
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2336285

RE2C -- A More Versatile Scanner Generator

Article in ACM Letters on Programming Languages and Systems · May 1994

DOI: 10.1145/176454.176487 · Source: CiteSeer

CITATIONS

15
READS

181

2 authors:

Some of the authors of this publication are also working on these related projects:

Electronic Records Design View project

Large-scale information technology applications View project

Peter Bumbulis

23 PUBLICATIONS 171 CITATIONS

SEE PROFILE

Donald D Cowan

University of Waterloo

278 PUBLICATIONS 2,285 CITATIONS

SEE PROFILE

All content following this page was uploaded by Donald D Cowan on 08 August 2013.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/2336285_RE2C_--_A_More_Versatile_Scanner_Generator?enrichId=rgreq-6b48a1c325a074775588f7641961e300-XXX&enrichSource=Y292ZXJQYWdlOzIzMzYyODU7QVM6OTc3MDUxMjQ2OTYwODJAMTQwMDMwNjEyNTg3Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2336285_RE2C_--_A_More_Versatile_Scanner_Generator?enrichId=rgreq-6b48a1c325a074775588f7641961e300-XXX&enrichSource=Y292ZXJQYWdlOzIzMzYyODU7QVM6OTc3MDUxMjQ2OTYwODJAMTQwMDMwNjEyNTg3Ng%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Electronic-Records-Design?enrichId=rgreq-6b48a1c325a074775588f7641961e300-XXX&enrichSource=Y292ZXJQYWdlOzIzMzYyODU7QVM6OTc3MDUxMjQ2OTYwODJAMTQwMDMwNjEyNTg3Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Large-scale-information-technology-applications?enrichId=rgreq-6b48a1c325a074775588f7641961e300-XXX&enrichSource=Y292ZXJQYWdlOzIzMzYyODU7QVM6OTc3MDUxMjQ2OTYwODJAMTQwMDMwNjEyNTg3Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-6b48a1c325a074775588f7641961e300-XXX&enrichSource=Y292ZXJQYWdlOzIzMzYyODU7QVM6OTc3MDUxMjQ2OTYwODJAMTQwMDMwNjEyNTg3Ng%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Peter_Bumbulis2?enrichId=rgreq-6b48a1c325a074775588f7641961e300-XXX&enrichSource=Y292ZXJQYWdlOzIzMzYyODU7QVM6OTc3MDUxMjQ2OTYwODJAMTQwMDMwNjEyNTg3Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Peter_Bumbulis2?enrichId=rgreq-6b48a1c325a074775588f7641961e300-XXX&enrichSource=Y292ZXJQYWdlOzIzMzYyODU7QVM6OTc3MDUxMjQ2OTYwODJAMTQwMDMwNjEyNTg3Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Peter_Bumbulis2?enrichId=rgreq-6b48a1c325a074775588f7641961e300-XXX&enrichSource=Y292ZXJQYWdlOzIzMzYyODU7QVM6OTc3MDUxMjQ2OTYwODJAMTQwMDMwNjEyNTg3Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Donald_Cowan3?enrichId=rgreq-6b48a1c325a074775588f7641961e300-XXX&enrichSource=Y292ZXJQYWdlOzIzMzYyODU7QVM6OTc3MDUxMjQ2OTYwODJAMTQwMDMwNjEyNTg3Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Donald_Cowan3?enrichId=rgreq-6b48a1c325a074775588f7641961e300-XXX&enrichSource=Y292ZXJQYWdlOzIzMzYyODU7QVM6OTc3MDUxMjQ2OTYwODJAMTQwMDMwNjEyNTg3Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Waterloo?enrichId=rgreq-6b48a1c325a074775588f7641961e300-XXX&enrichSource=Y292ZXJQYWdlOzIzMzYyODU7QVM6OTc3MDUxMjQ2OTYwODJAMTQwMDMwNjEyNTg3Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Donald_Cowan3?enrichId=rgreq-6b48a1c325a074775588f7641961e300-XXX&enrichSource=Y292ZXJQYWdlOzIzMzYyODU7QVM6OTc3MDUxMjQ2OTYwODJAMTQwMDMwNjEyNTg3Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Donald_Cowan3?enrichId=rgreq-6b48a1c325a074775588f7641961e300-XXX&enrichSource=Y292ZXJQYWdlOzIzMzYyODU7QVM6OTc3MDUxMjQ2OTYwODJAMTQwMDMwNjEyNTg3Ng%3D%3D&el=1_x_10&_esc=publicationCoverPdf

RE2C: A More Versatile Scanner Generator

PETER BUMBULlS and DONALD D. COWAN

University of Waterloo

It is usually claimed that lexical analysis routines are still coded by hand, despite the widespread
availability of scanner generators, for efficiency reasons. While efficiency is a consideration, there
exist freely available scanner generators such as GLA [Gray 19881 that can generate scanners
that are faster than most hand-coded ones. However, most generated scanners are tailored for a
particular environment, and retargeting these scanners to other environments, if possible, is
usually complex enough to make a hand-coded scanner more appealing, In this paper we describe

RE2C, a scanner generator that not only generates scanners that are faster (and usually smaller)
than those produced by any other scanner generator known to the authors, including GLA, but

that also adapt easily to any environment.

Categories and Subject Descriptors: D.3.2 [Programming Languages]: Language Classitlca-

tions—specialized application languages; D.3.4 [Programming Languages]: Processors

General Terms: Algorithms, Languages, Performance

Additional Key Words and Phrases: Lexical analysis, scanner generator

1. INTRODUCTION

Lexical analysis routines are still often coded by hand despite the widespread

availability of scanner generators. For example, while most UNIXTM systems

have a scanner generator installed (typically LEX [Lesk 1975] or flex [Paxson

1988]), few UNIX applications use a mechanically generated scanner. One

commonly cited reason for not using LEX-generated scanners is performance:

They can be 10 times slower than equivalent hand-coded scanners [Jacobson

1987]. As a result, there has been considerable research into improving the

performance of mechanically generated scanners [Paxson 1988; Gray 1988;

Grosch 1989]. GLA [Gray 1988], one such scanner generator, can produce

scanners that are faster than most hand-coded scanners. However, the use of

hand-coded scanners is still prevalent. One possibility is that this is due to

the difficulty of adapting the generated scanners to specific applications.

Most scanner generators are tailored to a particular environment. In fact,

the trend in recent years has been to integrate scanner generators with

compiler toolkits. For example, GLA is part of the Eli compiler construction

system [Gray et al. 1992], and Rex [Grosch 1989] is part of the GMD Toolbox

Authors’ address: Computer Science Department and Computer Systems Group, University of
Waterloo, Waterloo, Ontario, Canada N2L 3G1.
Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or

Swific permission.
01993 ACM 1057-4514/93/0300-0070 $03.50
‘M UNIX is a registered trademark of AT & T Bell Laboratories.

ACM Letters on Programming Languages and Systems,
Vol. 2, Nos. 1-4, March-December 1993, Pages 70-84,

RE2C: A More Versatile Scanner Generator . 71

for Compiler Constructional Scanners generated by these tools assume the

existence of a library of support modules for error handling, input buffering,

symbol table management, and similar functions. Although these support

modules simplify the task of implementing a compiler or interpreter, they

make adaptation to other purposes more difficult. Adaptation to other envi-

ronments is also made more difficult because, often, assumptions are made

about the input and restrictions are placed on tokens in order to achieve

better performance. RE2C goes to the other extreme: it concentrates solely on

generating code for matching regular expressions.

RE2C is successful at its task: not only does it produce scanners that are

faster than those created by other scanner generators, but surprisingly, they

are usually smaller as well. Furthermore, RE2C does not make any assump-

tions about the input or place any restrictions on tokens. To a large degree,

the performance and flexibility of RE2C-generated scanners are due to a

novel method for determining when to refill a buffer that avoids the complica-

tions introduced by the sentinel method [Aho et al. 1988].

The following sections describe RE2C scanner specifications, discuss how

these specifications are converted into scanners, and give performance results

achieved by our implementation (including a comparison with GLA).

2. SCANNER SPECIFICATIONS

An RE2C source file consists of C [Kernighan and Ritchie 1988] or C++

[Ellis and Stroustrup 1990]2 code interleaved with comments of the form

/*!re2c... * \ containing scanner specifications. These specifications are

replaced with generated code that is invoked simply by “falling into” the

comments, as illustrated in Figure 1 and in Appendix A.3

A scanner specification takes the form of a list of rules, each rule consisting

of a regular expression [Harrison 1978] and an action expressed in executable

code. Figure 2 illustrates a trivial RE2C scanner specification that is used as

an example throughout this paper. Each call to the code generated from a

specification will first determine the longest possible prefix of the remaining

input that matches one of the regular expressions and will then execute the

action in the first applicable rule.

RE2C is different from most other scanner generators in that the user must

provide the input buffering mechanism for the scanner; the generated code

simply assumes that the user has defined three pointers: YYCURSOR,

YYLIMIT, and YYMARKER, and a routine YYFILL(n). Before executing

the generated code, YYCURSOR and YYLIMIT must be set to point to the

first and one past the last character in the buffer, respectively. After a token

is recognized and before any action is executed, YYCURSOR is set to point to

just past the token. YYFILL will be called as the buffer needs filling; at

least n additional input characters should be provided. When YYFILL is

called, YYCURSOR will point to the next character to be scanned, and YY-

lAlso known as Cocktail (Compiler-Compiler-Toolbox Karlsruhe).
2Retargeting RE2C to a different language is straightforward.
3RE2C-generated scanners require no additional support code.

ACM Letters on Programming Langnages and Systemsj Vol. 2, Nos. 1-4, March-December 1993.

72 . P. Bumbulis and D. D. Cowan

#define YYCURSOR p

unsigned char *scan-uint (unsigned char *P){

/*!re2c

[0-9]+ {return p;}

[\ooo-\377] {return NULL;}

*/

}

Fig.1. Simple scanner,

“print” { return PRINT; /* rule 5 */ }

[a-z]+ { return ID; /’ rule 4 ‘/ }

[0-9]+ { return DEC; /’ rule 3 ‘/ }

“ox” [0-9a-f]+ { return HEX; [* rule 2 ‘/ }

[\ooo-\377] { return ERR; /’ rule 1 *I }

Fig.2. Sample specification:[a –b]matches any character between a and b,inclusively. The

last rule, for example, will match any eight-bit character. Rules are listed in order of precedence.

MARKER, if set, will point to a possible backtracking point in the

buffer. YYFILL must update YYLIMIT, and possibly YYCURSOR andYY-

MARKER before returning. Typically YYCURSOR, YYLIMIT, YY-

MARKER, and YYFILL(n) will be defined as macros.

2.1 Things that RE2CDoes Not Provide

RE2C does not provide many things available in more conventional scanner

generators, including default rules, end-of-input pseudotokens, and buffer

management routines.All ofthese must be suppliedby the user. Rather than

being a handicap, this allows RE2C-generated scanners to be tailored to

almost any environment. For example, the scanner defined in Figure 1

compiles into 32 bytes of i486 code (using Watcom C 9.5), the same size as an

equivalent hand-coded routine. Most other scanner generators cannot pro-

duce scanners that are competitive with hand-coded analyzers in this case.

Furthermore, it is not overly difficult to implement a more traditional scan-

ner using RE2C. For example, Appendix A contains the support code for the

C scanner benchmarked in Table I (shown later). Note that this code allows

for arbitrarily long contiguous tokens and provides line- and column-number

information.

3. GENERATING DIRECTLY EXECUTABLE SCANNERS

As demonstrated by GLA [Gray 1988], generating directly executable code
instead of tables can result in much faster scanners. However, to achieve this

speed, GLA-generated scanners make some assumptions about the input and
place certain restrictions on tokens. 4 In this section we show how to generate

directly executable scanners that not only avoid such restrictions, but are

also faster and usually smaller. The approach presented here has the added

benefit that even faster scanners can easily be created, at the expense of

increased code size, by using a technique akin to loop unrolling.

4These assumptions and restrictions are discussed in more detail in Sections 3.3.1 and 5.1.

ACM Letters on Programming Languages and Systems, Vol. 2, Nos. 1-4, March-December 1993,

RE2C: A More Versatile Scanner Generator . 73

[a-z]

W% ‘) m 1

0
111 6

\ooo-\377] \
n-o.—. 7 [a-z] \p [a-z] \r [a-z] \i [a-z] \n [a-z] \t [a-z]

(1-91 fl[o-91

ux [0-9a-f]

9
[0-9 :0
a–f]

Fig. 3. DFA for sample specification in Figure 2: State O is the start state. Accepting states are

labeled with the number of the rule that they match. For example, state 10 accepts rule 2.
Transitions differing only by label are represented with the same arc. For example, state O has

transitions to state 6 on all of the following characters: a,0, q,..., z.

3.1 Constructing a DFA

The first step in generating a directly executable scanner is to construct a

DFA that recognizes the regular expressions in the specification. Figure 3

presents a DFA that recognizes the regular expressions in Figure 2. One

possible algorithm for constructing such a DFA can be found in Aho et al.

[1988]. Given such a DFA, the task of scanning the input can be expressed as

follows:

—Starting from the start state, move from state to state along transitions

labeled with consecutive characters from the input. When no further

transitions can be made, backtrack to the last accepting state, say, q. The

path to q spells the next token, and the rule associated with q determines

the code to be executed.

As a result, the problem of generating scanners essentially reduces to the

problem of generating an executable representation for a DFA.

3.2 Generating Code

If we assume that the input is entirely contained in a single buffer, then

generating code for the DFA is relatively straightforward, as illustrated by

the code templates in Figure 4. Note that the only difference between the

templates for accepting and nonaccepting states is that the accepting states

have additional code to save backtracking information. Figure 5 shows code

that might be generated for state 1 in Figure 3.

3.3 Buffering

Complications arise when the input is not contained in a single buffer:

additional code is needed for filling the buffer.

ACM Letters on Programming Langnages and Systems, Vol. 2, Nos. 1-4, March-December 1993.

74 . P, Bumbulis and D. D. Cowan

Prologue

int yyaccept;

goto Mstart;

fin: YYCURSOR = YYMARKER;
switch (yyaccept) {

.
An: case n: action(n);

}
code for states

. .
@: ++YYCURSOR;

yyaccept = rule(q);

YYMARKER = YYCURSOR;

4q : switch(*YYCURSOR) {
. . .

case c: goto Lgoto(q,c);
. .

default: goto fin;

}

1

Code for acceptinu state Code for non-accepting state

Lq : ++YYCURSOR;

Mq : switch(*YYCURSOR) {

. .
case c: goto Lgoto(q,c);

. . .
default: goto fin;

Fig. 4. Directly executable scanner: The code generated for a scanner consists of a m-oloae
fofiowed by code for each state. start is the start ~tate. action(n) denotes the code associ~ted w~th
rule n, goto(q, c) denotes the state reached from state q along thetransition labeled with c, and
rule(q) denotes the rule associated with state q. yyaccept is used to save backtracking
information. The M-labels will be usedin Section 3.4.2.

L1 : ++YYCURSOR;

yyaccept = 4;

YYMARKER = YYCURSOR;

Ml : switch(*YYCURSOR) {

case ‘a’: goto L6;

Fig.5. Code for state 1.

. .
case ‘~’: goto L6;

case ‘r’ : goto L2;

case ‘s’: goto L6;

. . .
case ‘z’: goto L6;

default: goto fin;

}

3.3.1 The Sentinel Method, Most scanner generators use the sentinel

method [Aho et al. 1988] to determine when the buffer needs filling. In the

simplest case, a symbol that does not appear invalid inputis chosen as the

sentinel character. An extra stateis addedtothe DFA, and transitionsto this

state on the sentinel symbol are added to the original states. When the DFA

arrives in this new state, it is time to refill the buffer. After the buffer is

refilled, scanning mustbe restarted in the previous state. Unfortunately, this

is not possible when the approach outlined in Fig-are 4: the necessary

information is simply not available. Code could be added to each state to save

the necessary information, but this would result in slower and larger scan-

ACM Letters on Programming Languages and Systems, Vol. 2, Nos. 1-4, March–December 1993

RE2C: A More Versatile Scanner Generator . 75

L6: ++ YYCURSOR;

if (YYLIMIT == YYCURSOR) YYFILL (l);

yyaccept = 4;

YYMARKER = YYCURSOR;

M6 : switch(*YYCURSOR) {

. . .

}

Fig.6. Code forstate6.

ners. GLA solves this problem by ensuring that the-sentinel only gets

inserted between tokens: if this is the case, the scanner can always be

restarted from the start state. To ensure that the sentinel only gets inserted

between tokens, GLA allows new-line (ASCII LF) characters to appear only

at the end of a token and disallows the buffering of partial lines.5

3.3.2 Buffering. RE2C-generated scanners check if the buffer needs fill-

ing simply by comparing YYCURSOR and YYLIMIT. A method inspired by

the mechanism used to guard against stack overflow in Pennello [1986]6 is

used to reduce the amount of checking.

Checks are only inserted in certain key states. These checks simply ensure

that there is enough input in the buffer for the scan to proceed until the next

key state. For example, in the DFA of Figure 3 it is sufficient to check that

there are at least six characters in the buffer when it starts, and that there is

at least one character in the buffer when the DFA is in states 6, 8, or 10. No

other checks are required. The checks inserted in key states are of the form

if((~IMIT – YYCURSOR) < n)YYFILL(n);

where n is the maximum number of characters that can be consumed before

another key state is reached. For example, Figure 6 shows the code generated

for state 6 in Figure 3.

A set of key states can be determined by discovering the strongly connected

components (SCCS) of the DFA. An SCC is a maximal subset of states such

that there exists a path from any state in the subset to any other. The set of

key states consists of all of the states in nontrivial SCCS, together with the

start state. Note that for each SCC S we actually only have to include a

subset of states of S such that when the subset is removed S becomes acyclic.

Indeed, Pennello [1986] described a simple heuristic for choosing such a

subset. However, since in practice most of the (nontrivial) SCCS encountered

will consist of a single state, the current version of RE2C simply includes all

states in nontrivial SCCS.7 An algorithm given by DeRemer and Pennello

[1982] was used to compute the SCCS.

5If the input contains no new-lines, a GLA scanner will attempt to buffer the entire input

stream.
6The problem of detecting stack overflow in LR parsers is probably best left to hardware
mechanisms [Horspool and Whitney 1990].
71t should be noted that finding the minimal set of states to remove from an SCC in order to
render it acyclic is equivalent to the feedback vertex set problem, which is NP-complete [Garey

and Johnson 1991].

ACM Letters on Programming Languages and Systems, Vol. 2, Nos. 1-4, March-December 1993,

76 . P. Bumbulis and D. D. Cowan

Fig. 7. Code for state 1 with backtracking elimi.
nated.

Ll: ++ YYCURSOR;

Ml : switch (* YYCURSOR) {

case ‘a’: goto L6;

. .
case ‘q’: goto L6;

case ‘r’: goto L2;

case ‘s’: goto L6;

. . .
case ‘z’: goto L6;

default: ~Ot O A4;

3.4 Optimization

Even good optimizing C compilers can be coaxed into generating much

smaller and slightly faster code if some transformations are first applied to

the generated code.

3.4.1 Eliminating Backtracking. Consider state 1 in the DFA in Figure 3.

Note that, since all of the transitions from state 1 reach only accepting states,

backtracking information does not need to be saved if the code for the

default case is changed to go directly to the code associated with state 1. The

result of this optimization is shown in Figure 7. More generally, this opti-

mization can be applied to all accepting states that have transitions only to

accepting states.

3.4.2 Optimizing switches. Most C compilers generate either a jump

table or a set of if statements for a switch statement, depending on the

distribution of the case labels. In many compilers the decision as to which

method to use is biased toward generating jump tables, since in most cases

this results in faster, albeit larger, code. However, experience with directly

executable scanners has shown that replacing many of these jump tables

with if statements results in scanners that are much smaller and, surpris-

ingly, in some cases slightly faster as well.g As a result, the capability of

replacing a switch statement with if statements was added to RE2C.

RE2C bases its decision of whether to generate a switch statement or to

replace it with ifs solely on the densityg of the switch statement. It is

surprising that such a simple heuristic works well. For more esoteric applica-

tions in which the input alphabet is not a simple interval, RE2C has the

advantage in that there is no provision for “don’t care” entries in a switch

statement: If no case matches, none of the statements in the switch must be

executed. However, for the examples in Table I this is not so: RE2C simply

does a better job of generating code for switch statements than the compiler.

Sale [1981], Hennessy and Mendelssohn [1982], and Bernstein [1985] also

addressed the problem of generating good code for switch statements.

8See Table I for examples.
‘The number of distinct subranges divided by the total number of cases.

ACM Letters on Programmmg Languages and Systems, Vol. 2, Nos. 1-4, March-December 1993,

RE2C: A More Versatile Scanner Generator . 77

switch (*YYCURSOR) {

case ‘\OOO’ : . . . case

case ‘o’:
case ‘l’: . . . case

case ‘:’: . . . case

case ‘a’: . . case

case ‘P’:
case ‘r’: . . . case

case ‘{’: ~~~ case

}

‘/’: goto Lll;

goto L7;

‘9’: goto L8;
,lr. goto Lll;

‘o’: goto L6;

goto Ll;

‘z’: goto L6;

‘\377’: goto Lll;

Fig.8. switch forstate O.

if(*YYCURSOR <= ‘/’) goto LII;

if(*YYCURSOR <= ‘O’) goto LT;

if(*YYCURSOR <= ‘9’) goto L8;
Fig. 9. Linear lookup code sequence for

if(*YYCURSOR <= ‘ “) goto Lll;
state O.

if(*YYCURSOR == ‘p’) goto Ll;

if(*YYCURSOR <= ‘z’) goto L6;

goto Lll;

if(*YYCURSOR <= ‘“){

if(*YYCURSOR <= ‘/’) goto Lll;

if(*YYCURSOR <= ‘O’) goto L7;

if(*YYCURSOR <= ‘9’) goto L8;

goto Lll;

} else {

if(*YYCURSOR == ‘p’) goto Ll;

if(*YYCURsoR <= ‘z’) goto L6;

goto Lll;

}

Fig. 10. Binary lookup code sequence forstate O.

Replacing switches with ifs. When replacing a switch statement with if

statements, it is useful to sort the cases by label and then to group them

accordingto rule into subranges, as illustratedin Figure 8. RE2C replaces a

switch with either a linear or binary search, depending on the number of

subranges inthe switch. Ifthere are only afew subranges, alinear searchis

generated; otherwise, a binary search is used.

Figures 9and10 show linear and binary searches, respectively, that could

be usedto replace the switchin Figure 8. Note, inparticular, the comparison

for the pin Figure 9. This optimization eliminates a comparison each timeit

is applied. Also note thatno comparisons are required at the top and bottom

ofthe range.

Simplifying switches. As ageneral rule, better replacement code canbe

generated foraswitch ifit contains fewer subranges. One way ofreducing
the number of subranges in a switch, at the expense ofsome speed, is to

locatea base switch that isverysimilar andthen toreplace thecode for all

cases that appear identically in the base switch with a goto to (the code

ACM Letters on Programming Languages and Systems,Vol. 2, Nos. 1-4, March-December 1993.

78 . P. Bumbulis and D. D. Cowan

L1 : ++ YYCURSOR;

Ml: if (*yyCURSOR != ‘r’) gOt O M6;

L2 : ++ YYCURSOR;

M2 :
Fig. 11. Code for states 1-4 after all

if (* YYCURSOR != ‘i’) goto M6;

L3 : ++ YYCURSOR;
optimization.

M3 : lf(*YyCIJRSOR != ‘n’) 90t0 N6;

L4 : ++YYCURSOR;

M4 : if(*yyCTJRSOR != ‘t’) gOtO M6;

goto L5;

generated for) the base switch. RE2C uses this optimizationto good advan-

tage when generating code in the transitions of states used for matching

keywords. For example, note that the switches for states l-4 differ from the

switch ofstate60nlyon r, i, n, and t, respectively. Figure Ilshows the code

generated for these states. Another way of implementing this optimization is

to construct a tunnel automaton [Grosch 1989] from the DFA and then to

generate code from the tunnel automaton.

Common Subexpression Elimination. Many compilers will miss the fact

that * YYCURSOR in Figures 9 and 10 should be loaded into a register.

Most can be coaxed to do so by first assigning * YYCURSOR to a local

variable.

4. EXPERIMENTAL RESULTS

Table I compares two RE2C-generated C scanners with the (hand-coded) lcc

scanner [Fraser and Hanson 1991] and comparable GLA- and flex-generated

scanners on a variety of platforms. It reports the times in seconds required by

the various scanners to scan about 170,000 lines of C source. The 5,607,820-

byte source file used essentially consists of 10 copies of the source to James

Clark’s SGML parser, sgmls. 10 The times reported are averages for 10 trials;

the sizes reported include everything but C library code.11 flex provides a

number of table-compression options, including – cem for tables optimized

for space and – Cf for tables optimized for speed. By default, RE2C will use a

heuristic to decide if a switch should be replaced with ifs: The –s option

forces RE2C to generate switches always.

To make comparisons more meaningful, all semantic processing code was

removed from the GLA-generated and ICC scanners, and code to provide line-

and column-number information was added to the RE2C specification. The

remaining differences of note between the scanners are that

—the flex-generated scanners do not provide line- or column-number infor-

mation, and

—the GLA-generated scanner assumes 7-bit input.

As a general rule, the RE2C-generated scanners were the fastest, followed

by the GLA-generated scanner and then the lcc scanner. The flex-generated

10Available for anonymous ftp from ftp.uu.net as /pub/ teXt-Processing / SiI@ / s@ls-

l.1.tar.Z.
II The GLAgenerated scanner sizes also do not include the size of an error-reporting module

err.o,

ACM Letters on Programming Languages and Systems, Vol. 2, Nos. 1-4, March-December 1993

RE2C: A More Versatile Scanner Generator . 79

Table I. Comparison of Generated C Scanners

time space

program user Sys total

R40L

11.23flex -Cem

flex -Cf

lCC

gla

re2c

re2c -s

flex -Cem
flex -Cf

ICc
gla

re2c
re2c -s

flex -Cem
flex -Cf

lCC
gla

re2c
re2c -s

flex -Cem

flex -Cf

lCC

gla

re2c

re2c -s

flex -Cem

flex -Cf

lCC

gla

re2c

re2c -s

10.36

5.44

3.19

2.89

2.54

2.38

9.97
6.19
2.74
2.46
2.97
2.94

16.03
7.84
4.46
4.08
3.67
3.48

21.86
9.12
5.45
5.11
4.73
4.85

0.87

0.72

0.67

0.63

0.68

0.67

R

0.89
0.72
0.72
0.69
0.63
0.61

2.78
2.69
2.01
1.56
1.76
1.70

6.16
3.86
3.52
3.22
3.05

00 I CC2
10.86
6.91
3.46
3.15
3.60
3.55
SPAR

18.81

10.53

6.47

5.64

5.43

5.18

i48(

T
1.26 23.12
1,18 10.30
1.22 6.67
1.18 6.29
1.13 5.86
1.17 6.02

text
=

5200
4688
7328

11552
13264
11056

fI.2-o-
4704
4256
9664

19232
15088
16080

‘ I gcc2..
8992
6560
7800

10864
13552
15464

(gcc2.4.
8536
6200
5924

15496
9800

12968

data bss total
t -o

T
4192 48

64384 48
1216 8256
3056 144

512 0
4528 0

}ljmjt 5ooo

4240 / 32

1
64432 32

864 8256
2992 128
528 0

11808 0
? .0-

24
62232

384
2168

0
0

-o

48
48

8256
136

0
0

9440
69120
16800
14752
13776
15584

8976
68720
18784
22352
15616
27888

9064
68840
16440
13168
13552
15464

T
20 24 8580

62228 24 68452
384 8240 14548

2144 108 17748
00 9800
0 0 12968, I , ,

68020 I gccI.40 -O
117.37 I 5.89 I 123.26 I 7700 I 201 221 7742
50.93
33.28
33.80
28.92
30.72

5.27
6.28
4.20
2.91
3.19 m

scanners were significantly slower. Only the space-optimized flex scanner

was smaller than the default RE2C scanner, and only by a narrow margin.

There are some architectures, notably the IBM 370, on which table driven

scanners will probably produce better results: IBM 370 compilers typically

generate poor code for large routines.

The various scanners and input files used for the tests are available for

anonymous ftp from csg.uwaterloo.ca in /pub / peter / re2c /

sampler.tar.Z. flex is available for anonymous ftp from ftp.uu.net as
/packages / gnu/ flex-2 .3.7.tar.Z, GLA is available for anonymous ftp
from ftp.cs.colorado.edu as part of the Eli package /pub/ CS / distribs /

eli / Eli3.4.2.tar.Z, and the lcc front end is available for anonymous ftp from
princeton.edu as /pub/ lcc / lccfe-1.9.tar.Z. An alpha version of RE2C

ACM Letters on Programming Languages and Systems, Vol. 2, Nos. 1-4, March-December 1993.

80 . P, Bumbulis and D. D. Cowan

will soon be made available for anonymous ftp from

/pub / peter/ re2c / re2c-O.5.tar.Z.

5. RELATED WORK

csg.uwaterloo.ca as

The key to the performance and flexibility of an 13E2@enerated scanner is
the approach u~ed to determine when the buffer needs ~lling. Interestingly,

the lcc scanner [Fraser and Hanson 1991] uses a similar approach (with

certain concessions to keep the bookkeeping manageable).

5.1 Comparison with GLA

It is natural to compare RE2C to GLA [Gray 1988], as it also generates

directly executable scanners. RE2C and GLA have many differences simply

because they are targeted for different types of users: GLA is intended for

people who simply wish to leverage their efforts with existing tools and

libraries; RE2C is intended for people who have more specialized needs and

are willing to provide their own support routines. For example, GLA provides

a good buffering mechanism; RE2C users must supply their own. These

differences, however, are not unique to GLA and have been addressed for the

most part in previous sections.

Of more interest are the differences in the code that RE2C and GLA

generate. Scanners generated by RE2C and GLA differ primarily in two

aspects: how they determine when the buffer needs filling, and how they

generate code for switches.

GLA uses the ASCII NUL character as the sentinel to determine when the

buffer needs filling. To improve the speed and reduce the size of the gener-

ated scanners, GLA buffers only complete lines and restricts tokens to those

that do not contain new-line (ASCII LF) characters.12 If a token with an

embedded new-line character (such as a comment) is required, it must be

recognized with an auxiliary scanner written in C. This code has to per-

form the buffering-related bookkeeping that is done automatically by GLA-

generated code.

The mechanism RE2C uses to refill the buffer eliminates these restrictions

and yet allows RE2C to generate faster and smaller scanners. RE2C also

allows both auxiliary and primary scanners to be specified using regular

expressions. For example, Appendix A contains an auxiliary scanner for

comments.

Like RE2C, GLA usually replaces switches with ifs. Unlike RE2C, GLA

does not use a case-based heuristic to decide which switches to replace:

Rather, it always generates a switch for the start state and uses ifs for the

rest. GLA replaces switches with code sequences of the following form:

if(* YYCURSOR in S1) goto L ~;

if(x tiCURSOR in sn) gOtO L.;

Bit vectors are used for all membership tests involving sets with more than

one element. As an optimization, if a state has a transition to itself, the test

12This is discussed in more detail in Section 3.3.1.

ACM Letters on Programming Languages and Systems, Vol. 2, Nos. 1-4, March-December 1993

RE2C: A More Versatile Scanner Generator . 81

static unsigned char yytable[] = {

Oxoo, Oxoor Oxoor Oxoo, /* o. 1. 2. 3. */

. . .

Oxoo, Oxoo, Oxoo, Oxoo, /’ , - . / ‘/

Oxol, Oxol, Oxol, Oxol, /* o 1 2 3’/

Oxol, Oxol, Oxol, Oxol, /* 4 567’/

OXO1, OXO1, OXOO, OXOO, /* 8 9 : ; */

Oxoo, Oxoo, Oxoo, Oxoo, /’ < = > ? ‘/

. . .

Oxoo, Oxoo, Oxoo, Oxoo }; /* I } 127. */

L8 : if(yytable[(*YYCURSOR++)+O] & 1<<0) goto

goto A3;

Fig. 12. GLAcode forstate 80f Figure3.

L8;--YYCURSOR;

as to whether to remain in the same state or not is performed first. For

example, Figure 12 shows the GLA-generated code for state 8 in Figure 3.13

Note the useof 128 element entries for the bit vectors to reduce the scanner

size: AGLA-generated scanner will crash or otherwise behave unpredictably

ifa non-ASCII character appears in the source.14

In some sense the results of Section 4 are a bit misleading: The GLA

specification that was used to obtain the figures in Table I is not a typical

GLA specification. Usually, scanners implemented using GLA will handle

keywords as identifiers, as GLA has been optimized for this [Gray 1988].

Table II presents a fairer comparison: The keyword-matching rules were

removed from both the GLA and RE2C specifications. The RE2C-generated

scanners were still faster and smaller except on the MIPS R4000, where the

cc-compiled GLA scanner was slightly faster.

Note, however, that the RE2C specification can be substantially sped up by

using a technique akin to loop unrolling. Replacing the original keyword-

matching rule in the RE2C specification15

L1* {RET(ID);}

with the following rules

L {RET(ID);}
LI {RET(ID);}
LII {RET(ID);}
LIII {RET(ID);]
LIIII {RET(ID);]
LIIIII (RET(ID);}
LIIIIII {RET(ID);I
LIIIIIII {RET(ID);]
LI* {RET(ID);I

13Ac~ual&, GU would generate ~ while statement. Most compilers will generate tie same object

code for both.
14No checks are made to ensure that only seven-bit characters appear in the input.
15L=[a–zA –Z-]and I=[a–zA –Z-O–91.

ACM Letters on Programming Lrmgnagesand Systems,Vol. 2, Nos. 1-4, March-December 1993.

82 . P. Bumbulis and D. D. Cowan

Table II. Scanner Performance with Keywords Treated as Identifiers

time space

program user Sys total text data bss total
R4000Igcc23 3-0

zmm
re2c-s t 2.08 0.59 2.67 \ 5792 I 4224 I O I 100I6

R4000ICC2.11.2-O -01/mit 5000
gla 2.43 0.64 3.07 6512 2416 128 9056

re2c 2.93 0.67 3.60 8048 528 0 8576
re2c -s 3.04 I 0.64] 3.68 I 9952 I 2208 I O I 12160

SPARCIE(C23 3-0

gla 4,08 1.65 5.73 5472 1656 136 7264

re2c 3.77 1.67 5.44 7008 0 0 7008
re2c -s 3.66 I 2.37 I 6.03191121 01 01 9112

1486 I mc2 45-0

gla 5.04 1.15 6.19 ‘5368 1632 108 7108
re2c 4.75 1.17 5.92 5448 0 0 5448

re2c-s 5.06 1.13 6.19 8248 0 0 8248

t uses an ct~nrolled” specification.

reduces the number of end-of-buffer checks and results in a significant speed

improvement over the GLA-generated scanner.

6. SUMMARY AND FURTHER WORK

This paper has described RE2C, a tool for creating lexical analyzers. Unlike

other such tools, RE2C concentrates solely on generating efficient code for

matching regular expressions. Not only does this singleness of purpose make

RE2C more suitable for a wider variety of applications, it allows it to

generate scanners that approach hand-crafted scanners in terms of size and

speed. compared to scanners generated by flex and GLA, RE2C-generated

scanners are faster and in many cases smaller as well.

Although RE2C-generated scanners perform well, there is still room for

improvement. Near-term improvements include using GLA’s bit vectors to

simplify some switches and adding a state unrolling operator. In the longer

term, in-line actions will be added to RE2C. For example, a specification like

D{c=$}(D{c =1 O* C+ $})*

might be used to obtain the value of a previously scanned integer. Typically,

these sorts of specifications would be used as an action in some other

specification.

ACM Letters on Programming Languages and Systems, Vol 2, Nos. 1-4, March-December 1993.

RE2C: A More Versatile Scanner Generator . 83

APPENDIX A. C SCANNER

#define BSIZE
#de f17.e RST(i)

#ciefine YYCTYPE
#define YYCURSOR
#define YYLIMIT
#define YYYzYw2R
#define YYFILL(n)

typedef struct Scannex
in:
uint
uchar

~ Scann.eT;

uc!mr ●fill (Scar.nez ●s,

8192
(s->cur - cursor;

Uchar
cursor
S->llm
s->ptr
{curSo: = f:il (s,

line;
*not, =tok, .p:r,

uehar ●curser) I.
if(!s->eof) (

Uint Cnt = S->:ok - S->bct;
if (cnt) (/* move partial to,<er. t:

memcpy(s->bot, s->tok, S->ILZ
s->ptr -= cnt; cu:sor -= cn:;

)
if((S->50F - S->~lr.) < BSIZZ] i /-

c::sor) ; }

.rlr, ‘pm, ●lim, ‘top, ●eof;

k:::am ●I

- s-xok) : s->tok = s->bot;
S->pcs -= cat; s->lim -= cnc;

>zfiez needs to be expanded ●I--
uchar *buf = (uchazw) malloc(((s->lm - s->bot) + BSIZE) ●sizeof (,uc$.a~j) ;
memcpy(b~uf, S->: Ok, S->~2.T. - s->:>.<) ; s->sok = buf;
s->ptr = &buf[s->p:: - S->~2:: ; ~::5:1 = &~.Jf [cur So= - S->bo L] ;
S->pOS = &buf [$->pOs - s->cotl ; s->L1:. = &buf[s->lim - S->DOC] ;
s->top = 6s->Iim[BSIZZ] ;
free (s->boc) ; s->bot - b.:f;

}
if~ (cnt z =~~d{~->fd, (ch~~.) ~->~~-., ~~:~~,) != Bs~~E) { ,, ~~i ./

s->eof = 6s->lim[cnt] ; *(s-> eaf}-- - ~\5., ;
)
s->llm += cnt;

}
retuzn cursor;

)

ir. t scan(Scanner “s) {
uchar ●cursor = s->cur;

std: s->zok = cursor;
/“ ! re2c

. (

. . more rules . .

[\t\v\f]+ (

“\?” {

[\ooo-\377j {

●/

comment :
/.!re2c

/,, . !,
(

“ \ 7.“’ (

[\:; J-\377] [

“/

goto comment;)

goto std; }
if (cursor == s->aaf) :+7 (221) ; s->pos = cursor; s->l LIw+*;
goto std;)
printf (“unexpected character: ‘ %c~\n”, ●s->tok) ;
goto std; }

goto std;)
lf (cursor == s->eof) RsT(Ec?I; s->tok = S-> PO: = ~.Jr S2r; ~.>~:r,e-.;
gato comment; }
go:o CNV’’J23:; !

Figure 13

ACM Letters on Programming Languages and Systems, Vol. 2, Nos. 1-4, March-December 1993.

84 . P. Bumbulis and D. D. Cowan

ACKNOWLEDGMENTS

The authors thank the referees for their many valuable comments and

suggestions.

REFERENCES

AHo, A. V., SETHI, R., AND ULLW, J. D. 1988. Compilers: Principles, Techniques, and Tools.

Addison-Wesley, Reading, Mass.
BERNSTEIN, R. L. 1985. Producing good code for the case statement. Softzo. Pratt. Exper. 15, 10

(Oct.), 1021-1024.
DEREMER, F., AND PENNELLO, T. 1982. Efficient computation of LALR(l) look-ahead sets.

ACM Trans. Program. Lang. Syst. 4, 4 (Oct.), 615–649.
ELLIS, M., AND STROUSTRUP,B. 1990. The Annotated C++ Reference Manual. Addison-Wesley,

Reading, Mass.

FRASER, C. W., AND HANSON, D. R. 1991. A retargetable compiler for ANSI C. SIGPLAN Not.

(ACM) 26, 10 (Oct.), 29-43.

GAREY, M. R., AND JOHNSON, D. S. 1991. Computers and Intractabihty: A Guide to the Theory

of NP-Completeness. Freeman, San Francisco, Calif.

GRAY, R. W. 1988. -Y-GM-A generator for lexical analyzers that programmers can use. In

USENZX Conference Proceedings (June). USENIX Association, Berkeley, Calif., 147-160.
GRAY, R. W., HEURING, V. P., LEVI, S. P., SLOANE, A. M., AND WAITE, W. M. 1992. Eli: A

complete, flexible compiler construction system. Commzm. ACM 35, 2 (Feb.), 121–131.
GROSCH, J. 1989. Efficient generation of lexical analysers. Softw. Pratt. Exper. 19, 11,

1089-1103.

HARRISON, M. A. 1978. Introduction to Formal Language Theory. Addison-Wesley, Reading,
Mass.

HENNESSY, J. L., AND MENDELSOHN, N. 1982. Compilation of the Pascal case statement. SoftLO.
Pratt. Exper. 12, 9 (Sept.), 879-882.

HORSPOOL,R. N., AND WHITNEY, M. 1990. Even faster LR parsing. Softw. Pratt. Exper. 20, 6,

515-535.

JACOBSON,V. 1987. Tuning UNIX Lex or it’s NOT true what they say about Lex. In USENIX

Conference Proceedings (Washington, D.C.). USENIX Association, Berkeley, Calif., 163-164.

(Abstract only.)
KKRNIGHAN, B. W., AND RITCHIE, D. M. 1988. The C Programming Language. 2nd ed. Prentice-

Hall, Englewood Cliffs, N.J.

LESK, M. E. 1975. LEX—A lexical analyzer generator. Comput. Sci. Tech. Rep. 39, Bell
Telephone Laboratories, Murray Hill, N.J.

PAxsoN, V. 1988. flex-Man pages. In flex-2 .3.7.tar.Z. (Available for anonymous ftp from
ftp.uu.net in \packages \ gnu.)

PENNELLO, T. J. 1986. Very fast LR parsing. In Proceedings of the ACM SIGPLAN86 Sympo-

sium on Compiler Construction (July). ACM, New York. SIGPLAN Not. 21, 7 (July).
SALE, A. 1981. The implementation of case statements in Pascal. Softw. Pratt. Exper. 11, 9

(Sept.), 929-942.

Received February 1993; revised October 1993; accepted November 1993

ACM Letters on Programming Languages and Systems, Vol. 2, Nos. 1-4, March-December 1993

View publication statsView publication stats

https://www.researchgate.net/publication/2336285

