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1
Introduction
Sophia Ananiadou and John McNaught

1.1 Text Mining: Aims, Challenges, and Solutions

With an overwhelming amount of biomedical knowledge recorded in texts, it is
not surprising that there is so much interest in techniques that can identify,
extract, manage, integrate, and exploit this knowledge, and can discover new,
hidden, or unsuspected knowledge. In the past few years, there has been an
upsurge of research papers on the topic of text mining from biomedical litera-
ture. The primary goal of text mining is to retrieve knowledge that is hidden in
text, and to present the distilled knowledge to users in a concise form. The
advantage of text mining is that it enables scientists to efficiently and systemati-
cally collect, maintain, interpret, curate, and discover knowledge needed for
research or education.

A commonly accepted definition of text mining, to which we also adhere,
is provided by Hearst [1]. She characterizes text mining as the process of discov-
ering and extracting knowledge from unstructured data, contrasting it with data
mining, which discovers knowledge from structured data. Under this view, text
mining comprises three major activities: information retrieval, to gather relevant
texts; information extraction, to identify and extract a range of specific types of
information from texts of interest; and data mining, to find associations among
the pieces of information extracted from many different texts.
In this book, we leave aside information retrieval aspects. These have been
widely investigated and reported, and most biologists use information retrieval,
in some form or another, in their daily work. Indeed, the search engine
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experience is so pervasive and familiar that it becomes hard to appreciate that
there may be something beyond information retrieval. However, in the text
mining world, information retrieval is but the first step. Instead of leaving the
user with the problem of having to read several tens of thousands of retrieved
documents, text mining offers the possibility of extracting precise facts from a
retrieved document set, and of finding interesting associations among disparate
facts, leading to the discovery of new or unsuspected knowledge. We thus focus
here on activities subsequent to information retrieval—some of which also may
help improve classic information retrieval (e.g., terminology management, the
subject of Chapter 4).

It is not only the amount of unstructured textual data that poses problems.
This type of data is increasing in volume at such a pace that it is becoming diffi-
cult to discover knowledge and to generate scientific hypotheses without the use
of text mining techniques. Significantly, hypothesis generation relies on back-
ground knowledge, and is crucial in scientific discovery. The pioneering work
by Swanson et al. on hypothesis generation [2] is mainly credited with sparking
interest in text mining techniques in biology. Text mining aids in the construc-
tion of hypotheses from associations derived from vast amounts of text that are
then subjected to experimental validation by experts. It is being applied in
numerous areas, such as finding functional relationships among genes, establish-
ing functional annotations, discovering protein-protein interactions, interpret-
ing array experiments, associating genes and phenotypes, and so forth.

This increased interest in text mining in biology is also evident through
numerous dedicated workshops,1 tutorials, and special tracks at major
conferences in bioinformatics and natural language processing (NLP). Examples
of these conferences include the Pacific Symposium on Biocomputing, Intelli-
gent Systems for Molecular Biology, the Association for Computational Lin-
guistics Annual Meeting, and the International Conference on Computational
Linguistics.

Perhaps the most concrete evidence of recognition of the strategic signifi-
cance of text mining is seen in the creation of the U.K. National Text Mining
Centre (http://www.nactem.ac.uk), which has been recently set up to provide
services in text mining to the academic community. Moreover, the Centre is
concentrating its activities on text mining in biology, due to the amount of user
demand in this area.

This book introduces the field of text mining to those interested in orga-
nizing, searching, discovering, or communicating biological knowledge, and
aims to arm them with a sound appreciation of its main techniques, concerns,
challenges, results, and promising future directions. As seen in other areas
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involving the introduction of new technology in the shape of applied informa-
tion systems, there is a danger of expectations exceeding reality, leading to disap-
pointment and rejection. Thus, a further aim of this book is to critically examine
the state of the art, and to make clear what can be expected of the field at present
or in the near future. The reader will find extensive summarization and discus-
sion of the research literature in text mining and reported systems, geared
towards informing and educating, rather than oriented towards other experts in
text mining. To this end, this book has been conceived as a number of comple-
mentary chapters, which target core topics. These chapters were specially
commissioned from leading experts around the world, and have undergone a
strict peer-reviewing procedure. Each chapter takes its own view of its subject
matter. However, the reader will find, on occasion, the same topic being dis-
cussed from a different point of view in different chapters. This was due to a
deliberate policy of encouraging informative discussion, rather than artificial
compartmentalization. The reader also will find differences of opinion, of termi-
nology, and of fundamental approach. Text mining is a complex, dynamic area,
with many techniques and approaches being tried out. It would be foolhardy to
attempt to gloss over the differences that naturally occur due to this dynamism
and complexity, or to give the appearance of consensus where there may be
none. Where there is consensus, this has been brought out, and where there are
differing voices and views, these have been left untouched. Thus, the reader will
appreciate which areas are controversial, and which are considered mature and a
good foundation to build on. For those wishing an approachable, concise expla-
nation of the concerns, techniques, and information problems of molecular
biology, viewed from the perspective of how people interact with information
and technology, we recommend the article by MacMullen and Denn [3]. Other
overviews are referred to throughout the book.

Significantly, text mining does not just provide existing tools for applica-
tion to the biology domain. A major reason why text miners have engaged so
closely with this domain is that it presents a number of challenges, which have
necessitated new and different approaches. Challenges range from having to deal
with the particular language of the biologist, to building scalable and robust sys-
tems, to presenting the results of text mining in meaningful and informative
ways (to the biologist).

Biology also interacts closely with different disciplines (e.g., chemistry and
medicine), and this interaction presents further challenges to text miners, who
have to deal with interdisciplinary aspects, and user communities with different
views over the same knowledge space and with different information needs. An
example is that of a cell, which can be described by a bacteriologist, an immu-
nologist, a neurologist, or a biochemist, each from his or her own point of view.
Such multidimensionality must be maintained and appropriately managed.
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Moreover, text mining in itself is a truly interdisciplinary area. Knowledge
of language (linguistics) is needed, alongside natural language processing tech-
niques (Chapter 2), such as part-of-speech tagging, full parsing and shallow
parsing (which are combined with information retrieval), information extrac-
tion (Chapters 6 and 7), and data mining techniques (Chapter 10). Such a
degree of interdisciplinarity, in both the technology domain and the application
domains, ensures that no text miner is ever without a challenge.

These and other challenges continually exercise the text mining commu-
nity, as can be seen in discussion of problems, solutions, and results in the Criti-
cal Assessment of Information Extraction in Biology (BioCreAtIvE) evaluations
(Section 9.4.3). Many information extraction tasks, which had been considered
to give highly successful results when applied to business newswires, suffered a
significant drop in performance when they were applied in the biomedical area.
It was found that identifying gene names and carrying out functional annotation
were among the hardest of tasks. Challenge evaluations, such as BioCreAtIvE,
compare the performance of text mining systems on specific biology-oriented
tasks, using a gold standard annotated text corpus to enable proper comparison.
Indeed, one of the positive outcomes of evaluation challenges is the availability of
annotated corpora to be used for subsequent training and testing (e.g.,
BioCreAtIvE, TREC genomics track [4]), although there is still a great need for
more such data. Chapter 8 discusses this and reports on efforts to produce one
such corpus.

Terminology presents one of the core challenges for text mining from bio-
medical literature. Given the amount of neologisms characterizing biomedical
terminology, it is necessary to provide tools that will automatically extract newly
coined terms from texts, and link them with biodatabases, controlled vocabular-
ies, and ontologies. The importance of this topic has triggered significant
research, which has in turn resulted in several approaches used to collect, clas-
sify, and identify term occurrences in biomedical texts. Terminological process-
ing also covers such aspects as extraction, term variation, classification, and
mapping (Chapter 4).

The high degree of term variation in biomedicine creates problems when
we want to map termforms in text to existing controlled vocabularies or to con-
cept labels of ontologies. It also hampers information retrieval tasks, since many
relevant documents are not retrieved, due to a mismatch of index terms with the
user’s queries. A very prolific type of term variation is abbreviation—approxi-
mately 64,000 new abbreviations were introduced in 2004 in the biomedical lit-
erature alone (Chapter 5). The specificity of biomedical abbreviations makes
their identification a challenging task, and demands specific solutions that are
different from those for general language processing. Work on abbreviation
identification has led to the construction of biomedical abbreviation databases,
such as AcroMed, SaRAD, and the Stanford Biomedical Abbreviation Database.
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Knowledge resources, such as the Unified Medical Language System
(UMLS) [5], contain an abundance of nomenclatures, controlled vocabularies,
and ontologies (Chapter 3). Ontologies are crucial for knowledge discovery in
biomedicine. They form the link between terms in texts and biological data-
bases. They are of great relevance to text mining, because they can be used to
add meaning. They also can be used for semantic annotation of texts (Chapters
5, 7, and 8). However, in order to be useful, they must be internally consistent,
offer (jointly) wide coverage of the domain while allowing multiple classifica-
tions of entities, and support interoperability. Currently, information available
in existing biomedical resources, such as ontologies, is not sufficient for text
mining applications, for a number of reasons. These resources are often focused
on human users, have limited lexical and terminological coverage of different
biological domains, experience problems with update and curation due to new
terms being created daily, and are difficult to integrate to achieve wider coverage
and consistency. Text mining shows its flexibility and usefulness. Not only can
it process texts to extract facts and associations, it also can be used to support
update of ontologies and to ensure wide coverage. Text mining can aid tasks,
such as curation of biomedical databases, by consistently applying ontological
annotation, and it can help in ontology construction and update, yielding
increased ontological coverage of biological entities.

The issue of resources concerns all the authors in this collection. The text
mining community in general is aware that there is a “resource bottleneck.”
There is a lack of large-scale, richly annotated corpora to support training of
machine learning algorithms, development of computational grammars, and
evaluation of text mining components. Such resources are expensive and
time-consuming to produce. There is also a lack of appropriate knowledge
resources: lexicons, terminologies, and ontologies. We are very precise in our use
of “appropriate” here, as will become apparent in discussions in Chapters 2, 3,
4, and 7. We mean “appropriate for text mining.” Sophisticated information
extraction of the kind required to handle biotexts requires access to such
resources. However, there is a lack of special language lexicons: computational
lexicons that encode the special language behavior of terms in the domain,
including, crucially, that of terminological verbs. Terminological description
must become more than mere recording or listing of forms. The linguistic
behavior of terms must be captured formally and explicitly in computational
lexicons to drive text-mining systems.

Moreover, the field needs to tidy up its terminological act, and to recog-
nize that there is a world of difference between, on the one hand, an index term,
a controlled vocabulary item, a concept label, a thesaurus descriptor, and a sub-
ject heading; and, on the other hand, a terminological, linguistic term and its
family of variants, all of which (including the canonical head term or entry term
itself) are necessarily attested in text (Chapter 4, Section 4.5.1). Nothing can be
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considered a term unless it is at least attested. Rule-based information extraction
systems rely on finding information on textual forms, partly through dictionary
look-up, and thus rely on finding information about terms as they occur in
texts. The systems struggle to achieve anything sensible in that regard, by
looking up resources that are divorced from the reality of the textual term. How-
ever, ontologies are also urgently required. We need to be able to assign
domain-specific meanings to terms, to use these meanings in building up repre-
sentations of facts and events, and to navigate and perform inference based on
ontological relationships. As Chapter 3 makes clear, not all ontologies are
consistently constructed following best practice in ontological design.
Reengineering is indicated in such cases to render them more useful for applica-
tions such as text mining. However, even given good ontologies and good lexi-
cons, there still is a further need to establish the missing link between lexicon
and ontology, which provides mappings from terms in lexicons to
corresponding concepts in ontologies.

Such efforts, which are required to establish and maintain appropriate
annotated corpora and lexical/ontological resources, are by no means trivial—
community efforts are clearly indicated here. Fortunately, the field can benefit
from earlier work on standardization of resources for language engineering
applications (e.g., EAGLES/ISLE [6], ISO TC 37 SC 4 [7], and TEI [8]). How-
ever, because of the specificity of biomedicine, porting general NLP standards to
biomedicine has limitations, and further work is required to specialize NLP
standards for practical use in text mining from biology texts.

The future existence of such resources holds out the promise of greater
benefits from text mining, including the possibility of being able to fully
exploit annotated, structured data from biodatabases and annotated experimen-
tal data, together with the results of processing unstructured data through text
mining, to yield true integration of heterogeneous resources in the search for
new knowledge (Chapter 10).

Before describing the contents of each chapter, we note in conclusion that
the flexibility and applicability of text mining extends to endowing existing col-
lections of text with added value. That is, not only can text mining extract facts
and associations from text, it also can add back in such information, in the form
of metadata, to enable sophisticated and precise searching. Additionally, we
must be aware that it is crucial for any extracted facts to be grounded in the liter-
ature. Currently, about the only commonly available method of linking texts to
biology databases is through their PubMed unique identifier (PMID). Text
mining techniques have a key role to play in linking scientific articles to biology
databases. Applied in these ways, text mining can open up many possibilities to
enrich digital libraries and open access collections, and to connect them with
curated databases.
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In closing, we trust that we have given the reader an appetite to learn more
about text mining for biology. Now make way for the main course. First, a
closer look at the menu.

1.2 Outline of the Book

In Chapter 2, Hahn and Wermter provide an introduction to the general tech-
niques of NLP, since a basic understanding of these techniques is necessary to
fully appreciate discussions in following chapters. They adopt a level-oriented
approach, showing how the different linguistic levels (e.g. morphology, syntax,
and semantics) account for the various phenomena to be found in biomedical
text. Each level has associated processing components, with typically several
types of components implementing different approaches to tackling phenomena
at some level. They focus on practical processing issues concerning biomedical
text, and they present a general, natural language system architecture for text
mining. This shows how the different processing components and domain
resources can be applied, starting from the raw text, to yield various kinds of
analyses. Furthermore, this architecture acts as a point of reference for the reader
throughout the book, allowing rapid appreciation of how some particular type
of component or resource discussed in later chapters relates to the overall
text-mining task.

Chapter 3, by Bodenreider, presents a description and discussion of major,
publicly available lexical, terminological, and ontological resources that can be
used to support text mining. As is made clear, there is often no sharp distinction
made between these three different kinds of resources. This can lead to confu-
sion, and can hamper attempts at exploitation for text mining. To help the
reader understand the nature of problems involved in mapping wordforms to
corresponding entries in various resources, a sample text is taken as a basis for
extended discussion. Major lexical, terminological, and ontological resources are
then described, and commonalities and distinguishing characteristics are dis-
cussed. Next, the different complementary roles of the three types of resources in
entity recognition and fact extraction are examined. The author concludes that
much work still needs to be done to provide adequate terminological coverage in
the domain, and to produce or reengineer ontologies according to consistent,
formal principles.

In Chapter 4, Ananiadou and Nenadic examine how text mining can facil-
itate terminology management in biomedicine. Efficient term management is
crucial for mining biomedical literature, since terms are a key means for com-
municating knowledge. They examine the basic concepts of term and terminol-
ogy, the relation between concepts and terms, and issues related to term
variation and term ambiguity. They also present approaches for automatically
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recognizing and structuring terminology from literature, and for discovering
associations between terms that can then be used for terminology management.

The main aim of automatic terminology management is to provide tools to
bridge the gap between in-text terms and domain concepts, and to facilitate effec-
tive mining of scientific literature and integration of databases. It also aims to
develop and apply efficient and accurate methods for building and updating ter-
minological resources, and for supporting on-the-fly recognition of terms in text.

Chapter 5, by Chang and Schütze, goes into detail on a particular type of
term variation, namely abbreviation. The fact that an entire chapter is devoted to
this topic is indicative of the problems that abbreviations pose, both to humans
and to text mining applications. Where there is failure to properly handle abbre-
viations, a text mining system will demonstrate reduced accuracy. In essence,
handling abbreviations means linking an abbreviation with its expanded form(s).
Unfortunately, there is variation in the interpretation of what constitutes an
abbreviation, which makes the task harder. A particular area of disagreement
concerns how one deals with abbreviation where the abbreviated form apparently
maps to some long form, but is arguably abbreviating an even larger form, as in
RNA Polymerase I (Pol I). Following a discussion on the problems of identifying
candidate abbreviations, details are given of the three main classes of method
used to determine whether the candidates are in fact abbreviations: heuristic,
alignment, and NLP-based methods. The advantages and disadvantages of these
approaches are briefly discussed, and further detail is provided about the algo-
rithm used to construct the Stanford Biomedical Abbreviation Database. A dis-
cussion of variations in abbreviation complements that of Chapter 4, and reports
on results of abbreviation clustering methods. Since more than 20% of abbrevia-
tions occur with no expanded form in the same text, a section is devoted to the
problem of finding the correct long form elsewhere. The author concludes that,
while there are still unsolved problems in handling abbreviations, current algo-
rithms and abbreviation databases provide invaluable support to text mining.

In Chapter 6, Park and Kim describe the task of named entity recognition
(NER) in biomedicine. NER is one of the most widely studied areas of informa-
tion extraction, not only in biomedicine but also in general language. The
authors focus on the different approaches adopted for NER in biomedicine,
such as dictionary-based, rule-based, machine learning, and hybrid methods.
NER is mainly a classification task, which aims to use the recognized entities as
slot fillers in specified templates (e.g., protein-protein interactions, gene-disease
relationships, and so forth). The problems reported with the recognition of enti-
ties, such as ambiguity and variation, are similar to the problems reported in
automatic terminology management. The main difference is that, in term iden-
tification, the classification task aims to distinguish between terms and
nonterms, while in NER, the classification task focuses on specific classes of
entities (e.g., genes and proteins). Adapting NER for more fine-grained classes is
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a more challenging task. A final, nontrivial, step in NER is the grounding of the
recognized entities with the relevant entry identifiers in biomedical resources.

Chapter 7 concentrates on rule-based approaches to simple fact and com-
plex event information extraction (IE). McNaught and Black start by placing IE
in its general context, referring to the Message Understanding Conferences
(MUC), which were influential in defining the nature, scope, and measurement
of IE tasks. They then offer a classification of approaches to IE in biology. This
classification demonstrates the wide variety and combinations of approaches
that have been adopted. Each type of approach is critically assessed. Approaches
range from straightforward matching of patterns in text, to full-scale syntactic
parsing, to sophisticated use of ontologies. A core concern is the extent to which
some approaches are able to deliver abstract representations of facts and events,
which can be subjected to subsequent data mining or integrated in knowledge
bases to enable reasoning, rather than to deliver extracted textual strings or their
simple transforms. The authors conclude that the field would benefit both from
a greater concentration on characterizing the “informational structure” of
domain texts, through an approach simultaneously considering syntax and
semantics, and from being able to take greater advantage of ontological informa-
tion about action and event concepts. The authors reinforce calls for further
efforts to establish terminological, lexical, and ontological resources capable of
supporting advanced information extraction.

Chapter 8, by Kim and Tsujii, deals with text collections, corpora, and
corpus annotation. The major collections favored for biotext mining are briefly
described, and characterized in terms of their vocabulary profiles. Corpora
derived from these collections are then described. For text mining purposes, the
distinguishing features of a corpus are that it is representative of the chosen
domain, and, crucially, that it is annotated, possibly with several different, but
complementary, types of annotation. An annotated corpus can be used to pro-
vide training data for machine learning algorithms, to ensure good coverage of
grammars, and to act as a gold standard for evaluation purposes. Annotations
can cover linguistic information as well as conceptual information. For example,
biological entities and relations between entities can be annotated. The types of
annotations employed in various corpora of interest for biotext mining are
described and discussed, and the need for appropriate annotation guidelines is
emphasized, to avoid ambiguity of, or inconsistency in, interpretation among
human annotators. As with other types of resources, harmonization and stan-
dardization are issues of current major interest, discussed in relation to corpus
annotation schemes and the use of Extensible Markup Language (XML). A fun-
damental decision for a corpus builder is whether or not to employ stand-off
annotation (i.e., whether to separate annotations from the original text or to
embed the annotations in the original text). Stand-off annotation allows for
multiple overlapping annotations, but causes problems for validation. Finally,
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various tools that aid editing, searching, and annotating of corpora are
discussed, including semiautomatic annotation, which helps mitigate the cost
and time involved in corpus annotation.

In Chapter 9, Hirschman and Blaschke discuss the evaluation of text min-
ing in biology. They argue that, in biotext mining and other areas of applied
NLP, and in prediction of protein structure, the development of challenge evalu-
ations and shared assessments has helped advance the state of the art to a signifi-
cant degree. Community efforts to build shared assessment resources (often too
expensive for individual groups to construct), and to agree on evaluation meth-
odologies, are seen as vital in helping to drive forward progress in the field. The
authors address the key questions of why to evaluate, considering the dimensions
of a successful evaluation, and what to evaluate. A paramount consideration is for
evaluation to address problems and tasks of interest to biologists. This is critical,
both to keeping the technology focused on problems of practical relevance to
biologists, and to obtaining adequate amounts of high-quality gold standard data
annotated by subject specialists. Biologists are more likely to become involved in
gold standard annotation if the results are also useful for other ongoing, daily
tasks, such as curation of biodatabases. An important factor in designing chal-
lenge evaluations is to incorporate text mining tasks that increase in difficulty,
taking as a baseline the current state of the art, while also maintaining overall rel-
evance of tasks to biologists. The authors then detail the organization and results
of recent evaluations of text mining in biology. Their overall conclusions regard-
ing challenge evaluation tasks carried out so far are that gene/protein name iden-
tification is largely solved, but that the broader biological entity recognition
problem requires further effort. A further plea is made for wider-coverage lexical
resources to help in entity recognition. Information retrieval-related tasks, such
as selecting or ranking papers according to biologically relevant criteria, still pres-
ent open research problems, although the authors hint that the classic informa-
tion retrieval model is not well suited to making the fine-grained distinctions
necessary for such tasks. By implication, information extraction and data mining
may have more to offer here. Finally, the authors note that we are at the start of a
long journey, if we look at challenge evaluations in other fields. Thus, there is still
a large space of biologically motivated applications in text mining to explore
through further challenge evaluations in the years to come. This necessarily
long-term activity, however, is dependent on continued funding, and, crucially,
involvement by the biology community in the evaluation endeavor.

Chapter 10, by Ng, discusses the integration of the results of text mining
with data mining to facilitate the analysis of biological data. Rather than using
or linking the data sources independently, the great challenge lies in facilitating a
deep integration of textual knowledge in the data mining algorithms. By lever-
aging the valuable information from the literature in the data mining process,
more biologically significant knowledge can be intelligently mined from the
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biological data. Ng describes how text mining has been incorporated in
homology searches and in sequence-based functional classification. To improve
homology searches, text mining techniques are applied to database annotations
and Medical Literature, Analysis, and Retrieval System Online (MEDLINE)
references, together with PSI-BLAST, based on literature similarities. Solutions
to the problem of predicting the biological functions of new genes and proteins
include using supervised machine learning techniques (support vector
machines), combining sequence information with literature information, or
using a combination of text-based and sequence-based kernels to perform classi-
fication. Text mining methods also can be integrated with data mining methods
in order to provide intelligent interpretations of gene expression clusters.
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2
Levels of Natural Language Processing
for Text Mining
Udo Hahn and Joachim Wermter

2.1 Introduction

Because of its inherent complexity, the analysis of natural language documents is
usually not carried out in a single, large, monolithic step. Rather, (computa-
tional) linguists deal with natural languages at several layers of description (pro-
cessing). A common decomposition distinguishes between the consideration of
words (the lexical level), the organization of groups of words in sentences as
phrases or clauses (the syntactic level), and the meaning that can be ascribed to
these entities at the content layer (the semantic level). Given such a division into
various descriptions and processing levels, a need for integration arises. Hence,
the architecture of natural language systems becomes a crucial issue. It provides
the organizational platform to integrate the outcome of many decomposed
subprocesses, all being part of the grand picture, which is the content-oriented
analysis of natural language. In this chapter, we look at the processing of natural
language documents for text mining from this holistic architectural perspective,
as well as from the perspective of its decomposition into the major components
at the lexical, syntactic, and semantic level. We are only concerned with the
English language, since it serves as the international lingua franca for the field of
biology.

We start at the lexical level in Section 2.2. First, we deal with the problem
of identifying words from a given document stream, which is the tokenization
problem (see Section 2.2.1). Once words are determined, lexical variants (which
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are due to inflection and derivation) are unified through morphological analysis,
by assigning these variants a canonical base form (see Section 2.2.2). We are
then able to relate these canonical forms, via lexicon look-up, to a corresponding
lexical entry in a linguistic lexicon (see Section 2.2.3). This is a repository in
which morphological, syntactic, or semantic information about the canonical
base form of a word is stored. The coverage of linguistic lexicons is usually
restricted to lexical items from the general language we use (e.g., the ones we
encounter in daily newspapers). For scientific domains, such as biology, we
often lack comprehensive lexical resources (see Chapter 3), not only because of
the sheer size of scientific terminologies, but also because they are extremely pro-
ductive (i.e., new terms are continuously being formed), and almost impossible
to keep track of. Besides scientific terminology, concrete named entities (e.g.,
the names of drugs, genes, or proteins) constitute another major lexical analysis
task, which reflects domain-specific patterns of sublanguage use (see Chapters 4
and 6).

Having looked at accessing linguistic information from a lexicon, we turn
in Section 2.3 to the identification of structural relationships that hold between
groups of words at the sentence level, in the realm of syntactic analysis. As a
starting point, we may use categorical information attached to each lexical item
in terms of its parts of speech (e.g., verb, adjective, noun, and so forth). The first
step of syntactic analysis consists of the assignment of part-of-speech (POS) tags
to the sequence of lexical items that makes up a sentence, in a process called tag-
ging (see Section 2.3.1). This is a prerequisite for determining groups of words
that grammatically belong together, and thus constitute larger syntactic units,
which linguists usually refer to as phrases. The procedure for identifying phrases
(often only noun phrases) is called chunking (see Section 2.3.2). While chunks
just delimit the beginning and the end of a phrase without further considering
its internal structure, parsing procedures add exactly this type of information.
This is done, for example, by determining the head of a noun phrase (i.e., the
dominating noun), or hierarchies of adjectival attribution related to the head
noun (see Section 2.3.3).

The focus on phrasal groupings of words is motivated by the observation
that phrases are a linguistic means to denote conceptually relevant entities. This
brings us, in Section 2.4, to the consideration of content aspects of natural lan-
guage, the level of semantic representation, and interpretation. Roughly, we may
distinguish between entities that denote things (such as drugs, proteins, genes,
and so forth), and relations linking these entities (processes such as interaction,
blocking, activation, and regression). This is basically what text mining is
about—finding relevant and “new” entities for specific relations, in a process
called entity mining, or finding relevant and “new” relations between specific
entities, via relation mining.
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Content ascription to single terms builds on a semantically enhanced lexi-
con, a terminology (thesaurus), or an ontology (see Chapter 3) where lexical
items (or terms) are linked via different semantic relations, such as hyponymy,
synonymy, or antonymy1 (see Section 2.4.1). Linguistic lexicons usually carry
language-dependent specifications (e.g., contextual conditions for verbs with
respect to the type of noun phrases or prepositions they require), while lan-
guage-independent, yet domain-specific repositories, such as thesauri or
ontologies, entirely focus on relational semantic specifications, but do not usu-
ally contain inference rules for domain-specific reasoning, unless rigorously
formalized.

While these content repositories assign a semantic reading in terms of con-
cepts to single terms or phrases, the benefits of syntactic analysis open further
opportunities for semantic interpretation (see Section 2.4.2). Typically, content
relations between concepts are linguistically mediated through verbal (also nom-
inal or adjectival) expressions, such as X inhibits Y or the inhibition of X by Y. At
the semantic level, these relations are lexically represented as predicates with a
corresponding argument frame, as in ‘Inhibit( X, Y )’, where we even might
want to semantically constrain “X” to ‘Substance’ and “Y” to ‘Growth Process’.2

A semantic interpretation of a sentence such as Interferon inhibits cell growth
might then lead to the proposition ‘Inhibit(Interferon, Cell Growth)’. This pro-
cess is based on structural information from the preceding syntactic analysis;
that is, by properly relating the subject (Interferon) and direct object (cell growth)
of an active-voiced clause as the ‘Acting Agent’ and the ‘Affected Object’ of an
‘Inhibition Activity.’ Once we have a fact base of such relations, this, in turn,
may feed a semantic inference mechanism, which tries to derive new relations
between entirely isolated factual assertions.

With these considerations in mind, linguistic knowledge resources (e.g.,
the lexicon) and processes making use of them (e.g., morphological analysis,
chunking, parsing, and so forth) have to be properly synchronized. In Section
2.5, we deal with the organization of these repositories and computational
threads in terms of a comprehensive pipeline architecture for text mining pro-
cesses for biology, and look at two exemplary prototype systems, GeneWays and
Protein Active Site Template Acquisition (PASTA).
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2.2 The Lexical Level of Natural Language Processing

We now look at the lexical level. At this level, we deal with how words and other
tokens can be recognized, analyzed, and formally characterized to enable further
processing.

2.2.1 Tokenization

Before any linguistic analysis can take place, be it morphological, syntactic, or
semantic, the basic tokens involved (e.g., words, acronyms, abbreviations, num-
bers, punctuation symbols, and so forth) have to be identified. Tokenization,
which is segmenting the input text character stream into linguistically plausible
units (i.e., tokens), is an elementary, although often understudied, preprocessing
step in any natural language processing system dealing with real-world input.
The simplest strategy would be to tokenize text on white spaces and punctuation
symbols. Such a simple heuristic, however, easily runs into severe problems.

• Abbreviations. Words are not always separated from other tokens by
white space. A period also may signal an abbreviation (e.g., Vol. or etc.),
in which case it has to be distinguished from a sentence-delimiting
period. The problems become even more severe if such items appear at
the end of a sentence (The study was conducted within the U.S.), as the
full stop is here performing double duty. This may interfere with sen-
tence boundary detection (see below).

• Apostrophes. Where a clitic is manifested as an apostrophe plus a
sequence of one or more letters, such as the English possessive marker’s
in IL-10’s cytokine synthesis inhibitory activity, it needs to be separated
from its harboring word (IL-10 ), because it denotes a linguistically
meaningful relationship between two entities (here, inhibitory activity of
IL-10 ).

• Hyphenation. It is not always clear whether a tokenizer should return
one or more tokens for hyphenated words (text-based), especially when
authors are not consistent with hyphenation (co-operate versus
cooperate).

• Multiple Formats. Numbers may occur in multiple formats containing
ambiguous separators (464,285.23 and 464285.23). Other entities
with multiple formats are dates, phone numbers, addresses, and so
forth.

• Sentence boundary detection. Sentences usually are demarcated by the
typical sentence-delimiting punctuation marks (e.g., period, exclama-
tion mark, or question mark). Sometimes, however, other punctuation

16 Text Mining for Biology and Biomedicine



symbols also serve to indicate sentence boundaries (e.g., colon,
semicolon, or M-dash).

Typically, the solutions employed for handling tokenization problems rely
on finite-state regular expression matching, lexicon-based approaches, or a mix-
ture of both. Grefenstette and Tapanainen [1] propose a regular expression
grammar for English to recognize numbers and dates. To address the problem of
abbreviations and sentence boundary detection, they construct an ordered filter,
which separates abbreviations from punctuation markers by means of a lexicon
and the spelling information of the token in question. A more elaborate (but
computationally more expensive) method is proposed by Palmer and Hearst [2],
which takes into account the POS probabilities of the tokens around a punctua-
tion marker, and feeds them into a neural network.

In the biological domain, tokenization poses additional challenges due to
domain-specific terminology, and nonstandard punctuation and orthographic
patterns (e.g., an alpha-galactosyl-1,4-beta-galactosyl-specific adhesin or the free
cortisol fractions were 4.53 / 0.15% and 8.16 / 0.23%). Arens [3] points
out that, in various MEDLINE publications, the same protein is referred to as
NF-kappaB, NF-kappa B, and NF-kappa-B. Thus, normalizing such tokens to a
canonical form becomes an additional task (see Chapters 4 and 5). Arens casts
this as a machine learning problem, in which various punctuation and ortho-
graphic features are fed into a decision-tree classifier.

As another concrete example, we take the following sentence from a
MEDLINE abstract in the Gene Expression Information System for Human
Analysis (GENIA) corpus (see Chapter 8 and [4]):

We here report that interferon inhibits growth and survival of NB4 APL
cells in cooperation with RA.

Here, the acronyms NB4 and APL come as two different tokens. A search
in Google, however, also yields the two tokens concatenated by a hyphen (i.e., as
NB4-APL). Both representations make sense from a biological point of view,
because NB4 is a cell line that was derived from acute promyelocytic leukemia
(APL) cells. From a natural language processing perspective, however, it is essen-
tial that both representations, if found in running text, are tokenized in a consis-
tent and unified way. Moreover, this example also highlights the importance of
acronym detection (see Chapters 4 and 5), because APL is not only an acronym
for acute promyelocytic leukemia, but also for antiphospholipid syndrome, which is
an autoimmune disease. Similarly, in this example, the acronym RA must be
mapped to the full term retinoic acid, but other potential biomedical candidates
could be retrograde amnesia, refractory anemia, or rheumatoid arthritis.
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2.2.2 Morphological Analysis

The purpose of morphological analysis is to link heterogeneous surface variants
of a lexical element to its canonical base form. While only few lexical items do
not undergo inflection (e.g., prepositions, adjectives, or conjunctions), most
content-bearing lexical elements (e.g., verbs and nouns) do. Variation is mainly
due to (syntactically required) inflection [activat-es, activat-ed, activat-ing (the
gerund reading)], or derivation [activat-ing (the adjectival reading), activat-ion].
From these examples, one might hypothesize activat as a canonical base form for
the four morphological variants just listed. Since inflectional processes do not
alter the core meaning of the underlying base form, and derivational processes
only slightly do so, reducing these variants to a canonical form provides a simple
means to unify the content description of a document, just at the lexical level
alone.

In order to achieve this goal, two basic approaches have been devised up
until now. They can be distinguished according to whether or not they refer to a
background lexicon, against which variants are matched. Among the lexi-
con-free approaches, the Porter algorithm [5] constitutes the most successful
and most frequently used approach. Originally developed for information
retrieval applications, it builds on a list of inflectional and derivational suffixes
(morphologically recurrent character strings such as es, ed, ing, ion, ly, and so
forth), and iteratively matches incoming strings from right to left, based on lon-
gest match. For example, if ion and ation were both available for matching acti-
vation, then the Porter algorithm would generate activ rather than activat as a
stemming result. However, there are some constraints to which these reduced
forms must conform; for example, length or character restrictions, to block, say,
the generation of n caused by stripping ation from the input word nation. In
essence, then, the Porter algorithm builds on a limited number of character
sequences indicative of inflection and derivation, and hypothesizes, after strip-
ping them off, the remainder (i.e., the variant’s prefix) to be a canonical mor-
phological form. Despite its simplicity, the Porter algorithm has turned out to
be a standard morphological analyzer in the bag-of-words domain (i.e., the
information retrieval community that determines relevant documents based on
term vector–based similarity measures). Porter’s stemmer is not adequate, how-
ever, for any linguistically more sophisticated approach that builds on rich(er)
grammatical and lexical information.

This is exactly the dividing line between Porter-style lexicon-free
approaches to morphological analysis, and those approaches that require a lexi-
con. Again, two approaches must be distinguished. On the one hand, there are
full-form lexicons that explicitly enumerate all morphological variants plus their
grammatical features, so that morphological “analysis” boils down to a simple
lexicon look-up. On the other hand, there are lexicons composed of canonical
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base forms, together with a list of morphologically relevant substrings (e.g., suf-
fixes for inflection and derivation), like those mentioned above. Various forms
of morphological analyzers then combine both resources, such that, once a mor-
phologically relevant substring is found and removed from token input, the
remainder is checked to see whether it exists in the lexicon as a canonical entry.
If not, alternative segmentations are tried, until an entry is identified in the lexi-
con, or segmentation is precluded. A very simple, though unwarranted, reason
may be that the canonical form searched for is not listed in the lexicon.

This field is full of a large variety of tools that can be picked up
off-the-shelf. The methodologically most advanced approach is constituted by
Two-level Morphology [6], a finite-state–based approach that applies a series of
transducers, all operating in parallel, to input tokens. Each of these transducers
accounts for a single morphological phenomenon (e.g., the change from y to ies,
as with fl-y and fl-ies). However, this approach has, up until now, not received
much attention for text mining in the field of biology.

2.2.3 Linguistic Lexicons

A (computational) lexicon contains the lexical elements (either as full forms or as
canonical base forms), together with additional linguistic information about
them, which is required for further morphological, syntactic, and semantic pro-
cessing. Lexicons are not fully standardized with regard to the additional infor-
mation they contain, since this is often task- (and theory-) dependent. However,
we here enumerate the most prominent types of linguistic information located
in such resources (see also Chapter 3).

A primary type of information is the POS category that can be assigned to
a lexical entry. This requires that the form of the canonical entry coincides with
common divisions into these categories. For example, the above-mentioned base
form activat would be unreasonable, since it cannot be assigned a standard
part-of-speech category, while activate (with POS tag Verb), activation (with
POS tag Noun), or active (with POS tag Adjective) fit well into this categoriza-
tion scheme. Note that POS information is crucial for any sort of syntactic pro-
cessing, such as chunking and parsing (see Section 2.3). If no such processing is
anticipated, this information need not be supplied.

Depending on the various POS types, more refined morphological infor-
mation may be specified. For instance, specifications for nouns might contain
information about grammatical number (e.g., irregular nouns, like singular:
nucleus, plural: nuclei, or singular: sheep, plural: sheep), or grammatical case (e.g.,
irregular cases, like genitive-singular: nucleus’, or genitive-plural: nuclei’s). While
nouns are associated with case, such a category cannot be assigned to verbs,
which instead share additional information about grammatical tense (e.g.,
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irregular tenses, like past tense for take: took, or past participle of go: gone). Note
that the categories we mention for each POS category are not meant to be
complete.

While this kind of information is still strictly lexically oriented, additional
information about the canonical form relates to descriptions of syntactically rel-
evant (valid) contexts in which the morphologically modified canonical form
may occur, or in which a grammatically correct phrase or clause is required to be
formed. Depending on the theoretical framework of the grammar chosen, this
may lead to specifications as to whether some verb is transitive (i.e., always
requiring a direct object, such as to inhibit [something] or to transcribe [some-
thing]), or intransitive (i.e., not always, or not at all, requiring a direct object,
such as to compute ([something]) or to occur). These specifications are intended to
express the syntactic constraint, whether or not a noun phrase following the
particular verb is mandatory.

Even more sophisticated (and more theory-dependent) are subcategor-
ization frames, which specify the kinds of syntactic satellites around a verb (such
as ‘[NP __ NP (on)to NP]’ for the verb to map (the position of which is
indicated by the underscore symbol). This frame says that, not only is the verb
transitive (indicated by the first NP symbol following the underscore), but it
also puts a special lexical constraint on the preposition preceding the final noun
phrase).

As an example, the UMLS Specialist Lexicon [7] contains such
subcategorization information. Nevertheless, for text mining applications in
biology, it faces two problems. First, although its coverage of the medical
domain is impressive (approximately 257,000 basic entries with POS,
morphosyntactic, and syntactic information), it does not adequately cover terms
from the biology domain. Second, all of its verbal (and nominal) sub-
categorization frames are constructed manually, and thus lack the coverage that
is required to fully capture biomedical sublanguage properties, which are differ-
ent from general-language properties (see Section 2.4.2 on verb frames). Thus, a
comprehensive computational lexicon covering major portions of relevant
words and terminology from the biology domain is still a desideratum for text
mining systems.

The third major type of information that can be linked to lexical
specifications is semantic information, which we will introduce in Section 2.4.1.
Note also that much domain-specific lexical material that is not part of the
standard terminology in the field (e.g., names of proteins, genes, and compa-
nies) hardly can be captured by a linguistic lexicon (or by terminologies),
because of its diversity, instability, and speed of change. These entities are
usually continuously tracked by named entity recognition systems (see
Chapter 6).
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2.3 The Syntactic Level of Natural Language Processing

Sequences of words from a single sentence may be grouped syntactically into
larger units, such as phrases or clauses. While it may well be possible to compute
the syntactic structure of a phrase, it is often the case that syntactic analysis can-
not completely be extended to the entire sentence to achieve a full parse, because
of the lack of lexical or grammatical specifications. Hence, partial parsing is
what we most likely can achieve under requirements for robust and efficient
parsing. The knowledge behind the assignment of syntactic structure resides in
two, usually complementary, resources—grammars and treebanks.

Grammars are explicit linguistic descriptions, usually in the form of rules
or constraints, which characterize well-formedness conditions of (morpho)-syn-
tactic categories (e.g., POS tags, features), or of nonterminal grammar catego-
ries, such as noun phrases (NP), prepositional phrases (PP), and so forth.
Current language engineering efforts tend to avoid the use of highly expressive
and computationally expensive grammar systems (e.g., those based on unifica-
tion), in favor of far less expressive though tractable formalisms (e.g., those
based on finite-state technology). However, full-grammar approaches aiming at
a complete syntactic analysis are pursued in the field of biology [8–11], since the
richer information they provide may be necessary to deliver the type of results
required.

In contrast, many text mining applications in biology were (and some still
are) characterized by the approximation of grammatical regularities via ad hoc
pattern matching rules [12–15]. Such approaches, while they rapidly achieve
limited benefits, usually fail to scale up for really large and diverse document col-
lections. The main reason is that their rule specifications tend to become
increasingly complex and harder to control and maintain.

The second type of resource consists of treebanks. These are corpora of
plain texts, for which human annotators have supplied syntactic annotations at
the sentence level (usually with POS tags and syntactic analysis structures, as
described in Chapter 8). However, these annotations require a clear commit-
ment to some sort of grammar theory (either constituent-based or depend-
ency-based), and, particularly important for the biology domain, the capability
of the annotators to understand the contents of the underlying documents. An
advantage of this work is that grammar rules need not be explicitly spelled out,
but can be learned automatically from these positive examples. However, large
volumes of text have to be annotated by several (at least three) human annota-
tors, in order to determine their annotation quality in terms of mutual consis-
tency and quality. For the general newspaper domain, the Penn TreeBank [16]
contains a reasonable quantity of POS and syntactic structure annotations for
this learning task (typically, 1.2 million POS-tag-annotated tokens are used for
POS training and testing, and 300,000 syntactically annotated tokens are used
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for syntactic training and testing). For the biology domain, the GENIA
TreeBank [4] (see Chapter 8) provides a sufficient number of POS annotations
for learning purposes (500,000 tags), while its syntactic structure annotations
are still under development.

2.3.1 Part-of-Speech Tagging

A large number of current NLP systems use POS taggers for the purpose of cate-
gorical syntactic disambiguation. This kind of preprocessing step is essential to
cope with the various forms of lexico-syntactic ambiguities of words. For exam-
ple, the word report can be either a common noun or a verb, depending on its
syntactic context. In our example sentence (see Table 2.1), it is given the POS tag
‘VBP’ (verbal base form in the present tense), which, however, cannot be decided
by simply doing morphological analysis with a (usually incomplete) computa-
tional lexicon (see Section 2.2.3). Rather, the tagging process assigns a POS tag
to each token/word in the input, depending on its local syntactic context. Thus,
most taggers are representatives of supervised and data-driven approaches, which
crucially rely on training data from syntactically (here, POS) annotated corpora
(see Chapter 8). There are two basic methods for POS tagging.

1. Rule-based taggers. For instance, given a small set of lexical and contex-
tual rule templates, Brill’s tagger [17] learns linguistic rules based on a
transformation-based error-driven search algorithm. By this we mean
that the learner has access to both a set of lexical and contextual rules,
and an annotated corpus. After an initial seed tagging, learning pro-
ceeds by iteratively proposing rules, comparing the results of this rule
application to the annotated POS corpus, assessing the mistakes still
made, transforming the rules to avoid the encountered mistakes, and,
eventually, ranking them in an application order.

2. Statistical taggers. The currently prevailing approaches to statistical
tagging are n-gram [18], maximum entropy [19], and support vector
machine (SVM) [20] models. TnT [18] implements the Viterbi algo-
rithm for second-order Markov n-gram models, in which states of the
model represent tags, and the output represents words. The best POS
tag for a given word is determined by the highest probability that it
occurs with n previous tags. Tags for unknown words are assigned by
a probabilistic suffix analysis, and then smoothing is done by linear
interpolation.

Until recently (see, however, Chapter 8), the development of annotated
corpora has almost exclusively focused on the general-language newspaper
domain, with the Penn TreeBank [16] being the most prominent example.

22 Text Mining for Biology and Biomedicine



Thus, all standard POS taggers are parameterized according to the newspaper
language domain. Porting these to sublanguage domains, such as biological text
data, is accompanied by a noticeable loss in performance [21]. Retraining such
taggers on annotated biomedical language corpora, in contrast, yields a perfor-
mance boost beyond state-of-the-art figures [21]. Because subsequent syntactic
processing steps (see the following sections) typically depend on the tagger’s out-
put, high performance at this level of processing is crucial for success in later
stages. The second column of Table 2.1 shows our example sentence from
above, with POS tags from the GENIA corpus.

2.3.2 Chunking

Chunkers exploit both lexical and POS sequence information to identify special
phrasal units, such as noun, preposition, verb, or adjective phrases. Research in
this area has mostly focused on two types of chunking:

1. Base NP chunking [22] (see also the third column in Table 2.1), in
which “Base NPs” are defined as nonrecursive noun phrases, which
end after their nominal head, and exclude any type of
postmodification (e.g., prepositional phrases, genitives). For instance,
in the annotated utterance [ [the synthesis]NP-base of [long enhancer
transcripts]NP-base ]NP-complex two base NPs are linked by the preposi-
tion of, and thus form one complex NP.

2. Text chunking [23] is a useful preprocessing step for parsing (see Sec-
tion 2.3.3). It consists of dividing a text into phrases, in such a way
that syntactically related words become members of the same
(nonoverlapping) phrases. Besides NPs, verbal phrases (VPs) and
predicate adjectival phrases (ADJP-PRD) are recognized, as well as
PPs and subordinate clause markers (SBAR) (see the fourth column
in Table 2.1 for examples).

Both types of chunking rely on the availability of corpora annotated with
chunks for use as training material. In such annotated corpora, phrasal entities
are typically marked using the standard Inside/Outside/Begin (IOB) chunk rep-
resentation (i.e., I = current token is inside a chunk; O = current token is out-
side of any chunk; B = current token is the beginning of a chunk, immediately
following another chunk). Extracting the relevant phrasal units from syntacti-
cally annotated treebanks is usually done automatically.

There are several statistical and machine learning–based chunkers that
exploit this type of annotated information. The techniques range from
rule-based learners [22], to hidden Markov models (HMMs) [24], to ker-
nel-based SVMs [25]. As at the POS tagging level, however, these tools are only

Levels of Natural Language Processing for Text Mining 23



trained/parameterized on general language, and to exploit their full
potential, retraining on annotated biological corpora may be essential (see
Chapter 8).

Syntactic processing at the NP chunking level has already proven benefi-
cial for some crucial tasks in biological text mining, such as terminology man-
agement (see Chapter 4) and named entity recognition (see Chapter 6), since
most terms and named entities are contained within noun or prepositional
phrases. The output of text chunking also is useful for the relation mining task.
Not only can noun phrases be identified as entity markers, but also verbal
and adjectival predicates (e.g., activates, inhibited, and so forth), acting
as explicit relation markers, can be identified within verbal and adjectival
phrases.
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Table 2.1
Standard POS Tag Notation and IOB Chunk Tag Notation for NP and Text Chunking,

for Our Example Sentence

Tokens POS Tags Base NP Chunks Text Chunks

We PRP I-NP B-NP

here RB O O

report VBP O B-VP

that IN O B-SBAR

interferon NN I-NP B-NP

inhibits VBZ O B-VP

growth NN I-NP B-NP

and CC O O

survival NN I-NP B-NP

of IN I-NP B-PP

NB4 NN I-NP B-NP

ctlparAPL NN O I-NP

cells NNS I-NP I-NP

in IN O B-PP

cooperation NN I-NP B-NP

with IN O B-PP

RA NN I-NP B-NP

. . O O



2.3.3 Parsing

Another useful building block for syntactic analysis is the identification of
clauses (i.e., word sequences that contain a subject and a predicate). For exam-
ple, the following clauses can be obtained from our example sentence. Here,
“(S” marks the beginning, and “)” the end of a clausal unit (such as an embed-
ded “that-clause” here):

(S We here report

(S-BAR that interferon inhibits growth and survival of NB4 APL cells
in cooperation with RA

)

.)

Again, there are various machine learning–based methods, such as the ones
mentioned above for chunking, which can be employed for the clause identifica-
tion step (see [26] for detailed descriptions of the tasks and techniques currently
used).

Finally, the most elaborated syntactic analysis is full sentence parsing. Ide-
ally, the previously partially analyzed syntactic chunks and clauses are brought
into high-level syntactic relationships with one another, both across and within
phrase boundaries. Although desirable from a linguistic point of view, full pars-
ing has had a rather limited benefit for large-scale text mining applications, up
until recently. This is due to the complexity of the parsing task, caused by the
inherent ambiguity of natural language. However, there are studies that make
use of parsers to analyze biological text corpora, such as in [10], which extracts
gene pathway relations using the Arizona Relation Parser, a parser that uses a
rule set geared toward the biological domain (see Chapter 7). Another full parser
made available through the GENIA Consortium is Enju [9, 27], a probabilistic
Head-driven Phrase Structure Grammar (HPSG) parser, which, however, is
trained on general-language newspaper text (i.e., the Penn TreeBank [16]).

2.4 The Semantic Level of Natural Language Processing

2.4.1 Lexical Semantic Interpretation

In Section 2.2.3, we introduced two major types of information that are usually
related to lexical entries (i.e., morphological and syntactic information). We turn
here to a third type of information that can be linked to lexical specifications (i.e.,
semantic information) (see also Chapter 3). Semantic information may come in
two forms. Reconsidering the types of syntactic contextual information we have
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already introduced in Section 2.2.3, we might, for example, wish not just to
specify to inhibit [something] or to transcribe [something] (indicating that both are
transitive verbs), but rather we might wish to specify to inhibit [Process] or to tran-
scribe [Nucleic Acid]. In other words, we refine the direct object from a semantic
(i.e., content-oriented) perspective. From a processing point of view, such refined
constraints prevent a syntactically admissible, though semantically invalid,
analysis, such as to inhibit amino acids or to transcribe cell growth, from being
computed. Syntactically, both are admitted as direct objects. These kinds of con-
straints are usually referred to as “selectional restrictions.”

Finally, even more semantic considerations crop up with lexico-semantic
relations. Consider the taxonomic generalization relation between ‘Cell’ and ‘Bi-
ological Substance’ or the part-whole relation between ‘Cell Nucleus’ and ‘Cell’.
This type of information is concerned with the lexical meaning of canonical
entries, and has no dependence at all on any syntactic considerations.

The consideration of such relations, together with their algebraic proper-
ties (e.g., symmetry, transitivity), means that we are crossing a borderline. This
borderline separates, on the one hand, language-specific knowledge (e.g.,
morphosyntactic and POS categories, subcategorization frames, and selectional
restrictions), usually assigned to linguistic lexicons (see Section 2.2.3), from, on
the other hand, language-neutral, yet domain-specific, concept systems. If these
relational considerations are left implicit (mostly carried out by humans using
such a concept system), then we call them “terminologies.” If, however, they are
formalized, so that taxonomic or partonomic inferences can be automatically
drawn, then we call them “ontologies.” As an example of taxonomic reasoning,
we may transitively conclude from:

‘Cell’ Is-A ‘Biological Substance’, and
‘Biological Substance’ Is-A ‘Matter’, that
‘Cell’ Is-A ‘Matter’.

Similarly (though definitely not in the same way), we may deal with
partonomic reasoning, assuming:

‘Cell Nucleus’ Part-of ‘Cell’, and
‘Cell’ Part-of ‘Human Body’, in order to derive
‘Cell Nucleus’ Part-of ‘Human Body’.

The UMLS Metathesaurus (see also Chapter 3) provides substantial coverage of
(mostly) medical English terminology, and contains approximately 1 million
entries (canonical forms plus variants) from almost 100 source terminologies
whose concepts are semantically linked via the UMLS Semantic Network [28].
Although already a viable resource for biologists, it poses two problems for
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large-scale text mining applications in biology. First, there is no explicit link
between the linguistic information in the UMLS Specialist Lexicon [7] and the
semantic information in the UMLS Metathesaurus. This means that one cannot
use the Specialist Lexicon to look up a word in the lexicon and then get a link
from the lexicon to the concept in the UMLS Metathesaurus.

Second, although the UMLS terminologies excel on lexico-semantic infor-
mation, by having a large variety of shallow as well as deep semantic relations,
their coverage of biology (as opposed to medicine) is still quite limited. This is
despite the fact that the biologically relevant Gene Ontology (GO) [29] recently
has been incorporated. The same observation holds for the Obo framework
(http://obo.sourceforge.net), a collection of terminological resources exclusively
from the field of biology, which is highly fragmentary compared to the remark-
able coverage (for medicine) provided by the UMLS. We conclude that text
mining in biology is characterized by a lack of interlinked, high-coverage, and
domain-specific lexical resources. In contrast, while partial (i.e., subdomain-spe-
cific) biological terminologies with lexico-semantic specifications are available,
they all lack morphological, morpho-syntactic, or purely syntactic information,
which crucially limits their usability for text mining applications.

Concept systems of biology undergo considerable changes, so that mecha-
nisms for automatic lexical acquisition, and concept learning, are desperately
needed. Another main challenge related to the enormous rate of lexical dyna-
mism in biology arises with shortcuts (i.e., abbreviations and acronyms) (see
Chapter 5). The vast majority of approaches to this challenge focus on various
ways to relate short forms to long forms, when they occur in close adjacency
within sentences or paragraphs, within the same document. However, even
more challenging unification problems arise when the same protein or gene is
given different names in entirely different, totally unrelated documents, and no
links indicating their sameness (or very close similarity) are explicitly or
implicitly stated.

2.4.2 Semantic Interpretation of Utterances

Semantic interpretation of utterances deals with the analysis of the composite
meaning of phrases, clauses, and sentences. At this level, semantic roles or argu-
ments are associated with predicates. An instantiated predicate, taken together
with its semantic roles, is usually referred to as a proposition. For example, the
minimum set of semantic roles for a verb, such as to inhibit (with ‘Inhibit’ as its
associated predicate), consists of an ‘Agent’ (an entity that inhibits) and a ‘Pa-
tient’ (an entity that undergoes inhibition). While these two are the most fre-
quent semantic roles (see [30] for the quantitative distribution of different
semantic roles), several others are discussed in the literature (‘Experiencer’, ‘In-
strument’, ‘Source’, ‘Goal’, ‘Location’, or ‘Time’).
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Just as with syntax, there are two basic approaches to identifying the
semantic roles of a predicate in a sentence. The more traditional way is to use the
output of a full sentence parser (see Section 2.3.3), and to apply a set of (manu-
ally created) mapping rules [31]. These rules specify certain syntactic relations,
available from syntactic analysis plus lexical information about the mapping of
lexical items to terms. If such a syntactic pattern is matched, then the rules map
the semantic correlates to a predicate-argument frame that reflects syntactic
dependencies at the semantic or conceptual level. Often, semantic interpretation
is collapsed with the text mining step [32, 33], thus omitting any sort of assess-
ment to filter out irrelevant (known, self-evident) propositions.

However, with the growing importance of more shallow methods for syn-
tactic analysis (see Section 2.3.2), semantic role labeling has recently resorted to
methods that only consider partial syntactic output [30].3 Besides partial syntac-
tic analysis, the second major training input to the methods reported in [30]
comes in the form of verb argument structure annotation, as specified for gen-
eral English in the PropBank annotation project [34]. Here, semantic corpus
annotation is provided, both as standoff semantic role annotation to the syntac-
tically annotated Penn TreeBank [16], and as a linked lexical resource in frame
files for the various verbally expressed predicates found in this corpus. An exam-
ple for the verbal predicate ‘Inhibit’ (for general-language English) is provided
in Figure 2.1.

As can be seen, for general-language English, the predicate ‘Inhibit’ con-
tains one role set;4 that is, its meaning (‘Restrain’, or ‘Suppress’) is defined by
two semantic roles labeled

n="1" (‘Agent’), and
n="2" (‘Entity Inhibited’).

There are many verbal predicates with more than one meaning, and hence
with more than one role set, such as the verbs to call or to draw. The meaning of
this ‘Inhibit’ predicate is also described by a name gloss:

name="to restrain, suppress".
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3. These are similar statistical and machine learning–based methods, as described in Section
2.3.2, such as transformation-based learning, memory-based learning, or support vector ma-
chines.

4. Role sets for verbs are determined on purely empirical grounds (i.e., through extensive corpus
analysis). Moreover, nominal and adjectival predicates are not covered at the current stage of
the PropBank project, although there is complementary ongoing work on nominal predicates
at New York University (the NomBank project).



While this is correct from a general-language point of view, it is not applicable
from a domain-specific biological point of view.

Furthermore, simply transferring these general-language verb frames to the
biological domain is also problematic, because predicates may exhibit addi-
tional, or even different, role set properties in different domains. For example, a
search in the GENIA corpus [4] (see also Chapter 8) for the predicate ‘Inhibit’
yields additional roles (marked here in bold):

• (TCDD)Agent inhibits (murine and human B lymphocyte immunoglobulin
production)Entity-inhibited (through an unknown mechanism)Instrumental.

• (RA)Agent directly inhibits (the erythroid differentiation program)Entity-inhibited

(at the level of early adult HPC)Stage.

Hence, a domain-specific redefinition of verb frames is necessary to capture the
appropriate semantic roles for predicates in the biological domain.

In both approaches, it is crucial to map the output of syntactic analysis to a
predicate-argument frame that reflects the relational dependencies between enti-
ties at the content level. This is especially important, because natural language
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<!DOCTYPE frameset (View Source for full doctype...)>
<frameset>−
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<predicate lemma=" ">
<note>

</notes>
<roleset id=" " name=" " vncls=" ">
</roles>

<role n=" " descr=" " />
<role n=" " descr=" " />

</roles>
<example name=" ">

<inflection person=" " tense=" " aspect=" " voice=" "
form=" " />

<text>
.</text>

<arg n=" "> </arg>
<arg n=" " f=" "> </arg>
<arg n=" " f=" "> </arg>
<rel> </rel>
<arg n=" "> </arg>

</example>
</roleset>

</predicate>
<note> </note>

</frameset>

inhibit
Frames file for 'inhibit' based on survey of sentences in the WSJ

corpus.
inhibit.01 to restrain, suppress

0 agent
1 entity inhibited

transitive
ns present ns active

full
Corporate lawyers said [0] the new fees wouldn't inhibit

many mergers or other transactions
0 the new fees
M MOD would
M NEG n't

inhibit
1 many mergers or other transactions

frames created by Olga

−

Figure 2.1 Role set for the verbal predicate ‘Inhibit’ in the frame file of PropBank.



syntax provides several ways to express the same proposition. For example, our
active-voice example sentence, from Table 2.1, could be easily expressed in the
passive voice, without changing its propositional content:

Growth and survival of NB4 APL cells is inhibited by interferon in cooper-
ation with RA.

Nevertheless, both active and passive sentences should be mapped to the
same predicate argument structure. Given our verb frame ‘Inhibit(X, Y)’, a sim-
ple proposition mapping may look like this:

Inhibit ( Interferon, ( Grow ( NB4 APL cells ) ) )

It should be noted that this is not the entire propositional content of the
sentence. In order to capture more of the propositional content, greater in-depth
syntactic processing would have to be employed, in order to recognize the coor-
dinated noun phrases (growth and survival) plus the cooperation of ‘RA’ in this
‘Inhibit’ relation. For this purpose, the meaning of the prepositional phrase (PP)
in cooperation with would have to be mapped to ‘Together-with’, and the attach-
ment site for the PP would have to be correctly disambiguated, so that the full
propositional information can be derived:

Inhibit ( Together-with ( Interferon, RA ), ( And ( Survive ( NB4 APL cells)
Grow ( NB4 APL cells ) ) )

Whereas the information on ‘Survive’ is already quite desirable from a bio-
logical point of view, the information on the cooperation of ‘Interferon’ with
‘RA’ is fundamental, because without it, the contents of the sentence would not
be biologically correct. This also can be inferred from the follow-up sentence:

Interferons alone have minimal maturation effect on NB4 cells.

Here, a biologist knows that cell maturation leads to apoptosis (cell death).
A minimal maturation effect cannot cause apoptosis, and interferons alone can-
not inhibit the survival of NB4 APL cells. One can already imagine what kind of
biological background knowledge a text mining system would need to make
these types of inferences.

The predicate-argument frames described so far only list the entities
involved, without abstracting the semantic type to which an entity or term
belongs. Given the availability of a bio-ontology, taxonomic reasoning could
infer that
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interferon Is-a ‘Protein’,
RA Is-a ‘Hormone’,
NB4 APL cells Is-a ‘Cell Line’, and
growth and survival Is-a ‘Process’.

Thus, the same predicate-argument frame with a much coarser granularity
would look like the following. Note that abstraction levels should depend on the
requirements of the subsequent processing steps, and the application in general.

Inhibit (Together-with (Protein, Hormone ), ( Process ( Cell Line ) ) )

If such semantic resources are provided, text mining applications in
biology can produce some valuable results; for example, a list of relations
between conceptual entities that are derived through the various levels of NLP
analysis. In a relevance filtering step, such applications can turn to what text
mining is actually all about—finding new relations from a set of already known
relations [35].

2.5 Natural Language System Architecture for Text Mining

In the previous sections, we dealt with the decomposition of linguistic knowl-
edge into various processing levels pertinent to text mining for biology. In this
section, we pull the different strings together by looking at the architectural
organization of single natural language processing components (see Figure 2.2).
We then relate this general architecture to two representative systems, from the
range of information extraction and text mining systems in the field of biology.

2.5.1 General Architecture

The starting point for analysis, for text mining systems in biology, is a col-
lection of raw biology documents. Very often, these are abstracts taken from
MEDLINE. Due to copyright restrictions, full texts, which contain much more
detailed information than abstracts, are rarely processed [36]. However, this
might fundamentally change in the future, and may have immediate effects on
the architecture that we propose, particularly discourse-level textual
phenomena.

These documents first undergo a formal cleansing process, in order to get
rid of text formatting code and diverse annotation expressions (e.g., RTF,
HTML, PDF, and so forth). The first linguistic processing level is concerned
with lexical analysis. Here, the document is split into single tokens by the
tokenizer. At the core of this level of analysis is the POS tagger, which assigns
POS tags to text tokens. POS taggers usually have a built-in component for
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some morphological analysis, to facilitate access to the corresponding informa-
tion in a computational lexicon [i.e., the POS tag(s) for a specific token whose
base form is a lexicon entry]. If there is a need at this stage to recognize special
forms of names relevant to biology (e.g., abbreviations or domain-specific types
of text tokens, such as numerical strings, measure units, biological names for
proteins or genes that are composed of alphanumerical character combinations,
and so forth), then a named entity recognizer (see Chapter 6) and possibly a
module for acronym detection (see Chapter 5) are interleaved with the POS tag-
ger. If the POS tagger still fails to provide an assignment of POS categories,
another subcomponent is invoked, the “unknown word handler.” Usually based
on statistical considerations, a suffix analysis is carried out, and the most likely
POS tag for the unknown word is guessed. The output of lexical analysis then
consists of tuples, which are formed by text tokens and their associated POS (or
even named entity) tag(s), together with a segmentation of the document into
its constituent sentences.

Next, each sentence is submitted to syntactic analysis. For each sentence,
the sequence of POS tags is grouped into linguistically plausible composite
units, the phrasal chunks. Typically, a chunker splits a complex sentence into
sequences of phrases. The phrases can be simple (e.g., containing base NPs), or
increasingly complex (e.g., including verbal and prepositional phrases). Once
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sets of chunks have been identified, a (partial) parser either may relate these
(only sequentially ordered) chunks according to grammatical criteria (e.g., the
distinction between the subject and the object of a sentence), or it may assign
additional internal syntactic structures to the chunks. Chunking may precede
parsing, although parsers are not necessarily dependent on previous chunking. It
also may be the case that parsing is omitted, and only chunking results are made
available to subsequent processes. Biological named entity recognition also can
be performed at this stage by taking into account the results of partial syn-
tactic analysis (e.g., NP chunking), since most biological named entities are
linguistically expressed within noun phrases.

There are two basic resources one may envisage for chunking and parsing.
The traditional approach to parsing builds on grammars that are usually manu-
ally supplied as the main linguistic resource for syntactic knowledge. This infor-
mation is then used by standard parsing algorithms (such as Earley or
Cocke/Kasami/Younger), in order to derive a syntactic representation of the
sentence. Alternatively, we also may learn syntactic bracketing patterns from a
gold standard corpora that is already annotated, and assign syntactic structures
as learned from the gold standard to new text input. In this case, the grammar is
essentially expressed in the annotated data. Note that human annotators must
be trained in a particular grammar theory in order to produce proper annota-
tions, and, at the same time, be competent in the biological domain to under-
stand the documents they have to annotate. The use of annotations for training
purposes is the technique that currently prevails in the field of human language
technology, but due to the current lack of annotated resources (see Chapter 8),
the former approach still dominates chunking/parsing applications within text
mining settings for biology.

Once syntactic information is available in terms of sentence-level chunks
or parses, semantic analysis starts. Whatever the semantic representation of
choice may look like (e.g., a logic-style representation in terms of predi-
cate-argument structures, or graph-style representation in the form of semantic
networks, frames, or conceptual graphs), the task of semantic analysis consists of
linking semantic entities (e.g., biological terms or concepts), in order to form
some sort of proposition. The lexical and syntactic representational threads now
may be combined.

First, lexical items at the document word level are mapped to a conceptual
term level. That is, a lexical item is checked to see whether it might be a predi-
cate or the argument of a predicate. This information usually is made available
by lexicon look-up. Next, given a predicate and its n-ary argument structure,
syntactic evidence is consulted, in order to decide which chunk or parse unit
denotes a particular argument of the predicate. A semantic role labeler carries
out this task. This may rely on either a semantics resource (i.e., semantic inter-
pretation or mapping rules similar to human-made grammars for syntactic
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analysis), or on the results of semantic learning processes, through which
mappings from syntactic structures to propositions are acquired, based on prop-
ositions that are already annotated (i.e., based on human coding efforts, just as
with treebanks for parsing). The division into rule-based systems and machine
learning–based systems is the same as that encountered for syntactic analysis.

The delineation of an extra semantic level—in particular, the methodolog-
ical level between predicates and their arguments—is often not so strictly drawn.
Lexical items may be reorganized in predicate-style list form, to make them
appear as if they constitute representational entities on their own. For example,
interferon may not be checked to see if it actually belongs to the conceptual class
‘Protein’. Whether the semantic level has a representational status on its own
often is dependent on the requirements of subsequent processing, in particular
at the conceptual level. Depending on the availability of such a representation
system and a corresponding ontology of (parts of) the biology domain, the prop-
ositions derived from text analysis may not only be recorded in a biological
knowledge base as a list of predicate argument propositions, but also may be
subject to further reasoning processes. For example, such processes may check
the implications of that new knowledge to derive additional biological knowl-
edge, or they may test for biological consistency of the newly entered data. To
the best of our knowledge, no biology text mining system currently incorporates
such an advanced reasoning functionality.

In our architecture scheme, we have deliberately omitted a self-contained
component for discourse analysis. This decision simply reflects the fact that
almost no efforts previously have been devoted to this topic for biology text
mining applications. This is true despite the observation that, in biology
abstracts (and even more so in full texts), relations between sentences are
expressed in terms of referential relations between entities and propositions,
which are encoded by pronouns and definite noun phrases [37]. These relations
increasingly take conceptual knowledge (e.g., knowledge about taxonomies, or
parts and wholes) into account [38]. While referential relations are a major class
of text cohesion phenomena, text coherence phenomena relate to the overall
organization of a text in terms of rhetorical structures [39]. Although often dis-
regarded in the text mining literature, the consideration of these text phenom-
ena is required for complete and correct descriptions of the content that can be
derived from a natural language document [38].

Finally, the semantic or conceptual structures that were derived from natu-
ral language documents need to be assessed by a “biological relevance filter,”
because not every proposition acquired from a text is interesting or new for biol-
ogists. Unfortunately, this final text mining step is often omitted (i.e., all results
from linguistic analysis are directly passed to the prospective user), although it
should be crucial for any text mining system to avoid overloading the bio-user
with irrelevant propositions.
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One should always bear in mind that the architecture that we have just
sketched might be altered in many ways, and tuned according to the desired
functionality. Nevertheless, the picture we have proposed combines current lin-
guistic methods and techniques in a way required to build adequate text mining
workflows for biology.

2.5.2 Two Concrete System Architectures

We now focus on the description of two exemplary prototypes for information
extraction and text mining in the field of biology, GeneWays and PASTA (see
also Chapter 7), in order to examine how the design of concrete systems reflects
the architectural considerations we have introduced so far.

The GeneWays system [40, 41] is targeted at the identification of molecu-
lar interactions pertinent to signal-transduction pathways from full-text docu-
ments (rather than abstracts). First, it provides the standard battery of
preprocessing routines (e.g., breaking up texts into sentences, and tokenizing
sentences into single words and atomic multiword phrases), and lexical process-
ing (e.g., POS tagging, named entity recognition and interpretation, morpho-
logical recognition, lexically oriented semantic disambiguation of homonyms
and synonyms). A part of the resources used is an elaborated ontology of seman-
tic types, by which the lexicon (which covers, among other categories, approxi-
mately 125 different verbs relevant for the field) is organized according to
biological principles.

The syntactic processing module of GeneWays is based on a full grammar
approach, rather than on the empirical chunking and parsing methodologies that
were the subject of Section 2.3. Basically, a manually constructed and maintained
Definite Clause Grammar (DCG) is applied, in order to derive a complete syn-
tactic parse, if possible, from POS-tagged and named-entity-annotated tokens for
each sentence. If only fragments are encountered due to incomplete grammar or
lexical specifications, then the system switches into an error recovery repair mode,
yielding a partial or shallow parse. The grammar of GeneWays is capable of deal-
ing with a wide range of quite complicated nested utterances. The parser outputs
semantically interpreted trees, in a special information format, which are
imported into the system’s knowledge base. GeneWays already has produced 3
million biology-related propositions from a total of 150,000 processed journal
articles. However, this huge amount of biological knowledge is still redundant
and conflicting, because no (automatic) filtering and curation component has
been previously available. The developers of GeneWays also have taken a lot of
care to provide visualization tools for accessing this vast amount of data.

The PASTA [42] system was developed and evaluated on a corpus of
1,500 MEDLINE abstracts (rather than full texts), and the system extracts
information related to the roles of specific amino-acid residues in protein
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molecules. After textual input has passed through a text preprocessor for section
filtering (eliminating irrelevant parts of MEDLINE abstracts), lexical processing
proceeds with sentence splitting, text tokenization, morphological analysis, lexi-
con look-up, and rule-based named entity recognition and interpretation. Syn-
tactic processing is carried out by POS tagging and parsing with a manually
built phrase structure grammar. The semantic analysis of parse structures leads
to a propositional encoding, in terms of a predicate-argument representation
that is similar to predicate logic. In the information extraction stage, much effort
is devoted to determining textual coreference links. These are intended to
account for reference relations between entities that occur in different sentences,
but denote the same information items. Access to the biological knowledge
extracted by PASTA is made available via displaying templates, using alphabeti-
cally ordered indices, color-coding by semantic classes, and hyperlinking to
other documents containing the same term.

We have chosen both systems as representatives of the current state of the
art in the field. Their architecture reveals that the methods underlying lexical
analysis are hardly controversial. As far as syntactic processing is concerned,
both systems have been developed using the explicit full grammar approach.
Grammatical structures are interpreted, and then mapped to information
extraction templates on the basis of manually designed and maintained rules.
We assume that this approach increasingly will be replaced by learning-based
approaches that rely on syntactically and semantically annotated corpora.
PASTA, unlike GeneWays, already takes care of discourse phenomena, which
will constitute another major avenue of research in the field as full texts become
more accessible in the future. Such systems only are targeted to very specific
subdomains of biology, such as the protein structure literature in the case of the
PASTA system. One desideratum is to make these architectures more compre-
hensive, especially concerning their lexico-semantic coverage, in order to
include bigger knowledge portions from the vast field of molecular biology.
The area in need of most improvement may be the field of information
curation [i.e., (automatically) filtering out redundant and conflicting informa-
tion], as well as the determination of the really new and relevant information
contained in the source documents.

2.6 Conclusions and Outlook

In this chapter, we distinguish three main levels of linguistic analysis—lexical,
syntactic, and semantic—all of which have to be properly orchestrated to set up
a linguistically based text mining system for biology. Despite the progress that
has been made, the combination of the different modules of natural language
text analysis is still more an art than an engineering discipline. The workflow we
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present in Figure 2.2 provides an idealized view of system building for text min-
ing in the field of biology, which has to be complemented by many heuristic
solutions.

Text mining is still difficult, due to the inherent properties of the structure
of language and methodologies that are not fully adequate. From a structural
perspective, language analysis struggles with the enormous potential for ambigu-
ity at all levels of analysis. The problem of scaling-up text mining and natural
language systems (i.e., managing the growth of linguistic knowledge resources so
that the quality of the functionality also increases), only can be tackled through a
clear commitment towards acquiring further linguistic knowledge on the basis
of machine learning methods. This applies to all levels of analysis—lexical, syn-
tactic, and semantic—as well as to the learning of information extraction and
text mining rules [43, 44].

Accordingly, a major methodological requirement for further progress
inevitably will be the provision of sufficiently-sized, quality-checked annotated
corpora. While the GENIA corpus (see Chapter 8) fulfills this requirement, as
far as POS and named entity annotations are concerned, only limited resources
are provided as far as syntactic and, in particular, propositional encodings are
concerned. See recent progress on propositional annotation of MEDLINE
abstracts reported by [45]. A serious account of discourse-level annotations is
also lacking, both at the level of anaphoric reference relations (but see recent
work on coreference relations [37]), and at the level of text macrostructures (but
see recent work on zoning [39]).

The issue of propositional knowledge for biology is further complicated by
the lack of high-coverage terminological and ontological resources. These are
important, because any propositional annotation (even seemingly simple named
entity assignments) makes implicit use of some form of terminological and
ontological commitments.

Only few efforts are currently directed at filtering the results from text
analysis. Notions such as interestingness, newsworthiness, and originality, are
still awaiting concise and rigid formalization. If such metrics were available, then
users in biology domains would have access to relevance-approved text mining
results.

Further progress is most likely to come from international competition
series [similar to the Text Retrieval Conference (TREC) for document retrieval,
and the MUC for information extraction research], hosted by well-established
biological institutions (e.g., EMBL, EBI, and so forth) This process has already
started [e.g., the task definitions at Knowledge Discovery and Data Mining
(KDD) Cup 2002, BioCreAtIvE, and the International Joint Workshop on
Natural Language Processing in Biomedicine and its Applications (JNLPBA)
Symposium]. Such events will further strengthen the capabilities of text mining
systems, due to their strict adherence to evaluation methods and standards (see
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Chapter 9). The increasing recognition of text mining in biology as a competi-
tive edge technology is reflected by the creation of the U.K. National Centre for
Text Mining, and by similar efforts at the National Library of Medicine (NLM)
in the United States and in Japan), and will further stimulate future efforts in
the field.
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3
Lexical, Terminological, and Ontological
Resources for Biological Text Mining
Olivier Bodenreider

3.1 Introduction

Biomedical terminologies and ontologies are frequently described as enabling
resources in text mining systems [1–3]. These resources are used to support tasks
such as entity recognition (i.e., the identification of biomedical entities in text),
and relation extraction (i.e., the identification of relationships among biomedi-
cal entities). Although a significant part of current text mining efforts focuses on
the analysis of documents related to molecular biology, the use of lexical, termi-
nological, and ontological resources is mentioned in research systems developed
for the analysis of clinical narratives (e.g., MedSyndikate [4]), or the biological
literature (e.g., BioRAT [5], GeneScene [6], EMPathIE [7], and PASTA [7]).
Of note, some systems initially developed for extracting clinical information
later have been adapted to extract relations among biological entities (e.g.,
MedLEE [8], GENIES [9], and SemRep/SemGen [10]). Commercial systems
such as TeSSI, from Language & Computing (http://www.landcglobal.com/)
also make use of such resources.

Entity recognition often draws on lists of entity names collected in lexi-
cons, gazetteers, and, more generally, terminology resources. For example, lists
of disease names can be easily extracted from disease resources, such as the Inter-
national Classification of Diseases (ICD); from the disease component of gen-
eral resources, such as the Medical Subject Headings (MeSH); and from
specialized resources, such as the Online Multiple Congenital Anomaly/Mental
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Retardation (MCA/MR) Syndromes. In contrast, relation extraction may bene-
fit from the relationships represented among terms in terminologies (e.g., ‘Par-
kinson’s disease’ child of ‘Neurodegenerative diseases’ in MeSH), and in
ontologies [e.g., ‘Basal ganglia’ finding site of ‘Parkinson’s disease’ in the Sys-
tematized Nomenclature of Medicine Clinical Terms (SNOMED CT)].

Biomedical lexicons, such as the UMLS Specialist lexicon, collect lexical
items (i.e., words and multiword expressions) frequently observed in biomedical
text corpora, and record information about them, including parts of speech
(e.g., noun or adjective), inflectional variants (e.g., singular or plural), and spell-
ing variants (e.g., American versus British English). This information is useful
not only to NLP tools, such as part-of-speech taggers and parsers, but also to
entity recognition systems, since it can help identify variants of entity names in
text [11].

The purpose of biomedical terminology is to collect the names of entities
employed in the biomedical domain. Most biomedical terminologies record
synonymous terms (e.g., Parkinson’s disease and Paralysis agitans), and have some
kind of hierarchical organization, often treelike or graphlike [12]. Terminol-
ogy-driven approaches to text mining have been explored in [13].

In contrast, biomedical ontology aims to study entities (i.e., substances,
qualities, and processes) of biomedical significance, and the relations among
them. Examples of such entities include substances such as the mitral valve and
glucose, qualities such as the diameter of the left ventricle and the catalytic func-
tion of enzymes, and processes such as blood circulation and secreting hor-
mones. Fundamental relations in biomedical ontologies include not only is a
and part of, but also instance of, adjacent to, derives from, and so forth [14].

In practice, the distinction between lexicons, terminologies, and
ontologies is not always sharp. On the one hand, although ontologies mostly
focus on relations among entities, some of them also record the names by which
entities are referred. On the other hand, although terminologies essentially col-
lect the names of entities, their hierarchical organization also reflects relations
among such entities. Finally, the very names of these resources can be mislead-
ing. For example, despite its name, the GO defines itself as a controlled vocabu-
lary (i.e., a terminological resource), but like ontologies, its terms are linked by
relationships such as is a and part of. However, the definition and use of such
relations is not consistent throughout GO [15], as would be expected from
ontologies.

The objective of this chapter is to present some of the resources (lexicons,
terminologies, and ontologies) of interest for entity recognition and relation
extraction tasks. Providing an exhaustive list of these resources is beyond the
scope of this chapter. Many of these resources are highly specialized, and there-
fore would be of little interest to most readers. Instead, we have selected general,
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publicly available resources that have been shown to be useful for biomedical
text mining. This review is purposely limited to resources in English.

We start by presenting an extended example, illustrating biomedical terms
in two pieces of text. We then give a brief description of the major resources
available, with a particular emphasis on the UMLS [16]. Finally, we discuss
some issues related to biomedical terms and biomedical relations. The reader is
referred to Chapters 6 and 7 for a detailed presentation of the tasks of entity rec-
ognition and relation extraction.

3.2 Extended Example

In this example, we consider two short pieces of text related to the genetic dis-
ease neurofibromatosis 2. This is an autosomal dominant disease, characterized
by tumors called schwannomas that involve the acoustic nerve, as well as other
features [17]. The disorder is caused by mutations of the NF2 gene, resulting in
absence or inactivation of the protein product. The protein product of NF2 is
commonly called merlin (but also neurofibromin 2 and schwannomin), and
functions as a tumor suppressor. The first fragment of text (3.1) is extracted
from the abstract of an article [18]. The second is the definition of
neurofibromatosis 2 in the MeSH vocabulary (http://www.nlm.nih.gov/mesh/).

• (3.1) Neurofibromatosis type 2 (NF2) is often not recognized as a dis-
tinct entity from peripheral neurofibromatosis. NF2 is a predominantly
[intracranial condition] whose hallmark is [bilateral vestibular
schwannomas]. NF2 results from a mutation in the gene named merlin,
located on chromosome 22.

• (3.2) Neurofibromatosis type 2: An [autosomal dominant disorder]
characterized by a high incidence of [bilateral acoustic neuromas] as
well as schwannomas of other [cranial and peripheral nerves], and other
[benign intracranial tumors] including meningiomas, ependymomas,
spinal neurofibromas, and gliomas. The disease has been linked to
mutations of the NF2 gene on chromosome 22 (22q12) and usually
presents clinically in the first or second decade of life.

3.2.1 Entity Recognition

Many biomedical entities can be identified in these two fragments. Underlined
expressions correspond to terms present in the UMLS Metathesaurus. This is
the case, for example, of the disease neurofibromatosis 2 and the protein merlin.
Interestingly, vestibular schwannomas in (3.1) and acoustic neuromas in (3.2),
although lexically distinct, name the same tumor. While a lexicon is useful to
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identify these disease names, a terminology (or ontology) is required to identify
them as synonymous. These two terms are names for the same disease concept in
the UMLS Metathesaurus (C0027859). The list of UMLS concepts that can be
identified in the two text fragments is given in Table 3.1.

Many expressions extracted from the two text fragments can be mapped to
the UMLS Metathesaurus through a simple match (i.e., exact match or after
normalization). Except for merlin, which maps to both a protein and a bird, the
mapping is unambiguous. In contrast, expressions of (3.1) and (3.2) enclosed in
brackets also correspond to biomedical entities, but the name found in the text
cannot be mapped directly to a UMLS concept. Expressions, such as
intracranial condition in (3.1), are vague, compared to the corresponding con-
cept names in the UMLS (e.g., ‘central nervous system diseases’). Complex
phrases, such as cranial and peripheral nerves in (3.2), refer to two concepts (i.e.,
‘cranial nerves’ and ‘peripheral nerves’) present in the Metathesaurus. Con-
versely, some expressions in the text convey more precision than the correspond-
ing concepts found in biomedical terminologies [e.g., bilateral vestibular
schwannomas in (3.1) versus ‘vestibular schwannomas’ and benign intracranial
tumors in (3.2) versus ‘intracranial tumors’]. In these cases, while terminological
resources are useful for identifying entities in text, they may not be sufficient for
capturing all nuances present in the text. Term variation and management issues
are discussed extensively in Chapter 4.

3.2.2 Relation Extraction

Once entities have been identified in text fragments, the next step consists of
identifying the relationships among them, such as vestibular schwannomas mani-
festation of neurofibromatosis 2 and NF2 gene located on chromosome 22. Such
relations may be explicitly represented in biomedical ontologies. For example,
the relation ‘schwannomas’ associated morphology of ‘neurofibromatosis 2’ is
asserted in SNOMED CT. However, ontologies do not necessarily contain such
fine-grained assertions, but may rather represent higher-level facts such as ‘gene’
located on ‘chromosome’. A relation extraction system would first identify NF2
gene as a kind of gene and chromosome 22 as a kind of chromosome, before infer-
ring that a particular gene (NF2 gene) is located on a particular chromosome
(chromosome 22).

The use of ontologies to support relation extraction often requires the sys-
tem to identify in the text not only entities, but also potential relationships.
Clues for identifying relationships include lexical items (e.g., the preposition
‘on’ for the relationship located on), and syntactic structures (e.g., intracranial
tumors including meningiomas for meningiomas is a intracranial tumors), as well
as statistical and pattern-based clues (not presented here). Relations may span
several sentences, and their identification often requires advanced linguistic
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techniques, such as anaphora and coreference resolution. For example, from the
last sentence of (3.2), the relation disease associated with mutation can be
extracted. While accurate, this relation is incomplete in this context, because dis-
ease actually refers not to any disease, but to neurofibromatosis 2 (anaphoric rela-
tion). Similarly, mutations of the NF2 gene (not mutations in general) is the
entity associated with the disease. Therefore, the complete relation to be
extracted is neurofibromatosis 2 associated with mutations of the NF2 gene. The
potential relations extracted from the text then can be validated against the rela-
tions explicitly represented in the ontology, or inferred from it.

3.3 Lexical Resources

The resources presented under this category provide the lexical and lexico-syn-
tactic information needed for parsing text. The major resource for biomedical
text is the Specialist lexicon. Additionally, specialized resources can be useful for
analyzing subdomains of biomedicine (e.g., lists of gene names for molecular
biology corpora). Conversely, general resources such as WordNet also can help
analyze the literature written for less-specialized audiences (e.g., patients).

3.3.1 WordNet

WordNet is an electronic lexical database developed at Princeton University,
which serves as a resource for applications in natural language processing and
information retrieval [19]. The core structure in WordNet is a set of synonyms
(synset) that represents one underlying concept. For example, the synset repre-
senting ‘hemoglobin’ also contains the lexical entries ‘haemoglobin’ (British-
English spelling) and ‘Hb’ (abbreviation). A definition is provided for the
synset: “a hemoprotein composed of globin and heme that gives red blood cells
their characteristic color; function primarily to transport oxygen from the lungs
to the body tissues.” There are separate structures for each linguistic category
covered: nouns, verbs, adjectives, and adverbs. For example, the adjective ‘renal’
and the noun ‘kidney’, although similar in meaning, belong to two distinct
structures, and a specific relationship (pertainymy) relates the two forms. The
current version of WordNet (2.0) contains over 114,000 noun synsets. In addi-
tion to being a lexical resource, WordNet has some of the features of an ontol-
ogy. For example, each synset in the noun hierarchy belongs to at least one is a
tree (e.g., ‘hemoglobin’ is a ‘protein’), and may additionally belong to several
part of-like trees (‘hemoglobin’ substance of ‘red blood cell’). Because of its mod-
est coverage of the biomedical domain [20, 21], WordNet has been used only in
a limited number of projects in biomedicine [22], where resources such as the
UMLS usually play a more prominent role. WordNet is available free of charge
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from http://wordnet.princeton.edu/. Application programming interfaces (API)
have been developed for the major programming languages, making it relatively
easy for developers to integrate WordNet into their applications.

3.3.2 UMLS Specialist Lexicon

The Specialist lexicon is one of three knowledge sources developed by the NLM,
as part of the UMLS project. It provides the lexical information needed for pro-
cessing natural language in the biomedical domain [23]. The lexicon entry for
each word or multiword term records syntactic (part-of-speech, allowable
complementation patterns), morphological (base form, inflectional variants),
and orthographic (spelling variants) information. It is, in fact, a general English
lexicon that includes many biomedical terms. Lexical items are selected from a
variety of sources, including lexical items from MEDLINE/PubMed citation
records, the UMLS Metathesaurus, and a large set of lexical items from medical
and general English dictionaries. Contrary to WordNet, the Specialist lexicon
does not include any information about synonymy or semantic relations among
its entries. However, this information is present in the Metathesaurus, another
component of the UMLS (see Section 3.4.3). The record for ‘hemoglobin’ in
the Specialist lexicon, shown in Figure 3.1, indicates the base form, one spelling
variant, and two inflectional classes, since hemoglobin is used as both a mass
noun (e.g., in Hemoglobin concentration is reported as grams of hemoglobin per
deciliter of blood), and as a countable (e.g., in the study of hemoglobins, both nor-
mal and mutant). Additionally, the abbreviation ‘Hb’ and the acronym ‘Hgb’
are cross-referenced to ‘hemoglobin’. The Specialist lexicon is distributed as part
of the UMLS, and can be queried through application programming interfaces
for Java and XML. It is also available as an open source resource, as part of the
Specialist NLP tools (http://SPECIALIST.nlm.nih.gov).

3.3.3 Other Specialized Resources

While general resources such as WordNet and the Specialist lexicon provide a
good coverage of the general biomedical language, they (purposely) fail to cover
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{
base=hemoglobin (base form)

spelling_variant=haemoglobin

entry=E0031208 (identifier)

cat=noun (part of speech)

variants=uncount (no plural)

variants=reg (plural: hemoglobins, haemoglobins )
}

Figure 3.1 Representation of ‘hemoglobin’ in the Specialist lexicon.



in detail specialized subdomains, such as gene and protein names, or chemical
and drug names. Therefore, the syntactic analyzers and parsers relying on these
resources may give suboptimal results when analyzing specialized corpora (e.g.,
molecular biology abstracts). One approach to solving this problem is to use
machine learning techniques to identify the names of specialized entities. Alter-
natively, or in conjunction with these techniques, resources, such as lists of gene,
protein, chemical, and drug names, can be exploited [24]. In molecular biology,
for example, the Human Genome Organization (HUGO) has established,
through its Gene Nomenclature Committee (HGNC), a list of over 20,000
approved gene names and symbols, called Genew [25]. Recorded in this data-
base are the symbol ‘NF2’ and the name ‘neurofibromin 2 (bilateral acoustic
neuroma)’ for the gene merlin, whose mutation causes the disease
neurofibromatosis 2. More generally, lists of names for specialized entities can
be extracted from specialized resources. Examples of publicly available special-
ized resources for genes, proteins, chemical entities, and drugs are given in Table
3.2. Finally, acronyms and abbreviations harvested from the biomedical litera-
ture [26, 27] and collected in databases [28] also can benefit entity recognition
applications. This issue is discussed extensively in Chapter 6.

3.4 Terminological Resources

The purpose of terminology is to collect the names of entities employed in the
biomedical domain [29]. Terminologies typically provide lists of synonyms for
the entities in a given subdomain and for a given purpose. As such, they play an
important role in entity recognition. Additionally, most terminologies have
some kind of hierarchical organization that can be exploited for relation extrac-
tion purposes. Many terminologies consist of a tree, where nodes are terms, and
links represent parent-to-child or more-general-to-more-specific relationships.
Some terminologies allow multiple inheritance, and have the structure of a
directed acyclic graph. The Gene Ontology and MeSH provide examples of ter-
minological systems created to support different tasks. Because it integrates a
large number of terminologies, the UMLS Metathesaurus is the terminological
system most frequently used in the analysis of biomedical texts.

3.4.1 Gene Ontology

The Gene Ontology (GO) is a controlled vocabulary, developed by the Gene
Ontology Consortium, for the annotation of gene products in model organ-
isms. GO is organized in three separate hierarchies—for molecular functions
(6,933 terms), biological processes (9,053 terms), and cellular components
(1,414 terms), as of February 1, 2005 [30]. For example, annotations for the
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gene NF2 in the Gene Ontology Annotation (GOA) database
(http://www.ebi.ac.uk/GOA/) include the molecular function term
‘cytoskeletal protein binding’, the biological process term ‘negative regulation
of cell proliferation’, and the cellular component terms ‘plasma membrane’ and
‘cytoskeleton’. Each of the three hierarchies is organized in a directed acyclic
graph, in which the nodes are GO terms, and the edges represent the GO
relationships is a and part of. For example, as illustrated in Figure 3.2, the
relations of the cellular component ‘cytoskeleton’ to its parent terms
include ‘cytoskeleton’ is a ‘intracellular nonmembrane-bound organelle’ and
‘cytoskeleton’ part of ‘intracellular’. GO terms may have synonyms (e.g.,
synonyms for ‘plasma membrane’ include ‘cytoplasmic membrane’ and
‘plasmalemma’). Most terms have a textual definition (e.g., for ‘plasma
membrane’: “The membrane surrounding a cell that separates the cell from its
external environment. It consists of a phospholipid bilayer and associated
proteins.”).

Both the names and the relations comprised in the Gene Ontology can
benefit text mining applications. The names of molecular functions, biological
processes, and cellular components are frequently used in the biomedical litera-
ture [31]. For example, the biological process ‘activation of MAPK’ and the cel-
lular component ‘adherens junction’ can be identified in the title Erbin regulates
MAP kinase activation and MAP kinase-dependent interactions between merlin
and adherens junction protein complexes in Schwann cells . As illustrated in the
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Table 3.2
Examples of Publicly Available Specialized Resources for Genes, Proteins, Chemical Entities, and Drugs

Domain Resources URL

Genes
and proteins

Genew http://www.gene.ucl.ac.uk/nomenclature/

Entrez Gene
(formerly
LocusLink)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene

UniProt http://www.ebi.uniprot.org/index.shtml

Chemical
entities

PubChem http://pubchem.ncbi.nlm.nih.gov/

ChemIDplus http://chem.sis.nlm.nih.gov/chemidplus/chemidlite.jsp

ChEBI http://www.ebi.ac.uk/chebi/

Drugs RxNorm http://www.nlm.nih.gov/research/umls/rxnorm_main.html

National Drug
Code

http://www.fda.gov/cder/ndc/
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following text fragment (3.3), hierarchical relations can help resolve anaphora
and interpret associative relations.

• (3.3) The organization of the actin cytoskeleton in prefusion aligning
myoblasts is likely to be important for their shape and interaction. We
investigated actin filament organization and polarity by transmission
electron microscopy (TEM) in these cells.

The terms actin cytoskeleton and actin filament identified in the first two
sentences of (3.3) are present in GO. Moreover, a relation between them is
explicitly recorded in GO (‘actin filament’ part of ‘actin cytoskeleton’), which
helps link together the two sentences. However, many concepts and relations are
not represented in GO, or other biomedical terminologies. For example, a rela-
tion between myoblasts and these cells—namely, ‘myoblast’ is a ‘cell’—is needed
to resolve the anaphoric relation between the two terms in (3.3). Such a relation
cannot be found in GO, where the term myoblast is not even represented.

Finally, GO terms constitute an entry point to annotation databases,
providing a wealth of relations between gene products and the molecular func-
tions, biological processes, and cellular components with which they are associ-
ated (e.g., ‘NF2’ has biological process ‘negative regulation of cell proliferation’).
GO is available from http://geneontology.org/, and is distributed in various
formats, including XML and database formats. Perl and Java application pro-
gramming interfaces are also available. GO is one of the source vocabularies
included in the UMLS Metathesaurus. GO is a member of a family of con-
trolled vocabularies, called Open Biomedical Ontologies (OBO). These
resources can be useful in text mining applications as a source of specialized
vocabulary (e.g., for chemicals or experimental conditions). OBO resources are
available at http://obo.sourceforge.net.

3.4.2 Medical Subject Headings

The Medical Subject Headings (MeSH) thesaurus is a controlled vocabulary,
produced by the National Library of Medicine, and used for indexing, catalog-
ing, and searching for biomedical and health-related information and docu-
ments [32]. It consists of 22,995 descriptors (main headings), organized in 15
hierarchies. Additionally, a set of approximately 150,000 “supplementary con-
cept records” provides a finer-grained representation of biomedical entities,
including chemicals and proteins. A list of entry terms (synonyms or closely
related terms) is given for each descriptor. Entry terms for the disease
‘Neurofibromatosis 2’ include Neurofibromatosis Type II, Bilateral Acoustic
Neurofibromatosis, Bilateral Acoustic Schwannoma, and Familial Acoustic
Neuromas. A scope note often provides a definition of the descriptor. In the
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MeSH thesaurus, descriptors are related by parent/child relations; each
descriptor has at least one parent, and may have several. For example,
‘Neurofibromatoses’ and ‘Neuroma, Acoustic’ are the two parents of the
descriptor ‘Neurofibromatosis 2’. The arrangement of MeSH descriptors in
hierarchies is intended to serve the purpose of indexing and information
retrieval, and does not always follow strict classifications. In addition to hierar-
chical relations, cross references may link a descriptor to descriptors from other
hierarchies. For example, the disease ‘Neurofibromatosis 2’ is linked to the pro-
tein ‘Neurofibromin 2’ and to the gene ‘Genes, Neurofibromatosis 2’. The
MeSH thesaurus is used by the NLM for indexing articles from 4,600 biomedi-
cal journals for the MEDLINE/PubMed database. Like GO, MeSH can be used
in text mining applications, due to the many names and relations it provides. Its
scope is broader than that of GO, but its granularity is coarser. MeSH is avail-
able from http://www.nlm.nih.gov/mesh/ in various formats, including XML.
MeSH is one of the source vocabularies included in the UMLS Metathesaurus.

3.4.3 UMLS Metathesaurus

The UMLS Metathesaurus is one of three knowledge sources developed and dis-
tributed by the NLM, as part of the UMLS project [16]. Version 2005AA of the
Metathesaurus contains over 1 million biomedical concepts and 5 million con-
cept names, from more than 100 controlled vocabularies and classifications
(some in multiple languages) used in patient records, administrative health data,
bibliographic and full-text databases, and expert systems. The Metathesaurus
also records over 16 million relations among these concepts, either inherited
from the source vocabularies or specifically generated. While the Metathesaurus
preserves the names, meanings, hierarchical contexts, attributes, and interterm
relationships present in its source vocabularies, it also integrates existing termi-
nologies into a common semantic space. As in WordNet, synonymous names
are clustered together to form a concept. The Metathesaurus also assigns a
unique identifier to each concept, and establishes new relations between terms
from different source vocabularies, as appropriate. Each concept is also catego-
rized with at least one semantic type from the UMLS Semantic Network (see
Section 3.5.2), independent of its hierarchical position in the source vocabular-
ies. The scope of the Metathesaurus is determined by the combined scope of its
source vocabularies, including Gene Ontology and MeSH, disease vocabular-
ies (e.g., International Classification of Diseases), clinical vocabularies (e.g.,
SNOMED CT), nomenclatures of drugs and medical devices, as well as the
vocabularies of many subdomains of biomedicine (e.g., nursing, psychiatry, and
gastrointestinal endoscopy).

Examples of Metathesaurus concepts are given in Table 3.1. C0254123
identifies the protein ‘neurofibromin 2’, whose synonyms include merlin, NF2
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protein, and schwannomin. Its semantic types are ‘Amino Acid, Peptide, or Pro-
tein’ and ‘Biologically Active Substance’. The following source vocabularies con-
tributed names to this concept: MeSH, SNOMED CT, and the NCI Thesaurus.
Once integrated in the Metathesaurus, ‘neurofibromin 2’ has multiple parents
including ‘membrane proteins’ (from MeSH), ‘tumor suppressor proteins’ (from
both MeSH and SNOMED CT), and ‘signaling protein’ (from the NCI The-
saurus). Its only descendant is ‘merlin, Drosophila’ (from MeSH). Beside hierar-
chical relations, associative relations link the protein ‘neurofibromin 2’ to the
gene ‘neurofibromatosis 2 genes’ and to the disease ‘neurofibromatosis 2’. The
frequencies of co-occurrence of MeSH descriptors in MEDLINE/PubMed cita-
tions are also recorded in the Metathesaurus. For example, during the last 10
years, the descriptors ‘Neurofibromin 2’ and ‘Neurofibromatosis 2’ occurred
together 13 times as major descriptors. The descriptors ‘Membrane Proteins’ (8
times), ‘Phosphoproteins’ and ‘NF2 gene’ (7 times), and ‘Cell Transformation,
Neoplastic’ (5 times) frequently co-occur with ‘Neurofibromin 2’.

Section 3.2.1 illustrated how the Metathesaurus can be used in entity rec-
ognition and relation extraction tasks. Used in many biomedical entity recogni-
tion studies, the MetaMap (MMTx) program has been specially designed to
take advantage of the features of the UMLS Metathesaurus and Specialist lexi-
con [33]. MMTx is available from http://mmtx.nlm.nih.gov/. Besides text min-
ing, the Metathesaurus is used in a wide range of applications, including linking
between different clinical or biomedical vocabularies, information retrieval and
indexing, and biomedical language processing. The Metathesaurus is available
from http://umlsks.nlm.nih.gov/ (or on DVD) in relational database format.
Users must complete the License Agreement for the Use of UMLS
Metathesaurus. Java and XML application programming interfaces are available
for the Metathesaurus.

3.5 Ontological Resources

Biomedical ontology aims to study the kinds of entities (i.e., substances, quali-
ties, and processes) of biomedical significance. Unlike biomedical terminology,
biomedical ontology is not primarily concerned with names, but with the prin-
cipled definition of biological classes and their interrelations. In practice, since
most terminologies have some degree of organization, and many ontologies also
collect names for their entities, the distinction between ontological and termino-
logical resources is somewhat arbitrary. See Chapter 4 for further discussion of
this issue. Because they share many characteristics with ontologies, we will list
under this rubric two broad resources—SNOMED CT and the UMLS
Semantic Network. Other ontologies will be briefly discussed.
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3.5.1 SNOMED CT

The Systematized Nomenclature of Medicine (SNOMED) Clinical Terms
(SNOMED CT), developed by the College of American Pathologists, was
formed by the convergence of SNOMED RT and Clinical Terms Version 3
(formerly known as the Read Codes). SNOMED CT is the most comprehensive
biomedical terminology recently developed in native description logic formal-
ism.1 The version described here is dated January 31, 2004, and contains some
270,000 concepts, named by over 400,000 names. SNOMED CT consists of
18 independent hierarchies reflecting, in part, the organization of previous ver-
sions of SNOMED into “axes,” such as ‘Diseases’, ‘Drugs’, ‘Living organisms’,
‘Procedures’, and ‘Topography’. Each SNOMED CT concept is described by a
variable number of elements. For example, the concept ‘Neurofibromatosis,
type 2’ has a unique identifier (92503002), several names (Bilateral acoustic
neurofibromatosis, BANF - Bilateral acoustic neurofibromatosis, Neurofibromatosis,
type 2, and Neurofibromatosis type 2), and has multiple is a parents, including
‘Congenital anomaly of inner ear’, ‘Neoplasm of uncertain behavior of cranial
nerve’, and ‘Acoustic neuroma’. ‘Neurofibromatosis, type 2’ also participates in
a complex network of associative relations to other concepts. The relations
(called roles), shown in Table 3.3, indicate that the lesions encountered in
‘Neurofibromatosis, type 2’ include neurofibromatosis of the vestibulocochlear
nerve (Group 1) and neurilemoma of the vestibular nerve (Group 3).
SNOMED CT is available as part of the UMLS (from http://umlsks.
nlm.nih.gov/), at no charge for UMLS licensees in the United States. The struc-
ture of the UMLS Metathesaurus has been modified to accommodate the level
of detail provided by ontological resources like SNOMED CT. Because
SNOMED CT has become available through the UMLS only since 2004, the
number of studies reporting its uses is still limited.

3.5.2 UMLS Semantic Network

The UMLS Semantic Network is one of three knowledge sources developed and
distributed by the NLM, as part of the UMLS project. It was created in an effort
to provide a semantic framework for the UMLS and its constituent vocabularies
[34]. Unlike the Metathesaurus, the Semantic Network is a small structure,
composed of 135 high-level categories called semantic types. It is organized in
two single-inheritance hierarchies: one for ‘Entity’ and one for ‘Event’. In addi-
tion to is a, 53 kinds of relationships are defined in the Semantic Network,
which are used to represent over 6,700 relations—hierarchical and associa-
tive—among semantic types. Semantic types from the Semantic Network are
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linked to Metathesaurus concepts by the categorization link established by the
Metathesaurus editors. Each concept is categorized with at least one semantic
type from the Semantic Network, independently of its hierarchical position in
the source vocabularies. Fifteen collections of semantic types, called semantic
groups, have been defined in order to partition Metathesaurus concepts into a
smaller number of semantically consistent groups [35].

Semantic types for the Metathesaurus concepts listed in Table 3.1 are pre-
sented in Table 3.4, along with the corresponding semantic groups. For exam-
ple, the concept ‘Neurofibromatosis 2’ is categorized as ‘Neoplastic Process’, a
semantic type from the semantic group ‘Disorders’. In addition to ‘mutation,’
Metathesaurus concepts categorized with ‘Genetic Function’ include ‘alterna-
tive splicing’, ‘loss of heterozygosity’, and ‘ribonuclease activity’. Examples of
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Table 3.3
Some of the Roles Present in the Definition of ‘Neurofibromatosis, type 2’

Group Role Value

1 Associated morphology ‘Neurofibromatosis’

Finding site ‘Skin structure’

Finding site ‘Vestibulocochlear nerve structure’

3 Associated morphology ‘Neurilemoma’

Finding site ‘Vestibular nerve structure’

Table 3.4
Semantic Types and Semantic Groups for the Metathesaurus Concepts Listed in Table 3.1

ST Abbreviation ST Name Semantic Group

aapp Amino Acid, Peptide, or Protein Chemicals & Drugs

bacs Biologically Active Substance Chemicals & Drugs

bdsy Body System Anatomy

bpoc Body Part, Organ, or Organ
Component

Anatomy

celc Cell Component Anatomy

dsyn Disease or Syndrome Disorders

genf Genetic Function Physiology

gngm Gene or Genome Genes & Molecular Sequences

neop Neoplastic Process Disorders



relations among semantic types include ‘Body Part, Organ, or Organ Compo-
nent’ location of ‘Neoplastic Process;’ ‘Pharmacologic Substance’ treats ‘Neo-
plastic Process;’ and ‘Neoplastic Process’ manifestation of ‘Genetic Function.’ A
relationship between two semantic types indicates a possible link between the
concepts categorized with these semantic types. In natural language processing
and text mining applications, Semantic Network relations are typically used as
supporting evidence for the candidate predicates (i.e., <concept1, relationship,
concept2> structures) extracted from the text [36]. For example, in
schwannomas of cranial nerves, after identifying the concepts ‘neurilemmoma’
(from schwannoma) as a ‘Neoplastic Process’ and cranial nerves as a ‘Body Part,
Organ, or Organ Component,’ the preposition of can be interpreted as indicat-
ing the location of the neoplastic process to the body part. This candidate pred-
icate is supported by the Semantic Network relation ‘Body Part, Organ, or
Organ Component’ location of ‘Neoplastic Process.’ Many relation extraction
systems rely on correspondences established between semantic relations
and linguistic phenomena [37]. Semantic Network relations also can be
exploited in conjunction with relations among concepts in the Metathesaurus
[38]. The Semantic Network is distributed as part of the UMLS, and is
available from http://umlsks.nlm.nih.gov/. Like the other UMLS knowledge
sources, it can be queried through application programming interfaces for Java
and XML.

3.5.3 Other Ontological Resources

In addition to SNOMED CT and the UMLS Semantic Network, several onto-
logical resources can be used to support text mining. The Foundational Model
of Anatomy (FMA) (http://fma.biostr.washington.edu/) is a large reference
ontology of anatomy, developed at the University of Washington [39]. In addi-
tion to NLP applications [40], the FMA has been used in entity recognition
tasks [41], as well as relation extraction tasks [42]. Ontologies, such as
OpenGALEN (http://www.opengalen.org/), have been developed to support
terminological services [43], and may be less useful for text mining applications.
For example, unlike terminologies, OpenGALEN does not record lists of syn-
onyms for biomedical entities. For more information about biomedical
ontologies, we refer the interested reader to [44].

3.6 Issues Related to Entity Recognition

The biomedical domain has a long tradition of collecting and organizing terms,
as well as building classifications, dating back to the seventeenth century. The
dozens of terminological resources resulting from this effort now benefit entity
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recognition tasks. Moreover, UMLS has contributed to make existing terminol-
ogies both easier to use, by providing a common format and distribution mecha-
nism, and more useful, by identifying synonymy and other semantic relations
across them. As part of this effort, the NLM also developed the lexical resources
(lexicon and lexical programs) used to detect lexical similarity among biomedical
terms, and, more generally, to process biomedical text. This is the reason why
the UMLS is used in a large number of text mining systems in biomedicine.

The properties of biomedical terms have been studied. For example, [45,
46] found matches for 10% to 34% of the UMLS strings in MEDLINE/
PubMed (depending on the matching criteria used), and [45] developed a
model for identifying the UMLS terms useful in NLP applications. In the
domain of molecular biology, researchers have investigated the lexical properties
of the GO: 35% of GO terms have been found in the biomedical literature [31],
and 66% of GO terms are composed of other GO terms [47]. A model of
compositionality in GO has even been proposed [48]. These studies have con-
firmed the interest of using existing terminological resources in entity
recognition tasks.

However, there are some remaining challenges in biomedical entity recog-
nition, including the limited coverage of terminological resources and ambiguity
in biomedical names.

3.6.1 Limited Coverage

First, some subdomains remain only partially covered by existing resources.
One example is given by genes and proteins, and, more generally, chemical
entities. Names for such entities have proved difficult to exhaustively compile
in terminologies. Vocabularies extracted from specialized databases may com-
plement traditional terminologies. Moreover, while variant formation has been
studied and effectively modeled for clinical terms [49], normalization tech-
niques for the less regular names of entities employed in genomics have been
only recently researched [50]. For these reasons, entity recognition techniques
in this subdomain often include machine learning approaches, rather than the
rule-based approach traditionally employed in biomedical NLP. Many gene
name identification systems have been developed in the last 5 years [51–54].
Entity recognition systems in molecular biology texts may include algorithms
rather than (or in addition to) static resources [24]. However, the product of
some of these algorithms is made available to the research community by their
authors. For example, [55] shares the lexicon of over 1 million gene and protein
names extracted from the biomedical literature. Coverage issues have been
explored in clinical terminologies as well [56], and techniques have
been developed to extend the coverage of terminologies to specialized
subdomains [57], or from specific corpora [58]. More generally, relation
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extraction also may benefit from term extraction techniques resulting from
research in terminology [59].

3.6.2 Ambiguity

The second issue is the ambiguity of many names in biology. This phenome-
non is common in natural language, but poses specific challenges to biomedical
entity recognition. Polysemy (several meanings for the same name) is illustrated
by NF2, which simultaneously names the gene, the protein it produces, and the
disease resulting from its mutation. While polysemy usually does not pose
problems for domain experts, it makes it difficult for entity recognition systems
to select the appropriate meaning. The ambiguity resulting from polysemous
gene names has been quantified by Chen et al. [60]. These authors found
modest ambiguities with general English words (0.57%) and medical terms
(1.01%), but high ambiguity across species (14.20%). Ambiguity across species
may be difficult to resolve; for example, when only capitalization conventions
differentiate between gene names in various model organisms (e.g., NF2 in
Homo sapiens versus Nf2 in Mus musculus). Various disambiguation strate-
gies have been applied to biomedical language processing [61, 62]. However,
further research is needed to develop strategies adapted to the specificity of
molecular biology (e.g., ambiguity across species). Moreover, the limited
availability of annotated resources, such as the GENIA corpus [63], hinders the
development of unsupervised disambiguation techniques.

3.7 Issues Related to Relation Extraction

We round off our discussion of resources with a brief look at issues concerning
relation extraction, to further emphasize the core enabling role of resources with
respect to text mining.

3.7.1 Terminological Versus Ontological Relations

Not only do terminologies contain a large number of names for biomedical enti-
ties useful for entity recognition tasks, but they also represent a similarly consid-
erable number of relations. For example, over 16 million relations are recorded
in the UMLS Metathesaurus. While not all of them represent well-defined pred-
icates or assertions, as would be expected from ontologies, these relations are
essentially beneficial to applications such as relation extraction, especially when
used in combination with lexico-syntactic clues and additional ontological
relations.
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The relations found in the most recent terminologies—often developed
using knowledge representation techniques such as description logics—are gen-
erally better specified and principled, and therefore more directly useful for rela-
tion extraction. However, a careful inspection of these and other ontological
resources through the prism of formal ontology reveals some limitations, espe-
cially in terms of consistency [15, 64, 65]. Applying formal ontological princi-
ples to biomedical ontologies results in a clarification of the relations [66],
which, in turn, is expected to result in more consistent ontologies and more
accurate inferences.

Recent experiments in reengineering terminologies have shown both the
benefit and the cost (in terms of human resources) of such efforts [67, 68].
However, improving ontologies is likely to benefit relation extraction, as the
candidate assertions extracted from text must be checked, not necessarily against
relations explicitly represented in ontologies, but most often against inferred
relations.

3.7.2 Interactions Between Text Mining and Terminological Resources

This chapter deliberately looks at ontologies and other resources as enabling
resources for text mining, and relation extraction in particular. Conversely, it is
worth mentioning that the relations extracted from text corpora and other
knowledge sources (e.g., annotation databases) can help identify additional
ontological relations. For example, lexico-syntactic patterns have been used to
extract hypernymy relations from text corpora [69], and statistical methods have
helped identify associative relations among GO terms [70]. In other words, the
relations between text mining techniques and terminological resources are not
unilateral. There is a virtual cycle, in which applications and resources benefit
from one another. Studying this symbiotic relation is beyond the scope of this
chapter. Various existing resources can be combined in order to create new
resources. For example, semantic lexicons have been derived from lexicons,
terminologies, and text corpora [71, 72].

3.8 Conclusion

This chapter presents the various kinds of enabling resources used in biomedical
text mining applications. Lexicons support basic natural language processing
tasks, such as parsing. Along with terminologies, lexicons also provide lists of
names (including variants) for biological entities, thus supporting entity recog-
nition tasks. Finally, the relations represented in ontologies and terminologies
often serve as a reference for relation extraction algorithms.
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Because it integrates these three kinds of resources, the UMLS plays a cen-
tral role in biomedical text mining. Its three components (Specialist lexicon,
Metathesaurus, and Semantic Network) are illustrated in this chapter, showing
their use in entity recognition and relation extraction tasks. The role of other
resources, either more specialized or more general, is also discussed.

Despite the existence of these resources, there remain many challenges to
entity recognition and relation extraction in biology. Existing biomedical lexi-
cons and terminologies fail to provide adequate coverage of specialized
subdomains (e.g., genes and proteins for the various model organisms).
Approaches to normalizing the names of genomic entities and to resolving the
ambiguity introduced by some of them need to be further researched. Finally,
the development of large, consistent, principled sources of biomedical knowl-
edge—namely ontologies—will benefit not only text mining applications, but,
more generally, the wide range of tasks relying upon biomedical knowledge
(e.g., database interoperability, decision support, and so forth).
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4
Automatic Terminology Management in
Biomedicine
Sophia Ananiadou and Goran Nenadic

4.1 Introduction

The dynamic and rapidly evolving field of biomedicine makes the process-
ing and management of terminology one of the key factors for accessing the
information stored in literature, since information across scientific articles is
conveyed through terms and their relationships. Without knowledge of the ter-
minology of a domain, the understanding of scientific documents is hindered.
In this chapter, we examine how text mining can facilitate terminology manage-
ment in biomedicine. We examine the basic concepts of term and terminology,
the relation between concepts and terms, and issues related with term variation
and term ambiguity. We also present approaches for automatically recognizing
and structuring terminology from literature, and for discovering associations
between terms that can be used for terminology management.

4.1.1 Principles of Terminology

Any domain is organized around a network of concepts and associations
between these concepts. We define “term” as the linguistic realization of a spe-
cialized concept in a given domain. For example, biomedical terms refer both to
concepts, such as gene, protein, disease, interaction, and inhibition; as well as to
names, such as gene products, organisms, drugs, chemical compounds, and so
forth. The main purpose of terms, as opposed to words, is the classification of
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specialized knowledge: “The classification principle […] becomes the chief
motivation in designation” [1]. Terms are means of scientific communication
and are used by specialists to convey knowledge within a domain. They
delineate the knowledge space of a domain.

We refer to the collection of terms belonging to a specific domain as a ter-
minology. A terminology may be structured (i.e., organized in a hierarchy),
denoting different types of relationships among concepts, such as spe-
cific-generic, whole-part, and so forth. Thus, a terminology is not merely a list
of lexical items used in a specific domain, but it also includes a representational
structure.

When we construct a terminology, we link concepts and their definitions
with terms. The acceptance of a term by a specific community depends on how
well this linking is carried out, which ensures communication among specialists.
The introduction of a new term assumes the prior existence of a concept that
points to a specific area of the domain knowledge space [2–4]. Typically, this
process includes a definition that positions a concept (as a discrete entity) within
a domain-specific knowledge space, and relates it to other concepts via the use of
relations. The establishment of these relations, and the grouping and association
of concepts as a result, constitute the classification of a term. Terms are classified
according to the properties of their corresponding concepts, and not according
to their linguistic or lexical properties. Although terms point to a specific knowl-
edge space, they are merely labels of knowledge. They are not themselves knowl-
edge items, but they refer to the concepts that are the knowledge items. Naming
involves the use of domain-specific term formation patterns to label a concept
introduced by a definition [5]. This process establishes a designator or a term
that is used to refer to the concept in question. Naming is carried out within the
boundaries of linguistic, social, and domain norms. In all cases, efforts have to
be made to ensure that specialists in the field accept a term.

Term formation patterns are specific to a given domain. In general, new
terms are created by:

1. Using existing linguistic or terminological resources that narrow,
widen, or adjust the meaning of an existing word-form by using simile
(e.g., window, table, mouse, in computer science). This type of term
creation often uses metaphors, explores polysemy and homonymy in
language, and causes ambiguity.

2. Modifying existing term resources using transformations, such as
affixation (promyelocyt-ic, leuke-mia), compounding (protein kinase C ),
abbreviations (RAR ), and so forth. For example, the vast majority of
terms in biomedicine are multiword compounds, typically consisting of
nouns, adjectives, and acronyms.
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3. Creating new linguistic entities (neologisms). This approach is very
common in biomedicine. Neologisms can be completely new inven-
tions or may borrow heavily from other languages, typically Greek
and Latin (e.g., a protein named after a Chinese breakfast noodle:
yotiao). Neologisms are often created by using some modification
[e.g., a combination of words and numerals (annexin II mRNA),
letters, symbols (Ca2

+-calmodulin-dependent protein), and eponyms
(Jurkat T cells)].

Guidelines for the naming process in the biomedical domain have
been produced for many types of concepts. For example, HUGO
(http://www.gene.ucl.ac.uk/nomenclature/) has provided guidelines and a
nomenclature for human gene names and symbols for each known human gene.
Similar nomenclatures exist for other species (e.g., bovine, yeast, farmed ani-
mals, and so forth). However, specialists do not always follow them. Thus, not
all new terms created necessarily follow the existing term formation patterns and
the guidelines promulgated by formal bodies. There have been huge efforts to
collect and promote the usage of standardized and shared terminologies (e.g.,
SNOMED CT, UMLS, HUGO, and so forth). Standardized and unique
names are important for domain specialists to communicate and share knowl-
edge. They are also important for text processing, since their use facilitates infor-
mation retrieval, natural language processing, and integration between different
knowledge sources.

Mapping between terms and concepts is not trivial. Ideally, terminology
theory defines a term as uniquely designating a concept, and vice versa. In prac-
tice, this monoreferential correspondence is far from reality. The relation
between terms and concepts is many-to-many: the same term may refer to a
number of concepts, and the same concept may be referred to by many terms
[3]. The phenomenon when a single concept is linked to several terms (or term
forms) is called term variation [6]. An example of term variation is the ortho-
graphic variation oestrogen—estrogen, or the variation between cancer and carci-
noma. Term variation is a very productive phenomenon, especially in rapidly
evolving domains such as biomedicine. Furthermore, in such evolving domains,
it is common that a term is introduced and is subsequently found to denote sev-
eral distinct concepts [7]. The phenomenon when the same term refers to many
concepts is known as term ambiguity. An example of term ambiguity is the term
promoter. In biology the term refers to “a binding site in a DNA chain at which
RNA polymerase binds to initiate transcription of messenger RNA by one or
more nearby structural genes,” while, in chemistry, it refers to “a substance that
in very small amounts is able to increase the activity of a catalyst.” Another
example is the fact that many proteins have dual names that also denote the pro-
tein family to which they belong. For instance, the term cycline-dependent kinase
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inhibitor was first introduced to represent a protein family with only one exten-
sion, p27. However, it is now used interchangeably with p27 or p27kip1 as the
name of the individual protein, and not as the name of the protein family [7, 8].
Furthermore, in the case of NFKB2, the term is used to denote the name of a
family of two individual proteins with separate entries in Swiss Prot. These pro-
teins are homologous, which means that they belong to different spe-
cies—human and chicken. These examples demonstrate that it is not always easy
to establish the link between terms and the concepts that they denote. Further-
more, due to the evolving nature of biomedicine, concepts are often not fully
delineated, since they are themselves evolving. This dynamism is particularly
notable in biomedicine, and is reflected in the degree of term variation and
ambiguity observed. For these reasons, terminological processing remains as one
of the main challenges in biomedical text mining [9–11].

In the next section, we provide a brief overview of existing terminological
resources in biology (see Chapter 3), and point to their limitations for support-
ing text mining.

4.2 Terminological Resources in Biomedicine

More than 300 biological information resources containing an abundance of
nomenclatures and ontologies are publicly available [12]. Many have been
used in attempts to recognize terms in literature in order to support access
to biological information and text mining (as discussed in Section 4.4).
For example, sources commonly used for this purpose are the UMLS
(http://www.nlm.nih.gov/research/umls/) and the Universal Protein Resource
(UniProt) (http://www.uniprot.org/). The UMLS merges information from
more than 100 biomedical vocabularies, and currently contains over 1 million
concepts and 2.8 million terms. The concepts are organized into a hierarchy of
135 classes, and connected by 54 different types of relations. Although the
UMLS Metathesaurus mainly focuses on conceptual information, rather than
on lexical and terminological data, it additionally includes and cross-links some
term variants (mainly abbreviations, inflectional and upper/lower case varia-
tion). UniProt contains extensive curated protein information (almost 1.9 mil-
lion entries), including function, classification, and cross references, as well as
alternative (synonymous) protein names. Other important biomedical resources
include: SNOMED CT (http://www.snomed.org/snomedct), a clinical refer-
ence terminology that contains 357,000 health care concepts annotated by more
than 960,000 terms; the GO (http://www.geneontology.org/), which contains
approximately 17,000 concept descriptions covering molecular function, bio-
logical processes, and cellular components; and the UMLS Specialist Lexicon
(http://specialist.nlm.nih.gov/LexiconDescription.html) [13], which contains
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mainly lexical information (spelling variants, parts-of-speech, morphological,
and syntactic information) on words and terms used in the biomedical domain.
These resources are discussed in detail in Chapter 3.

However, many studies have suggested that information available in exist-
ing biomedical resources is not sufficient for text mining applications, and that
substantial reengineering is needed to tailor the resources for automatic process-
ing. For example, for UMLS, we refer the reader to [14–17]. Friedman et al.
[18] combined the UMLS and its Specialist Lexicon to acquire lexical knowl-
edge for medical and clinical processing. They generated lexical entries from the
Specialist Lexicon for all represented UMLS concept names from specific cate-
gories, but reported that this automatic, straightforward approach of acquiring
lexical information did not improve the performance of their system. They also
pointed out that term ambiguity (in particular for abbreviations) was responsi-
ble for many errors in term identification. Despite a huge number of entities,
some clinical terms (or their variants) were not present in the UMLS, and many
of the recognized terms do not appear, either because a given term form and/or
concept is missing, or available resources do not represent these types of entities
(e.g., terms that refer to families or group of proteins [19]). We summarize these
issues as they relate to existing biomedical resources, by enumerating problems
not only for text mining, but also for manual curation, knowledge discovery,
and knowledge integration.

1. Resources are focused on human users. Human specialists, who are able to
resolve many types of term variations and ambiguities, use the majority
of resources for knowledge integration. Such resources are not designed
for automated processing. This is especially true for biomedical
ontologies. For example, concept descriptions in an ontology are fre-
quently confused with domain terms. Many of the problems reported
in the literature arise when attempts are made to consult an ontology by
finding concept descriptions in running text. Moreover, some ontology
concepts may have no “natural” terms associated with them (e.g., place-
holder concepts), but still may be useful for human specialists.

2. Limited lexical and terminological coverage of biological subdomains.
Many terminological and lexical resources are more focused on medi-
cine than on biology. The full range of terminologies, covering geno-
type, genes, proteins, protein structure and function, tissue types,
species, and disease types, is only partially covered.

3. Update and curation of resources. The rate of biological term creation
impedes manual update of resources. Even if a terminological resource
exists for a given subdomain, many concepts and terms that appear in
literature are typically missing. The dynamic nature of data makes the
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number of names prone to change. Therefore, for any resource to be
useful, it should be semiautomatically updated, and providing sustain-
able ways to update and curate existing resources is one of the main
challenges.

4. Naming conventions and representation in heterogeneous resources. Many
databases do not use uniformly the official names and symbols pro-
vided by, for example, HUGO and the International Protein Index
(IPI). When integrating different terminologies, the problem of the
same concept being represented in different ways has to be addressed.
Although some cross references exist, many problems still remain in
relation to communication between and integration of different
databases.

5. Terminological variation and complexity of names. Biological names are
very complex. They include an enormous amount of synonyms and
different variant term forms that are used in literature. Most terms are
used with synonyms or other variants, such as acronyms, morphologi-
cal and derivational variations, and so forth. Existing terminological
resources do not cover all such variants.

6. Term ambiguity. Many biological terms and their variants are ambigu-
ous. They share their lexical representations with either common
English words (e.g., gene names and abbreviations, such as an, by,
can, and for); or with other biomedical terms (as indicated above).
Existing resources typically lack information that can support
disambiguation of terms. Terminological resources also do not
address ambiguities related to finer biological classifications, such as
species information. For example, homologue genes have the same
name, but belong to different species.

To overcome these problems, techniques for automatic terminology man-
agement are needed to meet the demands not only of text mining systems, but
also of human specialists. In particular, techniques for automatic recognition of
terms in text, and methods for linking concepts with term forms (in text) are
necessary. These techniques also are essential for systematic collection and
update of terminological data, and for the integration and linking of heteroge-
neous resources.

4.3 Automatic Terminology Management

Terminology management is concerned with the creation, storage, mainte-
nance, updating, and curation of terminologies. Terminology management
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systems may be manual, semiautomatic, or automatic. An automatic terminol-
ogy management system is viewed as incorporating:

• An automatic term recognition (ATR) module, which recognizes and
extracts lexical units from text that corresponds to domain concepts;

• An automatic term structuring (ATS) module, which organizes terms
within a terminology by assigning specific relationships among terms,
typically by using classification and clustering;

• An intelligent term manager (ITM) module, which stores terminologi-
cal data in a suitable repository. ITM also may link terminological
entries with respective factual databases that provide additional infor-
mation (e.g., definitions, links to the corresponding documents, or
factual databases).

An ATR module typically processes literature to recognize, suggest, vali-
date, and extract individual terms and their variants. An ATS module uses lexi-
cal, statistical, grammatical, contextual, or other features to discover possible
relationships among terms and then organize the terminology accordingly. Dif-
ferent approaches can be applied, including extraction of specific relationships,
term classification, term clustering, automatic thesaurus/ontology construction,
term annotation, and so forth. Finally, an ITM module stores and manages all
the terminological data, and provides integration of literature and factual data-
bases. In the following sections, we review existing approaches to term recogni-
tion (see Section 4.4), term structuring (see Section 4.6), and term management
(see Section 4.7).

4.4 Automatic Term Recognition

Identification of terms in a document consists of three tasks [20] (see Figure
4.1). The first step is term recognition, in which the detection of single or multi-
ple adjacent words indicates the presence of domain concepts. In the second
step, recognized terms are classified into broader domain classes, such as genes,
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proteins, or tissues. The final task is the mapping of terms into domain termi-
nologies, which involves the linking of terms and the corresponding concepts.
Such concepts are typically represented in a domain terminological resource,
and mapping should establish a link from a term occurrence in text to a specific
entry in the resource. In this section, we will concentrate on the first of these
tasks.

Automatic term recognition denotes the process used to systematically
extract pertinent terms and their variants from a collection of documents. Its
main aim is to distinguish terms of a subject field from nonterms [21]. How-
ever, the majority of approaches in the biomedical domain integrate term recog-
nition and term classification in one single step.

The techniques for ATR include dictionary-based, rule-based, statistical,
and machine learning approaches, as well as their combinations. For extensive
overviews related specifically to biomedical ATR, we refer the reader to [20, 22].

4.4.1 Dictionary-Based Approaches

Dictionary-based approaches for ATR use existing terminological resources in
order to locate term occurrences in text. Each sequence of words in text that
matches an entry in a terminological resource is considered as a term occurrence;
only such strings are treated as terms. However, given the amount of neologisms
and variations, many term occurrences cannot be recognized in text if straight-
forward dictionary/database look-up is used. This reduces the sensitivity of ATR
systems. In contrast, term ambiguity affects the accuracy. For example, when
names from FlyBase were used as a terminological source for recognition of gene
names in literature, the results have shown an extremely low precision (2% for
full articles and 7% for abstracts), with recall in the range from 31% for
abstracts, to 84% for full articles [23].

Some ATR approaches combine dictionaries with additional processing to
support the term recognition process. For example, edit-distance operations
(i.e., substitution, deletion, and insertion of characters and digits) can be used to
implement more flexible string matching against a dictionary of protein terms
[24, 25]. In order to address the peculiarities of biomedical terms, the cost func-
tion for edit operations can be tuned. For example, substitution of a space with a
hyphen (or vice versa) is considerably less expensive than substitution of any
other two different characters. A similar method was used to recognize gene and
protein names and their variations by approximate string comparison based on
mapping both protein dictionaries and target documents using the nucleotide
code (i.e., a four-letter encoding over the {A, C, G, T} alphabet) [26]. Tech-
niques used for alignment of protein sequences in databases are applied to the
input text, in order to identify text character sequences that are similar to
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existing gene and protein names, which are also encoded by the corresponding
nucleotide codes.

4.4.2 Rule-Based Approaches

Rule-based approaches generally use term formation patterns. The general
approach is to develop rules that describe common naming structures for certain
term classes, using either orthographic, lexical, or more complex morpho-syn-
tactic features. Consequently, each sequence of words or morphemes in text that
can be described by a rule is considered as a term occurrence; only such strings
are treated as terms. Dictionaries of typical term constituents (e.g., terminologi-
cal heads,1 class-specific adjectives, affixes, or specific acronyms) often are used
to assist in term recognition.

A general grammar-based methodology for the recognition of medical ter-
minology was suggested by Ananiadou [27], in which a four-level ordered mor-
phology was proposed to describe formation patterns. The system used a
morphological unification grammar, and a lexicon with instances of specific
affixes, roots, and Greek/Latin neoclassical combining forms. Gaizauskas et al.
[28] used a context-free grammar for the recognition of protein names. They
used morphological features (suffixes) and hand-constructed grammar rules for
each terminological class of interest (e.g., enzymes and proteins). Fukuda et al.
[29] relied mainly on simple lexical rules (patterns) and orthographic features
for the recognition of protein names. Their system, PROPER, distinguishes
between core and feature terms. Core terms are words that usually bear the core
meaning, while feature terms are keywords that describe the function and char-
acteristics of terms (e.g., protein, receptor, and so forth). For example, in SAP
kinase, SAP is the core term, while kinase is the feature term. Nouns and/or
adjectives between core and feature terms are concatenated by application of
simple extension rules to identify protein names. Many systems have been
influenced by PROPER [30, 31].

Rule-based approaches are usually difficult to tune to different domains or
classes, since rules are mostly domain-specific. Alternatives are machine learning
and statistical approaches.

4.4.3 Machine Learning Approaches

Machine learning (ML) systems are usually designed for a specific class of enti-
ties. They use training data to learn features that are useful and relevant for term
recognition and classification. Then, depending on the techniques used, each
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sequence of words in text that fulfills fitness criteria (based on learned features) is
considered as a term occurrence (of a given term class); only such strings are
treated as terms. The main challenge here is to select a set of representative
features that can be used for accurate recognition and classification of term
instances. Another challenge is detection of term boundaries of multiword terms
that are the most difficult to learn. Finally, the existence of reliable training
resources is one of the main problems, since these resources are not widely avail-
able (see Chapter 8).2

Several ML techniques have been used for the identification and classifi-
cation of terms, including HMMs, naïve Bayesian approaches, SVMs, and
decision trees. For example, Collier et al. [32] used HMMs and specific
orthographic features (e.g., “consisting of letter and digits,” or “having initial
capital letter”) for identifying and classifying terms; while Kazama et al. [33]
used multiclass SVMs with a feature set, including lexical information, POS
tags, and affix information. In order to train the classifier, a training corpus was
annotated with “B-I-O” tags. B-tags denote words that are at the beginning of a
term, I-tags denote words that are inside a term, and O-tags denote words
outside a term. The tags were also complemented with the appropriate class
information (i.e., a ‘B-PROTEIN’ tag denotes a word that is at the beginning
of a protein name). Yamamoto et al. [34] further combined boundary features
(based on morpheme-based tokenization) with morpho-lexical features (e.g.,
POS tags or stems); biomedical features (e.g., whether a given word exists in a
compiled database of biomedical resources); and syntactic features (e.g., head
morpheme information). They reported that, individually, biomedical features
were crucial for recognition of protein names.

4.4.4 Statistical Approaches

Statistical approaches are based on various statistical distributions of collocations
in text. The challenge here is to define adequate measures of termhood of candi-
date terms (i.e., their likelihood of representing domain-specific concepts). Since
the vast majority of terms are noun phrases, the main strategy in many systems is
to extract specific noun phrases as term candidates, and then to estimate their
termhoods. Often, term candidates are ranked according to their likelihood of
being terms. Occurrences of candidate terms whose termhood is above a certain
threshold are considered as terms; only such strings are treated as terms. Statisti-
cal techniques often are more easily tuned to different domains, since they avoid
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the problems of designing specific rules, feature selections, and unavailability of
training data.

4.4.5 Hybrid Approaches

Hybrid approaches combine several techniques for term recognition. An exam-
ple of a hybrid method that combines statistics with linguistic preprocessing is
the C/NC-value method [35], which has been used to recognize multiword
terms in several biomedical subdomains (e.g., nuclear receptors and yeast).
Term candidates are suggested by a set of morpho-syntactic filters, while their
termhoods are estimated by a corpus-based statistical measure. The measure
(called C-value) amalgamates four numerical characteristics of a candidate term:
(1) the frequency of occurrence, (2) the frequency of occurrence as a substring of
other candidate terms (in order to tackle nested terms), (3) the number of candi-
date terms containing the given candidate term as a substring, and (4) the num-
ber of words contained in the candidate term. This approach facilitates the
recognition of nested (embedded) subterms, which is particularly important in
the biomedical domain. The selected list of term candidates is further refined by
taking into account the context of candidate terms (NC-value).

A second example of a hybrid system is the protein and gene name tagger,
ABGENE [36]. The system combines machine learning, transformation rules,
and a dictionary-based approach with statistical and probabilistic comparisons.
The protein tagger that has been trained on MEDLINE abstracts by adapting a
general language POS tagger obtains the initial results. An additional set of
transformation rules for the recognition of single-word gene and protein names
also is used. Compound names are extracted by a set of regular expressions,
which rely on the combinations of frequently occurring components in known
multiword gene names. These initial results are then filtered to discard falsely
recognized protein names, while attempting to recover missed instances. Filter-
ing is based on an extensive list of precompiled nonbiological terms (obtained by
comparing word frequencies in MEDLINE with a general language corpus),
and general (i.e., nongene and nonprotein) biomedical terms. In contrast,
missed names are targeted with an extensive list of proteins and genes. Context
words also are consulted. If a word is in a “good” context that typically appears
with proteins and genes, then it is tagged accordingly. A probabilistic algorithm
has generated good context words from the training set.

Context clues also can be used as negative knowledge, in order to recog-
nize terms or term boundaries [37]. More precisely, every sequence of words
between two boundary words can be considered as a candidate term, where
boundary words can be carefully defined by a list containing common English
stop words and some domain specific expressions [38].
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4.4.6 Conclusion

Performance of ATR methods in the biomedical domain varies. Precision is typ-
ically in the 70% to 90% range, while recall is approximately 70%. A recent
evaluation exercise of protein name taggers, for example, has shown that the best
precision values are just above 80%, with maximum recall at 80% (at lower pre-
cision points) [39]. Rule-based approaches typically perform better than other
approaches, but suffer from problems of customization to new domains and
classes. The performance of ML systems depends on the existence of sufficient
training data [36], while the performance of statistically-based systems is limited
due to smaller corpora, but can be substantially enhanced by the inclusion of
normalization techniques (see Section 4.5).

Finally, the majority of ATR approaches focus only on recognizing iso-
lated, individual occurrences in text, and not on linking equivalent term forms
and integrating them with/to existing reference databases. Mapping terms to
databases as the final step of the term identification process is essential for fur-
ther text mining, where acquired knowledge on specific biomedical concepts is
aggregated across different data sources [20]. In order for mapping to be success-
ful, resolving terminological variations and ambiguities is necessary. We discuss
these issues in the following section.

4.5 Dealing with Term Variation and Ambiguity

Systematic identification of terms in text faces two major problems: the exten-
sive variability of lexical term representations, and the problem of term ambigu-
ity. We discuss these in the following sections.

4.5.1 Term Variations

Along with official and standard names, a range of variants, synonyms, and
alternative names is used to refer to biomedical concepts. A particular concept
can be denoted by various surface realizations, which are called term variants.
For example, TIF2, TIF-2, transcription intermediary factor-2, and transcrip-
tional intermediate factor 2 are all used to denote the same concept. Usually, one
of these term variants is considered as the preferred term for terminology
management purposes. Term variation is very frequent: approximately one-
third of term occurrences are variants [21]. Since terms may appear in many dif-
ferent forms, term variation is an essential part of term identification and
management.

Terminological variation also is related to language diversity, and usually is
used to make text more readable by applying stylistic variations. The use of
variants is typically “in proportion to the density of terms over a given text
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segment” [1]. The introduction of a term variant typically assumes that domain
specialists are able to recover the preferred term from a variant by applying varia-
tion techniques. Nevertheless, term variation may cause problems not only for
automatic term recognition but for human experts as well.

We use a broad definition of variability, where the meaning of the term
does not change under variation. This covers simple variations, such as spelling
differences, as well as more complex variations (including synonymy).

Extensive studies have been conducted to analyze variability in biology
terms. For example, Cohen et al. [40] differentiated between contrastive fea-
tures, which can be used as clues to distinguish terms that have different mean-
ings, and noncontrastive variability in synonymous gene and protein names.
They found case insensitivity and optionality of hyphens and parentheses to be
noncontrastive, while “edge effects” (e.g., a number at the last position of a pro-
tein name) were contrastive, [i.e., changing the meaning (identity) of a term].
The simplest but most frequent variations are related to punctuation differences
(bmp-4 and bmp4), usage of different numerals (syt4 and syt iv), or different
transcriptions of Greek letters (iga and ig alpha) [41, 42].

We consider the following types of term variation: orthographic, mor-
phological, lexical, and structural variations. We also consider acronyms (see
Table 4.1).

Orthographic variants include alternative usage of hyphens and slashes
(amino acid and amino-acid), lower and upper cases (NF-KB and NF-kb), differ-
ent Latin/Greek transcriptions (oestrogen and estrogen), other spelling variations
(tumour and tumor), and so forth.
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Table 4.1
Term Variation Types and Examples

Type of Variation Example Variants

Orthographic 9-CIS-retinoic acid and 9-cis retinoic acid

amyloid beta-protein and amyloid -protein

Morphological nuclear receptor and nuclear receptors

Down’s syndrome and Down syndrome

Lexical hepatic leukaemia factor and liver leukemia factor

human cancer and human carcinoma

Structural cancer in humans and human cancers

SMRT and Trip-1 RNAs and SMRT RNA and Trip-1 RNA

Acronyms RAR alpha, RAR-alpha, RARA, RARa, RA receptor alpha

NF-kappaB, NF(kappa)B, kappaB, NFKB factor, NF-KB



Morphological variants are mainly related to simple inflectional phenom-
ena (plural and possessive forms). Derivation can lead to variants in some cases
(cellular gene and cell gene), but not always (activated factor versus activating fac-
tor, which are different terms).

Lexical variants are genuine synonyms, which may be used interchange-
ably (carcinoma and cancer, haemorrhage and blood loss). A special subclass of lex-
ical variants includes the usage of related synonym-like pairs (hepatic and liver,
cardiac and heart) in multiword terms (cardiac disease and heart disease).

Structural variants are more complex. They involve transformations in
term structure, such as simple permutations (integrin alpha 4 and alpha4
integrin); possessive usage of nouns using prepositions (clones of humans and
human clones); prepositional variants (cell in blood and cell from blood ); term
coordination (adrenal glands and gonads); and so forth. In the case of structural
variation, the term variants involved are multiword units. Special subtypes also
may include insertions (adenovirus 5 and adenovirus type 5), but in the majority
of cases, insertions typically generate a specialization of a term (blood
mononuclear cell and blood cell [21]).

Acronyms and abbreviations are very frequent term variation phenomena
used as synonyms for the corresponding full-form terms. For example, a recent
study [43] reported that only 25% of documents relevant to the concept
denoted by the term c-jun N-terminal kinase could be retrieved by using the full
form, since more than 33% of the documents refer to the concept by using its
acronym, JNK. Discovering acronyms and relating them to their expanded
forms is an essential aspect of text mining and terminology management. In
general, selecting the first (or first few) letters of the words from the correspond-
ing full form forms the acronym. There are no formal rules or guidelines for the
coinage of new acronyms. Therefore, acronyms are equally subjected to varia-
tion and ambiguity. Some acronyms are synonymous—the same term may have
several acronyms (NF kappa B and NF kB for nuclear factor kappa B ). Other
acronyms are polysemous (ambiguous)—the same acronym may correspond to
different terms (GR is used as an acronym for glucocorticoid receptor and for
glutathione reductase). Both phenomena present substantial challenges for
terminology management and for text mining (see Chapter 5).

These variation phenomena are frequently combined (e.g., lexical and
morphological variation, structural and morphological variation, acronym and
morphological variation, and so forth). The process of composing variations is
studied in detail in [21].

Since concepts can be represented by a set of term variants, terms can be
viewed as equivalence classes of term variants. An equivalence class (called
synterm [44]) contains all term forms that are used to denote a given concept.
From each equivalence class, we select one term form as the preferred term,
which acts as the concept label (see Table 4.2). ATR now can be viewed as the
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task of recognizing equivalence term classes, rather than individual term forms
[44]. For terminology management purposes, it is critical that the preferred
term be an attested term form, occurring naturally in text. Normally, a dictio-
nary entry form is chosen as the preferred term.

For example, in order to arrive at the equivalence class for human cancer in
Table 4.2, we have to deal with not only orthographic, morphological, and lexi-
cal variants, but also with structural variations. To do this, we need to carry out
linguistic normalization of the individual term variants using a set of transfor-
mations [44] (see also Section 4.7).

The simplest approach to handle some types of term variation (e.g., mor-
phological) is based on stemming. If two term forms share a stemmed represen-
tation, then they can be considered as belonging to the same equivalence class
[45, 46]. However, stemming may result in overstemming (i.e., leading to the
conflation of terms that are not real variants), or understemming (i.e., leading to
failure to link real term variants).

We can also recognize and link term variants in text by combining
terms and their synonyms from existing terminologies with approximate string
matching and edit distance techniques (as indicated in Section 4.4). These tech-
niques also can be augmented with probabilistic or machine learning methods to
filter false positive variation pairs [25], or to automatically generate acronyms
from definitions [47]. Another example is the MetaMap program [48], which
maps noun phrases identified by the Specialist minimal commitment parser to
UMLS Metathesaurus concepts. Handling terminological variation supports
mapping terms from text into corresponding data sources. MetaMap uses a
multilevel mapping strategy, which first analyzes a target term to generate a
multitude of possible variants, including acronyms, synonyms, and inflectional
variants. Each of these variants is then mapped against concept names in the
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Table 4.2
Preferred Terms and Associated Term Equivalence Classes (Synterms)

Preferred Terms for Concepts Term Forms

all trans retinoic acid all trans retinoic acid, all-trans-retinoic acids, ATRA, at-RA

nuclear receptor nuclear receptor, nuclear receptors, NR, NRs

9-cis retinoic acid 9-c-RA, 9cRA, 9-cis-retinoic acid, 9-cis retinoic acid

deoxyribonucleic acid DNA, DNAs, deoxyribonucleic acid

nuclear factor kappa B NF-KB, NF-kb, nuclear factor kappa B, NF-kappaB

human cancer human cancers, cancer in humans, human’s cancer, human
carcinoma



Metathesaurus. The method compares the strength of the mapping for each
term variant, ordering possible mapping candidates.

Other approaches rely essentially on rules that describe variations. For
example, FASTR [21] uses several hundred metarules dealing with morphologi-
cal, syntactic, and semantic term variation. Here, term variation recognition is
based on the transformation of basic term structures into variant structures.
Syntactic metarules address the transformation of term structures, and do not
involve inflectional, morphological, derivational, or semantic relationships.
However, they may contain additional constraints (e.g., POS tags) that a
sequence has to fulfill in order to be considered as a candidate variation. Some of
the variants recognized by FASTR are more conceptual than terminological,
since nonterminological units (e.g., verb phrases, extended insertions, and so
forth) also are linked to terms in order to improve indexing and retrieval.

Lastly, there has been work towards direct identification (i.e., mining) of
term synonyms in documents. Various techniques can be utilized. For example,
Yu and Agichtein [49] experimented with unsupervised, partially supervised,
and supervised ML approaches, as well as with a rule-based system, for the
extraction of gene and protein synonyms that occurred within the same sen-
tence. The unsupervised ML approach was based on the comparison of mutual
information of synonym candidates with respect to other words in their neigh-
boring contexts, while the partially supervised, bootstrap method used a set of
seed synonym occurrences to learn contexts that indicated occurrence of syn-
onyms. The supervised SVM-based method used the same seed occurrences to
learn a classifier that classified the text surrounding a pair of gene/protein names
as a synonym or not. Finally, the rule-based system was based on a set of manu-
ally defined lexical patterns (e.g., fragments such as GENE , also known as

GENE ) that indicated typical contexts used to express synonymy.

4.5.2 Term Ambiguity

In addition to variability, terminological ambiguity is a further challenge for
automatic term management. Terms are frequently associated with multiple
meanings, mainly for reasons of terminological economy. This is typically the
case when the same term is used to denote several different views or aspects of a
concept (so-called systematic ambiguity or term multidimensionality). For
example, an occurrence of the CAT protein can be associated with several differ-
ent protein entries in a protein data source, depending on the species in ques-
tion. However, some terms (in particular acronyms) can have multiple
independent meanings (e.g., CAT can be a protein, animal, or medical device).
Disambiguation methods typically rely on contextual analysis of a given occur-
rence, mainly using various machine learning (i.e., classification) strategies to
decide which term sense is correct in the given context. For example,
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Hatzivassiloglou et al. [50] experimented with a variety of techniques (e.g., naïve
Bayesian and decision trees) to disambiguate gene and protein names and their
transcripts (mRNA, tRNA). They used contexts of known occurrences to learn
weights for contextual elements. When an unknown occurrence is encountered,
they apply these weights to the new contextual elements. They experimented
with a variety of contextual features, such as morphological, syntactic, distribu-
tional, and so forth. Pakhomov [51] used a maximum-entropy classifier by
using only two neighboring words left and right to find a correct interpretation
of a given ambiguous acronym. He also experimented with features based on
document layout, particularly headings (titles) of the sections of clinical reports
in which ambiguous acronyms appeared. In many cases, a narrow context may
not always be enough to disambiguate a term (e.g., when a protein name is
shared between species); a wider context (e.g., a whole article) may need to be
analyzed before terms can be mapped. Liu et al. [52] aimed at selecting a correct
sense of a term (typically an acronym) that is associated with several entries in
the UMLS. Based on other (unambiguous) UMLS concepts that are associated
(through the Metathesaurus) with each of the given senses of the target term, the
method builds a classifier for each sense of the term.

In addition to disambiguation between various biomedical meanings, a
problem is that many biological names share their lexical representation with
common English words (e.g., gene names, such as an, by, can, and for; see [23]).

4.6 Automatic Term Structuring

Automatic term recognition is one of the components of term management.
Once we identify terms and link their variants together, we need to relate them
with each other (i.e., to organize them into knowledge structures). As we men-
tioned in the introduction of this chapter, terms belong to a delimited knowl-
edge space, and in order to situate them within this knowledge space, we need to
establish and identify their relationships with other terms. Capturing relation-
ships also is useful for users wishing to acquire, situate, and visualize concepts or
groups of concepts [53, 54].

Term structuring typically includes classification and clustering, which are
keys to knowledge organization. In many cases, direct links between terms (e.g.,
semantic networks) are of special interest (e.g., protein-protein interactions,
annotation of genes with relevant GO terms, and so forth).

Several methods have been suggested for the extraction of relationships
from literature. For detailed overviews in the biomedical domain, we refer the
reader to [55, 56]. The most straightforward approach to establishing term links
is to measure lexical similarity among the words that constitute terms [57, 58].
For example, a term derived by modifying another term typically indicates
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concept specialization (orphan nuclear receptor is a kind of receptor), or some spe-
cific functional relationship (CREP binding protein is linked to CREP through
the binding relationship [59, 60]). Many term classification systems rely on such
functional words (receptor, factor, or radical) for assigning term categories [28,
29, 31]. More often than not, terms do not contain any explicit term category
information. In such situations, additional lexical processing is needed. For
example, functional words can be combined with conditional probabilities of
words that are indicative of specific classes [61]. Jacquemin [6] experimented
with linking terms associated by specific syntactic variation links that reflect
internal term structures. Nenadic et al. [59] generalized these approaches by
considering all possible overlapping subterms, with an additional weight given
to the similarity between terms if they have common heads. However, lexical
similarities are not always straightforward, due to a high rate of neologisms and
ad hoc names, which rarely aid the encoding of particular functional properties
of the underlying concepts in a systematic manner. For example, experiments
have shown that only 5% of the most frequent terms from the GENIA corpus
that belong to the same biomedical class have some lexical links [42].

Therefore, term relationships are typically extracted, using analysis of con-
text in which term instances tend to appear. Contexts may be determined as an
entire abstract or document, a sentence, or a phrase. Ding et al. [62] investigated
the effectiveness of these contexts, based on a term-term cooccurrence measure.
They reported that larger units naturally provided better recall, while smaller
units (e.g., phrases) typically delivered significantly better precision.

Various methods are used to uncover associations among terms. Typically,
some type of similarity is established using the contexts of term occurrences.
One of the main problems is selecting the best discriminating textual features
that show similarities among terms. A traditional approach is based on the idea
that entities that cooccur in text with a given term (e.g., within the same
sentence, paragraph, or document) may be indicative of its function, and that
terms with similar cooccurrence distribution profiles have related roles or
convey related meanings. For example, many approaches rely on simple
cooccurrence patterns of words [54, 62] or other terms [38, 63] that appear next
to the terms in question. Similarly, Jenssen et al. [64] assigned weights to rela-
tionships between genes based on the frequency of their mutual cooccurrence.
Other statistical measures that assess how strongly terms are related to each other
also are used (e.g., mutual information). However, statistical systems typically
do not identify the type of relationship, but rather indicate a connection or asso-
ciation among entities. Furthermore, cooccurrences and statistical distributions
within larger text units (e.g., documents) may not reveal significant links for
some types of relationships. For example, many studies reported that even 40%
of cooccurrence–based relationships were biologically meaningless [64, 65].
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Therefore, other features that consider more linguistic and terminological
aspects need to be considered.

Rule-based approaches for extracting term relationships rely on predefined
patterns whose instances are captured in text. They include simple lexical pat-
terns [66, 67], (semantic) templates [68, 69], and domain-specific grammars
that are used to parse sentences [70–72]. For example, hyponymic and taxo-
nomic relationships can be extracted by using general language lexico-syntactic
patterns, such as term enumerations ([...] steroid receptors such as estrogen recep-
tor, glucocorticoid receptor, and progesterone receptors) [59]. More domain-specific
relationships can be extracted by special patterns and rules, which extract a pre-
defined type of relationship (e.g., binding, activation, and so forth). Since rela-
tionship-specific rules are handcrafted, this significantly prolongs the
construction of a terminology mining system, reduces its adaptability, and
excludes term relationships that do not correspond to the predefined patterns
and templates. Thus, some approaches are aimed at automatic mining [59, 73]
and bootstrapping [74] of contextual patterns, which can be used for estimating
the similarities among terms.

To cope efficiently with the complexity of knowledge needed to perform
reliable relationship extraction and term classification, many approaches use
machine learning techniques to learn features that characterize specific relation-
ships or term classes. In addition to the systems discussed in Section 4.4.3, see
[54, 75–81]. For instance, an SVM approach with word features was used to
classify genes with respect to their subcellular location [54]. Term sources, both
internal (functional words and suffixes) and external (words occurring nearby),
can be combined for the classification task [82]. Spasic et al. [83] suggested an
alternative ML approach that uses case-based reasoning to classify terms. Classi-
fication experience is collected in the form of term contexts indicative of a given
class. New terms are then classified by flexible comparison of their contexts
against the collection of contexts, and corresponding classes are selected. Finally,
several ML methods have been used for the annotation of biomedical entities.
For example, a word-based maximum entropy measure [84], as well as SVM
classification with terminological features [85], were used for the annotation of
genes and proteins with GO codes. The main problems related to ML methods
are that they require large amounts of training data and need to be periodically
retrained upon the advent of new data. They typically underperform for small
(minority) classes, due to data sparseness.

As indicated in the previous examples, various approaches are combined to
classify, cluster, or link terms. For example, Koike et al. [86] used cooccurrences,
collocation similarities, and rule-based techniques to automatically extract gene
and protein biological process functions; while Nenadic et al. [59] combined
lexical, syntactic, and contextual similarities to estimate overall similarity among
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terms. It has been shown that by combining various aspects of term similarities,
accuracy of suggested associations typically improves.

4.7 Examples of Automatic Term Management Systems

Few systems have been designed and developed to facilitate automatic terminol-
ogy management and integration in the biomedical domain. Various approaches
have been suggested to automatically integrate and map between resources (e.g.,
between GO and UMLS, using flexible string matching [87, 88]). For example,
the TERMINO system [11] provides a database schema for storing large-scale
and diverse biomedical word lists collected from various resources (including
UMLS, GOA, and in-house ontologies). It attempts to establish and maintain
links between resources of various types, including ontology concept names,
terms, controlled vocabularies, nomenclatures, classification descriptors, and so
forth. Its specific focus is to provide storage efficiency and flexibility, and to pro-
vide a dictionary-based look-up mechanism. Despite its name, TERMINO is
not focused on terminology, since it has no means to discriminate between
terms and nonterms. In addition, morphologic and orthographic term varia-
tions are not included in the database. Instead, they are treated by an external
general processing component, which reduces its ability to deal with particular
domain phenomena. These attempts revealed the difficulties inherent in the
integration of biological terminologies, which were due mainly to extensive term
variation, and to term ambiguity with respect to mapping into a data source. For
example, attempts to integrate gene names in UMLS were not successful, since
they increased ambiguity.

While these approaches aim at collecting and integrating existing
resources, Automatic Term Recognition and Clustering of Terms (ATRACT) is
a terminology management workbench in the biomedicine domain that inte-
grates automatic recognition of terms and extraction of their associations [89].
Its main purpose is to help biologists and terminologists gather and structure
domain-specific terminology. It automatically retrieves and clusters terms
on-the-fly, as well as facilitates integration of different textual sources.

The core ATRACT modules (see Figure 4.2) are: an ATR module
(C/NC-value module), an acronym recognition module, and a term clustering
module (ClusTerm). Additional external modules (e.g., a POS tagger, shallow
parser, and a clustering program) are invoked. Communication among all mod-
ules is based on the exchange of XML-tagged documents.

Automatic term recognition in ATRACT is carried out using an enhanced
version of the C/NC-value method [35], which incorporates term variation and
acronym recognition [44]. The overall ATR process is presented in Figure 4.3.
The first step is to extract term candidates using general term formation
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patterns, mostly using noun phrases, and to transform them into their normal-
ized form, using a set of rules. Normalization facilitates conflation of equivalent
surface expressions. In ATRACT, we normalize orthographic, morphological,
lexical, prepositional, and coordinated terms. An acronym recognition and
conflation module [90] is used to link acronyms and their variants to their
respective preferred terms. All equivalent term forms are then grouped into
synterms. The estimation of termhoods (i.e., calculation of C/NC-values) for
synterms is then carried out for the whole synterm, rather than for individual
term candidates. This approach ensures that all term variants are dealt with
jointly, thus supporting the fact that they denote the same concept. Finally,
synterms are ranked according to their termhoods, and presented to the user. It
has been shown that the incorporation of some term variation types is very use-
ful for boosting precision and recall of ATR. For example, acronyms and inflec-
tional unification can increase precision by up to 70%, while recall can improve
by up to 25% [44]. However, other term variation types typically have only
marginal influence on performance, but can be still important for many text
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mining tasks, such as information retrieval, information extraction, term and
document clustering and classification, as well as for systematic collection of
terminology.

Extraction of term relationships in other approaches is typically based
either on their mutual co-occurrences in text, or on automatic mining of their
similarities. Relationships based on co-occurrences are assessed through standard
mutual information [63, 89]. In contrast, ATRACT uses a more linguistically-
and terminologically-based approach to discover term similarities, by combining
lexical, syntactic, and contextual similarities [59]. Lexical similarity is based on
the degree of constituent words shared between terms. It is calculated by consid-
ering substrings (i.e., possible nested terms) that are shared among terms,
with additional credits given to the similarity if the two terms have a common
terminological head. This type of similarity typically captures hyponymy and
meronymy relationships, as well as some specific biomedical relationships (e.g.,
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the binding relationship between CREP and CREP binding protein). Syntactic
similarities rely on specific lexico-syntactic expressions (such as term enumera-
tions and conjunctions), in which a sequence of terms appears as a single syntac-
tic unit. All terms appearing in such expressions are used in combination with
the same verb or preposition, and typically share similar functions. Finally, con-
textual similarities are based on automatic discovery of relevant contexts shared
among terms, in which terms appear individually, not as part of an enumeration
or term conjunction. For example, terms such as receptor, estrogen receptor, RXR,
and TR appear in textual contexts that can be roughly described using the pat-
tern ‘TERM VERB:bind CLASS:dna’. By collecting and comparing such con-
texts, some functional links among these terms can be discovered. Extensive
experiments performed for these similarities have shown that lexical and syntac-
tic links have high precision but low recall, while contextual similarities result in
significantly higher recall with moderate precision. By combining the three sim-
ilarity measures, we can improve both precision and recall of extracted term rela-
tionships. These relationships are further used in ATRACT to establish clusters
of related terms. Some examples are presented in Table 4.3.

A typical way of navigating through the textual resources via ATRACT is
that the domain expert, whose interest is expressed by a set of key terms, first
retrieves a set of documents. Then, after having the corpus POS tagged and the
basic syntactic chunks marked, the core ATRACT modules process it. Terms
(including variants and acronyms) are automatically recognized and annotated
in the corpus. They are consequently highlighted in the text, and by clicking on
them, the user can get all the information (e.g., corresponding synterms and
links to their occurrences) extracted from the documents. Furthermore, term
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Table 4.3
Example of Term Clusters

Cluster ID Cluster Elements

1 basal transcription machinery, basal transcription, transcription activation
transcriptional activation, transcriptional interference, transcriptional repressor,
transcriptional silence, transcriptional activity

2 cell proliferation, HL-60 cell, breast cancer cell line, cancer cell, breast cancer cell,
breast cancer patient, breast cancer, primary breast cancer

3 hRAR alpha, RXR alpha, RXR homodimers, TR/RXR heterodimers

4 RA response element, RA response, response element, responsive element

5 glucocorticoid receptor, mutant androgen receptor, receptor complex, mineralocorticoid
receptor, progesterone receptor, estrogen receptor, human estrogen receptor, retinoid
receptor, retinoid x receptor, nuclear receptor family, nuclear receptor



similarities are calculated for the extracted terms, and they are clustered and pre-
sented to the user. After terminological processing, the user may keep the results
in the form of a repository of terms in which they are interested, along with all
collected data. The results can be used to generate a controlled vocabulary for
indexing or searching. More importantly for text mining purposes, they can be
used to update lexical, terminological, and ontological resources utilized by
applications such as information extraction (see Chapter 7); and to drive con-
ceptual annotation of corpora (see Chapter 8).

Users can tune the terminology mining process to meet their needs. Pro-
cessing is guided by a set of parameters that can affect the term extraction and
structuring processes. By tuning the parameters, the user can control the
retrieval of different types of terms, as well as the amount of noise in the result-
ing set of terms. This allows the domain specialist to experiment with the results
of the system according to their needs. By specifying a list of preexisting or
known terms, ATRACT can optionally highlight only new terms, so that the
user can concentrate on the acquisition/analysis of only those terms that would
potentially expand their knowledge. Thus, ATR becomes an exploration
method for bridging the gap between the existing knowledge of the user and
available knowledge resources.

4.8 Conclusion

Given the amount of neologisms characterizing biomedical terminology, it is
necessary to provide tools that will automatically extract newly coined terms
from texts, and link them with databases and other controlled vocabularies. The
importance of the topic has triggered significant research, which has resulted in
several approaches used to collect, classify, and identify term occurrences in bio-
medical texts. The main aim of automatic terminology management is to pro-
vide tools to bridge the gap between terms as they occur in text and domain
concepts, which further facilitates effective mining of scientific literature and
integration with databases. This chapter has presented various methods for auto-
matic terminological management: recognizing terms in text; linking various
terminological variants; and structuring terms by extracting corresponding
features from literature.

Naming conventions and internal characteristics of specific terminological
classes, or contextual clues that are used for the recognition of sequences that
represent specific domain concepts, are the basis for term recognition and classi-
fication methods. Features ranging from orthographic and morphological, to
syntactic and contextual, are used. In addition to rules, different statistical
measures and machine learning approaches are used for identification and
structuring of terms.
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There are still several open challenges requiring further research. In partic-
ular, in the area of term recognition, challenges include:

• Accurate recognition of term boundaries and further identification of
internal term structure, which also can be useful for term classification;

• Treatment of various types of term variation and their integration into
term identification;

• Anaphora resolution [91] and linking term coreferences;

• Selection of the most representative terms (and concepts) in a
document.

This latter challenge holds out the hope of attaining sophisticated docu-
ment indexing for improved information retrieval through term-based indexing
(rather than using index terms). This is crucial for database curation and other
annotation tasks.

Although much of the research is devoted to terms related to protein and
gene names (see Chapter 6), the recognition of other classes of terms is vital for
successful mining of the biomedical literature.

The recognition and collection of terms that correspond to domain con-
cepts is not the ultimate goal of automatic term management. Structuring terms
into classes, establishing their mutual links and associations, and mapping them
to databases, is an additional part of term management. Particular challenges are
the extraction and mining of specific term relationships from the literature and
resolving term ambiguity.

Automatic term management aims to develop and apply efficient and
accurate methods, both for building and updating terminological resources, and
for supporting on-the-fly recognition of terms in text. Furthermore, leveraging
term management (particularly terminology structuring) with experimental data
derived by postgenomic techniques (such as expression array and sequence anal-
ysis) yields an opportunity to improve the performance of text-based approaches
(see Chapter 10). For example, classification and clustering are improved by
integrating and complementing features and relationships extracted from text
with those from experimental databases [54].

To summarize, the processing and management of terminology is crucial
for accessing information stored in literature, since information across scientific
articles is conveyed through terms and their relationships. Without knowledge
of the terminology, the understanding of documents is hindered. Since biomed-
ical knowledge is expanding dynamically, it is very difficult to rely exclusively on
manually developing terminologies. Therefore, automatic term management
tools are indispensable for filling gaps in existing knowledge by suggesting possi-
ble additions to the biomedical terminology, and for supporting dynamic
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literature mining and knowledge integration. Efficient term management is not
only essential for the (semi)-automatic and systematic collection and updating
of terminological data, but is also crucial for mining biomedical literature, and
for the integrating with and linking of heterogeneous resources. Consistently
and systematically derived terminological resources are vital for text mining, and
substantial efforts should be dedicated to terminology processing, particularly in
the biomedical domain. As a final point, we note that the field in general would
benefit from a proper treatment of terminology, by which we mean that a clear
distinction should be made between terms, ontology concept labels, controlled
vocabulary items, index terms, and descriptors.
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5
Abbreviations in Biomedical Text
Jeff Chang and Hinrich Schütze

5.1 Introduction

Abbreviations, representing shortened forms of names of concepts, including
diseases and genes, are prevalent in the biomedical literature. In the age of
high-throughput genomic analyses, the rate at which new molecules are discov-
ered and characterized is increasing, which is reflected in the ever-growing
numbers of scientific articles. As a result, the number of abbreviations used in
the literature also increases (see Figure 5.1). In the biomedical literature, 64,262
new abbreviations were introduced in 2004, and there is an average of one new
abbreviation in every 5 to 10 abstracts [1].

Therefore, it is becoming increasingly difficult for researchers to keep up
with known abbreviations. When encountering an unfamiliar abbreviation, one
possible solution is to use a dictionary of abbreviations, such as the Dictionary of
Medical Acronyms & Abbreviations [2]. However, such manual compilations
suffer from several problems. First, dictionaries contain from 4,000 to 32,000
abbreviations [3], which is only a fraction of the approximately 800,000
believed to exist [1]. Second, due to the rapid and continuous creation of new
abbreviations, “acronym dictionaries are outdated by the time they are pub-
lished” [4]. Finally, dictionaries do not quantify the popularity of an abbrevia-
tion, which would be useful to help distinguish among possible different
meanings [3].

Often, an abbreviation can be interpreted as several different definitions.
For example, ACE can be either angiotensin converting enzyme or affinity capillary
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electrophoresis [5]. If the abbreviation were not explicitly defined in the text, then
its correct definition would depend on the content of the remainder of the text
[6]. Some have observed that the number of definitions is growing faster than
the number of abbreviations, indicating that this problem is growing more
severe [3].

Despite the possible ambiguity in the meaning, abbreviations are an
important component in information retrieval systems. Such systems identify
documents from a database relevant to one or more keywords provided by the
user. In searches for biomedical articles, how abbreviations are handled in the
query clearly impacts the results. Search engines that explicitly exploit abbrevia-
tions, rather than full forms, in search terms yield more relevant documents [7].

Abbreviations are also an important component of text mining algorithms.
In one study of computational approaches to generate a lexicon for biomedical
natural language processing applications, the researchers noted that not han-
dling abbreviations in the text is a major source of error [8]. In text, abbrevia-
tions function essentially as synonyms, where the abbreviation and its definition
both refer to the same concept. Thus, a robust text processing system should
understand and correctly handle them. Failure to handle such phenomena
would reduce the amount of information available to the system.

Therefore, in the biomedical text processing community, there is great sci-
entific interest in developing computational methods to identify and define
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abbreviations in the literature. Most of the work has been focused on investigat-
ing methods to automatically find abbreviations in literature.

Abbreviation is a broad term that describes a shortened form of a word or
phrase. The term acronym also is commonly used, and generally means a short-
ened form created from the initial letters of the words in the phrase. Some peo-
ple also require acronyms to be pronounceable. In this chapter, we will refer to
the most general problem as abbreviation identification, and we will consider an
acronym to be a type of abbreviation.

There are two parts to an abbreviation, the short form (e.g., NAT ) and the
long form (e.g., N-Acetyl Transferase). The short form is sometimes called the
abbreviation, and the long form can be called the definition or expansion. We
use these terms interchangeably. Framed succinctly, abbreviation identification
is the problem of analyzing unstructured text to extract pairs of <abbreviation,
long form> that occur in the text.

There are many potential difficulties in developing methods to find abbre-
viations. In the simplest case, searching for words whose initial letters match the
letters in the acronym can identify that acronym. However, many biomedical
abbreviations deviate from this pattern, causing complications in the design of
robust automated algorithms (see Table 5.1).

In addition to varied patterns of abbreviation formation, a more subtle
and challenging problem stems from the fact that there is disagreement on the
actual definition of abbreviation. There has not yet been a systematic attempt to
define an abbreviation and to document differing notions of what constitutes an
abbreviation. In an experiment where multiple experts were asked to identify the
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Table 5.1
Varied Patterns Used to Abbreviate Long Forms

Abbreviation Definition Description

VDR vitamin D receptor The letters match the initial character of each word.

PTU propylthiouracil The letters match at boundaries of syllables.

JNK c-Jun N-terminal
kinase

The letters match at punctuation marks.

IFN interferon The letters match some other place.

SULT sulfotransferase The abbreviation contains contiguous characters from
a word.

ATL adult T-cell leukemia The long form contains words not in the abbreviation.

CREB-1 CRE binding protein Letters in the abbreviation do not occur in the long
form.

beta-EP beta-endorphin The abbreviation contains complete words.



abbreviations in identical documents, the experts disagreed from 6% to 12% of
the time. There were three main areas of disagreements: differing definitions of
abbreviations, disagreement on the boundaries of long forms, and overlooked
abbreviations (i.e., human error) [6].

One clear disagreement is whether aliases (i.e., two phrases that are not
lexically related to each other), are abbreviations. For example, apoptosis is an
alias for programmed cell death. We use the term alias instead of synonym,
because alias includes a wider range of relations, such as hyponymy and
hyperonymy. Some experts would consider that a type of abbreviation—two
terms that have the same meaning, even though they do not share characters.
Medstract, a corpus of MEDLINE abstracts where the acronym-meaning pairs
were annotated by an expert, includes 13 aliases out of a total of 168 abbrevia-
tions [4]. Many would not consider aliases to be abbreviations. Algorithms to
identify aliases are fundamentally different than algorithms that can rely on the
fact that most abbreviations are shortened versions of the long form.

Another more subtle area of disagreement arises from abbreviations that
are not strictly synonyms of their long forms. Instead, their meaning may be
either more general or more specific (i.e., hypernyms or hyponyms). For exam-
ple, in HOT-SPOT (HOT1), the abbreviation indicates a specific variant of the
HOT-SPOT gene, and thus HOT1 is a hyponym of the long form. However,
many would still consider it an abbreviation because it is a shortened form of the
long form.

Finally, there is considerable ambiguity in the boundary of the long form.
For example, applying a straightforward letter matching heuristic to RNA Poly-
merase I (Pol I) would yield the long form Polymerase I. However, based on bio-
logical knowledge, many would consider the complete long form to be RNA
Polymerase I. Similarly, experts in anatomy would consider the phrase lateral
arcuate nucleus, rather than just arcuate or arcuate nucleus, to be the long form
for the abbreviation Arc. These disagreements are based on expert knowledge of
the use and meaning of the word. To correctly identify these long forms, algo-
rithms need to include considerably more sophisticated processing based on
knowledge or typical use of the abbreviation within the corpus.

Despite these problems, many algorithms have been developed and
applied to the biomedical domain, specifically to literature available from
MEDLINE. MEDLINE is a database of citations of scientific literature related
to medicine and biology, originating in the 1960s. It is made available by the
National Library of Medicine. MEDLINE currently contains more than 15 mil-
lion citations and is growing at an increasing rate. Although MEDLINE does
not contain the full text of the articles, it does contain the title and abstract of
the articles, which constitutes the main parts of interest in text analysis.

MEDLINE is made available on the Internet at several different Web sites,
with the most prominent site being PubMed at the National Center for
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Biotechnology Information (NCBI). Because of the difficulties in obtaining full
texts, the entire biomedical corpus for abbreviations has not yet been compre-
hensively analyzed. Indeed, some have argued that analyzing the full text may be
required to find all abbreviations [9].

5.2 Identifying Abbreviations

In this chapter, we concentrate on abbreviation identification methods that are
applied directly to the biomedical domain. Although many nonbiomedical
abbreviation finders exist [4], the abbreviations in biomedicine deviate suffi-
ciently from nonbiomedical text, so that general algorithms perform poorly and
are difficult to adapt to the specialized domain [4, 10].

The problem of identifying abbreviations in free text can be decomposed
into two broad steps: (1) finding a list of candidate <abbreviation, long form>
pairs based on parentheses; and (2) distinguishing actual abbreviations from
other parenthetical statements. Out of all candidate pairs extracted, only
approximately 30% actually indicate an abbreviation [3].

The first step is to find candidates. The community generally agrees on the
methods for finding them, although there are some differences in the details.
Current methods search the text for parentheses that may indicate abbreviations.
For further investigation, the methods extract candidates according to one of the
two following patterns:

1. candidate long form (candidate short form)

2. candidate short form (candidate long form)

After the text is extracted from the parentheses, algorithms differentiate
between these two patterns by assuming that abbreviations consist of a single
word. If there is only a single word within the parentheses, then the text fits the
first pattern; otherwise, it fits the second. One exception to this arises from the
fact that some long forms also may consist of a single word [e.g., the amount of
Ab (antibody)]. The algorithm thus may need to consider a third possibility that
a single word inside the parentheses is a long form of the immediately preceding
word [6]. In practice, only 1% of text matches the second pattern [3].

As another complication, the algorithm must determine the amount of
text to examine in the first pattern. At one extreme, the algorithm may search for
the long form in all the text from the beginning of the sentence. Although this
strategy always would find the long form, it also would often find a coincidental
combination of words that incorrectly appear to be a long form. Thus, most
algorithms either will limit the amount of text that they examine, or will impose
a penalty on long forms that include too many words. For example, some
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algorithms limit the number of words examined, based on the number of letters
in the abbreviation [1, 3, 5].

This general approach to finding candidates is limited, since it only con-
siders abbreviations occurring in parentheses. However, abbreviations may be
defined with other patterns, and methods that consider these patterns will be
able to identify more abbreviations. Wren and Garner propose a method that
examines sentences across multiple abstracts to find common sets of words that
may be long forms [3]. Such approaches are still under development. Neverthe-
less, the extent of the benefits from this more-thorough treatment is unclear. It
is possible that across a large corpus, such as MEDLINE or the Internet, com-
mon abbreviations will be defined in a way that is already detectable.

After the candidates are identified, the algorithm then must determine
whether they are indeed abbreviations. In this step, there is considerable varia-
tion in approaches, which mainly differ based on the sources of the information.
The three main approaches are Heuristic, Alignment, and NLP. Heuristic, or
rule-based, methods attempt to match the letters in the abbreviation to the
letters in the long form, using manually constructed patterns. Alignment meth-
ods find all possible matches between the letters in the abbreviation and the
letters in the long form, and then score the quality of the matches. NLP meth-
ods may use heuristics or alignments, but also consider information about the
parts-of-speech of the words. These three categories are not cleanly divided, and
there is some overlap in their application.

5.2.1 Heuristics

The creation of abbreviations following a limited set of patterns is the main
insight of a heuristic method. In the simplest case, concatenating the initial let-
ters of the words in the long form creates an acronym. Similarly, authors also
tend to use letters at the beginning of syllables, to ignore conjunctions and prep-
ositions, and to use consecutive letters in a word. Abbreviations can be recog-
nized if the candidate abbreviation matches the candidate long form according
to one or more of these patterns.

Heuristic methods differ based on the types of information encoded in
their rules. Although all methods favor letters that align to the beginning of
words, methods also can give credit to letters that align on syllable boundaries
[11], or even boundaries of domain-specific word fragments, such as acetyl [12].

For reasons described above, heuristic rules also should penalize words in
the long form that do not match letters in the abbreviation. One exception to
this rule is that authors often do not include words such as prepositions and con-
junctions as part of the abbreviation. The ARGH method includes a list of such
words, and does not penalize long forms in which these words are skipped in the
abbreviation [3].
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When matching letters from the abbreviation to the long form, one source
of error is that the letters may match coincidentally. For example, in
argininosuccinate synthetase (AS), the letters in the abbreviation AS can match the
underlined letters in synthetase, obviating the need for the first word, even
though it clearly belongs in the long form [3]. A much better long form would
match the A to argininosuccinate. Therefore, many algorithms include the rule
that the first letter of the abbreviation must match the first letter in the defini-
tion. In fact, some have argued that using only this rule is sufficient to accurately
identify abbreviations [10].

One can tune the performance of heuristic methods by including or modi-
fying the patterns. Adding more promiscuous patterns would result in algo-
rithms that find more abbreviations, at the cost of also including more incorrect
ones. There is still disagreement on the optimal set of patterns, which will
depend on the domain of text to be analyzed, and the performance required of
the algorithm.

5.2.2 Alignment

In alignment methods, the notion of matching the letters from the abbreviation
to those in the long form is made more explicit, since the alignment method
shows the concordance between specific letters in the two forms. Having an
explicit alignment allows the algorithm to handle gracefully two problems that
occur in abbreviations: (1) the abbreviation contains letters that do not occur in
the long form, and (2) the long form includes words that do not correspond to
letters in the abbreviations.

To find all possible alignments between the candidate abbreviation and
long form, these methods use a dynamic programming algorithm. This is a case
of the Longest Common Substring (LCS) problem studied in computer science
and adapted for biological sequence alignment in bioinformatics [13].

Dynamic programming can find the optimal alignment between two
strings X and Y in O(NM) time, where N and M are the lengths of the strings.
This algorithm is expressed as a recurrence relation in (5.1).
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M is a score matrix. M[i,j] contains the total number of characters aligned
between the substrings X1...j and Y1...j in an optimal alignment. To recover the
alignment, the algorithm keeps track of the aligned characters as it constructs
the score matrix.
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Once all possible alignments are gathered, the algorithm must choose the
best alignment by examining each one and scoring it based on characteristics,
such as whether the letters in the abbreviation match the initial letters of words
in the long form, or whether there are many words in the long form not
included in the abbreviation. The challenge is in finding optimal weights for
each heuristic [14]. The weights can be specified manually [5] or determined
with an automated machine learning algorithm [1].

Alignment methods share with heuristic methods many of the same
advantages and disadvantages. The main difference is that the letter matches are
delineated explicitly, which provides an obvious method to score the likelihood
of the candidate, based on the characteristics of the alignment. However, gener-
ating the alignments can be computationally costly. Nevertheless, this method
has been successfully applied to the entire MEDLINE database [1, 5].

5.2.3 Natural Language Processing

One of the limitations of the previous approaches is that they do not explicitly
consider the parts-of-speech of the words, which can be useful to identify abbre-
viations. For example, in Office of Nuclear Waste Isolation (ONWI), the O in the
abbreviation can be matched with the initial letter of either Office or of [15]. The
alignment that minimizes the length of the long form would align the O with of
and result in an incorrect long form.

Information in the parts of speech may be useful in refining the extent of
the long form. Pustejovsky et al. [4] noticed that the long forms of abbreviations
often include complete noun phrases. Thus, in their algorithm, they apply a
shallow parser to identify the noun phrases in the candidate long form, and use
this information to constrain the search, so that the long form does not contain
words extraneous to the actual definition of the abbreviation.

Using part-of-speech information also allows a more principled method to
develop rules. While other heuristic systems rely on lists of noise words to
exclude, NLP systems can instead exclude words based on part of speech. Such
an approach is more complete than using manually constructed lists. It can also
handle ambiguities in the noise words (e.g., if a word can serve both as a func-
tion word and a noun). Furthermore, using the part-of-speech allows systems to
set a more natural boundary for the long form, based on the noun phrase closest
to the target acronym.

5.2.4 Stanford Biomedical Abbreviation Method

In this section, we describe in detail the algorithm used to construct the Stan-
ford Biomedical Abbreviation Database. We developed a method based on
alignments, because it suggested a natural method to score the confidence of
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abbreviations. In addition, allowing the users to choose score cutoffs will let
them choose a suitable performance of the algorithm.

We decomposed the abbreviation-finding problem into four steps:
(1) scanning text for occurrences of candidate abbreviations and long forms,
(2) aligning the candidates to the preceding text, (3) describing the characteris-
tics of the alignments as a feature vector, and (4) scoring the feature vector using
a statistical machine learning algorithm.

We gathered candidates for abbreviations and their definitions. For every
pair of parentheses, we retrieved the words up to a comma or semicolon. We
rejected candidate abbreviations longer than two words, those without any let-
ters, and those that exactly matched the words in the preceding text.

For each abbreviation candidate, we saved the words before the open
parenthesis, so that we could search these words for the long form of the abbre-
viation. Although we could have included every word from the beginning of the
sentence, as a computational optimization, we only used 3N words, where N
was the number of letters in the abbreviation. We chose this limit conservatively,
based on the informal observation that we always found long forms within 3N
words.

We aligned the candidate abbreviation with its long form using the LCS
algorithm, as described earlier.

Next, we calculated feature vectors that quantitatively described each can-
didate abbreviation and its alignment to its candidate long form. For the abbre-
viation recognition task, we used nine features described in Table 5.2. Each
feature constituted one dimension of a nine-dimension feature vector, which
describes the relevant characteristics of the alignment.

Finally, to score the features from the alignments, we used a supervised
machine learning algorithm. To train this algorithm, we created a training set of
1,000 randomly chosen candidates identified from a set of MEDLINE abstracts
pertaining to human genes, which we had compiled for another purpose. For
the 93 real abbreviations, we annotated by hand the alignment between the
abbreviation and long form.

Next, we generated all possible alignments between the abbreviations and
long forms in our set of 1,000. This yielded our complete training set, which
consisted of (1) alignments of incorrect abbreviations, (2) correct alignments of
correct abbreviations, and (3) incorrect alignments of correct abbreviations. We
converted these alignments into feature vectors.

Using these feature vectors, we trained a binary logistic regression classifier
[17]. We chose this classifier based on its lack of assumptions on the data model,
ability to handle continuous data, speed in classification, and probabilistically
interpretable scores. To alleviate singularity problems, we removed all the dupli-
cate vectors from the training set.
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Finally, the score of an alignment is the probability calculated from the
logistic regression. The score of an abbreviation is the maximum score of all the
alignments.

We implemented the code in Python 2.2 [18] and C with the Biopython
1.00a4 and mxTextTools 2.0.3 libraries. We also created a Web site that imple-
ments this algorithm. The Web site was built with RedHat Linux 7.2, MySQL
3.23.46, and Zope 2.5.0, on a Dell workstation with a 1.5GHz Pentium IV
and 512 MB of RAM. It is available at http://abbreviation.stanford.edu/ (see
Figure 5.2).
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Table 5.2
Features, Descriptions, and Weights Used to Calculate the Score

of an Alignment Using Logistic Regression

Feature Description Weight

Describes the abbreviation

LowerAbbrev Percent of letters in abbreviation in lowercase. −1.21

Describes where the letters are aligned

WordBegin Percent of letters aligned at the beginning of a word. 5.54

WordEnd Percent of letters aligned at the end of a word. −1.40

SyllableBoundary Percent of letters aligned on a syllable boundary. 2.08

HasNeighbor Percent of letters aligned immediately after another letter. 1.50

Describes the alignment

Aligned Percent of letters in the abbreviation that are aligned. 3.67

UnusedWords Number of words in the long form not aligned to the abbreviation. −5.82

AlignsPerWord Average number of aligned characters per word. 0.70

Miscellaneous

CONSTANT Normalization constant for logistic regression. −9.70

Notes: Syllable boundaries identified using the algorithm in TEX [16]. The right-most column indicates the weight
given to each feature. The sign of the weight indicates whether or not that feature is favorably associated with
real abbreviations.



5.2.5 Evaluating Abbreviation Identification Methods

Evaluating the performance of abbreviation identification algorithms requires a
suitable gold standard, in which the abbreviations and their definitions have
been annotated manually by human readers. Issues in creating such a gold stan-
dard include its size, breadth, accuracy, and acceptance.

The size of a gold standard is important in obtaining an accurate measure
of the performance of an abbreviation identification algorithm. A small set of
documents may not include a wide range of the various types of abbreviations,
which would not yield a reliable estimate of the performance of the algorithm.
An algorithm may perform well on a small test set, but not generalize well to a
larger corpus.

Similarly, the breadth of the domain covered is important. Many have
noted that the patterns of abbreviations vary among domains, and that an algo-
rithm developed for one domain may not perform as effectively in another.
Notably, algorithms developed from the general literature have generally per-
formed poorly on biomedical literature [4]. Similarly, an algorithm optimized to
perform well on a subset of biomedical literature (e.g., gene names) may not
necessarily perform as well on all biomedical literature. Therefore, the domain of
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Figure 5.2 The Stanford Biomedical Abbreviation server allows users to (1) query for the
definitions of abbreviations, (2) search for definitions that contain a keyword, and
(3) extract abbreviations that occur in free text.



literature covered by a gold standard must be noted when evaluating the
performance of an algorithm.

The third issue in abbreviation gold standards concerns their accuracy.
Because gold standards are developed using human annotation, errors can
occur. These errors are particularly problematic, because they penalize complete
algorithms more than others do. That is, an algorithm that can detect 100% of
the abbreviations may still receive a low score because many of the correct abbre-
viations would be counted as incorrect, since they are missing from the gold
standard. Conversely, an algorithm that overlooks the same abbreviations that
are missing in the gold standard may achieve 100% accuracy, despite incom-
pletely finding the abbreviations. This may occur if the algorithm and the
human expert shared biases against certain types of abbreviations, such as the
hypernyms discussed at the beginning of this chapter. Ideally, a gold standard
should be the product of multiple experts [6].

Finally, a gold standard must be generally accepted and used by the com-
munity in a standard manner. It should be publicly available and easily accessi-
ble. Because many methods are currently evaluated on disparate and internally
developed gold standards, it is difficult to compare the performance of various
approaches.

Unfortunately, the amount of human manual annotation required to cre-
ate such a gold standard makes the endeavor difficult. One carefully constructed
gold standard was used to evaluate the AbbRE algorithm [6]. The authors
selected articles from both biology and medical journals, and asked three experts
from each field to identify the abbreviations in abstracts. They resolved disagree-
ments based on majority vote. However, the total number of abstracts annotated
was small, consisting of only 10 articles.

Another popular gold standard is the Medstract acronym gold standard
[4]. It consists of two annotated corpora. The development corpus is a set of 86
MEDLINE abstracts randomly collected from 1997 to 1998. A biologist manu-
ally annotated it, and found 155 pairs of abbreviations. Medstract broadly
defines abbreviation to also include aliases (e.g., apoptosis for programmed cell
death). The test corpus contains 100 abstracts, randomly selected from results of
the search for gene in a diverse but small group of high-impact biomedical jour-
nals. This includes 173 alias pairs. The gold standard is publicly available as
XML files at http://www.medstract.org/gold-standards.html.

Although Medstract is commonly used within the community, it contains
some errors. Each algorithm that has used Medstract has corrected the errors in
different ways. Although all of these algorithms have used the same gold stan-
dard, the differences in the corrections impede efforts to compare their perfor-
mances [10].

Nevertheless, we evaluated our algorithm against Medstract, because of its
general availability, after correcting six typographical errors in the XML file. We
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applied our algorithm on the documents in Medstract and predicted a list of
abbreviations, long forms, and their scores. We ranked the results in decreasing
score, and calculated the recall and precision at every rank in the list to generate
a curve showing the tradeoff between the two. Recall

#correct abbreviations

all correct abbreviations
(5.2)

measures how thoroughly the method finds all the abbreviations. Precision

#correct abbreviations

all predictions
(5.3)

indicates the number of errors produced. Near the top of the list, the recall is
low, because few of the abbreviations are as yet identified, but precision is high,
because the abbreviations that are identified are correct. However, as we include
lower scoring abbreviations, the recall increases while the precision decreases.

We counted an <abbreviation, long form> pair as correct if it also occurred
in the gold standard. To be consistent with the evaluation of the Acromed algo-
rithm, we allowed mismatches in 10 cases, where the long form contained words
not indicated in the abbreviation. For example, we accepted protein kinase A for
PKA, and did not require the full cAMP-dependent protein kinase A indicated in
the gold standard.

We ran our algorithm against the Medstract gold standard, and calculated
the recall and precision at various score cutoffs (see Figure 5.3). Identifying 140
out of 168 correctly, it obtained a maximum recall of 83% at 80% precision.
Our algorithm failed to find 25 total abbreviations in the Medstract gold stan-
dard. Table 5.3 categorizes the types of abbreviations and the number of each
type missed. The recall/precision curve plateaued at two levels of precision, 97%
at 22% recall (score = 0.88), and 95% at 75% recall (score = 0.14).

At a score cutoff of 0.14, the algorithm made eight errors, seven of which
were abbreviations missing from the gold standard: primary ethylene response ele-
ment (PERE), basic helix-loop-helix (bHLH), intermediate neuroblasts defective
(ind), Ca2+-sensing receptor (CaSR), GABA(B) receptor (GABA(B)R1), polymerase
II (Pol II), and GABAB receptor (GABA(B)R2). The final error occurred when
the algorithm assigned an incorrect long form because of a coincidental
sequence of words (matching letters underlined): Fas and Fas ligand (FasL). The
seven missing abbreviations decreased the precision of the algorithm. Disregard-
ing these cases yields a precision of 99% at 75% recall.

Furthermore, the majority of the errors on this dataset (see Table 5.3)
occurred because the gold standard included synonyms (i.e., words and phrases
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with identical meanings) in addition to abbreviations. In these cases, the algo-
rithm could not find the correspondences between letters, indicating a funda-
mental limitation of letter matching techniques.

5.3 Normalizing Abbreviations

After abbreviations are extracted from the text, abbreviations with identical
meanings can still vary in minor ways. For example, JNK can be an abbreviation
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Figure 5.3 Algorithm applied to identify the abbreviations in the Medstract Gold Standard.
The recall and precision at every score cutoff are calculated and plotted in the
resulting curve. The scores at pivotal points are marked on the curve. The perfor-
mance of the Acromed system is shown for comparison.

Table 5.3
Type of Abbreviations and the Number Missed

# Description Example

12 Abbreviation and long form are synonyms. apoptosis programmed cell death

7 Abbreviation is outside parentheses.

3 Best alignment score yields incorrect long form. FasL Fas and Fas ligand

3 Letters in abbreviation are out of order. ATN anterior thalamus

25 TOTAL



for 155 different long forms, including Jun N-kinase, Jun N-kinases, and Jun
NH2 kinase. Common abbreviations intuitively tend to have more textual vari-
ants than rare ones [19]. These variations complicate many problems, such as
counting abbreviations accurately, mapping abbreviations to proper long forms,
or viewing distinct abbreviations in a database. Therefore, there must be meth-
ods to normalize abbreviations and their definitions into a canonical form.

Abbreviations can vary in many ways. Orthographical variations include
different capitalizations or spellings, such as estrogen versus oestrogen. An abbre-
viation for retinoic acid receptor alpha may be RAR alpha, RAR-alpha, RARA, or
RARa. In addition, there are morphological variations due to different forms of
words, such as nuclear receptor versus nuclear receptors, and TR or TRs for thyroid
hormone receptor(s). Furthermore, there are syntactic variations, such as human
cancer versus cancer in humans. Finally, there are lexico-semantic variations, such
as carcinoma versus cancer [12].

Orthographical and morphological variations involve only small changes
in the letters. Therefore, algorithms can handle these variations using simple
heuristics, such as (1) removing plural endings, (2) ignoring differences in
white space or punctuation, and (3) converting long forms to lower case [3,
20]. Pustejovsky et al. also consider two long forms to be equivalent if 80% of
the longer form also is present in the shorter form. One more sophisticated
approach breaks each long form into a sequence of trigrams (three consecutive
letters), and then clusters all the long forms based on the number of shared
trigrams [5].

Although more difficult to handle, there have been some approaches to
normalize lexico-semantic variations. Generally, these methods will map abbre-
viations to a list of semantic categories, and then group abbreviations that map
to the same categories. The EXPGrouper program maps the long forms to the
UMLS Specialist Lexicon [19]. The SaRAD program groups abbreviations from
MEDLINE citations based on the MeSH terms1 assigned to the citations, and
clusters the abbreviations based on the similarity of those terms.

In our work, we used a heuristic approach to handle orthographical and
morphological variations and cluster similar abbreviations. The algorithm is
based on the notion that the long forms with small variations can be safely
aggregated, if their abbreviations are the same. For each abbreviation found in
MEDLINE, we first sort the long forms in alphabetical order. We then consider
each <abbreviation, long form> pair sequentially, and aggregate the pair with a
previous pair if they meet two conditions:
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1. The abbreviations are the same, or differ by no more than an s (or es)
appended to the end.

2. The alphanumeric characters (ignoring spaces and punctuation) in
the long forms differ by at most one character.

Following these criteria, we group together all pairs of <abbreviation, long
form> that are similar. We apply these rules transitively. That is, if abbreviation
A is similar to abbreviation B, which in turn is similar to abbreviation C, then
we create a cluster with all three abbreviations. As a result, the final cluster may
contain abbreviations whose long forms differ by more than one character.

We also experimented with alternate, more lenient, conditions that allow
more mismatches, depending on the length of the long form. When we allowed
one mismatch per N characters, more stringent mismatch requirements
(greater N) intuitively led to increased numbers of clusters, as shown in
Table 5.4. The abbreviations are clustered, allowing N mismatches per alphanu-
meric character in the long form. The first row, X mismatches, is the clustering
obtained when only one mismatch is allowed, regardless of the length of the
long form. The Edit Distance is the maximum edit distance between two long
forms in the same cluster. Fewer <abbreviation, long form> pairs could be
clustered together.

Although the number of clusters varies, the method appears robust and
clusters together similar long forms. For example, when using the most lenient
strategy, allowing a mismatch every other character, the two most distant long
forms were:

1 colony-forming units, erythroid burst-forming units, and
|||||||||||||| ||||

2 colony-forming unit-
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Table 5.4
Clusters of Abbreviations

N # Clusters Edit Distance

X 609,162 14

2 461,822 83

3 510,955 81

5 555,813 47

7 576,524 33

10 592,912 23

15 609,105 21



1 granulocyte erythrocyte macrophage             megakaryocyte
|||||||||||             ||||||||||             |||||||||||||

2 granulocyte,            macrophage, erythroid, megakaryocyte
1 colony-forming units
2

Requiring the abbreviations to be the same (except for a possible s at the end)
constrains the long forms that may be clustered together. However, such a sim-
ple heuristic can cluster long forms with similar letters but different meaning.
One example is:

1 androgen      receptor
| ||  ||      ||||||||

2 a dr  energic receptor

However, the frequency or significance of such errors for the user is unclear.
Ultimately, we used the computationally cheapest strategy, and allowed

one mismatch between any two long forms. When applied to abbreviations
identified from all of MEDLINE, this heuristic reduced 1,948,246 abbrevia-
tions into 609,162 clusters.

5.4 Defining Abbreviations in Text

Although many approaches can identify abbreviations and their long forms in
text, it is also necessary to define abbreviations whose long forms do not explicitly
appear in the same document. In one study in MEDLINE abstracts, 22% of the
total number of abbreviations used were not defined [3]. Comprehensive text
mining algorithms need to recognize abbreviations and correctly define them.

The main difficulty in defining abbreviations stems from the fact that an
abbreviation can have multiple long forms with different meanings. For exam-
ple, AR can have many forms, including autosomal recessive, androgen receptor,
amphiregulin, aortic regurgitation, aldose reductase, and so forth. A total of 36%
of abbreviations in MEDLINE have more than one definition, and 10% of defi-
nitions have more than one abbreviation. In fact, the number of new definitions
is growing at four times the rate as that of new abbreviations [3]. It is clear that
many definitions are being assigned to previously existing abbreviations. There-
fore, algorithms often must disambiguate among multiple definitions.

One method to choose among alternate possible definitions relies on the
prevalence of the acronyms [3]. If one definition of an abbreviation was usually
dominant, then the algorithm usually would be correct if it always chose the
most prevalent one. Clearly, there are limitations to this method, and it has not
been recommended for general use. However, knowing the prevalence of the
definitions would be useful in helping humans to decide on the proper meaning.
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The other main approach to choosing definitions relies on the context of
the abbreviation. The correct definition of the abbreviation should be concor-
dant with the content of the remainder of the document.

One indicator of the domain of a MEDLINE citation is its MeSH terms.
Yu et al. [6] first proposed the idea of using these terms to disambiguate abbrevi-
ations. Adar investigated this further by successfully grouping abbreviations
based on the MeSH terms of their documents [5].

An obvious limitation of MeSH-based approaches is that they require
manually annotated MeSH terms, which may apply only to MEDLINE cita-
tions. However, people also have reported success disambiguating abbreviations
based on words. These approaches represent the words surrounding the abbrevi-
ation as a vector, where each dimension is either 1 or 0, depending on whether a
specific word is present. For every possible long form, vectors describing their
contexts are collected. The vector for the ambiguous abbreviation is then
matched to see which of the vectors of the long forms it most resembles. The
algorithms used to score this match include a cosine score [4], naïve Bayes [21],
maximum entropy [22], and support vector machines [23]. These algorithms
are very similar to those used for word sense disambiguation in computational
linguistics [24].

5.5 Abbreviation Databases

The development of methods to handle abbreviations in text has led to the auto-
matic construction of comprehensive databases of biomedical abbreviations.
The four most prominent databases are AcroMed, ARGH, the Stanford Bio-
medical Abbreviation Database, and SaRAD, which were built using algorithms
described previously [1, 3–5]. All are currently available on-line. There has not
yet been a comprehensive study comparing their coverage or accuracy.

Earlier in this chapter, we speculated that despite their limits, current
abbreviation identification methods might be sufficiently accurate to find all
meaningful biomedical abbreviations. Therefore, we evaluated the comprehen-
siveness of the Stanford Biomedical Abbreviation Database, which was created
from all abbreviations found in MEDLINE.

In order to quantify the coverage of the database, we searched it for abbre-
viations found in a list from the China Medical Tribune, a weekly Chinese lan-
guage newspaper covering medical news from Chinese journals [25]. Its Web
site includes a dictionary of 452 commonly used English medical abbreviations
and their long forms. After normalizing for capitalization and punctuation, the
algorithm correctly identified 88% of the abbreviations in the list. Out of the 53
abbreviations missed, 11 of them appeared in the database as a close variation,
such as Elective Repeat Caesarean-Section instead of Elective Repeat C-Section.
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Since the abbreviation list from the China Medical Tribune was created
independently of MEDLINE, the results suggest that the database contains a
great number of all biomedical abbreviations, and that automatically created
databases are a rich and comprehensive source of biomedical abbreviations.

5.6 Conclusion

Due to the enormous number of abbreviations currently in MEDLINE, and
due to the rate at which prolific authors define new ones, maintaining a current
dictionary of abbreviation definitions clearly requires automated methods. Since
nearly one-half of MEDLINE abstracts contain abbreviations, computer pro-
grams analyzing this text will frequently encounter abbreviations and can benefit
from their identification. Since fewer than one-half of all abbreviations are
formed from simple patterns (e.g., concatenating initial letters of words), auto-
mated methods must handle sophisticated and nonstandard constructions.

Nevertheless, algorithms and databases are presently useful resources for
readers facing unfamiliar abbreviations in the literature. However, identifying
abbreviations ultimately remains an active area of research. The main unsolved
problems include finding proper boundaries of long forms using knowl-
edge-based approaches, automatically defining abbreviations in articles, and
incorporating abbreviation algorithms and databases into downstream pro-
grams. A novel area of investigation is in algorithms that can automatically gen-
erate abbreviations from long forms, so that search algorithms might expand
their queries for more sensitive results [26]. Sophisticated handling of abbrevia-
tions is an area that likely will have a profound impact on the development of
intelligent systems for biological text processing.
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6
Named Entity Recognition
Jong C. Park and Jung-jae Kim

6.1 Introduction

To mine useful knowledge from the biomedical literature, we should be able to
recognize names of biomedical entities, such as genes, proteins, cells, and dis-
eases [1, 2]. Named entity recognition (NER) refers to the task of recognizing
such entity-denoting expressions, or named entities (NE), in natural language
documents. In this chapter, we will be mostly concerned with biomedical NER,
or NER in biomedicine.

The primary goal of NER is to relate each NE of importance in a natural
language document to an individual in the real world. In this regard, NER is dif-
ferent from automatic term recognition (ATR), as introduced in Chapter 4,
whose main goal is to associate a given term with a concept in a well-defined
semantic framework. In a practical text mining system, the recognized NE then
would be further classified with the known types of real-world entities. For
example, if the NE denotes a gene, then it would be classified into the class of
gene names. The classified NE is then linked to, or grounded by, a concept in
the semantic hierarchy. This latter process for biomedical applications takes into
account only the biological functions of the biomedical entity denoted by the
NE.

Biomedical NER is certainly a nontrivial task, despite the availability of
many well-known nomenclatures for biomedical entities, including the one
published by the HGNC (http://www.gene.ucl.ac.uk/nomenclature/) for
human genes [3]. These resources do not address certain issues in NER, such as
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ambiguities and aliases of gene names [4]. We illustrate such issues with exam-
ples. First, the protein name ARF may denote either a small GTP-binding pro-
tein that is involved in vesicular transport, or a tumor suppressor gene product
that binds to p53-DNA complexes [4]. Second, the protein name p53 does not
describe the function of the protein, only the weight of the protein. There might
be quite a few other proteins with a similar molecular weight of approximately
53,000 [4]. Finally, one gene, officially designated as SELL or selectin L, which
controls cell adhesion during immune responses, is currently known to have as
many as 15 aliases [5].

Biomedical NER also requires a considerable linguistic analysis of NEs. In
particular, NER, as utilized for IE systems, must deal with a much broader range
of linguistic expressions than that for text retrieval (TR) systems. IE systems
identify NEs in text to fill in slots of templates for information of interest, as
described in Chapter 7, while TR systems create an index with unique NEs
identified in texts, and retrieve relevant texts when the user asks for the indexed
entities with a query term. For example, a text mining system for protein-pro-
tein interactions should identify not only protein names from proteome data-
bases, such as UniProt, but also anaphoric expressions, such as it and the protein,
which refer to interacting proteins, as illustrated in Table 6.1.1 Such anaphoric
expressions subsequently may be replaced with their antecedent protein names
as defined in the preceding context, when they are put into relevant slots of pro-
tein-protein interaction templates. The text mining system also should identify
species information for proteins, especially when such information plays a criti-
cal role, as in the following examples (species names underlined): Plant DNA
polymerases and E. coli DNA polymerase I, but not animal DNA polymerases or
avian reverse transcriptase, are strongly stimulated by ethidium bromide (EtdBr) …
(PMID:6821157).

Notice that NER for IE systems is, in general, more complicated than that
for TR systems. A TR system employs an NER module to recognize a list of
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Table 6.1
Example Sentences with NEs From a MEDLINE Abstract

Arfophilin is an ADP ribosylation factor (Arf) binding protein of unknown function. It
is identical to the Rab11 binding protein eferin/Rab11-FIP3, and we show it binds
both Arf5 and Rab11. (PMID:12857874)

1. The number following the string “PMID:” is the identifier of a MEDLINE abstract in
PubMed (http://www.ncbi.nlm.nih.gov/PubMed/).



unique NEs in a text, as the index for the text. An IE system may extract infor-
mation of interest by employing another NER module that recognizes such lin-
guistic expressions as anaphoric expressions, which contribute to syntactic
structures that encode the information of interest, along with their surrounding
expressions. For instance, such an NER module must be able to extract from the
passage in Table 6.1 the fact that Arfophilin binds to Arf5 and Rab11, by ana-
lyzing the binding event of the pronoun it, and resolving the pronoun with the
protein name Arfophilin.

NER has been well-structured over the years, through several series of
evaluation conferences on IE. MUCs are well-known for the extraction of ter-
rorist events from newspapers in their earlier contests [6]. Note that all the
MUCs, except MUC-7 [7], have included the task of recognizing NEs, such as
the names of persons, organizations, places, and artifacts, as the basis for further
levels of information extraction. MUC-7 chose not to include the task of NER
in its competition sessions, since the highest scoring system for NER at
MUC-6 [6] showed a performance that is comparable to those of human cura-
tors. Instead, MUC-6 and MUC-7 included a novel task of recognizing tem-
plate elements, to identify descriptions of entities (e.g., a distributor of
kumquats), as well as names, based on the observation that an entity may be
mentioned several times, possibly using descriptions and different forms of its
name. In this chapter, we focus on NER, rather than the task of template ele-
ment recognition, since the latter has not yet been seriously considered in the
biomedical domain.

Evaluation of system performance for NER, in the aforementioned confer-
ences, is usually accomplished by an automatic scoring program [8], where the
scores are based on two measures: recall and precision [9]. Recall is the percent-
age of the NEs that the system has identified correctly divided by all correct NEs,
and precision is the percentage of the correctly identified NEs divided by the NEs
identified by the system. The component scores of recall and precision then are
used to calculate a balanced F-score [10], where F = 2 × P × R/(P + R).2 For
instance, the highest scoring system for NER at MUC-6 showed a recall of 96%,
and a precision of 97%, thus showing an F-score of 96.5.

The structure of the rest of the chapter is as follows. We describe the
nature and examples of the candidate NEs in the biomedical literature in Sec-
tion 6.2; discuss the issues in recognizing gene and protein names in Section 6.3;
compare previous approaches to gene and protein name recognition in Section
6.4; and present evaluation conferences for biomedical NER, and compare
approaches to NER in the general domains with the approaches to gene and
protein name recognition, in Section 6.5.
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6.2 Biomedical Named Entities

An NE is a phrase or a combination of phrases in a document that denotes a spe-
cific object or a group of objects, such as persons, organizations, places, and arti-
facts in newspapers [6, 7], courts and parties in court opinions [11], and genes,
proteins, cells, drugs, chemicals, and diseases in the biomedical literature [12,
13]. Table 6.2 shows sample NEs for each category in the biomedical literature
[3, 12, 14].3 The databases in Table 6.3 include a comprehensive list of biomed-
ical NEs (see Chapter 3 for further details). For instance, HUGO Nomenclature
provides records of more than 21,000 human genes, and Release 47.0 (May 10,
2005) of Swiss-Prot, the curated protein sequence database of UniProt, contains
approximately 180,000 entries.4 Among the biomedical NEs in Table 6.2,
we will hereafter focus on genes and proteins5 because of their importance in
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Table 6.2
Example NEs of Biomedical Objects

1. Genes: Tp53, agaR

2. Proteins: p53, ‘galactosidase, alpha (GLA)’

3. Cells: CD4+-cells, Human malignant mesothelioma (HMMME)

4. Drugs: Cyclosporine, herbimycin

5. Chemicals: 5’-(N-ethylcarboxamido)adenosine (NECA)

Table 6.3
Biomedical Databases and Resources

1. Genes: Human Genome Nomenclature (http://www.gene.ucl.ac.uk/nomenclature/), GenBank
(http://www.ncbi.nlm.nih.gov/Genbank/)

2. Proteins: UniProt (http://www.expasy.org/sprot/), IPI (http://www.ensembl.org/IPI/)

3. Cells: Cell database of Riken Bioresource Center (http://www.brc.riken.jp/inf/en/)

4. Drugs: MedMaster (http://www.ashp.org/), USP DI (http://www.usp.org/)

5. Chemicals: UMLS Metathesaurus (http://www.nlm.nih.gov/research/umls/)

6. Diseases: NCBI Genes and Diseases (http://www.ncbi.nlm.nih.gov/disease/), Disease Data-
base (http://www.diseasesdatabase.com/)

3. Several example names in Table 6.2 are from [3, 12, 14], and the cell database of Riken
Bioresource Center (http://www.brc.riken.jp/lab/cell/english/).

4. In the rest of this chapter, we do not differentiate gene names from protein names if there is
no confusion, since a protein or a gene product is produced from a corresponding gene.

5. See the Web sites of databases for details.



biology, and because of the emphasis that previous studies of NER in
biomedicine have put on them.

The gene and protein names in the databases and in the literature show
several characteristics in common. For instance, many gene and protein names
include special characters of the type shown in Table 6.4 (e.g., D(1) or
Thioredoxin h-type 1). The gene and protein names also may consist of descrip-
tive terms that suggest the characteristics of proteins, including function, local-
ization, species, physical properties, and similarities to other proteins, as
exemplified in Table 6.5 [15]. However, in the case of protein names, such as
p21 and rad51, it is impossible to uncover the functions of corresponding pro-
teins by an inference over such names alone [4, 16].

Gene and protein names can be expressed in various linguistic forms,
including abbreviations, plurals, compounds, anaphoric expressions, and
descriptions, as exemplified in Table 6.6 [17].6 Notice that descriptions show a
different range of linguistic realizations, such as prepositional phrases, relative
phrases, and even expressions across sentences. This diversity of descriptions is
similar to that of terms, as discussed in [18, 19] and in Chapter 4. Biomedical
text mining systems must take into account this linguistic variety of gene and
protein names with respect to their goals.
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Table 6.4
Special Characters in Biomedical NEs

upper case, comma, hyphen, slash, bracket, digit

Table 6.5
Example Protein Names with Descriptive Terms

Semantic Type of Descriptive Term Example Protein Name

Protein function growth hormone

Localization nuclear protein

Species origin HIV-1 envelope glycoprotein

Physical property salivary acidic protein

Similarity to other proteins Rho-like protein

6. Several examples in Table 6.6 are from [17].



6.3 Issues in Gene/Protein Name Recognition

As mentioned in the introductory section, the recognition of gene and protein
names in the biomedical literature is not straightforward, despite many
well-known nomenclatures, such as HUGO and Swiss-Prot [20–22]. In this
section, we examine several open issues, as related to ambiguous names, syn-
onyms, variations, newly published names, and varying sets of target specific
gene and protein names.

6.3.1 Ambiguous Names

Some ambiguous names denote different genes and proteins, as explained with
respect to the name ARF in Section 6.1. There also are other gene and protein
names that may be confused with common English words, such as can, for, not,
vamp, zip, white, and cycle [20–24]. Hirschman et al. [20] reported that simple
pattern matching for gene names shows extremely low precision, 2% for full texts
and 7% for abstracts, and that the largest source of errors is the gene names that
share their form with common English words. This problem of ambiguous
names becomes more acute when we consider the change of entities referred to
by the same name over time. For example, the name p21 formerly denoted a
macromolecule associated with a cascade of signals from receptors at cell surfaces
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Table 6.6
Example Gene and Protein Names in Various Linguistic Forms

Linguistic Forms Example Gene and Protein Names

Abbreviation GLA (as in Table 6.2)

Plural p38 MAPKs, ERK1/2

Compound Rpg1p/Tif32p

Coordination 91 and 84 kDa proteins

Cascade kappa 3 binding factor (such that kappa 3 is a gene name)

Anaphoric expression it

this enzyme

Description an inhibitor of p53

a protein that does not bind RNA directly but inhibits the activity of
eIF4E

Acronym phospholipase D (PLD)

c-Jun N-terminal kinase (JNK)

Apposition PD98059, specific MEK1/2 inhibitor

U0126 (known as the ERKs inhibitor)



to the nucleus, which stimulates cell division, but currently it denotes a different
protein that inhibits the cell cycle [16]. Some gene names remain ambiguous, if
we do not take their species information into account. For example, the yeast
homologue of the human gene PMS1 is called PMS2, whereas yeast PMS1 corre-
sponds to human PMS2. There also are other ambiguous names that may denote
biomedical entities of different classes. For example, myc-c can be a gene name, as
well as a protein name, as in myc-c gene and myc-c protein. Likewise, CD4 can be a
protein name, as well as a cell name, as in CD4 protein and CD4+-cells [25]. To
deal with such ambiguous names, we need to build up a list of such names and
rules, or use statistical models that resolve the ambiguous names.

6.3.2 Synonyms

While an ambiguous name may denote different entities, an entity also can be
denoted by multiple names in a synonymy relation, also called aliases. Table 6.7
shows example synonyms [16, 26].7 In addition, some gene and protein names
denote the same protein that is identical to its homologous protein in different
species. For example, Drosophila and mouse genetics agree that armadillo from
fruit flies and -catenin from mice are basically the same. Nevertheless, they con-
tinue to use two different names [5]. In order to deal with this issue, we need to
construct a list of synonymous names from biomedical resources. For an instance
of gene and protein sequence databases, HUGO Nomenclature includes more
than 23,000 aliases among more than 21,000 human genes, and Release 47.0 of
Swiss-Prot contains more than 26,000 synonyms of protein names among
approximately 180,000 entries. Since these resources contain only the names that
are representative and commonly used, we further need to automatically recog-
nize relations between known names and their unregistered synonyms.

6.3.3 Variations

In addition to synonyms, variations of gene and protein names also denote the
same entities by definition. Interestingly, gene and protein names show a high
degree of variations in the literature, including character-level variations,
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Table 6.7
Example Synonyms of Gene and Protein Names

1. caspase-3 or CASP3 or apoptosis-related cysteine protease or CPP32

2. p21 or WAF1 or CIP1 or SDI1 or CAP20

7. Examples in Table 6.7 are from [16, 26].



word-level variations, word-order variations, syntactic variations, and variations
with abbreviations, as illustrated in Table 6.8 [20, 21, 27].8 We explain each
type of variation as follows. The difference between character-level variations is
the presence (or absence) of special characters, or the exchange of indices, such
as digits and single alphabets. A word in a name can be replaced with another, or
omitted, in the variant of the name. The strings of words in word-order varia-
tions show a different word order. A name with a flat structure can be changed
into a variant with a prepositional phrase, or vice versa. A subsequence of a full
name can be replaced with its abbreviation. Notice that all such synonyms and
variations should be associated with their corresponding standard names [28].
To point out the seriousness of this issue, Tuason et al. [21] reported that
character-level and word-level variations cause up to 79% of failures in gene
name recognition.

6.3.4 Names of Newly Discovered Genes and Proteins

Another source of problems for effective recognition of gene and protein names
is the overwhelming growth rate and the constant discovery of novel genes and
proteins.9 It takes time to register new names of the genes and proteins in
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Table 6.8
Example Variations of Gene and Protein Names

(1) Character-level variations (a) D(2) or D2
(b) SYT4 or SYT IV
(c) IGA or IG alpha
(d) S-receptor kinase or S receptor kinase
(e) Thioredoxin h-type 1 or Thioredoxin h (THL1)

(2) Word-level variations (a) RNase P protein or RNase P
(b) Interleukin-1 beta precursor or INTERLEUKIN 1-beta PROTEIN or
INTERLEUKIN 1 beta
(c) transcription intermediary factor-2 or transcriptional
intermediate factor 2
(d) the Ras guanine nucleotide exchange factor Sos or the Ras
guanine nucleotide releasing protein Sos
(e) hepatic microsomes or liver microsomes

(3) Word-order variations (a) Collagen type XIII alpha 1 or Alpha 1 type XIII collagen
(b) integrin alpha 4 or alpha4 integrin

8. Several examples in Table 6.8 are from [20, 21, 27].

9. Refer to the statistics on the Web sites of UniProt and GenBank for details.



curated nomenclatures, so the new names may resist an identification method
that employs only dictionary look-up. Thus, we need to develop rules and mod-
els that recognize novel gene and protein names with their common characteris-
tics. Note that the guidelines for gene and protein nomenclatures, such as those
in [3], cannot distinguish gene and protein names from other terms and com-
mon words. Furthermore, the existing guidelines for gene and protein nomen-
clatures are not discriminative enough to distinguish the gene and protein
names that follow the guidelines from other terms and common words [3].

6.3.5 Varying Range of Target Names

Though there are various linguistic forms of gene and protein names, as
illustrated in Table 6.6, it is not true that all biomedical text mining systems
have to recognize all the linguistic forms. For instance, a biomedical text mining
system that aims at constructing an index of gene and protein names from bio-
medical documents does not need to recognize indefinite phrases, such as an 89
kD protein and this protein [15, 29], although these phrases may denote real
genes and proteins. However, a biomedical text mining system that aims at
extracting protein-protein interactions may need to explicitly deal with these
phrases as valid arguments of interaction information, after first resolving them
[30]. Likewise, the names for protein families, such as protein kinases, would not
be necessary for a system that extracts only names of individual proteins [15],
but would be useful for another system that extracts general biomedical interac-
tions. It also depends on the purposes of the particular biomedical text mining
system; for example, whether the system extracts adjectives that modify noun
phrases as genes and proteins (e.g., eukaryotic in eukaryotic RhoA-binding kin-
ases), or whether the system extracts a substring of a noun phrase as a gene and
protein name (e.g., RhoA in eukaryotic RhoA-binding kinases) [15].

6.4 Approaches to Gene and Protein Name Recognition

We now explain the current progress in gene and protein name recognition with
some selected papers that clearly show methodological improvements. We clas-
sify such papers roughly into the following four groups.

1. Dictionary-based approaches that try to find names of the well-known
nomenclatures in the literature;

2. Rule-based approaches that manually or automatically construct rules
and patterns to directly match them to candidate NEs in the literature;
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3. Machine learning approaches that employ machine learning tech-
niques, such as HMMs and SVMs, to develop statistical models for
gene and protein name recognition;

4. Hybrid approaches that merge two or more of the above approaches,
mostly in a sequential way, to deal with different aspects of NER.

6.4.1 Dictionary-Based Approaches

Unlike the names of persons and locations in the general domain, gene and pro-
tein names have been well-managed through databases by leading organizations,
such as the National Center for Biotechnology Information (NCBI)
(http://www.ncbi.nlm.nih.gov/) and the European Bioinformatics Institute
(EBI) (http://www.ebi.ac.uk/). It is a natural consequence that previous
approaches to gene and protein name recognition have been heavily dependent
on such databases. The approaches usually try to find database entry names
directly from the literature [31, 32]. However, they have several limitations,
including false positive recognition caused by ambiguous names, false negative
recognition due to synonyms, variations, and lack of a unified resource that
covers newly published names [33].

Krauthammer et al. [34] deal with morphological variations of gene and
protein names by utilizing BLAST [35], a popular tool for DNA and protein
sequence comparison. The method first translates gene and protein names into
an alphabet of DNA sequences by substituting each character in the names into
a predetermined unique nucleotide combination. It also translates biomedical
articles into a string of nucleotides in the same way. It then tries to match the
translated articles to the translated names, and finally generates matched names
if there is any significant alignment (P = 71.7%, R = 78.8%, F = 74.6).10 This
method can recognize unknown names that are similar to registered names, but
some of their characters are different from those of the registered names, as in
interleukin-2 and interleukin-3.

Hanisch et al. [26] attempt to construct a comprehensive dictionary of
genes and proteins by merging HUGO Nomenclature, OMIM database (http://
www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM), and UniProt. UniProt
consists of Swiss-Prot and TrEMBL, the computer-annotated supplement of
Swiss-Prot that contains all the translations of EMBL (http://www.
ebi.ac.uk/embl/) nucleotide sequence entries not yet integrated in Swiss-Prot.
They curate the unified dictionary semiautomatically, by expanding it with
morphological variations of its entries, and by pruning redundant, ambiguous,
and irrelevant synonyms. They present a method of detecting gene and protein
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names with the unified dictionary. The method processes tokens in a
MEDLINE abstract one at a time, and scores each candidate name with two
measures; that is, boundary score to control the end of the candidate, and accep-
tance score to determine whether the candidate is reported as a match (P =
95.0%, R = 90.0%, F = 92.4). The authors utilize robust linear programming
(RLP) [36] to compute parameters in the two scoring measures.

Tsuruoka and Tsujii [33] address the aforementioned problems of
dictionary-based approaches with a two-phase method. The method first scans
texts for protein name candidates, using a protein name dictionary expanded by
a probabilistic variant generator. This generator produces morphological varia-
tions of names in the class ‘Amino Acid, Peptide, or Protein’ of the UMLS
Metathesaurus, and further gives each variant a generation probability that rep-
resents the plausibility of the variant. In the second phase, the method filters out
irrelevant candidates of short names, by utilizing a Naïve Bayes classifier [37],
with the features of words both within the candidates and surrounding the can-
didates. The authors evaluate the method on the GENIA corpus of MEDLINE
abstracts that are annotated with NEs using a hierarchy of semantic classes [38]
(P = 71.7%, R = 62.3%, F = 66.6).

6.4.2 Rule-Based Approaches

The dictionary-based approaches can deal with only morphological variations
that correspond to some of the character-level and word-level variations in Table
6.8. Rule-based approaches can deal with a broader range of variations, even
covering a few of the word-order variations and syntactic variations in Table 6.8.

Fukuda et al. [27] present a method of protein name recognition that uti-
lizes surface clues on character strings (P = 94.7%, R = 98.8%, F = 96.7). The
method first identifies core terms, those that contain special characters in Table
6.4, and feature terms, those that describe biomedical functions of compound
words (e.g., protein and receptor) (see Table 6.5). It then concatenates the terms
by utilizing handcrafted rules and patterns, and extends the boundaries to adja-
cent nouns and adjectives. For example, the method identifies the words Ras,
factor, and Sos as core terms from the phrase Ras guanine nucleotide exchange fac-
tor Sos, and then constructs the whole phrase by applying the rule “Connect
nonadjacent annotations if every word between them is either a noun, an adjec-
tive, or a numeral.”

Proux et al. [23] classify gene names for Drosophila into the following
three categories: (1) names including special characters (32%) (e.g., Hrp54 and
Laer\mt); (2) names using only lower case letters and belonging to the English
language (32%) (e.g., vamp and ogre); and (3) names using only lower case let-
ters, but not belonging to the English language (36%) (e.g., ynd and zhr). They
argue that the assumption by Fukuda et al., which says that protein names can
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be identified according to lexical considerations, does not hold for gene names
for Drosophila. Instead of the rule-based approach of Fukuda et al., they employ
a tagger with a nondeterministic finite-state automaton that works in three
steps: tokenization, lexical look-up, and disambiguation (P = 91.4%, R =
94.4%, F = 92.9). The disambiguation step is based on a hidden Markov
model [39], which assigns the tag from a list of relevant candidates for gene
names, based on the words that surround the candidates.

Gaizauskas et al. [40] manually construct a context-free grammar for
protein name recognition. They first split a protein name into component
terms, based on its apparent syntactic structure, and then add correspond-
ing grammar rules in the process of recombining the components. For
example, for the enzyme name calmodulin N-methyltransferase, they recognize
the first word calmodulin as a potential ‘enzyme modifier’ by looking up the dic-
tionary of enzyme modifiers manually constructed from Swiss-Prot and
EMTREE (http://www.ovid.com/site/products/fieldguide/embx/EMTREE_
Thesaurus.jsp). They also identify the last word N-methyltransferase as a poten-
tial ‘enzyme head’, as suggested by the suffix -ase. They finally derive the con-
text-free grammar rules in Table 6.9 from the phrase. They construct 160 rules
for protein name recognition, and use the names identified with the rules for the
applications Enzyme and Metabolic Pathways Information Extraction
(EMPathIE) and Protein Active Site Template Acquisition (PASTA).
EMPathIE extracts enzyme reactions from articles (enzyme name recognition: P
= 96%, R = 98%, F = 97.0), and PASTA extracts protein structure informa-
tion (protein name recognition: P = 97%, R = 87%, F = 91.7).

6.4.3 Machine Learning Approaches

Rule-based approaches usually utilize handmade rules and patterns, and it is
thus difficult to apply them to new domains. This difficulty is quite serious in
the biomedical domain, because naming conventions in one research society
may be very different from those in another.

Collier et al. [29] use a supervised training method with HMMs to over-
come the problem of rule-based approaches (F = 73). The HMM is trained
with bigrams, based on lexical and character features in a small corpus of 100
MEDLINE abstracts. For each sentence, the model takes an input that consists
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Table 6.9
Example Rules for EMPathIE and PASTA

enzyme —> enzyme_modifier, enzyme.

enzyme —> character, ‘-’, enzyme_head.



of the sequence of words in the sentence and their features. The features used in
the model include the presence or absence of each special character in Table 6.4,
and whether a word is a determiner or a conjunction. For the given class, the
model then calculates the probability of a word belonging to the class. Finally, it
produces the sequence of classes with the highest probabilities for the given
sequence of words in the sentence. Domain experts mark up, or annotate, the
corpus that is used to train the model with classes, such as proteins and DNA.

In order to handle the lack of a training corpus for gene and protein name
recognition, Morgan et al. [24] present a method for automatically constructing
a large quantity of training corpora by utilizing FlyBase (http://flybase.bio.indi-
ana.edu/), which includes a curated list of genes and the MEDLINE abstracts
from which the gene entries are drawn. They apply simple pattern matching to
identify gene names or their synonyms in each article (P = 78%, R = 88%,
F = 82.7). The noisy corpus, automatically annotated with gene entries of
FlyBase, is used to train an HMM for gene name recognition (P = 78%, R =
71%, F = 74.3).

Zhou et al. [17] present another HMM with various features, including
word formation patterns (e.g., special characters in Table 6.4); morphological
patterns (e.g., prefix and suffix); parts-of-speech; semantic triggers (e.g., head
noun trigger and special verb trigger);11 and name alias features, in order to
determine whether a noun phrase denotes the same entity as another noun
phrase. However, the great number of features in this model created a data
sparseness problem in their system; that is, the lack of a training corpus that is
large enough to train the whole set of proposed features. For this reason, they
propose a k-NN algorithm, which estimates the probabilities in the model by
utilizing the K nearest neighbors of frequently occurring output pattern entries;
that is, by restricting the output of the system only to the frequent patterns.
They further present a pattern-based postprocessing technique, automatically
extracting rules from the training data to deal with the cascaded entity name
phenomenon (e.g., <PROTEIN> <DNA>kappa 3</DNA> binding factor
</PROTEIN>). The implemented system is evaluated on the GENIA corpus
(F = 83.6 ∼ 86.2).

Among the features used by Zhou et al., Collier and Takeuchi [41] com-
pare two features, character-level orthographic features and part-of-speech tags.
From their experiments with support vector machines, they report an F-score of
72.6 for character-level features, and 68.6 for part-of-speech features. Most
unlikely, when they experiment with a combination of both features, they report
an F-score of 72.3, slightly lower than that for character-level features. They
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conclude that the reason is that the NER system of Zhou et al. can incorporate
the evidence from part-of-speech tags into other features in a highly sophisti-
cated way, with the help of the k-NN algorithm, to reduce the search space.

6.4.4 Hybrid Approaches

As the number of features for machine learning systems increases to cover more
phenomena in NER, the data sparseness problem becomes more serious. Since
the three kinds of approaches discussed above have their own advantages and
disadvantages, there is a clear need for combining them for better performance.

In fact, some of the methods introduced in the previous sections already
are a hybrid of different kinds of approaches. For example, Hanisch et al. [26]
utilize a machine learning technique for computing optimized parameters of
scoring measures in a dictionary-based system. Proux et al. [23] also apply a
machine learning technique for disambiguation of relevant candidate gene
names in a rule-based system. Zhou et al. [17] automatically construct rules to
deal with cascaded entity names for their machine learning system. We intro-
duce additional systems next.

Tanabe and Wilbur [26] present a combination of statistical- and knowl-
edge-based strategies. They first apply automatically generated rules from Brill’s
POS tagger [42] to extract single words of gene and protein names, and apply
manually generated rules that recognize the beginning and ends of gene and pro-
tein names, in order to find multiword gene and protein names. For example,
they extract a rule “NNP gene fgoodleft GENE”, which changes the tag of a
word from NNP to GENE if the word gene can appear to the right, where NNP
indicates a proper noun. Then they utilize manually generated rules formed
from morphological clues to recover false negative results. For example, they use
a contextual rule “x CC ANYGENE”, which changes the tag of ‘x’ to
CONTEXTGENE, with the following constraints: ‘x’ must be a noun, adjec-
tive, cardinal number, or preposition; CC must be a coordinating conjunction,
ANYGENE must be any gene name identified by the system, and
CONTEXTGENE must be a gene name not identified by Brill’s tagger but by
the recovering rule.

Mika et al. [25] present a system that combines a preprocessing
dictionary- and rule-based filtering step with several independently trained
SVMs [43] for protein name recognition (P = 76%, R = 75%, F = 75.5). For
the dictionary to filter irrelevant words, such as common words, medical terms,
and species names, the authors utilize the online-version of the Merriam-Web-
ster dictionary (http://www.m-w.com/), dictionary of medical terms (DMT)
(http://cancerweb.ncl.ac.uk/omd/), and species names in UniProt Knowledge-
base (http://us.expasy.org/cgi-bin/speclist). They also use a rule to filter names
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that are followed by cell(s) or cyte(s) (e.g., CD4+T lymphocytes, Streptococcus
mutans cells).

6.4.5 Classification and Grounding of Biomedical Named Entities

The names recognized by the systems of biomedical NER often need further
classification, when the recognized NEs are ambiguous with respect to their class
information, or when the desired selection is for a restricted class of names, such
as enzyme names. Note that NE classification is different from term classifica-
tion, discussed in Chapter 4, because the recognized term from automatic term
recognition already corresponds to a concept in the semantic hierarchy in a ter-
minology management system, therefore mapping naturally into some classifica-
tion. Named entities may be further reclassified into concepts in a relevant
semantic hierarchy, using later steps according to their characteristics, such as
biological functions.

Torii et al. [44] examine various information sources for classifying bio-
medical names: (1) name-internal features, such as headwords and suffixes; (2)
contextual information, or the occurrence of other words or phrases near the
given names; and (3) other sources, including acronyms, apposition, and coordi-
nation (F = 86).

Spasic et al. [45] present a method of classifying gene and protein names
into ontological concepts, based on verb selectional patterns, where such a pat-
tern is automatically defined as a set of semantic classes of domain-specific verbs
that are automatically identified in a corpus, based on their frequencies of
occurrence. Given a name, the verb selectional pattern of the most frequently
cooccurring domain-specific verb is used to constrain the search space for classi-
fication, by focusing on potential classes of the given name.

The recognized and classified terms can be utilized as indices for biomedi-
cal documents only when they are sufficiently grounded with relevant entry IDs
in biomedical resources, such as Swiss-Prot [21, 22].12 The results of dictio-
nary-based approaches can be easily grounded with IDs in the dictionary, but it
is not straightforward to ground those of the other approaches [33].

Kim and Park [30] present a grounding method that associates gene and
protein names identified in MEDLINE abstracts with Swiss-Prot entry names.
The method deals with variations of the kinds (1–3) in Table 6.4 with simple
patterns, and selects Swiss-Prot entries whose species information corresponds
to the local context of identified gene and protein names in an abstract. An
example is mouse and human from the protein names mouse 6Ckine and human
6Ckine, respectively (P = 59.5%, R = 40.7%, F = 48.3).
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Pustejovsky et al. [46] present a simple method for disambiguating acro-
nyms with multiple meanings (P = 97.6%), where many ambiguous names in
MEDLINE abstracts are abbreviations, and the clarifying descriptions of acro-
nyms can be grounded without ambiguities. The method scans for the descrip-
tions in the previous context of a given acronym, since the clarifying descriptions
usually occur in the previous context of the same abstracts. Pakhomov [47] also
presents a method for the disambiguation of acronyms, by utilizing a maxi-
mum-entropy classifier with only four adjacent words (P = 90%).

6.5 Discussion

The reported performances of the approaches discussed in the previous section
cannot be directly compared with one another, because of the lack of common
evaluation metrics and test corpora [48]. For this reason, researchers in the field
have initiated several evaluation conferences for biomedical NER. BioCreAtIve
2003 (http://www.mitre.org/public/biocreative/) presents two tasks for infor-
mation extraction. The first task is to recognize human gene names in
MEDLINE abstracts, and the second task is to annotate the recognized genes
with the terms of the Gene Ontology [49]. The second task is motivated to
automating the GOA project [50], by making use of the biomedical literature.
JNLPBA (http://www.genisis.ch/~natlang/JNLPBA04/), held in conjunction
with the International Conference on Computational Linguistics (COLING),
shared the task of NER with its participants [51]. The participants used an
extended version of the GENIA corpus [38]. Chapter 9 explains in detail such
evaluations of terminology management. Note that the target sets of gene names
for these competitions may be different from each other, since the GENIA cor-
pus does not annotate anaphoric expressions. Participants in BioCreAtIve 2003
may need to recognize anaphoric expressions that refer to gene names, as
discussed in Section 6.1.

When we want to understand the current status of approaches to biomedi-
cal NER, it would be worthwhile to examine some approaches to the task in the
general domain, and compare them with the approaches in the previous section.

Yangarber and Grishman [52] present a simple method of matching name
patterns to proper names in texts. Their method utilizes lexical cues, such as cap-
italizations, personal titles (e.g., Mr. or Esq.), and company suffixes (e.g., Inc. or
Co.). However, patterns of this kind can be matched only to a small set of NEs,
but not to other NEs that do not host such lexical cues (see Section 6.4.2). In
order to consider other kinds of cues, as well as lexical ones, Zhou and Su [53]
present an HMM-based system that integrates four types of internal and exter-
nal evidence: (1) simple deterministic internal features of the words, such as
capitalization and digitalization; (2) internal semantic features of important
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triggers, such as suffixes and prefixes; (3) internal gazetteer features, such as
names of persons, organizations, and locations; and (4) external macro context
features. There is rarely enough training data to compute accurate probabilities
in an HMM. To overcome this data sparseness problem, the authors apply
back-off modeling, which approximates the trained model based on the impor-
tance of features or combinations of features [17, 24]. They report that their sys-
tem achieves F-scores of 96.6 and 94.1, when evaluated on MUC-6 and
MUC-7 English NER tasks, respectively.

Borthwick et al. [54] presented a statistical system in a maximum-entropy
framework, which is reported to show the existing then-state-of-the-art perfor-
mance in 1998. The system makes use of various features, including capitaliza-
tion features, lexical features, and features indicating the current section of text
(e.g., headline or main body), as well as using dictionaries of single or multiword
terms. When the system is combined with three hand-coded systems—Proteus
[55], IsoQuest [56], and a system from the University of Manitoba [57]—it is
reported to yield an F-score of 97.12, which is highly comparable to those of
human taggers of MUC-7, with F-scores of 96.95 and 97.60 [58] (see Section
6.4.4). However, they have not explained why the combined system outper-
forms the original system, and what makes the system produce such
state-of-the-art performance. It is not yet clear if the combined system can be
applied to other domains, without redundancy among combined component
systems.

There are also several approaches to NER for language-independent sys-
tems. According to Palmer and Day [9], it is possible to perform much of the
multilingual entity recognition task with a very simple analysis of texts, using
Zipf’s Law [59], achieving a recall score higher than 70 for some languages.
However, they also contend that making incremental advances above the base-
line can be arduous and very language-specific. In order to build a minimally
language-dependent system for both NER and classification, Cucerzan and
Yarowsky [60] present an iterative learning method that learns from unanno-
tated texts. Their method achieves a competitive performance, with F-scores
ranging from 70.5 to 75.4, when trained on a very short labeled name list, and
without using other resources. This result is consistent with the observation of
Mikheev et al. [61], who also have utilized relatively small gazetteers of
well-known names, rather than large gazetteers of low-frequency names. These
language-independent approaches also are useful for biomedical NER, because
of different characteristics of biomedical NEs (see the comparison of gene names
for Drosophila with protein names in [23]).

In summary, the approaches to biomedical NER have evolved similar to
those in general domains, probably because many of the methods for biomedical
NER are actually adopted from, or further enhanced from, those for the compe-
titions of MUCs in general domains. Machine learning approaches to general
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NER have utilized various techniques, such as HMM [53, 62, 63], decision tree
[64, 65], and Maximum Entropy (ME) [66], while approaches to biomedical
NER have usually utilized HMMs. The state-of-the-art performance in general
NER is achieved by a hybrid method [54], but the hybrid approaches to bio-
medical NER have not yet shown such performance, possibly due to the lack of
high quality linguistic resources in biomedicine (see Chapter 3). The approaches
to biomedical NER have focused almost exclusively on gene and protein names,
while approaches to general NER have dealt with language-independent issues
as well. It certainly is an open problem to deal with different kinds of NEs in a
uniform way.

6.6 Conclusion

In this chapter, we describe the task of NER from the biomedical literature,
along with previous approaches to the task. The reported performance of the
systems implementing these approaches shows that some of them are practical
enough to be utilized for larger biomedical text mining systems. However, we
should note that there is still a need for evaluating them with a common evalua-
tion metric and a common testbed, as discussed in Section 6.5. Much more
effort is required to enhance, or fine-tune, the systems, as pointed out by Palmer
and Day [9]. We also need to consider the fact that the approaches may not be
applicable in a straightforward manner to other systems with different goals,
since these approaches are designed only for certain fixed purposes (see Section
6.3.5). This observation leads us to the potentially synergistic influence of NER
on biomedical text mining systems, which requires a more integrated develop-
ment of NER methods, according to their host text mining systems.
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7
Information Extraction
John McNaught and William J. Black

7.1 Information Extraction: The Task

Simply put, we can characterize information extraction (IE) as follows:

• Take a natural language text from a document source, and extract the
essential facts about one or more predefined fact types.

• Represent each fact as a template whose slots are filled on the basis of
what is found from the text.

A template is a “form” that conveys a fact when filled. The form has labels, one
of which says what type of fact it represents, and the others (the slots) identify
the attributes that make up the fact. There are different types of facts. We will be
interested here mainly in simple facts and events. Examples of simple facts are:

James Smith works for XYZ Co.
James Smith, Chief Research Scientist of XYZ Co.
Binding of hsp90 to the glucocorticoid receptor requires a specific 7-amino acid
sequence at the amino terminus of the hormone-binding domain.

Examples of events are:
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XYZ Co. announced the appointment of James Smith as Chief Research Scien-
tist on 4th August 2005.
We hypothesized that retinoic acid receptor (RAR) would activate this gene.

Unless otherwise indicated, we use “fact” to cover both simple facts and events.
A template for the report of the death of a famous person could have slots

for the name, the age, the place, the date, and the cause of death. Slots are typi-
cally filled by named entities (see Chapter 6), or, in more complex representa-
tions, by other facts. In the news domain, named entities are people,
organizations, places, dates, numbers, amounts of money, and so forth. IE is
increasingly being applied to scholarly papers, where the important entities
include the objects of the science (e.g., substances, organisms, apparatus, and
cited papers).

IE is typically carried out in support of other tasks, and usually forms part
of some application or pipeline of processes. The results of IE typically are either
stored in databases and subjected to data mining algorithms or querying [1];
integrated in knowledge bases to allow reasoning; or presented directly to users
who require support in dealing with identification, assembly, and comparison of
facts (as in data curation tasks). Whereas other upstream tasks in text mining
may be carried out largely independently of users’ requirements, the fact extrac-
tion aspects of IE are often highly dependent on the users specifying the kind of
facts they wish extracted. Most IE systems eschew full-scale analysis of texts (i.e.,
full parsing to achieve one or more representations for each sentence), in favor of
partial analysis. It is critical to determine, for any application, what the user
wishes the partial analysis to yield.

In this chapter, we focus on recent research into rule-based approaches to
fact extraction, and do not consider approaches based on machine learning tech-
niques. A good overview of machine learning techniques for IE from biotext is
provided by Nédellec [2], who notes that there are few attempts to apply such
techniques to fact extraction, a main reason being the lack of appropriately
annotated text for training data. Bunescu et al. [3] offer detailed comparison and
evaluation of machine learning techniques to extract protein interactions. In
Section 7.2, we place IE in its general context. We then focus in Section 7.3 on
the particular problem of extracting relations (simple facts) and events from
texts in the biosciences. First, we must be clear how IE is distinguished from its
adjacent neighbors.

7.1.1 Information Extraction and Information Retrieval

IE is an application of natural language processing (NLP). As the term implies,
the goal is to extract information from text, and the aim is to do so without
requiring the end user of the information to read the text.
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In contrast, information retrieval (IR) is the activity of finding documents
that answer an information need with the aid of indexes. IR systems now tend to
be called “search engines,” and almost all computer users make habitual use of
examples such as Google and PubMed.

Having used a search engine, the user must read each document to know
the facts reported in it. However, when the goal is to be able to tabulate the facts
reported in large numbers of documents in a literature source, IE becomes a
more relevant technology. IE can be used to support a fact retrieval service, or as
a step towards text mining based on conceptually annotated text. We sum up
the contrasts between IE and IR in Table 7.1.

7.1.2 Information Extraction and Natural Language Processing

Natural Language Processing (NLP) is the activity of processing natural lan-
guage texts by computer to access their meaning [4, 5]. Chapter 2 considers the
various linguistic levels involved in NLP.

NLP systems can analyze (parse) well-formed sentences of great complex-
ity, if the grammar of the language has been encoded for the system, and the lex-
ical resources (dictionary) cover the vocabulary used. This is only feasible on the
small scale. In a large body of documents, a significant proportion of sentences
will not be fully recognized by the grammatical and lexical resources of any
given NLP parser. NLP systems need ways to deal robustly with parts of the text
that fall outside these resources.

In IE, where texts are drawn from a single domain of discourse, one mean-
ing of a potentially ambiguous term tends to predominate, and so lexical ambi-
guity is less of a problem than it would be in open domain NLP. Structural and
referential ambiguities can still present a challenge. IE systems have dealt pri-
marily with news sources, and, more recently, with scientific publications. In
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Table 7.1
Contrasting Information Extraction with Information Retrieval

Information Retrieval (IR) Information Extraction (IE)

Returns documents. Returns facts.

Is a classification task (each document is
relevant/not relevant to a query).

Is an application of Natural Language
Processing, involving the analysis of text and
synthesis of a structured representation.

Can be done without reference to syntax
(treating the query and indeed the documents as
merely a “bag of words”).

Is based on syntactic analysis and semantic
analysis.



scientific domains, a general language grammar and dictionary are not enough.
The news is dominated by proper names of people, places, and organizations,
only a few of which are prominent enough to merit listing in the dictionary. Sci-
entific fields use many technical terms, only a few of which are found in com-
mon discourse often enough to merit inclusion in general dictionaries. To some
extent, these kinds of items can be listed in auxiliary terminologies or simple lists
that supplement the dictionary. However, it is usual for an IE system to attempt
to classify unlisted named entities on the basis of their internal structure and the
context in which they occur (see Chapter 6). To do this in scientific domains,
they must increasingly rely on term extractors (discussed in Chapter 4).

In both news and scientific articles, natural language sentences also incor-
porate expressions that cannot be exhaustively listed. These include dates and
monetary amounts in the news, and formulas and measurements in the sciences.

7.2 The Message Understanding Conferences

Much NLP research was funded by U.S. government agencies in the 1970s and
1980s, but these agencies became frustrated at the difficulty of evaluating com-
peting approaches, when researchers chose their own issues, processing methods,
evaluation methods, and data. The solution was to establish a methodology of
competitive evaluation, where sponsored researchers and others would agree to
develop systems to process the same data, and formalize their analysis results in a
standard notation. A series of seven “Message Understanding Conferences”
(MUC) was held, with the last in 1998 [6]. The names of the various tasks iden-
tified in MUC evaluations, and the methods used for evaluation in MUC, have
become widely adopted and adapted outside MUC. Familiarity with IE, as
defined in MUC, is advantageous to aid understanding of IE carried out under
other auspices (see Chapter 9).

MUC also had a strong influence on the design of IE systems. Systems are
usually modular, with a module robustly doing one level of analysis. Hobbs [7,
8] identifies the components of a generic IE system: tokenizer, sentence splitter,
tagger, morphological analyzer, chunker, gazetteer, NE module, discourse mod-
ule, template extractor, and template combiner. Chapter 2 goes into further
detail on this aspect.

7.2.1 Targets of MUC Analysis

The ultimate goal of IE is the extraction of templates representing facts of vari-
ous kinds, including events. In the later MUC evaluations, the analysis was bro-
ken down into component tasks (see Table 7.2).
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Template elements are found by looking for patterns such as those in
(7.1).

a. name is a description
b. name, the description

c. name, the country-based description (7.1)

Examples of TRs include the ‘works_for’ relationship between a person
and a company, or the ‘located_in’ relationship between a place and a larger
place (e.g., a city and a country). To say that Fred Smith was appointed as Direc-
tor of XYZ Co is to report an event of appointment. To say that Fred Smith,
Director of XYZ Co did something is to convey the relationship between Fred
Smith and XYZ Co, in the course of reporting a different event. Relations are
states rather than events, and are often referred to as “simple facts.” Relations are
not always conveyed in the text in the form of an assertion. Apposition (i.e., two
noun phrases adjacent to each another) often indicates a TR, as illustrated in
(7.2). The semantic relation implied by apposition varies with the classes of the
individual noun phrases. In (7.2a) and (7.2b), because the noun phrases are
drawn from the three classes ‘organization’, ‘job_title’, and ‘person_name’, the
ternary relation that the person works for the company in the capacity of the job
title is appropriately instantiated. In (7.2c), where there is a conventional
address format (e.g., Paris, France), the relation ‘located_in’ is instantiated
between the first named place and the second named area.

a. company president first-name, surname
b. the job-title of company, first-name, surname, announced…

c. place-name, place-name (7.2)
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Table 7.2
MUC Component Tasks

Task Description

Named Entity (NE) Task Extracts names of people, organizations and locations; and nu-
meric and temporal expressions (see Chapter 6)

Coreference (CR) Task Links references to the same entity (see Chapter 7)

Template Element (TE) Task Extracts identifying and descriptive attributes of NEs

Template Relation (TR) Task Extracts specific relationships between NEs (simple facts)

Scenario Template (ST) Task Extracts events. For each type of event extracted, one or more
slots are filled with instances of TEs or TRs.



Regarding STs, the arguments or slot fillers (TEs or TRs) have to be iden-
tified first. For example, a ‘management succession event’ is an announcement
that the holder of some corporate office has changed. In such an event, we need
to have identified the following arguments: the company, the new officeholder,
the office, perhaps the outgoing incumbent, and the date of the change. There is
variety in the way events can be related. Two ways to report a management suc-
cession event might be (7.3a) and (7.3b).

a. company today announced the appointment of person-name as job.
(S)he succeeds person-name who has been headhunted by company. (7.3)
b. person-name has been replaced as job by person-name, company
announced today.

7.3 Approaches to Information Extraction in Biology

In what follows, we do not consider the problem of NE recognition, since
Chapter 6 is devoted to this topic. We concentrate on the “higher” tasks of IE,
namely the extraction of template relations (simple facts) and scenario templates
(events), and on the task of coreference analysis. We give an overview of IE
approaches and attempts, insofar as they relate to addressing problems in
biology.

Recent review articles discussing the application of NLP techniques in
general to biology include [8–17].

When we consider the relative success of various techniques below, we
must remember that “higher” analysis tasks typically depend crucially on good
results from the “lower” analysis tasks (e.g., tokenization, sentence splitting,
part-of-speech tagging, terminology, and NE recognition). In general, results
appear depressed when compared to the state of the art of higher IE in areas such
as business newswire processing. This is not to say that the techniques being
used on biology texts are inferior. They are typically the same techniques as
those used on texts from other domains. However, since later stages of process-
ing typically build on the results of earlier stages, a poorer degree of performance
at an earlier stage will have detrimental effects on later stages. As other chapters
in this book describe, terminology (see Chapter 4) and NE recognition for biol-
ogy texts (see Chapter 6) are challenging tasks. Until these tasks deliver results
comparable to those seen in other application domains, we will continue to see
relatively poorer results for such tasks as scenario template extraction, in com-
parison with the state of the art elsewhere. Systems processing MUC-type data
yields an approximate 80% F-score for identification of template relations, but
only an approximate 60% F-score for extraction of events. See [6, 18] for a fur-
ther discussion of MUC. The challenge for IE in the biosciences is to do at least
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as well. Chapter 9 discusses progress in text mining as measured in recent chal-
lenge evaluations. However, these evaluations have not focused on the higher
tasks of IE. This is also true for other concerns, such as evaluating attempts to
support biodatabase curation, through identifying passages giving evidence for a
Gene Ontology annotation or through annotating a protein with a Gene
Ontology concept.

This is not to criticize these evaluations, which have had positive effects on
the field (see Chapter 9), but simply to note that the evaluation of event and
simple fact extraction has not yet been conducted in challenge evaluations in
biology. Rebholz-Schuhmann et al. are optimistic that fact extraction in biology
is “only a matter of time and effort” [19]. However, they refer to fact extraction
in the context of full-scale analysis of language, which they conclude as being a
long way from being up to the task. Fact extraction can offer useful output
through shallow analysis, as is commonly practiced in IE. With the advances
being made at the level of NE and terminology recognition in biotexts,
improved results from fact extraction can be expected in the very near future.

We offer a classification of various approaches to the higher tasks of IE in
biology, together with detailed examinations of the techniques used by various
systems. Our objective is both to describe the wide range of approaches, and to
provide a basis for appreciating the advantages and limits of the systems dis-
cussed (e.g., whether their output can be used for data mining or other tasks).
We focus on systems that have been described in the recent research literature.
As Chapter 9 makes clear, exact comparison depends on a common evaluation
scheme and common gold standard annotated data, which are not yet developed
for these higher tasks. Thus, the reader must interpret with due caution any
reported recall, precision, or F-measure scores, and is advised to consult the cited
sources for further detail. Furthermore, some systems defy any single classifica-
tion, since they use a multitude of strategies, components, and resources. We
have nevertheless assigned such systems to a single class, while making cross
reference to others in terms of the features they display.

7.3.1 Pattern-Matching Approaches

As in other areas involving NLP, there are attempts to exploit basic pattern
matching techniques to extract useful information from biotexts. These
attempts suffer from similar problems, wherever they are applied with a view to
obtaining what is essentially semantic or conceptual information. Some measure
of semantic processing beyond pattern matching is required over either text
strings or annotations connected with surface analyses (e.g., part-of-speech
annotations). Moreover, the closer an analysis is to the text, the more patterns
that are needed to take account of the large amount of surface grammatical vari-
ation in texts. Those who concentrate on accounting for the wide variation in
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surface expression face the Zipfian characteristics of text with respect to patterns
[19]. Many patterns are seen only once, or a few times, even in a large collection,
and one can never gather enough text to ensure that all possible patterns can be
accounted for. Thus, there are early upper limits on processing involving basic
pattern matching.

Another inherent problem with such approaches is that one cannot easily
exploit significant syntactic generalizations, such as the relationship between
passive and active sentences. Extraction of phrases by basic pattern matching
alone does not solve the problem of semantic and conceptual characterization
of phrases. One must keep in mind the goal of particular analyses using basic
pattern matching. An early attempt is due to Blaschke et al. [20], and more
recent systems still rely on similar techniques. For example, Divoli and Att-
wood report on the BioIE system [21], which uses patterns to extract entire
sentences related to protein families, protein structures, functions, and diseases.
Technically, this is a sentence extraction system rather than an information
extraction system, since there is no attempt to extract and represent informa-
tion content in an abstract form. However, such sentence extraction is
undoubtedly useful for the reader, since it presents the reader with relevant sen-
tences rather than entire documents, which is an improvement over classic IR.
In a curation environment where fact-containing sentences from the literature
are linked to biodatabase entries, this system can offer useful support to the
curator. A similar approach is adopted by Vailaya et al. [22], with additional
user interaction to assign parts of extracted sentences to roles of an interaction
between genes or proteins.

The work by Ono et al. [23] and Huang et al. [24] is representative of a
class of systems that undertakes slightly deeper analysis, by first tagging text for
part-of-speech. Ono et al. apply regular expressions over the part-of-speech tags,
including recognition of simple coordination. Rules target simple assertions
about protein-protein interaction, utilizing stemming and a small number of
keywords. These keywords typically comprise common verbs, such as interact or
bind, and their related deverbal nouns (interaction, binding). Huang et al. apply
sentence alignment and pattern matching to generate patterns that may be use-
ful for extracting protein-protein interactions. Whereas Ono et al. process
MEDLINE abstracts, Huang et al. process full articles.

The BioRAT system [25] also belongs to this family. It offers a means
to construct templates involving simple regular expressions using stems, part-of-
speech tags, gazetteer categories, literal strings, and words. Templates apply to
extract matching phrases. Primitive filters are provided, for example, to reject
any verbs from consideration as proteins.

The RLIMS-P system [26] extracts information on protein
phosphorylation by looking for enzymes, substrates, and sites that can be
assigned to ‘agent’, ‘theme’, and ‘site’ roles of phosphorylation relations. The
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approach involves applying a part-of-speech tagger, which was originally trained
on newswire material and minimally adapted, followed by phrase chunking,
semantic typing of chunks, and then identification of relations using pat-
tern-matching rules. Phrase chunking delivers more than basic noun phrase
chunking. It is able to combine verbal elements into a verbal group, and handle
aspects of coordination and apposition. The results then help simplify the fol-
lowing pattern matching, since fewer and more general rules can be written than
otherwise would be needed.

Semantic typing of noun phrases is then carried out, to assign appropri-
ately to types for protein, substrate, amino acid residue, or source (cell, tissue). A
combination of clue words, suffixes, other phrases in the immediate context
(e.g., appositives), acronyms, and so forth, aid semantic typing, with no refer-
ence to any ontology.

Sentences containing the semantically typed elements are then targeted by
a number of pattern matching rules, which attempt to assign appropriate
elements to ‘agent’, ‘theme,’ and ‘site’ variables. One set of patterns targets
sentences containing a verbal form of phosphorylate; a second set targets sen-
tences with the nominalized form (phosphorylation). The rules allow for
optionality of pattern arguments. The RLIMS-P system was evaluated on a task
to support evidence tagging over MEDLINE abstracts for curation purposes,
and gave good results, with 88% recall and 98% precision. Instances of the
various patterns are extracted, but no complex structured representations are
produced. The system has a narrow focus, which is exploited to good
advantage, and does not attempt to extract information beyond finding plausi-
ble matches for patterns involving ‘agent’, ‘theme’, and ‘site.’ Although
appositives are identified during chunking, they are only used to increase reli-
ability of identification of the enzymes, substrates, and sites that are the focus of
semantic typing. They are not used to provide further information about
attributes of such entities. For example, where an effect of phosphorylation is
mentioned, this would not be noted. It is not stated whether the system can
handle negation. Currently, there is no mechanism to handle cases where
‘agent’, ‘theme’, and ‘site’ information is distributed over more than one
sentence, although work on this was planned. Others have found that
coreference mechanisms and domain models are required to handle such phe-
nomena [27–29].

Many systems in this family typically do not attempt to produce abstract
structured representations, but rather attempt to extract phrases or entire sen-
tences containing matched material. This restricts their usefulness for later min-
ing. End users need to appreciate not only how such systems might fit their
needs, but also the variety of other approaches available in the information
extraction spectrum.
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7.3.1.1 Dictionary-Based Information Extraction

A variant of the pattern matching systems is represented by Martin et al. [30],
who rely, for extraction of protein-protein interactions, on a number of dictio-
naries containing: protein names and their synonyms; protein interaction verbs
and their synonyms (e.g., interaction is taken as a synonym for interacts); and
common strings used to help in the identification of unknown proteins (e.g.,
protein, kinase). In addition, some 80 patterns were written to match instances
of interactions. From the single example given in (7.4), these patterns appear to
rely on instantiating variables typed to represent equivalence classes drawn from
the dictionaries.

($VarGene $Verb (the)? $VarGene) (7.4)

Intervening material can be specified as regular expressions. In (7.4), an
optional the can occur between an interaction verb and a following gene. Pre-
sumably, reference also can be made to items in the dictionary of common pro-
tein indicator strings. Although the power of this formalism cannot be judged
from one example, the authors note that “many interactions were not detected
because of the complexity of the way they were formulated by authors” in texts.
This would appear to indicate that the authors’ approach is not employing any
form of partial parsing or chunking, although the formalism may be capable of
supporting this.

An important characteristic distinguishes the system reported on from the
sentence extractors described above. Rather than producing the matching sen-
tence, a template is output, whose slots are filled with the relevant dictionary
item, or the canonical dictionary item chosen to represent a group of synony-
mous items. These templates then can be subjected to data mining phases, if
required.

7.3.1.2 Preposition-Based Parsing

Another variant of basic pattern matching, due to Leroy et al., is based on a
notion of preposition-based parsing [31, 32 ]. This technique is used to fill basic
templates with material surrounding prepositions in biomedical texts, including
information on negation. The motivation behind this approach is that preposi-
tions, such as by and of, are often indicative of agent or patient roles, as in the
examples in (7.5).

a. inhibition of cell proliferation—cell proliferation (patient) is being
inhibited (action).

b. apoptosis induced by the p53 tumor suppressor—the p53 tumor (7.5)
suppressor (agent), is inducing (action) apoptosis (patient).
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The parsing technique used here involves no syntactic analysis, but rather
relies on finding specific types of elements that can be taken to indicate the
boundaries of nominal or verbal groups. Examples of these elements are punc-
tuation, function (noncontent-bearing) words, and so forth. A claimed advan-
tage of this technique is that it allows for more general extraction, rather than
an extraction of specific items from a prespecified vocabulary. Following the
initial extraction phase, further straightforward processing takes place to com-
bine templates, yielding new, more informative, templates. Combining also is
carried out where instances of two templates are connected by a conjunction
(and, or), with the condition that the same preposition occurs in each template.
Cascaded finite state automata are used to guide acceptance and extraction of
template fillers. Transitions between states are authorized, as usual, only if
appropriate input is encountered, but also can involve a further maximum dis-
tance criterion. That is, the desired input is permitted to be found within a spe-
cific window, whose size is variable, based on the individual transition. This
gives flexibility in matching.

Initial results [31] revealed that almost 30% of errors in processing were
due to taking in too much material for an agent or patient. The process to estab-
lish the boundaries of nominal groups was allowing incorporation of material
that should be excluded. A noun phrase chunker was then adopted [32],
although it was modified to not return prepositional phrases as whole entities,
since prepositions lie at the heart of the applied strategy. Where nominalizations
previously had been mapped to infinitival forms when extracted, this strategy
was changed, so that if a verb such as suggest or speculate was present in the sen-
tence, then mapping of nominalizations to infinitival form was not done, since
the sentence was not assumed to involve a fact. This and other improvements
led to an increase in precision.

In this work, no attempt was made to map template fillers to any seman-
tic or conceptual entity. However, further developments have been reported in
[33], which include mapping template fillers to GO, HUGO, and the UMLS
metathesaurus. As might be expected, results of this mapping are not good, due
to the issues discussed in Chapter 4. In common with the majority of other
pattern matching approaches discussed above, there is a focus on extracting
strings. That is, the fillers of template slots are essentially strings, or canonical
forms of strings, found in the text. In [33], there is no sophisticated named
entity or term extraction component, which can appeal to context to tag
entities with appropriate semantic or conceptual tags. There is no basis on
which to assign a semantic or conceptual entity to strings during the main
processing phase. Therefore, the only means available to assign a semantic or
conceptual label is essentially the look-up of resources at the end of the main
phase.
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7.3.2 Basic Context Free Grammar Approaches

As there was much earlier in the history of NLP, attempts to process biotexts
have been made, applying parsers based on straightforward context free gram-
mars with little consideration of linguistic constraints. This can be considered an
improvement from basic pattern matching. Temkin and Gilder [34] adopt com-
piler generator tools to produce a lexical analyzer and a parser customized to
extract interactions involving genes, proteins, and small molecules. The parser
operates in top-down mode, in which hypotheses are made about the structure
of the sentence before seeing the words. This is in contrast to many rule-based
IE systems, which typically apply a bottom-up strategy or a mixed mode. In
bottom-up processing, the evidence of words in the sentence is used to guide
structure building. A popular mixed mode is bottom-up processing combined
with top-down filtering. This is more commonly seen with full parsers, which
we discuss in the next section, since a top-down mode is of little relevance to
partial parsers.

Whereas top-down processing is appropriate for languages with little or no
syntactic ambiguity, and with many similar types of sentences (e.g., artificial
programming languages), it is not generally used as the sole strategy for process-
ing natural language. Temkin and Gilder’s system [34] relies on a small number
of interaction keywords, grouped by semantic category, although semantic cate-
gories do not appear in their sample outputs. Since the grammar is simple, prob-
lems are reported with long, complex sentences, characterized as “unstructured
text representations.” However, it is precisely the job of IE to be able to deal
with such sentences, especially where they conform to common writing practice
in the domain under study. This attempt demonstrates the limitations of simple
context-free grammar-based approaches, using few linguistic constraints, in
conjunction with a top-down processing strategy.

7.3.3 Full Parsing Approaches

Earlier attempts at IE using full parsing showed no improvement in accuracy in
the MUC competitions [35, 36]. However, there have been recent attempts to
apply full parsing to biotexts. In contrast to Temkin and Gilder’s approach [34],
full parsing here implies reference to a theory of syntax. A challenge for syntactic
theory-based full parsers is to deal with the special language of domain texts.
Syntactic theories tend to be constructed with reference to the general language.
Available computational grammars are often more suited to general language
processing, and it is not evident that they can be easily specialized to handle
domain texts. Nonrobust performance is immediately an issue for such parsers.

There has been a worthwhile attempt [37] to apply Link Grammar [38] to
the extraction of protein-protein interactions. This work is significant, in that a
thorough evaluation was undertaken, with detailed analysis of causes of failure.
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A general English grammar was adapted to account for biomedical sublanguage
phenomena. The Link Grammar parser finds all possible analyses (linkages)
according to its grammar. It was found that postprocessing was required to
apply other constraints. Postprocessing is a computationally expensive process,
given the number of linkages for ambiguous sentences found by the parser. The
number of analyses was reduced by random sampling, and by applying
heuristics (based on general English) to yield the best parses first. Since insis-
tence on achieving a full parse would cause failure due to the variety of sentence
types, processing constraints were relaxed, to allow the parser to produce partial
analyses if a full analysis could not be found. Moreover, a pragmatically ascer-
tained time limit was applied, to ensure that restricted parses are still produced
in cases where the parser was engaged in discovering a large number of analyses
for a sentence. Only 7% of sentences in the test set had a fully correct analysis in
the first analysis, while 28% had a fully correct analysis somewhere in the parse
results. A maximum number of 10,000 results was permitted per sentence. No
titles were properly analyzed, since the titles often lack verbs, which are critical
to successful link grammar analysis. An upper limit of 60% of protein interac-
tions could be extracted. Whenever a time limit was invoked, interactions were
unlikely to be found. Time-limited parsing was found to be a significant cause
of error whenever it was invoked.

Errors due to “ungrammatical sentences” ran at 8%. The authors com-
ment on the apparent level of mistakes in their PubMed corpus due to nonna-
tive writers of English, and cite phenomena such as missing possessive markers
and determiners, and errors in number agreement. They note that grammar
constraints could be relaxed to deal with these errors, but that this would lead to
more ambiguity, and more difficulty in identifying correct analyses. Coordina-
tion of compound noun modifiers also was found to be a problematic phenome-
non, requiring modification of the grammar. Unknown grammatical structures
accounted for 34% of errors, solvable by local modifications to the grammar.
Strategies for handling unknown words were responsible for 16% of errors.
Some of these would require modification of the parser rather than of the
grammar.

Failure to recognize domain-specific named entities was responsible for
28% of parsing errors. An experiment was conducted to import more than
125,000 words from the UMLS Specialist Lexicon, but this led to an overall
improvement in parsing of only 2.5%, although it reduced the need to invoke a
time limit. The authors concluded that such modest improvement does not
indicate that it is hardly worthwhile to add lexical entries, but rather that the
improvements rely on modifying the grammar or the parser, not the dictionary.

What lessons can we take from the authors’ valuable detailed evaluation of
this attempt? First, not all parsing strategies or grammatical frameworks are
directly suitable for processing texts in our domain of interest. Careful study

Information Extraction 155



must be made to select, develop, or modify an information extraction engine
and a grammatical approach that are appropriate for texts in the domain at issue.

Second, we must be wary of characterizing the language of (largely)
well-edited material as “ungrammatical,” because articles or abstracts may be
written by apparently nonnative speakers of English. This point is not pursued
in any depth in [37]. However, one may note that a sublanguage often demon-
strates deviations from the general language, but that these “deviations” are not
seen as such from within the sublanguage—they are seen simply as natural
sublanguage behavior [39]. They would trip up a general language analyzer. If
we wish to apply an analyzer to sublanguage texts, then we should ensure that it
is able to handle sublanguage phenomena. The ungrammatical sentences
reported may be truly ungrammatical, even with respect to the sublanguage of
biomedicine. However, regardless of their nature in this particular corpus, the
lesson really is that whenever we approach a corpus of text, we need to take into
account any possible sublanguage characteristics. Much is written about process-
ing of terminology in biomedicine, although there is an almost exclusive focus
on nominal terms, with an unhelpful blurring of the notions of ontology, docu-
mentation thesaurus, and terminology. The effects of this unfortunate blurring
can be best appreciated in the numerous failed attempts to treat concept labels of
ontologies and descriptors of documentation thesauri as term forms for text
string look-up. However, a sublanguage consists of more than nominal terms,
and indeed more than a lexical component. It can display special behavior, with
respect to the general language, at many linguistic levels, covering many linguis-
tic and textual phenomena. In particular, sublanguage verbs take on crucial
importance, as we shall see in Section 7.3.6.

Third, a lesson to be taken is that ambiguity is the bane of parsing natural
language, and any means of reducing ambiguity must be explored. This was one
reason why partial parsing became the preferred mode of processing for
rule-based IE systems—partial parsers do not attempt to discover every possible
analysis. For a full parser, many ambiguities arise from the multitude of ways it
can bring constituents together to build representations of even a modestly
complex sentence.

Fourth, parsing of fragmentary phrases (e.g., titles, headings, captions, text
in table cells, and verbless fragments) can pose problems. We note further that
this is not confined to full parsers, and partial parsers can have problems with
such phenomena. This is a well-known problem in IE [7], and has not, as yet,
met with workable solutions.

Link Grammar also has been used in the CADERIGE project [40]. Here,
it is explicitly used in a shallow parsing mode to extract specific grammatical
relations.

Yakushiji et al. [41] apply a full parser with a general purpose HPSG
grammar [42] and lexicon, with a view to extracting events from biomedical
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texts. However, partial parsing is applied before the main parsing process to
overcome some of the drawbacks of full parsing. The partial parser used [43]
attempts to resolve local ambiguities that would otherwise persist from
part-of-speech tagging, by excluding unlikely part-of-speech tags from further
analysis, using an analysis of local context. The full parser delivers general deep
syntactic argument structures to be mapped to domain-specific event frames,
although this latter step was not yet available in the reported work. No precision
details are given, but recall for full parsing is given as 47%. Among the problems
discussed is the treatment of modifiers. Since a general language grammar was
used, based on general verbal subcategorization criteria, this proved to be a
severe problem. Many constituents taken as modifiers in general language
should be taken more properly as arguments in sublanguage texts. The effective-
ness of the approach described in [41] cannot be precisely characterized, espe-
cially since mapping to event frames was not undertaken. Taken at face value, it
does not offer a good solution to the processing of domain-specific texts.

Kim and Park’s BioIE system [44] (to be distinguished from the system of
the same name by Divoli and Attwood [21]) also undertakes full parsing,
including every sentence containing instances of predefined patterns involving
certain keywords. This system is based on Combinatory Categorical Grammar
(CCG) [45], and is used to extract general biological interaction information,
which is then annotated with GO concepts. CCGs belong to the class of mildly
context-sensitive grammars. The CCG formalism employs function combina-
tion and function composition to combine consecutive phrases into larger
phrasal units. It can handle complex linguistic phenomena, such as long distance
dependency and coordination, and has been shown to handle relatively free
word order.

However, BioIE’s CCG parser is not deployed in the initial stages of syn-
tactic analysis. First, some 1,300 patterns are applied to find instances of pat-
terns involving a number of specific keywords, which are drawn from lists used
in other studies [23, 46]. Keywords indicate either basic biological interactions
or interactions between basic interactions. The patterns are intended to find
potential arguments of the interaction keywords (mainly verbs or
nominalizations), and are regular expressions over parts-of-speech and morpho-
logical features. Heuristics are used to limit the search to the left and right of a
keyword for potential arguments. A CCG parser is applied only after this
bidirectional pattern matching step, in order to determine whether the candi-
date arguments are indeed functioning as required, syntactically, and whether a
sentential parse can be built. Subsequently, validated arguments are mapped to
GO concepts [44]. Coordination proved a problem for parsing, as did missing
verbal subcategorization information in the earlier version of the system [46].
The verbal subcategorization problem was rectified to some extent [44].
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The authors claim that their system is retargetable, and that less detailed
linguistic information is needed compared to GENIES [47]. However, they also
note that the interaction keyword patterns, which do the bulk of the work in the
system, are “not so simple” and “not . . . so straightforward to generalize.” This
would then argue in favor of a more linguistic approach of the type they criti-
cize, which does have the advantage of allowing more significant generalizations
to be made at a deeper level than is achievable through the type of patterns they
advocate. While precision values are apparently roughly similar for BioIE and
GENIES, GENIES has better recall. This would indicate possible failures with
the CCG-based approach to achieve a sentential parse, and an advantage for the
fallback strategy of GENIES in the face of potential parse failure. No direct
information is given in [44], but an example of processing stages shows that
parsing does aim to achieve an overall sentential parse. Poorer recall also is a
characteristic of systems that are unable to deal with the variety of surface pat-
terns found in texts, whereas the hybrid syntax-semantic sublanguage approach
adopted by GENIES offers less sensitivity to surface characteristics.

We further note that BioIE’s original syntactic parsing performance
was improved only after addition of subcategorization information on the ver-
bal interaction keywords. This seems to have been done on an ad hoc basis
as a result of error analysis, rather than on the basis of sublanguage anal-
ysis leading to motivated subcategorization frames. If so, then this leaves open
the question whether or not the number and type of arguments used in BioIE
subcategorization frames are more indicative of general language than of special
language.

Another example of full parsing is provided by Daraselia et al. [48], who
employ a full sentence parser and a domain-specific filter to extract information
on protein-protein interactions. The parser is described in detail in [49]. A
two-step approach is employed. First, all possible syntactic analyses are discov-
ered, using a unification-based context free grammar and a variant of Lexical-
Functional Grammar [50]. Second, each alternative parse is mapped to its corre-
sponding semantic representation. Many tens of thousands of syntactic parses
can be produced per sentence. The output of the semantic component for each
sentence is a set of semantic trees, in which lexemes are linked by relations indi-
cating either thematic roles (e.g., ‘agent’ or ‘patient’) or attributive roles. A cus-
tom-built, frame-based ontology is used, since no other ontology was found to
be directly applicable. The results of syntax-to-semantics mapping, still poten-
tially many thousands of representations per sentence, are filtered against the
ontology to yield a frame tree, in which ontological frames are instantiated and
linked according to the constraints expressed in the ontology. A preference
mechanism is used to help control construction of the frame tree, which takes
into account the different status of thematic and attributive roles. That is, if an
attributive role cannot be incorporated in the current frame tree according to
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frame constraints, then it is ignored as being less important to the core meaning
of the sentence, whereas failure to incorporate a thematic role will lead to
rejection of the current interpretation.

As a result of this preferential processing, which may lead to the lack of
consideration of less important structures, the same frame tree may be produced
from numerous different semantic representations for the same sentence. An
additional filter is applied to ensure that duplicates are excised. A final process-
ing phase converts frame trees to conceptual graphs, which then can be sub-
jected to querying, or used as a basis for mining.

Evaluation of extracted protein-protein interactions revealed that,
although precision was high, recall was very low (21%). This was found to be
due to the low coverage (34%) of the parser. In addition to the authors’ com-
ments on performance, we may note that this system, like many classic full sen-
tence analysis systems, suffers from having to deal with potentially many tens of
thousands of analyses. The various filtering techniques that are employed reduce
that number progressively. Novichkova et al. [49] report that the single correct
ontological interpretation is retained, even when more than 100,000 syntactic
structures have been produced for a sentence, which normally would be surpris-
ing. Presumably, competing final representations are not found in the results,
because “inessential” components of semantic trees are ignored, according to the
preference mechanism. These “inessential” components often are a major cause
of ambiguity for general analyzers.

However, a question arises as to the exhaustiveness and specificity of
extracted information, since the distinction between thematic and attributive
roles is not well articulated. For example, it is not always the case that a preposi-
tional phrase, which is treated as an inessential attributive role in this work, has
in fact that role. It may be playing a thematic role beyond the “normal” range of
thematic roles envisaged by treatments based on general language notions of
argument structure. In other words, when deciding how to treat items such as
prepositional phrases, care must be taken to characterize their role in relation to
the verb in the sublanguage under study, otherwise important information will
be missed. Almost 30% of parsing failures were due to grammar-related issues,
including problems with analysis of relative phrases and “unknown domain-spe-
cific noun phrase constructs.” There is little detail given on how syntactic argu-
ments of verbs and roles of semantic frames are described, or on how such
descriptions are determined. However, we note that a “generally accepted set of
roles” is used, and that there is a key distinction made between thematic and
attributive roles. Taken together, these would then indicate that an approach
derived from techniques more applicable to general language has been adopted.

It is undeniable that the authors have attempted to deal with domain-spe-
cific phenomena, and have gone some way towards achieving that aim. How-
ever, inherent in their approach is an apparently unquestioned belief that
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attributive elements are of lesser importance. This is in contrast to the investiga-
tion of attributive elements by Leroy and Chen [33], and to the strong
sublanguage approach of Friedman et al. [51], for example.

We note in passing that augmented transition networks, used in this work
to encode grammatical descriptions, are today largely deprecated for natural lan-
guage processing. They merit hardly a mention in the current standard textbook
for the field [5], and were taken severely to task by Johnson [52].

7.3.4 Probability-Based Parsing

As we have seen, full sentence parsing is problematic when faced with the variety
of language behavior, which has led to attempts to reduce ambiguity through
partial parsing or chunking prior to the launching of the full sentence parser, or
to heuristically limiting the number of parses.

Probability-based parsing offers a different solution, which essentially
assigns weights, derived from large-scale corpus processing, to grammar rules.
Such parsers offer robust processing, and, where based on dependency gram-
mars, less sensitivity to surface variation. Rinaldi et al. [53] report on prelimi-
nary work involving a dependency-based probabilistic parser to extract relations
involving genes and proteins from the GENIA corpus. Partial but still useful
results are returned if no parse can be achieved. In the FlySlip project at the Uni-
versity of Cambridge, a mature probabilistic parser, RASP [54], is being applied
to extract relations from biotexts for FlyBase. This project was recently started at
the time of writing, so we look forward to learning of its results.

7.3.5 Mixed Syntax-Semantics Approaches

In a classic modular system for IE, each module handles one level of linguistic
analysis. Although this organization has its advantages, it also has its drawbacks.
For example, in a strictly compartmentalized system, we lose the ability to profit
from different kinds of knowledge at the same time. Such considerations have
prompted investigation of approaches that attempt to exploit syntactic and
semantic knowledge together.

One such mixed syntax-semantics approach is adopted by McDonald et al.
[55]. A part-of-speech tagger was trained to apply a tag set, containing both
part-of-speech and semantic word tags. This essentially combines part-of-speech
tagging with (limited) NE recognition. The motivation behind this step is to
remove reliance on consulting a lexicon to obtain semantic constraints, and to
enable relation extraction to be more generally applicable, through not being
tied to a small number of prespecified templates involving specific verbs. How-
ever, a noted feature of this approach is that accurate postfiltering is required to
reject nonrelevant relations. Basic phrase chunking is then applied to construct

160 Text Mining for Biology and Biomedicine



noun and verb groups. A cascade of four finite-state automata then apply to
construct partial parses. These automata implement approximately 1,800 gram-
mar rules, whose application is constrained by limited reference to left and right
context, including punctuation. The rules combine sequences of categories to
form noun phrases, verb phrases, prepositional phrases, relative clauses, and sub-
ordinate clauses. The examples of rules cited indicate that prepositional phrases
are given separate categories according to the preposition involved, which would
account in part for the high number of rules.

Relation identification is then carried out, using a similar kind of rule for-
malism to match “knowledge patterns” (i.e., sequences of syntactic categories).
A relation consists of only three roles, “loosely comparable to subject, verb,
object constructs.” Instead of building a single category, a knowledge pattern
rule at this point builds as many relations as are specified by its left-hand side,
and, for each relation, assigns categories on the right-hand side of the rule to
roles (taken from a set of 10 roles). Thus, for some sequence of categories, a
number of potentially overlapping relations may be found. Some 200
knowledge pattern rules were written.

Finally, each relation has to pass through a “semantic filter” before extrac-
tion is complete. The filter checks that at least one word from the tokens com-
prising the predicate role fillers does exist in a resource such as GO or HUGO,
and that at least one word making up the predicate appears in a list of some 150
verb stems, specified by a domain expert. The precision of extracting pathway
relations was 61%, and recall was 35%. Similar to Leroy and Chen [33], it was
found that a major source of failure were late-stage attempts to map tokens of
relation predicates to concept labels in ontologies. Approximately one-third of
failures were due to incomplete extraction rules, and to a lack of treatment of
coreference.

Although McDonald et al. claim to be exploiting a hybrid syntactic-
semantic approach in their tagging, it is very hard to judge from the reported
work the nature of the semantic tags, since only a very limited sample is given.
Moreover, none of the sample rules given refers to semantic categories, and the
sample output of parsing and relation identification refers only to syntactic cate-
gories. Therefore, it is difficult to judge the degree of any potential contribution
of semantic-based processing. The examples given would lead to the conclusion
that relation identification (i.e., before validation via the final semantic filter)
was wholly concerned with establishing syntactically-based triples, and that
there was indeed little true semantic knowledge in this system. Our impression
may be due simply to injudicious exemplification in the reported work.

From a grammar writing point of view, we may note that it is unusual to
see a rule producing more than one output (knowledge pattern rules). This can
lead to lack of transparency, affect ease of maintenance, and be a source of
overgeneration. Such an approach is highly indicative of a lack of exploitable
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semantic features that would otherwise help constrain the analysis. As a result
of the overall strategy chosen, which eschews exploitation of constraints such as
subcategorization frames, rather flat syntactic representations are produced.
This leads to long sequences of syntactic categories being subjected to
knowledge patterns, which then derive numerous, potentially overlapping
relations from these, which must then be validated. Patterns applied over long
sequences of categories further indicate a rather surface-oriented treatment of
linguistic phenomena. The express intention of this work is to achieve general-
ity, and to do away with the need to express a lot of information about con-
straints. However, this work gives up much in doing so. In particular, it gives
up the possibility of being able to tell us how relevant subparts of sentences
relate to each other. That is, numerous overlapping relations can be produced,
but there is no subsequent step to tie any together. This is not necessary to carry
out a full semantic analysis, but is required to account for the embedding of
semantic constituents and their relation to the main predicate. This analysis
apparently does not go much beyond simple subject-verb-object relations, and
does not attempt to determine how semantic relations or other constituents can
be related semantically to the main predicate, in order to yield a meaningful
analysis of the sublanguage message.

A more complex mixed syntax-semantics approach is due to et al. [29].
This work concentrates on extracting relations concerning gene regulation by
using syntactic-semantic rules, encoded as a cascade of finite state transducers
for application by a partial parser [56]. Domain-relevant nouns and names and
relevant verbs (of activation, repression, regulation, coding, or containing) are
semantically tagged. Noun phrases and noun chunks are built incrementally,
and, in certain instances, are labelled as being potential semantic agents or
themes via inspection of nearby prepositions. For example, the semantic role of
binding site is ambiguous, but can be resolved by noting whether of or for fol-
lows the phrase. Compare this approach to that of Leroy and Chen [33]. Next,
three types of relation are extracted—up-regulation, down-regulation, and
unspecified regulation of expression. Verbal syntactic and semantic
subcategorization information is exploited together to constrain the analysis,
although no details are given. Relation chunking can handle passive, as well as
active, constructions. Relations involving nominalizations (e.g., binding of . . .)
also are extracted. There is no treatment of anaphoric reference. Precision of
approximately 83% was reported, but recall was low, at 20%. The authors
comment that their rule-based approach would benefit from being ontol-
ogy-driven, a point we address in the penultimate section.Before that, we go
into further detail on the sublanguage approach to IE.
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7.3.6 Sublanguage-Driven Information Extraction

Sublanguage-based processing has a long history in natural language processing.
A good introduction to the concerns, theory, and applications of sublanguage,
with emphasis on biomedicine-related applications and pointers to the
sublanguage literature, is provided by [57]. The central notion of sublanguage is
that the language of a special community (e.g., biologists) displays a particular
set of constraints, with respect to the general language. These constraints operate
at all levels. This gives rise to vocabulary items with special meaning (terms), to
specific ways of composing terms (term formation rules), and, importantly here,
to special ways of structuring sentences (sublanguage syntax) to communicate
special information (sublanguage semantics). Some of these constraints will
cause the general linguist who is unaware of sublanguages to complain of
ill-formed sentences or deviant usage of language.

However, such deviance is being seen from the perspective of general lan-
guage. To the sublanguage practitioner and the domain expert, there is no devi-
ance, only normal ways of communicating in that domain. For example, one
may find that the range of tenses is restricted; that certain derivational mecha-
nisms are prevalent in the sublanguage although rare in general language; that
other mechanisms common to general language are hardly used; and that termi-
nological verbs take on specific syntactic-semantic behavior. Consider the
examples in (7.6).

a. The patient presented with influenza to the doctor.
b. The patient presented the doctor with influenza. (7.6)

The sentence of (7.6a) belongs to medical sublanguage, since, in that
sublanguage, present demands a particular sentence structure to render the
desired sublanguage meaning, whereas the sentence of (7.6b) belongs to the gen-
eral language.

Such constraints give rise to what Harris [39] calls the “informational
structure” of the sublanguage under study. Much of this structure is realized
through relatively fixed phraseology (compared to general language), and often
these canonical ways of putting words together are conditioned by the demands
of the sublanguage verb. Scientific sublanguages display highly conditioned
canonical structure, while the sublanguages of the social sciences do so to a lesser
degree. Thus, as GENIES and other sublanguage-based systems demonstrate,
we can exploit knowledge of sublanguage structure to achieve more accurate and
informative IE compared to approaches based on general language.

As we saw, Leroy and Chen [33] demonstrate that prepositions are useful
indicators of important information in biotext. Daraselia et al. [48] distinguish
thematic roles from attributive roles, with the latter containing prepositional
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phrases Their preference mechanism is tuned to ignore attributive roles, where
these might lead to analysis failure. Here, then, are two contrasting views of how
to treat prepositional phrases in biotexts. We also noted that the performance of
the BioIE system of Kim and Park [44] was only improved after addition of
basic subcategorization information, of the type required for analysis of general
language. None of these systems is taking any strongly motivated sublanguage
approach. Daraselia et al. apparently use roles related to general language. Kim
and Park were forced to adapt their system, but only to handle general language
subcategorization of a basic kind. Leroy and Chen recognize that prepositional
phrases play important roles in biotext but the authors do not integrate their
description, which remains relatively surface-oriented, in any kind of overall
model accounting for the structure of scientific messages.

Why are we making so much of the status of prepositional phrases? If one
recognizes that the syntactic or semantic arguments of verbs play a role in con-
straining and guiding analysis, then the issue is the quantity and type of argu-
ments associated with the verbs. The answer is apparently straightforward: as
many arguments as are required. However, this straightforward answer is not
one that sits easily with any approach based on linguistic descriptions intended
for processing general language. In general language, the number and type of
verbal arguments is quite restricted. This is because the informational structure
of general language is much looser than that for scientific sublanguages. In gen-
eral language, we add attributive elements as needed, and in many cases these are
signaled by prepositional phrases. Their omission or addition does not radically
alter the core meaning expressed by the verb and the fillers of its few thematic
roles.

However, in the sublanguage world, verbs have special status. They have
particular requirements for subcategorization frames. The average number of
arguments in sublanguage subcategorization frames has been found to be much
higher, compared to the number traditionally recognized for general language
verbs. In work carried out on sublanguage-based machine translation [58, 59], it
was found that up to 15 arguments were needed for verbs in the domain of satel-
lite telecommunications. Many of these arguments are signaled by prepositional
phrases, often manifesting themselves in relatively rigorous orderings. Omission
of such prepositional phrases would detract from the overall meaning imparted
by the sentence, and in many cases would render the sentence meaningless. We
note that the UMLS Specialist Lexicon allows for only five types of verbal frame,
which is inadequate for the description of terminological verbs having higher
numbers of frame arguments.

Thus, sublanguage studies have shown that there is much to be gained
from capitalizing on the informational structure of special language texts. Good
recall and good precision result from efforts to describe the behavior of
sublanguage verbs and of sublanguage nominalizations, which are derived from
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verbs, in terms of the frequently large number of mandatory or optional argu-
ments they can take, compared to general language counterparts. The GENIES
approach has therefore much to recommend it.

GENIES takes a strong sublanguage approach to extraction of
biomolecular interactions relevant to signal transduction and biochemical path-
ways. As is typical of sublanguage approaches, hybrid syntactic-semantic rules
are used. This reinforces the previous discussion that the relatively heavily
syntactified expressions in sublanguage texts give strong indications of
sublanguage semantic roles. Thus, syntactic and semantic constraints can be
referred to in the one rule. As Friedman et al. [51] note: “In the biomolecular
domain, the primary information concerns descriptions of biomolecular path-
ways consisting of complex interactions and other relations [. . .] Since a path-
way itself is complex and consists of sequences of interactions, the language
expresses the sequences using complex and highly nested relations. Thus, an
argument of an interaction can be another interaction and so forth.” Such com-
plexity is daunting for many of the other systems, which typically manage to
recover only part of the information in a complex message. However, the
sublanguage approach of GENIES is able to cope with such complexity,
through application of the constraints specified on sublanguage verbs to extract
representations of complex nested chains of interactions. These representations
consist of (possibly embedded) frames. For example, a frame expresses a relation
between a semantic action and the fillers of its arguments, or between an object
and its properties (possibly represented as states).

A small number of semantic categories relevant to the biomolecular
domain is used, including a number of subcategories. To aid specification of
these categories, a domain-specific ontology was developed [60], covering both
entities and events.

Although GENIES employs a full parsing strategy by default, it is more
robust than other full parsing systems, for two reasons. First, much ambiguity is
excluded, due to sublanguage constraints imposed by the grammar and lexicon.
There are fewer opportunities to go astray in analysis. Second, if a full parse can-
not be achieved, then motivated partial parsing is invoked, which ensures that at
least a good level of recall is maintained. This dual technique has proven its
worth in comparison to, for example, a “panic mode” [37] invoked after some
time limit has expired without finding a parse. Evaluation of GENIES yielded
96% precision and 63% recall.

The main disadvantage of the strong sublanguage approach that is often
cited is the need for laborious efforts to retarget to another domain. However, in
terms of precision, recall, and ability to produce output representations that can
be exploited by other components, there are distinct advantages. Friedman et al.
[51] concede the difficulty of establishing sublanguage grammars and lexicons,
but explain how such effort could be reduced to manageable proportions.
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As an aside, it is appropriate for the reader to reflect on the following: (1)
biology is hard, with no easy solutions; and (2) processing natural language is
equally challenging, demanding much effort to codify language behavior in suf-
ficient depth, and to a sufficient degree of accuracy, to permit the kind of analy-
ses required by users of information systems. Simple techniques can get us only a
little way, and sophisticated techniques demand concomitantly sophisticated
resources in the form of grammars, lexicons, and ontologies. These are expensive
to develop and maintain. In recent years, there have been numerous advances
that reduce the cost of configuring and tuning sublanguage-based systems: lexi-
cal standards that enable reusability; machine learning techniques that discover
patterns of sublanguage behavior in large annotated text corpora to help gram-
mar writers; development of ontologies that can act as domain models; major
developments that aid in extracting and characterizing terminology, including
compound terms and acronyms; massive amounts of freely available text; and so
forth. It also is no accident that it is in areas such as biomedicine and the biosci-
ences in general that we are seeing sublanguage systems such as GENIES and
GeneWays [61] being built. These domains are particularly exercised by the
need to construct ontologies and terminologies, which are prerequisites for
sophisticated sublanguage-based processing.

Not only are such resources required, but they also must contain appropri-
ate information to support language analysis. Terminologies typically do not
contain the linguistic information required (e.g., terminological verbal behav-
ior), and ontologies may give insufficient information on event or action type
concepts, particularly where events involve a relation over numerous concepts,
including over other events. There is an additional need to tie lexical (including
terminological) descriptions to ontological descriptions, particularly where verbs
are concerned. Friedman et al. [51] note that fine-grained lexical descriptions
are required for sublanguage verbal behavior, and describe how the semantic cat-
egories used in these descriptions (e.g., the semantic categories that verbs
subcategorize for, in verb frames) are mapped to the more general categories
found in ontologies.

One major advantage of building a linguistically sophisticated terminolog-
ical lexicon is that (assuming lexical standards are judiciously employed) it can
be reused to support many other tasks besides information extraction. It would
appear timely to engage in community efforts to build such a resource.

7.3.7 Ontology-Driven Information Extraction

The classification of approaches we have developed in this chapter can be viewed
as having the following questions: the amount of knowledge required to analyze
and extract, how that knowledge is obtained, how it is represented, and how it is
manipulated. We have seen that limited results can be expected from systems
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that use little linguistic or conceptual knowledge. We also have seen that linguis-
tically-based systems that do not fully take account of sublanguage behavior
meet with difficulties. We now turn to consider how ontologies can be used to
aid extraction of relations and events.

Up until recently, most rule-based IE systems have used neither a sophisti-
cated linguistic lexicon, nor an ontology of entities, nor by implication, an
ontology of events. They have relied on gazetteers, which are essentially flat lists
giving a mapping between a look-up string and a tactically useful semantic cate-
gory. In MUC, as we have seen, there was a limited number of such semantic
categories. Rule bases tended to be small. Any large rule bases typically had
many rules handling the same type of phenomenon, since it is easier to write
numerous rule variations than it is to think up only a few complex rules that
may require a greater degree of sophistication in terms of linguistic processing
capability. For a small number of events, event rules could directly encode
(hardwire) the information needed to control role assignment.

However, it has become apparent that the traditional gazetteer-based
approach is not so well suited to IE in the biosciences and biomedicine, espe-
cially with the shift to extract information from full scientific texts rather than
abstracts. As discussed in Chapter 4, terminology plays a crucial part in charac-
terizing knowledge in scientific text. This places a heavy demand on an IE sys-
tem, since it must be able to handle terminology and the concepts to which the
terms refer. Users want to find facts of many types in texts. Moreover, the same
user’s requirements will typically change along with the topic under study. This
places a further burden on a system, especially one deployed as a service, to be
able to handle many kinds of facts as they occur in all their variants in full text,
just in the one domain. Setting aside terminological concerns for the present, we
look now at IE systems that attempt to use ontologies to better respond to user
needs.

We here distinguish ontology-based processing from ontology-driven pro-
cessing. Ontology-based systems include those that attempt to map a discovered
entity, often expressed as a simple string, to a concept in an ontology. This map-
ping usually occurs late in the analysis. The ontology is essentially used in a pas-
sive way, to provide a concept through simple look-up. We have already
discussed several such systems.

In contrast, ontology-driven systems make heavy, active use of the ontol-
ogy in processing, to strongly guide and constrain analysis. A useful side effect of
this approach is that the number of rules required can be substantially smaller,
compared to the number required in an ontology-based system or a system that
does not consult an ontology at all. Without an ontology of events, filling event
templates by rule can involve a large set of rules for every template type. Thus, if
we can describe template structures in an ontology, independently of the pat-
tern-matching rules, then there is much to be gained [62].
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As we have seen above, GENIES makes use of an ontology in a slightly dif-
ferent way. The emphasis in this system is on leveraging the ontology to help in
the specification of the rich sublanguage lexicon and the sublanguage grammars,
which is why we placed GENIES in a class of its own. We now look at two other
ontology-driven systems that do not deploy a strong sublanguage approach.

The PASTA system [28] extracts information from MEDLINE abstracts
on the roles of specific amino acid residues in protein molecules. It is based on a
pipeline of processes, similar to MUC-type processing, and carries out template
element and template relation extraction, but not scenario template extraction
(events having been found to be not relevant to the topics of interest). Due to
the restricted topics under consideration, only three template elements and two
binary template relations were identified. The template elements covered ‘resi-
due’, ‘protein’, and ‘species’; the template relations were ‘in_protein’ (between
residue and protein), and ‘in_species’ (between protein and species). In a ‘resi-
due’ template element, there are slots for name, residue number in sequence, site
and function (in a combined slot), secondary and quaternary structural arrange-
ments, region in which residue is found, and interaction (the latter holding ref-
erences to various types of atomic contact). Template relations contain
references to the ‘protein’ or ‘species’ template elements forming their argu-
ments. Templates for ‘protein’ and ‘species’ store a single attribute for protein
and species name, respectively.

Regarding processing, 12 term classes were used in preparsing processes to
label terms of interest. Bottom-up chart-based phrasal parsing (based on a gen-
eral grammar) was then entered, whose output is mapped to logical (semantic)
predicate-argument structures. However, these structures are not used to fill
templates directly. This would lead to many partially filled ‘residue’ templates,
since information that could fill such templates is typically not all contained in
the one sentence. A discourse processing module takes the predicate-argument
structures as input, and carries out inferencing, based on a limited domain
model (ontology). Each predicate-argument structure is consecutively integrated
in the domain model, also under the control of coreference resolution, which
merges new instances of representations with existing ones, where possible.
Inference and coreference are further used, to help fill in information only
implicit in the text. Finally, a template-writing module filters instances of repre-
sentations from the domain model that are relevant for the PASTA templates.

PASTA yielded 66% precision and 75% recall for filling template ele-
ments, and 65% precision and 68% recall for filling template relations, with an
overall combined precision of 65% and recall of 68%, using the somewhat strict
MUC scoring software. Since these are apparently good results, we examined
the detailed evaluation scores given by the authors. From these, we note that an
‘article’ template element task was included in the evaluation, which extracted
information on title, author, and source, for a MEDLINE reference. Precision
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and recall for such extraction were both 99%, as might be expected for this
straightforward task. If we remove from consideration the ‘article’ template ele-
ment task, then the recall and precision scores for the core biology-related tem-
plate element and template relation tasks become somewhat depressed. PASTA
stopped short of extracting events, since these were not relevant for the system’s
users. However, it is clear that the overall PASTA framework could support
event extraction, if required and so configured.

A good example of an ontology-driven system, which primarily targets
events, is presented by GenIE [27]. The motivation behind this work is that it is
not enough to extract single events, since much useful information might be
missed in so doing. For example, where a sentence refers explicitly to a binding
action, a following sentence might refer simply to this interaction, but may have
something critically important to add. Anaphoric reference then must be han-
dled, and the information from each sentence merged, or, at least, a dependency
relation must be established between the events in each sentence. Some sen-
tences also may discuss how a protein binds to an element and inhibits
transcriptional activation by another protein. It is then important to capture the
dependency between these two events—that is, the binding is responsible for the
inhibition. This argues for a linguistic approach capable of identifying concep-
tual relations between events. This further argues for an ontology-driven
approach to discourse analysis, and use of a domain model.

GenIE extracts information on biochemical pathways, and on sequences,
structures, and functions of genomes and proteins. Input data can be as diverse
as articles or database comment lines. In contrast to the pipeline of processes of
the classic IE system, where problems may arise due to early-stage analysis errors,
and where exclusively shallow processing prohibits the possibility of deeper anal-
ysis, GenIE is organized to allow deeper analysis to be entered. Such an organi-
zation implies adding not only appropriate deep analyzers, but also the resources
(e.g., lexicon, ontology) required to support them. An explicit, well-defined
semantic representation formalism, which is a variant of Discourse Representa-
tion Theory (DRT) [63], is employed, but any similar formalism could be
substituted.

Like other classic IE systems, GenIE uses a partial parser [56], but this is
only used for chunking purposes. GENIES initially attempts full parsing and
uses partial parsing only when necessary as a safety net, while GenIE systemati-
cally applies chunking, followed by full parsing. Chunking of a sentence in
GenIE typically will deliver subtrees for the same chunk, which contain either
wholly syntactic elements in flat subtrees (like most chunkers), or a mixture of
syntactic and semantic elements in deeper subtrees. The latter type of tree results
from look-up of a multiword lexicon that contains semantically-typed terms.
Since no (especially multiword) lexicon is ever complete, and since some
sequences of words may be wrongly taken to be a multiword, chunking should
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not attempt to resolve ambiguities involving multiwords. Instead, it should
deliver both shallow and slightly deeper analyses for consideration by the follow-
ing stage. This is in contrast to other partial parsing approaches, which offer
only one analysis per chunk or multiple analyses at the same linguistic level.
Here, multiple analyses for the same chunk are offered at two different levels:
syntactic and synactic-semantic.

The next stage attempts to build a full sentential deep syntactic parse by
combining and connecting the syntactic and syntactic-semantic subtrees from
the partial parser. Furthermore, a semantic representation for each sentence is
produced in the form of a DRT structure. However, Logical Description Gram-
mar [64] is used as a basis, as described in [65]. This has been extended to com-
bine syntactic, semantic, and ontological knowledge, and to handle scoping
phenomena, which are a notorious source of ambiguity. The technique implies
heavy use of an ontology, and of a semantic lexicon containing semantically
underspecified entries in the form of “elementary trees” (tree schemata contain-
ing some uninstantiated, but typed, elements). A lexeme may map to multiple
elementary trees (i.e., a word may have several readings).

Semantic processing involves choosing the correct elementary tree, or
trees, to plug into the overall semantic representation being built. For example,
an elementary tree for a lexeme that is a noun will contain, at its root, the cate-
gory into which it can plug, and will give a mapping to a concept in the system’s
ontology and a description of the lexeme’s semantics. The semantic description
may be complex, as in the elementary tree given for stem loop II, which notes
that:

• stem loop II is_a ‘protein_domain’;

• stem loop II has a part_of relation to a concept that is either ‘protein’ or
a specialization thereof;

• The part_of relation is realized by a prepositional phrase;

• A partial order (reflecting dominance and scoping) exists between the
semantic representation of this elementary tree and that of any elemen-
tary tree that will become embedded in the prepositional phrase.

As a further example, the elementary tree for the verbal lexeme for bind contains
the information that:

• bind takes:

• A subject agent that is a ‘protein’ concept or a specialization thereof;
• An object patient that is a ‘protein_domain’ or specialization thereof.

• A partial order exists over the nodes in this elementary tree.
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• The event that is represented by bind is encoded using Davidsonian-like
reification.

Reification in this way allows the event variable to be referred to in other
semantic constraints. This means that reference can be made to events in the
same way as to other discourse referents. See the cited works for a full descrip-
tion of this approach.

As processing proceeds, the semantic, syntactic, and ontological con-
straints combine to filter out implausible readings, and retained appropriate ele-
mentary trees are integrated in the overall semantic representation. There is no
insistence that a verb’s arguments be satisfied in the one sentence. The possibil-
ity is left open for other sentences to supply missing arguments.

Like GENIES, GenIE relies on extensive subcategorization information
for verbs to be present in its lexicon. This is provided via automatic corpus pro-
cessing. It also requires an ontology of biochemical events. This has been con-
structed from a linguistic viewpoint, rather than from a conceptual viewpoint.
That is, verbs were grouped into ontological classes that were assigned appropri-
ate semantics, rather than a number of classes being established, and then verbs
found to refer to them. Compare this with the GENIES approach to ontological
mapping. However, the ontology is for test purposes, and is thus small (129
concepts). With the ontology and the DRT representations, it becomes possible
to establish conceptual relations between events that are antecedents of other
events, states, and/or entities.

Evaluation of GenIE proved problematic, due to low interannotator agree-
ment on discourse-level annotation for the evaluation corpus. See the discussion
in Chapter 9 on gold standard annotation. Highest recall was 55%, and preci-
sion was highly variable. However, the authors conclude that the system extracts
well above 50% of the most reliably annotated relations, and extracts fewer than
10% of relations that are clearly incorrect. A final point to note is that GenIE
does not appear, from the available description, to have employed a strong
sublanguage approach. It has appropriate mechanisms for handling
subcategorization and selectional restriction, but no mention is made of whether
the argument structures are based on general language principles or on
GENIES-like sublanguage principles. The elementary tree for stem loop II
described above would tend to indicate that a sublanguage description approach
had not been followed.

7.4 Conclusion

Our review of recent research on rule-based extraction of relations (simple facts)
and events from biotexts reveals that there are many types of approaches. These
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vary greatly in terms of the degree to which they incorporate linguistic informa-
tion, and in their use of such information. They also vary greatly in terms of
how they position themselves, with respect to the no parsing versus/partial/pars-
ing versus full parsing debate. There is evidence of much experimentation with
parsing strategies: full parsing on its own; full parsing followed by fall-back
partial parsing; partial parsing followed by full parsing; partial parsing on its
own; parsing applied to all sentences; parsing applied only to sentences judged
relevant to the task; and so forth. There is a marked difference
between pattern-matching approaches, on the one hand, and more NLP-
oriented approaches, on the other. NLP techniques become essential when there
is a need to extract abstract representations of facts rather than matching
fragments of text. Hybrid syntactic-semantic approaches offer promising results,
particularly where these are based on a strong sublanguage approach. Ontol-
ogy-driven approaches also are promising [62]. A system that combined a fully
ontology-driven approach with a syntactic-semantic sublanguage-based
approach would offer an interesting direction for future research. We have not
yet seen such a system being applied to biotexts, although GenIE and GENIES
represent different and overlapping aspects of such a system. Table 7.3
summarizes the various types of approaches.

Unfortunately, there are two bottlenecks hampering development in the
field: ontology and sublanguage lexicon. It is not enough to rely on one or the
other. Both are needed if we wish to produce highly accurate results required by
biologists, and to obtain broad coverage of biotexts. As we have seen in the work
of GENIES and GenIE, it is essential to focus on describing the syntactic and
semantic behavior of sublanguage verbs, and on the description of domain event
concepts. It is notable that both GENIES and GenIE had to develop their own
ontology of events and their own lexicons, with the GENIES lexicon being espe-
cially rich in sublanguage verbal description. If rule-based approaches are to
improve beyond their current stage to deliver the desired results, then the chal-
lenge for the field is to develop appropriate ontological and sublanguage lexical
resources to support and link the kind of processing required.

In closing, we note that IE has come a long way from its MUC days. To a
great extent, the nature of biology text and the need for accurate and compre-
hensive extraction of facts from scientific text have been instrumental in driving
research in IE beyond the classic MUC model, towards greater understanding of
how scientific knowledge is communicated in texts, and towards greater exploi-
tation of such understanding. There is still much work to be done. Fact extrac-
tion systems for biology are still very much at the research stage. There are issues
to be tackled, such as in scalability and efficiency, particularly where intensive
use is made of lexical and ontological resources, and in multilevel analysis of
language. However, the breadth, depth, and sheer variety of activities in IE in
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biology-related domains are highly indicative of a research community whose
efforts are likely to lead to major advances in the near future.
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8
Corpora and Their Annotation
Jin-Dong Kimand Jun’ichi Tsujii

8.1 Introduction

Text mining is the extraction of information or knowledge from databases of lit-
erature, while data mining assumes databases of structured data as the source of
knowledge. Contrary to the usual case in data mining, knowledge in text mining
is assumed to be encoded in natural language text, which poses problems for
computational analysis (see Chapter 2). It is desirable for text mining systems to
be made aware of language, in order to identify effectively the structures of
interest in the text.

Natural Language Processing (NLP) techniques have been successfully
applied to fields that need to exploit natural language texts. Corpora, which are
the collections of written (or spoken) material of a language upon which linguis-
tic analysis is based, have always been at the heart of NLP research, providing
the reference material to put flesh on the skeleton of theoretic models. Increas-
ingly, annotations are made over corpora, to make explicit the structures of
interest that implicitly reside in text, and to provide direct reference to these
structures.

This chapter gives an overview of corpora and annotations that are avail-
able in the domain of biomedicine, and discusses related issues and problems.
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8.2 Literature Databases in Biology

Literature databases contain a large amount of knowledge, and become knowl-
edge sources to be mined for knowledge nuggets. This section introduces litera-
ture databases available in the biomedical research community. Copyright issues
also are addressed, since text mining is inherently subject to copyright
conditions.

8.2.1 Literature Databases

In the history of text mining for biology, Medical Literature, Analysis, and
Retrieval System Online (MEDLINE) has played a primary role as the main
source of knowledge of biology and medical sciences. MEDLINE is the U.S.
National Library of Medicine’s (NLM) database of indexed journal citations,
covering nearly 4,500 journals in life sciences with a concentration on
biomedicine. Currently, it includes more than 13 million references to articles
indexed from 1966 to the present.1 Approximately one-half of MEDLINE
entries have abstracts,2 and the texts of the abstracts have become the target of
text mining for biology.

MEDLINE can be accessed from the Internet via several search services.
NLM provides MEDLINE access via the PubMed service
(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed), which is some-
times confused with MEDLINE. According to NLM’s Fact Sheet
(http://www.nlm.nih.gov/pubs/factsheets/factsheets.html), “What’s the Differ-
ence Between MEDLINE and PubMed ?” PubMed contains the following, in
addition to MEDLINE citations:

• OLDMEDLINE for pre-1966 citations;

• Citations to articles that are out-of-scope (e.g., covering plate tectonics
or astrophysics) from certain MEDLINE journals, primarily general
science and general chemistry journals, from which the life sciences arti-
cles are indexed in MEDLINE;

• In-process citations, which provide a record for an article before it is
indexed with MeSH and added to MEDLINE, or converted to
out-of-scope status;

• Citations that precede the date that a journal was selected for
MEDLINE indexing (when supplied electronically by the publisher);
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2. At the time of this writing, 7,457,624 MEDLINE entries out of 13,239,648 (56%) have
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• Some life science journals that submit full text to PubMedCentral and
may not have been recommended for inclusion in MEDLINE,
although they have undergone a review by NLM, and some physics
journals that were part of a prototype PubMed in the early- to
mid-1990s.

While MEDLINE is still playing a key role in text mining for biology as a
primary knowledge source, interests have begun to move to full texts. Several
efforts now exist to build literature databases providing access to full texts. Cur-
rently, PubMed Central (PMC) (http://www.pubmedcentral.nih.gov/) is
archiving articles deposited by voluntary publishers, and all journals in PMC
provide free access to full text, sometimes on a delayed basis.3 PMC is a digital
archive operated by the NCBI, a division of NLM. It is also accessible via
PubMed, since every article in PMC has a corresponding entry in PubMed.

8.2.2 Copyright Issues

Literature databases contain mostly published articles that are intellectual prop-
erties, and so the text mining research that is based on them is inherently subject
to copyright conditions. Likewise, since copyright protection may pose a barrier
to academic progress, there has been an open source movement to publish schol-
arly literature on the Internet, and make it available to readers free of charge,
and free of licensing restrictions. The research on text mining for biology also
benefits from this movement. It is said that the free access principle, which
applies to all full text content viewable in PMC, removes price barriers (e.g.,
subscriptions, licensing fees, and pay-per-view fees), offering unlimited access to
the content through the Internet. Furthermore, many PMC journals make all,
or most, of their content available as open access publications.4 Open access goes
beyond free access, by removing most copyright and licensing restrictions. The
Budapest Open Access Initiative (http://www.soros.org/openaccess/) puts it in
this way:

By “open access” to this literature, we mean its free availability on the pub-
lic internet, permitting any users to read, download, copy, distribute, print,
search, or link to the full texts of these articles, crawl them for indexing, pass
them as data to software, or use them for any other lawful purpose, without
financial, legal, or technical barriers other than those inseparable from gain-
ing access to the internet itself. The only constraint on reproduction and

Corpora and Their Annotation 181
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distribution, and the only role for copyright in this domain, should be to
give authors control over the integrity of their work and the right to be
properly acknowledged and cited.

Examples of publishers supporting open access include BioMed Central
(BMC) (http://www.biomedcentral.com/), and Public Library of Science
(PLoS) (http://www.plos.org/). BMC is an independent, commercial publish-
ing house, committed to providing immediate, free access to peer-reviewed bio-
medical research. Every peer-reviewed research article appearing in any journal
published by BMC is open access, and is archived without delay in PMC. PLoS
is a nonprofit organization of scientists and physicians, committed to making
the world’s scientific and medical literature a public resource. The articles of
PLoS journals also are immediately available from PMC.

8.3 Corpora

A corpus is a special collection of texts, which are carefully chosen according to a
certain set of criteria, to be representative of a certain language. Such a corpus is
often referenced when building a language model to process text. For example,
the Wall Street Journal (WSJ) corpus is a collection of WSJ articles from Dow
Jones, Inc., and represents a journalistic newswire style of writing. Another
example is the Brown corpus, which consists of text samples ranging from jour-
nalistic and science domains, to fiction and speech transcriptions, and was
intended to represent general English.

8.3.1 Corpora in Biology

Since MEDLINE contains a large number of texts that are abstracts of
biomedicine research, the whole or a subset of the MEDLINE abstracts can con-
stitute a corpus that represents scientific writing covering the general, or a spe-
cific, domain of life sciences. In fact, the three most widely used corpora [1] in
this domain (the GENIA corpus [2], the GENETAG corpus [3], and the Yapex
corpus [4]) are comprised of texts taken from MEDLINE.

GENIA is intended to cover biological reactions concerning transcription
factors in human blood cells. Correspondingly, the corpus consists of the text
of abstracts resulting from the following search query on PubMed:
"Human"[MeSH] AND "Blood Cells"[MeSH] AND "Transcription Fac-
tors"[MeSH]. The main value of the GENIA corpus comes from the annotation
encoded in it, which provides a guide to the interpretation of the text. The detail
of the annotation will be discussed in the following section.

Likewise, Caderige [5] consists of sentences from MEDLINE abstracts
retrieved by using the focused query "Bacillus subtilis" AND "transcription". The
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Caderige team chose this specific domain because Bacillus subtilis is a model
bacterium, and transcription is a central phenomenon in functional genomics
involved in genic interaction.

The PennBioIE corpus [6] is intended to cover two focused interests on
cancer genomics and drug development. With these applications in mind, this
corpus was collected in the oncology domain and the cytochrome P450 (CYP)
domain.

The observations in this section suggest that the development of text min-
ing systems may benefit from understanding the characteristics of the subject
domain.

8.3.2 Collecting MEDLINE Abstracts

Despite the growing interest in full text articles, the MEDLINE database is still
considered as a primary knowledge source of biology and medical science, and it
is popular to build corpora of specific subdomains by collecting text from
MEDLINE abstracts. This section is intended to be a guide for those who wish
to select MEDLINE abstracts of relevance to their interest in a specific subject
area.

PubMed is equipped with a Web query interface, so that indexed citations
of interest can be conveniently searched. However, if we want to run a search on
PubMed to retrieve numerous items, it is much more convenient to use Entrez
Programming Utilities (E-Utilities). Designed to be utilized by automated
programs over the Internet, E-utilities provide functions to search and retrieve
Entrez data. Figure 8.1 is a simple perl script to retrieve abstracts from
MEDLINE that were published within a specific period.

Note that this script utilizes ‘esearch’ (line 11) and ‘efetch’ (line 28) utili-
ties, located at http://www.ncbi.nlm.nih.gov/entrez/eutils/ (line 6). The search
is limited to the citations indexed in MEDLINE that are written in English and
have abstracts (line 15). The retrieved abstracts will be sorted by the publication
date (line 14). The citation results will return in XML (line 29), and only text in
abstracts will be extracted (lines 37–39). As seen in line 15, terms may be tagged
to specify the fields under which the terms are to be qualified. In the above
example, the term ‘medline’ will be searched in the ‘subset’ field whose tag name
is ‘sb,’ and the term ‘english’ in the ‘language’ field whose tag name is ‘la’.

The ‘Publication Type [PT]’ and ‘MeSH Terms [MH]’ fields are other
examples of search fields that the authors think deserve to be mentioned. MeSH
(http://www.nlm.nih.gov/mesh/meshhome.html) is NLM’s controlled vocabu-
lary thesaurus. All citations in PubMed are assigned Publication Types (e.g.,
Clinical Trial, Journal Article, and so forth), and MeSH terms from the thesau-
rus, which permit searching at various levels of specificity. A list of the available
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field names, tags, and brief field descriptions may be found in the on-line
PubMed Help, under “Search Field Descriptions and Tags.”

8.3.3 Comparing Corpora

This section provides comparisons between various corpora, as a way of obtain-
ing insights into them. We analyze a sample of the MEDLINE corpus to high-
light the characteristics of the domain that it covers. We also analyze GENIA
and Caderige to uncover the characteristics of the focused domains that the two
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1. #!/usr/bin/perl-w
2. # Sample script to download abstracts from MEDLINE
3. # modification made by Jin-Dong Kim (http://jdkim.net)
4. # on the script by Oleg Khovayko(http://olegh.spedia.net)
5. use LWP::Simple;
6. my $utils= "http://www.ncbi.nlm.nih.gov/entrez/eutils";
7. my $mindate= "1989/07/01";
8. my $maxdate= "1989/07/01";
9. my $query = "";

10. # commit the query to ESearch
11. my $esearch= "$utils/esearch.fcgi?db=Pubmed" .
12. "&retmax=1&usehistory=y" .
13. "&mindate=$mindate&maxdate=$maxdate" .
14. "&datetype=pdat&sort=pub+date" .
15. "&term=medline[sb]+AND+english[la]+AND+hasabstract";
16. if ($query) {$esearch= $esearch. "+AND+" . $query}
17. my $esearch_result= get($esearch);
18. $esearch_result=~
19. m|<Count>(d+)</Count>.*<QueryKey>(d+)</QueryKey>.*<WebEnv>(S+)</WebEnv>|s;
20. my $Count = $1;
21. my $QueryKey= $2;
22. my $WebEnv= $3;
23. print STDERR "$Count citation results from esearch.\n";

24. # store the abstracts of the citation results from Efetch
25. my $ = 2000;
26. my $retstart;
27. for($retstart=0; $retstart<$Count; $retstart+=$retmax) {
28. my $ = "$utils/efetch.fcgi?".
29. "rettype=xml&retmode=text" .
30. "&retstart=$retstart&retmax=$retmax&" .
31. "db=Pubmed&query_key=$QueryKey&WebEnv=$WebEnv";
32.
33. my $efetch_result= get($efetch);
34. my @articles =
35. split m|</PubmedArticle>\s*<PubmedArticle>|, $efetch_result;
36. foreach $article (@articles) {
37. $article =~ m|<AbstractText>([^<]+)</AbstractText>|s;
38. my $abstract = $1;
39. print "$abstract\n\n";
40. }
41. }

retmax

efetch

\

Figure 8.1 Sample perl script to retrieve MEDLINE abstracts.



corpora cover. To achieve this, WSJ was used as the reference corpus to which
each of the two study corpora was compared. WSJ is included in the Penn
Treebank corpus [7], which often serves as a benchmark for corpus-based NLP
research.

We used WordSmith version 4.0, a lexical analysis tool from Oxford Uni-
versity Press, to analyze and compare the corpora [8]. Using this software, Dun-
ning’s Log-likelihood (G2) statistic [9] was calculated for all the words in each
corpus. The words with a high G2 value were chosen as the keywords character-
izing the domain of each corpus. It is generally thought that the keywords
extracted by WordSmith indicate “aboutness” of the text analyzed [10].

Table 8.1 lists the 50 top-ranked keywords characterizing the texts in
MEDLINE abstracts. The study corpus was comprised of 14,451 MEDLINE
abstracts, published on June 1, 1998, that were retrieved using the script of
Figure 8.1.

We observe that there are many content words charac-
terizing the MEDLINE domain (e.g., PATIENTS, CELLS, PLASMA, CELL,
CLINICAL, DISEASE, BLOOD, TREATMENT, PATIENT, THERAPY,
DIAGNOSIS, RENAL, ACID, CORONARY, and so forth), and words that
often appear in scientific writing (e.g., STUDY, SIGNIFICANTLY,
STUDIED, SIGNIFICANT, OBSERVED, ASSOCIATED, FOUND, and so
forth). There are also many occurrences of “WERE,” “WAS,” and “WITH.”
Tables 8.2 and 8.3 list the three-word clusters with which “WERE” and
“WITH” often appear in MEDLINE abstracts, respectively. We note that a
large part of these are related to scientific language, describing experimental pro-
cesses (e.g., WAS ASSOCIATED, WERE COMPARED, WERE TREATED,
WERE STUDIED, WERE FOUND, WERE OBSERVED, WERE PER-
FORMED, THE RESULTS WERE, and so forth).

Table 8.4 shows the list of 50 top-ranked keywords describing the GENIA
domain. The study corpus was comprised of 399 MEDLINE abstracts pub-
lished from 1987 to 1991, which were retrieved by using the script of
Figure 8.1, with the following modifications:

$mindate = "1987/01/01" (line 7); $maxdate = "1991/12/31" (line 8);
$query = "human[mh]+AND+blood+cells[mh]+AND+transcription+fac-
tors[mh]" (line 9).

The list of keywords indicates that the literature in the GENIA domain,
when compared to the general domain, contains a significant number of terms
about biological entities (e.g., CELL, PROTEIN, GENE, DNA, and so forth);
their functions (e.g., ENHANCER, RECEPTOR, PROMOTER, and so
forth); and their interactions (e.g., BINDING, TRANSCRIPTION,
ACTIVATION, INDUCED, ACTIVITY, INDUCTION, and so forth).
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Table 8.2
20 Top-Ranked Three-Word Clusters Appearing with “WITH”

# PATIENTS WITH IN PATIENTS WITH

WAS ASSOCIATED WITH COMPARED WITH THE

OF PATIENTS WITH WERE COMPARED WITH

ASSOCIATED WITH A WITH # #

# # WITH IS ASSOCIATED WITH

WHEN COMPARED WITH COMPARED WITH THOSE

PATIENTS WITH A WITH RESPECT TO

WERE TREATED WITH WITH A #

# COMPARED WITH P LESS THAN

A PATIENT WITH AND # WITH

Table 8.1
50 Top-Ranked Keywords of MEDLINE

PATIENTS, WERE, WITH, OF, CELLS, AND, WAS, STUDY, SUBJECTS, PLASMA,
CELL, CLINICAL, SIGNIFICANTLY, DISEASE, NORMAL, BLOOD, TREATMENT, PA-
TIENT, STUDIED, SERUM, LESS, IN, THERAPY, SIGNIFICANT, THESE, CASES, #,
OBSERVED, ML, CONCENTRATIONS, ASSOCIATED, FOUND, DIAGNOSIS, MG,
RATS, INDUCED, AGE, LEVELS, RENAL, EFFECTS, CONCENTRATION, ACID, DE-
CREASED, GROUPS, DURING, PERFORMED, TREATED, SHOWED, CORONARY ...

Table 8.3
20 Top-Ranked Three-Word Clusters Appearing with “WERE”

# # WERE WERE COMPARED WITH

WERE STUDIED IN WERE FOUND TO

IN # PATIENTS THERE WERE NO

AND # WERE THE PATIENTS WERE

WERE FOUND IN WERE OBSERVED IN

FOUND TO BE SIGNIFICANT DIFFERENCES WERE

WERE # # # # #

IN # # WERE TREATED WITH

WERE USED TO THE RESULTS WERE

WERE PERFORMED IN # YEARS WERE

. . .



Table 8.5 shows the 50 top-ranked keywords describing the Caderige
domain. The study corpus was extracted by using the script of Figure 8.1, with
the following modifications:

$mindate = "1987/01/01" (line 7); $maxdate = "1991/12/31" (line 8);
$query = "Bacillus+subtilis+AND+transcription" (line 9).

The keyword list indicates that biological entities (e.g., GENE,
PROTEIN, DNA, RNA, MRNA, and so forth) are frequently mentioned in
this domain, in a similar fashion to the GENIA domain. It seems that the major
difference between the two domains comes from the subject organisms: Bacillus
subtilis (monocell organism) in the case of Caderige, and humans (multicell
organism) in the case of GENIA. In particular, terms about monocell organisms
(e.g., SUBTILIS, BACILLUS, COLI, E, ESCHERICHIA, and so forth) are
frequently observed, as well as terms related to their transcriptional events (e.g.,
SIGMA, TRANSCRIPTION, PROMOTER, OPERON, POLYMERASE,
PROMOTORS, UPSTREAM, and so forth). Some frequently observed
terms about events are domain specific (e.g., SPORULATION), and some
terms seem to be highly ranked due to the simple structure of the subject organ-
ism (e.g., SYNTHESIS, DELETION). It is also perceived that experimental
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Table 8.4
50 Top-Ranked Keywords of GENIA Domain

CELLS, CELL, BINDING, EXPRESSION, B, PROTEIN, T, RECEPTOR, KAPPA, HUMAN,
GENE, NF, TRANSCRIPTION, LYMPHOCYTES, DNA, ACTIVATION, ENHANCER, PA-
TIENTS, RECEPTORS, ALPHA, SPECIFIC, FACTOR, HIV, GLUCOCORTICOID, PRO-
MOTER, GENES, MRNA, PROTEINS, INDUCED, C, IL, SEQUENCE, OF, OH, ACTIVITY,
NUCLEAR, THESE, VIRUS, SITES, INDUCTION, BETA, ELEMENT, GR, FOS,
CORTISOL, JUN, LEVELS, DIFFERENTIATION, TRANSCRIPTIONAL, . . .

Table 8.5
50 Top-Ranked Keywords of Caderige Domain

GENE, SUBTILIS, SIGMA, TRANSCRIPTION, PROMOTER, SEQUENCE, EXPRESSION,
BACILLUS, PROTEIN, DNA, GENES, SPORULATION, RNA, COLI, OF, REGION, E, B,
OPERON, POLYMERASE, AMINO, MUTATIONS, BINDING, SEQUENCES, ACID,
PLASMID, PROMOTERS, UPSTREAM, CELLS, ESCHERICHIA, LACZ, CLONED,
MRNA, SYNTHESIS, TRANSCRIPTIONAL, SITE, MUTATION, CONTAINING, BETA,
PROTEINS, FACTOR, ANALYSIS, DELETION, VITRO, CELL, LOCUS, NUCLEOTIDE,
MUTANT, WAS, . . .



devices differ, depending on the subject organism (e.g., LACZ, CLONED,
MUTATION).

8.4 Corpus Annotation in Biology

The text in literature databases is written in natural language, which makes
machine access to desired information difficult. Since it is generally assumed
that humans are the most suited to interpret natural language text, corpus anno-
tation is often carried out to encode humans’ interpretation into text, and conse-
quently to provide machines with direct access to the innate text structure. This
section introduces annotations made at various levels over corpora in the
domain of biomedicine.

8.4.1 Annotation for Biomedical Entities

The most fundamental structures of interest in biomedical research are biologi-
cal entities like proteins or genes, and identifying occurrences of such entities in
texts is considered crucial to access useful information. There are a number of
corpora providing annotation at this level, including GENIA, GENETAG, and
PennBioIE.

GENIA provides extensive annotation for biomedical terms that include
entity references. The annotation is grounded on the GENIA ontology, which
defines biomedically meaningful nominal concepts. Figure 8.2 shows the
GENIA ontology, where concepts are classified in a hierarchy. Note that the ter-
minal concepts are presented in bold boxes. They define the terms that need to
be identified from the literature, and become the target of annotation. The fig-
ures next to the labels of terminal concepts indicate their frequency of occur-
rence in the GENIA corpus, version 3.01.

Such biomedical terms as entity names are often compared to named enti-
ties in the newswire domain, such as names of humans, organizations, and so
forth. From a linguistic perspective, however, they are quite different. Named
entities are mostly proper nouns, which means they rarely appear with specifiers
or qualifiers [11]5 preceding them. On the other hand, biomedical terms are
mostly general nouns that often appear in text with a variety of specifiers or
qualifiers. The syntactic definition of GENIA terms, which is given in Figure
8.3, states that the term expression may include preceding qualifiers, but not
specifiers.
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5. Specifiers include ordinals, cardinals, and determiners. Qualifiers include adjectives and noun
modifiers. We follow Allen’s [11] definitions.



The semantic and syntactic definitions still leave much room for arbitrary
decisions by annotators. Annotation guidelines need to be prepared to reduce
the potential for inconsistent annotation. In the case of GENIA term annota-
tion, the classes of terms to be annotated are defined by the GENIA ontology
(e.g., ‘protein molecule’), but the specific terms are not (e.g., interleukin-2 ).
The guidelines need to include descriptions concerning whether or not specific
terms are to be annotated. Sometimes the decision depends on specific contexts,
about which proper descriptions also need to be included in the guideline. Prob-
lematic examples include the following:
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Figure 8.2 GENIA ontology and statistics from the GENIA corpus.

<term> := <qualifier> * <head noun>
<qualifier> := <adjective> | <noun modifier>

Figure 8.3 Syntactic definition of GENIA terms.



1. classII-positive B cell:

classII-positive B cell versus B cell

2. IL-2 receptor:
whether to annotate IL-2 or not

With regard to the first example, classII-positive B cell, it needs to be
decided whether the longer expression, classII-positive B cell, or the shorter one,
B cell, is to be annotated. This decision is related to the granularity of concepts
to be identified from the text, and will depend on the purpose of annotation. In
the case of GENIA, the longer expression is annotated following a policy of
“more specific concepts.”

In the second example, IL-2 receptor, two textual expressions will be con-
sidered for annotation: IL-2 for one kind of protein molecule, and IL-2 receptor
for another kind. IL-2 receptor may be rather safely annotated, while the ques-
tion of whether or not to annotate IL-2 will depend on the policy. In the case of
GENIA, IL-2 is not annotated following a policy of “mentioned substance
only.” In this example, the mentioned substance is only IL-2 receptor, and the
appearance of IL-2 in the textual expression is due to the naming of the sub-
stance. A similar policy is also applied to the annotation of GENETAG.

Sometimes, even the application of policies as explained above is not clear,
and the guidelines need to provide comprehensive examples and recommended
decisions. It is no wonder that annotation guidelines often become very long.
Another problematic aspect of annotation guidelines is that these guidelines
hardly can be prepared before starting the actual annotation work, but instead
will grow gradually as the annotation continues. Consequently, the annotation
that has already been made also needs to be continuously updated to reflect any
changes in the guidelines.

PennBioIE provides more focused annotation for a smaller number of
terms. The base texts of the corpus consist of abstracts from two domains: the
oncology domain and the CYP domain. The text set from the oncology domain
is annotated for genes, variation events, and malignancies; and the text set from
the CYP domain is annotated for CYP450 enzymes, other substances, and
quantitative measurements. It may be expected that this simplification of the
annotation scheme would reduce the complexity of the annotation work. How-
ever, the PennBioIE team also maintains a long list of guidelines for the entity
level of annotation. It is notable that the guidelines are maintained in two ver-
sions. One version is for previously released annotation, and thus is frozen, while
the other version is for ongoing annotation, and thus is evolving.

GENETAG was originally developed for the BioCreAtIvE task 1A compe-
tition [12], to provide a gold standard to which automated systems for gene and
protein name identification were compared. Later, it was updated to
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GENETAG-5, and combined into the MedTag corpora [13]. It provides gene
and protein name annotations for a wide range of organisms and biomedical
contexts (e.g., molecular biology, genetics, biochemistry, clinical medicine, and
so forth). MedTag also contains the ABGene corpus, which provides
annotations for protein/gene names.

A simplified version of the GENIA corpus, containing annotations only
for proteins, DNAs, RNAs, cell lines and cell types, was also used as a gold stan-
dard for the evaluation of automated bioentity recognition systems competing at
the JNLPBA workshop [14].

Franzén et al. [4] also have produced a protein annotated corpus. Using
this, they developed and evaluated a protein name tagger called Yapex. The cor-
pus consists of 99 abstracts for development, and 101 for evaluation. These were
retrieved from MEDLINE using the following query: "protein binding" [MeSH]
AND "interaction" [MeSH] AND "molecular" [MeSH]. Fifty-three of the
abstracts in the evaluation set also are found in the GENIA corpus.

Table 8.6 lists the corpora and their annotation for entities available in the
domain of biomedicine.

8.4.2 Annotation for Biological Processes

Examples in the previous section show that annotation criteria for terms vary,
depending on different views or tasks that the annotation groups consider. Such
difficulties become more conspicuous when we annotate biologically significant
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Table 8.6
Corpora and Their Annotation for Entities

Corpus Type of Annotation (Size) Remarks

GENIA Term (2,000 abstracts) Terminal concepts in GENIA ontology

GENIA-JNLPBA Proteins, DNAs, RNAs, cell lines, cell
types

PennBioIE-Oncology Entity (1,157 abstracts) Genes, variation events,
malignancies

PennBioIE-CYP Entity (1,100 abstracts) CYP450 enzymes, other substances,
quantitative measurements

GENETAG-05 (MedTag) Entity (15,000 sentences) Gene/protein names

ABGene (MedTag) Entity (4,265 sentences) Gene/protein names

Yapex Entity (200 abstracts) Protein names



processes or relations. Establishing annotation criteria for biological processes or
relations is thus much more precarious.

The Caderige corpus [5] is notable for including annotations for interac-
tions between biomedical entities, making it applicable to IE tasks. IE addresses
the problem of extracting useful information from texts (e.g., to complete prede-
fined information templates). Generally, IE is regarded as a basic task of text
mining. From a linguistic perspective, the annotation in Caderige is exception-
ally well crafted. The annotation is encoded directly into the text, revealing the
type, the agent, and the target of interactions.

The GENIA team has tested the annotation scheme of Caderige with a
small portion of the GENIA corpus. A careful analysis of the preliminary anno-
tations suggests that there are potentially two ways of interpreting identical pro-
cesses. When processes are interpreted in terms of interactions, which is the case
with Caderige, pairs of entities that participate in the corresponding interactions
are the focus of attention. Focusing on the procedural aspect of processes can
make another interpretation. The following example demonstrates various
problems that occur regarding interaction annotation.

“The PKC-dependent activation of ERK were sensitive to inhibition by
forskolin.”

The example includes references to three entities that are underlined, and to two
procedures that are in bold. With regard to the example, an annotator who
focused on interactions recognized the following interactions, and made annota-
tions as such:

PKC —(activates)→ ERK
forskolin —(inhibits)→ ERK

Another annotator who focused on the procedure recognized the follow-
ing processes, and made corresponding annotations:

PKC —(activates)→ ERK
forskolin —(inhibits)→ activation

Note that there was a difference in finding the target of the inhibition pro-
cess. The annotator for interactions marked ERK, which is the beneficiary of the
process, as the target of the process. On the other hand, the annotator for proce-
dure marked activation, which is actually what is inhibited. Figure 8.4 illustrates
the difference in the two interpretations when the processes are hierarchical.

It is hard to say which interpretation is better, but it may depend on the
purpose of annotation, the topics of the text, and so forth. One also may
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imagine that some texts will be written with a clear intention to explain proce-
dural aspects of biological processes. In that case, one might expect that a proce-
dural interpretation would work better. Similarly, a text focusing on interactions
may benefit from the alternative interpretation.

8.4.3 Annotation for Linguistic Structure

Although the linguistic structure of text, such as the phrasal or dependency
structure, may not be the main interest of text mining practitioners, they often
study it to improve their text mining systems. It is generally accepted that infor-
mation about the linguistic structure of text is helpful in accessing the informa-
tion encoded in the text. Knowing about the linguistic structure of text is like
having a map of a mine’s topography, showing paths and suggesting potential
places to dig for pieces of knowledge.

At the fundamental level, linguistic annotation includes sentence segmen-
tation, word tokenization, POS labeling, and so forth, which may be linearly
crafted; while higher level annotation includes treebanking [7], propbanking
[15], and so forth, which usually involve hierarchical analysis.

Tokenization and POS labeling often are regarded as the first step of NLP
processing, to determine the basic units of a sentence and their properties (e.g.,
grammatical or syntactic identity). Figure 8.5 shows an example of a sentence
that has been tokenized and POS-labeled. Note that punctuation and parenthe-
ses are usually split from adjoining words to make separate tokens.

However, as Tateisi and Tsujii [16] point out, even with tokenization,
annotators may experience difficulties that are caused by the nature of biomedi-
cal literature. Such scientific writing inherently will contain many chemical and
numerical expressions, for which completely different languages are used. Exam-
ples include 1,25(OH)2D3, beta-(1,3)-glucan, t(3;3)(q21;q26), and so forth. To
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Figure 8.4 Identification of interactions and processes.



avoid chaotic results, such expressions need to be isolated from usual
tokenization, forcing them into single tokens.

Treebanking reveals the syntactic structure of sentences, while
propbanking finds predicates and their arguments. Figure 8.6 illustrates the syn-
tactic structure (with solid lines) and the predicate-argument structure (with
dotted lines) of a sentence.

GENIA and PennBioIE are currently the only corpora of biology texts
providing manually curated linguistic annotations made at various levels. Both
provide annotations for sentence segmentation, tokenization, POS labeling, and
treebanking. PennBioIE also provides annotations for paragraph segmentation.
The tokenization, POS labeling, and treebanking for each corpus follow the
Penn Treebank II (PTB) annotation guidelines [17], with minor modifications
of each other [6, 16]. The MedPost corpus, included in MedTag [13], covers
the domain of molecular biology and clinical medicine, and provides annotation
for tokenization and POS labeling.

Another dimension of linguistic annotation that has been worked on is
coreference, a term describing the situation in which two expressions referring to
the same item are linked together. Castano et al. [18] point out that identifying
the local arguments of biological relations may not offer enough information for
determining the actual entities involved in the relation. Their product, the
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<sentence><w c="NN"> </w> <w c="CD"> </w> <w c="NN"> </w>
<w c="NNS"> </w> <w c="VBP"> </w> <w c="RB"> </w>
<w c="VBN"> </w> <w c="IN"> </w> <w c="NN"> </w> <w c="IN"> </w>
<w c="JJ"> </w> <w c="NNS"> </w>
<w c="LRB"> </w><w c="NN"> </w><w c="POS"> </w>
<w c="NN"> </w><w c="RRB"> </w><w c="PERIOD">.</w></sentence>

Type II corticosteroid
receptors are not
reduced by excess of

endogenous corticosteroids
( Cushing 's

syndrome )

Figure 8.5 Example of sentence segmentation, tokenization, and POS labeling.

PROTEIN1 was required to inhibit PROTEIN2

NP

S

VP

VP

NP

arg1

arg2

arg2
arg1

Figure 8.6 Example of syntactic and predicate-argument structure.



MEDSTRACT corpus (http://medstract.org/), provides annotations for ana-
phora and acronym resolution. The MEDCo corpus (http://nlp.
i2r.a-star.edu.sg/medco.html) consists of the GENIA portion of MEDLINE
abstracts, and provides extensive annotation covering various kinds of
coreference. Examples include the following:

• Anaphora: TCF-1 could transactivate through its cognate motif …

• Spelling variation: The rate of transcription initiation difected by the long
terminal repeat (LTR) of HIV-1 increases … and Here we show that the
response of the HIV-1 LTR may be governed by …

• Relative pronoun: a sequence GGGGACGTCCCC, named B2, which is
similar to the kappa B sequence …

• Appositive: TCF-1, a T lymphocyte-specific transcription factor containing
a sequence-specific HMG box …

• Part-whole: … cytoplasmic retention of either p65 or c-Rel … both
are …

To provide annotation guidelines, the MedCo team took a set of
guidelines that had been prepared for the newswire domain
(MUC-7) (http://www.itl.nist.gov/iaui/894.02/related_projects/muc/proceed-
ings/co_task.html), and made modifications to reflect differences between the
newswire domain and the biomedical domain. One of the major differences is
that the entities of interest are mostly instantiated ones, in the case of the
newswire domain (e.g., a particular person), while they are often conceptual
classes (e.g., a particular type of protein), in the case of the biomedical domain.

Table 8.7 lists corpora, and their annotation for linguistic structure, which
are currently available in the domain of biomedicine.6

8.5 Issues on Manual Annotation

This section highlights the issues that need to be considered when designing a
corpus.

8.5.1 Quality Control

The reliability of manually curated annotation affects the reliability of the devel-
opment or evaluation of information processing systems that are based on the
annotation. The degree of agreement between different instances of annotation
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6. The data in Tables 8.1 and 8.2 were surveyed in May 2005.



for the same text is often considered to be a useful indicator of the reliability of
annotation. The agreement between different annotators (inter-annotator agree-
ment) allows conclusions about the stability of annotations, while the agreement
for each annotator with himself (intra-annotator agreement) indicates the
reproducibility of annotations [19].

Both inter- and intra-annotator agreement can be calculated simply by the
absolute agreement rate, or, more popularly, by Cohen’s Kappa coefficient
[20, 21]. The absolute agreement rate is the proportion of agreement, as given
in (8.1).

( )P A =
number of times annotators agree

number of items to annotate
(8.1)

The Kappa coefficient is the proportion of agreement, corrected for
expected agreement by chance, as given in (8.2).

( ) ( )
( )K

P A P E

P E
=

−
−1

(8.2)

where P (E ) is the expected proportion of agreement by chance. Kappa equals 1
when there is complete agreement. When the absolute agreement exceeds the
chance agreement, Kappa is positive, with a magnitude reflecting the strength of
agreement. Kappa may be between −1 and 0 when the absolute agreement is less
than the chance agreement.

Let us demonstrate the calculation with a simple example. Suppose two
annotators are given a list of 10 protein names, and asked to look for abbrevia-
tions in the list. The results are given in Table 8.8.
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Table 8.7
Corpora and Their Annotation for Linguistic Structure

Corpus Type of Annotation

GENIA Sentence, tokenization, POS (2,000 abstracts), treebank (200 abstracts)

PennBioIE-Oncology Paragraph, sentence, token, POS (1,157 abstracts), treebank (318 abstracts)

PennBioIE-CYP Paragraph, sentence, token, POS (1,100 abstracts), treebank (325 abstracts)

MedPost (MedTag) Token, POS (6,700 sentences)

MedStract Anaphora (32 abstracts), acronym (288 abstracts)

MEDCo Coreference (228 abstracts)



In the table, names considered to be abbreviations are marked with an
“A.” The two annotators agree in 7 of the 10 protein names, yielding 70% of
absolute agreement rate. With the results, we can create a contingency table
comparing their annotation results, as shown in Table 8.9.

Now, we see that Annotator1 answered negatively (“F”) in 80% of the
protein names, and Annotator2 answered negatively in 70%. This means that,
for any given protein in the list, they will both simultaneously state an “F” with
a 56% probability, and will both state an “A” with a 6% probability. This yields
a total agreement of 62%, purely by chance. The Kappa coefficient is calculated
to be 21%, following (8.2).

Landis and Koch [22] characterize the ranges of Kappa, as shown in Table
8.10. Although the divisions are determined rather arbitrarily, they often
become benchmarks when discussing the agreement rate of annotation [19].
According to the table, the Kappa coefficient of the example task described
above indicates only “fair” agreement.

With respect to annotations made for corpora in the biomedicine domain,
only a few studies have been reported with inter-annotator agreement, and none
with intra-annotator agreement. Tateisi and Tsujii [16] reported interannotator
agreement, measured in two stages, with regard to POS-tagging in GENIA. In
the first stage, they followed the Penn Treebank II Guidelines, resulting in
86.7% agreement (Kappa coefficient). A careful analysis was then carried out on
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Table 8.8
Example of Annotation to Find Abbreviations

Protein Name 1 2 3 4 5 6 7 8 9 10

Annotator1 F A F F F F F F F A

Annotator2 F A F A F F A F F F

Note: A = abbreviation, F = full name

Table 8.9
Contingency Table of Annotation Example

Annotator1

A F Total

A 1 (0.06) 2 ( - ) 3 (0.30)

Annotator2
F 1 ( - ) 6 (0.56) 7 (0.70)

Total 2 (0.20) 8 (0.80) 10



the result, to determine which portions of the guidelines are not well-suited to
annotating the corpus. In the second stage, they improved the agreement rate to
98.5% with the revised guidelines.

Parkhomov et al. [23] reported 93.44% interannotator agreement
(Kappa) on POS-tagging for clinical notes. Their work also includes an interest-
ing report on agreement rate between annotators trained in different domains.
They let their annotators, who had been trained for the clinical domain, anno-
tate a small portion of the Penn Treebank corpus, and then measured the agree-
ment rate. They reported an average 87.95% absolute agreement.

With regard to the task of entity annotation, the number of items to anno-
tate is generally unknown, leading to a different number of annotations from dif-
ferent annotators. In such a case, one of the annotators is usually assumed to be
authoritative, and the number of annotations by this annotator is determined to
be the correct number of items to annotate. In this case, the absolute annotation
rate effectively means recall, in the terminology of information science. That is,
the rate of recovered information by another annotator is compared to that of the
annotation of the authoritative annotator. When the work of two annotators is
being compared, the authoritative annotator is sometimes rotated, and the har-
monic mean of the resulting two versions of recall is taken. The result is known
as the “F-score.” Morgan et al. [24] report an F-score of 87% concerning the
inter-annotator agreement in their annotation for Drosophila genes.

The issue of reliable annotation has been studied thoroughly in the speech
community. Gut and Bayer [19] pointed out that the quality of manual annota-
tion has been criticized in the following ways:

• Implicit incoherence: The manual labeling procedure is incoherent due
to human variability in perceptual capabilities and other factors.
Intra-annotator reliability can never be perfect.
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Table 8.10
Classification of the Kappa Coefficient

Kappa Coefficient Strength of Agreement

<0.00 Poor

0.00–0.20 Slight

0.21–0.40 Fair

0.41–0.60 Moderate

0.61–0.80 Substantial

0.81–1.00 Almost Perfect



• Lack of consensus on coding schema: Manual annotations reflect the vari-
ability of the interpretation and application of the coding schema by the
annotators.

• Annotator characteristics: Individual characteristics of coders, such as
familiarity with the material, amount of former training, motivation
and interest, and fatigue-induced errors, influence the quality of
annotations.

They also present an extensive evaluation of annotator reliability in a mul-
tilevel, phonetically annotated speech corpus. The results indicate that the reli-
ability of manual annotation is mostly influenced by the complexity of the
annotation task. They also indicate that the number of annotation schema cate-
gories that lead to confusion among annotators is often relatively small, so that
an improvement of annotation reliability can be achieved fairly easily, by carry-
ing out systematic error analyses and changing the annotation schema accord-
ingly. Tateisi and Tsujii’s work [16] is an example of this case.

8.5.2 Format of Annotation

The format of annotation is receiving increasing attention as the annotated
information of interest becomes more complex (i.e., moving from entities to
events). This is also related to the reusability and exchangeability of a corpus,
which are natural requirements for such expensive resources. Manual annotation
is time-consuming and labor-intensive work.

In the natural language processing community, the tabular format (e.g.,
Susanne corpus), and the Brill tagger format (e.g., Brown corpus) have been
widely used. In the tabular format, each token takes up one sequential line, and
annotation for each token is written on the corresponding line as tab separated
values (TSV). In the Brill tagger format, tokens are separated by single space
characters, and annotation is attached to each token with slash (‘/’) characters as
the delimiter. When the annotation is simply described by single labels, the Brill
tagger format is equivalent to the tabular format, with space characters corre-
sponding to new line characters, and slashes to tab characters. These simple for-
mats are easy to implement, but have clear limitations, since only linear
information may be encoded. Both formats are often criticized for contaminat-
ing the base text, and corrupting the word boundary information.

The shared task version of GENIA is encoded in the tabular format, and
GENETAG is encoded in the Brill tagger format. This is partly because the for-
mats are familiar to machine learning practitioners, and partly because the anno-
tated information is simple enough to be encoded in the simple formats.
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Extensible Markup Language (XML) is an emerging standard for a general
encoding framework, which also has been applied to encode a number of cor-
pora and their annotations. While the tabular or Brill tagger formats are suitable
to encode a linear information structure, XML is inherently suitable for a tree-
like information structure, which is often assumed to be the basic structure of
language. One of the major benefits of using XML as a corpus encoding frame-
work is the ease of validation. XML provides an easy way to define an encoding
scheme (referred to as a document model), and to validate a document (referred
to as a document instance), which ensures that the document represents the
encoding scheme.

The most common way to define an encoding scheme is with a docu-
ment-type definition (DTD). Figure 8.7 shows a sample DTD for a corpus with
annotation for proteins. It defines three elements (tags): set, sentence and pro-
tein. From the beginning, the DTD states that an XML document conforming
to it may have a set element, containing one or more sentence elements; a sen-
tence element may contain character data or protein elements; again, a protein
element may contain character data, or protein elements (recursively); for each
protein element, the sem attribute must be specified with a value of ‘molecule’,
‘complex’, or ‘family’; and for each protein element, the lex attribute may be
(optionally) specified with character data.

Figure 8.8 shows a sample corpus conforming to the DTD. It consists of a
set of sentences with annotation for proteins. Each protein identified is classified
into the protein molecule, family, or complex, as specified by the sem attribute.
The lex attribute is set to the character string indicating the lexical information.
Bold type has been used here to enhance readability.

Standoff annotation is a rather new trend in encoding strategy. The idea
here is to store the base document and the annotation separately. See Figure
8.10 for an example. The main advantages of the standoff annotation model
have been described as follows [25]:

1. The base material may be read-only and/or very large.
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<!-- A Simple DTD for Protein Annotation -->

<!ELEMENT set (sentence+)>
<!ELEMENT sentence (#PCDATA | protein)*>
<!ELEMENT protein (#PCDATA | protein)*>
<!ATTLIST protein

sem (molecule | complex | family) #REQUIRED
lex CDATA #IMPLIED

>

Figure 8.7 A simple DTD for protein annotation.



2. The annotation may involve multiple overlapping hierarchies.

3. Distribution of the base document may be controlled (e.g., by copy-
right condition), but the annotation is intended to be freely available.

There is an effort (ISO/TC 37/SC 4/WG 1-1) to establish an interna-
tional standard for a linguistic annotation framework [26] that is based on
standoff annotation and XML.

Standoff annotation offers a way to overcome the limitations of inline
annotation, but it lacks stable linking mechanisms to connect the annotation
and its corresponding text. For the third point above to make sense, the base
must be stored permanently in an accessible place. When the base document is
owned by other individual(s), as is the case of the first point, it may be changed
or removed unexpectedly, making some links invalid. The second point is also
criticized in that, by removing the nonoverlapping restriction, annotators will
create not only meaningful but also erroneous overlapping. The choice for
standoff annotation is therefore subjective, depending on the application.

GENIA is encoded in an inline XML format, and comes with correspond-
ing DTDs. PennBioIE is encoded in a standoff XML format due to their anno-
tation tool, WordFreak, which is discussed in Section 8.6.2. The MedTag
corpora provide standoff annotations stored in a relational database, so that they
can be easily searched.

Automatic conversion between different encoding schemes is another idea
to raise the potential of exchangeability. Erjavec et al. [27] present a fully auto-
matic conversion of GENIA into Text Encoding Initiative (TEI) format
(http://www.tei-c.org/). The TEI offers a well-designed and widely accepted
general architecture, which has often been used for linguistic annotation. It is
expected that porting GENIA to TEI format will make the corpus better suited
for interchange.
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<?xml version="1.0"?>
<?xml-stylesheet type="text/css" href="protein.css"?>
<!DOCTYPE set PUBLIC "-//TMBOOK//DTD Protein Annotation 0.1//EN" "protein.dtd">

<set>
<sentence>Activation of the<protein lex="CD28_surface_receptor" sem="family"><protein
lex="CD28" sem="molecule">CD28</protein>surface receptor</protein>provides a
major costimulatory signal for T cell activation resulting in enhanced production of
<protein lex="interleukin-2" sem="molecule">interleukin-2</protein>(<protein lex="IL-2"
sem="molecule">IL-2</protein>) and cell proliferation.</sentence>
...
</set>

Figure 8.8 A sample corpus with annotation for proteins.



8.5.3 Discontinuous Expressions

Separated or unconnected expressions sometimes need to be annotated together.
Some examples of such discontinuous expressions, followed by their meanings
(as integrated forms), are given below. The integrated forms of discontinuous
expressions are underlined.

• cytokeratins 8 and 18 : cytokeratins 8 and cytokeratins 18

• PKC-alpha, -epsilon, or –zeta : PKC-alpha, PKC-epsilon, or PKC–zeta

• erythroid and/or megakaryocytic lineages : erythroid lineages and/or mega-
karyocytic lineages

• neither LMP1 nor LMP2B mRNA : neither LMP1 mRNA nor LMP2B
mRNA

• c-jun but not c-fos mRNA : c-jun mRNA but not c-fos mRNA

• gamma-interferon- as well as glucocorticoid response elements :
gamma-interferon-response elements as well as glucocorticoid response
elements

All the above examples are all coordinated clauses involving ellipsis, which
is the most common case of discontinuous expressions. To annotate such
expressions, GENIA takes a compositional approach, where it is assumed that
the meaning of a coordinated clause may be incrementally constructed by using
the fragments inside it.

Figure 8.9 illustrates the concept of this approach with an example clause:
neither LMP1 nor LMP2B receptors. First, the spans of text in the term composi-
tion (LMP1, LMP2B, and receptors, in this case) are identified. The rest are con-
sidered as a linguistic template, which decides the structure of the clause.
Second, the fragments, LMP1 and LMP2B, are coordinated by the template
‘neither X nor Y,’ composing the meaning ‘(NEITHER_NOR ‘LMP1’
‘LMP2B’)’. Third, the remaining fragment receptors is distributionally concate-
nated to the coordinated construct, yielding the meaning ‘(NEITHER_NOR
‘LMP1 receptors’ ‘LMP2B receptors’)’. Finally, the two composed expressions,
‘LMP1 receptors’ and ‘LMP2B receptors’, are identified as RNA molecules,
yielding ‘(NEITHER_NOR G#RNA_molecule G#RNA_molecule)’ as the
semantic meaning of the entire clause. The prefix ‘G#’ indicates that the seman-
tic class, ‘RNA_molecule’, is defined in the GENIA ontology. With this
compositional process in mind, the actual annotation of GENIA has been mini-
mized to reduce the burden of manual annotation, by skipping the intermediate
level of annotation (indicated in gray in the figure), and leaving only the annota-
tion for the entire clause and the fragments of textual term expressions.
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While the compositional approach suggests a gentle way of annotating dis-
continuous expressions without messing up the underlying tree structure, it may
be criticized in two ways. First, it assumes a separate layer of processing for lexi-
cal and semantic computation, which may have a high cost. Second, the textual
parts of each term expression are not explicitly indexed.

The PennBioIE corpus adopts a chaining mechanism to annotate discon-
tinuous expressions [6]. Figure 8.10 shows an example of annotation for discon-
tinuous expressions using chaining. In the example, for the clause P1-450,
P2-450, and P3-450 proteins, one continuous expression (P3-450 proteins) and
two discontinuous expressions (P1-450 + proteins and P2-450 + proteins) are
annotated as ‘cyp450’. For the continuous expression, P3-450 proteins, a single
Annotation tag is created and annotated as ‘cyp450’. For the discontinuous
expression P1-450 + proteins, both text spans are annotated separately as
‘cyp450’. Their connection is recorded in an additional Chain tag listing their
annotation-ID numbers, which are unique within each annotation file.

The pros and cons of this approach are the converse of those of the
compositional approach. It does not require additional high-level analysis,
except for the chaining, which is rather cheap to implement. However, the
chaining may contaminate the tree structure, which may cause conflicts when
integrated with higher level annotation (e.g., treebanking).

8.6 Annotation Tools

Corpus annotation is expensive work, usually involving extensive time and
labor. It is important for the annotators to be equipped with a suitable suite of
tools. Examples include visualization tools, editors, workflow management
tools, and so forth.
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<cons sem=“(NEITHER_NOR G#RNA_moleculeG#RNA_molecule)”
lex=“(NEITHER_NOR ‘LMP1 receptors’ ‘LMP2B receptors’)”>

<cons lex=“(NEITHER_NOR ‘LMP1’‘LMP2B’)”>
neither
<cons >LMP1</cons>lex=“LMP1”
nor
<cons >LMP2B</cons>lex=“LMP2B”

</cons>
<cons >receptors</cons>lex=“receptors”

</cons>

Figure 8.9 Compositional approach for discontinuous expressions: case of GENIA corpus.



8.6.1 Reuse of General Purpose Tools

If the corpus we are going to work with is encoded in XML, it is most likely that
we already have numerous tools to deal with the corpus. There are plenty of
tools supporting XML, and there is a high chance that tools already exist that
meet our purposes. In fact, this is one of the attractions of choosing XML as the
encoding framework. For example, many Web browsers now support XML
parsing, and can generate styled views, so they can be used to offer customized
views of a corpus.

Figure 8.11 is a simple stylesheet prepared for the corpus shown in Figure
8.8. According to it, all the sentences are to be shown using a font of size 10
point, protein elements with the sem attribute set to ‘molecule’ are to be bold,
and protein elements with the sem attribute set to other values are to be under-
lined and colored. The stylesheet is written as a Cascading Style Sheet (CSS),
currently the most frequently used style description language for XML docu-
ments, recommended by the World Wide Web Consortium (W3C)
(http://www.w3c.org/). Figure 8.12 shows the styled view of the corpus ren-
dered by Mozilla (http://www.mozilla.org/), a popular XML and HTML ren-
dering engine that has been integrated in many Web browsers.

The GENIA team is utilizing general purpose tools, instead of creating
their own tools, to develop the GENIA corpus. Their development environment
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…
<Annotation type= " sentence" >

…
<Annotation type="cyp450" span="2382..2388" id="493"> …</Annotation>
<Annotation type="cyp450" span="2390..2396" id="496"> …</Annotation>
<Annotation type="cyp450" span="2402..2417" id="500"> …</Annotation>
<Annotation type="cyp450" span="2409..2417" id="502">

<Annotation type="cyp450" span="2409..2417" id="503"> …</Annotation>
</Annotation>
…

</Annotation>
…
<Chain ids="493,503"/>
<Chain ids="496,502"/>
…

…P1-450, P2-450, and P3-450 proteins …

2409..2417

2402..2408

2390..2396

2382..2388
Te

xt
An

no
ta

tio
n

Figure 8.10 Chaining for discontinuous expressions: case of PennBioIE corpus.



is constructed on top of Eclipse (http://www.eclipse.org/), a widely used soft-
ware development platform. It has open architecture for plug-ins, and there are
thousands of plug-ins developed in industry and academia. Among the plug-ins,
the VeX XML editor (http://vex.sourceforge.net/) is used to edit the corpus files.
VeX is a general purpose XML editor, providing a word processor–like view.
Not only does the editor show a CSS-styled view like some Web browsers, but it
also lets users make changes to what they are seeing. It also self-customizes the
editing interface, according to a specified DTD, so that erroneous changes are
automatically prohibited.

Figure 8.13 shows the VeX editor plug-in for Eclipse. The sample corpus
shown in Figure 8.8, together with the corresponding DTD and CSS files
shown in Figures 8.7 and 8.11, are given to the editor. The editing area looks
very similar to the view of the Web browser above, except that it displays a caret
(a blinking vertical bar), indicating the location where changes can be made.
Note that the caret is now located in the middle of the string, IL-2, in the third
line. The span of text is tagged as a ‘protein’ element (see Figure 8.8), which also
can be seen in the editor, since the string is bold. The properties pane, located to
the right of the editing area, shows the properties (attributes) of the element.
The lex attribute is now set to IL-2, and the sem is ‘molecule’. The properties
pane also lets users change the property values. Following the DTD in Figure
8.7 that has been given to the editor, the value of lex may be directly edited and
the value of sem may be chosen from the list of available values.
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/* A Simple CSS for Protein Annotation */

sentence {font-size: 10pt;}
protein[sem="molecule"] {font-weight: bold;}
protein[sem="family"] {text-decoration:underline; background-color: cyan;}
protein[sem="complex"] {text-decoration:underline; background-color: coral;}

Figure 8.11 Simple CSS for protein annotation.

Figure 8.12 Styled view of corpus rendered by a Web browser.



Figure 8.14 shows another example of creating XML tags. The T-lympho-
cytes string has been selected (highlighted), and the “Insert” command has been
chosen from the context menu. Note that only the ‘protein’ tag may be chosen.
This is because the selected text span is inside a sentence, which may con-
tain only characters or ‘protein’ elements according to the specified DTD (see
Figure 8.7).

Another tool, which searches a number of text files for a pattern specified
by the user, is the concordancer. It also shows a list of all instances matching that
pattern. The GENIA team developed XConc, a concordancer for corpora
encoded in XML. XConc is designed to be DTD-independent, so that it can be
used with most XML-encoded corpora. Figure 8.15 shows XConc, together
with VeX, plugged into Eclipse. Users may specify a pattern in the XConc
Search pane, for instances matching a pattern to be listed in the XConc Search
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Figure 8.13 Editing an annotation with an XML editor.

Figure 8.14 Making a new annotation with an XML editor.



Research pane. The example in Figure 8.15 shows the results of the following
search query:

TARGET=cons[@sem="protein_molecule"],
RIGHT=_word[text("activat.*")], UNIT=_word, WINDOW=2.

The query attempts to find cons elements with ‘protein_molecule’ as the
value of the sem attribute, in a context where the word pattern “activat.*” is on
its right side. For the context, it searches up to two words on either side. Basi-
cally, the syntax for pattern specification follows XPath, which is a sophisticated
language for marking locations and selecting sets of nodes within an XML docu-
ment, with an extension for string values represented as regular expressions. By
clicking one of the instances in the result list (GM-CSF in the example), the user
can execute VeX to open the file containing the instance. VeX will highlight the
target string and locate the caret at the end of it.

Corpus annotation is usually a long-term project involving several annota-
tors. In addition to the search and edit tools mentioned above, tools that support
the management of work history and multiuser collaboration are of great use.
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Figure 8.15 Concordancer and XML editor.



Concurrent Versions System (CVS) may be a straightforward option. It is a ver-
sion control system that has emerged as a standardized platform for software
development. It supports long-term projects, and makes it easy for developers to
view a project’s history at any point, and consequently correct problematic
changes that have been made since the project started. CVS also supports
multiuser collaboration, by detecting conflicts between the work of different
developers, and reporting the conflicts in a convenient form. Eclipse supports the
full functions of CVS, letting a user log on to a CVS server, check out tasks, com-
mit their changes, and compare changes made by other users when conflicts arise.

The above examples suggest that, just by choosing standardized methods,
we can save the effort that would otherwise be wasted to develop tools to repli-
cate the methods. We do not need to paddle ourselves all the way to reach a goal.
Instead, we could just ride on a current that is flowing in a similar direction to
minimize the distance and effort.

8.6.2 Corpus Annotation Tools

There are many tools designed especially to support corpus annotation. Since
these tools are committed to corpus annotation as the primary application, they
are expected to provide more sophisticated functions than general purpose tools,
at least for annotation work. They range from a simple editor to an integrated
development environment (IDE) bundled with a bunch of related tools.

WordFreak (http://wordfreak.sourceforge.net/) is a linguistic annotation
tool designed to support human and automatic annotation of linguistic
data. It was developed by the PennBioIE team, originally to support its own
annotation work. It supports tokenization and POS labeling, entity annotation,
treebanking, and concordancing based on the standoff annotation scheme
defined for PennBioIE. Furthermore, using plug-ins can extend the functional-
ity. There are already several plug-ins developed for WordFreak to support a
number of standardized projects. Users are recommended to check the list of
existing plug-ins before writing their own. If there is no appropriate plug-in,
then users can write their own plug-in to customize the interface and functional-
ity, and to support their annotation scheme. The GENIA team also has devel-
oped a plug-in for WordFreak, which reads from and writes to the GENIA
format, facilitating data exchange between PennBioIE and GENIA.

CADIXE is an XML editor developed by the Caderige team. It is
DTD-aware, provides a styled view of XML documents by supporting a
“CSS-like” stylesheet language, and is easily customizable. Unlike other XML
editors, it allows the user to add tags without having any constraint on the inser-
tion order, which may be useful for annotation work. It is used in the Caderige
project and at the Swiss Institute of Bioinformatics (SIB) as part of the Euro-
pean project, BioMint.
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There are also tools developed to explicitly support multiuser annotation.
The LAW Workflow Management System developed by the PennBioIE team is
intended to provide a general file/user/task management system for projects that
need to manage a pipeline of processes that are performed on some type of
source file. It is now supporting their annotation work, integrating multilevel
linguistic information.

8.7 Conclusion

A corpus with appropriate good quality annotations often sets up a critical infra-
structure for NLP research. Text mining research that is based on NLP technol-
ogy also benefits from the existence of such a corpus. However, building such a
corpus is expensive, requiring a long time and much manual collaborative work.
Therefore, the related problems should be well studied to avoid waste of time
and labor. Several topics concerning corpora in biology have been discussed.
The focus is to introduce existing resources, and to describe known difficulties,
with the purpose of delivering useful information on building corpora for text
mining of biology texts. In this chapter, emphasis is placed on the GENIA cor-
pus, which does not necessarily mean that this corpus is the most important. It is
emphasized simply because the authors are involved in the construction of the
corpus and can report on first-hand experience. For other resources, we include
as many references as possible. Therefore, the reader is recommended to consult
the corresponding citations for further detailed information.
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9
Evaluation of Text Mining in Biology
Lynette Hirschman and Christian Blaschke

9.1 Introduction

A growing number of groups are now working in text mining for biology. Two
strands of research have converged on this problem: on the one hand, biology
and bioinformatics, and on the other, computer science/natural language
processing. The biology and bioinformatics research communities have felt
an increasing need for improved tools to access and mine the rich textual
information found in the biological literature, as well as the semistructured
informa-tion in comment fields of the biological databases, such as GenBank
(http://www.ncbi.nlm.nih.gov/Genbank/) or Swiss-Prot (http://us.expasy.org/
sprot/). Computer science researchers, including people working in natural lan-
guage processing, information retrieval, machine learning, and artificial intelli-
gence, have long been interested in the general problem of accessing and mining
textual information. What is new is the increased interaction among these
communities.

On the natural language side, we have seen a series of workshops on bio-
medical text processing at the Association for Computation Linguistics (ACL),
and Human Language Technology meetings since 2002 [1–3]. In addition, the
Text Retrieval Conference (TREC) [4] started a new Genomics Track in 2003
[5, 6].

On the biology side, there have been Special Interest Group (SIG) meet-
ings on text mining for biology at the Intelligent Systems in Molecular Biology
(ISMB) conference since 2001 [7]. The Pacific Symposium on Biocomputing
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(http://psb.stanford.edu) has held sessions on text mining for biology since 2000.
There also have been joint activities, including a workshop at the University of
Pennsylvania in February 2001 [8], workshops at the University of Tokyo in
2002 [9] and 2005, a number of workshops in Europe, such as the annual
E-BioSci/Oriel workshops (http://www.e-biosci.org/), as well as workshops and
sessions on language and biology in computational linguistics, such as [10].

However, despite the increased activity in this area, there are still relatively
few commercial text mining tools deployed on a large scale. Moreover, until
recently, it has not been possible to compare different approaches, because the
various groups involved are addressing different problems, often using private
datasets [11]. This is similar to the situation in text processing in the early
1990s, prior to the introduction of the MUCs. The first MUC was held in
1987, with six participating systems and no clear evaluation criteria. By the time
of MUC-7 in 1998, there were four well-defined evaluation tasks, and 17
groups participating with many different systems. A few years after the start of
MUC, the first TREC was organized in 1992, with the goal of creating realis-
tic-sized document collections, in order to assess the state of the art in informa-
tion (document) retrieval. TREC has now been held annually for the past 13
years, adding new tracks to reflect new research directions [4]. This includes
tracks for answering questions, and the new Genomics Track, which attracted
33 participants in 2004.

These activities have made it possible to compare approaches to general
document retrieval and understanding through the introduction of common
evaluations, shared resources, and standardized metrics. This has allowed the
research community to assess what techniques do and do not work, and to dem-
onstrate the progress being made in the fields of information extraction and
information access and retrieval.

A similar situation existed in areas of molecular biology in the 1990s. For
example, in protein structure prediction, many groups were making claims
about methods of prediction structure from primary protein sequence data.
However, in the absence of shared datasets and standardized evaluation mea-
sures, it was not possible to compare these claims. Starting in 1994, the Critical
Assessment of Protein Structure Prediction (CASP) evaluation began one of the
earliest community-wide experiments to benchmark the state of the art of pro-
tein structure prediction [12]. CASP has now been running for more than a
decade. CASP, in turn, served as a model for later initiatives. These include Crit-
ical Assessment of Microarray Data Analysis (CAMDA) [13], which assesses the
performance of microarray bioinformatics tools, and Critical Assessment of
PRediction of Interactions (CAPRI), which assesses protein interaction predic-
tion techniques [14]. In addition, there has been an assessment for genome
bioinformatics—the Genome Annotation Assessment Project (GASP) [15]—as
well as the Genome Access Workshop (GAW) for statistical genetics techniques
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[16], and the Predictive Toxicology Challenge (PTC) for computational
toxicology approaches [17].

These histories illustrate that, once objective common evaluations become
available, there is real eagerness on the part of the research communities to par-
ticipate. We are now at a critical point in bringing the biology and
bioinformatics community together with the computer science and natural lan-
guage processing community. One outcome has been an increasing number of
common challenge evaluations for text mining in biology, as well as resources
and benchmark sets. The evaluations include:

• Knowledge Discovery and Data Mining (KDD) Challenge Cup 2002
Task 1 [18]: Document classification for FlyBase (http://flybase.bio.
indiana.edu/), requiring identification of full text journal articles con-
taining experimental evidence for specific genes and gene products.
This evaluation was done under the auspices of the KDD Special Inter-
est Group of the Association for Computing Machinery (ACM).

• TREC Genomics Track 2003, ongoing [5, 6]: Document retrieval and
classification tasks for genomics. This evaluation is now a track of
TREC, held on an annual basis.

• BioCreAtIvE 2003 [19]: Critical Assessment of Information Extraction
in Biology, which focused on two tasks: gene mention identification
and normalization, and functional annotation for genes using the GO
[20].

• BioNLP [21]: Tagging of biological names in MEDLINE abstracts.
This evaluation was done as part of the JNLPBA in 2004.

These evaluations are the subject of this chapter, which is organized as fol-
lows. In Section 9.2, we address the question of why to evaluate. We look at the
stakeholders in a shared assessment, and argue that evaluation has many func-
tions, including measuring progress, bringing together a community, and creat-
ing a shared infrastructure to support research. In Section 9.3, we talk about
what to evaluate, and discuss applications of text mining in biology that can be
used to develop biologically motivated tasks for assessment. In Section 9.4, we
review the history of recent evaluations for text mining in biology and their
results. Finally, in Section 9.5, we conclude with a look towards the future, and
discuss where evaluation for text mining in biology should go.

We have chosen to focus on shared assessments, or challenge evaluations,
in this chapter. These are the most visible, and often the most influential, assess-
ments in a field. However, evaluation itself must be embedded in every piece of
empirical work in the area of text mining. For each new approach or each new
task, it is critical to assess how well the approach performs. Often this is difficult,
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because valid assessments may require extensive infrastructure: annotated “gold
standard” or ground truth data, or even user studies. Such data is often difficult
or expensive to obtain. Common assessments can lead the way for a research
community by creating a shared infrastructure that can drive a whole field
forward.

9.2 Why Evaluate?

We now look at the first issue of why to evaluate. There are several aspects to
this question that we now consider.

9.2.1 The Stakeholders

The first issue in evaluation is to identify the stakeholders. Who cares about the
evaluation? Who will participate? Who will pay attention to the results? Who
will pay for the evaluations, and why? In an interdisciplinary area, such as text
mining applied to biology, there are various groups of stakeholders with
different objectives:

• The users. In the case of biology, the biologists and bioinformaticians
are the end users of the tools under development. Very importantly,
they are also the people who have the problems and the biological
datasets that are needed for realistic evaluations.

• The technology developers. In this case, the developers are the
bioinformaticians and computer scientists who are creating the tools
and systems to be evaluated. These are the people who will field systems
to be evaluated. They may be from academia or commercial companies,
which may affect their willingness to share insights and results.

• The funders. These are the people who fund the underlying research
(e.g., biology, bioinformatics, natural language processing), and have an
interest in demonstrating that their investment is paying off, and that
the field is making progress. This group can be quite diverse, but, in
general, they want to know what the state of the art is, what directions
of research seem most promising, and whether their investment has
paid off.

These are the stakeholders during the relatively early precommercial stage
in the life cycle of tools. Once there are commercial products available, then the
roles shift. The users become consumers, becoming the people who purchase
tools to assist them in their work. Once the tools have become mature enough to
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make the transition from research to deployed software, the role of developers
shifts as well, moving from research (publication-driven) to development (pro-
duction of commercial software). The role of challenge evaluations also changes.
The stakes become higher, and less information is shared because of intellectual
property concerns. This limits the free flow of information, and may even pre-
clude commercial participation. However, some evaluations (e.g., TREC) allow
commercial participants with a reduced requirement for disclosure of technical
details.

9.2.2 Dimensions of a Successful Evaluation

Next, we look at the dimensions of a successful evaluation. The critical ingredi-
ents for a successful evaluation are: choice of a meaningful application; clear,
simple, reproducible evaluation measures; and availability of training and test
data. Stakeholders have their own requirements for a challenge evaluation, and,
in some cases, the needs of these stakeholders may conflict.

9.2.2.1 Choice of Application

In defining an evaluation, there is a tension between focusing on general
techniques versus solutions to specific problems. This may, in part, reflect the
different backgrounds of the developer versus the consumer. For example, in
text mining, the technology developer may be a computer scientist with limited
background in biology, and the consumer typically will be a biologist or
bioinformatician. The consumer/biologist wants a particular biological problem
solved, but it may be more natural for the technology developer/computer scien-
tist to abstract away from the biology. This creates a tension in selecting applica-
tions. If the application is too specific, then it becomes difficult to assess the
wider applicability of the technology. If the application requires too much
biology, then it may deter the computer scientists. If the application is too
technology-focused, then the biologists will not be interested. As we will see
below, the solution has been to create a range of evaluations: some defined to
address significant biological problems, others defined to tackle generic
technology issues and to attract researchers from other disciplines.

9.2.2.2 Evaluation Metrics

It is critical to select clear, reproducible, and easily understood evaluation met-
rics. When complex cognitive tasks are involved, it can be quite difficult to pro-
vide an easy-to-measure definition of success. Evaluation in the language
understanding area has generally used automated calculations that compare a
system response to a “gold standard,” which is the result of consensus-expert
human performance on a task [22]. For example, in speech understanding, the
measure has been transcription word error rate, using a human expert
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transcription as a gold standard. Ideally, such measurements should be accom-
panied by a measure of inter-annotator agreement; that is, how well multiple
human experts agree when performing this task.

An alternative approach is the “Olympic judging” approach, where experts
rate system performance according to some agreed-upon rules. This is done in
TREC, where human judges determine whether a particular passage or docu-
ment is relevant to a request. The disadvantage of the Olympic judging
approach is that the measures are not automatically reproducible. Each evalua-
tion requires the participation of a panel of judges. Automated comparison of
system results against a gold standard has the advantage that it is repeatable and
can be used as an integral part of the development cycle (e.g., for hill climbing or
machine learning).

However, there may not always be a “ground truth” or gold standard, par-
ticularly in biology, in which all knowledge is partial, new knowledge is con-
stantly being added, and whole subfields may be restructured. Nonetheless, we
can still compare computational predictions to predictions from other sources,
using both automated comparison and human judgment. For example, CASP
uses protein structure as determined by X-ray crystallography as its gold stan-
dard for protein structure prediction. This protein structure represents only par-
tial knowledge, since the crystalline state may be quite different from the
biologically active state. Computational predictions are compared algorithmi-
cally to this gold standard, but final determinations are made by a panel of
experts.

Lastly, repeated evaluation on the same tasks is important for the field to
demonstrate progress over time. The speech community held annual evalua-
tions, and was able to reduce the error rate by a factor of two every two years
[23]. However, as the error rate on one task dropped below some critical thresh-
old (often 10% word error rate), the community also defined a new, more
difficult task.

9.2.2.3 Data and Resources

A successful evaluation contributes resources and infrastructure that enable a
research community to tackle problems of importance. Biology provides a par-
ticularly rich environment for text mining, because many resources already exist
(e.g., synonym lists, nomenclatures, and ontologies). Many tasks, such as
curation of biological databases, are currently performed by domain experts,
providing large sets of “naturally occurring” data, which provide examples
(input/output pairs) to system developers. Use of such datasets for evaluations
has advantages and risks. One advantage is that these are tasks that experts are
already performing, ensuring that the task has real biological importance and is
tractable, at least for humans. If a task is too hard for an expert biologist to do,
or if there is significant disagreement among experts, then such a task is not a
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good candidate for use in a challenge evaluation. A second advantage is the avail-
ability of large (cheap) training datasets. This is highly desirable for any statisti-
cal or machine learning approach. Typically, for text mining applications,
corpora of millions of words are desirable. Work by Craven and Kumlien [24]
demonstrated the use of existing biological resources as sources of training data.

However, there are also risks with respect to data quality. These naturally
occurring datasets exist to meet the needs of biologists, not the needs of text
mining researchers, making them less accessible to nonbiologists. The naturally
occurring annotations are often coarse-grained. That is, an annotation will exist
at a document level (e.g., a gene annotated with its function and a reference to a
publication), while the task may require extraction at the sentence or phrase
level. The annotation also may be incomplete, in that only some of the positive
examples are annotated. Novel learning algorithms may be needed to handle
these kinds of partial and imperfect annotations, in contrast to most current
approaches that rely heavily on perfect and complete annotation. Finally,
preparation of gold standard test data requires extensive collaboration with
expert biologists, and careful additional checks on data quality, as well as
inter-annotator agreement experiments, to assess how well experts agree (see
Chapter 8).

9.2.3 What Can Evaluation Accomplish?

Evaluation can facilitate progress in a new field, including:

• Encouraging scientific progress by supporting a systematic comparison
of different techniques applied to a common problem, allowing
researchers to learn from each other’s successes and failures;

• Demonstrating progress over time, so that the organizations funding
the research can see that their funding has produced quantifiable
progress;

• Building a research community; in the case of text mining for biology, a
key issue has been to attract researchers from both natural language pro-
cessing and bioinformatics and to encourage cross-training and the for-
mation of teams;

• Addressing problems of importance to the biology and bioinformatics
community, which is key to keeping the biologists actively involved;

• Creating a legacy infrastructure to support future researchers by creat-
ing repositories of open source component software modules, as well as
providing training and test data suites that can be reused for develop-
ment and benchmarking of future applications;
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• Lowering the barrier to entry, ideally, so that high school students
could build and integrate components for text mining in biology to do
their biology experiments;

• Creating standards and, eventually, creating a market for successful
tools. If an evaluation is successful, many systems will use the training
resources as input, and will produce output in a standard format for
evaluation. These formats may become de facto data exchange formats.
This, in turn, encourages sharing, comparison, and integration of
components.

9.3 What to Evaluate?

The preceding section outlined the ingredients of a successful evaluation. As dis-
cussed above, the task should be of importance to the biology community. Ide-
ally, it should be a task that expert biologists perform, because this ensures the
existence of a substantial pool of training data, resources, and experts to create
gold standard data. The task also should use existing standards where possible,
because this increases reusability of materials. The task also must be relevant to
the technology under development, and should provide a succession of progres-
sively harder subtasks that will push research in useful directions. These consid-
erations constrain the choice of evaluation in three dimensions: by the needs of
biologists; by the need to evaluate existing technologies; and by the requirement
that there be sufficient (and sufficiently cheap) training and test material.

9.3.1 Biological Applications

Two classes of biology tasks have been used as the basis for recent text mining
evaluations. The first task is a search of the literature that individual researchers
carry out to find articles relevant to their current research. This class of task
focuses on document retrieval, and draws heavily on research from the informa-
tion retrieval community. The second task is biological database curation, which
includes the creating and updating of a biological database through a process of
expert review of the literature, followed by the encoding of key findings in a bio-
logical database. Curation often requires document retrieval and classification as
initial steps, but it also requires information extraction. This requires the ability
to extract information from free text, and map it to a standard representation in
a biological database, such as gene or protein identifiers associated with concepts
in an ontology, such as the GO [20]. The remainder of this section discusses
these two types of tasks and the associated technologies.
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9.3.1.1 Literature Search

The individual biologist is now overwhelmed by the task of finding needed
information from the increasing quantity of biological literature. The first step
in a biological research project involves a background literature search, to iden-
tify who has done what on a particular problem. This may be followed by the
creation of a personal database or annotated bibliography, to keep track of the
information. Typically, initial references may point to other references, which
also need to be included in the personal database or bibliography. Biologists
would benefit from improved indexing into the biological literature, particularly
indexing that automatically included the great number of synonyms for genes or
proteins, or that allowed specification of search based on types of interactions or
pathways.

Beyond document retrieval, users would like to get answers to their ques-
tions. TREC has had a track devoted to Question Answering for the past several
years, encouraging the development of technology to return answers to natural
language questions run against large document collections. The TREC
Genomics Roadmap (http://ir.ohsu.edu/genomics/roadmap.html) includes
question answering in its long-term goals. This would require some extension to
the current question-answering technology to support answers to typical biolog-
ical questions, such as, “Identify all known transcriptional targets for Smad4
expression and activation.” Such questions require the return of lists of entities
and associated references, rather than producing a single “factoid” answer.

Finally, literature search also can involve document classification, where
the goal is to identify clusters of related documents. For some applications, clus-
ters are predefined. For example, papers could be clustered by the experimental
organism, so that papers about mice are in one cluster, while papers about rats
are in another cluster. For other applications, such as searching on a topic men-
tioned in thousands of papers, the system could cluster the hits into thematic
groupings to facilitate browsing.

9.3.1.2 Biological Database Curation

The second type of task focuses on a different community of biologists, namely
curators of biological databases. A curated biological database captures critical
information derived from the open literature, classified into biologically mean-
ingful categories by expert biologists (the curators). There is a growing group of
biologists involved in the creation of large systematic repositories of knowledge
about a particular organism, as in the model organism databases (e.g., databases
for flies [25], mice [26], yeast [27], collections of proteins [28], or binding rela-
tions [29]). The number of expert-curated biological databases is expanding.
The 2005 edition of Nucleic Acids Research contains articles or pointers describ-
ing more than 800 biological databases and associated resources [30].
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Text mining tools can play a potentially important role in aiding curators
with the identification and capture of information for the maintenance of bio-
logical databases. Currently, curators cannot keep up with the flood of new
information appearing in the biological literature. Text mining tools could help
to improve the currency, consistency, and completeness of biological databases.
To support their manual curation activity, biologists have created biological
nomenclatures and ontologies to organize the information in these databases.
These turn out to be important resources in understanding and processing
biological information (see Chapter 3).

The choice of a curation task ensures that the task will have biological rele-
vance. It also makes it possible to involve the expert curators in defining and
evaluating the task, since they have in-depth knowledge about the annotation
process, and they have an interest in the development of tools to assist them in
this process. Furthermore, curation tasks come with annotated data. Biological
databases capture these expert annotations with links to the articles from which
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the annotations are derived. Figure 9.1 is an excerpt from the Mouse Genome
Informatics (MGI) database. It shows the association of a gene name, gene
identifier, and gene synonyms (top), with GO functional information (middle),
and literature references (bottom). This illustrates the kind of rich information
available in expert curated biological databases.

Figure 9.2 shows a schematic version of a pipeline for model organism
curation. Curation begins with the identification of relevant articles from the lit-
erature (e.g., the MGI database, and all the papers discussing a particular gene in
mouse). Part of this task is to ensure that the papers contain experimental find-
ings for the gene or gene product in the specific organism of interest. This docu-
ment retrieval task was the basis for the KDD 2002 Challenge Cup Task 1 [18],
and the categorization task in TREC Genomics Track 2004 [6].

A later step in the curation pipeline involves listing the genes or gene prod-
ucts that have sufficient experimental information in the article to warrant
curation. This formed the basis for the BioCreAtIvE normalized gene list task.

A third step involves the actual curation—assignment of properties to the
genes and gene products, based on the experimental findings reported in the lit-
erature. The adoption of a shared ontology across organisms, namely GO, has
enabled the comparison of gene and protein function across organisms (compar-
ative genomics). GO provides three separate hierarchies that allow annotators to
describe molecular function, biological process, and cellular localization of genes
and gene products. This step is the basis for BioCreAtIvE task 2, assigning func-
tional annotation for specific genes based on evidence provided in the literature.

These curation tasks require different technologies, including document
retrieval, information extraction and normalization, and fact or relationship
extraction. They also cover different gradations of difficulty: from the relatively
easy tasks, such as generation of lists of unique gene identifiers; to intermediate
tasks, such as selection of relevant documents for curation; to the very difficult
tasks, such as GO annotation of gene products based on information in the
open literature.

9.4 Current Assessments for Text Mining in Biology

There have been four challenge evaluations to date for text mining in biology,
listed in chronological order:

1. KDD Challenge Cup Task 1 (2002);

2. TREC Genomics Track (2003, 2004);

3. BioCreAtIvE (2003–2004);

4. BioNLP (2004).

Evaluation of Text Mining in Biology 223



We will describe each of these briefly in terms of the application, the tech-
nologies and the overall results.

9.4.1 KDD Challenge Cup

The first biology-based challenge problem was offered in the context of the
KDD Challenge Cup, as task 1 in 2002 [18]. This task was created in collabora-
tion with Gelbart and the FlyBase curation team. The task was selected to bal-
ance biological importance with tractability for the existing state of technology
and availability of resources (e.g., full text articles). It was a task at the beginning
of the Harvard Flybase curation pipeline (see Figure 9.2), specifically, identifica-
tion of the papers to be curated for Drosophila gene expression. The criterion
was that the paper must contain experimental evidence for gene products
(mRNA transcripts, polypeptides, or proteins) associated with a given gene.

The KDD Challenge Cup Task was defined as follows:

• Collect a set of (full text) articles on genetics or molecular biology, and
for each paper, list the genes mentioned in that paper;

• Determine whether the paper meets the FlyBase gene-expression
curation criteria, and for each gene, indicate whether the paper has
experimental evidence for its gene products (mRNA and/or protein).
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Step 2: Listing unique IDS for
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3. Curate genes from paper

Step 3: Curation of genes in a paper inspired
BioCreAtIvE task 2: finding evidence in text
for functional annotation (GO codes)

Model Organism Curation Pipeline

Figure 9.2 Curation pipeline for GO model organism databases.



The training set consisted of full text articles, cleaned to remove irregular
typography that occurred in the full text papers. In addition to the articles, the
participants received the FlyBase standardized nomenclature for the genes,
including synonym lists for each gene. Participants also received the controlled
vocabulary terms from FlyBase that indicated experimental methods, (e.g.,
‘Northern blot,’ ‘immunolocalization’). For the test, systems were presented
with a new set of articles, together with unique identifiers for the genes men-
tioned in each article. Table 9.1 summarizes the size of the training and test sets.

Systems were required to return three things:

1. A ranked list of articles for curation, where papers containing experi-
mental evidence of interest ranked higher than papers that did not
contain such evidence;

2. A yes/no decision on whether to curate each article;

3. For each gene listed for an article, a yes/no decision about whether
the article contained experimental evidence for that gene’s products
(e.g., RNA, protein/polypeptide).

Each subtask had a simple scoring procedure. For the ranking task, the
metric was the area under the receiver operating characteristic curve (AROC).
The ROC curve measures the trade-off between sensitivity (recall) and the
probability of a false alarm. For the yes/no curation decisions on the papers, the
metric was balanced F-measure1 with precision and recall weighted equally.
F-measure also was used at the gene level for the yes/no decisions on experimen-
tal evidence for each gene’s products. The average of these three scores (equally
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Table 9.1
KDD Datasets and Participants

Task Participants Runs Training Set Test Set

Total Positive Examples Total

KDD Challenge
Cup

18 32 862 articles 283 articles 213 articles

1. The balanced F-measure is (2 × precision × recall)/(precision + recall), where recall is num-
ber of correct “yes” decisions returned by the system, divided by the number of possibly cor-
rect “yes” decisions; precision is the number of correct “yes” decisions returned by the system,
divided by the total number of “yes” decisions returned.



weighted) produced the overall system score. Each team was allowed to submit
up to three runs. The results are shown in Table 9.2. The top performing team
obtained both the highest overall score and the highest scores on the individual
tasks.

Overall, the evaluation was a success. There was strong international par-
ticipation, with 18 teams from 8 countries, and a steady stream of requests for
the dataset following the evaluation. Many teams consisted of a biology partner
and a computer science/data mining partner.

The preparation of the training and test data required significant effort
from both the Harvard FlyBase team and the MITRE team, even though the
task was designed to make use of existing data annotated in FlyBase. For exam-
ple, the organizers provided explanations understandable to nonbiologists for
decisions about curating (or not curating) genes in an article based on experi-
mental evidence.

While the task did not involve returning the experimental evidence, it did
require association of evidence with specific genes or gene products for the third
subtask—deciding, for each gene, whether the article contained experimental
evidence for that gene’s products (RNA, protein/polypeptide). As a result, many
groups reported that “bag-of-words” techniques alone were not very successful.
The top system used information extraction and manually constructed rules to
identify “interesting” patterns. Other high scoring systems generally combined
identification of gene names with patterns associated with experimental
evidence.

The results reflect the overall task difficulty. While the highest scoring
results for returning a ranked list seemed promising, the real test is whether such
a ranked list could significantly improve curator productivity, which would be
an important dimension to add in future tests. At the fine-grained level of asso-
ciating experimental results with specific gene products (see the last row in Table
9.2), the F-measure of 67% indicates that the techniques were not very accurate
at the gene level.

Overall, the 2002 KDD Challenge Cup task made two major
contributions:
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Table 9.2
Results from KDD Challenge Cup 2002

Evaluation Task Best Median

1. Ranked-list 84% 69%

2. Yes/No curate paper 78% 58%

3. Yes/No gene products 67% 35%



1. It showed that there was significant interest across several communities
in working on text mining in biology.

2. It showed that this kind of document selection task made an interest-
ing and appropriate challenge task. Some of the lessons learned from
KDD influenced the development of the Mouse Triage task for
TREC Genomics Track 2004.

9.4.2 TREC Genomics Track

The TREC Genomics Track [5, 6] began with a trial run in 2003, and now has
five-year funding from the National Science Foundation through 2008. The
track, like many TREC tracks, has a core task, which is “ad hoc”
search—thes earch for documents relevant to an arbitrary (biological) topic,
from a data base of documents. It also has experimental tasks that may change
each year.

The MEDLINE abstract collection is the starting point for biology litera-
ture searches, and constitutes the document collection for the track’s ad hoc
search. The evaluation issues for ad hoc search are well understood, since TREC
has been running such evaluations for over a decade. The main requirements are
a readily accessible document collection; a set of representative topics; and a
method to determine, for a given topic/document pair, whether the document is
relevant to the topic. The main TREC evaluations have used human assessors to
make these determinations. The evaluation metrics are based on precision (i.e.,
number of relevant documents returned, divided by number of documents
returned), and recall (i.e., number of relevant documents returned, divided by
number of relevant documents in the collection). Computation of precision is
straightforward, once a set of documents returned for a topic has been judged
for relevance. However, computing recall is not straightforward for large collec-
tions, because the calculation requires the true number of relevant documents in
the denominator, which only can be known by exhaustive inspection of a large
collection for each topic. Therefore, relevance is computed against a much
smaller collection, created by pooling the top N-ranked documents returned
from a sufficient number of participants [31]. For example, if there are 25 par-
ticipants, and each system provides its 100 top-ranked documents, this creates a
pool of 2,500 documents for inspection. Pooling candidate document sets from
multiple retrieval engines means that the most relevant documents will be in this
set. It is then possible to estimate how many more documents would have been
found by increasing the size of the pool, to give some estimate of the recall error
from pooling.

Defining a set of representative topics for the biology domain is an area of
ongoing experimentation. For TREC 2003, the track used Gene Reference into
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Function (GeneRIFs)2 from the NCBI LocusLink database (http://www.ncbi.
nlm.nih.gov/LocusLink/) to generate a set of topics. The topics had the form:
“For some gene X, find all MEDLINE references that focus on the basic biology
of the gene or its gene products.” A few sample GeneRIFs for the gene PSEN1
(Presenilin 1) are shown in Table 9.3.

The 2003 Genomics track used GeneRIFs as substitutes for relevance
judgments, because of funding constraints. This turned out to be problematic,
because there are many articles that discuss gene function but do not end up as
GeneRIFs. An analysis of an OHSU training run [5] showed that more than
40% of the documents retrieved were relevant but were not GeneRIFs. Systems
returning relevant documents that were not GeneRIFs would have suffered a
penalty in their precision score. The 2003 evaluation used two metrics for the ad
hoc task: mean average precision (i.e., the average of precision after each relevant
document is retrieved for a given query); and number of relevant documents in
the first N documents, averaged over all queries (N was 10 or 20). Table 9.4
provides information for the TREC Genomics Track for both 2003 and 2004.
For the top scoring system on the 2003 ad hoc task, the highest mean average
precision was slightly more than 40%, and slightly more than three of the first
10 retrieved documents were relevant, averaged over all queries. The top per-
forming systems made use of medical terminology for species information and
for synonyms.

The secondary task for 2003 was a sentence extraction task. The goal was
to find the sentence(s) from the MEDLINE abstract or full text article that gave
rise to the GeneRIF. Performance was measured by textual overlap between the
GeneRIF and the passage, using several different ways of calculating overlap.3

Preliminary analysis indicated that 95% of the GeneRIFs contained text from
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Table 9.3
List of Some GeneRIFs for the Gene Presenilin-1 (PSEN1) in LocusLink

PubMed ID Statement of Function

12058025 Interaction with GFAP epsilon

11876645 Inhibition of endoproteolysis by gamma-secretase inhibitors

2. GeneRIFs are short summaries of gene function, with a pointer to the source of the informa-
tion, with the article and its abstract in MEDLINE.

3. The measure shown in Table 9.4 is the DICE coefficient for two documents D1 and D2, cal-
culated as 2 times the number of words in both D1 and D2, divided by the total number of
words in D1 plus the number of words in D2.
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the title or the abstract. A baseline system that simply used the title as the
GeneRIF scored in the upper one-third of systems submitted.

Overall, the 2003 Genomics Track demonstrated that there was a large
community of interested researchers—29 participating groups. While the results
were not very meaningful due to the preliminary nature of the task definitions
and evaluation procedures, the track provided experience in defining appropri-
ate tasks, and laid the groundwork for the future Genomics tracks. It also
exposed nonbiology groups to some of the available biological resources, and
brought together bioinformatics researchers and computer scientists.

For TREC 2004, Hersh’s group at OHSU, and volunteers from partici-
pating sites, conducted a study of user needs and candidate queries. These
formed the basis of the ad hoc queries, and Figure 9.3 shows a sample query [6].
Funding made it possible to hire assessors to assess results using the traditional
TREC pooled data approach. Two people with backgrounds in biology per-
formed the assessment. Kappa statistics4 showed “fair” agreement (0.51)
between the assessors, which is consistent with other experiments on inter-asses-
sor agreement in TREC.

Overall, 27 groups submitted 47 runs for the ad hoc task. The document
collection consisted of a 10-year subset of MEDLINE, including approximately
4.5 million records. For the high-scoring run for TREC 2004, precision at 10
documents was slightly more than 6 documents, a definite improvement over
the much lower results in TREC 2003. It is difficult to interpret the significance
of the ad hoc retrieval results for working biologists, but for future evaluations,
an interesting benchmark might be to compare these results to those achieved by
a biologist using the standard MEDLINE tools to compose a query.

The second task for TREC Genomics 2004 was a “triage” task, using data
from the Mouse Genome Informatics database [26]. This task was similar in
design to the KDD Challenge Cup task for FlyBase [18]. Given a set of candi-
date documents, the task was to classify those documents containing experimen-
tal data on mouse genes that would warrant further curation for GO codes. For
this task, a collection of full text articles was provided by Highwire Press, con-
sisting of two years’ worth of Journal of Biological Chemistry, Journal of Cell Biol-
ogy, and the Proceedings of the National Academy of Science. This resulted in
collections of roughly 10,000 articles for 2002, and the same for 2003. Query-
ing for the terms “mouse,” “mus,” or “murine” produced subsets of roughly
6,000 documents for each year. The 2002 papers were used for training, and the
2003 papers were used for testing.
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4. The kappa statistic measure tests the null hypothesis that there is no more agreement than
might occur by chance, given random guessing; kappa ranges from 0 for chance agreement,
to 1 for full agreement.



To evaluate performance on the triage task, the track developed a utility
measure, in addition to the usual measures of precision, recall, and F-measure.
The utility measure was designed to weigh the utility of retrieving a relevant
document versus the utility of retrieving a nonrelevant document. Perfect pre-
diction had a utility of 1, completely imperfect prediction would have a value
less than 0, and triaging everything was estimated to have an approximate value
from 0.25 to 0.35.

The top performing system received a utility rating of 0.65, demonstrating
that it classified documents better than the “triage everything” baseline of 0.33.
However, the top F-score was just slightly more than 0.28. The systems had
high recall. The top scoring systems had recall ranging from 0.88 to 0.96, but
this came at the expense of poor precision, which ranged from 0.16 to 0.09. Per-
haps the most unsettling result was a run performed by one group that classified
documents solely based on the presence of the MeSH5 term “mice”. This system
scored almost as well as the top performing system, with an F-score of 0.26, and
a utility score of 0.64. There are several hypotheses that might account for these
results:

1. The task may be so complex that it is difficult to select appropriate fea-
tures, and systems were able to provide little added value, beyond tell-
ing whether an article was about mice.

2. The curation decisions may not be reproducible.
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<TOPIC>

<ID>51</ID>

<TITLE>pBR322 used as a gene vector</TITLE>

<NEED>Find information about base sequences and

restriction maps in plasmids that are used as gene

vectors.</NEED>

<CONTEXT>The researcher would like to manipulate the

plasmid by removing a particular gene and needs the original

base sequence or restriction map information of the

plasmid</CONTEXT>

</TOPIC>

Figure 9.3 Sample ad hoc query from TREC genomics 2004.

5. MeSH is the National Library of Medicine’s controlled vocabulary used to index articles for
MEDLINE. Each article in MEDLINE is indexed by a number of MeSH terms.



3. The metrics may be problematic, particularly in the weighting of true
positives versus false positives.

These results are now being analyzed. It will be necessary to understand
these results before designing another triage experiment for literature curation.

In addition to the triage task, there were two further annotation tasks. The
first was to identify the top-level GO domains (e.g., biological process, molecu-
lar function, or subcellular location) that could be curated from the information
in the article. The second task was to identify the correct GO code, but only two
groups participated in this task, and it is not discussed here.

For the GO domain annotation task, systems were presented with docu-
ments and a set of genes associated with each document. The task was to deter-
mine which (if any) GO domains could be curated from the article for the gene.
The top F-measure for this task was 0.56, with precision of 0.44 and recall of
0.77. This task, like the KDD gene-experimental evidence task, required associ-
ation of information with a specific gene. The results are somewhat lower than
the KDD task for genes, reinforcing the observation that it is difficult to associ-
ate specific information with individual genes. See also the discussion of
BioCreAtIvE task 2 (Section 9.4.3.2), for a discussion of experiments assigning
GO codes to genes.

The plan for the TREC Genomics Track is to refine the tasks and the met-
rics, while also exploring more complex tasks in the later years of the project.
The user community, including the biological curation community, has been
actively participating in definitions of these tasks. Through this process of con-
tinued feedback and refinement, the Genomics Track should be able to make
substantial contributions to the field of document retrieval and access for
biology.

9.4.3 BioCreAtIvE

The explicit goal of the Critical Assessment of Information Extraction in Biol-
ogy (BioCreAtIvE) [19] was to assess the state of the art for information extrac-
tion in biology, based on problems of importance to the biology community. A
team of computer scientists and biologists/bioinformaticians from CNB/CSIC
(Madrid) and from MITRE, who were committed to evaluation of important
tasks for the biology community, developed the evaluation.

BioCreAtIvE consisted of two tasks: gene name extraction and normaliza-
tion (task 1), run by the group at MITRE [32, 33]; and extraction of informa-
tion for assignment of GO codes to proteins (task 2), run by the group at
CNB/CSIC [34]. The structure of BioCreAtIvE is summarized in Table 9.5.
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9.4.3.1 BioCreAtIvE Task 1: Extracting Genes

Task 1 focused on identification and normalization of gene names. There were
two subtasks, with task 1a focused on identification of gene mentions in run-
ning text, and task 1b focused on creation of lists of unique gene identifiers. Dif-
ferent groups with somewhat different aims constructed these tasks. The data
for task 1a was provided by Tanabe et al. (NCBI) [35], and was derived by
annotation of single sentences selected from MEDLINE abstracts. The biologi-
cal rationale for this task was that identification of gene-or-protein callouts in
running text serves as a critical first step to tasks, such as indexing of articles by
gene name, or extraction of gene and protein interactions. Task 1a was very
close to the named entity tagging task used extensively in the natural language
processing community (see Chapter 6). One objective in inclusion of this task
was to facilitate participation for groups whose main expertise was in natural
language processing, since the task required relatively little expert knowledge of
biology. This was the most heavily subscribed BioCreAtIvE subtask, with 15
teams participating. An example sentence is shown here.

“Furthermore, as in the human gene, the 3´ end of the Cacna1f gene maps
within 5 kb of the 5´ end of the mouse synaptophysin gene in a region
orthologous to Xp11/23.”

In this example, the system must identify the gene/protein names
“Cacna1f gene” (or “Cacna1f”) and “mouse synaptophysin gene” (or minimally,
“synaptophysin”), which are underlined. However, a phrase like “the human
gene” is not marked because it is not the name of a particular gene. The answer
key provides for alternative forms (e.g., “Cacna1f gene” or “Cacna1f”).
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Table 9.6
Gene Mention Scores for BioCreAtIvE Task 1 and BioNLP

High F-Score

Evaluation Task # Classes F-score R P

BioCreAtIvE Task 1a Gene-or-protein mentions 1 class 0.83 0.84 0.83

BioCreAtIvE Task 1b Normalized gene list 1 class
Fly
Mouse
Yeast

0.82
0.79
0.92

0.80
0.82
0.89

0.83
0.77
0.95

BioNLP Mentions of protein, DNA,
RNA, cell line, cell type

5 classes 0.73 0.76 0.69



Participants were given 10,000 annotated training sentences, and were
tested on an additional 5,000 blind test sentences. The main findings from task
1a [32] were that 4 of the 15 teams, using techniques such as Hidden Markov
Models and Support Vector Machines, were able to achieve F-measures higher
than 0.80, with a high of 0.83 balanced precision and recall (see Table 9.6).
These results are somewhat lower than for similar tasks from the newswire
domain. Yeh et al. [32] provide an analysis of these differences: extraction of
organization names has been reported at F-measures higher than 0.90. Approxi-
mately one-half of the difference in F-measure can be attributed to longer names
found for genes, compared to organization names. The remaining discrepancy
may be attributable to annotation inconsistencies due to fuzziness in the defini-
tion of what constitutes a gene-or-protein name.

Task 1b created lists of gene identifiers for genes appearing in a given arti-
cle or abstract. This is a task that is currently performed manually by curators for
various model organism databases. This meant that there were datasets poten-
tially available for both training and testing. Three model organism databases
were selected to serve as sources of gene lists associated with papers: fly [25],
mouse [26], and yeast [27]. By choosing several model organisms, the idea was
to encourage approaches that could be readily adapted to the different vocabu-
laries associated with the different organisms.

The curation process for these model organism databases was done on full
text articles. However, it is difficult to obtain large quantities of full text articles,
and the decision was made to use abstracts from MEDLINE instead. It was nec-
essary to edit the gene lists to make them correspond to genes mentioned in the
abstract, rather than the genes curated from the full text article. For the training
data, a simple matching program removed genes that were not mentioned in the
abstract, generating a large quantity of noisy annotated data. For the final test
data, the lists were carefully hand-corrected to fix discrepancies [36]. This
turned out to be a labor-intensive and somewhat error-prone process.

Eight groups participated in task 1b. The organizers provided synonym
lists for each organism, consisting of the unique gene identifier and its alternate
names, as listed in the lexical resources derived from each model organism data-
base. The results [33] are shown in Figure 9.4 and summarized in Table 9.6.
Performance varies by organism. The top score for yeast was an F-score higher
than 0.90; the top scores were F-scores around 0.80 for both fly and mouse.
Detailed analysis showed that the differences among organisms could be attrib-
uted to a variety of factors, including: extensive ambiguity in names and overlap
of gene names with English terms (fly); complex multiword gene names
(mouse); and quality of the training data, especially for mouse, where recall on
the training data was estimated at only 55%. Training data quality is shown as
open symbols for fly, mouse, and yeast in Figure 9.4.
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Task 1b posed two major difficulties: recognizing the many synonyms and
variants of gene names; and associating ambiguous names with the correct gene
identifier (disambiguation). The general approach was to identify gene men-
tions, associate these mentions with the appropriate unique identifier, and then
collapse these into a list of unique identifiers. Most systems used the lexical
resources for recognizing the synonyms, in addition to some kind of flexible pat-
tern matching and/or lexicon augmentation to take into account the many vari-
ations in case, punctuation, and spacing that occur in gene name nomenclature.
Several high-performing systems also relied heavily on editing the lexical
resources to remove ambiguous gene names and abbreviations (NO ). Most
groups hand-tailored the system for each organism, although one group used a
generic “tag-everything-then-prune” approach that involved liberal pattern
matching, based on the unedited lexical resources to generate candidate gene
identifiers, followed by a classifier to remove incorrectly tagged candidates.
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9.4.3.2 BioCreAtIvE Task 2

BioCreAtIvE task 2 focused on the automatic assignment of GO annotations to
human proteins using full text articles [34] (see Table 9.5). The construction of
task 2 was motivated by the needs of curators who wanted help in identifying
passages from the full text article that provided evidence for the GO annotations
of a specific protein. The task 2 organizers made a conscious decision to provide
data “as is,” to reflect the realities of a biological application. This meant that
there were no special lexical resources supplied. The training set consisted of
approximately 800 full text journal articles and their associated annotations
(e.g., protein and GO code) at the article level, taken from GOA
(http://www.ebi.ac.uk/GOA/). The training set was released to participants
with no further annotations; that is, the participants had to find the evidence
passages that supported the GO annotations. The test set consisted of approxi-
mately 200 articles that were curated by the GOA team specifically for the
assessment. Participants also had to find their own lexical resources, such as
synonyms for GO terms, as well as protein name synonyms.

The GOA curators at the EBI agreed to evaluate the results from the sys-
tems that took part in the BioCreAtIvE task 2 [37]. GOA contains manually
extracted associations of proteins to GO terms, together with the identifier of
the article that provided the evidence, as well as the type of evidence supporting
those annotations.

For instance, the following example corresponds to a single GOA entry.

P41220 RGS2 HUMAN GO:0005096 PMID:10747990 TAS F Regula-
tor of G-protein signaling 2 IPI00013177.

Here, the human protein RGS2 with the accession number P41220 has
been annotated ‘Regulator of G-protein signaling 2 (GO ID 0005096)’, using
information derived from the article with the PubMed ID 10747990.

Task 2 had two subtasks. For task 2.1, the goal was to return a short text
passage that provided evidence for the GO code assigned to that protein, given
the paper, the protein, and the GO code. The ideal passage contained both a
mention of the protein and the evidence for the GO code assignment. Figure
9.5 shows an example of an “easy” evidence passage for a protein and its GO
code. The evidence passage illustrates one aspect of associating text mentions
with GO codes. The description of the protein uses the term “inhibiting cell
proliferation”, whereas the GO concept is described as ‘negative regulation of
cell proliferation’. Many of the text mentions required much more sophisticated
processing, including coreference resolution to handle information distributed
across multiple sentences. Task 2.2 was similar, except that the system had to
predict the GO codes for the protein, in addition to returning the supporting
evidence passages. This further increased the difficulty of the task.
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Three expert GOA annotators were responsible for the assessment of the
submitted evidence passages and GO predictions. This turned out to be a very
labor-intensive process, and would need to be greatly streamlined in any future
evaluation. The GOA team also provided an important inter-annotator agree-
ment study on consistency of the expert annotation [37]. This study showed
that the annotators were generally consistent, but that they annotated to differ-
ent depths in the GO hierarchy, depending on their specific areas of expertise.
Overall, the pairwise inter-annotator precision was higher than 90%, but recall
was approximately 70%. The study also revealed differences in annotation due
to changes in the experimental setup. Curators did “annotation by paper” for
task 2, as opposed to the normal curation process of “annotation by protein,”
where many papers are used to come up with the most accurate GO code
assignment.

For task 2.1 (evidence passage retrieval), the best performing systems
returned evidence passages judged correct for approximately 300 out of 1,000
cases. Task 2.2 was much harder, because it required prediction of GO terms, in
addition to returning the evidence passage. In this case, performance dropped
significantly. The answers of the top performing system were correct for approxi-
mately 80 of 640 answers returned, out of 1,200 possible article/protein/GO
code tuples (see Table 9.7). There were a number of approaches to task 2. One
approach created a set of (weighted) terms associated with each GO code, and
then searched for regions containing these terms. Several systems that returned
passages for each GO code used this approach, achieving recall and precision of
approximately 30% for task 2.1. A second approach used machine learning
approaches to identify relevant regions of the text. This approach was made diffi-
cult by lack of real training exemplars. A third approach used a more information
extraction–based approach, which led to higher precision at the expense of low
recall. For one system, 125 correct answers were returned out of 251 in task 2.1.

BioCreAtIvE task 2 represents an ambitious end goal for text mining,
requiring the ability to map complex concepts expressed in free text to
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Protein p21waf/cip1

GO: 0008285 negative regulation of cell proliferation

PMID 10692450

Evidence Passage: The p21waf/cip1 protein is a universal
inhibitor of cyclin kinases and plays an
important role in inhibiting cell proliferation

Figure 9.5 Sample triple for BioCreAtIvE task 2.1 with evidence passage.



ontological concepts from the GO. The semantic distance between a simple
concept name in GO and its expression in text made this particularly challeng-
ing. However, this task is also difficult for humans, as the inter-annotator agree-
ment experiments [37] showed. Absence of training data was a major bottleneck
for this task. For subsequent experiments, the evidence judgments collected dur-
ing this experiment will be made available, to provide training data. It would be
feasible to collect much more training data if there were a tool that allowed cura-
tors to capture the association between evidence text and the extracted biological
facts as they curated. Development of such a tool would speed curation, as well
as provide significant quantities of annotated training data.

9.4.4 BioNLP

The JNLPBA held an evaluation focused on a shared task in bioentity recogni-
tion [21]. This work built on the GENIA-annotated corpus that is being pre-
pared at Tokyo University [37]. Training data came from GENIA version 3.02,
which contains 2,000 annotated MEDLINE abstracts (more than 18,000 sen-
tences) that were selected based on keyword hits for the MeSH terms ‘human’,
‘blood cells’, and ‘transcription factors’. GENIA has been annotated for 36
classes of biological named entities. However, for the JNLPBA shared task, only
five classes were used: ‘protein’, ‘DNA’, ‘RNA’, ‘cell line’, and ‘cell type’. To cre-
ate the test data, some 400 new abstracts were annotated for these classes. One
half of the abstracts were chosen from the same domain as the training data,
using the same set of keywords, while the other half were chosen from a more
general domain, using only the MeSH keywords ‘blood cells’ and ‘transcription
factors’. The test set was also subdivided according to year of publication. These
sets contained somewhat different proportions of the five classes of named enti-
ties. For example, the oldest set contained fewer instances of ‘protein’, and more
terms relating to ‘cell line’.
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Table 9.7
BioCreAtIvE Task 2 High Scores

BioCreAtIvE Task 2 Task Test High Scores

Task 2.1 Evidence passage 113 articles; 1,076
PMID/protein/GO
triples

303 correct out of 1,050
submitted

Task 2.2 GO code + evidence
passage

99 articles; 1,227
PMID/protein/GO
triples

78 correct out of 634
submitted



There were a total of eight participating groups. The results were measured
as F-scores. In addition to a score for the strict match, right boundary match
(allowing extra or missing words in front of the entity mention), and left bound-
ary match (extra or missing words at the end of the name) also were scored.
These scores take into account some fuzziness in whether various words should
be part of a name. Should the word human be included as part of the name in
human interleukin-2 gene expression? Should the word gene be included as part of
the name?

The best F-measure for the exact-match task was around 0.73 (see Table
9.6). This was considerably lower than the top F-measure of 0.83 reported for
BioCreAtIvE task 1a. There are obvious differences in task difficulty. For exam-
ple, BioCreAtIvE task 1a required named entity identification for only one class
(gene-or-protein), compared to the five classes for the BioNLP evaluation.
However, Dingare et al. [39] provide a detailed analysis of some of the differ-
ences in the evaluations, since their team participated in both evaluations. Their
top F-score in BioCreAtIvE was 0.83 [40]. To make the BioNLP results compa-
rable, they combined the ‘DNA’, ‘RNA’, and ‘protein’ categories, and elimi-
nated ‘cell line’ and ‘cell type’. They then evaluated their system, and achieved
an F-measure of 0.74 on the “single-class” BioNLP data, which is still signifi-
cantly lower than their BioCreAtIvE results. They attribute this to annotation
quality in the two corpora. They estimated that, of 50 system errors examined,
from 34 to 35 could be attributed to inconsistent annotation in the training or
evaluation data for BioNLP, often related to left and right modifiers.

The evaluation results may be extremely sensitive to the quality of the test
and training data. The results from [39] indicate that there may be as much as a
30% difference in error rate attributable to annotation inconsistencies. This is
also interesting with respect to interpreting BioCreAtIvE task 1b, where the data
was derived via approximate techniques from biological databases. The noise in
the data also may have placed a threshold on the performance of BioCreAtIvE
systems.

9.5 What Next?

We have presented a snapshot in time of a rapidly growing field. If we compare
the landscape for the evaluation of text mining in biology to either
bioinformatics or natural language processing, then it is clear that this is the
beginning of a decade-long process. From the BioCreAtIvE and BioNLP evalua-
tions, we can conclude that gene/protein name identification is a problem that is
almost solved. There are systems able to obtain accuracy from 80% to 90%,
depending on the specific task. The broader task of biological entity identifica-
tion needs more work, but should be tractable, provided that there are lexical
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resources comparable to those used for gene/protein name identification. The
KDD and TREC experiments indicate that selection or ranking of papers by
biologically relevant criteria is still an open research problem. It may be that
classic information retrieval is not fine-grained enough to make the distinctions
necessary to decide whether or not to curate a paper.

In addition to these specifics, we have learned a number of general lessons
from the evaluations done to date for text mining in biology.

1. Biology presents a rich set of resources that provide opportunities for
defining evaluation tasks, and for creating significant training corpora
based on real biological applications.

2. There is a trade-off in quantity versus quality of training data, and,
therefore, in the cost of the evaluation. On the one hand, the “found”
datasets often are only partially annotated, or are noisily annotated.
The BioCreAtIvE datasets for tasks 1b and 2 illustrate this well.
Despite significant effort spent in cleaning the data (particularly for
the development test and test sets for task 1b), the training datasets
were noisy (task 1b) or minimal (task 2). On the other hand, specially
created datasets also may be limited in quantity and quality, because it
is expensive to create high quality, consistently annotated datasets for a
natural language processing task. Consistency checks on the BioNLP
data and on BioCreAtIvE task 1a data revealed a number of inconsis-
tent annotations with respect to boundaries of gene or protein names.
In addition, the underlying definitions of biological entities (e.g., gene,
protein, RNA, and so forth) are often quite fuzzy, even to biologists.

3. System performance may be limited by quantity of training data
(BioCreAtIvE task 2), but also by quality, as was the case for the
mouse data in BioCreAtIvE task 1b.

These lessons can inform future evaluations, which should continue to
probe biologically motivated applications. This is still largely unexplored. There
are obvious application classes that could form the basis for future evaluations,
including:

• Question answering on MEDLINE;

• Summarization (i.e., some users of biological databases would prefer
natural language summaries rather than tables);

• Interactive curation tools that support the curator, and eventually learn
from the curator;

• Functional annotation tools, combining linguistic and bioinformatics
data sources;
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• High-throughput data interpretation tools that extract information
about genes and pathways from the literature and biological databases;

• A cross reference tool that checks articles for submission (e.g., cross
checking gene names, Genbank identifier, nomenclature, and model
organism gene identifiers).

There are two important additional dimensions that need to be addressed
in future evaluations. The first is for user interfaces that support end-to-end pro-
cessing. The experience in the natural language community has been that
stand-alone named entity identification tools are not particularly useful. If the
developers can make it easy to embed these tools in a larger application, and
make it easy for the user to tailor the application to their specific needs, then
there may be a market for such tools. However, for applications that involve user
interaction, assessment becomes much harder. Such evaluations cannot be run
“off-line,” and require having subjects directly involved. This requires the collec-
tion of larger quantities of data, to better control subject variability. It is possible
that challenge evaluations are not the right venue for evaluation of such inte-
grated tool sets and end-to-end systems. It may be that the marketplace
“evaluates” these by buying or not buying them.

The second related area that needs to be addressed is the rapid tailoring to
new applications. To date, most commercial systems require some tinkering or
consulting with a developer to get optimal performance. Systems for text mining
in biology will present similar challenges, and failure to address this issue will
prevent tools from being commercially successful. No two applications are ever
quite the same, and the data also changes over time. Easy adaptability is critical
to the success of text mining tools in any domain.

The following resources are necessary to continue progress in these areas:

• Funding to run the assessments.

• Infrastructure (e.g., test sets, evaluation protocols, lexical resources),
which would be contributed by the biology community, who would see
the value in having a large community of researchers work on their
problems.

• Evaluation Services. If utilities provided by the research community can
be made readily available, these can be used to provide ongoing evalua-
tion services, which can act as a beneficial source of feedback. In addi-
tion, this would provide the opportunity for tool vendors to gain
visibility and market share.

• An active research community to advocate for, and participate in, such
assessments.
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One critical question is the extent to which the commercial market will do
this on its own. In a mature market, consumers can evaluate products and make
their own cost/benefit trade-offs, although there is still a strong role for inde-
pendent “consumer report” evaluations. In an emerging technology area, if past
experience is any guide, the commercial tools developers will not allocate scarce
resources to evaluation. However, based on experience with TREC, commercial
companies may be willing to participate if they can learn about the state of the
art (and the state of the competition). This underscores the role that evaluation
plays in the creation of de facto standards, the creation of a knowledgeable set of
consumers and systems integrators, and, eventually, the creation of a market for
text mining tools, particularly as they are embedded in biologically useful
end-to-end applications.
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10
Integrating Text Mining with Data Mining
See-Kiong Ng

10.1 Introduction: Biological Sequence Analysis and Text Mining

Today’s biologists and bioinformaticians must operate effectively in a dual envi-
ronment that is composed of, on the one hand, a data world, which encom-
passes high-throughput biological data, and, on the other hand, a knowledge
world, which contains a tremendous amount of domain information encased in
free text. Data mining provides a computational bridge, leading from the
ever-expanding biological data world into the biological knowledge world, while
text mining provides the computational means to navigate within the vast bio-
logical knowledge world currently encapsulated by the ever-growing unstruc-
tured scientific literature. Integrating these two structurally disparate worlds for
biological data analysis could be advantageous. The analysis of datasets pro-
duced by large-scale biological assays would be greatly facilitated if the data min-
ing system were cognizant of the relevant knowledge encoded in the biological
literature. However, there is an apparent digital divide between data mining and
text mining. The data mining methods that were developed for mining nontext
biological data typically expect the source data to be highly structured, while the
text mining methods have focused largely on dealing with the unstructuredness
of the texts in the scientific literature, as evident from the discussions in previous
chapters. In this chapter, we describe various attempts to bridge the gap by
employing text as an integrated knowledge source to help guide the mining of
nontext biological data. We focus on the analysis of two representative classes of
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nontext biological data, namely biological sequences and genetic expression
profiles.

The genome sequencing technologies developed during the genome era
have allowed us to read our “book of life,” or genome, letter by letter. The
genome of an organism refers to the entire complement of DNA in any of its
cells. The DNA contains the genetic recipes for making proteins that are respon-
sible for carrying out most biological functions in the cells.

A common set of DNA molecules is found in the brain or nucleus of each
of the cells in our body. Together, these DNA molecules encode the genetic
instructions needed by the cell to carry out its biological functions. These
instructions are encoded in a deceptively simple genetic alphabet that contains
only four biological letters (nucleotides): A (adenine), C (cytosine), G (guanine),
and T (thymine). For computational purposes, we normally would be dealing
with the DNA as a long string made up of the four letters (A, G, C, and T). We
often refer to the segment on the DNA that encodes the recipes for a protein,
namely a gene. Proteins are large, complex biomolecules composed of long
chains of smaller subunits, called amino acids, from a fixed alphabet of 20 differ-
ent kinds of amino acids. As such, proteins also can be represented by strings of
biological letters for computational purposes, just like the DNA.1 Protein
sequences are systematically translated from the genetic sequences in the DNA.
A triplet of DNA letters is used to code for each amino acid. As such, biologists
often use the terms gene and protein interchangeably. Figure 10.1 gives an exam-
ple of this coding.

In the cell, the genetic recipes encoded in the DNA are not directly trans-
lated into their respective proteins. Instead, a two-step transcription-translation
procedure, also known as the “Central Dogma of Molecular Biology,” applies
(see Figure 10.2). The gene, containing the recipe for making a protein, is first
transcribed from the DNA into intermediary molecules called mRNA (messen-
ger ribonucleic acid). The mRNA molecules are biochemically similar to the
DNA. Like the DNA, they also are composed of four different nucleotides (A,
C, G, and U), in which the nucleotide U (uracil) in RNA replaces the T (thy-
mine) in the DNA. The primary role of the mRNAs is to facilitate the transfer
of genetic information from the nucleus, where the DNA resides, into the cyto-
plasm of the cell, where the protein molecules are manufactured. This interme-
diary transcriptional step also provides for the cell to regulate the expression of
different genes as it desires. More copies of mRNA are made from the DNA,
when a cell needs a higher concentration of a particular protein for its function.
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1. Unlike in DNA, the structure and shape of protein molecules (i.e., how the long chain of
amino acids folds in three-dimensional space) play an important role in how they function
biologically. It is thus important to note that just knowing a protein’s linear amino acid
sequence is often not enough to understand how the protein works.



Through this transcriptional mechanism, the cells in our body are able to switch
on different subsets of genes, at different levels and in different cells. While each
of the cells contains the same copy of DNA, it can selectively generate different
kinds of proteins needed to serve its particular biological function. In the
postgenome era (i.e., after many genomes have been completely sequenced,
including the human genome), DNA microarray technology allows scientists to
simultaneously measure the expression levels of different genes in the cells.
These genetic snapshots of cells in different conditions and localizations can
provide great insights about the response of various genes to different needs in
different situations. We will describe how text mining can be employed to help
in the data mining of gene expression profiles in Section 10.2. In this section, we
focus on the data mining of biological sequences.

Genetic sequences were the first major class of biological data in the
genome era for which computer science—or rather, bioinformatics—had played
a major role in their analyses. The sequence information generated by the vari-
ous large-scale genome sequencing projects offered great opportunities for bio-
logical investigations at the molecular level. The previously unreadable book of
life can now be scanned for new genes and proteins. The trophy challenge is
functional genomics, which involves deciphering the biological function of the
new genes or proteins identified.

One sensible way to hypothesize the biological function of a new gene is to
find another gene, possibly from another organism, whose function is already
known, and to which the new gene has high sequence similarity. This is called
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the sequence homology approach. Another way for predicting the biological
functions of new genes and proteins is to apply supervised machine learning
approaches, to learn about the characteristic features in the biological sequences
in each functional class, which can be used to infer the functional classes for
unknown genes and proteins. In Section 10.1.1, we show how text mining can
be incorporated into sequence homology searches to yield improved accuracies.
In Section 10.1.2, we show how text mining can be incorporated with machine
learning approaches to achieve better performance in sequence-based functional
classification.

10.1.1 Improving Homology Searches

Two sequences are homologous if they share a common evolutionary ancestry.
Given that nature is a “tinkerer” and not an “inventor,” as aptly put by Jacob
[2], new biological sequences are often adapted from preexisting sequences,
rather than newly invented. Homology searches can therefore be implemented
by looking for significant similarity between the sequences of genes or proteins,
to infer their biological relatedness,2 which in turn reduces into the classic
sequence alignment problem in computer science.

In practice, sequence homology searches are possible for two reasons.

1. The global research community has been sharing its sequence data by
making them available online via GenBank [3] and other databases.

2. Sequence alignment programs, such as FASTA [4], BLAST [5], and
Position Specific Iterated BLAST (PSI-BLAST) [6], have been
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2. It is important to note that the assumption that “sequence similarity implies functional
similarity” does not always hold, and that not all homologues exhibit sequence similarity.



developed specifically for detecting biological sequence similarity,
allowing any newly discovered DNA or protein sequence to be effi-
ciently compared with all known sequences.

Homology searches have been used for function prediction [7, 8], genome
annotation [9, 10], and even structure prediction [11, 12]. In fact, sequence
homology is perhaps the most widely used bioinformatics tool. For example, the
NCBI BLAST server for homology search is estimated to be queried more than
100,000 times per day, and this rate is growing from 10% to 15% per month
[12].

In integrating text mining with data mining, two groups [13, 14] have
recently attempted to improve homology search, by applying text analysis to
database annotations and MEDLINE references, alongside PSI-BLAST.
PSI-BLAST has been recognized as one of the most powerful tools for detecting
remote evolutionary relationships by sequence considerations only, while the
original BLAST program could find only local alignments without gaps. As the
name suggests, PSI-BLAST is an iterative version of BLAST. Through itera-
tions, PSI-BLAST increases the sensitivity of the homology searches, so that dis-
tant similarity to a query sequence can be detected. Figure 10.3 shows the
flowchart for PSI-BLAST. In the first iteration, a BLAST search obtains an ini-
tial family of related sequences that are significantly similar to the query
sequence. A statistical model is then constructed to represent this family of
sequences, by processing the multiple alignment from the BLAST output data
into a position-specific score matrix (PSSM). In subsequent iterations, such
probabilistic profiles are used to search the sequence database, to add new
homologues for output. In this way, more diverse sequences can be incorporated
into the query, improving the sensitivity of the homology search with respect to
the remote homologues. However, the iterative procedure in PSI-BLAST also
may lead to the “profile drift” effect. Since PSI-BLAST allows more diverse
sequences to be included as seed sequences for the homology search in its itera-
tions, the possibility of some nonhomologous sequences being introduced into
the query set also increases over time. These errors are magnified as the iteration
continues, and they dilute the signal from the original query sequence.

MacCallum et al. [15] were one of the first groups to incorporate text min-
ing with PSI-BLAST for improved sequence homology searches. Their algo-
rithm, known as Structure Assignment with Text Description (SAWTED),
tapped into the textual information in the expert annotations available in the
curated protein database SWISS-PROT [16]. This allowed a search for likely
remote homologues, while filtering away potentially false positives that have no
such textual support. In SAWTED, the literature of a protein sequence is
defined as the concatenation of words found in the corresponding
SWISS-PROT database entry for the protein (or a close homologue) under the
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database’s annotation fields, such as the Reference Title (RT), Comments (CC),
and Keywords (KW). The basic vector-cosine model from text retrieval is then
used to compute the literature similarity (cAB) between two proteins PA and PB

with database textual annotations A and B:

c AB

B

A B
= =cos θ

ν ν

ν ν

Α

(10.1)

Using the literature similarity scores as a postfilter for PSI-BLAST,
MacCallum et al. found fewer errors in their benchmark homology searches.
Encouraged by this improvement, they also attempted to integrate text mining
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depicted in dashed line was proposed by Chang et al. [14].



within PSI-BLAST’s search process, instead of using text mining merely as a
postfilter, by combining the literature scores cAB with the E-values used by
PSI-BLAST to rank the homologous sequences. Unfortunately, in their case, the
combined score did not perform as well as the simple use of text scores for the
PSI-BLAST hits.

In more recent work, Chang et al. [14] reexamined the problem of inte-
grating text mining within PSI-BLAST searches. Instead of combining the two
mining approaches at the confidence scoring level, their modification to
PSI-BLAST involved an additional step of throwing out sequences that have
poor literature similarity to the query sequence in the iterative process, as shown
by the dotted lines in Figure 10.3. They also employed a literature richer than
SAWTED for each protein sequence. In addition to using the descriptions,
comments, and keywords found in the respective SWISS-PROT database
records, they downloaded the corresponding literature citations with the MeSH
headings, subheadings, and abstracts from MEDLINE, to form a more com-
plete concatenated literature corpus for each protein. At each iteration of their
modified PSI-BLAST search, the significant hits are ranked according to a litera-
ture similarity score that is similar to cAB above. The lowest scoring fractions are
discarded, excluding them from the query profile. Potential false positives are
eliminated from the profile in this way, and the resulting effect of profile drift is
reduced.

Chang et al. evaluated their modified algorithm, by comparing to standard
PSI-BLAST in searching for homologous proteins. They reported that the per-
formance of their modified algorithm achieved 32% recall with 95% precision,
while the standard PSI-BLAST achieved 33% recall with 84% precision. Their
results indicate that incorporating the literature similarity requirement into the
homology search process improves the precision of the PSI-BLAST algorithm,
without compromising the desired sensitive characteristic of the PSI-BLAST
algorithm.

10.1.2 Improving Sequence-Based Functional Classification

In sequence homology searches, the problem of determining the biological func-
tions of a new gene or protein is formulated as a sequence matching problem.
Functional information from well-studied genes or proteins is transferred to
uncharacterized gene products, based on sequence similarity. In this section, we
treat the problem of determining the biological function of new genes as a classi-
fication problem in machine learning. We can apply supervised machine learn-
ing methods to predict the biological functions of new genes and proteins.

We focus here on the sequence-based classification of subcellular locations
of proteins. In order to carry out its physiological role, a protein usually must be
proximal to other biological components involved in that process. A protein’s
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localization in the cell is tightly bound to its biological function. Knowing the
subcellular location where a protein resides can give important insights as to its
possible function, especially in the case where functional assignment by
sequence homology has failed because there was no clear homology to existing
proteins of known function.

Biologists have long observed that there is a significant correlation between
the amino acid composition of a protein and its subcellular localization [17, 18].
The subcellular localization of a protein can be predicted with reasonable accu-
racy from its amino acid composition [19–21].3 Stapley et al. [22] attempted to
further improve on this problem by integrating text mining with data mining.
They experimented with the prediction of the subcellular localization for yeast
proteins, based on both sequence and literature information about the proteins.

• Sequence information. The amino acid composition for a protein is
computed as the fractional composition of the 20 amino acids in the
protein sequence.

• Literature information. For each yeast protein, MEDLINE is scanned
for literature abstracts that mention the protein name or a synonym.
After applying the necessary stop word removal, stemming, and the
removal of stemmed terms that occurred in few documents (less than 5)
to clean up the corpus, a word vector, based on a variant of inverse doc-
ument frequency (IDF), is created for each protein.

A supervised machine learning method—support vector machines (SVM)
[23]—is then trained, using the word vector, together with the amino acid com-
positions for each protein in the training set. The resulting SVM was found to
give predictions on subcellular localizations of proteins that are more accurate
than by using SVMs trained with either the amino acid composition informa-
tion or the text information alone [see Figure 10.4(a)]. This improvement was
noted for 5 out of the 11 subcellular localization classes studied by Stapley et al.
Interestingly, for another 3 of the 11 classes studied, combining text with
sequence data had showed no improvement in subcellular localization classifica-
tion, while for the remaining 3 classes, the joint approach resulted in classifica-
tion results that were actually worse. These results suggest that a better way to
combine text data with sequence data for supervised machine learning must be
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3. It is also possible to predict protein subcellular location based on the existence of sorting sig-
nals in N-terminal sequences [20], such as signal peptides, mitochondrial targeting peptides,
and chloroplast transit peptides. In fact, Nakai et al. [21] constructed an expert system for
subcellular localization, using both sorting signals and amino acid compositions.



employed, in order to fully exploit the benefit of including text as the additional
knowledge source for sequence data mining.

In building an SVM, input sequences are implicitly mapped into a higher
n-dimensional vector space, where the coordinates are given by feature values,
using a kernel function K(xi, xj) (xi)

T (xj), where is a function that maps
the input vectors xi into the higher dimensional feature space. The SVM then
produces an optimal linear decision boundary in the high-dimensional feature
space, which discriminates between the positive and negative classes. This kernel
model in SVM provides an excellent way for integrating data mining and text
mining. In their recent work, Eskin and Agichtein [24] proposed an approach in
which the text and sequence data are intimately integrated at the kernel level of
SVMs.

Eskin and Agichtein devised a text-only SVM classifier that used a
text-based kernel Ktext (x, y), and a sequence-only SVM classifier that used a
sequence-based kernel Kseq(x, y), as follows.
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Figure 10.4 Improving sequence-based subcellular localization of proteins with text mining.
(a) Classification results in terms of F1 scores by Stapley et al. [22]. (b) Classifi-
cation results in terms of ROC50 scores by Eskin and Agichtein [24].



• Text Kernel. To represent the literature associated with a protein, they
used a bag-of-words model, where the text annotation x obtained from
the corresponding SWISS-PROT entry is mapped to a feature vector

text(x), containing the frequency of each word. For two text annota-
tions x and y, the text kernel is denoted as Ktext(x, y) = text(x) · text(y).

• Sequence Kernel. Instead of using amino acid composition, as in the
work by Stapley et al., Eskin and Agichtein represented each of their
input protein sequences as a collection of substrings of a fixed length k
(i.e., k-mers), obtained by sliding a window of length k across the
length of the input sequence. The sequence feature vector seq(x) is of a
high dimension of 20k and contains the frequency of each possible
k-mer that occurs in the input protein sequence x. For two input pro-
tein sequences x and y, the sequence kernel is denoted as Kseq(x, y) =

seq(x) · seq(y).

To combine text and sequences in the analysis, Eskin and Agichtein then
simply defined a combined kernel as follows:

( ) ( ) ( ) ( ) ( )[ ]K x y K x y K x y K x y K x ycombined text seq text seq, , , , ,= + + +
2

(10.2)

An SVM then can be trained over the combined feature space using this
combined kernel, allowing the resulting classifier to effectively learn from both
sequence and text, and the interactions between them.

To verify whether such an integration of text mining with data mining is
indeed advantageous for sequence-based functional classification of proteins,
Eskin and Agichtein ran three experiments, by leaving out 20% of the original
annotated sequence data as a test set, and using the remaining data as a training
set. They trained three models on the training set: a text-only classifier, a
sequence-only classifier, and a joint sequence-text classifier, using Ktext (x, y),
Kseq(x, y), and Kcombined (x, y), respectively. Their results, as depicted in Figure
10.4(b), showed that their joint classifier was able to achieve better results in 7
out of the 10 subcellular localization classes that they have investigated, indicat-
ing that better results can indeed be obtained by more careful and deeper inte-
gration of text mining with the specific data mining processes.

10.2 Gene Expression Analysis and Text Mining

Another source of biological data that has recently become widely available, and
which provides genome-scale answers to functional genomics questions, is
expression data. As mentioned earlier, gene expression analysis measures the
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relative levels of expression or production of mRNA in the cell. Since different
genes may be active in different cell types of an organism at different times and
under different conditions, the level of mRNA molecules for the various genes
in a cell can provide valuable information about the biochemical activity in the
cell.

Gene expression data are typically collected using microarrays [25]. A
microarray is a tiny chip made of a solid support, such as glass or silicon, onto
which DNA molecules are immobilized at fixed spots. With the help of robotic
technologies, tens of thousands of spots, each containing a large number of
identical DNA molecules, can be placed on a small array (e.g., less than 1 in2).
When the mRNA from a sample cell is passed over the chip, it will bind to the
appropriate spots, due to the complementary base pairing. This makes it possi-
ble to perform a systematic whole-genome scan on a single chip, where each of
these spots would contain a unique DNA fragment that identifies a gene in the
genome. In this way, DNA microarray technology allows us to take high resolu-
tion snapshots of the genetic expression of different genes in our cells, in differ-
ent conditions and localization. Such concurrent monitoring of gene expression
helps reveal how various genes respond to different needs.

Table 10.1 shows a fragment of the data table of gene expression measure-
ments from a microarray experimental study to identify the regulatory genes in a
yeast cell cycle [26]. Here, the expression levels of the genes in yeast (approxi-
mately 6,000) were measured using microarrays at 21 successive time points, by
taking samples at seven-minute intervals from a population of synchronized
yeast cells. The resulting data is a multivariate matrix, with 6,000 rows (entries)
and 21 columns (variables). The expression profile of a gene refers to the set
(row) of expression measurements for that gene in the microarray study.

To detect groups of genes that are potentially involved in a common bio-
logical process, clustering algorithms can be employed to group genes with simi-
lar expression profiles. Most array clustering algorithms either use the statistical
correlation coefficient (ranging from −1 to +1), or the Euclidean distance (the
square root of the sum of the squared differences in corresponding features

Integrating Text Mining with Data Mining 257

Table 10.1
Example Gene Expression Data

Gene 0 min 7 min 14 min 21 min 28 min
…

YER150W 0.41 1.47 1.80 0.81 0.03 …

YGR146C 0.78 0.37 0.09 0.07 0.03 …

YDR461W 2.36 2.35 2.30 2.11 1.75 …

: : : : : :



values), as a distance metric to compute the similarity between two profiles. Tra-
ditional clustering methods based on hierarchical clustering [27] or self-organiz-
ing maps [28], as well as more advanced stochastic clustering techniques [29],
have been used to derive putative functional clusters of genes from expression
profile data [30]. By applying the guilt-by-association principle, expression pro-
file clustering also can be used for inferring the biological functions of new
genes. If an uncharacterized gene is clustered with a group of genes known to
participate in a specific biological process (e.g. cell cycle regulation), then it is
assumed that the uncharacterized gene also participates in this process.

However, genes sharing similar expression profiles do not always share a
common function. For example, in the work reported by Spellman et al. [27],
clustering by expression profiles grouped the genes CHS2, BUD8, IQG1, ACE2,
ALK1, and HST3 into a single CLB2 cluster, even though they are involved in
distinct cellular functions.4 The reverse is also true: not all the genes in the same
function group necessarily exhibit simultaneous expression. For example, the
members of a signaling pathway often play antagonistic roles, resulting in
anticorrelated expression levels in microarray experiments. The gene expression
clustering approach should not be used as a stand-alone analysis tool for func-
tional genomics. In this section, we show how text mining can help address this
need, by being integrated with gene expression data mining methods to provide
the necessary biological knowledge in intelligent expression profile analyses.

10.2.1 Assigning Biological Explanations to Gene Expression Clusters

With microarray technologies, scientists can now measure the expression of
thousands of genes simultaneously. With data mining algorithms, they can
organize the massive data generated by clustering subsets of genes whose expres-
sion changes with correlated intensities. However, clustering analysis does not
reveal the underlying biological significance of the gene groupings. In fact, as we
have mentioned earlier, it does not always lead to biologically meaningful gene
clusters. Interpretation of the biological basis for the observed genetic expression
patterns is therefore left to the biologists, who must try to provide reasonable
biological explanations for the statistically-derived gene expression clusters,
which is best accomplished by manually inspecting the literature for relevant
information. Given the tremendous amount of literature currently available, this
is equivalent to “attempting to drink from a fire hose” [31].

In this aspect, text mining can be integrated with gene expression profile
mining, to associate the resulting gene clusters with published literature. A good
illustrative example is the Gene Expression Information System for Human
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4. CHS2, BUD8, and IDG1 are involved in cell wall maintenance, while ACE2, ALK1, and
HST3 are involved in nuclear events, a very disparate cellular process.



Analysis (GEISHA), developed by Blaschke et al. [32], shown in Figure 10.5.
For each cluster of similarly expressed genes, MEDLINE abstracts that men-
tioned at least one gene in the cluster are collected to generate an associated liter-
ature cluster. The words in the various literature clusters are then extracted, with
the necessary text analysis steps taken to account for morphological variations
and composite word terms. The frequency of the terms in the MEDLINE
abstracts associated to each cluster is then compared to the frequency of these
terms in the other clusters. A term is considered significant to a particular gene
cluster if it appears more frequently in the associated literature cluster than in
any other clusters, based on its Z-score. In this way, the system can automati-
cally assign a set of significant terms to each gene expression cluster, which is
extracted from its underlying literature corpus as the biological explanation of
the gene cluster. A similar procedure also is applied in GEISHA to extract com-
plete sentences specific to the various gene clusters, providing more readable
biological explanations for the clusters. The authors have extensively compared
the results of the GEISHA system to the annotations provided in biological
databases, and human experts have verified that this approach was able to extract
relevant information about the gene clusters in many cases.

This use of literature annotation to address the analytical challenge of
interpreting gene expression clusters has been adopted in many published sys-
tems [33–39]. Like GEISHA, many of these systems employ literature to
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examine sets of genes only after they already have been grouped by some unsu-
pervised clustering algorithms. In other words, the use of literature is incorpo-
rated as a retrospective procedure in the data mining of the gene expression
profiles. While this approach can help biologists make sense of some of the
expression-based gene clusters, it does not improve the biological coherence of
the gene clusters originally generated by the expression clustering algorithms. To
directly influence the quality of the gene clusters produced from gene expression
data, a data mining algorithm must have the guidance from a direct access to the
external background knowledge about the genes.

10.2.2 Enhancing Expression Data Analysis with Literature Knowledge

Several researchers have recently undertaken the challenge of incorporating the
literature information as a knowledge base into data mining algorithms to intel-
ligently interpret gene expression data. Raychaudhuri et al. [40] devised a novel
clustering algorithm, which employs a literature-based functional coherence
metric as the objective function to search for patterns in gene expression data
that correlate with meaningful biology. Their literature-based metric is called
the neighbor divergence per gene (NDPG) [38, 41]. A semantic network of arti-
cles is constructed, based on document distance metrics. An article’s relevance to
a given gene group is then measured by counting the number of semantic neigh-
bors that referred to genes in the group. If the group represents a coherent bio-
logical function, then articles that discuss that function will have many referring
neighbors, and therefore score highly under this scheme. Each gene’s relative
functional relevance to a group is scored by comparing its article scores to an
expected random distribution of article scores. The NDPG measure of a gene
group is then computed as the mean divergence of all of the genes in the group,
which represents the likelihood that the genes share a biological function.
NDPG was reported to be 95% sensitive and 100% specific at identifying func-
tional yeast gene groups. Raychaudhuri et al. [42] also showed that, for hierar-
chical clustering, NDPG can be used to determine effectively which level of the
tree to cut to form biologically relevant cluster boundaries. However, like the
GEISHA system, this approach still does not fully exploit the knowledge in the
associated literature to directly guide the clustering process, since the gene clus-
tering is still done independent of the literature information. As we have seen in
the case of PSI-BLAST in Section 10.1.1, where text mining was employed to
improve homology searches, a clustering algorithm that is iterative in nature
would be quite convenient for integrating text mining into data mining. As
such, Raychaudhuri devised a new clustering algorithm called optimizing sepa-
rating projections (OSP), which iteratively searches for gene expression rules (or
criteria) that optimally separate functionally related groups of genes from the
rest of the genes, using the NDPG score as the objective function in the iterative
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mining process. When this integrative clustering approach was applied to a
well-known published yeast gene expression dataset [26], it was found that OSP
was able to generate—without any human input—biologically meaningful gene
clusters that were comparable to gene clusters carefully screened by human
experts. The deep integration of literature information in the data mining
process is indeed a promising approach for enhancing gene expression profile
clustering.

In more recent work, Glenisson et al. [43] showed that it is possible to fuse
at the data level the two disparate worlds of gene expression and biological litera-
ture, so that standard clustering algorithms, such as hierarchical clustering meth-
ods, can be applied. In their approach, Glenisson et al. transformed the textual
domain knowledge from biological literature into a suitable numerical format
that can be mathematically combined with gene expression data, for intelligent
gene clustering (see Figure 10.6). They used the bag-of-words representation of
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literature that has been proven to be highly effective for many biomedical appli-
cations. For example, it was used by Eskin et al. to improve sequence-based
functional classification by SVM, as described in Section 10.1.2. Here, all the
text documents linked to each gene (e.g., as query results from PubMed) are
summarized into a document index. This index is based on inverse document
frequencies in a vast term space, consisting of a tailored vocabulary of 15,057
(possibly multiword) terms, based on the Gene Ontology [44]. Using this vector
space model [45, 46], the associated literature corpus is effectively reduced into a
matrix that is structurally similar to the expression data matrix.

Next, the corresponding distance matrices Ddata and Dtext for the genes in
the expression and literature space are computed from the data matrices (see Fig-
ure 10.6). This facilitates a straightforward way to merge the information—the
distance information for each pair of genes can be added together in a combined
matrix.

( )D D Dcombined data text= − +1 λ λ (10.3)

However, the use of the parameter to account for the relative importance
of the two heterogeneous data sources does not adequately address the scaling
issue between the heterogeneous data sources. To address the issue at a more
fundamental level, the authors proposed using Fisher’s omnibus to statistically
combine the data and literature evidence.

First, the entries in the distance matrices are transformed to their respec-
tive p-values, by computing one-sided cumulative distribution function values
for each distance value in Ddata and Dtext. This frees the subsequent steps from the
bias due to the underlying distributions from which the data was generated. The
p-values derived for each expression-based and text-based distance are then
mathematically combined with Fisher’s omnibus method, using the following:

S p pdata text= − −2 2log log (10.4)

The combined statistic S follows a χ2-distribution. For effective joint anal-
ysis of gene expression data with literature information, standard clustering then
can be applied on the combined distance matrix, using the resulting p-values.
Glenisson et al. applied their combined mining method on published yeast
expression data [26, 46], and verified that such augmentation of expression data
with literature information did positively affect the biological significance of the
overall clustering results. In addition, the authors found that their combined
approach was able to reveal biologically meaningful clusters not identified when
using microarray data alone.
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10.3 Conclusion

Technological advances during the past decades have drastically changed
genomic research. At this opportune time, computing in the form of
bioinformatics has accelerated life sciences research, by enabling unprecedented
throughput in organized data generation and analysis. The next rate-limiting
step is in converting this voluminous data and information, which is stored in
both structured and unstructured on-line databases, such as GenBank,
SWISS-PROT, and MEDLINE, into useful knowledge that can be used for
understanding the underlying mechanisms of diseases, as well as discovering
drugs to treat them. The previous chapters in this book focus on text processing
methods for mining the wealth of knowledge accumulated by decades of biolog-
ical research, which is currently embedded in the literature databases. In this
chapter, we discuss how literature can be properly incorporated as a knowledge
source in the analysis of biological data. Rather than using or linking the data
sources independently, the great challenge here lies in facilitating a deep integra-
tion of the textual knowledge into the data mining algorithms. By leveraging the
valuable information from the literature in the data mining process, more
biologically significant knowledge can be intelligently mined from the biological
data.

Indeed, as the dual fields of biological text mining and data mining con-
tinue to progress, we can expect more cross-marriages between the two in the
future. For example, a novel literature database mining approach, which handles
text and chemistry in an integrated fashion, was recently proposed to address the
problem of knowledge-based chemical structural similarity searches [48]. Tex-
tual medical records also may be mined, together with patients’ genomic infor-
mation, for pharmacogenomic applications, as suggested by Chang et al. [14].
Through the integration of text mining with data mining, the opportunity for
text analysis to benefit biology is particularly compelling, since it facilitates a
much more involved role for text mining in the various postgenome processes of
biological knowledge discovery.
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