researcher: Basic Architecture and Functionality

Patent Researcher relies on ClearForest Corporation’s suite of text mining soft-
ware components and, as a result, shares the general architecture of these compo-
nents. ClearForest’s Text Analytics Suite follows a general pattern not too unlike
that described in the Section I.2, though the company’s high-level description of it
has perhaps been made simple for the commercial market. See Figure XII.23.

Effectively, ClearForest’s platform follows in a generalized way most of the archi-
tectural principles presented in Section I.2 and in Section XII.2.1 of this chapter’s
discussion of Industry Analyzer. On a slightly more granular level, the functional
architecture for Patent Researcher is described in Figure XII.24.

 Preprocessing

Routines
Categorization,

Term Extraction,
Proprietary Industry

Rulebook for
Information
Extraction

Processed
Document
Collection

Patents

Core Mining

Operations
Pattern

Discovery
Algorithms,

Trend
Analysis Patent

Manager

Background

Knowledge

GUI
Browsing,

Query
Construction,
Visualization

Refinement

Filters

Figure XII.24. Patent Researcher’s functional architecture.

XII.3 A “Horizontal” Text Mining Application 297

Although quite similar to the overall architecture described for the Industry
Analyzer application illustrated in Section XII.2.1, Patent Researcher’s architecture
evinces a few distinct differences and leverages several advantages provided by the
commercial ClearForest Text Analytics Suite platform. The most notable of these
are discussed in the following sections.

Data and Background Knowledge Sources

The raw data for the Patent Researcher application consists of 411 granted U.S.
patents for external defibrillator devices. A “quick search” for the key term “external
defibrillator” was executed at the U.S. Patent and Trademark Office Web site to
find 411 patents for the period from 1 January 1976 to 1 January 2004. These full-
text, semistructured (HTML-formatted) documents constitute the target corpus for
preprocessing operations.

Patent Researcher has the capacity to integrate various external thesauri, tax-
onomies, and ontological dictionaries. These knowledge sources are particularly
valuable when document collections need to include trade journals, news articles,
or internal corporate documents in which there is an increased need to infer mean-
ing or relationship information about extracted concepts.

However, even in implementations of patent analysis text mining applications –
like the one discussed here – that make use of formal granted-patent documents
as their exclusive source of document data, background knowledge sources can be
particularly helpful in preprocessing extraction activities for entities, facts, and events
involving technical terminology, company names (often as patent assignees), and
legal language. The Patent Researcher implementation described here uses only
three simple knowledge sources: a lexicon of English words; a simple, manually
created dictionary of important legal and patent terms; and a simple dictionary of
corporate names.

Preprocessing Operations

Patent Researcher’s preprocessing operations have similarities with those discussed
for the Industry Analyzer application. Both rely on term extraction and information
extraction techniques to create a processed document collection that identifies enti-
ties, facts, and events. In addition, both use very similar rule-based languages (Patent
Researcher uses a robust commercial version of the DIAL language).

One significant additional approach of Patent Researcher, however, is its imple-
mentation of categorization routines to automatically create a taxonomy for use in
the application. Making use of the semistructured nature of patent documents (U.S.
patent grants – especially after 1976 – generally follow a standardized U.S. Patent
and Trademark Office format), automatic taxonomy generation typically yields a
very useful taxonomy for organizing patent registrations and claim details, assignees,
inventors, examiners, relevant corporate information, technical terms, as well as high-
level categories for various aspects of patented items’ functionality, usage, related
patents, and so on. A typical taxonomy displayed by Patent Researcher’s Taxonomy
Chooser interface is shown in Figure XII.25; the figure illustrates the hierarchical
positioning and a partial listing of relevant invention terms.

Patent Researcher implements a productionized version of a Ripper-like
machine-learning algorithm (for more description on this algorithm, see Chapter III).

298 Text Mining Applications

Figure XII.25. Viewing the taxonomy created by means of automatic categorization in Patent

Researcher. (Courtesy of the ClearForest Corporation and Joseph F. Murphy.)

The Ripper algorithm has proven useful across a wide range of categorization sit-
uations. In the case of patent information, the semistructured nature of much of
the textual data would allow many categorization algorithms to perform relatively
well, but the Ripper-like algorithm’s capacity for building constructing classifiers that
allow what might be described as the “context” of a term impact – whether or not
that term affects a classification – can be beneficial for categorizing large numbers of
technical terms used in patent documents.

Categorization is especially useful in patent analysis, for many very typical
searches performed by patent professionals can benefit from using category infor-
mation – particularly when using a category label, which may not be a term found
within an individual patent document’s native set of extracted terms, as a part of
a query’s context. For instance, patent investigators often use various intra-, inter-,
and cross-category searches to determine the answers to numerous questions about
potential patent overlap or infringement, competitive landscape situations among
patent assignees and licensees, areas of potential synergy between assignees holding
intellectual property in similar or complementary business areas, and patterns of
development of new patents across niche business industries.

Core Mining Operations and Refinement Constraints

Patent Researcher is able to leverage the capabilities of the extremely large range
of query types afforded by the commercial platform on which it is built. This means
that the application provides a full range of distribution, proportion, frequent set,
and association queries (including maximal association queries).

Although patent managers certainly benefit from flexible exploration of patterns
in the data of patent document corpora, Patent Researcher offers several preconfig-
ured query formats that are used very often during patent analysis activities. These
include the following:

XII.3 A “Horizontal” Text Mining Application 299

� Frequency distribution of assignees with patents in the current collection;
� Distribution of patents representing a particular technology over time; and
� Assignees that appear together on the same patent (indicates joint venture, joint

development, partnership, or other corporate relationship).

Indeed, with respect to the second of these preconfigured queries, a particularly
notable difference from the capabilities offered to users of Industry Analyzer is
Patent Researcher’s ability to generate simple but extremely useful trend analysis
results for patent professionals interested in diverse types of trend and time-series
information. Granted patents have consistent descriptions for various important
dates (date of initial application, patent issue date, etc.). These dates are extracted
during preprocessing operations and made available to a wide range of distribution
queries that can chart various micro- and macrotrends over time.

Patent Researcher supports more narrowly focused knowledge discovery oper-
ations such as allowing a patent manager to create a query yielding a result set
describing the distribution of patents over time for a particular company. The appli-
cation also has the ability to compare this distribution against the distribution of
patents issued for a competing company over the same period.

To allow examination of wider trends, Patent Researcher supports queries that
would permit a user to request all patents issued for several different broad areas
of technology over some period. This type of search might reveal what areas of
intellectual property are hot, which are growing cold, and which have dried up,
based – all in relation to other areas of intellectual property – on patterns of patent
application and issuance.

Patent Researcher supports a wide assortment of constraints on nearly all of its
query types, including typical background, syntactical, quality-threshold, and redun-
dancy constraints. The application also supports time-based constraints on many
queries, allowing variation on trend analysis queries and flexibility in comparing
distributions over different time-based divisions of the document collection.

Presentation Layer – GUI and Visualization Tools

Patent Researchers offers patent professionals an extremely rich selection of graphi-
cal browsing and visualization tools. Queries are all performed from GUI screens that
make it possible for users to populate search input variables from either pull-downs
or pop-up hierarchies of entities, facts, events, and categories appropriate as input
to the query. Almost all queries in the system – including preconfigured queries –
support various constraints that can be chosen from scroll-bars or pull-downs.

Users can browse hierarchies of categories, entities, facts; and events. From many
of the hierarchy browser screens, patent professionals can pull up various GUI-type
query screens and use highlighted elements of a hierarchy to populate queries – that
is, users can easily move from browsing the hierarchies to executing queries based
on information discovered while browsing.

In addition, users can pull up full or partial listings of all patents in Patent
Researcher’s document collection and browse these listings by patent title. From
this Title Browser, patent professionals can shape the ordering of patents within the
browser by a several parameters, including date, category, and assignee. By clicking
on any title in the title browser, a user can be brought to either an annotated view

300 Text Mining Applications

External defibrillator

Agilent Technologies, Inc.

Medtronic Physio-Control Manutac

ZMO Corporation

Heartstream Inc

SurvivaLink Corporation

UAB Research Foundation

Hewlett-Packard Company

Pacesetter, Inc.

InControl, Inc.Jamchief khosrow

Medical Research Laboratories, Inc.

Laendal Medical Corp.

Defibtech LLC

Cardiac Pacemakers Inc.

Laerdel Medical AS

Physio-Control Corporation

Physio-Control Manufacturing Cor...

Kanindyle Philips Electronics...
Cardiac Science Inc.

Koninkl Philips Electronics...

Figure XII.26. A Patent Researcher spring graph of concepts associated with the concept

“external defibrillator.” (Courtesy of the ClearForest Corporation and Joseph F. Murphy.)

of the full text of the associated patent document or a URL link to the actual patent
document on the U.S. Patent and Trademark Office Web site.

Upon executing a formal query, a user of Patent Manager will receive the answer
set in a default table-view format. Even trend data in the result sets from trend
analysis queries are available in a table view.

From this table view, a patent professional can perform a few functions. First, he
or she can generate a visualization of the data in a result set. Second, the user can
access a pop-up query screen and reexecute the query with different input variables
or constraints. Third, the user can click on a row in the table view to move to a
pop-up of the Title Browser with a listing of relevant patents, from which he or she
can navigate to the full text of a patent. Finally, a comma-delimited file of the data
displayed in the table view can be downloaded.

In addition to basic histograms, circle graphs (as relation or association graphs),
and simple concept graphs common to text mining applications (and seen in Indus-
try Analyzer), Patent Researcher also supports the following visualization types:
circle graphs (as category graphs), line- and histogram-based trend graphs, spring
graphs, and multigraph and hybrid circle graph visualizations. Figure XII.26 shows
an example of a Patent Researcher spring graph.

All visualizations implement a consistent point-and-click paradigm that allows a
user to highlight any point in a graph and click to navigate to actual patents related
to the highlighted entity, fact, event, or category. Typically, when a highlighted node
in a visualization is clicked, the Title Browser pop-up is initiated. From this pop-up,
a user can either elect, as usual, to click on a particular patent title and go to an
annotated version of the patent text in Patent Researcher’s document collection or
click on the URL for the live version of the appropriate patent on the U.S. Patent
and Tradmark Office’s official Web site.

XII.3.2 Application Usage Scenarios

Patent Researcher has several common usage scenarios. A brief review of a few of
these from the perspective of the patent professional can be useful for understanding

XII.3 A “Horizontal” Text Mining Application 301

Figure XII.27. Distribution analysis query screen. (Courtesy of the ClearForest Corporation

and Joseph F. Murphy.)

how text mining techniques can be leveraged to provide solutions to real-world
business problems involving the management of intellectual property.

Looking at the Frequency Distributions among Patents

in the Document Collection

Among the most basic and common tasks that patent professionals perform is the
review of large numbers of patents to discern the frequency of patent activities
among companies with respect to a given area of technology or business focus. Patent
Research makes such a review a simple and easy process for patents in its collection.

In a typical scenario, a patent manager might be interested in exploring the dis-
tribution of patents among assignees in the field of external defibrillators. First, he or
she would execute a distribution analysis query for all assignees with relevant patents
(see Figure XII.27).

After executing the query, the user would receive a table view of all assignees
ordered according to the number of patents they had been issued in the document
collection. From this screen, a quick histogram graphically demonstrating the distri-
bution pattern could be generated. The resulting graph is shown in Figure XII.28.

This graph shows that SurvivaLink, InControl, and Heartstream are the top three
assignees for external defibrillator patents in the document collection with Medtronic

and Agilent Technologies rounding out the top five. Patent Researcher’s visualizations
are highly interactive, and thus by clicking on either one of the assignee names on
the left side of the graph or one of the histogram bars on the right, a user is given a
choice of editing his or her original query and generating a refreshed graph for the
new search results or of seeing a Title Browser listing of all patents connected to the
assignee chosen.

Let us say our user clicks on the fourth-place assignee, Medtronic, and chooses
to see a Title Browser listing Medtronic’s patents. A Title Browser in a pop-up like
the one illustrated in Figure XII.29 will then appear.

After navigating through the list of patents, the user could select all and see a
listing that includes a few descriptive sentences extracted from each patent as an
aid to browsing. The user could also click on a patent and go either to an annotated

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

S
u
rv

iv
a
L
in

k
 C

o
rp

o
ra

ti
o
n

In
C

o
n
tr

o
l
In

c
.

H
e
a
rt

s
tr

e
a
m

 I
n
c
.

H
e
d
tr

a
n
c
 I
n
c
.

A
g
ile

n
t
T
e
c
h
n
o
lo

g
le

s
 I
n
c
.

K
a
n
in

d
y
le

 P
h
ili

p
 E

le
c
tr

o
n
ic

 N
.V

.

C
a
rd

ia
c
 P

a
c
e
m

a
k
e
rs

 I
n
c
.

M
e
d
tr

o
n
ic

 P
h
y
s
io

-C
o
n
tr

o
l
M

a
n
u
fa

c
tu

ri
n
g
..
.

In
te

rm
e
d
ic

s
 I
n
c
.

G
a
h
ra

n
i
L
td

.

Z
M

O
 C

o
rp

o
ra

ti
o
n

P
a
c
e
s
a
tr

e
 I
n
c
.

V
e
n
ln

le
c
 I
n
c
.

U
A

B
 R

e
s
e
a
rc

h
 F

o
u
n
d
a
ti
o
n

A
n
p
a
io

n
 C

o
rp

.

P
h
y
s
io

-C
o
n
tr

o
l
C

o
rp

o
ra

ti
o
n

P
h
y
s
io

-C
o
n
tr

o
l
M

a
n
u
fa

c
tu

ri
n
g

L
n
c
o
c
 i
n
c
.

C
a
rd

ia
c
 S

c
ie

n
c
e
 I
n
c
.

C
P

R
X

L
L
C

D
u
k
e
 U

n
iv

e
rs

it
y

M
e
d
ic

a
l
R

e
s
e
a
rc

h
 L

a
b
o
ra

to
ri

e
s
,
In

c
.

G
a
u
m

a
rd

 S
c
ie

n
c
e
,
In

c
.

A
n
g
e
io

n
 C

o
rp

.
(A

s
s
ig

n
e
e
)

F
ig

u
re

X
II
.2

8
.

H
is

to
g
ra

m
o
f

re
s
u
lt
s

fr
o
m

d
is

tr
ib

u
ti
o
n

q
u
e
ry

fo
r

is
s
u
e
d

p
a
te

n
ts

b
y

a
s
s
ig

n
e
e
.

(C
o
u
rt

e
s
y

o
f

th
e

C
le

a
rF

o
re

s
t

C
o
rp

o
ra

ti
o
n

a
n
d

Jo
s
e
p
h

F.
M

u
rp

h
y.

)

302

XII.3 A “Horizontal” Text Mining Application 303

Figure XII.29. Patent Researcher’s title browser showing a listing of relevant patents. (Cour-

tesy of the ClearForest Corporation and Joseph F. Murphy.)

full-text version of the patent in the document collection or to the URL for the official
patent text at the U.S. Patent and Trademark Office Web site (see Figure XII.30).

Exploring Trends in Issued Patents

Another usage scenario commonly encountered in patent analysis activities is explor-
ing how patterns of patent issuance (or application) for particular technologies
evolve. Understanding such trends can be critical to deciding whether a company
should develop its own technology, patent its own technology, or attempt to license
another company’s technology. These trends can also show whether the number of
new patents is rising, plateauing, or falling, indicating the current strength of interest
in innovation for a particular technology area.

A patent manager might interpret a steadily increasing, multiyear trend in patents
related to a technology that his or her client company is developing as encouraging
because it shows a growing interest in related business areas. Conversely, a precipitous
recent fall in the number of issued patents for a technology that comes on the heels
of a sudden spike might indicate some sort of problem; perhaps a small number
of patents have dominated the business area, or the underlying business demand
for this technology area has cooled or even disappeared. Often, in answering these
questions, it is useful to be able to compare trend lines for several different related
events within the same visualization. Patent Researcher provides such trend analysis
capabilities.

A sample patent analysis problem might involve a patent manager’s wanting to see
the trends for two different defibrillator technologies – “biphasic” and “auto external

304 Text Mining Applications

Figure XII.30. The full-text version of a patent at the U.S. Patent and Trademark Office Web

site.

defibrillation” devices – from 1984 to the present. Further, the patent manager might
want to compare these two trends against a trend line showing all the defibrillator
patents issued to a single company, Medtronic, over the same period. Because patent
documents provide very clear date-related information for several events – perhaps
most notably patent application and patent issuance – preprocessing operations can
comprehensively tag a document collection with the type of date-related information
that allows analysis of trend information across documents – and generally facts and
events as well – in the collection.

In this case, the user would first go to the trend analysis query screen and set up the
simple parameter of this search. The result set would initially be provided in a table
view with rows representing one of the search concepts (auto external defibrillation,
biphasic, Medtronic) and columns representing quarters. Columns could be set in
increments as granular as one day or as broad as one year. The user could then elect
to view the data as a line-based trend graph (see Figure XII.31).

The user can set the graph to show a version of the table view at the bottom
of the trend graph and examine the two views at the same time. The user can also
scroll left or right to see the full extent of the timeline or call up his or her query
screen again to change any of the parameters of the original search. Lines in the
graph can be shown in different colors defined in a key at the bottom left part of the
screen.

For clarity of visualization, Patent Researcher can bundle related terms together
under a single label. In the example shown within Figure XII.32, the second and third
searched-for concepts (biphasic and Medtronic) are groupings of concepts under
one label. This capability is generally important in text mining applications but is

Is
s
u

e
 D

a
te

O
n

e
 o

f
a

u
to

e
x
te

rn
a

ld
e

fi
b

O

n
e

 o
f

b
ip

h
a

s
ic

te
rm

s
O

n
e

 o
f

P
h
y
s
io

-C
o

n
tr

o
l
M

a
n
u

fa
c
tu

ri
n

g
 C

o
rp

o
ra

ti
o

n
,

P
h
y
s
io

-C
o

n
tr

o
l
C

o
rp

o
ra

ti
o

n
,

M
e

d
tr

o
n

ic
 P

h
y
s
io

-C
o

n
tr

o
l.
..
 M

e
d

tr
o

n
ic

 P
h
y
s
io

-C
o

n
tr

o
l
M

a
n
u

fa
c
tu

ri
n

g
 C

..
.

10/1/2003

4/1/1997

10/1/1990

4/1/1984

0123456789

1
0

1
1

1
2

Number of Patents

F
re

q
u

e
n

c
y
 o

f
Is

s
u

a
n

c
e

 o
f

A
u

to
E

x
te

rn
a

lD
e

fi
b

ri
lla

to
r,

 B
iP

h
a

s
ic

 a
n

d
 M

e
d

tr
o

n
ic

 P
a

te
n

ts

F
ig

u
re

X
II
.3

1
.

L
in

e
-b

a
s
e
d

tr
e
n
d

g
ra

p
h
.
(C

o
u
rt

e
s
y

o
f

th
e

C
le

a
rF

o
re

s
t

C
o
rp

o
ra

ti
o
n

a
n
d

Jo
s
e
p
h

F.
M

u
rp

h
y.

)

305

Is
s
u
e
 D

a
te

10/1/2003

4/1/1997

10/1/1990

10/1/1990

4/1/1984

0123456789

1
0

1
1

1
2

Number of Patents

O
n

e
 o

f
a

u
to

e
x
te

rn
a

ld
e

fi
b

O

n
e

 o
f

b
ip

h
a

s
ic

te
rm

s
O

n
e

 o
f

P
h
y
s
io

-C
o

n
tr

o
l
M

a
n
u

fa
c
tu

ri
n

g
 C

o
rp

o
ra

ti
o

n
,

P
h
y
s
io

-C
o

n
tr

o
l
C

o
rp

o
ra

ti
o

n
,

M
e

d
tr

o
n

ic
 P

h
y
s
io

-C
o

n
tr

o
l.
..
 M

e
d

tr
o

n
ic

 P
h
y
s
io

-C
o

n
tr

o
l
M

a
n
u

fa
c
tu

ri
n

g
 C

..
.

F
re

q
u

e
n

c
y
 o

f
Is

s
u

a
n

c
e

 o
f

A
u

to
E

x
te

rn
a

lD
e

fi
b

ri
lla

to
r,

 B
iP

h
a

s
ic

 a
n

d
 M

e
d

tr
o

n
ic

 P
a

te
n

ts

F
ig

u
re

X
II
.3

2
.

H
is

to
g
ra

m
-b

a
s
e
d

tr
e
n
d

g
ra

p
h
.
(C

o
u
rt

e
s
y

o
f

th
e

C
le

a
rF

o
re

s
t

C
o
rp

o
ra

ti
o
n

a
n
d

Jo
s
e
p
h

F.
M

u
rp

h
y.

)

306

XII.4 Life Sciences Research 307

particularly so in applications like Patent Researcher, in which many technical terms
and corporate entity names may actually refer to the same real-world entity (or be
more useful grouped together on an ad hoc basis because the terms belong to some
logical set interesting to the user).

Of course, a patent manager may also want to look at the same trend data in a way
that shows the cumulative number of patents for all search-on entities while also mak-
ing it visually clear what rough percentage each entity makes up of this cumulative
number. For this, the patent manager could choose to generate a histogram-based
trend graph. Figure XII.32 shows an example of this type of graph.

In Figure XII.32, a portion of the table view of the concept-occurrence data is still
viewable at the bottom of the screen. Patent Researcher allows a patent manager to
move back and forth between the two trend graph visualization types or to generate
each in a separate window to permit visual comparisons.

XII.3.3 Citations and Notes

Patent Researcher is not a commercial product. However, it has been partly based
on feedback provided by ClearForest Corporation on real-world, commercial uses
of the company’s Text Analytics Suite product by patent professionals.

Ideas and input for the usage scenarios come from the work of patent attorney
Joseph Murphy using the ClearForest Text Analytics Suite product. Joseph Murphy’s
Web site can be found at <www.joemurphy.com>.

XII.4 LIFE SCIENCES RESEARCH: MINING BIOLOGICAL PATHWAY

INFORMATION WITH GENEWAYS

GeneWays, Columbia University’s ambitious application for processing and mining
text-based documents for knowledge relating to molecular pathways presents a con-
trast to Industry Analyzer and Patent Researcher. Whereas Industry Analyzer and
Patent Researcher have architectures that exhibit a relatively balanced emphasis
on preprocessing, core mining algorithms, and presentation-layer elements (with a
somewhat less aggressive emphasis on background knowledge and refinement tech-
niques), GeneWays emphasizes complex preprocessing and background knowledge
components with significantly less focus – at least up to the present – on query algo-
rithm, presentation-layer, and refinement elements. These differences derive from
several difficult challenges that arise in processing life sciences research documents
containing molecular pathways information.

The GeneWays application is an attempt to build a comprehensive knowledge
discovery platform using several processes for high-quality extraction of knowledge
from research papers relating to the interaction of proteins, genes, and messenger
(mRNA). GeneWays’ RNA core mission is the construction – or reconstruction
– of molecular interaction networks from research documents, and the eventual
aim is to include information on all known molecular pathways useful to biomedi-
cal researchers. As a first step, the application is focused on molecular interactions
related to signal-transduction pathways.

308 Text Mining Applications

D
o
w

n
lo

a
d
 A

g
e

n
t

Research
Documents
from WWW

Preprocessing Routines

User

Term Identifier
TM &

Presentation
(‘CUtenet’)

Visualization,
Browsing,

Query
Construction,

Background
Knowledge

Sources

Homonym/Synonym
Resolver

Term Classifier

Parsing
Engine

Relationship
Learner

S
im

p
lif

ie
r

Interaction

Database

Figure XII.33. GeneWays’ functional architecture.

XII.4.1 GeneWays: Basic Architecture and Functionality

From published sources, GeneWays seems to follow along the lines of the same
rough architecture for a text mining system shown in Industry Analyzer and Patent
Researcher. However, GeneWays is a complex application, and specialized nuances
appear in many elements of this architecture when the system is examined in any
detail. A generalized view of this architecture can be seen in Figure XII.33.

Data and Background Knowledge Sources

Raw data for GeneWays comes from English language biomedical research docu-
ments on molecular pathways that are downloaded from online World Wide Web
resources; these documents are saved first in HTML and then converted into a basic
XML format. After GeneWays’ extensive array of preprocessing operations are run
against this still semiraw data, processed data are stored in an interaction database
that combines entity information with relationship information to allow users to
interact complex network-type models of molecular-level protein interactions.

GeneWays uses several aids to providing background knowledge to inform its
various operations – particularly preprocessing operations. The GenBank database
is used to furnish expert knowledge for protein extraction activites at the term level
in the Term Identifier; GenBank is supplemented by information from the Swiss-
Prot database for further tagging activities in GeneWays’ Parsing Engine GENIES
(GENomics Information Extraction System), which performs a few additional tag-
ging roles and acts as the GeneWays’ information extraction utility. In addition,
GENIES has the ability to make use of external lexicons and formal grammars
appropriate to life sciences applications.

Preprocessing Operations

Textual data containing molecular pathways information have been described as
“noisy data” because it is not a straightforward or simple task to identify enti-
ties or interaction-type relationships reliably from scientific literature. GeneWays’
preprocessing operations represent one of the most advanced attempts to extract

XII.4 Life Sciences Research 309

GENIES Term
Tagger

Pre-Processor Parser

Error
Recovery

GenBank Swiss-Prot
External

Lexicon

Lexical

Grammar

Pre-Tagged

and
Disambiguated

Text

Structured Text

(Semantic Tree

Structure
Showing

Nested
Relationships)

GENIES

Figure XII.34. GENIES information extraction subsystem.

information and allow scientists to explore high-quality models of protein interac-
tion networks based on natural language processing techniques.

After biomedical literature has been culled from various Web sources, it is sorted
and converted into a basic, tagged XML-like format. GeneWays’ first major prepro-
cessing operation is the Term Identifier module, which extracts biologically significant
concepts in the text of documents, such as the names of proteins, genes, processes,
molecules, and diseases. After an initial set of such concepts has been identified,
GeneWays runs the results through its Synonym/Homonym Resolver, which attempts
to resolve the meaning of a particular entity by assigning a single “canonical” name to
each concept’s multiple aliases. The Term Classifier acts as a series of disambiguation
operations are next run against these results of the Synonym/Homonym Resolver in
an effort to resolve any sense ambiguities.

After these three preprocessing operations have been run, GENIES begins its
processing tasks. GENIES combines several processing activities in its operations; a
generalized architecture can be seen in Figure XII.34.

The GENIES system is based on the MedLEE medical NLP system and incorpo-
rates both rules and external knowledge sources in its sophisticated term-tagging. It
also extracts information to output semantic trees – essentially, a machine-readable
format identifying nested relationships with normalized forms of verbs (e.g., bind,

binding, and binder).
The final preprocessing step for GeneWays is to take the nested relationship

information output by GENIES and run a Simplifier process. This Simplifier converts
nested relationships into a collection of more useful binary statements of the form
“interleukin-2 activates interleukin-2 receptor,” which is a formal statement that
includes two entities with an action verb. These statements are then saved directly
into GeneWays’ Interaction Database.

One final component of the preprocessing operations of GeneWays is the
system’s Relationship Learner module. This takes the output of the Term
Identification/Synonym-Homonym/Term Classifier processes and identifies new
semantic patterns that can be examined by system developers and later incorporated

310 Text Mining Applications

into GENIES. However, the Relationship Learner is only run during system improve-
ment and maintenance periods and thus is not a normal part of production data
processing operations.

Core Mining Operations and Presentation Layer Elements

At present, GeneWays’ query functionality appears primarily contained in a stand-
alone front-end program called CUtenet, which, at the time of this writing, appears
to offer limited but useful query functionality.

The front-end “portal” to the GeneWays Interaction Database allows a user to
retrieve interactions that answer particular query parameters and view these inter-
actions in graphical form. An example of GeneWays’ GUI for displaying results of
an interaction query can be seen in Figure XII.35.

CUtenet can generate both full-color, three-dimensional visual representations
of molecular pathways and two-dimensional models for faster rendering. The front
end appears to be able to generate both simple concept graphs and complex network
representations (see Figure XII.36). By interacting with the visualization (i.e., by
clicking on edges connecting entities), a user can jump to the underlying binary
statement and either build new queries around that statement or jump to the actual
online full-text version of the article(s) from which the interaction came (this assumes
that the user has an appropriate password for the journals or online sources hosting
the online article).

CUtenet also supports a fair amount of additional functionality. For instance,
users can save images in various formats ranging from VRML to BMP, JPEG, PNG,
and Postscript. Users can edit the layout and content of molecular map images. More
importantly, they can actually edit the original pathway data in text format. CUtenet
also supports an interface to allow a user to upload a single article into GeneWays
for processing and storage of its molecular pathway information in the GeneWays
Interaction Database; at the end of processing, the user can see a visual model of the
molecular interaction in the article that he or he has input to the system.

XII.4.2 Implementation and Typical Usage

The GeneWays implementation hosted at Columbia University has extracted molec-
ular pathways information related to signal transduction from more than 150,000
articles. The Interaction Database has been described as containing several hundred
unique binary molecular pathways statements.

Rzhetzky, Iossifov, et al. (2004) describes a typical user interaction with the appli-
cation. If a user is interested in exploring interactions involving the protein collagen,
he or she would enter the a query into CUtenet for all statements (binary formal
statements each describing a formal protein-to-protein interaction) in the Interac-
tion Database involving the concept collagen. The query would return a listing of all
1,355 interactions in the database involving collagen.

The user can then choose to use GeneWays’ primary practical refinement filter
based on a simple threshold parameter. This threshold filter allows a user to filter
out all interaction statements that do not appear at least a certain number of times
in unique sentences within the articles from which the Interaction Database was
created.

XII.4 Life Sciences Research 311

Figure XII.35. CUtenet’s “action table” – A query-results GUI for interaction information found

in articles. (Courtesy of Andrei Rzhetsky.)

If the user set the threshold requirement to request only interactions that
appeared in the database at least 15 times from different unique sentences, the query
would bring back a result set of 12 interactions. The user could then use CUtenet to
generate a visualization like the one seen in Figure XII.37.

By clicking on a given edge in the graph the user can see the specific interac-
tion statement contained in the Interaction Database. Clicking a second time shows
the exact sentence in the specific article from which this interaction was originally
extracted.

This is the primary query type supported by the system. However, by changing
the input entity being searched for among statements and manipulating the simple
threshold filter, a user can navigate through the entire molecular interaction model
represented by the ontology-like Interaction Database.

312 Text Mining Applications

Figure XII.36. A CUtenet dimensional visualization showing the PPAR protein’s interactions

with other proteins. (Courtesy of Andrei Rzhetsky.)

mmp-2

syk

app

decom

callagenise

vwl

shamein

???

???

Collapen

Figure XII.37. Interactions involving Collagen that appear in at least 15 independent sen-

tences. (From Rzhetsky, Iossifov, et al. 2004.)

XII.4 Life Sciences Research 313

XII.4.3 Citations and Notes

General articles relevant to text mining for exploring molecular pathways include
Fukuda et al. (1998); Craven and Kumlien (1999); Rindflesch, Hunter, and Aronson
(1999); Salamonsen et al. (1999); Rindflesch et al. (2000); Stapley and Benoit (2000);
Dickerson et al. (2003); Pustejovsky et al. (2002); Caldon (2003); Yao et al. (2004);
and Zhou and Cui (2004).

GeneWays is a system in continuing development. Articles describing elements
of the GeneWays project include Koike and Rzhetsky (2000); Krauthammer et al.
(2000); Rzhetsky et al. (2000); Hatzivassiloglou, Duboue, and Rzhetsky (2001); and
Rzhetsky et al. (2004). Examples in this section are taken from Rzhetsky et al.
(2004), as is Figure XII.35. The generalized architectural views presented in Fig-
ures XII.32 and XII.33 are derived in particular from Rzhetsky et al. (2000), Hatzi-
vassiloglou et al. (2001), and Rzhetsky et al. (2004). Information on the National
Center for Biotechnology Information’s (NCBI) Genbank database can be found
at <http://www.ncbi.nlm.nih.gov/Genbank/>. A good description of the Swiss-Prot
database is contained in Bairoch and Apweiler (2000).

APPENDIX A

DIAL: A Dedicated Information Extraction

Language for Text Mining

A.1 WHAT IS THE DIAL LANGUAGE?

This appendix provides an example of a dedicated information extraction lan-
guage called DIAL (declarative information analysis language). The purpose of the
appendix is to show the general structure of the language and offer some code exam-
ples that will demonstrate how it can be used to extract concepts and relationships;
hence, we will not cover all aspects and details of the language.

The DIAL language is a dedicated information extraction language enabling
the user to define concepts whose instances are found in a text body by the DIAL
engine. A DIAL concept is a logical entity, which can represent a noun (such as
a person, place, or institution), an event (such as a business merger between two
companies or the election of a president), or any other entity for which a text pattern
can be defined. Instances of concepts are found when the DIAL engine succeeds
in matching a concept pattern to part of the text it is processing. Concepts may
have attributes, which are properties belonging to the concept whose values are
found in the text of the concept instance. For instance, a “Date” concept might
have numeric day, month, and year attributes and a string attribute for the day of
the week.

A DIAL concept declaration defines the concept’s name, attributes, and option-
ally some additional code common to all instances of the concept. Each concept may
have several rules, each of which corresponds to a different text pattern and each of
which finds an instance of the same concept. Because each pattern is different, each
rule will have separate code for handling that specific pattern.

A text pattern is a sequence of text elements such as string constants, parts of
speech (nouns, verbs, adjectives, etc.), and scanner elements (such as a capital word
or a number) as well as other concepts and elements.

315

316 DIAL: A Dedicated Information Extraction Language for Text Mining

The following is a simple example of patterns for finding instances of “Person”:

concept Person{

attributes:

string Title;

string FirstName;

string MiddleName;

string LastName;

};

rule Person {

pattern:

”mr.”->title Capital->first Capital->last;

actions:

Add(Title<-title,FirstName<-first, LastName<-last);

};

rule Person {

pattern:

”dr.”->title Capital->first Capital->last;

actions:

Add(Title<-title,FirstName<-first, LastName<-last);

};

rule Person {

pattern:

Capital->first MiddleNameConcept->mid Capital->last;

actions:

Add(FirstName<-first, MiddleName<-mid, LastName<-last);

};

In this example, the concept “Person” has three different rules (with the same name
as the concept), each of which has a different text pattern. Each rule finds an instance
of “Person.” Note that not all patterns fill all attributes of “Person.” For instance, in
the first rule, there is no value for the “MiddleName” attribute, whereas in the last
rule there is no value for the “Title” attribute.

A.2 INFORMATION EXTRACTION IN THE DIAL ENVIRONMENT

There are many types and methods of information extraction. In the DIAL language,
text patterns are defined, and an automated search for these patterns is executed.
When a match for a pattern is found, the text matching the pattern is marked as an
instance of the particular pattern’s concept.

A DIAL module is a collection of concepts and their rules contained in one or
more DIAL code files but defined by a single DIAL module file. Concepts grouped
in the same module will usually have some common characteristic. For instance,
there might be a module for finding different types of financial entities that con-
tains the concepts of those entities and any utility concepts they rely on. Grouping
DIAL code into different modules makes it easier to understand and maintain each

A.2 Information Extraction in the DIAL Environment 317

IE Task

IE Discovery Module

Extraction Server

Figure A.1. IE task as run by the extraction server.

module, allows a single module to be changed and recompiled without having to
recompile any other modules, and enables reuse of the module in several Discovery
Modules.

A DIAL Discovery Module is a collection of several DIAL modules and plug-ins,
all of which are run on all text documents in order to perform a complete information
extraction process. The DIAL language’s rules are developed in a dedicated develop-
ment environment called ClearLab. This is a GUI application that enables editing and
compiling of DIAL rules as well as running the information extraction process using
these rules. One can then examine the results of the information extraction process
and modify the rules where necessary. This is similar to the debugging process for
any programming language.

Once a DIAL Discovery Module has been developed, it can be used by a tag-
ging server that has several components for text processing, including categoriza-
tion, pattern-based extraction, topological extraction, and so on. The component
that performs information extraction based on a DIAL Discovery Module is called
IE Task. Figure A.1 describes the operation of the IE Task in the tagging server
environment.

1. A document is sent to the Extraction Server for processing.
2. The Extraction Server then sends the document to the IE task for information

extraction.
3. The IE task applies an IE Discovery Module, as defined for it by the Extraction

server, to the document.
4. Information extraction results are returned from the IE task to the Extraction

server.
5. The results are written to the Event database.
6. The results may then be accessed by a client application – for example, either a

graphical application such as any Text Analytics application or a user-supplied
application.

318 DIAL: A Dedicated Information Extraction Language for Text Mining

A.3 TEXT TOKENIZATION

Before performing pattern matching on a text, the DIAL engine requires that the
text be tokenized. This is a process whereby the text is divided into units, most of
which correspond to words in the language in which extraction is being performed.
This is done before any pattern matching is carried out because pattern matching
relies on the existence of tokens in the Shared Memory (SM). Here is an example of
how the standard DIAL tokenizer operates on text:

Untokenized text: “The CEO of U.S. Motors met today with James A. Smith, the
founder of Colorado Engines.”

Tokenized text: “the ceo of u.s. motors met today with james a. smith 0 1 2 3 4 5
6 7 8 9 10 11 12 13 14, the founder of colorado engines.” 15 16
17 18 19 20 21

Note that tokenized text omits capitalization and that punctuation and other
nonalphanumeric characters are also tokens. Token numbering is zero based.

When instances of concepts are found, they are stored with their offsets and
lengths (in tokens) in relation to the entire text body being processed. For example,
if our text body were the tokenized sentence above, we would store two instances of
companies: “U.S. Motors” at token offset 3, with a length of 5 tokens, and “Colorado
Engines” with a token offset of 19 and a length of 2 tokens.

The standard DIAL English tokenizer, provided with all DIAL products, also
determines which scanner properties apply to each token. Scanner properties are
attributes of a single token’s characters such as Capital (begins with a capital letter),
Number (expresses a numeric value), Alpha (contains only alphabet characters), and
so on.

A.4 CONCEPT AND RULE STRUCTURE

This section presents a brief outline of the concept and rule structure of the DIAL
code. The details of each code section, its use and various options, are omitted to
keep the description simple.

The DIAL code consists mostly of concept and rule code blocks. In a concept code
block, we define the name and attributes of the concept as well as some operations
and settings that we wish to be common to all instances of the concept.

A concept may have one or more rule code blocks with the same name as the
concept. These are the concept’s rules. A concept’s rules determine what patterns to
search for when trying to find an instance of the concept and how to add an instance
of the concept and with which attribute values.

Both concept and rule blocks have sections with different names, each serving a
certain purpose. Sections are headed by the section name followed by a colon.

The following table summarizes the different sections and their associated con-
cept or rule code blocks:

A.4 Concept and Rule Structure 319

Code

Block Section Description Mandatory

Concept Attributes Defines the names and types of concept

attributes. These are usually filled with

values from the concept instance’s matching

text.

No

Concept Guards Similar to rule constraints, concept guards are

logical conditions on the concept attributes’

values that must be met. If they are not, the

instance is discarded.

No

Concept Actions Code operations to perform after finding a concept

instance. Concept actions are performed only if

all the concept’s guard conditions are true or if

the concept has no guards.

No

Concept Internal A section for defining internal concepts. These are

concepts that can be used only within the

scope of the concept in which they are defined

and any inheriting concepts.

No

Concept Function A section for defining add-on (Perl) functions that

can be used only in the scope of the concept in

which they are defined and any inheriting

concepts.

No

Concept Context Defines the text units in which to search for the

concept instances. Usually this section will not

appear, and then the concept will be searched

for within the module’s context.

No

Concept Dependencies Permits definition of an explicit dependency of

one concept on another.

No

Rule Pattern Defines the text pattern to match when searching

for a concept instance.

Yes

Rule Constraints Defines logical conditions to apply to values

extracted from the pattern match. If these

conditions are not met for a specific match, the

actions block of the rule will not be performed

on that match.

No

Rule Action Code operations to perform after finding a pattern

match. Among other things, this is where

concept instances are added. Rule actions are

performed only if all the rule’s constraints are

met or if the rule has no constraints.

Yes

A.4.1 Context

When the DIAL engine searches for concept instances, it does so within a certain
context. The most commonly used context is a sentence, for most concept instances
are contained within a single sentence. A “Sentence” concept is defined, and instances
of this concept are found and inserted into the SM via a standard DIAL plug-in. If
a concept is searched for within the context of a “Sentence,” each sentence instance
is searched separately for the concept instances. This means that an instance’s entire

320 DIAL: A Dedicated Information Extraction Language for Text Mining

token range must be within a single “Sentence” and cannot overlap with two or more
“Sentences.”

The section for defining the module context is located in the module file. The
module context is the default context for all concepts in that module.

Any context (both module context and concept context) may be a single concept
name or a combination of concept names and logical operators (AND, OR, NOT).

Most concepts use the module context. If a concept’s context section is missing or
empty, that concept will use the module context. However, it is possible to override
the module context for a specific concept and set it to be any concept required.
For instance, a user might wish to search not within sentences but within the entire
document or within each two or three consecutive sentences. Another example might
be to apply certain concepts only to the document’s title (on the assumption that the
title has a recognizable format) or to identify tables of numbers within a document
and apply certain concepts only to them. Some examples are shown in the following
code samples:

concept TableColumnTotal{

context:

NumberTable; //NumberTable is the name of a defined concept

. . . };

concept TitlePerson {

context:

Title;// Title is the name of a concept

. . . };

concept CompanyPersonnel {

context:

NOT ContactSection; //avoid searching the contact section of a document for

//company personnel

. . . }

concept DocumentSubjects {

context:

Title OR FirstParagraph; //search only the title and first paragraph of

//each document for its subjects

. . . };

concept TitleSubjects {

context:

Title AND DocumentSubjects; //look only at document subjects found

//in the title

. . . };

A.5 PATTERN MATCHING

Patterns are at the core of pattern-based extraction logic. The first operation to be
performed on a rule is an attempt to match its pattern. Only if the pattern is matched
is the rest of the rule code applied.

A.6 Pattern Elements 321

A text pattern is a formal and general definition of what an instance of the con-
cept looks like. A pattern is a sequence of pattern elements (which define types of
text elements) with or without pattern operators. Pattern operators mostly denote
something about the number of times the elements should appear or a relationship
between pattern elements. For a text to match a pattern, it must match each of the
pattern elements in the order in which they appear in the pattern.

For example, the pattern Number “-” Number “-” Number “-” Number would
be matched by the text: “1-800-973-5651.”

On the one hand, a pattern should be general enough to match many instances
of a concept. On the other, if a pattern is too general, it might match text that is not
really an instance of the concept.

Consider the following examples of patterns for Person:

The pattern

“Mr. John Smith”

will certainly correctly identify all people referred to as “Mr. John Smith” but nothing
else. This pattern is too specific.

The pattern

“Capital Capital”

will probably match many names of people but will also match such texts as “Gen-
eral Motors,” “Information Extraction,” and “Buenos Aires.” This pattern is too
general.

The pattern

“Mr. Capital Capital”

however, is a good example of a general pattern that will catch many of the required
instances without mistakenly matching texts that are not names of people. It can be
further enhanced as

“Mr. Capital Capital? Capital”,

where the Capital? element stands for an optional middle name. However, this pat-
tern will match only male people whose title happens to be “Mr.” Additional rules
would still be needed if this pattern were used.

Clearly, pattern writing may require a great deal of fine-tuning and iterative
improvement to ensure that all the required instances are found.

A.6 PATTERN ELEMENTS

A pattern element is a type of textual entity that may appear in a pattern. The patterns
are the core elements that allow defining a pattern. A variety of options are provided
to describe pattern elements, including exact string constants (e.g., “George Bush”);
wordclasses (i.e., predefined lists of words or phrases); other concept names, regular
expressions, scanner properties (e.g., AllCaps, digits, etc.); and wild cards.

A pattern element is a type of textual entity that may appear in a pattern.

322 DIAL: A Dedicated Information Extraction Language for Text Mining

The pattern elements are as follows:

� String Constants

� Wordclass Names

� Thesaurus Names

� Concept Names

� Character-Level Regular Expressions

� Character Classes

� Scanner Properties

� Token Elements

A.6.1 String Constants

String constants are elements consisting of characters surrounded by double quota-
tion marks (“ ”).

Note that a single string constant may contain several tokens. String constants
in patterns are tokenized automatically, using the tokenizer defined in the module,
which is also used on the text at runtime. This means that when the engine searches
for a string constant, it will ignore letter case and token spacing, as shown in the
example below.

When a pattern is being matched, string comparison between string constants in
the pattern and the text being matched is case insensitive. This means that, when let-
ters are compared, upper- or lowercase versions of the same character are considered
identical as follows:

Example:

Pattern Text Matching the Pattern

“U.S.A.” “U.S.A.”

“u.s.a.”

“U.S.A.”

A.6.2 Wordclass Names

Wordclass names are alphanumeric strings that have previously been declared as
wordclasses in one of the DIAL source files – either in the same module in which the
wordclass is referred to or in an imported module, which exports the wordclass. A
wordclass is a collection of words or phrases that have some common characteristic.
By convention, wordclass names start with “wc.”

Wordclass contents may be loaded dynamically from a file. The dynamic load
option is useful for wordclasses that tend to change frequently – for example, a
wordclass that contains names of companies. A wordclass that is not loaded dynam-
ically requires recompilation of its module if it is changed, but a dynamically loaded
wordclass does not.

Wordclass members are tokenized automatically so that the text is matched
against their tokenized versions.

A.6 Pattern Elements 323

A wordclass member may be one of the following:

� A single all-letter token.
� Any string surrounded by quotes.

Example:

wordclass wcPersonTitle = “mr.” “mrs.” miss “dr.” president king queen con-

gressman “prime minister”;

Pattern Text Matching the Pattern

WCPersonTitle “Mr.”

“mr.”

“Miss”

A.6.3 Thesaurus Names

Thesaurus names are alphanumeric strings that have previously been declared as
thesaurus objects in one of the DIAL source files – either in the same module in which
the thesaurus is referred to or in an imported module that exports the wordclass.

A thesaurus is like a collection of several wordclasses. Within each class, the
members are either synonyms of each other or serve some similar semantic purpose,
as in wordclasses. Thesaurus members are tokenized automatically, and thus the text
is matched against their tokenized versions.

The thesaurus head members have a special status. Within a thesaurus class, the
first member is called the “head” and is used as the identifier of the class; it may also
be used to normalize instances of the class to a single display value (canonization).
Thesauri may also be extended dynamically – that is, new classes and members of
classes may be added to a thesaurus at run time. Thesaurus contents may be loaded
dynamically from a file.

Example:

thesaurus thNationalities =

{American ”U.S.” ”U.S.A.” ” United States” }

{British English ”U.K.” ”United Kingdom” };

Pattern Text Matching the Pattern

thNationalities “American”

“u.s.a.”

“English”

324 DIAL: A Dedicated Information Extraction Language for Text Mining

A.6.4 Concept Names

Concept names are case-sensitive alphanumeric strings that have been declared as
concepts. The concepts used in concept patterns must either have already been
declared in the current module or public concepts from one of its imported modules;
otherwise, the current module will not compile.

The ability of one concept to refer to another concept in its pattern enables the
user to create very complex patterns in a concise and modular fashion. It also makes
it possible to refer to concepts in modules developed by someone else without having
to be aware of their code.

Example:
Suppose that you have defined the following concepts:

� Person – a concept for finding people.
� Position – a concept for finding professional positions, such as “CEO,” “general

manager,” “team leader,” “vice president,” and so on.
� Company – a concept for finding names of companies.

One could then write the following simple pattern for finding a person’s position in
a company:

Pattern Text Matching the Pattern

Person “is employed as” “a”? Position

“at” Company

“James White is employed as a senior

programmer at Software Inc.”

“Harvey Banes is employed as vice president

at MegaStorage”

A.6.5 Character-Level Regular Expressions

Character-level regular expressions are used relatively rarely in most Discovery Mod-
ules. They are used only when it is necessary to have control over the pattern at the
character level. Most pattern elements can be matched only on whole units of tokens.
Character-level regular expressions and character classes can find matches that con-
tain parts of tokens.

Character-level regular expressions have standard Perl-compliant syntax but
must be surrounded by ‘regexp(“ ”)’ within the pattern. Here are some examples
of metacharacters used in character-level regular expressions:

Pattern

Texts matching the

pattern

regexp(“.”) “a”, “?”, “*”

regexp(“Mc[A-Z][a-z]+”) “McDonald”, “McReady”

regexp(“h2o(co4)?[hoc0–9]*”) “h2oco4”, “h2och4o”

A.7 Rule Constraints 325

A.6.6 Character Classes

It is possible to define character classes, which are sets of character-level regular
expressions. Character classes may appear as pattern items.

Example:

charclass ccScotchIrishLastname = {“Mc[A-Z][a-z]+”,

“Mac[A-Z][a”z]+”,

“O’[A-Z][a-z]+”, . . . };

Pattern Text Matching the Pattern

ccScotchIrishLastname “McPhee”

“McPhee”

“O’Leary”

A.6.7 Scanner Properties

Scanner properties are attributes of a single token’s characters such as Capital (begins
with a capital letter), Number (expresses a numeric value), Alpha (contains only
alphabet characters), and so on.

A.6.8 Token Elements

The Token pattern element is used as a placeholder for any token. It is used when
defining a pattern in which there may be one or more tokens whose value is unim-
portant.

Example:

Pattern Text Matching the Pattern

“He said: ‘“Token+”’ and she said” He said: ‘What time is it?’ and she said

He said: ‘Miss Barker, please move my

three-o’-clock meeting to 4:30’ and

she said

A.7 RULE CONSTRAINTS

Sometimes, when writing a rule pattern, we find that the definition of the pattern is
not precise enough on its own and that additional conditions on the pattern, which
cannot be expressed by pattern elements and operators, must be added. Constraints

326 DIAL: A Dedicated Information Extraction Language for Text Mining

are conditions on pattern variables. All the constraints must have a “true” value, or
the actions section will not be performed – that is, the match will be disqualified even
though the pattern has been found.

A constraint may be composed of a single Boolean clause, the negation of such a
clause (in the format NOT(. . .) or !(. . .)), or several clauses with “AND” and “OR”
operators between them.

The following is a simple example:
Suppose we want a rule for a sequence of capital words of any length except 5.

The condition “any length except 5” cannot be expressed in a single pattern. It can
be expressed in a constraint, however, as follows:

. . .

pattern:

Capital+;

constraints:

this−match.TokenCount() != 5;

. . .

A.7.1 Comparison Constraints

The preceding example illustrates a comparison constraint. Comparison oper-
ators in DIAL4 are as follows:

==, !=, <, <=, >, >=

All comparison operators may be applied to numeric values. Only “==” (equal
to) and “!=” (not equal to) may be applied to string and phrase values. No comparison
operators may be applied to concept and list values.

Comparison operators may be used in “if” clauses as well as in constraints.

A.7.2 Boolean Constraints

If a constraint clause is a numeric value (e.g., “var.IsEmpty()” or “varNumber”), it
will be considered false if the value is zero and true otherwise.

A.8 CONCEPT GUARDS

Guards may be applied to concept attributes when a rule attempts to add a concept
instance to the SM. Only if all guard conditions are met will the instance be added
and the actions section of the concept performed.

All of the rule constraint syntax applies to concept guards as well. The differ-
ence between them is that rule constraints are applied to pattern variables, whereas
concept guards are applied to concept attribute values.

Guards enable the concept to ensure conditions on its attribute values in a central
location without having to add these conditions to each rule of the concept.

A.9 Complete DIAL Examples 327

Example:

concept Date {

attributes:

number nDay;

number nMonth;

number nYear;

guards:

(nDay >= 1) AND (nDay <= 31);

(nMonth >= 1) AND (nMonth <=12);

(nYear > 0);

};

Actions are blocks of code operations to be performed after a pattern match, in the
case of rule actions, or after adding a concept instance, in the case of concept actions.
Concept actions are not mandatory and in most cases will not be used at all. Rule
actions, however, are always used: If a rule has no actions, it will not add an instance
to the SM even if it matches the text properly and therefore will have no effect on
the Discovery Module output. The most important action a rule performs is to add
a concept instance with its appropriate attribute values. It may also perform other
actions.

All actions are performed with or on variables. Rule actions may use pattern
variables, local variables, and global variables. Concept actions may use attribute
variables, local variables, and global variables.

A.9 COMPLETE DIAL EXAMPLES

A.9.1 Extracting People Names Based on Title/Position

In the following code fragment we define two concepts. The first concept is Person-
NameStruct, which simply looks for some variation of First Name, Middle Name, and
Last Name. This concept is rather naı̈ve because it does not enforce any constraints,
and as a result the precision of extracting people names using the rules associated
with this concept would be rather poor. The second concept is Person. This concept
has the same pattern as the PersonNameStruct concept with the addition of some
constraints. The constraints (which are explained in the code) considerably increase
the precision of the concept.

wordclass wcPosition = adviser minister spokesman

president (vice president)

general

(gen.);

/∗ note that wordclass members are tokenized and entries containing multiple

tokens should be enclosed within () ∗/

328 DIAL: A Dedicated Information Extraction Language for Text Mining

concept PersonNameStruct{ //we define this concept to

//allow the code reuse

attributes:

string FirstName;

string MiddleName;

string LastName;

};

wordclass wcNamePrefix = ben abu abed von al;

/∗ common prefixes of family names ∗/

rule PersonNameStruct {

pattern:

Capital -> first (Capital ”.”?)? -> middle

((wcNamePrefix ”-”?)? Capital) ->last;

/∗ the pattern looks for 3 elements, where the 2nd element

(middle name) is optional, and the 3rd element may have an optional

prefix ∗/

actions:

Add(FirstName <- first.Text(), MiddleName <-

middle.Text (), LastName <- last.Text());
∗/ add an instance of PersonNameStruct to the Shared Memory ∗/

};

rule Person {

pattern:

Capital -> first (MiddleName -> middle)?

((wcNamePrefix ”-”?)? Capital) ->last;

constraints:

(first IS−IN wcFirstNames) OR !(middle.IsEmpty())

OR (first {1 }AFTER wcPosition);

!(first.FirstToken() IS−IN wcPosition);

/∗ The constraints filter out erroneous instances:

Either first needs to be in the lexicon of first names, or that middle is not

empty (since it is optional) or that the token preceding first was a position

In addition, we make sure that the first token of first is not part of know

position ∗/

actions:

Add(FirstName <- first.Text(), MiddleName <- middle.Text(),LastName <-

last.Text());

/∗ add an instance of Person to the Shared Memory ∗/

};

If there are several rules to a concept, then the order between rules is impor-
tant. The first rule will be applied before the second rule, and if it succeeds, it
will block the pattern’s range such that no other rules can be applied to this text
fragment.

A.9 Complete DIAL Examples 329

A.9.2 Extracting Lists of People Names Based on a Preceding Verb

We want to extract a list of people and feed them into a list variable called pList. The
pattern is looking for one of a predefined set of verbs followed by “are” or “were”
and then a list of people names separated by commas. The code extracts the list of
people and then iterates over the list to create a new instance of Person in the shared
memory for each member of the list.

concept PersonsList{};

wordclass wcCriminalIndicatingVerbs =

charged blamed arrested;

wordclass wcPluralBe = are were;

rule PersonsList {

pattern:

wcCriminalIndicatingVerbs wcPluralBe

(PersonNameStruct->> pList ”,”?)+ ”and”

PersonNameStruct ->> pList;

/∗ we are looking for a criminal verb followed by are or were, and then a list

of people (separated by commas). plist will hold the list of people by using

the->> (append to list operator)∗/

actions:

iterate (pList) begin

currPerson = pList.CurrentItem();

Add(Person, currPerson,

FirstName <- currPerson.FirstName,

LastName <- currPerson.LastName);

End

/∗

};

A.9.3 Using a Thesaurus to Extract Location Names

In this example we look for country names in the text. If the country appears in the
thesaurus it will be replaced by the canonic entry; otherwise, it will remain unchanged.
The constraint makes sure that the entry contains a capital letter.

thesaurus thsCountries;

rule Location {

pattern:

wcCountries-> the−country;

constraints:

the−country CONTAINS Capital;

actions:

canonic−country = thsCountries.GetHead(the−country);

330 DIAL: A Dedicated Information Extraction Language for Text Mining

if(canonic−country.IsEmpty())

Add(Location,this−match,”country”,

the−country.Text());

else

Add(Location,this−match,”country”,

canonic−country);

};

A.9.4 Creating a Thesaurus of Local People Names

In this example we augment the definition of the person concept with the ability to
add the name of the person to a local thesaurus. The thesaurus will contain all names
of people in the document and then can be used for anaphora resolution (as in cases
in which just the last name appears in the text after the full name of that person was
mentioned earlier).

In the action part of the rule we check if the person was added already to the
thesaurus. If the petson’s name was still not added, a new entry is created with the
full name as the leader (the canonic form) and three additional variations (first name
and last name, last name alone, and first name alone).

thesaurus thLocalPersons;

concept Person {

attributes:

string FullName;

string FirstName;

string MiddleName;

string LastName;

actions:

if

(thLocalPersons.GetHead(FullName).IsEmpty())

begin

thLocalPersons.AddSynonym(FullName.Text(), FullName);

thLocalPersons.AddSynonym(FullName.Text(), FirstName + LastName);

thLocalPersons.AddSynonym(FullName.Text(), LastName);

thLocalPersons.AddSynonym(FullName.Text(), FirstName);

end

FullName = FullName.Text();

};

A.9.5 A Simplified Anaphora Resolution Rule for Resolving

a Person’s Pronoun

In this example we illustrate a sample anaphora resolution rule. The rule will be
activated if we encounter a pronoun (Pron) whose type is person. We then look if

A.9 Complete DIAL Examples 331

there is a person name in the previous sentence. If there is a person in the previous
sentence, we resolve the pronoun to point to that person. Note that this is just one
simple rule in the overall anaphora resolution solution.

concept PersonAnaphora {

attributes:

string FullName;

};

rule PersonAnaphora {

pattern:

Pron -> p;

constraints:

p.type == ”person”;

actions:

prevSentence = this−match.Previous(Sentence);

prevPerson = prevSentence.Next(Person);

if (!prevPerson.IsEmpty())

Add(prevPerson.FullName);

};

A.9.6 Anaphoric Family Relation

In the following example we show a DIAL rule for extracting a simple pattern of
anaphoric FamilyRelation as in the following extract from a Pakistani newspaper
(October 2002):

PML(Q)’s provincial leader Amanullah Khan is contesting election from NA-17

Abbottabad-1 while his nephew Inayatullah Khan Jadoon is contesting from PF-45

under PML(N) ticket

public concept FamilyRelation {

attributes:

string Person;

string FamilyRelation;

string Person−Relative;

};

wordclass wcThirdPersonPossessPronoun = ”his” ”her”;

wordclass wcFamilyRelation = ”father” ”mother” ”son” . . .

”nephew”;

rule FamilyRelation {

pattern:

PersonAnaphora->pron //his

wcFamilyRelation->relation //nephew

wcComma? // optional comma

PersonOrPersonDetails -> relative;

332 DIAL: A Dedicated Information Extraction Language for Text Mining

//Inayatullah Khan

//Jadoon

constraints:

//pron is a relevant pronoun

pron IS−A wcThirdPersonPossessPronoun;

//make sure that the antecedent (here: ”Amanullah Khan”) isn’t empty

! pron.Antecedent.IsEmpty();

//person is never a relative of himself !

pron.Antecedent! = relative.Person;

actions:

Add(Person<-pron.Antecedent,FamilyRelation<-

Relation, Person−Relative<-relative.Person);

};

The meaning of the rule above is as follows:

� Extract a FamilyRelation instance if the following sequence was matched: A
pronoun resolved as PersonAnaphora (in earlier module) followed by a family
relation noun, followed by an optional comma, and then an instance of Person-
OrPersonDetails (a Person name or a noun phrase or an appositive clause with
person name as head).

� Subject to the constraints:

1. The pronoun is a third person possessive pronoun (“his” or “her”).
2. A resolved person (for the pronoun) was found (i.e., it is not empty).
3. The resolved person (to which the pronoun relates is not equal to the person

identified within the pattern (“relative”).

� Add one instance of FamilyRelation. The first attribute (Person) should be the
pronoun refers to (pron.Antecedent). The second attribute should be the relation
word (in the example above: “nephew”). The third attribute, Person Relative,
should be the person found within the pattern itself (relative – here Inayatullah
Khan Jadoon).

A.9.7 Meeting between People

We will demonstrate the implementation of a simple rule for the PersonMeeting
concept, which stands for a meeting between two people.

Consider the following extract from a publication of IRNA (official Iranian News
Agency), October 2002:

During his three-day stay in Iran, the Qatari official is to meet Interior min-

ister Mousavi Lari, Majlis Speaker Mehdi Karroubi and First Vice-President

Mohammad Reza Aref.

We first present the concept’s prototype:

A.9 Complete DIAL Examples 333

public concept PersonMeeting {

attributes:

string Person1;

string Person2;

string PersonDescription1;

string PersonDescription2;

string Organization;

string MeetingStatus;

string Date;

};

Person1, Person2, PersonDescription1, PersonDescription2 and Organization
are the participants in the meeting. We extract a different instance for every pair of
people that met. This means that in the preceding example we extract one instance for
the meeting of “the Qatari official” with “Mousavi Lari,” one instance for his meeting
with “Mehdi Karroubi,” and one instance for his meeting with “Mohammad Reza
Aref.”

If the first party of the meeting is a name of a person (such as “Mousavi Lari”),
then the Person1 attribute is filled. The same is true for Person2 (regarding the second
party). Similarly, in cases in which we do not have a specific name but rather a descrip-
tion such as “the Qatari official,” then PersonDescription1 (or PersonDescription2)
is filled.

The Organization attribute is filled in the case of a meeting (or a speech given)
between a person and an organization.

MeetingStatus may be “announced” (actual meeting has taken place) or “plan-
ned” (future).

Date is the meeting date (if available).
The following rule implements the concept:

wordclass wcCommaAnd = ”and” ”,” ”,and”;

rule PersonMeeting {

pattern:

LONGEST(

PersonDescription->the−nominal

//“the Qatari official”

ExtendedVGForMeeting->meeting−phrase

//verb group: ”is to meet”

(PersonOrPersonDetails->> meeting−list wcCommaAnd){0,3}

//“Interior minister Mousavi Lari, Majlis

// Speaker Mehdi Karroubi”

///last item: “First Vice-President Mohammad Reza Aref”

PersonOrPersonDetails->> meeting−list

334 DIAL: A Dedicated Information Extraction Language for Text Mining

);

actions:

iterate(meeting−list)

//Iterate on the items of the list

//meeting−list

begin

//Create a separate instance for each

//instance

Add(PersonMeeting,

meeting−list.CurrentItem(),

PersonDescription1<-

the−nominal.PersonDescription,

Person1<-meeting−
list.CurrentItem().Person.Text(),

// the status of the meeting: ”announced” or

// (as here): ”planned” (Found according to

//the tense of the verb used)

MeetingStatus<-meeting−phrase.Status

);

end

};

This rule demonstrates the usage of lists in DIAL. The “->>” operator concate-
nates all the items to one list (here – first up to three elements in the beginning of the
list and then the last item: “First Vice-President Mohammad Reza Aref.” Note that
only the item itself is concatenated to the list, not the delimiters between the items
(wcCommaAnd). The actions part of the rule demonstrates again the DIAL operator
“iterate.” This operator allows going through each item of the list and performing,
for each item, the required actions – in this case adding for each of the persons a
separate instance of the PersonCommunications concept. Note that the person from
the list is inserted to Person1, whereas PersonDescription1 is fixed for all items – the
PersonDescription from the beginning of the pattern (Here: “the Qatari official”).

Bibliography

Abney, S. (1996). Partial Parsing via Finite-State Cascades. In Proceedings of Workshop on
Robust Parsing, 8th European Summer School in Logic, Language, and Information. Prague,
Czech Republic: 8–15.

ACE (2004). Annotation Guidelines for Entity Detection and Tracking (EDT). http://www.
ldc.upenn.edu/Projects/ACE/.

Adam, C. K., Ng, H. T., and Chieu, H. L. (2002). Bayesian Online Classifiers for Text Classifi-
cation and Filtering. In Proceedings of SIGIR-02, 25th ACM International Conference on
Research and Development in Information Retrieval. Tampere, Finland, ACM Press, New
York: 97–104.

Adams, T. L., Dullea, J., Barrett, T. M., and Grubin, H. (2001). “Technology Issues Regarding
the Evolution to a Semantic Web.” ISAS-SCI 1: 316–322.

Aggarwal, C. C., Gates, S. C., and Yu, P. S. (1999). On the Merits of Building Categorization
Systems by Supervised Clustering. In Proceedings of EDBT-00, 7th International Conference
on Extending Database Technology. Konstanz, Germany, ACM Press, New York: 352–
356.

Agrawal, R., Bayardo, R. J., and Srikant, R. (2000). Athena: Mining-based Interactive Man-
agement of Text Databases. In Proceedings of EDBT-00, 7th International Conference on
Extending Database Technulogy. Konstanz, Germany, Springer-Verlag, Heidelberg: 365–
379.

Agrawal, R., Imielinski, T., and Swami, A. (1993). Mining Association Rules between Sets of
Items in Large Databases. In Proceedings of the ACM SIGMOD Conference on Manage-
ment of Data. Washington, DC, ACM Press, New York: 207–216.

Agrawal, R., and Srikant, R. (1994). Fast Algorithms for Mining Association Rules. In Proceed-
ings of the 20th International Conference on Very Large Databases (VLDB-94). Santiago,
Chile, Morgan Kaufmann Publishers, San Francisco: 487–499.

Agrawal, R., and Srikant, R. (1995). Mining Sequential Patterns. In Proceedings of the 11th
International Conference on Data Engineering. Taipei, Taiwan, IEEE Press, Los Alamitos,
CA: 3–14.

Agrawal, R., and Srikant, R. (2001). On Integrating Catalogs. In Proceedings of WWW-01,
10th International Conference on the World Wide Web. Hong Kong, ACM Press, New York:
603–612.

Ahlberg, C., and Schneiderman, B. (1994). Visual Information Seeking: Tight Coupling of
Dynamic Query Filters with Starfield Displays. In Proceedings of the International Confer-
ence on Computer-Human Interaction. Boston, ACM Press, New York: 313–317.

335

336 Bibliography

Ahlberg, C., and Wistrand, E. (1995). IVEE: An Information Visualization and Exploration
Environment. In Proceedings of Information Visualization ’95 Symposium. Atlanta, GA,
IEEE, Los Alamitos, CA: 66–73.

Aho, A., Hopcroft, J., and Ullman, J. (1983). Data Structures and Algorithms. Reading, MA,
Addison-Wesley.

Ahonen-Myka, H. (1999). Finding All Frequent Maximal Sets in Text. In Proceedings of the 16th
International Conference on Machine Learning, ICML-99 Workshop on Machine Learning
in Text Data Analysis. Ljubljana, AAAI Press, Menlo Park, CA: 1–9.

Ahonen, H., Heinonen, O., Klemettinen, M., and Verkamo, A. (1997a). Applying Data Mining
Techniques in Text Analysis. Helsinki, Department of Computer Science, University of
Helsinki.

Ahonen, H., Heinonen, O., Klemettinen, M., and Verkamo, A. (1997b). Mining in the Phrasal
Frontier. In Proceedings of Principles of Knowledge Discovery in Databases Conference.
Trondheim, Norway, Springer-Verlag, London.

Aitken, J. S. (2002). Learning Information Extraction Rules: An Inductive Logic Programming
Approach. In Proceedings of the 15th European Conference on Artificial Intelligence. Lyon,
France, IOS Press, Amsterdam.

Aizawa, A. (2000). The Feature Quantity: An Information-Theoretic Perspective of TFIDF-
like Measures. In Proceedings of SIGIR-00, 23rd ACM International Conference on
Research and Development in Information Retrieval. Athens, ACM Press, New York:
104–111.

Aizawa, A. (2001). Linguistic Techniques to Improve the Performance of Automatic Text Cat-
egorization. In Proceedings of NLPRS-01, 6th Natural Language Processing Pacific Rim
Symposium. Tokyo, NLPRS, Tokyo: 307–314.

Al-Kofahi, K., Tyrrell, A., Vachher, A., Travers, T., and Jackson, P. (2001). Combining Multiple
Classifiers for Text Categorization. In Proceedings of CIKM-01, 10th ACM International
Conference on Information and Knowledge Management. Atlanta, ACM Press, New York:
97–104.

Albert, R., Jeong, H., and Barabasi, A.-L. (1999). “Diameter of the World-Wide Web.” Nature
401: 130–131.

Alias, F., Iriondo, I., and Barnola, P. (2003). Multi-Domain Text Classification for Unit Selec-
tion Text-to-Speech Synthesis. In Proceedings of ICPhS-03, 15th International Congress on
Phonetic Sciences. Barcelona.

Allen, J. (1995). Natural Language Understanding. Redwood City, CA, Benjamin Cummings.
Amati, G., and Crestani, F. (1999). “Probabilistic Learning for Selective Dissemination of

Information.” Information Processing and Management 35(5): 633–654.
Amati, G., Crestani, F., and Ubaldini, F. (1997). A Learning System for Selective Dissemina-

tion of Information. In Proceedings of IJCAI-97, 15th International Joint Conference on
Artificial Intelligence. M. E. Pollack, ed. Nagoya, Japan, Morgan Kaufmann Publishers, San
Francisco: 764–769.

Amati, G., Crestani, F., Ubaldini, F., and Nardis, S. D. (1997). Probabilistic Learning for Infor-
mation Filtering. In Proceedings of RIAO-97, 1st International Conference “Recherche
d’Information Assistée par Ordinateur.” Montreal: 513–530.

Amati, G., D’Aloisi, D., Giannini, V., and Ubaldini, F. (1996). An Integrated System for Fil-
tering News and Managing Distributed Data. In Proceedings of PAKM-96, 1st International
Conference on Practical Aspects of Knowledge Management. Basel, Switzerland, Springer-
Verlag, London.

Amati, G., D’Aloisi, D., Giannini, V., and Ubaldini, F. (1997). “A Framework for Filtering
News and Managing Distributed Data.” Journal of Universal Computer Science 3(8): 1007–
1021.

Amir, A., Aumann, Y., Feldman, R., and Fresko, M. (2003). “Maximal Association Rules:
A Tool for Mining Associations in Text.” Journal of Intelligent Information Systems 25(3):
333–345.

Bibliography 337

Amir, A., Aumann, Y., Feldman, R., and Katz, O. (1997). Efficient Algorithm for Association
Generation. Department of Computer Science, Bar-Ilan University.

Anand, S. S., Bell, D. A., and Hughes, J. G. (1995). The Role of Domain Knowledge in Data
Mining. In Proceedings of ACM CIKM’95. Baltimore, ACM Press, New York: 37–43.

Anand, T., and Kahn, G. (1993). Opportunity Explorer: Navigating Large Databases Using
Knowledge Discovery Templates. In Proceedings of the 1993 Workshop on Knowledge Dis-
covery in Databases. Washington, DC, AAAI Press, Menlo Park, CA: 45–51.

Androutsopoulos, I., Koutsias, J., Chandrinos, K. V., and Spyropoulos, C. D. (2000). An Exper-
imental Comparison of Naive Bayesian and Keyword-Based Anti-Spam Filtering with Per-
sonal E-mail Messages. In Proceedings of SIGIR-00, 23rd ACM International Conference
on Research and Development in Information Retrieval. Athens, ACM Press, New York:
160–167.

Aone, C., and Bennett, S. (1995). Evaluating Automated and Manual Acquisition of Anaphora
Resolution Strategies. In Proceedings of Meeting of the Association for Computational
Linguistics. Cambridge, MA, Association for Computational Linguistics, Morristown, NJ:
122–129.

Appelt, D., Hobbs, J., Bear, J., Israel, D., Kameyama, M., Kehler, A., Martin, D., Meyers, K.,
and Tyson, M. (1993). SRI International FASTUS System: MUC-6 Test Results and Analysis.
In Proceedings of 16th MUC. Columbia, MD, Association for Computational Linguistics,
Morristown, NJ: 237–248.

Appelt, D., Hobbs, J., Bear, J., Israel, D., Kameyama, M., and Tyson, M. (1993). FASTUS: A
Finite-State Processor for Information Extraction from Real-World Text. In Proceedings of
the 13th International Conference on Artificial Intelligence (IJCAI). Chambery, France,
Morgan Kaufmann Publishers, San Mateo, CA: 1172–1178.

Appiani, E., Cesarini, F., Colla, A., Diligenti, M., Gori, M., Marinai, S., and Soda, G. (2001).
“Automatic Document Classification and Indexing in High-Volume Applications.” Interna-
tional Journal on Document Analysis and Recognition 4(2): 69–83.

Apte, C., Damerau, F., and Weiss, S. (1994a). Towards Language Independent Automated
Learning of Text Categorization Models. In Proceedings of ACM-SIGIR Conference on
Information Retrieval. Dublin, Springer-Verlag, New York: 23–30.

Apte, C., Damerau, F. J., and Weiss, S. M. (1994b). “Automated Learning of Decision Rules
for Text Categorization.” ACM Transactions on Information Systems 12(3): 233–251.

Apte, C., Damerau, F. J., and Weiss, S. M. (1994c). Towards Language-Independent Auto-
mated Learning of Text Categorization Models. In Proceedings of SIGIR-94, 17th ACM
International Conference on Research and Development in Information Retrieval. Dublin,
Springer-Verlag, Heidelberg: 23–30.

Arning, A., Agrawal, R., and Raghavan, P. (1996). A Linear Method for Deviation Detection
in Large Databases. In Proceedings of the 2nd International Conference on Knowledge
Discovery in Databases and Data Mining. Portland, OR, AAAI Press, Menlo Park, CA:
164–169.

Ashish, N., and Knoblock, C. A. (1997). Semi-Automatic Wrapper Generation for Internet
Information Sources. In the Proceedings of the 2nd IFCIS International Conference
on Cooperative Information Systems. Charleston, SC, IEEE Press, Los Alamitos, CA:
160–169.

Attardi, G., Gulli, A., and Sebastiani, F. (1999). Automatic Web Page Categorization by Link
and Context Analysis. In Proceedings of THAI-99, 1st European Symposium on Telematics,
Hypermedia and Artificial Intelligence. Varese, Italy: 105–119.

Attardi, G., Marco, S. D., and Salvi, D. (1998). “Categorization by Context.” Journal of Uni-
versal Computer Science 4(9): 719–736.

Aumann, Y., Feldman, R., Yehuda, Y., Landau, D., Liphstat, O., and Schler, Y. (1999). Circle
Graphs: New Visualization Tools for Text-Mining. In Proceedings of the 3rd European
Conference on Principles and Practice of Knowledge Discovery in Databases, (PKDD-99).
Prague, Czech Republic, Springer-Verlag, London: 277–282.

338 Bibliography

Avancini, H., Lavelli, A., Magnini, B., Sebastiani, F., and Zanoli, R. (2003). Expanding Domain-
Specific Lexicons by Term Categorization. In Proceedings of SAC-03, 18th ACM Symposium
on Applied Computing. Melbourne, FL, ACM Press, New York: 793–797.

Azzam, S., Humphreys, K., and Gaizauskas, R. (1998). Evaluating a Focus-Based Approach
to Anaphora Resolution. In Proceedings of the 36th Annual Meeting of the Association for
Computational Linguistics and 17th International Conference on Computational Linguis-
tics. Quebec, Morgan Kaufmann Publishers, San Francisco: 74–78.

Backer, F. B., and Hubert, L. G. (1976). “A Graphtheoretic Approach to Goodness-of-Fit in
Complete-Link Hierarchical Clustering.” Journal of the American Statistical Association 71:
870–878.

Baeza-Yates, R., and Ribeira-Neto, B. (1999). Modern Information Retrieval. New York, ACM
Press.

Bagga, A., and Biermann, A. W. (2000). A Methodology for Cross-Document Coreference.
In Proceedings of the 5th Joint Conference on Information Sciences (JCIS 2000). Atlantic
City, NJ: 207–210.

Bairoch, A., and Apweiler, R. (2000). “The Swiss-Prot Protein Synthesis Database and Its
Supplement TrEMBL in 2000.” Nucleic Acids Research 28: 45–48.

Baker, L. D., and McCallum, A. K. (1998). Distributional Clustering of Words for Text Clas-
sification. In Proceedings of SIGIR-98, 21st ACM International Conference on Research
and Development in Information Retrieval. Melbourne, Australia, ACM Press, New York:
96–103.

Baldwin, B. (1995). CogNIAC: A Discourse Processing Engine. Ph.D. thesis, Department of
Computer and Information Sciences, University of Pennsylvania.

Baluja, S., Mittal, V. O., and Sukthankar, R. (2000). “Applying Machine Learning for High-
Performance Named-Entity Extraction.” Computational Intelligence 16(4): 586–596.

Bao, Y., Aoyama, S., Du, X., Yamada, K., and Ishii, N. (2001). A Rough Set-Based Hybrid
Method to Text Categorization. In Proceedings of WISE-01, 2nd International Conference
on Web Information Systems Engineering. Kyoto, Japan, IEEE Computer Society Press,
Los Alamitos, CA: 254–261.

Bapst, F., and Ingold, R. (1998). “Using Typography in Document Image Analysis.” Lecture
Notes in Computer Science 1375: 240–260.

Barbu, C., and Mitkov, R. (2001). Evaluation Tool for Rule-Based Anaphora Resolution Meth-
ods. In Proceedings of Meeting of the Association for Computational Linguistics. Toulouse,
France, Morgan Kaufmann Publishers, San Mateo, CA: 34–41.

Basili, R., and Moschitti, A. (2001). A Robust Model for Intelligent Text Classification. In
Proceedings of ICTAI-01, 13th IEEE International Conference on Tools with Artificial
Intelligence. Dallas, IEEE Computer Society Press, Los Alamitos, CA: 265–272.

Basili, R., Moschitti, A., and Pazienza, M. T. (2000). Language-Sensitive Text Classification. In
Proceedings of RIAO-00, 6th International Conference “Recherche d’Information Assistée
par Ordinateur.” Paris: 331–343.

Basili, R., Moschitti, A., and Pazienza, M. T. (2001a). An Hybrid Approach to Optimize Feature
Selection Process in Text Classification. In Proceedings of AI*IA-01, 7th Congress of the
Italian Association for Artificial Intelligence. F. Esposito, ed. Bari, Italy, Springer-Verlag,
Heidelberg: 320–325.

Basili, R., Moschitti, A., and Pazienza, M. T. (2001b). NLP-Driven IR: Evaluating Perfor-
mances over a Text Classification Task. In Proceedings of IJCAI-01, 17th International Joint
Conference on Artificial Intelligence. B. Nebel, ed. Seattle, IJCAI, Menlo Park, CA: 1286–
1291.

Basu, S., Mooney, R., Pasupuleti, K., and Ghosh, J. (2001). Evaluating the Novelty of Text-
Mined Rules Using Lexical Knowledge. In Proceedings of the 7th International Conference
on Knowledge Discovery and Data Mining (KDD-01). San Francisco, CA, ACM Press, New
York: 233–239.

Batagelj, V. (1997). “Notes on Blockmodeling.” Social Networks 19: 143–155.

Bibliography 339

Batagalj, V., Doreian, P., and Ferligoj, A. (1992). “An Optimization Approach to Regular E-
quivalence.” Social Networks 14: 121–135.

Batagelj, V., Ferligoj, A., and Doreian, P. (1999). “Generalized Blockmodeling.” Informatica
23: 501–506.

Batagelj, V., and Mrvar, A. (2003). Pajek – Analysis and Visualization of Large Networks.
Graph Drawing Software. Springer-Verlag, Berlin.

Batagelj, V., Mrvar, A., and Zaversnik, M. (1999). Partitioning Approach to Visualization of
Large Networks. Graph Drawing ’99. Castle Stirin, Czech Republic.

Batagelj, V., and Zaversnik, M. (2001). Cores Decomposition of Networks. Presented at Recent
Trends in Graph Theory, Algebraic Combinatorics, and Graph Algorithms. Bled, Slovenia.
http://vlado.fmf.uni-lj.si/pub/networks/doc/cores/pCores.pdf.

Bayer, T., Kressel, U., Mogg-Schneider, H., and Renz, I. (1998). “Categorizing Paper docu-
ments. A Generic System for Domain and Language-Independent Text Categorization.”
Computer Vision and Image Understanding 70(3): 299–306.

Becker, B. (1998). Visualizing Decision Table Classifiers. In Proceedings of IEEE Information
Visualization (InfoVis ’98). North Carolina, IEEE Computer Society Press, Washington,
DC: 102–105.

Beeferman, D., Berger, A., and Lafferty, J. D. (1999). “Statistical Models for Text Segmenta-
tion.” Machine Learning 34(1–3): 177–210.

Beil, F., and Ester, M. (2002). Frequent Term-Based Text Clustering. In Proceedings of the
8th International Conference on Knowledge Discovery and Data Mining (KDD) 2002.
Edmonton, Canada, ACM Press, New York: 436–442.

Bekkerman, R., El-Yaniv, R., Tishby, N., and Winter, Y. (2001). On Feature Distributional
Clustering for Text Categorization. In Proceedings of SIGIR-01, 24th ACM International
Conference on Research and Development in Information Retrieval. New Orleans, ACM
Press, New York: 146–153.

Bel, N., Koster, C. H., and Villegas, M. (2003). Cross-Lingual Text Categorization. In Proceed-
ings of ECDL-03, 7th European Conference on Research and Advanced Technology for
Digital Libraries. Trodheim, Norway, Springer-Verlag, Heidelberg: 126–139.

Benkhalifa, M., Bensaid, A., and Mouradi, A. (1999). Text Categorization Using the Semi-
Supervised Fuzzy C-means Algorithm. In Proceedings of NAFIPS-99, 18th International
Conference of the North American Fuzzy Information Processing Society. New York, IEEE
Press, New York: 561–565.

Benkhalifa, M., Mouradi, A., and Bouyakhf, H. (2001a). “Integrating External Knowledge
to Supplement Training Data in Semi-Supervised Learning for Text Categorization.” Infor-
mation Retrieval 4(2): 91–113.

Benkhalifa, M., Mouradi, A., and Bouyakhf, H. (2001b). “Integrating WordNet Knowledge
to Supplement Training Data in Semi-Supervised Agglomerative Hierarchical Clustering
for Text Categorization.” International Journal of Intelligent Systems 16(8): 929–947.

Bennett, P. N. (2003). Using Asymmetric Distributions to Improve Text Classifier Probability
Estimates. In Proceedings of SIGIR-03, 26th ACM International Conference on Research
and Development in Information Retrieval. Toronto, ACM Press, New York: 111–118.

Bennett, P. N., Dumais, S. T., and Horvitz, E. (2002). Probabilistic Combination of Text Clas-
sifiers Using Reliability Indicators: Models and Results. In Proceedings of SIGIR-02, 25th
ACM International Conference on Research and Development in Information Retrieval.
Tampere, Finland, ACM Press, New York: 207–214.

Berendt, B., Hotho, A., and Stumme, G. (2002). Towards Semantic Web Mining. In Proceedings
of the International Semantic Web Conference (ISWC02). Sardinia, Italy, Springer, Berlin/
Heidelberg: 264–278.

Berners-Lee, T., Hendler, J., and Lassila, O. (2001). “The Semantic Web.” Scientific American,
May 2001. http://www.scientificamerican.com/2001/0501issue/0501berners-lee.html.

Berry, M. (1992). “Large-Scale Sparse Singular Value Computations.” International Journal
of Supercomputer Applications. 6(1): 13–49.

340 Bibliography

Bettini, C., Wang, X., and Jojodia, S. (1996). Testing Complex Temporal Relationships Involving
Multiple Granularities and Its Application to Data Mining. In Proceedings of the 15th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS-96).
Montreal, Canada, ACM Press, New York: 68–78.

Biebricher, P., Fuhr, N., Knorz, G., Lustig, G., and Schwantner, M. (1988). The Automatic Index-
ing System AIR/PHYS. From Research to Application. In Proceedings of SIGIR-88, 11th
ACM International Conference on Research and Development in Information Retrieval.
Y. Chiaramella, ed. Grenoble, France, ACM Press, New York: 333–342.

Bigi, B. (2003). Using Kullback–Leibler Distance for Text Categorization. In Proceedings of
ECIR-03, 25th European Conference on Information Retrieval. F. Sebastiani, ed. Pisa, Italy,
Springer-Verlag, Berlin/Heidelberg: 305–319.

Bikel, D. M., Miller, S., Schwartz, R., and Weischedel, R. (1997). Nymble: A High-Performance
Learning Name-Finder. In Proceedings of ANLP-97. Washington, DC, Morgan Kaufmann
Publishers, San Francisco: 194–201.

Bikel, D. M., Schwartz, R. L., and Weischedel, R. M. (1999). “An Algorithm that Learns What’s
in a Name.” Machine Learning 34(1–3): 211–231.

Blake, C., and Pratt, W. (2001). Better Rules, Fewer Features: A Semantic Approach to Selecting
Features from Text. In Proceedings of the 2001 IEEE International Conference on Data
Mining. San Jose, CA, IEEE Computer Society Press, New York: 59–66.

Blanchard, J., Guillet, F., and Briand, H. (2003). Exploratory Visualization for Association
Rule Rummaging. In Proceedings of the 4th International Workshop on Multimedia Data
Mining MDM/KDD2003. Washington, DC, ACM Press, New York: 107–114.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). “Latent Dirichlet Allocation.” Journal of
Machine Learning Research 3: 993–1022.

Bloedorn, E., and Michalski, R. S. (1998). “Data-Driven Constructive Induction.” IEEE Intel-
ligent Systems 13(2): 30–37.

Blosseville, M. J., Hebrail, G., Montell, M. G., and Penot, N. (1992). Automatic Document
Classification: Natural Langage Processing and Expert System Techniques Used Together. In
Proceedings of SIGIR-92, 15th ACM International Conference on Research and Develop-
ment in Information Retrieval. Copenhagen, ACM Press, New York: 51–57.

Blum, A., and Mitchell, T. M. (1998). Combining Labeled and Unlabeled Data with Co-
Training. COLT. Madison, WI, ACM Press, New York: 92–100.

Bod, R., and Kaplan, R. (1998). A Probabilistic Corpus-Driven Model for Lexical-Functional
Analysis. In Proceedings of the 36th Annual Meeting of the Association for Computational
Linguistics and 17th International Conference on Computational Linguistics. Montreal,
Morgan Kaufmann Publishers, San Francisco: 145–151.

Bonacich, P. (1972). “Factoring and Weighting Approaches to Status Scores and Clique Iden-
tification.” Journal of Mathematical Sociology 2: 113–120.

Bonacich, P. (1987). “Power and Centrality: A Family of Measures.” American Journal of
Sociology 92: 1170–1182.

Bonnema, R., Bod, R., and Scha, R. (1997). A DOP Model for Semantic Interpretation. In Pro-
ceedings of the 35th Annual Meeting of the Association for Computational Linguistics and
8th Conference of the European Chapter of the Association for Computational Linguistics.
Somerset, NJ, Morgan Kaufmann Publishers, San Francisco: 159–167.

Borgatti, S. P., and Everett, M. G. (1992). “Notions of Positions in Social Network Analysis.”
In Sociological Methodology, P. V. Marsden, ed. San Francisco, Jossey Bass: 1–35.

Borgatti, S. P., and Everett, M. G. (1993). “Two Algorithms for Computing Regular Equiva-
lence.” Social Networks 15: 361–376.

Borgatti, S. P., Everett, M. G., and Freeman, L. C. (2002). Ucinet 6 for Windows, Cambridge,
MA, Harvard: Analytic Technologies. http://www.analytictech.com.

Borko, H., and Bernick, M. (1963). “Automatic Document Classification.” Journal of the
Association for Computing Machinery 10(2): 151–161.

Borko, H., and Bernick, M. (1964). “Automatic Document Classification. Part II: Additional
Experiments.” Journal of the Association for Computing Machinery 11(2): 138–151.

Bibliography 341

Borner, K., Chen, C., and Boyack, K. (2003). “Visualizing Knowledge Domains.” Annual
Review of Information Science and Technology 37: 179–255.

Borthwick, A. (1999). A Maximum Entropy Approach for Named Entity Recognition. Com-
puter Science Department, New York University.

Brachman, R., and Anand, T. (1996). In “The Process of Knowledge Discovery in Databases:
A Human Centered Approach.” Advances in Knowledge Discovery and Data Mining. U. M.
Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, eds. Menlo Park, CA, AAAI
Press and MIT Press: 37–58.

Brachman, R., Selfridge, P., Terveen, L., Altman, B., Borgida, A., Halper, F., Kirk, T., Lazar,
A., McGuinness, D., and Resnick, L. (1993). “Integrated Support for Data Archeology.”
International Journal of Intelligent and Cooperative Information Systems. 2(2): 159–185.

Bradley, P. S., Fayyad, U., and Reina, C. (1998). Scaling Clustering Algorithms to Large
Databases. In Proceedings of the Knowledge Discovery and Data Mining Conference (KDD
’98). New York, AAAI Press, Menlo Park, CA: 9–15.

Brank, J., Grobelnik, M., Milic-Frayling, N., and Mladenic, D. (2002). Feature Selection Using
Support Vector Machines. In Proceedings of the 3rd International Conference on Data
Mining Methods and Databases for Engineering, Finance, and Other Fields. Bologna, Italy.

Brill, E. (1992). A Simple Rule-Based Part of Speech Tagger. In Proceedings of the 3rd Annual
Conference on Applied Natural Language Processing. Trento, Italy, Morgan Kaufmann
Publishers, San Francisco: 152–155.

Brill, E. (1995). “Transformation-Based Error-Driven Learning and Natural Language
Processing: A Case Study in Part-of-Speech Tagging.” Computational Linguistics 21(4):
543–565.

Brin, S. (1998). Extracting Patterns and Relations from the World Wide Web. In Proceedings of
WebDB Workshop, EDBT ’98. Valencia, Spain, Springer, Berlin: 172–183.

Brown, R. D. (1999). Adding Linguistic Knowledge to a Lexical Example-Based Translation
System. In Proceedings of the 8th International Conference on Theoretical and Method-
ological Issues in Machine Translation (TMI-99). Chester, UK: 22–32.

Bruckner, T. (1997). The Text Categorization System TEKLIS at TREC-6. In Proceedings of
TREC-6, 6th Text Retrieval Conference. Gaithersburg, MD, National Institute of Standards
and Technology, Gaithersburg, MD: 619–621.

Cai, L., and Hofmann, T. (2003). Text Categorization by Boosting Automatically Extracted
Concepts. In Proceedings of SIGIR-03, 26th ACM International Conference on Research
and Development in Information Retrieval. Toronto, ACM Press, New York: 182–189.

Caldon, P. (2003). Using Text Classification to Predict the Gene Knockout Behaviour of S.
Cerevisiae. In Proceedings of APBC-03, 1st Asia-Pacific Bioinformatics Conference. Y.-
P. P. Chen, ed. Adelaide, Australia, Australian Computer Society: 211–214.

Califf, M. E., and Mooney, R. J. (1998). Relational Learning of Pattern-Match Rules for Infor-
mation Extraction. In Working Notes of AAAI Spring Symposium on Applying Machine
Learning to Discourse Processing. Menlo Park, CA, AAAI Press, Palo Alto, CA: 6–11.

Carbonell, J., Cohen, W. W., and Yang, Y. (2000). “Guest Editors’ Introduction to the Special
Issue on Machine Learning and Information Retrieval.” Machine Learning 39(2/3): 99–101.

Card, S., MacKinlay, J., and Shneiderman, B. (1998). Readings in Information Visualization:
Using Vision to Think. San Francisco, Morgan Kaufmann Publishers.

Cardie, C. (1994). Domain Specific Knowledge Acquisition for Conceptual Sentence Analysis.
Department of Computer Science, University of Massachusetts, Amherst, MA.

Cardie, C. (1995). “Embedded Machine Learning Systems for Natural Language Processing:
A General Framework.” In Connectionist, Statistical and Symbolic Approaches to Learning
for Natural Language Processing. S. Wermter, E. Riloff, and G. Scheler, eds. Berlin, Springer:
315–328.

Cardie, C. (1997). “Empirical Methods in Information Extraction.” AI Magazine 18(4):
65–80.

Cardie, C. (1999). “Integrating Case-Based Learning and Cognitive Biases for Machine Learn-
ing of Natural Language.” JETAI 11(3): 297–337.

342 Bibliography

Cardie, C., and Howe, N. (1997). Improving Minority Class Prediction Using Case-Specific
Feature Weights. In Proceedings of 14th International Conference on Machine Learning.
Nashville, TN, Morgan Kaufmann Publishers, San Francisco: 57–65.

Cardoso-Cachopo, A., and Oliveira, A. L. (2003). An Empirical Comparison of Text Cate-
gorization Methods. In Proceedings of SPIRE-03, 10th International Symposium on String
Processing and Information Retrieval. Manaus, Brazil, Springer-Verlag, Heidelberg: 183–
196.

Carlis, J., and Konstan, J. (1998). Interactive Visualization of Serial Periodic Data. In Proceed-
ings of the 11th Annual Symposium on User Interface Software and Technology (UIST ’98).
San Francisco, ACM Press, New York: 29–38.

Caropreso, M. F., Matwin, S., and Sebastiani, F. (2001). “A Learner-Independent Evaluation of
the Usefulness of Statistical Phrases for Automated Text Categorization.” In Text Databases
and Document Management: Theory and Practice. A. G. Chin, ed. Hershey, PA, Idea Group
Publishing: 78–102.

Carpineto, C., and Romano, G. (1996). “Information Retrieval through Hybrid Navigation
of Lattice Representations.” International Journal of Human-Computer Studies 45(5): 553–
578.

Carreras, X., and Marquez, L. (2001). Boosting Trees for Anti-Spam Email Filtering. In Pro-
ceedings of RANLP-01, 4th International Conference on Recent Advances in Natural Lan-
guage Processing. Tzigov Chark, Bulgaria.

Carroll, G., and Charniak, E. (1992). Two Experiments on Learning Probabilistic Dependency
Grammars from Corpora. Technical Report CS-92-16.

Cattoni, R., Coianiz, T., Messelodi, S., and Modena, C. (1998). Geometric Layout Analysis
Techniques for Document Image Understanding: A Review. Technical Report. Trento, Italy,
ITC-IRST I-38050.

Cavnar, W. B., and Trenkle, J. M. (1994). N-Gram-Based Text Categorization. In Proceedings
of SDAIR-94, 3rd Annual Symposium on Document Analysis and Information Retrieval.
Las Vegas, UNLV Publications/Reprographics, Las Vegas: 161–175.

Ceci, M., and Malerba, D. (2003). Hierarchical Classification of HTML Documents with Web-
ClassII. In Proceedings of ECIR-03, 25th European Conference on Information Retrieval.
F. Sebastiani, ed. Pisa, Italy, Springer-Verlag, Berlin: 57–72.

Cerny, B. A., Okseniuk, A., and Lawrence, J. D. (1983). A Fuzzy Measure of Agreement
between Machine and Manual Assignment of Documents to Subject Categories. In Pro-
ceedings of ASIS-83, 46th Annual Meeting of the American Society for Information
Science. Washington, DC, American Society for Information Science, Washington, DC:
265.

Chai, K. M., Ng, H. T., and Chieu, H. L. (2002). Bayesian Online Classifiers for Text Classifi-
cation and Filtering. In Proceedings of SIGIR-02, 25th ACM International Conference on
Research and Development in Information Retrieval. Tampere, FI, ACM Press, New York:
97–104.

Chakrabarti, S., Dom, B. E., Agrawal, R., and Raghavan, P. (1997). Using Taxonomy, Discrim-
inants, and Signatures for Navigating in Text Databases. In Proceedings of VLDB-97, 23rd
International Conference on Very Large Data Bases. Athens, Morgan Kaufmann Publish-
ers, San Francisco: 446–455.

Chakrabarti, S., Dom, B. E., Agrawal, R., and Raghavan, P. (1998). “Scalable Feature Selec-
tion, Classification and Signature Generation for Organizing Large Text Databases into
Hierarchical Topic Taxonomies.” Journal of Very Large Data Bases 7(3): 163–178.

Chakrabarti, S., Dom, B. E., and Indyk, P. (1998). Enhanced Hypertext Categorization Using
Hyperlinks. In Proceedings of SIGMOD-98, ACM International Conference on Manage-
ment of Data. Seattle, ACM Press, New York: 307–318.

Chakrabarti, S., Dom, B. E., Kumar, S. R., Raghavan, P., Rajagopalan, S., Tomkins, A., Gibson,
D., and Kleinberg, J. (1999). “Mining the Web’s Link Structure.” IEEE Computer 32(8):
60–67.

Bibliography 343

Chakrabarti, S., Roy, S., and Soundalgekar, M. (2002). Fast and Accurate Text Classification via
Multiple Linear Discriminant Projections. In Proceedings of VLDB-02, 28th International
Conference on Very Large Data Bases. Hong Kong: 658–669.

Chalmers, M., and Chitson, P. (1992). Bead: Exploration in Information Visualization. In Pro-
ceedings of the 15th Annual ACM/SIGIR Conference. Copenhagen, ACM Press, New York:
330–337.

Chandrinos, K. V., Androutsopoulos, I., Paliouras, G., and Spyropoulos, C. D. (2000). Auto-
matic Web Rating: Filtering Obscene Content on the Web. In Proceedings of ECDL-00, 4th
European Conference on Research and Advanced Technology for Digital Libraries. Lisbon,
Springer-Verlag, Heidelberg: 403–406.

Chang, S.-J., and Rice, R. (1993). “Browsing: A Multidimensional Framework.” Annual
Review of Information Science and Technology 28: 231–276.

Charniak, E. (1993). Statistical Language Learning. Cambridge, MA, MIT Press.
Charniak, E. (2000). A Maximum-Entropy-Inspired Parser. In Proceedings of the Meeting of

the North American Association for Computational Linguistics. Seattle, ACM Press, New
York: 132–139.

Chen, C. (2002). “Visualization of Knowledge Structures.” In Handbook of Software Engineer-
ing and Knowledge Engineering. S. K. Chang, ed. River Edge, NJ, World Scientific Publishing
Co.: 201–238.

Chen, C., and Paul, R. (2001). “Visualizing a Knowledge Domain’s Intellectual Structure.”
Computer 34(3): 65–71.

Chen, C. C., Chen, M. C., and Sun, Y. (2001). PVA: A Self-Adaptive Personal View Agent.
In Proceedings of KDD-01, 7th ACM SIGKDD International Conferece on Knowledge
Discovery and Data Mining. San Francisco, ACM Press, New York: 257–262.

Chen, C. C., Chen, M. C., and Sun, Y. (2002). “PVA: A Self-Adaptive Personal View Agent.”
Journal of Intelligent Information Systems 18(2/3): 173–194.

Chen, H., and Dumais, S. T. (2000). Bringing Order to the Web: Automatically Categoriz-
ing Search Results. In Proceedings of CHI-00, ACM International Conference on Human
Factors in Computing Systems. The Hague, ACM Press, New York: 145–152.

Chen, H., and Ho, T. K. (2000). Evaluation of Decision Forests on Text Categorization. In
Proceedings of the 7th SPIE Conference on Document Recognition and Retrieval. San
Jose, CA, SPIE – The International Society for Optical Engineering, Bellingham, WA: 191–
199.

Chenevoy, Y., and Bela’id, A. (1991). Hypothesis Management for Structured Document Recog-
nition. In Proceedings of the 1st International Conference on Document Analysis and
Recognition (ICDAR’91). St.-Malo, France: 121–129.

Cheng, C.-H., Tang, J., Wai-Chee, A., and King, I. (2001). Hierarchical Classification of Doc-
uments with Error Control. In Proceedings of PAKDD-01, 5th Pacific-Asia Conferenece
on Knowledge Discovery and Data Mining. Hong Kong, Springer-Verlag, Heidelberg:
433–443.

Cheung, D. W., Han, J., Ng, V. T., and Wong, C. Y. (1996). Maintenance of Discovered Associ-
ation Rules in Large Databases: An Incremental Updating Technique. In Proceedings of the
12th ICDE, New Orleans, IEEE Computer Society Press, Los Alamitos, CA: 106–114.

Cheung, D. W., Lee, S. D., and Kao, B. (1997). A General Incremental Technique for Maintaining
Discovered Association Rules. In Proceedings of the International Conference on Database
Systems for Advanced Applications (DASFAA). Melbourne, Australia: 185–194.

Chinchor, N., Hirschman, L., and Lewis, D. (1994). “Evaluating Message Understanding
Systems: An Analysis of the Third Message Understanding Conference (MUC-3).” Com-
putational Linguistics 3(19): 409–449.

Chouchoulas, A., and Shen, Q. (2001). “Rough Set-Aided Keyword Reduction for Text Cat-
egorization.” Applied Artificial Intelligence 15(9): 843–873.

Chuang, W. T., Tiyyagura, A., Yang, J., and Giuffrida, G. (2000). A Fast Algorithm for Hier-
archical Text Classification. In Proceedings of DaWaK-00, 2nd International Conference

344 Bibliography

on Data Warehousing and Knowledge Discovery. London, Springer-Verlag, Heidelberg:
409–418.

Ciravegna, F. (2001). Adaptive Information Extraction from Text by Rule Induction and Gen-
eralization. In Proceedings of the 17th IJCAI. Seattle, Morgan Kaufmann Publishers, San
Francisco: 1251–1256.

Ciravegna, F., Lavelli, A., Mana, N., Matiasek, J., Gilardoni, L., Mazza, S., Black, W. J., and
Rinaldi, F. (1999). FACILE: Classifying Texts Integrating Pattern Matching and Information
Extraction. In Proceedings of IJCAI-99, 16th International Joint Conference on Artificial
Intelligence. T. Dean, ed. Stockholm, Morgan Kaufmann Publishers, San Francisco: 890–
895.

Clack, C., Farringdon, J., Lidwell, P., and Yu, T. (1997). Autonomous Document Classification
for Business. In Proceedings of the 1st International Conference on Autonomous Agents.
W. L. Johnson, ed. Marina Del Rey, CA, ACM Press, New York: 201–208.

Cleveland, W. S. (1994). The Elements of Graphing Data. Summit, NJ, Hobart Press.
Clifton, C., and Cooley, R. (1999). TopCat: Data Mining for Topic Identification in a Text Cor-

pus. In Proceedings of the 3rd European Conference on Principles of Knowledge Discovery
and Data Mining. Prague, Springer, Berlin: 174–183.

Cockburn, A. (2004). Revisiting 2D vs 3D Implications on Spatial Memory. In Proceedings
of the 5th Conference on Australasian User Interface, Volume 28. Dunedin, New Zealand,
Australian Computer Society, Inc.: 25–31.

Cohen, W., and Singer, Y. (1996). Context-Sensitive Learning Methods for Text Categorization.
In Proceedings of SIGIR-96, 19th ACM. International Conference on Research and Devel-
opment in Information Retrieval. H.-P Frei, D. Harman, P. Schauble and R. Wilkinson, eds.
Zurick, Switzerland, ACM Press, New York, 307–315.

Cohen, W. W. (1992). Compiling Prior Knowledge into an Explicit Bias. In Proceedings of the
9th International Workshop on Machine Learning. D. Sleeman and P. Edwards, eds. Morgan
Kaufmann Publishers, San Francisco: 102–110.

Cohen, W. W. (1995a). “Learning to Classify English Text with ILP Methods.” In Advances in
Inductive Logic Programming. L. D. Raedt, ed. Amsterdam, IOS Press: 124–143.

Cohen, W. W. (1995b). Text Categorization and Relational Learning. In Proceedings of ICML-
95, 12th International Conference on Machine Learning. Lake Tahoe, NV, Morgan Kauf-
mann Publishers, San Francisco: 124–132.

Cohen, W. W., and Hirsh, H. (1998). Joins that Generalize: Text Classification Using Whirl. In
Proceedings of KDD-98, 4th International Conference on Knowledge Discovery and Data
Mining. New York, AAAI Press, Menlo Park, CA: 169–173.

Cohen, W. W., and Singer, Y. (1996). Context-Sensitive Learning Methods for Text Catego-
rization. In Proceedings of SIGIR-96, 19th ACM International Conference on Research
and Development in Information Retrieval. Zurich, ACM Press, New York: 307–
315.

Cohen, W. W., and Singer, Y. (1999). “Context-Sensitive Learning Methods for Text Catego-
rization.” ACM Transactions on Information Systems 17(2): 141–173.

Collins, M. (1997). Three Generative, Lexicalized Models for Statistical Parsing. In Proceedings
of the 35th Annual Meeting of the Association for Computational Linguistics. Madrid, ACM
Press, New York: 16–23.

Collins, M., and Miller, S. (1998). Semantic Tagging Using a Probabilistic Context Free Gram-
mar. In Proceedings of the 6th Workshop on Very Large Corpora. Montreal, Morgan
Kaufmann Publishers, San Francisco: 38–48.

Cooper, J. (1997). What Is Lexical Navigation? IBM Thomas J. Watson Research Center.
http://www.research.ibm.com/people/j/jwcnmr/LexNav/lexical navigation.htm.

Cover, T. M., and Thomas, J. A. (1991). Elements of Information Theory. New York, John
Wiley and Sons.

Cowie, J., and Lehnert, W. (1996). “Information Extraction.” Communications of the Associ-
ation of Computing Machinery 39(1): 80–91.

Bibliography 345

Crammer, K., and Singer, Y. (2002). A New Family of Online Algorithms for Category Ranking.
In Proceedings of SIGIR-02, 25th ACM International Conference on Research and Devel-
opment in Information Retrieval. Tampere, Finland, ACM Press, New York: 151–158.

Craven, M., DiPasquo, D., Freitag, D., McCallum, A. K., Mitchell, T. M., Nigam, K., and
Slattery, S. (1998). Learning to Extract Symbolic Knowledge from the World Wide Web.
In Proceedings of AAAI-98, 15th Conference of the American Association for Artificial
Intelligence. Madison, WI, AAAI Press, Menlo Park, CA: 509–516.

Craven, M., DiPasquo, D., Freitag, D., McCallum, A. K., Mitchell, T. M., Nigam, K., and
Slattery, S. (2000). “Learning to Construct Knowledge Bases from the World Wide Web.”
Artificial Intelligence 118(1/2): 69–113.

Craven, M., and Kumlien, J. (1999). Constructing Biological Knowledge-Bases by Extracting
Information from Text Sources. In Proceedings of the 7th International Conference on
Intelligent Systems for Molecular Biology (ISMB-99). Heidelberg, AAAI Press, Menlo
Park, CA: 77–86.

Craven, M., and Slattery, S. (2001). “Relational Learning with Statistical Predicate Invention:
Better Models for Hypertext.” Machine Learning 43(1/2): 97–119.

Creecy, R. M., Masand, B. M., Smith, S. J., and Waltz, D. L. (1992). “Trading MIPS and Mem-
ory for Knowledge Engineering: Classifying Census Returns on the Connection Machine.”
Communications of the ACM 35(8): 48–63.

Cristianini, N., Shawe-Taylor, J., and Lodhi, H. (2001). Latent Semantic Kernels. In Proceedings
of ICML-01, 18th International Conference on Machine Learning. Williams College, MA,
Morgan Kaufmann Publishers, San Francisco: 66–73.

Cristianini, N., Shawe-Taylor, J., and Lodhi, H. (2002). “Latent Semantic Kernels.” Journal of
Intelligent Information Systems 18(2/3): 127–152.

Cutting, C., Karger, D., and Pedersen, J. O. (1993). Constant Interaction-Time Scatter/Gather
Browsing of Very Large Document Collections. In Proceedings of ACM–SIGIR Conference
on Research and Development in Information Retrieval. Pittsburgh, ACM Press, New York:
126–134.

Cutting, D. R., Karger, D. R., Pedersen, J. O., and Tukey, J. W. (1992). Scatter/Gather: A
Cluster-Based Approach to Browsing Large Document Collections. In Proceedings of the
15th Annual International ACM–SIGIR Conference on Research and Development in
Information Retrieval. Copenhagen, ACM Press, New York: 318–329.

Cyram Company, Ltd. (2004). NetMiner Webpage http://www.netminer.com.
D’Alessio, S., Murray, K., Schiaffino, R., and Kershenbaum, A. (1998). Category Levels in Hier-

archical Text Categorization. In Proceedings of EMNLP-98, 3rd Conference on Empirical
Methods in Natural Language Processing. Granada, Spain, Association for Computational
Linguistics, Morristown, NJ.

D’Alessio, S., Murray, K., Schiaffino, R., and Kershenbaum, A. (2000). The Effect of Using
Hierarchical Classifiers in Text Categorization. In Proceedings of RIAO-00, 6th International
Conference “Recherche d’Information Assistée par Ordinateur.” Paris: 302–313.

Daelemans, W., Buchholz, S., and Veenstra, J. (1999). Memory-Based Shallow Parsing. In Pro-
ceedings of CoNLL. Bergen, Norway, Association for Computational Linguistics, Somerset,
NJ: 53–60.

Dagan, I., Feldman, R., and Hirsh, H. (1996). Keyword-Based Browsing and Analysis of Large
Document Sets. In Proceedings of SDAIR-96, 5th Annual Symposium on Document Anal-
ysis and Information Retrieval. Las Vegas, UNLV Publications/Reprographics, Las Vegas:
191–207.

Dagan, I., Karov, Y., and Roth, D. (1997). Mistake-Driven Learning in Text Categorization. In
Proceedings of EMNLP-97, 2nd Conference on Empirical Methods in Natural Language
Processing. Providence, RI, Association for Computational Linguistics, Morristown, NJ:
55–63.

Dagan, I., Pereira, F., and Lee, L. (1994). Similarity-Based Estimation of Word Cooccurrence
Probabilities. In Proceedings. of the Annual Meeting of the Association for Computational

346 Bibliography

Linguistics. Las Cruces, NM, Association for Computational Linguistics, Morristown, NJ:
272–278.

Damashek, M. (1995). “Gauging Similarity with N-Grams: Language-Independent Catego-
rization of Text.” Science 267(5199): 843–848.

Dasigi, V., Mann, R. C., and Protopopescu, V. A. (2001). “Information Fusion for
Text Classification: An Experimental Comparison.” Pattern Recognition 34(12): 2413–
2425.

Davidson, G. S., Hendrickson, B., Johnson, D. K., Meyers, C. E., and Wylie, B. N. (1999).
“Knowledge Mining with VxInxight: Discovery through Interaction.” Journal of Intelligent
Information Systems 11(3): 259–285.

Davidson, R., and Harel, D. (1996). “Drawing Graphs Nicely Using Simulated Annealing.”
ACM Transactions on Graphics 15(4): 301–331.

de Buenaga Rodriguez, M., Gomez Hidalgo, J. M., and Diaz-Agudo, B. (2000). Using WordNet
to Complement Training Information in Text Categorization. Recent Advances in Natural
Language Processing II. Amsterdam, J. Benjamins: 189.

De Nooy, W., Mrvar, A., and Batagelj, V. (2004). Exploratory Social Network Analysis with
Pajek. New York, Cambridge University Press.

De Sitter, A., and Daelemans, W. (2003). Information Extraction via Double Classifica-
tion. International Workshop on Adaptive Text Extraction and Mining. Catvat-Dubroknik,
Croatia, Springer, Berlin: 66–73.

Debole, F., and Sebastiani, F. (2003). Supervised Term Weighting for Automated Text Cat-
egorization. In Proceedings of SAC-03, 18th ACM Symposium on Applied Computing.
Melbourne, FL, ACM Press, New York: 784–788.

Decker, S., Melnik, S., Harmelen, F. V., Fensel, D., Klein, M. C. A., Broekstra, J., Erdmann, M.,
and Horrocks, I. (2000). “The Semantic Web: The Roles of XML and RDF.” IEEE Internet
Computing 4(5): 63–74.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and Harshman, R. (1990).
“Indexing by Latent Semantic Analysis.” Journal of the American Society of Information
Science 41(6): 391–407.

Denoyer, L., and Gallinari, P. (2003). A Belief Networks–Based Generative Model for Struc-
tured Documents. An Application to the XML Categorization. In Proceedings of MLDM-03,
3rd International Conference on Machine Learning and Data Mining in Pattern Recogni-
tion. Leipzig, Springer-Verlag, Heidelberg: 328–342.

Denoyer, L., Zaragoza, H., and Gallinari, P. (2001). HMM-Based Passage Models for Docu-
ment Classification and Ranking. In Proceedings of ECIR-01, 23rd European Colloquium
on Information Retrieval Research. Darmstadt, Germany, Springer, Berlin: 126–135.

Dermatas, E., and Kokkinakis, G. (1995). “Automatic Stochastic Tagging of Natural Language
Texts.” Computational Linguistics 21(2): 137–163.

Dhillon, I., Mallela, S., and Kumar, R. (2002). Enhanced Word Clustering for Hierarchi-
cal Text Classification. In Proceedings of KDD-02, 8th ACM International Conference
on Knowledge Discovery and Data Mining. Edmonton, Canada, ACM Press, New York:
191–200.

Di-Nunzio, G., and Micarelli, A. (2003). Does a New Simple Gaussian Weighting Approach Per-
form Well in Text Categorization? In Proceedings of IJCAI-03, 18th International Joint Con-
ference on Artificial Intelligence. Acapulco, Morgan Kaufmann Publishers, San Francisco:
581–586.

Diao, Y., Lu, H., and Wu, D. (2000). A Comparative Study of Classification-Based Personal
E-mail Filtering. In Proceedings of PAKDD-00, 4th Pacific-Asia Conference on Knowledge
Discovery and Data Mining. Kyoto, Japan, Springer-Verlag, Heidelberg: 408–419.

Dickerson, J., Berleant, D., Cox, Z., Qi, W., and Syrkin Wurtele, E. (2003). Creating and
Modeling Metabolic and Regulatory Networks Using Text Mining and Fuzzy Expert Systems.
In Proceedings of Computational Biology and Genome Informatics Conference. World
Scientific Publishing, Hackensack, NJ: 207–238.

Bibliography 347

Diederich, J., Kindermann, J., Leopold, E., and Paass, G. (2003). “Authorship Attribution with
Support Vector Machines.” Applied Intelligence 19(1/2): 109–123.

Ding, Y., Fensel, D., Klein, M. C. A., and Omelayenko, B. (2002). “The Semantic Web: Yet
Another Hip?” DKE 41(2–3): 205–227.

Dixon, M. (1997). “An Overview of Document Mining Technology.” Unpublished manuscript.
Doan, A., Madhavan, J., Domingos, P., and Halevy, A. Y. (2002). “Learning to Map between

Ontologies on the Semantic Web.” In Proceedings of WWW’02, 11th International Confer-
ence on World Wide Web. Honolulu, ACM Press, New York: 662–673.

Domingos, P. (1999). “The Role of Occam’s Razor in Knowledge Discovery.” Data Mining
and Knowledge Discovery 3(1999): 409–425.

Domingos, P., and Pazzani, M. (1997). “On the Optimality of the Simple Bayesian Classifier
under Zero-One Loss.” Machine Learning 29: 103–130.

Dorre, J., Gerstl, P., and Seiffert, R. (1999). Text Mining: Finding Nuggets in Mountains of
Textual Data. In Proceedings of KDD-99, 5th ACM International Conference on Knowledge
Discovery and Data Mining. San Diego, ACM Press, New York: 398–401.

Dou, D., McDermott, D., and Qi, P. (2003). Ontology Translation on the Semantic Web. In
Proceedings of the International Conference on Ontologies, Databases and Applications of
Semantics. Catania (Sicily), Italy, Springer, Berlin: 952–969.

Doyle, L. B. (1965). “Is Automatic Classification a Reasonable Application of Statistical Anal-
ysis of Text?” Journal of the ACM 12(4): 473–489.

Drucker, H., Vapnik, V., and Wu, D. (1999). “Support Vector Machines for Spam Categoriza-
tion.” IEEE Transactions on Neural Networks 10(5): 1048–1054.

Duffet, P. L., and Vernik, R. J. (1997). Software System Visualisation: Netmap Investigations.
Technical Report, DSTO-TR-0558, Defense Science and Technology Organization, Gov-
ernment of Australia.

Dumais, S. T., and Chen, H. (2000). Hierarchical Classification of Web Content. In Proceed-
ings of SIGIR-00, 23rd ACM International Conference on Research and Development in
Information Retrieval. Athens, ACM Press, New York: 256–263.

Dumais, S. T., Platt, J., Heckerman, D., and Sahami, M. (1998). Inductive Learning Algorithms
and Representations for Text Categorization. In Proceedings of 7th International Conference
on Information and Knowledge Management. Bethesda, MD, ACM Press, New York: 148–
155.

Dzbor, M., Domingue, J., and Motta, E. (2004). Magpie: Supporting Browsing and Naviga-
tion on the Semantic Web. In Proceedings of International Conference on Intelligent User
Interfaces (IUI04), Madeira, Funchal, Portugal, ACM Press, New York: 191–197.

Eades, P. (1984). “A Heuristic for Graph Drawing.” Congressus Numerantium 44: 149–
160.

El-Yaniv, R., and Souroujon, O. (2001). Iterative Double Clustering for Unsupervised and Semi-
Supervised Learning. In Proceedings of ECML-01, 12th European Conference on Machine
Learning. Freiburg, Germany, Springer-Verlag, Heidelberg: 121–132.

Elworthy, D. (1994). Does Baum–Welch Re-estimation Help Taggers? In Proceedings of the
4th Conference on Applied Natural Language Processing. Stuttgart, Germany, Morgan
Kaufmann Publishers, San Francisco: 53–58.

Escudero, G., Màrquez, L., and Rigau, G. (2000). Boosting Applied to Word Sense Disam-
biguation. In Proceedings of ECML-00, 11th European Conference on Machine Learning.
Barcelona, Springer-Verlag, Heidelberg: 129–141.

Esteban, A. D., Rodriguez, M. D. B., Lopez, L. A. U., and Vega, M. G. (1998). Integrating
Linguistic Resources in a Uniform Way for Text Classification Tasks. In Proceedings of
LREC-98, 1st International Conference on Language Resources and Evaluation. Grenada,
Spain: 1197–1204.

Etemad, K., Doermann, D. S., and Chellappa, R. (1997). “Multiscale Segmentation of Unstruc-
tured Document Pages Using Soft Decision Integration.” IEEE Transactions on Pattern
Analysis and Machine Intelligence 19(1): 92–96.

348 Bibliography

Etzioni, O., Cafarella, M., Downey, D., Kok, S., Popescu, A., Shaked, T., Soderland, S., Weld,
D., and Yates, A. (2004). Web-Scale Information Extraction in KnowItAll. In Proceedings of
WWW-04, 13th International World Wide Web Conference. New York, ACM Press, New
York: 100–110.

Etzioni, O., Cafarella, M., Downey, D., Popescu, A., T. Shaked, Soderland, S., Weld, D., and
Yates, A. (2004). Methods for Domain-Independent Information Extraction from the Web:
An Experimental Comparison. In Proceedings of the 19th National Conference on Artificial
Intelligence.

Ezawa, K., and Norton, S. (1995). Knowledge Discovery in Telecommunication Services
Data Using Bayesian Network Models. In Proceedings of the First International Con-
ference on Knowledge Discovery (KDD-95). Montreal, AAAI Press, Menlo Park, CA:
100–105.

Fall, C. J., Torcsvari, A., Benzineb, K., and Karetka, G. (2003). “Automated Categorization in
the International Patent Classification.” SIGIR Forum 37(1): 10–25.

Fangmeyer, H., and Lustig, G. (1968). The EURATOM Automatic Indexing Project. In Pro-
ceedings of the IFIP Congress (Booklet J). Edinburgh, North Holland Publishing Company,
Amsterdam: 66–70.

Fangmeyer, H., and Lustig, G. (1970). Experiments with the CETIS Automated Indexing System.
In Proceedings of the Symposium on the Handling of Nuclear Information, International
Atomic Energy Agency: 557–567.

Fayyad, U., Grinstein, G., and Wierse, A., Eds. (2001). Information Visualization in Data
Mining and Knowledge Discovery. San Francisco, Morgan Kaufmann Publishers.

Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996). “From Data Mining to Knowledge
Discovery in Databases.” In Advances in Knowledge Discovery and Data Mining. U. Fayyad,
G. Piatetsky-Shapiro, P. Smyth, and R. Uthuruswamy, eds. Cambridge, MA, AAAI/MIT
Press: 1–36.

Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., and Uthuruswamy, R., eds. (1996). Advances in
Knowledge Discovery and Data Mining. Cambridge, MA, AAAI/MIT Press.

Fayyad, U. M., Reina, C. A., and Bradley, P. S. (1998). Initialization of Iterative Refinement
Clustering Algorithms. Technical Report MSR-TR-98-38, Jet Proplusion Laboratories.

Feldman, R. (1993). Probabilistic Revision of Logical Domain Theories. Ph.D. thesis, Depart-
ment of Computer Science, Cornell University.

Feldman, R. (1996). The KDT System – Using Prolog for KDD. In Proceedings of 4th Con-
ference of Practical Applications of Prolog. London: 91–110.

Feldman, R. (1998). Practical Text Mining. In Proceedings of the 2nd European Symposium
on Principles of Data Mining and Knowledge Discovery. London: 478.

Feldman, R. (2002). “Text Mining.” In Handbook of Data Mining and Knowledge Discovery.
W. Kloesgen and J. Zytkow, eds. New York, Oxford University Press.

Feldman, R., Amir, A., Aumann, Y., and Zilberstein, A. (1996). Incremental Algorithms for
Association Generation. In Proceedings of the First Pacific Conference on Knowledge Dis-
covery. Singapore.

Feldman, R., Aumann, Y., Amir, A., Zilberstein, A., and Kloesgen, W. (1997). Maximal Associ-
ation Rules: A New Tool for Keyword Co-occurrences in Document Collections. In Proceed-
ings of 3rd International Conference on Knowledge Discovery and Data Mining. Newport
Beach, CA, AAAI Press, Menlo Park, CA: 167–170.

Feldman, R., Aumann, Y., Finkelstein-Landau, M., Hurvitz, E., Regev, Y., and Yaroshevich,
A. (2002). A Comparative Study of Information Extraction Strategies. In Proceedings of the
3rd International Conference on Intelligent Text Processing and Computational Linguistics.
Mexico City, Springer, New York: 349–359.

Feldman, R., Aumann, Y., Zilberstein, A., and Ben-Yehuda, Y. (1997). Trend Graphs: Visual-
izing the Evolution of Concept Relationships in Large Document Collections. In Proceedings
of the 2nd European Symposium of Principles of Data Mining and Knowledge Discovery.
Nantes, France, Springer, Berlin: 38–46.

Bibliography 349

Feldman, R., and Dagan, I. (1995). Knowledge Discovery in Textual Databases (KDT). In
Proceedings of the 1st International Conference on Knowledge Discovery and Data Mining.
Montreal, Canada, AAAI Press, Menlo Park, CA: 112–117.

Feldman, R., Dagan, I., and Hirsh, H. (1998). “Mining Text Using Keyword Distributions.”
Journal of Intelligent Information Systems 10(3): 281–300.

Feldman, R., Dagan, I., and Kloesgen, W. (1996a). Efficient Algorithms for Mining and Manip-
ulating Associations in Texts. In Proceedings of the 13th European Meeting on Cybernetics
and Systems Research. Vienna, Austria: 949–954.

Feldman, R., Dagan, I., and Kloesgen, W. (1996b). KDD Tools for Mining Associations in
Textual Databases. In Proceedings of the 9th International Symposium on Methodologies
for Intelligent Systems. Zakopane, Poland: 96–107.

Feldman, R., Fresko, M., Hirsh, H., Aumann, Y., Liphstat, O., Schler, Y., and Rajman, M.
(1998). Knowledge Management: A Text Mining Approach. In Proceedings of the 2nd Inter-
national Conference on Practical Aspects of Knowledge Management (PAKM98). Basel,
Switzerland.

Feldman, R., Fresko, M., Kinar, Y., Lindell, Y., Liphstar, O., Rajman, M., Schler, Y., and Zamir,
O. (1998). Text Mining at the Term Level. In Proceedings of the 2nd European Symposium
on Principles of Data Mining and Knowledge Discovery. Nantes, France, Springer, Berlin:
65–73.

Feldman, R., and Hirsh, H. (1996a). “Exploiting Background Information in Knowledge Dis-
covery from Text.” Journal of Intelligent Information Systems 9(1): 83–97.

Feldman, R., and Hirsh, H. (1996b). Mining Associations in Text in the Presence of Background
Knowledge. In Proceedings of the 2nd International Conference on Knowledge Discovery
from Databases. Portland, OR, AAAI Press, Menlo Park, CA: 343–346.

Feldman, R., and Hirsh, H. (1997). “Finding Associations in Collections of Text.” In Machine
Learning and Data Mining: Methods and Applications. R. S. Michalski, I. Bratko, and M.
Kubat, eds. New York, John Wiley and Sons: 223–240.

Feldman, R., Kloesgen, W., Ben-Yehuda, Y., Kedar, G., and Reznikov, V. (1997). Pattern
Based Browsing in Document Collections. In Proceedings of the 1st European Symposium
of Principles of Data Mining and Knowledge Discovery. Trondheim, Norway, Springer,
Berlin: 112–122.

Feldman, R., Kloesgen, W., and Zilberstein, A. (1997a). Document Explorer: Discovering
Knowledge in Document Collections. In Proceedings of the 10th International Symposium
on Methodologies for International Systems. Trondheim, Norway, Springer, Berlin: 137–146.

Feldman, R., Kloesgen, W., and Zilberstein, A. (1997b). Visualization Techniques to Explore
Data Mining Results for Document Collections. In Proceedings of the 3rd International
Conference on Knowledge Discovery and Data Mining. Newport Beach, CA, AAAI Press,
Menlo Park, CA: 16–23.

Feldman, R., Regev, Y., Hurvitz, E., and Landau-Finkelstein, M. (2003). “Mining the Biomed-
ical Literature Using Semantic Analysis and Natural Language Processing Techniques.”
Biosilico 1 (2): 69–72.

Fellbaum, C. D., ed. (1998). WordNet: An Electronic Lexical Database. Cambridge, MA, MIT
Press.

Fensel, D., Angele, J., Decker, S., Erdmann, M., Schnurr, H.-P., Staab, S., Studer, R., and Witt,
A. (1999). “On2broker: Semantic-Based Access to Information Sources at the WWW.”
WebNet 1: 366–371.

Ferilli, S., Fanizzi, N., and Semeraro, G. (2001). Learning Logic Models for Automated Text
Categorization. In Proceedings of AI*IA-01, 7th Congress of the Italian Association for
Artificial Intelligence. F. Esposito, ed. Bari, Italy, Springer-Verlag, Heidelberg: 81–86.

Ferrndez, A., Palomar, M., and Moreno, L. (1998). Anaphor Resolution in Unrestricted Texts
with Partial Parsing. In Proceedings of the 36th Annual Meeting of the Association for
Computational Linguistics. Montreal, Morgan Kaufmann Publishers, San Francisco: 385–
391.

350 Bibliography

Field, B. J. (1975). “Towards Automatic Indexing: Automatic Assignment of Controlled-
Language Indexing and Classification from Free Indexing.” Journal of Documentation 31(4):
246–265.

Finch, S. (1994). Exploiting Sophisticated Representations for Document Retrieval. In Proceed-
ings of the 4th Conference on Applied Natural Language Processing. Stuttgart, Germany,
Morgan Kaufmann Publishers, San Francisco: 65–71.

Finn, A., Kushmerick, N., and Smyth, B. (2002). Genre Classification and Domain Transfer for
Information Filtering. In Proceedings of ECIR-02, 24th European Colloquium on Informa-
tion Retrieval Research. Glasgow, Springer-Verlag, Heidelberg: 353–362.

Fisher, D., Soderland, S., McCarthy, J., Feng, F., and Lehnert, W. (1995). Description of
the UMass System as Used for MUC-6. In Proceedings of the 6th Message Understand-
ing Conference (MUC-6). Columbia, MD, Morgan Kaufmann Publishers, San Francisco:
127–140.

Fisher, M., and Everson, R. (2003). When Are Links Useful? Experiments in Text Classifica-
tion. In Proceedings of ECIR-03, 25th European Conference on Information Retrieval. F.
Sebastiani, ed. Pisa, Italy, Springer-Verlag, Berlin: 41–56.

Forsyth, R. S. (1999). “New Directions in Text Categorization.” In Causal Models and Intelli-
gent Data Management. A. Gammerman, ed. Heidelberg, Springer-Verlag: 151–185.

Frank, E., Chui, C., and Witten, I. H. (2000). Text Categorization Using Compression Models.
In Proceedings of DCC-00, IEEE Data Compression Conference. Snowbird, UT, IEEE
Computer Society Press, Los Alamitos, CA: 200–209.

Frank, E., Paynter, G. W., Witten, I. H., Gutwin, C., and Neville-Manning, C. G. (1999).
Domain-Specific Keyphrase Extraction. In Proceedings of the 16th International Joint Con-
ference on Artificial Intelligence. Stockholm, Morgan Kaufmann Publishers, San Francisco:
668–673.

Frasconi, P., Soda, G., and Vullo, A. (2001). Text Categorization for Multi-page Documents: A
Hybrid Naive Bayes HMM Approach. In Proceedings of JCDL, 1st ACM-IEEE Joint Con-
ference on Digital Libraries. Roanoke, VA, IEEE Computer Society Press, Los Alamitos,
CA: 11–20.

Frasconi, P., Soda, G., and Vullo, A. (2002). “Text Categorization for Multi-page Documents: A
Hybrid Naive Bayes HMM Approach.” Journal of Intelligent Information Systems 18(2/3):
195–217.

Frawley, W. J., Piatetsky-Shapiro, G., and Matheus, C. J. (1991). “Knowledge Discovery in
Databases: An Overview.” In Knowledge Discovery in Databases. G. Piatetsky-Shapiro and
W. J. Frawley, eds. Cambridge, MA, MIT Press: 1–27.

Freeman, L. C. (1977). “A Set of Measures of Centrality Based on Betweenness.” Sociometry
40: 35–41.

Freeman, L. C. (1979). “Centrality in Social Networks: Conceptual Clarification.” Social Net-
works 1: 215–239.

Freitag, D. (1997). Using Grammatical Inference to Improve Precision in Information Extrac-
tion. In Proceedings of the Workshop on Grammatical Inference, Automata Induction,
and Language Acquisition (ICML ’97). Nashville, TN, Morgan Kaufmann Publishers, San
Mateo, CA.

Freitag, D. (1998a). Information Extraction from HTML: Application of a General Machine
Learning Approach. In Proceedings of the 15th National Conference on Artificial Intelli-
gence. Madison, WI, AAAI Press, Menlo Park, CA: 517–523.

Freitag, D. (1998b). Machine Learning for Information Extraction in Informal Domains. Ph.D.
thesis, Computer Science Department, Carnegie Mellon University.

Freitag, D., and Kushmerick, N. (2000). Boosted Wrapper Induction. In Proceedings of AAAI
2000. Austin, TX, AAAI Press, Menlo Park, CA: 577–583.

Freitag, D., and McCallum, A. (2000). Information Extraction with HMM Structures Learned
by Stochastic Optimization. In Proceedings of the 17th National Conference on Artificial
Intelligence. Austin, TX, AAAI Press, Menlo Park, CA: 584–589.

Bibliography 351

Freitag, D., and McCallum, A. L. (1999). Information Extraction with HMMs and Shrinkage.
In Papers from the AAAI-99 Workshop on Machine Learning for Information Extraction:
31–36.

Freund, J., and Walpole, R. (1990). Estadı́stica Matemática con Aplicaciones. Prentice Hall.
Frommholz, I. (2001). Categorizing Web Documents in Hierarchical Catalogues. In Proceedings

of ECIR-01, 23rd European Colloquium on Information Retrieval Research. Darmstadt,
Germany: 18–20.

Fruchterman, T., and Reingold, E. (1991). “Graph Drawing by Force-Directed Placement.”
Software – Practice and Experience 21(11): 1129–1164.

Fuhr, N. (1985). A Probabilistic Model of Dictionary-Based Automatic Indexing. In Proceed-
ings of RIAO-85, 1st International Conference “Recherche d’Information Assistee par
Ordinateur.” Grenoble, France: 207–216.

Fuhr, N., Hartmann, S., Knorz, G., Lustig, G., Schwantner, M., and Tzeras, K. (1991). AIR/X –
A Rule-Based Multistage Indexing System for Large Subject Fields. In Proceedings of RIAO-
91, 3rd International Conference “Recherche d’Information Assistée par Ordinateur.” A.
Lichnerowicz, ed. Barcelona, Elsevier Science Publishers, Amsterdam: 606–623.

Fuhr, N., and Knorz, G. (1984). Retrieval Test Evaluation of a Rule-Based Automated Indexing
(AIR/PHYS). In Proceedings of SIGIR-84, 7th ACM International Conference on Research
and Development in Information Retrieval. C. J. v. Rijsbergen, ed. Cambridge, UK, Cam-
bridge University Press, Cambridge: 391–408.

Fuhr, N., and Pfeifer, U. (1991). Combining Model-Oriented and Description-Oriented
Approaches for Probabilistic Indexing. In Proceedings of SIGIR-91, 14th ACM Interna-
tional Conference on Research and Development in Information Retrieval. Chicago, ACM
Press, New York: 46–56.

Fuhr, N., and Pfeifer, U. (1994). “Probabilistic Information Retrieval as Combination of
Abstraction Inductive Learning and Probabilistic Assumptions.” ACM Transactions on
Information Systems 12(1): 92–115.

Fukuda, K., Tamura, A., Tsunoda, T., and Takagi, T. (1998). Toward Information Extraction:
Identifying Protein Names. In Proceedings of the Pacific Symposium on Biocumputing. Maui,
Hawaii, World Scientific Publishing Company, Hackensack, NJ: 707–718.

Fung, G. P. C., Yu, J. X., and Lu, H. (2002). Discriminative Category Matching: Efficient Text
Classification for Huge Document Collections. In Proceedings of ICDM-02, 2nd IEEE Inter-
national Conference on Data Mining. Maebashi City, Japan, IEEE Computer Society Press,
Los Alamitos, 187–194.

Furnas, G. (1981). “The FISHEYE View: A New Look at Structured Files.” Bell Laborato-
ries Technical Report, reproduced in Reading in Information Visualization: Using Vision
to Think. S. K. Card, J. D. Mackinlay, and B. Schneiderman, eds. San Francisco, Morgan
Kaufmann Publishers: 312–330.

Furnas, G. (1986). Generalized Fisheye Views. In Proceedings of the ACM SIGCHI Conference
on Human Factors in Computing Systems. ACM Press, New York: 16–23.

Furnkranz, J. (1999). Exploiting Structural Information for Text Classification on the WWW. In
Proceedings of IDA-99, 3rd Symposium on Intelligent Data Analysis. Amsterdam, Springer-
Verlag, Heidelberg: 487–497.

Furnkranz, J. (2002). “Hyperlink Ensembles: A Case Study in Hypertext Classification.” Infor-
mation Fusion 3(4): 299–312.

Gaizauskas, R., and Humphreys, K. (1997). “Using a Semantic Network for Information
Extraction.” Natural Language Engineering 3(2): 147–196.

Galavotti, L., Sebastiani, F., and Simi, M. (2000). Experiments on the Use of Feature Selection
and Negative Evidence in Automated Text Categorization. In Proceedings of ECDL-00, 4th
European Conference on Research and Advanced Technology for Digital Libraries. Lisbon,
Springer-Verlag, Heidelberg: 59–68.

Gale, W. A., Church, K. W., and Yarowsky, D. (1993). “A Method for Disambiguating Word
Senses in a Large Corpus.” Computers and the Humanities 26(5): 415–439.

352 Bibliography

Gall, H., Jazayeri, M., and Riva, C. (1999). Visualizing Software Release Histories: The Use of
Color and Third Dimension. In Proceedings of the International Conference on Software
Maintenance (ICSM ’99). Oxford, UK, IEEE Computer Society Press, Los Alamitos, CA:
99.

Gansner, E., Koutsofias, E., North, S., and Vo, K. (1993). “A Technique for Drawing Directed
Graphs.” IEEE Transactions on Software Engineering 19(3): 214–230.

Gansner, E., North, S., and Vo, K. (1988). “DAG – A Program that Draws Directed Graphs.”
Software Practice and Experience 18(11): 1047–1062.

Ganter, B., and Wille, R. (1999). Formal Concept Analysis: Mathematical Foundations. Berlin,
Springer-Verlag.

Gao, S., Wu, W., Lee, C.-H., and Chua, T.-S. (2003). A Maximal Figure-of-Merit Learning
Approach to Text Categorization. In Proceedings of SIGIR-03, 26th ACM International
Conference on Research and Development in Information Retrieval. Toronto, ACM Press,
New York: 174–181.

Gaussier, E., Goutte, C., Popat, K., and Chen, F. (2002). A Hierarchical Model for Clustering
and Categorising Documents. In Proceedings of ECIR-02, 24th European Colloquium on
Information Retrieval Research. Glasgow, Springer-Verlag, Heidelberg: 229–247.

Gelbukh, A., ed. (2002). Computational Linguistics and Intelligent Text Processing. In Proceed-
ings of 3rd International Conference, CICLing 2001. Mexico City, Springer-Verlag, Berlin
and New York.

The Gene Ontology (GO) Consortium. (2000). “Gene Ontology: Tool for the Unification of
Biology.” Nature Genetics 25: 25–29.

The Gene Ontology (GO) Consortium. (2001). “Creating the Gene Ontology Resource:
Design and Implementation.” Genome Research 11: 1425–1433.

Gentili, G. L., Marinilli, M., Micarelli, A., and Sciarrone, F. (2001). “Text Categorization in
an Intelligent Agent for Filtering Information on the Web.” International Journal of Pattern
Recognition and Artificial Intelligence 15(3): 527–549.

Geutner, P., Bodenhausen, U., and Waibel, A. (1993). Flexibility through Incremental Learning:
Neural Networks for Text Categorization. In Proceedings of WCNN-93, World Congress on
Neural Networks. Portland, OR, Lawrence Erlbaum Associates, Hillsdale, NJ: 24–27.

Ghani, R. (2000). Using Error-Correcting Codes for Text Classification. In Proceedings of
ICML-00, 17th International Conference on Machine Learning. P. Langley, ed. Stanford,
CA, Morgan Kaufmann Publishers, San Francisco: 303–310.

Ghani, R. (2001). Combining Labeled and Unlabeled Data for Text Classification with a Large
Number of Categories. In Proceedings of the IEEE International Conference on Data Min-
ing. San Jose, CA, IEEE Computer Society Press, Los Alamitos, CA: 597–598.

Ghani, R. (2002). Combining Labeled and Unlabeled Data for MultiClass Text Categorization.
In Proceedings of ICML-02, 19th International Conference on Machine Learning. Sydney,
Australia, Morgan Kaufmann Publishers, San Francisco: 187–194.

Ghani, R., Slattery, S., and Yang, Y. (2001). Hypertext Categorization Using Hyperlink Patterns
and Meta Data. In Proceedings of ICML-01, 18th International Conference on Machine
Learning. Williams College, Morgan Kaufmann Publishers, San Francisco: 178–185.

Giorgetti, D., and Sebastiani, F. (2003a). “Automating Survey Coding by Multiclass Text Cat-
egorization Techniques.” Journal of the American Society for Information Science and Tech-
nology 54(12): 1269–1277.

Giorgetti, D., and Sebastiani, F. (2003b). Multiclass Text Categorization for Automated Survey
Coding. In Proceedings of SAC-03, 18th ACM Symposium on Applied Computing.
Melbourne, Australia, ACM Press, New York: 798–802.

Giorgio, M. D. N., and Micarelli, A. (2003). Does a New Simple Gaussian Weighting Approach
Perform Well in Text Categorization? In Proceedings of IJCAI-03, 18th International Joint
Conference on Artificial Intelligence. Acapulco, Morgan Kaufmann Publishers, San Fran-
cisco: 581–586.

Glover, E. J., Tsioutsiouliklis, K., Lawrence, S., Pennock, D. M., and Flake, G. W. (2002).
Using Web Structure for Classifying and Describing Web Pages. In Proceedings of WWW-02,

Bibliography 353

International Conference on the World Wide Web. Honolulu, ACM Press, New York: 562–
569.

Goldberg, J. L. (1995). CDM: An Approach to Learning in Text Categorization. In Proceedings
of ICTAI-95, 7th International Conference on Tools with Artificial Intelligence. Herndon,
VA, IEEE Computer Society Press, Los Alamitos, CA: 258–265.

Goldberg, J. L. (1996). “CDM: An Approach to Learning in Text Categorization.” International
Journal on Artificial Intelligence Tools 5(1/2): 229–253.

Goldstein, J., and Roth, S. (1994). Using Aggregation and Dynamic Queries for Exploring Large
Data Sets. In Proceedings of Human Factors in Computing Systems CHI ’94 Conference.
Boston, ACM, New York: 23–29.

Goldszmidt, M., and Sahami, M. (1998). Probabilistic Approach to Full-Text Document Clus-
tering. Technical Report ITAD-433-MS-98-044, SRI International.

Gomez-Hidalgo, J. M. (2002). Evaluating Cost-Sensitive Unsolicited Bulk Email Categoriza-
tion. In Proceedings of SAC-02, 17th ACM Symposium on Applied Computing. Madrid,
ACM Press, New York: 615–620.

Gomez-Hidalgo, J. M., Rodriguez, J. M. D. B., Lopez, L. A. U., Valdivia, M. T. M., and Vega,
M. G. (2002). Integrating Lexical Knowledge in Learning-Based Text Categorization. In
Proceedings of JADT-02, 6th International Conference on the Statistical Analysis of Textual
Data. St.-Malo, France.

Goodman, M. (1990). Prism: A Case-Based Telex Classifier. In Proceedings of IAAI-90, 2nd
Conference on Innovative Applications of Artificial Intelligence. Boston, AAAI Press,
Menlo Park, CA: 25–37.

Gotlieb, C. C., and Kumar, S. (1968). “Semantic Clustering of Index Terms.” Journal of the
ACM 15(4): 493–513.

Govert, N., Lalmas, M., and Fuhr, N. (1999). A Probabilistic Description-Oriented Approach
for Categorising Web Documents. In Proceedings of CIKM-99, 8th ACM International Con-
ference on Information and Knowledge Management. Kansas City, MO, ACM Press, New
York: 475–482.

Graham, M. (2001). Visualising Multiple Overlapping Classification Hierarchies. Ph.D. diss.,
Napier University.

Gray, W. A., and Harley, A. J. (1971). “Computer-Assisted Indexing.” Information Storage
and Retrieval 7(4): 167–174.

Greene, B. B., and Rubin, G. M. (1971). Automatic Grammatical Tagging of English. Technical
Report. Providence, RI, Brown University.

Grieser, G., Jantke, K. P., Lange, S., and Thomas, B. (2000). A Unifying Approach to HTML
Wrapper Representation and Learning. Discovery Science. In Proceedings of 3rd Interna-
tional Conference, DS 2000. Kyoto, Japan, Springer-Verlag, Berlin: 50–64.

Grinstein, G. (1996). Harnessing the Human in Knowledge Discovery. In Proceedings of the
2nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
Portland, OR, AAAI Press, CA: 384–385.

Grishman, R. (1996). “The Role of Syntax in Information Extraction.” In Advances in Text
Processing: Tipster Program Phase II. San Francisco, Morgan Kaufmann Publishers.

Grishman, R. (1997). “Information Extraction: Techniques and Challenges.” In Materials of
Information Extraction International Summar School – SCIE ’97. Springer, Berlin: 10–27.

Gruber, T. R. (1993). “A Translation Approach to Portable Ontologies.” Knowledge Acquisi-
tion 5: 199–220.

Guthrie, L., Guthrie, J. A., and Leistensnider, J. (1999). “Document Classification and Rout-
ing.” In Natural Language Information Retrieval. T. Strzalkowski, ed. Dordrecht, Kluwer
Academic Publishers: 289–310.

Guthrie, L., Walker, E., and Guthrie, J. A. (1994). Document Classification by Machine: Theory
and Practice. In Proceedings of COLING-94, 15th International Conference on Computa-
tional Linguistics. Kyoto, Japan, Morgan Kaufmann Publishers, San Francisco: 1059–1063.

Hadany, R., and Harel, D. (2001). “A Multi-Scale Method for Drawing Graphs Nicely.” Dis-
crete Applied Mathematics 113: 3–21.

354 Bibliography

Hadjarian, A., Bala, J., and Pachowicz, P. (2001). Text Categorization through Multistrategy
Learning and Visualization. In Proceedings of CICLING-01, 2nd International Conference
on Computational Linguistics and Intelligent Text Processing. A. Gelbukh, ed. Mexico City,
Springer-Verlag, Heidelberg: 423–436.

Hahn, U., and Schnattinger, K. (1997). Knowledge Mining from Textual Sources. In Proceedings
of the 6th International Conference on Information and Knowledge Management. Las
Vegas, ACM, New York: 83–90.

Hamill, K. A., and Zamora, A. (1978). An Automatic Document Classification System Using
Pattern Recognition Techniques. In Proceedings of ASIS-78, 41st Annual Meeting of the
American Society for Information Science. E. H. Brenner, ed. New York, American Society
for Information Science, Washington, DC: 152–155.

Hamill, K. A., and Zamora, A. (1980). “The Use of Titles for Automatic Document Classifi-
cation.” Journal of the American Society for Information Science 33(6): 396–402.

Han, E.-H., Karypis, G., and Kumar, V. (2001). Text Categorization Using Weight-Adjusted
k-Nearest Neighbor Classification. In Proceedings of PAKDD-01, 5th Pacific-Asia Confer-
enece on Knowledge Discovery and Data Mining. Hong Kong, Springer-Verlag, Heidelberg:
53–65.

Han, J., and Fu, Y. (1995). Discovery of Multiple-Level Association Rules from Large
Databases. In Proceedings of the 1995 International Conference on Very Large Data Bases
(VLDB’95). Zurich, Morgan Kaufmann Publishers, San Francisco: 420–431.

Hanauer, D. (1996). “Integration of Phonetic and Graphic Features in Poetic Text Categoriza-
tion Judgements.” Poetics 23(5): 363–380.

Hao, M., Dayal, U., Hsu, M., Sprenger, T., and Gross, M. (2001). Visualization of Directed
Associations in E-commerce Transaction Data. In Proceedings of Data Visualization (EG
and IEEE’s VisSym ’01). Ascona, Switzerland, Springer, Berlin: 185–192.

Haralick, R. M. (1994). Document Image Understanding: Geometric and Logical Layout.
In Proceedings of CVPR94, IEEE Computer Society Conference on Computer Vision
and Pattern Recognition. Seattle, IEEE Computer Society Press, Los Alamitos, CA:
385–390.

Hardt, D., and Romero, M. (2002). Ellipsis and the Structure of Discourse. In Proceedings of
Sinn und Bedeutung VI, Osnabrück, Germany, Institute for Cognitive Science, University
of Osnabrück: 85–98.

Harel, D., and Koren, Y. (2000). A Fast Multi-Scale Method for Drawing Large Graphs. In
Proceedings of the 8th International Symposium on Graph Drawing. Willamsburg, VA,
Springer-Verlag, Heidelberg: 282–285.

Hatzivassiloglou, V., Duboue, P. A., and Rzhetsky, A. (2001). “Disambiguating Proteins,
Genes, and RNA in Text: A Machine Learning Approach.” Bioinformatics 17(Suppl 1):
S97–106.

Havre, S., Hetzler, B., and Nowell, L. (1999). ThemeRiver(TM): In Search of Trends, Pat-
terns and Relationships. In Proceedings of IEEE Symposium on Information Visualization
(InfoVis 1999). San Francisco, IEEE Press, New York: 115–123.

Hayes, P. (1992). “Intelligent High-Volume Processing Using Shallow, Domain-Specific Tech-
niques.” In Text-Based Intelligent Systems: Current Research and Practice in Information
Extraction and Retrieval. P. S. Jacobs, ed. Hillsdale, NJ, Lawrence Earlbaum: 227–242.

Hayes, P. J., Andersen, P. M., Nirenburg, I. B., and Schmandt, L. M. (1990). Tcs: A Shell for
Content-Based Text Categorization. In Proceedings of CAIA-90, 6th IEEE Conference on
Artificial Intelligence Applications. Santa Barbara, CA, IEEE Computer Society Press, Los
Alamitos, CA: 320–326.

Hayes, P. J., Knecht, L. E., and Cellio, M. J. (1988). A News Story Categorization System.
In Proceedings of ANLP-88, 2nd Conference on Applied Natural Language Processing.
Austin, JX, Association for Computational Linguistics, Morristown, NJ: 9–17.

Hayes, P. J., and Weinstein, S. P. (1990). Construe/Tis: A System for Content-Based Indexing
of a Database of News Stories. In Proceedings of IAAI-90, 2nd Conference on Innovative
Applications of Artificial Intelligence. Boston, AAAI Press, Menlo Park, CA: 49–66.

Bibliography 355

He, J., Tan, A.-H., and Tan, C.-L. (2003). “On Machine Learning Methods for Chinese Docu-
ment Categorization.” Applied Intelligence 18(3): 311–322.

Heaps, H. S. (1973). “A Theory of Relevance for Automatic Document Classification.” Infor-
mation and Control 22(3): 268–278.

Hearst, M. (1992). Automatic Acquisition of Hyponyms From Large Text Corpora. In Proceed-
ings of the 14th International Conference on Computational Linguistics. Nantes, France,
Association for Computational Linguistics, Morristown, NJ: 539–545.

Hearst, M. (1995). TileBars: Visualization of Term Distribution Information in Full-Text Infor-
mation Access. In Proceedings of the ACM SIGCHI Conference on Human Factors in
Computing Systems, Denver, CO, ACM, New York: 59–66.

Hearst, M. (1999a). Untangling Text Mining. In Proceedings of the 37th Annual Meeting of the
Association of Computational Linguistics. College Park, MD, Association of Computational
Linguistics, Morristown, NJ: 3–10.

Hearst, M. (1999b). “User Interfaces and Visualization.” In Modern Information Retrieval.
R. Baeza-Yates and B. Ribeira-Neto, eds. Boston, Addison-Wesley Longman Publishing
Company: 257–323.

Hearst, M. (2003). Information Visualization: Principles, Promise and Pragmatics Tutorial
Notes. In Proceedings of CHI 03. Fort Lauderdale, FL.

Hearst, M., and Hirsh, H. (1996). Machine Learning in Information Access. Papers from the
1996 AAAI Spring Symposium. Stanford, CA, AAAI Press, Menlo Park, CA.

Hearst, M., and Karadi, C. (1997). Cat-a-Cone: An Interactive Interface for Specifying Searches
and Viewing Retrieval Results Using a Large Category Hierarchy. In Proceedings of the 20th
Annual International ACM/SIGIR Conference. Philadelphia, ACM Press, New York: 246–
255.

Hearst, M. A. (1991). Noun Homograph Disambiguation Using Local Context in Large Cor-
pora. In Proceedings of the 7th Annual Conference of the University of Waterloo Centre
for the New Oxford English Dictionary. Oxford, UK: 1–22.

Hearst, M. A., Karger, D. R., and Pedersen, J. O. (1995). Scatter/Gather as a Tool for the
Navigation of Retrieval Results. Working Notes, AAAI Fall Symposium on AI Applications
in Knowledge Navigation. Cambridge, MA, AAAI Press, Menlo Park, CA: 65–71.

Hearst, M. A., and Pedersen, J. O. (1996). Reexamining the Cluster Hypothesis: Scatter/Gather
on Retrieval Results. In Proceedings of ACM SIGIR ’96. Zurich, ACM Press, New York:
76–84.

Hersh, W., Buckley, C., Leone, T. J., and Hickman, D. (1994). OHSUMED: An Interactive
Retrieval Evaluation and New Large Text Collection for Research. In Proceedings of SIGIR-
94, 17th ACM International Conference on Research and Development in Information
Retrieval. Dublin, Springer-Verlag, Heidelberg: 192–201.

Hetzler, B., Harris, W. M., Havre, S., and Whitney, P. (1998). Visualizing the Full Spectrum
of Document Relationships. In Proceedings of the 5th International Society for Knowledge
Organization (ISKO) Conference. Lille, France, Ergon-Verlog, Würzburg, Germany: 168–
175.

Hetzler, B., Whitney, P., Martucci, L., and Thomas, J. (1998). Multi-Faceted Insight through
Interoperable Visual Information Analysis Paradigms. In Proceedings of Information Visu-
alization ’98. Research Triangle Park, NC, IEEE Computer Society Press, Los Alamitos,
CA: 137–144.

Hill, D. P., Blake, J. A., Richardson, J. E., and Ringwald, M. (2002). “Extension and Integration
of the Gene Ontology (GO): Combining GO Vocabularies with External Vocabularies.”
Genome Research 12: 1982–1991.

Hindle, D. (1989). Acquiring Disambiguation Rules from Text. In Proceedings of 27th Annual
Meeting of the Association for Computational Linguistics. Vancouver, Association for Com-
putational Linguistics, Morristown, NJ: 118–125.

Hirschman, L., Park, J. C., Tsujii, J., Wong, L., and Wu, C. H. (2002). “Accomplishments and
Challenges in Literature Data Mining for Biology.” Bioinformatics Review 18(12): 1553–
1551.

356 Bibliography

Hoashi, K., Matsumoto, K., Inoue, N., and Hashimoto, K. (2000). Document Filtering Methods
Using Non-Relevant Information Profile. In Proceedings of SIGIR-00, 23rd ACM Interna-
tional Conference on Research and Development in Information Retrieval. Athens, ACM
Press, New York: 176–183.

Hobbs, J. (1986). “Resolving Pronoun References.” In Readings in Natural Language Pro-
cessing. B. J. Grosz, K. S. Jones and B. L. Webber, eds. Los Altos, CA, Morgan Kaufmann
Publishers: 339–352.

Hobbs, J., Douglas, R., Appelt, E., Bear, J., Israel, D., Kameyama, M., Stickel, M., and Tyson,
M. (1996). “FASTUS: A Cascaded Finite-State Transducer for Extracting Information from
Natural-Language Text.” In Finite State Devices for Natural Language Processing. E. Roche,
and Y. Schabes, eds. Cambridge, MA, MIT Press: 383–406.

Hobbs, J. R. (1993). FASTUS: A System for Extracting Information from Text. In Proceedings
of DARPA Workshop on Human Language Technology. Princeton, NJ, Morgan Kaufmann
Publishers, San Mateo, CA: 133–137.

Hobbs, J. R., Appelt, D. E., Bear, J., Tyson, M., and Magerman, D. (1991). The TACITUS
System: The MUC-3 Experience. Menlo Park, CA, SRI.

Hoch, R. (1994). Using IR Techniques for Text Classification in Document Analysis. In Pro-
ceedings of SIGIR-94, 17th ACM International Conference on Research and Development
in Information Retrieval. Dublin, Springer-Verlag, Heidelberg: 31–40.

Honkela, T. (1997). Self-Organizing Maps in Natural Language Processing. Neural Networks
Research Centre. Helsinki, Helsinki University of Technology.

Honkela, T., Kaski, S., Kohonen, T., and Lagus, K. (1998). “Self-Organizing Maps of Very
Large Document Collections: Justification for the WEBSOM Method.” In Classification,
Data Analysis and Data Highways. I. Balderjahn, R. Mathar and M. Schader, eds. Berlin,
Springer-Verlag: 245–252.

Honkela, T., Kaski, S., Lagus, K., and Kohonen, T. (1997). WEBSOM – Self-Organizing Maps
of Document Collections. In Proceedings of WSOM ’97, Workshop on Self-Organizing Maps.
Espoo, Finland, Helsinki University of Technology. Helsinki: 310–315.

Honkela, T., Lagus, K., and Kaski, S. (1998). “Self-Organizing Maps of Large Document
Collections.” In Visual Explorations in Finance with Self-Organizing Maps. G. Deboeck
and T. Kohonen, eds. London, Springer: 168–178.

Hornbaek, K., Bederson, B., and Plaisant, C. (2002). “Navigation Patterns and Usability
of Zoomable User Interfaces With and Without an Overview.” ACM Transactions on
Computer–Human Interaction 9(4): 362–389.

Hotho, A., Maedche, A., Staab, S., and Zacharias, V. (2002). “On Knowledgeable Super-
vised Text Mining.” In Text Mining: Theoretical Aspects and Applications. J. Franke, G.
Nakhaeizadeh, and I. Renz, eds. Heidelberg, Physica-Verlag (Springer): 131– 152.

Hotho, A., Staab, S., and Maedche, A. (2001). Ontology-Based Text Clustering. In Proceedings
of the IJCAI-2001 Workshop Text Learning: Beyond Supervision. Seattle.

Hotho, A., Staab, S., and Stumme, G. (2003). Text Clustering Based on Background Knowledge.
Institute of Applied Informatics and Formal Descriptive Methods, University of Karlsruhe,
Germany: 1–35.

Hoyle, W. G. (1973). “Automatic Indexing and Generation of Classification by Algorithm.”
Information Storage and Retrieval 9(4): 233–242.

Hsu, W.-L., and Lang, S.-D. (1999). Classification Algorithms for NETNEWS Articles. In Pro-
ceedings of CIKM-99, 8th ACM International Conference on Information and Knowledge
Management. Kansas City, MO, ACM Press, New York: 114–121.

Hsu, W.-L., and Lang, S.-D. (1999). Feature Reduction and Database Maintenance in NET-
NEWS Classification. In Proceedings of IDEAS-99, 1999 International Database Engineer-
ing and Applications Symposium. Montreal, IEEE Computer Society Press, Los Alamitos,
CA: 137–144.

Huang, S., Ward, M., and Rudensteiner, E. (2003). Exploration of Dimensionality Reduction
for Text Visualization. Worcester, MA, Worcester Polytechnic Institute.

Bibliography 357

Hubona, G. S., Shirah, G., and Fout, D. (1997). “The Effects of Motion and Stereopsis on
Three-Dimensional Visualization.” International Journal of Human Computer Studies 47(5):
609–627.

Huffman, S. (1995). Acquaintance: Language-Independent Document Categorization by N-
Grams. In Proceedings of TREC-4, 4th Text Retrieval Conference. Gaithersburg, MD,
National Institute of Standards and Technology, Gaithersburg, MD: 359–371.

Huffman, S., and Damashek, M. (1994). Acquaintance: A Novel Vector-Space N-Gram
Technique for Document Categorization. In Proceedings of TREC-3, 3rd Text Retrieval
Conference, D. K. Harman, ed. Gaithersburg, MD, National Institute of Standards and
Technology, Gaithersburg, MD: 305–310.

Huffman, S. B. (1995). “Learning Information Extraction Patterns from Examples.” In Connec-
tionist, Statistical, and Symbolic Approaches to Learning for Natural Language Processing.
S. Wermter, E. Riloff, and G. Scheler, eds. London, Springer-Verlag: 246–260.

Hull, D. (1996). “Stemming Algorithms – A Case Study for Detailed Evaluation.” Journal of
the American Society for Information Science 47(1): 70–84.

Hull, D. A. (1994). Improving Text Retrieval for the Routing Problem Using Latent Semantic
Indexing. In Proceedings of SIGIR-94, 17th ACM International Conference on Research
and Development in Information Retrieval. Dublin, Springer-Verlag, Heidelberg: 282–289.

Hull, D. A. (1998). The TREC-7 Filtering Track: Description and Analysis. In Proceedings of
TREC-7, 7th Text Retrieval Conference. Gaithersburg, MD, National Institute of Standards
and Technology, Gaithersburg, MD: 33–56.

Hull, D. A., Pedersen, J. O., and Schutze, H. (1996). Method Combination for Document
Filtering. In Proceedings of SIGIR-96, 19th ACM International Conference on Research and
Development in Information Retrieval. H.-P. Frei, D. Harman, P. Schable, and R. Wilkinson,
eds. Zurich, ACM Press, New York: 279–288.

Hummon, M. P., and Carley, K. (1993). “Social Networks as Normal Science.” Social Networks
14: 71–106.

Humphreys, K., Gaizauskas, R., and Azzam, S. (1997). Event Coreference for Information
Extraction. In Proceedings of the Workshop on Operational Factors in Practical, Robust,
Anaphora Resolution for Unrestricted Texts. Madrid, Spain, Association for Computational
Linguistics, Morristown, NJ: 75–81.

Igarashi, T., and Hinckley, K. (2000). Speed-Dependent Automatic Zooming for Browsing
Large Documents. In Proceedings of the 11th Annual Symposium on User Interface Soft-
ware and Technology (UIST ’00). San Diego, CA, ACM Press, New York: 139–148.

IntertekGroup (2002). Leveraging Unstructured Data in Investment Management.
http://www.taborcommunications.com/dsstar/02/0604/104317.html.

Ipeirotis, P. G., Gravano, L., and Sahami, M. (2001). Probe, Count, and Classify: Categorizing
Hidden Web Databases. In Proceedings of SIGMOD-01, ACM International Conference
on Management of Data. W. G. Aref, ed. Santa Barbara, CA, ACM Press, New York:
67–78.

Ittner, D. J., Lewis, D. D., and Ahn, D. D. (1995). Text Categorization of Low Quality Images. In
Proceedings of SDAIR-95, 4th Annual Symposium on Document Analysis and Information
Retrieval. Las Vegas, NV, ISRI, University of Nevada, Las Vegas, NV: 301–315.

Iwayama, M., and Tokunaga, T. (1994). A Probabilistic Model for Text Categorization: Based on
a Single Random Variable with Multiple Values. In Proceedings of ANLP-94, 4th Conference
on Applied Natural Language Processing. Stuttgart, Germany, Association for Computa-
tional Linguistics, Morristown, NJ: 162–167.

Iwayama, M., and Tokunaga, T. (1995a). Cluster-Based Text Categorization: A Comparison of
Category Search Strategies. In Proceedings of SIGIR-95, 18th ACM International Confer-
ence on Research and Development in Information Retrieval. E. A. Fox, P. Ingwersen, and
R. Fidel, eds. Seattle, ACM Press, New York: 273–281.

Iwayama, M., and Tokunaga, T. (1995b). Hierarchical Bayesian Clustering for Automatic Text
Classification. In Proceedings of IJCAI-95, 14th International Joint Conference on Artificial

358 Bibliography

Intelligence. C. E. Mellish, ed. Montreal, Morgan Kaufmann Publishers, San Francisco:
1322–1327.

Iwazume, M., Takeda, H., and Nishida, T. (1996). Ontology-Based Information Gathering
and Text Categorization from the Internet. In Proceedings of IEA/AIE-96, 9th International
Conference in Industrial and Engineering Applications of Artificial Intelligence and Expert
Systems. T. Tanaka, S. Ohsuga, and M. Ali, eds. Fukuoka, Japan: 305–314.

Iyer, R. D., Lewis, D. D., Schapire, R. E., Singer, Y., and Singhal, A. (2000). Boosting for
Document Routing. In Proceedings of CIKM-00, 9th ACM International Conference on
Information and Knowledge Management. A. Agah, J. Callan, and E. Rundensteiner, eds.
McLean, VA, ACM Press, New York: 70–77.

Jacobs, P. S. (1992). Joining Statistics with NLP for Text Categorization. In Proceedings of
ANLP-92, 3rd Conference on Applied Natural Language Processing. M. Bates and O. Stock,
eds. Trento, Italy, Association for Computational Linguistics, Morristown, NJ: 178–185.

Jacobs, P. S. (1993). “Using Statistical Methods to Improve Knowledge-Based News Catego-
rization.” IEEE Expert 8(2): 13–23.

Jain, A., and Dubes, R. (1988). Algorithms for Clustering Data. Englewood Cliffs, NJ, Prentice
Hall.

Jain, A. K., and Chellappa, R., eds. (1993). Markov Random Fields: Theory and Application.
Boston, Academic Press.

Jain, A. K., Murty, M. N., and Flynn, P. J. (1999). “Data Clustering: A Review.” ACM Com-
puting Surveys 31(3): 264–323.

Jensen, J. R. (1996). Introductory Digital Image Processing – A Remote Sensing Perspective.
Englewood Cliffs, NJ, Prentice Hall.

Jerding, D., and Stasko, J. (1995). The Information Mural: A Technique for Displaying and
Navigating Large Information Spaces. In Proceedings of Information Visualization ’95
Symposium. Atlanta, IEEE Computer Society, Washington, DC: 43.

Jo, T. C. (1999a). “News Article Classification Based on Categorical Points from Keywords
in Backdata.” In Computational Intelligence for Modelling, Control and Automation. M.
Mohammadian, ed. Amsterdam, IOS Press: 211–214.

Jo, T. C. (1999b). “News Articles Classification Based on Representative Keywords of Cate-
gories.” In Computational Intelligence for Modelling, Control and Automation. M. Moham-
madian, ed. Amsterdam, IOS Press: 194–198.

Jo, T. C. (1999c). Text Categorization with the Concept of Fuzzy Set of Informative Keywords. In
Proceedings of FUZZ-IEEE ’99, IEEE International Conference on Fuzzy Systems. Seoul,
KR, IEEE Computer Society Press, Los Alamitos, CA: 609–614.

Joachims, T. (1997). A Probabilistic Analysis of the Rocchio Algorithm with TFIDF for Text
Categorization. In Proceedings of ICML-97, 14th International Conference on Machine
Learning. D. H. Fisher, ed. Nashville, TN, Morgan Kaufmann Publishers, San Francisco:
143–151.

Joachims, T. (1998). Text Categorization with Support Vector Machines: Learning with
Many Relevant Features. In Proceedings of ECML-98, 10th European Conference on
Machine Learning. C. Nedellec and C. Rouveirol, eds. Chemnitz, Germany, Springer-Verlag,
Heidelberg: 137–142.

Joachims, T. (1999). Transductive Inference for Text Classification Using Support Vector
Machines. In Proceedings of ICML-99, 16th International Conference on Machine Learn-
ing. I. Bratko and S. Dzeroski, eds. Bled, Morgan Kaufmann Publishers, San Francisco:
200–209.

Joachims, T. (2000). Estimating the Generalization Performance of a SVM Efficiently. In Pro-
ceedings of ICML-00, 17th International Conference on Machine Learning. P. Langley, ed.
Stanford, CA, Morgan Kaufmann Publishers, San Francisco: 431–438.

Joachims, T. (2001). A Statistical Learning Model of Text Classification with Support Vector
Machines. In Proceedings of SIGIR-01, 24th ACM International Conference on Research
and Development in Information Retrieval. W. B. Croft, D. J. Harper, D. H. Kraft, and J.
Zobel, eds. New Orleans, ACM Press, New York: 128–136.

Bibliography 359

Joachims, T. (2002). Learning to Classify Text Using Support Vector Machines. Dordrecht,
Kluwer Academic Publishers.

Joachims, T., Cristianini, N., and Shawe-Taylor, J. (2001). Composite Kernels for Hypertext
Categorisation. In Proceedings of ICML-01, 18th International Conference on Machine
Learning. C. Brodley and A. Danyluk, eds. Williams College, MA, Morgan Kaufmann
Publishers, San Francisco: 250–257.

Joachims, T., Freitag, D., and Mitchell, T. M. (1997). WebWatcher: A Tour Guide for the Word
Wide Web. In Proceedings of IJCAI-97, 15th International Joint Conference on Artificial
Intelligence. M. E. Pollack, ed. Nagoya, Japan, Morgan Kaufmann Publishers, San Francisco:
770–775.

Joachims, T., and Sebastiani, F. (2002). “Guest Editors’ Introduction to the Special Issue on
Automated Text Categorization.” Journal of Intelligent Information Systems 18(2/3): 103–
105.

Johnson, B., and Shneiderman, B. (1991). “Treemaps: A Space-Filling Approach to the Visu-
alization of Hierarchical Information.” In Proceedings of IEEE Visualization ’91 Confer-
ence. G. Nielson and L. Rosenblum, eds. San Diego, CA, IEEE Computer Society Press,
Los Alamitos, CA: 284–291.

Juan, A., and Vidal, E. (2002). “On the Use of Bernoulli Mixture Models for Text Classifica-
tion.” Pattern Recognition 35(12): 2705–2710.

Junker, M., and Abecker, A. (1997). Exploiting Thesaurus Knowledge in Rule Induction for
Text Classification. In Proceedings of RANLP-97, 2nd International Conference on Recent
Advances in Natural Language Processing. Tzigov Chark, Bulgaria: 202–207.

Junker, M., and Dengel, A. (2001). Preventing Overfitting in Learning Text Patterns for Doc-
ument Categorization. In Proceedings of ICAPR-01, 2nd International Conference on
Advances in Pattern Recognition. S. Singh, N. A. Murshed, and W. G. Kropatsch, eds.
Rio de Janeiro, Springer-Verlag, Heidelberg: 137–146.

Junker, M., and Hoch, R. (1998). “An Experimental Evaluation of OCR Text Representa-
tions for Learning Document Classifiers.” International Journal on Document Analysis and
Recognition 1(2): 116–122.

Junker, M., Sintek, M., and Rinck, M. (2000). Learning for Text Categorization and Information
Extraction with ILP. In Proceedings of the 1st Workshop on Learning Language in Logic.
Bled, Slovenia, Springer-Verlag, Heidelberg: 247–258.

Kaban, A., and Girolami, M. (2002). “A Dynamic Probabilistic Model to Visualise Topic
Evolution in Text Streams.” Journal of Intelligent Information Systems 18(2/3): 107–
125.

Kamada, T., and Kawai, S. (1989). “An Algorithm for Drawing General Undirected Graphs.”
Information Processing Letters 31: 7–15.

Kar, G., and White, L. J. (1978). “A Distance Measure for Automated Document Classification
by Sequential Analysis.” Information Processing and Management 14(2): 57–69.

Karrer, A., and Scacchi, W. (1990). Requirements for an Extensible Object-Oriented Tree/Graph
Editor. In Proceedings of ACM SIGGRAPH Symposium on User Interface Software and
Technology. Snowbird, UT, ACM Press, New York: 84–91.

Karypis, G., and Han, E.-H. (2000). Fast Supervised Dimensionality Reduction Algorithm
with Applications to Document Categorization and Retrieval. In Proceedings of CIKM-
00, 9th ACM International Conference on Information and Knowledge Management.
A. Agah, J. Callan, and E. Rundensteiner, eds. McLean, VA, ACM Press, New York:
12–19.

Kaski, S. (1997). Data Exploration Using Self-Organizing Maps. Tech thesis, Helsinki Univer-
sity of Technology.

Kaski, S., Honkela, T., Lagus, K., and Kohonen, T. (1998). “WEBSOM-Self-Organizing Maps
of Document Collections.” Neurocomputing 21: 101–117.

Kaski, S., Lagus, K., Honkela, T., and Kohonen, T. (1998). “Statistical Aspects of the WEBSOM
System in Organizing Document Collections.” Computing Science and Statistics 29: 281–
290.

360 Bibliography

Kawatani, T. (2002). Topic Difference Factor Extraction between Two Document Sets and
Its Application to Text Categorization. In Proceedings of SIGIR-02, 25th ACM Interna-
tional Conference on Research and Development in Information Retrieval. K. Jarvelin,
M. Beaulieu, R. Baeza-Yates, and S. H. Myaeng, eds. Tampere, Finland, ACM Press, New
York: 137–144.

Kehagias, A., Petridis, V., Kaburlasos, V. G., and Fragkou, P. (2003). “A Comparison of Word-
and Sense-Based Text Categorization Using Several Classification Algorithms.” Journal of
Intelligent Information Systems 21(3): 227–247.

Kehler, A. (1997). Probabilistic Coreference in Information Extraction. In Proceedings of the
2nd Conference on Empirical Methods in Natural Language Processing. C. Cardie and R.
Weischedel, eds. Providence, RI, Association for Computational Linguistics, Somerset, NJ:
163–173.

Keim, D. (2002). “Information Visualization and Visual Data Mining.” IEEE Transactions on
Visualization and Computer Graphics 8(1): 1–8.

Keller, B. (1992). A Logic for Representing Grammatical Knowledge. In Proceedings of Euro-
pean Conference on Artificial Intelligence. Vienna, Austria, John Wiley and Sons, New
York: 538–542.

Kennedy, C., and Boguraev, B. (1997). Anaphora for Everyone: Pronominal Anaphora Res-
olution Without a Parser. In Proceedings of the 16th International Conference on Compu-
tational Linguistics. J. Tsujii, ed. Copenhagen, Denmark, Association for Computationsl
Linguistics, Morristown, NJ: 113–118.

Keogh, E., and Smyth, P. (1997). A Probabilistic Approach to Fast Pattern Matching in Time
Series Databases. In Proceedings of the 3rd International Conference on Knowledge Dis-
covery and Data Mining (KDD’97). D. Heckerman, H. Mannila, D. Pregibon, and R. Uthu-
rusamy, eds. Newport Beach, CA, AAAI Press, Menlo Park, CA: 24–30.

Kessler, B., Nunberg, G., and Schutze, H. (1997). Automatic Detection of Text Genre. In Pro-
ceedings of ACL-97, 35th Annual Meeting of the Association for Computational Linguistics.
P. R. Cohen and W. Wahlster, eds. Madrid, Morgan Kaufmann Publishers, San Francisco:
32–38.

Khmelev, D. V., and Teahan, W. J. (2003). A Repetition Based Measure for Verification of
Text Collections and for Text Categorization. In Proceedings of SIGIR-03, 26th ACM Inter-
national Conference on Research and Development in Information Retrieval. C. Clarke,
G. Cormack, J. Callan, D. Hawking, and A. Smeaton, eds. Toronto, ACM Press, New York:
104–110.

Kim, H. (2002). “Predicting How Ontologies for the Semantic Web Will Evolve.” CACM 45(2):
48–54.

Kim, J.-T., and Moldovan, D. I. (1995). “Acquisition of Linguistic Patterns for Knowledge-
Based Information Extraction.” TKDE 7(5): 713–724.

Kim, Y.-H., Hahn, S.-Y., and Zhang, B.-T. (2000). Text Filtering by Boosting Naive Bayes
Classifiers. In Proceedings of SIGIR-00, 23rd ACM International Conference on Research
and Development in Information Retrieval. N. J. Belkin, P. Ingwersen, and M. K. Leong,
eds. Athens, ACM Press, New York: 168–75.

Kindermann, J., Paass, G., and Leopold, E. (2001). Error Correcting Codes with Optimized
Kullback–Leibler Distances for Text Categorization. In Proceedings of ECML-01, 12th Euro-
pean Conference on Machine Learning. L. de Raedt and A. Siebes, eds. Freiburg, Germany,
Springer-Verlag, Heidelberg: 266–275.

Kindermann, R., and Snell, J. L. (1980). Markov Random Fields and Their Applications. Prov-
idence, RI, American Mathematical Society.

Klas, C.-P., and Fuhr, N. (2000). A New Effective Approach for Categorizing Web Documents.
In Proceedings of BCSIRSG-00, 22nd Annual Colloquium of the British Computer Society
Information Retrieval Specialist Group. Cambridge, UK, BCS, Swinden, UK.

Klebanov, B., and Wiemer-Hastings, P. M. (2002). Using LSA for Pronominal Anaphora Res-
olution. In Proceedings of the 3rd International Conference on Computational Linguistics
and Intelligent Text Processing. A. F. Gelbukh, ed. Mexico City, Springer, Berlin: 197–199.

Bibliography 361

Klingbiel, P. H. (1973a). “Machine-Aided Indexing of Technical Literature.” Information Stor-
age and Retrieval 9(2): 79–84.

Klingbiel, P. H. (1973b). “A Technique for Machine-Aided Indexing.” Information Storage
and Retrieval 9(9): 477–494.

Klinkenberg, R., and Joachims, T. (2000). Detecting Concept Drift with Support Vector
Machines. In Proceedings of ICML-00, 17th International Conference on Machine Learn-
ing. P. Langley, ed. Stanford, CA, Morgan Kaufmann Publishers, San Francisco: 487–
494.

Kloesgen, W. (1992). “Problems for Knowledge Discovery in Databases and Their Treatment
in the Statistics Interpreter EXPLORA.” International Journal for Intelligent Systems 7(7):
649–673.

Kloesgen, W. (1995a). “Efficient Discovery of Interesting Statements in Databases.” Journal
of Intelligent Information Systems 4: 53–69.

Kloesgen, W. (1995b). “EXPLORA: A Multipattern and Multistrategy Discovery Assistant.”
In Advances in Knowledge Discovery and Data Mining. U. Fayyad, G. Piatetsky-Shapiro,
and R. Smyth, eds. Cambridge, MA, MIT Press: 249–271.

Kloesgen, W., and Zytkow, J., eds. (2002). Handbook of Data Mining and Knowledge Discov-
ery. Oxford, UK, Oxford University Press.

Kloptchenko, A., Eklund, T., Back, B., Karlson, J., Vanharanta, H., and Visa, A. (2002). “Com-
bining Data and Text Mining Techniques for Analyzing Financial Reports.” International
Journal of Intelligent Systems in Accounting, Finance, and Management 12(1): 29–41.

Knorr, E., Ng, R., and Tucatov, V. (2000). “Distance Based Outliers: Algorithims and Appli-
cations.” The VLDB Journal 8(3): 237–253.

Knorz, G. (1982). A Decision Theory Approach to Optimal Automated Indexing. In Pro-
ceedings of SIGIR-82, 5th ACM International Conference on Research and Develop-
ment in Information Retrieval. G. Salton and H.-J. Schneider, eds. Berlin, Springer-Verlag,
Heidelberg: 174–193.

Ko, Y., Park, J., and Seo, J. (2002). Automatic Text Categorization Using the Importance of
Sentences. In Proceedings of COLING-02, 19th International Conference on Computa-
tional Linguistics. Taipei, Taiwan, Association for Computational Linguistics, Morristown
NJ/Morgan Kaufmann Publishers, San Francisco, CA: 1–7.

Ko, Y., and Seo, J. (2000). Automatic Text Categorization by Unsupervised Learning. In Pro-
ceedings of COLING-00, 18th International Conference on Computational Linguistics.
Saarbrücken, Germany, Association for Computational Linguistics, Morristown, NJ: 453–
459.

Ko, Y., and Seo, J. (2002). Text Categorization Using Feature Projections. In Proceedings of
COLING-02, 19th International Conference on Computational Linguistics. Taipei, Taiwan,
Association for Computational Linguistics, Morristown, NJ/Morgan Kauffman Publishers,
San Francisco, CA: 453–459.

Kobsa, A. (2001). An Empirical Comparison of Three Commercial Information Visualization
Systems. In Proceedings of Infovis 2001, IEEE Symposium on Information Visualization.
San Diego, CA, IEEE Computer Society Press, Washington, DC: 123.

Koehn, P. (2002). Combining Multiclass Maximum Entropy Text Classifiers with Neural Net-
work Voting. In Proceedings of PorTAL-02, 3rd International Conference on Advances in
Natural Language Processing. Faro, Portugal, Springer, Berlin: 125–132.

Kohlhase, M. (2000). “Model Generation for Discourse Representation Theory.” In Proceed-
ings of the 14th European Conference on Artificial Intelligence. W. Horn, ed. Berlin, IOS
Press, Amsterdam: 441–445.

Kohonen, T. (1981). Automatic Formation of Topological Maps of Patterns in a Self-Organizing
System. In Proceedings of 2SCIA, 2nd Scandinavian Conference on Image Analysis. E. Uja
and O. Simula, eds. Helsinki, Finland, Suomen Hahmontunnistustutkimuksen Seura r.y.:
214–220.

Kohonen, T. (1982). “Analysis of Simple Self-Organizing Process.” Biological Cybernetics
44(2): 135–140.

362 Bibliography

Kohonen, T. (1995). Self-Organizing Maps. Berlin, Springer-Verlag.
Kohonen, T. (1997). Exploration of Very Large Databases by Self-Organizing Maps. In Pro-

ceedings of ICNN ’97, International Conference on Neural Networks. Houston, TX, IEEE
Service Center Press, Piscataway, NJ: 1–6.

Kohonen, T. (1998). Self-Organization of Very Large Document Collections: State of the Art.
In Proceedings of ICANN98, 8th International Conference on Artificial Neural Networks.
M. Niklasson and T. Zienkke, eds. Skövde, Sweden, Springer-Verlag, London: 65–74.

Kohonen, T., Kaski, S., Lagus, K., and Honkela, T. (1996). Very Large Two-Level SOM for
the Browsing of Newsgroups. In Proceedings of ICANN96, International Conference on
Artificial Neural Networks. Bochum, Germany, Springer-Verlag, Berlin: 269–274.

Kohonen, T., Kaski, S., Lagus, K., Salojarvi, J., Honkela, T., Paatero, V., and Saarela, A. (1999).
“Self-Organization of a Massive Text Document Collection.” In Kohonen Maps. E. Oja and
S. Kaski, eds. Amsterdam, Elsevier: 171–182.

Koike, H. (1993). “The Role of Another Spatial Dimension in Software Visualization.” ACM
Transactions on Information Systems 11(3): 266–286.

Koike, H. (1995). “Fractal Views: A Fractal-Based Method for Controlling Information Dis-
play.” ACM Transactions on Information Systems 13(3): 305–323.

Koike, T., and Rzhetsky, A. (2000). “A Graphic Editor for Analyzing Signal-Transduction
Pathways.” Gene 259: 235–244.

Kolcz, A., Prabakarmurthi, V., and Kalita, J. K. (2001). String Match and Text Extraction: Sum-
marization as Feature Selection for Text Categorization. In Proceedings of CIKM-01, 10th
ACM International Conference on Information and Knowledge Management. W. Paques,
L. Liu, and D. Grossman, eds. Atlanta, ACM Press, New York: 365–370.

Koller, D., and Sahami, M. (1997). Hierarchically Classifying Documents Using Very Few
Words. In Proceedings of ICML-97, 14th International Conference on Machine Learning.
D. H. Fisher, ed. Nashville, TN, Morgan Kaufmann Publishers, San Francisco: 170–178.

Kongovi, M., Guzman, J. C., and Dasigi, V. (2002). Text Categorization: An Experiment Using
Phrases. In Proceedings of ECIR-02, 24th European Colloquium on Information Retrieval
Research. F. Cresteni, M. Girotami, and C. J. v. Rijsbergen, eds. Glasgow, Springer-Verlag,
Heidelberg: 213–228.

Kopanis, I., Avouris, N. M., and Daskalaki, S. (2002). The Role of Knowledge Mining in a
Large Scale Data Mining Project. In Proceedings of Methods and Applications of Artifi-
cial Intelligence, 2nd Hellenic Conference on AI. I. P. Vlahavas and C. Spyropoulos, eds.
Thessaloniki, Greece, Springer-Verlag, Berlin: 288–299.

Koppel, M., Argamon, S., and Shimoni, A. R. (2002). “Automatically Categorizing Written
Texts by Author Gender.” Literary and Linguistic Computing 17(4): 401–412.

Kosmynin, A., and Davidson, I. (1996). Using Background Contextual Knowledge for Docu-
ment Representation. In Proceedings of PODP-96, 3rd International Workshop on Principles
of Document Processing. C. Nicholas and D. Wood, eds. Palo Alto, CA, Springer-Verlag,
Heidelberg: 123–133.

Koster, C. H., and Seutter, M. (2003). Taming Wild Phrases. In Proceedings of ECIR-03, 25th
European Conference on Information Retrieval. F. Sebastiani, ed. Pisa, Italy, Springer-
Verlag, Heidelberg: 161–176.

Krauthammer, M., Rzhetsky, A., Morozov, P., and Friedman, C. (2000). “Using BLAST for
Identifying Gene and Protein Names in Journal Articles.” Gene 259: 245–252.

Krier, M., and Zacc, F. (2002). “Automatic Categorization Applications at the European Patent
Office.” World Patent Information 24: 187–196.

Krishnapuram, R., Chitrapura, K., and Joshi, S. (2003). Classification of Text Documents Based
on Minimum System Entropy. In Proceedings of ICML-03, 20th International Conference
on Machine Learning. Washington, DC, Morgan Kaufmann Publishers, San Francisco: 384–
391.

Kupiec, J. (1992). “Robust Part-of-Speech Tagging Using a Hidden Markov model.” Computer
Speech and Language 6: 225–243.

Bibliography 363

Kushmerick, N. (1997). Wrapper Induction for Information Extraction. Ph.D. thesis, Depart-
ment of Computer Science and Engineering, University of Washington.

Kushmerick, N. (2000). “Wrapper Induction: Efficiency and Expressiveness.” Artificial Intel-
ligence 118(1–2): 15–68.

Kushmerick, N. (2002). Finite-State Approaches to Web Information Extraction. In Proceed-
ings of the 3rd Summer Convention on Information Extraction in the Web Era: Natural
Language Communication for Knowledge Acquisition and Intelligent Information Agents.
M. Pazienza, ed. Rome, Springer-Verlag, Berlin: 77–91.

Kushmerick, N., Johnston, E., and McGuinness, S. (2001). Information Extraction by Text
Classification. In Proceedings of IJCAI-01 Workshop on Adaptive Text Extraction and
Mining. Seattle, Morgan Kaufmann Publishers, San Francisco.

Kushmerick, N., Weld, D. S., and Doorenbos, R. B. (1997). Wrapper Induction for Informa-
tion Extraction. In Proceedings of the 15th International Joint Conference on Artificial
Intelligence (IJCAI). Nagoya, Japan, Morgan Kaufmann Publishers, San Francisco: 729–
735.

Kwok, J. T. (1998). Automated Text Categorization Using Support Vector Machine. In Pro-
ceedings of ICONIP ’98, 5th International Conference on Neural Information Processing.
Kitakyushu, Japan: 347–351.

Kwon, O.-W., Jung, S.-H., Lee, J.-H., and Lee, G. (1999). Evaluation of Category Features
and Text Structural Information on a Text Categorization Using Memory-Based Reasoning.
In Proceedings of ICCPOL-99, 18th International Conference on Computer Processing of
Oriental Languages. Tokushima, Japan: 153–158.

Kwon, O.-W., and Lee, J.-H. (2003). “Text Categorization Based on k-nearest Neighbor
Approach for Web Site Classification.” Information Processing and Management 39(1):
25–44.

Labrou, Y., and Finin, T. (1999). Yahoo! as an Ontology: Using Yahoo! Categories to Describe
documents. In Proceedings of CIKM-99, 8th ACM International Conference on Information
and Knowledge Management. Kansas City, MO, ACM Press, New York: 180–187.

Lafferty, J., McCallum, A., and Pereira, F. (2001). Conditional Random Fields: Probabilistic
Models for Segmenting and Labeling Sequence Data. In Proceedings of 18th International
Conference on Machine Learning. Williamstown, MA, Morgan Kaufmann Publisher, San
Francisco: 282–289.

Lager, T. (1998). Logic for Part-of-Speech Tagging and Shallow Parsing. In Proceedings of
NODALIDA ’98. Copenhagen, Denmark, Center for Sprogteknologi, Univio Copenhagen,
Copenhagen.

Lagus, K. (1998). Generalizability of the WEBSOM Method to Document Collections of Var-
ious Types. In Proceedings of 6th European Congress on Intelligent Techniques and Soft
Computing (EUFIT’98). Aachen, Germany, Verlag Mainz, Mainz: 210–215.

Lagus, K. (2000a). Text Mining with the WEBSOM. D. Sc. (Tech) thesis, Department of Com-
puter Science and Engineering, Helsinki University of Technology.

Lagus, K. (2000b). Text Retrieval Using Self-Organized Document Maps. Technical Report
A61, Laboratory of Computer and Information Science, Helsinki University of Technology.

Lagus, K., Honkela, T., Kaski, S., and Kohonen, T. (1999). “WEBSOM for Textual Data
Mining.” Artificial Intelligence Review 13(5/6): 345–364.

Lai, K.-Y., and Lam, W. (2001). Meta-Learning Models for Automatic Textual Document Cate-
gorization. In Proceedings of PAKDD-01, 5th Pacific-Asia Conference on Knowledge Dis-
covery and Data Mining. D. Cheung, Q. Li, and G. Williams, eds. Hong Kong, Springer
Verlag, Heidelberg: 78–89.

Lai, Y.-S., and Wu, C.-H. (2002). “COLUMN: Meaningful Term Extraction and Discriminative
Term Selection in Text Categorization via Unknown-Word Methodology.” ACM Transac-
tions on Asian Language Information Processing 1(1): 34–64.

Lam, S. L., and Lee, D. L. (1999). Feature Reduction for Neural Network Based Text Catego-
rization. In Proceedings of DASFAA-99, 6th IEEE International Conference on Database

364 Bibliography

Advanced Systems for Advanced Application. A. L. Chen and F. H. Lochovsky, eds.
Hsinchu, Taiwan, IEEE Computer Society Press, Los Alamitos, CA: 195–202.

Lam, W., and Ho, C. Y. (1998). Using a Generalized Instance Set for Automatic Text Cate-
gorization. In Proceedings of SIGIR-98, 21st ACM International Conference on Research
and Development in Information Retrieval. W. B. Croft, A. Moffat, C. J. van Rijsergen,
R. Wilkinson, and J. Zobel, eds. Melbourne, Australia, ACM Press, New York: 81–89.

Lam, W., and Lai, K.-Y. (2001). A Meta-Learning Approach for Text Categorization. In Pro-
ceedings of SIGIR-01, 24th ACM International Conference on Research and Development
in Information Retrieval. W. B. Croft, D. J. Harper, D. H. Kraft, and J. Zobel, eds. New
Orleans, ACM Press, New York: 303–309.

Lam, W., Low, K. F., and Ho, C. Y. (1997). Using a Bayesian Network Induction Approach
for Text Categorization. In Proceedings of IJCAI-97, 15th International Joint Conference
on Artificial Intelligence. M. E. Pollack, ed. Nagoya, Japan, Morgan Kaufmann Publishers,
San Francisco: 745–750.

Lam, W., Ruiz, M. E., and Srinivasan, P. (1999). “Automatic Text Categorization and Its Appli-
cations to Text Retrieval.” IEEE Transactions on Knowledge and Data Engineering 11(6):
865–879.

Lamping, J., and Rao, R. (1994). Laying Out and Visualizing Large Trees Using a Hyperbolic
Space. In Proceedings of the ACM UIST (UIST ’94). P. Szekely, ed. Marina Del Rey, CA,
ACM Press, New York: 13–14.

Lamping, L., Rao, R., and Pirolli, P. (1995). A Focus-Context Technique Based on Hyperbolic
Geometry for Visualizing Large Hierarchies. In Proceedings of the ACM SIGCHI Confer-
ence on Human Factors in Computer Systems. I. Katz, R. Mack, L. Marks, M. B. Rosson,
and J. Nielsen, eds. Denver, CO, ACM Press, New York: 401–408.

Landau, D., Feldman, R., Aumann, Y., Fresko, M., Lindell, Y., Liphstat, O., and Zamir, O.
(1998). TextVis: An Integrated Visual Environment for Text Mining. In Proceedings of the 2nd
European Symposium on Principles of Data Mining and Knowledge Discovery (PKDD98).
Nantes, France, Springer-Verlag, Heidelberg: 56–64.

Landauer, T. K., Foltz, P. W., and Laham, D. (1998). “Introduction to Latent Semantic Anal-
ysis.” Discourse Processes 25: 259–284.

Lang, K. (1995). NewsWeeder: Learning to Filter Netnews. In Proceedings of ICML-95, 12th
International Conference on Machine Learning. A. Prieditis and S. J. Russell, eds. Lake
Tahoe, NV, Morgan Kaufmann Publishers, San Francisco: 331–339.

Lanquillon, C. (2000). Learning from Labeled and Unlabeled Documents: A Comparative
Study on Semi-Supervised Text Classification. In Proceedings of PKDD-00, 4th European
Conference on Principles of Data Mining and Knowledge Discovery. D. A. Zighed, H. J.
Komorowsky and J. M. Zytkow, eds. Lyon, France, Springer-Verlag, Heidelberg: 490–497.

Lappin, S., and Leass, H. J. (1994). “An Algorithm for Pronominal Anaphora Resolution.”
Computational Linguistics 20(4): 535–561.

Larkey, L. S. (1998). Automatic Essay Grading Using Text Categorization Techniques. In Pro-
ceedings of SIGIR-98, 21st ACM International Conference on Research and Development
in Information Retrieval. W. B. Croft, A. Moffat, C. J. v. Rijsbergen, R. Wilkinson, and J.
Zobel, eds. Melbourne, Australia, ACM Press, New York: 90–95.

Larkey, L. S. (1999). A Patent Search and Classification System. In Proceedings of DL-99, 4th
ACM Conference on Digital Libraries. E. A. Fox and N. Rowejeds, eds. Berkeley, CA,
ACM Press, New York: 179–187.

Larkey, L. S., and Croft, W. B. (1996). Combining Classifiers in Text Categorization. In Pro-
ceedings of SIGIR-96, 19th ACM International Conference on Research and Development
in Information Retrieval. H. P. Frei, D. Harmon, P. Schaubie, and R. Wilkinson, eds. Zurich,
ACM Press, New York: 289–297.

Lavelli, A., Califf, M. E., Ciravegna, F., Freitag, D., Giuliano, C., Kushmerick, N., and Romano,
L. (2004). A Critical Survey of the Methodology for IE Evaluation. In Proceedings of the 4th

Bibliography 365

International Conference on Language Resources and Evaluation. Lisbon, ELRA, Paris:
1655–1658.

Lavelli, A., Magnini, B., and Sebastiani, F. (2002). Building Thematic Lexical Resources by
Bootstrapping and Machine Learning. In Proceedings of the LREC 2002 Workshop on Lin-
guistic Knowledge Acquisition and Representation: Bootstrapping Annotated Language
Data. Las Palmas, Canary Islands, ELRA, Paris: 53–62.

Lee, K. H., Kay, J., Kang, B. H., and Rosebrock, U. (2002). A Comparative Study on Sta-
tistical Machine Learning Algorithms and Thresholding Strategies for Automatic Text Cat-
egorization. In Proceedings of PRICAI-02, 7th Pacific Rim International Conference on
Artificial Intelligence. Milshizuka and A. Sattar, eds. Tokyo, Springer-Verlag, Heidelberg:
444–453.

Lee, M. D. (2002). Fast Text Classification Using Sequential Sampling Processes. In Pro-
ceedings of the 14th Australian Joint Conference on Artificial Intelligence. M. Stumptner,
D. Corbett and M. J. Brooks, eds. Adelaide, Australia, Springer-Verlag, Heidelberg: 309–
320.

Lee, Y.-B., and Myaeng, S. H. (2002). Text Genre Classification with Genre-Revealing
and Subject-Revealing Features. In Proceedings of SIGIR-02, 25th ACM International
Conference on Research and Development in Information Retrieval. M. Beavliev, E.
Beazz-Yakes, S. Myaeng, and K. Jarvelin, eds. Tampere, Finland, ACM Press, New York:
145–150.

Leek, T. R. (1997). Information Extraction Using Hidden Markov Models. Master’s thesis,
Computer Science Department, University of California San Diego.

Lehnert, W., Soderland, S., Aronow, D., Feng, F., and Shmueli, A. (1994). “Inductive Text
Classification for Medical Applications.” Journal of Experimental and Theoretical Artificial
Intelligence 7(1): 49–80.

Lent, B., Agrawal, R., and Srikant, R. (1997). Discovering Trends in Text Databases. In Proceed-
ings of the 3rd Annual Conference on Knowledge Discovery and Data Mining (KDD-97) D.
Heckerman, H. Mannila, D. Pregibon, and R. Uthrysamy, eds. Newport Beach, CA, AAAI
Press, Menlo Park, CA: 227–230.

Leopold, E., and Kindermann, J. (2002). “Text Categorization with Support Vector Machines:
How to Represent Texts in Input Space?” Machine Learning 46(1/3): 423–444.

Lesk, M. (1997). Practical Digital Libraries: Books, Bytes and Bucks. San Francisco, Morgan
Kaufmann Publishers.

Leung, C.-H., and Kan, W.-K. (1997). “A Statistical Learning Approach to Automatic Indexing
of Controlled Index Terms.” Journal of the American Society for Information Science 48(1):
55–67.

Leung, Y. K., and Apperley, M. D. (1994). “A Review and Taxonomy of Distortion-Oriented
Presentation Techniques.” ACM Transactions on Computer–Human Interaction 1(2): 126–
160.

Lewin, I., Becket, R., Boye, J., Carter, D., Rayner, M., and Wir’en, M. (1999). Language
Processing for Spoken Dialogue Systems: Is Shallow Parsing Enough? Technical Report
CRC-074, SRI, Cambridge, MA: 107–110.

Lewis, D., and Catlett, J. (1994). Heterogeneous Uncertainty Sampling for Supervised Learning.
In Proceedings of the 11th International Conference on Machine Learning. New Brunswick,
NJ, Morgan Kaufmann Publishers, San Francisco: 148–156.

Lewis, D. D. (1991). Data Extraction as Text Categorization: An Experiment with the MUC-3
Corpus. In Proceedings of MUC-3, 3rd Message Understanding Conference. San Diego,
CA, Morgan Kaufmann Publishers, San Francisco: 245–255.

Lewis, D. D. (1992a). An Evaluation of Phrasal and Clustered Representations on a Text Catego-
rization task. In Proceedings of SIGIR-92, 15th ACM International Conference on Research
and Development in Information Retrieval. N. Belkin, P. Ingwersen, and A. M. Pejtersen,
eds. Copenhagen, ACM Press, New York: 37–50.

366 Bibliography

Lewis, D. D. (1992b). Representation and Learning in Information Retrieval. Ph.D. thesis,
Department of Computer Science, University of Massachusetts.

Lewis, D. D. (1995a). Evaluating and Optmizing Autonomous Text Classification Systems. In
Proceedings of SIGIR-95, 18th ACM International Conference on Research and Develop-
ment in Information Retrieval. E. A. Fox, P. Ingwersen, and R. Fidel, eds. Seattle, ACM
Press, New York: 246–254.

Lewis, D. D. (1995b). “A Sequential Algorithm for Training Text Classifiers: Corrigendum and
Additional Data.” SIGIR Forum 29(2): 13–19.

Lewis, D. D. (1995c). The TREC-4 Filtering Track: Description and Analysis. In Proceedings of
TREC-4, 4th Text Retrieval Conference. D. K. Warmon, and E. M. Voorhees, eds. Gaithers-
burg, MD, National Institute of Standards and Technology, Gaithersburg, MD: 165–180.

Lewis, D. D. (1997). “Reuters-21578 Text Categorization Test Collection. Distribution 1.0.”
AT&T Labs-Research, http://www.research.att.com/lewis.

Lewis, D. D. (1998). Naive (Bayes) at Forty: The Independence Assumption in Information
Retrieval. In Proceedings of ECML-98, 10th European Conference on Machine Learning.
C. N’edellec and C. Rouveirol, eds. Chemnitz, Germany, Springer-Verlag, Heidelberg: 4–15.

Lewis, D. D. (2000). Machine Learning for Text Categorization: Background and Characteris-
tics. In Proceedings of the 21st Annual National Online Meeting. M. E. Williams, ed. New
York, Information Today, Medford, OR: 221–226.

Lewis, D. D., and Gale, W. A. (1994). A Sequential Algorithm for Training Text Classifiers. In
Proceedings of SIGIR-94, 17th ACM International Conference on Research and Develop-
ment in Information Retrieval. W. B. Croft and C. J. v. Rijsbergen, eds. Dublin, Springer-
Verlag, Heidelberg: 3–12.

Lewis, D. D., and Hayes, P. J. (1994). “Guest Editors’ Introduction to the Special Issue on Text
Categorization.” ACM Transactions on Information Systems 12(3): 231.

Lewis, D. D., Li, F., Rose, T., and Yang, Y. (2003). “Reuters Corpus Volume I as a Text
Categorization Test Collection.” Journal of Machine Learning Research 5: 361–391.

Lewis, D. D., and Ringuette, M. (1994). A Comparison of Two Learning Algorithms for Text
Categorization. In Proceedings of SDAIR-94, 3rd Annual Symposium on Document Anal-
ysis and Information Retrieval. Las Vegas, NV, IRSI, University of Nevada, Las Vegas:
81–93.

Lewis, D. D., Schapire, R. E., Callan, J. P., and Papka, R. (1996). Training Algorithms for
Linear Text Classifiers. In Proceedings of SIGIR-96, 19th ACM International Conference
on Research and Development in Information Retrieval. Zurich, ACM Press, New York:
298–306.

Lewis, D. D., Stern, D. L., and Singhal, A. (1999). Attics: A Software Platform for On-line
Text Classification. In Proceedings of SIGIR-99, 22nd ACM International Conference on
Research and Development in Information Retrieval. M. A. Wearst, F. Gey, and R. Tong,
eds. Berkeley, CA, ACM Press, New York: 267–268.

Li, C., Wen, J.-R., and Li, H. (2003). Text Classification Using Stochastic Keyword Generation. In
Proceedings of ICML-03, 20th International Conference on Machine Learning. Washington,
DC, Morgan Kaufmann Publishers, San Francisco: 469–471.

Li, F., and Yang, Y. (2003). A Loss Function Analysis for Classification Methods in Text Catego-
rization. In Proceedings of ICML-03, 20th International Conference on Machine Learning.
Washington, DC, Morgan Kaufmann Publishers, San Francisco: 472–479.

Li, H., and Yamanishi, K. (1997). Document Classification Using a Finite Mixture Model. In Pro-
ceedings of ACL-97, 35th Annual Meeting of the Association for Computational Linguistics.
P. Cohen and W. Wahlster, eds. Madrid, Morgan Kaufmann Publishers, San Francisco: 39–
47.

Li, H., and Yamanishi, K. (1999). Text Classification Using ESC-Based Stochastic Decision
Lists. In Proceedings of CIKM-99, 8th ACM International Conference on Information and
Knowledge Management. Kansas City, MO, ACM Press, New York: 122–130.

Bibliography 367

Li, H., and Yamanishi, K. (2002). “Text Classification Using ESC-based Stochastic Decision
Lists.” Information Processing and Management 38(3): 343–361.

Li, W., Lee, B., Krausz, F., and Sahin, K. (1991). Text Classification by a Neural Network. In
Proceedings of the 23rd Annual Summer Computer Simulation Conference. D. Pace, ed.
Baltimore, Society for Computer Simulation, San Diego, CA: 313–318.

Li, X., and Roth, D. (2002). Learning Question Classifiers. In Proceedings of COLING-02, 19th
International Conference on Computational Linguistics. Taipei, Taiwan, Morgan Kaufmann
Publishers, San Francisco: 556–562.

Li, Y. H., and Jain, A. K. (1998). “Classification of Text Documents.” The Computer Journal
41(8): 537–546.

Liang, J., Phillips, I., Ha, J., and Haralick, R. (1996). Document Zone Classification Using the
Sizes of Connected Components. In Proceedings of Document Recognition III. San Jose,
CA, SPIE, Bellingham, WA: 150–157.

Liang, J., Phillips, I., and Haralick, R. (1997). Performance Evaluation of Document Layout
Analysis on the UW Data Set. In Proceedings of Document Recognition IV. San Jose, CA,
SPIE, Bellingham, WA: 149–160.

Liao, Y., and Vemuri, V. R. (2002). Using Text Categorization Techniques for Intrusion Detec-
tion. In Proceedings of the 11th USENIX Security Symposium. D. Boneh, ed. San Francisco:
51–59.

Liddy, E. D., Paik, W., and Yu, E. S. (1994). “Text Categorization for Multiple Users Based
on Semantic Features from a Machine-Readable Dictionary.” ACM Transactions on Infor-
mation Systems 12(3): 278–295.

Liere, R., and Tadepalli, P. (1997). Active Learning with Committees for Text Categorization.
In Proceedings of AAAI-97, 14th Conference of the American Association for Artificial
Intelligence. Providence, RI, AAAI Press, Menlo Park, CA: 591–596.

Liere, R., and Tadepalli, P. (1998). Active Learning with Committees: Preliminary Results in
Comparing Winnow and Perceptron in Text Categorization. In Proceedings of CONALD-
98, 1st Conference on Automated Learning and Discovery. Pittsburgh, PA, AAAI Press,
Menlo Park, CA.

Lim, J. H. (1999). Learnable Visual Keywords for Image Classification. In Proceedings of DL-
99, 4th ACM Conference on Digital Libraries. E. A. Fox and N. Rowe, eds. Berkeley, CA,
ACM Press, New York: 139–145.

Lima, L. R. D., Laender, A. H., and Ribeiro-Neto, B. A. (1998). A Hierarchical Approach
to the Automatic Categorization of Medical Documents. In Proceedings of CIKM-98, 7th
ACM International Conference on Information and Knowledge Management. G. Gardarin,
G. J. French, N. Pissinou, K. Makki, and L. Bouganim, eds. Bethesda, MD, ACM Press, New
York: 132–139.

Lin, D. (1995). “A Dependency-based Method for Evaluating Broad-Coverage Parsers.”
Natural Language Engineering 4(2): 97–114.

Lin, X. (1992). Visualization for the Document Space. In Proceedings of Visualization ’92.
Los Alamitos, CA, Center for Computer Legal Research, Pace University/IEEE Computer
Society Press, Piscataway, NJ: 274–281.

Lin, X. (1997). “Map Displays for Information Retrieval.” Journal of the American Society for
Information Science 48: 40–54.

Lin, X., Soergel, D., and Marchionini, G. (1991). A Self-Organizing Semantic Map for Infor-
mation Retrieval. In Proceedings of 14th Annual International ACM/SIGIR Conference
on Research & Development in Information Retrieval. Chicago, ACM Press, New York:
262–269.

Litman, D. J., and Passonneau, R. J. (1995). Combining Multiple Knowledge Sources for Dis-
course Segmentation. In Proceedings of the 33rd Annual Meeting of the Association for
Computational Linguistics. Cambridge, MA, Association for Computational Linguistics,
Morristown, NJ: 108–115.

368 Bibliography

Liu, H., Selker, T., and Lieberman, H. (2003). Visualizing the Affective Structure of a Text
Document. In Proceedings of the Conference on Human Factors in Computing Systems
(CHI 2003). Fort Lauderdale, FL, ACM Press, New York: 740–741.

Liu, X., and Croft, W. B. (2003). “Statistical Language Modeling for Information Retrieval.”
Annual Review of Information Science and Technology 39.

Liu, Y., Carbonell, J., and Jin, R. (2003). A New Pairwise Ensemble Approach for Text Clas-
sification. In Proceedings of ECML-03, 14th European Conference on Machine Learning.
N. Lavrac, D. Gamberger, L. Todorovski, and H. Blockeel, eds. Cavtat-Dubrovnik, Croatia,
Springer-Verlag, Heidelberg: 277–288.

Liu, Y., Yang, Y., and Carbonell, J. (2002). Boosting to Correct the Inductive Bias for Text Clas-
sification. In Proceedings of CIKM-02, 11th ACM International Conference on Information
and Knowledge Management. McLean, VA, ACM Press, New York: 348–355.

Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., and Watkins, C. (2002). “Text Clas-
sification Using String Kernels.” Journal of Machine Learning Research 2: 419–444.

Lodhi, H., Shawe-Taylor, J., Cristianini, N., and Watkins, C. J. (2001). “Discrete Kernels for
Text Categorisation.” In Advances in Neural Information Processing Systems. T. K. Leen,
T. Ditterich, and V. Tresp, eds. Cambridge, MA, MIT Press: 563–569.

Lombardo, V. (1991). Parsing Dependency Grammars. In Proceedings of the 2nd Congress
of the Italian Association for Artificial Intelligence on Trends in Artificial Intelligence. E.
Ardizzone, S. Gaglio, and F. Sorbello, eds. Springer-Verlag, London: 291–300.

Lorrain, F., and White, H. C. (1971). “Structural Equivalence of Individuals in Social Net-
works.” Journal of Mathematical Sociology 1: 49–80.

Lu, S. Y., and Fu, K. S. (1978). “A Sentence-to-Sentence Clustering Procedure for Pattern
Analysis.” IEEE Translations on Systems, Man and Cybernetics. 8: 381–389.

Di., Nunzio, G. M., and Micarelli, A. (2003). Does a New Simple Gaussian Weighting Approach
Perform Well in Text Categorization? In Proceedings of IJCAI-03, 18th International
Joint Conference on Artificial Intelligence. Acapulco, Morgan Kaufmann Publishers, San
Francisco: 581–586.

Macskassy, S. A., Hirsh, H., Banerjee, A., and Dayanik, A. A. (2001).Using Text Classifiers for
Numerical Classification. In Proceedings of IJCAI-01, 17th International Joint Conference
on Artificial Intelligence. B. Nebel, ed. Seattle, Morgan Kaufmann Publishers, San Francisco:
885–890.

Macskassy, S. A., Hirsh, H., Banerjee, A., and Dayanik, A. A. (2003). “Converting Numerical
Classification into Text Classification.” Artificial Intelligence 143(1): 51–77.

Maderlechner, G., Suda, P., and Bruckner, T. (1997). “Classification of Documents by Form
and Content.” Pattern Recognition Letters 18(11/13): 1225–1231.

Maedche, A., and Staab, S. (2001). “Learning Ontologies for the Semantic Web.” IEEE Intel-
ligent Systems 16(2), Special Issue on the Semantic Web.

Maltese, G., and Mancini, F. (1991). A Technique to Automatically Assign Parts-of-Speech to
Words Taking into Account Word-Ending Information through a Probabilistic Model. In
Proceedings of Eurospeech 1991. Genoa, Italy, Genovalle Institute fuer Kommunikations
Forschung und Phonetick, Bonn, Germany: 753–756.

Manevitz, L. M., and Yousef, M. (2001). “One-Class SVMs for Document Classification.”
Journal of Machine Learning Research 2: 139–154.

Mannila, H., and Toivonen, H. (1996). On an Algorithm for Finding All Interesting Sentences.
In Proceedings of the 13th European Meeting on Cybernetics and Systems Research. R.
Trappl, ed. Vienna, Austria, University of Helsinki, Department of Computer Science: 973–
978.

Mannila, H., Toivonen, H., and Verkamo, A. (1994). Efficient Algorithms for Discovering
Association Rules. In Proceedings of Knowledge Discovery in Databases, AAAI Workshop
(KDD’94). U. M. Eayyad and R. Uthurusamy, eds. Seattle, AAAI Press, Menlo Park, CA:
181–192.

Bibliography 369

Mannila, H., Toivonen, H., and Verkamo, A. (1995). Discovering Frequent Episodes in
Sequences. In Proceedings of the 1st International Conference of Knowledge Discovery
and Data Mining. Montreal, AAAI Press, Menlo Park, CA: 210–215.

Mannila, H., Toivonen, H., and Verkamo, A. (1997). “Discovery of Frequent Episodes in
Event Sequences.” Data Mining and Knowledge Discovery 1(3): 259–289.

Manning, C., and Schutze, H. (1999). Foundations of Statistical Natural Language Processing.
Cambridge, MA, MIT Press.

Marchionini, G. (1995). Information Seeking in Electronic Environments. Cambridge, UK,
Cambridge University Press.

Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A. (1994). “Building a Large Anno-
tated Corpus of English: The Penn Treebank.” Computational Linguistics 19(2): 313–
330.

Maron, M. E. (1961). “Automatic Indexing: An Experimental Inquiry.” Journal of the Associ-
ation for Computing Machinery 8(3): 404–417.

Martin, P. (1995). Using the WordNet Concept Catalog and a Relation Hierarchy for Knowledge
Acquisition. In Proceedings of Peirce’95, 4th International Workshop on Peirce. E. Ellis and
R. Levinson, eds. Santa Cruz, CA, University of Maryland, MD: 36–47.

Masand, B. (1994). Optimising Confidence of Text Classification by Evolution of Symbolic
Expressions. In Advances in Genetic Programming. K. E. Kinnear, ed. Cambridge, MA,
MIT Press: 459–476.

Masand, B., Linoff, G., and Waltz, D. (1992). Classifying News Stories Using Memory-Based
Reasoning. In Proceedings of SIGIR-92, 15th ACM International Conference on Research
and Development in Information Retrieval. N. Belkin, P. Ingwersen, and A. M. Pejtersen,
eds. Copenhagen, Denmark, ACM Press, New York: 59–65.

Masui, T., Minakuchi, M., Borden, G., and Kashiwagi, K. (1995). Multiple-View Approach for
Smooth Information Retrieval. In Proceedings of the ACM Symposium on User Interface
Software and Technology (UIST’95). G. Robertson, ed. Pittsburgh, ACM Press, New York:
199–206.

Matsuda, K., and Fukushima, T. (1999). Task-Oriented World Wide Web Retrieval by
Document-Type Classification.In Proceedings of CIKM-99, 8th ACM International Confer-
ence on Information and Knowledge Management. S. Gruch, ed. Kansas City, MO, ACM
Press, New York: 109–113.

McCallum, A., Freitag, D., and Pereira, F. (2000). Maximum Entropy Markov Models for Infor-
mation Extraction and Segmentation. In Proceedings of the 17th International Conference
on Machine Learning. Stanford University, Palo Alto, CA, Morgan Kaufmann Publishers,
San Francisco: 591–598.

McCallum, A., and Jensen, D. (2003). A Note on the Unification of Information Extraction and
Data Mining Using Conditional-Probability, Relational Models. In Proceedings of IJCAI03
Workshop on Learning Statistical Models from Relational Data. D. Jensen and L. Getoo,
eds. Acapulco, Mexico, published electronically by IJCAI and AAAI: 79–87.

McCallum, A. K., and Nigam, K. (1998). Employing EM in Pool-Based Active Learning for
Text Classification. In Proceedings of ICML-98, 15th International Conference on Machine
Learning. J. W. Shavlik, ed. Madison, WI, Morgan Kaufmann Publishers, San Francisco:
350–358.

McCallum, A. K., Rosenfeld, R., Mitchell, T. M., and Ng, A. Y. (1998). Improving Text Classifi-
cation by Shrinkage in a Hierarchy of Classes. In Proceedings of ICML-98, 15th International
Conference on Machine Learning. J. W. Shavlik, ed. Madison, WI, Morgan Kaufmann Pub-
lishers, San Francisco: 359–367.

McCarthy, J. F., and Lehnert, W. G. (1995). Using Decision Trees for Coreference Resolution.
In Proceedings of the 14th International Joint Conference on Artificial Intelligence
(IJCAI-95). C. Mellish, ed. Montreal, Morgan Kaufmann Publishers, San Francisco: 1050–
1055.

370 Bibliography

Melancon, G., and Herman, I. (2000). DAG Drawing from an Information Visualiza-
tion Perspective. In Proceedings of Data Visualization ’00, Amsterdam, Springer-Verlag,
Heidelberg: 3–12.

Meretakis, D., Fragoudis, D., Lu, H., and Likothanassis, S. (2000). Scalable Association-Based
Text Classification. In Proceedings of CIKM-00, 9th ACM International Conference on
Information and Knowledge Management. A. Agoh, J. Callan, S. Gauch, and E. Runden-
steiner, eds. McLean, VA, ACM Press, New York: 373–374.

Merialdo, B. (1994). “Tagging English text with a Probabilistic Model.” Computational Lin-
guistics 20(2): 155–172.

Merkl, D. (1998). “Text Classification with Self-Organizing Maps: Some Lessons Learned.”
Neurocomputing 21(1/3): 61–77.

Miller, D., Schwartz, R., Weischedel, R., and Stone, R. (1999). Named Entity Extraction from
Broadcast News. In Proceedings of DARPA Broadcast News Workshop. Herndon, VA,
Morgan Kaufmann Publishers, San Francisco: 37–40.

Miller, N., Wong, P. C., Brewster, M., and Foote, H. (1998). TOPIC ISLANDS(TM): A Wavelet-
Based Text Visualization System. In Proceedings of IEEE Visualization ’98. Research Tri-
angle Park, NC, ACM Press, New York: 189–196.

Mitkov, R. (1998). Robust Pronoun Resolution with Limited Knowledge. In Proceedings of
the 39th Annual Meeting on Association for Computational Linguistics. Montreal, Canada,
Association for Computational Linguistics, Morristown, NJ: 869–875.

Mladenic, D. (1998a). Feature Subset Selection in Text Learning. In Proceedings of ECML-
98, 10th European Conference on Machine Learning. C. Nedellec and C. Rouveirol, eds.
Chemnitz, Germany, Springer-Verlag, London: 95–100.

Mladenic, D. (1998b). Machine Learning on Non-homogeneous, Distributed Text Data. Ph.D.
thesis, J. Stefan Institute, University of Ljubljana.

Mladenic, D. (1998c). Turning Yahoo! into an Automatic Web Page Classifier. In Proceedings
of ECAI-98, 13th European Conference on Artificial Intelligence. H. Prade, ed. Brighton,
UK, John Wiley and Sons, Chichester, UK: 473–474.

Mladenic, D. (1999). “Text Learning and Related Intelligent Agents: A Survey.” IEEE Intel-
ligent Systems 14(4): 44–54.

Mladenic, D., and Grobelnik, M. (1998). Word Sequences as Features in Text-Learning. In
Proceedings of ERK-98, 7th Electrotechnical and Computer Science Conference. Ljubljana,
Slovenia: 145–148.

Mladenic, D., and Grobelnik, M. (1999). Feature Selection for Unbalanced Class Distribution
and Naive Bayes. In Proceedings of ICML-99, 16th International Conference on Machine
Learning. I. Bratko and S. Dzeroski, eds. Bled, Slovenia, Morgan Kaufmann Publishers, San
Francisco: 258–267.

Mladenic, D., and Grobelnik, M. (2003). “Feature Selection on Hierarchy of Web Documents.”
Decision Support Systems 35(1): 45–87.

Mock, K. (1998). A Comparison of Three Document Clustering Algorithms: TreeCluster, Word
Intersection GQF, and Word Intersection Hierarchical Agglomerative Clustering. Technical
Report, Intel Architecture Labs.

Moens, M.-F., and Dumortier, J. (2000). “Text Categorization: The Assignment of Subject
Descriptors to Magazine Articles.” Information Processing and Management 36(6): 841–
861.

Montes-y-Gomez, M., Gelbukh, A., and Lopez-Lopez, A. (2001a). Discovering Association
Rules in Semi-Structured Data Sets. In Proceedings of the Workshop on Knowledge Discov-
ery from Distributed, Dynamic, Heterogeneous, Autonomous Data and Knowledge Source
at 17th International Joint Conference on Artificial Intelligence (IJCAI’2001). Seattle,
AAAI Press, Menlo Park, CA: 26–31.

Montes-y-Gomez, M., Gelbukh, A., and Lopez-Lopez, A. (2001b). “Mining the News: Trends,
Associations and Deviations.” Computaĉión y Sistemas 5(1): 14–25.

Bibliography 371

Mooney, R. J., and Roy, L. (2000). Content-Based Book Recommending Using Learning for
Text Categorization. Proceedings of DL-00, 5th ACM Conference on Digital Libraries. San
Antonio, TX, ACM Press, New York: 195–204.

Moschitti, A. (2003). A Study on Optimal Parameter Tuning for Rocchio Text Classifier. In Pro-
ceedings of ECIR-03, 25th European Conference on Information Retrieval. F. Sebastiani,
ed. Pisa, Italy, Springer-Verlag, Heidelberg: 420–435.

Mostafa, J., and Lam, W. (2000). “Automatic Classification Using Supervised Learning in a
Medical Document Filtering Application.” Information Processing and Management 36(3):
415–444.

Moulinier, I. (1997). Feature Selection: A Useful Preprocessing Step. In Proceedings of
BCSIRSG-97, 19th Annual Colloquium of the British Computer Society Information
Retrieval Specialist Group. J. Furner and D. Harper, eds. Aberdeen, UK, Springer-Verlag,
Heidelberg, Germany: 1–11.

Moulinier, I., and Ganascia, J.-G. (1996). “Applying an Existing Machine Learning Algorithm
to Text Categorization.” In Connectionist, Statistical, and Symbolic Approaches to Learning
for Natural Language Processing. S. Wermter, E. Riloff, and G. Scheler, eds. Heidelberg,
Springer-Verlag: 343–354.

Moulinier, I., Raskinis, G., and Ganascia, J.-G. (1996). Text Categorization: A Symbolic
Approach. In Proceedings of SDAIR-96, 5th Annual Symposium on Document Analysis
and Information Retrieval. Las Vegas, NV, ISRI, University of Nevada, Las Vegas: 87–99.

Munoz, M., Punyakanok, V., Roth, D., and Zimak, D. (1999). A Learning Approach to
Shallow Parsing. Technical Report 2087, University of Illinois at Urbana-Champaign:
18.

Munzner, T., and Burchard, P. (1995). Visualizing the Structure of the World Wide Web in 3D
Hyperbolic Space. In Proceedings of VRML ’95. San Diego, CA, ACM Press, New York:
33–38.

Mutton, P. (2004). “Inferring and Visualizing Social Networks on Internet Relay Chat.” Journal
of WSCG 12(1–3).

Mutton, P., and Golbeck, J. (2003). Visualization of Semantic Metadata and Ontologies. In Pro-
ceedings of Information Visualization 2003 (IV03). London, UK, IEEE Computer Society
Press, Washington, DC: 300.

Mutton, P., and Rodgers, P. (2002). Spring Embedder Preprocessing for WWW Visualization. In
Proceedings of 6th International Conference on Information Visualization. London, IEEE
Computer Society Press, Washington, DC: 744–749.

Myers, K., Kearns, M., Singh, S., and Walker, M. A. (2000). A Boosting Approach to Topic
Spotting on Subdialogues. In Proceedings of ICML-00, 17th International Conference
on Machine Learning. P. Langley, ed. Stanford, CA, Morgan Kaufmann Publishers, San
Francisco: 655–662.

Nahm, U., and Mooney, R. (2000). A Mutually Beneficial Integration of Data Mining and
Information Extraction. In Proceedings of the 17th Conference of Artificial Intelligence,
AAAI-2000. Austin, TX, AAAI Press, Menlo Park, CA: 627-632.

Nahm, U., and Mooney, R. (2001). Mining Soft Matching Rules from Text Data. In Proceedings
of the 7th International Joint Conference on Artificial Intelligence. Seattle, WA, Morgan
Kaufmann Publishers, San Francisco: 978–992.

Nahm, U. Y., and Mooney, R. J. (2002). Text Mining with Information Extraction. In Proceed-
ings of the AAAI 2002 Spring Symposium on Mining Answers from Texts and Knowledge
Bases. S. Harabagio and V. Chaudhri, eds. Palo Alto, CA, AAAI Press, Menlo Park, CA: 60–
68.

Nardiello, P., Sebastiani F., and Sperduti, A. (2003). Discretizing Continuous Attributes in
AdaBoost for Text Categorization. In Proceedings of ECIR-03, 25th European Conference
on Information Retrieval. F. Sebastiani, ed. Pisa, Italy, Springer-Verlag, Heidelberg: 320–
334.

372 Bibliography

Nasukawa, T., and Nagano, T. (2001). “Text Analysis and Knowledge Mining System.” IBM
Systems Journal 40(4): 967–984.

Neuhaus, P., and Broker, N. (1997). The Complexity of Recognition of Linguistically Adequate
Dependency Grammars. In Proceedings of the 35th Annual Meeting of the Association for
Computational Linguistics and 8th Conference of the European Chapter of the Association
for Computational Linguistics. P. R. Cohen and W. Wahlster, eds. Somerset, NJ, Association
for Computational Linguistics: 337–343.

Ng, G. K.-C. (2000). Interactive Visualisation Techniques for Ontology Development. Ph.D.
thesis, Department of Computer Science, University of Manchester.

Ng, H. T., Goh, W. B., and Low, K. L. (1997). Feature Selection, Perceptron Learning, and
a Usability Case Study for Text Categorization. In Proceedings of SIGIR-97, 20th ACM
International Conference on Research and Development in Information Retrieval. N. J.
Belkin, A. Narasimhalu, W. Hersh, and P. Willett, eds. Philadelphia, ACM Press, New York:
67–73.

Ng, V., and Cardie, C. (2002). Improving Machine Learning Approaches to Coreference Res-
olution. In Proceedings of the 40th Annual Meeting of the Association for Computational
Linguistics. Philadelphia, Association for Computational Linguistics, Morristown, NJ: 104–
111.

Ng, V., and Cardie, C. (2003). Bootstrapping Coreference Classifiers with Multiple Machine
Learning Algorithms. In Proceedings of the 2003 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP-2003), Sappora, Japan, Association for Computational
Linguistics, Morristown, NJ: 113–120.

Nigam, K. (2001). Using Unlabeled Data to Improve Text Classification. Ph.D. thesis, Computer
Science Department, Carnegie Mellon University.

Nigam, K., and Ghani, R. (2000). Analyzing the Applicability and Effectiveness of Co-training.
In Proceedings of CIKM-00, 9th ACM International Conference on Information and Knowl-
edge Management. A. Agah, J. Callan, S. Gauch, and E. Rundensteiner, eds. McLean, VA,
ACM Press, New York: 86–93.

Nigam, K., McCallum, A. K., Thrun, S., and Mitchell, T. M. (1998). Learning to Classify Text
from Labeled and Unlabeled Documents. In Proceedings of AAAI-98, 15th Conference
of the American Association for Artificial Intelligence. Madison, WI, AAAI Press, Menlo
Park, CA: 792–799.

Nigam, K., McCallum, A. K., Thrun, S., and Mitchell, T. M. (2000). “Text Classification from
Labeled and Unlabeled Documents Using EM.” Machine Learning 39(2/3): 103–134.

Niyogi, D. (1995). A Knowledge-Based Approach to Deriving Logical Structure from Document
Images. Doctoral dissertation, State University of New York, Buffalo.

Niyogi, D., and Srihari, S. (1996). Using Domain Knowledge to Derive the Logical Structure of
Documents. In Proceedings of Document Recognition III. SPIE, Bellingham, WA: 114–125.

Noik, E. (1996). Dynamic Fisheye Views: Combining Dynamic Queries and Mapping with
Database View Definition. Ph.D. thesis, Graduate Department of Computer Science, Uni-
versity of Toronto.

Nong, Y., ed. (2003). The Handbook of Data Mining. Boston, Lawrence Erlbaum Associates.
Oh, H.-J., Myaeng, S. H., and Lee, M.-H. (2000). A Practical Hypertext Categorization

Method Using Links and Incrementally Available Class Information. In Proceedings of
SIGIR-00, 23rd ACM International Conference on Research and Development in Infor-
mation Retrieval. N. Belkin, P. Ingwersen, and M.-K. Leong, eds. Athens, ACM Press, New
York: 264–271.

Ontrup, J., and Ritter, H. (2001a). Hyperbolic Self-Organizing Maps for Semantic Navigation.
In Proceedings of NIPS 2001. T. Dietterich, S. Becker, and Z. Chahramani, eds. Vancouver,
MIT Press, Cambridge, MA: 1417–1424.

Ontrup, J., and Ritter, H. (2001b). Text Categorization and Semantic Browsing with Self-
Organizing Maps on Non-Euclidean Spaces. In Proceedings of PKDD-01, 5th European

Bibliography 373

Conference on Principles and Practice of Knowledge Discovery in Databases. Freiburg,
Germany, Springer-Verlag, Heidelberg: 338–349.

Paijmans, H. (1999). “Text Categorization as an Information Retrieval Task.” The South
African Computer Journal. 31: 4–15.

Paliouras, G., Karkaletsis, V., and Spyropoulos, C. D. (1999). Learning Rules for Large
Vocabulary Word Sense Disambiguation. In Proceedings of IJCAI-99, 16th International
Joint Conference on Artificial Intelligence. T. Dean, ed. Stockholm, Morgan Kaufmann
Publishers, San Francisco: 674–679.

Pang, B., Lee, L., and Vaithyanathan, S. (2002). Thumbs Up? Sentiment Classification Using
Machine Learning Techniques. In Proceedings of EMNLP-02, 7th Conference on Empirical
Methods in Natural Language Processing. Philadelphia, Association for Computational
Linguistics, Morristown, NJ: 79–86.

Patel-Schneider, P., and Simeon, J. (2002). Building the Semantic Web on XML. In Proceedings
of the 1st International Semantic Web Conference (ISWC). I. Horrocks and J. Hendler, eds.
Sardinia, Italy, Springer-Verlag, Heidelberg, Germany: 147–161.

Pattison, T., Vernik, R., Goodburn, D., and Phillips, M. (2001). Rapid Assembly and Deploy-
ment of Domain Visualisation Solutions. In Proceedings of Australian Symposium on Infor-
mation Visualization, ACM International Conference. Sydney, Australian Computer Soci-
ety, Darlinghurst, Australia: 19–26.

Pedersen, T., and Bruce, R. (1997). Unsupervised Text Mining. Dallas, TX, Department of
Computer Science and Engineering, Southern Methodist University.

Peng, F., and Schuurmans, D. (2003). Combining Naive Bayes n-gram and Language Models for
Text Classification. In Proceedings of ECIR-03, 25th European Conference on Information
Retrieval. F. Sebastiani, ed. Pisa, Italy, Springer-Verlag, Heidelberg: 335–350.

Peng, F., Schuurmans, D., and Wang, S. (2003). Language and Task Independent Text Catego-
rization with Simple Language Models. In Proceedings of HLT-03, 3rd Human Language
Technology Conference. Edmonton, CA, ACL Press, Morgan Kaufmann Publishers, San
Francisco: 110–117.

Petasis, G., Cucchiarelli, A., Velardi, P., Paliouras, G., Karkaletsis, V., and Spyropoulos, C. D.
(2000). Automatic Adaptation of Proper Noun Dictionaries through Cooperation of Machine
Learning and Probabilistic Methods. In Proceedings of SIGIR-00, 23rd ACM International
Conference on Research and Development in Information Retrieval. N. Belkin, Peter
lngwersen, and M.-K. Leong, eds. Athens, ACM Press, New York: 128–135.

Peters, C., and Koster, C. H. (2002). Uncertainty-Based Noise Reduction and Term Selection in
Text Categorization. In Proceedings of ECIR-02, 24th European Colloquium on Information
Retrieval Research. F. Crestani, M. Girolomi, and C. J. v. Rijsbergen, eds. Glasgow, Springer-
Verlag, London: 248–267.

Phillips, W., and Riloff, E. (2002). Exploiting Strong Syntactic Heuristics and Co-Training to
Learn Semantic Lexicons. In Proceedings of the 2002 Conference on Empirical Methods in
Natural Language Processing (EMNLP 2002). Philadelphia, Association for Computational
Linguistics: 125–132.

Piatetsky-Shapiro, G., and Frawley, W. J., eds. (1991). Knowledge Discovery in Databases.
Cambridge, MA, MIT Press.

Pierre, J. M. (2002). Mining Knowledge from Text Collections Using Automatically Gener-
ated Metadata. In Proceedings of the 4th International Conference on Practical Aspects of
Knowledge Management (PAKM-02). D. Karagiannis and Reimer, eds. Vienna, Austria,
Springer-Verlag, London: 537–548.

Pollard, C., and Sag, I. A. (1994). Head-Driven Phrase Structure Grammar. Chicago, University
of Chicago Press and CSLI Publications.

Porter, A. (2002). Text Mining. Technology Policy and Assessment Center, Georgia Institute
of Technology.

Pottenger, W., and Yang, T.-h. (2001). Detecting Emerging Concepts in Textual Data Mining.
Philadelphia, SIAM.

374 Bibliography

Punyakanok, V., and Roth, D. (2000). Shallow Parsing by Inferencing with Classifiers. In Pro-
ceedings of the 4th Conference on Computational Natural Language Learning and of the
2nd Learning Language in Logic Workshop. Lisbon, Association for Computational Lin-
guistics, Somerset, NJ: 107–110.

Pustejovsky, J., Castano, J., Zhang, J., Kotecki, M., and Cochran, B. (2002). Robust Relational
Parsing over Biomedical Literature: Extracting Inhibit Relations. In Proceedings of the 2002
Pacific Symposium on Biocomputing (PSB-2002). Lihue, Hawaii, World Scientific Press,
Hackensack, NJ: 362–373.

Rabiner, L. R. (1986). “An Introduction to Hidden Markov Models.” IEEE ASSP Magazine
3(1): 4–16.

Rabiner, L. R. (1990). “A Tutorial on Hidden Markov Models and Selected Applications in
Speech Recognition.” In Readings in Speech Recognition. A. Waibel and K.-F. Lee, eds. Los
Altos, CA, Morgan Kaufmann Publishers: 267–296.

Ragas, H., and Koster, C. H. (1998). Four Text Classification Algorithms Compared on a Dutch
Corpus. In Proceedings of SIGIR-98, 21st ACM International Conference on Research
and Development in Information Retrieval. W. B. Croft, A. Moffat, C. J. v. Rijsbergen,
R. Wilkinson and J. Zobel, eds. Melbourne,Australia, ACM Press, New York: 369–370.

Rainsford, C., and Roddick, J. (2000). Visualization of Temporal Interval Association Rules.
In Proceedings of the 2nd International Conference on Intelligent Data Engineering and
Automated Learning. Hong Kong, Springer-Verlag, London: 91–96.

Rajman, M., and Besancon, R. (1997a). A Lattice Based Algorithm for Text Mining. Technical
Report TR-LIA-LN1/97, Swiss Federal Institute of Technology.

Rajman, M., and Besancon, R. (1997b). Text Mining: Natural Language Techniques and Text
Mining Applications. In Proceedings of the 7th IFIP 2.6 Working Conference on Database
Semantics (DS-7). Leysin, Switzerland, Norwell, MA.

Rajman, M., and Besancon, R. (1998). Text Mining – Knowledge Extraction from Unstructured
Textual Data. In Proceedings of the 6th Conference of the International Federation of
Classification Societies. Rome: 473–480.

Rambow, O., and Joshi, A. K. (1994). “A Formal Look at Dependency Grammars and Phrase-
Structure Grammars, with Special Consideration of Word-Order Phenomena.” In Current
Issues in Meaning-Text Theory. L. Wanner, ed. London, Pinter.

Rao, R., and Card, S. (1994). The Table Lens: Merging Graphical and Symbolic Representations
in an Interactive Focus + Context Visualization for Tabular Information. In Proceedings of
the International Conference on Computer-Human Interaction ’94. Boston, MA, ACM
Press, New York: 318–322.

Rao, R., Card, S., Jellinek, H., Mackinlay, J., and Robertson, G. (1992). The Information Grid: A
Framework for Information Retrieval and Retrieval-Centered Applications. In Proceedings
of the 5th Annual Symposium on User Interface Software and Technology (UIST) ’92.
Monterdy, CA, ACM Press, New York: 23–32.

Raskutti, B., Ferra, H., and Kowalczyk, A. (2001). Second Order Features for Maximising Text
Classification Performance. In Proceedings of ECML-01, 12th European Conference on
Machine Learning. L. D. Raedt and P. A. Flach, eds. Freiburg, Germany, Springer-Verlag,
London: 419–430.

Rau, L. F., and Jacobs, P. S. (1991). Creating Segmented Databases from Free Text for Text
Retrieval. In Proceedings of SIGIR-91, 14th ACM International Conference on Research
and Development in Information Retrieval. Chicago, ACM Press, New York: 337–346.

Reape, M. (1989). A Logical Treatment of Semi-free Word Order and Bounded Discontinuous
Constituency. In Proceedings of the 4th Meeting of the European ACL. Monchester, UK,
Association for Computational Linguistics, Morristown, NJ: 103–110.

Rennie, J., and McCallum, A. K. (1999). Using Reinforcement Learning to Spider the Web Effi-
ciently. In Proceedings of ICML-99, 16th International Conference on Machine Learning.
I. Bratko and S. Dzeroski, eds. Bled, Slovenia, Morgan Kaufmann Publishers, San Francisco:
335–343.

Bibliography 375

Rennie, J., Shih, L., Teevan, J., and Karger, D. (2003). Tackling the Poor Assumptions of
Naive Bayes Text Classifiers. In Proceedings of ICML-03, 20th International Conference on
Machine Learning. Washington, DC, Morgan Kaufmann Publishers, San Francisco: 616–
623.

Reynar, J., and Ratnaparkhi, A. (1997). A Maximum Entropy Approach to Identifying Sentence
Boundaries. In Proceedings of the 5th Conference on Applied Natural Language Processing.
Washington, DC, Morgan Kaufmann Publishers, San Francisco: 16–19.

Ribeiro-Neto, B., Laender, A. H. F., and Lima, L. R. D. (2001). “An Experimental Study
in Automatically Categorizing Medical Documents.” Journal of the American Society for
Information Science and Technology 52(5): 391–401.

Rich, E., and LuperFoy, S. (1988). An Architecture for Anaphora Resolution. In ACL Pro-
ceedings of the 2nd Conference on Applied Natural Language Processing. Austin, TX,
Association for Computational Linguistics, Morristown, NJ: 18–24.

Rijsbergen, C. J. v. (1979). Information Retrieval, 2nd ed. London, Butterworths.
Riloff, E. (1993a). Automatically Constructing a Dictionary for Information Extraction Tasks.

In Proceedings of the 11th National Congress on Artificial Intelligence. Washington, DC,
AAAI/MIT Press, Menlo Park, CA: 811–816.

Riloff, E. (1993b). Using Cases to Represent Context for Text Classification. In Proceedings
of CIKM-93, 2nd International Conference on Information and Knowledge Management.
Washington, DC, ACM Press, New York: 105–113.

Riloff, E. (1994). Information Extraction as a Basis for Portable Text Classification Systems.
Amherst, MA, Department of Computer Science, University of Massachusetts.

Riloff, E. (1995). Little Words Can Make a Big Difference for Text Classification. In Proceed-
ings of SIGIR-95, 18th ACM International Conference on Research and Development in
Information Retrieval. E. A. Fox, P. Ingwersen, and R. Fidel, eds. Seattle, ACM Press, New
York: 130–136.

Riloff, E. (1996a). Automatically Generating Extraction Patterns from Untagged Text. In Pro-
ceedings of the 13th National Conference on Artificial Intelligence. AAAI/MIT Press,
Menlo Park, CA: 1044–1049.

Riloff, E. (1996b). “Using Learned Extraction Patterns for Text Classification.” In Connec-
tionist, Statistical, and Symbolic Approaches to Learning for Natural Language Processing.
S. Wermter, E. Riloff, and G. Scheler, eds. Springer-Verlag, London: 275–289.

Riloff, E., and Jones, R. (1999). Learning Dictionaries for Information Extraction by Multi-level
Boot-Strapping. In Proceedings of the 16th National Conference on Artificial Intelligence.
Orlando, AAAI Press/MIT Press, Menlo Park, CA: 1044–1049.

Riloff, E., and Lehnert, W. (1994). “Information Extraction as a Basis for High-Precision Text
Classification.” ACM Transactions on Information Systems, 12(3): 296–333.

Riloff, E., and Lehnert, W. (1998). Classifying Texts Using Relevancy Signatures. In Proceedings
of AAAI-92, 10th Conference of the American Association for Artificial Intelligence. San
Jose, CA, AAAI Press, Menlo Park, CA: 329–334.

Riloff, E., and Lorenzen, J. (1999). “Extraction-Based Text Categorization: Generating
Domain-Specific Role Relationships.” In Natural Language Information Retrieval. T.
Strzalkowski, ed. Dordrecht, Kluwer Academic Publishers: 167–196.

Riloff, E., and Schmelzenbach, M. (1998). An Empirical Approach to Conceptual Case Frame
Acquisition. In Proceedings of the 6th Workshop on Very Large Corpora. E. Chemiak, ed.
Montreal, Quebec, Association for Computational Linguistics, Morgan Kaufmann Publish-
ers, San Francisco: 49–56.

Riloff, E., and Shoen, J. (1995). Automatically Acquiring Conceptual Patterns Without an
Automated Corpus. In Proceedings of the 3rd Workshop on Very Large Corpora. Boston,
MA, Association for Computational Linguistics, Somerset, NJ: 148–161.

Rindflesch, T. C., Hunter, L., and Aronson, A. R. (1999). Mining Molecular Binding Termi-
nology from Biomedical Text. In Proceedings of the ’99 AMIA Symposium. Washington,
DC, AMIA, Bethesda, MD: 127–131.

376 Bibliography

Rindflesch, T. C., Tanabe, L., Weinstein, J. N., and Hunter, L. (2000). EDGAR: Extrac-
tion of Drugs, Genes and Relations from the Biomedical Literature. In Proceedings of the
2000 Pacific Symposium on Biocomputing. Waikiki Beach, Hawaii, World Scientific Press,
Hackensack, NJ: 517–528.

Roark, B., and Johnson, M. (1999). Efficient Probabilistic Top-Down and Left-Corner Parsing.
In Proceedings of the 37th Annual Meeting of the ACL. College Park, MD, Association for
Computational Linguistics, Morristown, NJ: 421–428.

Robertson, G., Mackinlay, J., and Card, S. (1991). Cone Trees: Animated 3D Visualizations
of Hierarchical Information. In Proceedings of the ACM SIGCHI Conference on Human
Factors in Computing Systems. New Orleans, ACM Press, New York: 189–194.

Robertson, S. E., and Harding, P. (1984). “Probabilistic Automatic Indexing by Learning from
Human Indexers.” Journal of Documentation 40(4): 264–270.

Rodriguez, M. D. B., Gomez-Hidalgo, J. M., and Diaz-Agudo, B. (1997). Using WordNet to
Complement Training Information in Text Categorization. In Proceedings of RANLP-97, 2nd
International Conference on Recent Advances in Natural Language Processing. R. Mitkov
and N. Nikolov, eds. Tzigov Chark, Bulgaria, John Benjamins, Philadelphia: 353–364.

Rokita, P. (1996). “Generating Depth-of-Field Effects in Virtual Reality Applications.” IEEE
Computer Graphics and Applications 16(2): 18–21.

Rose, T., Stevenson, M., and Whitehead, M. (2002). The Reuters Corpus Volume 1 – From Yes-
terday’s News to Tomorrow’s Language Resources. In Proceedings of LREC-02, 3rd Inter-
national Conference on Language Resources and Evaluation. Las Palmas, Spain, ELRA,
Paris: 827–832.

Rosenfeld, B., Feldman, R., Fresko, M., Schler, J., and Aumann, Y. (2004). TEG: A Hybrid
Approach to Information Extraction. In Proceedings of CIKM 2004. Arlington, VA, ACM
Press, New York: 589–596.

Roth, D. (1998). Learning to Resolve Natural Language Ambiguities: A Unified Approach.
In Proceedings of AAAI-98, 15th Conference of the American Association for Artificial
Intelligence. Madison, WI, AAAI Press, Menlo Park, CA: 806–813.

Ruiz, M., and Srinivasan, P. (2002). “Hierarchical Text Classification Using Neural Networks.”
Information Retrieval 5(1): 87–118.

Ruiz, M. E., and Srinivasan, P. (1997). Automatic Text Categorization Using Neural Networks. In
Proceedings of the 8th ASIS/SIGCR Workshop on Classification Research. E. Efthimiadis,
ed. Washington, DC, American Society for Information Science, Washington, DC: 59–72.

Ruiz, M. E., and Srinivasan, P. (1999a). Combining Machine Learning and Hierarchical Index-
ing Structures for Text Categorization. In Proceedings of the 10th ASIS/SIGCR Workshop
on Classification Research. Washington, DC, American Society for Information Science,
Washington, DC.

Ruiz, M. E., and Srinivasan, P. (1999b). Hierarchical Neural Networks for Text Categorization.
In Proceedings of SIGIR-99, 22nd ACM International Conference on Research and Devel-
opment in Information Retrieval. M. A. Hearst, F. Gey, and R. Tong, eds. Berkeley, CA,
ACM Press, New York: 281–282.

Rzhetsky, A., Iossifov, I., Koike, T., Krauthammer, M., Kra, P., Morris, M., Yu, H., Duboue,
P. A., Weng, W., Wilbur, J. W., Hatzivassiloglou, V., and Friedman, C. (2004). “GeneWays: A
System for Extracting, Analyzing, Visualizing, and Integrating Molecular Pathway Data.”
Journal of Biomedical Informatics 37: 43–53.

Rzhetsky, A., Koike, T., Kalachikov, S., Gomez, S. M., Krauthammer, M., Kaplan, S. H., Kra,
P., Russo, J. J., and Friedman, C. (2000). “A Knowledge Model for Analysis and Simulation
of Regulatory Networks.” Bionformatics 16: 1120–1128.

Sabidussi, G. (1966). “The Centrality Index of a Graph.” Psychometrika 31: 581–603.
Sable, C., and Church, K. (2001). Using Bins to Empirically Estimate Term Weights for Text

Categorization. In Proceedings of EMNLP-01, 6th Conference on Empirical Methods in
Natural Language Processing. Pittsburgh, Association for Computational Linguistics, Mor-
ristown, NJ: 58–66.

Bibliography 377

Sable, C. L., and Hatzivassiloglou, V. (1999). Text-Based Approaches for the Categorization of
Images. In Proceedings of ECDL-99, 3rd European Conference on Research and Advanced
Technology for Digital Libraries. S. Abitebout and A.-M. Vercoustre, eds. Paris, Springer-
Verlag, Heidelberg: 19–38.

Sable, C. L., and Hatzivassiloglou, V. (2000). “Text-Based Approaches for Non-topical Image
Categorization.” International Journal of Digital Libraries 3(3): 261–275.

Sahami, M., ed. (1998). Learning for Text Categorization. Papers from the 1998 AAAI Work-
shop. Madison, WI, AAAI Press, Menlo Park, CA.

Sahami, M., Hearst, M. A., and Saund, E. (1996). Applying the Multiple Cause Mixture Model to
Text Categorization. In Proceedings of ICML-96, 13th International Conference on Machine
Learning. L. Saitta, ed. Bari, Italy, Morgan Kaufmann Publishers, San Francisco: 435–443.

Sahami, M., Yusufali, S., and Baldonado, M. Q. (1998). SONIA: A Service for Organizing
Networked Information Autonomously. In Proceedings of DL-98, 3rd ACM Conference on
Digital Libraries. I. Witten, R. Aksyn, and F. M. Shipman, eds. Pittsburgh, ACM Press, New
York: 200–209.

Sakakibara, Y., Misue, K., and Koshiba, T. (1996). “A Machine Learning Approach to Knowl-
edge Acquisitions from Text Databases.” International Journal of Human Computer Inter-
action 8(3): 309–324.

Sakkis, G., Androutsopoulos, I., Paliouras, G., Karkaletsis, V., Spyropoulos, C. D., and
Stamatopoulos, P. (2001). Stacking Classifiers for Anti-Spam Filtering of E-Mail. In Proceed-
ings of EMNLP-01, 6th Conference on Empirical Methods in Natural Language Processing.
Pittsburgh, Association for Computational Linguistics, Morristown, NJ: 44–50.

Sakkis, G., Androutsopoulos, I., Paliouras, G., Karkaletsis, V., Spyropoulos, C. D., and Stam-
atopoulos, P. (2003). “A Memory-Based Approach to Anti-Spam Filtering for Mailing Lists.”
Information Retrieval 6(1): 49–73.

Salamonsen, W., Mok, K., Kolatkar, P., and Subbiah, S. (1999). BioJAKE: A Tool for the
Creation, Visualization and Manipulation of Metabolic Pathways. In Proceedings of the
Pacific Symposium on Biocomputing. Hawaii, World Scientific Press, Hackensack NJ: 392–
400.

Salton, G. (1989). Automatic Text Processing. Reading, MA, Addison-Wesley.
Sanchez, S. N., Triantaphyllou, E., and Kraft, D. (2002). “A Feature Mining Based Approach

for the Classification of Text Documents into Disjoint Classes.” Information Processing and
Management 38(4): 583–604.

Sarkar, M., and Brown, M. (1992). Graphical Fisheye Views of Graphs. In Proceedings of the
ACM SIGCHI ’92 Conference on Human Factors in Computing Systems. Monterey, CA,
ACM Press, New York: 83–91.

Sasaki, M., and Kita, K. (1998). Automatic Text Categorization Based on Hierarchical Rules.
In Proceedings of the 5th International Conference on Soft Computing and Information.
Iizuka, Japan, World Scientific, Singapore: 935–938.

Sasaki, M., and Kita, K. (1998). Rule-Based Text Categorization Using Hierarchical Categories.
In Proceedings of SMC-98, IEEE International Conference on Systems, Man, and Cyber-
netics. La Jolla, CA, IEEE Computer Society Press, Los Alamitos, CA: 2827–2830.

Schapire, R. E., and Singer, Y. (2000). “BoosTexter: A Boosting-Based System for Text Cat-
egorization.” Machine Learning 39(2/3): 135–168.

Schapire, R. E., Singer, Y., and Singhal, A. (1998). Boosting and Rocchio Applied to Text
Filtering. In Proceedings of SIGIR-98, 21st ACM International Conference on Research
and Development in Information Retrieval. W. S. Croft, A. Moffat, C. J. v. Rijsbergen, R.
Wilkinson, and J. Zobel, eds. Melbourne, Australia, ACM Press, New York: 215–223.

Scheffer, T., and Joachims, T. (1999). Expected Error Analysis for Model Selection. In Pro-
ceedings of ICML-99, 16th International Conference on Machine Learning. I. Bratko and
S. Dzeroski, eds. Bled, Slovenia, Morgan Kaufmann Publishers, San Francisco: 361–370.

Schneider, K.-M. (2003). A Comparison of Event Models for Naive Bayes Anti-Spam E-Mail
Filtering. In Proceedings of EACL-03, 11th Conference of the European Chapter of the

378 Bibliography

Association for Computational Linguistics. Budapest, Hungary, Association for Computa-
tional Linguistics, Morristown, NJ: 307–314.

Schutze, H. (1993). Part-of-Speech Induction from Scratch. In Proceedings of the 31st Annual
Meeting of the Association for Computational Linguistics. Columbus, OH, Association for
Computational Linguistics, Morristown, NJ: 251–258.

Schutze, H. (1998). “Automatic Word Sense Discrimination.” Computational Linguistics 24(1):
97–124.

Schutze, H., Hull, D. A., and Pedersen, J. O. (1995). A Comparison of Classifiers and Document
Representations for the Routing Problem. In Proceedings of SIGIR-95, 18th ACM Interna-
tional Conference on Research and Development in Information Retrieval. E. A. Fox,
P. Ingwersen, and R. Fidel, eds. Seattle, ACM Press, New York: 229–237.

Scott, J. (2000). Social Network Analysis: A Handbook. London, Sage Publications.
Scott, S. (1998). Feature Engineering for a Symbolic Approach to Text Classification. Master’s

thesis, Computer Science Department, University of Ottawa.
Scott, S., and Matwin, S. (1999). Feature Engineering for Text Classification. In Proceedings of

ICML-99, 16th International Conference on Machine Learning. I. Bratko and S. Dzeroski,
eds. Bled, Slovenia, Morgan Kaufmann Publishers, San Francisco: 379–388.

Sebastiani, F. (1999). A Tutorial on Automated Text Categorisation. In Proceedings of ASAI-
99, 1st Argentinian Symposium on Artificial Intelligence. A. Anandi and R. Zunino, eds.
Buenos Aires: 7–35.

Sebastiani, F. (2002). “Machine Learning in Automated Text Categorization.” ACM Comput-
ing Surveys 34(1): 1–47.

Sebastiani, F., Sperduti, A., and Valdambrini, N. (2000). An Improved Boosting Algorithm and
Its Application to Automated Text Categorization. In Proceedings of CIKM-00, 9th ACM
International Conference on Information and Knowledge Management. A. Ayah, J. Callan,
and E. Rundensteiner, eds. McLean, VA, ACM Press, New York: 78–85.

Seidman, S. B. (1983). “Network Structure and Minimum Degree.” Social Networks 5: 269–287.
Seymore, K., McCallum, A., and Rosenfeld, R. (1999). Learning Hidden Markov Model Struc-

ture for Information Extraction. In AAAI 99 Workshop on Machine Learning for Informa-
tion Extraction. Orlando, FL, AAAI Press, Menlo Park, CA: 37–42.

Sha, F., and Pereira, F. (2003). Shallow Parsing with Conditional Random Fields. In Technical
Report C15 TR MS-C15-02-35, University of Pennsylvania.

Shin, C., Doermann, D., and Rosenfeld, A. (2001). “Classification of Document Pages Using
Structure-Based Features.” International Journal on Document Analysis and Recognition
3(4): 232–247.

Shneiderman, B. (1996). The Eyes Have It: A Task by Data Type Taxonomy for Information
Visualizations. In Proceedings of the 1996 IEEE Conference on Visual Languages. Boulder,
CO, IEEE Computer Society Press, Washington, DC: 336–343.

Shneiderman, B. (1997). Designing the User Interface: Strategies for Effective Human–
Computer Interaction. Reading, MA, Addison-Wesley.

Shneiderman, B., Byrd, D., and Croft, W. B. (1998). “Sorting Out Searching: A User Interface
Framework for Text Searches.” Communications of the ACM 41(4): 95–98.

Sigletos, G., Paliouras, G., and Karkaletsis, V. (2002). Role Identification from Free Text Using
Hidden Markov Models. In Proceedings of the 2nd Hellenic Conference on AI: Methods
and Applications of Artificial Intelligence. I. P. Vlahavas and C. D. Spyropoulos, eds.
Thessaloniki, Greece, Springer-Verlag, London: 167–178.

Silberschatz, A., and Tuzhilin, A. (1996). “What Makes Patterns Interesting in Knowledge
Discovery Systems.” IEEE Transactions on Knowledge and Data Engineering 8(6): 970–
974.

Silverstein, C., Brin, S., and Motwani, R. (1999). “Beyond Market Baskets: Generalizing
Association Rules to Dependence Rules.” Data Mining and Knowledge Discovery 2(1):
39–68.

Bibliography 379

Siolas, G., and d’Alche-Buc, F. (2000). Support Vector Machines Based on a Semantic Kernel for
Text Categorization. In Proceedings of IJCNN-00, 11th International Joint Conference on
Neural Networks. Como, Italy, IEEE Computer Society Press, Los Alamitos, CA: 205–209.

Skarmeta, A. G., Bensaid, A., and Tazi, N. (2000). “Data Mining for Text Categorization with
Semi-supervised Agglomerative Hierarchical Clustering.” International Journal of Intelli-
gent Systems 15(7): 633–646.

Slattery, S., and Craven, M. (1998). Combining Statistical and Relational Methods for Learn-
ing in Hypertext Domains. In Proceedings of ILP-98, 8th International Conference on
Inductive Logic Programming. D. Page, ed. Madison, WI, Springer-Verlag, Heidelberg:
38–52.

Slattery, S., and Craven, M. (2000). Discovering Test Set Regularities in Relational Domains. In
Proceedings of ICML-00, 17th International Conference on Machine Learning. P. Langley,
ed. Stanford, CA, Morgan Kaufmann Publishers, San Francisco: 895–902.

Slonim, N., and Tishby, N. (2001). The Power of Word Clusters for Text Classification. In
Proceedings of ECIR-01, 23rd European Colloquium on Information Retrieval Research.
Darmstadt, Germany Academic Press, British Computer Society, London.

Smith, D. (2002). Detecting and Browsing Events in Unstructured Text. In Proceedings of the
25th Annual ACM SIGIR Conference. Tampere, Finland, ACM Press, New York: 73–80.

Soderland, S. (1999). “Learning Information Extraction Rules for Semi-Structured and Free
Text.” Machine Learning 34(1–3): 233–272.

Soderland, S., Etzioni, O., Shaked, T., and Weld, D. S. (2004). The Use of Web-based Statistics to
Validate Information Extraction. In Proceedings of the AAAI-2004 Workshop on Adaptive
Text Extraction and Mining (ATEM-2004). San Jose, CA, AAAI Press, Menlo Park, CA:
21–27.

Soderland, S., Fisher, D., Aseltine, J., and Lehnert, W. (1995). CRYSTAL: Inducing a Con-
ceptual Dictionary. In Proceedings of the 14th International Joint Conference on Arti-
ficial Intelligence. C. Mellish, ed. Montreal, Canada, Morgan Kaufmann Publishers, San
Francisco: 1314–1319.

Soh, J. (1998). A Theory of Document Object Locator Combination. Doctoral Dissertation,
State University of New York of Buffalo.

Sondag, P.-P. (2001). The Semantic Web Paving the Way to the Knowledge Society. In Pro-
ceedings of the 27th International Conference on Very Large Databases, (VLDB). Rome,
Morgan Kaufmann Publishers, San Francisco: 16.

Soon, W. M., Ng, H. T., and Lim, D. C. Y. (2001). “A Machine Learning Approach to Coref-
erence Resolution in Noun Phrases.” Computational Linguistics 27(4): 521–544.

Soucy, P., and Mineau, G. W. (2001a). A Simple Feature Selection Method for Text Classification.
In Proceedings of IJCAI-01, 17th International Joint Conference on Artificial Intelligence.
B. Nebel, ed. Seattle, AAAI Press, Menlo Park, CA: 897–902.

Soucy, P., and Mineau, G. W. (2001b). A Simple KNN Algorithm for Text Categorization.
In Proceedings of ICDM-01, IEEE International Conference on Data Mining. N. Cerone,
T. Y. Lin, and X. Wu, eds. San Jose, CA, IEEE Computer Society Press, Los Alamitos, CA:
647–648.

Soucy, P., and Mineau, G. W. (2003). Feature Selection Strategies for Text Categorization. In
Proceedings of CSCSI-03, 16th Conference of the Canadian Society for Computational
Studies of Intelligence. Y. Xiang and B. Chaib-Draa, eds. Halifax: 505–509.

Spence, B. (2001). Information Visualization. Harlow, UK, Addison-Wesley.
Spenke, M., and Beilken, C. (1999). Visual, Interactive Data Mining with InfoZoom – The

Financial Data Set. In Proceedings of the 3rd European Conference on Principles and Prac-
tice of Knowledge Discovery in Databases. Prague, Springer Verlag, Berlin.

Spitz, L., and Maghbouleh, A. (2000). Text Categorization Using Character Shape Codes. In
Proceedings of the 7th SPIE Conference on Document Recognition and Retrieval. San Jose,
CA, SPIE, The International Society for Optical Engineering, Bellingham, WA: 174–181.

380 Bibliography

Spoerri, A. (1999). “InfoCrystal: A Visual Tool for Information Retrieval.” In Readings in
Information Visualization: Using Vision to Think. S. Card, J. Mackinlay, and B. Shneiderman,
eds. San Francisco, Morgan Kaufmann Publishers: 140–147.

Srikant, R., and Agrawal, R. (1995). Mining Generalized Association Rules. In Proceedings of
the 21st International Conference on Very Large Databases. U. Dayal, P. Gray, and S. Nishio,
eds. Zurich, Switzerland, Morgan Kaufmann Publishers, San Francisco, CA: 407–419.

Srikant, R., and Agrawal, R. (1996). Mining Sequential Patterns: Generalizations and Perfor-
mance Improvements. In Proceedings of the 5th Annual Conference on Extending Database
Technology. P. Apers, M. Boozeghoub, and G. Gardarin, eds. Avignon, France, Springer-
Verlag, Berlin: 3–17.

Stamatatos, E., Fakotakis, N., and Kokkinakis, G. (2000). “Automatic Text Categorization in
Terms of Genre and Author.” Computational Linguistics 26(4): 471–495.

Stapley, B. J., and Benoit, G. (2000). Biobibliometrics: Information Retrieval and Visualization
from Co-occurrences of Gene Names in Medline Abstracts. In Proceedings of the Pacific
Symposium on Biocomputing. Honolulu, Hawaii, World Scientific Press, Hackensack, NJ:
526–537.

Steinbach, M., Karypis, G., and Kumar, V. (2000). A Comparison of Document Clustering Tech-
niques. In Proceedings of the 6th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. Boston, ACM Press, New York.

Sun, A., and Lim, E.-P. (2001). Hierarchical Text Classification and Evaluation. In Proceedings
of ICDM-01, IEEE International Conference on Data Mining. N. Cercone, T. Lin, and X.
Wu, eds. San Jose, CA, IEEE Computer Society Press, Los Alamitos, CA: 521–528.

Sun, A., Lim, E.-P., and Ng, W.-K. (2003a). “Hierarchical Text Classification Methods and
Their Specification.” In Cooperative Internet Computing. A. T. Chan, S. Chan, H. Y. Leong,
and V. T. Y. Ng., eds. Dordrecht, Kluwer Academic Publishers: 236–256.

Sun, A., Lim, E.-P., and Ng, W.-K. (2003b). “Performance Measurement Framework for Hier-
archical Text Classification.” Journal of the American Society for Information Science and
Technology 54(11): 1014–1028.

Sun, A., Naing, M., Lim, E., and Lam, W. (2003). Using Support Vector Machine for Terrorism
Information Extraction. In Proceedings of the Intelligence and Security Informatics: 1st
NSF/NIJ Symposium on Intelligence and Security Informatics. H. Chen, R. Miranda, D.
Zeng, C. Demchek, J. Schroeder, and T. Madhusudan, eds. Tucson, AZ, Springer-Verlag,
Berlin: 1–12.

Taghva, K., Nartker, T. A., Borsack, J., Lumos, S., Condit, A., and Young, R. (2000). Evaluating
Text Categorization in the Presence of OCR Errors. In Proceedings of the 8th SPIE Con-
ference on Document Recognition and Retrieval. San Jose, CA, SPIE, The International
Society for Optical Engineering, Washington, DC: 68–74.

Taira, H., and Haruno, M. (1999). Feature Selection in SVM Text Categorization. In Proceed-
ings of AAAI-99, 16th Conference of the American Association for Artificial Intelligence.
Orlando, FL, AAAI Press, Menlo Park, CA: 480–486.

Taira, H., and Haruno, M. (2001). Text Categorization Using Transductive Boosting. In Pro-
ceedings of ECML-01, 12th European Conference on Machine Learning. L. D. Raedt and
P. A. Flach, eds. Freiburg, Germany, Springer-Verlag, Heidelberg: 454–465.

Takamura, H., and Matsumoto, Y. (2001). Feature Space Restructuring for SVMs with Appli-
cation to Text Categorization. In Proceedings of EMNLP-01, 6th Conference on Empirical
Methods in Natural Language Processing. Pittsburgh, Association for Computational Lin-
guistics, Morristown, NJ: 51–57.

Tan, A.-H. (2001). Predictive Self-Organizing Networks for Text Categorization. In Proceedings
of PAKDD-01, 5th Pacific-Asia Conference on Knowledge Discovery and Data Mining.
Hong Kong, Springer-Verlag, Heidelberg: 66–77.

Tan, A. (1999). Text Mining: The State of the Art and the Challenges. In Proceedings of the
PAKDD’99 Workshop on Knowledge Discovery from Advanced Databases (KDAD’99).
Beijing: 71–76.

Bibliography 381

Tan, C.-M., Wang, Y.-F., and Lee, C.-D. (2002). “The Use of Bigrams to Enhance Text Cate-
gorization.” Information Processing and Management 38(4): 529–546.

Taskar, B., Abbeel, P., and Koller, D. (2002). Discriminative Probabilistic Models of Relational
Data. In Proceedings of UAI-02, 18th Conference on Uncertainty in Artificial Intelligence.
Edmonton, Canada, Morgan Kaufmann Publishers, San Francisco: 485–492.

Taskar, B., Segal, E., and Koller, D. (2001). Probabilistic Classification and Clustering in Rela-
tional Data. In Proceedings of IJCAI-01, 17th International Joint Conference on Artifi-
cial Intelligence. B. Nebel, ed. Seattle, Morgan Kaufmann Publishers, San Francisco: 870–
878.

Tauritz, D. R., Kok, J. N., and Sprinkhuizen-Kuyper, I. G. (2000). “Adaptive Information
Filtering Using Evolutionary Computation.” Information Sciences 122(2/4): 121–140.

Tauritz, D. R., and Sprinkhuizen-Kuyper, I. G. (1999). Adaptive Information Filtering Algo-
rithms. In Proceedings of IDA-99, 3rd Symposium on Intelligent Data Analysis. D. J. Wand,
J. N. Kok, and M. R. Berthold, eds. Amsterdam, Springer-Verlag, Heidelberg: 513–524.

Teahan, W. J. (2000). Text Classification and Segmentation Using Minimum Cross-entropy. In
Proceedings of RIAO-00, 6th International Conference “Recherche d’Information Assistée
par Ordinateur.” Paris: 943–961.

Teytaud, O., and Jalam, R. (2001). Kernel Based Text Categorization. In Proceedings of IJCNN-
01, 12th International Joint Conference on Neural Networks. Washington, DC, IEEE Com-
puter Society Press, Los Alamitos, CA: 1892–1897.

Theeramunkong, T., and Lertnattee, V. (2002). Multi-Dimensional Text Classification. In Pro-
ceedings of COLING-02, 19th International Conference on Computational Linguistics.
Taipei, Taiwan Association for Computational Linguistics, Morristown, NJ.

Thelen, M., and Riloff, E. (2002). A Bootstrapping Method for Learning Semantic Lexicons
Using Extraction Pattern Contexts. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP 2002). Philadelphia, Association for Computa-
tional Linguistics, Morristown, NJ: 214–221.

Thomas, J., Cook, K., Crow, V., Hetzler, B., May, R., McQuerry, D., McVeety, R., Miller, N.,
Nakamura, G., Nowell, L., Whitney, P., and Wong, P. C. (1999). Human Computer Interac-
tion with Global Information Spaces: Beyond Data Mining. In Proceedings of the British
Computer Society Conference. Bradford, UK, Springer-Verlag, London.

Thompson, P. (2001). Automatic Categorization of Case Law. In Proceedings of ICAIL-01, 8th
International Conference on Artificial Intelligence and Law. St. Louis, MO, ACM Press,
New York: 70–77.

Toivonen, H., Klemettinen, M., Ronkainen, P., Hatonen, K., and Mannila, H. (1995). Prun-
ing and Grouping Discovered Association Rules. In Workshop Notes: Statistics, Machine
Learning and Knowledge Discovery in Databases, ECML-95. N. Lavrac and S. Wrobel, eds.
Heraclion, Greece, Springer-Verlag, Berlin: 47–52.

Tombros, A., Villa, R., and Rijsbergen, C. J. (2002). “The Effectiveness of Query-Specific
Hierarchic Clustering in Information Retrieval.” Information Processing & Management
38(4): 559–582.

Tong, R., Winkler, A., and Gage, P. (1992). Classification Trees for Document Routing: A
Report on the TREC Experiment. In Proceedings of TREC-1, 1st Text Retrieval Conference.
D. K. Harman, ed. Gaithersburg, MD, National Institute of Standards and Technology,
Gaithersburg, MD: 209–228.

Tong, S., and Koller, D. (2000). Support Vector Machine Active Learning with Applications to
Text Classification. In Proceedings of ICML-00, 17th International Conference on Machine
Learning. P. Langley, ed. Stanford, CA, Morgan Kaufmann Publishers, San Francisco, CA:
999–1006.

Tong, S., and Koller, D. (2001). “Support Vector Machine Active Learning with Applications
to Text Classification.” Journal of Machine Learning Research 2: 45–66.

Toutanova, K., Chen, F., Popat, K., and Hofmann, T. (2001). Text Classification in a Hier-
archical Mixture Model for Small Training Sets. In Proceedings of CIKM-01, 10th ACM

382 Bibliography

International Conference on Information and Knowledge Management. H. Paques, L. Liu,
and D. Grossman, eds. Atlanta, ACM Press, New York: 105–113.

Trastour, D., Bartolini, C., and Preist, C. (2003). “Semantic Web Support for the Business-to-
Business E-Commerce Pre-Contractual Lifecycle.” Computer Networks 42(5): 661–673.

Tufte, E. (1983). The Visual Display of Quantitative Informaiton. Chelshire, CT, Graphics
Press.

Tufte, E. (1990). Envisioning Information. Chelshire, CT, Graphics Press.
Tufte, E. (1997). Visual Explanations. Cheshire, CT, Graphics Press.
Turney, P. (1997). Extraction of Keyphrases from Text: Evaluation of Four Algorithms. Tech-

nical Report ERB 1051, National Research Council of Canada, Institute for Information
Technology: 1–27.

Turney, P. D. (2000). “Learning Algorithms for Keyphrase Extraction.” Information Retrieval
2(4): 303–336.

Tzeras, K., and Hartmann, S. (1993). Automatic Indexing Based on Bayesian Inference Net-
works. In Proceedings of SIGIR-93, 16th ACM International Conference on Research and
Development in Information Retrieval. R. Korfhage, E. M. Rasmussen, and P. Willett, eds.
Pittsburgh, ACM Press, New York: 22–34.

Tzoukermann, E., Klavans, J., and Jacquemin, C. (1997). Effective Use of Natural Language
Processing Techniques for Automatic Conflation of Multi-Word Terms: The Role of Deriva-
tional Morphology, Part of Speech Tagging, and Shallow Parsing. In Proceedings of the 20th
Annual International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval. Philadelphia, ACM Press, New York: 148–155.

Ure �na-Lopez, L. A., Buenaga, M., and Gomez, J. M. (2001). “Integrating linguistic resources
in TC through WSD.” Computers and the Humanities 35(2): 215–230.

Uren, V. S., and Addis, T. R. (2002). “How Weak Categorizers Based upon Different Principles
Strengthen Performance.” The Computer Journal 45(5): 511–524.

Vapnik, V. (1995). The Nature of Statistical Learning Theory. Berlin, Springer-Verlag.
Varadarajan, S., Kasravi, K., and Feldman, R. (2002). Text-Mining: Application Development

Challenges. In Proceedings of the 22nd SGAI International Conference on Knowledge
Based Systems and Applied Artificial Intelligence. Cambridge, UK, Springer-Verlag, Berlin.

Vel, O. Y. D., Anderson, A., Corney, M., and Mohay, G. M. (2001). “Mining Email Content
for Author Identification Forensics.” SIGMOD Record 30(4): 55–64.

Vert, J.-P. (2001). Text Categorization Using Adaptive Context Trees. In Proceedings of
CICLING-01, 2nd International Conference on Computational Linguistics and Intelligent
Text Processing. A. Gelbukh, ed. Mexico City, Springer-Verlag, Heidelberg: 423–436.

Viechnicki, P. (1998). A Performance Evaluation of Automatic Survey Classifiers. In Proceed-
ings of ICGI-98, 4th International Colloquium on Grammatical Inference. V. Honavar and
G. Slutzki, eds. Ames, IA, Springer-Verlag, Heidelberg: 244–256.

Vinokourov, A., and Girolami, M. (2001). Document Classification Employing the Fisher Ker-
nel Derived from Probabilistic Hierarchic Corpus Representations. In Proceedings of ECIR-
01, 23rd European Colloquium on Information Retrieval Research. Darmstadt, Germany,
Springer-Verlag, Berlin: 24–40.

Vinokourov, A., and Girolami, M. (2002). “A Probabilistic Framework for the Hierarchic
Organisation and Classification of Document Collections.” Journal of Intelligent Informa-
tion Systems 18(2/3): 153–172.

Wang, H., and Son, N. H. (1999). Text Classification Using Lattice Machine. In Proceed-
ings of ISMIS-99, 11th International Symposium on Methodologies for Intelligent Systems.
A. Skowron and Z. W. Ras, eds. Warsaw, Springer-Verlag, Heidelberg: 235–243.

Wang, J. T. L., Zhang, K., Chang, G., and Shasha, D. (2002). “Finding Approximate Patterns
in Undirected Acyclic Graphs.” Pattern Recognition 35(2): 473–483.

Wang, K., Zhou, S., and He, Y. (2001). Hierarchical Classification of Real Life Documents. In
Proceedings of the 1st SIAM International Conference on Data Mining. Chicago, SIAM
Press, Philadelphia.

Bibliography 383

Wang, K., Zhou, S., and Liew, S. C. (1999). Building Hierarchical Classifiers Using Class Prox-
imity. In Proceedings of VLDB-99, 25th International Conference on Very Large Data
Bases. M. P. Atkinson, M. E. Orlowska, P. Valduriez, S. B. Zdonik, and M. L. Brodie, eds.
Edinburgh, Morgan Kaufmann Publishers, San Francisco: 363–374.

Wang, W., Meng, W., and Yu, C. (2000). Concept Hierarchy Based Text Database Categorization
in a Metasearch Engine Environment. In Proceedings of WISE-00, 1st International Con-
ference on Web Information Systems Engineering. Hong Kong, IEEE Computer Society
Press, Los Alamitos, CA: 283–290.

Wang, Y., and Hu, J. (2002). A Machine Learning Based Approach for Table Detection on the
Web. In Proceedings of the 11th International World Web Conference. Honolulu, HI, ACM
Press, New York: 242–250.

Ware, C. (2000). Information Visualization: Perception for Design, San Francisco, Morgan
Kaufmann Publishers.

Wasserman, S., and Faust, K. (1994). Social Network Analysis: Methods and Applications.
Cambridge, UK, Cambridge University Press.

Wei, C.-P., and Dong, Y.-X. (2001). A Mining-based Category Evolution Approach to Managing
Online Document Categories. In Proceedings of HICSS-01, 34th Annual Hawaii Interna-
tional Conference on System Sciences. R. H. Sprague, ed. Maui, HI, IEEE Computer Society
Press, Los Alamitos, CA: 7061–7062.

Weigend, A. S., Wiener, E. D., and Pedersen, J. O. (1999). “Exploiting Hierarchy in Text Cate-
gorization.” Information Retrieval 1(3): 193–216.

Weischedel, R., Meteer, M., Schwartz, R., Ramshaw, L., and Palmucci, J. (1993). “Coping with
Ambiguity and Unknown Words through Probabilistic Methods.” Computational Linguis-
tics 19(2): 361–382.

Weiss, S. M., Apte, C., Damerau, F. J., Johnson, D. E., Oles, F. J., Goetz, T., and
Hampp, T. (1999). “Maximizing Text-Mining Performance.” IEEE Intelligent Systems 14(4):
63–69.

Wermter, S. (2000). “Neural Network Agents for Learning Semantic Text Classification.”
Information Retrieval 3(2): 87–103.

Wermter, S., Arevian, G., and Panchev, C. (1999). Recurrent Neural Network Learning for Text
Routing. In Proceedings of ICANN-99, 9th International Conference on Artificial Neural
Networks. Edinburgh, Institution of Electrical Engineers, London, UK: 898–903.

Wermter, S., and Hung, C. (2002). Self-Organizing Classification on the Reuters News Cor-
pus. In Proceedings of COLING-02, the 19th International Conference on Computational
Linguistics. Taipei, Morgan Kaufmann Publishers, San Francisco.

Wermter, S., Panchev, C., and Arevian, G. (1999). Hybrid Neural Plausibility Networks for
News Agents. In Proceedings of AAAI-99, 16th Conference of the American Association
for Artificial Intelligence. Orlando, FL, AAAI Press, Menlo Park, CA: 93–98.

Westphal, C., and Bergeron, R. D. (1998). Data Mining Solutions: Methods and Tools for
Solving Real-Word Problems. New York, John Wiley and Sons.

White, D. R., and Reitz, K. P. (1983). “Graph and Semigroup Homomorphisms on Networks
of Relations.” Social Networks 5: 193–234.

Wibowo, W., and Williams, H. E. (2002). Simple and Accurate Feature Selection for Hierarchical
Categorisation. In Proceedings of the 2002 ACM Symposium on Document Engineering.
McLean, VA, ACM Press, New York: 111–118.

Wiener, E. D. (1995). A Neural Network Approach to Topic Spotting in Text. Boulder, CO,
Department of Computer Science, University of Colorado at Boulder.

Wiener, E. D., Pedersen, J. O., and Weigend, A. S. (1995). A Neural Network Approach to Topic
Spotting. In Proceedings of SDAIR-95, 4th Annual Symposium on Document Analysis and
Information Retrieval. Las Vegas, ISRI, University of Nevada, Las Vegas: 317–332.

Wilks, Y. (1997). “Information Extraction as a Core Language Technology.” In M. T. Pazienza,
ed. Information Extraction: A Multidisciplinary Approach to an Emerging Information
Technology. Lecture Notes in Computer Science 1229: 1–9.

384 Bibliography

Williamson, C., and Schneiderman, B. (1992). The Dynamic HomeFinder: Evaluating Dynamic
Queries in a Real-Estate Information Exploration System. In Proceedings of the 15th Annual,
ACM-SIGIR. N. Belkin, P. Ingwersen, A. Pejtersen, eds. Copenhagen, ACM Press, New
York: 338–346.

Wills, G. (1999). “NicheWorks’ Interactive Visualization of Very Large Graphs.” Journal of
Computational and Graphical Statistics 8(2): 190–212.

Wise, J., Thomas, J., Pennock, K., Lantrip, D., Pottier, M., Schur, A., and Crow, V. (1995).
Visualizing the Non-Visual: Spatial Analysis and Interaction with Information from Text
Documents. In Proceedings of IEEE Information Visualization ’95. Atlanta, GA, IEEE
Computer Society Press, Los Alamitos, CA: 51–58.

Witten, I. H., Bray, Z., Mahoui, M., and Teahan, W. J. (1999). Text Mining: A New Frontier
for Lossless Compression. In Proceedings of IEEE Data Compression Conference. J. Ai.
Storer and M. Cohn, eds. Snowbird, UT, IEEE Computer Society Press, Los Alamitos, CA:
198–207.

Wong, J. W., Kan, W.-K., and Young, G. H. (1996). “Action: Automatic Classification for
Full-Text Documents.” SIGIR Forum 30(1): 26–41.

Wong, P. C. (1999). “Visual Data Mining – Guest Editor’s Introduction.” IEEE Computer
Graphics and Applications 19(5): 2–12.

Wong, P. C., Cowley, W., Foote, H., Jurrus, E., and Thomas, J. (2000). Visualizing Sequential
Patterns for Text Mining. In Proceedings of the IEEE Information Visualization Conference
(INFOVIS 2000). Salt Lake City, UT, ACM Press, New York: 105–115.

Wong, P. C., Whitney, P., and Thomas, J. (1999). Visualizing Association Rules for Text Min-
ing. In Proceedings of IEEE Information Visualization (InfoVis ’99). San Francisco, IEEE
Computer Society Press, Washington, DC: 120–124.

Xu, Z., Yu, K., Tresp, V., Xu, X., and Wang, J. (2003). Representative Sampling for Text Clas-
sification Using Support Vector Machines. In Proceedings of ECIR-03, 25th European Con-
ference on Information Retrieval. F. Sebastiani, ed. Pisa, Italy, Springer-Verlag, Berlin:
393–407.

Xue, D., and Sun, M. (2003). Chinese Text Categorization Based on the Binary Weighting
Model with Non-binary Smoothing. In Proceedings of ECIR-03, 25th European Con-
ference on Information Retrieval. F. Sebastiani, ed. Pisa, Italy, Springer-Verlag, Berlin:
408–419.

Yamazaki, T., and Dagan, I. (1997). Mistake-Driven Learning with Thesaurus for Text Cat-
egorization. In Proceedings of NLPRS-97, the Natural Language Processing Pacific Rim
Symposium. Phuket, Thailand: 369–374.

Yang, C. C., Chen, H., and Hong, K. (2003). “Visualization of Large Category Map for Internet
Browsing.” Decision Support Systems 35: 89–102.

Yang, H.-C., and Lee, C.-H. (2000a). Automatic Category Generation for Text Documents by
Self-Organizing Maps. In Proceedings of IJCNN-00, 11th International Joint Conference
on Neural Networks, Volume 3. Como, Italy, IEEE Computer Society Press, Los Alamitos,
CA, 3581–3586.

Yang, H.-C., and Lee, C.-H. (2000b). Automatic Category Structure Generation and Catego-
rization of Chinese Text Documents. In Proceedings of PKDD-00, 4th European Conference
on Principles of Data Mining and Knowledge Discovery. D. Zighed, A. Komorowski, and
D. Zytkow, eds. Lyon, France, Springer-Verlag, Heidelberg, Germany: 673–678.

Yang, T. (2000). Detecting Emerging Contextual Concepts in Textual Collections. M.Sc. thesis,
Department of Computer Science, University of Illinois at Urbana-Champaign.

Yang, Y. (1994). Expert Network: Effective and Efficient Learning from Human Decisions in
Text Categorisation and Retrieval. In Proceedings of SIGIR-94, 17th ACM International
Conference on Research and Development in Information Retrieval. W. B. Croft and
C. J. v. Rijsbergen, eds. Dublin, Springer-Verlag, Heidelberg: 13–22.

Yang, Y. (1995). Noise Reduction in a Statistical Approach to Text Categorization. In Proceed-
ings of SIGIR-95, 18th ACM International Conference on Research and Development in

Bibliography 385

Information Retrieval. E. A. Fox, P. Ingwersen, and R. Fidel, eds. Seattle, ACM Press, New
York: 256–263.

Yang, Y. (1996). An Evaluation of Statistical Approaches to MEDLINE Indexing. In Proceed-
ings of AMIA-96, Fall Symposium of the American Medical Informatics Association. J. J.
Cimino, ed. Washington, DC, Hanley and Belfus, Philadelphia: 358–362.

Yang, Y. (1999). “An Evaluation of Statistical Approaches to Text Categorization.” Informa-
tion Retrieval 1(1/2): 69–90.

Yang, Y. (2001). A Study on Thresholding Strategies for Text Categorization. In Proceedings
of SIGIR-01, 24th ACM International Conference on Research and Development in Infor-
mation Retrieval. W. B. Croft, D. J. Harper, D. H. Kroft, and J. Zobel, eds. New Orleans,
ACM Press, New York: 137–145.

Yang, Y., Ault, T., and Pierce, T. (2000). Combining Multiple Learning Strategies for Effective
Cross-Validation. In Proceedings of ICML-00, 17th International Conference on Machine
Learning. P. Langley, ed. Stanford, CA, Morgan Kaufmann Publishers, San Francisco: 1167–
1182.

Yang, Y., Ault, T., Pierce, T., and Lattimer, C. W. (2000). Improving Text Categorization Meth-
ods for Event Tracking. In Proceedings of SIGIR-00, 23rd ACM International Conference
on Research and Development in Information Retrieval. N. J. Belkin, P. Ingwersen, and
M.-K. Leong, eds. Athens, Greece, ACM Press, New York: 65–72.

Yang, Y., and Chute, C. G. (1993). An Application of Least Squares Fit Mapping to Text
Information Retrieval. In Proceedings of SIGIR-93, 16th ACM International Conference
on Research and Development in Information Retrieval. R. Korthage, E. Rasmussen, and
P. Willett, eds. Pittsburgh, ACM Press, New York: 281–290.

Yang, Y., and Chute, C. G. (1994). “An Example-Based Mapping Method for Text Catego-
rization and Retrieval.” ACM Transactions on Information Systems 12(3): 252–277.

Yang, Y., and Liu, X. (1999). A Re-examination of Text Categorization Methods. In Proceed-
ings of SIGIR-99, 22nd ACM International Conference on Research and Development in
Information Retrieval. M. Hearst, F. Gey, and R. Tong, eds. Berkeley, CA, ACM Press, New
York: 42–49.

Yang, Y., and Pedersen, J. O. (1997). A Comparative Study on Feature Selection in Text
Categorization. In Proceedings of ICML-97, 14th International Conference on Machine
Learning. D. H. Fisher. Nashville, TN, Morgan Kaufmann Publishers, San Francisco: 412–
420.

Yang, Y., Slattery, S., and Ghani, R. (2002). “A Study of Approaches to Hypertext Catego-
rization.” Journal of Intelligent Information Systems 18(2/3): 219–241.

Yang, Y., and Wilbur, J. W. (1996a). “An Analysis of Statistical Term Strength and Its Use in the
Indexing and Retrieval of Molecular Biology Texts.” Computers in Biology and Medicine
26(3): 209–222.

Yang, Y., and Wilbur, J. W. (1996b). “Using Corpus Statistics to Remove Redundant Words
in Text Categorization.” Journal of the American Society for Information Science 47(5):
357–369.

Yang, Y., Zhang, J., and Kisiel, B. (2003). A Scalability Analysis of Classifiers in Text Cate-
gorization. In Proceedings of SIGIR-03, 26th ACM International Conference on Research
and Development in Information Retrieval. J. Callan, G. Cormack, C. Clarke, D. Hawking,
and A. Smeaton, eds. Toronto, ACM Press, New York: 96–103.

Yao, D., Wang, J., Lu, Y., Noble, N., Sun, H., Zhu, X., Lin, N., Payan, D., Li, M., and Qu, K.
(2004). Pathway Finder: Paving the Way Towards Automatic Pathway Extraction. In Pro-
ceedings of the 2nd Asian Bioinformatics Conference. Dunedin, New Zealand, Australian
Computer Society, Darlinghurst, Australia: 53–62.

Yavuz, T., and Guvenir, H. A. (1998). Application of k-nearest Neighbor on Feature Projections
Classifier to Text Categorization. In Proceedings of ISCIS-98, 13th International Symposium
on Computer and Information Sciences. U. Gudukbay, T. Dayar, A. Gorsoy, and E. Gelenbe,
eds. Ankara, Turkey, IOS Press, Amsterdam: 135–142.

386 Bibliography

Ye, N. (2003). The Handbook of Data Mining. Mahwah, NJ, Lawrence Erlbaum Associates.
Yee, K.-P., Fisher, D., Dhamija, R., and Hearst, M. (2001). Animated Exploration of Dynamic

Graphs with Radial Layout. In Proceedings of IEEE Symposium on Information Visual-
ization (InfoVis 2001). San Diego, CA, IEEE Computer Society Press, Washington, DC:
43–50.

Yeh, A., and Hirschman, L. (2002). “Background and Overview for KDD Cup 2002 Task 1:
Information Extraction from Biomedical Articles.” KDD Explorarions 4(2): 87–89.

Yi, J., and Sundaresan, N. (2000). A Classifier for Semi-Structured Documents. In Proceedings
of KDD-00, 6th ACM International Conference on Knowledge Discovery and Data Mining.
Boston, ACM Press, New York: 340–344.

Yoon, S., Henschen, L. J., Park, E., and Makki, S. (1999). Using Domain Knowledge in Knowl-
edge Discovery. In Proceedings of the ACM Conference CIKM ’99. Kansas City, MO, ACM
Press, New York: 243–250.

Yu, E. S., and Liddy, E. D. (1999). Feature Selection in Text Categorization Using the Bald-
win Effect Networks. In Proceedings of IJCNN-99, 10th International Joint Conference
on Neural Networks. Washington, DC, IEEE Computer Society Press, Los Alamitos, CA:
2924–2927.

Yu, K. L., and Lam, W. (1998). A New On-Line Learning Algorithm for Adaptive Text Filter-
ing. In Proceedings of CIKM-98, 7th ACM International Conference on Information and
Knowledge Management. G. Gardarin, J. French, N. Pissinou, K. Makki, and L. Bouganim,
eds. Bethesda, MD, ACM Press, New York: 156–160.

Yumi, J. (2000). Graphical User Interface and Visualization Techniques for Detection of Emerg-
ing Concepts. M.S. thesis, Department of Computer Science, University of Illinois at Urbana-
Champaign.

Zaiane, O. R., and Antonie, M.-L. (2002). Classifying Text Documents by Associating Terms
with Text Categories. In Proceedings of the 13th Australasian Conference on Database
Technologies. Melbourne, Australia, ACM Press, New York: 215–222.

Zamir, O., and Etzioni, O. (1999). “Grouper: A Dynamic Clustering Interface to Web Search
Results.” Computer Networks. 31(11–16): 1361–1374.

Zaragoza, H., Massih-Reza, A., and Gallinari, P. (1999). A Dynamic Probability Model for
Closed-Query Text Mining Tasks. Draft submission to KDD ’99.

Zelikovitz, S., and Hirsh, H. (2000). Improving Short Text Classification Using Unlabeled Back-
ground Knowledge. In Proceedings of ICML-00, 17th International Conference on Machine
Learning. P. Langley, ed. Stanford, CA, Morgan Kaufmann Publishers, San Francisco: 1183–
1190.

Zelikovitz, S., and Hirsh, H. (2001). Using LSI for Text Classification in the Presence of Back-
ground Text. In Proceedings of CIKM-01, 10th ACM International Conference on Informa-
tion and Knowledge Management. H. Paques, L. Liu, and D. Grossman, eds. Atlanta, ACM
Press, New York: 113–118.

Zhang, D., and Lee, W. S. (2003). Question Classification Using Support Vector Machines. In
Proceedings of SIGIR-03, 26th ACM International Conference on Research and Devel-
opment in Information Retrieval. J. Callan, G. Cormack, C. Clarke, D. Hawking, and A.
Smeaton, eds. Toronto, ACM Press, New York: 26–32.

Zhang, J., Jin, R., Yang, Y., and Hauptmann, A. (2003). Modified Logistic Regression: An
Approximation to SVM and Its Applications in Large-Scale Text Categorization. In Pro-
ceedings of ICML-03, 20th International Conference on Machine Learning. Washington,
DC, Morgan Kaufmann Publishers, San Francisco: 888–895.

Zhang, J., and Yang, Y. (2003). Robustness of Regularized Linear Classification Methods in
Text Categorization. In Proceedings of SIGIR-03, 26th ACM International Conference on
Research and Development in Information Retrieval. J. Collan, G. Cormack, C. Clarke,
D. Hawking, and A. Smeaton, eds. Toronto, ACM Press, New York: 190–197.

Zhang, K., Wang, J. T. L., and Shasha, D. (1995). “On the Editing Distance Between Undirected
Acyclic Graphs.” International Journal of Foundations of Computer Science 7(1): 43–57.

Bibliography 387

Zhang, T., and Oles, F. J. (2001). “Text Categorization Based on Regularized Linear Classifi-
cation Methods.” Information Retrieval 4(1): 5–31.

Zhao, Y., and Karypis, G. (2002). Criterion Functions for Document Clustering: Experiments
and Analysis. Technical Report, TR 01–40. Minneapolis, Department of Computer Science,
University of Minnesota.

Zhdanova, A. V., and Shishkin, D. V. (2002). Classification of Email Queries by Topic: Approach
Based on Hierarchically Structured Subject Domain. In Proceedings of IDEAL-02, 3rd Inter-
national Conference on Intelligent Data Engineering and Automated Learning. H. Yin,
N. Allinson, R. Freeman, J. Keane, and S. Hubbard, eds. Manchester, UK, Springer-Verlag,
Heidelberg: 99–104.

Zhong, S., and Ghosh, J (2003). “A Comparative Study of Generative Models for Document
Clustering.” Knowledge and Information Systems: An International Journal 8: 374–384.

Zhou, M., and Cui, Y. (2004). “GeneInfoViz: Constructing and Visualizing Gene Relation
Networks.” In Silico Biology 4(3): 323–333.

Zhou, S., Fan, Y., Hua, J., Yu, F., and Hu, Y. (2000). Hierachically Classifying Chinese Web
Documents without Dictionary Support and Segmentation Procedure. In Proceedings of
WAIM-00, 1st International Conference on Web-Age Information Management. Shanghai,
China, Springer-Verlag, Heidelberg: 215–226.

Zhou, S., and Guan, J. (2002a). An Approach to Improve Text Classification Efficiency. In Pro-
ceedings of ADBIS-02, 6th East-European Conference on Advances in Databases and Infor-
mation Systems. Y. M., and P. Navrat, eds. Bratislava, Slovakia, Springer-Verlag, Heidelberg:
65–79.

Zhou, S., and Guan, J. (2002b). Chinese Documents Classification Based on N-Grams. In
Proceedings of CICLING-02, 3rd International Conference on Computational Linguistics
and Intelligent Text Processing. A. F. Gelbukh, ed. Mexico City, Springer-Verlag,
Heidelberg: 405–414.

Zhou, S., Ling, T. W., Guan, J., Hu, J., and Zhou, A. (2003). Fast Text Classification: A Training-
Corpus Pruning Based Approach. In Proceedings of DASFAA-03, 8th IEEE International
Conference on Database Advanced Systems for Advanced Application. Kyoto, Japan, IEEE
Computer Society Press, Los Alamitos, CA: 127–136.

Index

ACE-1, 164
ACE-2

annotations, 164, 165
evaluation, 164–166

acquisition bottleneck, 64
activity networks, 198
AdaBoost algorithm, 77, 78, 120
agglomerative algorithms, 85
Agrawal, C.C., 9, 24
AI tasks, 64
algorithm(s). See also Apriori algorithm; Borders

algorithm
(LP)2, 120
3-D rendering, 219
AdaBoost, 77, 78, 120
agglomerative, 85
association generating, 26
BASILISK, 173–174
bootstrapping, 171
brute force, 85
Buckshot, 86, 88
BWI, 119–120
classic graph analysis, 260
clustering, 85–88
convex optimization, 72
cores and, 258–259
covering, 121
CRF, 121
Delta, 36, 41
documents structured by, 57
EM, 78, 90–91
EM-based mixture resolving, 85, 87
episode based, 41
evaluating, 121
FACT’s, 49
force-directed graph layout, 245, 246
forward–backward, 134, 141
frequent concept set, 24, 25

FUP, 36, 41
FUP2, 36, 41
general graphs fast, 248
HAC, 85, 87–88
HMM, 121
Hobbs, 112
human-language processing, 60
IE, 98, 119
incremental, 30, 36
inductive, 119, 121
ISO-DATA, 86
KK, 247
K-means, 85, 86, 88
knowledge discovery, 2, 17, 193
layout, 245, 246
learning, 68
MEMM, 121
metabootstrapping, 170
mixture-resolving, 87
ML, 70
Naive, 112
optimization, 246
O-Tree, 124–125
pattern-discovery, 1, 5
preprocessing methodologies, 57
probabilistic extraction, 121
Ripper, 74, 298
salience, 114
search, 36, 178, 236
sequential patterns mining, 30
shuffling, 85
SOMs generated, 213, 216–217
spring-embedder, 245
SVM, 76–77
tasks for, 58
text mining, 5, 8
Viterbi, 133–134, 138, 141
WHISK, 119

389

390 Index

alone, maximal associations and, 27
ambiguities

part-of-speech, 58
analysis

banking, 280
critical path, 198, 235
data, 64
dependency, 61
domain, 105
Industry Analyzer corporate, 292–294
lexical, 105, 106, 107
linguistic, 109
morphological, 59, 105
patent, 295, 298
sentence, 109
syntactic, 105
textual, 146–152
time-based, 30
trend, 9, 30–31, 41, 299, 303

anaphora
NLP, 118
one-, 111
ordinal, 111
pronominal, 110

anaphora resolution, 109–119
approaches to, 109, 112, 113–114, 116,

117–119
annotations

ACE-2, 164, 165
corpus, 109, 166

answer-sets, 1, 23
antecedent

closest, 118
most confident, 118
nonpronominal preceding, 118

application. See also Document Explorer
application; GeneWays; knowledge discovery
in text language, application; Patent
Researcher; text mining
applications

area, 202
business intelligence, 280
creating custom, 285
horizontal, 295
KDD, 13
patent analysis, 295
TC, 64, 65–66
text mining, xi, 8

apposition, 110
Apriori algorithm, 24, 36

associations generated with, 37
textual application of, 39

architects. See system, architects
architecture

considerations, 192–194
FACT’s, 46–47
functional, 13, 192
GeneWays’, 308–310

IE, 104–109
Industry Analyzer, 281–288
open-ended, 116
preprocessing, 58
system, 46–47, 186
text mining system’s, 13–18

articulation points, 260
assignment function F, 66
association(s), 19, 25–26. See also ephemeral

associations; maximal associations
algorithm for generating, 26
Apriori algorithm generation of, 37
browsing tools for, 181
clustering, 181
concept, 9
concept sets and, 25
constraints, 181–183
discovery of, 24, 45, 46
displaying/exploring, 180–182
ephemeral, 30, 32
generating, 40
graphs, 198–200
left-hand side (LHS) of, 26, 45, 181
M-, 28
market basket type, 24, 25, 39
overwhelming, 181
partial ordering of, 202
query, 45, 46
right-hand side (RHS) of, 26, 45, 200

association rules, 24, 25, 27, 182
circle graphs and, 208
definitions for, 40
discovering, 26–27
modeling, 210
search results, 36
for sets, 200

attribute(s)
extracting, 96
relationship rules, 42

auditing environment, 94
automata. See finite-state automata
automated categorization, 67
AutoSlog-TS system, 166–168
average concept

distribution, 22, 23
proportion, 22

background
constraints, 186
states, 149

background knowledge, 8, 42, 274
access to, 8
concept synonymy and, 45
constraints crafted by, 45
creating, 16
document collections and, 45
domains and, 8
FACT’s exploitation of, 46

Index 391

forms of, 42
generalized v. specialized, 274–276
GeneWays’ sources of, 308
Industry Analyzer implementation of,

281
integrating, 45
large amounts of, 275
leveraging, 8
maintenance requirement, 276
pattern abundance limited by, 45
polysemy and, 45
preservation of, 16
sources of, 275
specialized, 275
text mining systems and, 8, 16, 42, 44

back-propagation, 75
backward variable, 133, 141
Bacon, Kevin. See Kevin Bacon game
bagging, 77–78
bag-of-words model, 68, 89
banking analysts, 280
baseline classifiers, 80
BASILISK algorithm. See Bootstrapping

Approach to Semantic Lexicon Induction
using Semantic Knowledge

Baum–Welsh reestimation formulas, 135, 136, 147,
151

Bayesian approximation, 120
Bayesian logistic regression (BLR), 71–72
benchmark collections, 79–80
best-first clustering, 118
betweeness centrality, 252–253, 256
bigrams, 5
binary

categorization, 67
matrix, 243
predicates, 16
relation, 242, 243
SVM classifiers, 76
tree, 73

binary-valued trigger function, 139
bins, 66
BioGen Idec Inc., 283, 291
biological pathways

information, 274
text mining,

biological pathways information, 274
biotech industry, 288–289
BioWisdom company, 275
BioWorld, xi, 41, 281
BioWorld Online, 294
block modeling, 262–266, 270

hijacker network and, 266–270
pajek, 268

BLR. See Bayesian logistic regression
Blum, A., 172
Bonacich, P., 254
Boolean constraints, 256

Boolean expressions, 179
boosted wrapper induction (BWI) algorithm,

119–120
boosting, 77–78

classifiers, 77
indicators, 115

boosting classifiers, 77
boosting indicators, 115
bootstrapping

algorithm, 171
categorization, 174–175
IE and, 166
introduction to, 166–168
meta-, 169
multi-class, 174
mutual, 168
problems, 172
single-category, 174

Bootstrapping Approach to Semantic Lexicon
Induction using Semantic Knowledge
(BASILISK) algorithm, 173–174

border sets, 36
Borders algorithm, 36

benefits of, 37
notational elements of, 37
Property 1 of, 37
Property 2 of, 37
Stage 1 of, 37
Stage 2 of, 38

Borgatti, S.P., 262
Brown Corpus tag set, 60
Brown, R.D., 228
browsers, 177. See also Title Browser

character-based, 191
distribution, 238
Document Explorer, 238
interactive distribution, 238

browsing. See also scatter/gather browsing
method

defined, 177–185
distributions, 179
hierarchical, 23
interface, 179, 189
interfaces, 276
methods, 179
navigational, 10
pattern, 14
result-sets for, 11
software for, 177
support operations, 203
text mining system, 10
tools, 181
tree, 15
user, 10, 13

brute force
algorithm, 85
search, 9

Buckshot algorithm, 86, 88

392 Index

business
intelligence, 279, 280
sector, 280

BWI. See boosted wrapper induction

C4.5 procedure, 73
Cardie, Claire, 118
Carnegie group, 70
CART procedure, 73
categorization. See also text categorization

attributes, 45
automated, 67
binary, 67
bootstrapping, 174–175
category-pivoted, 67
document-pivoted, 67
hard, 67
hierarchical Web page, 66
manual-based, 6, 12
methodologies of, 6
multilabel, 67
online, 67
patent analysis and, 298
POS tag set, 60
POS word, 60
preprocessing methodology, 57
problems, 82
relationship based, 45
rule-based, 6
single-label, 67
soft (ranking), 67
systems, 91

categorization status value (CSV), 67
category connecting maps, 211–212, 239
category domain knowledge, 42
CDM-based methodologies, 7, 12
centrality, 249

betweeness, 252–253, 256
closeness, 251
definitions used for, 249
degree, 249–251, 255
eigenvector, 253–254
measures of, 249
natural language text, 1
power, 254–255

centralization, network, 255–256
centroids, medoids v., 90
character(s), 5, 8

classes,
representations of, 5

character-level regular expressions,
chi-square measures, 69, 200
chunking, NP, 154
CIA World Factbook, 46, 48, 50
circle graphs, 190, 208–213, 286

click-sensitive jumping points of, 210
controls of, 211
data modeling by, 213

interactivity, 190
mouse-overs and, 210
multiple, 212–213
nodes, 292
style elements of, 210
usefulness of, 208
visualization, 292

classes
character,
equivalence, 201–202

classification
line, 153
schemes, 131

classifier(s)
baseline, 80
binary SVM, 76
boosting, 77
building, 66
common, 68
comparing, 80
continuous, 67
decision rule, 73–74
decision tree, 72–73
example-based, 75–76
ith, 77
k different, 77
kNN, 75
machine learning, 70
ME, 153
NB, 71, 78, 90–91
probabilistic, 71, 78
Rocchio, 74–75
stateless ME, 153
symbolic, 72
text, 76, 79–80
training, 79

classifier committees, 77–78
ClearForest Corporation, 294
ClearForest Text Analytics Suite, 294, 296
ClearResearch, 231
closeness centrality, 251
cluster(s)

chain-like, 87
complete-link, 87, 88
gathering, 83
k, 88
labels, 91
postprocessing of, 86
scattering, 83
single link, 87, 88

cluster hypothesis, 82
cluster-based retrieval, 84
clustering. See also nearest neighbor clustering

algorithms, 85–88
associations, 181
best-first, 118
defined, 70, 82
disjoint, 75

Index 393

documents grouped by, 83
flat (partial), 85
good, 84
hard, 85
hierarchical, 83
optimization, 85
problem, 84–85, 89
quality function, 84, 92
query specific, 83
soft, 85
tasks, 82–84
term, 69
text, xi, 89, 91–92
tools, 11, 184–185
unsupervised, 185
usefulness of, 82
users and, 83
of vertices, 264

CO. See coreference task
CogNIAC, 113
collections, benchmark, 79–80
color

assigning of, 279
coding, 45, 289
GUI palette of, 279

Columbia University, 307, 310–311
column-orthonormal, 90
combination graphs, 212–213
command-line query interpreters, 10
committees

building, 77
classifier, 77–78

components
bi-connected, 260
presentation layer, 14
strong, 260
weak, 260

computational linguistics, 1, 3
concept(s), 5–8

associations of, 9
context, 33
co-occurrence, 9, 23
DIAL language,
distribution, 21
distribution distance, 29
documents, 23
extraction, 7
features, 12
graphs, 202–204
guards, 328–329
hierarchy node, 20
identifiers, 6, 197
interdocument association, 9
keywords v., 12
link analysis, 226
names, 326
occurrence, 19
output, 156

patterns, 10
proportion, 22, 29
proportion distance, 29
proportion distribution, 21, 22
representations, 7
selection, 19, 20
sentences, 321
subsets of, 201
synonymy, 45

concept hierarchies, 43
editing tools, 184
maintaining, 183
navigation/exploration by, 182
node, 20
roles of, 182
taxonomy editors and, 183–184

concept set(s), 22
associations and, 25
cosine similarity of, 201
display of, 196
graphs, 196, 197

concision, 191
conditional models, 140
conditional probability, 71, 142

computing, 143
conditional random fields (CRFs), 142–144

algorithm, 121
chunk tagger, 155
chunker, 154
development of, 153
formalism, 153
linear chain, 142
part-of-speech tagging with, 153–154
problems relating to, 143
shallow parsing with, 154–155
textual analysis and, 153–155
training of, 144

conditions, 120
confidence, 25

M-, 27, 28
threshold, 181

constants. See also string, constants
Boolean, 328
rule, 327–328

constituency grammars, 60–61
constraint(s), 42

accessing, 185–186
association, 181–183
background, 186
background knowledge crafting of, 45
comparison, 328
controls, 191
FACT’s exploitation of, 46
functions, 139
leveraging, 276
logic of, 186
parameters, 45
Patent Researcher’s, 298–299

394 Index

constraint(s) (cont.)
quality, 186
query, 278
redundancy, 186
refinement, 11, 14, 19–41, 191, 284–285, 298–299
search, 178, 203
syntactical, 186
types of, 186

CONSTRUE system, 70, 73
contained matches, 101
context. See also temporal context relationships

concept, 33
DIAL language,
focus with, 191
phrase, 33
relationships, 32, 33

context equivalence, 202
context graphs, 30, 32, 33–35

components of, 33
defined, 33

context-dependent probabilities, 149, 152
continuous real-valued functions, 74
control elements, 191
controlled vocabulary, 65
convex optimization algorithms, 72
co-occurrence

concept, 9, 23
frequency of, 24
relationships, 12

core
algorithm for finding, 258–259
vertices of, 258

core text mining operations, 14, 19–41, 284–285
Patent Researcher and, 298–299

coreference
function–value, 111
part–whole, 112
proper names, 110
resolution, 109, 112

coreference task (CO), 99
coreferring phrases, 109
corporate finance, 273

business intelligence performed in, 279
text mining applications, 284

corpus
annotated, 109, 166
MUC-4, 170

cosine similarity, 90, 200, 201
Costner, Kevin, 248
cotraining, 78, 172
cover equivalence, 202
covering algorithm, 121
σ -cover sets, 24. See also singleton, σ -covers

FACT’s generation of, 49
CRFs. See conditional random fields
critical path, 234

analysis, 198, 235
diagrams, 234
graphs, 235

Croft, W.B., 76
cross-referencing, 6
CSV. See categorization status value
Cui, Y., 197, 198
CUtenet, 310
Cutting, D.R., 92
cycle, 243

graph, 248–249
transmission/emission, 131

DAGs. See directed acyclic graphs
Daisy Analysis, 225
Daisy Chart, 225
DAML, 275
DARPA, 96
data

abstraction, 91
analyzing complex, 64
Apriori algorithm and textual, 39
clustering, 14, 88–92
color-coding of, 45
comparing, 29
currency, 36
discovering trends in textual, 30
dynamically updated, 36
exploration, 184–185
GeneWays’ sources of, 308
identifying trends in, 9
inter-document’s relationships with, 2
modeling, 213
Patent Researcher, 297
patterns of textual, 40
preparing, 57
scrubbing/normalization of, 1
sparseness, 136–137, 148
textual, 88–92, 189
thresholds for incremental, 39
unlabeled, 78
unstructured, 194
visualization of, 217

data mining
analysis derived from, 10
border sets in, 36
pattern-discovery algorithms, 1
preprocessing routines, 1
presentation-layer elements, 1
text mining v., 1, 11
visualization tools, 1

database
GenBank, 308
MedLine, 11, 78, 275
OLDMEDLINE, 12
relational, 4
Swiss-Prot, 308

decision
rule classifier, 73–74
tree (DT) classifiers, 72–73

decomposition, singular value, 89–91
definite noun phrases, 117

Index 395

definiteness, 115
degree centrality, 249–251, 255
Delta algorithms, 36, 41
demonstrative noun phrases, 117
dense network, 244
dependency

analysis, 61
grammars, 61

detection. See deviation, detection
deviation

detection, 10, 13, 30, 32
sources of, 32, 41

diagrams
critical path, 234
fisheye, 227–231

DIAL language, 283, 297
code, 320–322
concept, 317
concept declaration, 317
context, 321
Discovery Module, 319
engines, 317
examples, 329–330, 331–332, 333–336
information extraction, 318–319
module, 318–319
plug-in, 321
scanner properties, 320
searches, 321
sentence concept, 321
text pattern, 317–318
text tokenization, 320

dictionaries, 106
dimension reduction, 69, 89

LSI with, 89
SVD and, 90

dimensionality
document collection’s high, 215
document reduction, 89
feature, 4, 12

direct ephemeral association, 31
directed acyclic graphs (DAGS), 43, 61, 197

activity networks and, 198
ontological application of, 197
visualization techniques based on, 198

directed networks, 249, 260
disambiguation, 156
disconnected spring graphs, 234
discovery

association rules, 26–27
of associations, 24, 45, 46
ephemeral associations, 10, 13
frequent concept sets, 24, 39, 40
methods, 24

Discovery Module, 319
disjoint clusters, 75
dissimilarity matrix, 247
distance, referential, 116
distribution(s), 9, 19–23

average, 23

average concept, 22
Boolean expressions generation of, 179
browsing, 179
comparing specific, 23
concept, 21
concept co-occurrence, 23
concept proportion, 21, 22
conditional probability, 142
interestingness and, 29–30
patterns based on, 29, 32, 301
queries, 205, 292
text mining systems and, 22, 29
topic, 31

divide-and-conquer strategy, 58
DNF rules, 73
document(s)

algorithm’s structuring of, 57
association of, 9
bag-of-words, 89
binary, 73
binary vector of features as, 4
bins, 66
clustering of, 83
collections of, 4
concept-labeled, 23
correlating data across, 2
co-training, 78
data relationships and, 2
defined, 2–4
dimensionality reduction of, 89
document collection’s adding of, 36
features of, 4–8, 12
field extraction, 59, 146–148
free format, 3
good, 66
IE representation of, 95
irrelevant, 66
managing, 64
manually labeling, 78
meaning, 59
native feature space of, 5
natural language, 4
news feed, 32
O-Tree, 125
patent, 304
portraying meanings of, 5
proportion of set of, 20
prototypical, 3
quantities for analyzing, 20
relevant, 66
representations of, 4, 5, 6, 7, 58, 68
retrieval of, 179
scope of, 3
semistructured, 3–4
sorting, 65–66
sources of, 59
tagging, 94
task structuring of, 57
test sets of, 79

396 Index

document(s) (cont.)
text, 3
typographical elements of, 3
unlabeled, 78
weakly structured, 3–4

document collection(s)
analyzing, 30
application area of, 202
background knowledge and, 45
defined, 2–3, 4
documents added to, 36
dynamic, 2
high-dimensionality, 215
Industry Analyzer, 281
processed, 15
PubMed as real-world, 2
scattering, 83
static, 2
subcollection, 19, 30

Document Explorer application, 18
browsers, 238
development of, 235
knowledge discovery toolkit of, 238
modules, 236
pattern searches by, 236
term hierarchy editor, 237–238
visualization tools of, 236, 238

domain(s), 8
analysis, 105
background knowledge and, 8
customization, 276
defined, 42
domain hierarchy with, 43
hierarchy, 43
knowledge, 42, 58, 59
lexicons, 44
ontology, 42–43, 44, 51
scope of, 8, 42
semistructured, 121
single application, 12
terminology preference, 116
text mining system’s, 16

DT classifier. See decision tree (DT) classifiers

Eades, P., 231, 246
edges, 33, 35
Eigenvector centrality, 253–254
EM. See expectation maximization
e-mail, 3
energy minimization, 248
engineering

knowledge, 70, 155
engines

DIAL, 317
GeneWays’ parsing, 308
IE, 95
pronoun resolution, 113
query, 16
search, 82, 199

entities
choosing query, 275
content-bearing, 94
equivalence between, 260–261
extracting, 96, 149, 150, 156, 164
hierarchy, 95
IE process and relevant, 95
links between, 242
multiple, 101
real world, 307

ephemeral associations, 30
defined, 31
direct, 31
discovery, 10, 13
examples, 31
inverse, 32

episodes, algorithms based on, 41
equivalence

classes, 201–202
context, 202
cover, 202
entity, 260–261
first, 202
regular, 261
structural, 261

Erdös number, 248
Erdös, Paul, 248
error(s)

false negative, 74
false positive, 74
matrix, 268
precision, 66
recall, 66

non-Euclidean plane, 217
evaluation workbench, 116
event

example of, 94
extraction, 96

Everett, M.G., 262
exact matches, 101
example-based classifiers, 75–76
expectation maximization (EM), 78, 87, 90–91

mixture resolving algorithm, 85, 87
Explora system, 18
exploration

concept hierarchy, 182
external ontologies, 100
extraction. See also field extraction; Nymble

algorithms, 121
attribute, 96
concept, 7
DIAL examples of, 329–330, 331
domain-independent v. domain-dependent, 98
entities, 96, 149, 150, 156, 164
event, 96
fact, 96
feature, 69, 84, 283
grammars, 138
HMM field, 146–148

Index 397

information, 2, 11, 61–62, 119
literature, 190
Los Alamos II-type concept, 7
relationship, 156, 164–166
ST, 99
structural, 122
TEG, 164
term, 6, 12, 95, 283
text, 96
TR, 99
visual information, 122

F assignment function, 66
FACT. See Finding Associations in Collections of

Text
facts, 94

extracting, 96
FAQ file, 153
FBI Web site, 244
feature(s). See also native feature space

concept-level, 12
dimensionality, 4, 12
document, 4–8, 12
extraction, 69, 84, 283
linguistic, 100
markable, 117
orthographic, 100
relevance, 69
selection, 68–69, 84, 100
semantic, 100
space, 85
sparsity, 4
state, 142
synthetic, 69
transition, 142

Feldman, R., 46
field extraction, 59, 146

location, 149
speaker, 149, 152

files
PDF, 3
word-processing, 3

filters, 14
fisheye view, 229–230
information, 14
personalized ad, 66
redundancy, 201–202
simple specification, 185–186
text, 65–66

finance. See corporate finance
Finding Associations in Collections of Text

(FACT), 18, 46–51
algorithm of, 49
background knowledge exploitation by, 46
constraints exploited by, 46
σ -cover sets generated by, 49
designers of, 50
implementing, 47–49
performance results of, 50–51

query language, 46
system architecture of, 46–47

Findwhat, 199
finite-state automata, 156
first equivalence, 202
fisheye diagrams, 227–231
fisheye interface, 230
fisheye views

distorting, 228, 230
effectiveness of, 230–231
filtering, 229–230

fixed thresholding, 67
focus with context, 191
force-directed graph layout algorithms, 245,

246
formats, converting, 59
formulas

Baum–Welsh reestimation, 135, 136
network centralization, 255

forward variable, 132, 141
forward–backward algorithm, 134, 141
forward–backward procedure, 132–133
FR method, 246–248
fractal approaches, 229
fragments, text, 109
frames

hierarchy, 95
structured objects as, 95

Freitag, D., 146
frequent concept sets, 9, 23–24

algorithm for generating, 24, 25
Apriori-style, 36
discovery methods for, 24, 39, 40
generating, 24
identifying, 25
natural language in, 24
near, 25
σ -cover sets as, 24
σ -covers as, 24

front-end, de-coupled/loosely coupled, 193
Fruchterman, T., 232, 248. See also FR method
function(s)

binary-valued trigger, 139
clustering quality, 84
constraint, 139
continuous real-valued, 74
similarity, 84, 200–201
trigger-constraint, 153

functional architecture, 13, 192
functionality

GeneWays’, 308–310
Industry Analyzer system, 290
Patent Researcher’s, 296–300
types of, 10

function–value coreference, 111
FUP algorithm, 36, 41
FUP2 algorithm, 36, 41
Furnas, G., 228
fuzzy search, 184

398 Index

game. See Kevin Bacon game
Gaussian priors, 71
Gelbukh, A., 9
GenBank database, 308
Gene Ontology Consortium, 43, 275
Gene Ontology TM knowledge base, 43, 51, 197
generalized iterative scaling, 140, 144
generative models, 140
generative process, 131
generic noun phrases (GN), 171. See also noun

phrases; phrases, coreferring; pronoun
resolution engine; proper noun phrases

GeneWays, xi, 307
architecture/functionality of, 308–310
background knowledge sources, 308
core mining operations of, 310
core mission of, 307
CUtenet of, 310
data sources, 308
GUI, 310
implementation/usage, 310
Industry Analyzer comparison with, 307
Parsing Engine, 308
Patent Researcher comparison with, 307
preprocessing operations, 308–310
presentation layer elements, 310
Relationship Learner module, 309
specialized nuances of, 308
Synonym/Homonym Resolver, 309

GENomics Information Extraction System
(GENIES), 308

giveness, 115
GN. See generic noun phrases
Google, 200. See also search
grammars. See also stochastic context-free

grammars
ambiguity of, 137
canonical, 137
constituency, 60–61
dependency, 61
extraction, 138
nonstochastic, 137
TEG, 157, 158

graph(s). See also circle graphs; line graphs;
singleton, vertex

analysis algorithm, 260
combination, 212–213
concept, 202–204
concept set, 196, 197
connected spring, 234
connection, 200
context, 30, 32, 33–35
critical path, 235
cycles in, 248–249
disconnected spring, 234
drawing large, 248
fast algorithm, 248
general undirected, 247

histogram-based trend, 307
multivertex, 198
node-and-edge, 227
paths, 248–249
simple concept, 195–205, 239, 286, 294
simple concept association, 198–200
spring embedded network, 231
temporal context, 30, 32, 35
theory, 242
trend, 30, 32, 35, 239

graphical user interface (GUI), 14, 46. See also

interface
developers, 226
display modalities of, 178
easy to use controls of, 177
GeneWays, 310
histogrammatic representations situated in,

205
palette of colors, 279
Patent Researcher’s, 299–300
queries, 284
text mining application’s, 177

grouping, perceptual, 59, 123–124
GUI. See graphical user interface

HAC algorithm. See hierarchical agglomerative
clustering algorithm

Hadany, R., 248
Harel, D., 248
heuristics. See syntactic heuristics
hidden Markov model algorithm, 121
hidden Markov models (HMMs), 131–137. See

also maximum entropy Markov model
assumptions of, 132
characteristics, 147
classes of states, 147
classic, 151
defined, 131–137
document field extraction by, 146–148
entity extractor, 164
field extraction, 146–148
fully connected, 153
MEMM outperformed by, 153
Nymble and, 150
optimal, 148
POS tagging and, 156
problems related to, 132
single-state, 148
textual analysis and, 146–152
topology, 147, 148
training, 135–136

hierarchical agglomerative clustering (HAC)
algorithm, 85, 87–88

hierarchy. See also trees, hierarchical
clustering, 83
concept, 43
domain, 43
editor, 237–238

Index 399

entity/frame, 95
internal nodes of, 23
IS A-type, 282
object’s, 123
ontology, 46
shrinkage, 148
Web page, 66

hijacker(s)
network, 266–270
9/11, 244

histogram(s), 205–207, 286
distribution pattern demonstration in, 301
graphs, 307
interactivity of, 207
link analysis and, 226

HMMs. See hidden Markov models
Hobbs algorithm, 112
holonymy, 112
homonymy, 69
Honkela, T., 216
Hooke’s Law, 246
HSOM. See hyperbolic self-organizing map
HTML

Web pages, 3, 66
WYSIWYG editor, 3

human(s)
knowledge discovery view by, 13, 17, 177
language processing, 60

hybrid system
introduction to, 155–156
TEG as, 156

hybrid tools, 221–224
hyperbolic non-Euclidean plane, 217
hyperbolic self-organizing map (HSOM), 225
hyperbolic trees, 217–219
hypernyms, 184
hyperplanes, 76
hypertext, 66
hyponyms, 184
hypothesis

cluster, 82
weak, 77

IBM, 199
ID3 procedure, 73
identical sets, 111
identifiers, 6, 197
IdentiFinder. See Nymble
IE. See information extraction
Imielinski, T., 24
immediate reference, 115
incremental algorithms, 30, 36
incremental update schemes, 38
indefinite noun phrases, 117
indexing, 65, 83. See also latent semantic

indexing
indicating verbs, 115
inductive algorithm, 119, 121

inductive rule learning, 73
Industry Analyzer system, 280

architecture/functionality of, 281–288
background knowledge implementation, 281
ClearForest Text Analytic’s Suite and, 297
color coding, 289
core mining operations, 284–285
corporate analysis and, 292–294
document collection, 281
ease-of-use features of, 285
event-type query, 290
functionality, 290
GeneWays comparison with, 307
graphical menus, 288
implementation of, 282
merger activity with, 288
preprocessing operations, 282–284
presentation layer, 285–288
refinement constraints, 284–285
scope of, 280
search results, 291
term extraction, 283
visualization tools, 292

inferencing, 108–109
influence, 249
information

age, x
biological pathways, 274
control of, 229
exploring, 292–294
filtering, 14
flow, 105–109
gain, 69
retrieval, 1, 2, 62, 82

information extraction (IE), 2, 11, 61–62, 122
algorithms, 98, 119
architecture, 104–109
auditing environment, 94
benchmarks, 155
bootstrapping approach to, 166
DIAL language, 318–319
documents represented by, 95
engine, 95
evaluation, 100, 101
evolution of, 96–101
examples, 101, 102, 104
hybrid statistical, 155–166
information flow in, 105–109
knowledge-based, 155–166
MEMM for, 152–153
relevant entities and, 95
SCFG rules for, 155–166
schematic view of, 95
specialized dictionaries for, 106
statistical/rule-based, 156
structured, 122
symbolic rules of, 119
usefulness of, 94, 104

400 Index

input–output paradigm, 13
inquiry, analytical, 273
Inxight Software, 217
interactivity

circle graph, 190
concept graph, 202–204
facilitating, 195
histogram, 207
user, 179, 189

interestingness
defining, 29
distributions and, 29–30
knowledge discovery and, 40
measures of, 9, 179
proportions and, 29–30

interface. See also graphical user interface
browsing, 179, 189, 276
fish-eye, 230
Patent Researcher’s Taxonomy Chooser,

297
query language, 10
visualization, 191
WEBSOM’s, 215

interpreters, 10
Iossifov, I., 310
IS A-type hierarchies, 282
ISO-DATA algorithm, 86
ith classifier, 77

Jones, R., 168, 169

k clusters, 88
k different classifiers, 77
Kamada, T., 232, 248. See also KK method
Kawai, S., 232, 248. See also KK method
KDTL. See knowledge discovery in text

language
Kevin Bacon game, 248
keywords

assigning, 65
concepts v., 12

KK method, 246, 247
K-means algorithm, 85, 86, 88
k-nearest neighbor (kNN) classifier, 75
kNN classifier. See k-nearest neighbor (kNN)

classifier
knowledge

base, 17
category domain, 42
distillation, 14
domain specific, 58, 59
engineering, 64, 70, 155

knowledge discovery
algorithms, 2, 17, 193
distribution-type pattern’s, 32
Document Explorer toolkit for, 238
human-centered view of, 13, 17, 177
interestingness and, 40

overabundance problems of, 179
Patent Researcher’s, 299
patterns of, 14
problem-sets, 194
supplementing, 31

knowledge discovery in text language (KDTL),
18, 52

application, 18, 236
queries, 52–54, 55, 236

Kohonen maps, Kohonen networks. See

self-organizing maps
Kohonen, T., 213
Koren, Y., 248
Kuhn–Tucker theorem, 139, 140

label
bias problem, 142
sequence, 144

Lafferty, J., 153
Lagrange multipliers, 139
language. See also natural language processing;

sublanguages
DIAL, 283
FACTS’s query, 46
natural, 4
processing human, 60
query, 10, 14, 51–52, 177
soft mark-up, 3

Laplace
priors, 71, 72
smoothing, 136

Lappin, S., 113
Larkey, L.S., 76
latent semantic indexing (LSI), 69, 89

dimension reduction with, 89
layout

algorithms, 245, 246
force-directed, 246
network, 244–248, 275

learner, weak, 77
learning. See also machine learning

algorithms, 68
inductive rule, 73
rules, 74
supervised, 70

Leass, H.J., 113
left-hand sides (LHSs), 26, 45, 181
lemmas, 60
lemmatization, 6, 283
Lent, B., 9
lexical analysis, 105, 106, 107
lexical reiteration, 115
lexicons, 8, 42, 44

domain, 44
external, 283
GN, 171
PNP, 171, 172
semantic, 169, 170

Index 401

LHSs. See left-hand sides
libraries. See also National Library of Medicine

graphing software, 207
integration/customization of, 207

life sciences, 273
business sector, 280
research,

LINDI project, 18
line graphs, 207–208

link analysis and, 226
multi-, 208
as prototyping tools, 207

linear least-square fit (LLSF), 74
linguistic(s)

computational, 1, 3
features, 100
processing, 283
sentence analysis, 109

link(s)
detection, 230–231
between entities, 242
operations, 203–204

link analysis, 225
concepts, 226
histograms and, 226
line graphs and, 226
software packages for, 271–272

literature, extraction of, 190
LLSF. See linear least-square fit
Los Alamos II-type concept extraction, 7
loss ratio parameter, 74
Louis-Dreyfus, Julia, 248
(LP)2 algorithm, 120
LSI. See latent semantic indexing
Lycos, 199

machine learning (ML), 64, 70–78, 166
algorithms, 70
anaphora resolution and, 117–119
classifier, 70
techniques, 70–71

MacKechnie, Keith, 248
mapping, structural, 125–127
maps, category connecting, 211–212,

239
marginal probability, 71
markables, 117
market basket

associations, 24, 25, 39
problems, 25, 39

M-association, 28
matches

contained, 101
exact, 101
overlapped, 101

matrix
binary, 243
dissimilarity, 247

error, 268
transmission, 143

maximal associations. See also M-association;
M-confidence; M-frequent; M-support

alone and, 27
M-factor of, 40
rules, 27, 40

maximal entropy (ME), 131, 138–140, 153
maximal entropy Markov model (MEMM),

140–141
algorithm, 121
comparing, 153
HMM and, 153
information extraction and, 152–153
training, 141

maximum likelihood estimation, 91
McCallum, A., 146
M-confidence, 27, 28
ME. See maximal entropy
measures

centrality, 249
chi-square, 69, 200
interestingness, 9, 179
network centralization, 255
performance, 79
similarity, 85
uniformity, 152

MedLEE medical NLP system, 309
MedLine, 11, 78, 275
medoids, centroids v., 90
MEMM. See maximal entropy Markov

model
merger activity, 288–289
meronymy, 112
MeSH, 275
MESH thesaurus, 65
Message Understanding Conferences (MUC),

96–101
metabootstrapping, 169, 170
methodologies. See also preprocessing

methodologies
categorization, 6
CDM-based, 7, 12
information extraction, 11
term-extraction, 6, 12, 95, 283
text mining, 9

M-factor, 40
M-frequent, 28
Microsoft, 199
middle-tier, 193
Miller, James, 225
minconf thresholds, 26, 40
minimal spanning tree (MST), 88
minimization, 248
minsup thresholds, 26, 40
Mitchell, T.M., 172
mixture-resolving algorithms, 87
ML. See machine learning

402 Index

models
block, 262–266, 270
conditional v. generative, 140
data, 213
Document Explorer, 236
ME, 138–140
probabilistic, 131

module. See also Discovery Module
DIAL language, 318–319
Document Explorer application, 236
GeneWays Relationship Learner, 309

Montes-y-Gomez, M., 8–10
morphological analysis, 59, 105
most probable label sequence, 144
MSN, 199
MST. See minimal spanning tree
M-support, 27, 28
MUC. See Message Understanding Conferences
MUC-4 corpus, 170
MUC-7 Corpus Evaluation, 164
multilabel categorization, 67
Murphy, Joseph, 307
multivertex graphs, 198
Mutton, Paul, 231

Naive algorithm, 112
Naive Bayes (NB) classifiers, 71, 78, 90–91
named entity recognition (NER), 96, 164
names

concept, 326
identifying proper, 106–107
proper, 97
thesaurus, 325
wordclass, 324–325

NASA space thesaurus, 65
National Cancer Institute (NCI), 282
National Cancer Institute (NCI) Metathesaurus,

294
National Center for Biotechnology Information

(NCBI), 11
National Institute of Health (NIH), 11
National Library of Medicine (NLM), 2, 11, 275,

282
native feature space, 12
natural language processing (NLP), 4

anaphoric, 118
components, 60
elements, 117
field extraction and, 146
frequent sets in, 24
general purpose, 58, 59–61
MedLEE medical, 309
techniques, 58

natural language text, 1
navigation, concept hierarchy, 182
NB classifiers. See Naive Bayes classifiers
NCBI. See National Center for Biotechnology

Information

NCI. See National Cancer Institute
near frequent concept sets, 25
nearest neighbor clustering, 88
negative borders, 36
NER. See named entity recognition
NetMap, 209
NetMiner software, 272
network(s). See also spring embedding, network

graphs
activity, 198
automatic layout of, 244–248,

275
centralization, 249, 255–256
clique, 244
complex, 75
dense, 244
directed, 249, 260
formulas, 255
hijacker, 266–270
layered display of, 259
layout, 244–248, 275
neural, 75
nonlinear, 75
partitioning of, 257–270
pattern matching in, 270
patterns, 242
self-loops in, 244
social, 242
sparse, 244
two-mode, 244
undirected, 260
weakness of, 260

neural networks (NN), 75
Ng, Vincent, 118
ngrams, 156

construction of, 157
featureset declaration, 163
parent, 161
restriction clause in, 163
shrinkage, 163
statistics for, 159
token generation by, 159, 161

NIH. See National Institute of Health
9/11 hijacker example, 244
NLM. See National Library of Medicine
NLP. See natural language processing
NN. See neural networks
nodes

circle graph, 292
concept hierarchy, 20
extracted literature as, 190
internal, 23, 180
radiating, 227
relatedness of, 227
sibling, 22
tree structure of, 182, 195
vertices as, 33

nominals, predicate, 110–111

Index 403

noun groups, 107–108
noun phrases, 97, 113, 114, 115. See also generic

noun phrases; phrases, coreferring; pronoun
resolution engine; proper noun phrases

definite, 117
demonstrative, 117
indefinite, 117

NPs
base, 154
chunking of, 154

Nymble, 149–152
experimental evaluation of, 152
HMM topology of, 150
tokenization and, 150

object tree. See O-Tree
objects

hierarchical structure among, 123
structured, 95

OLDMEDLINE, 12
one-anaphora, 111
online categorization, 67
ontologies, 8, 42, 43

commercial, 45
creation, 244–248, 275
DAG, 197
domain, 42–43, 44, 51
external, 100
Gene Ontology Consortium, 275
hierarchical forms generated by,

46
open-ended architecture, 116
operations

browsing-support, 203
link, 203–204
preprocessing, 202–204
presentation, 204
search, 203

optimization, 6
algorithm, 246
clustering, 85
problems, 84, 139

orderings, partial, 201–202
ordinal anaphora, 111
orthographic features, 100
O-Tree(s), 123

algorithm, 124–125
documents structured as, 125

output concepts, 156
overabundance

pattern, 9, 189
problem of, 9, 179

overlapped matches, 101
OWL, 275

pairs
tag–tag, 153
tag–word, 153

pajek
block modeling of, 268
scope of, 271
shrinking option of, 258
Web site, 271

Palka system, 166
paradigm, input–output, 13
parameter

loss ratio, 74
maximum likelihood, 91
search, 180

parameterization, 11, 178
parse tree, 137
parsing

problem, 138
shallow, 61, 107–108, 154–155, 167
syntactic, 59, 60–61
XML, 116

partial orderings, 201–202
partitioning, 257–270
part-of-speech (POS) tagging, 59, 60, 113, 114,

156, 285. See also Brown Corpus tag set;
lemmas

categories of, 60
conditional random fields with,

153–154
external, 163
HMM-based, 156

part–whole coreference, 112
patent(s)

analysis, 295, 298
documents, 304
managers, 307
search, 274, 295
strategy, 295
trends in issued, 303–307

Patent Researcher, 295
application usage scenarios, 300
architecture/functionality of, 296–300
bundled terms, 304
constraints supported by, 298–299
core text mining operations and,

298–299
data for, 297
DIAL language and, 297
GeneWays comparison with, 307
GUI of, 299–300
implementation of, 296, 297
knowledge discovery support by,

299
preprocessing operations, 297–298
presentation layer, 299–300
queries, 299
refinement constraints, 298–299
Taxonomy Chooser interface, 297
trend analysis capabilities of, 303
visualization tools, 299–300, 301

path(s), 243, 248–249

404 Index

pattern(s)
browsing, 14
collocation, 115
concept, 10
concept occurrence, 19
DIAL language text, 317–318
discovery, 5
distribution-based, 29, 32, 301
Document Explorer search, 236
elements, 323–327
interesting, 29–30
knowledge discovery, 14
matching, 270, 322–323
network, 242
operators, 323
overabundance, 9, 189
RlogF, 173
search for, 8–10
sequential, 41
text, 317–318, 323
text mining, 1, 19
textual data, 40
unsuspected, 191
user’s knowledge of, 36

PCFGs, disambiguation ability of,
156

PDF files, 3
percentage thresholds, 38, 39
perceptual grouping, 59, 123–124
performance measures, 79
Perl script, 164
PersonAffiliation relation, 162–163
Phillips, W., 171
phrases, coreferring, 109. See also generic noun

phrases; noun phrases; proper noun
phrases

PieSky software, 231
plan, hyperbolic non-Euclidean, 217
pleonastic, 110
PNP. See proper noun phrases
polysemy, 45, 69
POS tags. See part-of-speech tagging
power centrality, 254–255
predicate(s)

nominals, 110–111
unary/binary, 16

preference
collocation pattern, 115
domain terminology, 116
section heading, 115

prefix
lengthening of, 149
splitting of, 149

preprocessing methodologies, xi, 2, 57
algorithms, 57
architecture, 58
categorizing, 57
GeneWays’, 308–310

Patent Researcher’s, 297–298
task oriented, 13, 57
varieties of, 57

presentation layer, 185–186
components, 14
elements of, 1, 14
importance of, 10–11
Industry Analyzer, 285–288
interface, 186
Patent Researcher, 299–300
text mining system’s, 10
utilities, 193

presentation operations, 204
prestige, types of, 249
Princeton University, 43
priors

Gaussian, 71
Laplace, 71, 72

probabilistic classifiers, 71, 78
probabilistic extraction algorithm, 121
probabilistic generative process, 131
probabilistic models, 131
probability

conditional, 71, 142, 143
context-dependent, 149, 152
emission, 132, 150
marginal, 71
transition, 132, 141, 150, 151

problem(s)
bootstrapping, 172
categorization, 82
clustering, 84–85
CRF, 143
data sparseness, 136–137, 148
definition, 122–123
document sorting, 65
HMM’s, 132
label bias, 142
optimization, 84, 139
overabundance, 9, 179
parsing, 138
sets, 194
tasks dependent on, 58, 59, 61–62
TC, 69
text categorization, 69, 79
unsolved, 58

procedure
C4.5, 73
CART, 73
forward-backward, 132–133
ID3, 73

process, probabilistic generative, 131
processing

linguistic, 283
random, 131
themes related to, 131

profiles, user, 11
pronominal anaphora, 110

Index 405

pronominal resolution, 112
pronoun resolution engine, 113
proper names, 97

coreference, 110
identification, 106–107

proper noun phrases (PNP), 171, 172. See also

generic noun phrases; noun phrases;
phrases, coreferring; pronoun resolution
engine

proportional thresholding, 67
proportions, 19

concept, 22, 29
interestingness and, 29–30

protocols
RDF, 194
XML-oriented, 194

prototyping, 207
proximity, 191
pruning, 73, 178
PubMed, 2, 11, 275

scope of, 2
Web site, 12

pull-down boxes, 276, 278

quality constraints, 186
query

association-discovery, 45, 46
canned, 278
choosing entities for, 275
clustering and, 83
constraints, 278
construction of, 278
distribution-type, 205, 292
engines, 16
expressions, 45
GUI driven, 284
Industry Analyzer event-type,

290
interpreters, 10
KDTL, 52–54, 55, 236
languages, 10, 14, 51–52, 177
lists of, 276
parameterization of, 11, 178
Patent Researcher, 299
preset, 274, 276
proportion-type, 205
result sets and, 45
support for, 179
tables, 23
templates for, 278
trend analysis, 304
user’s, 13

query languages, 10, 14
accessing, 177, 186–187
FACT’s, 46
interfaces, 10
parameterization, 178
text mining, 51–52

RDF protocols, 194
redundancy

constraints, 186
filters, 201–202

Reed Elsevier company, 275
reference, immediate, 115
referential distance, 116
refinement

constraints, 11, 14, 19–41, 191, 284–285,
298–299

techniques, 14–17, 186
regression methods, 74
Reingold, E., 231, 246. See also FR method
reiteration, lexical, 115
relatedness

node, 227
semantic, 69

relationship(s)
building, 108
categorization by, 45
context, 32, 33
co-occurrence, 12
data, 2
extraction, 156, 164–166
meaningful, content-bearing, 94
meronymy/holonymy, 112
PersonAffiliation, 162–163
rule attributes, 42
tagged, 164
temporal context, 35
term, 275

relativity, 191
representations

2-D, 219
bag-of-words document, 89
binary document, 73
character’s, 5
concept-level, 7
document’s, 4, 5, 6, 7, 58, 68
term-based, 6, 7
word-level, 6

research
deviation detection, 32
enhancing speed/efficiency of, 2
life sciences,
text mining and patent, 273

resolution. See also anaphora resolution;
coreference, resolution

coreference, 109, 112
pronominal, 112

result sets, 45
retrieval

cluster-based, 84
document, 179
information, 1, 2, 62, 82

Reuters newswire, 4, 31, 70
RHS. See right-hand side
right brain stimulation, 191

406 Index

right-hand side (RHS), 26, 45, 200
Riloff, Ellen, 166, 168, 169, 171
Ripper algorithm, 74, 298
RlogF pattern, 173
Rocchio classifier, 74–75
ROLE

relation, 165
rules, 165–166

rule(s)
associations, 24, 25, 27, 182
averaging, 265
constraints, 327–328
DNF, 73
learners, 74
maximal association, 27, 40
ROLE, 165–166
tagging, 120
TEG syntax, 156

Rzhetzky, A., 310

salience algorithm, 114
Sarkar, M., 228
scaling. See generalized iterative scaling
scanner properties, 320, 327
scatter/gather browsing method, 83
scattering, 83
scenario templates (STs), 99
SCFG. See stochastic context-free grammars
schemes

classification, 131
TF-IDF, 68
weighting, 68

search. See also Google
algorithms, 36, 178, 236
association rules, 36
brute force, 9
constraints, 178, 203
DIAL language, 321
Document Explorer patterns of, 236
engines, 82, 199
expanding parameters of, 180
fuzzy, 184
improving, 82–83
Industry Analyzer, 291
leveraging knowledge from previous, 36
operations, 203
parameters, 180
patent, 274, 295
for patterns, 8–10
precision, 83
task conditioning, 178
for trends, 8–10

selection. See feature, selection
self-organizing maps (SOMs). See also WEBSOM

algorithm generation of, 213, 216–217
multiple-lattice, 219

self-loops, 244
semantic features, 100
semantic lexicon, 169, 170

semantic relatedness, 69
sentences

concept, 321
linguistic analysis of, 109

sequential patterns, 30, 41
sets. See also concept sets

answer, 1, 23
association rules involving, 200
Brown Corpus tag, 60
frequent and near frequent, 19, 25
frequent concept, 9, 23–24
identical, 111
POS tag, 60
result, 45
σ -cover, 24
test, 67, 100
test document, 79
training, 68, 79, 100, 118
validation, 68, 75

shallow parsing, 61, 107–108, 154–155, 167
shrinkage, 136

defined, 136
hierarchies, 148
ngram, 163
technique, 148, 161

shuffling algorithms, 85
sibling node, 22
similarity

cosine, 90, 200, 201
function, 84, 200–201
measures, 85

simple concept association graphs, 200–201
simple concept graphs, 195–205, 239, 286, 294
simulated annealing, 247
single-label categorization, 67
singleton

σ -covers, 24
vertex, 198

singular value decomposition (SVD), 89–90, 91
smoothing, 136
social networks, 242
soft mark-up language, 3
software

browsing, 177
corporate intelligence, 273
Insight, 217
libraries, 207
link analysis, 271–272
NetMiner, 272
PieSky, 231
protein interaction analysis, 273
search engine, 199
StarTree Studio, 217

SOMs. See self-organizing maps
Soon’s string match feature (SOON STR), 118
sparse network, 244
sparseness, 72

data, 136–137, 148
training data, 136–137

Index 407

sparsity. See feature, sparsity
spring embedding, 231 See also

networks
algorithms, 245
network graphs, 231

StarTree Studio software, 217
states

background, 149
HMM’s classes of, 147

stimulation, right brain, 191
stochastic context-free grammars (SCFG), 131,

137
defined, 138
information extraction and, 155–166
using, 137–138

stop words, 68
strategy

divide-and-conquer, 58
patent, 295

string, 138
constants, 324

strong components, 260
structural equivalence, 261
structural mapping, 125–127
structured objects, 95
STs. See scenario templates
sublanguages, 138
subtasks, 123–124
suffix

lengthening of, 149
splitting of, 149

sum-of-squares, 29
supervised learning, 70
support, 24, 25, 249

query, 179
thresholds, 181
vectors, 76

support vector machines (SVM), 76–77,
78 76–77, 78

SVD. See singular value decomposition
SVM. See support vector machines
Swiss-Prot database, 308
symbolic classifiers, 72
symbols, terminal, 156
SYNDICATE system, 18
Synonym/Homonym resolver, 309
synonymy, 45, 69
syntactic analysis, 105
syntactic heuristics, 171, 172
syntactic parsing, 59, 60–61
syntactical constraints, 186
syntax, TEG rulebook, 156
system(s). See also AutoSlog-TS system;

CONSTRUE system; Explora system;
GENomics Information Extraction System;
hybrid system; MedLEE medical NLP
system; Palka system; SYNDICATE system;
text mining systems; TEXTRISE
system

architects, 17
architecture, 46–47, 186
thresholds defined by, 229

table(s)
of contents, 83
joins, 1
query, 23

tagging. See also part-of-speech tagging
chunk, 155
documents, 94
MUC style, 100
POS, 283
rules, 120

tag–tag pairs, 153
tag–word pairs, 153
target string

lengthening of, 149
splitting of, 149

task(s). See also coreference task; subtasks;
template element tasks; template
relationship task; visual information
extraction task

AI, 64
algorithms, 58
clustering, 82–84
documents structured by, 57
entity extraction, 150, 156
NE, 96
preprocessing by, 13, 57
problem dependent, 58, 59, 61–62
search, 178
text categorization, 66
TR, 99

taxonomies, 8, 42, 180
classic, 185
concept, 195
editors, 183–184
maintaining, 183
roles of, 182

Taxonomy Chooser interface, 297
TC. See text categorization
TEG. See trainable extraction grammar
template element (TE) tasks, 98
template relationship (TR) task, 99
templates, 123, 127–128, 278
temporal context graphs, 30, 32, 35
temporal context relationships, 32, 35
temporal selection, 35
term(s), 5–6, 8

candidate, 6
clustering, 69
extraction, 6, 12, 95, 283
hierarchy editor, 237–238
lemmatized, 6
Patent Researcher’s bundled, 304
relationships, 275
tokenized, 6

terminal symbols, 156

408 Index

term-level representations, 7
termlists, 156
TEs. See template element tasks
test sets, 67, 100
text(s)

classifiers, 76, 79–80
clustering, xi, 89, 91–92
comprehension, 95
elements extracted from, 96
extraction, 96
filtering, 65–66
fragments, 109
natural language, 1
pattern, 317, 318, 323
tokenization, 320

text analysis, 146–152
clustering tasks in, 82–84
CRF’s application to, 153–155

text categorization (TC), 58, 61–62, 64
applications, 64, 65–66
approaches to, 64
automated, 64
experiments, 79
knowledge engineering approach to, 70
machine learning, 70–78
NN and, 75
problem, 69, 79
stop words removed from, 68
task, 66

text mining. See also preprocessing methodologies
algorithms, 5, 8
analysis tools for, 1
applications, xi, 8
background knowledge and, 8
biological pathways,
corporate finance and, 273
data mining, v, 1, 11
defined, x, 1, 13
essential task of, 4
goals of, 5
GUIs for, 177
human-centric, 189
IE and, 11
input–output paradigm for, 13
inspiration/direction of, 1
introductions to, 11
KDD applications, 13
life sciences and, 273
methodologies, 9
patent research and, 273
pattern overabundance limitation, 9
pattern-discovery algorithms, 1, 5
patterns, 19
preprocessing operations, 1, 2, 4, 7, 8, 13–14, 57
presentation layer elements, 1, 14
query languages for, 51–52
techniques exploited by, 1
visualization tools, 1, 194

text mining applications, 8
corporate finance-oriented, 284
Document Explorer, 18
Explora system, 18
FACT, 18
GUIs of, 177
horizontal, 307
KDT, 18
LINDI project, 18
SYNDICATE system, 18
TEXTRISE system, 18

text mining systems. See also core text mining
operations

abstract level of, 13
architecture of, 13–18
background knowledge and, 8, 16, 42, 44
baseline distribution for, 22
concept proportions and, 29
content based browsing with, 10
customized profiles with, 11
designers of, 221, 275
distributions and, 29
domain specific data sources, 16
early, 30
empowering users of, 10
front-ends of, 10, 11
graphical elements of, 11
hypothetical, 19
incremental update schemes for, 38
practical approach of, 30
presentation layer of, 10
query engines of, 16
refinement constraints, 11
refinement techniques, 14–17
state-of-the-art, 10, 194

TEXTRISE system, 18
textual data, 88–92, 189, 195
TF-IDF schemes, 68
thematic hierarchical thesaurus, 65
themes, processing, 131
thesaurus

MESH, 65
names, 325
NASA aerospace, 65
thematic hierarchical, 65

three dimensional (3-D) effects, 219–221
See also representations, 2-D

algorithms, 219
challenges of, 220
disadvantages of, 221
impact of, 221
opportunities offered by, 220

thresholding
fixed, 67
proportional, 67

thresholds
confidence, 181
data, 39

Index 409

minconf, 26, 40
minsup, 26, 40
percentage, 38, 39
support, 181
system-defined, 229
user-defined, 229

time-based analysis, 30
Tipster, 96–101
Title Browser, 301
token(s)

elements, 327
features of, 150, 161
ngram generation of, 159, 161
UNK , 152

unknown, 152, 161
tokenization, 59, 60, 104, 106, 107

DIAL language text, 320
linguistic processing and, 283
Nymble and, 150

tokenizer, external, 161
tools

analysis, 1
browsing, 181
clustering, 11, 184–185
Document Explorer visualization, 236
editing, 184
graphical, 189
hybrid, 221–224
hyperbolic tree, 217
line graphs as prototyping, 207
prototyping, 207
visualization, 1, 10, 14, 192, 194, 227–228,

294 1, 10, 14, 192, 194, 226–227, 292
TR. See template relationship task
trainable extraction grammar (TEG), 155,

156
accuracy of, 165
experimental evaluation of, 164
extractor, 164
grammar, 157, 158
as hybrid system, 156
rulebook syntax, 156
training, 158–161

training
classifiers, 79
CRF’s, 144
examples, 117
HMM, 135–136
MEMM, 141
sets, 68, 79, 100, 118
TEG, 158–161

transmission
emission cycle, 131
matrix, 143

tree(s). See also minimal spanning tree
binary, 73
browsing, 15
hierarchical, 42, 195

hyperbolic, 217–219
node structure of, 182
parse, 137
pruning, 73, 178

trend(s)
analysis, 9, 30–31, 41, 299, 303
graphs, 30, 32, 35, 239
patent, 303–307
search for, 8–10

trigger-constraint functions, 153
trigrams, 5
tuple dimension, 5
two-mode network, 244

UCINET, 271–272
UMLS Metathaurus. See Unified Medical

Language System Metathesaurus
unary predicates, 16
undirected networks, 260
Unified Medical Language System (UMLS)

Metathesaurus, 282
uniformity, 152
United States Patent and Trademark Office, 297,

303
unknown tokens, 152, 161
UNK tokens, 152

user(s)
browsing by, 10, 13
clustering guided by, 83
customizing profiles of, 11
empowering, 10
groups, 194
interactivity of, 179, 189
M-support and, 28
pattern knowledge of, 36
querying by, 13
thresholds defined by, 229
values identified by, 26

user-identified values
minconf, 26
minsup, 26

utilities, 193

validation sets, 68, 75
variable

backward, 133
forward, 132, 141

vector(s)
feature, 68
formats, 7
global feature, 142
original document, 90
space model, 85
support, 76
weight, 142

verbs, indicating, 115
vertices, 33, 258, 264
VIE task. See visual information extraction task

410 Index

visual information extraction (VIE) task, 122, 123,
128

visual techniques, 194–225
visualization. See also circle graphs

3-D, 219
approaches, 189, 191, 279
assigning colors to, 279
capabilities, 274
circle graph, 292
DAG techniques of, 198
data, 217
Document Explorer tools for, 236,

238
hyperbolic tree, 217
interface, 191
link analysis and, 225
Patent Researcher’s tools for, 299–300,

301
specialized approach to, 225
tools, 1, 10, 14, 192, 194, 226–227, 292
user interactivity and, 189

Viterbi algorithm, 133–134, 138, 141
vocabulary, controlled, 65, 275

walk, 243
Washington Post Web site, 244
weak components, 260
weak hypothesis, 77
weak learner, 77
Web pages

hierarchical categorization of, 66
HTML and, 3
hypertextual nature of, 66

Web site(s)
FBI, 244
Kevin Bacon game, 248
pajek, 271
PubMed, 12

UCINET, 271–272
U.S. Patent and Trademark Office, 297, 303
Washington Post, 244

WEBSOM, 213–215. See also self-organizing
maps

advantages of, 215
zoomable interface of, 215

weight vector, 142
weighted linear combination, 77
weights

binary, 68
giving, 68

WHISK algorithm, 119
word stems, 4
wordclass names, 324–325
word-level representations, 6
WordNet, 43, 44, 50, 51, 112
word-processing files, 3
words, 5–6, 8

identifying single, 6
POS tag categorization of, 60
scanning, 106
stop, 68
syntactic role of, 58
synthetic features v. naturally occurring, 69

workbench, evaluation, 116
WYSIWYG HTML editor, 3

Xerox PARC, 217
XML

parsing, 116
protocol, 194

Yang, Y., 76

Zhou, M., 197, 198
zoning module. See tokenization
zoomability, 191

