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Preface

The proliferation of digital computing devices and their use in communication

continues to result in an increased demand for systems and algorithms capable of

mining textual data. Thus, the development of techniques for mining unstructured,

semi-structured, and fully structured textual data has become quite important in

both academia and industry. As a result, a one-day workshop on text mining was

held on May 2, 2009 in conjunction with the SIAM Ninth International Confer-

ence on Data Mining to bring together researchers from a variety of disciplines

to present their current approaches and results in text mining. The workshop sur-

veyed the emerging field of text mining, the application of techniques of machine

learning in conjunction with natural language processing, information extraction,

and algebraic/mathematical approaches to computational information retrieval.

Many issues are being addressed in this field ranging from the development of

new document classification and clustering models to novel approaches for topic

detection, tracking, and visualization.

With over 40 applied mathematicians and computer scientists representing

universities, industrial corporations, and government laboratories from six dif-

ferent countries, the workshop featured both invited and contributed talks on

the use of techniques from machine learning, knowledge discovery, natural lan-

guage processing, and information retrieval to design computational models for

automated text analysis and mining. Most of the invited and contributed papers

presented at the workshop have been compiled and expanded for this volume.

Collectively, they span several major topic areas in text mining:

1. Keyword extraction

2. Classification and clustering

3. Anomaly and trend detection

4. Text streams.

This volume presents state-of-the-art algorithms for text mining from both

the academic and industrial perspectives. Each chapter is self-contained and is

completed by a list of references. A subject-level index is also provided at the

end of the volume. Familiarity with basic undergraduate-level mathematics is

needed for several of the chapters. The volume should be useful for a novice to

the field as well as for an expert in text mining research.



xiv PREFACE

The inherent differences in the words written by authors and those used by

readers continue to fuel the development of effective search and retrieval algo-

rithms and software in the field of text mining. This volume demonstrates how

advancements in the fields of applied mathematics, computer science, machine

learning, and natural language processing can collectively capture, classify, and

interpret words and their contexts. The words alone are not enough.

Michael W. Berry and Jacob Kogan

Knoxville, TN and Baltimore, MD

August 2009

www.wiley.com/go/berry_mining



Part I

TEXT EXTRACTION,
CLASSIFICATION, AND
CLUSTERING





1

Automatic keyword extraction

from individual documents

Stuart Rose, Dave Engel, Nick Cramer
and Wendy Cowley

1.1 Introduction

Keywords, which we define as a sequence of one or more words, provide a

compact representation of a document’s content. Ideally, keywords represent in

condensed form the essential content of a document. Keywords are widely used

to define queries within information retrieval (IR) systems as they are easy to

define, revise, remember, and share. In comparison to mathematical signatures,

keywords are independent of any corpus and can be applied across multiple

corpora and IR systems.

Keywords have also been applied to improve the functionality of IR sys-

tems. Jones and Paynter (2002) describe Phrasier, a system that lists documents

related to a primary document’s keywords, and that supports the use of keyword

anchors as hyperlinks between documents, enabling a user to quickly access

related material. Gutwin et al. (1999) describe Keyphind, which uses keywords

from documents as the basic building block for an IR system. Keywords can also

be used to enrich the presentation of search results. Hulth (2004) describes Kee-

gle, a system that dynamically provides keyword extracts for web pages returned

from a Google search. Andrade and Valencia (1998) present a system that auto-

matically annotates protein function with keywords extracted from the scientific

literature that are associated with a given protein.

Text Mining: Applications and Theory edited by Michael W. Berry and Jacob Kogan

 2010, John Wiley & Sons, Ltd



4 TEXT MINING

1.1.1 Keyword extraction methods

Despite their utility for analysis, indexing, and retrieval, most documents do

not have assigned keywords. Most existing approaches focus on the manual

assignment of keywords by professional curators who may use a fixed taxonomy,

or rely on the authors’ judgment to provide a representative list. Research has

therefore focused on methods to automatically extract keywords from documents

as an aid either to suggest keywords for a professional indexer or to generate

summary features for documents that would otherwise be inaccessible.

Early approaches to automatically extract keywords focus on evaluating

corpus-oriented statistics of individual words. Jones (1972) and Salton et al.

(1975) describe positive results of selecting for an index vocabulary the

statistically discriminating words across a corpus. Later keyword extraction

research applies these metrics to select discriminating words as keywords for

individual documents. For example, Andrade and Valencia (1998) base their

approach on comparison of word frequency distributions within a text against

distributions from a reference corpus.

While some keywords are likely to be evaluated as statistically discriminating

within the corpus, keywords that occur in many documents within the corpus are

not likely to be selected as statistically discriminating. Corpus-oriented methods

also typically operate only on single words. This further limits the measurement of

statistically discriminating words because single words are often used in multiple

and different contexts.

To avoid these drawbacks, we focus our interest on methods of keyword

extraction that operate on individual documents. Such document-oriented

methods will extract the same keywords from a document regardless of the

current state of a corpus. Document-oriented methods therefore provide context-

independent document features, enabling additional analytic methods such as

those described in Engel et al. (2009) and Whitney et al. (2009) that characterize

changes within a text stream over time. These document-oriented methods are

suited to corpora that change, such as collections of published technical abstracts

that grow over time or streams of news articles. Furthermore, by operating on a

single document, these methods inherently scale to vast collections and can be

applied in many contexts to enrich IR systems and analysis tools.

Previous work on document-oriented methods of keyword extraction has com-

bined natural language processing approaches to identify part-of-speech (POS)

tags that are combined with supervised learning, machine-learning algorithms, or

statistical methods.

Hulth (2003) compares the effectiveness of three term selection approaches:

noun-phrase (NP) chunks, n-grams, and POS tags, with four discriminative fea-

tures of these terms as inputs for automatic keyword extraction using a supervised

machine-learning algorithm.

Mihalcea and Tarau (2004) describe a system that applies a series of syntactic

filters to identify POS tags that are used to select words to evaluate as key-

words. Co-occurrences of the selected words within a fixed-size sliding window
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are accumulated within a word co-occurrence graph. A graph-based ranking

algorithm (TextRank) is applied to rank words based on their associations in

the graph, and then top ranking words are selected as keywords. Keywords that

are adjacent in the document are combined to form multi-word keywords. Mihal-

cea and Tarau (2004) report that TextRank achieves its best performance when

only nouns and adjectives are selected as potential keywords.

Matsuo and Ishizuka (2004) apply a chi-square measure to calculate how

selectively words and phrases co-occur within the same sentences as a particular

subset of frequent terms in the document text. The chi-square measure is applied

to determine the bias of word co-occurrences in the document text which is

then used to rank words and phrases as keywords of the document. Matsuo and

Ishizuka (2004) state that the degree of biases is not reliable when term frequency

is small. The authors present an evaluation on full text articles and a working

example on a 27-page document, showing that their method operates effectively

on large documents.

In the following sections, we describe Rapid Automatic Keyword Extrac-

tion (RAKE), an unsupervised, domain-independent, and language-independent

method for extracting keywords from individual documents. We provide details

of the algorithm and its configuration parameters, and present results on a bench-

mark dataset of technical abstracts, showing that RAKE is more computationally

efficient than TextRank while achieving higher precision and comparable recall

scores. We then describe a novel method for generating stoplists, which we use to

configure RAKE for specific domains and corpora. Finally, we apply RAKE to a

corpus of news articles and define metrics for evaluating the exclusivity, essential-

ity, and generality of extracted keywords, enabling a system to identify keywords

that are essential or general to documents in the absence of manual annotations.

1.2 Rapid automatic keyword extraction

In developing RAKE, our motivation has been to develop a keyword extraction

method that is extremely efficient, operates on individual documents to enable

application to dynamic collections, is easily applied to new domains, and operates

well on multiple types of documents, particularly those that do not follow specific

grammar conventions. Figure 1.1 contains the title and text for a typical abstract,

as well as its manually assigned keywords.

RAKE is based on our observation that keywords frequently contain multiple

words but rarely contain standard punctuation or stop words, such as the function

words and , the, and of , or other words with minimal lexical meaning. Reviewing

the manually assigned keywords for the abstract in Figure 1.1, there is only

one keyword that contains a stop word (of in set of natural numbers). Stop

words are typically dropped from indexes within IR systems and not included in

various text analyses as they are considered to be uninformative or meaningless.

This reasoning is based on the expectation that such words are too frequently

and broadly used to aid users in their analyses or search tasks. Words that do
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Compatibility of systems of linear constraints over the set of natural numbers

Criteria of compatibility of a system of linear Diophantine equations, strict inequations, 
and nonstrict inequations are considered. Upper bounds for components of a minimal set 
of solutions and algorithms of construction of minimal generating sets of solutions for all 
types of systems are given. These criteria and the corresponding algorithms for 
constructing a minimal supporting set of solutions can be used in solving all the 
considered types of systems and systems of mixed types.

Manually assigned keywords:

linear constraints, set of natural numbers, linear Diophantine equations, strict 
inequations, nonstrict inequations, upper bounds, minimal generating sets

Figure 1.1 A sample abstract from the Inspec test set and its manually assigned

keywords.

carry meaning within a document are described as content bearing and are often

referred to as content words.

The input parameters for RAKE comprise a list of stop words (or stoplist), a

set of phrase delimiters, and a set of word delimiters. RAKE uses stop words and

phrase delimiters to partition the document text into candidate keywords, which

are sequences of content words as they occur in the text. Co-occurrences of words

within these candidate keywords are meaningful and allow us to identify word co-

occurrence without the application of an arbitrarily sized sliding window. Word

associations are thus measured in a manner that automatically adapts to the style

and content of the text, enabling adaptive and fine-grained measurement of word

co-occurrences that will be used to score candidate keywords.

1.2.1 Candidate keywords

RAKE begins keyword extraction on a document by parsing its text into a set of

candidate keywords. First, the document text is split into an array of words by the

specified word delimiters. This array is then split into sequences of contiguous

words at phrase delimiters and stop word positions. Words within a sequence are

assigned the same position in the text and together are considered a candidate

keyword.

Figure 1.2 shows the candidate keywords in the order that they are parsed

from the sample technical abstract shown in Figure 1.1. The candidate keyword

Compatibility – systems – linear constraints – set – natural numbers – Criteria –
compatibility – system – linear Diophantine equations – strict inequations – nonstrict 
inequations – Upper bounds – components – minimal set – solutions – algorithms – 
minimal generating sets – solutions – systems – criteria – corresponding algorithms – 
constructing – minimal supporting set – solving – systems – systems

Figure 1.2 Candidate keywords parsed from the sample abstract.
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linear Diophantine equations begins after the stop word of and ends with a

comma. The following word strict begins the next candidate keyword strict

inequations .

1.2.2 Keyword scores

After every candidate keyword is identified and the graph of word co-occurrences

(shown in Figure 1.3) is complete, a score is calculated for each candidate key-

word and defined as the sum of its member word scores. We evaluated several

metrics for calculating word scores, based on the degree and frequency of word

vertices in the graph: (1) word frequency (freq(w)), (2) word degree (deg(w)),

and (3) ratio of degree to frequency (deg(w)/freq(w)).

The metric scores for each of the content words in the sample abstract are

listed in Figure 1.4. In summary, deg(w) favors words that occur often and in

longer candidate keywords; deg(minimal) scores higher than deg(systems). Words

that occur frequently regardless of the number of words with which they co-occur

are favored by freq(w); freq(systems) scores higher than freq(minimal). Words that

predominantly occur in longer candidate keywords are favored by deg(w)/freq(w);

deg(diophantine)/freq(diophantine) scores higher than deg(linear)/freq(linear).

The score for each candidate keyword is computed as the sum of its member
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compatibility 2

components 1

constraints 1 1

constructing 1

corresponding 1 1

criteria 2

diophantine 1 1

equations 1

1

1 1

generating 1 1 1

1

inequations 2 1 1

linear 1 1 1 2

minimal 1 3 2 1

natural 1 1

nonstrict 1 1

numbers 1 1

set 2 3 1

sets 1 1 1

solving 1

strict 1 1

supporting 1 1 1

system 1

systems 4

upper 1 1

Figure 1.3 The word co-occurrence graph for content words in the sample

abstract.
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deg(w) / freq(w) 1.5 2 1 1 2 1 2 1 3 3 3 2  2.5 2.7 2 2 2 2 3 1 2 3 1 1 2

Figure 1.4 Word scores calculated from the word co-occurrence graph.

minimal generating sets (8.7), linear diophantine equations (8.5), minimal supporting set 
(7.7), minimal set (4.7), linear constraints (4.5), natural numbers (4), strict inequations (4), 
nonstrict inequations (4), upper bounds (4), corresponding algorithms (3.5), set (2), 
algorithms (1.5), compatibility (1), systems (1), criteria (1), system (1), components 
(1),constructing (1), solving (1)

Figure 1.5 Candidate keywords and their calculated scores.

word scores. Figure 1.5 lists each candidate keyword from the sample abstract

using the metric deg(w)/freq(w) to calculate individual word scores.

1.2.3 Adjoining keywords

Because RAKE splits candidate keywords by stop words, extracted keywords do

not contain interior stop words. While RAKE has generated strong interest due to

its ability to pick out highly specific terminology, an interest was also expressed

in identifying keywords that contain interior stop words such as axis of evil . To

find these RAKE looks for pairs of keywords that adjoin one another at least

twice in the same document and in the same order. A new candidate keyword is

then created as a combination of those keywords and their interior stop words.

The score for the new keyword is the sum of its member keyword scores.

It should be noted that relatively few of these linked keywords are extracted,

which adds to their significance. Because adjoining keywords must occur twice

in the same order within the document, their extraction is more common on texts

that are longer than short abstracts.

1.2.4 Extracted keywords

After candidate keywords are scored, the top T scoring candidates are selected

as keywords for the document. We compute T as one-third the number of words

in the graph, as in Mihalcea and Tarau (2004).

The sample abstract contains 28 content words, resulting in T = 9 key-

words. Table 1.1 lists the keywords extracted by RAKE compared to the sample

abstract’s manually assigned keywords. We use the statistical measures precision,

recall and F -measure to evaluate the accuracy of RAKE. Out of nine keywords

extracted, six are true positives; that is, they exactly match six of the manu-

ally assigned keywords. Although natural numbers is similar to the assigned
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Table 1.1 Comparison of keywords extracted by RAKE to

manually assigned keywords for the sample abstract.

Extracted by RAKE Manually assigned

minimal generating sets minimal generating sets
linear diophantine equations linear Diophantine equations
minimal supporting set
minimal set
linear constraints linear constraints
natural numbers
strict inequations strict inequations
nonstrict inequations nonstrict inequations
upper bounds upper bounds

set of natural numbers

keyword set of natural numbers , for the purposes of the benchmark evaluation

it is considered a miss. There are therefore three false positives in the set of

extracted keywords, resulting in a precision of 67%. Comparing the six true

positives within the set of extracted keywords to the total of seven manually

assigned keywords results in a recall of 86%. Equally weighting precision and

recall generates an F -measure of 75%.

1.3 Benchmark evaluation

To evaluate performance we tested RAKE against a collection of technical

abstracts used in the keyword extraction experiments reported in Hulth (2003)

and Mihalcea and Tarau (2004), mainly for the purpose of allowing direct

comparison with their results.

1.3.1 Evaluating precision and recall

The collection consists of 2000 Inspec abstracts for journal papers from Computer

Science and Information Technology. The abstracts are divided into a training

set with 1000 abstracts, a validation set with 500 abstracts, and a testing set with

500 abstracts. We followed the approach described in Mihalcea and Tarau (2004),

using the testing set for evaluation because RAKE does not require a training

set. Extracted keywords for each abstract are compared against the abstract’s

associated set of manually assigned uncontrolled keywords.

Table 1.2 details RAKE’s performance using a generated stoplist, Fox’s sto-

plist (Fox 1989), and T as one-third the number of words in the graph. For

each method, which corresponds to a row in the table, the following information

is shown: the total number of extracted keywords and mean per abstract; the

number of correct extracted keywords and mean per abstract; precision; recall;

and F -measure. Results published within Hulth (2003) and Mihalcea and Tarau
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Table 1.2 Results of automatic keyword extraction on 500 abstracts in the

Inspec test set using RAKE, TextRank (Mihalcea and Tarau 2004) and

supervised learning (Hulth 2003).

Extracted Correct

keywords keywords

Method Total Mean Total Mean Precision Recall F -measure

RAKE (T = 0.33)

KA stoplist (df > 10) 6052 12.1 2037 4.1 33.7 41.5 37.2

Fox stoplist 7893 15.8 2054 4.2 26 42.2 32.1

TextRank

Undirected, co-occ.

window = 2

6784 13.6 2116 4.2 31.2 43.1 36.2

Undirected, co-occ.

window = 3

6715 13.4 1897 3.8 28.2 38.6 32.6

(Hulth 2003)

Ngram with tag 7815 15.6 1973 3.9 25.2 51.7 33.9

NP chunks with tag 4788 9.6 1421 2.8 29.7 37.2 33

Pattern with tag 7012 14 1523 3 21.7 39.9 28.1

the, and, of, a, in, is, for, to, we, this, are, with, as, on, it, an, that, which, by, using, can, 
paper, from, be, based, has, was, have, or, at, such, also, but, results, proposed, show, 
new, these, used, however, our, were, when, one, not, two, study, present, its, sub, both, 
then, been, they, all, presented, if, each, approach, where, may, some, more, use, 
between, into, 1, under, while, over, many, through, addition, well, first, will, there, 
propose, than, their, 2, most, sup, developed, particular, provides, including, other, how, 
without, during, article, application, only, called, what, since, order, experimental, any

Figure 1.6 Top 100 words in the generated stoplist.

(2004) are included for comparison. The highest values for precision, recall, and

F -measure are shown in bold. As noted, perfect precision is not possible with

any of the techniques as the manually assigned keywords do not always appear

in the abstract text. The highest precision and F -measure are achieved using

RAKE with a generated stoplist based on keyword adjacency, a subset of which

is listed in Figure 1.6. With this stoplist RAKE yields the best results in terms of

F -measure and precision, and provides comparable recall. With Fox’s stoplist,

RAKE achieves a high recall while experiencing a drop in precision.

1.3.2 Evaluating efficiency

Because of increasing interest in energy conservation in large data centers, we

also evaluated the computational cost associated with extracting keywords with

RAKE and TextRank. TextRank applies syntactic filters to a document text to
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identify content words and accumulates a graph of word co-occurrences in a

window size of 2. A rank for each word in the graph is calculated through a

series of iterations until convergence below a threshold is achieved.

We set TextRank’s damping factor d = 0.85 and its convergence threshold to

0.0001, as recommended in Mihalcea and Tarau (2004). We do not have access

to the syntactic filters referenced in Mihalcea and Tarau (2004), so were unable

to evaluate their computational cost.

To minimize disparity, all parsing stages in the respective extraction methods

are identical, TextRank accumulates co-occurrences in a window of size 2, and

RAKE accumulates word co-occurrences within candidate keywords. After co-

occurrences are tallied, the algorithms compute keyword scores according to their

respective methods. The benchmark was implemented in Java and executed in the

Java SE Runtime Environment (JRE) 6 on a Dell Precision T7400 workstation.

We calculated the total time for RAKE and TextRank (as an average over 100

iterations) to extract keywords from the Inspec testing set of 500 abstracts, after

the abstracts were read from files and loaded in memory. RAKE extracted key-

words from the 500 abstracts in 160 milliseconds. TextRank extracted keywords

in 1002 milliseconds, over 6 times the time of RAKE.

Referring to Figure 1.7, we can see that as the number of content words

for a document increases, the performance advantage of RAKE over TextRank

increases. This is due to RAKE’s ability to score keywords in a single pass

whereas TextRank requires repeated iterations to achieve convergence on

word ranks.

Based on this benchmark evaluation, it is clear that RAKE effectively extracts

keywords and outperforms the current state of the art in terms of precision, effi-

ciency, and simplicity. As RAKE can be put to use in many different systems and

applications, in the next section we discuss a method for stoplist generation that

may be used to configure RAKE on particular corpora, domains, and languages.

1.4 Stoplist generation

Stoplists are widely used in IR and text analysis applications. However, there is

remarkably little information describing methods for their creation. Fox (1989)

presents an analysis of stoplists, noting discrepancies between stated conven-

tions and actual instances and implementations of stoplists. The lack of tech-

nical rigor associated with the creation of stoplists presents a challenge when

comparing text analysis methods. In practice, stoplists are often based on com-

mon function words and hand-tuned for particular applications, domains, or

specific languages.

We evaluated the use of term frequency as a metric for automatically selecting

words for a stoplist. Table 1.3 lists the top 50 words by term frequency in the

training set of abstracts in the benchmark dataset. Additional metrics shown for

each word are document frequency, adjacency frequency, and keyword frequency.

Adjacency frequency reflects the number of times the word occurred adjacent to
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Figure 1.7 Comparison of TextRank and RAKE extraction times on individual

documents.

an abstract’s keywords. Keyword frequency reflects the number of times the word

occurred within an abstract’s keywords.

Looking at the top 50 frequent words, in addition to the typical function

words, we can see that system, control , and method are highly frequent within

technical abstracts and highly frequent within the abstracts’ keywords. Selecting

solely by term frequency will therefore cause content-bearing words to be added

to the stoplist, particularly if the corpus of documents is focused on a particular

domain or topic. In those circumstances, selecting stop words by term frequency

presents a risk of removing important content-bearing words from analysis.

We therefore present the following method for automatically generating a

stoplist from a set of documents for which keywords are defined. The algorithm

is based on the intuition that words adjacent to, and not within, keywords are

less likely to be meaningful and therefore are good choices for stop words.

To generate our stoplist we identified for each abstract in the Inspec training

set the words occurring adjacent to words in the abstract’s uncontrolled key-

word list. The frequency of each word occurring adjacent to a keyword was

accumulated across the abstracts. Words that occurred more frequently within

keywords than adjacent to them were excluded from the stoplist.
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Table 1.3 The 50 most frequent words in the Inspec training set listed in

descending order by term frequency.

Term Document Adjacency Keyword
Word frequency frequency frequency frequency

the 8611 978 3492 3
of 5546 939 1546 68
and 3644 911 2104 23
a 3599 893 1451 2
to 3000 879 792 10
in 2656 837 1402 7
is 1974 757 1175 0
for 1912 767 951 9
that 1129 590 330 0
with 1065 577 535 3
are 1049 576 555 1
this 964 581 645 0
on 919 550 340 8
an 856 501 332 0
we 822 388 731 0
by 773 475 283 0
as 743 435 344 0
be 595 395 170 0
it 560 369 339 13
system 507 255 86 202
can 452 319 250 0
based 451 293 168 15
from 447 309 187 0
using 428 282 260 0
control 409 166 12 237
which 402 280 285 0
paper 398 339 196 1
systems 384 194 44 191
method 347 188 78 85
data 347 159 39 131
time 345 201 24 95
model 343 157 37 122
information 322 153 18 151
or 315 218 146 0
s 314 196 27 0
have 301 219 149 0
has 297 225 166 0
at 296 216 141 0
new 294 197 93 4
two 287 205 83 5

(continued overleaf )
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Table 1.3 (Continued )

Term Document Adjacency Keyword
Word frequency frequency frequency frequency

algorithm 267 123 36 96
results 262 221 129 14
used 262 204 92 0
was 254 125 161 0
these 252 200 93 0
also 251 219 139 0
such 249 198 140 0
problem 234 137 36 55
design 225 110 38 68

To evaluate this method of generating stoplists, we created six stoplists, three

of which select words for the stoplist by term frequency (TF), and three which

select words by term frequency but also exclude words from the stoplist whose

keyword frequency was greater than their keyword adjacency frequency. We

refer to this latter set of stoplists as keyword adjacency (KA) stoplists since they

primarily include words that are adjacent to and not within keywords.

Table 1.4 Comparison of RAKE performance using stoplists based on term

frequency (TF) and keyword adjacency (KA).

Extracted Correct

keywords keywords
Stoplist

Method size Total Mean Total Mean Precision Recall F -measure

RAKE

(T = 0.33)

TF stoplist

(df > 10)

1347 3670 7.3 606 1.2 16.5 12.3 14.1

TF stoplist

(df > 25)

527 5563 11.1 1032 2.1 18.6 21.0 19.7

TF stoplist

(df > 50)

205 7249 14.5 1520 3.0 21.0 30.9 25.0

RAKE

(T = 0.33)

KA stoplist

(df > 10)

763 6052 12.1 2037 4.1 33.7 41.5 37.2

KA stoplist

(df > 25)

325 7079 14.2 2103 4.3 29.7 42.8 35.1

KA stoplist

(df > 50)

147 8013 16.0 2117 4.3 26.4 43.1 32.8
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Each of the stoplists was set as the input stoplist for RAKE, which was

then run on the testing set of the Inspec corpus of technical abstracts. Table 1.4

lists the precision, recall, and F -measure for the keywords extracted by each

of these runs. The KA stoplists generated by our method outperformed the

TF stoplists generated by term frequency. A notable difference between results

achieved using the two types of stoplists is evident in Table 1.4: the F -measure

improves as more words are added to a KA stoplist, whereas when more words are

added to a TF stoplist the F -measure degrades. Furthermore, the best TF stoplist

underperforms the worst KA stoplist. This verifies that our algorithm for gener-

ating stoplists is adding the right stop words and excluding content words from

the stoplist.

Because the generated KA stoplists leverage manually assigned keywords, we

envision that an ideal application would be within existing digital libraries or IR

systems and collections where defined keywords exist or are easily identified for

a subset of the documents. Stoplists only need to be generated once for particular

domains, enabling RAKE to be applied to new and future articles, facilitating

the annotation and indexing of new documents.

1.5 Evaluation on news articles

While we have shown that a simple set of configuration parameters enables

RAKE to efficiently extract keywords from individual documents, it is worth

investigating how well extracted keywords represent the essential content within

a corpus of documents for which keywords have not been manually assigned.

The following section presents results on application of RAKE to the Multi-

Perspective Question Answering (MPQA) Corpus (CERATOPS 2009).

1.5.1 The MPQA Corpus

The MPQA Corpus consists of 535 news articles provided by the Center for the

Extraction and Summarization of Events and Opinions in Text (CERATOPS).

Articles in the MPQA Corpus are from 187 different foreign and US news sources

and date from June 2001 to May 2002.

1.5.2 Extracting keywords from news articles

We extracted keywords from title and text fields of documents in the MPQA

Corpus and set a minimum document threshold of two because we are interested

in keywords that are associated with multiple documents.

Candidate keyword scores were based on word scores as deg(w)/freq(w)

and as deg(w). Calculating word scores as deg(w)/freq(w), RAKE extracted 517

keywords referenced by an average of 4.9 documents. Calculating word scores

as deg(w), RAKE extracted 711 keywords referenced by an average of 8.1

documents.
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This difference in average number of referenced document counts is the

result of longer keywords having lower frequency across documents. The metric

deg(w)/freq(w) favors longer keywords and therefore results in extracted key-

words that occur in fewer documents in the MPQA Corpus.

In many cases a subject is occasionally presented in its long form and more

frequently referenced in its shorter form. For example, referring to Table 1.5,

kyoto protocol on climate change and 1997 kyoto protocol occur less frequently

than the shorter kyoto protocol . Because our interest in the analysis of news

articles is to connect articles that reference related content, we set RAKE to

score words by deg(w) in order to favor shorter keywords that occur across more

documents.

Because most documents are unique within any given corpus, we expect to

find variability in what documents are essentially about as well as how each

document represents specific subjects. While some documents may be primarily

about the kyoto protocol , greenhouse gas emissions , and climate change, other

documents may only make references to those subjects. Documents in the former

set will likely have kyoto protocol , greenhouse gas emissions , and climate change

extracted as keywords whereas documents in the latter set will not.

In many applications, users have a desire to capture all references to extracted

keywords. For the purposes of evaluating extracted keywords, we accumulate

Table 1.5 Keywords extracted with word scores by deg(w) and deg(w)/freq(w).

Scored by deg(w) Scored by deg(w)/
freq(w)

Keyword edf(w) rdf(w) edf(w) rdf(w)

kyoto protocol legally obliged

developed countries

2 2 2 2

eu leader urge russia to ratify

kyoto protocol

2 2 2 2

kyoto protocol on climate

change

2 2 2 2

ratify kyoto protocol 2 2 2 2
kyoto protocol requires 2 2 2 2
1997 kyoto protocol 2 4 4 4
kyoto protocol 31 44 7 44
kyoto 10 12 – –
kyoto accord 3 3 – –
kyoto pact 2 3 – –
sign kyoto protocol 2 2 – –
ratification of the kyoto

protocol

2 2 – –

ratify the kyoto protocol 2 2 – –
kyoto agreement 2 2 – –
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counts on how often each extracted keyword is referenced by documents in the

corpus. The referenced document frequency of a keyword, rdf(k), is the number of

documents in which the keyword occurred as a candidate keyword. The extracted

document frequency of a keyword, edf(k), is the number of documents from which

the keyword was extracted.

A keyword that is extracted from all of the documents in which it is refer-

enced can be characterized as exclusive or essential , whereas a keyword that is

referenced in many documents but extracted from a few may be characterized as

general . Comparing the relationship of edf(k) and rdf(k) allows us to characterize

the exclusivity of a particular keyword. We therefore define keyword exclusivity

exc(k) as shown in Equation (1.1):

exc(k) =
edf(k)

rdf(k)
. (1.1)

Of the 711 extracted keywords, 395 have an exclusivity score of 1, indicating

that they were extracted from every document in which they were referenced.

Within that set of 395 exclusive keywords, some occur in more documents than

others and can therefore be considered more essential to the corpus of documents.

In order to measure how essential a keyword is, we define the essentiality of a

keyword, ess(k), as shown in Equation (1.2):

ess(k) = exc(k) × edf(k). (1.2)

Figure 1.8 lists the top 50 essential keywords extracted from the MPQA cor-

pus, listed in descending order by their ess(k) scores. According to CERATOPS,

the MPQA corpus comprises 10 primary topics, listed in Table 1.6, which are

well represented by the 50 most essential keywords as extracted and ranked by

RAKE.

In addition to keywords that are essential to documents, we can also char-

acterize keywords by how general they are to the corpus. In other words, how

united states (32), human rights (24), kyoto protocol (22), international space station (18), 
mugabe (16), space station (14), human rights report (12), greenhouse gas emissions 
(12), chavez (11), taiwan issue (11), president chavez (10), human rights violations (10), 
president bush (10), palestinian people (10), prisoners of war (9), president hugo chavez 
(9), kyoto (8), taiwan (8), israeli government (8), hugo chavez (8), climate change (8), 
space (8), axis of evil (7), president fernando henrique cardoso (7), palestinian (7), 
palestinian territories (6), taiwan strait (6), russian news agency interfax (6), prisoners (6), 
taiwan relations act (6), president robert mugabe (6), presidential election (6), geneva 
convention (5), palestinian authority (5), venezuelan president hugo chavez (5), chinese 
president jiang zemin (5), opposition leader morgan tsvangirai (5), french news agency 
afp (5), bush (5), north korea (5), camp x-ray (5), rights (5), election (5), mainland china 
(5), al qaeda (5), president (4), south africa (4), global warming (4), bush administration 
(4), mdc leader (4)

Figure 1.8 Top 50 essential keywords from the MPQA Corpus, with correspond-

ing ess(k) score in parentheses.
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Table 1.6 MPQA Corpus topics and definitions.

Topic Description

argentina Economic collapse in Argentina
axisofevil Reaction to President Bush’s 2002 State of the Union Address
guantanamo US holding prisoners in Guantanamo Bay
humanrights Reaction to US State Department report on human rights
kyoto Ratification of Kyoto Protocol
mugabe 2002 Presidential election in Zimbabwe
settlements Israeli settlements in Gaza and West Bank
spacestation Space missions of various countries
taiwan Relations between Taiwan and China
venezuela Presidential coup in Venezuela

government (147), countries (141), people (125), world (105), report (91), war (85), united 
states (79), china (71), president (69), iran (60), bush (56), japan (50), law (44), peace 
(44), policy (43), officials (43), israel (41), zimbabwe (39), taliban (36), prisoners (35), 
opposition (35), plan (35), president george (34), axis (34), administration (33), detainees 
(32), treatment (32), states (30), european union (30), palestinians (30), election (29), 
rights (28), international community (27), military (27), argentina (27), america (27), 
guantanamo bay (26), official (26), weapons (24), source (24), eu (23), attacks (23), 
united nations (22), middle east (22), bush administration (22), human rights (21), base 
(20), minister (20), party (19), north korea (18) 

Figure 1.9 Top 50 general keywords from the MPQA Corpus, with corresponding

gen(k) score in parentheses.

often was a keyword referenced by documents from which it was not extracted?

In this case we define generality of a keyword, gen(k), as shown in Equation

(1.3):

gen(k) = rdf(k) × (1.0 − exc(k)). (1.3)

Figure 1.9 lists the top 50 general keywords extracted from the MPQA corpus,

listed in descending order by their gen(k) scores. It should be noted that general

keywords and essential keywords are not mutually exclusive. Within the top 50

for both metrics, there are several shared keywords: united states , president ,

bush , prisoners , election , rights , bush administration, human rights , and north

korea . Keywords that are both highly essential and highly general are essential

to a set of documents within the corpus but also referenced by a significantly

greater number of documents within the corpus than other keywords.

1.6 Summary

We have shown that our automatic keyword extraction technology, RAKE,

achieves higher precision and similar recall in comparison to existing techniques.
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In contrast to methods that depend on natural language processing techniques

to achieve their results, RAKE takes a simple set of input parameters and

automatically extracts keywords in a single pass, making it suitable for a wide

range of documents and collections.

Finally, RAKE’s simplicity and efficiency enable its use in many applications

where keywords can be leveraged. Based on the variety and volume of existing

collections and the rate at which documents are created and collected, RAKE

provides advantages and frees computing resources for other analytic methods.
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Algebraic techniques for

multilingual document

clustering

Brett W. Bader and Peter A. Chew

2.1 Introduction

Pages on the World Wide Web have tremendous variation, covering a wide range

of topics and viewpoints. Some are news pages, others are blogs. Given the sheer

volume of documents on the Web, clustering these pages by topic would be a

challenging problem. But web pages could be in any language, which complicates

an already challenging text mining problem.

In a series of articles published largely in the computational linguistics lit-

erature, we have outlined a number of computational techniques for clustering

documents in a multilingual corpus. This chapter reviews these techniques, pro-

vides some additional insight into these techniques, and presents some recent

advances. Specifically, we show multiple algebraic models for this problem that

were developed recently and that use matrix and tensor manipulations. These

methods can be applied not just to pairs of languages, but also to groups of

languages when a suitable multi-parallel corpus exists (Chew and Abdelali 2007).

In Sections 2.2 and 2.3, we review the problem and our experimental setup

for multilingual document clustering. Then, in Sections 2.4–2.9 we present our

Text Mining: Applications and Theory edited by Michael W. Berry and Jacob Kogan

 2010, John Wiley & Sons, Ltd
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various approaches and their results. Section 2.10 discusses our results and

summarizes our contribution.

2.2 Background

An early approach for dealing with documents in an information retrieval (IR)

setting was the vector space model (VSM) of Salton (Salton 1968; Salton and

McGill 1983). The principle behind the VSM is that a vector, with elements

representing individual terms, may encode a document’s meaning according to

the relative weights of these term elements. Then one may encode a corpus of

documents as a term-by-document matrix X of column vectors such that the rows

represent terms and the columns represent documents. Each element xij tabulates

the number of times term i occurs in document j . This matrix is sparse due to

the Zipfian distribution of terms in a language (Zipf 1935).

As a practical matter for better performance, the term counts in X often

are scaled. Many scaling approaches have been proposed, but the two most

popular, based on their widespread availability in software such as SAS, are

TFIDF (Term Frequency Inverse Document Frequency) and log-entropy scaling.

Other approaches have been considered by Chisholm and Kolda (1999). We

consider only the log-entropy scaling (see Equation (2.2)) in our approach here.

In 1990, Deerwester et al. (1990) proposed analyzing term-by-document

matrices using the singular value decomposition (SVD) to organize terms and

documents into a common semantic space based upon term co-occurrence.

Because the approach claimed to organize the surface terms into their underlying

semantics, the approach became known as latent semantic analysis (LSA).

In LSA a singular value decomposition of the (scaled) term–document matrix

X is computed

X = USVT . (2.1)

Typically, a truncated SVD is computed such that a small number of columns

(relative to the overall size of X) are retained. This amounts to keeping just the

first R singular values in S (and correspondingly the first R columns of U and

V ). This low-rank approximation to X is in effect a dimensionality reduction

that retains the most important information and leaves out noisier information.

Projecting documents into this smaller dimensional subspace, one obtains feature

vectors that may be used for similarity calculations or machine-learning tasks

(e.g. (Chew et al. 2008a)).

As a statistics-based approach rooted in linear algebra and matrix computa-

tions, LSA has spawned many variations and new application areas. Pertaining

to our current problem, Landauer and Littman (1990) extended latent semantic

indexing by using a collection of abstracts in more than one language (English

and French). Each ‘document’ is treated as the combination (in the bag of words

sense) of French and English versions of the same abstract, and a multilingual

space from LSA consists of terms from both languages coupled together. Their
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experiments showed that the two-language space was better for cross-language

retrieval than single-language spaces. Queries in one language for retrieval in

another language were shown to be just as effective as first translating the query

into the language of a monolingual corpus. Young (1994) also uses only two lan-

guages (Greek and English), and the source data was the Gospels. He shows that

LSA is effective in retrieving documents from either language without having to

translate the user’s query. The aspect that differentiates these studies from our

work is that we consider more than just pairs of languages for cross-language

information retrieval.

2.3 Experimental setup

For multilingual information retrieval experiments, one needs a multi-parallel

corpus, which means that each document has a complete translation in all the

languages. While many multilingual corpora exist and would work well, we use

the Bible and Quran as our multilingual corpora. Both are carefully translated

and are manually parallel aligned at the verse level (each verse contains roughly

a sentence or two). Such fine-grained parallelism helps our machine-learning

techniques learn concepts from word co-occurrences.

For training and testing purposes, we limited the selection of languages to

Arabic, English, French, Russian, and Spanish. The lexical statistics of these

translations of the Bible are listed in Table 2.1. The linguistic differences among

the languages are evident in the table. English has the fewest unique terms,

whereas Arabic has nearly five times as many unique terms and just over half

as many total words for the whole translation. The ordering in Table 2.1 roughly

corresponds to the ordering of languages on a spectrum that linguists identify on

one end as ‘isolating’ (one morpheme, or individual unit of meaning, per word)

and on the other end as ‘synthetic’ (high morpheme-per-word ratio).

English is largely an isolating language because most words have one or

just a few morphemes. For example, verbs may have markers for tense (e.g. the

morpheme ‘ed’ is the past tense inflection); nouns may be compound or plural

(e.g. the morpheme ‘s’ often indicates a plural noun).

German is closer to the other end of the spectrum as a synthetic language

because it has many compound nouns composed of individual morphemes. But

Table 2.1 Lexical statistics of the translations of the Bible used for training.

Language (translation) Unique terms Total word count

English (King James) 12 335 789 744
French (Darby) 20 428 812 947
Spanish (Reina Valera 1909) 28 456 704 004
Russian (Synodal 1876) 47 226 560 524
Arabic (Smith Van Dyke) 55 300 440 435
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there are other languages with even starker differences. Payne (Payne 1997)

cites an illustrative example that comes from Yup’ik Eskimo, tuntussuqatarnik-

saitengqiggtuq , which means ‘he had not yet said again that he was going to

hunt reindeer’. This word is composed of many morphemes, as evidenced by

the fact that the English translation has multiple words. For example, the first

morpheme, tuntu , refers to reindeer. So if the concept were to change instead to

‘she was going to hunt reindeer’, then there would be a whole new unique word

starting with tuntu containing only some of the morphemes from the example

along with a different morpheme due to the change in gender of the subject.

Thus, it is easy to see why such a language would prove troublesome for VSMs.

Each word, which is packed with more meaning, is represented by a single direc-

tion in vector space instead of a collection of directions based on its constituent

morphemes.

Hence, these language differences provide a challenge to statistical techniques

that rely on co-occurrence patterns. Synthetic languages, which have more unique

terms representing more diverse concepts, will have fewer terms co-occurring

with other terms from an isolating language, making it more difficult to learn

from relationships from co-occurrence patterns.

For our system, we do not consider traditional stemming or stoplists because

we want the most generalizable system that does not rely on expert knowledge

of a language. We prefer to rely solely on the statistical properties of the corpus

for an extensible system for languages that may be applied to less common or

obscure languages.

The Bible has 31 226 verses, which we use as individual ‘documents’ in

our training set. The Quran has 114 suras (or chapters), which we use as the

documents in our test set. With the five languages, we have 570 individual test

queries. For each new query document, we project its vector representation into

the space of US−1 and compute a cosine similarity with all other document

feature vectors. The highest similarity indicates the best match available, which

for our case should be a matching translation of the query document. We use

S−1 instead of other alternatives because if we consider the documents in X as

our test set, then the projection of X on US−1 is close to the matrix V , which is

the document-by-concept matrix from the SVD.

To assess the performance of our techniques, we consider two measures of

precision used in multilingual IR. For the first, we split the test set into each of

the 25 possible language-pair combinations, where these include each language

to itself. For each pair, we have 228 distinct queries (i.e. chapters). The goal is

to retrieve the corresponding translation of that chapter in the other language.

We calculate the average precision at one document (P1), which is the average

percentage of times that the translation of the query ranked highest. P1 may be

calculated as an average over all queries for each language pair or as an overall

average, which we report here. P1 is a fairly strict measure of precision that

essentially measures success in retrieving documents when the source and target

languages are specified.
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For the second measure, we considered average multilingual precision at five

documents (MP5), which is the average percentage of the top five documents

that are translations of the query document. We calculate MP5 as an average for

all queries and all languages. Essentially, MP5 measures success in multilingual

clustering. MP5 is a stricter measure than P1; since the target language is not

specified, there are more possibilities to choose from.

2.4 Multilingual LSA

In the context of cross-language IR, one starts with a parallel multilingual corpus.

The approach used in Landauer and Littman (1990) and Young (1994) for pairs

of languages, and used in Chew and Abdelali (2007) for multiple languages, is

to stack all term–document matrices for each language, one on top of another;

see Figure 2.1. The rows correspond to terms in all of the languages, and the

truncated SVD finds the optimal rank R representation of this matrix. The factor

matrices group terms and documents into orthogonal basis vectors based upon

term and document co-occurrence patterns in X.

French

Arabic

Russian

Spanish

English ≈ VT

S

U1

U2

U3

U4

U5

Figure 2.1 An illustration of the multilingual LSA using the SVD.
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The best results for five languages and a rank 300 SVD give an average

P1 score of 76.0% and an average MP5 score of 26.1%. While the P1 score is

respectable, the MP5 score is disappointing because it means that documents are

clustering more by language than by topic.

We observed in our results an imbalance in the importance of common terms

(e.g. determiners, pronouns, conjunctions, prepositions) in the concept vectors of

the U matrix. This fact stemmed from the way the standard log-entropy formula

treated common terms with respect to other terms with higher information gain.

This insight led us to modify the log-entropy formula so that the common terms

with high entropy were less influential in the SVD. Our simple modification to

log-entropy involved raising the global term weight to a power α > 1:

Xtd = log(Xtd + 1)

[

1 +
Ht

log N

]α

(2.2)

where Ht =
∑

d(Xtd/Ft) log(Xtd/Ft) is the entropy of term t and Ft is the raw

frequency of term t in the corpus.

The overall effect of this modification is that α > 1 mitigates the influence of

common terms in the SVD. As α increases, the ‘weight’ of elements in X shifts

away from common terms to less common, more information-rich terms, and a

corresponding shift is evident in the principal singular vectors. However, if α is

too large, then the X matrix consists mainly of low-entropy terms (e.g. proper

nouns).

Our computational studies showed that α = 1.8 significantly improved

retrieval results for all of our techniques. Figure 2.2 shows the global term

weights for all terms in English. The first term index corresponds to the word

‘and’. There are roughly 60 000 terms that appear only once each (so-called

hapax legomena) in the Bible. These appear on the right of the plot and have a

global term weight of one, no matter what the value of α is.

With the improved global term weighting, the best results for five languages

and a rank 300 SVD give an average P1 score of 88.0% and an average MP5 score

of 65.7%. We see a large increase in P1 (p value = 7 × 10−51) and a dramatic
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Figure 2.2 Improved term–document matrix weighting by raising global term

weight to a power of α.
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increase in multilingual precision (p value = 0). Nevertheless, the documents are

still clustering more by language than by topic.

2.5 Tucker1 method

In Chew et al. (2007), we pursued a new paradigm in multilingual text analysis

where, instead of stacking the language matrices one on top of another to create

one tall matrix for the SVD, the matrices are stacked one behind another in a

third dimension to form a multi-set array, see Figure 2.3.

When the data is organized in this manner and all three dimensions are

the same, the object is called an n-way array or a tensor, which we denote

with a script font, e.g. X . There are many decompositions or factorizations of

tensors to choose from, several of which are generalizations of the matrix SVD

(Kolda and Bader 2009). One of the most basic approaches to consider is the

Tucker1 model (Kolda and Bader 2009; Tucker 1966), which finds a single

orthonormal factor matrix in one of the modes that applies across all slices in

parallel. Mathematically, the Tucker1 model is

Xk ≈ AkV
T for k = 1, . . . , K, (2.3)

where the notation Xk and Ak refers to the kth frontal slice of tensors X and

A, respectively, with what is called slab notation. The matrix V is the set of

principal eigenvectors of
∑

k XT
k Xk (which is the same as the principal right

singular vectors of the matrix formed by stacking the slices Xk on top of each

other). Each matrix Ak is the matrix that best fits the data in a least squares

sense, which is just Ak = XkV because V is orthonormal.

To use the same framework as outlined previously for multilingual LSA where

we project new documents in the space of UkS
−1
k , we normalize the columns in

each Ak so that they have unit length and the weight is stored in a diagonal

matrix Sk . Then the Tucker1 representation becomes

Xk ≈ UkSkV
T for k = 1, . . . , K. (2.4)

Arabic

French

English

Spanish

Russian

X1

X2

X3

X4

X5

Figure 2.3 Multi-set array of term-by-document matrices.
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Xk
Uk VT

Sk

=

Figure 2.4 An illustration of the Tucker1 model.

For our case where the row dimension is not constant, however, we may assume

that the tensor has a row dimension of the largest matrix and that the other

smaller matrices are padded with rows of zeros in order to adapt the Tucker1

model. The resulting factor matrices Uk will have a corresponding number of

zero rows. Figure 2.4 shows the Tucker1 model.

Using a rank 300 Tucker1 model, we get an average P1 score of 89.5%

and an average MP5 score of 71.3%. With this tensor representation, we see

a small increase over SVD in P1 (p value = 8 × 10−3) and a large increase in

multilingual precision (p value = 4 × 10−11). However, the fact that each Uk

does not form an orthogonal space in the Tucker1 model may be limiting the

performance of this tensor approach. When projecting new documents onto these

oblique axes to get document feature vectors, distances between features are

distorted, which could adversely affect cosine similarity calculations.

2.6 PARAFAC2 method

PARAFAC2 (Harshman 1972) is a tensor decomposition that has orthogonal

basis vectors and is extensible to multi-set data. PARAFAC2 has been used in

the analysis of chemometric data, specifically in chromatography with retention

time shifts among samples. In chromatography, each sample being analyzed may

have a different elution profile, meaning that the signal may take longer or shorter

to collect. In such cases, each matrix may have a different number of rows, which

is just like the form of our multilingual multi-set data.

In Chew et al. (2007) we apply the PARAFAC2 technique to the multi-set

term–document array of Figure 2.3. The mathematical model of PARAFAC2 is

Xk ≈ UkHSkV
T for k = 1, . . . ,K, (2.5)

where each Uk is an orthogonal matrix that may have a different number of

rows for each k, H is a dense matrix that is predominantly diagonal for our

application, Sk is a diagonal matrix containing weights for each level of k, and
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Xk
Uk VT

Sk

H=

Figure 2.5 An illustration of the PARAFAC2 model.

V is a dense matrix that is not necessarily orthogonal. Figure 2.5 shows the

PARAFAC2 model. We project new documents in the space of UkS
−1
k .

The algorithm to fit a PARAFAC2 model is decidedly more complex than

for Tucker1, so we will only refer to the algorithm in Kiers et al. (1999), which

we implemented in MATLAB using the Tensor Toolbox (Bader and Kolda 2006,

2007a,b).

Due to memory constraints, we were not able to compute a rank 300

PARAFAC2 model. Instead we computed a rank 240 PARAFAC2 model, which

provided an average P1 score of 89.8% and an average MP5 score of 78.5%.

With this tensor representation, and even though the rank of the model is

lower than previously, we see a large and highly significant increase in MP5

over Tucker1 (p value = 2 × 10−17). However, the increase over Tucker1 is

insignificant for P1 (p value = 0.6).

2.7 LSA with term alignments

In Bader and Chew (2008) we returned to the matrix formulation of the term-

by-document matrix. Our approach was inspired by Hendrickson (2007), who

showed that LSA was related to Fiedler vectors of a graph Laplacian. This con-

nection suggested a means to incorporate additional information beyond just

term–document relationships into the SVD.

The basis of this approach is that the SVD may be calculated in several differ-

ent ways; see Table 2.2. If we consider the third option listed, where one can get

U and V from the eigenvectors of a block matrix with X and XT on the off diag-

onal, then we may add information to the diagonal blocks that complements the

information only found in X. In the context of LSA and a term–document matrix

X, these diagonal blocks correspond to term–term and document–document sim-

ilarity information. In Bader and Chew (2008) we consider adding information

only to the first diagonal block (labeled D1) corresponding to the terms; see

Figure 2.6.

There are several possible methods which can be used to add information

to D1. Conceptually, the simplest approach involves consulting a dictionary
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Table 2.2 Calculating the SVD X = U�V T may be accomplished via an

eigendecomposition of different matrices involving X.

Matrix Eigenvectors Eigenvalues

XXT → U & �2

XT X → V & �2

[

0 X

XT 0

]

→ 1√
2

(

U+
√

2U0 −U+
V 0 V

)

&

(

�
0

−�

)

U+ is the matrix of singular vectors with positive singular values, U0 is the matrix of

singular vectors with zero singular values.

U1

U3

U5

U2

U4

terms docs

te
rm
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o
c
s

eigendecomposition

V

eigenvectors eigenvalues

&

X
T

XD1

Figure 2.6 Eigendecomposition of block matrix with term-alignment information

yields stronger cross-lingual term relationships.

and populating the block so that Dij = 1 if the term pair (i, j) occurs in a

dictionary, and zero otherwise. Another option, which was used in Bader and

Chew (2008), involves computing the pairwise mutual information (PMI) of

two terms appearing together in the same documents across the whole cor-

pus. This draws upon one of the ideas which underpins statistical machine

translation (SMT) (Brown et al. 1994). To preserve sparsity in the matrix, we

retain the value only for the pair (i, j) that has the highest PMI in both direc-

tions. Because the resulting matrix is not symmetric and symmetry is needed

in D1 to obtain real eigenvalues, we symmetrize the matrix using a modi-

fied Sinkhorn balancing procedure. Sinkhorn balancing (Sinkhorn 1964) is also

needed to equalize contributions between terms. The standard Sinkhorn balancing

procedure normalizes the row and column sums to one, but we use a modi-

fied procedure that makes each row and column of D1 have unit length. This

modification was found to produce better results than creating a doubly stochas-

tic matrix D1. All together, we call this technique LSA with term alignments

(LSATA).

By adding term-alignment information to the diagonal block, we strengthen

the co-occurrence information that LSA normally finds in the parallel corpus via

the SVD. To understand this mathematically, we consider the solution obtained
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from LSA and then apply a power method to update U and V . Here is one

iteration of the power method on our block matrix:

Unew = D1U + XV, (2.6)

Vnew = XT U. (2.7)

The terms XV and XT U are the standard relationships in LSA. The term D1U

is new, and it reinforces term–term relationships from external information

(although note that under our approach, the information is not ‘external’ in that it

is implied by the same corpus from which we get the term-by-document matrix).

A graphical representation of this interpretation is shown in Figure 2.7, where

in one of the concept vectors in U the term ‘house’ dominates the correspond-

ing terms in Spanish and French, for example. After multiplication with D1, the

relationship between these three words is strengthened, and all three terms have

similar values.

This observation leads to another consideration: the weighting of D1 relative

to X. If the values of D1 are very small compared to X, then any contribution

from D1 will be negligible. The opposite happens if the values in D1 are very

large compared to X. Hence, the matrices D1 and X must be numerically balanced

by, say, multiplying D1 by some parameter β. For our corpus and particular scal-

ing of D1 (Sinkhorn-balanced PMI) and X (log-entropy with α = 1.8), we deter-

mined empirically that a value of β = 12 provides good results. Alternatively,

β can be determined automatically by routinely balancing the two contributions

from D1U and XV in Equations (2.6)–(2.7). One possible approach is to set

β =
‖XV ‖F

‖D1U‖F

. (2.8)

Algorithmically, β could be computed iteratively inside an eigensolver or

externally by looping over an eigensolver and adjusting β until it converges to

a constant value.

In our numerical experiments, using a rank 300 LSATA model and β = 12,

we get an average P1 score of 91.8% and an average MP5 score of 80.7%. With

this matrix representation, we see a small increase over PARAFAC2 in P1 and in

house

casa

maison

=

Figure 2.7 Term-alignment matrix D1 strengthens the cross-lingual term rela-

tionships in U identified by LSA.
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multilingual precision. Although these increases are small, they are statistically

significant (p values of 1 × 10−4 and 4 × 10−3, respectively).

2.8 Latent morpho-semantic analysis (LMSA)

In Chew et al. (2008b) we investigated alternate formulations of cross-language

retrieval using the VSM. A recurring pattern in our results was that Arabic

and Russian tended to have lower P1 scores than English, French, and Spanish.

This occurred irrespective of whether Arabic and Russian were the source or

target languages of the query, and it held for all of our techniques. This pattern

suggested a linguistic explanation to the problem and a corresponding linguistic

solution.

As discussed previously, languages fall on a spectrum from isolating to syn-

thetic. Arabic and Russian are synthetic languages, where meaning is shaped

through inflection and suffixation of words. This means that these languages have

more unique terms (see Table 2.1), which means that, for example in English, the

terms walk , walks , walking , and walked would correspond to separate rows in

X, and the co-occurrence patterns of these words may indicate that they are not

related. For morphologically complex languages like Arabic and Russian, even

more extreme examples could be found.

To address this problem, we have developed a morphologically more sophisti-

cated alternative to LSA, which we call latent morpho-semantic analysis (LMSA)

(Chew et al. 2008b). In this technique we perform a statistical analysis of the

language to identify tokenizations of character n-grams that maximize mutual

information among all possible nonoverlapping n-grams. We then use these

tokenizations to form a morpheme-by-document matrix instead of a term-by-

document matrix, weight it using log-entropy scaling (or other), and apply the

SVD to get a morpheme-by-concept matrix U and corresponding singular values

S, which we subsequently use in the standard way.

The benefits of this approach are twofold. First, all of the benefits of LSA

(language independence, speed of implementation, fast runtime processing) are

retained in this method. Second, we are more able to deal with out-of-vocabulary

terms in new documents because they may be broken down into their constituent

morphemes, which are more likely to be represented in the training corpus. Our

approach is related to stemming, except that all parts of the word are retained

in a morpheme-by-document matrix, not just the stems. Furthermore, this proce-

dure may be performed by a statistical analysis of the language, so no language

expertise is required.

Using a rank 300 LMSA model, we get an average P1 score of 88.7%

and an average MP5 score of 73.7%. With this linguistic representation, we

see performance about on par with the Tucker1 tensor technique: no statisti-

cal difference in P1 but a small (2.4%) improvement in multilingual precision

(p value = 5 × 10−3).
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2.9 LMSA with term alignments

With the development of LMSA, it is a simple extension to consider the term-

alignment framework of LSATA using morphemes instead of terms. We may call

this technique LMSATA, or LMSA with term alignments (in this case, terms refer

to morphemes). Morpheme alignments are determined using mutual information

in the same manner as terms are with LSATA. Then a 2 × 2 block matrix is

formed with morpheme alignments in D1 (scaling factor β = 12) and morpheme-

by-document matrix X with log-entropy weighting. An eigendecomposition of

this matrix yields eigenvectors from which we extract individual U matrices for

each language.

Using a rank 300 LMSATA model, we get an average P1 score of 94.6%

and an average MP5 score of 81.7%. With this linguistic representation, we

see an increase over the previous best method, LSATA, with a large gain in

P1 (p value = 5.1 × 10−8) and a slight but insignificant increase for MP5

(p value = 0.18).

2.10 Discussion of results and techniques

The results from all of our methods are tabulated in Table 2.3. Note that a number

of techniques from standard IR and computational linguistics were combined to

achieve much higher multilingual precisions. In fact, our best method reported

here, LMSATA, relies on a broad collection of techniques including: (1) morpho-

logical analysis of language using techniques from statistical machine translation;

(2) techniques from latent semantic analysis, including dimensionality reduction

using the SVD; and (3) numerical linear algebra for simultaneously analyzing

term co-occurrences and term–term alignments.

It is difficult to compare these techniques in terms of computational per-

formance because they were not implemented on a single machine/architecture;

some are parallel codes, others are serial MATLAB implementations. Generally

speaking, the SVD-based techniques, such as LSA and LMSA, are the fastest.

Table 2.3 Aggregate results from all algebraic techniques.

Method Average P1 Average MP5

SVD/LSA (α = 1.0) 76.0% 26.1%
SVD/LSA (α = 1.8) 88.0% 65.7%
Tucker1 89.5% 71.3%
PARAFAC2 89.8% 78.5%
LSATA 91.8% 80.7%
LMSA 88.7% 73.7%
LMSATA 94.6% 81.7%
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The eigenvector-based approach of LSATA and LMSATA requires more time

due to the larger matrix and term-alignment step. The tensor-based techniques

Tucker1 and PARAFAC2 are the slowest due to the data being organized as a

large three-way array. The morphological tokenization of LMSA and LMSATA

adds an extra processing step that adds time to both the training and test sets,

and the resulting morpheme-by-document matrix is smaller yet denser.

As a demonstration of what is possible when the framework achieves high

multilingual precision (around 90%), we present in Figures 2.8 and 2.9 a visu-

alization of how the books of the Bible, color-coded according to language,

are represented in two-dimensional space. Note that the books cluster first to

their counterparts in other languages, and then into larger clusters containing

related books. In particular, Figure 2.9 shows that John and Acts have tight

clusters, while there is some mixing among Matthew, Mark, and Luke, which

seems reasonable; Bible scholars call these three synoptic gospels because they

share a similar perspective. This kind of visualization is possible only when

Figure 2.8 Visualization of clustering of multilingual Bible books. Rectangle rep-

resents area of detail shown in Figure 2.9.
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English

Russian

Arabic

French
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Figure 2.9 Partial visualization of clustering of multilingual Bible books.

multilingual precision is satisfactorily high. In summary, these techniques have

effectively allowed us to factor out language, focusing only on topic, just as we

had hoped.
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3

Content-based spam email

classification using

machine-learning algorithms

Eric P. Jiang

3.1 Introduction

With the rapid growth of the Internet and advances in computer technology email

has become a preferred form of communication and information exchange for

both business and personal purposes. It is fast and convenient. In recent years,

however, the effectiveness and confidence in email have been diminished quite

noticeably by spam email, or bulk unsolicited and unwanted email messages.

Spam email has been a painful annoyance for email users with an overwhelm-

ing amount of unwelcome messages flowing into their mailboxes. Now, it has

also evolved into a primary medium for spreading phishing scams and malicious

viruses. The cost of spam in the United States alone in terms of decreased pro-

ductivity and increased technical expenses for businesses has reached tens of

billions of dollars annually.1 Worldwide spam volume has increased significantly

and during the first quarter of 2008, spam email accounted for more than nine

out of every ten email messages sent over the Internet.2

1 http://www.spamlaws.com/spam-stats.html
2 http://www.net-security.org/

Text Mining: Applications and Theory edited by Michael W. Berry and Jacob Kogan

 2010, John Wiley & Sons, Ltd
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Over the years, various spam filtering technology and anti-spam software

products have been developed and deployed. Some of them are designed to

detect and stop spam email at the TCP/IP or SMTP level and may rely on DNS

blacklists of domain names that are known to originate spam. This approach has

been commonly used. However, it can be insufficient due to the lack of accuracy

of the name lists, since spammers can now register hundreds of free webmail ser-

vices such as Hotmail and Gmail and then rotate them every few minutes during

a spam campaign. The other major type of spam filtering technology functions at

the client level. Once an email message is downloaded, its content can be exam-

ined to determine whether the message is spam or legitimate. Several supervised

machine-learning algorithms have been used in client-side spam detection and

filtering. Among them, naive Bayes (Mitchell 1997; Sahami et al. 1998), boost-

ing algorithms such as logitBoost (Androutsopoulos et al. 2004; Friedman et al.

2000), support vector machines (SVMs) (Christianini and Shawe-Taylor 2000;

Drucker et al. 1999), instance-based algorithms such as k-nearest neighbor (Aha

and Albert 1991), and Rocchio’s classifier (Rocchio 1997) are commonly cited.

More recently, a number of other interesting algorithms for spam filtering have

been developed. One uses an augmented latent semantic indexing (LSI) space

model (Jiang 2006) and another applies a radial basis function (RBF) neural

network (Jiang 2007).

This chapter considers five supervised machine-learning algorithms for an

evaluation study of spam filtering application. The algorithms selected in this

study include widely used ones with good classification results and some recently

proposed methods. More specifically, we evaluate these five classification algo-

rithms: naive Bayes classifier (NB), support vector machines (SVMs), logitBoost

algorithm (LB), augmented latent semantic indexing space model (LSI) and radial

basis function (RBF) networks.

Spam filtering is a cost-sensitive classification task since misclassifying legit-

imate email (a false positive error) is generally more costly than misclassifying

spam email (a false negative error). Fairly recently, there have been several stud-

ies (Androutsopoulos et al. 2004; Zhang et al. 2004) surveying machine-learning

techniques in spam filtering. Using a constant λ to measure the higher cost of

false positives, these studies have evaluated several algorithms on spam filter-

ing by integrating the λ value or a function of λ into the algorithms through

a variety of cost-sensitive adjustment strategies. This was done by increasing

algorithm thresholds on spam confidence scores, adding more weights on legit-

imate training samples, or empirically adjusting algorithm decision thresholds

using cross-validation. Different adjustment strategies have also been applied to

different algorithms in the studies. Since all the algorithms were designed with

cost-insensitive tasks in mind, applying such simple cost-sensitive adjustments

on the algorithms can produce unreliable results. Apparently this insufficiency

has been recognized and, for some algorithms, the studies reported only the best

results among several adjustment trials.

This chapter provides a related study of five machine-learning algorithms on

spam filtering from a different perspective. The main objective of the study is to
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learn whether and to what extent the algorithms are adaptable and applicable to

the cost-sensitive email classification problem and to identify the characteristics

of the algorithms most suitable for adaptability. In this study, we selected two

benchmark email testing corpora for experiments that were constructed from two

different languages and have reverse ratios of the number of spam emails to the

number of legitimate emails in the training data. We also vary feature size in the

experiments to analyze the usefulness of feature selection for these algorithms.

The rest of the chapter is organized as follows. In Section 3.2, the five

machine-learning algorithms that are investigated for spam filtering applica-

tions are briefly described. In Section 3.3, several data preprocessing procedures,

including feature selection and message representation, are discussed. Spam filter-

ing is a cost-sensitive classification task and a related discussion of effectiveness

measures is included in Section 3.4. We then compare the algorithms, using two

popular email testing corpora. The experimental results and analysis are reported

in Section 3.5, and an empirical comparison of the characteristics of the five clas-

sifiers is presented in Section 3.6. Finally, some concluding remarks are provided

in Section 3.7.

3.2 Machine-learning algorithms

Spam email filtering is an application of automated text classification with two

categories. A number of machine-learning algorithms, which have been success-

fully used in text classification (Sebastiani 2002), can also be applied in spam

filtering. Given a collection of labeled email samples, these algorithms can learn

from the samples to classify previously unseen email into the categories based

on their content. The algorithms of NB, LB, SVM, augmented LSI, and RBF are

among those that have achieved good performance for spam filtering. They are

included in this study and are briefly described in this section.

In this chapter, we use D = {d1, d2, . . . , dn} to denote a training set of email

samples with size n and C = {cl, cs} the email categories (cl , legitimate; cs ,

spam). We assume each email message di can be expressed as a numeric vec-

tor representing the weights of terms or features di = (t1, t2, . . . , tm) ∈ ℜn (see

Section 3.3.2).

3.2.1 Naive Bayes

The NB classifier is a probabilistic learning algorithm that derives from Bayesian

decision theory (Mitchell 1997). The probability of a message d being in class

c, P(c|d), is computed as

P(c|d) ∝ P(c)

m
∏

k=1

P(tk|c), (3.1)

where P(tk|c) is the conditional probability of feature tk occurring in a message

of class c and P(c) is the prior probability of a message occurring in class c.



40 TEXT MINING

P(tk |c) can be used to measure how much evidence tk contributes that c is the

correct class (Manning et al. 2008). In email classification, the class of a message

is determined by finding the most likely or maximum a posteriori (MAP) class

cMAP defined by

cMAP = arg max
c∈{cl ,cs }

P(c|d) = arg max
c∈{cl ,cs }

P(c)

m
∏

k=1

P(tk|c). (3.2)

Since Equation (3.2) involves a multiplication of many conditional probabilities,

one for each feature, the computation can result in a floating point underflow.

In practice, the multiplication of probabilities is often converted to an addition

of logarithms of probabilities and, therefore, the maximization of the equation is

alternatively performed by

cMAP = arg max
c∈{cl ,cs }

[

log P(c) +
m
∑

k=1

log P(tk|c)
]

. (3.3)

All model parameters, i.e. class priors and feature probability distributions, can

be estimated with relative frequencies from the training set D. Note that when

a given class and message feature do not occur together in the training set, the

corresponding frequency-based probability estimate will be zero, which would

make the right hand side of Equation (3.3) undefined. This problem can be

mitigated by incorporating some correction such as Laplace smoothing in all

probability estimates.

NB is a simple probability learning model and can be implemented very

efficiently with a linear complexity. It applies a simplistic or naive assumption

that the presence or absence of a feature in a class is completely independent

of any other features. Despite the fact that this oversimplified assumption is

often inaccurate (in particular for text domain problems), NB is one of the most

widely used classifiers and possesses several properties (Zhang 2004) that make

it surprisingly useful and accurate.

3.2.2 LogitBoost

LB is a boosting algorithm that implements forward stagewise modeling to form

additive logistic regression (Friedman et al. 2000). Like other boosting methods,

LB adds base models or learners of the same type iteratively, and the construction

of each new model is influenced by the performance of those preceding ones.

This is accomplished by assigning weights to all training samples and adaptively

updating the weights through iterations. Suppose fm is the mth base learner and

fm(d) is the prediction value of message d . After fm is constructed and added

to the ensemble, the weights on training samples are updated in such a way that

the subsequent base learner fm+1 will focus more on those difficult samples to

classify by fm. In the iteration process, the probability of d being in class c
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is estimated by applying a sigmoid function, which is also known as the logit

transformation, to the response of the ensemble that has been built so far, i.e.

P(c|d) =
eF(d)

1 + eF(d)
, F (d) =

1

2

∑

fm(d). (3.4)

Once the iteration terminates and the final ensemble F is created, the classification

of target email messages is determined by the probability in Equation (3.4).

A popular base learner choice for LB is decision stump, a one-level deci-

sion tree that uses an attribute in training data to classify training samples into

categories. In text classification, since we deal with continuous attributes, the

decision tree is actually a threshold function on one of the data attributes and

hence it becomes a regression stump (Androutsopoulos et al. 2004). It can be

shown that the LB algorithm maximizes the probability of the data with respect

to the ensemble if each base learner fm is determined by minimizing the squared

error on the fitted regression of weighted training data (Witten and Frank 2005).

The model’s iteration number m is specified by the user and we set it to 50,

which is the smallest feature size used in this study.

3.2.3 Support vector machines

SVMs (Christianini and Shawe-Taylor 2000) have been considered the most

promising algorithm in text classification. The algorithm uses linear models to

implement nonlinear category boundaries by transforming a given instance space

into a linearly separable one through nonlinear mappings. In the transformed

space, an SVM constructs a separating hyperplane that maximizes the distance

between the training samples of two categories. This is done by selecting two

parallel hyperplanes that are each tangent to at least one sample of its category;

such samples on the tangential hyperplanes are called the support vectors. The

distance between the two tangential planes is the margin of the classifier, which

is to be maximized, and that is why a linear SVM is also known as a maximal

margin classifier.

Assume the class variable for the ith training sample is ci = {1,−1}, indi-

cating the spam (1) or legitimate (−1) category, respectively. A hyperplane in

the sample space can be written as

w · d + b = 0, (3.5)

where w is a normal vector that is perpendicular to the hyperplane, and b is

a bias term. If the given training data is linearly separable, we can select two

hyperplanes that contain no points between them and then maximize the distance

(margin) between the hyperplanes, which is 2/‖w‖. Maximizing the margin is

equivalent to solving the following constrained minimization problem:

min
w

‖w‖2

2
, subject to ci(w · di + b) ≥ 1. (3.6)
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The optimization problem in Equation (3.6) can be solved by the standard

Lagrange multiplier method with the new objective function:

‖w‖2

2
−
∑

i

λi[ci(w · di + b) − 1]. (3.7)

Since the Lagrangian involves a large number of parameters, this is still a dif-

ficult problem. Fortunately, the problem can be simplified by transforming the

Lagrangian in Equation (3.7) into the following dual formation that contains only

Lagrange multipliers:

max
∑

i

λi −
1

2

∑

i,j

λiλjcicjdi · dj , subject to λi ≥ 0, and
∑

i

λici = 0.

(3.8)
The dual optimization problem can usually be solved by using some numerical

quadratic programming techniques such as the sequential minimal optimization

algorithm (Platt 1999). The terms λi from Equation (3.8) are used to define the

decision boundary
(

∑

i

λicidi · d
)

+ b = 0. (3.9)

In order to deal with the cases where the training samples cannot be fully sep-

arated and also small misclassification errors are permitted, the so-called soft

margin method was developed for choosing a hyperplane that intends to reduce

the number of errors committed by the decision boundary while maximizing the

width of the margin. The method introduces a positive-valued slack variable ξ

that measures the degree of misclassification error on a sample and solves the

following modified optimization problem:

min
w

‖w‖2

2
+ C

∑

i

ξi, subject to ci(w · di + b) ≥ 1 − ξi, (3.10)

where a linear penalty function is used and C is a user-specified constant that

determines an error tolerance level. In our experiments, we set C = 1.

The linear SVM described above can be extended into a nonlinear classi-

fier. Conceptually, we could just transform the training data (where no linear

decision boundaries can be found) to a new feature space so that a linear deci-

sion boundary can be constructed to separate the data in the transformed space.

However, this feature transformation approach raises a few issues about high

feature dimensionality and high computational requirements. Alternatively, non-

linear classifiers can be created by applying a procedure similar to the linear ones

to construct maximum margin hyperplanes, except that every dot product in the
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transformed space is replaced by a kernel function in the original feature space.

Computing the dot products using kernels is considerably cheaper than using

the transformed features. Several different kernel functions have been proposed

and, for text classification, it seems that the SVM with a simple linear kernel

performs comparably to nonlinear alternatives (Joachims 1998). An SVM with a

linear kernel is used in our evaluation.

3.2.4 Augmented latent semantic indexing spaces

Latent semantic indexing (LSI) (Deerwester et al. 1990) is a well-known infor-

mation retrieval technique. By deploying a rank-reduced feature–document space

through the singular value decomposition (SVD) (Golub and van Loan 1996),

it effectively transforms individual documents into their semantic content vec-

tors to estimate the major associative patterns of features and documents and to

diminish the obscuring noise in feature usage (Berry et al. 1995).

LSI can be used as a learning algorithm for spam filtering by replacing the

notion of query relevance with the notion of category membership. An experi-

ment of this approach on the Ling-Spam corpus was reported in Gee (2003) and

it constructs a single LSI space to accommodate both spam and legitimate email

training data. This simple application has some drawbacks (Jiang 2006). LSI

itself is a completely unsupervised learning algorithm and when it is applied to

(supervised) spam filtering, valuable category discriminative information embed-

ded in training data should be extracted and integrated in model learning to boost

classification accuracy. There are several approaches that can be used toward this

goal. For instance, we can select distinctive features by exploring their category

distributions (see Section 3.3) and introduce two separate LSI learning spaces

(one for each email category). Feature selection also helps reduce computational

requirements due to the SVD algorithm in the model.

For a given email training set, each of the two rank-reduced spaces can

be constructed by using the data of its respective category and conceptually it

would provide a more accurate category content profile than that produced from

a single combined space. In practice, however, this dual-space approach may

still encounter difficulties in classifying some email messages since many spam

messages are purposely crafted to look legitimate and to mislead spam filters.

This has been verified by our extensive experiments. In order to ameliorate this

problem, a new model that uses augmented LSI learning spaces was proposed

in Jiang (2006). More precisely, for each constructed category LSI space, this

model augments the space with a small number of the training samples that are

closest to the category in appearance but actually belong to the other category

in label. This augmented LSI space model can effectively help classify those

difficult target messages correctly, which are similar to the augmented samples

used in the training, while maintaining accurate classification of other messages.
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Expansion of the augmented training samples is carried out by cluster cen-

troids. For each email category, we construct one or multiple clusters. For each

cluster cj , its centroid is computed as

acj
=

1

k

k
∑

i=1

dni
, dni

∈ cj , (3.11)

and it can be used to represent the most important topic covered in the cluster

(Jiang 2006). Once the cluster centroids of a category c are identified, all training

samples from the other category are compared against the centroids and the most

similar ones are then chosen to add to the training set of c. Selecting the sizes

of clusters and augmented samples of a category can vary depending on the data

to be learned. The cluster size can also be set by a silhouette plot (Kaufman

and Rousseeuw 1990) on a given training dataset. In our experiments, we use

the augmented sample sizes of 18 and 70 for the corpora PU1 and ZH1 (see

Section 3.5), respectively.

To use two separate augmented LSI spaces for classification, several

approaches have been considered and evaluated in Jiang (2006) that coordinate

and classify target email messages into their respective classes. For a given

target message, the first approach simply projects it onto both LSI spaces and

then uses the most semantically similar training sample to decide the class

for the message. The second approach classifies the message similarly but by

applying a fixed number of the top most similar training samples in the spaces

and using either the sum or average of computed similarity values from both

classes to make its classification decision. The third approach is a hybrid one

that intends to combine the ideas of the first two methods and also to mollify

some of their shortcomings. Essentially, it determines the class for the target

message by linearly balancing the votes or decisions made by the first two

methods. Experiments indicate that in general the hybrid approach delivers

significantly better classification results (Jiang 2006) and it is used in the study.

3.2.5 Radial basis function networks

RBF networks have many applications in science and engineering and can also be

used to build learning models for filtering spam email (Jiang 2007). A typical RBF

network has a feedforward connected structure of three layers: an input layer, a

hidden layer of nonlinear processing neurons, and an output layer (Bishop 1995).

For email classification, the input layer of the network has n neurons and it takes

input training samples d . The hidden layer contains k computational neurons;

each neuron can be mathematically described by an RBF φi that maps a distance

between two vectors in the Euclidean norm into a real value:

φi(x) = φ(‖x − ai‖2), i = 1, 2, . . . , k, (3.12)

where ai are the RBF centers in the input sample space and, in general, k is

less than the size of training samples. The output layer of the network has two
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neurons that produces the target message category according to

cj =
k
∑

i=1

wijφi(x), j = 1, 2, (3.13)

where wij is the weight connecting the ith neuron in the hidden layer to the j th

neuron in the output layer. The neuron activation φi is a nonlinear function of the

distance; the closer the distance, the stronger the activation. The most commonly

used basis function is the Gaussian

φ(x) = e
− x2

2σ2 , (3.14)

where σ is a width parameter that controls smoothness properties of the basis

function.

In the spam filtering model (Jiang 2007), the network parameters, i.e. centers,

widths, and weights, are set by a two-stage training procedure, which is compu-

tationally efficient. The first stage of training is to form a representation of the

density distribution in input space in terms of the parameters of the RBFs. The

centers ai and widths σ are determined by relatively fast and unsupervised clus-

tering algorithms, clustering each email category independently to obtain k basis

functions for the category. In general, the larger the value of k, the better the

classification outcomes and, of course, the higher the cost it carries in network

training. With the computed and fixed centers and widths for the hidden layer,

the second stage of training selects the weights of the output layer by a logistic

regression procedure. Once all network parameters are determined, the model

can be deployed to target email messages for classification, and classification

outcomes from the network are computed by a weighted sum of the hidden layer

activations, as is shown in Equation (3.13).

Recently, an RBF-based semi-supervised text classifier has also been devel-

oped (Jiang 2009). It integrates a clustering-based expectation maximization

algorithm into the RBF training process and can learn for classification from

a very small number of labeled training samples and a large pool of additional

unlabeled data effectively.

3.3 Data preprocessing

In this section, we begin with some data preprocessing procedures that include

feature selection and message representation, followed by a discussion of classi-

fication effectiveness measures for spam filtering.

3.3.1 Feature selection

As in general text classification, appropriate feature selection can be quite useful

in aiding email classification. A term or feature is referred to as a word, a
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number, or a symbol in an email message. In spam filtering, features from training

samples are selected according to their contributions to profiling legitimate or

spam messages and those unselected features are removed from the data for

model learning and deployment. The objectives of feature selection are twofold.

On one hand, it is designed for dimensionality reduction in the message feature

space. Dimensionality reduction aims to trim down the number of features to be

modeled while the content of individual messages is still preserved. It generally

helps speed up a model training process. On the other hand, feature selection

intends to filter out irrelevant features, helping build an accurate and effective

model for spam filtering. This is particularly valuable to certain machine-learning

algorithms such as RBF networks, which treat every data feature equally in their

distance computations and therefore are somewhat incapable of distinguishing

relevant features from irrelevant ones.

Two steps of feature selection are used in our experiments. First, for a given

set of training data, features are extracted and selected with an unsupervised

setting. This is carried out by removing the stop or common words and applying

a word stemming procedure. Then, the features with low message frequencies or

low corpus frequencies are eliminated from the training data, as these features

may not help much in differentiating messages for categories and may add some

obscuring noise in email classification. The selection process also removes those

features with very high corpus frequencies in the training data as many of these

features distribute almost equally between spam and legitimate categories and

may not be valuable in characterizing the email categories. Next, features are

selected by their frequency distributions between spam and legitimated training

messages. This supervised feature selection procedure intends, using those labeled

training samples, to further identify the features that distribute most differently

between the categories.

There are several supervised feature selection methods that have been widely

used in text classification (Sebastiani 2002). They include the chi-square statistic

(CHI), information gain (IG), and odds ratio (OR) criteria. The IG criterion

quantifies the amount of information gained for category prediction by knowledge

of the presence or absence of a feature in a message. More precisely, IG of a

feature t about a category c can be expressed as

IG(t, c) =
∑

c′∈{c,c}

∑

t ′∈{t,t}

P(t ′, c′) log
P(t ′, c′)

P (t ′)P (c′)
, (3.15)

where P(c′) and P(t ′) denote the probability that a message belongs to category

c′ and the probability that a feature t ′ occurs in a message, respectively, and

P(t ′, c′) is the joint probability of t ′ and c′. All probabilities can be estimated

by frequency counts from the training data. Another popular feature selection

method is CHI. It measures the lack of independence between the occurrence of

feature t and the occurrence of class c. In other words, features are ranked with

respect to the quantity
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CHI(t, c) =
n[P(t, c)P (t, c) − P(t, c)P (t, c)]2

P(t)P (t)P (c)(c)
, (3.16)

where n is the size of training data D (see Section 3.2) and the probability

notations have the same interpretations as in Equation (3.15). For instance, P(c)

represents the probability that a message does not belong to category c. The third

feature selection criterion, OR, has also been used in text classification and it

measures the ratio of the odds of term t occurring in a message of class c to the

odds of the term not occurring in c and can be defined as

OR(t, c) =
P(t |c)(1 − P(t |c))
(1 − P(t |c))P (t |c)

. (3.17)

The effectiveness of the feature selection methods for text classification

has been studied and compared, e.g. by Yang and Pedersen (1997), and some

experiments with the criteria described above have also been conducted in this

study. Among these three feature selection methods, our experiments suggest

that the IG measure produces more stable classification results, so we used it in

the selection process.

Through feature selection, the feature dimensionality of a training dataset

can be reduced significantly. For instance, in the experiments with PU1 (see

Section 3.5.1) the original feature size of the corpus, which is over 20 000 can

be trimmed down to tens, hundreds, and thousands.

3.3.2 Message representation

After feature selection, each message is encoded as a numeric vector whose ele-

ments are the values of the retained feature set. Each feature value is associated

with a local and global feature weight, representing the relative importance of the

feature in the message and the overall importance of the feature in the corpus,

respectively. Our experiments indicate that feature frequencies are more infor-

mative than a simple binary coding (which, for instance, is used in Zhang et al.

(2004)) in the context of email classification.

There are several choices to weight a feature or term locally and globally

based on its frequencies. For a given term t and document d , the traditional

‘log(tf)–idf’ term weight is defined as

wt,d = log(1 + tft,d) log
|D|
dft

, (3.18)

where tft,d is the term frequency (tf) of t in d , dft is the document frequency

(df) of t , or the number of documents in a collection D that contain t , and

|D| is the size of the collection. The second component on the right hand side
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of Equation (3.18) represents the inverse document frequency (idf) of t . This

term weighting scheme is used in this work and it produces good classification

results.

3.4 Evaluation of email classification

The effectiveness of a text classifier can be evaluated in terms of its precision

(p) and recall (r) measures. For a classifier and with respect to a category c,

if the numbers of true positive, false positive, and false negative decisions on

category c from the classifier are tp, fp, and fn, respectively, then the precision

and recall are defined as

p =
tp

tp + fp
, r =

tp

tp + fn
. (3.19)

In brief, the precision measure is gauged by the percentage of documents classi-

fied to c which actually are, whereas the recall is quantified by the percentage of

documents from c that are categorized by the classifier. Clearly, these two quan-

tities trade off against one another and one single measure that balances both is

the F -measure, which is the weighted harmonic mean of precision and recall.

With an equal weight for both precision and recall, we have the commonly used

F1 measure

F1 =
2pr

p + r
. (3.20)

All these effectiveness measures, however, do not take a possible unbalanced

misclassification cost into consideration. Spam email filtering can be a cost-

sensitive learning process in the sense that misclassifying a legitimate message

to spam (false positive) is typically a more severe error than misclassifying a

spam message to legitimate (false negative). In reality, if a legitimate message

is mistakenly classified and placed into a user’s trash-mail box, then the user

may not find this out for a short or long period of time and, depending on how

important the message is, a delayed reading of the message could come with

some negative consequences. In our experiments, an accuracy measure that uses

a weight λ to reflect the unbalanced cost between false positive and false negative

errors, or the weighted accuracy (Androutsopoulos et al. 2004), is used as the

effectiveness criterion and it can be defined as

WA(λ) =
λtn + tp

λ(tn + fp) + (tp + fn)
, (3.21)

where the quantities tp, fp, and fn are the same as in Equation (3.19), tn denotes

the true negative classification count, and λ is a cost parameter. The WA formula

assumes that a false positive error is λ times more costly than a false negative

one. We use λ = 1 for the case where both false positive and false negative

errors have an equal cost and also a value of λ that is greater than one, such as
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nine, to indicate a higher cost of false positive errors. It is still arguable if such

a higher cost in spam filtering can be quantified by a simple constant (Hidalgo

2002), and the cost should perhaps depend on several variable external factors.

In this study, we use λ = 9 (or any other number in a similar quantity) just as

a value to illustrate whether or not and how the effectiveness of the algorithms

may change when a cost-sensitive condition is imposed.

3.5 Experiments

In this section, we use two benchmark email testing corpora to compare the

efficacy of the five machine-learning algorithms, discussed in Section 3.2, for

spam email filtering and provide the experimental results and analysis. Note that

the input data to the classifiers is the preprocessed message vectors after both

feature selection and feature weighting.

3.5.1 Experiments with PU1

PU1 is a benchmark spam testing corpus that contains a total of 1099 real

email messages received by a single email user over a certain period of time

(Androutsopoulos et al. 2004) and it is partitioned into 618 legitimate and 481

spam messages. The messages in the corpus have been preprocessed with all

attachments, HTML tags, and header fields, except for subject lines which were

removed, and the retained words in the email subject line and body text were

encoded numerically for privacy protection.

There are a few other publicly accessible spam datasets such as the 2005

TREC spam corpus that can be used for spam filtering evaluation. However, most

of them were aggregated from multiple different email sources or recipients, and

some of the large ones were constructed by simply adding some newly gathered

email messages to what had been collected. For very understandable privacy

reasons, it has been a challenge for IT researchers to find coherent, reliable,

and updated public email data, which can reflect what an average email user

receives, for conducting experiments and producing meaningful and comparable

testing results.

It should be pointed out that, in this study, we use only email subject line

and body text as the email content. This is a constraint imposed by construction

of the corpora we used in the experiments. The machine-learning algorithms

investigated in this chapter, however, can plainly be applied to broader email

content. As noted by several previous studies, e.g. Zhang et al. (2004), the features

from other email text such as headers are indeed useful in discriminating spam

email. Therefore, we expect that the classification accuracy of the algorithms

presented in this section would be further increased if we were to use the broader

content that includes email header fields.

The experiments on PU1 are performed using 10-fold cross-validation. That

is, the corpus is partitioned into 10 equally sized subsets and each experiment
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takes one subset for testing and the remaining ones for training and the process

repeats 10 times with each subset taking a turn for testing. The effectiveness is

then evaluated by averaging over the 10 experiments, delivered as an average

weighted accuracy defined in Equation (3.21). Various feature sizes are also used

in the experiments that range from 50 to 1650 with an increment of 100.

Classification effectiveness of the five algorithms, measured by the average

weighted accuracy over all feature sizes that have been considered, is shown

in Figure 3.1 (λ = 1) and Figure 3.2 (λ = 9), respectively. The case of λ = 1

may reflect classification efficacy of the algorithms for general cost-insensitive

learning with a small number of classes. Figure 3.1 shows that RBF performs

very well over small feature sizes, but, along with LB, it produces less accurate

classification than all other three classifiers at large feature sizes. On the other

hand, LSI behaves in a fairly opposite way: it is the least accurate classifier

over small feature sizes but achieves good accuracy at large feature sizes. The

relatively stable performance of NB, SVM, and LB through all feature sets can

be observed, where NB is the top performer, followed closely by SVM and then

LB at a distance.

Now, we turn to the case of λ = 9 and we intend to use the generated weighted

accuracy values to demonstrate whether or not and how the accuracy results of

an algorithm change when a false positive error is to be punished more than

a false negative error or a cost-sensitive condition is imposed. The changes, if

any, should ultimately depend on how well the algorithm can profile legitimate

messages and make small numbers of false positive errors. For both NB and LB

classifiers, their accuracy values in this case are not significantly different from

those in Figure 3.1 and, relatively, their false positive errors are comparable to

their false negative ones. Similar observations can also be made for SVM. On the
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Figure 3.1 Average weighted classification accuracy with λ = 1 (PU1).
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Figure 3.2 Average weighted classification accuracy with λ = 9 (PU1).

other hand, since LSI, followed very closely by RBF, carries somewhat smaller

numbers of false positive errors than other classifiers, its accuracy values are

lifted for it to become the top performer. A detailed analysis of LSI and RBF on

their error counts suggests that a richer feature set generally helps the classifiers

characterize legitimate messages and improve classification of the category. But it

may not be useful for them to improve their classification of spam messages. One

possible explanation for this phenomenon may be related to the vocabularies used

in the respective email categories. It is hypothesized that spam email has a strong

correspondence between a small set of features and the category, while legitimate

email likely carries more sophisticated characteristics. The spam category could

attain good classification with a small vocabulary while the legitimate category

requires a large vocabulary, which can be assisted by feature expansion.

3.5.2 Experiments with ZH1

In this subsection, we present the experiments of the five classifiers on a Chinese

spam corpus ZH1 (Zhang et al. 2004). The experiments aim to demonstrate the

capability of individual classifiers to classifying email written in a language with a

different linguistic structure. Chinese text does not have explicit word boundaries

like English, and words in the text can be extracted by some specially designed

word segmentation software (Zhang et al. 2004). The construction of corpus ZH1

is very similar to PU1 where ZH1 is made up of 1205 spam and 428 legitimate

email messages. All messages in the corpus are also numerically encoded. Note

that, in contrast to PU1, ZH1 has more spam email than legitimate email in

the corpus and this helps examine whether or not and how the classifiers are

possibly influenced in their model learning by unbalanced training sample sizes
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between the categories. Experiments on ZH1 are also performed using 10-fold

cross-validation and the same feature sets as those with PU1.

Figure 3.3 and Figure 3.4 show the average weighted accuracy values obtained

by all five classifiers over the feature sizes for λ = 1 and λ = 9, respectively.

For the case of equal misclassification cost (λ = 1), Figure 3.3 indicates that

SVM and LB perform best over most feature sizes, followed by LSI and then

RBF; in this case, NB evidently fails to be comparable. When a higher cost on

false positive errors is considered (λ = 9), similar observations can be made from
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Figure 3.3 Average weighted classification accuracy with λ = 1 (ZH1).
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Figure 3.4, but this time, at those feature sizes that are greater than 350, both

LSI and RBF become much more competitive than LB and SVM. All four of

these classifiers achieve high classification accuracy.

3.6 Characteristics of classifiers

In comparison to general text classification, spam email filtering represents a

special, cost-sensitive, and very challenging classification task. It has two cate-

gories to be classified. The cost of the two types of misclassification errors is

different and many spam messages are purposely and carefully constructed to

look very much like legitimate ones. Though both spam and legitimate email

messages may have a similar appearance, there may be still some important and

different characteristics for each email category that should not be overlooked.

For instance, in contrast to spam email, legitimate email has in general a broader

vocabulary and also perhaps more eclectic subject matter. Ideally, a successful

machine-learning algorithm used in this particular classification domain should

fully utilize potential differences between the email categories and, more impor-

tantly, should be capable of profiling legitimate messages accurately and carry

only a small number of false positive misclassification errors.

As in many other applications of machine learning, declaring one algorithm

as the best for spam filtering is a difficult task and perhaps almost impossible.

The experiments and analysis conducted in this study, however, have revealed

some interesting characteristics among the five classifiers investigated. They are

summarized below.

Naive Bayes (NB). This classifier is simple and the fastest in model learning

among the five classifiers. It can work well for text classification. Since the algo-

rithm assumes that individual features are completely independent of one another,

the classifier can benefit from effective feature selection, which is demonstrated

in the PU1 experiments. In the same vein, NB can perform poorly if it is applied

to a dataset where there are some observable dependencies among features. One

possible explanation for the inadequate performance of NB on ZH1 is the lan-

guage on which the corpus is based. Chinese is a language with a vast vocabulary

and it is extremely difficult to automatically extract meaningful words or features

correctly from a Chinese document; many Chinese words are also polysemous

(the words can have very different meanings depending on the context in which

they are used). All of these language characteristics may contribute to inaccu-

rate probability estimation and heavy feature dependencies, which can inevitably

reduce the power of the NB algorithm.

LogitBoost (LB). As a boosting algorithm, LB combines multiple simple base

learners (decision stumps in this case) iteratively to make a powerful classifier.

Although the base learner has a very simple structure, the ensemble construction

can still be very time consuming. The success of LB on text classification or spam

filtering seems to depend on the dataset but generally LB delivers competitive

results. One interesting and unique characteristic of the method is its insensibility
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to feature size and large feature sizes may not help improve its classification

accuracy. Hence, it seems that a relatively small feature size such as 250 could

be used for the model training. Finally, the learning ability of the classifier for

profiling a category appears to be influenced by the size of available training

samples of the category.

SVM . As reported by several previous studies, SVM is a very stable classifier

and is also scalable to feature dimensionality. In this study, SVM consistently

performs as the best or as a very competitive classifier, in particular when cost-

insensitive classification is considered. The linear SVM used in this study is also

relatively fast in model training.

Augmented latent semantic indexing spaces (LSI). The LSI model constructs

two separate rank-reduced and augmented learning spaces, one for each email

category. In this study, the model has been demonstrated to be a very reliable

classifier and it consistently delivers competitive classification results. The model

also seems well suited to cost-sensitive spam filtering and this could be in part

due to its integrated clustering component for constructing the augmented LSI

spaces. Good performance of the classifier generally requires a feature size of

about 500 or larger. Algorithm training can be expensive if the feature size

becomes very large.

Radial basis function networks . The RBF-based classifier performs reason-

ably well, especially when it is evaluated as a cost-sensitive learning algorithm.

This is likely contributed by the clustering process used in its first stage of net-

work training. The model’s performance appears to be affected by the clustering

accuracy and, in addition, the classifier seems to be sensitive to feature size, so

any excessive feature selection attempts should be avoided.

Overall, in terms of adaptability to cost-sensitive spam filtering, the classifiers

based on LSI and RBF demonstrate their strength in this evaluation. Although

these are two quite different machine-learning algorithms, they share one common

characteristic: that is, both use a clustering component in their model training.

Since clustering can potentially group messages by topics, an integrable clustering

process can benefit from machine-learning algorithms in enhancing their profile

accuracy of legitimate email (i.e. the category with a large vocabulary), and in

reducing their numbers of false positive errors.

3.7 Concluding remarks

In this chapter, we provide an evaluation study of five current machine-learning

algorithms proposed for spam filtering. The algorithms are described and com-

pared by using various feature sizes, determined through an effective feature

selection procedure, and by conducting experiments on some benchmark spam

testing corpora constructed from two different languages. In particular, this study

evaluates the adaptability of the algorithms for cost-sensitive spam filtering and,

in this regard, the classifiers based on augmented LSI spaces, SVM, and RBF net-

works are the top performers. The experimental results also suggest that the newly
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proposed LSI and RBF classifiers represent two very competitive alternatives to

other well-known methods for text and spam classification.

Content-based spam email filtering is a challenging classification task and

success of the process can practically be influenced by many choices that include

the selection of the algorithm, data and data preprocessing, feature selection, and

decision criteria. In this study, we use only the email subject line and body

text as the content for learning. For future work, we plan to expand the email

content for spam filtering by the features contained in header fields, which seem

to be reliable and useful (Zhang et al. 2004). Also, we plan to revisit some

machine-learning algorithms to further improve their classification effectiveness

on cost-sensitive learning. For instance, we would like to see how an optimal

number of clusters for the LSI and RBF classifiers can be determined to create

an accurate representation of topics among messages of both email categories.
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Utilizing nonnegative matrix

factorization for email

classification problems

Andreas G. K. Janecek and Wilfried N. Gansterer

4.1 Introduction

About a decade ago, unsolicited bulk email (‘spam’) started to become one of

the biggest problems on the Internet. A vast number of strategies and techniques

were developed and employed to fight email spam, but none of them can be

considered a final solution to this problem. In recent years, phishing (‘password

fishing’) has become a severe problem in addition to spam email. The term

covers various criminal activities which try to fraudulently acquire sensitive data

or financial account credentials from Internet users, such as account user names,

passwords, or credit card details. Phishing attacks use both social engineering and

technical means. In contrast to unsolicited but harmless spam email, phishing is

an enormous threat for all big Internet-based commercial operations.

Generally, email classification methods can be categorized into three groups,

according to their point of action in the email transfer process. These groups

are pre-send methods, post-send methods, and new protocols, which are based

on modifying the transfer process itself. Pre-send methods, which act before

the email is transported over the network, are very important because of their

Text Mining: Applications and Theory edited by Michael W. Berry and Jacob Kogan

 2010, John Wiley & Sons, Ltd
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potential to avoid the wasting of resources caused by spam. However, since the

efficiency of these methods depends on their widespread deployment, most of the

currently used email filtering techniques belong to the group of post-send meth-

ods. Amongst others, this group comprises techniques such as black-, white-, and

graylisting, or rule-based filters, which block email based on a predetermined

set of rules. Using these rules, features describing an email message can be

extracted. After extracting the features, a classification process can be applied

to predict the class (ham, spam, phishing) of unclassified email. An important

approach for increasing the speed of the classification process is to perform

feature subset selection (removal of redundant and irrelevant features) or dimen-

sionality reduction (use of low-rank approximations of the original data) prior to

the classification.

Low-rank approximations replace a large and often sparse data matrix with

a related matrix of much lower rank. The objective of these techniques – which

can be utilized in many data mining applications such as image processing, drug

discovery, or text mining – is to reduce the required storage space and/or to

achieve more efficient representations of the relationship between data elements.

Depending on the approximation technique used, great care must be taken in

terms of storage requirements. If the original data matrix is very sparse (as is the

case for many text mining problems), the storage requirements for the reduced

rank matrices might be higher than for the original data matrix with higher

dimensions (since the reduced rank matrices are often almost completely dense).

Besides well-known techniques like principal component analysis (PCA) and sin-

gular value decomposition (SVD), there are several other low-rank approximation

methods like vector quantization (Linde et al. 1980), factor analysis (Gorsuch

1983), QR decomposition (Golub and Van Loan 1996) or CUR decomposition

(Drineas et al. 2004). In recent years, another approximation technique for non-

negative data has been used successfully in various fields. The nonnegative matrix

factorization (NMF, see Section 4.2) determines reduced rank nonnegative fac-

tors W and H which approximate a given nonnegative data matrix A, such that

A ≈ WH.

In this chapter, we investigate the application of NMF to the task of email

classification. We consider the interpretability of the NMF factors in the email

classification context and try to take advantage of information provided by the

basis vectors in W (interpreted as basis emails or the basis features). Moti-

vated by this context, we also investigate a new initialization technique for

NMF based on ranking the original features. This approach is compared to stan-

dard random initialization and other initialization techniques for NMF described

in the literature. Our approach shows faster reduction of the approximation

error than random initialization and comparable results to existing but often

more time-consuming approaches. Moreover, we analyze classification meth-

ods based on NMF. In particular, we introduce a new method that combines

NMF with LSI (Latent Semantic Indexing) and compare this approach to stan-

dard LSI.
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4.1.1 Related work

The utilization of low-rank approximations in the context of email classification

has been analyzed in Gansterer et al. (2008b). In this work, LSI was applied

successfully both on purely textual features and on features extracted by rule-

based filtering systems. Especially the features from rule-based filters allowed

for a strong reduction of the dimensionality without losing significant accuracy

in the classification process. Feature reduction is particularly important if time

constraints play a role, as in the online processing of email streams. In Gansterer

et al. (2008a) a framework for such situations was presented – an enhanced

self-learning variant of graylisting (temporarily rejecting email messages) was

combined with a reputation-based trust mechanism to separate SMTP communi-

cation from feature extraction and classification. This architecture minimizes the

workload on the client side and achieves very high spam classification rates. A

comparison of the classification accuracy achieved with feature subset selection

and low-rank approximation based on PCA in the context of email classification

can be found in Janecek et al. (2008).

Nonnegative matrix factorization. Paatero and Tapper (1994) published an arti-

cle on positive matrix factorization , but the work by Lee and Seung (1999)

five years later achieved much more popularity and is known as a standard

reference for NMF. The two NMF algorithms introduced in Lee and Seung

(1999) – multiplicative update algorithm and alternating least squares (Berry

et al. 2007; Lee and Seung 2001) – provide good baselines against which newer

algorithms (e.g. the gradient descent algorithm) have to be judged.

NMF initialization. All algorithms for computing the NMF are iterative and

require initialization of W and H. While the general goal – to establish initializa-

tion techniques and algorithms that lead to better overall error at convergence – is

still an open issue, some initialization strategies can improve the NMF in terms of

faster convergence and faster error reduction. Although the benefits of good NMF

initialization techniques are well known in the literature, rather few algorithms

for non-random initializations have been published so far.

Wild et al. (Wild 2002; Wild et al. 2003, 2004) were among the first to inves-

tigate the initialization problem of NMF. They used spherical k -means clustering

based on the centroid decomposition (Dhillon and Modha 2001) to obtain a struc-

tured initialization for W. More precisely, they partition the columns of A into

k clusters and select the centroid vectors for each cluster to initialize the corre-

sponding columns in W. Their results show faster error reduction than random

initialization, thus saving expensive NMF iterations. However, since this decom-

position must run a clustering algorithm on the columns of A, it is expensive as

a preprocessing step (cf. Langville et al. (2006)).

Langville et al. (2006) also provided some new initialization ideas and com-

pared the aforementioned centroid clustering approach and random seeding to
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four new initialization techniques. While two algorithms (Random Acol and

Random C) only slightly decrease the number of NMF iterations and another

algorithm (Co-occurrence) turns out to contain very expensive computations, the

SVD–Centroid algorithm clearly reduces the approximation error and therefore

the number of NMF iterations compared to random initialization. The algo-

rithm initializes W based on a SVD–centroid decomposition (Wild 2002) of

the low-dimensional SVD factor Vn×k , which is much faster than a centroid

decomposition on Am×n since V is much smaller than A. Nevertheless, the SVD

factor V must be available for this algorithm, and the computation of V can

obviously be time consuming.

Boutsidis and Gallopoulos (2008) initialized W and H using a technique

called nonnegative double singular value decomposition (NNDSVD) which is

based on two SVD processes, one approximating the data matrix A (rank k

approximation) and the other approximating positive sections of the resulting

partial SVD factors. The authors performed various numerical experiments and

showed that NNDSVD initialization is better than random initialization in terms

of faster convergence and error reduction in all test cases, and generally appears

to be better than the centroid initialization in Wild (2002).

4.1.2 Synopsis

This chapter is organized as follows. In Section 4.2 we review some basics of

NMF and make some comments on the interpretability of the basis vectors in

W in the context of email classification (‘basis features’ and ‘basis emails’).

We also provide some information about the data and feature sets used in this

chapter. Some ideas about new NMF initialization techniques are discussed in

Section 4.3, and Section 4.4 focuses on new classification methods based on

NMF. We conclude our work in Section 4.5.

4.2 Background

In this section, we review the definition and characteristics of NMF and give

a brief overview of the two NMF algorithms considered in this work, as well

as their termination criteria and computational complexity. We then describe

the datasets used for experimental evaluation and make some remarks on

the interpretability of the NMF factors W and H in the context of email

classification problems.

4.2.1 Nonnegative matrix factorization

NMF (Lee and Seung 1999; Paatero and Tapper 1994) consists of reduced

rank nonnegative factors W ∈ R
m×k and H ∈ R

k×n with (problem-dependent)

k ≪ min{m, n} that approximate a given nonnegative data matrix A ∈ R
m×n so

that A ≈ WH. Despite the fact that the product WH is only an approximate fac-

torization of A of rank at most k, WH is called a nonnegative matrix factorization
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of A. The nonlinear optimization problem underlying NMF can generally be

stated as

min
W,H

f (W, H) =
1

2
||A − WH||2F , (4.1)

where ||.||F is the Frobenius norm. Although the Frobenius norm is commonly

used to measure the error between the original data A and WH, other measures

are also possible, e.g. an extension of the Kullback–Leibler divergence to positive

matrices (Dhillon and Sra 2006). Unlike the SVD, the NMF is not unique, and

convergence is not guaranteed for all NMF algorithms. If they converge, then

they usually converge to local minima only (potentially different ones for different

algorithms). Fortunately, the data compression achieved with only local minima

has been shown to be of desirable quality for many data mining applications

(Langville et al. 2006).

Due to its nonnegativity constraints, NMF produces so-called ‘additive parts-

based’ (or ‘sum-of-parts’) representations of the data (in contrast to many other

linear representations such as SVD, PCA, or ICA (Independent Component Anal-

ysis)). This is an impressive benefit of NMF, since it makes the interpretation of

the NMF factors much easier than for factors containing positive and negative

entries, and enables a non-subtractive combination of parts to form a whole (Lee

and Seung 1999). For example, the features in W (called ‘basis vectors’) may

be topics of clusters in textual data, or parts of faces in image data. Another

favorable consequence of the nonnegativity constraints is that both factors W

and H are often naturally sparse (see, e.g., the update steps of the alternating

least squares algorithm below, where negative elements are set to zero).

4.2.2 Algorithms for computing NMF

NMF algorithms can be divided into three general classes: multiplicative update

(MU), alternating least squares (ALS), and gradient descent (GD) algorithms. A

review of these three classes can be found in Berry et al. (2007). In this chapter,

we use implementations of the MU and ALS algorithms (these algorithms do

not depend on a step size parameter, as is the case for GD) from the Statistics

Toolbox v6.2 in MATLAB (included since the R2008a release). The termination

criteria for both algorithms were also adapted from the MATLAB implementation.

Pseudo code for the general structure of NMF algorithms is given in Algorithm 1.

Algorithm 1 – General structure of NMF algorithms

1: given matrix A ∈ R
m×n with k ≪ min {m,n}:

2: for rep = 1 to maxrepetition do

3: W = rand(m, k);

4: H = rand(k, n);

5: for i = 1 to maxiter do



62 TEXT MINING

6: perform NMF update steps

7: check termination criterion

8: end for

9: end for

Most algorithms need pre-initialized factors W and H, but some algorithms

(e.g. the ALS algorithm) only need one pre-initialized factor. The standard ALS

algorithm uses a pre-initialized W, but the algorithm also works with a pre-

initialized factor H (in this case, lines 1 and 3 in Algorithm 3 have to be

exchanged). In the basic form of most NMF algorithms, the factors are initialized

randomly. Different update steps are briefly described in the following.

Multiplicative update. The update steps for the MU algorithm given in Lee and

Seung (2001) are based on the mean squared error objective function. Adding

ε in each iteration avoids division by zero. A typical value used in practice is

ε = 10−9.

Algorithm 2 – Update steps for the MU algorithm

1: H = H . ∗ (WT A) ./(WT WH + ε);

2: W = W . ∗ (AHT ) ./(WHHT + ε);

Alternating least squares algorithm. ALS algorithms were first mentioned in

Paatero and Tapper (1994). In an alternating manner, a least squares step is

followed by another least squares step. In this rather simple case, all negative

elements resulting from the least squares computation are set to 0 to ensure

nonnegativity. The standard ALS algorithm only needs to initialize the factor W;

the factor H is computed in the first iteration.

Algorithm 3 – Update steps for the ALS Algorithm

1: solve for H : WT WH = WT A;

2: set all negative elements in H to 0;

3: solve for W : HHT WT = HAT ;

4: set all negative elements in W to 0;

Both algorithms are iterative and depend on the initialization of W (and H).

Since the iterates generally converge to a local minimum, often several instances

of the algorithm are run using different random initializations, and the best of the

solutions is chosen. A proper nonrandom initialization of W and/or H (depending

on the algorithm) can avoid the need to repeat several factorizations. Moreover,

it may speed up convergence of a single factorization and reduce the error as

defined in Equation (4.1).
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Termination criterion

Generally, the termination criterion for NMF algorithms comprises three com-

ponents. The first condition is based on the maximum number of iterations (the

algorithm iterates until the maximal number of iterations is reached). The second

condition is based on the required approximation accuracy (if the approximation

error in Equation (4.1) drops below a predefined threshold, the algorithm stops).

Finally, the third condition is based on the relative change of the factors W and

H from one iteration to another. If this change is below a predefined threshold

δ, then the algorithm also terminates.

Computational complexity of NMF

A single update step of the MU algorithms has the complexity O(kmn) (since

A is m × n, W is m × k, and H is k × n), see, for example, Li et al. (2007) and

Robila and Maciak (2009). Considering the number of iterations i of the NMF

yields an overall complexity of O(ikmn). For the ALS algorithm, the complexity

for solving the equations in lines 1 and 3 of Algorithm 3 need to be consid-

ered additionally. In its most general form, these equations are solved using an

orthogonal triangular factorization.

4.2.3 Datasets

The datasets used for evaluation consist of 15 000 email messages, divided into

three groups – ham, spam, and phishing. The email messages were taken partly

from the Phishery1 and partly from the 2007 TREC corpus.2 The email messages

are described by 133 features. A part of these features is purely text based, other

features comprise online features and features extracted by rule-based filters.

Some of the features specifically test for spam messages, while other features

specifically test for phishing messages. As a preprocessing step we scaled all

feature values to [0,1] to ensure that they have the same range.

The structure of phishing messages tends to differ significantly from the

structure of spam messages, but it may be quite close to the structure of regular

ham messages (because for a phishing message it is particularly important to

look like a regular message from a trustworthy source). A detailed discussion

and evaluation of this feature set has been given in Gansterer and Pölz (2009).

The email corpus was split into two sets (for training and for testing), the

training set consisting of the oldest 4000 email messages of each class (12 000

messages in total), and the test set consisting of the newest 1000 email messages

of each class (3000 messages in total). This chronological ordering of historical

data allows for simulation of the changes and adaptations in spam and phishing

messages which occur in practice. Both email sets are ordered by the classes – the

first group in each set consists of ham messages, followed by spam and phishing

1 http://phishery.internetdefence.net
2 http://trec.nist.gov/data/spam.html
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messages. Due to the nature of the features, the data matrices are rather sparse.

The larger (training) set has 84.7% zero entries, and the smaller (test) set has

85.5% zero entries.

4.2.4 Interpretation

A key characteristic of NMF is the representation of basis vectors in W and

the representation of basis coefficients in the second NMF factor H. With these

coefficients the columns of A can be represented in the basis given by the columns

of W. In the context of email classification, W may contain basis features or

basis emails , depending on the structure of the original data. If NMF is applied

to an email × feature matrix (i.e. every row in A corresponds to an email

message), then W contains k basis features . If NMF is applied on the transposed

matrix (feature × email matrix, i.e. every column in A corresponds to an email

message), then W contains k basis email messages .

Basis features. Figure 4.1 shows three basis features ∈ R
12 000 (for k = 3) for

our training set when NMF is applied to an email × feature matrix. The three

different groups of objects – ham (first 4000 messages), spam (middle 4000 mes-

sages), and phishing (last 4000 messages) – are easy to identify. The group of

phishing emails tends to yield high values for basis feature 1, while basis feature 2

shows the highest values for the spam messages. The values of basis feature 3

are generally smaller than those of basis features 1 and 2, and this basis feature

is clearly dominated by the ham messages.

Basis email messages. The three basis email messages ∈ R
133 (again for k =

3) resulting from NMF on the transposed (feature × email ) matrix are plotted
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Figure 4.1 Basis features for k = 3.
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Figure 4.2 Basis email messages for k = 3.

in Figure 4.2. The figure shows two features (16 and 102) that have a relatively

high value in all basis emails, indicating that these features do not distinguish

well between the three classes of email. Other features better distinguish between

classes. For example, features 89–91 and 128–130 have a high value in basis

email 1, and are (close to) zero in the other two basis emails. Investigation of the

original data shows that these features tend to have high values for phishing email,

indicating that the first basis email represents a phishing message. Using the same

procedure, the third basis email can be identified to represent ham messages

(indicated by features 100 and 101). Finally, basis email 2 represents spam.

This rich structure observed in the basis vectors should be exploited in the

context of classification methods. However, the structure of the basis vectors

heavily depends on the concrete feature set used. In the following, we discuss the

application of feature selection techniques in the context of NMF initialization.

4.3 NMF initialization based on feature ranking

As already mentioned in Section 4.1.1, the initialization of the NMF factors has a

big influence on the speed of convergence and the error reduction of NMF algo-

rithms. Although the benefits of good initialization are well known, randomized

seeding of W and H is still the standard approach for many NMF algorithms.

Existing approaches, such as initialization based on spherical k -means clustering

(Wild 2002) or nonnegative double singular value decomposition (NNDSVD)

(Boutsidis and Gallopoulos 2008) can be rather time consuming. Obviously, the

trade-off between the computational cost in the initialization step and the compu-

tational cost of the actual NMF algorithm needs to be balanced carefully. In some
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situations, an expensive preprocessing step may overwhelm the cost savings in

the subsequent NMF update steps. In the following, we introduce a simple and

fast initialization step based on feature subset selection and show comparisons

with random initialization and the NNDSVD approach mentioned earlier.

4.3.1 Feature subset selection

The main idea of feature subset selection (FS) is to rank features according to how

well they differentiate between object classes. Redundant or irrelevant features

can be removed from the dataset as they can lead to a reduction of classification

accuracy or clustering quality and to an unnecessary increase of computational

cost. The output of the FS process is a ranking of features based on the applied

FS algorithm. The two FS methods used in this chapter are based on information

gain and gain ratio, both reviewed briefly in the following.

Information gain. One option for ranking the features of email messages accord-

ing to how well they differentiate the three classes ham, spam, and phishing is

to use their information gain , which is also used to compute splitting criteria for

decision trees. The overall entropy I of a given dataset S is defined as

I (S) := −
C
∑

i=1

pi log2 pi, (4.2)

where C denotes the total number of classes and pi the portion of instances that

belong to class i. The reduction in entropy or the information gain is computed

for each attribute A according to

IG(S, A) := I (S) −
∑

vǫA

|SA,v|
|S|

I (SA,v), (4.3)

where v is a value of A and SA,v is the set of instances where A has value v.

Gain ratio. Information gain favors features which assume many different values.

Since this property of a feature is not necessarily connected with the splitting

information of a feature, we also ranked the features based on their information

gain ratio, which normalizes the information gain and is defined as GR(S, A) :=
IG(S, A)/splitinfo(S, A), where

splitinfo(S, A) := −
∑ |SA,v|

|S|
log2

|SA,v|
|S|

. (4.4)

4.3.2 FS initialization

After determining the feature ranking based on information gain and gain ratio,

we use the k first ranked features to initialize W (denoted as FS initialization
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in the following). Since feature selection aims at reducing the feature space,

our initialization is applied in the setup where W contains basis features (i.e.

every row in A corresponds to an email message, cf. Section 4.2.4). FS methods

are usually computationally inexpensive (see, e.g., Janecek et al. (2008) for a

comparison of information gain and PCA runtimes) and can thus be used as a

computationally cheap but effective initialization step. A detailed runtime com-

parison of information gain, gain ratio, NNDSVD, random seeding, and other

initialization methods as well as the initialization of H (at the moment H is

randomly seeded) are work in progress.

Results. Figures 4.3 and 4.4 show the NMF approximation error for our new

initialization strategy for both information gain (infogain) and gain ratio feature

ranking as well as for NNDSVD and random initialization when using the ALS

algorithm. As a baseline, the figures also show the approximation error based

on an SVD of A, which gives the best possible rank k approximation of A.

For rank k = 1, all NMF variants achieve the same approximation error as the

SVD, but for higher values of k the SVD has a smaller approximation error than

the NMF variants (as expected, since SVD gives the best rank k approxima-

tion in terms of approximation error). Note that when the maximum number of

iterations inside a single NMF factorization (maxiter) is high (maxiter = 30 in

Figure 4.4), the approximation errors are very similar for all initialization strate-

gies used and are very close to the best approximation computed with SVD. On

the other hand, with a small number of iterations (maxiter = 5 in Figure 4.3), it

is clearly visible that random seeding cannot compete with initialization based on

NNDSVD and feature selection. Moreover, for this small value of maxiter , the

FS initializations (both information gain and gain ratio ranking) show better error
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Figure 4.3 Approximation error for different initialization strategies and varying

rank k using the ALS algorithm ( maxiter = 5).
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Figure 4.4 Approximation error for different initialization strategies and varying

rank k using the ALS algorithm ( maxiter = 30).

reduction than NNDSVD with increasing rank k . For higher values of maxiter

the gap between the different initialization strategies decreases until the error

curves become basically identical when maxiter is about 30 (see Figure 4.4).

Runtime. In this subsection we analyze runtimes for computing NMF for differ-

ent values of rank k and different values of maxiter using the ALS algorithm. All

runtime comparisons in this chapter were measured on a SUN Fire X4600M2

with eight AMD quad-core Opteron 8356 processors (32 cores overall) with

2.3 GHz CPU and 64 GB of memory. Since the MATLAB implementation of the

ALS algorithm is not the best implementation in terms of runtime, we computed

the ALS update steps (see Algorithm 3) using an economy-size QR factoriza-

tion: that is, only the first n columns of the QR factorization factors Q and R are

computed (here n is the smaller dimension of the original data matrix A). This

saves computation time (about 3.7 times faster than the original ALS algorithm

implemented in MATLAB), but achieves identical results to the MATLAB imple-

mentation. The algorithms terminated when the number of iterations exceeded

the predefined threshold maxiter ; that is, the approximation error was not inte-

grated in the stopping criterion. Consequently, the runtimes do not depend on

the initialization strategy used (neglecting the marginal runtime savings due to

sparse initializations). In this setup, a linear relationship between runtime and the

rank of k can be observed. Reducing the number of iterations (lower values of

maxiter) brings important reductions in runtimes. This underlines the benefits of

our new initialization techniques. As Figure 4.3 has shown, our FS initialization

reduces the number of iterations required for achieving a certain approximation

error compared to existing approaches.

Table 4.1 compares runtimes needed to achieve different approximation error

thresholds with different values of maxiter for different initialization strategies.
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Obviously, a given approximation error ||A − WH||F can be achieved much

faster with small maxiter and high rank k than with high maxiter and small rank

k . As can be seen in Table 4.1, an approximation error of 0.04 or smaller can

be computed in 1.5 and 1.6 seconds, respectively, when using gain ratio and

information gain initialization (here, only five iterations (maxiter) are needed

to achieve an approximation error of 0.04). To achieve the same approximation

error with NNDSVD or random initialization, more than 5 seconds are needed

(here, 20 iterations are needed to achieve the same approximation error).

4.4 NMF-based classification methods

In this section we investigate new classification algorithms which utilize NMF

for developing a classification model. First, we look at the classification accu-

racy achieved with the basis features in W when initialized with the techniques

explained in Section 4.3. Since, in this case, NMF is computed on the complete

data, this technique can only be applied on data that is already available before

the classification model is built.

In the second part of this section we introduce a classifier based on NMF

which can be applied dynamically to new email data. We present a combination

of NMF with LSI and compare it to standard LSI based on SVD.

4.4.1 Classification using basis features

Figures 4.5 and 4.6 show the overall classification accuracy for a ternary clas-

sification problem (ham, spam, phishing) using different values of maxiter for

all four initialization strategies mentioned in Section 4.3. As the classification

algorithm we used a support vector machine (SVM) with a radial basis kernel

provided by the MATLAB LIBSVM (v2.88) interface (Chang and Lin 2001).

For the results shown in this section, we performed fivefold cross-validation on

the larger email corpus (consisting of 12 000 email messages, cf. Section 4.2.3).

The results based on the four NMF initialization techniques (infogain, gainra-

tio, nndsvd, and random) were achieved by applying an SVM on the rows of W,

where every email message is described by k basis features , i.e. every column of

W corresponds to a basis feature (cf. Section 4.2.4). As NMF algorithm we used

multiplicative update (MU). For comparison to the original features, we applied

a standard SVM classification on the email messages characterized by k best

ranked information gain features (SVMinfogain). The graph for SVMinfogain is

identical in both figures since the maxiter factor in the NMF algorithm has no

influence on the result.

Classification results. For lower ranks (k < 30), the SVMinfogain results are

markedly below the results achieved with nonrandomly initialized NMF (info-

gain, gainratio, and nndsvd). This is not very surprising, since W contains com-

pressed information about all features (even for small ranks of k ). Random NMF
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Figure 4.5 SVM (RBF kernel) classification accuracy for different initialization

methods using the MU algorithm ( maxiter = 5).
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Figure 4.6 SVM (RBF kernel) classification accuracy for different initialization

methods using the MU algorithm ( maxiter = 30).

initialization of W (random) achieves even lower classification accuracy for max-

iter = 5 (see Figure 4.5). The classification result remains unsatisfactory even for

large values of k . With larger maxiter (cf. Figure 4.6), the classification accuracy

for randomly seeded W increases and achieves results comparable to infogain,

gainratio, and nndsvd. Comparing the results of the FS initialization and nndsvd

initialization, it can be seen that there is no large gap in the classification accu-

racy. We would like to point out the clear decline in the classification accuracy of
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nndsvd for k = 6 (in both figures). Surprisingly, the classification results for max-

iter = 5 are only slightly worse than for maxiter = 30, which is in contrast to the

approximation error results shown in Section 4.3. Consequently, fast (and accu-

rate) classification is possible for small maxiter and small k (e.g. the average clas-

sification accuracy over infogain, gainratio, and nndsvd is 96.75% for k = 10 and

maxiter = 5, compared to 98.34% for k = 50, maxiter = 50).

4.4.2 Generalizing LSI based on NMF

Now we look at the classification process in a dynamic setting where newly

arriving email messages are to be classified. Obviously, this is not suitable

for computing a new NMF for every new incoming email message. Instead,

a classifier is constructed by applying NMF on a training sample and using the

information provided by the factors W and H in the classification model. In the

following, we present adaptations of LSI based on NMF and compare them to

standard LSI (based on SVD). Note that in this section our datasets are transposed

compared to the experiments in Sections 4.3 and 4.4.1. Hence, every column of

A corresponds to an email message.

Review of VSM and standard LSI. A VSM (Raghavan and Wong 1999) is a

widely used algebraic model where objects and queries are represented as vectors

in a potentially very high-dimensional metric vector space. Generally speaking,

given a query vector q, the distances of q to all objects in a given feature × object

matrix A can be measured (for example) in terms of the cosines of the angles

between q and the columns of A. The cosine ϕi of the angle between q and the

i th column of A can be computed as

(VSM) : cos ϕi =
e⊤
i A⊤q

||Aei ||2||q||2
. (4.5)

LSI (Langville 2005) is a variant of the basic VSM. Instead of the original

matrix A, the SVD is used to construct a low-rank approximation Ak of A, such

that A = U�V⊤ ≈ Uk�kV⊤
k =: Ak . When A is replaced with Ak, then the cosine

of ϕi for the angle between q and the i th column of A is approximated as

(SVD-LSI) : cos ϕi ≈
e⊤
i Vk�kU

⊤
k q

||Uk�kV
⊤
k ei ||2||q||2

. (4.6)

Since some terms on the right hand side of this equation only need to be com-

puted once for different queries (e⊤
i Vk�k and ||Uk�kV⊤

k ei ||2), LSI saves storage

and computational cost. Further, the approximated data often gives a cleaner and

more efficient representation of the relationship between data elements (Langville

et al. 2006) and can uncover latent information in the data.

NMF-based classifiers. We investigate two novel concepts for using NMF as a

low-rank approximation within LSI (see Figure 4.7). The first approach, which
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Figure 4.7 Overview: (a) basic VSM; (b) LSI using SVD; (c) LSI using NMF.

we call NMF-LSI, simply replaces the approximation within LSI with a different

approximation. Instead of using Uk�kV⊤
k , we approximate A with Ak := WkHk

from the rank k NMF. Note that when using NMF, the value of k must be fixed

prior to the computation of W and H. The cosine of the angle between q and

the i th column of A can then be approximated as

(NMF-LSI) : cos ϕi ≈
e⊤
i H⊤

k W⊤
k q

||WkHkei ||2||q||2
. (4.7)

To save computational cost, the leftmost term in the denominator and the

leftmost part of the numerator (both involving Wk and Hk) can be computed a

priori.

The second classifier. which we call NMF-BCC (NMF Basis Coefficient Clas-

sifier), is based on the idea that the basis coefficients in H can be used to classify

new email. These coefficients are representations of the columns of A in the basis

given by W. If W, H, and q are given, we can calculate a column vector x that

minimizes the equation

min
x

||Wx − q||. (4.8)

Since x is the best representation of q in the basis given by W, we search for

the column of H which is closest to x for assigning q to one of the three classes

of email. Moreover, the residual in Equation (4.8) indicates how close q is to the
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email messages in A. The cosine of the angle between q and the i th column of

H can be approximated as

(NMF-BCC) : cos ϕi ≈
e⊤
i H⊤x

||Hei ||2||x||2
. (4.9)

It is obvious that the computation of the cosines in Equation (4.9) is much

faster than for both other LSI variants mentioned earlier (since usually H is a

much smaller matrix than A), but the computation of x causes additional cost.

These aspects will be discussed further at the end of this section.

Classification results. A comparison of the results achieved with LSI based on

SVD (SVD-LSI), LSI based on NMF (NMF-LSI), the basis coefficient classifier

(NMF-BCC), and a basic VSM (VSM) is shown in Figures 4.8 and 4.9, again

for different values of maxiter . In contrast to Section 4.4.1, where we performed

a cross-validation on the larger email corpus, here we used the big corpus as

the training set and tested with the smaller corpus consisting of the 1000 newest

email messages of each class. For classification, we considered the column of A

with the smallest angle to q (no majority count) to assign q to one of the classes

ham, spam, and phishing. The results shown in this section were achieved with

random initialization.

Obviously, there is a big difference in the classification accuracy achieved

with the NMF approaches for small and larger values of maxiter . With maxiter =
5 (see Figure 4.8), the NMF variants can hardly compete with LSI based on SVD

and VSM. However, when maxiter is increased to 30, all NMF variants except

SVD–LSI
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Figure 4.8 Classification accuracy for different LSI variants and VSM

( maxiter = 5).
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Figure 4.9 Classification accuracy for different LSI variants and VSM

( maxiter = 30).

NMF-BCC(mu) show comparable results (see Figure 4.9). For many values of

k, the NMF variants achieved better classification accuracy than a basic VSM

with all original features. Moreover, the standard ALS variant (NMF-LSI(als))

achieves very comparable results to LSI based on SVD, especially for small

values of rank k (between 5 and 10). Note that this improvement of a few percent

is substantial in the context of email classification. Moreover, as discussed in

Section 4.2.4, the purely nonnegative linear representation within NMF makes

the interpretation of the NMF factors much easier than that for the standard LSI

factors. It is interesting to note that initialization of the factors W and H does

not improve the classification accuracy when using the NMF-LSI and NMF-BCC

classifiers. This is in contrast to the previous sections – especially when maxiter

is small, the initialization was important for the SVM.

Runtimes. The computational runtime for all LSI variants comprises two steps.

Prior to the classification process, the low-rank approximations of SVD and NMF,

respectively, have to be computed. Afterward, any newly arriving email message

(a single query vector) has to be classified.

Figure 4.10 shows the runtimes needed for computing the low-rank approx-

imations, and Figure 4.11 shows the runtimes for the classification process of

a singly query vector. As already mentioned in Section 4.3.2, the NMF run-

times depend almost linearly on the value of maxiter . Figure 4.10 shows that for

almost any a given rank k, the computation of an SVD takes much longer than

an NMF factorization with maxiter = 5, but is faster than a factorization with

maxiter = 30. For computing the SVD we used MATLAB’s svds() function,

which computes only the first k largest singular values and associated singular



76 TEXT MINING

0 10 20 30 40 50
0

2

4

6

8

10

12

rank k

R
u

n
ti
m

e
 [

s
]

alsqr(30)

mu(30)

svds

alsqr(5)

mu(5)

Figure 4.10 Runtimes for computing low-rank approximations based on SVD and

variants of NMF of a 12 000 × 133 matrix ( alsqr(30) refers to the ALS algorithm

computed with explicit QR factorization and maxiter set to 30).
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Figure 4.11 Runtimes for classifying a single query vector.

vectors of a matrix. The computation of the complete SVD usually takes much

longer (but is not needed in this context). There is only a small difference in the

runtimes for computing the ALS algorithm (using the economy-size QR factor-

ization, cf. Section 4.3.2) and the MU algorithm, and, of course, no difference

between the NMF-LSI and the NMF-BCC runtimes (since the NMF factorization

has to be computed identically for both approaches). The difference in the compu-

tational cost between NMF-LSI and NMF-BCC is embedded in the classification

process of query vectors, not in the factorization process of the training data.
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Looking at the classification runtimes in Figure 4.11, it can be seen that the

classification process using the basis coefficients (NMF-BCC) is faster than for

SVD-LSI and NMF-LSI. Although the classification times for a single email are

modest, they have to be considered for every single email that is classified. The

classification (performed in MATLAB) of all 3000 email messages in our test

sample took about 36 seconds for NMF-LSI, 24 seconds for SVD-LSI, and only

13 seconds for NMF-BCC (for rank k = 50).

Rectangular versus square data. Since the dimensions of the email data matrix

used in this work are very imbalanced (12 000 × 133), we also compared runtime

and approximation errors for data of the same size, but with balanced dimensions.

We created square random matrices of dimension
√

133 × 12 000 ≈ 1263 and

performed experiments on them identical to those in the previous section.

Figure 4.12 shows the runtime needed to compute the first k largest singular

values and associated singular vectors for SVD (again using the svds() function

from MATLAB) as well as the two NMF factorizations with different values of

maxiter . For square A, the computation of the SVD takes much longer than for

unbalanced dimensions. In contrast, both NMF approximations can be computed

much faster (cf. Figure 4.10). For example, the computation of an SVD of rank

k = 50 takes about eight times longer than the computation of an NMF of the

same rank.

The approximation error for square random data is shown in Figure 4.13. The

approximation error of both SVD and NMF is generally higher than for the email

dataset (see Figures 4.3 and 4.4). It is interesting to note that the approximation

error of the ALS algorithm decreases with increasing k until k ≈ 35, and then

increases again with higher values of k. Nevertheless, especially for smaller

values of k, the ALS algorithm achieves an approximation error comparable to

the SVD with much lower computational runtimes.
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Figure 4.12 Runtimes for computing low-rank approximations based on SVD

and variants of NMF of a random 1263 × 1263 matrix.
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Figure 4.13 Approximation error for low-rank approximations based on SVD

and variants of NMF on a random 1263 × 1263 matrix.

4.5 Conclusions

The application of nonnegative matrix factorization (NMF) to ternary email clas-

sification tasks (ham vs. spam vs. phishing messages) has been investigated. We

have introduced a fast initialization technique based on feature subset selection

(FS initialization) which significantly reduces the approximation error of the NMF

compared to randomized seeding of the NMF factors W and H. Comparison of

our approach to existing initialization strategies such as NNDSVD (Boutsidis

and Gallopoulos 2008) shows basically the same accuracy when many NMF

iterations are performed, and much better accuracy when the NMF algorithm is

restricted to a small number of iterations.

Moreover, we investigated and evaluated two new classification methods

which are based on NMF. We showed that using the basis features of W generally

achieves much better results than using the original features. While the number

of iterations (maxiter) in the iterative process for computing the NMF seems

to be a crucial factor for the classification accuracy when random initialization

is used, the classification results achieved with FS initialization and NNDSVD

depend only weakly on this parameter, leading to high classification accuracy

even for small values of maxiter (see Figures 4.5 and 4.6). This is in contrast to

the approximation error illustrated in Figures 4.3 and 4.4, where the number of

iterations is important for all initialization variants.

As a second classification method we constructed NMF-based classifiers to

be applied on newly arriving email messages without recomputing the NMF. For

this purpose, we introduced two LSI classifiers based on NMF (computed with

the ALS algorithm) and compared them to standard LSI based on SVD. Both

new variants achieved a classification accuracy comparable to standard LSI when
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using the ALS algorithm and can often be computed faster, especially when the

dimensions of the original data matrix are close to each other (in this case, the

computation of the SVD usually takes much longer than an NMF factorization).

A copy of the codes used in this chapter is available from the authors or at

http://rlcta.univie.ac.at.

Future work. Our investigations indicate several important and interesting direc-

tions for future work. First of all, we will focus on analyzing the computational

cost of various initialization strategies (FS initialization vs. NNDSVD etc.). More-

over, we will look at updating schemes for our NMF-based LSI approach, since

for real-time email classification a dynamical adaptation of the training data (i.e.

adding new email to the training set) is essential. We also plan to work on

strategies for the initialization of H (currently, H is randomly initialized) for our

FS initialization (Section 4.3) and the comparison of the MU and ALS algo-

rithms to other NMF algorithms (gradient descent, algorithms with sparseness

constraints, etc.).
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5

Constrained clustering with

k -means type algorithms

Ziqiu Su, Jacob Kogan and Charles Nicholas

5.1 Introduction

Clustering is a fundamental data analysis task that has numerous applications in

many disciplines. Clustering can be broadly defined as a process of partitioning

a dataset into groups, or clusters, so that elements of the same cluster are more

similar to each other than to elements of different clusters.

In many cases additional information about the desired type of clusters is

available (e.g. Basu et al. (2009)). When incorporated into the clustering pro-

cess this information may lead to better clustering results. Motivated by Basu

et al. (2004) we consider pairwise constrained clustering . In pairwise constrained

clustering, we may have information about pairs of vectors that may not belong

to the same cluster (cannot-links), information about pairs of vectors that must

belong to the same cluster (must-links), or both. (For the first introduction of

constrained clustering with a focus on instance-level constraints see Wagstaff

and Cardie (2000) and Wagstaff et al. (2001).)

We focus on three k-means type clustering algorithms and two different

distance-like functions. The clustering algorithms are k-means (Duda et al.

2000), smoka (Teboulle and Kogan 2005), and spherical k-means (Dhillon and

Modha 1999). The distance-like functions are ‘reverse Bregman divergence’ (see

Text Mining: Applications and Theory edited by Michael W. Berry and Jacob Kogan

 2010, John Wiley & Sons, Ltd
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e.g. Kogan (2007a)) and ‘cosine’ similarity (see e.g. Berry and Browne (1999)).

We show that for these algorithms and distance-like functions the pairwise

constrained clustering problem can be reduced to clustering with cannot-link

constraints only. We substitute cannot-link constraints by penalty, and propose

clustering algorithms that tackle clustering with penalties.

The chapter is organized as follows. In Section 5.2 we introduce basic nota-

tions, and briefly review batch and incremental versions of classical quadratic

k-means. Section 5.3 presents the clustering algorithm equipped with Bregman

divergences and constraints. We show by an example that a straightforward adop-

tion of batch k-means may lead to erroneous results, and introduce a modification

of incremental k-means that generates a sequence of partitions with improved

quality. We show that must-link constraints can be eliminated (the elimination

technique is based on the methodology proposed in Zhang et al. (1997)). When

information about a large number of must-linked vectors is available, the pro-

posed elimination technique may significantly reduce the size of the dataset.

Section 5.4 introduces a smoka type clustering with constrains (see e.g. Teboulle

and Kogan (2005) and Teboulle (2007)). Elimination of must-link constraints is

based on results reported in Kogan (2007b). Section 5.5 presents spherical k-

means with constraints. Numerical experiments that illustrate the usefulness of

constraints are collected in Section 5.6. Brief conclusions and future research

directions are given in Section 5.7.

5.2 Notations and classical k-means

The entries of a vector a ∈ Rn are denoted by (a[1], . . . , a[n])T . The size of a

finite set A is denoted by |A|. For a set of m vectors A = {a1, . . . , am} ⊂ Rn,

a prescribed subset C of Rn, and a ‘distance-like’ function d(x, a) we define a

centroid c = c (A) of the set A as a solution of the minimization problem

c = arg min

{

∑

a∈A
d(x, a), x ∈ C

}

. (5.1)

Examples of distance-like functions include the squared Euclidean distance

d(x, a) = ‖x − a‖2, and the relative entropy (also known as Kullback–

Leibler divergence) d(x, a) =
∑n

i=1 a[i] log(a[i]/x[i]). While in the case

of d(x, a) = ‖x − a‖2 the set C may be the entire space, when d(x, a) =
∑n

i=1 a[i] log(a[i]/x[i]), the set C housing centroids x should be restricted to

vectors with at least nonnegative entries (in many text mining applications

a[i] ≥ 0).

The quality of the set A is denoted by Q(A) and is defined by

Q(A) =
m
∑

i=1

d (c, a) , where c = c (A) (5.2)
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(we set Q(∅) = 0 for convenience). Let � = {π1, . . . , πk} be a partition of A,

i.e.
⋃

i

πi = A, and πi ∩ πj = ∅ if i �= j.

We abuse notation and define the quality of the partition � by

Q (�) = Q(π1) + · · · + Q(πk) =
k
∑

i=1

∑

a∈πi

d(ci, a), where ci = c (πi) . (5.3)

We aim to find a partition �min = {πmin
1 , . . . , πmin

k } that minimizes the value of

the objective function Q. The problem is known to be NP-hard (see e.g. Brucker

(1978)) and we seek algorithms that generate ‘reasonable’ solutions.

It is easy to see that centroids and partitions are associated as follows:

1. Given a partition � = {π1, . . . , πk} of the set A one can define the cor-

responding centroids {c (π1) , . . . , c (πk)} by

c (πi) = arg min

{

∑

a∈πi

d(x, a), x ∈ C

}

. (5.4)

2. For a set of k ‘centroids’ {c1, . . . , ck} one can define a partition � =
{π1, . . . , πk} of the set A by

πi = {a : a ∈ A, d(ci, a) ≤ d(cl, a) for each l = 1, . . . , k} (5.5)

(we break ties arbitrarily). Note that, in general, c (πi) �= ci .

The classical batch k-means algorithm is a procedure that iterates between the two

steps described above to generate a partition �′ from a partition � (Duda et al.

2000). While step 2 is straightforward, step 1 requires us to solve a constrained

optimization problem. The degree of difficulty involved depends on the distance-

like function d(·, ·) and the set C. The entire procedure is essentially a gradient-

based algorithm.

Incremental k-means is an iterative algorithm that seeks to change the cluster

affiliation of one vector per iteration.

Definition 5.2.1 A first variation of a partition � is a partition �′ obtained from

� by removing a single vector a from a cluster πi of � and assigning this vector

to an existing cluster πj of �.

The decision of which vector to move is based on exact computation of the

change in the objective. The change � in the objective Q caused by moving a

vector a from cluster πi to cluster πj is given by

� =
|πi |

|πi | − 1
||c(πi) − a||2 −

|πj |
|πj | + 1

∣

∣

∣

∣c(πj ) − a
∣

∣

∣

∣

2
(5.6)

(see e.g. (Kogan 2007a)).
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Definition 5.2.2 The partition nextFV (�) is a first variation of � so that for

each first variation �′ one has

Q (nextFV (�)) ≤ Q
(

�′) . (5.7)

The computational complexity involved in finding the first variation does not

exceed that required by the second step of batch k-means.

In the next section we show by an example that a straightforward appli-

cation of batch k-means to clustering with cannot-link constraints may lead to

erroneous results. The section suggests modifications of incremental k-means for

constrained clustering of datasets equipped with Bregman distances.

5.3 Constrained k-means with Bregman divergences

We start with a detailed description of k-means constrained clustering and elim-

ination of must-link constraints for a dataset equipped with squared Euclidean

distance. At the end of the section the results are extended to Bregman distances.

5.3.1 Quadratic k-means with cannot-link constraints

We first focus on clustering with cannot-link constraints only. The constraints

are substituted by a nonnegative penalty function, and a k-means like clustering

is introduced on the dataset equipped with the penalty function. Partitioning of

the constrained dataset and clustering of the dataset equipped with the penalty

function are illustrated in Section 5.6.

For a vector set A = {a1, . . . , am} ⊂ Rn and a symmetric penalty function p :

Rn × Rn → R+, p(a, a) = 0, p(a, a′) = p(a′, a), we define Q(A), the quality

of A, as

Q(A) =
∑

a∈A
‖c − a‖2 +

1

2

∑

a,a′∈A

p(a, a′), (5.8)

where c is the unique solution of

min
x







∑

a∈A
‖x − a‖2 +

1

2

∑

a,a′∈A

p(a, a′)







,

which is given by the arithmetic mean of A. Our aim is to identify an optimal

k-cluster partition of A.

Given a partition {π1, . . . , πk} and the corresponding centroids ci , it is tempt-

ing to adopt the two-stage batch k-means procedure with the following modifi-

cation of Equation (5.5) that defines the new partition {π ′
1, . . . , π

′
k} as

π ′
i =

{

a′ : ‖ci − a′‖2 +
∑

a∈πi

p(a, a′) ≤ ‖cl − a′‖2
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+
∑

a∈πl

p(a, a′) for each l = 1, . . . , k

}

. (5.9)

We first show that the assignment step (i.e. Equation (5.9)) may lead to erroneous

results.

Example 5.3.1 Consider the one-dimensional dataset

A = {a1, a2, a3, a4, a5} = {−2.9, −0.9, 0, 0.9, 2.9}, (5.10)

with p(ai, aj ) = p = 4 when i �= j . Consider the three-cluster partition

� = {π1, π2, π3}

with

π1 = {a1, a2}, π2 = {a3}, π3 = {a4, a5}

(see Figure 5.1 where the clusters are encircled ). Note that

Q(�) = (2 + p) + 0 + (2 + p) = 4 + 2p = 12.

An application of the assignment step (5.9) leads to the three-cluster partition �′

π ′
1 = {a1}, π ′

2 = {a2, a3, a4}, π ′
3 = {a5}

with

Q(�′) = 0 + (3p + 2(0.9)2) + 0 = 1.62 + 3p = 13.62

(see Figure 5.2).

−4 −3 −2 −1 0 1 2 3 4
−1.5

−1

−0.5

0

0.5

1

1.5

a1 a2 a3 a
4

a5

Figure 5.1 Initial three-cluster partition.
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Figure 5.2 Three-cluster partition generated by batch k-means.

The assignment decision in Equation (5.9) ignores any anticipated change of

centroid, and potential additional vector assignments coming from other clusters.

As a result, the proposed batch iteration fails to improve the original partition

(and, as the example shows, may lead to a partition of inferior quality).

Reassignment of a vector a from cluster πi to cluster πj changes the objec-

tive by

� =
|πi |

|πi | − 1
||c(πi) − a||2 −

|πj |
|πj | + 1

∣

∣

∣

∣c(πj ) − a
∣

∣

∣

∣

2

+
∑

a′∈πi

p(a, a′) −
∑

a′∈πj

p(a, a′)

(see Equation (5.6)). We denote by �(a) the maximal value of the right hand

side of Equation (5.11) over j = 1, . . . , m. We note that removal of a from πi

and assigning it back to πi is a reassignment with zero change of the objective.

Hence �(a), the maximal value of the right hand side of Equation (5.11), is

always nonnegative. To minimize the objective we shall select a vector a whose

reassignment maximizes �(a). The incremental k-means algorithm we propose

is given next. A single iteration of the algorithm applied to either one of the

partitions � or �′ of Example 5.3.1 generates a partition

�′′ = {{−2.9}, {−0.9, 0}, {0.9, 2.9}}

with Q(�′′) = 10.405 (see Figure 5.3).
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Figure 5.3 Optimal three-cluster partition generated by incremental k-means.

Algorithm 4 – Incremental k -means algorithms

1: For a user-supplied nonnegative tolerance tol ≥ 0 do the following:

2: Start with an initial partitioning

�(0) = {π
(0)
1 , . . . , π

(0)
k }.

3: Set the index of iteration t = 0.

4: Generate the partition nextFV
(

�(t)
)

.

5: if
[

Q
(

�(t)
)

− Q
(

nextFV
(

�(t)
))

> tol
]

then

6: set �(t+1) = nextFV
(

�(t)
)

7: increment t by 1

8: go to 5

9: end if

10: Stop.

5.3.2 Elimination of must-link constraints

We now reduce incremental k-means clustering of a vector set A = {a1, . . . , am}
with both must-link and cannot-link constraints to that of (in general) a smaller

vector set B = {b1, . . . , bM} (M ≤ m) with a different penalty function P(b, b′),
and no must-link constraints. To simplify the presentation we assume throughout

that p(a, a′) = 0 for any pair of must-linked vectors a and a′.
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Consider the transitive closure of must-link constraints (see e.g. Basu et al.

(2009)). For a vector a ∈ A let π(a) be a set of vectors a′ in A so that there

is a finite subset
{

ai1 , . . . , aip

}

⊆ A with a = ai1 , a′ = aip , and aij and aij+1

must-linked, j = 1, . . . , p − 1. The sets π(a) are equivalence classes, i.e.

1. for each a, a′ ∈ A either π(a) = π(a′), or π(a) ∩ π(a′) = ∅;

2. A =
⋃

a∈A π(a).

We denote the finite set collection {π(a)}a∈A by {π1, . . . , πM}. For i = 1, . . . ,M

let

1. bi = c(πi) = (1/|πi |)
∑

a∈πi
a, the centroid of πi ;

2. qi = Q(πi), the quality of πi ;

3. m(bi) = mi = |πi |, the size of πi .

The vector set B = {b1, . . . , bM} is the new set to be clustered. For two vectors

bi, bj ∈ B the penalty is defined by

P(bi, bj ) =
∑

a∈πi , a′∈πj

p(a, a′). (5.11)

Each k-cluster partition �B of the set B induces a k-cluster partition �A of the

set A with no must-link violations. We define the quality QB(πB) of a subset

πB = {bi1, . . . , bip } ⊆ B by

QB(πB) =
p
∑

j=1

mij ‖c − bij ‖
2 +

1

2

∑

l,j

P(bil , bij ), (5.12)

where

c =
mi1bi1 + · · · + mip bip

mi1 + · · · + mip

is the (weighted) arithmetic mean of the set πB = {bi1 , . . . , bip } and the associ-

ated subset
⋃p

j=1 πij of A. The quality functions of the sets πB and
⋃p

j=1 πij

are related as follows:

Q





p
⋃

j=1

πij



 =
p
∑

j=1

qij + QB(πB) (5.13)

(for the unconstrained case see Kogan (2007a)). Hence, for each pair of associated

partitions �B and �A the difference between Q(�A) and QB(�B) is the same

constant
∑M

i=1 qi .
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Incremental clustering of the set B is identical to Algorithm 4 with change �

in the objective function caused by reassignment of a vector b from the cluster

πB
i to the cluster πB

j given by

� =
Mi · m(b)

Mi + m(b)

∣

∣

∣

∣

∣

∣
c
(

πB
i

)

− b

∣

∣

∣

∣

∣

∣

2

−
Mj · m(b)

Mj − m(b)

∣

∣

∣

∣

∣

∣
c
(

πB
j

)

− b

∣

∣

∣

∣

∣

∣

2

+
∑

b′∈πB
i

P(b, b′) −
∑

b′∈πB
j

P(b, b′), (5.14)

where Ml =
∑

b∈πB
l

m(b). In what follows, we extend these results to Bregman

distances.

5.3.3 Clustering with Bregman divergences

Let ψ : Rn → (−∞, +∞] be a closed proper convex function (Rockafellar

1970). Suppose that ψ is continuously differentiable on int(dom ψ) �= ∅.

The Bregman distance (also called ‘Bregman divergence’) Dψ : dom ψ ×
int(dom ψ) → R+ is defined by

Dψ (x, y) = ψ(x) − ψ(y) − ∇ψ(y)(x − y), (5.15)

where ∇ψ is the gradient of ψ .

This function measures the convexity of ψ , i.e. Dψ (x, y) ≥ 0, if and only

if the gradient inequality for ψ holds, i.e. if and only if ψ is convex. With ψ

strictly convex one has Dψ (x, y) ≥ 0 and Dψ (x, y) = 0 iff x = y.

Note that Dψ (x, y) is not a distance (it is, in general, not symmetric and

does not satisfy the triangle inequality). With ψ(x) = ||x||2 (dom ψ = Rn) one

has Dψ (x, y) = ||x − y||2. With ψ(x) =
∑n

j=1 x[j ] log x[j ] − x[j ] (dom ψ =
Rn

+ with the convention 0 log 0 = 0), we obtain the Kullback–Leibler relative

entropy distance

Dψ (x, y) =
n
∑

j=1

x[j ] log
x[j ]

y[j ]
+ y[j ] − x[j ] ∀ (x, y) ∈ Rn

+ × Rn
++. (5.16)

Note that under the additional assumption
∑n

j=1 x[j ] =
∑n

j=1 y[j ] = 1,

the Bregman divergence Dψ (x, y) reduces to
∑n

j=1 x[j ] log(x[j ]/y[j ]) (for

additional examples of Bregman distances see e.g. Banerjee et al. (2005) and

Teboulle et al. (2006)). Note that Bregman distance Dψ (x, y) is convex with

respect to the x variable. Hence, centroid computation in Equation (5.1) is an

‘easy’ optimization problem.

By reversing the order of variables in Dψ , i.e.

←−
Dψ (x, y) = Dψ (y, x) = ψ(y) − ψ(x) − ∇ψ(x)(y − x) (5.17)
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(compare with Equation (5.15)) and using the kernel

ψ(x) =
ν

2
‖x‖2 + µ





n
∑

j=1

x[j ] log x[j ] − x[j ]



 , (5.18)

we obtain

←−
Dψ (x, y) = Dψ (y, x) =

ν

2
‖y − x‖2 + µ

n
∑

j=1

[

y[j ] log
y[j ]

x[j ]
+ x[j ] − y[j ]

]

.

(5.19)

While in general
←−
Dψ (x, y) given by Equation (5.16) is not necessarily convex

in x, when ψ(x) is given either by ‖x‖2 or by
∑n

j=1 x[j ] log x[j ] − x[j ] the

resulting functions
←−
Dψ (x, y) are strictly convex with respect to the first variable.

Extension of Algorithm 4 to ‘reversed’ Bregman distances requires the fol-

lowing:

1. The ability to compute c (π) for a finite set π (see Equation (5.1)).

2. A convenient expression for QB(πB) of a subset πB = {bi1, . . . , bip } ⊆ B

(see (5.12)).

3. A convenient formula for the change � in the objective function caused

by reassignment of a vector b from the cluster πB
i to the cluster πB

j (see

(5.14)).

We next list results already available in the literature and relevant to the above

three points. The first result1 holds for all Bregman divergences with reversed

order of variables
←−
Dψ (x, y) = Dψ (y, x) (see Banerjee et al. (2005)):

Theorem 5.3.2 If z = (a1 + · · · + am)/m, then
∑m

i=1 Dψ (ai, z) ≤
∑m

i=1 Dψ

(ai , x).

The result shows that the centroid of any set equipped with reversed Bregman

distance is given by the arithmetic mean.

The change � in the objective Q caused by moving a vector a from cluster

πi to cluster πj is given by

� = (mi − 1)[ψ(c−
i ) − ψ(ci)] − ψ(ci) + (mj + 1)[ψ(c+

j ) − ψ(cj )] + ψ(cj ),

(5.20)

where mi and mj denote the size of the clusters πi and πj , c−
i is the centroid of

πi with a being removed, and c+
j is the centroid of πj with a being added (see

Kogan (2007a)).

1 Note that this distance-like function is not necessarily convex with respect to x.
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In text mining applications, due to sparsity of the data vector a, most coor-

dinates of centroids c−, c+, and c coincide. Hence, when the function ψ is

separable, computation of ψ(c−
i ) and ψ(c+

j ) is relatively cheap.

Elimination of must-links requires an analogue of Equations (5.12) and (5.14).

The following two statements are provided by Kogan (2007a):

Theorem 5.3.3 If A = π1 ∪ π2 ∪ · · · ∪ πk with mi = |πi |, ci = c (πi), i =
1, . . . , k,

c = c (A) =
m1

m
c1 + · · · +

mk

m
ck, where m = m1 + · · · + mk,

and � = {π1 π2, . . . , πk}, then

Q (�) =
k
∑

i=1

Q(πi) +
k
∑

i=1

mid(c, ci) =
k
∑

i=1

Q (πi) +
k
∑

i=1

mi [ψ(ci) − ψ (c)] .

(5.21)

Theorem 5.3.4 Let �B = {πB
1 , . . . , πB

k } be a k-cluster partition of the set B =
{b1, . . . , bM}. If �′

B
is a partition obtained from B by removal of a single vector b

from cluster πB
i with centroid ci = c

(

πB
i

)

and assignment of b to πB
j with centroid

cj = c
(

πB
j

)

, then the change of quality � = QB (�B) − QB

(

�′
B

)

is given by

� = [Mi − m(b)]
[

ψ(c−
i ) − ψ(ci)

]

− m(b)ψ(ci)

+
[

Mj + m(b)
]

[

ψ(c+
j ) − ψ(cj )

]

+ m(b)ψ(cj ). (5.22)

We are now in a position to present the constrained clustering algorithm for a

dataset with ‘reversed’ Bregman distance (see Algorithm 5). The next section

describes a constrained clustering algorithm based on a nonlinear optimization

approach.

Algorithm 5 – Constrained k-means with Bregman distance

1: For a dataset A, a set of must-link and cannot-link constraints, and a

user-supplied nonnegative tolerance tol ≥ 0 do the following:

2: Substitute cannot-link constraints by a penalty function p.

3: Build a transitive closure B = {b1, . . . , bM} of must-link constraints.

4: Use Equation (5.11) to define the penalty P(bi, bj ) for each pair bi, bj ∈ B.

5: Start with an initial k-cluster partitioning �
(0)

B
= {πB

1 , . . . , πB
k }.

6: Set the index of iteration t = 0.

7: Use the change of quality

� = [Mi − m(b)]
[

ψ(c−
i ) − ψ(ci)

]

− m(b)ψ(ci)
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+
[

Mj + m(b)
]

[

ψ(c+
j ) − ψ(cj )

]

+ m(b)ψ(cj )

+
∑

b′∈πB
i

P(b, b′) −
∑

b′∈πB
j

P(b, b′)

generated by removal of a single vector b from cluster πB
i with centroid

ci = c
(

πB
i

)

and assignment of b to πB
j with centroid cj = c

(

πB
j

)

to

identify the partition nextFV
(

�(t)
)

.

8: if
[

Q
(

�(t)
)

− Q
(

nextFV
(

�(t)
))

> tol
]

then

9: set �(t+1) = nextFV
(

�(t)
)

10: increment t by 1

11: go to 8

12: end if

13: Stop.

5.4 Constrained smoka type clustering

First we briefly recall smoka type clustering (Teboulle and Kogan 2005). Note

that for a vector a and k vectors x1, . . . , xk one has

lim
s→0

−s log

(

k
∑

l=1

e− ‖xl−a‖2

s

)

= min
{

‖x1 − a‖2, . . . , ‖xk − a‖2
}

. (5.23)

When x1, . . . , xk are centroids of a k-cluster partition � = {π1, . . . , πk} one has

Q (�) =
k
∑

i=1

∑

a∈πi

‖xi − a‖ =
∑

a∈A
min

{

‖x1 − a‖2, . . . , ‖xk − a‖2
}

= lim
s→0

∑

a∈A

[

−s log

(

k
∑

l=1

e− ‖xl−a‖2

s

)]

. (5.24)

The right hand side of Equation (5.24) shows that the problem of finding the

best k-cluster partition with no constraints can be restated as the problem of

identifying the k best centroids x1, . . . , xk . While both expressions

∑

a∈A

[

−s log

(

k
∑

l=1

e− ‖xl−a‖2

s

)]

and
∑

a∈A
min

{

‖x1 − a‖2, . . . , ‖xk − a‖2
}

are functions of x1, . . . , xk , the one on the left is differentiable, while the one on

the right is not. This observation suggests use of the smooth approximation

∑

a∈A

[

−s log

(

k
∑

l=1

e− ‖xl−a‖2

s

)]
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in order to approximate optimal centroids. Application of smooth approximations

to k-means clustering appears, for example, in Rose et al. (1990), Marroquin and

Girosi (1993), Nasraoui and Krishnapuram (1995), Teboulle and Kogan (2005),

and Teboulle (2007).

Next we briefly describe smoka clustering with cannot-link constraints only.

For two vectors a, a′, and a set of k vectors x1, . . . , xk, one has

lim
s→0

−s log





k
∑

i,j=1

e−
‖xi−a‖2+‖xj −a′‖2

s



 = min
i,j

{

‖xi − a‖2 + ‖xj − a′‖2
}

. (5.25)

We denote the left hand side of (5.25) by ψ(a, a′), and define φ(a, a′) as

lim
s→0

−s log

(

k
∑

i=1

e− ‖xi−a‖2+‖xi−a′‖2

s

)

= min
i

{

‖xi − a‖2 + ‖xi − a′‖2
}

. (5.26)

Clearly ψ(a, a′) ≤ φ(a, a′), and the equality holds only when a and a′ belong to

the same cluster. This observation motivates the introduction of a penalty func-

tion for cannot-linked vectors a, a′ as p(a, a′) = ρ
(

φ(a, a′) − ψ(a, a′)
)

where

ρ : R+ → R+ is a monotonically increasing function with ρ(0) = 0 so that

p(a, a′) = 0 when a and a′ belong to the same cluster (the simplest but, perhaps,

not the best choice for the function ρ is ρ(t) = t).

Since we intend to approximate the right hand side of Equations (5.25) and

(5.26) by the corresponding expressions on the left hand side with ‘small’ val-

ues of s, we shall consider penalty function ps(a, a′) = ρ
(

φs(a, a′) − ψs(a, a′)
)

where

ψs(a, a′) = −s log





k
∑

i,j=1

e−
‖xi−a‖2+‖xj −a′‖2

s



 (5.27)

and

φs(a, a′) = −s log

(

k
∑

i=1

e− ‖xi−a‖2+‖xi−a′‖2

s

)

. (5.28)

For fixed vectors a, a′ the expressions ψs and φs are functions of

x = (xT
1 , . . . , xT

k )T ∈ Rkn, and we shall abuse notation and denote the penalty

by ps(x; a, a′).
Our goal is to minimize

Fs(x) =
m
∑

i=1

−s log

(

k
∑

l=1

e− ‖xl−ai‖2

s

)

+
1

2

∑

a,a′∈A

ps(x; a, a′) (5.29)

with respect to x ∈ Rkn.
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We now turn to must-link constraints. Elimination of must-link constraints is

again based on ‘collapsing’ a set of vectors that should be placed together in the

same cluster into the set’s centroid b and clustering the transitive closure of must-

link constraints B = {b1, . . . , bM}. This approach with no cannot-link constraints

was introduced in Kogan (2007b). The objective function to be minimized is

−s

M
∑

i=1

mi log

(

k
∑

l=1

e− ‖xl−bi‖2

s

)

, (5.30)

where mi = m(bi). To incorporate cannot-link constraints we again introduce a

penalty function. The penalty Ps(x; b, b′) should reflect the cluster size m(b) and

is defined as follows:

Ps(x; b, b′) =
[

m(b) + m(b′)
]

× ρ







−s



log

(

k
∑

i=1

e− ‖xi−b‖2+‖xi−b′‖2

s

)

− log





k
∑

i,j=1

e−
‖xi−b‖2+‖xj −b′‖2

s















. (5.31)

We shall abuse notation and denote the objective to be minimized by Fs(x):

Fs(x) = −s

M
∑

i=1

mi log

(

k
∑

l=1

e− ‖xl−bi‖2

s

)

+
1

2

∑

b,b′∈B

Ps(x; b, b′), (5.32)

where x =
(

xT
1 , . . . , xT

k

)T
. The clustering algorithm is presented next (see Algo-

rithm 6). The following section describes the constrained clustering algorithm

designed to handle unit length vectors.

Algorithm 6 – Constrained smoka clustering

1: For a dataset A, a set of must-link and cannot-link constraints, positive

parameters s and ǫ, and a user-supplied nonnegative tolerance tol ≥ 0 do

the following:

2: Build a transitive closure B = {b1, . . . , bM} of must-link constraints.

3: Select initial cluster set x0 ∈ Rkn and set the index of iterations t = 0.

4: Use gradient descent to generate y from x(t).

5: if Fs

(

x(t)
)

− Fs(y)> tol then

6: increment t by 1

7: set x(t) = y

8: go to 5

9: end if

10: Stop.
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5.5 Constrained spherical k-means

This section describes a clustering algorithm designed to handle l2 unit norm vec-

tors. The unconstrained version of the algorithm introduced in Dhillon and Modha

(1999) was motivated by information retrieval (IR) applications and designed to

handle vectors with nonnegative entries. In Dhillon et al. (2003) the algorithm

was extended to vector datasets with arbitrary entries (see also Kogan (2007a)

for detailed treatment of general n-dimensional datasets).

The algorithm is reminiscent of the quadratic k-means algorithm, but the

‘distance’ between two unit vectors x and y is measured by d(x, y) = xT y (so

that the two unit vectors x and y are equal if and only if d(x, y) = 1). We

define the set C housing centroids as the union of the unit (n − 1)-dimensional

l2 sphere

S
n−1
2 = {x : x ∈ Rn, xT x = 1}

centered at the origin (when it does not lead to ambiguity we shall denote the

sphere just by S).

For a set of vectors A = {a1, . . . , am} ⊂ Rn, and the ‘distance-like’ function

d(x, a) = aT x, we define centroid c = c (A) of the set A as a solution of the

maximization problem

c =











arg max

{

∑

a∈A
xT a, x ∈ S

}

if a1 + · · · + am �= 0,

0 otherwise.

(5.33)

Equation (5.33) immediately yields

c (A) =







a1 + · · · + am

‖a1 + · · · + am‖
if a1 + · · · + am �= 0,

0 otherwise.

(5.34)

Note that:

1. For A ⊂ Rn
+ (which is typical for many IR applications) the sum of the

vectors in A is never zero, and c (A) is a unit length vector.

2. The quality of the set A is just Q(A) =
∑

a∈A aT c (A) = ‖a1 + · · · +
am‖.

3. While the motivation for spherical k-means is provided by IR applications

dealing with vectors with nonnegative coordinates residing on the unit

sphere, Equation (5.34) provides solutions to the maximization problem

in Equation (5.33) for any set A ⊂ Rn.

Spherical batch k-means is a procedure similar to the batch k-means algorithm

with the obvious substitution of min by max in Equation (5.4).
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5.5.1 Spherical k-means with cannot-link constraints only

In the presence of cannot-link constraints we introduce a nonpositive symmetric

penalty function p(a, a′) ≤ 0. For a cluster π we define

Q (π) =
∑

a∈π

aT c (π) +
1

2

∑

a,a′∈π

p(a, a′), (5.35)

with c (π) given by Equation (5.34). The quality of partition � = {π1, · · · , πk}
is defined by

Q(�) =
k
∑

i=1

Q (πi) . (5.36)

We first show that a straightforward adaptation of spherical batch k-means to

datasets equipped with a penalty may lead to erroneous results.

Example 5.5.1 Let A = {a1, a2, a3, a4, a5} ⊂ R2 with

a1 =
[

1

0

]

, a2 =
[

cos 31◦

sin 31◦

]

, a3 =
[

cos 45◦

sin 45◦

]

,

a4 =
[

cos 59◦

sin 59◦

]

, a5 =
[

0

1

]

,

and p(ai, aj ) = −1, i �= j . Consider an initial three-cluster partition (see

Figure 5.4)

� = {π1, π2, π3}, with π1 = {a1, a2}, π2 = {a3}, π3 = {a4, a5},

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

a1

a2

a3

a4

a5

Figure 5.4 Initial three-cluster partition.
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Figure 5.5 Three-cluster partition generated by spherical batch k-means.

with Q(�) = 4.8546 + 2p. An application of one batch iteration generates par-

tition �′ with Q(�′) = 4.9406 + 3p (see Figure 5.5). For each penalty p <

−0.086 one has Q(�′) < Q(�), i.e. an application of one iteration of the algo-

rithm leads to an inferior partition.

The incremental version of spherical batch k-means is analogous to that

of k-means with the obvious reverse of the inequality in Equation (5.7).

An application of a single iteration of incremental algorithm to partition �

(see Example 5.5.1) generates partition �′′ = {{a1, a2}, {a3, a4}, {a5}} with

Q
(

�′′) = 4.9124 + 2p < 4.8546 + 2p = Q(�) (see Figure 5.6).

Algorithm 7 – Incremental spherical k-means algorithm

1: Given user-supplied tolerance tolI ≥ 0, do the following:

2: Start with a partitioning �(0).

3: Set the index of iteration t = 0.

4: Generate nextFV
(

�(t)
)

.

5: if
[

Q
(

nextFV
(

�(t)
))

− Q
(

�(t)
)

> tolI

]

then

6: set �(t+1) = nextFV
(

�(t)
)

7: increment t by 1

8: go to 5

9: end if

10: Stop.



98 TEXT MINING

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

a1

a2

a3

a4

a5

Figure 5.6 Optimal three-cluster partition.

5.5.2 Spherical k-means with cannot-link and must-link

constraints

We start with an elementary observation. If π = {a1, · · · , am} and π ′ =
{a′

1, . . . , a′
m′} are two clusters, then

Q(π ∪ π ′) =

∣

∣

∣

∣

∣

∑

a∈π

a +
∑

a′∈π ′

a′

∣

∣

∣

∣

∣

+
∑

a∈π, a′∈π ′

p(a, a′). (5.37)

By setting b =
∑

a∈π a, b′ =
∑

a′∈π ′ a′, and P(b, b′) =
∑

a∈π, a′∈π ′ p(a, a′) one

gets

Q(π ∪ π ′) =
∣

∣b + b′∣
∣+ P(b, b′).

This observation makes repetition of the construction presented in Section 5.3.2

possible. Consider the transitive closure {π1, . . . , πM} of must-link constraints.

For i = 1, . . . , M let bi =
∑

a∈πi
a, and for each pair of indices 1 ≤ i, j ≤ M

denote
∑

a∈πi , a′∈πj
p(a, a′) by P(bi, bj ).

Our goal now is to cluster the set B = {b1, . . . , bM}. For a subset πB =
{bi1 , . . . , bip } ⊆ B the quality of the set is denoted by QB(πB) and is defined by

QB(πB) =

∣

∣

∣

∣

∣

∣

∑

b∈πB

b

∣

∣

∣

∣

∣

∣

+
1

2

∑

b, b′∈πB

P(b, b′). (5.38)

The quality of the set πB is equal to the quality of the associated subset πA =
⋃p

j=1πij of A, i.e. QB

(

πB
)

= Q
(

πA
)

.
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The incremental spherical k-means algorithm for the dataset A with penalty

function p and must-link constraints is identical to Algorithm 7 applied to the

dataset B equipped with penalty function P and with no must-link constraints.

5.6 Numerical experiments

We now demonstrate that useful cannot-link constraints may lead to superior

clustering results. We apply Algorithm 4 to a small three collection dataset clas-

sic3:2

• DC0 (Medlars Collection 1033 medical abstracts)

• DC1 (CISI Collection 1460 information science abstracts)

• DC2 (Cranfield Collection 1398 aerodynamics abstracts).

We denote the overall collection of 3891 documents by DC. Many clustering algo-

rithms are capable of partitioning DC into three clusters with small (but not zero)

‘misclassification’ (see e.g. Dhillon et al. (2003); Dhillon and Modha (2001)).

We preprocess all the text datasets following the methodology of Dhillon et al.

(2003), so that the clustering algorithm deals with 3891 vectors of dimension 600.

An application of PDDP (Principal Direction Divisive Partitioning; see Boley

(1998)) generates the initial three-cluster partition for DC. The confusion matrix

for the partition is given in Table 5.1. This partition is used later as an input for

both Algorithm 4 and Algorithm 7. Both algorithms are applied to the dataset

with no must-link constraints. The penalty function p(a, a′) is defined as follows.

For collection DC0 we sort all the document vectors a00, a01, a02 . . . with respect

to the distance to the collection average (a00 is the nearest). We select first r0

vectors a00, a01, . . . a0r0−1 and for each a not in D0 define p(a0i, a) = p > 0,

i = 1, . . . , r0 − 1. For the other two document collections DC1 and DC2 the

penalty function is defined analogously.

Table 5.1 PDDP generated ‘confusion’ matrix with 250

‘misclassified’ documents.

Cluster/DocCol DC0 DC1 DC2

Cluster 0 1362 13 6
Cluster 1 7 1372 120
Cluster 2 91 13 907

2 Available from http://www.cs.utk.edu/∼lsi.
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5.6.1 Quadratic k-means

An application of Algorithm 4 with zero penalty and tol = 0.001 (i.e. just

incremental k-means) to the PDDP generated partition improves the confusion

matrix (see Table 5.2). Algorithm 4 with p = 0.01 generates the final parti-

tion with the confusion matrix given in Table 5.3. The penalty increase to 0.09

leads to the perfect diagonal confusion matrix given in Table 5.4. The values

of penalty versus ‘misclassification’ of final partitions generated by Algorithm 4

with tol = 0.001 are given in Table 5.5. In these experiments r0 = r1 = r2 = 1.

Selection of r0 = r1 = r2 = 2 and penalty values one-half of those shown in

Table 5.5 produce results similar to those collected in Table 5.5.

5.6.2 Spherical k-means

An application of Algorithm 7 with zero penalty and tol = 0.001 to the PDDP

generated partition does not change the confusion matrix given by Table 5.1.

The decrease of penalty to p = −0.1 slightly improves the confusion matrix (see

Table 5.6). With penalty p = −0.4 the algorithm generates the perfect diagonal

confusion matrix (see Table 5.4). Further decrease in penalty does not change

Table 5.2 PDDP followed by Algorithm 4 with p = 0 generated

‘confusion’ matrix with 75 ‘misclassified’ documents.

Cluster/DocCol DC0 DC1 DC2

Cluster 0 1437 22 9
Cluster 1 1 1360 5
Cluster 2 22 16 1019

Table 5.3 PDDP followed by Algorithm 4 with p = 0.01

generated ‘confusion’ matrix with 40 ‘misclassified’ documents.

Cluster/DocCol DC0 DC1 DC2

Cluster 0 1453 17 8
Cluster 1 1 1377 4
Cluster 2 6 4 1021

Table 5.4 PDDP followed by Algorithm 4 with p = 0.09

generated ‘confusion’ matrix with 0 ‘misclassified’ documents.

Cluster/DocCol DC0 DC1 DC2

Cluster 0 1460 0 0
Cluster 1 0 1398 0
Cluster 2 0 0 1033
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Table 5.5 Penalty vs. ‘misclassification’ with

r0 = r1 = r2 = 1.

Penalty Misclassification

0.00 75
0.01 40
0.02 20
0.03 17
0.04 8
0.05 5
0.06 4
0.07 2
0.08 1
0.09 0

Table 5.6 PDDP followed by Algorithm 7 with

p = −0.1 generated ‘confusion’ matrix with

228 ‘misclassified’ documents.

Cluster/DocCol DC0 DC1 DC2

Cluster 0 1375 13 6
Cluster 1 6 1376 115
Cluster 2 2 79 912

Table 5.7 Penalty vs. ‘misclassification’ with

r0 = r1 = r2 = 1.

Penalty Misclassification

0.0 250
−0.1 228
−0.2 59
−0.3 4
−0.4 0

this result. The values of penalty versus ‘misclassification’ of final partitions

generated by Algorithm 7 with tol = 0.001 are given in Table 5.7. In these

experiments r0 = r1 = r2 = 1.

5.7 Conclusion

The chapter presents three clustering algorithms: constrained k-means, con-

strained spherical k-means, and constrained smoka. Each algorithm is capable
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of clustering a vector dataset equipped with must-link constraints and a penalty

function that penalizes violations of cannot-link constraints.

Numerical experiments with the first two algorithms show improvement of

clustering performance in the presence of constraints. At the same time a single

iteration of each algorithm changes the cluster affiliation of one vector only.

A straightforward application of the algorithms to large datasets is, therefore,

impractical.

In contrast, a single iteration of the proposed constrained smoka clustering

changes all k clusters. Numerical experiments with constrained smoka and large

datasets with must-link and cannot-link constraints will be reported elsewhere.

Judicious selection of constraints is of paramount importance to the success of

clustering algorithms. We plan to perform and report experiments with large

datasets equipped with cannot-link and must-link constraints in the near future.
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Survey of text visualization

techniques

Andrey A. Puretskiy, Gregory L. Shutt
and Michael W. Berry

6.1 Visualization in text analysis

Visualization has been proven to be a very powerful tool in a wide variety of

fields, including text mining. While text mining can reduce an enormous quantity

of data to a significantly smaller subset, this subset is often still much too large

for a human analyst to reasonably process, comprehend, detect trends, and draw

conclusions from. Text visualization and visual text mining postprocessing tools

can therefore be of crucial importance in facilitating knowledge discovery, as

well as providing a big picture overview of overwhelmingly large amounts of

data. This chapter explores several such visual techniques and describes specific

examples of software that utilizes them.

There exist many different purposes for text visualization, dependent upon the

user’s needs at a particular time. One major purpose of visualization is to facilitate

the tracing of alterations performed upon a document or set of documents over

time. This may focus upon changes to the content of the document(s), or on

authorship tracking. Visualizations in this category typically use variations of the

time line plot technique, which typically involves constructing a color-coded plot

that traces the changes made by each individual author over time. In applications

Text Mining: Applications and Theory edited by Michael W. Berry and Jacob Kogan

 2010, John Wiley & Sons, Ltd
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where many different authors may be collaborating on a single document, this

often results in an incredibly complex and difficult to read plot.

Sometimes a quick, complete, and graphical summary of a large document is

all that the user requires. Tag clouds and other similar techniques have proven

highly useful in this area. A tag cloud is a summary of a document or a collection

of documents that relies upon font size, color, and/or text placement to indicate

the relative importance of key terms to the user. The key terms may be chosen

according to any number of schemes, some as simple as a straightforward term

count. Though perhaps not particularly useful for detailed analysis, a tag cloud

is highly effective in summarizing large amounts of text in an easily readable,

and understandable, visual manner.

Another major purpose of text visualization is general text exploration: that

is, a general search for interesting patterns or relationships within the data. Quite

often, the user has very limited prior information regarding the target of his or her

search, thus the term ‘exploration’ describes this type of analysis better. In order

to facilitate it, visualization software in this category typically creates an altered,

graphical term space representation – for example, an interconnected graph of all

of the terms in a book, where terms may be connected based on co-occurrence

within a single chapter or section. Many variations of this approach exist, but

one aspect that most of them have in common is that they are heavily reliant

upon the user’s attention and perception. The user’s ability to notice, interpret,

and understand patterns in the dataset is a critical part of the analysis process

when such software is utilized.

Sentiment tracking (and its related visualization software) is a relative new-

comer to the text visualization arena, and yet it is a highly promising technique

that has a great capability for insightful analysis of textual data. Various tech-

niques for sentiment tracking exist. One common approach attempts to connect

adjectives from the text to one of a number of basic emotion descriptor adjectives

via a thesaurus synonym path. The length of the connecting paths determines how

each text adjective is categorized. A percentage breakdown plot may then be con-

structed to indicate the overall content of basic emotions or sentiments within

the text over time.

Many text mining procedures produce unlabeled, textual results (e.g. groups

of interrelated terms that describe features contained in the original input dataset).

In order to draw potentially useful conclusions, further interpretation of these

results is necessary. This often requires a great commitment of time and effort

on the part of human analysts. Visual postprocessing tools tailored for specific

text mining packages can therefore greatly facilitate the analysis process. This

chapter will discuss one such visual tool, FutureLens , in great detail.

6.2 Tag clouds

Conceptually, tag clouds are somewhat similar to histograms; however, they offer

greater flexibility for the visual representation of the relative importance of each
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Figure 6.1 A tag cloud of the paper in Shutt et al. (2009), generated by the

TagCrowd application.

tag. The font size and color, as well as the orientation of the text (vertical or

horizontal) and the proximity of tags to one another, may be used to convey

information to the observer (Kaser and Lemire 2007). A basic tag cloud gener-

ator is a relatively simple and straightforward program that obtains term counts

from textual data, then generates HTML that takes the term counts into consid-

eration. Frequently, the user is allowed to choose the total number of terms in

the tag cloud summary. The tag cloud generating code then selects these terms

based on the overall counts and generates HTML code where font sizes vary

according to the relative relationship between the overall term counts. Figure 6.1

demonstrates a straightforward and easy-to-use tag cloud generator application,

TagCrowd (Steinbock 2009). The text of the paper in Shutt et al. (2009) was

used to generate the tag cloud in the figure.

Figures 6.2 and 6.3 demonstrate a more complex application, Wordle (Fein-

berg 2009). This generator includes many additional graphical capabilities. It

Figure 6.2 A tag cloud of the paper in Shutt et al. (2009), generated by the

Wordle application using the ‘Vigo’ font type and a randomized predominant text

orientation.
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Figure 6.3 A tag cloud of the paper in Shutt et al. (2009), generated by the

Wordle application using the ‘Boope’ font type and with the predominant text

orientation set to horizontal.

gives the user the ability to alter text and background color in a variety of ways.

Font type may be modified. The predominant orientation of the words in the

word cloud may be set in a variety of ways, ranging from completely horizontal,

to mostly horizontal or mostly vertical, to completely vertical. Wordle is capable

of automatically randomizing all of these parameters.

Both Steinbock (2009) and Feinberg (2009), as well as many other tag

cloud generators, allow free noncommercial use of the images and/or HTML

code that they generate. TagCrowd and Wordle both use the Creative Commons

license, meaning users are allowed to copy, distribute, and transmit the materi-

als (Commons 2009a,b). While Wordle does not limit usage to noncommercial

applications, TagCrowd allows noncommercial use only. It should be noted that

the source code of the generators is copyrighted by the respective authors and

does not fall under the Creative Commons license.

6.3 Authorship and change tracking

The development of authorship tracking visual software was motivated by

Wikipedia-like collaborative environments, where multiple users may make

incremental changes to a single document over a relatively long time period.

Software such as History Flow, a project of the Collaborative User Experience

Research Group at IBM, allows the user to visually trace the changes to a par-

ticular document. The software creates a series of color-coded bars (by author),

each corresponding to a single version or revision of the document. Same-color

segments on adjacent bars are connected, creating a three-dimensional visual

effect that provides the user with information on the way the document was

altered over time by multiple authors. History Flow also includes additional

visualization modes that allow the user to track a single author’s activity through

the collaboratively developed document, as well as to trace the changes by

their relative age. IBM researchers have used History Flow to effectively study
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cooperation and conflict among authors on Wikipedia, including such aspects

as vandalism and repair (Viégas et al. 2004). More information on History

Flow, including screenshots of the software in action, may be found at Viégas

et al. (2009).

6.4 Data exploration and the search

for novel patterns

TextArc uses JavaScript and functions as an online application to visualize com-

plex textual datasets. It has been applied to works of literature, such as Alice in

Wonderland and Hamlet . The visualization provided by TextArc consists of two

levels. First, the original text is available around the periphery of the visualiza-

tion area. Second, an interconnected graph of terms is provided in the middle of

the visualization area. The two areas are interconnected, meaning that the user is

able to select any particular term in the middle area and quickly see its context in

the full text that is displayed along the periphery. This software allows the user

to easily determine any given term’s relevance or relative importance to any part

of the literary work (Paley 2009). Figures 6.4 and 6.5 demonstrate how TextArc

was used to explore Shakespeare’s Hamlet .

6.5 Sentiment tracking

Sentiment tracking involves tracing an author’s changing attitudes through a par-

ticular piece of text. In order to accomplish this, it is necessary to categorize the

terms from the text to certain broad descriptor adjectives. Descriptor adjectives

may vary: for example, the SEASR (Software Environment for the Advancement

Figure 6.4 TextArc applied to Shakespeare’s Hamlet. Not surprisingly, the name

‘Hamlet’ figures prominently in the work.
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Figure 6.5 TextArc allows the user to easily track the connections between var-

ious terms. Here, we see that the term ‘Hamlet’ is related to the term ‘lord’. It is

also possible to track either term further.

Figure 6.6 SEASR’s Sentiment Tracking project applied to Turn of the Screw,

by Henry James (1898). Each unit on the X-axis corresponds to a group of 12

sentences. The Y-axis shows the sentiment composition for all six of Parrott’s

core emotions (Parrott 2000).
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Figure 6.7 SEASR’s Sentiment Tracking project applied to Turn of the Screw,

by Henry James (1898). This figure shows the presence of anger in the literary

work.

of Scholarly Research) Sentiment Tracking project used Parrot’s six core emo-

tions in its sentiment tracking demonstration (Figures 6.6, 6.7, and 6.8): Love,

Joy, Surprise, Anger, Sadness, and Fear (Parrott 2000). The Sentiment Track-

ing project uses UIMA (Unstructured Information Management Applications), a

component framework for analyzing unstructured content, including but not lim-

ited to text. UIMA began as a project at IBM, but evolved into an open source

project at the Apache Software Foundation (SEASR 2009b). Several different

metrics may be used in order to categorize the terms from the text. The approach

used by the SEASR/UIMA Sentiment Tracking project involves searching for

the shortest path through a thesaurus from each term within the text to one of the

descriptor adjectives. Synonym symmetry is another useful technique, and may

be helpful as a ‘tie breaker’ (SEASR 2009a).

6.6 Visual analytics and FutureLens

FutureLens is a Java-based visual analytics environment that has been used

to support the extraction and tracking of scenarios and plots from news

articles defining the VAST 2007 Contest (Scholtz et al. 2007). Using groups

of related persons, locations, organizations, and context-specific words and

phrases identified (through time) by nonnegative tensor factorization (NTF)

models (Bader et al. 2008b), FutureLens was instrumental in extracting the
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Figure 6.8 SEASR’s Sentiment Tracking project applied to Turn of the Screw,

by Henry James (1898). This figure shows the presence of joy in the literary work.

underlying (fictitious) criminal and terrorist activities created by Whiting et al.

for the VAST 2007 Contest. Section 6.7 briefly describes the scenario mining

process and expectations that warrant the design of visual analytic software

like FutureLens. An early prototype of FutureLens is discussed in Section 6.8,

followed by an illustration of some of the important features of FutureLens

in Section 6.9. Examples of scenario discovery with the VAST 2007 Contest

dataset are provided in Section 6.10 and Section 6.11. A brief discussion of

future enhancements to FutureLens is given in Section 6.12 (Shutt et al. 2009).

6.7 Scenario discovery

The intent of the IEEE VAST 2007 Contest (Scholtz et al. 2007) was to promote

the development of benchmark datasets and metrics for visual analytics as well

as to establish a forum for evaluating different solution strategies. In provid-

ing news stories, blog entries, background information, and limited multimedia

materials (small maps and data tables), the contest organizers challenged the

participants to investigate a major law enforcement/counter-terrorism scenario,

form a hypothesis, and collect supporting evidence. Tasks that each team/entry

was expected to address included: (1) identify entities (e.g. people, places, and

activities) from text and multimedia information; (2) develop interactive tools to
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visualize/analyze this information; (3) answer specific (contest-provided) ques-

tions based on the analysis; and (4) produce a video that demonstrates how those

answers were derived. FutureLens was primarily used for the second task to visu-

alize and track the entity groups generated by the nonnegative tensor factorization

models discussed in Bader et al. (2008a,b).

6.7.1 Scenarios

The primary (crime and terrorism-based) scenarios depicted in the VAST 2007

Contest involved wildlife law enforcement incidents occurring in the fall of 2004.

Endangered species issues and ecoterrorism activities played key roles in the

underlying terrorist scenario/plot. The data used to describe the details of the

plot included text, images, and some statistics. Although activities of certain

animal rights groups, such as the People for the Ethical Treatments of Animals

(PETA) and Earth Liberation Front (ELF), were involved with the plot, the con-

test organizers did not consider them to be the primary (interesting) parties for

investigation. In fact, such sideplots were used to deflect attention from the main

criminal/terrorist scenarios, thus providing a realistic challenge.

6.7.2 Evaluating solutions

Although entries (or answers) submitted to the VAST 2007 Contest were judged

according to the correctness of the answers to the questions and the evidence

provided, a more subjective assessment of the quality of the displays, interactions,

and support for the analytical process was also provided. The last category is of

particular interest because the field of text mining, in general, could greatly benefit

from the design of more intuitive visualizations that expose or verify potential

scenarios of human activity.

Following the traditional cues of journalistic reporting, visual analytics (as

reflected by the VAST 2007 contest) seeks to answer the questions (who, what,

where, and when) for an alleged activity using the the most relevant documents or

other materials from the dataset as evidence. Contest participants were required

to describe the plot(s) and subplots(s) and how people, motivations, activities,

and locations relate to the plot; that is, their relationships, and any uncertainties

or information gaps that exist. For example, some of the questions each entry

was required to answer include:

• (Who) Who are the players engaging in questionable activities in the

plot(s)? When appropriate, specify the organization they are associated

with.

• (When/What) What events occurred during this time frame that are most

relevant to the plot(s)?

• (Where) What locations are most relevant to the plot(s)?



116 TEXT MINING

6.8 Earlier prototype

Many of the concepts and ideas of this project stem from FeatureLens, a Uni-

versity of Maryland (Human–Computer Interaction Laboratory) text and pattern

visualization program (Don et al. 2007, 2008; Kumar 2009). FeatureLens allows

the user to explore frequently occurring terms or patterns in a collection of doc-

uments. Connections between these frequent terms and the dates at which they

appear in the set of documents can quickly be visualized and investigated. A

screenshot of the FeatureLens prototype is shown in Figure 6.9.

Figure 6.9 FeatureLens prototype (written in Ruby) developed at the University

of Maryland Human–Computer Interaction Laboratory.

While FeatureLens may sound suitable for the given task, it is not without

its shortcomings. For one, its design is rather complex as it requires a MySQL

database server, an HTTP server, and an Adobe Flash-enabled web browser to

function properly. As such, it is not a trivial task to set up an instance of Fea-

tureLens from scratch and may take an inexperienced user a significant amount

of time to get started. Datasets must be parsed and stored in the database, an

operation that an end user cannot perform, so examining arbitrary datasets is out

of the question. In implementing the architecture of FeatureLens, the designers

chose to use a variety of languages: Ruby for the back end, XML to communicate

between the front end and back end, and OpenLaszlo for the interface. Because

of this variety in languages, adapting and modifying FeatureLens would prove

quite difficult. Responsiveness of the interface also tends to degrade to the point

that it impacts usability when given even the simplest of tasks. Clearly a better

solution was needed.
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6.9 Features of FutureLens

FutureLens is a text visualization tool that implements much of the functionality

of FeatureLens while adding several necessary features. The most significant

among the additional features is the capability to create term collections and

phrases. The user may do this by simply clicking and dragging selected terms or

entities onto each other. FutureLens is written in the Java programming language

using the Standard Widget Toolkit so it is not only cross-platform but uses native

widgets where possible to maintain a look and feel consistent with the users’

platform. For end users not familiar with the program, FutureLens has a built-

in feature that demonstrates its basic functionality. An example of FutureLens

running under Mac OS X is shown in Figure 6.10.

Figure 6.10 FutureLens prototype (written in Java) developed at the University

of Tennessee for visualization of NTF-generated outputs.

All the basic functionality of FutureLens can be seen in this example. The

boxes along the bottom show the terms that are currently being investigated.

The intensity of the color in these boxes hints at the concentration of the term

throughout the documents. A graph of the percentage of documents containing the

term versus time is shown at the top, while the raw text of the selected document

is shown to the right with the selected terms highlighted in the appropriate color.
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Multiple terms can easily be combined into extended patterns by dragging and

dropping. Terms may be combined into either collections or phrases. A collection

is created when the user drags and drops terms onto each other. Term adjacency

does not affect search results for a collection. If the users holds down the Copy

key (this key varies depending on the operating system; for example, on Mac OS

X this is the Alt key), a phrase rather than a collection will be created. In this

case, term adjacency will be considered when the software performs searching.

While this presents an excellent overview of the data, it is also possible to load

the output (groups of terms and/or entities) derived from a data clustering method.

An example of this is shown in Figure 6.11.

Figure 6.11 FutureLens tracking the co-occurrences of grouped terms and enti-

ties (persons, locations, and organizations).

Here a file containing pertinent terms output from a nonnegative tensor

factorization (NTF) tool has been loaded as a separate view into FutureLens.

The view is nearly identical to the overview. However, the list of terms has

been limited to only what was contained in the input file. This allows the user to

quickly view the different clusters of entities through time (Bader et al. 2008b).
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6.10 Scenario discovery example: bioterrorism

Figures 6.12 through 6.16 demonstrate how FutureLens may be used together

with NTF to quickly reconstruct a bioterrorism-related plotline that was buried

within the VAST 2007 text corpus. In Figure 6.12, one of the NTF output groups

has been loaded into FutureLens. Each NTF output group contained 15 top rank-

ing (most relevant) entities and 35 top ranking terms that described a particular

feature of the input dataset. The user is aware that he or she should be searching

for some sort of interesting and nefarious scenario. The selected terms (Monkey-

pox , Exotic, Pets , Chinchilla) constitute a good starting point. However, the user

will not find all news articles with the occurrence of the relatively common words

Pets and Exotic relevant. Thus, the two terms are combined into the phrase Exotic

Pets , as shown in Figure 6.13. Figure 6.14 demonstrates how FutureLens allows

Figure 6.12 FutureLens with the bioterrorism NTF output group loaded. The

panel on the left shows the terms and entities relevant to the NTF output group.

The top-level graph summarizes the frequency of the selected terms and entities

over time. The monthly frequency plots in the center of the screen allow the user a

more detailed view of the term/entity occurrence over time. The monthly plots are

clickable; the results of that operation are demonstrated in the subsequent figures.
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Figure 6.13 Demonstration of phrase creation in FutureLens. The terms Exotic

and Pets from Figure 6.12 have now been combined into a phrase Exotic Pets.

The phrase creation technique has the effect of significantly decreasing the total

number of hits, thereby reducing on-screen clutter and allowing the user to focus

his or her search. Additionally, this figure demonstrates the effect of the user’s

clicking one of the bars in the monthly plots. Doing so causes the corresponding

text to be displayed in the panel on the right of the screen. If the user-selected

terms are contained within the text, they will be highlighted in appropriate colors.

This allows the user to quickly ascertain the context of the selected terms, and

possibly also to locate additional terms or entities of interest. A phrase is created

when the user drags selected terms onto each other while holding down the COPY

key (e.g. ALT on Mac OS X).

the user to easily identify a key news story within the large dataset. The article

shown in this figure contains a great amount of relevant information regarding an

outbreak of a potentially deadly virus, monkeypox, in the Los Angeles area. The

article implies that the outbreak may not have been accidental, and connects it to

an animal rights activist and chinchilla breeder named Cesar Gil. In order to fully

reconstruct the plotline, the user selects the names Cesar Gil and Gil from the

Entities list, as shown in Figure 6.15. However, this results in too many instances

of Gil being found, and most of them are probably irrelevant. Exploiting the link

between Gil and chinchilla breeding, the user combines the terms Chinchilla and

Gil into a collection. This helps the user to quickly identify a relevant article that

contains an advertisement for Gil’s chinchilla breeding business (Figure 6.16).
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Figure 6.14 Key news story identification using FutureLens. The monthly plots

allow for convenient visualization of term co-occurrence over time. As demon-

strated in this figure, term co-occurrence allows the user to quickly extract the

most relevant and informative textual data from a large dataset. In this example,

the news article that contains all of the user’s selected terms contains a great deal

of information relevant to the chinchilla–bioterrorism plot. The context provided

by the article tells the user exactly in what way many of the terms and entities

within the NTF output group are relevant to the bioterrorism scenario that was

hidden within this textual dataset.

Not all of the articles that are relevant to this plotline have been shown in the

figures; however, FutureLens enables the user to quickly and easily identify them

all. FutureLens also helps the user to focus on the relevant parts of the article

(Shutt et al. 2009).

6.11 Scenario discovery example: drug trafficking

Figures 6.17 through 6.21 demonstrate how FutureLens may be used together

with NTF to quickly reconstruct a drug trafficking plotline that was buried

within the VAST 2007 text corpus. In Figure 6.17, the corresponding NTF

output group has been loaded into FutureLens. Figure 6.18 shows both term

chaining techniques: Tropical and Fish are combined into the phrase Tropical

Fish; Cocaine and Drugs are combined into a single collection of terms. As

a result of this operation several news articles are found, including one that
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Figure 6.15 Entity of interest search using FutureLens. The key news article

demonstrated in Figure 6.14 revealed that an individual named Cesar Gil is a

key player in this scenario. FutureLens allows the user to expand the search by

including alternative forms of this individual’s name (e.g. Gil). However, this may

cause a significant number of irrelevant search results. Figure 6.16 demonstrates

how the user might use FutureLens’ collection creation capability to focus the

search.

discusses the use of trade in exotic pets (including tropical fish) as a cover for

drug smuggling (including cocaine trafficking). The next figure, Figure 6.19,

shows the selection of what appears to be a company name, Global Ways ,

from the Entities list. As shown, the user is able to quickly find a story that

identifies Global Ways as a company that imports exotic tropical fish from South

America into the United States. Given the previously established connection

between drug trafficking and tropical fish imports, Global Ways may be worth

investigating further. As Figure 6.20 shows, shortly after publication of the

story advertising Global Ways’ import business, the Fish and Wildlife Service

had issued a warning to avoid handling shipments of tropical fish that may

have entered the United States through Miami. According to this story, the

packaging of some of these shipments appears to have been contaminated with

an unknown toxic substance. Global Ways is listed as one of the suspects.
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Figure 6.16 Term collection creation in FutureLens. A collection of terms may

be created in FutureLens by simply dragging selected terms onto each other. A

collection of terms differs from a phrase because term adjacency does not matter

for a collection search. In this example, the user has been able to determine that

the Gil of interest is highly likely to be mentioned in a news article that also

contains the term chinchilla. The user created a collection containing both terms,

thereby greatly reducing the total number of search hits on the term Gil alone.

Furthermore, this leads to the discovery of a highly relevant article, one in which

the individual named Gil is advertising the sale of chinchillas that would later be

proved to have been intentionally infected with the potentially deadly monkeypox

virus.

Finally, Figure 6.21 identifies the owner of Global Ways as Madhi Kim ,

thereby allowing the analyst to continue tracing relationships through the

dataset.

6.12 Future work

While FutureLens provides numerous features for plot and scenario discovery,

there is still room for improvement. It works well for evidence generation but

it has no automation for any type of scenario discovery. Methods that locate
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Figure 6.17 The drug trafficking NTF output group loaded into FutureLens.

Figure 6.18 Two types of term chaining, phrase creation and collection creation,

help the user to quickly identify relevant news stories.
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Figure 6.19 Among entities of interest produced by NTF, there appears a com-

pany name, Global Ways. FutureLens enables the user to further explore the

relationship between this company, the tropical fish trade, and drug trafficking.

Figure 6.20 FutureLens helps the user to identify news stories that connect

Global Ways to drug trafficking.
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Figure 6.21 The owner of Global Ways is identified with the help of FutureLens.

Further investigation of the owner’s connections and associations is possible at

this point.

interesting features in the dataset could be added to create a single analysis tool.

As it stands now, the output of data mining models such as that created by

nonnegative tensor factorization (see Bader et al. (2008b)) must be entered man-

ually into the software environment. Eliminating this human interaction would

greatly increase the efficiency of scenario discovery. An obvious extension for

dynamic (time-varying) datasets is certainly needed. The portability and intuitive

word/phrase tracking capability of FutureLens, however, make this public-domain

software environment a solid contribution to the text mining community.
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Adaptive threshold setting

for novelty mining

Wenyin Tang and Flora S. Tsai

7.1 Introduction

In the age of information, it is easy to accumulate various documents such as news

articles, scientific papers, blogs, advertisements, etc. These documents contain

rich information as well as useless or redundant information. People who are

interested in a certain topic may only want to track the new developments of

an event or the different opinions on the topic. This motivates the study of

novelty mining, or novelty detection, which aims to retrieve novel, yet relevant,

information, given a specific topic defined by a user (Zhang and Tsai 2009a). A

typical novelty mining system consists of two modules: (1) categorization; and

(2) novelty mining. The categorization module classifies each incoming document

into its relevant topic bin. Then, the novelty mining module detects the documents

containing enough novel information in the topic bin. This chapter will focus on

the later module. Due to its importance in information retrieval, a great deal of

attention has been given to novelty mining in the past few years. The pioneering

work for novelty mining was performed at the document level (Zhang et al.

2002). Later, more contributions were made to novel sentence mining, such as

those reported in TREC 2002–2004 Novelty Track (Harman 2002; Soboroff

2004; Soboroff and Harman 2003), those in comparing various novelty metrics

Text Mining: Applications and Theory edited by Michael W. Berry and Jacob Kogan

 2010, John Wiley & Sons, Ltd
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(Allan et al. 2003; Tang and Tsai 2009: Zhao et al. 2006), and those in integrating

various natural language processing (NLP) techniques (Kwee et al. 2009; Ng et al.

2007; Zhang and Tsai 2009b).

Novelty mining is a process of mining novel text in the relevant documents

of a given topic. The novelty of any document or sentence is quantitatively mea-

sured by a novelty metric based on its history documents and represented by a

novelty score. The final decision on whether a document or sentence is novel

or not depends on whether the novelty score falls above or below a threshold.

As an adaptive filtering algorithm, novelty mining is one of the most challeng-

ing problems in information retrieval. One primary challenge is how to set the

threshold of novelty scores adaptively. In the novelty mining system, since there

is little or no training information available, the threshold cannot be predefined

with confidence. The motivations for designing an adaptive threshold setting for

the novelty mining system are manifold. There is little training information in

the initial stages of novelty mining and different users may have different defi-

nitions about novelty. Motivations of adaptive threshold setting will be analyzed

in detail later (in Section 7.2.2).

To the best of our knowledge, few studies have focused on adaptive threshold

setting in novelty mining. A simple threshold setting algorithm was proposed in

Zhang et al. (2002), which decreases the redundancy threshold a little if a redun-

dant document is retrieved as a novel one based on a user’s feedback. Clearly

it is a weak algorithm because it can only decrease the redundancy threshold.

This chapter addresses the problem of setting an adaptive threshold by modeling

the score distributions of both novel and nonnovel documents. Although score

distribution-based threshold-setting algorithms have been proposed for relevant

document/sentence retrieval (Arampatzis et al. 2000, Robertson 2002; Zhai et al.

1999; Zhang and Callan 2001), the novelty score in novelty mining has its dis-

tinctive characteristics. In our experimental study, we find that scores from the

novel and nonnovel classes heavily overlap. This is intuitive because novel and

nonnovel information are always interlaced in one document, while in the rele-

vance retrieval problem most of the nonrelevant documents show little similarity

with relevant ones. Second, we find that the score distributions for both novel

and nonnovel classes can be approximated by Gaussian distributions (detailed in

Section 7.2.3). In the relevance retrieval problem, however, the scores of nonrele-

vant documents follow an exponential distribution (Arampatzis et al. 2000). This

also implies that most nonrelevant documents are dissimilar to relevant ones.

The score distributions of classes provide the global information necessary

for constructing an optimization criterion for threshold setting, while the thresh-

old that optimizes this criterion is the best we can obtain until new user feedback

is provided. Our proposed method, the Gaussian-based adaptive threshold set-

ting (GATS) algorithm, is a general algorithm, which can be tuned according to

different performance requirements, by employing different optimization criteria,

such as the Fβ score (Equation (7.7)), which is the weighted harmonic average

of precision and recall where β controls the trade-off between them.
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The novelty mining system combined with GATS has been tested on both

document-level and sentence-level data and compared to the novelty mining

system using various fixed thresholds. The experimental results show that a good

performance of GATS can be obtained at both levels.

The remainder of this chapter is organized as follows. Section 7.2 first ana-

lyzes the motivations of threshold setting in novelty mining, and then introduces

the GATS algorithm. Section 7.3 tests GATS at both the sentence level and

document level. Section 7.4 concludes the chapter.

7.2 Adaptive threshold setting in novelty mining

7.2.1 Background

Novelty mining is the process of mining novel text in the relevant documents

of a given topic. The novelty of a document or sentence (later we refer only

to documents without losing any generalization) can be quantitatively measured

by a novelty metric and represented by a novelty score. The most commonly

used novelty metric, the cosine distance metric, will be employed throughout

this chapter as it yielded good results for novelty mining compared to more

complex metrics (Zhang et al. 2002). Since cosine similarity does not measure

the degree of novelty directly, we convert the cosine similarity scores to novelty

scores by subtracting these similarity scores from one. The cosine similarity

novelty metric compares the current document to each of its history documents

separately, whereas the minimum novelty score among them will be used as the

novelty score of the current document. Specifically,

Ncos(dt ) = min
1≤i≤t−1

[1 − cos(dt , di)], where (7.1)

cos(dt , di) =
∑n

k=1 wk(dt ) · wk(di)

‖dt‖ · ‖di‖
,

and where Ncos(d) denotes the cosine similarity-based novelty score of document

d and wk(d) is the weight of the kth word in document weighted vector d . The

weighting function used in our work is the term frequency.

The final decision on whether a document is novel or not depends on whether

the novelty score falls above or below a threshold. The document predicted as

‘novel’ will be pushed into the history document list.

When novelty mining adopts a fixed threshold, no user feedback is considered

and the whole process is unsupervised. When novelty mining adopts an adaptive

threshold setting algorithm, the system needs to respond to any new feedback

from the user. Based on the feedback from the user, the new threshold output by

this algorithm will replace the current one and be used for future incoming doc-

uments until new feedback is available. Note that when no feedback is received,

the system will fix the threshold at the initial threshold.
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7.2.2 Motivation

There are several reasons motivating us to design an adaptive threshold setting

algorithm for novelty mining. First of all, there is little or no training informa-

tion in the initial stages of novelty mining. Therefore, the threshold can hardly

be predefined with confidence. The training information that is necessary for

threshold setting includes the statistics of data and users’ reading habits. For

example, a topic with 90% novel documents needs a relatively low threshold for

novelty scores to retrieve most of the documents. On the other hand, different

users may have different definitions of ‘novel’ information. For example, one

user might regard a document with 50% novel information as a novel document

while another user might only regard a document with 80% novel information

as a novel document. The threshold of novelty scores should be higher for the

user with a stricter definition of the ‘novel’ document. As novelty mining is an

accumulating system, more training information will be available for threshold

setting, based on user feedback given over time. The adaptive threshold setting

algorithm is able to utilize this available information and customizes the novelty

mining system to the user’s needs.

Satisfying different performance requirements is another important motivation

for employing an adaptive threshold setting algorithm for novelty mining. For

example, when users do not want to miss any novel information, a high-recall

system that only filters out very redundant documents is desired. When users

want to read the most novel documents first, a high-precision system that only

retrieves very novel documents is preferred. Therefore, the threshold should be

tuned according to different performance requirements.

Next, we will introduce the proposed method, namely GATS, and explain

how it works with novelty mining.

7.2.3 Gaussian-based adaptive threshold setting

GATS is a score distribution-based threshold-setting method. It models the score

distributions of both novel and nonnovel documents by Gaussian probability

distributions. The score distributions of both classes provide global information

on the data, from which we can construct an optimization criterion for searching

the optimal threshold. Therefore, two major issues in GATS are: (1) modeling

the novelty score distributions; and (2) constructing the optimization criterion for

searching the best threshold. Next, we will introduce these two issues separately.

Novelty score distributions

Assume there are n training documents, d1, d2, . . . , dn, each of which belongs to

either novel class c1 or nonnovel class c0. For any document di , i = 1, 2, . . . , n,

its novelty score, xi , can be estimated by some novelty metric such as cosine

similarity as defined in Equation (7.1).
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To find the empirical novelty score distributions of data, some training datasets

are needed. Here, we use topics N54 and N69 from the TREC 2004 Novelty

Track data (Soboroff 2004) and assume all the novel and nonnovel documents are

known beforehand. The following steps are processed on both training datasets

separately.

Step 1: Calculate the novelty scores xi of each document di , i = 1, 2, . . . , n,

using Equation (7.1), where the history document list includes all the

history novel documents.

Step 2: Divide the scores of each class into several equal width bins with a

bin width equal to [max(scores) − min(scores)]/no. of bins, where

the number of bins for any class ck equals the maximum integer

smaller than nk/5. Then, we can obtain the number of documents

falling in the lth bin of the kth class, denoted as nk,l , where, l =
1, 2, . . . , no. of bins and k ∈ {c0, c1}.

Step 3: Obtain the empirical distributions of novelty scores, where the number

of documents in each bin is normalized as follows:

pe(x|ck) =
no. of bins

nk

× nk,l, (7.2)

where nk and nk,l are the total number of documents in the class

ck and the number of documents falling in the lth bin of class ck,

respectively. The empirical distributions of novelty scores for topics

N54 and N69 are shown in Figures 7.1 and 7.2, respectively.

The Gaussian distribution (also called the normal distribution) in the random

variable X with mean µ and variance σ 2 has the probability density function

(pdf)

p(x) =
1

σ
√

2π
e
−
(

x−µ

σ
√

2

)2

. (7.3)

If we assume that both novelty scores of the novel class and nonnovel class follow

the Gaussian distributions, for any class ck, k ∈ {0, 1}, the maximum likelihood

estimations for the Gaussian probability density function p(x|ck) ∼ G(µk, σ
2
k )

are given by

µk =
1

nk

∑

i∈ck

xi, (7.4)

σ 2
k =

1

nk

∑

i∈ck

(xi − µ)2. (7.5)

The Gaussian probability density function estimated for each class is repre-

sented by the dashed lines in Figures 7.1 and 7.2. It would appear that novelty
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Figure 7.1 Empirical and probability distribution approximation for TREC 2004

Novelty Track data topic N54.

scores from both the novel and nonnovel classes can be well fitted by Gaussian

distributions.

Optimization criterion

Assume we have an incoming document stream d1, d2, to dn, of which n1 are

novel. After filtering the document stream by the novelty mining system with a

threshold θ , any document can be classified in one of four classes as shown in

Table 7.1.

Precision and recall are two widely used measures for evaluating the quality of

results in information retrieval. Precision can be seen as a measure of exactness,

whereas recall is a measure of completeness. In novelty mining, precision reflects

how likely the system-retrieved documents are truly novel and recall reflects how

likely the truly novel documents can be retrieved by the system. Precision and
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Figure 7.2 Empirical and probability distribution approximation for TREC 2004

Novelty Track data topic N69.

Table 7.1 Contingency table in the novelty

mining system.

Novel Nonnovel

Retrieved R1 R0

Nonretrieved N1 N0

Total n1 n0

recall for novel documents are defined as follows:

precision =
R1

R1 + R0

, (7.6)

recall =
R1

n1

.
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In novelty mining, the most commonly used evaluation measure is the F

score (Soboroff 2004) (see also Section 3.4 in this book), which is the harmonic

average of precision and recall:

F =
2 × precision × recall

precision + recall
. (7.7)

The F score is a special case of the Fβ score, i.e. the weighted harmonic average

of precision and recall

Fβ =
1

β

precision
+ 1−β

recall

, (7.8)

where β is the parameter to control the weights of precision and recall.

The numbers of documents in each class of the contingency table, R1, R0,

N1, and N0, are functions of θ and can be approximated by the probability

distributions of the novel and nonnovel classes. For example, given a threshold

θ , the estimation of R1(θ) is proportional to the probability of novel documents

with novelty scores greater than the θ . Specifically,

R1(θ) = n1 · P(x > θ |c1) (7.9)

= n1 ·
∫ +∞

θ

p(x|c1)dx.

Similarly, we can obtain the other functions

R0(θ) = n0 · P(x > θ |c0), (7.10)

N1(θ) = n1 · P(x < θ |c1),

N0(θ) = n0 · P(x < θ |c0).

Substituting Equations (7.9) and (7.10) into Equation (7.6), precision and recall

can be rewritten as functions of the threshold θ , as follows:

precision(θ) =
Pc1

P(x > θ |c1)

Pc1
P(x > θ |c1) + Pc0

P(x > θ |c0)
, (7.11)

recall(θ) = P(x > θ |c1), (7.12)

where Pc1
and Pc0

are the prior probabilities of the novel and nonnovel classes

which can be estimated by

Pc1
= n1/n and Pc0

= n0/n. (7.13)

After obtaining precision and recall as functions of θ , we can construct the

optimization criterion for determining the best threshold. Substituting Equations
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(7.11) and (7.12) into Equation (7.7), we can obtain the criterion Fβ(θ), whose

maximum value corresponds to the best threshold θ∗, i.e.

θ∗ = arg max
θ

Fβ(θ) (7.14)

= arg max
θ

1
β

precision(θ)
+ 1−β

recall(θ)

= arg max
θ

P(x > θ |c1)

β[P(x > θ |c1) + Pc0

Pc1
P(x > θ |c0)] + (1 − β)

.

GATS is a general method that can be tuned according to different per-

formance requirements, by employing the different optimization criteria. By

employing Fβ , GATS will adjust the threshold automatically according to the

certain performance requirement, by setting a proper value of β. A bigger β

gives a heavier weight for precision and will lead to a precision-oriented system

and vice versa. The effects of β variation on performance monitoring will be

discussed in detail in Section 7.3.

7.2.4 Implementation issues

There are several implementation issues for GATS. The first issue is how GATS

should be combined with novelty mining. Figure 7.3 shows the flowchart of

novelty mining combined with GATS. After predicting the ith document di ,

i = 1, 2, . . . , the system checks whether there is any new user feedback for the

current document or any history document. If there is any available new feedback,

the current threshold will be updated by GATS. Finally, the system will use this

newly updated threshold to predict the next incoming document.

The second implementation issue concerns whether the number of feedbacks

is enough for Gaussian probability estimation in GATS, in the initial stage of

novelty mining. In our experiments, we found that the minimum number of

feedbacks nmin of both novel and nonnovel documents should not be less than 4.

A smaller nmin will degrade the accuracy of probability estimation and lead

to an unreliable Gaussian probability model, while a large nmin will not start

the adaptive threshold setting until the system accumulates enough user feed-

back. In our experimental study, we set nmin = 4 for both novel and nonnovel

documents.

When the number of feedbacks does not meet the requirement of nmin, the

initial threshold is necessary. Therefore, setting the initial threshold is another

implementation issue. Due to the characteristics of novelty mining, we found that

there are more novel documents in the early stage of document accumulation.

Therefore, the initial threshold should be a little lower, where most of the doc-

uments can be retrieved. As the accumulating documents increase, the possible

user feedback also increases to trigger GATS. In our experiments, we set the

initial threshold θ0 = 0.3 for novelty scores.
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Figure 7.3 Novelty mining combined with GATS.

7.3 Experimental study

7.3.1 Datasets

Two public datasets, TREC 2004 Novelty Track data (Soboroff 2004) and

TREC 2003 Novelty Track data (Soboroff and Harman 2003), were used in

our experiments. The TREC 2004 and 2003 Novelty Track data is developed

from AQUAINT collection. The news providers of the document set are Xin

Hua, New York Times, and APW. This data is for sentence-level novelty

mining, where both relevant and novel sentences for all 50 topics are selected

by TREC’s assessors and retrieved from the National Institute of Standards

and Technology (NIST). For TREC 2004, there were a total of 8343 relevant

sentences, of which 3454 (41.4%) were novel. In TREC 2003, 10 226 (65.73%)

out of 15 557 sentences were novel.

From the TREC 2004 and 2003 Novelty Track sentence-level data, we built a

set of document-level datasets, document-level TREC 2004 and document-level

TREC 2003. In order to obtain the documents, we first combined the sentences by

sentence type (headline or text), into documents according to their document id.

Then, we performed our experiments on the document-level TREC 2004/2003.

Because we already had the ground truth for the novelty of each TREC sentence,
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we easily calculated the actual percentage of novel sentences (PNS) in that docu-

ment. If we set a low PNS threshold, most documents in the dataset are considered

to be novel. By choosing to set different thresholds, we can observe the perfor-

mance of GATS document-level novelty mining on datasets with different PNS.

In this experimental study, the focus was on novelty mining rather than rel-

evant document categorization. Therefore, our experiments start with all given

relevant documents (sentences), from which the novelty documents (sentences)

are identified.

7.3.2 Working example

To illustrate the use of GATS in practice, we will first present a working example

of GATS used for sentence-level novelty mining. Consider the following sen-

tences from topic N39 in TREC 2003:

1. CLUES POINT TO PHILIPPINE STUDENT AS VIRUS AUTHOR By

JOHN MARKOFF c.2000 N.Y. Times News Service

2. Law enforcement officials and computer security investigators focused on

the Philippines Friday in their search for the author of a software program

that convulsed the world’s computer networks.

3. Investigators in both Asia and the United States said clues appeared to

point to a college student in his early 20s using a Philippine Internet

service provider.

4. The rogue program, borne as an attachment to an e-mail with the subject

line ‘I Love You,’ surfaced in Asia on Wednesday.

5. It moved from there to Europe and the United States on Thursday, clogging

or disabling corporate e-mail systems and destroying data on personal

computers.

6. Although the spread of the infection appeared to slow Friday, at least eight

variations of the original program had been identified by antivirus firms.

7. Once it is launched, the ‘I Love You’ program, among other things, tries

to fetch an additional program from a Philippine Web site enabling it to

steal passwords from the victim’s computer.

8. American security experts said they had found evidence that a person

using the ‘spyder’ alias found in the ‘I Love You’ program had written

two versions of a password-stealing program found in recent months.

9. ‘Our theory is that he had written this program twice and was looking for

a way to get broader distribution for it,’ said Peter S. Tippett of ICSA.net,

a computer security firm based in Reston, Va.

10. At the same time, Fredrik Bjorck, a Swedish computer security researcher

who last year helped identify the author of a similar program called
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Melissa, told Swedish television that he had identified the perpetrator of

the latest attack as a German exchange student named Mikael.

11. He said that Mikael was in his 20s and that he had used Internet service

providers in the Philippines to spread his programs.

12. Bjorck said Mikael had published information on how to get rid of the ‘I

Love You’ program.

13. He did not identify Mikael’s location.

14. The ICSA.net researchers said they had disassembled one of the four

components of the ‘I Love You’ program and had discovered that its

instructions closely matched two similar programs that they had captured

last fall and in January.

15. Once a computer was infected, the program was set up to fetch the

password-stealing component from a Philippine Web site.

16. After it was installed in the computer it was programmed to relay the

stolen passwords to an e-mail account also in the Philippines.

17. But after the ‘I Love You’ outbreak was detected on Wednesday, the

company running the Philippine Web site, Sky Internet, quickly removed

the password program from its system.

18. Computer investigators said that both the ‘I Love You’ program and the

password-stealing modules discovered earlier had references to Amable

Mendoza Aguiluz Computer College, which they said had seven campuses

in the Philippines.

When sentence-level novelty mining is used with a fixed threshold of 0.55,

sentences 9, 11, and 15 are determined as nonnovel, as shown in Figure 7.4 (a

cross is nonnovel, a check novel). If we provide feedback as shown and process

the sentences again using the GATS option, then the threshold will be automati-

cally adjusted. We set the feedback at ‘1’ for ‘Novel’ for sentences 2–5, and ‘0’

for ‘Nonnovel’ for sentences 8, 9, 11, and 15, as shown in Figure 7.4. In this

scenario, after running GATS based on user feedback, the threshold was auto-

matically adjusted to 0.60 for sentences 16 and beyond, as shown in Figure 7.5.

In this figure, sentence 16 was compared to the most similar sentence, in this

case sentence 15, and because the novelty score of 0.5980 is below the threshold

value, sentence 16 is now rated as ‘Novel’. As seen in Figure 7.6, the resulting

novelty rating changed for sentences 16, 17, and 18 from ‘Novel’ to ‘Nonnovel’,

based on the threshold adjustment from user feedback. This example shows how

GATS works for a real-life scenario.
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Figure 7.4 Sentence-level novelty mining results for TREC03 topic N39.

Figure 7.5 Threshold adjustment to 0.6000 for sentence 16 after running GATS.
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Figure 7.6 Sentence-level novelty mining results for TREC03 topic N39 after

running GATS.

7.3.3 Experiments and results

We also compared the performance of novelty mining using GATS to that of

novelty mining using fixed thresholds. Figure 7.7 shows the precision–recall

(PR) curves of these two algorithms on TREC 2004 Novelty Track data. In

information retrieval, PR curves are commonly used to compare algorithms,

where the algorithm with a larger area under the curve is regarded as a

better algorithm (Davis and Coadrich 2006). For novelty mining using fixed

thresholds, the corresponding PR curve (black line) is plotted by varying the

fixed threshold from 0.05 to 0.95. For each threshold, the precision and recall

for each topic are calculated and the average precision and recall over 50 topics

are reported. For novelty mining with GATS, the PR curve is plotted by varying

the parameter β of the optimization criterion Fβ score from 0.1 to 0.9. Again,

for each value β, the precision and recall for each topic are calculated and the

average precision and recall over 50 topics are reported.

From Figure 7.7, we can observe that novelty mining with GATS outperforms

the system with fixed thresholds. The precision and recall obtained by novelty
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Figure 7.7 Precision–recall curves of novelty mining with fixed threshold vs.

adaptive threshold by GATS (tuning for Fβ ) with complete user feedback on TREC

2004 Novelty Track data.

mining with GATS will not fall within the regions of the extreme values, in

which the F score can be very low. In practice, our users usually require a high-

recall system with the precision no lower than a lower bound, or a high-precision

system with the recall no lower than a lower bound. An extremely high recall

with an extremely low precision is useless because this system just marks almost

all documents as novel. On the other hand, an extremely high precision with an

extremely low recall means that the system only marks very few documents as

novel. Both cases make little sense.

Moreover, since there is no prior information available for a user to choose a

suitable fixed threshold, the system with a predefined threshold can hardly lead

to a suitable tradeoff between precision and recall, and hence can hardly obtain

a good F score. On the contrary, GATS will optimize the F score automatically,

based on user feedback over time.

Besides the PR curve, we also compare two algorithms using the Fβ score.

Table 7.2 shows the performance of the two algorithms evaluated with Fβ scores

of β = 0.2, 0.5, and 0.8. For novelty mining employing GATS, the parameter

β is set to 0.2, 0.5, and 0.8 accordingly. For novelty mining employing the

fixed threshold, the highest Fβ scores are reported in tables after various trial-

and-error attempts. From Table 7.2, by comparing to the best fixed threshold,

we discovered that GATS can obtain similar or slightly better results for TREC
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Table 7.2 Comparison of performance evaluated by Fβ

(β = 0.2, 0.5, 0.8) on TREC 2004 Novelty Track data.

Performance of the novelty mining system

Adaptive threshold Best fixed threshold
by GATS (β) by trial and error (θ )

F0.2 0.7706 (0.2) 0.7758 (0.15)
F0.5 0.6155 (0.5) 0.6126 (0.45)
F0.8 0.5396 (0.8) 0.5281 (0.60)

2004 Novelty Track data. The best fixed thresholds for F0.2, F0.5, and F0.8 are

0.15, 0.45, and 0.60, respectively. Examination of the PR curves in Figure 7.7

suggests that the corresponding region of the best fixed thresholds is covered by

the PR curve of GATS. This implies that GATS can be effective in searching for

the best threshold in novelty mining, under different performance requirements.

In the following subsections, we test GATS by assuming complete feed-

back for document-level novelty mining (NM) data with low, medium, and high

novelty ratios. This will provide some guidelines on how GATS should be used.

Case 1: High novelty ratio

To construct document-level NM data with a high novelty ratio, we chose TREC

2003 Novelty Track data because the ground truth novelty ratio at sentence level

was naturally high (65.73%). By setting the PNS threshold to 0.25, the document-

level novelty ratio is 79.20%, i.e. 79.20% of incoming documents are novel. In

this case, GATS does not perform as well as the best result of the fixed threshold

(see Figure 7.8).

Case 2: Medium novelty ratio (30%–75%)

We constructed document-level NM data with a medium novelty ratio by using

TREC 2004 Novelty Track data because the ground truth novelty ratio at sentence

level is 41.40%. By setting the PNS threshold to 0.03, the document-level novelty

ratio is 47.73%, i.e. 47.73% of incoming documents are novel. In this case, GATS

performs comparable to the best result of the fixed threshold (see Figure 7.9).

Case 3: Low novelty ratio (30%)

We also constructed document-level NM data with a low novelty ratio by

using TREC 2004 Novelty Track data. In setting the PNS threshold to 0.5, the

document-level novelty ratio is 27.71%, i.e. 27.71% of incoming documents are

novel. In this case, the GATS algorithm outperforms the best result of the fixed

threshold (see Figure 7.10).
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document-level TREC 2004 Novelty Track data (with PNS threshold 0.5).

Discussion

Although both the fixed threshold and the GATS parameter β control the trade-

off between precision and recall, they play different roles in novelty mining. The

fixed threshold cannot reflect the trade-off between precision and recall directly.

Since different data may have different characteristics and different metrics may

output different values of novelty scores, the fixed threshold can hardly be pre-

defined with confidence. On the contrary, the parameter β in GATS reflects

the weights of precision and recall directly (β is the weight of precision while

1 − β is the weight of recall), and hence can be set based on the performance

requirement directly.

From our experimental results on document-level NM data with low, medium,

and high novelty ratios, we find that GATS is extremely useful for data with low

novelty ratios, useful for data with medium novelty ratios, but not as useful as

the best fixed threshold for data with a novelty ratio higher than 75%. Therefore,

GATS is not recommended for topics with high novelty ratios. In this case, setting

a lower fixed threshold to force most of the documents to be ‘novel’ would be a

better choice.

7.4 Conclusion

This chapter addressed the problem of setting an adaptive threshold by utiliz-

ing user feedback over time. The proposed method, the Gaussian-based adaptive
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threshold setting (GATS) algorithm, modeled the distributions of novelty scores

from both novel and nonnovel classes by the Gaussian distributions. Class dis-

tributions learnt from user feedback yielded the global information of data used

for the construction of an optimization criterion for searching the best threshold.

GATS is a general method, which can be tuned according to different perfor-

mance requirements, by combining with different optimization criteria. In this

chapter, the most commonly used performance evaluation measure in NM, the

Fβ score, has been employed as the optimization criterion. The Fβ score is the

weighted harmonic average of precision and recall, where β and (1 − β) are

weights for precision and recall, respectively.

In the experimental study, the NM system employing the GATS algorithm

was tested on experimental datasets with complete user feedback on data with

low, medium, and high novelty ratios (percentage of novel sentences/documents).

The experimental results suggest that GATS is very effective in finding the best

threshold in the NM system. Moreover, GATS is able to meet the different per-

formance requirements by setting the weights of precision and recall externally.

GATS has been shown to be extremely effective for data with a low novelty

ratio, useful for data with a medium novelty ratio, and not as effective for data

with a high novelty ratio.
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Text mining and cybercrime

April Kontostathis, Lynne Edwards
and Amanda Leatherman

8.1 Introduction

According to the most recent 2008 online victimization research, approximately

1 in 7 youths (ages 10 to 17 years) experience a sexual approach or solicitation

by means of the Internet (National Center for Missing and Exploited Children

2008). In response to this growing concern, law enforcement collaborations and

nonprofit organizations have been formed to deal with sexual exploitation on the

Internet. Most notable is the Internet Crimes Against Children (ICAC) task force

(Internet Crimes Against Children 2009). The ICAC Task Force Program was

created to help state and local law enforcement agencies enhance their investiga-

tive response to offenders who use the Internet, social networking websites, or

other computer technology to sexually exploit children. The program is currently

composed of 59 regional task force agencies and is funded by the United States

Department of Justice, Office of Juvenile Justice and Delinquency Prevention.

The National Center for Missing and Exploited Children (NCMEC) has set

up a CyberTipLine for reporting cases of child sexual exploitation including child

pornography, online enticement of children for sex acts, molestation of children

outside the family, sex tourism of children, child victims of prostitution, and

unsolicited obscene material sent to a child. All calls to the tip line are referred

to appropriate law enforcement agencies – and the magnitude of the calls is

staggering. From March 1998, when the CyberTipLine began operations, until

April 20, 2009, there were 44 126 reports of ‘Online Enticement of Children for

Text Mining: Applications and Theory edited by Michael W. Berry and Jacob Kogan

 2010, John Wiley & Sons, Ltd



150 TEXT MINING

Sexual Acts’, one of the reporting categories. There were 146 in the week of April

20th, 2009 alone (National Center for Missing and Exploited Children 2008).

The owners of Perverted-Justice.com (PJ) began a grassroots effort to identify

cyberpredators in 2002. PJ volunteers pose as youths in chat rooms and respond

when approached by an adult seeking to begin a sexual relationship with a child.

We are currently working with the data collected by PJ from these conversations

in an effort to understand cyberpredator communications.

Cyberbullying, according to the National Crime Prevention Council, is using

the Internet, cell phones, video game systems, or other technology to send or post

text or images intended to hurt or embarrass another person – and is a growing

threat among children. In 2004, half of US youths surveyed stated that they or

someone they knew had been victims or perpetrators of cyberbullying (National

Crime Prevention Council 2009a). Being a victim of cyberbullying is a common

and painful experience. Nearly 20% of teens had a cyberbully pretend to be

someone else in order to trick them online, getting the victim to reveal personal

information; 17% of teens were victimized by someone lying about them to others

online; 13% of teens learned that a cyberbully was pretending to be them while

communicating with someone else; and 10% of teens were victimized by someone

posting unflattering pictures of them online, without permission (National Crime

Prevention Council 2009b).

The anonymous nature of the Internet may contribute to the prevalence of

cyberbullying. Kids respond to cyberbullying by avoiding communication tech-

nologies or messages altogether. They rarely report the conduct to parents (for

fear of losing phone/Internet privileges) or to school officials (for fear of getting

into trouble for using cell phones or the Internet in class) (Agatston et al. 2007;

Williams and Guerra 2007).

As we analyzed cyberbullying and cyberpredator transcripts from a variety of

sources, we were struck by the similar communicative tactics employed by both

cyberbullies and cyberpredators – in particular, masking identity and deception.

We were also struck by the similar responses of law enforcement and youth advo-

cacy groups: reporting and preventing. Victims are physically and psychologically

abused by predators and bullies who trap them in vicious communicative cycles

using modern technologies; their only recourse is to report the act to authorities

after it has occurred. By the time a report is made, unfortunately the aggressor

has moved on to a new victim.

Cyberbullying and Internet predation frequently occur over an extended

period of time and across several technological platforms (i.e. chat rooms,

social networking sites, cell phones, etc.). Techniques that link multiple online

identities would help law enforcement and national security agencies identify

criminals, as well as the forums in which they participate. The threat to youth

is of particular interest to researchers, law enforcement, and youth advocates

because of the potential for it to get worse as membership of online communities

continues to grow (Backstrom et al. 2006; Kumar et al. 2004; Leskovec et al.

2008) and as new social networking technologies emerge (Boyd and Ellison

2007). Much of modern communication takes place via online chat media
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in virtual communities populated by millions of anonymous members who

use a variety of chat technologies to maintain virtual relationships based on

daily (if not hourly) contact (Ellison et al. 2007; O’Murchu et al. 2004). MSN

Messenger, for example, reports 27 million users and AOL Instant Messenger

has the largest share of the instant messaging market (52% as of 2006) (IM

MarketShare 2009); however, Facebook, the latest social networking craze,

reported over 90 million users worldwide (Nash 2008). These media, along with

MySpace, WindowsLive, Google, and Yahoo, all have online chat technologies

that can be easily accessed by anyone who chooses to create a screen name and

to log on; no proof of age, identity, or intention is required. A recent update

to Facebook also allows users to post and receive Facebook messages via text

messaging on their cell phones (FacebookMobile 2009).

We describe the current state of research in the areas of cyberbullying and

Internet predation in Section 8.2. In Section 8.3, we describe several commercial

products which claim to provide chat and social networking site monitoring for

home use. Finally in Section 8.4 we offer our conclusions and discuss opportu-

nities for future research into this interesting and timely field.

8.2 Current research in Internet predation

and cyberbullying

This section provides a summary of research into Internet predation and cyber-

bullying. We first review the technology that is available for capturing Internet

Messager (IM) and Internet Relay Chat (IRC). Next we discuss the datasets that

are currently available for research in the area. Finally we survey several research

articles for both Internet predation and cyberbullying detection, as well as provide

a summary of the literature as it relates to legal issues.

8.2.1 Capturing IM and IRC chat

Data collection is the first step in any research project in text mining. Data

collection for the study of cybercrime needs to focus primarily on capturing data

from chat rooms and social networking sites; however, there are both legal and

technical issues that must be overcome. In this section we discuss the work by

several research groups which have successfully captured online chat.

In Dewes et al. (2003) a multi-layered approach for capturing web chat from

various sources including IRC and Web-based (both HTTP and java) chat systems

is used. They begin by casting a wide net, essentially capturing all network traffic

that passes through a particular router. Several filters are then applied to separate

the chat traffic from nonchat traffic. Early experiments show that 91.7% of the

chat traffic can be identified (recall) and 93.7% of the traffic that is captured is

indeed chat (precision).

Other research groups take a more direct approach. Gianvecchio et al. signed

into Yahoo chat rooms and logged all posts for a two-week period in order
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to capture data for their bot detection study (Gianvecchio et al. 2008). Others

set up host servers and monitor all activity directly at the server level (Cooke

et al. 2005). Several low-cost commercial products for capturing relevant network

packets are also available (ICQ-Sniffer 2009).

8.2.2 Current collections for use in analysis

There is very little reliable labeled data concerning predator communications;

much of the work that has appeared in both computer science and communi-

cation studies forums is focused on anecdotal evidence and chat log transcripts

from PJ (Perverted-Justice.com 2008). PJ began as a grassroots effort to identify

cyberpredators. Its volunteers pose as youths in chat rooms and respond when

approached by an adult seeking to begin a sexual relationship with a minor.

When these activities result in an arrest and conviction, the chat log transcripts

are posted online. New chat logs continue to be added to the website. There

were 325 transcripts, representing arrests and convictions, on the site as of July

2009. Details about early research projects that use this data are described in

Section 8.2.4.

The use of PJ transcripts for research into cyberpredation is controversial. The

logs contain transcripts of conversations between a predator and a pseudo-victim,

an adult posing as a young teenager. However, the predators who participated

in these conversations were convicted, based, at least in part, on the content

of the chat logs, which provides a measure of credibility to the data. We have

been in communication with several researchers who are working on related

projects in computer science, media and communication studies, criminal justice,

and sociology and have not been able to identify another source of data. We

will continue to seek transcripts that contain conversations between predators

and minors; however, it will be extremely difficult. Law enforcement agencies

are rarely able to share chat log transcripts (when they have them), even for

scholarly examination, because the logs are not stored in a central repository and

only excerpts are used when cases go to trial (Personal Communication 2008).

A second dataset was created by Dr Susan Gauch, University of Arkansas,

who collected chat logs during a chat room topic detection project (Bengel

et al. 2004). Dr Gauch’s project included the development of a crawler that

downloaded chat logs (ChatTrack). Unfortunately, the software is no longer

available. This chat data, although somewhat dated, has been used in some

of the preliminary studies involving an analysis of predator communications

(Kontostathis et al. 2009).

We have identified one additional publically available dataset which can

be used for research on the communication styles of cybercriminals. In 2009,

the Content Analysis for the Web 2.0 workshop (held in conjunction with

WWW2009) proposed three independent shared tasks: text normalization,

opinion and sentiment analysis, and misbehavior detection. The misbehavior

detection task addressed the problems of detecting inappropriate activity in

which some users in a virtual community are harassing or offensive to some
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other members of the community. A common training dataset was made

available to all task participants. The provided dataset was intended as a

representative sample of what can be found in Web 2.0. The data were collected

from five different public sites, including Twitter, MySpace, Slashdot, Ciao, and

Kongregate. Interested parties should refer to the CAW 2.0 website for additional

information (CAW2.0 2009). This data is exclusively intended for research

purposes. A research project which used this data to detect cyberbullying is

discussed in Section 8.2.5.

8.2.3 Analysis of IM and IRC chat

Much of the social networking research in computer science has focused on

chat room data (Jones et al. 2008; Muller et al. 2003). A lot of this work has

centered on identifying discussion thread subgroups within a chat forum (Acar

et al. 2005; Camtepe et al. 2004); some researchers focus on the technical

difficulties encountered when trying to parse chat log data (Tuulos and Tirri

2004; Van Dyke et al. 1999). Surprisingly few researchers have attempted to

deal with the creation of specific applications for analysis and management of

Internet predators or cyberbullies. The few that we have identified are described

in the following subsections.

8.2.4 Internet predation detection

We have identified articles that take two different approaches to detection of

cyberpredator communications. The first uses a bag-of-words approach and a

standard statistical classification technique. The second leverages research in

communications theory to develop more sophisticated features for input to the

classifier.

A statistical approach

Pendar used the PJ transcripts to separate predator communication from vic-

tim communication (Pendar 2007). In this study, the author downloaded the PJ

transcripts and indexed them. After preprocessing to reduce some of the prob-

lems associated with Internet communication (i.e. handling netspeak), the author

developed attributes for each chat log. The attributes consisted of word unigrams,

bigrams, and trigrams. Terms that appeared in only one log or in more than 95%

of the logs were removed from the index. Afterward approximately 10 000 uni-

grams, 43 000 bigrams, and 13 000 trigrams remained. The author describes using

701 log files.1. Each log file was split into victim communication and predator

communication, resulting in 1402 total input instances, each with 10 000–43 000

attributes, depending on the model being tested. Additional feature extraction and

weighting completed the indexing process.

1 It appears as if the perverted-justice.com site has changed its method of presenting the chat

data in recent years.
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The data file was split into a 1122 instance training set and a 280 instance test

set, stratified by class (i.e. the test set contained 140 predator instances and 140

victim instances). Classification was then attempted using both support vector

machine (SVM) and distance-weighted k-nearest neighbor (k-NN) classifiers.

The F -measure (see also Sections 3.4 and 7.2.3) reported by the author ranged

from 0.415 to 0.943. The k-NN classifier was a better classifier for this task

and trigrams were shown to be more effective than unigrams and bigrams. The

maximum performance (F -measure = 0.943) was obtained when 30 nearest

neighbors were used and 10 000 trigrams were extracted and used as attributes.

An approach based on communicative theory

In contrast to the purely statistical methods employed by Pendar, Kontostathis

et al. used a rule-based approach in Kontostathis et al. (2009). This project

integrates communication and computer science theories and methodologies to

develop tools to protect children from cyberpredators.

The theory of luring communication provides a model of the communication

processes that child sexual predators use in the real world to entrap their victims

Olson et al. (2007). This model consists of three major stages:

1. gaining access to the victim;

2. entrapping the victim in a deceptive relationship;

3. initiating and maintaining a sexually abusive relationship.

During the gaining access phase, the predator maneuvers him- or herself into

professional and social positions where he or she can interact with the child in

a seemingly natural way, while still maintaining a position of authority over the

child. For example, gaining employment at an amusement park or volunteering

for a community youth sports team. The next phase, entrapping the victim in

a deceptive relationship, is a communicative cycle that consists of grooming,

isolation, and approach. Grooming involves subtle communication strategies that

desensitize victims to sexual terminology and reframe sexual acts in child-like

terms of play or practice. In this stage, offenders also isolate their victims from

family and friend support networks before approaching the victim for the third

phase: sexual contact and long-term abuse.

In previous work, we expanded and modified the luring theory to accom-

modate the difference between online luring and real-world luring (Leatherman

2009). For example, the concept ‘gaining access’ was revised to include the initial

entrance into the online environment and initial greeting exchange by offenders

and victims, which is different from meeting kids at the amusement park or

through a youth sports league. Communicative desensitization was modified to

include the use of slang, abbreviations, netspeak, and emoticons in online conver-

sations. The core concept underpinning entrapment is the ongoing deceptive trust

that develops between victims and offenders. In online luring communications,
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this concept is defined as perpetrator and victim sharing personal information,

information about activities, relationship details, and compliments.

Communications researchers define two primary goals for content analysis

(Riffe et al. 1998):

1. describe the communication; and

2. draw inferences about its meaning.

In order to perform a content analysis for Internet predation, we developed

a codebook and dictionary to distinguish among the various constructs defined

in the luring communication theoretical model. The coding process occurred in

several stages. First, a dictionary of luring terms, words, icons, phrases, and net-

speak for each of the three luring communication stages was developed. Second,

a coding manual was created. This manual has explicit rules and instructions for

assigning terms and phrases to their appropriate categories. Finally, software that

mimics the manual coding process was developed (this software is referred to as

ChatCoder below).

Twenty-five transcripts from the PJ website were carefully analyzed for

the development of the dictionary. These 25 online conversations ranged from

349 to 1500 lines of text. The perpetrators span from 23 to 58 years of age,

were all male, and were all convicted of sexual solicitation of minors over the

Internet.

We captured key terms and phrases that were frequently used by online sex-

ual predators, and identified their appropriate category labels within the luring

model: deceptive trust development, grooming, isolation, and approach (Leather-

man 2009; Olson et al. 2007). The dictionary included terms and phrases common

to net culture in general, and luring language in particular. Some examples appear

in Table 8.1. The version of coding dictionary used in these experiments con-

tained 475 unique phrases. A breakdown of the phrase count by category appears

in Table 8.2.

In order to provide a baseline for the usefulness of the codebook for detecting

online predation, we ran two small categorization experiments. In the first exper-

iment, we coded 16 transcripts in two ways: first we coded the predator dialogue

(so only phrases used by the predator were recorded), and then we coded for the

victim. Thus, we had 32 instances, and each instance had a count of the phrases

in each of the coding categories (eight attributes). Our class attribute was binary

(predator or victim).

We used the J48 classifier within the Weka suite of data mining tools (Witten

and Frank 2005) to build a decision tree to predict whether the coded dialogue

was predator or victim. The J48 classifier builds a C4.5 decision tree with reduced

error pruning (Quinlan 1993). This experiment is similar to that in Pendar (2007),

but Pendar used a bag-of-words approach and an instance-based learner. The clas-

sifier correctly predicted the class 60% of the time, a slight improvement over the

50% baseline. This is remarkable when we consider the fact that we were cod-

ing individuals who were in conversation with each other, and therefore the
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Table 8.1 Sample excerpts from the codebook for Internet predation.

Phrase Coding category

are you safe to meet Approach
i just want to meet Approach
i just want to meet and mess around Approach
how cum Communicative desensitization
if i don’t cum right back Communicative desensitization
i want to cum down there Communicative desensitization
i just want to gobble you up Communicative desensitization
you are a really cute girl Compliment
you are a sweet girl Compliment
are you alone Isolation
do you have many friends Isolation
let’s have fun together Reframing
let’s play a make believe game Reframing
there is nothing wrong with doing that Reframing

Table 8.2 Dictionary summary - phrase count by category.

Category Phrase count

Activities 11
Approach 56
Communicative desensitization 220
Compliment 35
Isolation 43
Personal information 29
Reframing 57
Relationship 24

terminology used was similar. Stratified threefold cross-validation, as imple-

mented within Weka, was used to evaluate the results.

In a second experiment we built a C4.5 decision tree to distinguish between

PJ and ChatTrack transcripts. The ChatTrack dataset is described in Section 8.2.2.

We coded 15 PJ transcripts (both victim and predator dialogue) and 14 transcripts

from the ChatTrack dataset (Bengel et al. 2004). The classifier that was built was

able to distinguish the PJ transcripts 93% of the time. We also used stratified

threefold cross-validation for evaluation in these experiments.

As we analyzed the PJ transcripts, we noticed recurring patterns within the

dialogue used by the suspects and began to wonder if we could cluster different

types of predators via their language pattern usage.

We chose the k-means (Hartigan and Wong 1979) clustering algorithm

because it is known to be both simple and effective. The k-means algorithm
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partitions a set of objects into k subclasses. It attempts to find the centers of

natural clusters in the data by assuming that the object attributes form a vector

space, and minimizing the intra-cluster variance. Thus, k-means generally forms

tight, circular clusters around a centroid, and the algorithm outputs this centroid.

k-means is particularly applicable to numeric attributes, and all of our attributes

are numeric.

In our experiments, we counted the number of phrases in each of the eight

coding categories for the 288 transcripts that were available on the PJ website as

of August 2008 (predator only), and created an eight-dimensional vector for each

instance. Thus, we used the same attributes that were used in the categorization

experiments, but we were able to use all of the PJ transcripts. The vectors were

column normalized by dividing by the maximum value in each column (i.e.

all activities values were divided by the maximum value for activities). These

vectors were then input to the k-means algorithm, and a set of clusters was

determined.

The user must provide a value of k to the k-means clustering tool, and we were

unsure about the number of categories of suspects that we might find, so we tried

various values for k. We found that k = 4 produced the best result (the minimum

intra-cluster variance), suggesting the hypothesis that there are four different

types of Internet predators. More work is needed to determine labels for these

categories of suspects. The centroid for each cluster appears in Figure 8.1. This

figure clearly shows that some suspects spend more time overall with the victim

(lines that are higher on the graph) and also that suspects in different clusters

used different strategies during their conversations (as determined by line shape).

For example, cluster 2 has a higher ratio of compliments vs. communicative

desensitization as compared to cluster 3.
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8.2.5 Cyberbullying detection

In 2006, the Conference on Human Factors in Computing Systems (CHI) ran a

workshop on the misuse and abuse of interactive technologies, and in 2008 Rawn

and Brodbeck showed that participants in first-person shooter games had a high

level of verbal aggression, although in general there was no correlation between

gaming and aggression (Rawn and Brodbeck 2008).

Most recently, in 2009 the Content Analysis for the Web 2.0 (CAW 2.0)

workshop was formed and held in conjunction with WWW2009. As noted above,

the CAW 2.0 organizers devised a shared task to deal with online harassment,

and also developed a dataset to be used for research in this area. Only one

submission was received for the misbehavior detection task. A brief summary of

that paper follows.

Yin et al. define harassment as communication in which a user intentionally

annoys another user in a web community. In Yin et al. (2009) detection of

harassment is presented as a classification problem with two classes: positive

class for posts which contain harassment and negative class for posts which do

not contain harassment.

The authors combine a variety of methods to develop the attributes for input

to their classifier. They use standard term weighting techniques, such as TFIDF

(Term Frequency–Inverse Document Frequency) to extract index terms and give

appropriate weight to each term. They also develop a rule-based system for

capturing sentiment features. For example, a post that contains foul language

and the word ‘you’ (which can appear in many forms in online communication)

is likely to be an insult directed at someone, and therefore could be perceived as a

bullying post. Finally, some web communities seem to engage in friendly banter

or ‘trash talk’ that may appear to be bullying, but is instead just a communicative

style. The authors also were able to identify contextual features by comparing a

post to a window of neighboring posts. Posts that are unusual or which generate

a cluster of similar activity from other users are more likely to be harassing.

After extracting relevant features, the authors developed an SVM classifier

for detecting bullying behavior in three of the datasets provided by the CAW 2.0

conference organizers. They chose two different types of communities: Kongre-

gate, which captures IM conversations during game play; and Slashdot/MySpace,

which tend to be more asynchronous discussion-style forums where users write

longer messages and discussion may continue over days or weeks. The authors

manually labeled the three datasets. The level of harassment in general was very

sparse. Overall only 42 of the 4802 posts in the Kongregate dataset represented

bullying behavior. The ratio of bullying to nonbullying in Slashdot was similar

(60 out of 4303 posts). MySpace was a little higher with 65 out of 1946 posts.

The authors employed an SVM to develop a model for classifying harassing

posts. Their experimental results show that including the contextual and sentiment

features improves the classification over the local weighting (TFIDF) baseline

for the three datasets. The maximum recall was achieved with the chat-style

collection (recall was 0.595 for Kongregate). Precision was best when the dataset
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contained more harassment (precision was 0.417 for MySpace). Overall the F -

measure ranged from 0.298 to 0.442, so there is much room for improvement.

A random chance baseline would be less than 1%, however, so the experimental

results show that detection of cyberbullying is possible.

8.2.6 Legal issues

Companies have long been aware of the potential for misuse of email for bullying

and harassment. In Sipior and Ward (1999), the authors report on the increased lit-

igation surrounding sexual harassment in the workplace, particularly harassment

via email.

Internet predation and cyberbullying are relatively new crimes, and, as such,

the legal community is struggling to work with the technical community to protect

victims while also protecting the civil rights of innocent users of Internet chan-

nels. Early attempts at collaboration between technicians and law enforcement,

as described in a case study in Axlerod and Jay (1999), were initially frustrating.

The collaborative work eventually paid off as computer scientists learned what is

(and is not) permitted under the US legal system, and law enforcement officials

learned to trust and use technical solutions to their best advantage.

In Burmester et al. (2005) the authors describe a combined hardware and

software solution for providing law enforcement personnel with information in

cases of cyberstalking. The article provides a profile of a technically advanced

cyberstalker (who shares many traits with Internet predators and cyberbullies),

as well as develops a solution that recognizes the very real constraints placed

upon law enforcement officials, such as chain-of-custody issues, and providing

proof of integrity of digital evidence.

8.3 Commercial software for monitoring chat

Many commercial products profess to provide parents with the tools to pro-

tect their children from Internet predators and cyberbullies. We provide a brief

overview of several popular products in this section.

Like most of the parental control products we identified, eBlaster records

everything that occurs on a monitored computer and forwards the information to

a designated recipient, but does not provide a mechanism for filtering or analyzing

all the data it collects (eBlaster 2008). Net Nanny can also record everything,

and offers multiple levels of protection for different users (Net Nanny 2008).

The latest version of Net Nanny claims to send alerts to parents when it detects

predatory or bullying interactions on a monitored computer. The alerts appear to

be based on simple keyword matching (PC Mag 2008).

IamBigBrother captures everything on the computer including chats, instant

messages, email, and websites (IamBigBrother 2009). The program also records

all Facebook and MySpace keystrokes, and captures all passwords typed. IamBig-

Brother can also take a picture of the screen when certain words are used.
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This feature allows parents to identify keywords that they are concerned about

(personal information, foul language, sexual terms, etc.). Unfortunately, the pro-

gram does not include predefined words; parents have to define problematic

words themselves (TopTenReviews 2009). The software also captures Internet

activity from programs like America Online, MSN, and Outlook Express. The

program can record incoming and outgoing Yahoo Mail, Hotmail, and Gmail.

IamBigBrother can operate in a stealth mode that cannot be detected by users.

Users/children also cannot avoid IamBigBrother by clearing cache or history.

While IamBigBrother appears to focus primarily on keystroke capture and

surveillance, Kidswatch Internet Security appears to focus more on blocking

(TigerDirect 2009). The program allows parents to control their children’s access

to inappropriate web content and sends email notifications to parents when their

children try to visit blocked or restricted sites. Parents can select content to be

restricted from a list of over 60 categories. According to the Kidswatch website:

‘Our dynamic content categorization technology attempts to categorize thousands,

even millions, of websites based on content.’ Parents have the option to over-

ride restricted lists if they choose, and are encouraged to submit websites they

think should be blocked to the software producer. Kidswatch also supports chat

protocols for Yahoo, MSN, ICQ, AIM, and Jabber.

Parents receive email alerts when a ‘suspect phrase or word’ is encountered in

an online chat. The alert report can include the phrase or the entire conversation.

The alerts are based on a customizable list of 1630 words and phrases. Although

the surveillance and alert features are similar to the one featured in the Net Nanny

and IamBigBrother programs, Kidswatch takes this feature one step further by

providing information about known sex offenders and on the locations of sex

offenders in the user’s neighborhood.

Similar to other control programs, the Safe Eyes Parental Control program

limits access to restricted sites that fall into 35 predetermined categories of

website content (InternetSafety 2009). The program also prevents children from

accidentally finding inappropriate sites. When restricted sites are accessed, par-

ents are alerted by email, text message, or phone call.

CyberPatrol provides filtering and monitoring features that can use the com-

pany’s presets or can be customized by parents (CyberPatrol 2009). Several

features that distinguish this program are the ability to customize settings for

child, young teen, mature teen, or adult and the ability to block objectionable

words and phrases commonly used by cyberbullies and predators. Parents receive

weekly and daily reports on web pages visited and length of visits; however, there

does not appear to be an alert feature.

Bsecure provides filtering – with ‘patent-pending technology and human

review’ (Bsecure 2009) that blocks offensive websites from users’ comput-

ers – and reporting options similar to other programs, but this program also

offers an Application Control that allows parents to control music sharing, file

sharing, and instant messaging programs. The software appears to be similar to

CyberPatrol. Bsecure does not offer an alert feature.
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The latest versions of Windows Vista and Apple’s OS X 10.5 (Leopard)

include integrated parental controls. Their features appear to be similar to most

commercial monitoring and filtering products and neither operating system, unlike

many commercial products, requires an annual subscription (Consumer Search

2008). Unfortunately neither product provides specific protection against preda-

tion or cyberbullying.

Finding information about AOL parental controls proved to be fairly difficult

without an AOL userid and AOL installed. Like Windows Vista and OS X 10.5,

AOL does not require installation of any additional software on the computer

being monitored. There is no indication that AOL provides specific features for

protection against Internet predators or cyberbullies.

McAfee and Norton are primarily known as antivirus and security software

products. Both now offer parental control built in as well. As with the operating

system products, the parental controls are designed to block specific websites

and monitor online activity in general.

8.4 Conclusions and future directions

The Internet continues to grow and to reach younger audiences. Opportunities

for connecting with classmates, friends, and people with shared interests abound.

Email, online chat, and social networking sites allow us to interact with people

in the same town and people on the other side of the world.

Unfortunately, the opportunity for misuse comes with any new technology.

There were sexual predators and bullies long before the advent of the Internet and

chat rooms. Cyberbullying and Internet predation threaten minors, particular teens

and tweens who do not have adequate supervision when they use the computer.

As Internet connectivity moves to the cell phone, the portable gaming device,

and the multi-player gaming console, more avenues for contact and exploitation

of youth become available.

Our literature review shows that there are few scholars researching cyberpre-

dation and cyberbullying. As more researchers enter this field, future research

should attempt to be more proactive in addressing the role that newer technolo-

gies, particularly cell phones and peer-to-peer devices, play in new incarnations

of cybercrime, like sexting. There is room for researchers in the fields of infor-

mation retrieval and text mining to contribute solutions to these vexing problems.

Classifiers that identify predatory behavior can be developed. New datasets can

be collected, labeled, and distributed to other research groups. Collaborations

with network engineers, psychologists, sociologists, law enforcement, and com-

munications specialists can provide new insight into understanding, detecting,

and stopping cybercrime.

Cybercrime continues to escalate and evolve as new technologies are intro-

duced and as their popularity grows among young people. We have found only

three research articles that use text mining techniques to classify cyberpredators

and cyberbullies. This interesting and socially relevant subfield of text mining

is begging for attention from the research community. The research to date
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provides a starting point for exploration – an exploration that moves away from

solely focusing on the computer platform as the site of cybercrimes to studying

the network level as bullying and predation move from text-only, and to include

streaming audio and video.
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Events and trends in text

streams

Dave Engel, Paul Whitney and Nick Cramer

9.1 Introduction

Text streams – collections of documents or messages that are generated and

observed over time – are ubiquitous. Our research and development are targeted

at developing algorithms to find and characterize changes in topic within text

streams. To date, this research has demonstrated the ability to detect and describe

(1) short-duration atypical events and (2) the emergence of longer term shifts

in topical content. This technology has been applied to predefined temporally

ordered document collections but is suitable also for application to near-real-time

textual data streams.

Massive amounts of text stream data exist and are readily available, especially

over the Internet. Analyzing this text data for content and for detecting change in

topic or sentiment can be a daunting task. Mathematical and statistical methods

in the area of data mining can be very helpful to the analyst looking for these

changes. Specifically, we have implemented some of these techniques into a

surprise event and emerging trend detection technology designed to monitor a

stream of text or messages for changes within the content of that data stream.

Some of the event types that one might want to detect in a text stream (which

could be a sequence of news articles, a sequence of messages, or an evolving

dialogue) are shown in Figure 9.1. In each case, time is along the x -axis. The y-

axis corresponds to some measure of topic (such as the number of words or events

Text Mining: Applications and Theory edited by Michael W. Berry and Jacob Kogan

 2010, John Wiley & Sons, Ltd
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Slope discontinuity

Figure 9.1 Typical event or trend types.

that occur within the data). In the context of a text stream, a point discontinuity

in topics could correspond to a single time step with a relatively unique content.

A jump discontinuity could correspond to an abrupt change in the content of the

text stream. A slope discontinuity could correspond to a ramping up (or down)

in a topic for that text stream.

Typically, jump and point discontinuities are detected more readily than slope

discontinuities (Eubank and Whitney et al. 1989). For our terminology, we refer

to the instantaneous discontinuity types (point or jump) as a surprise event (see

Grabo (2004) for more information on surprise events). We define an emerging

trend as a change in topic for an extended period of time, as illustrated by the

jump discontinuity or the slope discontinuity (see Kontostathis et al. (2003) for

a more concise definition of emerging trend).

Much of the research in information mining from text streams focuses either

on describing new events and salient features or in clustering documents (He et al.

2007; Kumaran and Allan 2004; Mei and Zhai 2005). For instance, the goal of

the Topic Detection and Tracking (TDT) Research Program (Allan 2002) was to

break down the text into individual news stories, to monitor the stories for events

that have not been seen before, and to gather the stories into groups that each

discuss a single topic. This program used a training set to identify stories (topics)

to track. A good source of research in trend analysis was compiled in Survey of

Text Mining: Clustering, Classification, and Retrieval (Kontostathis et al. 2003)

and also in the article ‘Detecting emerging trends from scientific corpora’ (Le

et al. 2005). In both, the main focus is tracking defined topics and trying to detect

changes.
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The difference in our approach is that we monitor and evaluate the occur-

rence of individual terms (the least common denominator between documents)

for changes over time. Once individual terms have been determined as surpris-

ing or emerging , then terms related temporally are identified to help the analyst

identify the story/topic involved with the surprising (emerging) terms. As a pre-

processing step, a text analysis tool is used to extract words from the text stream

and give information about terms within the documents. With this information,

mathematical algorithms are used to score each term. Using these scores (statis-

tical metrics, which we call surprise or emergence statistics), we evaluate each

term over the period represented by the text stream. When a sufficiently surpris-

ing (emerging) term occurs, related terms (based on the temporal profile) are

found and are useful in explaining the broader nature of the event.

Detected events and the explanatory terms can be represented in a variety

of ways. From our experience, graphical representations tend to be the most

desirable (if not most useful) form for the analysts.

A description of the data (text streams) and the extraction and reduction

of relevant features are discussed in the next two sections. The methodology

for the detection of (surprising) events and (emerging) trends is discussed in

Sections 9.4 and 9.5. In Section 9.6, we discuss temporally related terms and

present an example to illustrate the capabilities of our technology. The last two

sections discuss differences in our algorithms, contrast our algorithms with other

topicality measures, and summarize our technology development.

9.2 Text streams

Many text analysis tools operate on a fixed collection of text documents. For

certain tasks, a fixed text collection is appropriate. However, information analysis

professionals often seek to discover and track surprising events and emerging

trends over time and in a timely fashion. A text stream is necessary to support

this analytic task (Hetzler et al. 2005). Text streams are often rich with surprising

or emerging events and interesting topic evolution over time. Detection of these

events can provide information analysts with valuable information and clues

about their content.

For our methodology, a document is simply defined as a unique collection of

text. A text stream is a collection of documents in which each document has an

associated time stamp. Each document typically contains metadata describing the

publication time and date or is assigned a time and date when collected. In either

case, the time stamp allows us to orient the document text in the temporal stream.

Text streams are generated from a variety of data sources. Some examples

include journal publications, conference abstracts, really simple syndication

(RSS) news feeds, blog postings, and email transmissions. To handle the

collection of text streams from the variety of sources, we have developed and

implemented resources. These resources include:

• conference PDF text extractors;
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• Outlook email harvesters;

• RSS news feed harvesters;

• blog post harvesters.

An information analyst might want to follow information only within a win-

dow of time. Text streams can evolve over time, with not only new content being

added to the collection but also old content being removed. The resource that we

have implemented supports an evolving text collection which helps an analyst

focus on the most relevant and timely information.

9.3 Feature extraction and data reduction

Once the data (text stream) has been collected, the next step involves processing

the data (documents) to evaluate suitability of the data content and prepare the

data for subsequent processing. We use IN-SPIRE for this processing (IN-SPIRE

2009). IN-SPIRE is a text analysis and visualization tool that statistically ana-

lyzes unstructured text within a collection of documents, identifies topics (i.e.

terms with high-frequency and nonuniform distributions), and visually clusters

the documents based on their topical similarity. IN-SPIRE provides the following

capabilities for the preprocessing steps for event and trend detection:

1. Dataset evaluation. An initial evaluation of the document collection is per-

formed by information analysts to determine if the datasets are sufficiently

rich.

2. Content identification and index creation. Relevant content is extended

from text, largely ignoring many of the other categorical fields (e.g. authors

and place names).

3. Topical feature selection. Vocabulary terms that are statistically good dis-

criminators are identified. In addition, relevant terms/keywords to the

domain can be provided to augment and enrich the automatic topic selec-

tion process. This topical term and phrase identification process acts as a

dimensionality reduction that helps focus the analyses.

In our modeling, the (document frequency) temporal profile for each term

is the dependent variable. Therefore, the selection of terms that represent the

document set is a key task. This task is accomplished within IN-SPIRE. An

important feature of this capability is the automatic keyword extraction. This

capability allows keywords to be single words or phrases that reflect the content

of a document. An in-depth description of this technology is included in the first

chapter of this book.
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9.4 Event detection

Our research is focused on processing massive amounts of text streams to identify

events that have just occurred or are currently occurring. You can think of this as

a possible triage capability that an analyst needs to identify (surprising) events

so that he or she can delve into the material to gain in-depth insight. However,

finding these events in a timely fashion is not an easy task.

Different algorithms for detecting surprising events have been researched

and five of these algorithms have been implemented into our research toolkit.

For each algorithm, the unit of calculation is a term or keyword that can be a

single word or multiple words. Each of our algorithms requires a preprocessing

of the time-sequenced documents (as described in Section 9.3).

In statistics, we deal with numbers. Therefore, the first step in analyzing text

using statistical models (algorithms) is to convert the text to numbers. For our

analytical methods, we have done this by counting the number of documents

that contain a given term (keyword). For each document, a time stamp is iden-

tified, allowing our analysis to be done temporally. The overall time interval for

which the documents occur is divided into equally spaced time bins (we may use

hourly, daily, or even weekly intervals, depending on the temporal granularity

of the data being examined). The number of documents that contain a specific

term within each time bin becomes the main variable of our analysis (call it a

temporal profile).

We analyze each temporal profile (one for each term) using one of our algo-

rithms and define a surprise statistic, which is calculated in each time interval.

Figure 9.2 illustrates the temporal profiles used in our analysis. Seven profiles

are shown; each profile represents the number of documents that contain the

specific term within each time bin. Each term is normalized individually (by the

maximum number of occurrences of the individual term) and then plotted (i.e.

the vertical axis for each term is scaled 0 to 1). The maximum number of occur-

rences of each individual term within a single time interval is shown on the right

side of each profile (e.g. six documents for the term influenza).

Also illustrated in Figure 9.2 is our surprise text mining methodology

(Whitney et al. 2009). For this method, the number of occurrences (xi) within

a single time step/bin is compared against the number of occurrences within

a previous time window (multiple consecutive time bins). The comparison is

repeated for every time step (i.e. moving time window). The time bin with the

maximum surprise score is considered the location of the surprise event. These

maximum values will be identified by the circles for each term. The previous

time window for the location of the surprise event starts at the vertical line and

ends at the time bin represented by the circle (but not including this time step).

The task is then to compare the document counts (number of documents

containing a specific term), at a single time step (step i ), to the document counts in

the time window just before the current time step (np consecutive time steps/bins).
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Figure 9.2 Modeling scheme and temporal profiles for the event detection algo-

rithms (term label on left side of each profile and maximum number of occurrences

per profile on right side of each profile).

The goal is to find the times when these two measurements (counts) are not

(statistically) the same. Think of this like a hypothesis test in statistics: we define

the null hypothesis (Ho) and alternate hypothesis (H a) as

Ho: xi =
1

np

i−1
∑

j=i−np

xj , and

Ha: xi �=
1

np

i−1
∑

j=i−np

xj .

The goal of a hypothesis test is to reject the null hypothesis and accept

the alternate hypothesis. We have developed our algorithms with this in mind.

The first surprise algorithm is based on a chi-square statistic (Pearson method)

constructed from the following 2 × 2 table (Agresti 2002):







xi Ni − xi
i−1
∑

j=i−np

xj

i−1
∑

j=i−np

Nj −
i−1
∑

j=i−np

xj







where, for this table, xi is the count (number of documents containing a specific

term) at the ith time step/bin, Ni is the total number of documents at the ith time

step,
∑

xj is the sum of the document counts containing the term in the (np)

time steps prior to the ith time step, and
∑

Nj is the total number of documents

in the (np) time steps prior to time t (time at the ith time step). The amount
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of time (both the width of a time interval and the number of time windows) is

a user-selected parameter of the procedure. A value sufficiently large for a chi-

square statistic is one way to flag a surprising event/term. This statistic looks

for deviations in the number of occurrences of a specific term normalized by the

total number of documents (within the same time interval).

The formula used for the chi-square statistic is

χ2 =
n..

(

|n11n22 − n12n21| − 1
2
Yn..

)2

n1.n2.n.1n.2

, (9.1)

where the previous 2 × 2 frequency table is rewritten as

(

n11 n12

n21 n22

)

and

n1. = n11 + n12,

n2. = n21 + n22,

n.1 = n11 + n21,

n.2 = n12 + n22, and

n.. = n11 + n12 + n21 + n22.

Also, Y in Equation (9.1) is either 0 or 1. If Y is 1, the Yates continuity

correction is applied for the low sample size in which the count in at least one

cell is ≤5 (Fleiss 1981).

The second algorithm for calculating the surprise statistic is another form

of the chi-square algorithm known as the likelihood ratio. The likelihood ratio

(for a hypothesis) is the ratio of the maximum value of the likelihood function

over the subspace represented by the hypothesis, to the maximum value of the

likelihood function over the entire parameter space (Dunning 1993). This statistic

is calculated using the same 2 × 2 table as above and is as follows:

χ2 =
1

2

(

n11 log
n11

m11

+ n12 log
n12

m12

+ n21 log
n21

m21

+ n22 log
n22

m22

)

, (9.2)

where

m11 = (n11 + n12)(n11 + n21),

m12 = (n11 + n12)(n12 + n22),

m21 = (n11 + n21)(n21 + n22), and

m22 = (n12 + n22)(n21 + n22)

Another of our algorithms for calculating the surprise statistic is a Gaussian

algorithm. The Gaussian statistic is based on comparing the observed value xi to
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the average over the previous values (1/np)
∑

xj , normalized by the standard

deviation of these previous values. We put a floor of 1.0 on the standard deviation

because we are dealing with count data. This statistic is

G =
xi − 1

np

∑i−1
j=i−np xj

s ·
(

1 + 1
np

) , (9.3)

where np is the number of time intervals in the previous time windows and s is

the standard deviation.

Finally, combining the previous algorithms (chi-square and Gaussian) forms

the final two algorithms within our toolkit for the surprise statistic. Each com-

bined statistic is accomplished by taking the square root of the chi-square statistic

plus the absolute value of the Gaussian statistic, as follows:

Csurprise =
√

χ2 + |G|. (9.4)

9.5 Trend detection

Starting from the algorithms for detecting surprising events, we developed a

modeling scheme for detecting (emerging) trends. The modeling scheme is shown

in Figure 9.3. In this figure, x is the number of documents within a time step

that contains the specific term, i is the current time step (time interval/bin), np

is the number of time steps in the previous time window, and nc is the number

of time steps in the current time window (Engel et al. 2009).

For detecting trends, we compare the document counts (number of documents

containing a specific term) of the current time window (current time step i plus

the next (nc) time steps) to the document counts in the time window just prior

to the current time step (np consecutive time steps). The goal is to find the times

when these two measurements (counts) are not (statistically) the same. Similar

to the surprise statistic, we calculate an emergence statistic in which we define

the null hypothesis (Ho) and alternate hypothesis (Ha) as

Ho :
1

nc

i+nc
∑

j=i

xj =
1

np

i−1
∑

j=i−np

xj , and

Ha :
1

nc

i+nc
∑

j=i

xj >
1

np

i−1
∑

j=i−np

xj .

The event detection technology is designed to be used to monitor a stream of

text or messages for changes within the content of that stream. An analyst might
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Figure 9.3 Modeling scheme and temporal profiles for the trend detection algo-

rithms.

be watching a news feed or exploring a large collection of message traffic. This

technology would be used to detect and describe changes in those text streams.

For the emergence statistic, the two chi-square algorithms are the same as

the algorithms for the surprise statistic (Equations (9.1) and (9.2)), but the 2 × 2

frequency table is replaced by















i+nc
∑

j=i

xj

i+nc
∑

j=i

Nj −
i+nc
∑

j=i

xj

i−1
∑

j=i−np

xj

i−1
∑

j=i−np

Nj −
i−1
∑

j=i−np

xj















where, for this table,
∑

xj in the first row is the sum of all the documents

containing the individual term in the current time window,
∑

Nj in the first row

is the total number of documents within this time period,
∑

xj in the second

row is the sum of all the documents containing the term within the period prior

to the current time step (previous window), and
∑

Nj in the second row is the

total number of documents within this (previous) time window. The number of

time steps within each interval (previous window and current window) is a user-

selected parameter of the procedure. (Note that these window sizes need not be

equal.)

For detecting trends, the Gaussian algorithm is modified from the surprise

implementation to incorporate the multiple time steps in the current time window
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(time past the current time step, i ). The new Gaussian algorithm is defined by

G =
1
nc

∑i+nc
j=i xj − 1

np

∑i−1
j=i−np xj

√

si

nc
+

sj

np

,

where si is the standard deviation of counts in the current time window and sj

is the standard deviation of the counts in the previous time window.

9.6 Event and trend descriptions

To illustrate the (surprise) event detection and (emerging) trend detection capabil-

ities, both technologies have been used in the analysis illustrated in Figures 9.4

through 9.8. In this analysis, the source of the data (text) is the International

Society for Infectious Diseases (ProMED-mail 2009). This website is a global

electronic reporting system for outbreaks of emerging infectious diseases and

toxins, open to all sources. Contributions to this site tend to be from medical

professions. In Figure 9.4, the documents from this (ProMed-mail) dataset have

been cumulated into one-day time intervals, with the number of documents per

time interval displayed.

The results from both the surprise analysis and the emergence analysis are

shown in Figures 9.5 through 9.8. Figures 9.5 and 9.6 show results from the

5
1

0
1

5

Time
Time Interval = 1 day

#
 D

o
c
s

03/17 03/27 04/06 04/16 04/26 05/06

PubMed–mail
437 Documents

Figure 9.4 Binned document frequencies for the ProMed-mail dataset, one-day

time resolution.
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(ProMed-mail).

h1n1 4

alert 5

influenza a h1n1 4

cent 4

mexico 5

swine influenza 4

swine flu 4

swine 4

worldwide 5

texas 4

pandemic 5

patients 4

united 6

novel 4

developing 3

regional 5

America 4

director 5

California 4

Germany 3

03/17 03/27 04/06 04/16 04/26 05/06

temporal profiles, max Emergence, bin.width = 1 day, # bins = (7, 7),
PubMed–mail dataset

Figure 9.6 Temporal profiles sorted by the chi-square (Pearson) emergence score

(ProMed-mail).
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chi-square (Pearson) algorithms. The temporal profiles for the top 20 surprising

terms are shown in Figure 9.5. The temporal profiles for the top 20 emerging

terms are shown in Figure 9.6. From these two plots, the main topic within this

dataset becomes obvious (H1N1, the swine flu outbreak of 2009). On April 24,

the surprise analysis (Figure 9.5) starts to select terms that first appear about the

swine flu outbreak (serious , vaccination , epidemic). However, the results of the

emergence analysis (Figure 9.6) clearly explain when and what occurred. The

results of using the Gaussian algorithms to analyze this ProMed-mail dataset are

shown in Figures 9.7 and 9.8. The results from the Gaussian surprise analysis

show that no swine flu outbreak terms were selected as significantly surprising

for this analysis. The results of the emergence analysis, however, did show the

selection of several (swine flu) relevant terms (Figure 9.8).

Similarities between terms within a given set can give an analyst more infor-

mation than just a single term can provide (including multi-term keywords).

We assess similarity based on the distances between vectors of the temporal

occurrence of each term. There are a large number of candidate algorithms for

calculating distances between temporal profiles. Our preferred implementation is

based on the correlation function between the vectors and is, for two such vectors

(x, y), equal to 1 − |corr(x, y)|. This distance often results in interpretable term

groupings (Kaufman and Rousseeuw 1990). Using combined related term pro-

files, one can gain more detailed information about the events. For illustration,

Figure 9.9 shows the related terms for the term mexico (from the analysis of the
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Figure 9.7 Temporal profiles for the ProMed-mail dataset, sorted by the Gaus-

sian surprise score.
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Figure 9.8 Temporal profiles for the ProMed-mail dataset, sorted by the Gaus-

sian emergence score.
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Figure 9.9 Temporal profiles for the term mexico and the top nine related terms

(ProMed-mail dataset).
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ProMed-mail dataset). From this, it is obvious that the main topic about this term

(mexico) is the 2009 swine flu (H1N1) outbreak.

9.7 Discussion

In the previous section, the surprise and emergence algorithms were used to

analyze the ProMed-mail dataset. From Figure 9.4, we see that the maximum

number of documents (reports) for a single day (from March 13 through May

13) was 17. In Figure 9.6, we see that the maximum number of documents that

contained the term h1n1 was only 4 (number on the right hand side of each

temporal profile). Because of the low number of term occurrences and document

counts, the surprise algorithms did not produce the desired results compared to

the results from the emergence algorithms.

A comparison of the surprise statistic (maximum value for each term) and the

emergence statistic is shown in Figure 9.10. Also shown in this figure is a com-

parison of the IN-SPIRE topicality score to the surprise and emergence statistic.

The IN-SPIRE topicality score is a measure that defines discriminating terms

within a set of documents. This comparison was done using the ProMed-mail

dataset and the chi-square (Pearson) algorithms. The fundamental observation is

that the metrics are uncorrelated, at least for this corpora, because no correlation

is seen in any of these plots (or very low correlation for the surprise–emergence
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score), and trend detection (emergence score) algorithms (ProMed-mail dataset).
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plot), which suggests that these three statistics provide different information about

the dataset.

9.8 Summary

Mathematical and statistical methods in the area of text mining can be very

helpful for the analysis of the massive amounts of text stream data that exists.

Analyzing this data for content and for detecting change can be a daunting task.

Therefore, we have implemented some of these text mining techniques into a sur-

prise event and emerging trend detection technology that is designed to monitor

a stream of text or messages for changes within the content of that data stream.

In this chapter, we have described our algorithmic development in the area of

detecting evolving content in text streams (events and trends). We have compared

our results to text analysis results on a static document collection and found that

our techniques produce results that are different and enhance those results.

A recent dataset was analyzed using our surprise and emergence algorithms.

In this analysis, the emergence algorithms did a very good job of finding the

emergence of the most relevant subject matter (H1N1, swine flu outbreak) and

when the event began (April 24, 2009).

To help understand the important topics defined by each term (keyword),

related terms are found. For the swine flu analysis, the term mexico was found to

be a significant emerging term. The related term analysis showed that this term

was temporally related to the swine flu (H1N1) outbreak (2009).
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Embedding semantics

in LDA topic models

Loulwah AlSumait, Pu Wang, Carlotta Domeniconi
and Daniel Barbará

10.1 Introduction

The huge advancement in databases and the explosion of the Internet, intranets,

and digital libraries have resulted in giant text databases. It is estimated that

approximately 85% of worldwide data is held in unstructured formats with an

increasing rate of roughly 7 million digital pages per day (White 2005). Such huge

document collections hold useful yet implicit and nontrivial knowledge about

the domain. Text mining (TM) is an integral part of data mining that is aimed

at automatically extracting such knowledge from the unstructured textual data.

The main tasks of TM include text classification, text summarization, document

and/or word clustering, in addition to classical natural language processing tasks

such as machine translation and question-answering. The learning tasks are more

complex when processing text documents that arrive in discrete or continuous

streams over time.

Topic modeling is a newly emerging approach to analyze large volumes of

unlabeled text (Steyvers and Griffiths 2005). It specifies a statistical sampling

technique to describe how words in documents are generated based on (a small

set of) hidden topics. In this chapter, we investigate the role of prior knowledge

semantics in estimating the topical structure of large text data in both batch and

online modes under the framework of latent Dirichlet alglocation (LDA) topic

Text Mining: Applications and Theory edited by Michael W. Berry and Jacob Kogan

 2010, John Wiley & Sons, Ltd
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modeling (Blei et al. 2003). The objective is to enhance the descriptive and/or

predictive model of the data’s thematic structure based on the embedded prior

knowledge about the domain’s semantics.

The prior knowledge can be either external semantics from prior-knowledge

sources, such as ontologies and large universal datasets, or a data-driven seman-

tics which is a domain knowledge that is extracted from the data itself. This

chapter investigates the role of semantic embedding in two main directions. The

first is to embed semantics from an external prior-knowledge source to enhance

the generative process of the model parameters. The second direction which suits

the online knowledge discovery problem is to embed data-driven semantics. The

idea is to construct the current LDA model based on information propagated from

topic models that were learned from previously seen documents of the domain.

10.2 Background

Given the unstructured nature of text databases, many challenges face TM algo-

rithms. First, there are a very high number of possible features to represent a

document. Such features can be derived from all the words and/or phrase types

in the language. Furthermore, in order to unify the data structure of documents, it

is necessary to use a dictionary of all the words to represent a document, which

results in a very sparse representation. Another critical challenge stems from the

complex relationships between concepts and from the ambiguity and context sen-

sitivity of words in text. Thus, a good TM algorithm must be efficient to process

such large and challenging data so that the documents are represented in short

descriptions in which only the essential and most discriminative information is

preserved. The rest of this section is focused on three major advancements to

solve this problem, then the LDA topic models will be introduced in Section 10.3.

10.2.1 Vector space modeling

The first major progress in text processing was due to the vector space model

(Salton 1983), in which a document is represented as a vector of dimension W ,

wd = (w1d , . . . , wWd), where each dimension is associated with one term of the

dictionary. Each entry wid is the term frequency – inverse document frequency

(tf-idf) of the term i in document d given by wid = nid × log(D/ni). The local

frequency of the term (nid ) is weighted by its global frequency in the whole cor-

pus to reduce the importance of common words that appear in many documents

since they are naturally bad discriminators. To represent the whole corpus, the

term – document matrix, X, is constructed. X is a W × D matrix whose rows

are indexed by the terms of the dictionary and whose columns are indexed by

the documents.

Although the VSM has empirically shown its effectiveness and is widely

used, it suffers from a number of inherent shortages to capture inter- and intra-

document statistical structure and provides a small reduction only in the descrip-

tion of the corpus.
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10.2.2 Latent semantic analysis

To address the shortages of the VSM, researchers in information retrieval (IR)

have introduced latent semantic analysis (LSA) (Deerwester et al. 1990), which

is a factor analysis that reduces the term – document matrix to a K-dimensional

subspace that captures most of the variance in the corpus. By computing the

singular value decomposition (SVD), the term – document matrix X is decom-

posed into three matrices X = U�V T . The rows in U give the occurrence of

the original words which correspond to the K concepts of the new factor space,

while the columns in V give the relation between the documents and each of the

K concepts.

Although LSA overcomes some of the drawbacks of the VSM, it suffers from

a number of limitations. First, given the high-dimensionality nature of text data,

computation of the SVD is expensive. In addition, the new feature space is very

difficult to interpret since each dimension is a linear combination of a set of

words from the original space. LSA is also not generalizable to incorporate other

side information such as time and author.

10.2.3 Probabilistic latent semantic analysis

Researchers have proposed statistical approaches to understand LSA, some of

whom have discussed its relationship to Bayesian methods (Story 1996) and

generative probabilistic models (Papadimitriou et al. 2000). As a major advance

in the application of Bayesian methods to document modeling, Hofmann (1999)

introduced probabilistic latent semantic analysis (pLSA), also called the aspect

model , as an alternative to LSA. It is a latent variable model that associates an

unobserved class (aspect) variable zk with each document d and represents each

aspect by a distribution over words p(w|z). The pLSA model is parameterized

by the joint distribution of a document d and a word wdi that appears in it,

p(d, wdi) = p(d)
∑K

z=1 p(wdi |z)p(z|d).

A graphical model of pLSA is shown in Figure 10.1. Given the hidden aspects,

the documents and words are conditionally independent. In addition, pLSA allows

the documents to be associated with a mixture of topics weighted by the posterior

p(z|d).

The generative process of a model specifies a probabilistic sampling procedure

that describe how words in documents can be generated based on the hidden

topics. Thus, the generative process of the pLSA is as follows:

1. Draw a document with probability p(d).

2. For each word i in document d:

(a) Draw a latent aspect zi with probability p(zi |d).

(b) Draw a word wdi with probability p(wdi |zi).

Nonetheless, this is not a true generative model as the variable d is a dummy

random variable that is indexed by the documents in a training set (Blei et al.
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Figure 10.1 A graphical model of pLSA (left) and LDA (right).

2003). As a consequence, pLSA is inclined to overfit the training data, which

harms its ability to generalize the inferred aspect model to generate previously

unseen documents.

Despite its limitation, pLSA has influenced a huge amount of work in statis-

tical machine learning and TM. As a result, a class of statistical models, named

probabilistic topic models (PTMs), have been created to uncover the underlying

structure of large collections of discrete data, such as text. PTMs are generative

models of documents that assume the existence of hidden variables, representing

topics associated with the observed text documents which are responsible for

the patterns of word use. Topic models are aimed at discovering these hidden

variables based on hierarchical Bayesian analysis. Among the variety of topic

models proposed, LDA (Blei et al. 2003) is a truly generative model that is

capable of generalizing the topic distributions so that it can be used to generate

unseen documents as well.

10.3 Latent Dirichlet allocation

The LDA PTM is a three-level hierarchical Bayesian network that represents

the generative probabilistic model of a corpus of documents. The basic idea

is that documents are represented by a mixture of topics where each topic is a

latent multinomial variable characterized by a distribution over a fixed vocabulary

of words. The completeness of the LDA’s generative process for documents is

achieved by considering Dirichlet priors on the document distributions over topics

and on the topic distributions over words. This emerging approach has been suc-

cessfully applied to find useful structures in many kinds of documents, including

emails, the scientific literature (Griffiths and Steyvers 2004), libraries of digital

books (Mimno and McCallum 2007), and news archives (Wei and Croft 2006).
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This section introduces the LDA topic model with a brief description of

its graphical model and generative process (Section 10.3.1) and the posterior

inference (Section 10.3.2). The section concludes with a brief review of an online

version of LDA, namely OLDA.

10.3.1 Graphical model and generative process

LDA relates words and documents through latent topics based on the bag-of-

words assumption, i.e. the exchangeability , for the words in a document and for

the documents in a corpus. The graphical model of LDA is given in Figure 10.1.

The documents θ are not directly linked to the words w. Rather, this relationship

is governed by additional latent variables, z, introduced to represent the respon-

sibility of a particular topic in using that word in the document, i.e. the topic(s)

that the document is focused on. By introducing the Dirichlet priors α and β

over the document and topic distributions, respectively, the generative model of

LDA is complete and is capable of processing unseen documents.

So, the structure of the LDA model allows the interaction of the observed

words in documents with structured distributions of a hidden variable model (Blei

et al. 2003). Learning the structure of the hidden variable model can be achieved

by inferring the posterior probability distribution of the hidden variables, i.e. the

topical structure of the collection, given the observed documents. This interaction

can be viewed in the generative process of LDA:

1. Draw K multinomials φk from a Dirichlet prior β, one for each topic k.

2. Draw D multinomials θd from a Dirichlet prior α, one for each docu-

ment d .

3. For each document d in the corpus, and for each word wdi in the document:

(a) Draw a topic zi from multinomial θd ; (p(zi |α)).

(b) Draw a word wi from multinomial φz; (p(wi |zi, β)).

Inverting the generative process, i.e. fitting the hidden variable model to the

observed data (words in documents), corresponds to inferring the latent variables

and, hence, learning the distributions of underlying topics. The hidden structure

of topics in the LDA model is described by the posterior distribution of the

hidden variables given the D documents

p(�, z, �|w, α, β) =
p(w, �, z,�|α, β)
∫

φ1:K

∫

θ1:D
p(w|α, β)

. (10.1)

10.3.2 Posterior inference

In LDA, exploring the data and extracting the topics correspond to computing

the posterior expectations. These are the topic probability over terms (E(�|w)),
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the document proportions over topics (E(�|w)), and the topic assignments of

words (E(z|w)). Although the LDA model is relatively simple, exact inference

of the posterior distribution in Equation (10.1) is intractable (Blei et al. 2003).

The solution is to use sophisticated approximations such as variational expec-

tation maximization (Blei et al. 2003) and expectation propagation (Minka and

Lafferty 2002).

Griffiths and Steyvers (2004) proposed a simple and effective strategy for

estimating φ and θ . It is an approximate iterative technique that is a special form

of Markov chain Monte Carlo (MCMC) methods. Gibbs sampling is able to

simulate a high-dimensional probability distribution p(x) by iteratively sampling

one dimension xi at a time, conditioned on the values of all other dimensions,

which is usually denoted x¬i .

Under Gibbs sampling, φ and θ are not explicitly estimated. Instead, the poste-

rior distribution over the assignments of words to topics, P(z|w), is approximated

by means of the Monte Carlo algorithm, see Heinrich (2005) for a detailed deriva-

tion of the algorithm. Gibbs sampling iterates over each word token in the text

collection in a random order and estimates the probability of assigning the cur-

rent word token to each topic (P(zi = j)), conditioned on the topic assignments

to all other word tokens (z¬i) as (Griffiths and Steyvers 2004)

P(zi = j |z¬i, wi,α, β) ∝

CKW
w¬i ,j

+ βwdi ,j

∑W
v=1(C

KW
v,j + βv,j )

×
CKD

d¬i ,j
+ αd,j

∑K
k=1(C

KD
d,k + αd,k)

, (10.2)

where CKW
w¬i ,j

is the number of times word w is assigned to topic j , not including

the current token instance i; and CKD
d¬i ,j

is the number of times topic j is assigned

to some word token in document d , not including the current instance i. From

this distribution, i.e. p(zi |z¬i, w), a topic is sampled and stored as the new topic

assignment for this word token. After a sufficient number of sampling iterations,

the approximated posterior can be used to get estimates of φ and θ by examining

the counts of word assignments to topics and topic occurrences in documents.

Given the direct estimate of topic assignments z for every word, it is important

to obtain its relation to the required parameters � and �. This is achieved

by sampling new observations based on the current state of the Markov chain

(Steyvers and Griffiths 2005). Thus, estimates �́ and �́ of the word – topic and

topic – document distributions can be obtained from the count matrices

φ́ik =
CWK

i,k + βi,k
∑W

v=1(C
WK
v,k + βv,k)

, θ́dk =
CDK

d,k + αd,k
∑K

j=1(C
DK
d,j + αd,j )

. (10.3)

Gibbs sampling has been empirically tested to determine the required length

of the burn-in phase, the way to collect samples, and the stability of inferred

topics (Griffiths and Steyvers 2004; Heinrich 2005; Steyvers and Griffiths 2005).
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10.3.3 Online latent Dirichlet allocation (OLDA)

OLDA is an online version of the LDA model that is able to process text streams

(AlSumait et al. 2008). The OLDA model considers the temporal ordering infor-

mation and assumes that the documents arrive in discrete time slices. At each

time slice t of a predetermined size ε, e.g. an hour, a day, or a year, a stream of

documents, St = {d1, . . . , dDt }, of variable size, Dt , is received and ready to be

processed. A document d received at time t is represented as a vector of word

tokens, wt
d = {wt

d1, . . . , w
t
dNd

}. Then, an LDA topic model with K components

is used to model the newly arrived documents. The generated model, at a given

time, is used as a prior for LDA at the successive time slice, when a new data

stream is available for processing (see Figure 10.2 for an illustration). The hyper-

parameters β can be interpreted as the prior observation counts on the number

of times words are sampled from a topic before any word from the corpus is

observed (Steyvers and Griffiths 2005), bishop. So, the count of words in topics,

resulting from running LDA on documents received at time t , can be used as the

priors for the t + 1 stream.

Thus, the per-topic distribution over words at time t , �
(t)
k , is drawn from a

Dirichlet distribution governed by the inferred topic structure at time t − 1 as

follows:

�
(t)
k |β(t)

k ∼ Dirichlet (β
(t)
k )

∼ Dirichlet (ω�̂
(t−1)
k ), (10.4)

where �̂
(t−1)
k is the frequency distribution of a topic k over words at time t − 1

and 0 < ω ≤ 1 is an evolution tuning parameter that is introduced to control the

evolution rate of the model. Since the Dirichlet hyperparameters determine the

smoothness degree of the priors, it is important to control its effect and to balance
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Figure 10.2 A flowchart of OLDA.
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between the weight of the past and current semantics in the inference process

according to the homogeneity and the evolution rate of the domain’s thematic

structure. This sequential model is expanded in Section 10.5 to allow data-driven

semantic embedding from a wider range of previous models.

Given the definition of β(t) in expression (10.4), the topic distributions in

consecutive models are aligned so that the evolution of topics in a sequential

corpus is captured. For example, if a topic distribution at time t corresponds

to a particular theme, then the distribution that has the same ID number in

the consecutive models will relate to the same theme, assuming that it appears

consistently over time. Thus, the inferred word distribution of topic k at time t

can be considered a drifted description of the latent variable k at time t − 1. The

drift is driven by the natural evolution of the topic which includes the changes

that occur in the terminology and/or in the interactions with other topics. To

model this evolution, an evolutionary matrix , B
(t)
k , is constructed to capture the

evolution of each topic k at each time epoch t within a sliding history window ,

δ. This is given as follows:

Bk =













φt−δ
1 . . . φ

(t−1)
1 φ

(t)
1

φt−δ
2 . . . φ

(t−1)
2 φ

(t)
2

...
...

...
...

φt−δ

W (t) . . . φ
(t−1)

W (t) φ
(t)

W (t)













, (10.5)

where each entry Bk(v, t) is the weight of word v under topic k at time t .1 Thus,

working with the evolutionary matrix will allow for tracking the drifts of existing

topics, detection of emerging topics, and visualizing the data in general.

Thus, the generative model for time slice t of the proposed OLDA model can

be summarized as follows:

1. For each topic k = 1, . . . , K :

(a) Compute β
(t)
k = ω�̂

(t−1)
k .

(b) Generate a topic �
(t)
k ∼ Dirichlet (·|β (t)

k ).

2. For each document, d = 1, . . . ,D(t):

(a) Draw �
(t)
d ∼ Dirichlet (·|α(t)).

(b) For each word token, wdi , in document d:

i. Draw z
(t)
i from multinomial �

(t)
d ; (p(z

(t)
i |α(t)

d )).

ii. Draw w
(t)
di from multinomial �

(t)
zi

; p(w
(t)
di |z

(t)
i , β(t)

zi
).

1 New observed terms at time t are assumed to have 0 count in φ for all topics in previous

streams.
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Maintaining the models’ priors as Dirichlet is essential to simplify the infer-

ence problem by making use of the conjugacy property of Dirichlet and multi-

nomial distributions. In fact, by tracking the history as prior patterns, the data

likelihood and, hence, the posterior inference of LDA are left the same. Thus,

implementing Gibbs sampling in Equation (10.2) in OLDA is straightforward.

The main difference of the online approach is that the sampling is performed

over the current stream only. This makes the time complexity and memory usage

of OLDA efficient and practical. In addition, the β under OLDA are constructed

from historic observations rather than fixed values.

10.3.4 Illustrative example

The LDA and OLDA models can be illustrated by generating artificial data from

a known topic model and applying the topic models to check whether the data is

able to infer the original generative structure. To illustrate the LDA model, six

sets of documents are generated from three topic distributions that are equally

weighted. Table 10.1 shows the dictionary and topic distributions of the data.

For each set, 16 documents of size 16 word tokens, on average, are generated.

After the word assignment vector, z, is randomly initialized, LDA is trained over

the documents with the number of components K equal to the true number of

components, i.e. K is set to 3. Table 10.2 gives the word – topic correlation

counts of LDA averaged over the six sets of documents after 50 iterations of

Gibbs sampling. It can be seen that the LDA model is able to correctly estimate

the density of each topic.

Table 10.1 Topic distributions of simulated data. Each

column is a multinomial distribution of a topic over the

dictionary.

Topic k1 k2 k3

33% 34% 33%

Dictionary↓ p(wi |k1) p(wi |k2) p(wi |k3)

river 0.37 0 0
stream 0.41 0 0
bank 0.22 0.28 0
money 0 0.3 0.07
loan 0 0.2 0
debt 0 0.12 0
factory 0 0 0.33
product 0 0 0.25
labor 0 0 0.25
news 0.05 0.05 0.05
reporter 0.05 0.05 0.05
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Table 10.2 The frequency distributions of topics

discovered by LDA from the static simulated data with

K equal to 3.

Topic T1 T2 T3

29.8% 35.5% 34.7

Dictionary f (wi |T1) f (wi |T2) f (wi |T3)

river 0 0 78
stream 0 0 93
bank 0 56 71
money 0 103 0
loan 0 56 0
debt 0 28 0
factory 85 0 0
production 73 0 0
labor 61 0 0
news 3 19 15
reporter 10 15 14

Table 10.3 Topic distributions of dynamic simulated data over three streams.

The rule ( ) indicates that the corresponding word or topic has not yet

emerged.

Stream t = 1 t = 2 t = 3

Topic k1 k2 k3 k1 k2 k3 k1 k2 k3

40% 60% 0% 40% 50% 10% 30% 40% 30%

Dictionary↓ p(wi |kj ) p(wi |kj ) p(wi |kj )

river 0.2 0 – 0.4 0 0 0.37 0 0
stream 0.4 0 – 0.2 0 0 0.41 0 0
bank 0.3 0.35 – 0.25 0.36 0.1 0.22 0.28 0
money 0 0.3 – 0 0.24 0 0 0.3 0.07
loan 0 0.25 – 0.05 0.22 0.1 0 0.2 0
debt – – – 0 0.08 0 0 0.12 0
factory – – – 0 0 0.37 0 0 0.33
product – – – 0 0 0.33 0 0 0.25
labor – – – – – – 0 0 0.25
news 0.05 0.05 – 0.05 0.05 0.05 0.05 0.05 0.05
reporter 0.05 0.05 – 0.05 0.05 0.05 0.05 0.05 0.05

Given the same dictionary, three streams of documents are generated from

evolving descriptions of topics to demonstrate the OLDA model. Table 10.3

shows the distributions of topics in the three time epochs. Topic 3 emerges as a

new topic at the second time epoch. In addition to the new terms introduced by
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Table 10.4 Topics discovered by OLDA from dynamic simulated data.

t = 1 t = 2 t = 3

ID Topic ID Topic ID Topic
distribution distribution distribution

1 news reporter 1 news reporter 1 reporter news
2 bank 2 bank 2 bank
3 money loan 3 money loan debt 3 money loan debt
4 stream river 4 river stream 4 river stream
5 bank news 5 bank factory production 5 production factory labor

topic 3, a number of terms such as debt and labor gradually emerge. The weight

(importance) of topics also varies between the streams. The OLDA topic model

is trained on the corresponding documents of each stream with K set to 5. At

each time epoch, OLDA is trained on the currently generated documents only.

Table 10.4 lists the highest important words under each topic of the evolving

simulated data that were discovered by OLDA with K set to 5 at each time

epoch. After 50 iterations of Gibbs sampling on each stream, OLDA converged

to aligned topic models that correspond to the true topic densities and evolution.

Another observation stems from the setting of K , i.e. the number of compo-

nents. When K is set to the true number of topics, the topic distributions included

some common words in addition to the semantically descriptive ones, see for

example the words news and reporter in topics T1, T2, and T3 in Table 10.2.

When K is increased to 5, the topics became more focused as the common words

are mapped into individual topics, see topics 1 and 2 in Table 10.3.

10.4 Embedding external semantics

from Wikipedia

This section investigates the role of embedding semantics from a source by

enhancing the generative process of the model parameters. Such human-defined

concept databases provide a natural source of semantics that can provide useful

knowledge regarding the hidden thematic structure of the data. We model external

knowledge using Wikipedia (Wikipedia 2009). Wikipedia is currently considered

the richest online encyclopedia, which consists of a huge number of catego-

rized and consistently structured documents. After the identification of related

Wikipedia concepts, LDA is applied to learn a model of the topics discussed in

the corresponding Wikipedia articles. The learned topics represent priors about

the available knowledge that will be embedded in the inference process of the

LDA model to enhance the discovered topics from the text data, which will be

referred to hereafter as the test documents.
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10.4.1 Related Wikipedia articles

In this work, each Wikipedia article is represented by its title and considered

as a single concept. Since Wikipedia includes a large variety of concepts and

domains, it is important to use the most related articles to the test documents

in order to ensure semantic relatedness and, hence, enhance the inferred model.

The related Wikipedia articles are defined to be all Wikipedia concepts that are

mentioned in a preset number of test documents, ρ. This is done by searching

for the title of the Wikipedia article in the test documents. The threshold value

ρ controls the number of Wikipedia articles, D, to be retrieved and, hence, the

amount of noise that is allowed to be included in the generative model.

10.4.2 Wikipedia-influenced topic model

After the identification of related Wikipedia concepts, LDA is applied to learn the

topics that are discussed in the corresponding Wikipedia articles. In particular,

LDA learns two Wikipedia distributions, the topic – word distribution φ and the

topic – document distribution θ , from

φik =
CWK

wi ,k
+ βi

∑W
v=1 CWK

v,k + βv

, θmk =
CDK

m,k + αk
∑K

j=1 CDK
m,j + αj

, (10.6)

where m is the index of the Wikipedia article. Within the related Wikipedia

articles, CWK
i,k is the number of times word i is assigned to topic k and CDK

m,k

is the number of times topic k is assigned to some word token in Wikipedia

article m.

The prior distributions φ and θ are then updated into posteriors using the test

documents. Specifically, the topic – word distribution φ is updated to a new φ̂,

and a new topic – document distribution θ̂ is learned from scratch using the test

documents

φ̂ik =
CWK

wi ,k
+ CWK

wi ,k
+ βi

∑V
v=1 CWK

v,k + CWK
v,k + βv

, θ̂dk =
CDK

d,k + αk
∑K

j=1 CDK
d,j + αj

, (10.7)

where d is the index of the test document, CWK
v,k is the number of times word v is

assigned to topic k, and CDK
d,k is the number of times topic k is assigned to some

word in test document d . Hence, the generative process of the test documents is

influenced by the Wikipedia topic model.

10.5 Data-driven semantic embedding

When a topic is observed at a certain time, it is more likely to appear in the future

with a similar distribution over words. Unlike general data mining techniques,

such an assumption is trivial in the area of TM. It is widely acceptable, for
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instance, to consider the documents and the words in the documents to be statis-

tically dependent. Once a word occurs in a document, it is likely to occur again.

Consequently, a similar implication can be made about the topic distribution over

time. Despite their natural drifts, the underlying themes of any domain are, in

general, consistent. Hence, incorporating prior knowledge about the underlying

semantics would eventually enhance the identification and description of topics

in the future. In this section, the role of previously discovered topics in inferring

future semantics in text streams is investigated under the framework of OLDA

topic modeling. A detailed version of the proposed approach can be found in

AlSumait et al. (2009).

OLDA is extended to enable semantic embedding in three major directions.

First, instead of generating the topic parameters based on the most recently

estimated model, the history window is set to incorporate more models in the

parameter generation process. Second, the contribution of the semantic history

in the inference process is controlled by assigning different weights to different

time epochs. Lastly, given the evolutionary matrices of topics defined in Equation

(10.5), the priors can be generated using a weighted linear combination of the

semantics extracted from all the models that fall within the history window.

These three factors are further explained in the following subsections.

10.5.1 Generative process with data-driven

semantic embedding

To incorporate inferred semantics from past data, the proposed approach considers

all the topic – word distributions learned within a sliding history window, δ, when

constructing the current priors. As a result, OLDA can provide alternatives for

full, short, or intermediate memory of history.

Given the sliding history window of size c, 1 < c ≤ t , the weight of past

models in the prior construction can be controlled by defining a vector of evo-

lution tuning parameters ω, instead of the single parameter in expression (10.4).

The evolution tuning vector can be used to control the weights of individual

models as well as the total weight of history with respect to new semantics. The

setting depends mainly on the homogeneity of the data and on the evolution rate

of the domain.

The overall influence of history in topic estimation is an important factor

that can effect the semantic description of the data. For example, some text

repositories, like the scientific literature, persistently introduce novel ideas and,

as a consequence, topic distributions change faster compared to other datasets. On

the other hand, a great part of the news in news feeds, like sports, stock markets,

and weather, are steady over time. Thus, for such consistent topic structures,

assigning a higher weight for historic information, compared to the weight of

current observations, would improve topic prediction, while the settings should

be reversed in fast evolving datasets.

By adjusting the total weight of history, i.e.
∑δ

c=1 ωc, the OLDA model

provides a direct way to deploy and tune the influence of history in the inference
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process. If the total history weight is equal to one, this would (relatively) balance

the weights of historic and current observations. When the total weight of history

is less (greater) than one, the historic semantic has less (more) influence than the

semantic of the current stream.

Thus, given the sliding window δ, the history weight vector ω, and the evo-

lutionary matrix of topic kB
(t)
k , as defined in Equation (10.5), the parameters of

topic k at time t can be determined by a weighted mixture of the topic’s past

distributions

β
(t)
k = B

(t−1)
k ω (10.8)

= �̂
(t−δ)
k ω1 + · · · + �̂

(t−2)
k ωδ−1 + �̂

(t−1)
k ωδ. (10.9)

Given the equality in Equation (10.8), the per-topic distribution over words at

time t , �
(t)
k , is drawn from a Dirichlet distribution governed by the evolutionary

matrix of the topic as follows:

�
(t)
k |β(t)

k ∼ Dirichlet (β
(t)
k )

∼ Dirichlet (B
(t−1)
k ω). (10.10)

By updating the priors as described above, the structure of the model is kept

simple, as all the historic knowledge patterns are printed in the priors rather than

in the structure of the graphical model itself. In addition, the learning process

on the new stream of data starts from what has been learned so far, rather than

starting from arbitrary settings that do not relate to the underlying distributions.

10.5.2 OLDA algorithm with data-driven semantic embedding

An overview of the proposed OLDA algorithm with semantic embedding is

shown in Algorithm 8. In addition to the text streams, S(t), the algorithm takes

as input the sliding history window size δ, weight vector ω, and fixed Dirichlet

values, a and b, for initializing the priors α and β, respectively, at time slice 1.

Note that b is also used to set the priors of new words that appear for the first

time in any time slice. The output of the algorithm is the generative models and

the evolution matrices Bk for all topics.

Algorithm 8 – OLDA with semantic embedding

1: INPUT: b; a; δ; ω; �; S(t), t = {1, 2, 3 . . . }

2: t = 1

3: loop

4: New text stream S(t) is received after time delay equal to �

5: if t = 1 then

6: β
(t)
k = b, k ∈ {1, . . . , K}

7: else
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8: β t
k = Bt−1

k ω, k ∈ {1, . . . , K}

9: end if

10: α
(t)
d = a, d = 1, . . . ,D(t)

11: initialize �(t) and θ (t) to zeros

12: initialize topic assignment, z(t), randomly for all word tokens in S(t)

13: [�(t), �(t), z(t)] = GibbsSampling(S(t), β(t), α(t))

14: if t < δ then

15: Bt
k = B

(t−1)
k ∪ �̂

(t)
k , k ∈ {1, . . . , K}

16: else

17: Bt
k = B

(t−1)
k (1 : W (t), 2 : δ) ∪ �̂

(t)
k , k ∈ {1, . . . , K}

18: end if

19: end loop

10.5.3 Experimental design

LDA with semantic embedding is evaluated in the problem domain of document

modeling. Perplexity is a canonical measure of goodness that is used in language

modeling. It evaluates the generalization performance of the model on previously

unseen documents. Lower perplexity means a better generalization performance

and, hence, a better estimation of density. Formally, for a test set of M documents,

the perplexity is (Blei et al. 2003)

perplexity(Dtest ) = exp

{

−
∑M

d=1 log p(wd)
∑M

d=1 Nd

}

. (10.11)

We tested OLDA under different configurations of historic semantic embed-

ding. A summary of the conducted models and their parameter settings are listed

in Table 10.5. The window size, δ, was set to values from 0 to 5. The OLDA

model with history window of size 0 ignores the history and processes the text

stream using a fixed symmetric Dirichlet prior. Under such a model, the esti-

mation is influenced by the semantics of the current stream only. This model,

named OLDAFixed, and the OLDA model with δ = 1 are considered as baselines

to which the rest of the tested models are compared. To compute the perplexity

at every time instance, the documents of the next stream are used as the test set

of the model currently generated.

All models were run for 500 iterations and the last sample of the Gibbs sam-

pler was used for evaluation. The number of topics, K , is fixed across all the

streams. K , a, and b are set to 50, 50/K , and 0.01, respectively. All experiments

are run on a 2 GHz Pentium M-processor laptop using the MATLAB Topic Mod-

eling Toolbox, authored by Mark Steyvers and Tom Griffiths.2. The two datasets

used in our experiments for the OLDA model with historic semantic embedding

are described below.

2 The Topic Modeling Toolbox is available at: http://psiexp.ss.uci.edu/research/programs data/

toolbox.htm
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Table 10.5 Name and parameter settings of OLDA models. The * indicates

that the model was applied on the data.

Reuters NIPS Model name δ ω

* * OLDAFixed 0 NA(β = 0.05)
* * 1/ω(1) 1 1
* * 2/ω(1) 2 1, 1
* 2/ω(0.8) 2 0.2, 0.8
* * 2/ω(0.7) 2 0.3, 0.7
* * 2/ω(0.6) 2 0.4, 0.6
* * 2/ω(0.5) 2 0.5, 0.5
* * 3/ω(1) 3 1, 1, 1
* * 3/ω(0.8) 3 0.05, 0.15, 0.8
* * 3/ω(0.7) 3 0.1, 0.2, 0.7
* 3/ω(0.6) 3 0.15, 0.25, 0.6
* * 3/ω(0.33) 3 0.33, 0.33, 0.34
* * 4/ω(1) 4 1, 1, 1, 1

* 4/ω(0.9) 4 0.01, 0.03, 0.06, 0.9
* 4/ω(0.8) 4 0.03, 0.07, 0.1, 0.8
* * 4/ω(0.7) 4 0.05, 0.1, 0.15, 0.7
* 4/ω(0.6) 4 0.05, 0.15, 0.2, 0.6
* * 4/ω(0.25) 4 0.25, 0.25, 0.25, 0.25

* 5/ω(1) 5 1, 1, 1, 1, 1
* 5/ω(0.7) 5 0.05, 0.05, 0.1, 0.15, 0.7
* 5/ω(0.6) 5 0.05, 0.1, 0.15, 0.2, 0.6

* * 5/ω(0.2) 5 0.2, 0.2, 0.2, 0.2, 0.2

Reuters-21578.3 The corpus consists of newswire articles classified by topic

and ordered by their date of issue. There are 90 categories with some articles

classified in multiple topics. For our experiments, only articles with at least one

topic were kept for processing. For data preprocessing, stop words were removed

while the remaining words were down-cased and stemmed to their root source.

The resulting dataset consists of 10 337 documents, 12 112 unique words, and

a total of 793 936 word tokens. For simplicity, we partitioned the data into 30

slices and considered each slice as a stream.

NIPS dataset.4 The NIPS set consists of the full text of 13 years of the

proceedings from 1988 to 2000 of the Neural Information Processing Systems

(NIPS) Conference. The data was preprocessed for down-casing, removing stop

words and numbers, and removing those words appearing less than five times in

the corpus. The dataset contains 1740 research papers, 13 649 unique words, and

2 301 375 word tokens in total. The set is divided into 13 streams based on the

year of publication.

3 The original dataset is available to download from the UCI Knowledge Discovery in Databases

Archive: http://archive.ics.uci.edu/ml/.
4 The original dataset is available at the NIPS Online Repository: http://nips.djvuzone.org/txt.html.
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10.5.4 Experimental results

Wikipedia-influenced LDA was run on nine subsets of the Reuters dataset which

correspond to the first nine streams. The perplexity of a model was computed

using the successive stream as the test set. Figure 10.3 shows the perplexity

of Wikipedia-influenced LDA compared to the corresponding models that were

trained on the Reuters documents only. It can be seen that the perplexity of LDA

with Wikipedia articles is lower in five out of the nine models. We believe that

the higher perplexity in some cases with Wikipedia is due to the unstructured

approach used to partition the data, which does not guarantee the representation

of all the classes in each stream. Thus, any document in the test set that belongs to

a new class would eventually increase the perplexity. However, when this factor

is neutralized, incorporating external knowledge from Wikipedia does improve

the performance.

To test the data-driven semantic embedding, OLDA was first run on the

Reuters dataset. It was found that by increasing the window size, δ, OLDA

resulted in lower perplexity than the baselines. Figure 10.4 plots the perplexity

of OLDA and OLDAFixed at every stream of Reuters under different settings of

window size, δ, and the weight vector, ω, was fixed on 1/δ. The figure clearly

shows that embedding semantics enhanced the document modeling performance.

In addition, incorporating semantics from more models, i.e. using a window size

greater than 1, further improves the perplexity with respect to OLDA with short

memory (δ = 1).
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Figure 10.3 Perplexity of OLDA on Reuters with and without Wikipedia articles.
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Figure 10.4 Perplexity of OLDA on Reuters for various window sizes compared

to OLDAFixed.

Testing with NIPS resulted in a slightly different behavior. When ω was

fixed, increasing the window size did show a reduction in the model’s perplexity,

compared to OLDA with short memory. This is illustrated in Figure 10.5. The

larger the window, the lower the perplexity of the model. Nonetheless, the OLDA

model only showed improvements with respect to OLDAFixed when the window

size was larger than 3. In addition to the window size, previous experiments on

NIPS suggested the effect of the total weight of history in estimating the topical

semantics of heterogeneous and fast evolving domains like scientific research

(AlSumait et al. 2008). The experiments explained next provide evidence of

such a justification. Nonetheless, it is worth mentioning here that the OLDA

model outperforms OLDAFixed in its ability to automatically detect and track

the underlying topics.

To investigate the role of the total history weight, we tested OLDA on NIPS

and Reuters under a variety of ω settings. Figure 10.6 shows the average per-

plexity of OLDA with δ fixed at 2 and the total sum of ω set to 0.05, 0.1, 0.15,

0.2, and 1 for both datasets. Both baselines, OLDAFixed and OLDA with short

memory, are also shown. We found that the contribution of history in NIPS is

completely opposite to that in Reuters. While increasing the weight for history

resulted in a better topical description of Reuters news, lower perplexities were

reported with NIPS only for topic models that assign a lower weight for his-

tory. In fact, the history weight and perplexity in NIPS (Reuters) are negatively

(positively) correlated.
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Figure 10.5 Perplexity of OLDA on NIPS for various window sizes compared to

OLDAFixed.
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Reuters’ documents span a short period of time while the streams of NIPS

are yearly based. As a result, the Reuters’ topics are homogeneous and more

stable. So, letting the current generative model be heavily influenced by the past

topical structure will eventually result in a better description of the data. On the

other hand, although there is a set of predefined publication domains in NIPS,

like algorithms, applications, and visual processing, these topics are very broad

and interrelated. Furthermore, research papers usually cover more topics and

continuously introduce novel ideas and topics. Hence, the influence of previous

semantics should not exceed the topical structure of the present.

10.6 Related work

The problem of embedding semantic information within the document repre-

sentation and/or distance metrics has recently been investigated intensively in

the domain of text classification and clustering (e.g. AlSumait and Domeniconi

(2008), Cristianini et al. (2002)). However, the problem of embedding semantic

information within the generative model and the inference process of LDA topic

modeling is a new research area. Very recently (Andrzejewski et al. 2009), domain

knowledge has been implemented in the form of must-link and cannot-link prim-

itives about the word compositions that should have high or low probability in

the topics. These primitives are incorporated in LDA using a mixture of Dirichlet

tree priors.

A number of papers in the literature have used LDA topic modeling to rep-

resent some kind of semantic embedding. In the domain of text segmentation,

the work in Sun et al. (2008) used an LDA-based Fisher kernel to measure text

semantic similarity between blocks of documents in the form of latent seman-

tic topics that were previously inferred using LDA. The kernel is controlled by

the number of shared semantics and word co-occurrences. Phrase discovery is

another area that aims at identifying phrases (n-grams) in text. Wang et al. (2007)

presented a topical n-gram model that automatically identified feasible n-grams

based on the context that surround it. Moreover, there are some research efforts to

incorporate prior knowledge from large universal datasets, like Wikipedia. Phan

et al. (2008) built a classifier on both a small set of labeled documents and an

LDA topic model estimated from Wikipedia.

10.7 Conclusion and future work

In this chapter, the effect of embedding semantic information in the framework

of probabilistic topic modeling is investigated. In particular, static and online

LDA topic models are first introduced and two directions to embed semantics

within their inference process are defined. The first direction updates the topical

structure based on prior knowledge that is learned from Wikipedia. The second

approach constructs the parameters based on the topical semantics that have been

inferred by the past generated models.
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This work can be extended in many directions. LDA with external semantic

embedding can be used to build an unsupervised classifier that can effectively

group documents based on their content with no need for labeled training

documents. In addition, it can be extended to work online on text streams and

using an evolving external knowledge. The effect of the embedded historic

semantics on detecting emerging and/or periodic topics constitutes future work.
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