
Text Processing
with Java 6

Text Processing
with Java 6

Bob Carpenter

Mitzi Morris
Breck Baldwin

LingPipe Publishing
New York

2011

© LingPipe Publishing

Pending: Library of Congress Cataloging-in-Publication Data

Carpenter, Bob.
Text Processing with Java 6 / Bob Carpenter, Mitzi Morris, Breck Baldwin

p. cm.
Includes bibliographical references and index.
ISBN X-XXX-XXXXX-X (pbk.)

1. Text Processing 2. Java (computer program language) 3. Unicode I. Carpenter, Bob II. Morris,
Mitzi III. Baldwin, Breck IV. Title

QAXXX.XXXXXXXX 2011

XXX/.XX’X-xxXX XXXXXXXX

All rights reserved. This book, or parts thereof, may not be reproduced in any form without

permission of the publishers.

Contents

1 Getting Started 1
1.1 Tools of the Trade . 1
1.2 Hello World Example . 9
1.3 Introduction to Ant . 11

2 Java Basics 19
2.1 Numbers . 19
2.2 Objects . 23
2.3 Arrays . 27
2.4 Synchronization . 27

3 Characters and Strings 33
3.1 Character Encodings . 33
3.2 Encoding Java Programs . 41
3.3 char Primitive Type . 42
3.4 Character Class . 44
3.5 CharSequence Interface . 48
3.6 String Class . 49
3.7 StringBuilder Class . 55
3.8 CharBuffer Class . 57
3.9 Charset Class . 60
3.10 International Components for Unicode 62

4 Regular Expressions 69
4.1 Matching and Finding . 69
4.2 Character Regexes . 71
4.3 Character Classes . 72
4.4 Concatenation . 75
4.5 Disjunction . 76
4.6 Greedy Quantifiers . 77
4.7 Reluctant Quantifiers . 79
4.8 Possessive Quantifiers . 80
4.9 Non-Capturing Regexes . 81
4.10 Parentheses for Grouping . 83
4.11 Back References . 84
4.12 Pattern Match Flags . 84
4.13 Pattern Construction Exceptions . 86

v

4.14 Find-and-Replace Operations . 86
4.15 String Regex Utilities . 87
4.16 Thread Safety, Serialization, and Reuse 87

5 Input and Output 89
5.1 Files . 89
5.2 I/O Exceptions . 95
5.3 Security and Security Exceptions . 96
5.4 Input Streams . 96
5.5 Output Streams . 97
5.6 Closing Streams . 98
5.7 Readers . 99
5.8 Writers . 100
5.9 Converting Byte Streams to Characters 100
5.10 File Input and Output Streams . 102
5.11 Buffered Streams . 105
5.12 Array-Backed Input and Output Streams 106
5.13 Compressed Streams . 107
5.14 Tape Archive (Tar) Streams . 112
5.15 Accessing Resources from the Classpath 114
5.16 Print Streams and Formatted Output 116
5.17 Standard Input, Output, and Error Streams 117
5.18 URIs, URLs and URNs . 119
5.19 The Input Source Abstraction . 122
5.20 File Channels and Memory Mapped Files 122
5.21 Object and Data I/O . 123
5.22 Lingpipe I/O Utilities . 128

6 The Lucene Search Library 139
6.1 Fields . 140
6.2 Documents . 142
6.3 Analysis and Token Streams . 144
6.4 Directories . 147
6.5 Indexing . 147
6.6 Queries and Query Parsing . 152
6.7 Search . 156
6.8 Deleting and Updating Documents . 160
6.9 Lucene and Databases . 163

A Corpora 165
A.1 Canterbury Corpus . 165
A.2 20 Newsgroups . 166
A.3 WormBase MEDLINE Citations . 166

B Further Reading 169
B.1 Unicode . 169
B.2 Java . 169
B.3 General Programming . 171

C Licenses 173
C.1 LingPipe License . 173
C.2 Java Licenses . 174
C.3 Apache License 2.0 . 181
C.4 Common Public License 1.0 . 182
C.5 X License . 184
C.6 Creative Commons Attribution-Sharealike 3.0 Unported License . . 184

Preface

Java provides an extensive set of tools for manipulating character-based data,
including byte-to-character conversion, input and output streams including sock-
ets and compression, memory-mapping files, and high-level methods for manip-
ulating sequences of characters like buffers and regular expressions. We also
cover the use of the Apache Lucene search library.

As a preliminary, we provide a warmup chapter on using the various tools
required for text editors to version control to the Ant build system for Java.

This book explains the basics of text processing in Java. It assumes you are
familiar with basic coding in a language like Java, but that you may not be famil-
iar with low-level representations of bytes and integers, the representation and
manipulation of strings, how to access objects from the classpath as resources,
or how to write non-greedy regular expressions based on Unicode.

The presentation here will be hands on. You should be comfortable reading
short and relatively simple Java programs. Java programming idioms like loop
boundaries being inclusive/exclusive and higher-level design patterns like visi-
tors will also be presupposed. More specific aspects of Java coding relating to
text processing, such as streaming I/O, character decoding, string representa-
tions, and regular expression processing will be discussed in more depth. We
will also go into some detail on collections, XML/HTML parsing with SAX, and
serialization patterns.

This book grew out of work on its companion volume, Natural Language
Processing with LingPipe. We found that the background material on Java was
growing to the point where it made more sense to pull it out into its own stan-
dalone package. We have included a few examples of basic text processing using
LingPipe.

Other open-source software dependencies include the International Compo-
nents for Unicode (ICU) library and Apache Lucene search library.

We hope you have as much fun with text processing in Java as we’ve had.
We’d love to hear from you, so feel free to drop us a line at info@lingpipe.com
with any kind of question or comment you might have.

Bob Carpenter

Mitzi Morris

Breck Baldwin

New York
July 6, 2012

ix

Text Processing
with Java 6

Chapter 1

Getting Started

This book is intended to provide a relatively concise, yet comprehensive
overview of text processing in the Java programming language.

Before beginning with a “hello world” example that will verify that every-
thing’s in place for compiling and executing the code in the book, we’ll take
some time to explain the tools we’ll be using or that you might want to use. All
of these tools are open source and freely available, though under a perplexing
array of licensing terms and conditions. After describing and motivating our
choice of each tool, we’ll provide downloading and installation instructions.

1.1 Tools of the Trade

In this section, we go over the various tools we use for program development.
Not all of these tools are needed to run every example, and in many cases, we
discuss several alternatives among a large set of examples.

1.1.1 Unix Shell Tools

We present examples as run from a unix-like command-line shell. One reason to
use the shell is that it’s easy to script operations so that they may be repeated.

The main problem with scripts is that they are not portable across operating
systems or even types of command-line shells. In this book, we use the so-called
“Bourne Again Shell” (bash) for Unix-style commands. Bash is the default shell in
Cygwin on Windows, for Mac OS X, and for Linux, and is also available for Solaris.

If you’re working in Windows (XP, Vista or 7), we recommend the Cygwin suite
of Unix command-line tools for Windows.

Cygwin is released under version 2 of the GNU Public License (GPLv2), with
terms outlined here:

http://cygwin.com/license.html

and also available with a commercial license.
Cygwin can be downloaded and installed through Cygwin’s home page,

1

http://cygwin.com/license.html

2 CHAPTER 1. GETTING STARTED

http://www.cygwin.com/

The setup.exe program is small. When you run it, it goes out over the internet to
find the packages from registered mirrors. It then lists all the packages available.
You can install some or all of them. You can just run the setup program again
to update or install new packages; it’ll show you what version of what’s already
installed.

It might also be easier to list what Cygwin doesn’t support. We use it mainly
for running Unix-like commands in Windows, including pipes, find, grep, (bash)
shell support, tar and gzip, wget, aspell, which, and so on. We also use its im-
plementation of the Subversion and CVS version control systems. We do not
install emacs or TeX through Cygwin. These packages are indexed under various
categories in Cygwin, such as Web, Net, Devel, and Base.

Although it’s possible to get Python, Perl, Emacs, TEX and LATEX, and so on, we
typically install these packages directly rather than as part of Cygwin.

Archive and Compression Tools

In order to unpack data and library distributions, you need to be able to run
the tar archiving tool, as well as the unpacking commands unzip and gunizp.
These may be installed as part of Cygwin on Windows.

1.1.2 Version Control

If you don’t live in some kind of version control environment, you should. Not
only can you keep track of your own code across multiple sites and/or users, you
can also keep up to date with projects with version control, such as this book,
the LingPipe sandbox, and projects hosted by open source hosting services such
as SourceForge or Google Code.

We are currently using Subversion (SVN) for LingPipe and this book. You can
install a shell-based version of Subversion, the command-name for which is svn.
Subversion itself requires a secure shell (SSH) client over which to run, at least
for most installations. Both SVN and SSH can be installed through Cygwin for
Windows users.

There are graphical interfaces for subversion. Web-SVN, which as its name
implies, runs as a server and is accessible through a web browser,

WebSVN: http://websvn.tigris.org/

and Tortoise SVN, which integrates with the Windows Explorer,

Tortoise SVN: http://tortoisesvn.net/

Other popular version control systems include the older Concurrent Version
System (CVS), as well as the increasingly popular Git system, which is used by
the Linux developers.

The best reference for Subversion of which we are aware is the official guide
by the authors, available onlie at

http://svnbook.red-bean.com/

http://www.cygwin.com/
http://websvn.tigris.org/
http://tortoisesvn.net/
http://svnbook.red-bean.com/

1.1. TOOLS OF THE TRADE 3

1.1.3 Text Editors

In order to generate code, HTML, and reports, you will need to be able to edit
text. We like to work in the emacs text editor, because of its configurability. It’s
as close as you’ll get to an IDE in a simple text editor.

Spaces, Not Tabs

To make code portable, we highly recommend using spaces instead of tabs. Yes,
it takes up a bit more space, but it’s worth it. We follow Sun’s coding standard
for Java, so we use four spaces for a tab. This is a bit easier to read, but wastes
more horizontal space.

(GNU) Emacs

We use the GNU Emacs distribution of emacs, which is available from its home
page,

http://www.gnu.org/software/emacs/

It’s standard on most Unix and Linux distributions; for Windows, there is a
zipped binary distribution in a subdirectory of the main distribution that only
needs to be unpacked in order to be run. We’ve had problems with the Cygwin-
based installations in terms of their font integration. And we’ve also not been
able to configure XEmacs for Unicode, which is the main reason for our prefer-
ence for GNU Emacs.

We like to work with the Lucida Console font, which is distributed with Win-
dows; it’s the font used for code examples in this book. It also supports a wide
range of non-Roman fonts. You can change the font by pulling down the Options
menu and selecting the Set Default Font... item to pop up a dialog box.
Then use the Save Options item in the same menu to save it. It’ll show you
where it saved a file called .emacs which you will need to edit for the next cus-
tomizations.

In order to configure GNU Emacs to run UTF-8, you need to add the following
text to your .emacs file:1

(prefer-coding-system ’utf-8)
(set-default-coding-systems ’utf-8)
(set-terminal-coding-system ’utf-8)
(set-keyboard-coding-system ’utf-8)
(setq default-buffer-file-coding-system ’utf-8)
(setq x-select-request-type

’(UTF8_STRING COMPOUND_TEXT TEXT STRING))
(set-clipboard-coding-system ’utf-16le-dos)

The requisite commands to force tabs to be replaced with spaces in Java files are:

1The UTF-8 instructions are from the Sacrificial Rabbit blog entry http://blog.jonnay.net/
archives/820-Emacs-and-UTF-8-Encoding.html, downloaded 4 August 2010.

http://www.gnu.org/software/emacs/
http://blog.jonnay.net/archives/820-Emacs-and-UTF-8-Encoding.html
http://blog.jonnay.net/archives/820-Emacs-and-UTF-8-Encoding.html

4 CHAPTER 1. GETTING STARTED

(defun java-mode-untabify ()
(save-excursion

(goto-char (point-min))
(if (search-forward "t" nil t)

(untabify (1- (point)) (point-max))))
nil)

(add-hook ’java-mode-hook
’(lambda ()

(make-local-variable ’write-contents-hooks)
(add-hook ’write-contents-hooks ’java-mode-untabify)))

(setq indent-tabs-mode nil)

1.1.4 Java Standard Edition 6

We chose Java as the basis for LingPipe because we felt it provided the best
tradeoff among efficiency, usability, portability, and library availability.

The presentation here assumes the reader has a basic working knowledge of
the Java programming language. We will focus on a few aspects of Java that
are particularly crucial for processing textual language data, such as character
and string representations, input and output streams and character encodings,
regular expressions, parsing HTML and XML markup, etc. In explaining LingPipe’s
design, we will also delve into greater detail on general features of Java such as
concurrency, generics, floating point representations, and the collection package.

This book is based on the latest currently supported standard edition of the
Java platform (Java SE), which is version 6. You will need the Java development
kit (JDK) in order to compile Java programs. A java virtual machine (JVM) is
required to execute compiled Java programs. A Java runtime environment (JRE)
contains platform-specific support and integration for a JVM and often interfaces
to web browsers for applet support.

Java is available in 32-bit and 64-bit versions. The 64-bit version is required
to allocate JVMs with heaps larger than 1.5 or 2 gigabytes (the exact maximum
for 32-bit Java depends on the platform).

Licensing terms for the JRE are at

http://www.java.com/en/download/license.jsp

and for the JDK at

http://java.sun.com/javase/6/jdk-6u20-license.txt

Java is available for the Windows, Linux, and Solaris operating systems in
both 32-bit and 64-bit versions from

http://java.sun.com/javase/downloads/index.jsp

The Java JDK and JRE are included as part of Mac OS X. Updates are available
through

http://www.java.com/en/download/license.jsp
http://java.sun.com/javase/6/jdk-6u20-license.txt
http://java.sun.com/javase/downloads/index.jsp

1.1. TOOLS OF THE TRADE 5

http://developer.apple.com/java/download/

Java is updated regularly and it’s worth having the latest version. Updates in-
clude bug fixes and often include performance enhancements, some of which
can be quite substantial.

Java must be added to the operating system’s executables path so that the
shell commands and other packages like Ant can find it.

We have to manage multiple versions of Java, so typically we will define
an environment variable JAVA_HOME, and add ${JAVA_HOME}/bin (Unix) or
%JAVA_HOME%\bin (Windows) to the PATH environment variable (or its equiva-
lent for your operating system). We then set JAVA_HOME to either JAVA_1_5,
JAVA_1_6, or JAVA_1_7 depending on use case. Note that JAVA_HOME is one
level above Java’s bin directory containing the executable Java commands.

You can test whether you can run Java with the following command, which
should produce similar results.

> java -version

java version "1.6.0_18"
Java(TM) SE Runtime Environment (build 1.6.0_18-b07)
Java HotSpot(TM) 64-Bit Server VM (build 16.0-b13, mixed mode)

Similarly, you can test for the Java compiler version, using

> javac -version

javac 1.6.0_20

Java Source

You can download the Java source files from the same location as the JDK. The
source is subject to yet anoher license, available at

http://java.sun.com/javase/6/scsl_6-license.txt

The source provides a fantastic set of examples of how to design, code, and doc-
ument Java programs. We especially recommend studying the source for strings,
I/O and collections. Further, like all source, it provides a definitive answer to the
questions of what a particular piece of code does and how it does it. This can be
useful for understanding deeper issues like thread safety, equality and hashing,
efficiency and memory usage.

1.1.5 Ant

We present examples for compilation and for running programs using the
Apache Ant build tool. Ant has three key features that make it well suited for
expository purposes. First, it’s portable across all the platforms that support
Java. Second, it provides clear XML representations for core Java concepts such
as classpaths and command-line arguments. Third, invoking a target in Ant di-
rectly executes the dependent targets and then all of the commands in the target.
Thus we find Ant builds easier to follow than those using the classic Unix build

http://developer.apple.com/java/download/
http://java.sun.com/javase/6/scsl_6-license.txt

6 CHAPTER 1. GETTING STARTED

tool Make or its modern incarnation Apache Maven, both of which attempt to re-
solve dependencies among targets and determine if targets are up to date before
executing them.

Although we’re not attempting to teach Ant, we’ll walk through a basic Ant
build file later in this chapter to give you at least a reading knowledge of Ant.
If you’re using an IDE like Eclipse or NetBeans, you can import Ant build files
directly to create a project.

Ant is is an Apache project, and as such, is subject to the Apache license,

http://ant.apache.org/license.html

Ant is available from

http://ant.apache.org/

You only need one of the binary distributions, which will look like
apache-ant-version-bin.tar.gz.

First, you need to unpack the distribution. We like directory structures with
release names, which is how ant unpacks, using top-level directory names like
apache-ant-1.8.1. Then, you need to put the bin subdirectory of the top-level
directory into the PATH environment variable so that Ant may be executed from
the command line.

Ant requires the JAVA_HOME environment variable to be set to the path above
the bin directory containing the Java executables. Ant’s installation instructions
suggest setting the ANT_HOME directory in the same way, and then adding but it’s
not necessary unless you will be scripting calls to Ant.

Ant build files may be imported directly into either the Eclipse or NetBeans
IDEs (see below for a description of these).

You can test whether Ant is installed with

> ant -version

Apache Ant version 1.8.1 compiled on April 30 2010

1.1.6 Integrated Development Environment

Many pepeople prefer to write (and compile and debug) code in an integrated de-
velopment environment (IDE). IDEs offer advantages such as automatic method,
class and constant completion, easily configurable text formatting, stepwise de-
buggers, and automated tools for code generation and refactoring.

LingPipe development may be carried out through an IDE. The two most pop-
ular IDEs for Java are Eclipse and NetBeans.

Eclipse IDE

Eclipse provides a full range of code checking, auto-completion and code gen-
eration, and debugging facilities. Eclipse is an open-source project with a wide
range of additional tools available as plugins. It also has modules for languages
other than Java, such as C++ and PHP.

The full set of Eclipse downloads is listed on the following page,

http://ant.apache.org/license.html
http://ant.apache.org/

1.1. TOOLS OF THE TRADE 7

http://download.eclipse.org/eclipse/downloads/

You’ll want to make sure you choose the one compatible with the JDK you are
using. Though originally a Windows-based system, Eclipse has been ported to
Mac OS X (though Carbon) and Linux.

Eclipse is released under the Eclipse Public License (EPL), a slightly modified
version of the Common Public License (CPL) from IBM, the full text of which is
available from

http://www.eclipse.org/legal/epl-v10.html

NetBeans IDE

Unlike Eclipse, the NetBeans IDE is written entirely in Java. Thus it’s possible to
run it under Windows, Linux, Solaris Unix, and Mac OS X. There are also a wide
range of plug-ins available for NetBeans.

Netbeans is free, and may be downloaded from its home page,

http://netbeans.org/

Its licensing is rather complex, being released under a dual license consisting of
the Common Development and Distribution License (CDDL) and version 2 of the
GNU Public License version 2 (GPLv2). Full details are at

http://netbeans.org/about/legal/license.html

1.1.7 Statistical Computing Environment

Although not strictly necessary, if you want to draw nice plots of your data or
results, or compute p values for some of the statistics LingPipe reports, it helps
to have a statistical computing language on hand. Such languages are typically
interpreted, supported interactive data analysis and plotting.

In some cases, we will provide R code for operations not supported in Ling-
Pipe. All of the graphs drawn in the book were rendered as PDFs in R and in-
cluded as vector graphics.

R Project for Statistical Computing

The most popular open-source statistical computing language is still the R
Project for Statistical Computing (R). R runs under all the major operating sys-
tems, though the Windows installers and compatibility with libraries seem to be
a bit more advanced than those for Linux or Mac OS X.

R implements a dialect of the S programming language for matrices and
statistics. It has good built-in functionality for standard distributions and ma-
trix operations. It also allows linking to C or Fortran back-end implementations.
There are also plug ins (of varying quality) for just about everything else you can
imagine. The officially sanctioned plug ins are available from the Comprehensive
R Archive Network (CRAN).

R is available from its home page,

http://download.eclipse.org/eclipse/downloads/
http://www.eclipse.org/legal/epl-v10.html
http://netbeans.org/
http://netbeans.org/about/legal/license.html

8 CHAPTER 1. GETTING STARTED

http://www.r-project.org/

The CRAN mirrors are also linked from the page and usually the first web search
results for statistics-related queries in R.

R is distributed under the GNU Public License version 2 (GPLv2).

SciPy and NumPy

The Python programming/scripting language is becoming more and more pop-
ular for both preprocessing data and analyzing statistics. The library NumPy
provides a matrix library on top of Python and SciPy a scientific library including
statistics and graphing. The place to get started is the home page,

http://numpy.scipy.org/

NumPy and SciPy and Python itself are distributed under the much more flexible
BSD License.

Like R, Python is interpreted and not very fast at operations like looping.
NumPy helps by allowing some operations to be vectorized (as does R). Like R,
Python also allows linking C and Fortran back-end packages for efficiency.

1.1.8 Full LingPipe Distribution

LingPipe is distributed under both commercial licenses and under a royalty-free
license. A copy of the royalty free license is available at:

http://alias-i.com/lingpipe/licenses/lingpipe-license-1.txt

LingPipe may be downloaded with full source from its web site:

http://alias-i.com/lingpipe/

Other than unpacking the gzipped tarball, there is nothing required for installa-
tion. Downloading LingPipe is not technically necessary for running the examples
in this book because the LingPipe library jar is included with this book’s source
download.

1.1.9 Book Source and Libraries

The code samples from this book are available via anonymous subversion check-
out from the LingPipe sandbox. Specifically, the entire content of the book, in-
cluding code and text, may be checked out anonymously using,

> svn co https://aliasi.devguard.com/svn/sandbox/lpbook

The distribution contains all of the code and Ant build files for running it. It also
contains the LATEX source for the book itself as well as the library we created to
extract text from the source for automatic inclusion in the book. This last feature
is actually critical to ensure the code in the distribution and in the book match.

http://www.r-project.org/
http://numpy.scipy.org/
http://alias-i.com/lingpipe/licenses/lingpipe-license-1.txt
http://alias-i.com/lingpipe/

1.2. HELLO WORLD EXAMPLE 9

1.2 Hello World Example

In this section, we provide a very simple hello world program. If you can run
it, you’ll be all set to jump into the next chapter and get started with the real
examples. We’ll also take this opportunity to walk through a simple Ant build
file.

1.2.1 Running the Example

To the extent we are able, we’ll start each discussion with an example of how
to run examples. This is pretty easy for the hello-world example. As with all of
our examples, we begin by changing directories into the directory containing the
example. We suppose that $BOOK/ is the directory in which the code for the book
was unpacked. We then execute the change directory (cd) command to move into
the subdirectory /src/intro,

> cd $BOOK/src/intro

Note that we have italicized the commands issued by the user. We then run the
demo using Ant. In this case, the target is hello, invoked by

> ant hello

which produces the following output

Buildfile: c:\lpb\src\intro\build.xml

jar:
[mkdir] Created dir: c:\lpb\src\intro\build\classes
[javac] Compiling 1 source file to c:\lpb\src\intro\build\classes

[jar] Building jar: c:\lpb\src\intro\build\lp-book-intro-4.0.jar

hello:
[java] Hello World

BUILD SUCCESSFUL
Total time: 1 second

First, Ant echoes the name of the build file, here c:\lpb\src\intro\build.xml.
When Ant is invoked without specifying a particular build file, it uses the
build.xml in the directory from which it was called.

Reading down the left side of the output, you see the targets that are invoked.
The first target invoked is the jar target, and the second target is the hello
target. The targets are left aligned and followed by semicolons. A target consists
of an ordered list of dependent targets to invoke before the current target, and
an ordered list of tasks to execute after the dependent targets are invoked.

Under the targets, you see the particular tasks that the target executes. These
are indented, square bracketed, and right aligned. The jar target invokes three
tasks, mkdir, javac, and jar. The hello target invokes one task, java. All of

10 CHAPTER 1. GETTING STARTED

the output for each task is shown after the task name. If there is more than one
line of output, the name of the task is repeated.

In this example, the mkdir task makes a new directory, here the
build\classes directory. The javac task runs the Java compiler, here compil-
ing a single source file into the newly created directory. The jar task builds the
Java library into the build subdirectory build in file lp-book-intro-4.0.jar.
Moving onto the hello target, the java task runs a command-line Java program,
in this case printing the output of the hello world program.

The reason the jar target was invoked was because the hello target was de-
fined to depend on the jar target. Ant invokes all dependent targets (recursively)
before the invoked target.

Finally, Ant reports that the build was successful and reports the amount
of time taken. In the future, we will usually only show the output of the Java
program executed and not all of the output from the compilation steps. To save
more space, we also remove the [java] tag on the task. Under this scheme, the
hello target invocation would be displayed in this book as

> ant hello

Hello World

1.2.2 Hello with Arguments

Often we need to supply arguments to programs from the command line. The
easiest way to do this with Ant is by setting the properties on the command line.
Our second demo uses this facility to provide a customized greeting.

> ant -Dfirst=Bobby -Dlast=C hello-name

Hello, Bobby C.

Each argument to a program corresponds to a named property, here first and
last. In general, properties are specified -Dkey=val.2

1.2.3 Code Walkthrough

The code for the hello world program can be found in
$BOOK/src/intro/src/com/lingpipe/book/intro/HelloWorld.java.
Throughout the book, the files are organized this way, under the top-level
src directory, then the name of the chapter (here intro), followed by src,
followed by the path to the actual program. We follow the Java convention of
placing files in a directory structure that mirrors their package structure, so the
remaining part of the path is com/lingpipe/book/intro/HelloWorld.java.
The contents of the HelloWorld.java program file is as follows.

2Depending on your shell, this may also require varying amounts of quoting and/or escaping spe-
cial characters. For example, keys or values with spaces typically require double quotes on Windows.

1.3. INTRODUCTION TO ANT 11

package com.lingpipe.book.intro;

public class HelloWorld {

public static void main(String[] args) {
System.out.println("Hello World");

}

}

As usual for Java programs, the first thing in the file is the package declaration,
here com.lingpipe.book.intro; note how it matches the end of the path to
the file, com/lingpipe/book/intro. Next is the class definition, HelloWorld,
which matches the name of the file, HelloWorld.java.

When a Java class is invoked from the command line (or equivalently through
Ant), it must implement a static method with a signature like the one shown.
Specifically, the method must be named main, must take a single string array
argument of type String[], must not have a return value (i.e., return type void),
and must be declared to be both public and static using the public and static
modifiers. The method may optionally throw any kind of exception.

The body of the program here just prints Hello World to the system output.
As usual, Java provides a handle to the system output through the public static
variable out of type java.io.PrintStream in the java.lang.System class.

The more complex program HelloName that takes two command-line argu-
ments varies in the body of its main() method,

public class HelloName {

public static void main(String[] args) {
String first = args[0];
String last = args[1];
System.out.printf("Hello, %s %s.\n",first,last);

As a convention, we assign the command-line arguments read from the array
args to a sequence of named variables. We then use these same names in the
Ant properties (see Section 1.3.3).

1.3 Introduction to Ant

Although we will typically skip discussing the Ant build files, as they’re almost
all the same, we will go over the one for the hello world program in some detail.

The build file for hello world is located at $BOOK/src/intro/build.xml,
where $BOOK/ is the root of the directory in which this book’s files have been
unpacked. In general, the build files will be broken out by chapter and/or sec-
tion. The goal is to make each of them relatively self contained so that they may
be used as a minimal basis for further development.

1.3.1 XML Declaration

The first thing in any Ant build file is the XML declaration, here

12 CHAPTER 1. GETTING STARTED

<?xml version="1.0" encoding="ASCII"?>
...

This just tells Ant’s XML parser that what it’s looking at is an XML file and that
the ASCII character encoding is being used for subsequent data. We chose ASCII
because we didn’t anticipate using any non-ASCII characters; we could have cho-
sen Latin1 or UTF-8 or even Big5 and written the build file in Chinese. Most XML
parsers are robust enough to infer the character encoding, but it’s always good
practice to make it explicit.

The ellipses (...) indicate ellided material that will be filled in (or not) in
continuing discussion.

1.3.2 Top-Level Project Element

The top-level element in the XML file is the project declaration, which is just

<project>
...
</project>

Given our convention for ellipses, the file actually looks as follows,

<?xml version="1.0" encoding="ASCII"?>
<project>
...
</project>

with the remaining ellipses to be filled in below.
The project element’s tag is project, and there are no required attributes.

The project declaration may optionally be given a name as the value of attribute
name, a default target to invoke as the value of attribute default, and a base
directory from which to run as the value of basedir. The base directory defaults
to the directory containing the build file, which is where we set everything up to
run from. We will not need a default target as we will specify all targets explicitly
for clarity. The name doesn’t really have a function.

1.3.3 Ant Properties

We organize Ant build files in the conventional way starting with properties,
which are declared first in the project element’s content. The properties define
constant values for reuse. Here, we have

<property name="version"
value="4.0"/>

<property name="jar"
value="build/lp-book-intro-${version}.jar"/>

1.3. INTRODUCTION TO ANT 13

The first property definition defines a property version with value 4.0 (all val-
ues are strings). The second property is named jar, with a value, defined in
terms of the first property, of build/lpb-intro-4.0.jar. note that the value
of the property version has been substituted for the substring ${version}. In
general, properties are accessed by ${...} with the property filled in for the
ellipses.

Properties may be overridden from the command line by declaring an envi-
ronment variable for the command. For example,

> ant -Djar=foo.jar jar

calls the build file, setting the value of the jar property to be the string foo.jar
(which would create a library archive called foo.jar). The value of a property in
Ant is always the first value to which it is set; further attempts to set it (as in the
body of the Ant file) will be ignored.

1.3.4 Ant Targets

Next, we have a sequence of targets, each of which groups together a sequence
of tasks. The order of targets is not important.

Clean Target

The first target we have performs cleanup.

<target name="clean">
<delete dir="build"/>

</target>
...

This is a conventional clean-up target, given the obvious name of clean. Each tar-
get has a sequence of tasks that will be executed whenever the target is invoked.
Here, the task is a delete task, which deletes the directory named build.

It is conventional to have a clean task that cleans up all of the automatically
generated content in a project. Here, the .class files generated by the compiler
(typically in a deletable subdirectory build), and the .jar file produced by the
Java archiver (typically in the top-level directory).

Compiliation/Archive Target

The next target is the compilation target, named jar,

<target name="jar">
<mkdir dir="build/classes"/>
<javac debug="yes"

debuglevel="source,lines,vars"
destdir="build/classes"
includeantruntime="false">

<compilerarg value="-Xlint:all"/>

14 CHAPTER 1. GETTING STARTED

<src path="src/"/>
</javac>
<jar destfile="${jar}">

<fileset dir="build/classes"
includes="**/*.class"/>

</jar>
</target>
...

Invoking the jar target executes three tasks, a make-directory (mkdir), java com-
pilation (javac), and Java archive creation (jar). Note that, as we exploit here,
it is allowable to have a target with the same name as a task, because Ant keeps
the namespaces separate.

The first task is the make-directory task, mkdir, takes the path for a di-
rectory and creates that directory and all of its necessary parent directories.
Here, it builds the directory build/classes. All files are relative to the base
directory, which is by default the directory containing the build.xml file, here
$BOOK/src/intro.

The second task is the Java compilation task, javac, does the actual compi-
lation. Here we have supplied the task element with four attributes. The first
two, debug and debuglevel are required to insert debugging information into
the compiled code so that we can get stack traces with line numbers when pro-
cesses crash. These can be removed to save space, but they can be very help-
ful for deployed systems, so we don’t recommend it. The debug element says
to turn debugging on, and the debuglevel says to debug the source down to
lines and variable names, which is the maximal amount of debugging informa-
tion available. The javac task may specify the character encoding used for the
Java program using the attribute encoding.

The destination directory attribute, destdir indicates where the compiled
classes will be stored. Here, the path is build/classes. Note that this is in the
directory we first created with the make-directory task. Further recall that the
build directory will be removed by the clean target.

Finally, we have a flag with attribute includeantruntime that says the Ant
runtime libraries should not be included in the classpath for the compilation. In
our opinion, this should have defaulted to false rather than true and saved us
a line in all the build files. If you don’t specify this attribute, Ant gripes and tells
you what it’s defaulting to.

The java compilation task here has content, startign with a compiler argu-
ment. The element compilerarg passes the value of the attribute value to the
underlying call to the javac executable in the JDK. Here, we specified a value
of -Xlint:all. The -X options to javac are documented by running the com-
mand javac -X. This -X option specifies lint:all, which says to turn all lint
detection on. This provides extended warnings for form, including deprecation,
unchecked casts, lack of serial version IDs, lack or extra override specifications,
and so on. These can be turned on and off one by one, but we prefer to leave
them all on and produce lint-free programs. This often involves suppressing
warnings that would otherwise be unavoidable, such as casts after object I/O or

1.3. INTRODUCTION TO ANT 15

internal uses of deprecated public methods.
When compilation requires external libraries, we may add the classpath spec-

ifications either as attributes or elements in the javac task. For instance, we can
have a classpath specification, which is much like a property definition,

<path id="classpath">
<pathelement location="${jar}"/>
<pathelement location="../../lib/icu4j-4_4_1.jar"/>

</path>

And then we’d add the element

<classpath refid="classpath"/>

as content in the javac target.
The java compilation task’s content continues a source element with tag src.

This says where to find the source code to compile. Here we specify the value
of attribute for the path to the source, path, as src/. As usual, this path is
interpreted relative to the base directory, which by default is the one holding the
build.xml file, even if it’s executed from elsewhere.

The third task is the Java archive task, jar, which packages up the com-
piled code into a single compressed file, conventionally suffixed with the string
.jar. The file created is specified as the value of the destfile attribute, here
given as ${jar}, meaning the value of the jar property will be substituted, here
build/lpb-intro-4.0.jar. As ever, this is interpreted relative to the base
project directory. Note that the jar is being created in the build directory, which
will be cleaned by the clean target.

Java Execution Task

The final target is the one that’ll run Java,

<target name="hello"
depends="jar">

<java classname="com.lingpipe.book.intro.HelloWorld"
classpath="${jar}"
fork="true">

</java>
</target>

Unlike the previous targets, this target has a dependency, as indicated by the
depends attribute on the target element. Here, the value is jar, meaning that
the jar target is invoked before the tasks in the hello target are executed. This
means that the compilation and archive tasks are always executed before the
hello target’s task.

It may seem at this point that Ant is using some notion of targets being up
to date. In fact, it’s Java’s compiler, javac, and Java’s jar command which are
doing the checking. In particular, if there is a compiled class in the compilation

16 CHAPTER 1. GETTING STARTED

location that has a later date than the source file, it is not recompiled.3 Similarly,
the jar command will not rebuild the archive if all the files from which it were
built are older than the archive itself.

In general, there can be multiple dependencies specified as target names sep-
arated by commas, which will be invoked in order before the target declaring the
dependencies. Furthermore, if the targets invoked through depends themselves
have dependencies, these will be invoked recursively.

The hello target specifies a single task as content. The task is a run-Java task,
with element tag java. The attribute classname has a value indicating which
class is executed. This must be a fully specified class with all of its package
qualifiers separated by periods (.).

To invoke a Java program, we must also have a classpath indicating where
to find the compiled code to run. In Ant, this is specified with the classpath
attribute on the java task. The value here is ${jar}, for which the value of the
Java archive for the project will be substituted. In general, there can be multiple
archives or directories containing compiled classes on the classpath, and the
classpath may be specifeid with a nested element as well as an attribute. Ant
contains an entire syntax for specifying path-like structures.

Finally, there is a flag indicated by attribute fork being set to value true,
which tells Ant to fork a new process with a new JVM in which to run the indi-
cated class.

The target hello-name that we used for the hello program with two argu-
ments consists of the following Java task.

<java classname="com.lingpipe.book.intro.HelloName"
classpath="${jar}"
fork="true">

<arg value="${first}"/>
<arg value="${last}"/>

</java>

This time, the element tagged java for the Java task has content, specifically two
argument elements. Each argument element is tagged arg and has a single at-
tribute value, the value of which is passed to the named Java programs main()
program as arguments. As a convention, our programs will all create string vari-
ables of the same name as their first action, just as in our hello program with
arguments, which we repeat here,

public class HelloName {

public static void main(String[] args) {
String first = args[0];
String last = args[1];
System.out.printf("Hello, %s %s.\n",first,last);

3This leads to a confusing situation for statics. Static constants are compiled by value, rather than
by reference if the value can be computed at compile time. These values are only recomputed when a
file containing the static constant is recompiled. If you’re changing the definition of classes on which
static constants depend, you need to recompile the file with the constants. Just clean first.

1.3. INTRODUCTION TO ANT 17

In more elaborate uses of the java task, we can also specify arguments to the
Java virtual machine such as the maximum amount of memory to use or to use
ordinary object pointer compression, set Java system properties, and so on.

1.3.5 Property Files

Properties accessed in an Ant build file may also be specified in an external Java
properties file. This is particular useful in a setting where many users access
the same build file in different environments. Typically, the build file itself is
checked into version control. If the build file specifies a properties file, each user
may have their own version of the properties file.

Properties may be loaded directly from the build file, or they may be specified
on the command line. From within an Ant build file, the file attribute in the
property element may be used to load properties. For example,

<property file="build.properties"/>

From the command line, a properties file may be specified with

> ant -propertyfile build.properties ...

The properties file is interpreted as a Java properties file. For instance, we
have supplied a demo properties file demo.properties in this chapter’s direc-
tory we can use with the named greeting program. The contents of this file is

first: Jacky
last: R

We invoke the Ant target hello-name to run the demo, specifying that the prop-
erties from the file demo.properties be read in.

> ant -propertyfile demo.properties hello-name
Hello, Jacky R.

Any command-line specifications using -D override properties. For example, we
can override the value of first,

> ant -Dfirst=Brooks -propertyfile demo.properties hello-name
Hello, Brooks R.

Parsing Properties Files

The parser for properties file is line oriented, allowing the Unix (\n), Macintosh
(\r\n Windows (\r) line-termination sequences. Lines may be continued like on
the shell with a backslash character.

Lines beginning with the hash sign # or exclamation point (!) are taken to be
comments and ignored. Blank lines are also ignored.

Each line is interpreted as a key followed by a value. The characters equal
sign (=), colon (:) or a whitespace character (there are no line terminators within
lines; line parsing has already been done).

Character escapes, including Unicode escapes, are parsed pretty much as
in Java string literals with a bit more liberal syntax, a few additional escapes
(notably for the colon and equals sign) and some excluded characters (notably
backspace).

18 CHAPTER 1. GETTING STARTED

1.3.6 Precedence of Properties

In Ant, whichever property is read first survives. The command line properties
precede any other properties, followed by properties read in from a command-
line properties file, followed by the properties read in from Ant build files in the
order they appear.

Chapter 2

Java Basics

In this appendix, we go over some of the basics of Java that are particularly
relevant for text and numerical processing.

2.1 Numbers

In this section, we explain different numerical bases, including decimal, octal,
hexadecimal and binary.

2.1.1 Digits and Decimal Numbers

Typically we write numbers in the Arabic form (as opposed to, say, the Roman
form), using decimal notation. That is, we employ sequences of the ten digits 0,
1, 2, 3, 4, 5, 6, 7, 8, 9.

A number such as 23 may be decomposed into a 2 in the “tens place” and a
3 in the “ones place”. What that means is that 23 = (2× 10)+ (3× 1); similarly
4700 = (4×1000)+ (7×100). We can write these equivalently as 23 = 2×101+
3 × 100 and 4700 = (4 × 103) + (7 × 102). Because of the base of the exponent,
decimal notation is also called “base 10”.

The number 0 is special. It’s the additive identity, meaning that for any num-
ber x, 0+ x = x + 0 = x.

We also conventionally use negative numbers and negation. For instance, -22
is read as “negative 22”. We have to add 22 to it to get back to zero. That is,
negation is the additive inverse, so that x + (−x) = (−x)+ x = 0.

The number 1 is also special. 1 is the multiplicative identity, so that 1× x =
x×1 = x. Division is multiplicative inverse, so that for all numbers x other than
0, xx = 1.

We also use fractions, written after the decimal place. Fractions are defined
using negative exponents. For instance .2 = 2× 10−1 = 2

101 , and .85 = .8× 10−1+
.5× 10−2.

For really large or really small numbers, we use scientific notation, which
decomposes a value into a number times an exponent of 10. For instance, we
write 4700 as 4.7 × 103 and 0.0047 as 4.7 × 10−3. In computer languages, 4700

19

20 CHAPTER 2. JAVA BASICS

and 0.0047 are typically written as 4.7E+3 and 4.7E-3. Java’s floating point
numbers may be input and output in scientific notation.

2.1.2 Bits and Binary Numbers

Rather than the decimal system, computers work in the binary system, where
there are only two values. In binary arithmetic, bits play the role that digits play
in the decimal system. A bit can have the value 0 or 1.

A number in binary notation consists of a sequence of bits (0s and 1s). Bits
in binary binary numbers play the same role as digits in decimal numbers; the
only difference is that the base is 2 rather than 10. For instance, in binary, 101 =
(1 × 23) + (0 × 22) + (1 × 20), which is 7 in decimal notation. Fractions can be
handled the same way as in decimal numbers. Scientific notation is not generally
used for binary numbers.

2.1.3 Octal Notation

Two other schemes for representing numbers are common in computer lan-
guages, octal and hexadecimal. As may be gathered from its name, octaloctal
is base 8, conventionally written using the digits 0–7. Numbers are read in the
usual way, so that octal 43 is expanded as (4 × 81) + (3 × 80), or 35 in decimal
notation.

In Java (and many other computer languages), octal notation is very confus-
ing. Prefixing a numeric literal with a 0 (that’s a zero, not a capital o) leads to it
being interpreted as octal. For instance, the Java literal 043 is interpreted as the
decimal 35.

2.1.4 Hexadecimal Notation

Hexadecimal is base 16, and thus we need some additional symbols. The first 16
numbers in hex are conventionally written

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

In hexadecimal, the value of A is what we’d write as 10 in decimal notation.
Similarly, C has the value 12 and F the value 15. We read off compound numbers
in the usual way, so that in hex, 93 = (9 × 161) + (3 × 160), or 138 in decimal
notation. Similarly, in hex, the number B2F = (11× 162)+ (2× 161)+ (15× 160),
or 2863 in decimal notation.

In Java (and other languages), hexadecimal numbers are distinguished by pre-
fixing them with 0x. For example, 0xB2F is the hexadecimal equivalent of the
decimal 2863.

2.1.5 Bytes WTF?

The basic unit of organization in contemporary computing systems is the byte.
By this we mean it’s the smallest chunk of data that may be accessed programat-
ically, though in point of fact, hardware often groups bytes together into larger

2.1. NUMBERS 21

groups that it operates on all at once. For instance, 32-bit architectures often
operate on a sequence of 4 bytes at once and 64-bit architectures on 8 bytes
at once. The term “word” is ambiguously applied to a sequence of two bytes,
or to the size of the sequence of bytes at which a particular piece of hardware
operates.

A bytebyte is a sequence of 8 bits, and is sometimes called an octet for that
reason. Thus there are 256 distinct bytes, ranging from 00000000 to 11111111.
The bits are read from the high (left) end to the low (right end).

In Java, the byte primitive type is signed. Any number between 00000000
and 01111111 is interpreted as a binary number with decimal value between 0
and 127 (inclusive). If the high order bit is 1, the value is interpreted as negative.
The negative value is value of the least significant 7 bits minus 128. For instance,
10000011 is interpreted as 3 − 128 = −125, because 00000011 (the result of
setting the high bit to 0) is interpreted as 3.

The unsigned value of a byte b is returned by (b < 0 ? (b + 256) : b).
The primitive data type for computers is a sequence of bytes. For instance,

the contents of a file is a sequence of bytes, and so is the response from a web
server to an HTTP request for a web page. Most importantly for using LingPipe,
sequences of characters are represented by sequences of bytes.

2.1.6 Code Example: Integral Number Bases

There is a simple program in the code directory for this appendix

src/java/src/com/lingpipe/book/appjava/ByteTable.java

for displaying bytes, their corresponding unsigned value, and the conversion of
the unsigned value to octal, hexadecimal and binary notations. The work is done
by the loop

for (int i = 0; i < 256; ++i) {
byte b = (byte) i; // overflows if i > 127
int k = b < 0 ? (b + 256) : b;
System.out.printf("%3d %5d %3s %2s %8s\n",

k, b, Integer.toOctalString(k),
Integer.toHexString(k),
Integer.toBinaryString(k));

}

This code may be run from Ant by first changing into this chapter’s directory
and then invoking the byte-table target,

> cd $BOOK/src/java

> ant byte-table

The output, after trimming the filler generated by Ant, looks like

BASES
10 -10 8 16 2

22 CHAPTER 2. JAVA BASICS

0 0 0 0 0
1 1 1 1 1
2 2 2 2 10

...
9 9 11 9 1001
10 10 12 a 1010
11 11 13 b 1011

...
127 127 177 7f 1111111
128 -128 200 80 10000000
129 -127 201 81 10000001
...
254 -2 376 fe 11111110
255 -1 377 ff 11111111

2.1.7 Other Primitive Numbers

In addition to bytes, Java provides three other primitive integer types. Each has a
fixed width in bytes. Values of type short occupy 2 bytes, int 4 bytes, and long
8 bytes. All of them use the same signed notation as byte, only with more bits.

2.1.8 Floating Point

Java has two floating point types, float and double. A float is represented
with 4 bytes and said to be single precision, whereas a double is represented
with 8 bytes and said to be double precision.

In addition to finite values, Java follows the IEEE 754 floating point standard
in providing three additional values. There is positive infinity, conventionally ∞
in mathematical notation, and referenced for floating point values by the static
constant Float.POSITIVE_INFINITY in Java. There is also negative infinity, −∞,
referenced by the constant Float.NEGATIVE_INFINITY. There is also an “unde-
fined” value, picked out by the constant Float.NaN. There are corresponding
constants in Double with the same names.

If any value in an expression is NaN, the result is NaN. A NaN result is also
returned if you try to divide 0 by 0, subtract an infinite number from itself
(or equivalently add a positive and negative infinite number), divide one infinite
number by another, or multiple an infinite number by 0.

Both n/Double.POSITIVE_INFINITY and n/Double.NEGATIVE_INFINITY
evaluate to 0 if n is finite and non-negative. Conversely, n/0 evaluates to ∞
if n is positive and −∞ if n is negative. The result of multiplying two infinite
number is ∞ if they are both positive or both negative, and −∞ otherwise. If
Double.POSITIVE_INFINITY is added to itself, the result is itself, and the same
for Double.NEGATIVE_INFINITY. If one is added to the other, the result is NaN.
The negation of an infinite number is the infinite number of opposite sign.

Monotonic transcendental operations like exponentiation and logarithms also
play nicely with infinite numbers. In particular, the log of a negative number is

2.2. OBJECTS 23

NaN, the log of 0 is negative infinity, and the log of positive infinity is positive
infinity. The exponent of positive infinity is positive infinity and the exponent of
negative infinity is zero.

2.2 Objects

Every object in Java inherits from the base class Object. There are several kinds
of methods defined for Object, which are thus defined on every Java object.

2.2.1 Equality

Java distinguishes reference equality, written ==, from object equality. Reference
equality requires that the two variables refer to the exact same object. Some
objects may be equal, even if they are not identical. To handle this possibility,
the Object class defines a method equals(Object) returning a boolean result.

In the Object class itself, the equality method delegates to reference equality.
Thus subclasses that do not override Object’s implementation of equality will
have their equality conditions defined by reference equality.

Subclasses that define their own notion of equality, such as String, should do
so consistently. Specifically, equality should form an equivalence relation. First,
equality should be reflexive, so that every object is equal to itself; x.equals(x)
is always true for non-null x. Second, equality should be symmetric, so if x is
equal to y, y is equal to x; x.equals(y) is true if and only if y.equals(x) is
true. Third, equality should be transitive, so that if x is equal to y and y is equal
to z, then x is equal to z; x.equals(y) and y.equals(z) both being true imply
x.equals(z) is true.

2.2.2 Hash Codes

The Object class also defines a hashCode() method, returning an int value.
This value is typically used in collections as a first approximation to equality.
Thus the specification requires consistency with equality in that if two objects
are equal as defined by equals(), they must have the same hash code.

In order for collections and other hash-code dependent objects to function
properly, hash codes should be defined

Although the implementation of hashCode() is not determined for Object
by the language specification, it is required to be consistent with equality. Thus
any two objects that are reference equal must have the same hash code.

2.2.3 String Representations

The Object class defines a toString() method returning a String. The default
behavior is to return the name of the class followed by a hexadecimal representa-
tion of its hash code. This method should be overridden in subclasses primarily
to help with debugging. Some subclasses use toString() for real work, too, as
we will see with StringBuilder.

24 CHAPTER 2. JAVA BASICS

2.2.4 Other Object Methods

Determining an Object’s Class

The runtime class of an object is returned by the getClass() method. This is
particularly useful for deserialized objects and other objects passed in whose
class might not be known. It is neither very clear nor very efficient to exploit
getClass() for branching logic. Note that because generics are erased at run-
time, there is no generic information in the return.

Finalization

At some point after there are no more references to an object left alive in a
program, it will be finalized by a call to finalize() by the garbage collector.
Using finalization is tricky and we will not have cause to do so in this book. For
some reason, it was defined to throw arbitrary throwables (the superinterface of
exceptions).

Threading

Java supports multithreaded applications as part of its language specification.
The primitives for synchronization are built on top of the Object class. Each
object may be used as a lock to synchronize arbitrary blocks of code using
the synchronized keyword. Methods may also be marked with synchornized,
which is equivalent to explicitly marking their code block as synchronized.

In addition, there are three wait() methods that cause the current thread to
pause and wait for a notification, and two notify() methods that wake up (one
or all) threads waiting for this object.

Rather than dealing with Java concurrency directly, we strongly recommend
the java.util.concurrent library for handling threading of any complexity
beyond exclusive synchronization.

2.2.5 Object Size

There’s no getting around it – Java objects are heavy. The lack of a C-like struct
type presents a serious obstacle to even medium-performance computing. To get
around this problem, in places where you might declare an array of struct type
in C, LingPipe employs parallel arrays rather than arrays of objects.

The language specification does not describe how objects are represented on
disk, and different JVMs may handle things differently. We’ll discuss how the
32-bit and 64-bit Sun/Oracle JVMs work.

Header

Objects consist of a header and the values of their member variables. The header
itself consists of two references. The first establishes the object’s identity. This
identity reference is used for reference equality (==) and thus for locking, and
also as a return value for the hashCode() implementation in Object. Even if an

2.2. OBJECTS 25

object is relocated in memory, its reference identity and locking properties re-
main fixed. The second piece of information is a reference to the class definition.

A reference-sized chunk of memory is used for each piece of information. In
a a 32-bit architecture, references are four bytes. In 64-bit architectures, they are
8 bytes by default.

As of build 14 of Java SE 6, the -XX:+UseCompressedOops option may be
used as an argument to java on 64-bit JVMs to instruct them to compress their
ordinary object pointers (OOP) to 32-bit representations. This saves an enormous
amount of space, cutting the size of a simple Object in half. It does limit the
heap size to around four billion objects, which should be sufficient for most
applications.

Member Values

Additional storage is required for member variables. Each primitive member
variable requires at least the amount of storage required for the primitive (e.g., 1
byte for byte, 2 bytes for short, and 8 bytes for double). References will be 4
bytes in a 32-bit JVM and a 64-bit JVM using compressed pointers, and 8 bytes in
the default 64-bit JVM.

To help with word alignment, values are ordered in decreasing order of size,
with doubles and longs coming first, then references, then ints and floats, down
to bytes.

Finally, the object size is rounded up so that its overall size is a multiple of
8 bytes. This is so all the internal 8-byte objects inside of an object line up on
8-byte word boundaries.

Static variables are stored at the class level, not at the individual object level.

Subclasses

Subclasses reference their own class definition, which will in turn reference the
superclass definition. They lay their superclass member variables out the same
way as their superclass. They then lay out their own member variables. If the
superclass needed to be padded, some space is recoverable by reordering the
subclass member variables slightly.

2.2.6 Number Objects

For each of the primitive number types, there is a corrsponding class for repre-
senting the object. Specifically, the number classes for integers are Byte, Short,
Integer, and Long. For floating point, there is Float and Double. These objects
are all in the base package java.lang, so they do not need to be explicitly im-
ported before they are used. Objects are useful because many of the underlying
Java libraries, particular the collection framework in java.util, operate over
objects, rather than over primitives.1

1Open source libraries are available for primitive collections. The Jakarta Commons Primitives and
Carrot Search’s High Performance Primitive Collections are released under the Apache license, and
GNU Trove under the Lessger GNU Public License (LGPL).

26 CHAPTER 2. JAVA BASICS

Each of these wrapper classes holds an immutable reference to an object of
the underlying type. Thus the class is said to “box” the underlying primitive
(as in “put in a box”). Each object has a corresponding method to return the
underlying object. For instance, to get the underlying byte from a Byte object,
use byteValue().

Two numerical objects are equal if and only if they are of the same type and
refer to the same primitive value. Each of the numerical object classes is both
serializable and comparable, with comparison being defined numerically.

Constructing Numerical Objects

Number objects may be created using one-argument constructors. For instance,
we can construct an object for the integer 42 using new Integer(42).

The problem with construction is that a fresh object is allocated for each call
to new. Because the underlying references are immutable, we only need a single
instance of each object for each underlying primitive value. The current JVM
implementations are smart enough to save and reuse numerical objects rather
than creating new ones. The preferred way to acquire a reference to a numerical
object is to use the valueOf() static factory method from the approrpiate class.
For example, Integer.valueOf(42) returns an object that is equal to the result
of new Integer(42), but is not guaranteed to be a fresh instance, and thus may
be reference equal (==) to other Integer objects.

Autoboxing

Autoboxing automatically provides an object wrapper for a primitive type when
a primitive expression is used where an object is expected. For instance, it is
legal to write

Integer i = 7;

Here we require an Integer object to assign, but the expression 7 returns an int
primitive. The compiler automatically boxes the primitive, rendering the above
code equivalent to

Integer i = Integer.valueOf(7);

Autoboxing also applies in other contexts, such as loops, where we may write

int[] ns = new int[] { 1, 2, 3 };
for (Integer n : ns) { ... }

Each member of the array visited in the loop body is autoboxed. Boxing is rela-
tively expensive in time and memory, and should be avoided where possible.

The Java compiler also carries out auto-unboxing, which allows things like

int n = Integer.valueOf(15);

This is equivalent to using the intValue() method,

Integer nI = Integer.valueOf(15);
int n = nI.intValue();

2.3. ARRAYS 27

Number Base Class

Conveniently, all of the numerical classes extend the abstract class Number.
The class Number simply defines all of the get-value methods, byteValue(),
shortValue(), ..., doubleValue(), returning the corresponding primitive type.
Thus we can call doubleValue() on an Integer object; the return value is equiv-
alent to casting the int returned by intValue() to a double.

2.3 Arrays

Arrays in Java are objects. They have a fixed size that is determined when
they are constructed. Attempts to set or get objects out of range raises an
IndexOutOfBoundsException. This is much better behaved than C, where out
of bounds indexes may point into some other part of memory that may then be
inadvertently read or corrupted.

In addition to the usual object header, arrays also store an integer length in
4 bytes. After that, they store the elements one after the other. If the values
are double or long values or uncompressed references, there is an additional 4
bytes of padding after the length so that they start on 8-byte boundaries.

2.4 Synchronization

LingPipe follows to fairly simple approaches to synchronization, which we de-
scribe in the next two sections. For more information on synchronization, see
Goetz et al.’s definitive book Java Concurrency in Practice (see Appendix B.2.2
for a full reference).

2.4.1 Immutable Objects

Wherever possible, instances of LingPipe classes are immutable. After they are
constructed, immutable objects are completely thread safe in the sense of allow-
ing arbitrary concurrent calls to its methods.

(Effectively) Final Member Variables

In LingPipe’s immutable objects, almost all member variabls are declared to be
final or implemented to behave as if they are declared to be final.

Final objects can never change. Once they are set in the constructor, they
always have the same value.

LingPipe’s effectively final variables never change value. In this way, they dis-
play the same behavior as the hash code variable in the implementation of Java’s
String. In the source code for java.lang.String in Java Standard Edition ver-
sion 1.6.18, authored by Lee Boynton and Arthur van Hoff, we have the following
four member variables:

private final char value[];

28 CHAPTER 2. JAVA BASICS

private final int offset;
private final int count;
private int hash;

The final member variables value, offset, and count represent the characte
slice on which the string is based. This is not enough to guarantee true im-
mutability, because the values in the value array may change. The design of the
String class guarantees that they don’t. Whenever a string is constructed, its
value array is derived from another string, or is copied. Thus no references to
value ever escape to client code.

The hash variable is not final. It is initialized lazily when the hashCode()
method is called if it is has not already been set.

public int hashCode() {
int h = hash;
if (h == 0) {

int off = offset;
char val[] = value;
int len = count;
for (int i = 0; i < len; i++) {

h = 31*h + val[off++];
}
hash = h;

}
return h;

}

Note that there is no synchronization. The lack of synchronization and public
nature of hashCode() exposes a race condition. Specifically, two threads may
concurrently call hashCode() and each see the hash code variable hash with
value 0. They would then both enter the loop to compute and set the variable.
This is safe because the value computed for hash only depends on the truly final
variables offset, value, and count.

Safe Construction

The immutable objects follow the safe-construction practice of not releasing ref-
erences to the object being constructed to escape during construction. Specifi-
cally, we do not supply the this variable to other objects within constructors.
Not only must we avoid sending a direct reference through this, but we can
also not let inner classes or other data structures containing implicit or explicit
references to this to escape.

2.4.2 Read-Write Synchronization

Objects which are not immutable in LingPipe require read-write synchronization.
A read method is one that does not change the underlying state of an object. In
an immutable object, all methods are read methods. A write method may change
the state of an object.

2.4. SYNCHRONIZATION 29

Read-write synchronization allows concurrent read operations, but ensures
that writes do not execute concurrently with reads or other writes.

Java’s Concurrency Utilities

Java’s built-in synchronized keyword and block declarations use objects for
simple mutex-like locks. Non-static methods declared to be synchronized use
their object instance for synchronization, whereas static methods use the object
for the class.

In the built-in java.util.concurrent library, there are a number of lock
interfaces and implementations in the subpackage locks.

The util.concurrent base interface Lock generalizes Java’s built-in
synchronized blocks to support more fine-grained forms of lock acquisition
and relaese, allowing operations like acquisitions that time out.

The subinterface ReentrantLock adds reentrancy to the basic lock mecha-
nism, allowing the same thread to acquire the same lock more than once without
blocking.

The util.concurrent library also supplies an interface ReadWriteLock for
read-write locks. It contains two methods, readLock() and writeLock(), which
return instances of the interface Lock.

There is only a single implementation of ReadWriteLock, in the class
ReentrantReadWriteLock. Both of the locks in the implementation are de-
clared to be reentrant (recall that a subclass may declare more specific return
types than its superclass or the interfaces it implements). More specifically, they
are declared to return instances of the static classes ReadLock and WriteLock,
which are nested in ReentrantReadWriteLock.

The basic usage of a read-write lock is straightforward, though configuring
and tuning its behavior is more involved. We illustrate the basic usage with the
simplest possible case, the implementation of a paired integer data structure.
The class has two methods, a paired set and a paired get, that deal with two
values at once.

Construction simply stores a new read write lock, which itself never changes,
so may be declared final.

private final ReadWriteLock mRwLock;
private int mX, mY;

public SynchedPair(boolean isFair) {
mRwLock = new ReentrantReadWriteLock(isFair);

}

The set method acquires the write lock before setting both values.

public void set(int x, int y) {
try {

mRwLock.writeLock().lock();
mX = x;
mY = y;

} finally {

30 CHAPTER 2. JAVA BASICS

mRwLock.writeLock().unlock();
}

}

Note that it releases the lock in a finally block. This is the only way to guar-
antee, in general, that locks are released even if the work done by the method
raises an exception.

The get method is implemented with the same idiom, but using the read lock.

public int[] xy() {
try {

mRwLock.readLock().lock();
return new int[] { mX, mY };

} finally {
mRwLock.readLock().unlock();

}
}

Note that it, too, does all of its work after the lock is acquired, returning an
array consisting of both values. If we’d tried to have two separate methods, one
returning the first integer and one returning the second, there would be no way
to actually get both values at once in a synchronized way without exposing the
read-write lock itself. If we’d had two set and two get methods, one for each
component, we’d have to use the read-write lock on the outside to guarantee the
two operations always happened together.

We can test the method with the following command-line program.

public static void main(String[] args) throws
InterruptedException {
final SynchedPair pair = new SynchedPair(true);
Thread[] threads = new Thread[32];
for (int i = 0; i < threads.length; ++i)

threads[i] = new Thread(new Runnable() {
public void run() {

for (int i = 0; i < 2000; ++i) {
int[] xy = pair.xy();
if (xy[0] != xy[1])

System.out.println("error");
pair.set(i,i);
Thread.yield();

}
}

});
for (int i = 0; i < threads.length; ++i)

threads[i].start();
for (int i = 0; i < threads.length; ++i)

threads[i].join();
System.out.println("OK");

}

2.4. SYNCHRONIZATION 31

It constructs a SynchedPair and assigns it to the variable pair, which is del-
cared to be final so as to allow its usage in the anonymous inner class runnable.
It then creates an array of threads, setting each one’s runnable to do a sequence
of paired sets where the two values are the same. It tests first that the values it
reads are coherent and writes out an error message if they are not. The runnables
all yield after their operations to allow more interleaving of the threads in the
test. After constructing the threads with anonymous inner class Runnable im-
plementations, we start each of the threads and join them so the message won’t
print and JVM won’t exit until they’re ll done.

The Ant target synched-pair runs the demo.

> ant synched-pair

OK

The program takes about 5 seconds to run on our four-core notebook.

32 CHAPTER 2. JAVA BASICS

Chapter 3

Characters and Strings

Following Java, LingPipe uses Unicode character representations. In this chap-
ter, we describe the Unicode character set, discuss character encodings, and how
strings and other character sequences are created and used in Java.

3.1 Character Encodings

For processing natural language text, we are primarily concerned with the rep-
resentation of characters in natural languages. A set of (abstract) characters is
known as a character set. These range from the relatively limited set of 26 char-
acters (52 if you count upper and lower case characters) used in English to the
tens of thousands of characters used in Chinese.

3.1.1 What is a Character?

Precise definitions of characters in human writing systems is a notoriously tricky
business.

Types of Character Sets

Characters are used in language to represent sounds at the level of phonemic seg-
ments (e.g., Latin), syllables (e.g., Japanese Hirigana and Katakana scripts, Linear
B, and Cherokee), or words or morphemes, also known as logograms (e.g., Chi-
nese Han characters, Egyptian hieroglyphics).

These distinctions are blurry. For instance, both Chinese characters and Egyp-
tian hieroglyphs are typically pronounced as single syllables and words may re-
quire multiple characters.

Abstraction over Visualization

One problem with dealing with characters is the issue of visual representation
versus the abstraction. Character sets abstract away from the visual representa-
tions of characters.

33

34 CHAPTER 3. CHARACTERS AND STRINGS

A sequence of characters is also an abstract concept. When visualizing a
sequence of characters, different writing systems lay them out differently on the
page. When visualizing a sequence of characters, we must make a choice in how
to lay them out on a page. English, for instance, traditionally lays out a sequence
of characters in left to right order horizontally across a page. Arabic, on the
other hand, lays out a sequence of characters on a page horizontally from right
to left. In contast, Japanese was traditionally set from top to bottom with the
following character being under the preceding characters.

English stacks lines of text from top to bottom, whereas traditional Japanese
orders its columns of text from right to left.

When combining multiple pages, English has pages that “turn” from right to
left, whereas Arabic and traditional Japanese conventionally order their pages in
the opposite direction. Obviously, page order isn’t relevant for digital documents
rendered a page at a time, such as on e-book readers.

Even with conventional layouts, it is not uncommon to see caligraphic writing
or signage laid out in different directions. It’s not uncommon to see English
written from top to bottom or diagonally from upper left to lower right.

Compound versus Primitive Characters

Characters may be simple or compound. For instance, the character ö used in
German is composed of a plain Latin o character with an umlaut diacritic on top.
Diacritics are visual representations added to other characters, and there is a
broad range of them in European languages.

Hebrew and Arabic are typically written without vowels. In very formal writ-
ing, vowels may be indicated in these languages with diacritics on the conso-
nants. Devanagari, a script used to write languages including Hindi and Nepali,
includes pitch accent marks.

The Hangul script used for Korean is a compound phonemic system often
involving multiple glyphs overlaid to form syllabic units.

3.1.2 Coded Sets and Encoding Schemes

Eventually, we need to represent sequences of characters as sequences of bytes.
There are two components to a full character encoding.

The first step is to define a coded character set, which assigns each character
in the set a unique non-negative integer code point. For instance, the English
character ’A’ (capital A) might be assigned the code point 65 and ’B’ to code
point 66, and so on. Code points are conventionally written using hexadecimal
notation, so we would typically use the hexadecmial notation 0x41 instead of the
decimal notation 65 for capital A.

The second step is to define a character encoding scheme that maps each
code point to a sequence of bytes (bytes are often called octets in this context).

Translating a sequence of characters in the character set to a sequence of
bytes thus consists of first translating to the sequence of code points, then en-
coding these code points into a sequence of bytes.

3.1. CHARACTER ENCODINGS 35

3.1.3 Legacy Character Encodings

We consider in this section some widely used character encodings, but because
there are literally hundreds of them in use, we can’t be exhaustive.

The characters in these and many other character sets are part of Unicode.
Because LingPipe and Java both work with Unicode, typically the only thing you
need to know about a character encoding in order to convert data in that encod-
ing to Unicode is the name of the character encoding.

ASCII

ASCII is a character encoding consisting of a small character set of 128 code
points. Being designed by computer scientists, the numbering starts at 0, so the
code points are in the range 0–127 (inclusive). Each code point is then encoded as
the corresponding single unsigned byte with the same value. It includes charac-
ters for the standard keys of an American typewriter, and also some “characters”
representing abstract typesetting notions such as line feeds and carriage returns
as well as terminal controls like ringing the “bell”.

The term “ASCII” is sometimes used informally to refer to character data in
general, rather than the specific ASCII character encoding.

Latin1 and the Other Latins

Given that ASCII only uses 7 bits and bytes are 8 bits, the natural extension
is to add another 128 characters to ASCII. Latin1 (officially named ISO-8859-1)
did just this, adding common accented European characters to ASCII, as well as
punctuation like upside down exclaimation points and question marks, French
quote symbols, section symbols, a copyright symbol, and so on.

There are 256 code points in Latin1, and the encoding just uses the corre-
sponding unsigned byte to encode each of the 256 characters numbered 0–255.

The Latin1 character set includes the entire ASCII character set. Conveniently,
Latin1 uses the same code points as ASCII for the ASCII characters (code points
0–127). This means that every ASCII encoding is also a Latin1 encoding of exactly
the same characters.

Latin1 also introduced ambiguity in coding, containing both an ’a’ character,
the ’¨’ umlaut character, and their combination ’ä’. It also includes all of ’a’, ’e’,
and the compound ’æ’, as well as ’1’, ’/’, ’2’ and the compound 1

2 .
With only 256 characters, Latin1 couldn’t render all of the characters in use

in Indo-European languages, so a slew of similar standards, such as Latin2 (ISO-
8859-2) for (some) Eastern European languages, Latin3 (ISO-8859-1) for Turkish,
Maltese and Esperanto, up through Latin16 (ISO-8859-16) for other Eastern Euro-
pean languages, new styles of Western European languages and Irish Gaelic.

Windows 1252

Microsoft Windows, insisting on doing things its own way, uses a character set
known as Windows-1252, which is almost identical to Latin1, but uses code

36 CHAPTER 3. CHARACTERS AND STRINGS

points 128–159 as graphical characters, such as curly quotes, the euro and yen
symbols, and so on.

Big5 and GB(K)

The Big5 character encoding is used for traditional Chinese scripts and the GB
(more recently GBK) for simplified Chinese script. Because there are so many
characters in Chinese, both were designed to use a fixed-width two-byte encoding
of each character. Using two bytes allows up to 216 = 65,536 characters, which
is enough for most of the commonly used Chinese characters.

3.1.4 Unicode

Unicode is the de facto standard for character sets of all kinds. The latest version
is Unicode 5.2, and it contains over 1,000,000 distinct characters drawn from
hundreds of languages (technically, it assumes all code points are in the range
0x0 to 0x10FFFF (0 to 1,114,111 in decimal notation).

One reason Unicode has been so widely adopted is that it contains almost all
of the characters in almost all of the widely used character sets in the world. It
also happens to have done so in a thoughful and well-defined manner.

Conveniently, Unicode’s first 256 code points (0–255) exactly match those of
Latin1, and hence Unicode’s first 128 code points (0–127) exactly match those of
ASCII.

Unicode code points are conventionally displayed in text using a hexadecimal
representation of their code point padded to at least four digits with initial ze-
roes, prefixed by U+. For instance, code point 65 (hex 0x41), which represents
capital A in ASCII, Latin1 and Unicode, is conventionally written U+0041 for Uni-
code.

The problem with having over a million characters is that it would require
three bytes to store each character (224 = 16,777,216). This is very wasteful for
encoding languages based on Latin characters like Spanish or English.

Unicode Transformation Formats

There are three standard encodings for Unicode code points that are specified
in the Unicode standard, UTF-8, UTF-16, and UTF-32 (“UTF” stands for “Unicode
transformation format”).1 The numbers represent the coding size; UTF-8 uses
single bytes, UTF-16 pairs of bytes, and UTF-32 quadruples of bytes.

UTF-32

The UTF-32 encoding is fixed-width, meaning each character occupies the same
number of bytes (in this case, 4). As with ASCII and Latin1, the code points are
encoded directly as bits in base 2.

1There are also non-standard encodings of (subsets of) Unicode, like Apache Lucene’s and the one
in Java’s DataOutput.writeUTF() method.

3.1. CHARACTER ENCODINGS 37

There are actually two UTF-32 encodings, UTF-32BE and UTF-32LE, depending
on the order of the four bytes making up the 32 bit blocks. In the big-endian
(BE) scheme, bytes are ordered from left to right from most significant to least
significant digits (like for bits in a byte).

In the little-endian (LE) scheme, they are ordered in the opposite direction. For
instance, in UTF-32BE, U+0041 (capital A), is encoded as 0x00000041, indicating
the four byte sequence 0x00, 0x00, 0x00, 0x41. In UTF32-LE, it’s encoded as
0x41000000, corresponding to the byte sequence 0x41, 0x00, 0x00, 0x00.

There is also an unmarked encoding scheme, UTF-32, which tries to infer
which order the bytes come in. Due to restrictions on the coding scheme, this is
usually possible. In the simplest case, 0x41000000 is only legal in little endian,
because it’d be out of range in big-endian notation.

Different computer processors use different endian-ness internally. For ex-
ample, Intel and AMD x86 architecture is little endian, Motorola’s PowerPC is big
endian. Some hardware, such as Sun Sparc, Intel Itanium and the ARM, is called
bi-endian, because endianness may be switched.

UTF-16

The UTF-16 encoding is variable length, meaning that different code points use
different numbers of bytes. For UTF-16, each character is represented using
either two bytes (16 bits) or four bytes (32 bits).

Because there are two bytes involved, their order must be defined. As with
UTF-32, UTF-16BE is the big-endian order and UTF-16LE the little-endian order.

In UTF-16, code points below U+10000 are represented using a pair of bytes
using the natural unsigned encodings. For instance, our old friend U+0041 (cap-
ital A) is represented in big endian as the sequence of bytes 0x00, 0x41.

Code points at or above U+10000 are represented using four bytes arranged in
two pairs. Calculating the two pairs of bytes involves bit-twiddling. For instance,
given an integer code point codepoint, the following code calculates the four
bytes. 2

int LEAD_OFFSET = 0xD800 - (0x10000 >> 10);
int SURROGATE_OFFSET = 0x10000 - (0xD800 « 10) - 0xDC00;

int lead = LEAD_OFFSET + (codepoint >> 10);
int trail = 0xDC00 + (codepoint & 0x3FF);

int byte1 = lead >>> 8;
int byte2 = lead & 0xFF;
int byte3 = trail >>> 8;
int byte4 = trail & 0xFF;

Going the other way around, given the four bytes (as integer variables), we can
calculate the code point with the following code.

2This code example and the following one for decoding were adapted from the example code
supplied by the Unicode Consortium in their FAQ at

http://unicode.org/faq/utf_bom.html

http://unicode.org/faq/utf_bom.html

38 CHAPTER 3. CHARACTERS AND STRINGS

int lead = byte1 « 8 | byte2;
int trail = byte3 « 8 | byte4;

int codepoint = (lead « 10) + trail + SURROGATE_OFFSET;

Another way to view this transformation is through the following table.3

Code Point Bits UTF-16 Bytes

xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx
000uuuuuxxxxxxxxxxxxxxxx 110110ww wwxxxxxx 110111xx xxxxxxxx

Here wwww = uuuuu - 1 (interpreted as numbers then recoded as bits). The first
line indicates is that if the value fits in 16 bits, those 16 bits are used as is. Note
that this representation is only possible because not all code points between 0
and 216−1 are legal. The second line indicates that if we have a code point above
U+10000, we strip off the high-order five bits uuuuu and subtract one from it to
get four bits wwww; again, this is only possible because of the size restriction on
uuuuu. Then, distribute these bits in order across the four bytes shown on the
right. The constants 110110 and 110111 are used to indicate what are known as
surrogate pairs.

Any 16-bit sequence starting with 110110 is the leading half of a surrogate
pair, and any sequence starting with 110111 is the trailing half of a surrogate
pair. Any other sequence of initial bits means a 16-bit encoding of the code
point. Thus it is possible to determine by looking at a pair of bytes whether we
have a whole character, the first half of a character represented as a surrogate
pair, or the second half of a character represented as a pair.

UTF-8

UTF-8 works in much the same way as UTF-16 (see the previous section), only us-
ing single bytes as the minimum code size. We use the table-based visualization
of the encoding scheme.4

Code Point Bits UTF-8 Bytes

0xxxxxxxx 0xxxxxxx
00000yyyyyxxxxxx 110yyyyy 10xxxxxx
zzzzyyyyyyxxxxxx 1110zzzz 10yyyyyy 10xxxxxx

000uuuuuzzzzyyyyyyxxxxxx 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx

Thus 7-bit ASCII values, which have values from U+0000 to U+007F, are encoded
directly in a single byte. Values from U+0080 to U+07FF are represented with two
bytes, values between U+0800 and U+FFFF with three bytes, and values between
U+10000 and U+10FFFF with four bytes.

Non-Overlap Principle

The UTF-8 and UTF-16 encoding schemes obey what the Unicode Consortium
calls the “non-overlap principle.” Technically, the leading, continuing and trailing

3Adapted from Unicode Standard Version 5.2, Table 3-5.
4Adapted from Unicode Standard Version 5.2, Table 3-6.

3.1. CHARACTER ENCODINGS 39

code units (bytes in UTF-8, pairs of bytes in UTF-16) overlap. Take UTF-8 for
example. Bytes starting with 0 are singletons, encoding a single character in the
range U+0000 to U+007F. Bytes starting with 110 are the leading byte in a two-
byte sequence representing a character in the range U+0080 to U+07FF. Similarly,
bytes starting with 1110 represent the leading byte in a three-byte sequence, and
11110 the leading byte in a four-byte sequence. Any bytes starting with 10 are
continuation bytes.

What this means in practice is that it is possible to reconstruct characters
locally, without going back to the beginning of a file. At most, if a byte starts
with 10 you have to look back up to three bytes to find the first byte in the
sequence.

Furthermore, the corruption of a byte is localized so that the rest of the
stream doesn’t get corrupted if one byte is corrupted.

Another advantage is that the sequence of bytes encoding one character is
never a subsequence of the bytes making up another character. This makes
applications like search more robust.

Byte Order Marks

In the encoding schemes which are not explicitly marked as being little or big
endian, namely UTF-32, UTF-16 and UTF-8, it is also legal, according to the Uni-
code standard, to prefix the sequence of bytes with a byte-order mark (BOM). It
is not legal to have byte-order marks preceding the explicitly marked encodings,
UTF-32BE, UTF-32LE, UTF-16BE, UTF-16LE.

For UTF-32, the byte-order mark is a sequence of four bytes indicating
whether the following encoding is little endian or big endian. the sequence 0x00,
0x00, 0xFE, 0xFF indicates a big-endian encoding and the reverse, 0xFF, 0xFE,
0x00, 0x00 indicates little endian.

For UTF-16, two bytes are used, 0xFE, 0xFF for big endian, and the reverse,
0xFF, 0xFE for little endian.

Although superfluous in UTF-8, the three byte sequence 0xEF, 0xBB, 0xBF is a
“byte order mark”, though there is no byte order to mark. As a result, all three
UTF schemes may be distinguished by inspecting their initial bytes.

Any text processor dealing with Unicode needs to handle the byte order
marks. Some text editing packages automatically insert byte-order marks for
UTF encodings and some don’t.

Character Types and Categories

The Unicode specification defines a number of character types and general cate-
gories of character. These are useful in Java applications because characters may
be examined programatically for their class membership and the classes may be
used in regular expressions.

For example, category “Me” is the general category for enclosing marks, and
“Pf” the general category for final quote punctuation, whereas “Pd” is the general
category for dash-like punctuation, and “Sc” the category of currency symbols.

40 CHAPTER 3. CHARACTERS AND STRINGS

Unicode supplies a notion of case, with the category “Lu” used for uppercase
characters and “Ll” for lowercase.

Unicode marks the directionality in which characters are typically wirtten us-
ing character types like “R” for right-to-left and “L” for left-to-right.

We provide a sample program in Section 3.4.2 for exploring the types of prop-
erties in Java.

Normalization Forms

In order to aid text processing efforts, such as search, Unicode defines several
notions of normalization. These are defined in great detail in Unicode Standard
Annex #15, The Unicode Normalization Forms.

First, we consider decomposition of precomposed characters. For example,
consider the three Unicode characters: U+00E0, latin small letter a with
grave, rendered à, U+0061, latin small letter a, rendered as a, and U+0300,
combining grave accent, which is typically rendered by combining it as an
accent over the previous character. For most purposes, the combination U+00E0
means the same thing in text as U+0061 followed by U+0300.

There are four basic normalization forms, reproduced here from Table 1 in
the normalization annex document.

Normalization Form Description

NFD canonical decomposition
NFC canonical decomposition, followed by

canonical composition
NFKD compatibility decomposition
NFKC compatibility decomposition, followed

by canonical composition

The first two forms, NFD and NFC, first perform a canonical decomposition of
character sequences. This breaks compound characters into a base character
plus accent marks, sorting multiple accent marks into a canonical order. For
instance, the canonical decomposition of the sequence U+0061, U+0300 (small
a followed by grave accent) is the same as that of the single character U+00E0
(small a with grave accent), namely the sequence U+0061, U+0300.

In general, a full canonical decomposition continues to decompose characters
into their components until a sequence of non-decomposible characters is pro-
duced. Furthermore, if there is more than one nonspacing mark (like U+0300),
then they are sorted into a canonical order.

NFC differs from NFD in that it further puts the characters back together into
their canonical composed forms, whereas NFD leaves them as a sequence. Ap-
plying NFC normalization to either the sequence U+0061, U+0300 or the precom-
posed character U+00E0 results in the canonical composed character U+00E0.

The second two forms, NFKD and NFKC, replace the canonical decomposition
with a compatibility decomposition. This reduces different Unicode code points
that are in some sense the same character to a common representation. As an
example, the character U+2075, superscript five, is typically written as a super-
scripted version of U+0035, digit five, namely as 5. Both involve the underlying

3.2. ENCODING JAVA PROGRAMS 41

character 5. With canonical decomposition, U+2075 is normalized to U+0035.
Similarly, the so-called “full width” forms of ASCII characters, U+FF00 to U+FF5E,
are often used in Chinese; each has a corresponding ASCII character in U+0021
to U+007E to which it is compatibility normalized.

There are special behaviors for multiple combining marks. When recombin-
ing, only one mark may wind up being combined, as the character with multiple
marks may not have its own precomposed code point.

There is also special behavior for composites like the ligature character fi,
which in Unicode gets its own precomposed code point, U+FB01, latin small
ligature fi. Only the compatibility version decomposes the ligature into
U+0066, latin small f, followed by U+0069, latin small i.

Two strings are said to be canonical equivalent if they have the same canonical
decomposition, and compatibility equivalent if they have the same compatibility
decomposition.

The normalizations are nice in that if strings are canonical equivalents, then
their NFC normalizations are the same. If two strings are canonical equivalents,
their NFD normalizations are also the same. The NFD normalization and NFC
normalization of a single string are not necessarily the same. The same prop-
erties hold for compatibility equivalents and NFKC and NFKD normalizations.
Another nice property is that the transformations are stable in that applying a
normalization twice (in the sense of applying it once, then applying it again to
the output), produces the same result as applying it once (i.e., its an idemopotent
transformation).

We show how to convert character sequences to their canonical forms progra-
matically using the ICU package in Section 3.10.1.

3.2 Encoding Java Programs

Java has native support for many encodings, as well as the ability to plug in addi-
tional encodings as the need arises (see Section 3.9.3). Java programs themselves
may be written in any supported character encoding.

If you use characters other than ASCII characters in your Java programs, you
should provide the javac command with a specification of which character set
you used. If it’s not specified, the platform default is used, which is typically
Windows-1252 on Windows systems and Latin1 on other systems, but can be
modified as part of the install.

The command line to write your programs in Chinese using Big5 encoding is

javac -encoding Big5 ...

For Ant, you want to use the encoding attribute on the javac task, as in

<javac encoding="Big5" ...

3.2.1 Unicode Characters in Java Programs

Even if a Java program is encoded in a small character set encoding like ASCII, it
has the ability to express arbitrary Unicode characters by using escapes. In a Java

42 CHAPTER 3. CHARACTERS AND STRINGS

program, the sequence \uxxxx behaves like the character U+xxxx, where xxxx is
a hexadecimal encoded value padded to four characters with leading zeroes.

For instance, instead of writing

int n = 1;

we could write

\u0069\u006E\u0074\u0020\u006E\u0020\u003D\u0020\u0031\u003B

and it would behave exactly the same way, because i is U+0069, n is U+006E, t
is U+0074, the space character is U+0020, and so on, up through the semicolon
character (;), which is U+003B.

As popular as Unicode is, it’s not widely enough supported in components
like text editors and not widely enough understood among engineers. Writing
your programs in any character encoding other than ASCII is thus highly error
prone. Our recommendation, which we follow in LingPipe, is to write your Java
programs in ASCII, using the full \uxxxx form of non-ASCII characters.

3.3 char Primitive Type

Java’s primitive char data type is essentially a 16-bit (two byte) unsigned integer.
Thus a char can hold values between 0 and 216−1 = 65535. Furthermore, arith-
metic over char types works like an unsigned 16-bit representation, including
casting a char to a numerical primitive type (i.e., byte, short, int, or long).

Character Literals

In typical uses, instances of char will be used to model text characters. For this
reason, there is a special syntax for character literals. Any character wrapped in
single quotes is treated as a character in a program. For instance, we can assign
a character to a variable with

char c = ’a’;

Given the availability of arbitrary Unicode characters in Java programs using the
syntax \uxxxx, it’s easy to assign arbitrary Unicode characters. For instance, to
assign the variable c to the character à, U+00E0, use

char c = ’\u00E0’;

Equivalently, because values of type char act like unsigned short integers, it’s
possible to directly assign integer values to them, as in

char c = 0x00E0;

3.3. CHAR PRIMITIVE TYPE 43

The expression \0x00E0 is an integer literal in hexadecimal notation. In general,
the compiler will infer which kind of integer is intended.

Because the Java char data type is only 16 bits, the Unicode escape notation
only goes up to U+FFFF.

Several characters may not be used directly within character (or string) liter-
als: new lines, returns, form feeds, backslash, or a single quote character. We
can’t just drop in a Unicode escape like \u000A for a newline, because that be-
haves just like a newline itself. To get around this problem, Java provides some
special escape sequences which may be used in character and string literals.

Escape Code Point Description

\n U+000A line feed
\t U+0009 character tabulation
\b U+0008 backspace
\r U+000D carriage return
\f U+000C form feed
\\ U+005C reverse solidus
\’ U+0027 apostrophe
\" U+0022 quotation mark

For instance, we’d write

char c = ’\n’;

to assign the newline character to the variable c.

Character Arithmetic

A character expression may be assigned to an integer result, as in

int n = ’a’;

After this statement is executed, the value of the variable n will be 97. This is
often helpful for debugging, because it allows the code points for characters to
be printed or otherwise examined.

It’s also possible, though not recommended, to do arithmetic with Java char-
acter types. For instance, the expression ’a’+1 is equal to the expression ’b’.

Character data types behave differently in the context of string concatenation
than integers. The expressions ’a’ + "bc" and \u0061 + "bc" are identical
because the compiler treats \u0061 and ’a’ identically, because the Unicode
code point for a is U+0061. Both expressions evaluate to a string equal to "abc".

The expression 0x0061 + "bc" evaluates to "97bc", because 0x0061 is taken
as a hexadecimal integer literal, which when concatenated to a string, first gets
converted to its string-based decimal representation, "97". There are static
methods in java.lang.Integer to convert integers to string-based representa-
tions. The method Integer.toString(int) may be used to convert an integer
to a string-based decimal notation; Integer.toHexString(int) does the same
for hex.

44 CHAPTER 3. CHARACTERS AND STRINGS

Characters Interpreted as UTF-16

Java made the questionable decision to use 2-byte representations for charac-
ters. This is both too wide and too narrow. It’s wasteful for representing text in
Western European languages, where most characters have single-byte represen-
tations. It’s also too narrow, in that any code point above U+FFFF requires two
characters to represent in Java; to represent code points would require an integer
(primitive int type, which is 4 bytes). 5

When char primitives are used in strings, they are interpreted as UTF-16.
For any code point that uses only two bytes in UTF-16, this is just the unsigned
integer representation of that code point. This is why UTF-16 seemed so natural
for representing characters in the original Java language design. Unfortunately,
for code points requiring four bytes in UTF-16, Java requires two characters, so
now we have all the waste of 2-bytes per character and all the disadvantages of
having Unicode code points that require multiple characters.

3.4 Character Class

Just like for the numerical types, there is a class, Character, used to box an
underlying primitive of type char with an immutable reference. As for numbers,
the preferred way to acquire an instance of Character is with the static factory
method Character.valueOf(char). Autoboxing and unboxing works the same
way as for numerical values.

Like the numerical classes, the Character class is also serializable and com-
parable, with comparison being carried out based on interpreting the underlying
char as an unsigned integer. There are also utilities in Java to sort sequences of
char values (such as strings) in a locale-specific way, because not every or dialect
of a language uses the same lexicographic sorting.

Equality and hash codes are also defined similarly, so that two character ob-
jects are equal if and only if they reference the same underlying character.

3.4.1 Static Utilities

The Character class supports a wide range of Unicode-sensitive static utility
constants and methods in addition to the factory method valueOf().

For each of the Unicode categories, there is a constant, represented using a
byte, because the class predates enums. For instance, the general category “Pe” in
the Unicode specification is represented by the constant END_PUNCTUATION and
the general category of mathematical symbols, “Sm” in Unicode, is represented
by the constant MATH_SYMBOL.

For many of these constants, there are corresponding methods. For instance,
the method getDirectionality(char) returns the directionality of a character
as a byte value, which can then be tested against the possible values represented

5The designers’ choice is more understandable given that there were no code points that used more
than a single pair of bytes for UTF-16 when Java was designed, though Unicode all along advertised
that it would continue to add characters and was not imposing a 16-bit upper limit.

3.4. CHARACTER CLASS 45

as static constants. There are also useful methods for determining the category
of a characer, such as isLetter(char) and isWhitespace(char).

Because multiple Java char instances might be needed to represent a code
point, there are also methods operating on code points directly using in-
teger (primitive int) arguments. For instance, isLetter(int) is the same
as isLetter(char) but generalized to arbitrary code points. The method
charCount(int) returns the number of char values required to represent the
code point (so the value will be 1 or 2, reflecting 2 or 4 bytes in UTF-16). The
methods isLowSurrogate(char) and isHighSurrogate(char) determine if
the char represents the first or second half of the UTF-16 representation of a
code point above U+FFFF.

The method charPointAt(char[],int) determines the code point that
starts at the specified index int he array of char. The method
charPointCount(char[],int,int) returns the number of code points encoded
by the specified char array slice.

3.4.2 Demo: Exploring Unicode Types

The full set of character categories recognized by Java is detailed in the con-
stant documentation for java.lang.Character. There’s a missing component
to the implementation, which makes it hard to take a given char value (or code
point) and find its Unicode properties. To that end, we’ve written a utility class
UnicodeProperties that displays properties of Unicode. The code just enu-
merates the constants in Character, indexes them by name, writes out a key to
the values produced by Character.getType(char) along with their standard
abbreviations (as used in regular expressions) and names.

The code may be run from the Ant target unicode-properties. This target
will print the key to the types, then the type of each character in a range specified
by the properites low.hex and high.hex (both inclusive).

> ant -Dlow.hex=0 -Dhigh.hex=FF unicode-properties

ID CD TYPE ID CD TYPE
0 Cn UNASSIGNED 15 Cc CONTROL

16 Cf FORMAT
1 Lu UPPERCASE_LETTER 18 Co PRIVATE_USE
2 Ll LOWERCASE_LETTER 19 Cs SURROGATE
3 Lt TITLECASE_LETTER
4 Lm MODIFIER_LETTER 20 Pd DASH_PUNCTUATION
5 Lo OTHER_LETTER 21 Ps START_PUNCTUATION

22 Pe END_PUNCTUATION
6 Mn NON_SPACING_MARK 23 Pc CONNECTOR_PUNCTUATION
7 Me ENCLOSING_MARK 24 Po OTHER_PUNCTUATION
8 Mc COMBINING_SPACING_MARK 29 Pi INITIAL_QUOTE_PUNCTUATION

30 Pf FINAL_QUOTE_PUNCTUATION
9 Nd DECIMAL_DIGIT_NUMBER

10 Nl LETTER_NUMBER 25 Sm MATH_SYMBOL
11 No OTHER_NUMBER 26 Sc CURRENCY_SYMBOL

46 CHAPTER 3. CHARACTERS AND STRINGS

27 Sk MODIFIER_SYMBOL
12 Zs SPACE_SEPARATOR 28 So OTHER_SYMBOL
13 Zl LINE_SEPARATOR
14 Zp PARAGRAPH_SEPARATOR

For display, we have organized the results based on primary type. The initial
character of a type, which is capitalized, indicates the main category, and the
second character, which is lowercase, indicates the subtype. We’ve added extra
space in the output to pick out the groupings. For instance, there are five letter
types, all of which begin with L, and three number types, which begin with N.

After displaying all types, the program prints out all of the characters in
range (in hex) followed by their type. We specified the entire Latin1 range in the
Ant invocation, but only display the first instance of each type rather all 256
characters.

CH CD TYPE CH CD TYPE
0 Cc CONTROL 41 Lu UPPERCASE_LETTER

20 Zs SPACE_SEPARATOR 5E Sk MODIFIER_SYMBOL
21 Po OTHER_PUNCTUATION 5F Pc CONNECTOR_PUNCTUATION
24 Sc CURRENCY_SYMBOL 61 Ll LOWERCASE_LETTER
28 Ps START_PUNCTUATION A6 So OTHER_SYMBOL
29 Pe END_PUNCTUATION AB Pi INITIAL_QUOTE_PUNCTUATION
2B Sm MATH_SYMBOL AD Cf FORMAT
2D Pd DASH_PUNCTUATION B2 No OTHER_NUMBER
30 Nd DECIMAL_DIGIT_NUMBER BB Pf FINAL_QUOTE_PUNCTUATION

Letter Characters

U+0041, latin capital letter a (A), and U+0061, latin small letter a (a), are
typed as uppercase and lowercase letters (Lu and Ll), respectively. All the other
Latin 1 letters, even the ones with accents, are typed as letters.

Number Characters

U+0030, digit zero (0), is marked as a decimal digit number (Nd), as are the
other digits.

U+00B2, superscript two (2), is assigned to the other number type (No).

Separator Characters

U+0020, space, the ordinary (ASCII) space character, is typed as a space separator
(Zs). There are also types for line separators (Zl) and paragraph separators (Zp),
but there are no characters of these types in Latin1.

Punctuation Characters

U+0021, exclamation mark (!) is classified as other punctuation (Po), as is the
question mark (?) and period (.), as well as the pound sign (#), asterisk (*), per-
centage sign (%), at-sign (@).

3.4. CHARACTER CLASS 47

Characters U+0028 and U+0029, left parenthesis (() and right parenthe-
sis ()), the round parentheses, are assigned start and end punctuation types (Ps
and Pe), respectively. Other brackets such as the ASCII curly and square varieties,
are also assigned start and end punctuation types.

U+002D, hyphen-minus (-), used for hyphenation and for arithmetical sub-
traction, is typed as a dash punctuation (Pd). It can also be used as an arithmetic
operation, presenting a problem for a typology based on unique types for char-
acters. The problem with whitespace (typed as a separator) and newline (typed
as a control character) is similar.

U+005F, low line (_), the ASCII underscore character, is typed as connector
punctuation (Pc).

U+00AB, left-pointing double angle quotation mark («), and U+00BB,
right-pointing double angle quotation mark (»), traditionally known as the
left and right guillemet, and used in French like open and close quotation marks
in English, are initial quote and final quote punctuation categories, (Pi and Pf),
respectively. The “curly” quotes, U+201C (“), and U+201D (”), are also divided
into open and initial and final quote punctuation.

In contrast, U+0022, quotation mark ("), and U+0027, apostrophe (’), the
standard ASCII undirected quotation mark and apostrophe, are marked as other
punctuation (Po). This is problematic because they are also used for quotations
in ASCII-formatted text, which is particularly prevalent on the web.

Symbol Characters

U+0024, dollar sign ($), is marked as a currency symbol (Sc), as are the signs
for the euro, the yen, and other currencies.

U+002B, plus sign (+), the symbol for arithmetic addition, is characterized as
a math symbol (Sm).

U+005E, circumflex accent (ˆ), is typed as a modifier symbol (Sm). This is a
modifier in the sense that it is typically rendered as a circumflex on the following
character.

U+00A6, the Latin1 broken bar, which is usually displayed as a broken hori-
zontal bar, is typed as an other symbol (So).

Control Characters

U+0000, <control> null, is the null control character, and is typed as a control
character (Cc). Backspaces, carriage returns, linefeeds, and other control charac-
ters get the same type. This can be confusing for newlines and their ilk, which
aren’t treated as space characters in the Unicode typology, but are in contexts
like regular expressions.

Although it is usually rendered visually, U+00AD, soft hyphen, is typed as a
format character (Cf). It’s used in typesetting for continuation hyphens used to
split words across lines. This allows a word split with a hyphen across lines to be
put back together. This character shows up in conversions from PDF documents
generated by LATEX, such as the one for this book.

48 CHAPTER 3. CHARACTERS AND STRINGS

3.5 CharSequence Interface

Java provides an interface for dealing with sequences of characters aptly named
CharSequence. It resides in the package java.lang, so it’s automatically im-
ported. Implementations include strings and string builders, which we describe
in the next sections.

The character sequence interface specifies a method length() that returns
the number of characters in the sequence.

The method charAt(int) may be used to return the character at a specified
position in the string. Like arrays, positions are numbered starting from zero.
Thus the method must be passed an integer in the range from zero (inclusive) to
the length of the string (exclusive). Passing an index that’s out of range raises an
IndexOutOfBoundsException, which is also in the java.lang package.

Indexing from position zero (inclusive) to length (exclusive) supports the con-
ventional for loop for iterating over items in a sequence. For instance, if cs is a
variable of type CharSequence, we can loop

for (int i = 0; i < cs.length(); ++i) {
char c = cs.charAt(i);
// do something

Because lengths are instances of int, are only allowed to be as long as the longest
positive int value, 232−1 − 1, which is approximately 2 billion. Any longer se-
quence of characters needs to be streamed (e.g., with a Reader or Writer) or
scanned (e.g., with a RandomAccessFile).

Creating Subsequences

Given a character sequence, a subsequence may be generated using
subSequence(int,int), where the two indexes are start position (inclusive)
and end position (exclusive). As for charAt, the indexes must be in range (start
greater than or equal to zero and less than or equal to end, and end less than or
equal to the sequence length). One nice feature of this inclusive-start/exclusive-
end encoding is that the length of the subsequence is the end minus the start.

The mutable implementations of CharSequence approach subsequencing dif-
ferently. The StringBuffer and StringBuilder classes return instances of
String, which are immutable. Thus changes to the buffer or builder won’t af-
fect any subsequences generated. The CharBuffer abstract class in java.nio
returns a view into itself rather than an independent copy. Thus when the un-
derlying buffer changes, so does the subsequence.

Converting Character Sequences to Strings

The last method in CharSequence is toString(), which is specified to return a
string that has the same sequence of characters as the character sequence.

3.6. STRING CLASS 49

Equality and Hashing

The CharSequence interface does not place any constraints on the behavior
of equality or hash codes. Thus two character sequences may contain the
same sequence of characters while not being equal and having different hash
codes. We’ll discuss equality and hash codes for particular implementations of
CharSequence in the next few sections.

3.6 String Class

Strings are so fundamental to Java that they have special literals and opera-
tors built into the Java language. Functionally, the class String, in the package
java.lang, provides an immutable implementation of CharSequence. Sequence
immutability, along with a careful lazy initialization of the hash code, makes
strings thread safe.

Because String is declared to be final, there can be no subclasses defined
that might potentially override useful invariants such as equality, comparability,
and serializability. This is particularly useful because strings are so widely used
as constants and method inputs and outputs.

3.6.1 Constructing a String

Strings may be constructed from arrays of integer Unicode code points, arrays
of characters, or arrays of bytes. In all cases, a new array of characters is allo-
cated to hold the underlying char values in the string. Thus the string becomes
immutable and subsequent changes to the array from which it was constructed
will not affect it.

From Unicode Code Points

When constructing a string from an array of Unicode code points, the code points
are encoded using UTF-16 and the resulting sequence converted to a sequence
of char values. Not all integers are valid Unicode code points. This constructor
will throw an IllegalArgumentException if there are illegal code points in the
sequence.

From char Values

When constructing a string from an array of characters or another string or char-
acter sequence, the characters are just copied into the new array. There is no
checking to ensure that the sequence of char values is a legal UTF-16 sequence.
Thus we never know if a string is well-formed Unicode.

A string may also be constructed from another string. In this case, a deep
copy is created with its own fresh underlying array. this may seem useless, but
consider the behavior of substring(), as defined below; in this case, construct-
ing a new copy may actually save space. Strings may also be constructed by
copying the current contents of a string builder or string buffer (see the next

50 CHAPTER 3. CHARACTERS AND STRINGS

section for more about these classes, which implement the builder pattern for
strings).

From Bytes

When constructing a string from bytes, a character encoding is used to convert
the bytes into char values. Typically character encodings are specified by name.
Any supported encoding or one of its aliases may be named; the list of available
encodings may be accessed programatically and listed as shown in Section 3.9.3.

If a character encoding is not specified, the platform’s default is used, result-
ing in highly non-portable behavior.

A character encoding is represented as an instance of CharSet, which is in
the java.nio.charset package. A CharSet may be provided directly to the
constructor for String, or they may be specified by name. Instances of CharSet
may be retrieved by name using the static method CharSet.forName(String).

If a byte sequence can’t be converted to Unicode code points, its behavior
is determined by the underlying CharSetDecoder referenced by the CharSet
instance. This decoder will typically replace illegal sequences of bytes with a
replacement string determined by CharSetDecoder.replacement(), typically a
question mark character.

If you need more control over the behavior in the face of illegal byte se-
quences, you may retrieve the CharSet by name and then use its newDecoder()
method to get a CharSetDecoder.

3.6.2 String Literals

In Java code, strings may be represented as characters surrounded by double
quotes. For instance,

String name = "Fred";

The characters between the quotes can be any characters in the Java program.
Specifically, they can be Unicode escapes, so we could’ve written the above re-
placing F and e with Unicode escapes, as in

String name = "\u0046r\u0065d";

In practice, string literals essentially create static constants for the strings.
Because strings are immutable, the value of string contstants including literals,
will be shared. Thus "abc" == "abc" will evaluate to true because the two liter-
als will denote reference identical strings. This is carried out as if intern() had
been called on constructed strings, as described in Section 3.6.11.

String literals may contain the same character escape sequences as character
literals (see Section 3.3).

3.6.3 Contents of a String

Strings are very heavy objects in Java. First, they are full-fledged objects, as
opposed to the C-style strings consisting only of a pointer into an array. Second,

3.6. STRING CLASS 51

they contain references to an array of characters, char[], holding the actual
characters, as well as an integer start index into that array and an integer length.
They also store their hash code as an integer. Thus an empty string will be 36
bytes in the 32-bit Sun/Oracle JVM and 60 bytes in the 64-bit JVM.6

3.6.4 String Equality and Comparison

Two strings are equal if they have the same length and the same character at
each position. Strings are not equal to objects of any other runtime class, even
other implementations of CharSequence.

Strings implement Comparable<String> in a way that is consistent with
equality. The order they use is lexicographic sort over the underlying char val-
ues. This is exactly the way words are sorted in dictionaries. The easiest way to
define lexicographic sort is with code, here comparing strings s and t.

for (int i = 0; i < Math.min(s.length(),t.length()); ++i)
if (s.charAt(i) != t.charAt(i))

return s.charAt(i) - t.charAt(i);
return s.length() - t.length();

We walk over both strings from the beginning until we find a position where
the characters are different, at which point we return the difference.7 For in-
stance, "abc" is less than "abde" "ae", and "e". If we finish either string, we
return the difference in lengths. Thus "a" is less than "ab". If we finish one of
the strings and the strings are the same length, we return zero, because they are
equal.

3.6.5 Hash Codes

The hash code for a string s is computed as if by

int hashCode = 0;
for (int i = 0; i < s.length(); ++i)

hashCode = 31 * hashCode + s.charAt(i);

This definition is consistent with equals in that two equal strings have the same
character sequence, and hence the same hash code.

Because the hash code is expensive to compute, requiring an assignment, add
and multiply for each character, it is lazily initialized. What this means is that
when hash code is called, if there is not a value already, it will be computed and
stored. This operation is thread safe without synchronization because integer
assignment is atomic and the sequence of characters is immutable.

6The JVM option -XX:+UseCompressedOops will reduce the memory footprint of 64-bit objects to
the same size as 32-bit objects in many cases.

7Conveniently, char values are converted to integers for arithmetic, allowing negative results for
the difference of two values. Also, because string lengths are non-negative, there can’t be underflow
or overflow in the difference.

52 CHAPTER 3. CHARACTERS AND STRINGS

3.6.6 Substrings and Subsequences

The substring(int,int) and method return subsequences of a string spec-
ified by a start position (inclusive) and an end position (exclusive). The
subSequence(int,int) method just delegates to the substring method.

When a substring is generated from a string, it shares the same array as the
string from which it was generated. Thus if a large string is created and a sub-
string generated, the substring will actually hold a reference to a large array, po-
tentially wasting a great deal of memory. Alternatively, if a large string is created
and a large number of substrings are created, this implementation potentially
saves space.

A copy of the character array underlying the string is returned by
toCharArray().

3.6.7 Simple Pattern Matching

Simple text processing may be carried out using methods supplied by String.
For instance, endsWith(String) and startsWith(String) return boolean val-
ues based on whether the string has the specified exact suffix or prefix. These
comparisons are carried out based on the underlying char[] array. There is also
a multiple argument regionMatches() method that compares a fixed number
the characters starting at a given position to be matched against the characters
starting at a different position in a second string.

There is also a method contains(CharSequence), which returns true if the
string contains the characters specified by the character sequence argument as
a substring. And there is a method contentEquals(CharSequence) that com-
pares the character content of the string with a character sequence.

The indexOf(char,int) method returns the index of the first appearance
of a character after the specified position, and lastIndexOf(char,int) does
the same thing in reverse, returning the last instance of the character before the
specified position. There are also string-based methods, indexOf(String,int)
and lastIndexOf(String,int).

3.6.8 Manipulating Strings

Several useful string manipulation methods are provided, such as trim(), which
returns a copy of the string with no whitespace at the front or end of the string.
The methods toLowerCase(Locale) and toUpperCase(Locale) return a copy
of the string in the specified locale.

3.6.9 Unicode Code Points

The string class also defines methods for manipulating Unicode code points,
which may be coded by either one or two underlying char values. The method
codePointAt(int) returns the integer code point starting at the specified index.
To find out the length of a string in unicode code points, there is the method
codePointCount(int,int) which returns the number of Unicode code points

3.6. STRING CLASS 53

coded by the specified range of underlying characters. It is up to the user to get
the boundaries correct.

3.6.10 Testing String Validity

LingPipe provides a static utility method isValidUTF16(CharSequence) in the
Strings class in the com.aliasi.util package. This method checks that ev-
ery high surrogate UTF-16 char value is followed by a low surrogate UTF-16
value. Surrogacy is defined as by Java’s Character.isHighSurrogate() and
Character.isLowSurrogate() methods (see Section 3.4.1).

3.6.11 Interning Canonical Representations

The JVM keeps an underlying pool of string constants. A call to intern() on
a string returns a string in the constant pool. The method intern() returns a
string that is equal to the string on which it is called, and is furthermore reference
identical to any other equal string that has also been interned.

For example, suppose we call

String s = new String("abc");
String t = new String("abc");

The expression s.equals(t) will be true, but s == t will be false. The construc-
tor new always constructs new objects. Next, consider calling

String sIn = s.intern();
String tIn = t.intern();

Afterwards, sIn == tIn will evaluate to true, as will sIn.equals(tIn). The
interned strings are equal to their originals, so that sIn.equals(s) and
tIn.equals(t) also return true.

3.6.12 Utility Methods

There are a number of convenience methods in the string class that reproduce
behavior available elsewhere.

Regular Expression Utilities

The string class contains various split and replace methods based on regular ex-
pressions. For instance, split(String) interprets its argument as a regular ex-
pression and returns an array of strings containing the sequences of text between
matches of the specified pattern. The method replaceFirst(String,String)
replaces the first match of a regular expression (the first argument) with a given
string (the second argument). In both cases, matching is defined as in the regular
expression method Matcher.find().

54 CHAPTER 3. CHARACTERS AND STRINGS

String Representations of Primitives

The string class contains a range of static valueOf() methods for convert-
ing primitives, objects, and arrays of characters to strings. For instance,
valueOf(double) converts a double-precision floating point value to a string
using the same method as Double.toString(double).

3.6.13 Example Conversions

We wrote a simple program to illustrate encoding and decoding between strings
and byte arrays.

public static void main(String[] args)
throws UnsupportedEncodingException {

System.setOut(new PrintStream(System.out,true,"UTF-8"));

String s = "D\u00E9j\u00E0 vu";
System.out.println(s);

String encode = args[0];
String decode = args[1];

byte[] bs = s.getBytes(encode);
String t = new String(bs,decode);

First, the string Déjà vu is assigned to variable s. The string literal uses two
Unicode escapes, \u00E9 for é and \u00E0 for à. The name of the character
encoding to use for encoding and decoding are read from the command line.

Then we convert the string s to an array of bytes bs using the character encod-
ing encode. Next, we reconstitute a string using the bytes we just created using
the character encoding decode. Either of these methods may raise an exception
if the specified encoding is not supported, so the main() method is declared to
throw an UnsupportedEncodingException, imported from java.io. The rest
of the code just prints the relevant characters and bytes.

There is an Ant target byte-to-string that’s configured to take two argu-
ments consisting of the names of the character encodings. The first is used to
convert a string to bytes and the second to convert the bytes back to a string. For
instance, to use UTF-8 to encode and Latin1 (ISO-8859-1) to decode, the program
prints

> ant -Dencode=UTF-8 -Ddecode=Latin1 byte-to-string

char[] from string
44 e9 6a e0 20 76 75

byte[] from encoding with UTF-8
44 c3 a9 6a c3 a0 20 76 75

char[] from decoding with Latin1
44 c3 a9 6a c3 a0 20 76 75

The characters are printed using hexadecimal notation. The initial line of char-
acters is just what we’d expect; for instance the char value 44 is the code point

3.7. STRINGBUILDER CLASS 55

and UTF-16 representation of U+0044, latin capital letter d, char e9 picks
out U+00E9, latin small letter e with acute, and so on.

We have printed out the bytes using unsigned hexadecimal notation (see Sec-
tion 2.1.5 for more information about signs and bytes). Note that there are more
bytes than char values. This is because characters above U+0080 require two
bytes or more to encode in UTF-8 (see Section 3.1.4). For instance, the sequence
of bytes 0xC3, 0xA9 is the UTF-8 encoding of U+00E9, Latin small letter e
with acute.

We use Latin1 to decode the bytes back into a sequence of char values.
Latin1 simply translates the bytes one-for-one into unsigned characters (see Sec-
tion 3.1.3. This is fine for the first byte, 0x44, which corresponds to U+0044, but
things go wrong for the second character. Rather than recover the single char
value U+00E9, we have 0xC3 and 0xA9, which are U+00C3, latin capital letter
a with tilde, and U+00A9, copyright sign. Further down, we see 0xA0, which
represents U+00A0, no-break space. Thus instead of getting Déjà vu back, we
get D©Ãj© vu.

If we use -Dencode=UTF-16 when invoking the Ant target byte-to-string,
we get the bytes

byte[] from encoding with UTF-16
fe ff 0 44 0 e9 0 6a 0 ...

The first two bytes are the byte-order marks U+00FE and U+00FF; in this order,
they indicate big-endian (see Section 3.1.4). The two bytes after the byte-order
marks are 0x0 and 0x44, which is the UTF-16 big-endian representation of the
character U+0044, latin capital letter d. Similarly, 0x0 and 0xE9 are the UTF-
16 big-endian representation of U+00E9, latin small letter e with acute. The
UTF-16 encoding is twice as long as the Latin1 encoding, plus an additional two
bytes for the byte-order marks.

3.7 StringBuilder Class

The StringBuilder class is essentially a mutable implementation of the
CharSequence interface. It contains an underlying array of char values, which it
resizes as necessary to support a range of append() methods. It implements a
standard builder pattern for strings, where after adding content, toString() is
used to construct a string based on the buffered values.

A typical use would be to create a string by concatenating the members of an
array, as in the following, where xs is an array of strings of type String[],

StringBuilder sb = new StringBuilder();
for (String x : xs)

sb.append(x);
String s = sb.toString();

First a string builder is created, then values are appended to it, then it is con-
verted to a string. When a string builder is converted to a string, a new array is
constructed and the buffered contents of the builder copied into it.

56 CHAPTER 3. CHARACTERS AND STRINGS

The string builder class lets you append any type of argument, with the
effect being the same as if appending the string resulting from the matching
String.valueOf() method. For instance, non-null objects get converted us-
ing their toString() methods and null objects are converted to the string null.
Primitive numbers converted to their decimal notation, using scientific notation
if necessary, and booleans to either true or false.

The underlying array for buffering characters starts at length 16 by default,
though may be set explicitly in the constructor. Resizing adds one to the length
then doubles it, leading to roughly log (base 2) resizings in the length of the
buffer (e.g., 16, 34, 70, 142, 286, 574, . . .). Because string builders are rarely used
in locations that pose a computational bottleneck, this is usually an acceptable
behavior.

In cases where character sequence arguments suffice, this allows us to bypass
the construction of a string altogether. Thus many of LingPipe’s methods accept
character sequence inputs without first converting to strings.

3.7.1 Unicode Support

The append method appendCodePoint(int) appends the characters represent-
ing the UTF-16 encoding of the specified Unicode code point. The builder
also supports a codePointAt(), codePointBefore(), and codePointCount()
methods with behavior like those for strings.

3.7.2 Modifying the Contents

String builders are mutable, and hence support operations like
setCharAt(int,char), which replaces a single character, and
insert(int,String) and the longer form replace(int,int,String),
which splice the characters of a string into the buffer in place of the specified
character slice. There is also a setLength(int) method which changes the
length of the charactr sequence, either shrinking or extending the underlying
buffer as necessary.

3.7.3 Reversing Strings

The method reverse() method in StringBuilder reverses the char values in
a string, except valid high-low surrogate pairs, which maintain the same order-
ing. Thus if the string builder holds a well-formed UTF-16 sequence representing
a sequence of code points, the output will be the well-formed UTF-16 sequence
representing the reversed sequence of code points. For instance, the String lit-
eral "\uDC00\uD800" constructs a string whose length() returns 2. Because
\uDC00 is a high-surrogate UTF-16 char value and \uD800 is a low-surrogate, to-
gether they pick out the single code point U+10000, the first code point beyond
the basic multilingual plane. We can verify this by evaluating the expression
"\uDC00\uD800".codePointAt(0) and verifying the result is 0x10000.

3.8. CHARBUFFER CLASS 57

3.7.4 Chaining and String Concatenation

Like many builder implementations, string builders let you chain arguments.
Thus it’s legal to write

int n = 7; String s = "ABC"; boolean b = true;
char c = ’C’; Object z = null;
String t = new StringBuilder().append(n).append(s).append(b)

.append(c).append(z).toString();

with the reslt that string t has a value equal to the literal "7ABCtrueCnull".
In fact, this is exactly the behavior underlying Java’s heavily overloaded addi-

tion (+) operator. When one of the arguments to addition is a string, the other
argument is converted to a string as if by the appropriate String.valueOf()
method. For example, the variables u and v will have equivalent values after
executing the following pair of statements.

String u = 7 + "ABC";
String v = String.valueOf(7) + "ABC";

3.7.5 Equality and Hash Codes

The StringBuilder class does not override the definitions of equality or hash
codes in Object. Thus two string builders are equal only if they are reference
equal. In particular, string builders are never equal to strings. There is a utility
method on strings, String.contentEquals(CharSequence) method which re-
turns true if the char sequence is the same length as the string and contains the
same character as the string at each position.

3.7.6 String Buffers

The class StringBuffer, which predates StringBuilder, is essentially a string
builder with synchronization. Because it is rarely desirable to write to a string
buffer concurrently, StringBuffer has all but disappeared from contemporary
Java programs.

3.8 CharBuffer Class

The CharBuffer class resides in the java.nio package along with correspond-
ing classes for other primitive types, such as ByteBuffer and IntBuffer. These
buffers all hold sequences of their corresponding primitive types and provide
efficient means to bulk load or bulk dump sequences of the primitive values they
hold.

3.8.1 Basics of Buffer Positions

The buffers all extend the Buffer class, also from java.nio. Buffers may be
created backed by an array that holds the appropriate primitive values, though
array backing is not required.

58 CHAPTER 3. CHARACTERS AND STRINGS

Every buffer has four important integer values that determine how it behaves,
its capacity, position, mark and limit. Buffers may thus only have a capacity of
up to Integer.MAX_VALUE (about 2 billion) primitive values.

The capacity of a buffer is available through the capacity() method. This is
the maximum number of items the buffer can hold.

The position of a buffer is available through the position() method and
settable with setPosition(int). The position is the index of the next value
to be accessed. The position must always be between zero (inclusive) and the
buffer’s capacity (inclusive).

Relative read and write operations start at the current position and increment
the position by the number of primitive values read or written. Underflow or
overflow exceptions will be thrown if there are not enough values to read or write
respectively. There are also absolute read and write operations which require an
explicit index.

The limit for a buffer indicates the first element that should not be read or
written to. The limit is always between the position (inclusive) and the capacity
(inclusive).

Three general methods are used for resetting these values. The clear()
method sets the limit to the capacity and the position to zero. The flip()
method sets the limit to the current position and the position to zero. The
rewind() method just sets the position to zero.

All of the buffers in java.nio also implement the compact() operation,
which moves the characters from between the current position and the limit to
the start of the buffer, resetting the position to be just past the moved characters
(limit minus original position plus one).

Finally, the mark for a buffer indicates the position the buffer will have after
a call to reset(). It may be set to the current position using mark(). The mark
must always be between the zero (inclusive) and the position (inclusive).

3.8.2 Equality and Comparison

Equality and comparison work on the remaining characters, which is the
sequence of characters between the current position and the limit. Two
CharBuffer instances are equal if they have the same number of (remaining)
elements and all these elements are the same. Thus the value of hashCode()
only depends on the remaining characters. Similarly, comparison is done lexico-
graphically using the remaining characters.

Because hash codes for buffers may change as their elements change, they
should not be put into collections based on their hash code (i.e., HashSet or
HashMap) or their natural order (i.e., TreeSet or TreeMap).

The length() and charAt(int) methods from CharSequence are also de-
fined relative to the remaining characters.

3.8.3 Creating a CharBuffer

A CharBuffer of a given capacity may be created along with a new backing array
using CharBuffer.allocate(int); a buffer may also be created from an exist-

3.8. CHARBUFFER CLASS 59

ing array using CharBuffer.wrap(char[]) or from a slice of an existing array.
Wrapped buffers are backed by the specified arrays, so changes to them affect
the buffer and vice-versa.

3.8.4 Absolute Sets and Gets

Values may be added or retrieved as if it were an array, using get(int), which
returns a char, and set(int,char), which sets the specified index to the speci-
fied char value.

3.8.5 Relative Sets and Gets

There are also relative set and get operations, whose behavior is based on the
position of the buffer. The get() method returns the character at the current
position and increments the position. The put(char) method sets the character
at the current position to the specified value and increments the position.

In addition to single characters, entire CharSequence or char[] values or
slices thereof may be put into the array, with overflow exceptions raised if not
all values fit in the buffer. Similarly, get(char[]) fills the specified character
array starting from the current position and increments the position, throwing an
exception if there are not enough characters left in the buffer to fill the specified
array. The portion of the array to fill may also be specified by slice.

The idiom for bulk copying between arrays is to fill the first array using rela-
tive puts, flip it, then copy to another array using relative gets. For instance, to
use a CharBuffer to concatenate the values in an array, we might use8

String[] xs = new String[] { "a", "b", "c" };
CharBuffer cb = CharBuffer.allocate(1000);
for (String s : xs)

cb.put(s);
cb.flip();
String s = cb.toString();

After the put() operations in the loop, the position is after the last character.
If we were to dump to a string at this point, we would get nothing. So we call
flip(), which sets the position back to zero and the limit to the current position.
Then when we call toString(), we get the values between zero and the limit,
namely all the characters we appended. The call to toString() does not modify
the buffer.

3.8.6 Thread Safety

Buffers maintain state and are not synchronized for thread safety. Read-write
synchronization would be sufficient.

8Actually, a StringBuilder is better for this job because its size doesn’t need to be set in advance
like a CharBuffer’s.

60 CHAPTER 3. CHARACTERS AND STRINGS

3.9 Charset Class

Conversions between sequences of bytes and sequences of characters are car-
ried out by three related classes in the java.nio.charset package. A character
encoding is represented by the confusingly named Charset class. Encoding char-
acters as bytes is carried out by an instance of CharsetDecoder and decoding by
an instance of CharsetEncoder. All characters are represented as usual in Java
with sequences of char values representing UTF-16 encodings of Unicode.

Encoders read from character buffers and write to byte buffers and de-
coders work in the opposite direction. Specifically, they use the java.nio
classes CharBuffer and ByteBuffer. The class CharBuffer implements
CharSequence.

3.9.1 Creating a Charset

Typically, instances of Charset and their corresponding encoders and decoders
are specified by name and accessed behind the scenes. Examples include con-
structing strings from bytes, converting strings to bytes, and constructing char
streams from byte streams.

Java’s built-in implementations of Charset may be accessed by name with the
static factory method CharSet.forName(String), which returns the character
encoding with a specified name.

It’s also possible to implement subclasses of Charset by implementing the
abstract newEncoder() and newDecoder() methods. Decoders and encoders
need to define behavior in the face of malformed input and unmappable charac-
ters, possibly defining replacement values. So if you must have Morse code, it’s
possible to support it directly.

3.9.2 Decoding and Encoding with a Charset

Once a Charset is obtained, its methods newEncoder() and newDecoder()
may be used to get fresh instances of CharsetEncoder and CharsetDecoder
as needed. These classes provide methods for encoding char buffers as byte
buffers and decoding byte buffers to char buffers. The Charset class also pro-
vides convenience methods for decoding and encoding characters.

The basic encoding method is encode(CharBuffer,ByteBuffer,boolean),
which maps the byte values in the ByteBuffer to char values in the
CharBuffer. These buffer classes are in java.nio. The third argument is a
flag indicating whether or not the bytes are all the bytes that will ever be coded.
It’s also possible to use the canEncode(char) or canEncode(CharSequence)
methods to test for encodability.

The CharsetEncoder determines the behavior in the face of unmap-
pable characters. The options are determined by the values of class
CodingErrorAction (also in java.nio.charset).9The three actions al-
lowed are to ignore unmappable characters (static constant IGNORE in

9The error action class is the way type-safe enumerations used to be encoded before enums were
added diretly to the language, with a private constructor and a set of static constant implementations.

3.9. CHARSET CLASS 61

CodingErrorAction), replace them with a specified sequence of bytes
(REPLACE), or to report the error, either by raising an exception or through
a return value (REPORT). Whether an exception is raised or an exceptional re-
turn value provided depends on the calling method. For the replacement op-
tion, the bytes used to replace an unmappable character may be set on the
CharsetEncoder using the replaceWith(byte[]) method.

The CharsetDecoder class is similar to the encoder class, only moving from
a CharBuffer back to a ByteBuffer. The way the decoder handles malformed
sequences of bytes is similar to the encoder’s handling of unmappable charac-
ters, only allowing a sequence of char as a replacement rather than a sequence
of byte values.

The CharsetEncoder and CharsetDecoder classes maintain buffered state,
so are not thread safe. New instances should be created for each encoding and
decoding job, though they may be reused after a call to reset().

3.9.3 Supported Encodings in Java

Each Java installation supports a range of character encodings, with one charac-
ter encoding serving as the default encoding. Every compliant Java installation
supports all of the UTF encodings of Unicode. Other encodings, as specified
by Charset implementations, may be added at the installation level, or imple-
mented programatically within a JVM instance.

The supported encodings determine what characters can be used to write Java
programs, as well as which character encoding objects are available to convert
sequences of bytes to sequences of characters.

We provide a class com.lingpipe.book.char.SupportedEncodings to dis-
play the default encoding and the complete range of other encodings supported.
The first part of the main pulls out the default encoding using a static method of
java.nio.charset.Charset,

Charset defaultEncoding = Charset.defaultCharset();

The code to pull out the full set of encodings along with their aliases is

Map<String,Charset> encodings = Charset.availableCharsets();
for (Charset encoding : encodings.values()) {

Set<String> aliases = encoding.aliases();

The result of running the program is

> ant available-charsets

Default Encoding=windows-1252

Big5
csBig5

...
x-windows-iso2022jp

windows-iso2022jp

62 CHAPTER 3. CHARACTERS AND STRINGS

The program first writes out the default encoding. This is windows-1252 on
my Windows install. It’s typically ISO-8859-1 on Linux installs in the United
States. After that, the program writes all of the encodings, with the official name
followed by a list of aliases that are also recognized. We ellided most of the
output, because there are dozens of encodings supported.

3.10 International Components for Unicode

The International Components for Unicode (ICU) provide a range of useful open
source tools, licensed under the X license (seeSection C.5), for dealing with Uni-
code and internationalization (I18N). Mark Davis, the co-developer of Unicode
and president of the Unicode Consortium, designed most of ICU including the
Java implementation, and is still active on its project management committee.
The original implementation was from IBM, so the class paths still reflect that
for backward compatibility, though it is now managed independently.

The home page for the package is

http://icu-project.org/

The package has been implemented in both Java and C, with ICU4J being the
Java version. There is javadoc, and the user guide section of the site contains
extensive tutorial material that goes far beyond what we cover in this section. It
is distributed as a Java archive (jar) file, icu4j-Version.jar, which we include
in the $BOOK/lib directory of this book’s distribution. There are additional jar
files available on the site to deal with even more character encodings and locale
implementations.

We are primarily interested in the Unicode utilities for normalization of char-
acter sequences to canonical representations and for auto-detecting character
encodings from sequences of bytes. ICU also contains a range of locale-specific
formatting utilities, time calculations and collation (sorting). It also contains
deeper linguistic processing, including boundary detection for words, sentences
and paragraphs as well as transliteration between texts in different languages.

3.10.1 Unicode Normalization

ICU implements all the Unicode normalization schemes (see Section 3.1.4). The
following code shows how to use NFKC, the normalization form that uses com-
patibility decomposition, followed by a canonical composition.

Normalizer2 normalizer
= Normalizer2.getInstance(null,"nfkc",Mode.COMPOSE);

String s1 = "\u00E0"; // a with grave
String s2 = "a\u0300"; // a, grave

String n1 = normalizer.normalize(s1);
String n2 = normalizer.normalize(s2);

The ICU class Normalizer2 is defined in the package com.ibm.icu.text. There
is no public constructor, so we use the rather overloaded and confusing static

http://icu-project.org/

3.10. INTERNATIONAL COMPONENTS FOR UNICODE 63

factory method getInstance() to create a normalizer instance. The first argu-
ment is null, which causes the normalizer to use ICU’s definitions of normal-
ization rather than importing definitions through an input stream. The second
argument, "nfkc" is an unfortunately named string contstant indicating that
we’ll use NFKC or NFKD normalization. The third argument is the static con-
stant COMPOSE, from the static nested class Normalizer2.Mode, which says that
we want to compose the output, hence producing NFKC. Had we used the con-
stant DECOMPOSE for the third argument, we’d get an NFKD normalizer. Finally,
it allows case folding after the NFKC normalization by specifying the second ar-
gument as "nfkc_cf".

Once we’ve constructed the normalizer, using it is straightforward. We just
call its normalize() method, which takes a CharSequence argument. We first
created two sequences of Unicode characters, U+00E0 (small a with grave accent),
and U+0061, U+0300 (small a followed by grave accent). After that, we just print
out the char values from the strings.

> ant normalize-unicode

s1 char values= e0
s2 char values= 61, 300
n1 char values= e0
n2 char values= e0

Clearly the initial strings s1 and s2 are different. Their normalized forms, n1
and n2, are both the same as s1, because we chose the composing normalization
scheme that recomposes compound characters to the extent possible.

3.10.2 Encoding Detection

Unfortunately, we are often faced with texts with unknown character encodings.
Even when character encodings are specified, say for an XML document, they
can be wrong. ICU does a good job at detecting the character encoding from
a sequence of bytes, although it only supports a limited range of character en-
codings, not including the pesky Windows-1252, which is highly confusible with
Latin1 and just as confuisble with UTF-8 as Latin1. It’s also problematic for Java
use, because the default Java install on Windows machines uses Windows-1252
as the default character encoding.

We created a sample class $BOOK/DetectEncoding, which begins its main()
method by extracting (and then displaying) the detectable character encodings,

String[] detectableCharsets
= CharsetDetector.getAllDetectableCharsets();

These are the only encodings that will ever show up as return values from detec-
tion.

The next part of the program does the actual detection

String declared = "ISO-8859-1";
String s = "D\u00E9j\u00E0 vu.";

64 CHAPTER 3. CHARACTERS AND STRINGS

String[] encodings = { "UTF-8", "UTF-16", "ISO-8859-1" };
for (String encoding : encodings) {

byte[] bs = s.getBytes(encoding);
CharsetDetector detector = new CharsetDetector();
detector.setDeclaredEncoding(declared);
detector.setText(bs);
CharsetMatch[] matches = detector.detectAll();

First, it sets a variable that we’ll use for the declared encoding, ISO-8859-1, a vari-
able for the string we’ll decode, Déjà vu, and an array of encodings we’ll test. For
each of those encodings, we set the byte array bs to result of getting the bytes
using the current encoding. We then create an instance of CharsetDetector
(in com.ibm.icu.text) using the no-arg constructor, set its declared encoding,
and set its text to the byte array. We then generate an array of matches us-
ing the detecAll() method on the detector. These matches are instances of
CharsetMatch, in the same pacakge.

The rest of our the code just iterates through the matches and prints them.

for (CharsetMatch match : matches) {
String name = match.getName();
int conf = match.getConfidence();
String lang = match.getLanguage();
String text = match.getString();

For each match, we grab the name name of the character encoding, the integer
confidence value, which will range from 0 to 100 with higher numbers being
better, and the inferred language, which will be a 3-letter ISO code. We also get
the text that is produced by using the specified character encoding to convert
the string. These are then printed, but instead of printing the text, we just print
whether its equal to our original string s.

The result of running the code is

> ant detect-encoding

Detectable Charsets=[UTF-8, UTF-16BE, UTF-16LE, UTF-32BE,
UTF-32LE, Shift_JIS, ISO-2022-JP, ISO-2022-CN, ISO-2022-KR,
GB18030, EUC-JP, EUC-KR, Big5, ISO-8859-1, ISO-8859-2,
ISO-8859-5, ISO-8859-6, ISO-8859-7, ISO-8859-8, windows-1251,
windows-1256, KOI8-R, ISO-8859-9, IBM424_rtl, IBM424_ltr,
IBM420_rtl, IBM420_ltr]

encoding=UTF-8 # matches=3
guess=UTF-8 conf=80 lang=null

chars= 44 e9 6a e0 20 76 75 2e
guess=Big5 conf=10 lang=zh

chars= 44 77c7 6a fffd 20 76 75 2e
...

encoding=UTF-16 # matches=4

3.10. INTERNATIONAL COMPONENTS FOR UNICODE 65

guess=UTF-16BE conf=100 lang=null
chars= feff 44 e9 6a e0 20 76 75 2e

guess=ISO-8859-2 conf=20 lang=cs
chars= 163 2d9 0 44 0 e9 0 6a 0 155 0 20 0 ...

...

encoding=ISO-8859-1 # matches=0

Overall, it doesn’t do such a good job on short strings like this. The only fully
correct answer is for UTF-8, which retrieves the correct sequence of char values.

The UTF-16BE encoding is the right guess, but it messes up the conversion to
text by concatenating the two byte order marks FE and FF indicating big-endian
into a single char with value 0xFEFF. The detector completely misses the Latin1
encoding, which seems like it should be easy.

The language detection is very weak, being linked to the character encoding.
For instance, if the guessed encoding is Big5, the language is going to be Chinese
(ISO code “zh”).

Confidence is fairly low all around other than UTF-16BE, but this is mainly
because we have a short string. In part, the character set detector is operating
statistically by weighing how much evidence it has for a decision.

3.10.3 General Transliterations

ICU provides a wide range of transforms over character sequences. For instance,
it’s possible to transliterate Latin to Greek, translate unicode to hexadecimal, and
to remove accents from outputs. Many of the transforms are reversible. Because
transforms are mappings from strings to strings, they may be composed. So we
can convert Greek to Latin, then then remove the accents, then convert to hex-
adecimal escapes. It’s also possible to implement and load your own transforms.

Using transliteration on strings is as easy as the other interfaces in ICU. Just
create the transliterator and apply it to a string.

Built-In Transliterations

We first need to know the available transliterations, the identifiers of
which are avaialble programatically. We implement a main() method in
ShowTransliterations as follows

Enumeration<String> idEnum = Transliterator.getAvailableIDs();
while (idEnum.hasMoreElements())

System.out.println(idEnum.nextElement());

The ICU Transliterator class is imported from the package.
com.ibm.icu.text. We use its static method getAvailableIDs() to pro-
duce an enumeration of strings, which we then iterate through and print out.10

An abbreviated list of outputs (converted to two columns) is

10The Enumeration interface in the package java.util from Java 1.0 has been all but deprecated
in favor of the Iterator interface in the same package, which adds a remove method and shortens
the method names, but is otherwise identical.

66 CHAPTER 3. CHARACTERS AND STRINGS

> ant show-transliterations

Accents-Any
Amharic-Latin/BGN
Any-Accents
Any-Publishing
Arabic-Latin
...
Latin-Cyrillic
Latin-Devanagari
Latin-Georgian
Latin-Greek
...
Han-Latin
Hangul-Latin
Hebrew-Latin
Hebrew-Latin/BGN

Hiragana-Katakana
Hiragana-Latin
...
Persian-Latin/BGN
Pinyin-NumericPinyin
...
Any-Null
Any-Remove
Any-Hex/Unicode
Any-Hex/Java
...
Any-NFC
Any-NFD
Any-NFKC
...

The transliterations are indexed by script, not by language. Thus there is no
French or English, just Latin, because that’s the script. There is only so much
that can be done at the script level, but the transliterations provided by ICU are
surprisingly good.

In addition to the transliteration among scripts like Arabic and Hiragana,
there are also transforms based on Unicode itself. For instance, the Any-Remove
transliteration removes combining characters, and thus may be used to con-
vert accented characters to their deaccented forms across all the scripts in Uni-
code. There are also conversions to hexadecimal representation; for instance
Any-Hex/Java converts to hexadecimal char escapes suitable for inclusion in a
Java program. The normalizations are also avaialble through Any-NFC and so on.

Transliterating

The second demo class is Transliterate, which takes two command line ar-
guments, a string to transliterate and a transliteration scheme, and prints the
output as a string and as a list of char values. The body of the main() method
performs the transliteration as follows.

String text = args[0];
String scheme = args[1];
Transliterator trans = Transliterator.getInstance(scheme);
String out = trans.transliterate(text);

First we collect the text and transliteration scheme from the two command-line
arguments. Then, we create a transliterator with the specified scheme using
the static factory method getInstance(). Finally, we apply the newly created
transliterator’s transliterate() method to the input to produce the output.

We use the Ant target transliterate which uses the properties text and
scheme for the text to transliterate and coding scheme respectively.

> ant -Dtext="taxi cab" -Dscheme=Latin-Greek transliterate

3.10. INTERNATIONAL COMPONENTS FOR UNICODE 67

Scheme=Latin-Greek
Input=taxi cab
Output=???? ???
Output char values

3c4 3b1 3be 3b9 20 3ba 3b1 3b2

The reason the output looks like ???? ??? is that it was cut and pasted from
the Windows DOS shell, which uses the Windows default Java character encod-
ing, Windows-1252, which cannot represent the Greek letters (see Section 5.17
for information on how to change the encoding for the standard output). For
convenience, we have thus dumped the hexadecimal representations of the char-
acters. For instance, U+03c4, greek small letter tau, is the character τ and
U+03b1, greek small letter alpha, is α. The entire string is ταξι καβ, which
if you sound it out, is roughly the same as taxi cab in Latin.

To see how transliteration can be used for dumping out hex character values,
consider

> ant -Dtext=abe -Dscheme=Any-Hex/Java transliterate

Input=abe
Output=\u0061\u0062\u0065

The output may be quoted as a string and fed into Java. Translations are also
reversible, so we can also do it the other way around,

> ant -Dtext=\u0061\u0062\u0065 -Dscheme=Hex/Java-Any transliterate

Input=\u0061\u0062\u0065
Output=abe

Filtering and Composing Transliterations

The scope of transforms may be filtered. For instance, if we write [aeiou]
Upper, the lower-case ASCII letters are transformed to upper case. For exam-
ple, using our demo program, we have

> ant -Dtext="abe" -Dscheme="[aeiou] Upper" transliterate

Scheme=[aeiou] Upper
Input=abe
Output=AbE

Transforms may also be composed. For any transforms A and B, the trans-
form A; B first applies the transform A, then the transform B. Filters are es-
pecially useful when combined with composition. For example, the transform
NFD; [:Nonspacing Mark:] Remove; NFC composes three transforms, NFD,
[:Nonspacing Mark:] Remove, and NFC. The first transform performs canoni-
cal character decomposition (NFD), the second removes the non-spacing marks,
such as combining characters, and the third performs a canonical composition
(NFC). We can demo this with the string déjà, which we encode using Java
escapes as \u0064\u00E9\u006a\u00E0, by first prefixing the transform with
Hex/Java-Any to convert the escapes to Unicode. The output is

68 CHAPTER 3. CHARACTERS AND STRINGS

Scheme=Hex/Java-Any; NFD; [:Nonspacing Mark:] Remove; NFC
Input=\u0064\u00E9\u006a\u00E0
Output=deja

Chapter 4

Regular Expressions

Generalized regular expressions, as implemented in Java and all the scripting
languages like Perl and Python, provide a general means for describing spans
of Unicode text. Given a regular expression (regex) and some text, basic regex
functionality allows us to test whether a string matches the regex or find non-
overlapping substrings of a string matching the regex.

4.1 Matching and Finding

Despite the rich functionality of regexes, Java’s java.util.regex package con-
tains only two classes, Pattern and Matcher. An instance of Pattern provides
an immutable representation of a regular expression. An instance of Matcher
represents the state of the matching of a regular expression against a string.

4.1.1 Matching Entire Strings

It’s easiest to start with an example of using a regular expression for matching,
which we wrote as a main() method in the class RegexMatch, the work of which
is done by

String regex = args[0];
String text = args[1];

Pattern pattern = Pattern.compile(regex);
Matcher matcher = pattern.matcher(text);
boolean matches = matcher.matches();

First, we read the regex from the first command-line argument, then the text from
the second argument. We then use the regular expression to compile a pattern,
using the static factory method pattern.compile(). This pattern is reusable.
We next create a matcher instance, using the method matcher() on the pattern
we just created. Finally, we assign a boolean variable matches the value of calling
the method matches() on the matcher. And then we print out the result.

Regular expressions may consist of strings, in which case they simply carry
out exact string matching. For example, the regex aab does not match the string

69

70 CHAPTER 4. REGULAR EXPRESSIONS

aabb. There is an Ant target regex-match which feeds the command-line argu-
ments to our program. For the example at hand, we have

> ant -Dregex="aab" -Dtext="aabb" regex-match

Regex=|aab| Text=|aabb| Matches=false

On the other hand, the regex abc does match the string abc.

> ant -Dregex="abc" -Dtext="abc" regex-match

Regex=|abc| Text=|abc| Matches=true

Note that we have used the vertical bar to mark the boundaries of the regular
expression and text in our output. These vertical bars are not part of the regular
expression or the text. This is a useful trick in situations where space may appear
as the prefix or suffix of a string. It may get confusing if there is a vertical bar
within the string, but the outer vertical bars are always the ones dropped.

4.1.2 Finding Matching Substrings

The second main application of regular expressions is to find substrings of
a string that match the regular expression. The main method in our class
RegexFind illustrates this. We read in two command-line aguments into string
variables regex and text as we did for RegexMatch in the previous section.
We begin by compling the pattern and creating a matcher for the text just as in
RegexFind.

Pattern pattern = Pattern.compile(regex);
Matcher matcher = pattern.matcher(text);
while (matcher.find()) {

String found = matcher.group();
int start = matcher.start();
int end = matcher.end();

The first call of the find() method on a matcher returns true if there is a sub-
string of the text that matches the pattern. If find() returned true, then the are
method group() returns the substring that matched, and the methods start()
and end() return the span of the match, which is from the start (inclusive) to the
end (exclusive).

Subsequent calls to find() return true if there is a match starting on or after
the end position of the previous calls. Thus the loop structure in the program
above is the standard idiom for enumerating all the matches.

As an example, we use the Ant target regex-find, which takes the same
arguments as regex-match.

> ant -Dregex=aa -Dtext=aaaaab regex-find

Found |aa| at (0,2) Found |aa| at (2,4)

4.2. CHARACTER REGEXES 71

As before, the vertical bars are delimeters, not part of the matching substring.
The string aa actually shows up in four distinct locations in aaaaab, at spans
(0,2), (1,3), (2,4), and (3,5). Running find only returns two of them. The matcher
works from the start to the end of the string, returning the first match it finds
after the first call to find(). In this case, that’s the substring of aaaaab span-
ning (0,2). The second call to find() starts looking for a match at position 2,
succeeding with the span (2,4). Next, it starts looking at position 4, but there is
no substring starting on or after position 4 that matches aa.

4.2 Character Regexes

The most basic regular expressions describe single characters. Some characters
have special meanings in regexes and thus need to be escaped for use in regular
expresions.

4.2.1 Characters as Regexes

A single character may be used a regular expression. A regular expression
consisting of a single character only matches that single character. For in-
stance, Pattern.compile("a").matcher("a").matches() would evaluate to
true. Using our Ant match target,

> ant -Dregex=b -Dtext=b regex-match

Regex=|b| Text=|b| Matches=true

> ant -Dregex=b -Dtext=c regex-match

Regex=|b| Text=|c| Matches=false

Within a Java program, Java character literals may be used within the string de-
noting the regex. For instance, we may write Pattern.compile("\u00E9") to
compile the regular expression that matches the character U+00E9, latin small
e with acute, which would be written as é.

4.2.2 Unicode Escapes

Arbitrary unicode characters may be escaped in the same way as in Java. That is,
\uhhhh is a regular expression matching the character with Unicode code point
U+hhhh. For example,

> ant -Dregex=\u0041 -Dtext=A regex-match

Regex=|\u002E| Text=|.| Matches=true

Note that we did not have to escape the backslash for the shell because the fol-
lowing character, u, is not an escape. Unicode escapes are useful for for matching
the period character, U+002E, full stop, which is a reserved character in regexes
representing wildcards (see Section 4.3.1).

72 CHAPTER 4. REGULAR EXPRESSIONS

> ant -Dregex="\u002E" -Dtext="." regex-match

Regex=|\u002E| Text=|.| Matches=true

In a Java program, we’d still have to write Pattern.compile("\\u002E").
Unicode escapes in regexes are confusing, because they use the same

syntax as Java unicode literals. Further complicating matters, the lit-
eral for backslashes in Java programs is itself an escape sequence,
\\. There is a world of difference between the patterns produced by
Pattern.compile("\u002E") and Pattern.compile("\\u002E"). The former
is the same as Patten.compile("."), and matches any character, whereas the
latter uses a regex escape, and only matches the period character.

4.2.3 Other Escapes

There are also other built-in escapes, such as \n for newline and \\ for a back-
slash character. Again, we have to be careful about distinguishing Java string
escapes, which are used to create a regex, which itself may contain regex escapes.

To confuse matters, Java itself also uses a backslash for escapes, so that the
character for backslash is written ’\\’ and so the regex \n must be written as
the string literal "\\n". To create the regex \\, we need to use two backslash
escapes in our string literal, writing Pattern.compile("\\\\").

This is all further confused by the command-line shell, which has its own
escape sequences. Our sample program reads a command from the command
line, which is being supplied by Ant and set as a property on the command-line
call to Ant. For instance, consider this puzzler,

> ant -Dregex="\\\\" -Dtext="\\" regex-match

Regex=|\\| Text=|\| Matches=true

On the command line, backslash is escaped as \\.1 Our Java program gets a value
for regex consisting of a length-two string made up of two backslashes, and
value for text consisting of a single backslash. The match succeeds because the
regex \\ is the escaped backslash character, which matches a single backslash.

4.3 Character Classes

Regular expressions provide a range of built-in character classes based on ASCII
or Unicode, as well as the ability to define new classes. Each character class
matches a set of characters. The reason to use classes rather than disjunctions
is that they have

1Usually backslash doesn’t need to be escaped because the following character isn’t a valid escape;
here, the following character is a quote ("), and \" is a valid escape sequence for the shell.

4.3. CHARACTER CLASSES 73

4.3.1 WildCards

A singe period (.) is a regular expression that matches any single characer. We
may think of it as the universal character class. For instance, the regex . matches
the string a, and a.c matches abc.

> ant -Dregex=a.c -Dtext=abc regex-match
Regex=|a.c| Text=|abc| Matches=true

Whether or not a wildcard matches an end-of-line sequence depends on
whether or not the DOTALL flag is set (see Section 4.12); if it is set, the wild-
card matches end-of-line sequences. The following two expressions evaluate to
true,

Pattern.compile(".").matcher("A").matches();
Pattern.compile(".",DOTALL).matcher("\n").matches();

whereas the following expression evaluates to false,

Pattern.compile(".").matcher("\n").matches();

4.3.2 Unicode Classes

Unicode defines a range of categories for characters, such as the category Lu of
uppercase letters (see Section 3.1.4 for more information). The regular expres-
sion \p{X} matches any unicode character belonging to the Unicode category X.
For example, the class Lu picks out uppercase letters, so we have

> ant -Dregex=\p{Lu} -Dtext=A regex-match
Regex=|\p{Lu}| Text=|A| Matches=true

Using a capital letter complements the category; for instance, \p{Lu} matches
uppercase letters, whereas \P{Lu} matches any character except an uppercase
letter.

4.3.3 ASCII Classes

There are character classes built in for ASCII characters. For instance, \d is for
digits, \s for whitespace, and \w for alphanumeric characters. For example,

> ant -Dregex=\d -Dtext=7 regex-match
Regex=|\d| Text=|7| Matches=true

For these three ASCII classes, the capitalized forms match ASCII characters that
don’t match the lowercase forms. So \D matches non-digits, \S non whitespace,
and \W non-alphanumeric characters.

There are a range of built-in ASCII classes from the POSIX standard built in.
They use the same syntax as the Unicode classes described in the previous sec-
tion. For example, \p{ASCII} matches any ASCII character and \p{Punct} for
ASCII punctuation characters.

The ASCII characters must be used with care, because they will not have their
described behavior when interpreted over all of Unicode. For example, there are
whitespaces in Unicode that don’t match \s and digits that don’t match \d.

74 CHAPTER 4. REGULAR EXPRESSIONS

4.3.4 Compound Character Classes

Character classes may be built up from single characters and/or other character
classes using set operations like union, intersection, and negation.

The syntax for compound character classes uses brackets around a character
class expression. The atomic character class expressions are single characters
like a, and the character class escapes like \p{Lu} matches any uppercase Uni-
code letter character.

Character classes may be unioned, which confusingly uses a concatenation
syntax. For instance, [aeiou] is the character class picking out the ASCII vowels.
It is composed of the union of character class expressions a, e, . . . , u.

> ant -Dregex=[aeiou] -Dtext=i regex-match

Regex=|[aeiou]| Text=|i| Matches=true

Class escapes may be used, so that [\p{Lu}\p{N}] picks out upper case letters
and numbers.

The use of range notation may be used as shorthand for unions. For instance,
[0-9] picks out the ASCII digits 0, 1, . . . , 9. For example,

> ant -Dregex="[I-P]" -Dtext=J regex-match

Regex=|[I-P]| Text=|J| Matches=true

Character classes may be complemented. The syntax involves a caret, with
[ˆA] picking out the class of characters not in class A. The expression A must
be either a range or a sequence of character class primitives. For instance, [ˆz]
represents the class of every character other than z.

> ant -Dregex="[ˆz]" -Dtext=z regex-match

Regex=|[^z]| Text=|z| Matches=false

> ant -Dregex="[ˆz]" -Dtext=a regex-match

Regex=|[^z]| Text=|a| Matches=true

Unlike the usual rules governing the logical operations disjunction, conjunction,
and negation, the character class complementation operator binds more weakly
than union. Thus [ˆaeiou] picks out every character that is not an ASCII vowel.

Character classes may also be intersected. The syntax is the same as for
logical conjunction, with [A&&B] picking out the characters that are in the classes
denoted by both A and B. For instance, we could write [[a-z]&&[ˆaeiou]] to
pick out all lowercase ASCII characters other than the vowels,

> ant -Dregex="[[a-z]&&[ˆaeiou]]" -Dtext=i regex-match

Regex=|[[a-z]&&[^aeiou]]| Text=|i| Matches=false

As described in the Javadoc for Pattern, the order of attachment for charac-
ter class operations is

4.4. CONCATENATION 75

Order Expression Example

1 Literal Escape \x
2 Grouping [...]
3 Range 0-9
4 Union ab, [0-9][ab],
5 Intersection [[a-z]&&[ˆaeiou]]

Thus the square brackets act like grouping parentheses for character classes.
Complementaton must be treated separately. Complementation only applies to
character groups or ranges, and must be closed within brackets before being
combined with union or intersection or the scope may not be what you expect.
For instance, [ˆa[b-c]] is not equivalent to [ˆabc], but rather is equivalent to
[[ˆa][b-c]].

4.4 Concatenation

As we saw in our early examples, characters may be concatenated together to
form a regular expression that matches the string. This is not the same operation
as character classes, which confusingly uses the same notation.

4.4.1 Empty Regex

With a list of characters (or strings) being concatenated, the boundary case is
the concatenation of an empty list, which is why we start this section with a
discussion of the empty regex.

The simplest regular expression is the empty regular expres-
sion. It only matches the empty string. For example, the expression
Pattern.compile("").matcher("").matches() evaluates to true. Using
our test code from the command-line proves tricky, because we have to escape
the quotes if we want to assign environment variables, as in

> ant -Dregex=\"\" -Dtext=\"\" regex-match

Regex=|| Text=|| Matches=true

> ant -Dregex=\"\" -Dtext=a regex-match

Regex=|| Text=|a| Matches=false

4.4.2 Concatenation

Two regular expressions x and y may be concatenated to produce a compound
regular expression xy. The regex xy matches any string that can be decomposed
into a string that matches x followed by a string that matches y. For example, if
we have a regex [aeiou] that matches vowels and a regex 0-9 that matches dig-
its, we can put them together to produce a regex that matches a vowel followed
by a digit.

> ant -Dregex=[aeiou][0-9] -Dtext=i7 regex-match

76 CHAPTER 4. REGULAR EXPRESSIONS

Regex=|[aeiou][0-9]| Text=|i7| Matches=true

Concatenation is associative, meaning that if we have three regexes x, y, and
z, the regexes (xy)z and x(yz) match exactly the same set of strings. Because
parentheses may be used for groups (see Section 4.10), the two regexes do not
always behave exactly the same way.

4.5 Disjunction

If X and Y are regular expressions, the regular expression x|y matches any string
that matches either X or Y (or both). For example,

> ant -Dregex="ab|cd" -Dtext=ab regex-match

Regex=|ab|cd|
Text=|ab|
Matches=true

> ant -Dregex="ab|cd" -Dtext=cd regex-match

Regex=|ab|cd| Text=|cd| Matches=true

> ant -Dregex="ab|cd" -Dtext=bc regex-match

Regex=|ab|cd| Text=|bc| Matches=false

Concatenation takes precedence over disjunction, so that ab|cd is read as
(ab)|(cd), not a(b|c)d.

The order of disjunctions doesn’t matter for matching (other than for effi-
ciency), but it matters for the find operation. For finds, disjunctions are evaluated
left-to-right and the first match returned.

> ant -Dregex="ab|abc" -Dtext=abc regex-find

Found |ab| at (0,2)

> ant -Dregex="abc|ab" -Dtext=abc regex-find

Found |abc| at (0,3)

Because complex disjunctions are executed through backtracking, disjunc-
tions that have to explore many branches can quickly lead to inefficient regular
expressions. Even a regex as short as (a|b)(c|d)(e|f) has 23 = 8 possible
search paths to explore. Each disjunction doubles the size of the search space,
leading to exponential growth in the search space in the number of interacting
disjunctions. In practice, disjunctions often fail earlier. For instance, if there is
no match for a|b, further disjunctions are not explored.

A simple pathological case can be created by concatenating instances of the
regex (|a) and then matching a long string of a characters. You can try it out
yourself with

> ant -Dregex="(|a)(|a)...(|a)(|a)" -Dtext=aa...aa regex-find

4.6. GREEDY QUANTIFIERS 77

where the elipses are meant to indicate further copies of a. This expression will
explore every branch of every disjunction. Around 25 or 26 copies of (|a) there
are tens of millions of paths to explore, and with 30, there’s over a billion. You’ll
be waiting a while for an answer. But if the building block is (a|b), there’s no
problem, because each disjunction has to match a.

> ant -Dregex="(b|a)(b|a)...(b|a)(b|a)" -Dtext=aa...aa regex-find

4.6 Greedy Quantifiers

There are operators for optionality or multiple instances that go under the gen-
eral heading of “greedy” because of they match as many times as they can. In the
next section, we consider their “reluctant” counterparts that do the opposite.

4.6.1 Optionality

The simplest greedy quantifier is the optionality marker. The regex A? matches
a string that matches A or the empty string. For example,

> ant -Dregex=a? -Dtext=a regex-match

Regex=|a?| Text=|a| Matches=true

> ant -Dregex=a? -Dtext=\"\" regex-match

Regex=|a?| Text=|| Matches=true

The greediness of the basic optionality marker, which tries to match before
trying to match the empty string, is illustrated using find(),

> ant -Dregex=a? -Dtext=aa regex-find

Found |a| at (0,1) Found |a| at (1,2) Found || at (2,2)

The first two substrings found match a rather than the empty string. Only when
we are at position 2, at the end of the string, do we match the empty string
because we can no longer match a.

The greediness of optionality means that the A? behaves like the disjunction
(A|) of A and the empty string. Because it is the first disjunct, a match against A
is tried first.

4.6.2 Kleene Star

A regular expression x may have the Kleene-star operator2 applied to it to pro-
duce the regular expression A*. The regex A* matches a string if the string
is composed of a sequence of zero or more matches of A. For example, [01]*
matches any sequence composed only of 0 and 1 characters,

2Named after Stephen Kleene, who invented regular expressionsn as a notation for his characteri-
zation of regular languages.

78 CHAPTER 4. REGULAR EXPRESSIONS

> ant -Dregex="[01]*" -Dtext=00100100 regex-match

Regex=|[01]*| Text=|00100100| Matches=true

It will also match the empty string, but will not match a string with any other
character.

Using find, the standard Kleene-star operation is greedy in that it consumes
as much as it can during a find() operation. For example, consider

> ant -Dregex="[01]*" -Dtext=001a0100 regex-find

Found |001| at (0,3) Found || at (3,3) Found |0100| at (4,8)
Found || at (8,8)

The first result of calling find() consumes the expression [01] as many times
as possible, consuming the first three characters, 001. After that, the expres-
sion matches the empty string spanning from 3 to 3. It then starts at position
4, finding 0100 and then the empty string again after that. Luckily, find() is
implemented cleverly enough that it only returns the empty string once.

Kleene star may also be understood in terms of disjunction. The greedy
Kleene star regex A* behaves like the disjunction of A(A*) and the empty regex.
Thus it first tries to match A followed by another match of A*, and only fail-
ing that tries to match the empty string. For instance, the two regexes in the
following patterns match exactly the same strings.

Pattern p1 = Pattern.compile("(xyz)*");
Pattern p2 = Pattern.compile("(xyz(xyz)*)|");

Kleene star interacts with disjunction in the expected way. For example,
matching consumes an entire string, as with

> ant -Dregex="(ab|abc)*" -Dtext=abcab regex-match

Regex=|(ab|abc)*| Text=|abcab| Matches=true

while finding returns only an initial match,

> ant -Dregex="(ab|abc)*" -Dtext=abcab regex-find

Found |ab| at (0,2) Found || at (2,2) Found |ab| at (3,5)
Found || at (5,5)

This is a result of the greediness of the Kleene-star operator and the evaluation
order of disjunctions. If we reorder, we get the whole string,

> ant -Dregex="(abc|ab)*" -Dtext=abcab regex-find

Found |abcab| at (0,5) Found || at (5,5)

because we first match abc against the disjunct, then continue trying to match
(abc|ab)*, which matches ab.

4.7. RELUCTANT QUANTIFIERS 79

4.6.3 Kleene Plus

The Kleene-plus operator is like the Kleene star, but requires at least one match.
Thus A+ matches a string if the string is composed of a sequence of one or more
matches of A. The Kleene-plus operator may be defined in terms of Kleene star
and concatenation, with A+ behaving just like AA*.

Use Kleene plus instead of star to remove those pesky empty string matches.
For instance,

> ant -Dregex="(abc|ab)+" -Dtext=abcab regex-find

Found |abcab| at (0,5)

4.6.4 Match Count Ranges

We can specify an exact number or a range of possible number of matches. The
regular expression A{m} matches any string that that may be decomposed into a
sequence of m strings, each of which matches A.

> ant -Dregex="a{3}" -Dtext=aaa regex-match

Regex=|a{3}| Text=|aaa| Matches=true

There is similar notation for spans of counts. The regex A{m,n} matches any
string that may be decomposed into a sequence of between m (inclusive) and n
(inclusive) matches of A. The greediness comes in because it prefers to match as
many instances as possible. For example,

> ant -Dregex="a{2,3}" -Dtext=aaaaa regex-find

Found |aaa| at (0,3) Found |aa| at (3,5)

The first result found matches the regex a three times rather than twice.
There is also an open-ended variant. The regex A{m,} matches any string that

can be decomposed into m or more strings each of which matches A.

4.7 Reluctant Quantifiers

There are a range of reluctant quantifiers that parallel the more typical greedy
quantifiers. For matching, the relunctant quantifiers behave just like their greedy
counterparts, whereas for find operations, reluctant quantifiers try to match as
little as possible.

The reluctant quantifiers are written like the greedy quantifiers followed by a
question mark. For instance, A*? is the reluctant version of the Kleene star regex
A*, A{m,n}? is the reluctant variant of the range egex A{m,n}, and A?? is the
reluctant variant of the optionality regex A?.

Reluctant quantifiers may be understood by reversing all the disjuncts in the
definitions of the greedy quantifier equivalents. For instance, we can think of
A?? as (|A) and A*? as (|AA*?).

Here we repeat some key examples of the previous section using reluctant
quantifiers.

80 CHAPTER 4. REGULAR EXPRESSIONS

> ant -Dregex=a?? -Dtext=aa regex-find

Found || at (0,0) Found || at (1,1) Found || at (2,2)

> ant -Dregex="(abc|ab)+?" -Dtext=abcab regex-find

Found |abc| at (0,3) Found |ab| at (3,5)

> ant -Dregex="a{2,3}?" -Dtext=aaaaa regex-find

Found |aa| at (0,2) Found |aa| at (2,4)

4.8 Possessive Quantifiers

The third class of quantified expression is the possessive quantifier. Possessive
quantifiers will not match a fewer number of instances of their pattern if they
can match more. Procedurally, they commit to a match once they’ve made it and
do not allow backtracking.

The syntax for a possessive quantifier follows the quantifier symbol with a
plus sign (+); for instance, ?+ is possessive optionality and *+ is greedy Kleene
star.

Consider the difference between a greedy Kleene star

> ant "-Dregex=[0-9]*1" -Dtext=1231 regex-match

Regex=|[0-9]*1| Text=|1231| Matches=true

which matches, and a possessive Kleene star,

> ant "-Dregex=[0-9]*+1" -Dtext=1231 regex-match

Regex=|[0-9]*+1| Text=|1231| Matches=false

which does not match. Even though [0-9]* indicates a greedy match, it is able
to back off and only match the first three characters of the input, 123. The
possessive quantifier, once it has matched 1231, does not let it go, and the overall
match fails.

4.8.1 Independent Group Possessive Marker

If A is a regex, then (?>A) is a regex that matches the same thing as A, but groups
the first match possessively. That is, once (?>A) finds a match for A, it does not
allow backtracking. We can see this with a pair of examples.

> ant -Dregex="(?>x+)xy" -Dtext=xxy regex-match

Regex=|(?>x+)xy| Text=|xxy| Matches=false

This doesn’t match, because the x+ matches both instances of x in the text being
matched and doesn’t allow backtracking. Contrast this with

> ant -Dregex="(?>x+)y" -Dtext=xxy regex-match

Regex=|(?>x+)y| Text=|xxy| Matches=true

The parentheses in this construction do not count for grouping (see Sec-
tion 4.10). There is a similar construction (?:A) which is not possessive, and
also does not count the parentheses for grouping.

4.9. NON-CAPTURING REGEXES 81

4.9 Non-Capturing Regexes

Some regexes match virtual positions in an input without consuming any text
themselves.

4.9.1 Boundary Matchers

Boundary matchers match specific sequences, but do not consume any input
themselves.

Begin- and End-of-Line Matchers

The caret (ˆ) is a regular expression that matches the end of a line and the dollar
sign ($) a regular expression matching the beginning of a line. For example,

> ant -Dregex="ˆabc$" -Dtext=abc regex-match

Regex=|^abc$| Text=|abc| Matches=true

> ant -Dregex=ab$c -Dtext=abc regex-match

Regex=|ab$c| Text=|abc| Matches=false

The begin- and end-of-line regexes do not themselves consume any characters.
These begin-of-line and end-of-line regexes do not match new lines inside of

strings unless the MULTILINE flag is set (see Section 4.12). By default, these
regexes match new-line sequences for any platform (Unix, Macintosh, or Win-
dows) and many more (see Section 4.9.4 for the full set of line terminators). If
the UNIX_LINES flag is set, they only match Unix newlines (see Section 4.12).

Begin and End of Input

Because begin-of-line and end-of-line have variable behavior, there are regexes \A
for the beginning of the input and \z for the end of the input. These will match
the begin and end of the input no matter what the match mode is. For instance,

> ant -Dregex=\A(mnp)\z -Dtext=mnp regex-group

regex=|\A(mnp)\z| text=|mnp|
Group 0=|mnp| at (0,3) Group 1=|mnp| at (0,3)

Word Boundaries

The regex \b matches a word boundary and \B a non-word boundary, both with-
out consuming any input. Word boundaries are the usual punctuation and spaces
and the begin and end of input. For example,

> ant -Dregex=\b\w+\b -Dtext="John ran quickly." regex-find

Found |John| at (0,4) Found |ran| at (5,8)
Found |quickly| at (9,16)

82 CHAPTER 4. REGULAR EXPRESSIONS

4.9.2 Positive and Negative Lookahead

Often you want to match something only if it occurs in a given context. If A is
a regex, then (?=A) is the positive lookahead and (?!A) the negative lookahead
regular expression. These match a context that either matches or doesn’t match
the specified regular expression. They must be used following other regular
expressions. For instance, to find the instances of numbers preceding periods,
we could use

> ant -Dregex="\d+(?=\.)" -Dtext=12.2 regex-find

Found |12| at (0,2)

and to find those not preceding periods,

> ant -Dregex="\d+(?!\.)" -Dtext=12.2 regex-find

Found |1| at (0,1) Found |2| at (3,4)

In a real application, we would probably exclude numbers and periods in the
negative lookahead, with a regex such as \d+(?![\.\d]).

One reason the lookahead is nice is that further finds can match the material
that the lookahead matched.

4.9.3 Positive and Negative Lookbehind

There are backward-facing variants of the positive and negative lookahead con-
structs, (?<=X) and (?<!X). These are more limited in that the regular expres-
sion X must expand to a simple sequence, and thus may not contain the Kleene-
star or Kleene-plus operations.

For example, the following example finds sequences of digits that do not
follow periods or other digits

> ant -Dregex="(?<![\.\d])\d+" -Dtext=12.32 regex-find

Found |12| at (0,2)

4.9.4 Line Terminators and Unix Lines

Code Point(s) Description Java

U+000A line feed \n
U+000D carriage return \r
U+000D, U+000A carriage return, line feed \r\n
U+0085 next line \u0085
U+2028 line separator \u2028
U+2029 paragraph separator \u2029

4.10. PARENTHESES FOR GROUPING 83

4.10 Parentheses for Grouping

Parentheses play the usual role of grouping in regular expressions, and may be
used to disambiguate what would otherwise be misparsed. For instance, the
expression (a|b)c is very different than a|(bc).

Parentheses also play the role of identifying the subexpressions they wrap.
If A is a regular expression, (A) is a regular expression that matches exactly

the same strings as A. Note that parentheses come in matched pairs, and each
picks out the unique subexpression A it wraps.

The pairs of parentheses in a regular expression are numbered from left to
right, beginning with 1. For example, we’ve written a very simple regex with the
identifier of each parentheses group on the next line

a(b(cd)(e))
0 1 2 3

There is an implicit pair of parentheses around the entire pattern, with group
number 0. Group 1 is b(cd)(e), group 2 is cd, and group 3 is e.

The identities of the groups are useful for pulling out substring matches (this
section), using back references in regexes (see Section 4.11) and replace opera-
tions based on regexes (see Section 4.14).

After a match or a find operation, the substring of the match that matched
each group is available from the matcher with a method group(int), where the
argument indicates which group’s match is returned. The start and end position
of a group may also be retrieved, using start(int) and end(int). The total
number of groups in the regex is available through the method groupCount().
The methods group(), start(), and end() we used earlier to retrieve the match
of the entire string are just shorthand for group(0), start(0), and end(0). If
there hasn’t been a match or the last find did not succeed, attempting to retrieve
groups or positions raises an illegal state exception.

We provide a simple class RegexGroup to illustrate the workings of group
extraction. The work is done in the main() method by the code

Pattern pattern = Pattern.compile(regex);
Matcher matcher = pattern.matcher(text);
if (matcher.matches()) {

for (int i = 0; i <= matcher.groupCount(); ++i) {
String group = matcher.group(i);
int start = matcher.start(i);
int end = matcher.end(i);

Here we call matcher.match(), which requires a match of the entire text.
We set up the Ant target regex-group to call it, and test it in the usual way,

using the example whose groups are numbered above.

> ant -Dregex=a(b(cd)(e)) -Dtext=abcde regex-group

regex=|a(b(cd)(e))| text=|abcde|
Group 0=|abcde| at (0,5) Group 1=|bcde| at (1,5)
Group 2=|cd| at (2,4) Group 3=|e| at (4,5)

84 CHAPTER 4. REGULAR EXPRESSIONS

A more typical linguistic example would be to pull out names after the word Mr,
as in

> ant -Dregex=Mr((\s(\p{Lu}\p{L}*))+) -Dtext="Mr J Smith"
regex-group

Group 0=|Mr J Smith| at (0,10) Group 1=| J Smith| at (2,10)
Group 2=| Smith| at (4,10) Group 3=|Smith| at (5,10)

Group 1 corresponds to the name, but note that we have an extra leading space.
We can get rid of that with a more complex regex, and we could also allow op-
tional periods after Mr with the appropriate escape, and also deal with periods
in names. Matching complicated patterns with regexes is a tricky business.

4.10.1 Non-Capturing Group

It is possible to use parentheses without capturing. If X is a regex, then (?:X)
matches the same things as X, but the parentheses are not treated as capturing.

4.11 Back References

The regex \n is a back reference to the match of the n-th capturing group before
it. We can use matching references to find pairs of duplicate words in text. For
instance, consider

> ant -Dregex="(\d+).*(\1)" -Dtext="12 over 12" regex-group

Group 0=|12 over 12| at (0,10) Group 1=|12| at (0,2)
Group 2=|12| at (8,10)

The regex \1 will match whatever matched group 1. Group 1 is (\d+) and group
2 is (\1); both match the expression 12, only at different places. You can see
that the text 12 over 13 would not have matched.

If the match index is out of bounds for the number of groups, matching fails
without raising an exception.

4.12 Pattern Match Flags

There are a set of flags, all represented as static integer constants in
Pattern, which may be supplied to the pattern compiler factory method
Pattern.compile(String,int) to control the matching behavior of the com-
piled pattern.

4.12. PATTERN MATCH FLAGS 85

Constant Value Description

DOTALL 32 Allows the wild card (.) expression to match
any character, including line terminators. If
this mode is not set, the wild card does not
match line terminators.

MULTLINE 8 Allows the begin-of-line (ˆ) and end-of-line
($) to match internal line terminators. If
this is not set, they only match before the
first and after the last character. The full
Java notion of newline is used unless the flag
UNIX_LINES is also set.

UNIX_LINES 1 Treat newlines as in Unix, with a single
U+000A, line feed, Java string escape \n,
representing a new line. This affects the be-
havior of wildcard (.) and begin-of-line (ˆ)
and end-of-line ($) expressions.

CASE_INSENSITIVE 2 Matching is insensitive to case. Case fold-
ing is only for the ASCII charset (U+0000
to U+007F) unless the flag UNICODE_CASE is
also set, which uses the Unicode definitions
of case folding.

UNICODE_CASE 64 If this flag and the CASE_INSENSITIVE flag
is set, matching ignores case distinctions as
defined by Unicode case folding rules.

CANON_EQ 128 Matches are based on canonical equivalence
in Unicode (see Section 3.1.4).

LITERAL 16 Treats the pattern as a literal (i.e., no
parsing).

COMMENTS 4 Allows comments in patterns and causes
pattern-internal whitespace to be ignored.

The flags are defined using a bit-mask pattern whereby multiple flags
are set by taking their bitwise-or value.3 For instance, the expression
DOTALL | MULTILINE allows the wildcard to match anything and the line-
terminator expressions to match internal newlines. More than two flags
may be set this way, so we could further restrict to Unix newlines with
DOTALL | MULTILINE | UNIX_LINES.

Even stronger matching than canonical equivalence with unicode case folding
can be achieved by writinger the regular expression using compatibility normal
forms and using the ICU package to perform a compatibility decomposition on
the input (see Section 3.1.4).

3Although bitwise or looks like addition for flags like these with only one bit on, it breaks
down when you try to set flags twice. Thus DOTALL + MULTILINE evaluates to the same thing
as DOTALL | MULTINE, DOTALL + DOTALL evaluates to the same thing as UNICODE_CASE, whereas
DOTALL | DOTALL evaluates to the same thing as DOTALL.

86 CHAPTER 4. REGULAR EXPRESSIONS

4.13 Pattern Construction Exceptions

Attempting to compile a regular expression with a syntax error raises a runtime
exception, PatternSyntaxException from the java.util.regex package. The
parser tries to provide a helpful warning message. For instance, here’s what we
see if we inadvertently add a right parenthesis to our regex.

> ant -Dregex=aa) -Dtext=aaab regex-find

Exception in thread "main"
java.util.regex.PatternSyntaxException:
Unmatched closing ’)’ near index 1

4.14 Find-and-Replace Operations

A common usage pattern for regular expressions is to find instances of
one pattern and replace them with another. We provide a sample program
RegexReplace, which illustrates replacement in its main() method,

Pattern pattern = Pattern.compile(regex);
Matcher matcher = pattern.matcher(text);
String result = matcher.replaceAll(replacement);

The pattern and matcher are created as usual. Then, we create a string by replac-
ing all the matches of the pattern in the text provided to the matcher with the
specified replacement. We could also use replaceFirst() to return the result
of only replacing the first match.

With the Ant target regex-replace, we can see this in action.

> ant -Dregex=\d+ -Dreplacement=0 -Dtext="+1 (718) 290-9170"
regex-replace

regex=|\d+| replacement=|0|
text=|+1 (718) 290-9170| result=|+0 (0) 0-0|

We’ve replaced every sequence of digits with a zero.
A nice feature of replace operations is that they may reference pieces of the

match by group number and use them in the replacement. An occurrence of $n
in the replacement string represents whatever matched group n in the match.

For instance, we can extract the version number from a jar and redisplay it
using

> ant -Dregex=(\w+)\-([\d\.]+)\.jar -Dreplacement="$1.jar v$2"
-Dtext="foo-7.6.jar" regex-replace

regex=|(\w+)\-([\d\.]+)\.jar| replacement=|$1.jar v$2|
text=|foo-7.6.jar| result=|foo.jar v7.6|

Note that we had to escape the literal hyphen and period characters in the regex.
The class \w is for word characters, which are alphanumerics and the underscore.
The example regexes are very fragile, and it is quite difficult to write more robust
regexes.

4.15. STRING REGEX UTILITIES 87

4.15 String Regex Utilities

There are many utility methods in the String class that are based on regular
expressions.

The method matches(String) returns true if the string matches the regex
specified by the argument. Given a regex r, matches(r) is just shorthand for
Pattern.compile(r).matcher(this).matches().

The method replaceAll(String,String), which takes a string repre-
senting a regex and a replacement string, returns the result of replacing all
the substrings in the string matching the regex with the replacement string.
Given a regex r and replacement s, replaceAll(r,s) is just shorthand for
Pattern.compile(r).matcher(this).replaceAll(s). As such, the replace-
ment may contain references to match groups. There is also a corresponding
replaceFirst() method.

One of the more useful utilities is split(String), which splits a string
around the matches of a regular expression, returning an array as a result. For
instance, "foo12bar177baz.̈split(\d+) splits on digits, returning the string ar-
ray { "foo", "bar", "baz" }. Note that the matching numbers are removed.

4.16 Thread Safety, Serialization, and Reuse

4.16.1 Thread Safety

Because instances of Pattern are immutable, it is safe to use them concurrently
in multiple threads. Because instances of Matcher contain the state of the cur-
rent match, it is not thread safe to use matchers concurrently without synchro-
nization.

4.16.2 Reusing Matchers

Matchers may be reused. The method reset() may be called on a matcher to
reset it to behave as if it had just been constructed with its given pattern and
character sequence. The character sequence may be changed. The pattern may
also be changed on the fly, without changing the current position. This may be
useful if you alternately match first one pattern then another. Although matchers
may be reused, the typical usage pattern is to construct them for a text, use them
once, then discard them.

4.16.3 Serialization

Patterns are serializable. The string representing the pattern and the compilation
flags are stored and the version read back in is an instance of Pattern behaving
just like the original. Often patterns do not need to be serialized because they’re
effectively singletons (i.e., constants).

88 CHAPTER 4. REGULAR EXPRESSIONS

Chapter 5

Input and Output

Java provides a rich array of classes for dealing with input and output. At the
basic level, input and output streams provide a means to transfer data consisting
of a sequence of bytes. Data may be transferred among memory with memory-
backed streams, the file system via file streams or memory mapped files, the
terminal via standard input and output streams, and remote servers via sockets.
Stream filters may be put in place to compress or decompress data.

Some streams block awaiting input or output. For instance, file (network)
input streams will block while waiting for the file system (network), which is
much slower than Java code. Read requests from a console representing standard
input will block awaiting the next input from a user. To handle pipes, which allow
an input stream to read from an output stream, Java uses threads to allow reads
to wait until writes are ready or vice-versa.

Bytes may encode anything, but we are particularly interested in the case
of natural language text data, with or without document structure. To support
streams of char values, Java provides char streams as byte streams. In order
to create a character stream from byte stream, the character encoding must be
known.

We are also interested in sequences of bytes that encode Java objects through
serialization. We use serialized objects to represent models and their compo-
nents, such as tokenizers.

5.1 Files

Java provides the class File in the java.io package for representing files and
directories on the local file system. Underlyingly, an instance of File is nothing
more than a string representing a path coupled with a convenient set of utility
methods, some of which access the underlying file system.

5.1.1 Relative vs. Absolute Paths

Files may be either relative or absolute. An absolute path name provides a full
description of where to find a file on the system in question. A relative path

89

90 CHAPTER 5. INPUT AND OUTPUT

picks out a file or directory starting from a root directory (the form of which will
be operating system specific). Relative paths may pick out different resources in
different situations depending on the base directory.

The static method File.listRoots() provides an array of all of the available
root directories. We wrote a simple demo in the class ListRoots, the heart of
which is

File[] roots = File.listRoots();
for (File file : roots)

Running it on my Windows machine returns

> ant list-roots

Root Directories
C:\
E:\

The root directories C:\ and E:\ correspond to my two drives, but they could
also correspond to partitions of a single drive or a redundant array of indepen-
dent disks (RAID), or even a section of memory acting like a disk drive.

Root of Relative Paths

In Java, relative paths are interpreted relative to the directory from which Java
was called. The same goes for Ant, except when a basedir attribute is set on the
top-level project element.

A consequence of this behavior is that the empty string ("") is a path that
picks out the directory from which Java was called.

5.1.2 Windows vs. UNIX File Conventions

Due to the differing setup of the operating systems, File objects behave differ-
ently on different platforms. In all cases, they respect the conventions of the file
system on which they are run, but it requires some care to create portable code
or Ant tasks that involve files.

On either Windows or UNIX, files are organized hierarchically into directories
under one or more root directories. Each file other than one of the root direc-
tories has a parent directory. The most prominent difference between the two
operating system flavors is that Windows uses a backslash (\), whereas UNIX uses
a forward slash (/) to separate directories and file names in a path.

In Unix, there is a single root directory for the file system, and absolute path
names will start with a forward slash (/).

In Windows, there may be more than one root directory. Each root directory
is written as a drive letter followed by a colon-backslash (:\), as in C:\ for the
root directory on the drive named C.

Windows also allows Universal Naming Convention (UNC) network paths,
which begin with two backslashes (\\) followed by the name of the computer or
device on the network. For instance, \\MONTAGUE is the root of the shared files

5.1. FILES 91

on the network computer named MONTAGUE. Each networked Windows computer
makes visible its top-level shared files.

The biggest difference is that in Windows, file names are not case sensitive.
Thus FOO, foo, and Foo will all pick out the same file.

5.1.3 Constructing a File

There are four File constructors. The simplest, File(String), simply takes a
path name to construct a file object. The string may be anything, but separator
characters will be parsed and normalized.

Conveniently, Java lets you use either forward (Unix) or backward (Windows)
slashes interchangeably, as does Ant. Thus in Windows, I can use Unix-style
forward slashes with the same effect as backward slashes. For example, new
File("c:/foo"), constructs the same object as new File("c:\foo").

There are also two-argument constructors taking a parent directory and
a file name. The parent may be specified as a string using the con-
structor File(String,String) or as a file itself, using the constructor
File(File,String).

URI/URL to File Conversion

There is a fourth File constructor that takes a uniform resource identifier (URI)
argument, File(URI) (see Section 5.18 for more information on URIs and URLs).
The URI class is in the java.net package, which comes standard with Java.

URIs for files have the form file://host/path, where the (optional) host
picks out a domain name and path a file path. If the host is not specified, the
form devolves to file:///path, and the host is assumed to be the the so-called
localhost, the machine on which Java is running.

It is also possible to convert an instance of File to a URI, using the method
toURI() in File.

It is also possible to get a uniform resource locator (URL) from a file, by first
converting to a URI and then calling the URI method toURL(), which returns an
instance of URL, also in java.net.

5.1.4 Getting a File’s Canonical Path

The method getCanonicalFile() returns a File based on an absolute path
with a conventionalized name. For instance, if I happen to be running in directory
c:\lpb (on Windows), then the following two expressions return equivalent files

new File("c:\\lpb\\Foo").getCanonicalPath()

new File("foo").getCanonicalPath();

Note that this is not truly a unique normal form. The resulting files will have
different capitalizations for foo in this case, but will be equivalent running un-
der Windows. Further note that the canonical path is not used for equality (see
Section 5.1.8).

92 CHAPTER 5. INPUT AND OUTPUT

5.1.5 Exploring File Properties

There are many methods on File objects which explore the type of a file. The
method exists() tests whether it exists, isAbsolute() tests whether it denotes
an absolute path, isDirectory() whether it’s directory, isFile() whether it’s
an ordinary file, and isHidden() tests whether it’s hidden (starts with a period
(.) in Unix or is so marked by the operating system in Windows).

What permissions an application has for a file can be probed with
canExecute(),canRead(), and canWrite(), all of which return boolean values.

The time it was last modified, available through lastModified(), returns the
time as a long denoting milliseconds since the epoch (the standard measure of
time on computers, and the basis of Java’s date and calendar representations).

The number of bytes in a file is returned as a long by length().
The name of the file itself (everything but the parent), is returned by

getName(). The methods getParent() and getParentFile() return the parent
directory as a string or as a file, returning null if no parent was specified.

5.1.6 Listing the Files in a Directory

If a file is a directory, the method listFiles() returns an array of files that the
directory contains; it returns null if the file’s not a directory. The files may also
be listed by name using list().

File listings may be filtered with an implementation of FileFilter, an inter-
face in java.io specifying a single method accept(File) returning true if the
file is acceptable. An older interface, FilenameFilter, is also available for file
name listings.

LingPipe’s FileExtensionFilter

LingPipe provides a convenience class FileExtensionFilter in package
com.aliasi.io, which implements Java’s interface FileFilter based on the
extension of a file. A file’s extension is here defined to mean the string after the
final period (.) in the file’s name. This is purely a convention for naming files,
which is especially useful in Windows or web browsers, where each extension
may be associated with a program to open or view files with that extesnion.

A file extension filter takes a single string or multiple strings specified as an
array or using variable length arguments. The filter will match files ending with
any of the extensions.

A file extension filter is configured with a flag indicating whether it should au-
tomatically accept directories or not, which is convenient for recursive descents
through a file system. The default for the unmarked constructors is to accept
directories.

File extension filters work on File objects through Java’s FileFilter inter-
face. File extension filters do not implement the Java interface FilenameFilter
because it produces an ambiguity when calling the methods on Java File objects
listFiles(FilenameFilter) and listFiles(FileFilter).1 Although it’s not

1In general, if there are methods foo(A) and foo(B) in a class taking arguments specified by

5.1. FILES 93

usually necessary, if you need to filter files based on name, file extension filters
implement a method fileNameFilter() which returns the corresponding file
name filter implementing FilenameFilter.

There are two static utility methods in the class Files in com.aliasi.util
that break file names apart into their suffix and their base name. The method
Files.extension(File) returns the extesnion of a file, consisting of the
text after the final period (.), or null if there is no period. The method
baseName(File) returns the base name of a file, which excludes the last period
and extension. For instance, a file named io.tex has extension tex and base
name io, whereas foo.bar.baz has extension baz and base name foo.bar.

5.1.7 Exploring Partitions

Each file in an operating system exists in a partition, which is a top-level root
directory. This is of interest because a file can’t be created in a partition that’s
larger than the available space in that partition.

There are methods in File for exploring partitions. The methods
getFreeSpace(), getTotalSpace(), and getUsableSpace() return the respec-
tive amounts of space on the partition as a long value.

5.1.8 Comparison, Equality, and Hash Codes

Equality of File objects is based on the underlying platform’s notion of equality.
For instance, on Windows, a file created with new File("Foo") creates a file that
is equal to new File("foo"). For better or worse, this comparison is based on
the platform’s convention for file comparison, not by constructing a canonical
path and comparing that. For instance, if I happen to be running from directory
c:\lpb, then new File("foo") is not equal to c:\lpb\foo, even though their
canonical paths are the same.

5.1.9 Example Program Listing File Properties

We wrote a simple program FileProperties, which given the name of a file
as an argument, lists all of its properties, its canonical path, its URI form, and
provides a listing if it is a directory. The code is just a litany of prints for all of
the methods described above.

Calling it with the Ant target file-properties, it uses the file.in Ant
property to specify an argument. We can call it on its own source file using a
relative path,

> ant -Dfile.in=src/com/lingpipe/book/io/FileProperties.java
file-properties

arg=|src/com/lingpipe/book/io/FileProperties.java|
toString()=src\com\lingpipe\book\io\FileProperties.java
getcanonicalFile()=C:\lpb\src\io\src\com\lingpipe\book\

interfaces A and B, and there is an object x that implements both A and B, then you cannot write
foo(x), because the compiler doesn’t know which implementation of foo() to use.

94 CHAPTER 5. INPUT AND OUTPUT

io\FileProperties.java
getName()=FileProperties.java
getParent()=src\com\lingpipe\book\io
toURI()=file:/c:/lpb/src/io/src/com/lingpipe/book/

io/FileProperties.java
toURI().toURL()=file:/c:/lpb/src/io/src/com/lingpipe/

book/io/FileProperties.java
exists()=true
isAbsolute()=false
isDirectory()=false
isFile()=true
isHidden()=false
hashCode()=-72025272
lastModified()=1279224002134
new Date(lastModified())=Thu Jul 15 16:00:02 EDT 2010
length()=2141
canRead()=true
canExecute()=true
canWrite()=true
getFreeSpace()=320493494272
getTotalSpace()=500105736192
getUsableSpace()=320493494272
listFiles()={ }

The line breaks plus indents were inserted by hand so it’d fit in the book.

5.1.10 Creating, Deleting, and Modifying Files and Directories

In addition to inspecting files, the File class lets you modify files, too.
Calling createNewFile() creates an empty file for the path specified by the

File on which it is called, returning true if a new file was created and false if
it already existed.

The delete() method attempts to delete a file, returning true if it’s suc-
cessful. If applied to a directory, delete() will only succeed if the directory is
empty. To get around this limitation, LingPipe includes a static utility method
removeRecursive(File) in the class File in package com.aliasi.util, which
attempts to remove a file and all of its descendants.

The properties of a file may be modified using, for example,
setExecutable(boolean, boolean) which attempts to make a file exe-
cutable for everyone or just the owner of the file. Similar methods are available
for readability, writability and last modification date.

Files may be ranemd using renameTo(File), which returns true if it suc-
ceeds.

The method mkdir() creates the directory corresponding to the file. This
method only creates the directory itself, so the parent must exist. The method
mkdirs() recursively creates the directory and all of its parent directories.

5.2. I/O EXCEPTIONS 95

5.1.11 Temporary Files

It is sometimes useful to create a temporary file. One of the properties used to
create the Java virtual machine is a directory for “temporary” files.

This is typically a platform default directory, like /tmp in UNIX or
C:\WINNT\TEMP on Windows, but it may be configured when the JVM starts up.

The static File method createTempFile(String,String) attempts to cre-
ate a temporary file in the default temporary file with the specified prefix and
suffix, and it returns the file that’s created. After the file is created, it will exist,
but have length zero.

The temporariness of the file doesn’t mean it’ll be guaranteed to disappear.
It is a matter of whether you delete the file yourself or whether the operating
system occassionally cleans out the temp directory.

Invoking the method deleteOnExit() on a file tells the operating system
that the file should be deleted when the JVM exits. Unfortunately, this method
is buggy on Windows, so should not be taken as provided strong cross-platform
guarantees. It’s always a good idea to make sure to use a finally block to clear
out temporary files.

5.2 I/O Exceptions

Almost all of the I/O operations are declared to throw IOException, a checked
exception in the java.io package. Like all exceptions, I/O exceptions should not
be ignored. In most cases, methods should simply pass on exceptions raised by
methods they call. Thus most methods using I/O operations will themselves be
declared to throw IOException.

At some point, a method will have to step up and do something with an
exception. In a server, this may mean logging an error and continuing on. In
a short-lived command-line program, it may mean terminating the program and
printing an informative error message.

It is important to clean up system resources in a long-running program. Thus
it is not uncommon to see code in a try with a finally block to clean up even
if an I/O exception is raised.

5.2.1 Catching Subclass Exceptions

Some methods are declared to throw exceptions that are instances of subclasses
of IOException. For instance, the constructor FileInputStream(File) may
throw a FileNotFoundException.

If you are passing on exceptions, don’t fall into the trap of passing just a
general IOException. Declare your method to throw FileNotFoundException
and to throw IOException. This provides more information to clients of the
method, who then have the option to handle the exceptions generically at the
IOException level, or more specifically, such as for a FileNotFoundException.
It also helps readers of your Javadoc understand what specifically could go wrong
with their method calls.

96 CHAPTER 5. INPUT AND OUTPUT

In general, it’s a good idea to catch subclasses of exceptions separately so that
error handling and error messages may be as specific as possible. If the methods
called in the try block are declared to throw the more general IOException,
you’ll want to catch the FileNotFoundException first. For example, it’s legal to
write

try {
in = new FileInputStream(file);

} catch (FileNotFoundException e) {
// do something

} catch (IOException e) {
// do something

}

In general, you have to order the catches from more specific to mroe general.
If you try to catch the I/O exception before the file not found exception, the
compiler will gripe that the file not found exception has already been caught.

5.3 Security and Security Exceptions

Almost all of the I/O operations that attempt to read or modify a file may also
throw an unchecked SecurityException from the base package java.lang.
Typically, such exceptions are thrown when a program attempts to overstep its
permissions.

File security is managed through an instance of SecurityManager, also in
java.lang. This is a very flexible interface that is beyond the scope of this book.

5.4 Input Streams

The abstract class InputStream in java.io provides the basic operations avail-
able to all byte input streams. Concrete input streams may be constructed in
many ways, but they are all closed through the Closeable interface (see Sec-
tion 5.6).

5.4.1 Single Byte Reads

A concrete extension of the InputStream class need only implement the top-
level read() method. The read() method uses the C programming language
pattern of returning an integer representing an unsigned byte value between 0
(inclusive) and 255 (inclusive) as the value read, or -1 if the end of stream has
been reached.

5.4.2 Byte Array Reads

It is usually too inefficient to access data one byte at a time. Instead, it is usually
accessed in blocks through an array. The read(byte[]) method reads data into

5.5. OUTPUT STREAMS 97

the specified byte array and returns the number of bytes that have been read. If
the return value is -1, the end of the input stream has been reached. There is a
similar method that reads into a slice of an array given an offset and length.

5.4.3 Available Bytes

The method available() returns an integer representing the number of bytes
available for reading without blocking. This is not the same as the number of
bytes available. For one thing, streams may represent terabytes of data, and
available() only returns an integer. More importantly, some streams may
block waiting for more input. For instance, the standard input (see Section 5.17
may block while waiting for user input and show no avaialable bytes, even if
bytes may later become available.

Because no bytes may be available without blocking, it’s possible for the block
read method to return after reading no bytes. This does not mean there won’t be
more bytes to read later. The read() methods will return -1 when there are truly
no more bytes to be read.

5.4.4 Mark and Reset

The method markSupported() returns true for markable input streams. If a
stream is markable, calling mark() sets the mark at the current position in the
stream. A later call to reset() resets the stream back to the marked position.

5.4.5 Skipping

There is also a method skip(long), which attempts to skip past the specified
number of bytes, returning the number of bytes it actually skipped. The only
reason to use this method is that it is often faster than actually reading the
bytes and then throwing them away, because it skipping bypasses all the byte
assignments that would otherwise be required for a read.

5.5 Output Streams

The OutputStream abstract class in the package java.io provides a general
interface for writing bytes. It is thus the complement to InputStream. Output
streams implement the Closeable interface, and should be closed in the same
way as other closeable objects (see Section 5.6).

OutputStream itself implements the array writers in terms of single byte
writes, with the close and flush operations doing nothing. Subclasses override
some or all of these methods for additional functionality or increased efficiency.

5.5.1 Single Byte Writes

A single abstract method needs to be implemented by concrete subclasses,
write(int), which writes a byte in unsigned notation to the output stream. The

98 CHAPTER 5. INPUT AND OUTPUT

low-order byte in the integer is written and the three high-order bytes are simply
ignored (see Section 2.1.5 for more on the byte organization of integers). Thus
the value should be an unsigned representation of a byte between 0 (inclusive)
and 255 (inclusive).

5.5.2 Byte Array Writes

Arrays of bytes may be written using the method write(byte[]), and a slice
variant taking a byte array with a start position and length.

The behavior is slightly different than for reads. When a write method returns,
all of the bytes in the array (or specified slice thereof) will have been written.
Thus it is not uncommon for array writes to block if they need to wait for a
resource such as a network, file system, or user console input.

5.5.3 Flushing Writes

The method flush() writes any bytes that may be buffered to their final destina-
tion. As noted in the documentation, the operating system may provide further
buffering, for instance to the network or to disk operations.

The OutputStream class is defined to implement Flushable, the interface
in java.io for flushable objects. Like the general close method from the
Closeable interface, it may raise an IOException.

Most streams call the flush() method from their close() method so that
no data is left in the buffer as a result of closing an object.

5.6 Closing Streams

Because most streams impose local or system overhead on open I/O streams, it
is good practice to close a stream as soon as you are done with it.

5.6.1 The Closeable Interface

Conveniently, all the streams implement the handy Closeable interface in the
package java.io. The Closeable interface specifies a single method, close(),
which closes a stream and releases any resources it may be maintaining.

Care must be taken in closing streams, as the close() method itself may
throw an IOException. Furthermore, if the stream wasn’t successfully created,
the variable to which it was being assigned may be null.

The typical idiom for closing a Closeable may be illustrated with an input
stream

InputStream in = null;
File file = null;
try {

in = new FileInputStream(file);
// do something

} finally {

5.7. READERS 99

if (in != null)
in.close();

}

Sometimes, the close method itself is wrapped to suppress warnings, as in

try {
in.close();

} catch (IOException e) {
/* ignore exception */

}

Note that even if the close method is wrapped, the operations in the try block
may throw I/O exceptions. To remove these, I/O exceptions may be caught in a
block parallel to the try and finally.

5.6.2 LingPipe Quiet Close Utility

If a sequence of streams need to be closed, things get ugly quickly.
LingPipe provides a utility method Streams.closeQuietly(Closeable) in
com.aliasi.util that tests for null and swallows I/O exceptions for close op-
erations. Basically, it’s defined as follows.

static void close(Closeable c) {
if (c == null) return;
try {

c.close();
} catch (IOException e) {

/* ignore exception */
}

}

If you need to log stream closing exceptions, a similar method may be imple-
mented with logging in the catch operation and a message to pass as an argument
in the case of errors.

5.7 Readers

The Reader abstract base class is to char data as InputStream is to byte data.
For instance, read() reads a single char coded as an int, with -1 indicating the
end of the streamstream. There is a block reading method read(char[]) that
returns the number of values read, with -1 indicating end of stream, and a simi-
lar method taking a slice of an array of char values. There is also a skip(int)
method that skips up to the specified number of char values, returning the num-
ber of values skipped. The Reader class implements the Closeable interface,
and like streams, have a single close() method. All of these methods are de-
clared to throw IOException.

Unlike input streams, concrete subclasses must implement the abstract meth-
ods close() and the slice-based bulk read method read(char[],int,int).

100 CHAPTER 5. INPUT AND OUTPUT

Some readers are markable, as indicated by the same markSupported()
method, with the same mark() method to set the mark at the current position
and reset() method to return to the marked position.

5.7.1 The Readable Interface

The Reader class also implements the Readable interface in java.lang. This
interface has a single method read(CharBuffer) that reads char values into a
specified buffer, returning the number of values read or -1 for end of stream (see
Section 3.8 for more on CharBuffer).

5.8 Writers

Writers are to readers as output streams are to input streams. The method
write(int) writes a single character using the two low-order bytes of the spec-
ified integer as a char.

Arrays of characters may be written using write(char[]) and there is a
method to write only a slice of a character array. Strings and slices of strings
may also be written.

Like other streams, Writer implements Closeable and is hence closed in the
usual way using close(). Like other output streams, it implements Flushable,
so calling flush() should try to write any buffered characters.

5.8.1 The Appendable Interface

The Writer class also implements the Appendable interface in java.lang. This
is the same interface as is implemented by the mutable character sequence im-
plementations CharBuffer, StringBuilder, and StringBuffer.

This interface specifies a method for appending a single character,
append(char), and for sequences, append(CharSequence), as well as for slices
of character sequences. The result specified in the Appendable interface is
Appendable, so calls may be chained. The result specified by Writer is Writer;
subclasses may declare more specific return types than their superclasses. Other
implementations also declare their own types as their return types.

5.9 Converting Byte Streams to Characters

Resources are typically provided as byte streams, but programs manipulating
language data require character streams. Given a character encoding, a byte
stream may be converted to a character stream.

5.9.1 The InputStreamReader Class

Given an input stream and a character encoding, an instance of
InputStreamReader may be constructed to read characters. The usual id-

5.9. CONVERTING BYTE STREAMS TO CHARACTERS 101

iom given that encoding is an instance of String and in an instance of
InputStream is

Reader reader = new InputStreamReader(in,encoding);
// do something
reader.close();

The operations ellided in the middle may then use the reader to retrieve
character-based data. Instances may also be constructed from an instance of
CharSet or with a CharSetDecoder, both of which are in java.nio.charset;
the string-based method is just a shortcut that creates a decoder for a character
set behind the scenes. This decoder is used to convert the sequence of bytes
from the underlying input stream into the char values returned by the reader.

The question remains as to whether to attempt to close the input stream
itself given that the reader was closed. When an InputStreamReader is closed,
the input stream it wraps will be closed.2 As long as the reader was constructed,
there should be no problem. For more robustness, the stream may be nested
in a try-finally block to ensure it’s closed. The reader should be closed first,
and if all goes well, the stream should already be closed when the close in the
finally block is reached. This second call should not cause problems, because
the Closeable interface specifies that redundant calls to close() should have
no effect on a closed object.

5.9.2 The OutputStreamWriter Class

In the other direction, the class OutputStreamWriter does the conversion.
The idiom for construction, use, and closure is the same, only based on a
CharSetEncoder to convert sequences of characters to sequences of bytes for
writing.

5.9.3 Illegal Sequences

The documentation for both of these classes indicate that their behavior in the
face of illegal byte or char sequences. For instance, an InputStreamReader
may be faced with a sequence of bytes that is not decodeable with the specified
character encoding. Going the other way, an OutputStreamWriter may receive
a sequence char values that is not a legal UTF-16 sequence, or that contains code
points that are not encodable in the specified character encoding.

In practice, a InputStreamReader’s behavior will be determined by its
CharSetDecoder, and a OutputStreamWriter’s by its CharSetEncoder. The
encoders and decoders may be configured to allow exceptions to be raised for
illegal sequences or particular substitutions to be carried out.

2This is not clear from the documentation, but is clear from the source code. Perhaps we’re meant
to infer the behavior from the general contract for close() in Closeable, which specifies that it
should release all of the resources it is holding.

102 CHAPTER 5. INPUT AND OUTPUT

5.10 File Input and Output Streams

Streaming access to files is handled by the subclasses FileInputStream and
FileOutputStream, which extned the obvious base classes.

5.10.1 Constructing File Streams

A file input stream may be constructed with either a file using the
constructor FileInputStream(File) or the name of a file, using
FileInputStream(String).

Similarly, output streams may be constructed using
FileOuptutStream(File) and FileOuptutStream(String). If constructed
this way, if the file exists, it will be overwritten and resized to the output
produced by the output stream. To append to a file, construct an output stream
using FileOuptutStream(File,boolean), where the boolean flag specifies
whether or not to append.

The constructors are declared to throw the checked exception
FileNotFoundException, in package java.io, which is a subcclass of
IOException.

5.10.2 Finalizers

Both the input and output file streams declare finalizer methods which may re-
lease any system resources when the related stream is no longer in scope. The
problem with finalization is that it’s not guaranteed to happen until the JVM on
which the code was running is terminated.

In any case, whether it exits normally or not, the operating system will re-
cover any process-specific file handles. Thus short-lived processes like simple
commands do not need to be as careful about recovering file-based resources as
long-running server processes. In any case, the best the code can do is close all
streams as soon as they are no longer needed, even in the face of exceptions.

5.10.3 File Descriptors

The FileDescriptor class in java.io provides an encapsulation of a file input
or output stream. Every time a file input or output stream is created, it has an
associated file descriptor. The file descriptor may be retrieved from a file input
stream or file output stream using the method getFD(). A new input or output
stream may be constructed based on a file descriptor.

5.10.4 Examples of File Streams

Counting the Bytes in a File

We wrote a demo program FileByteCount that opens a file input stream and
then reads all of its content, counting the number of instances of each byte. The
work is done with

5.10. FILE INPUT AND OUTPUT STREAMS 103

public static void main(String[] args)
throws FileNotFoundException, IOException {

File file = new File(args[0]);
InputStream in = new FileInputStream(file);
long[] counts = new long[256];
int b;
while ((b = in.read()) != -1)

++counts[b];

Note that the main() method is declared to throw both a
FileNotFoundException and its superclass IOException (see Section 5.2
for more information on I/O exceptions and their handling).

The body of the method creates an instance of File using the command-line
argument, then an input stream, based on the file. It then allocates an array of
long values the size of the number of bytes, which is used to store the counts
(recall that primitive numbers are always initialized to 0 in Java, including in
arrays). Then we use the C-style read method to read each bye into the integer
variable b. If the value is -1, indicating the end of stream (end of file here), the
loop is exited. In the body of the read loop, the count for the byte just read is
incremented.

We call the method using the Ant target file-byte-count, specifying the
file.in property for the file to be counted. Here we call it on its own source
code,

> ant -Dfile.in=src/com/lingpipe/book/io/FileByteCount.java
file-byte-count

Dec Hex Count
10 a 33
32 20 189
33 21 1

...
123 7b 2
125 7d 2

Because the file is encoded in ASCII, these bytes can be read as characters. For
instance, character hexadecimal value 0A is the linefeed, 20 is a newline, 32 is
the digit 2, up through 7D, which is the right curly bracket (}). We can infer that
the file has 34 lines, because there are 33 line feeds.

Copying from One File to Another

Our next sample program, CopyFile, copies the bytes in one file into another
file and illustrates the use of array-based reads and writes.3 After reading in the
command-line arguments, the work is carried out by

3The same functionality is available through the LingPipe static utility method
copyFile(File,File) from the Files class in com.aliasi.util.

104 CHAPTER 5. INPUT AND OUTPUT

InputStream in = new FileInputStream(fileIn);
OutputStream out = new FileOutputStream(fileOut);
byte[] buf = new byte[8192];
int n;
while ((n = in.read(buf)) >= 0)

out.write(buf,0,n);
out.close();
in.close();

We first create the file input and output streams. We’ve assigned them to vari-
ables of type InputStream and OutputStream rather than to their specific sub-
classes because we do not need any of the functionality specific to file streams.
We then allocate an array buf of bytes to act as a buffer and declare a variable n
to hold the count of the number of bytes read. The loop continually reads from
the input stream into the buffer, assigning the number of bytes read to n, and
exiting the loop if the number of bytes read is less than zero (signaling end of
stream). In the body of the loop, we write the bytes in the buffer to the output
stream, being careful to specify that we only want to write n bytes. Unlike reads,
writes either succeed in writing all their bytes (perhaps having to block), or throw
an exception. When we’re done, we close both streams.4

Character Encoding Conversion

As a third example, we’ll show how to wrap our file-based streams in readers
and writers in order to carry out character encoding conversion. Here we use a
character buffer to do the transfer,

InputStream in = new FileInputStream(fileIn);
InputStreamReader reader = new InputStreamReader(in,encIn);
OutputStream out = new FileOutputStream(fileOut);
OutputStreamWriter writer = new OutputStreamWriter(out,encOut);
char[] buf = new char[4096];
for (int n; (n = reader.read(buf)) >= 0;)

writer.write(buf,0,n);
writer.close();
reader.close();

The program may be called with the Ant target file-decode-encode with argu-
ments given by properties file.in, enc.in, file.out, and enc.out.

4We don’t need elaborate try-finally logic to close the file streams because they are closed automat-
ically when the command-line program exits. We could get into trouble if another program were to
call this main() without exiting the JVM after the call. A more robust version of this program might
catch I/O exceptions thrown by the write method and delete the output stream rather than leaving
a partial copy. We’ve shown what this would look like in the source file for CopyFile in a parallel
method named main2().

5.11. BUFFERED STREAMS 105

5.11 Buffered Streams

Some sources of input, such as an HTTP connection or a file, are most efficiently
dealt with in larger chunks than a single byte. In most cases, when using such
streams, it is more efficient to buffer the input or output. Both byte and char-
acter streams may be buffered for both input and output. For byte streams, the
classes are BufferedInputStream and BufferedOutputStream, and for char-
acter streams, BufferedReader and BufferedWriter

5.11.1 Constructing Buffered Streams

The constructor BufferedInputStream(InputStream,int) creates a buffered
input stream wrapping the specified input stream with the specified buffer size
(in bytes). The constructor BufferedOutputStream(OutputStream,int) per-
forms the same role for output streams. There are also one-argument construc-
tors for which the buffer sizes may be dropped, in which case a default size is
used.

For example, we may created a buffered input stream from a file input stream
given a File instance file with

InputStream in = new FileInputStream(file);
InputStream bufIn = new BufferedInputStream(in);

The variable bufIn is then used where the unbuffered stream in would’ve been
used. By assigning all these streams of different types to a base InputStream, it
makes it easier to change the code later.

The constructors only save a pointer to the underlying stream and create a
buffer, so they don’t throw I/O exceptions, because they’re not doing any I/O.

5.11.2 Sizing the Buffer

There is often a measurable performance improvement from getting the buffer
size right for the underlying platform and application, but performance mea-
surement is a tricky business (see Section B.2 for recommended reading on per-
formance tuning).

5.11.3 Closing a Buffered Stream

When a buffered stream is closed, it closes the contained stream. See the discus-
sion in Section 5.9.1 concerning writing robust stream closing idioms. The close
will also flush any bytes or characters currently being buffered.

5.11.4 Built-in Buffering

Many of the streams (or readers and writers) have built-in buffering. For instance,
the GZIP input and output streams have built-in buffers. In these cases, there’s
no need to buffer twice for efficiency’s sake.

106 CHAPTER 5. INPUT AND OUTPUT

If you are eventually going to wrap a byte stream in a buffered reader or
writer, the byte stream doesn’t itself need to be buffered. The buffering, though
use of block reads and writes, carries itself through.

Similarly, if your own code does buffering, as in our example in CopyFile
(see Section 5.10.4), there’s no need to buffer the file input or output streams.

By this same line of reasoning, if a byte stream is converted to a character
stream or vice versa, buffering is not required at both places. Usually, the buffer
is placed later in the chain, around the reader or writer, as in the following ex-
amples.5

InputStream in = new FileInputStream(file);
Reader reader = new InputStreamReader(in,Strings.UTF8);
BufferedReader bufReader = new BufferedReader(reader);

OutputStream out = new FileOutputStream(file);
Writer writer = new OutputStreamWriter(out,Strings.UTF8);
BufferedWriter bufWriter = new BufferedWriter(writer);

5.11.5 Line-Based Reads

The BufferedReader class implements a method to read lines. The method
readLine() returns a String corresponding to the next line of input read, not
including the end-of-line markers. If the end of stream has been reached, this
method will return null.

This class recognizes three end-of-line markers, a linefeed (\n), a carriage
return (\r), or a linefeed followed by a carriage return (\n\r).

5.12 Array-Backed Input and Output Streams

The array-backed input streams and readers read from arrays of data held in
memory. The array-backed output streams and writers buffer the bytes or char-
acters written to them and provide access to them as an array at any time.

5.12.1 The ByteArrayInputStream Class

The class ByteArrayInputStream wraps a byte array to produce an in-memory
input stream. The constructor ByteArrayInputStream(byte[]) creates the in-
put stream. The byte array is not copied, so changes to it will affect the input
stream.

Byte array input streams support the mark() and reset() methods.
Closing a byte array input stream has no effect whatsoever.

5We use UTF-8 encoding so frequently that LingPipe provides the static final string constant
Strings.UTF8 to use to specify UTF-8 encodings.

5.13. COMPRESSED STREAMS 107

5.12.2 The CharArrayReader Class

The class CharArrayReader performs the same service, creating a Reader from
an array of characters. They support the same range of methods with almost all
the same behaviors, only for char data rather than byte data. Inconsistently,
close() behaves differently, releasing the reference to the underlying character
array and causing all subsequent calls to read methods to throw I/O exceptions.

There is also a class StringReader that does the same thing as a character
array reader for string input.

5.12.3 The ByteArrayOutputStream Class

A ByteArrayOutputStream provides an in-memory output stream that buffers
any bytes written to it. Because it uses arrays, the maximum amount of data that
can be written to an output stream is Integer.MAX_VALUE bytes.

There is a no-argument constructor and one that specifies the initial capacity
of the buffer.

The method size() returns the number of bytes that are buffered.
All of the bytes written to a byte array output stream are available as a byte

array using the method toByteArray(). The returned array is a copy of the
bytes buffered in an underlying array, so changes to it do not affect the output
stream. Calling this method does not remove the returned bytes from the buffer.

Calling reset() removes all of the currently buffered bytes, allowing a byte
array output stream to be reused.

Closing a byte-array output stream has no effect. In particular, the bytes that
have been buffered will still be available.

5.12.4 The CharArrayWriter Class

A CharArrayWriter does the same thing for characters, implementing methods
of the same name as byte-array output streams.

5.13 Compressed Streams

In many cases, resources are compressed to save storage space or transfer band-
width. The standard Java package java.util.zip supports a general pair of
streams, DeflaterInputStream and InflaterInputStream, for compressing
and decompressing sequences of bytes. Although new implementations may
be written, Java builds in support for Gnu Zip (GZIP) compression and for the
ZIP format for compressing archives consisting of multiple hierarchically named
streams as an archive. Java’s own Java archive (JAR) files are essentially zipped
archives, and are also implemented.

5.13.1 GZIP Input and Output Streams

The GZIP input and output streams are constructed by wrapping anothr stream
and optionally specifying a buffer size. After construction, they behave just like

108 CHAPTER 5. INPUT AND OUTPUT

any other stream.
The sample program FileGZIP wraps a file output stream in a GZIP output

stream in order to implement a simple compression command-line program. The
work in the main() method is done by

InputStream in = new FileInputStream(fileIn);
OutputStream out = new FileOutputStream(fileOut);
OutputStream zipOut = new GZIPOutputStream(out);

byte[] bs = new byte[8192];
for (int n; (n = in.read(bs)) >= 0;)

zipOut.write(bs,0,n);

in.close();
zipOut.close();

Aside from the creation of the compressed stream, the rest is just a buffered
stream copy.

The sample program FileUnGZIP uncompresses one file into the other, with
all the work being done in the creation of the streams,

InputStream in = new FileInputStream(fileIn);
InputStream zipIn = new GZIPInputStream(in);
OutputStream out = new FileOutputStream(fileOut);

After the streams are created, the input is copied to the output as before. Both
programs print the input and output file lengths for convenience.

The Ant target file-gzip calls the program with arguments the value of
properties file.uncompressed and file.gzipped. It’s conventional to name a
compressed file the same thing as the original file with a suffix denoting the type
of compression, which for GZIP is gz. Here we compress the build file build.xml,
which being XML, is highly redundant, and hence highly compressible.

> ant -Dfile.uncompressed=build.xml -Dfile.gzipped=build.xml.gz
file-gzip

Original Size=7645 Compressed Size=1333

We can uncompress in the same way, calling the file-ungzip target, which
takes as command-line arguments the values of properties file.gzipped and
file.ungzipped.

> ant -Dfile.ungzipped=build.xml.copy -Dfile.gzipped=build.xml.gz
file-ungzip

Original Size=1333 Expanded Size=7645

The round trip results in build.xml.copy containing exactly the same bytes as
build.xml. You may verify the files contain the same content using the diff
program from the command line,

> diff build.xml build.xml.copy

5.13. COMPRESSED STREAMS 109

which prints no output when the files being compared are the same. Listing the
directory contents shows the sizes,

> ls -l

7645 Aug 5 16:54 build.xml
7645 Aug 5 16:58 build.xml.copy
1333 Aug 5 16:58 build.xml.gz

Along the same lines, you may verify that command-line versions of GZIP,
such as gunzip, can handle the compressed file.67

If you try to compress a stream that isn’t in GZIP format, the input stream
will throw an I/O exception with an explanatory message.

5.13.2 ZIP Input and Output Streams

ZIP streams enable the representation of compressed archives. A ZIP archive
consists of a sequence of entries. Each entry contains meta information and data.
The data is accessed through an input stream for reading and output stream for
writing. The pattern for using the ZIP streams is somewhat unusual, so we will
provide an example.

The ZIPEntry Class

The meta-information for an entry is encapsulated in an instance of ZIPEntry in
the java.util.zip package. Information about the entry including compressed
size, CRC-32 checksum, time last modified, comments, and the entry’s name are
available through methods.

ZIP archives may be arranged hierarchically. Directory structure is described
through entry names, with the forward slash (/) acting as the separator. The
method isDirectory() is available to determine if an entry is a directory, which
is signaled by its ending in a forward slash.

For the purpose of creating archives, the zip entry values may be set with
setter methods corresponding to the get methods. This entails that the ZIPEntry
class is mutable.

Creating a Zip Archive with Ant

To provide a zip file for experimental purposes, we’ve written an Ant target
example-zip that builds a zipped archive using Ant’s built-in mkdir, echo, and
zip tasks. The Ant code is straightforward,

<property name="file.in.zip"
value="build/demo-archive.zip"/>

6We recommend working in a temporary directory so as not to destroy the original build.xml file.
The command-line compressors and uncompressors typically work by creating an output file which
adds or removes the compression format’s standard suffix.

7We’ve had trouble getting the compression programs to work from the DOS command line.

110 CHAPTER 5. INPUT AND OUTPUT

<target name="example-zip">
<mkdir dir="build/archive/dir"/>
<echo message="Hello."

encoding="UTF-8"
file="build/archive/hello.txt"/>

...
<zip destfile="${file.in.zip}"

basedir="build/archive"
encoding="UTF-8"/>

</target>

It uses the property file.in.zip to define the zipped archive’s location. The
mkdir task makes a working directory in our build directory, which will be
cleaned the next time the clean target is invoked. The echo task writes text
to a file with a specified encoding. The ellided tasks write two more files. We
then call the zip target, specifying the target file, the directory which is being
zipped up, and the encoding to use for file names.

The demo file creation target needs to be run before the demo so there’s
something to unzip.

> ant example-zip

Building zip: c:\lpb\src\io\build\demo-archive.zip

Reading a ZIP Archive

A ZIPInputStream is created, and then the archive is read entry by entry. The
method getNextEntry() returns the ZIPEntry object for the next entry to be
read, or null if there ae no more entries. For each entry, we read its meta-
information from the entry object and its data from the input stream.

We provide a sample program FileZipView that reads a ZIP archive from a
file and displays its properties and contents. The work in the main() method is
done by

InputStream in = new FileInputStream(fileZipIn);
ZipInputStream zipIn = new ZipInputStream(in);
byte[] bs = new byte[8192];
while (true) {

ZipEntry entry = zipIn.getNextEntry();
if (entry == null) break;
printEntryProperties(entry);
for (int n; (n = zipIn.read(bs)) >= 0;)

System.out.write(bs,0,n);
}
zipIn.close();

To get going, the file input stream is wrapped in a ZipInputStream. The buffer
bs is used for writing. This loop uses the while-true-break idiom to run until a
condition discovered in the middle of the body is discovered. Here, we assign

5.13. COMPRESSED STREAMS 111

the entry variable to the next entry. If it’s null, we break out of the loop. Oth-
erwise, we print the properties of the entry using a subroutine with the obvious
implementation, then read the bytes from the zip input stream and write them
to standard output.

We have an Ant target file-zip-view that dumps out the contents of a Zip
archive specified through the file.in.zip property.

> ant -Dfile.in.zip=build/demo-archive.zip file-zip-view

getName()=abc/ isDirectory()=true
getSize()=0 getCompressedSize()=0
new Date(getTime())=Tue Jul 20 18:21:36 EDT 2010
getCrc()=0 getComment()=null

getName()=abc/bye.txt isDirectory()=false
getSize()=7 getCompressedSize()=9
new Date(getTime())=Tue Jul 20 18:21:36 EDT 2010
getCrc()=3258114536 getComment()=null
Goodbye

...

getName()=hello.txt isDirectory()=false
...
Hello

We’ve moved lines together to save space and ellided the third entry and part of
the fourth. Each division is for an entry, and the commands used to access the
properties are printed. For instance, the first entry is a directory named abc/, the
second entry is an ordinary entry named abc/bye.txt, implying containment in
the first directory by naming. The final entry is another ordinary entry named
hello.txt, which isn’t in any directory. Note that the compressed size is larget
than the uncompressed size, which is not unusual for a short (or random, or
already compressed) sequence of bytes.

After printing out all the properties for each entry, the program prints the
contents by simply writing the bytes read directly to the standard output. For
example, the entry named abc/bye.txt contains the UTF-8 bytes for Goodbye.

Creating a Zip Archive

Zip archives may be created programmatically using ZipOutputStream by re-
versing the process by which they are read. That requires creating ZipEntry
objects for each entry in the archive and setting their properties. The en-
try meta-information is then written to the archive using the putNextEntry()
method on the Zip output stream, then writing the bytes to the stream. The
method setMethod(int) may be used with argument constants STORED for un-
compressed entries and DEFLATED for compressed entries.

112 CHAPTER 5. INPUT AND OUTPUT

5.14 Tape Archive (Tar) Streams

The archaically named Tape Archive (tar) format is popular, especially among
Unix users, for distributing data with a directory structure. Tar files themselves
are typically compressed using GZIP (see Section 5.13.1). The Ant build library
contains classes for manipulating tar streams, so we will be importing the Ant
jar for compiling and running the examples in this section.

5.14.1 Reading Tar Streams

The way in which data may be read out of a tar file is easy to see with an example.

Code Walkthrough

We provide a demo class FileTarView that reads from a tar file that has option-
ally been gzipped. The main() method is defined to throw an I/O exception and
read a file tarFile and boolean flag gzipped from the first two command-line
arguments. The code begins by constructing the tar input stream.

InputStream fileIn = new FileInputStream(tarFile);
InputStream in = gzipped

? new GZIPInputStream(fileIn)
: fileIn;

TarInputStream tarIn = new TarInputStream(in);

We first create a file input stream. Then we wrap it in a GZIP input stream
if the gzipped flag has been set. Then, we just wrap the input stream in a
TarInputStream, from package org.apache.tools.tar.

We then use a read loop, inside which we access the properties of the entries
and read the entry data.

while (true) {
TarEntry entry = tarIn.getNextEntry();
if (entry == null) break;

boolean isDirectory = entry.isDirectory();
String name = entry.getName();
String userName = entry.getUserName();
String groupName = entry.getGroupName();
int mode = entry.getMode();
Date date = entry.getModTime();
long size = entry.getSize();

byte[] bs = Streams.toByteArray(tarIn);

We use the getNextEntry() method of the tar input stream to get the next
instance of TarEntry, also from org.apache.tools.tar. If the entry is null,
the stream has ended and we break out of the loop.

If the tar entry exists, we then access some of its more prominent properties
including whether or not it’s a directory, the name of the entry, the name of the

5.14. TAPE ARCHIVE (TAR) STREAMS 113

user and group for whom it was created, the mode (usually specified as octal, so
we print it out in octal), the date the entry was last modified, and the entry’s size.

Finally, we use LingPipe’s toByteArray() utility, from class Streams in
com.aliasi.util, to read the data in the entry. Note that like for zip input
streams, this is done by reading to the end of the tar input stream. The tar input
stream is then reset.

After we’re done with the tar input stream, we close it through the closeable
interface.

tarIn.close();

Tar input streams implement Java’s Closeable interface, so we close it through
the close() method. Although not documented, closing a tar input stream will
close any contained stream other than System.in. Here, this closes the GZIP
input stream, which in turn closes the file input stream.

Running the Demo

The Ant target file-tar-view runs the command, passing the value of prop-
erties tar.file and gzipped as command-line arguments. We use the gzipped
20 newsgroups distribution as an example (see Section A.2 for a description and
link).

> ant -Dtar.file=c:/carp/data/20news/20news-bydate.tar.gz
-Dgzipped=true file-tar-view

name=20news-bydate-test/ isDirectory=true
userName=jrennie groupName= mode=755
date=Tue Mar 18 07:24:56 EST 2003
size=0 #bytes read=0

name=20news-bydate-test/alt.atheism/ isDirectory=true
userName=jrennie groupName= mode=755
date=Tue Mar 18 07:23:48 EST 2003
size=0 #bytes read=0

name=20news-bydate-test/alt.atheism/53265 isDirectory=false
userName=jrennie groupName= mode=644
date=Tue Mar 18 07:23:47 EST 2003
size=1994 #bytes read=1994
...
name=20news-bydate-train/ isDirectory=true
userName=jrennie groupName= mode=755
date=Tue Mar 18 07:24:55 EST 2003
size=0 #bytes read=0

name=20news-bydate-train/alt.atheism/ isDirectory=true
...

114 CHAPTER 5. INPUT AND OUTPUT

Note that we first see the directory 20news-bydate-test. The user name is
jrennie, there is no group name, and the mode indicating permissions is 755
(octal). The last-modified date is in 2003. The size of the directory is zero,
and the number of bytes read is zero. The next directory looks similar, only its
name is test/alt.atheism, indicating that it is nested in the previous entry.
In this corpus, it also indicates that the directory contains postings from the
alt.atheism newsgroup. The TarEntry object lets you access all the entries for
the files or directories it contains, but that won’t let you read the data.

After the two directories, we see a file, with name
bydate-test/alt.atheism/53265 and mode 644 (octal). he reported size
matches the number of bytes read, 1994.

After the files in the alt.atheism directory, there are 19 more test news-
group directories. Then, we see the training data, which is organized the same
way.

5.15 Accessing Resources from the Classpath

When distributing an application, it is convenient to package all the necessary
files along with the compiled classes in a single Java archive (jar). This is par-
ticularly useful in the context of servlets, which are themselves packaged in web
archives (war), a kind of jar with extra meta-information.

5.15.1 Adding Resources to a Jar

Resources that will be accessed programatically are added to an archive file just
like any other file. We provide an Ant target example-resource-jar which may
be used to create a jar at the path picked out by the property resource.jar.

<property name="resource.jar"
value="build/demo-text.jar"/>

<target name="example-resource-jar">
<mkdir dir="build/resources/com/lingpipe/book/io"/>
<echo message="Hello from the jar."

encoding="UTF-8"
file="build/resources/com/lingpipe/book/io/hello.txt"/>

...
<jar destfile="${resource.jar}">

<fileset dir="build/resources"
includes="**/*.txt"/>

</jar>
</target>

We define the default for the property resource.jar to be a file of the same
name in the build directory (which is subject to cleaning by the clean target).
The target that builds the jar first makes a directory under build/resources
into which files will be placed. These are created by echo tasks, for instance

5.15. ACCESSING RESOURCES FROM THE CLASSPATH 115

creating a file /com/lingpipe/book/io/hello.txt under build/resources.
After the directory structure to be archived is created in build/resources, a
jar task creates it, specifying that the archive should include all the files in
build/resources that match the pattern **/*.txt, which is all files ending in
.txt.

This command should be run before the demo in the next section.

> ant -Dresource.jar=build/demo-text.jar example-resource-jar

Building jar: c:\lpb\src\io\build\demo-text.jar

5.15.2 Resources as Input Streams

One of the ways in which an input stream may be accessed is by specifying a
resource. The system will then look for the resource on the classpath in a number
of prespecified locations based on its name.

The sample program ResourceInput reads the content of a resource from
the classpath and writes it to the standard output. The part of the main()
method that gets the resource as an input stream is

String resourceName = args[0];
InputStream in

= ResourceInput.class
.getResourceAsStream(resourceName);

The name of the resource is read in as the first command-line argument. Then
the method getResourceAsStream(String) is called with the name of the re-
source. It is called on the Class instance for the ResourceInput class, specified
by the static constant ResourceInput.class. The calling class is also important
because the rules for locating the resource depend on the particular class loader
used to load the class.

If the name begins with a forward slash (/), it is taken to be an absolute path
name (absolute in the classpath, not in the file system). Otherwise, it is a relative
path. Relative paths are interpreted relative to the package name of the class
from which the get method was called. Specifically, the package name of the
class using forward slashes as separators is used a prefix for the name.

The Ant target resource-input look for a resource with the name given by
property resource.name, adding the archive named by property resource.jar
to the classpath. The jar from which we are reading needs to be on the classpath.
How it gets there doesn’t matter: you could put it on the command line, set an
environment variable read by the JVM, use a servlet container’s classpath, etc.
Here, we just add the jar named by property resource.jar to the classpath in
the Ant target. Very often, we just bundle resources we want to read from the
class path along with the compiled classes for an application. This is convenient
for everything from document type definitions (DTDs) to compiled statistical
models.

We run the program using the resource named hello.txt and the jar we
created in the last section.

116 CHAPTER 5. INPUT AND OUTPUT

> ant -Dresource.jar=build/demo-text.jar -Dresource.name=hello.txt
resource-input

Hello from the jar.

Note that we would get the same result if we specified the resource.name prop-
erty to be the absolute path /com/lingpipe/book/io/hello.txt (note the ini-
tial forward slash).

Once the stream is retrieved from the resource, it may be manipulated like
any other stream. It may be buffered, converted to a reader or object input
stream, interpreted as an image, etc.

5.16 Print Streams and Formatted Output

A print stream is a very flexible output stream that supports standard stream
output, conversion of characters to bytes for output, and structured C-style for-
matting. This provides most of the functionality of a Writer’s methods, while
extending the base class InputStream.8

5.16.1 Constructing a Print Stream

A print stream may be constructed by wrapping another input stream
or providing a file to which output should be written. The character
encoding and whether auto-flushing should be carried out may also be
specified. We recommend restricting your attention to the constructors
PrintStream(File,String) that writes to a file given a specified encoding, and
PrintStream(OutputStream,boolean,String), which prints to the specified
output stream, optionally using auto-flushing, using a specified character en-
coding. The othe methods are shorthands that allow some parameters to be
dropped.

5.16.2 Exception Buffering

The second unusual feature of print streams is that none of their methods is de-
clared to throw an I/O exception. Instead, what it does is implement an exception
buffering pattern, only without an actual buffer.9 In cases where other streams
would raise an I/O exception, the print stream methods exit quietly, while at
the same time setting an error flag. The status of this flag is available through
the method checkError(), which returns true if a method has caught an I/O
exception.

8It’s not possible in Java to be both a Writer and a InputStream because these are both abstract
base classes, and a class may only extend one other class. In retrospect, it’d be much more convenient
if the streams were all defined as interfaces.

9This pattern is sometimes implemented so that the actual exceptions that were raised are acces-
sible as a list.

5.17. STANDARD INPUT, OUTPUT, AND ERROR STREAMS 117

5.16.3 Formatted Output

One of the most convenient aspects of print streams is their implementation of
C-style printf() methods for formatted printing. These methods implicitly use
an instance of Formatter in java.util to convert a sequence of objects into a
string.

Format syntax is very elaborate, and for the most part, we re-
strict our attention to a few operations. The method’s signature is
printf(Locale,String,Object...), where the string is the formatting string
and the variable-length argument Object... is zero or more objects to format.
How the objects are formatted depends on the format string and the Locale
(from java.util). The locale is optional; if it is not supplied, the default locale
will be used. The locale impacts the printing of things like dates and decimal
numbers, which are conventionally printed differently in different places. Al-
though we are obsessive about maintaining unadulterated character data and
work in many languages, a discussion of the intricacies of application interna-
tionalization is beyond the scope of this book.

For example, the sample program FileByteCount (see Section 5.10.4) uses
string, decimal and hexadecimal formatting for strings and numbers,

System.out.printf("%4s %4s %10s\n","Dec","Hex","Count");
for (int i = 0; i < counts.length; ++i)

if (counts[i] > 0L)
System.out.printf("%4d %4h %10d\n",i,i,counts[i]);

The first printf() has the format string "%4s %4s %10s\n", which says to write
the first string using 4 characters, the second string using 4 characters, and the
third string using 10 characters; if they are too short, they align to the right, and
if they are too long, they run over their alloted space. The second printf() uses
%4d for a four place integer (right aligned), and %4h for a four-digit hexadecimal
representation. Note that auto-boxing (see Section 2.2.6) converts the integers i
and counts[i] to instances of Integer to act as inputs to printf(). Formatted
prints do not automatically occupy a line; we have manually added UNIX-style
line boundary with the line feed character escape \n.

Finally, note that the two printf() statements intentionally use the same
width so the output is formatted like a table with headings aligned above the
columns.

5.17 Standard Input, Output, and Error Streams

In many contexts, the environment in which a program is executed provides
streams for input, output, and error messages. These streams are known as
standard input, standard output, and standard error. Standard UNIX pipelines
direct these streams in two ways. They can direct the standard input to be read
from a file or the standard output or error to be written to a file. Second, they can
pipe processes together, so that the standard output from one process is used
for the standard input of the next process. Shell scripts and scripting languages

118 CHAPTER 5. INPUT AND OUTPUT

such as Python manage standard input and output from processes in a similar
way to shells.10

5.17.1 Accessing the Streams

Java provides access to these streams through three static variables in the
class System in the package java.lang. The variable System.in is of type
InputStream and may be used to read bytes from the shell’s standard input.
The standard and error output streams, System.out and System.err, are pro-
vided constants of type PrintStream (see Section 5.16 for more information on
print streams). The standard output and error print streams use the platform’s
default encoding (see below for how to reset this).

5.17.2 Redirecting the Streams

The standard input and output streams may be reset using the meth-
ods setIn(InputStream), setOut(PrintStream) and setErr(PrintStream).
This is convenient for writing Java programs that act like Python or shell scripts.

The mutability of the output and error streams enables a Java program to
reset their character encodings. For example, to reset standard output to use
UTF-8, insert the following statement before any output is produced,

System.setOut(new PrintStream(System.out,true,Strings.UTF8));

The value true enables auto-flushing. The new standard output wraps the old
standard output in a new print stream with the desired encoding.

The output streams may be similarly redirected to files by using a
PrintStream constructed from a file in the same way. For example,

System.setErr(new PrintStream("stdout.utf8.txt","UTF-16BE"));

sends anyting the program writes to the standard error stream to the file
stdout.utf8.txt, using the UTF-16BE character encoding to convert characters
to bytes.

The standard input stream may be wrapped in an InputStreamReader or
BufferedReader to interpret byte inputs as characters. Standard output and
error may be wrapped in the same way, which is an alternative to resetting the
streams.

5.17.3 UNIX-like Commands

Commands in UNIX are often defined to default to writing to the standard output
if a file is not specified. This idiom is easy to reconstruct for Java commands.
Suppose we have a variable file that is initialized to a file or null if the com-
mand is to write an output

10Java provides an implementation of Unix-style pipes through piped streams and readers and
writers. These are based on the classes PipedInputStream, PipedOutputStream, PipedReader,
and PipedWriter in the standard java.io package. These classes are multi-threaded so that they
may asynchronously consume the output of one process to provide the input to the next, blocking if
need be to wait for a read or write.

5.18. URIS, URLS AND URNS 119

PrintStream out
= (file != null)
? new PrintStream(new FileOutputStream(file))
: System.out;

If the file is non-null, an output stream for it is wrapepd in a print stream, other-
wise the standard output is used. The same can be done for input.

5.18 URIs, URLs and URNs

A uniform resource identifier (URI) picks out something on the web by name.
This is a very general notion, but we will only need a few instances in this book.
The specifications for these standards are quite complex, and beyond the scope
of this book.

5.18.1 Uniform Resource Names

There are two (overlapping) subtypes of URIs, based on function. A uniform
resource name (URN) is a URI that provides a name for something on the web,
but may not say how or where to get it. A typical instance of a URN is the
Digital Object Identifier (DOI) system, which is becoming more and more widely
used to identify text resources such as journal articles. For example, the DOI
doi:10.1016/j.jbi.2003.10.001 picks out a paper on which my wife was a
co-author. An alternative URN for the same paper is PMID:15016385, which uses
the PubMed identifier (PMID) for the paper.

5.18.2 Uniform Resource Locators

A uniform resource locator (URL) provides a means of locating (a con-
crete instance of) an item on the web. A URL indicates how to get
something by providing a scheme name, such as file:// for files or
http:// for the hypertext transport protocol (HTTP). For example, the
URL http://dx.doi.org/10.1016/j.jbi.2003.10.001 is for the same pa-
per as above, but specifies a web protocol, HTTP, and host, dx.doi.org
from which to fetch a specific embodiment of the resource. There
may be many URLs that point to the same object. For instance,
http://linkinghub.elsevier.com/retrieve/pii/S1532046403001126 is a
URL for the same paper, which links to the publisher’s site.

5.18.3 URIs and URLs in Java

The standard java.net package has a class URI for URIs and a class URL for
URLs. Both of them may be constructed using a string representation of the
resource. Once constructed, the classes provide a range of structured access to
the fields making up the resource. For instance, both objects have methods such
as getHost() and getPort(), which may return proper values or indicators like
null or -1 that there is no host or port.

120 CHAPTER 5. INPUT AND OUTPUT

The demo program UrlProperties constructs a URL from a command-line
argument and prints out its available properties. The beginning of the main()
method is

public static void main(String[] args)
throws MalformedURLException {

String url = args[0];
URL u = new URL(url);
System.out.println("getAuthority()=" + u.getAuthority());

The rest of the program just prints out the rest of the properties. The main()
method throws a MalformedURLException, a subclass of IOException, if the
URL specified on the command line is not well formed. This ensures that once
a URL is constructed, it is well formed. There are no exceptions to catch for the
get methods; they operate only on the string representations and are guaranteed
to succeed if the URL was constructed.

The Ant target url-properties calls the command supplying as an argu-
ment the value of the property url.in.

> ant -Durl.in="http://google.com/webhp?q=dirichlet"
url-properties

getAuthority()=google.com
getDefaultPort()=80
getFile()=/webhp?q=dirichlet
getHost()=google.com
getPath()=/webhp
getPort()=-1
getProtocol()=http
getQuery()=q=dirichlet
getRef()=null
getUserInfo()=null
toExternalForm()=http://google.com/webhp?q=dirichlet
toString()=http://google.com/webhp?q=dirichlet

Looking over the output shows how the URL is parsed into components such as
host, path and query.

5.18.4 Reading from URLs

URLs know how to access resources. These resources may reside locally or re-
motely. Wherever they arise, and whatever their content, resources are all coded
as byte streams. Java provides built-in support for protocols http, https, ftp,
file, and jar.

Once a URL is created, the method openStream() returns an InputStream
that may be used to read the bytes from the URL. Depending on the URL itself,
these bytes may be from a local or networked file, a local or remote web server,
or elsewhere. Opening the stream may throw an I/O exception, as a connection

5.18. URIS, URLS AND URNS 121

is opened to the URL. Once the input stream is opened, it may be used like any
other stream.

The sample program ReadUrl shows how to read the bytes from an URL and
relay them to standard output.

URL u = new URL(url);
InputStream in = u.openStream();

byte[] buf = new byte[8096];
int n;
while ((n = in.read(buf)) >= 0)

System.out.write(buf,0,n);

in.close();

The code between the stream creation and its closing is just a generic buffered
stream copy.

The Ant target read-url is configured to call the sample program using as
URL the value of the property url.in.

> ant -Durl.in=http://lingpipe.com url-read

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html ...
<html ...
<head>
<title>LingPipe Home</title>
<meta http-equiv="Content-type"

content="application/xhtml+xml; charset=utf-8"/>
...
pageTracker._trackPageview();
} catch(err) {}</script></body>
</html>

As with most pages these days, LingPipe’s home page starts with a title, content
type, and cascading stylesheet (CSS) declaration, and ends with some Javascript.
Whether you can see all of the output of a page depends on your shell; you can
save the output to a file and then view it in a browser.

A file URL may be used as well as an HTTP-based URL. This allows an abstrac-
tion over the location of the bytes being read.

5.18.5 URL Connections

The output stream method we used above, getOutputStream(), is just a conve-
nience method for calling the openConnection() method to get an instance of
URLConnection and calling its getOutputStream() method. URL connections
allow various properties of the connection to be inspected and set.

Although the URL method openConnection() is declared to return a
URLConenction, if the URL uses the HTTP protocol, the documentation speci-
fies that a HttpURLConnection will be returned. Thus the URLConnection may

122 CHAPTER 5. INPUT AND OUTPUT

be cast to HttpURLConnection at run time. The HTTP-based connection pro-
vides additional methods for manipulating HTTP headers and responses, such as
content types, last-modified dates, character encodings, handling redirected web
pages, fetching HTTP respose codes, managing timeouts and keep-alive times for
the connection, and other intricacies of HTTP management.

A URL connection may also be used to write to a URL. This makes it possible to
attach data for a POST-based request and thus implement general web services.

5.19 The Input Source Abstraction

The class InputSource, in standard Java package org.xml.sax, provides an in-
put abstractionforXMLdocuments with a rather awkward mutable implementa-
tion. An input source specifies the source of its input as a URL, an input stream,
or a reader.

There is a constructor for each mode of input specification.
InputSource(String) may be used with a system identifier in the form
of a URL, and InputSource(InputStream) and InputSource(Reader) for
stream data. Although input sources are not immutable, we recommend using a
detailed constructor rather than a simple constructor followed by setters.

There is also a no-argument constructor InputSource() and set-
ters for each of the input types. The setters setSystemId(String),
setByteStream(InputStream) and setCharacterStream(Reader) corre-
spond to the three contentful constructors.

The system ID may be used to resolve relative paths within an XML document.
Thus setting a system ID may be useful even when a byte stream or a character
stream has been specified.

Before using an input source, a character encoding may be specified using
the setEncoding(String) method. A further awkwardness arises because this
method only makes sense in conjunction with an input stream or URL; readers
supply already converted char values.

It is up to the consumer of the input source to gather data from whatever
source is specified. Typically, consumers will try the reader, then the input
stream, then the URL. Because of the mutability of the class through the setters,
an input source may have an input stream and a reader and a URL specified.

5.20 File Channels and Memory Mapped Files

As an alternative to streaming I/O, memory mapping essentially provides a ran-
dom access interface for files. The method is by providing an array-like access
abstraction on top of files. It is then up to the operating system’s file manager to
deal with actual commits to and reads from disk.

Memory mapped files are great for random access to data on disk. For in-
stance, databases and search engines make heavy use of memory mapping.

Both the file input and file output stream classes implement a getChannel()
method which returns an instance of FileChannel. File channels are part of

5.21. OBJECT AND DATA I/O 123

the “new” I/O, rooted at package name java.nio, specifically in the package
java.nio.channels.

File channels support reading and writing into ByteBuffer instances. Byte
buffers and other buffers are in the java.nio package. Byte buffers may be
wrapped to act as character buffers or other primitive type buffers. See Sec-
tion 3.8 for a basic overview of buffers focusing on character buffers.

File channels may also be used to produce a MappedByteBuffer, which cre-
ates a memory-mapped file accessible as a ByteBuffer. The other way to cre-
ate a file channel which may be used to produce a memory mapped buffer is
through the RandomAccessFile class in java.io. The random access file class
implements the DataInput and DataOutput interfaces, which provide utilities
to write arbitrary primitives and strings in addition to bytes.

5.21 Object and Data I/O

Java provides built-in support for writing objects to streams through the classes
ObjectInputStream and ObjectOutputStream in the package java.io. Ob-
ject input and output streams implement the ObjectInput and ObjectOutput
interfaces, which extend the DataInput and DataOutput interfaces. The ob-
ject streams deal with writing objects and the data streams with writing prim-
itive types and strings. Only objects with a runtime class that implements the
Serializable interface in package java.io may be written or read. We first
provide an example then discuss how to implement the Serializable interface.

5.21.1 Example of Object and Data I/O

The sample program ObjectIo provides an example of using object input and
output streams to write objects and primitive objects and then reconstitute them.
The main() method begins by writing the objects and primitive types,

ByteArrayOutputStream bytesOut = new ByteArrayOutputStream();
ObjectOutput out = new ObjectOutputStream(bytesOut);

out.writeObject(new File("foo"));
out.writeUTF("bar");
out.writeInt(42);

out.close();

Note that a byte array output stream is created and assigned to the appropri-
ate variable. We use a byte array for convenience; it could’ve been a file output
stream, a compressed file output stream, or an HTTP write in either direction.
The output stream is then wrapped in an object output stream and assigned to a
variable of the interface type, ObjectOutput. The object output is then used to
write a file object using the writeObject() method from the ObjectOutput in-
terface. Next, a string is written using the writeUTF(String) method from the
DataOutput intrface. This does not write the string as an object, but using an ef-
ficient UTF-8-like encoding scheme. Lastly, an integer is written; the DataOutput

124 CHAPTER 5. INPUT AND OUTPUT

interface provides write methods for all of the primitive types. Finally, the out-
put stream is closed in the usual way through the Closeable interface method
close().

We then reverse the process to read the object back in,

byte[] bytes = bytesOut.toByteArray();
InputStream bytesIn = new ByteArrayInputStream(bytes);
ObjectInput in = new ObjectInputStream(bytesIn);

@SuppressWarnings("unchecked")
File file = (File) in.readObject();
String s = in.readUTF();
int n = in.readInt();

in.close();

First, we get the bytes that were written from the byte array output stream
and use them to create a byte array input stream.11 Then we wrap that in an
object input stream, which we use to read the object, string and primitive in-
teger value. Then we close the input stream. The result of the object read
must be upcast to File because the readObject() method is declared to re-
turn Object.12 Because the class may not be found or the class loader may
fail to load the class for the object, the readObject() method is also declared
to throw a ClassNotFoundException, which we simply declare on the main()
method rather than handle. The result of running the program is

> ant object-io

file.getCanonicalPath()=C:\lpb\src\io\foo s=bar n=42

5.21.2 The Serializable Interface

The Serializable interface in package java.io is what’s known as a marker
interface. The marker pattern involves an interface, such as Serializable,
which declares no methods. The interface is used to treat classes that imple-
ment it differently in some contexts. The object input and output classes use the
Serializable marker interface to determine if a class can be serialized or not.

When a class is serialized, its fully qualified path name is written out as if by
the writeUTF() method. A 64-bit serial version identifier is also written. Then
data representing the state of the class is written.

All that is strictly necessary to make a class serializable is to declare it to
implement the Serializable interface, although it must also meet a few addi-
tional conditions described below. If nothing else is specified, the serial version
identifier will be computed from the class’s signature, including the signature of
its parents and implemented interfaces. If nothing else is done, the state of the

11Note that we assign variables to the most general type possible; the input stream had to be
assigned to ByteArrayInputStream because we needed to call the toByteArray() method on it.

12The SuppressWarnings annotation is used to suppress the unchecked warning that would oth-
erwise be generated by the compiler for the runtime cast. Although the cast can’t fail in this context,
because we know what we wrote, it may fail in a runtime context if the expected input format is not
received.

5.21. OBJECT AND DATA I/O 125

class is serialized by serializing each of its member objects and writing each of
its primitive member variables, including all those inherited from parent classes.

The first condition for default serializability is that all of the class’s member
variables (including those of its superclasses) implement the Serializable in-
terface or are declared to be transient. If that is the case, the object output
method uses reflection to write out each object and primitive member variable
in turn.

The second requirement on a class for default serializabiilty is that it must
implement a public no-argument constructor. If that is the case, reconstituting
an object will also happen by reflection, first calling the no-argument constructor,
then reading and setting all the member variables.

The third requirement is that the same version of the class be used for reading
and writing. There are two parts to this requirement. The first version require-
ment is that the signature of the class used to read in the serialized instance
must be the same as that used to write the objects. If you change the member
variables, method declarations, subclasses, etc., it will interfere with deserializa-
tion. The second version requirement is that the major version of Java being
used to deserialize must be at least as great as that used to serialize. Thus it is
not possible to serialize in Java version 6 and deserialize in version 5.

5.21.3 The Serialization Proxy Pattern

Java allows classes to take full control over their serialization and deserializa-
tion, which we take advantage of to overcome the limitations of default serial-
ization, such as the restrictions on superclass behavior, backward compatibility
with changing signatures, and the ability to create immutable objects without
no-arg constructors.

Our recommended approach to serialization is to use the serialization proxy
pattern, which we describe in this section by example, with an implementa-
tion in SerialProxied defined here. The class begins by declaring it imple-
ments Serializable, then definining two final member variables in a single
two-argument constructor.

public class SerialProxied implements Serializable {

private final String mS;
private final int mCount;
private final Object mNotSerializable = new Object();

public SerialProxied(String s, int count) {
mS = s;
mCount = count;

}

The finality of the variables mean that instances of the the class are immutable
in the sense that once they are constructed they will never change. We use im-
mutable classes wherever possible in LingPipe, checking during construction that
they are well formed. Immutable classes are easy to reason about, especially in

126 CHAPTER 5. INPUT AND OUTPUT

multi-threaded environments, because they are well formed when constructed
and never change behavior.

The writeReplace() Method

Before applying default serialization, the object write methods first check, using
reflection, if a class implements the writeReplace() method. If it does, the
return result of calling it is serialized instead of the class itself.

The SerialProxied class implements the writeReplace() method by re-
turning a new instance of the Serializer class, which we show below

private Object writeReplace() {
return new Serializer(this);

}

Note that the method is declared to be private, so it will not appear in the docu-
mentation for the class and may not be called by clients. Reflection is still able
to access the method even though it’s private.

Serialization Proxy Implementation

The rest of the work’s done in the class Serializer. We declare the class within
the SerialProxied class as a static nested class, Serializer.

private static class Serializer implements Externalizable {

SerialProxied mObj;

public Serializer() { }

Serializer(SerialProxied obj) {
mObj = obj;

}

The class itself is declared to be private and static. The full name of which would
be com.lingpipe.book.io.SerialProxied.Serializer, but given its privacy,
we only access it from within SerialProxied anyway.

As we will shortly see, the Externalizable interface it implements extends
Serializable with the ability to take full control over what is written and read.
The variables and methods within it are package protected, though they could
also all be private. There are two constructors, a no-arg constructor which is
required to be public for deserialization, and a one-argument constructor used
by the writeReplace() method shown above for serialization.

The rest of the methods in the Serializer class are

public void writeExternal(ObjectOutput out)
throws IOException {

out.writeUTF(mObj.mS);
out.writeInt(mObj.mCount);

}

5.21. OBJECT AND DATA I/O 127

public void readExternal(ObjectInput in) throws IOException {
String s = in.readUTF();
int count = in.readInt();
mObj = new SerialProxied(s,count);

}

Object readResolve() {
return mObj;

}

We describe them in turn below.

The writeExternal() Method

The first method is the writeExternal() method, which writes to the specified
object output. In this case, it uses its within-class private access to retrieve and
write the member variables of the SerialProxied object mObj.

The readExternal() Method

The next method is the readExternal() method. This method and its sister
method, writeExternal() are specified in the Externalizable interface as
public, so must be public here.13

The read method first reads the serialized string and integer from the speci-
fied object input. Then it uses these to construct a new SerialProxied instance
based on the strnig and count and assigns it to the object variable mObj.

The readResolve() Method

Finally, the readResolve() method is used to return the object that was read
in. This method is the deserialization counterpart to writeReplace(). After the
readExternal() method is called, if readResolve() is defined, its return value
is returned as the result of deserialization. Thus even though the Serializer is
the one being serialized and deserialized, it is not visible at all to external clients.

Serial Version Variable

The final piece of the puzzle to take control over is the computation of the serial
version identifier. This allows serialization to bypass the computation of this
identifier by inspecting the serialized object’s signature by reflection. This is not
only more efficient, it also allows the signatures to be changed without affecting
the ability to deserialize already serialized instances.

If a class has already been fielded without declaring a serial version ID, the
command-line program serialver, which is shipped with the Sun/Oracle JDK,
may be used to compute the value that would be computed by reflection during
serialization. It only needs the classpath and full name of the class.

13The readExternal() method is also declared to throw a ClassNotFoundException to deal with
cases when it fails to deserialize an object using the object input’s readObject() method. We don’t
need it here because we are only using the data input methods readUTF() and readInt().

128 CHAPTER 5. INPUT AND OUTPUT

> serialver -classpath build/lp-book-io-4.0.jar
com.lingpipe.book.io.SerialProxied

static final long serialVersionUID = -688378786294424932L;

The output is a piece of Java code declaring a constant serialVersionUID with
the current value of the identifier as computed by serialization. We just insert
that into the class SerialProxied class. Technically, we may use whatever num-
ber we like here; it’s only checked for consistency during serialization.

We also need to insert the version ID constant into the nested static class
SerialProxied.Serializer.

5.22 Lingpipe I/O Utilities

LingPipe provides a number of utilities for input and output, and we discuss the
general-purpose ones in this section.

5.22.1 The FileLineReader Class

To deal with line-based file formats, LingPipe provides the class
FileLineReader, in the com.aliasi.io package. This class extends
LineNumberReader in java.io, which itself extends BufferedReader, so
all the inherited methods are avaiable.

For convenience, the FileLineReader class implements the
Iterable<String> interface, with iterator() returning an
Iterator<String> that iterates over the lines produced by the readLine()
method inherited from BufferedReader. Being iterable enables for-loop syntax,
so that if file is an instance of File, the standard idiom for reading lines is

FileLineReader lines = new FileLineReader(file,"UTF-8");
for (String line : lines) {

// do something
}
lines.close();

The ellided code block will then perform some operation on each line.
There are also static utility methods, readLines() and readLinesArray(),

both taking a file and character encoding name like the constructor, to read
all of the lines of a file into either an array of type String[] or a list of type
List<String>.

5.22.2 The Files Utility Class

Some standard file operations are implemented as static methods in the Files
class from the package com.aliasi.util.

5.22. LINGPIPE I/O UTILITIES 129

File Name Parsing

The baseName(File) and extension(File) methods split a file’s name into the
part before the last period (.) and the part after the alst period. If there is no
last period, the base name is the entire file name.

File Manipulation

The method removeDescendants(File) removes all the files contained in the
specified directory recursively. The removeRecursive(File) method removes
the descendants of a file and the file itself. The copy(File,File) method copies
the content of one file into another.

Bulk Reads and Writes

There are methods to read bytes, characters, or a string from a file, and corre-
sponding methods to write. The methods all pass on any I/O exceptions they
encounter.

The method readBytesFromFile(File) returns the array of bytes cor-
responding to the file’s contents, whereas writeBytesToFile(byte[],File)
writes the specified bytes to the specified file.

The methods readCharsFromFile(File,String) and
writeCharsToFile(char[],File,String) do the same thing for
char values. These methods both require the character encod-
ing to be specified as the final argument. There are corre-
sponding methods for strings, readFromFile(File,String) and
writeStringToFile(String,File,String). Together, we can use these
methods to transcode from one encoding to another,

char[] cs = Files.readCharsFromFile(fileIn,encIn);
Files.writeCharsToFile(cs,fileOut,encOut);

5.22.3 The Streams Utility Class

The class Streams in the package com.aliasi.io provides static utility methods
for dealing with byte and character streams.

Quiet Close Methods

The method closeQuietly(Closeable) closes the specified closeable object,
catching and ignoring any I/O exceptions raised by the close operation. If the
specified object is null, the quiet close method returns.

The method closeInputSource(InputSource) closes the byte and charac-
ter streams of the specified input source quietly, as if by the closeQuietly()
method.

130 CHAPTER 5. INPUT AND OUTPUT

Bulk Reads

There are utility bulk read methods that buffer inputs and return them as an
array. Special utility methods are needed because the amount of data available
or read from a stream is unpredictable. Bulk writing, on the other hand, is built
into output streams and writers themselves.

The bulk read method toByteArray(InputStream) reads all of the
bytes from the input stream returning them as an array. The method
toCharArray(Reader) does the same for char values.

The method toCharArray(InputSource) reads from an input source, using
the reader if available, and if not, the input stream using either the specified
character encoding or the platfrom default, and barring that, reads from the
input source’s system identifier (URL).

The method toCharArray(InputStream,String) reads an array of char
values by reading bytes from the specified input stream and converts them to
char values using the specified character encoding.

Copying Streams

The method copy(InputStream,OutputStream) reads bytes from the specified
input stream until the end of stream, writing what it finds to the output stream.
The copy(Reader,Writer) does the same thing for char value streams.

5.22.4 The Compilable Interface

LingPipe defines the interface Compilable in the package com.aliasi.util for
classes that define a compiled representation.

The Compilable interface has a single method, compileTo(ObjectOutput),
used for compiling an object to an object output stream. Like all I/O interface
methods, it’s defined to throw an IOException. The method is used just like
the writeExternal(ObjectOutput) method from Java’s Externalizable in-
terface. It is assumed that only whatever is written, deserialization will produce
a single object that is the compiled form of the object that was compiled.

Many of LingPipe’s statistical models, such as language models, classifiers
and HMMs have implementations that allow training data to be added incre-
mentally. The classes implementing these models are often declared to be both
Serializable and Compilable. If they are serializable, the standard serializa-
tion followed by deserialization typically produces an object in the same state
and of the same class as the one serialized. If a model’s compilable, a com-
pilation followed by deserialization typically produces an object implementing
the same model more efficiently, but without the ability to be updated with new
training data.

5.22.5 The AbstractExternalizable Class

LingPipe provides a dual-purpose class AbstractExternalizable in the pack-
age com.aliasi.util. This class provides static utility methods for dealing with

5.22. LINGPIPE I/O UTILITIES 131

serializable and compilable objects, as well as supporting the serialization proxy
pattern.

Base Class for Serialization Proxies

The abstract class AbstractExternalizable in package com.aliasi.util pro-
vides a base class for implementing the serializaion proxy pattern, as de-
scribed in Section 5.21.3. It is declared to implement Externalizable, and the
writeExternal(ObjectOutput) method from that interface is declared to be
abstract and thus must be implemented by a concrete subclass. The method
readExternal(ObjectInput) is implemented by AbstractExternalizable,
as is the serialization method readResolve(). The other abstract method that
must be implemented is read(ObjectInput), which returns an object. This
method is called by readExternal() and the object it returns stored to be used
as the return value for readResolve().

To see how to use this class as the base class for serialization proxies, we pro-
vide an example that parallels the one we implemented directly in Section 5.21.3.
This time, we use a nested inner class that extends AbstractExternalizable.

The class is constructed as follows.

public class NamedScoredList<E> implements Serializable {

static final long serialVersionUID = -3215750891469163883L;

private final List<E> mEs;
private final String mName;
private final double mScore;
private final Object mNotSerializable = new Object();

public NamedScoredList(List<E> es, String name,
double score) {

mEs = new ArrayList<E>(es);
mName = name;
mScore = score;

}

Note that the class is defined with a generic and declared to implement Java’s
Serializable interface. Also note the explicit declaration of the serial version
UID. The constructor stores a copy of the input list, the string name, and the
double score, as well as a new object which is not serializable itself.

The two features making this class immutable also prevent it from being se-
rializable. First, there is no zero-argument constructor. Second, the member
variables are declared to be final. Adding a public zero-arg constructor and re-
moving the final declarations would allow the class to be serialized in place.

Instead, we use the writeReplace() method as before to return the object’s
serialization proxy, which is also declared to be generic and provided with the
object itself through this.

Object writeReplace() {
return new Externalizer<E>(this);

}

132 CHAPTER 5. INPUT AND OUTPUT

The class Externalizer is declared as a nested static class as follows.

static class Externalizer<F> extends AbstractExternalizable {
static final long serialVersionUID = 1576954554681604249L;
private final NamedScoredList<F> mAe;
public Externalizer() { this(null); }
public Externalizer(NamedScoredList<F> ae) {

mAe = ae;
}

Note that the generic argument is different; they can’t be the same because
this is a nested static class, not an inner class, so it doesn’t have access
to the containing class’s generic. It is defined to extend the utility class
AbstractExternalizable. It also defines its own serial version UID. It holds
a final reference to a NamedScoredList for which it is the serialization proxy.
There is the requisit public no-argument constructor, as well as a constructor
that sets the member variable to its argument. The no-arg constructor is used
for deserialization and the one-arg constructor for serialization.

The helper class requires two abstract methods to be overridden. The first
is for writing the object, and gets called as soon as writeReplace() creates the
proxy.

@Override
public void writeExternal(ObjectOutput out)

throws IOException {

out.writeObject(mAe.mEs);
out.writeUTF(mAe.mName);
out.writeDouble(mAe.mScore);

}

This uses the contained instance mAe to access the data that needs to be written.
Here, it’s an object, a string, and a double, each with their own write methods.
The class is defined to throw an I/O exception, and will almost always require
this declaration because the write methods throw I/O exceptions.

The second overridden method is for reading. This just reverses the writing
process, returning an object.

@Override
public Object read(ObjectInput in)

throws IOException, ClassNotFoundException {

@SuppressWarnings("unchecked")
List<F> es = (List<F>) in.readObject();
String s = in.readUTF();
double x = in.readDouble();
return new NamedScoredList<F>(es,s,x);

}
}

5.22. LINGPIPE I/O UTILITIES 133

We read in the list, using the generic on the class itself for casting purposes. We
then read in the string and double with the matching read methods on object
inputs. Finally, we return a new named scored list with the same generic. This
object is what’s finally returned on deserialization.

The main() method for the demo just creates an object and then serializes
and deserializes it using the utility method.

List<String> xs = Arrays.asList("a","b","c");
NamedScoredList<String> p1

= new NamedScoredList<String>(xs,"foo",1.4);

@SuppressWarnings("unchecked")
NamedScoredList<String> p2 = (NamedScoredList<String>)

AbstractExternalizable.serializeDeserialize(p1);

This may be run using the Ant target ae-demo.

> ant ae-demo

p1=NSL([a, b, c], foo, 1.4) p2=NSL([a, b, c], foo, 1.4)

Serializing Singletons

This class makes it particularly easy to implement serialization for a singleton.
We provide an example in SerializedSingleton. Following the usual singleton
pattern, we have a private constructor and a public static constant,

public class SerializedSingleton implements Serializable {

private final String mKey;
private final int mValue;

private SerializedSingleton(String key, int value) {
mKey = key;
mValue = value;

}

public static final SerializedSingleton INSTANCE
= new SerializedSingleton("foo",42);

We then have the usual definition of writeReplace(), and a particularly simple
implementation of the serialization proxy itself,

Object writeReplace() {
return new Serializer();

}

static class Serializer extends AbstractExternalizable {

public Serializer() { }

@Override
public Object read(ObjectInput in) {

return INSTANCE;

134 CHAPTER 5. INPUT AND OUTPUT

}

@Override
public void writeExternal(ObjectOutput out) { }

static final long serialVersionUID
= 8538000269877150506L;

}

If the nested static class had been declared public, we wouldn’t have needed to
define the public no-argument constructor. The version ID is optional, but highly
recommended for backward compatibility.

To test that it works, we have a simple main() method,

SerializedSingleton s = SerializedSingleton.INSTANCE;
Object deser = AbstractExternalizable.serializeDeserialize(s);
boolean same = (s == deser);

which serializes and deserializes the instance using the LingPipe utility in
AbstractExternalizable, then tests for reference equality.

We can run this code using the Ant target serialized-singleton, which
takes no arguments,

> ant serialized-singleton

same=true

Serialization Proxy Utilities

The AbstractExternalizable class defines a number of static utility meth-
ods supporting serialization of arrays. These methods write the num-
ber of members then each member of the array in turn. For instance,
writeInts(int[],ObjectOutput) writes an array of integers to an object out-
put and readInts(ObjectInput) reads and returns an integer array that was se-
rialized using the writeInts() method. There are similar methods for double,
float, and String.

The method compileOrSerialize(Object,ObjectOutput) will attempt
to compile the specified object if it is compilable, otherwise it will
try to serialize it to the specified object output. It will throw a
NotSerializableException if the object is neither serializable nor compil-
able. The method serializeOrCompile(Object,ObjectOutput) tries the op-
erations in the opposite order, compiling only if the object is nor serializable.

General Serialization Utilities

The AbstractExternalizable class defines a number of general-purpose meth-
ods for supporting Java’s serialization and LingPipe’s compilation.

There are in-memory versions of compilation and serialization. The method
compile(Compilable) returns the result of compiling then deserializing an ob-
ject. The method serializeDeserialize(Serializable) serializes and dese-
rializes an object in memory. These methods are useful for testing serialization

5.22. LINGPIPE I/O UTILITIES 135

and compilation. These operations are carried out in memory, which requires
enough capacity to store the original object, a byte array holding the serialized
or compiled bytes, and the deserialized or compiled object itself. The same op-
eration may be performed with a temporary file in much less space because the
original object may be garbage collected before deserialization and the bytes re-
side out of main memory.

There are also utility methods for serializing or compiling to a file. The
method serializeTo(Serializable,File) writes a serialized form of the ob-
ject to the specified file. The compileTo(Compilable,File) does the same
thing for compilable objects.

To read serialized or compiled objects back in, the method
readObject(File) reads a serialized object from a file and returns it.

The method readResourceObject(String) reads an object from a resource
with the specified absolute path name (see Section 5.15.2 for information on
resources including how to create them and put them on the classpath). This
method simply creates an input stream from the resource then wraps it in an
object input stream for reading. The readResourceObject(Class<?>,String)
method reads a (possibly relative) resource relative to the specified class.

5.22.6 Demos of Serialization and Compilation

In the demo classes CompilationDemo and SerializationDemo, we provide ex-
amples of how to serialize and deserialize a class. Both classes are based on a
simple main() command-line method and both use the same object to serialize
and compile.

Object Construction

Suppose we have an instance of a class that’s compilable, like
TrainSpellChecker in LingPipe’s spell package. We will assume it is
constructed using an appropriate language model lm and weighted edit distance
dist, using the following code at the beginning of the main method of both
demo classes.

TrainSpellChecker tsc
= new TrainSpellChecker(lm,dist);

tsc.handle("The quick brown fox jumped.");

This code also provides it with a training example so it’s not completely empty
later (not that being empty would cause problems).

Serialization Demo

To serialize a file directly, we can use the following.

File fc1 = new File("one.CompiledSpellChecker");
OutputStream out = new FileOutputStream(fc1);
ObjectOutput objOut = new ObjectOutputStream(out);

136 CHAPTER 5. INPUT AND OUTPUT

objOut.writeObject(tsc);
objOut.close();

InputStream in = new FileInputStream(fc1);
ObjectInput objIn = new ObjectInputStream(in);
Object o1 = objIn.readObject();
TrainSpellChecker tsc1 = (TrainSpellChecker) o1;
objIn.close();

We first create a file input stream, then wrap it in an object output stream, in
both cases assigning to more general variables. We then call writeObject()
on the object output with the object to be serialized as an argument. This is
how all serialization works in Java at base. If the object being passed in is not
serializable, an NotSerializableException will be raised. We then close the
object output stream to ensure all bytes are written.

The complementary set of calls reads the object back in. We create an
input stream using the same file, wrap it in an object input, then call the
readObject() method on the object input. Finally, we cast to the appropriate
class, TrainSpellChecker, and then close the object input.

The same thing can be accomplished with the static utility methods
serializeTo() and readObject(), both in AbstractExternalizable.

File fc2 = new File("two.CompiledSpellChecker");
AbstractExternalizable.serializeTo(tsc,fc2);

Object o2 = AbstractExternalizable.readObject(fc2);
TrainSpellChecker tsc2 = (TrainSpellChecker) o2;

It is also possible to serialize and deserialize in memory, which is particularly
useful for testing purposes. The static utility method serializeDeserialize()
carries this out, as follows.

Object o3 = AbstractExternalizable.serializeDeserialize(tsc);
TrainSpellChecker tsc3 = (TrainSpellChecker) o3;

We can run the demo using the Ant target serialize-demo, as follows.

> ant serialize-demo

tsc.getClass()=class com.aliasi.spell.TrainSpellChecker
o1.getClass()=class com.aliasi.spell.TrainSpellChecker
o2.getClass()=class com.aliasi.spell.TrainSpellChecker
o3.getClass()=class com.aliasi.spell.TrainSpellChecker

The output shows the result of calling the general object method getClass() on
the varialbes of type Object read back in. This approach works in general for
inspecting the class of a deserialized object.

Compilation Demo

Assuming we have constructed a trained spell checker in variable tsc as shown
above, we can use the following code to compile it.

5.22. LINGPIPE I/O UTILITIES 137

File fc1 = new File("one.CompiledSpellChecker");
OutputStream out = new FileOutputStream(fc1);
ObjectOutput objOut = new ObjectOutputStream(out);
tsc.compileTo(objOut);
objOut.close();

InputStream in = new FileInputStream(fc1);
ObjectInput objIn = new ObjectInputStream(in);
Object o1 = objIn.readObject();
CompiledSpellChecker csc1 = (CompiledSpellChecker) o1;
objIn.close();

This involves creating an object output stream wrapping a file output stream,
then calling compileTo() on the object being compiled with the object output
as argument. Make sure to close the stream so that everything’s written.

After creating the object, we reverse the process by creating an object input
that wraps a file input stream. We then use the readObject() method on the
object input to read an object, which we assign to variable o1 of type Object.
We then cast the object to a compiled spell checker and make sure to close the
object input.

Exactly the same pair of operations can be carried out using the static utility
methods compileTo() and readObject() with the following code.

File fc2 = new File("two.CompiledSpellChecker");
AbstractExternalizable.compileTo(tsc,fc2);

Object o2 = AbstractExternalizable.readObject(fc2);
CompiledSpellChecker csc2 = (CompiledSpellChecker) o2;

If you look at the implementation of these methods, they closely match what was
written above, with the addition of buffering and more robust closes in finally
blocks.

If you don’t need an on-disk representation, the single method compile()
does the same thing in memory, though with more robust closes.

Object o3 = AbstractExternalizable.compile(tsc);
CompiledSpellChecker csc3 = (CompiledSpellChecker) o3;

If we run the demo, using the compile-demo Ant target, we see that the
objects read back in are compiled spell checkers in each case.

> ant compile-demo

tsc.getClass()=class com.aliasi.spell.TrainSpellChecker
o1.getClass()=class com.aliasi.spell.CompiledSpellChecker
o2.getClass()=class com.aliasi.spell.CompiledSpellChecker
o3.getClass()=class com.aliasi.spell.CompiledSpellChecker

138 CHAPTER 5. INPUT AND OUTPUT

Chapter 6

The Lucene Search Library

Apache Lucene is a search library written in Java. Due to its performance, con-
figurability and generous licensing terms, it has become very popular in both
academic and commercial settings. In this section, we’ll provide an overview of
Lucene’s components and how to use them, based on a single simple hello-world
type example.

Lucene provides search over documents. A document is essentially a collec-
tion of fields, where a field supplies a field name and value. Lucene manages a
dynamic document index, which supports adding documents to the index and
retrieving documents from the index using a highly expressive search API.

Lucene does not in any way constrain document structures. An index may
store a heterogeneous set of documents, with any number of different fields
which may vary by document in arbitrary ways. Lucene can store numerical and
binary data as well as text, but in this tutorial we will concentrate on text values.

What actually gets indexed is a set of terms. A term combines a field
name with a token that may be used for search. For instance, a title field
like Molecular Biology, 2nd Edition might yield the tokens molecul, biolog, 2, and
edition after case normalization, stemming and stoplisting. The index structure
provides the reverse mapping from terms, consisting of field names and tokens,
back to documents. To search this index, we construct a term composed of the
field title and the tokens resulting from applying the same stemming and sto-
plisting to the text we are looking for.

A Lucene search takes a query and returns a set of documents that are ranked
by relevancy with documents most similar to the query having the highest score.
Lucene’s search scoring algorithm weights results using TF-IDF, term frequency-
inverse document frequency. Term frequency means that high frequency terms
within a document have higher weight than do low-frequency terms. Inverse
document frequency means that terms which occur frequently across many doc-
uments in a collection of documents are less likely to be meaningful descriptors
of any given document in a corpus and are therefore down-weighted.

139

140 CHAPTER 6. THE LUCENE SEARCH LIBRARY

6.1 Fields

A document is a collection of fields. Search and indexing is carried out over these
fields. All fields in Lucene are instances of the Fieldable interface in the pack-
age org.apache.lucene.document. This interface is implemented by the ab-
stract class AbstractField and the two final classes Field and NumericField
which inherit from it. In this tutorial we cover the use of the class Field to index
and store text.

For example, a MEDLINE citation might be stored as a series of fields: one
for the name of the article, another for name of the journal in which it was pub-
lished, another field for the authors of the article, a pub-date field for the date
of publication, a field for the text of the article’s abstract, and another field for
the list of topic keywords drawn from Medical Subject Headings (MeSH). Each of
these fields would get a different name, and at search time, the client could spec-
ify that it was searching for authors or titles or both, potentially restricting to a
date range and set of journals by constructing search terms for the appropriate
fields and values.

6.1.1 Constructing Fields

A field requires all of its components to be specified in the constructor. Even so,
fields are defined to be mutable so that their values, but not their field names,
may be reset after construction.

The field constructor takes the field name, value, and a set of flags which
specify how it will be saved in the index. These indexing flags are discussed in a
subsequent section.

There are also several utility constructors that provide default values for the
flags in addition to those taking the text value as a Reader. There is also a public
constructor that takes a TokenStream (see Section 6.3) rather than a string.1 An
additional constructor takes a boolean flag controlling whether the field’s name
is interned or not (see Section 3.6.11), with the default setting being true.

6.1.2 Field Names and Values

Each constructor for a field requires a name for the field. At search time, the
supplied field name restricts the search to particular fields.

Each constructor for a field requires a value for the field which may be sup-
plied as a Java String or Reader.2 The value for a binary field is supplied as a
byte array slice.

1According to the javadoc, this is useful for pre-analyzed fields. Users must be careful to make
sure the token stream provided is consistent with whatever analysis will happen at query time.

2We recommend not using a Reader, because the policy on closing such readers is confusing. It’s
up to the client to close, but the close can only be done after the document has been added to an
index. Making fields stateful in this way introduces a lifecycle management problem that’s easily
avoided. Very rarely will documents be such that a file or network-based reader may be used as is
in a field; usually such streams are parsed into fields before indexing, eliminating any performance
advantage readers might have.

6.1. FIELDS 141

6.1.3 Indexing Flags

As of version 3.0 of Lucene, the constructor for a field has three arguments that
control how a term is indexed and/or stored. These arguments are specified
using nested enum instances in the Field class.

The Field.Store Enum

All fields are marked as to whether their raw value is stored in the index or not.
Storing raw values allows you to retrieve them at search time, but may consume
substantial space.

The enum Field.Store is used to mark whether or not to store the value of
a field. Its two instances, Store.YES and Store.NO, have the obvious interpre-
tations.

The Field.Index Enum

All fields are also marked as to whether they are indexed or not. A field must be
indexed in order for it to be searchable. While it’s possible to have a field that is
indexed but not stored, or stored but not indexed, it’s pointless to have a field
that is neither stored nor indexed.

Whether a field is indexed is controlled by an instance of the Field.Index
enum. The value Index.NO turns off indexing for a field. The other values all
turn on indexing for a field. Where they vary is how the terms that are indexed
are pulled out of the field value. The value Index.ANALYZED indexes a field with
tokenization turned on (see Section 6.3). The value Index.NOT_ANALYZED causes
the field value to be treated like a single token; it’s primarily used for identifier
fields that are not decomposed into searchable terms.

Lucene’s default behavior is to compute term frequency the proportion of the
number of times a term occurs as opposed to a simple frequency count. It does
this by storing a normalizing factor for each field that is indexed. The values
Index.ANALYZED_NO_NORMS and Index.NOT_ANALYZED_NO_NORMS disable stor-
age of these normalizing factors. This results in less memory usage during
search, but will affect search results. Furthermore, in order for this to be ef-
fective, this must be turned off during indexing for all documents in the index.

The Field.TermVector Enum

The final specification on a field is whether to store term vectors or not, and
if they are stored, what specifically to store. A term vector stores a list of the
document’s terms and number of occurrences in that document. Term vectors
can also store token position. They may be useful for downstream processing
like results clustering, finding documents that are similar to a known document,
or document highlighting.

Whether to use term vectors is controlled by an instance of the enum
Field.TermVector. The default is not to store term vectors, corresponding
to value TermVector.NO. Because we do not need term vectors for our simple

142 CHAPTER 6. THE LUCENE SEARCH LIBRARY

demo, we use a constructor for Field which implicitly sets the term vector flag
to TermVector.NO.

6.1.4 Field Getters

Once we have a field, we can access the components of it such as its name, value,
whether its indexed, stored, or tokenized, and whether term vectors are stored.
These methods are all specified in the Fieldable interface. For instance, name()
returns a field’s name, and stringValue() its value.3

There are convenience getters derived from the flag settings. For instance,
isIndexed() indicates if the field is indexed, and isTokenized() indicates
whether the indexing involved analysis of some sort. The method isStored()
indicates if the value is stored in the index, and isTermVectorStored() whether
the term vector is stored in the index.

6.2 Documents

In Lucene, documents are represented as instances of the final class Document,
in package org.apache.lucene.document.

6.2.1 Constructing and Populating Documents

Documents are constructed using a zero-arg constructor Document(). Once a
document is constructed, the method add(Fieldable) is used to add fields to
the document.

Lucene does not in any way constrain document structures. An index may
store a heterogeneous set of documents, with any number of different fields
which may vary by document in arbitrary ways. It is up to the user to enforce
consistency at the document collection level.

A document may have more than one field with the same name added to it.
All of the fields with a given name will be searchable under that name (if the
field is indexed, of course). The behavior is conceptually similar to what you’d
get from concatenating all the field values; the main difference is that phrase
searches don’t work across the concatenated items.

6.2.2 Accessing Fields in Documents

The Document class provides a means of getting fields by name. The method
getFieldable(String) returns the field for a specified name. If there’s no field
with the specified name, it returns null rather than raising an exception.

3For fields constructed with a Reader for a value, the method stringValue() returns null. In-
stead, the method readerValue() must be used. Similarly, the methods tokenStreamValue() and
binaryValue() are used to retrieve values of fields constructed with token streams or byte array
values. The problem with classes like this that that allow disjoint setters (or constructors) is that it
complicates usage for clients, who now have to check where they can get their data. Another example
of this anti-pattern is Java’s built-in XML InputSource in package org.xml.sax.

6.2. DOCUMENTS 143

The return type is Fieldable, but this interface provides nearly the same list
of methods as Field itself, so there is rarely a need to cast a fieldable to a field.

If there is more than one field in a document with the same name, the simple
method getFieldable(String) only returns the first one added. The method
getFieldables(String) returns an array of all fields in a document with the
given name. It’s costly to construct arrays at run time (in both space and time for
allocation and garbage collection), so if there is only a single value, the simpler
method is preferable.

6.2.3 Document Demo

We provide a simple demo class, DocDemo, which illustrates the construction,
setting and accessing of fields and documents.

Code Walkthrough

The main() method starts by constructing a document and populating it.

Document doc = new Document();
doc.add(new Field("title", "Fast and Accurate Read Alignment",

Store.YES,Index.ANALYZED));
doc.add(new Field("author", "Heng Li",

Store.YES,Index.ANALYZED));
doc.add(new Field("author", "Richard Durbin",

Store.YES,Index.ANALYZED));
doc.add(new Field("journal","Bioinformatics",

Store.YES,Index.ANALYZED));
doc.add(new Field("mesh","algorithms",

Store.YES,Index.ANALYZED));
doc.add(new Field("mesh","genomics/methods",

Store.YES,Index.ANALYZED));
doc.add(new Field("mesh","sequence alignment/methods",

Store.YES,Index.ANALYZED));
doc.add(new Field("pmid","20080505",

Store.YES,Index.NOT_ANALYZED));

After constructing the document, we add a sequence of fields, including a title
field, two author fields, a field for the name of the journal, several fields storing
mesh terms, and a field storing the document’s PubMed identifier. These terms
are all stored and analyzed other than the identifier, which is not analyzed.

After constructing the document, we loop over the fields and inspect them.

for (Fieldable f : doc.getFields()) {
String name = f.name();
String value = f.stringValue();
boolean isIndexed = f.isIndexed();
boolean isStored = f.isStored();
boolean isTokenized = f.isTokenized();
boolean isTermVectorStored = f.isTermVectorStored();

144 CHAPTER 6. THE LUCENE SEARCH LIBRARY

Note that the access is through the Fieldable interface. We include the calls to
the relevant methods, but omit the actual print statements.

Running the Demo

The Ant target doc-demo runs the demo.

> ant doc-demo

name=title value=Fast and Accurate Read Alignment
indexed=true store=true tok=true termVecs=false

name=author value=Heng Li
indexed=true store=true tok=true termVecs=false

...
name=mesh value=genomics/methods

indexed=true store=true tok=true termVecs=false
name=mesh value=sequence alignment/methods

indexed=true store=true tok=true termVecs=false
name=pmid value=20080505

indexed=true store=true tok=false termVecs=false

We’ve elided three fields, marked by ellipses.

6.3 Analysis and Token Streams

Lucene employs analyzers to convert the text value of a fields marked as
analyzed to a stream of tokens. At indexing time, Lucene is supplied
with an implementation of the abstract base class Analyzer in package
org.apache.lucene.analysis. An analyzer maps a field name and text value
to a TokenStream, also in the analysis package, from which the terms to be
indexed are retrieved using an iterator-like pattern.

6.3.1 Token Streams and Attributes

Before version 3.0 of Lucene, token streams had a string-position oriented tok-
enization API, much like LingPipe’s tokenizers. Version 3.0 generalized the in-
terface for token streams and other basic objects using a very general design
pattern based on attributes of other objects. 4

Code Walkthrough

To see how the tokenization process works, we provide a sample class
LuceneAnalysis that applies an analyzer to a field name and text input and
prints out the resulting tokens. The work is done in a simple main() with two

4The benefit of this pattern is not in its use, which is less convenient than a direct implementation.
The advantage of Lucene’s attribute pattern is that it leaves enormous flexibility for the developers
to add new features without breaking backward compatibility.

6.3. ANALYSIS AND TOKEN STREAMS 145

arguments, the field name, set as the string variable fieldName, and the text to
be analyzed, set as the string variable text.

The first step is to create the analyzer.

StandardAnalyzer analyzer
= new StandardAnalyzer(Version.LUCENE_36);

Here we’ve used Lucene’s StandardAnalyzer, in package
org.apache.lucene.analysis.standard, which applies case normaliza-
tion and English stoplisting to the simple tokenizer, which pays attention to
issues like periods and e-mail addresses.5 Note that it’s constructed with a
constant for the Lucene version, as the behavior has changed over time.

The standard analyzer, like almost all of Lucene’s built-in analyzers, ignores
the name of the field that is passed in. Such analyzers essentially implement
simple token stream factories, like LingPipe’s tokenizer factories.6

The next step of the main() method constructs the token stream given the
string values of the command-line arguments fieldName and text.

Reader textReader = new StringReader(text);

TokenStream tokenStream
= analyzer.tokenStream(fieldName,textReader);

CharTermAttribute terms =
tokenStream.addAttribute(CharTermAttribute.class);

OffsetAttribute offsets
= tokenStream.addAttribute(OffsetAttribute.class);

PositionIncrementAttribute positions
= tokenStream
.addAttribute(PositionIncrementAttribute.class);

We first have to create a Reader, which we do by wrapping the input text string
in a StringReader (from java.io).7 Then we use the analyzer to create a to-
ken stream from the field name and text reader. The next three statements at-
tach attributes to the token stream, specifically a term attribute,8 offset attribute

5See the tokenization chapter in the companion volume, Natural Language Processing in LingPipe
for an overview of natural language tokenization in LingPipe, as well as adapters between Lucene
analyzers and LingPipe tokenizer factories).

6It is unfortunate that Lucene does not present a token stream factory interface to produce token
streams from text inputs. Then it would be natural to construct an analyzer by associating token
stream factories with field names. We follow this pattern in adapting LingPipe’s tokenizer factories
to analyzers in the companion volume, Natural Language Processing with LingPipe, in the section on
adapting Lucene analyzers.

Lucene’s sister package, Solr, which embeds Lucene in a client-server architecture, includes a token
stream factory interface TokenizerFactory, which is very much like LingPipe’s other than operating
over readers rather than character sequences and providing Solr-specific initialization and configura-
tion management.

7Unlike the case for documents, there is no alternative to using readers for analysis. It is common
to use string readers because they do not maintain handles on resources other than their string
reference.

8As of version 3.1, the TermAttribute class was renamed CharTermAttribute because it holds
objects of type CharSequence, which can be printed by the toString method.

146 CHAPTER 6. THE LUCENE SEARCH LIBRARY

and position increment attribute. These are used to retrieve the text of a term,
the span of the term in the original text, and the ordinal position of the term
in the sequence of terms in the document. The position is given by an incre-
ment from the previous position, and Lucene uses these values for phrase-based
search (i.e., searching for a fixed sequence of tokens in the given order without
intervening material).

The last block of code in the main() method iterates through the token
stream, printing the attributes of each token it finds.

while (tokenStream.incrementToken()) {
int increment = positions.getPositionIncrement();
int start = offsets.startOffset();
int end = offsets.endOffset();
String term = terms.toString();

The while loop continually calls incrementToken() on the token stream, which
advances to the next token, returning true if there are more tokens. The body
of the loop just pulls out the increment, start and end positions, and term for
the token. The rest of the code, which isn’t shown, just prints these values. this
pattern of increment-then-get is particularly popular for tokenizers; LingPipe’s
tokenizers use a similar model.

Running the Demo

It may be run from the Ant target lucene-analysis, with the arguments pro-
vided by properties field.name and text respectively.

> ant -Dfield.name=foo -Dtext="Mr. Sutton-Smith will pay $1.20
for the book." lucene-analysis

Mr. Sutton-Smith will pay $1.20 for the book.
012345678901234567890123456789012345678901234
0 1 2 3 4

INCR (START, END) TERM INCR (START, END) TERM
1 (0, 2) mr 2 (22, 25) pay
1 (4, 10) sutton 1 (27, 31) 1.20
1 (11, 16) smith 3 (40, 44) book

The terms are all lowercased, and non-word-internal punctuation has been re-
moved. The stop words will, for and the are also removed from the output.
Unlike punctuation, when a stop word is removed, it causes the increment be-
tween terms to be larger. For instance, the increment between smith and pay is
2, because the stopword will was removed between them. The start (inclusive)
and end (exclusive) positions of the extracted terms is also shown.

6.4. DIRECTORIES 147

6.4 Directories

Lucene provides a storage abstraction on top of Java in the abstract base class
Directory in the org.apache.lucene.store package. Directories provide an
interface that’s similar to an operating system’s file system.

6.4.1 Types of Directory

The FSDirectory abstract base class, also in package store, extends Directory
to support implementations based on a file system. This is the most common
way to create a directory in Lucene. The implementation RAMDirectory, also
in store supports in-memory directories, which are efficient, but less scalable
than file-system directories. The package org.apache.lucene.store contains
several specialized implementations.

6.4.2 Constructing File-System Directories

An instance of a file-system directory may be created using the factory method
FSDirectory.open(File), which returns an implementation of FSDirectory.
As of Lucene 3.6, this method returns a specific FSDirectory implementation,
based on your environment and the known limitations of each implementation.

At construction, all FSDirectory implementations are supplied with a File
and a LockFactory object which specifies how the files on the file system
will be locked. The LockFactory class is an abstract class. Several imple-
mentations are provided in the package org.apache.lucene.store. Conve-
nience constructors supply a default LockFactory. As of Lucene 3.6, this is
a NativeFSLockFactory.

6.5 Indexing

Lucene uses the IndexWriter class in org.apache.lucene.index to add doc-
uments to an index and optimize existing indexes. Documents do not all need
to be added at once — documents may be added to or removed from an existing
index. We consider deleting documents in Section 6.8.

6.5.1 Constructing an IndexWriter

An IndexWriter is constructed from a lucene.store.Directory and a
IndexWriterConfig object which specifies the Lucene version of the index,
the default Analyzer, and how the IndexWriter uses memory and processing re-
sources during indexing. The IndexWriterConfig constructor takes the Lucene
version and the default analyzer as arguments and sets its properties to default
values accordingly. Getter and setter methods are used to query and update
these properties.

148 CHAPTER 6. THE LUCENE SEARCH LIBRARY

6.5.2 Merging and Optimizing

Indexing maintains a small buffer of documents in memory, occasionally writing
the data in that batch of documents out to disk. After enough such batches have
been written to disk, Lucene automatically merges the individual batches into
bigger batches. Then, after a number of larger chunks of index accumulate, these
are merged. You can observe this behavior in your file browser if you’re using
a disk directory for indexing a large batch of documents. As more documents
are added, small index segments are continually added. Then, at various points,
these smaller indexes are merged into larger indexes.

It’s possible to control the size of the in-memory buffer and the frequency of
merges via setters on the IndexWriterConfig.

It’s even possible to programmatically merge two indexes from different
directories. Lucene’s IndexWriter class provides a handy variable-argument-
length method addIndexes(IndexReader...) which adds indexes maintained
by the specified readers to the index writer. Then, when the writer is optimized,
the indexes will all be merged into the writer’s index directory.

Being able to merge indexes makes it easy to split the indexing job into multi-
ple independent jobs and then either merge the results or use all of the indexes
together without merging them (using a MultiReader).

6.5.3 Indexing Demo

We provide a demo class LuceneIndexing that shows how basic text indexing
works.

Code Walkthrough

The work is all done in the main() method, whIch starts by constructing the
index writer.

public static void main(String[] args)
throws CorruptIndexException, LockObtainFailedException,

IOException {

File docDir = new File(args[0]);
File indexDir = new File(args[1]);

Directory fsDir = FSDirectory.open(indexDir);

Analyzer stdAn
= new StandardAnalyzer(Version.LUCENE_36);

Analyzer ltcAn
= new LimitTokenCountAnalyzer(stdAn,Integer.MAX_VALUE);

IndexWriterConfig iwConf
= new IndexWriterConfig(Version.LUCENE_36,ltcAn);

iwConf.setOpenMode(IndexWriterConfig.OpenMode.CREATE);

IndexWriter indexWriter
= new IndexWriter(fsDir,iwConf);

6.5. INDEXING 149

The two arguments correspond to the directory from which documents to be
indexed are read and the directory to which the Lucene index is written. We
create a file-system-based directory using the index directory (see Section 6.4).

We then create a standard analyzer (see Section 6.3). In order to index all
the text in a field, however long that field may be, we need to wrap the standard
analyzer in a LimitTokenCountAnalyzer We set the maximum field length to
Integer.MAX_VALUE, the largest possible value available.

Next we specify the config for the index writer. We call the setOpenMode
method with the enum constant IndexWriterConfig.OpenMode.CREATE
which causes the index writer to create a new index or overwrite
an existing one. The other two possible open modes enums are
IndexWriterConfig.OpenMode.CREATE_OR_APPEND which creates a new index
if one does not exist, else opens an existing index and appends documents and
IndexWriterConfig.OpenMode.APPEND which opens an existing index.

For both the standard analyzer and the index writer config we pass in a Lucene
version constant.9 Finally, we create an index writer from the directory and the
index writer config.

Constructing the index may throw all three exceptions listed on the main()
method. The first two exceptions are Lucene’s, and both extend IOException.
You may wish to catch them separately in some cases, as they clearly indicate
what went wrong. A CorruptIndexException will be thrown if we attempt to
open an index that is not well formed. A LockObtainFailedException will be
thrown if the index writer could not obtain a file lock on the index directory. A
plain-old Java IOException will be thrown if there is an underlying I/O error
reading or writing from the files in the directory.

The second half of the main() method loops over the files in the specified
document directory, converting them to documents and adding them to the in-
dex.

for (File f : docDir.listFiles()) {
String fileName = f.getName();
String text = Files.readFromFile(f,"ASCII");
Document d = new Document();
d.add(new Field("file",fileName,

Store.YES,Index.NOT_ANALYZED));
d.add(new Field("text",text,

Store.YES,Index.ANALYZED));
indexWriter.addDocument(d);

}
int numDocs = indexWriter.numDocs();

indexWriter.forceMerge(1);
indexWriter.commit();
indexWriter.close();

9The Lucene version constant supplied to components in an application can differ by component.
For components used for both search and indexing it is critical that the Lucene version is the same
in the code that is called at indexing time and the code that is called at search time.

150 CHAPTER 6. THE LUCENE SEARCH LIBRARY

We keep a count of the number of characters processed in the variable numChars.
We then loop is over all the files in the specified document directory. For each
file, we get its name and its text (using LingPipe’s static readFromFile() util-
ity method, which converts the bytes in the file to a string using the specified
character encoding, here ASCII).

We then create a document and add the file name as an unanalyzed field
and the text as an analyzed field. After creating the document, we call the
addDocument(Document) method of the index writer to add it to the index.

After we’ve finished indexing all the files, we call the index writer’s
forceMerge(int) method, followed by commit. The argument to forceMerge
is 1, so that the index will be merged down into a single segment, resulting in
a smaller index with better search performance. This is a costly operation. The
amount of free space required is two to three times the size of the directory that
the index writer is opened on. When the merge completes, both the pre-merge
and newly merged indexes exist. Because Lucene allows search to proceed inde-
pendently of indexing, Lucene search components may have index readers open
on the same directory. These search components will be operating on the index
that existed when they were opened and will not see any changes made to the
directory by the index writer until the call to commit, which syncs all referenced
index files. At this point old indexes will be deleted, freeing up space.

We then close the index writer using the close() method, which
may throw an IOException; the IndexWriter class is declared to
implement Java’s Closeable interface, so we could’ve used LingPipe’s
Streams.closeSilently() utility method to close it and swallow any I/O ex-
ceptions raised.

Finally, we get the number of documents that are in the current index using
the method numDocs(); if documents were in the index when it was opened,
these are included in the count. We also print out other counts, such as the
number of characters, (print statements omitted from above code listing).

Running the Demo

The Ant target lucene-index runs the indexing demo. It supplies the values of
properties doc.dir and index.dir to the program as the first two command-
line arguments. In this example we will index the 85 Federalist Papers, and we
will continue to use this index in subsequent examples in this tutorial.

The sample code includes the subdirectory data/federalist-papers
which contains the Project Gutenberg distribution of the plain-text version of
theFederalist Papers along with the shell script get_papers.sh. Running this
script will create a directory called texts and populate it with the individual pa-
pers, one paper per file. Once unpacked, we use this directory as the doc.dir
argument.

> ant -Ddoc.dir=../../data/federalist-papers/texts
-Dindex.dir=temp.idx lucene-index

Index Directory=/Users/mitzimorris/aliasi/lpbook/src/applucene/temp.idx
Doc Directory=/Users/mitzimorris/aliasi/lpbook/data/federalist-papers/texts

6.5. INDEXING 151

num docs=85

Lucene’s very fast. On a workstation, it takes less than a second to run the demo,
including forking a new JVM. On my wimpy notebook, it takes two seconds. The
run indexed 85 documents consisting of approximately 1.1 million words total.

After indexing, we can look at the contents of the index directory, showing
file size in kilobytes.

> export BLOCKSIZE=1024; ls -s temp.idx

total 1520
1144 _0.fdt

4 _0.fdx
4 _0.fnm

84 _0.frq
4 _0.nrm

188 _0.prx
4 _0.tii

80 _0.tis
4 segments.gen
4 segments_1

These files contain binary representations of the index. The file sege-
ments.gen is a global file which contains the generation number of the index.
The file segments_1 contains the per-commit list of segments.

The per-segment files begin with an underscore and have suffixes which iden-
tify the type of data they contain. The field info file, suffix .fnm, contains the
field names and infos. The term dictionary files, .tis and .tii, are used to
navigate the index to retrieve information for each term. Term frequencies are
stored in the .frq file and term positions are stored in the .prx file. Normaliza-
tion factors used for scoring are stored in the .nrm file. The files .fdt and .fdx
contain the raw text data for the stored fields. These last two are not used by
Lucene for index search and scoring, they are only for retrieval of search results.

The index takes up 1.5M total disk space. Most of this space is used for the
stored fields file, 1.2M in size, which is slightly smaller than the raw text files
themselves.

> du -sh ../../data/federalist-papers/texts

1.3M ../../data/federalist-papers/texts

6.5.4 Luke

Luke is an index browser for Lucene, also written in Java. Downloads are available
from http://code.google.com/p/luke/. It provides a quick and easy way to
explore the contents of the index. Figure 6.1 illustrates how Luke presents an
overview of the contents of the index.

http://code.google.com/p/luke/

152 CHAPTER 6. THE LUCENE SEARCH LIBRARY

6.5.5 Duplicate Documents

If we were to run the demo program again, each of the documents would be
added to the index a second time, and the number of documents reported will
be 170 (twice the initial 85). Although a Lucene index provides identifiers for
documents that are unique (though not necessarily stable over optimizations),
nothing in the index enforces uniqueness of document contents. Lucene will
happily create another document with the same fields and values as another
document. It keeps them separate internally using its own identifiers.

6.6 Queries and Query Parsing

Lucene provides a highly configurable hybrid form of search that combines ex-
act boolean searches with softer, more relevance-ranking-oriented vector-space
search methods. All searches are field-specific, because Lucene indexes terms
and a term is comprised of a field name and a token.10

10Given that search is carried out over terms, there’s no way to easily have a query search over
all fields. Instead, field-specific queries must be disjoined to achieve this effect. Scoring for this
approach may be problematic because hits on a shorter field will have a higher score than hits on
a longer field. Another approach is to denormalize the documents by creating synthetic fields that
concatenate the value of other fields.

Fig. 6.1: Screenshot of Luke index browser, showing overview of index temp.idx

6.6. QUERIES AND QUERY PARSING 153

6.6.1 Constructing Queries Programmatically

Queries may be constructed programmatically using the dozen or so built-
in implementations of the the Query abstract base class from the package
org.apache.lucene.search.

The most basic query is over a single term in a single field. This form of
query is implemented in Lucene’s TermQuery class, also in the search pack-
age. A term query is constructed from a Term, which is found in package
org.apache.lucene.index. A term is constructed from a field name and text
for the term, both specified as strings.

The BooleanQuery class is very misleadingly named; it supports both hard
boolean queries and relevance-ranked vector-space queries, as well as allowing
them to be mixed.

A boolean query may be constructed with the no-argument constructor
BooleanQuery() (there is also a constructor that provides extra control over
similarity scoring by turning off the coordination component of scoring).

Other queries may then be added to the boolean query using the method
add(Query,BooleanClause.Occur). The second argument, an instance of the
nested enum BooleanClause.Occur in package search, indicates whether the
added query is to be treated as a hard boolean constraint or contribute to the
relevance ranking of vector queries. Possible values are BooleanClause.MUST,
BooleanClause.MUST_NOT, and BooleanClause.SHOULD. The first two are used
for hard boolean queries, requiring the term to appear or not appear in any result.
The last value, SHOULD, is used for vector-space queries. With this occurrence
value, Lucene will prefer results that match the query, but may return results
that do not match the query.

The recursive nature of the API and the overloading of queries to act as both
hard boolean and vector-type relevance queries, leads to the situation where
queries may mix hard and soft constraints. It appears that clauses constrained
by hard boolean occurrence constraints, MUST or MUST_NOT, do not contribute to
scoring. It’s less clear what happens when one of these hybrid queries is nested
inside another boolean query with its own occurrence specification. For instance,
it’s not clear what happens when we nest a query with must-occur and should-
occur clauses as a must-occur clause in a larger query.

BooleanQuery bq1 = new BooleanQuery();
bq1.add(new TermQuery(new Term("text","biology")), Occur.MUST);
bq1.add(new TermQuery(new Term("text","cell")), Occur.SHOULD);

BooleanQuery bq2 = new BooleanQuery();
bq2.add(new TermQuery(new Term("text","micro")), Occur.SHOULD);
bq2.add(bq1,Occur.MUST);

6.6.2 Query Parsing

Lucene specifies a language in which queries may be expressed.
For instance, [computer NOT java]11 produces a query that specifies the

11We display queries Q as [Q] to indicate the scope of the search without using quotes, which are

154 CHAPTER 6. THE LUCENE SEARCH LIBRARY

term computer must appear in the default field and the term java must not ap-
pear. Queries may specify fields, as in text:java, which requires the term java to
appear in the text field of a document.

The full syntax specification is available from http://lucene.apache.org/
java/3_0_2/queryparsersyntax.html. The syntax includes basic term and
field specifications, modifiers for wildcard, fuzzy, proximity or range searches,
and boolean operators for requiring a term to be present, absent, or for com-
bining queries with logical operators. Finally, sub-queries may be boosted by
providing numeric values to raise or lower their prominence relative to other
parts of the query.

A query parser is constructed using an analyzer, default field, and Lucene
version. The default field is used for queries that do not otherwise specify the
field they search over. It may then be used to convert string-based queries into
query objects for searching.

The query language in Lucene suffers from a confusion between queries over
tokens and queries over terms. Complete queries, must of course, be over terms.
But parts of queries are naturally constrained to be over tokens in the sense of
not mentioning any field values. For instance, if Q is a well-formed query, then
so is foo:Q. In proper usage, the query Q should be constrained to not mention
any fields. In other words, Q should be a query over tokens, not a general query.

Query Language Syntax

In Figure 6.2, we provide an overview of the full syntax available through Lucene’s
query parser. The following characters must be escaped by preceding them with
a backslash:

+ - & | ! () { } [] ^ " ~ * ? : \

For example, [foo:a\(c] searches for the three-character token a(c in the field
foo. Of course, if the queries are specified as Java string literals, further escaping
is required (see Section 3.3).

6.6.3 Default Fields, Token Queries, and Term Queries

When we set up a query parser, we will be supplying a default field. Unmarked
token queries will then be interpreted as if constrained to that field. For instance,
if title is the default query field, then query [cell] is the same as the query
[title:cell].

Like the programmatic queries, Lucene’s query language does not clearly sep-
arate the role of token-level queries, which match tokens or sequences of tokens,
and term-level queries, which match tokens within a field. Thus it’s possible
to write out queries with rather unclear structure, such as [text:(money AND
file:12.ascii.txt)]; this query will actually match (as you can try with the
demo in the next section) because the embedded field file takes precedence
over the top-level field text.

often part of the search itself.

http://lucene.apache.org/java/3_0_2/queryparsersyntax.html
http://lucene.apache.org/java/3_0_2/queryparsersyntax.html

6.6. QUERIES AND QUERY PARSING 155

Type Syntax Description

Token t Match token t

Phrase "cs" Match tokens in cs in exact order without
gaps

Field f:Q Match query Q in field f

Wildcard,
Char

cs1?cs2 Match tokens starting with cs1, ending with
cs2, with any char between

Wildcard,
Seq

cs1*cs2 Match tokens starting with cs1, ending with
cs2, with any char sequence between

Fuzzy t∼ Match token t approximately

Fuzzy,
Weighted

t∼d Match token t within minimum similarity d

Proximity P∼n Match tokens in phrase P within distance n

Range,
Inclusive

f:[t1 TO t2] Match tokens lexicographically between to-
kens t1 and t2 inclusive

Range,
Exclusive

f:(t1 TO t2) Match tokens lexicographically between to-
kens t1 and t2 exclusive

Boosting Pˆd Match phrase P, boosting score by d

Disjunction Q1 OR Q2 Match query Q1 or query Q2 (or both)

Conjunction Q1 AND Q2 Match query Q1 and match query Q2

Difference Q1 NOT Q2 Match query Q1 but not query Q2

Must +P Token or phrase P must appear

Mustn’t -P Token or phrase P must not appear

Grouping (Q) Match query Q (disambiguates parsing)

Fig. 6.2: Lucene’s Query Syntax. In the table, t is a token made up of a sequence of
characters, f is a field name made up of a sequence of characters, cs1 is a non-empty
sequence of characters, cs2 is any sequences of characters, d is a decimal number, n is a
natural number, Q is an arbitrary well-formed query, and P is a well-formed phrase query.

156 CHAPTER 6. THE LUCENE SEARCH LIBRARY

6.6.4 The QueryParser Class

Lucene’s QueryParser class, in package org.apache.lucene.queryparser,
converts string-based queries which are well-formed according to Lucene’s query
syntax into Query objects.

The constructor QueryParser(Version,String,Analyzer) requires a
Lucene version, a string picking out a default field for unmarked tokens, and
an analyzer with which to break phrasal queries down into token sequences.

Query parsing is accomplished through the method parse(String), which
returns a Query. The parse method will throw a Lucene ParseException, also
in package queryparser, if the query is not well formed.

6.6.5 Using Luke to Develop and Test Queries

The Luke index browser provides interactive search over an index via the search
tab. The top part of this tab contains a set of controls. The controls on the right
side specify the behavior of the analyzer and the searcher. On the top left side
there is a text box in which to enter the query string. Below the text box is a
display of the result of parsing this query string. The bottom half of this tab is
given over to search results.

Figure 6.3 illustrates a simple search over the index temp.idx that we created
in the previous section. In the top right, we specify the analyzer and default field
used by the query parser to be ‘text’ and StandardAnalyzer respectively. In the
top left, we entered the words powers of the judiciary. The parser treats each
word as a search term. The standard analyzer stop-lists of and the and produces
a query consisting of two terms: [text:powers] and [text:judiciary]. The
search results are displayed in ranked order.

6.7 Search

6.7.1 Index Readers

Lucene uses instances of the aptly named IndexReader to read data from an
index.

Distributed Readers

A convenient feature of the reader design in Lucene is that we may construct
an index reader from multiple indexes, which will then combine their contents
at search time. From the reader’s client’s perspective, the behavior is indistin-
guishable (other than in terms of speed) from a combined and optimized index.
We can even distribute these indexes over multiple machines on a network using
Java’s Remote Method Invocation (RMI).

6.7. SEARCH 157

Fig. 6.3: Screenshot of Luke index browser, showing search results

6.7.2 Index Searchers

Lucene supplies an IndexSearcher class that performs the actual search. Every
index searcher wraps an index reader to get a handle on the indexed data. Once
we have an index searcher, we can supply queries to it and enumerate results in
order of their score.

There is really nothing to configure in an index searcher other than its reader,
so we’ll jump straight to the demo code.

6.7.3 Search Demo

We provide a simple implementation of Lucene search based on the index we
created in the last section.

Code Walkthrough

The code is in the main() method of the demo class LuceneSearch. The method
starts off by reading in command-line arguments.

public static void main(String[] args)
throws ParseException, CorruptIndexException,

IOException {

File indexDir = new File(args[0]);

158 CHAPTER 6. THE LUCENE SEARCH LIBRARY

String query = args[1];
int maxHits = Integer.parseInt(args[2]);

We need the directory for the index, a string representing the query in Lucene’s
query language, and a specification of the maximum number of hits to return.
The method is declared to throw a Lucene corrupt index exception if the index
isn’t well formed, a Lucene parse exception if the query isn’t well formed, and a
general Java I/O exception if there is a problem reading from or writing to the
index directory.

After setting the command-line arguments, the next step is to create a Lucene
directory, index reader, index searcher and query parser.

Directory fsDir = FSDirectory.open(indexDir);
IndexReader reader = IndexReader.open(fsDir);
IndexSearcher searcher = new IndexSearcher(reader);

String dField = "text";
Analyzer stdAn

= new StandardAnalyzer(Version.LUCENE_36);
QueryParser parser

= new QueryParser(Version.LUCENE_36,dField,stdAn);

It is important to use the same analyzer in the query parser as is used in the
creation of the index. If they don’t match, queries that should succeed will fail
because the tokens won’t match.12 For instance, if we apply stemming in the
indexing to reduce codes to code, then we better do the same thing for the query,
because we won’t find codes in the index, only its stemmed form code.

The last bit of code in the search demo uses the query parser to parse the
query, then searches the index and reports the results.

Query q = parser.parse(query);

TopDocs hits = searcher.search(q,maxHits);
ScoreDoc[] scoreDocs = hits.scoreDocs;

for (int n = 0; n < scoreDocs.length; ++n) {
ScoreDoc sd = scoreDocs[n];
float score = sd.score;
int docId = sd.doc;
Document d = searcher.doc(docId);
String fileName = d.get("file");

The Query object is created by using the parser to parse the text query. We then
use the searcher instance to search given the query and an upper bound on the
number of hits to return. This returns an instance of the Lucene class TopDocs,
from package search, which encapsulates the results of a search (through refer-
ences back into the index).

12The analyzers must produce the same tokenization. In the demo programs here, the analyzer
used to create the index was a StandardAnalyzer wrapped in a LimitTokenCountAnalyzer. Since
the LimitTokenCountAnalyzer doesn’t change the underlying tokenization and we don’t expect our
queries to be very long, the query parser uses a StandardAnalyzer.

6.7. SEARCH 159

The TopDocs result provides access to an array of search results. Each result
is an instance of the Lucene class ScoreDoc, also in the search package, which
encapsulates a document reference with a floating point score.

The array of search results is sorted in decreasing order of score, with higher
scores representing better matches. We then enumerate over the array, and for
each ScoreDoc object, we pull its score out using the public member variable
score. We then pull its document reference number (Lucene’s internal identifier
for the doc) out with the member variable doc. With the Lucene document identi-
fier, we are able to retrieve the document from the searcher (which just delegates
this operation to its index reader internally). Finally, with the document in hand,
we retrieve its file name using the get() method on the document; we use get()
here rather than getValues(), which returns an array, because we know there
is only one file name for each document in the index. We could’ve also retrieved
the text of the document, because we stored it in the index.

Running the Demo

The Ant target lucene-search invokes the demo with command-line arguments
provided by the value of properties index.dir, query, and max.hits.

> ant -Dindex.dir=temp.idx -Dquery="powers of the judiciary"
-Dmax.hits=15 lucene-search

Index Dir=/Users/mitzimorris/aliasi/lpbook/src/applucene/temp.idx
query=powers of the judiciary
max hits=15
Hits (rank,score,file name)

0 0.29 paper_47.txt
1 0.23 paper_48.txt
2 0.19 paper_78.txt

...
13 0.10 paper_81.txt
14 0.09 paper_82.txt

We run this demo with the query string powers of the judiciary. As we saw
in the previous section, the query parser stop-lists the words of and the, re-
ducing this query to a boolean search for documents which contain the terms
[text:powers] and/or [text:judiciary]. Lucene returns 15 results num-
bered 0 to 14. We see that paper 47 is the closest match to our query. This
document contains 18 instances of the term powers and 24 instances of judiciary.
This seems like a low score on a 0–1 scale for a document which matches all the
tokens in the query; the reason is because the documents are long, so the per-
centage of tokens in the document matching the query tokens is relatively low.

The token food does not show up in any documents, so the
query [text:food] returns no hits. If we enter the query string
powers of the judiciary food, it returns exactly the same hits as the query string
powers of the judiciary, in exactly the same order, but with lower scores. If we
try the query string judiciary +food, we are insisting that the token food appear

160 CHAPTER 6. THE LUCENE SEARCH LIBRARY

in any matching document. Because it doesn’t appear in the corpus at all, the
query string judiciary +food has zero hits. On the other hand, the must-not
query judiciary -food has the same hits with the same scores as does the query
for judiciary.

6.7.4 Ranking

For scoring documents against queries, Lucene uses the complex and
highly configurable abstract base class Similarity in the package in
org.apache.lucene.search. If nothing else is specified, as in our simple de-
mos, the concrete subclass DefaultSimilarity will be used.

Similarity deals with scoring queries with SHOULD-occur terms. In the search
language, all tokens are treated as SHOULD unless prefixed with the must-occur
marking plus-sign (+) or must-not occur negation (-).

The basic idea is that the more instances of query terms in a document the
better. Terms are not weighted equally. A term is weighted based on its inverse
document frequency (IDF), so that terms that occur in fewer documents receive
higher weights. Weights may also be boosted or lowered in the query syntax or
programmatically with a query object.

All else being equal, shorter documents are preferred. The reason for this
is that when two documents contain the same number of instances of query
terms, the shorter document has a higher proportion of query terms and is thus
likely to be a better match. This proportion may well be higher for a short docu-
ment which contains only a few instances of the query term than it is for a very
long document which contains many instances of the query term. This can be
problematic when a document collection contains both very short and very long
documents.

There is also a component of scoring based on the percentage of the query
terms that appear in the document. All else being equal, we prefer documents
that cover more terms in the query.

6.8 Deleting and Updating Documents

The the IndexWriter class supports methods to delete documents from an in-
dex based on a term or query. There is also a deleteAll() method to completely
clear the index.

The the IndexWriter class supports methods to update a document or doc-
uments that contain a term. The update operation consists of first deleting the
existing document(s) which contain a given term and then adding new one(s).
This operation is atomic with respect to any index readers open on the index.

In many cases, the documents being indexes have unique identifiers. For
example, in our file-based index, the file names are meant to be unique.13

We can then create a term containing the application’s document identifier
field and delete by term. For instance, we could call deleteDocuments(new

13Unlike a database, which enforces unique ids by declaration, Lucene requires the programmer to
treat fields as keys by convention.

6.8. DELETING AND UPDATING DOCUMENTS 161

Term("file","paper_12.txt")) to delete the document with file identifier
paper_12.txt.

In earlier versions of Lucene, document deletion was handled by an
IndexReader.14 However, as of 3.6 these delete document(s) methods on
IndexReader have been deprecated and in Lucene 4.0 all write support for this
class will be removed.

6.8.1 Visibility of Deletes

When a delete method is called on a writer based on a term or document iden-
tifier, the documents are not immediately physically deleted from the index. In-
stead, their identifiers are buffered and they are treated as if virtually deleted.

This approach to document deletion was made for the same efficiency rea-
sons and faces many of the same issues as concurrent sets of variables in Java’s
memory model. Even when deletes are called on one index, not every reader with
a handle on that index will be able to see the delete, but any new reader opened
on the index after the delete will see the deletion.

The storage space for a deleted document in the index directory is only re-
claimed during a merge step.

6.8.2 Lucene Deletion Demo

We have implemented an example of deleting documents in the demo class
LuceneDelete.

Code Walkthrough

The code is in the main() method of the demo class LuceneDelete. This method
takes three command-line arguments, the index directory path, along with the
field name and token used to construct the term to delete. We open the in-
dex directory and create a default analyzer just as we did in the demo class
LuceneIndexing.

After setting the command-line arguments and creating the analyzer, we cre-
ate an IndexWriterConfig object that will be passed in to the IndexWriter
constructor.

IndexWriterConfig iwConf
= new IndexWriterConfig(Version.LUCENE_36,ltcAn);

iwConf.setOpenMode(IndexWriterConfig.OpenMode.APPEND);

IndexWriter indexWriter
= new IndexWriter(fsDir,iwConf);

This time we set the open mode to IndexWriterConfig.OpenMode.APPEND.
Now we can attempt to delete a document from the index.

14Because the IndexWriter was originally designed just to append documents to an existing index,
it didn’t need to keep track of documents already in the index. But in order to delete a document, first
it must be found. Since this couldn’t be done with an IndexWriter, the deleteDocument methods
were added to the IndexReader class.

162 CHAPTER 6. THE LUCENE SEARCH LIBRARY

int numDocsBefore = indexWriter.numDocs();

Term term = new Term(fieldName,token);
indexWriter.deleteDocuments(term);
boolean hasDeletedDocs = indexWriter.hasDeletions();
int numDocsAfterDeleteBeforeCommit = indexWriter.numDocs();

indexWriter.commit();
int numDocsAfter = indexWriter.numDocs();

indexWriter.close();

We then construct a term out of the field and token and pass it to the index
writer’s delete method. After the deletion, we query the writer to find out if
deletions are pending. We check the number of docs before and after the call to
the commit() method.

Running the Demo

The Ant target lucene-delete invokes the class, supplying the value of proper-
ties index.dir, field.name, and token as command-line arguments.

Make sure that before you run this demo, you’ve run the indexing demo ex-
actly once. You can always delete the index directory and rebuild it if it gets
messed up.

> ant -Dindex.dir=temp.idx -Dfield.name=file -Dtoken=paper_12.txt
lucene-delete

index.dir=/Users/mitzimorris/aliasi/lpbook/src/applucene/temp.idx
field.name=file
token=paper_12.txt
Num docs before delete=85
Has deleted docs=true
Num docs after delete before commit=85
Num docs after commit=84

After the demo is run, we can look at the index directory again.

> export BLOCKSIZE=1024; ls -1 -s temp.idx

total 1524
1144 _0.fdt

4 _0.fdx
4 _0.fnm

84 _0.frq
4 _0.nrm

188 _0.prx
4 _0.tii

80 _0.tis
4 _0_1.del
4 segments.gen
4 segments_2

6.9. LUCENE AND DATABASES 163

There is now an extra file with suffix .del that holds information about which
items have been deleted. These deletes will now be visible to index readers that
open (or re-open) their indices.

6.9 Lucene and Databases

Lucene is like a database in its storage and indexing of data in a disk-like ab-
straction. The main difference between Lucene and a database is in the type of
objects they store. Databases store multiple type-able tables consisting of small
data objects in the rows. The Structured Query Language (SQL) is then used
to retrieve results from a database, often calling on multiple tables to perform
complex joins and filters.

Lucene, on the other hand, provides a configurable, but more homogeneous
interface. It mainly operates through text search (with some lightweight numeri-
cal and date-based embellishments), and returns entire documents.15

6.9.1 Transactional Support

In enterprise settings, we are usually very concerned with maintaining the in-
tegrity of our data. In addition to backups, we want to ensure that our indexes
don’t get corrupted as they are being processed.

A transaction in the database sense, as encapsulated in the Java 2 Enterprise
Edition (J2EE), is a way of grouping a sequence of complex operations, such as
committing changes to an index, such that they all happen or none of them
happen. That is, it’s about making complex operations behave as if they were
atomic in the concurrency sense.

Earlier versions of Lucene were not like databases in not having any kind of
transactional support. More recently, Lucene introduced configurable commit
operations for indexes. These commit operations are transactional in the sense
that if they fail, they roll back any changes they were in the middle of. This
allows standard database-type two-phase commits to be implemented directly
with fine-grained control over preparing and rolling back.

15Nothing prevents us from treating paragraphs or even sentences in a “real” document as a docu-
ment for Lucene’s purposes.

164 CHAPTER 6. THE LUCENE SEARCH LIBRARY

Appendix A

Corpora

In this appendix, we list the corpora that we use for examples in the text.

A.1 Canterbury Corpus

The Canterbury corpus is a benchmark collection of mixed text and binary files
for evaluating text compression.

Contents

The files contained in the archive are the following.

File Type Description Bytes

alice29.txt text English text 152,089
asyoulik.txt play Shakespeare 125,179
cp.html html HTML source 24,603
fields.c Csrc C source 11,150
grammar.lsp list LISP source 3,721
kennedy.xls Excl Excel Spreadsheet 1,029,744
lcet10.txt tech Technical writing 426,754
plrabn12.txt poem Poetry 481,861
ptt5 fax CCITT test set 513,216
sum SPRC SPARC Executable 38,240
xargs.1 man GNU manual page 4,227

Authors

Ross Arnold and Tim Bell.

Licesning

The texts are all public domain.

165

166 APPENDIX A. CORPORA

Download

http://corpus.canterbury.ac.nz/descriptions/
Warning: you should create a directory in which to unpack the distribution

because the tarball does not contain any directory structure, just a bunch of flat
files.

A.2 20 Newsgroups

Contents

The corpus contains roughly 20,000 posts to 20 different newsgroups. These are

comp.graphics rec.autos sci.crypt
comp.os.ms-windows.misc rec.motorcycles sci.electronics
comp.sys.ibm.pc.hardware rec.sport.baseball sci.med
comp.sys.mac.hardware rec.sport.hockey sci.space
comp.windows.x

misc.forsale talk.politics.misc talk.religion.misc
talk.politics.guns alt.atheism
talk.politics.mideast soc.religion.christian

Authors

It is currently being maintained by Jason Rennie, who speculates that Ken Lang
may be the original curator.

Licensing

There are no licensing terms listed and the data may be downloaded directly.

Download

http://people.csail.mit.edu/jrennie/20Newsgroups/

A.3 WormBase MEDLINE Citations

The WormBase web site, http://wormbase.org, curates and distributes re-
sources related to the model organism Caenorhabditis elegans, the nematode
worm. Part of that distribution is a set of citation to published research on C. el-
egans. These literature distributions consist of MEDLINE citations in a simple
line-oriented format.

Authors

Wormbase is a collaboration among many cites with many supporters. It is de-
scribed in

http://corpus.canterbury.ac.nz/descriptions/
http://people.csail.mit.edu/jrennie/20Newsgroups/
http://wormbase.org

A.3. WORMBASE MEDLINE CITATIONS 167

Harris, T. W. et al. 2010. WormBase: A comprehensive
resource for nematode research. Nucleic Acids Research 38.
doi:10.1093/nar/gkp952

Download

ftp://ftp.wormbase.org/pub/wormbase/misc/literature/
2007-12-01-wormbase-literature.endnote.gz (15MB)

ftp://ftp.wormbase.org/pub/wormbase/misc/literature/2007-12-01-wormbase-literature.endnote.gz
ftp://ftp.wormbase.org/pub/wormbase/misc/literature/2007-12-01-wormbase-literature.endnote.gz

168 APPENDIX A. CORPORA

Appendix B

Further Reading

In order to fully appreciate contemporary approaches to natural language pro-
cessing requires three fairly broad areas of expertise: linguistics, statistics, and
algorithms. We don’t pretend to introduce these areas in any depth in this book.
Instead, we recommend the following textbooks, sorted by area, from among the
many that are currently available.

B.1 Unicode

Given that we’re dealing with text data, and that Java uses Unicode internally, it
helps to be familiar with the specification. Or at least know where to find more
information. The actual specification reference book is quite readable. The latest
available in print is for version 5.0,

• Unicode Consortium, The. The Unicode Standard 5.0. Addison-Wesley.

This is the final word on the unicode standard, and quite readable.

You can also find the latest version (currently 5.2) online at

http://unicode.org

This includes all of the code tables for the latest version, which are available in
PDF files or through search, at

http://unicode.org/charts/

B.2 Java

B.2.1 Overviews of Java

For learning Java, we recommend the following three books pitched at beginners
and intermediate Java programmers,

• Arnold, Ken, James Gosling and David Holmes. 2005. The Java Program-
ming Language, 4th Edition. Prentice-Hall.

169

http://unicode.org
http://unicode.org/charts/

170 APPENDIX B. FURTHER READING

Gosling invented Java, and this is the “official” introduction to the lan-

guage. It’s also very good.

• Bloch, Joshua. 2008. Effective Java, 2nd Edition. Prentice-Hall.

Bloch was one of the main architects of Java from version 1.1 forward.

This book is about taking Java program design to the next level.

• Fowler, Martin, Kent Beck, John Brant, William Opdyke, and Don Roberts.
1999. Refactoring: Improving the Design of Existing Code. Addison-Wesley.

Great book on making code better, both existing code and code yet to be

created.

B.2.2 Books on Java Libraries and Packages

There is a substantial collection of widely used libraries for Java. Here are refer-
ence books for the Java libraries we use in this book.

• Loughran, Steve and Erik Hatcher. 2007 Ant in Action. Manning.

This is technically the second edition of their 2002 book, Java Development

with Ant. Both authors are committers for the Apache Ant project.

• Tahchiev, Peter, Felipe Leme, Vincent Massol, and Gary Gregory. 2010. JUnit
in Action, Second Edition. Manning.

A good overview for JUnit. Should be up-to-date with the latest attribute-

driven versions, unlike either Kent Beck’s book (he’s the author of Ant). As

much as we liked The Pragmatic Programmer, Hunt and Thomas’s book

on JUnit is not particularly useful.

• McCandless, Michael, Erik Hatcher and Otis Gospodnetíc. 2010. Lucene in
Action, Second Edition. Manning.

A fairly definitive overview of the Apaceh Lucene search engine by three

project committers.

• Hunter, Jason and William Crawford. 2001. Java Servlet Programming,
Second Edition. O’Reilly.

It only covers version 2.2, so it’s a bit out of date relative to recent stan-

dards, but the basics haven’t changed, and although there are more el-

ementary introductions, this book is a very good introduction to what

servlets can do. It also explains HTTP itself quite clearly. The first au-

thor is an Apache Tomcat developer and was involved in developing the

original servlet standard.

• Goetz, Brian, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David Holmes, and
Doug Lea. 2006. Java Concurrency in Practice. Addison-Wesley.

This fantastic book covers threading and concurrency patterns

and their application, along with implementations in Java’s

java.util.concurrent package. Doug Lea was the original au-

thor of util.concurrent before it was brought into Java itself, and his

previous book, Concurrent Programming in Java, Second Edition (1999;

B.3. GENERAL PROGRAMMING 171

Prentice Hall), is wroth reading for a deeper theoretical understanding of

concurrency in Java.

• Hitchens, Ron. 2002. Java NIO. O’Reilly.

A concise and readable introduction to the “new” I/O package, java.nio

and the concepts behind it, like buffers and multicast reads.

• McLaughlin, Brett and Justin Edelson. 2006. Java and XML, Third Edition.
O’Reilly.

A good introduction to the set of tools available in Java for parsing and

generating XML with SAX and DOM, specifying structure with DTDs and

XML Schema, transforming XML with XSLT, as well as the general high-

level libraries JAXP and JAXB.

B.2.3 General Java Books

There are also general-purpose books about Java that do not focus on particular
classes or applications.

• Shirazi, Jack. 2003. Java Performance Tuning, 2nd Edition. O’Reilly

Although already dated, it provides a good introduction to profiling and

thinking about performance tuning. The author and friends also run the

web site javaperformancetuning.com, which is a monthly digest of Java

performance tuning tips (and advertising). If you know C, start with Jon

Bentley’s classic, Programming Pearls (Addison-Wesley).

B.2.4 Practice Makes Perfect

Really, the only way to learn how to code is to practice. Being a good coder means
two things: being fast and efficient (assuming accuracy). By accurate, we mean
writing code that does what it’s supposed to do. By fast, we mean the coding
goes quickly. By efficient, we mean the resulting code is efficient.

For practice, we highly recommend the algorithm section of the TopCoder
contests. TopCoder provides a complete online Java environment, well thought
out problems at varying specified levels of difficulty, unit tests that check your
submissions, and examples of what others did to provide code-reading practice.

http://www.topcoder.com/tc

B.3 General Programming

We would also recommend a book about programming in general, especially for
those who have not worked collaboratively with a good group of professional
programmers.

• Hunt, Andrew and David Thomas. 1999. The Pragmatic Programmer.
Addison-Wesley.

http://www.topcoder.com/tc

172 APPENDIX B. FURTHER READING

Read this book and follow its advice, which is just as relevant now as when

it was written. The best book on how to program we know. A competitor

to books like Steve McConnell’s Code Complete (2004) and books on “agile”

or “extreme” programming.

• Collins-Susman, Ben, Brian W. Fitzpatrick, and C. Michael Pilato. 2010.
Collins-Sussman et al.’s Version Control with Subversion. Subversion 1.6.
CreateSpace.

This is the official guide to Subversion from the authors. It’s also available
online at

http://svnbook.red-bean.com/

http://svnbook.red-bean.com/

Appendix C

Licenses

This chapter includes the text of the licenses for all of the software used for
demonstration purposes.

C.1 LingPipe License

C.1.1 Commercial Licensing

Customized commercial licenses for LingPipe or components of LingPipe are ava-
ialble through LingPipe, Inc.

C.1.2 Royalty-Free License

Both LingPipe and the code in this book are distributed under the Alias-i Royalty
Free License Version 1.

Alias-i ROYALTY FREE LICENSE VERSION 1

Copyright (c) 2003-2010 Alias-i, Inc All Rights Reserved

1. This Alias-i Royalty Free License Version 1 ("License") governs the copying, modifying, and distributing of the computer
program or work containing a notice stating that it is subject to the terms of this License and any derivative works of that
computer program or work. The computer program or work and any derivative works thereof are the "Software." Your copying,
modifying, or distributing of the Software constitutes acceptance of this License. Although you are not required to accept
this License, since you have not signed it, nothing else grants you permission to copy, modify, or distribute the Software. If
you wish to receive a license from Alias-i under different terms than those contained in this License, please contact Alias-i.
Otherwise, if you do not accept this License, any copying, modifying, or distributing of the Software is strictly prohibited by
law.

2. You may copy or modify the Software or use any output of the Software (i) for internal non-production trial, testing and
evaluation of the Software, or (ii) in connection with any product or service you provide to third parties for free. Copying or
modifying the Software includes the acts of "installing", "running", "using", "accessing" or "deploying" the Software as those
terms are understood in the software industry. Therefore, those activities are only permitted under this License in the ways
that copying or modifying are permitted.

3. You may distribute the Software, provided that you: (i) distribute the Software only under the terms of this License, no
more, no less; (ii) include a copy of this License along with any such distribution; (iii) include the complete corresponding
machine-readable source code of the Software you are distributing; (iv) do not remove any copyright or other notices from the
Software; and, (v) cause any files of the Software that you modified to carry prominent notices stating that you changed the
Software and the date of any change so that recipients know that they are not receiving the original Software.

4. Whether you distribute the Software or not, if you distribute any computer program that is not the Software, but that (a)
is distributed in connection with the Software or contains any part of the Software, (b) causes the Software to be copied or
modified (i.e., ran, used, or executed), such as through an API call, or (c) uses any output of the Software, then you must
distribute that other computer program under a license defined as a Free Software License by the Free Software Foundation or an
Approved Open Source License by the Open Source Initiative.

5. You may not copy, modify, or distribute the Software except as expressly provided under this License, unless you receive a
different written license from Alias-i to do so. Any attempt otherwise to copy, modify, or distribute the Software is without

173

174 APPENDIX C. LICENSES

Alias-i’s permission, is void, and will automatically terminate your rights under this License. Your rights under this License
may only be reinstated by a signed writing from Alias-i.

THE SOFTWARE IS PROVIDED "AS IS." TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, ALIAS-i DOES NOT MAKE, AND HEREBY EXPRESSLY
DISCLAIMS, ANY WARRANTIES, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, CONCERNING THE SOFTWARE OR ANY SUBJECT MATTER OF THIS
LICENSE. SPECIFICALLY, BUT WITHOUT LIMITING THE FOREGOING, LICENSOR MAKES NO EXPRESS OR IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS (FOR A PARTICULAR PURPOSE OR OTHERWISE), QUALITY, USEFULNESS, TITLE, OR NON-INFRINGEMENT. TO THE MAXIMUM EXTENT PERMITTED
BY APPLICABLE LAW, IN NO EVENT SHALL LICENSOR BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY DAMAGES OR IN RESPECT OF ANY CLAIM
UNDER ANY TORT, CONTRACT, STRICT LIABILITY, NEGLIGENCE OR OTHER THEORY FOR ANY DIRECT, INDIRECT, INCIDENTAL, CONSEQUENTIAL,
PUNITIVE, SPECIAL OR EXEMPLARY DAMAGES, EVEN IF IT HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY AMOUNTS IN
EXCESS OF THE AMOUNT YOU PAID ALIAS-i FOR THIS LICENSE. YOU MUST PASS THIS ENTIRE LICENSE, INCLUDING SPECIFICALLY THIS DISCLAIMER
AND LIMITATION OF LIABILITY, ON WHENEVER YOU DISTRIBUTE THE SOFTWARE.

C.2 Java Licenses

The Java executables comes with two licenses, one for the Java runtime envi-
ronment (JRE), which is required to execute Java programs, and one for the Java
development kit (JDK), required to compile programs. There is a third license for
the Java source code.

C.2.1 Sun Binary License

Both the JRE and JDK are subject to Sun’s Binary Code License Agreement.

Sun Microsystems, Inc
Binary Code License Agreement
for the JAVA SE RUNTIME ENVIRONMENT (JRE) VERSION 6 and JAVAFX RUNTIME VERSION 1

SUN MICROSYSTEMS, INC. ("SUN") IS WILLING TO LICENSE THE SOFTWARE IDENTIFIED BELOW TO YOU ONLY UPON THE CONDITION THAT YOU ACCEPT
ALL OF THE TERMS CONTAINED IN THIS BINARY CODE LICENSE AGREEMENT AND SUPPLEMENTAL LICENSE TERMS (COLLECTIVELY "AGREEMENT").
PLEASE READ THE AGREEMENT CAREFULLY. BY USING THE SOFTWARE YOU ACKNOWLEDGE THAT YOU HAVE READ THE TERMS AND AGREE TO THEM. IF YOU
ARE AGREEING TO THESE TERMS ON BEHALF OF A COMPANY OR OTHER LEGAL ENTITY, YOU REPRESENT THAT YOU HAVE THE LEGAL AUTHORITY TO BIND
THE LEGAL ENTITY TO THESE TERMS. IF YOU DO NOT HAVE SUCH AUTHORITY, OR IF YOU DO NOT WISH TO BE BOUND BY THE TERMS, THEN YOU MUST
NOT USE THE SOFTWARE ON THIS SITE OR ANY OTHER MEDIA ON WHICH THE SOFTWARE IS CONTAINED.

1. DEFINITIONS. "Software" means the identified above in binary form, any other machine readable materials (including, but not
limited to, libraries, source files, header files, and data files), any updates or error corrections provided by Sun, and any
user manuals, programming guides and other documentation provided to you by Sun under this Agreement. "General Purpose Desktop
Computers and Servers" means computers, including desktop and laptop computers, or servers, used for general computing functions
under end user control (such as but not specifically limited to email, general purpose Internet browsing, and office suite
productivity tools). The use of Software in systems and solutions that provide dedicated functionality (other than as mentioned
above) or designed for use in embedded or function-specific software applications, for example but not limited to: Software
embedded in or bundled with industrial control systems, wireless mobile telephones, wireless handheld devices, netbooks, kiosks,
TV/STB, Blu-ray Disc devices, telematics and network control switching equipment, printers and storage management systems,
and other related systems are excluded from this definition and not licensed under this Agreement. "Programs" means (a) Java
technology applets and applications intended to run on the Java Platform Standard Edition (Java SE) platform on Java-enabled
General Purpose Desktop Computers and Servers, and (b) JavaFX technology applications intended to run on the JavaFX Runtime on
JavaFX-enabled General Purpose Desktop Computers and Servers.

2. LICENSE TO USE. Subject to the terms and conditions of this Agreement, including, but not limited to the Java Technology
Restrictions of the Supplemental License Terms, Sun grants you a non-exclusive, non-transferable, limited license without license
fees to reproduce and use internally Software complete and unmodified for the sole purpose of running Programs. Additional
licenses for developers and/or publishers are granted in the Supplemental License Terms.

3. RESTRICTIONS. Software is confidential and copyrighted. Title to Software and all associated intellectual property rights
is retained by Sun and/or its licensors. Unless enforcement is prohibited by applicable law, you may not modify, decompile,
or reverse engineer Software. You acknowledge that Licensed Software is not designed or intended for use in the design,
construction, operation or maintenance of any nuclear facility. Sun Microsystems, Inc. disclaims any express or implied
warranty of fitness for such uses. No right, title or interest in or to any trademark, service mark, logo or trade name of Sun
or its licensors is granted under this Agreement. Additional restrictions for developers and/or publishers licenses are set
forth in the Supplemental License Terms.

4. LIMITED WARRANTY. Sun warrants to you that for a period of ninety (90) days from the date of purchase, as evidenced by a
copy of the receipt, the media on which Software is furnished (if any) will be free of defects in materials and workmanship under
normal use. Except for the foregoing, Software is provided "AS IS". Your exclusive remedy and Sun’s entire liability under this
limited warranty will be at Sun’s option to replace Software media or refund the fee paid for Software. Any implied warranties
on the Software are limited to 90 days. Some states do not allow limitations on duration of an implied warranty, so the above
may not apply to you. This limited warranty gives you specific legal rights. You may have others, which vary from state to
state.

5. DISCLAIMER OF WARRANTY. UNLESS SPECIFIED IN THIS AGREEMENT, ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT THESE DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

6. LIMITATION OF LIABILITY. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST
REVENUE, PROFIT OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF OR RELATED TO THE USE OF OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES. In no event will Sun’s liability to you, whether in contract, tort (including negligence), or
otherwise, exceed the amount paid by you for Software under this Agreement. The foregoing limitations will apply even if the
above stated warranty fails of its essential purpose. Some states do not allow the exclusion of incidental or consequential
damages, so some of the terms above may not be applicable to you.

C.2. JAVA LICENSES 175

7. TERMINATION. This Agreement is effective until terminated. You may terminate this Agreement at any time by destroying all
copies of Software. This Agreement will terminate immediately without notice from Sun if you fail to comply with any provision
of this Agreement. Either party may terminate this Agreement immediately should any Software become, or in either party’s
opinion be likely to become, the subject of a claim of infringement of any intellectual property right. Upon Termination, you
must destroy all copies of Software.

8. EXPORT REGULATIONS. All Software and technical data delivered under this Agreement are subject to US export control laws
and may be subject to export or import regulations in other countries. You agree to comply strictly with all such laws and
regulations and acknowledge that you have the responsibility to obtain such licenses to export, re-export, or import as may be
required after delivery to you.

9. TRADEMARKS AND LOGOS. You acknowledge and agree as between you and Sun that Sun owns the SUN, SOLARIS, JAVA, JINI, FORTE,
and iPLANET trademarks and all SUN, SOLARIS, JAVA, JINI, FORTE, and iPLANET-related trademarks, service marks, logos and other
brand designations ("Sun Marks"), and you agree to comply with the Sun Trademark and Logo Usage Requirements currently located at
http://www.sun.com/policies/trademarks. Any use you make of the Sun Marks inures to Sun’s benefit.

10. U.S. GOVERNMENT RESTRICTED RIGHTS. If Software is being acquired by or on behalf of the U.S. Government or by a U.S.
Government prime contractor or subcontractor (at any tier), then the Government’s rights in Software and accompanying
documentation will be only as set forth in this Agreement; this is in accordance with 48 CFR 227.7201 through 227.7202-4 (for
Department of Defense (DOD) acquisitions) and with 48 CFR 2.101 and 12.212 (for non-DOD acquisitions).

11. GOVERNING LAW. Any action related to this Agreement will be governed by California law and controlling U.S. federal law. No
choice of law rules of any jurisdiction will apply.

12. SEVERABILITY. If any provision of this Agreement is held to be unenforceable, this Agreement will remain in effect with
the provision omitted, unless omission would frustrate the intent of the parties, in which case this Agreement will immediately
terminate.

13. INTEGRATION. This Agreement is the entire agreement between you and Sun relating to its subject matter. It supersedes
all prior or contemporaneous oral or written communications, proposals, representations and warranties and prevails over any
conflicting or additional terms of any quote, order, acknowledgment, or other communication between the parties relating to
its subject matter during the term of this Agreement. No modification of this Agreement will be binding, unless in writing and
signed by an authorized representative of each party.

JRE Supplemental Terms

In addition to the binary license, the JRE is additionally subject to the following
supplemental license terms.

SUPPLEMENTAL LICENSE TERMS

These Supplemental License Terms add to or modify the terms of the Binary Code License Agreement. Capitalized terms not
defined in these Supplemental Terms shall have the same meanings ascribed to them in the Binary Code License Agreement. These
Supplemental Terms shall supersede any inconsistent or conflicting terms in the Binary Code License Agreement, or in any license
contained within the Software.

1. Software Internal Use and Development License Grant. Subject to the terms and conditions of this Agreement and restrictions
and exceptions set forth in the Software "README" file incorporated herein by reference, including, but not limited to the Java
Technology Restrictions of these Supplemental Terms, Sun grants you a non-exclusive, non-transferable, limited license without
fees to reproduce internally and use internally the Software complete and unmodified for the purpose of designing, developing,
and testing your Programs.

2. License to Distribute Software. Subject to the terms and conditions of this Agreement and restrictions and exceptions set
forth in the Software README file, including, but not limited to the Java Technology Restrictions of these Supplemental Terms,
Sun grants you a non-exclusive, non-transferable, limited license without fees to reproduce and distribute the Software (except
for the JavaFX Runtime), provided that (i) you distribute the Software complete and unmodified and only bundled as part of, and
for the sole purpose of running, your Programs, (ii) the Programs add significant and primary functionality to the Software,
(iii) you do not distribute additional software intended to replace any component(s) of the Software, (iv) you do not remove or
alter any proprietary legends or notices contained in the Software, (v) you only distribute the Software subject to a license
agreement that protects Sun’s interests consistent with the terms contained in this Agreement, and (vi) you agree to defend and
indemnify Sun and its licensors from and against any damages, costs, liabilities, settlement amounts and/or expenses (including
attorneys’ fees) incurred in connection with any claim, lawsuit or action by any third party that arises or results from the use
or distribution of any and all Programs and/or Software.

3. Java Technology Restrictions. You may not create, modify, or change the behavior of, or authorize your licensees to create,
modify, or change the behavior of, classes, interfaces, or subpackages that are in any way identified as "java", "javax", "sun"
or similar convention as specified by Sun in any naming convention designation.

4. Source Code. Software may contain source code that, unless expressly licensed for other purposes, is provided solely for
reference purposes pursuant to the terms of this Agreement. Source code may not be redistributed unless expressly provided for
in this Agreement.

5. Third Party Code. Additional copyright notices and license terms applicable to portions of the Software are set forth in
the THIRDPARTYLICENSEREADME.txt file. In addition to any terms and conditions of any third party opensource/freeware license
identified in the THIRDPARTYLICENSEREADME.txt file, the disclaimer of warranty and limitation of liability provisions in
paragraphs 5 and 6 of the Binary Code License Agreement shall apply to all Software in this distribution.

6. Termination for Infringement. Either party may terminate this Agreement immediately should any Software become, or in either
party’s opinion be likely to become, the subject of a claim of infringement of any intellectual property right.

7. Installation and Auto-Update. The Software’s installation and auto-update processes transmit a limited amount of data
to Sun (or its service provider) about those specific processes to help Sun understand and optimize them. Sun does not
associate the data with personally identifiable information. You can find more information about the data Sun collects at
http://java.com/data/.

For inquiries please contact: Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A.

176 APPENDIX C. LICENSES

JDK Supplemental License Terms

The JDK is additionally subject to the following supplemental license terms.

SUPPLEMENTAL LICENSE TERMS

These Supplemental License Terms add to or modify the terms of the Binary Code License Agreement. Capitalized terms not
defined in these Supplemental Terms shall have the same meanings ascribed to them in the Binary Code License Agreement . These
Supplemental Terms shall supersede any inconsistent or conflicting terms in the Binary Code License Agreement, or in any license
contained within the Software.

A. Software Internal Use and Development License Grant. Subject to the terms and conditions of this Agreement and restrictions
and exceptions set forth in the Software "README" file incorporated herein by reference, including, but not limited to the Java
Technology Restrictions of these Supplemental Terms, Sun grants you a non-exclusive, non-transferable, limited license without
fees to reproduce internally and use internally the Software complete and unmodified for the purpose of designing, developing,
and testing your Programs.

B. License to Distribute Software. Subject to the terms and conditions of this Agreement and restrictions and exceptions
set forth in the Software README file, including, but not limited to the Java Technology Restrictions of these Supplemental
Terms, Sun grants you a non-exclusive, non-transferable, limited license without fees to reproduce and distribute the Software,
provided that (i) you distribute the Software complete and unmodified and only bundled as part of, and for the sole purpose of
running, your Programs, (ii) the Programs add significant and primary functionality to the Software, (iii) you do not distribute
additional software intended to replace any component(s) of the Software, (iv) you do not remove or alter any proprietary legends
or notices contained in the Software, (v) you only distribute the Software subject to a license agreement that protects Sun’s
interests consistent with the terms contained in this Agreement, and (vi) you agree to defend and indemnify Sun and its licensors
from and against any damages, costs, liabilities, settlement amounts and/or expenses (including attorneys’ fees) incurred in
connection with any claim, lawsuit or action by any third party that arises or results from the use or distribution of any and
all Programs and/or Software.

C. License to Distribute Redistributables. Subject to the terms and conditions of this Agreement and restrictions and exceptions
set forth in the Software README file, including but not limited to the Java Technology Restrictions of these Supplemental
Terms, Sun grants you a non-exclusive, non-transferable, limited license without fees to reproduce and distribute those files
specifically identified as redistributable in the Software "README" file ("Redistributables") provided that: (i) you distribute
the Redistributables complete and unmodified, and only bundled as part of Programs, (ii) the Programs add significant and primary
functionality to the Redistributables, (iii) you do not distribute additional software intended to supersede any component(s) of
the Redistributables (unless otherwise specified in the applicable README file), (iv) you do not remove or alter any proprietary
legends or notices contained in or on the Redistributables, (v) you only distribute the Redistributables pursuant to a license
agreement that protects Sun’s interests consistent with the terms contained in the Agreement, (vi) you agree to defend and
indemnify Sun and its licensors from and against any damages, costs, liabilities, settlement amounts and/or expenses (including
attorneys’ fees) incurred in connection with any claim, lawsuit or action by any third party that arises or results from the use
or distribution of any and all Programs and/or Software.

D. Java Technology Restrictions. You may not create, modify, or change the behavior of, or authorize your licensees to create,
modify, or change the behavior of, classes, interfaces, or subpackages that are in any way identified as "java", "javax", "sun"
or similar convention as specified by Sun in any naming convention designation.

E. Distribution by Publishers. This section pertains to your distribution of the Software with your printed book or magazine
(as those terms are commonly used in the industry) relating to Java technology ("Publication"). Subject to and conditioned upon
your compliance with the restrictions and obligations contained in the Agreement, in addition to the license granted in Paragraph
1 above, Sun hereby grants to you a non-exclusive, nontransferable limited right to reproduce complete and unmodified copies
of the Software on electronic media (the "Media") for the sole purpose of inclusion and distribution with your Publication(s),
subject to the following terms: (i) You may not distribute the Software on a stand-alone basis; it must be distributed with your
Publication(s); (ii) You are responsible for downloading the Software from the applicable Sun web site; (iii) You must refer to
the Software as JavaTM SE Development Kit 6; (iv) The Software must be reproduced in its entirety and without any modification
whatsoever (including, without limitation, the Binary Code License and Supplemental License Terms accompanying the Software and
proprietary rights notices contained in the Software); (v) The Media label shall include the following information: Copyright
2006, Sun Microsystems, Inc. All rights reserved. Use is subject to license terms. Sun, Sun Microsystems, the Sun logo,
Solaris, Java, the Java Coffee Cup logo, J2SE, and all trademarks and logos based on Java are trademarks or registered trademarks
of Sun Microsystems, Inc. in the U.S. and other countries. This information must be placed on the Media label in such a manner
as to only apply to the Sun Software; (vi) You must clearly identify the Software as Sun’s product on the Media holder or Media
label, and you may not state or imply that Sun is responsible for any third-party software contained on the Media; (vii) You
may not include any third party software on the Media which is intended to be a replacement or substitute for the Software;
(viii) You shall indemnify Sun for all damages arising from your failure to comply with the requirements of this Agreement. In
addition, you shall defend, at your expense, any and all claims brought against Sun by third parties, and shall pay all damages
awarded by a court of competent jurisdiction, or such settlement amount negotiated by you, arising out of or in connection with
your use, reproduction or distribution of the Software and/or the Publication. Your obligation to provide indemnification under
this section shall arise provided that Sun: (a) provides you prompt notice of the claim; (b) gives you sole control of the
defense and settlement of the claim; (c) provides you, at your expense, with all available information, assistance and authority
to defend; and (d) has not compromised or settled such claim without your prior written consent; and (ix) You shall provide Sun
with a written notice for each Publication; such notice shall include the following information: (1) title of Publication, (2)
author(s), (3) date of Publication, and (4) ISBN or ISSN numbers. Such notice shall be sent to Sun Microsystems, Inc., 4150
Network Circle, M/S USCA12-110, Santa Clara, California 95054, U.S.A , Attention: Contracts Administration.

F. Source Code. Software may contain source code that, unless expressly licensed for other purposes, is provided solely for
reference purposes pursuant to the terms of this Agreement. Source code may not be redistributed unless expressly provided for
in this Agreement.

G. Third Party Code. Additional copyright notices and license terms applicable to portions of the Software are set forth in
the THIRDPARTYLICENSEREADME.txt file. In addition to any terms and conditions of any third party opensource/freeware license
identified in the THIRDPARTYLICENSEREADME.txt file, the disclaimer of warranty and limitation of liability provisions in
paragraphs 5 and 6 of the Binary Code License Agreement shall apply to all Software in this distribution.

H. Termination for Infringement. Either party may terminate this Agreement immediately should any Software become, or in either
party’s opinion be likely to become, the subject of a claim of infringement of any intellectual property right.

I. Installation and Auto-Update. The Software’s installation and auto-update processes transmit a limited amount of data
to Sun (or its service provider) about those specific processes to help Sun understand and optimize them. Sun does not
associate the data with personally identifiable information. You can find more information about the data Sun collects at
http://java.com/data/.

For inquiries please contact: Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A.

C.2. JAVA LICENSES 177

C.2.2 Sun Community Source License Version 2.8

The license for the Java source code is
SUN COMMUNITY SOURCE LICENSE Version 2.8 (Rev. Date January 17, 2001)

RECITALS
Original Contributor has developed Specifications and Source Code implementations of certain Technology; and
Original Contributor desires to license the Technology to a large community to facilitate research, innovation andproduct

development while maintaining compatibility of such products with the Technology as delivered by Original Contributor; and
Original Contributor desires to license certain Sun Trademarks for the purpose of branding products that are compatible with

the relevant Technology delivered by Original Contributor; and
You desire to license the Technology and possibly certain Sun Trademarks from Original Contributor on the terms and

conditions specified in this License.
In consideration for the mutual covenants contained herein, You and Original Contributor agree as follows:
AGREEMENT
1. Introduction. The Sun Community Source License and effective attachments ("License") may include five distinct

licenses: Research Use, TCK, Internal Deployment Use, Commercial Use and Trademark License. The Research Use license is
effective when You execute this License. The TCK and Internal Deployment Use licenses are effective when You execute this
License, unless otherwise specified in the TCK and Internal Deployment Use attachments. The Commercial Use and Trademark
licenses must be signed by You and Original Contributor in order to become effective. Once effective, these licenses and the
associated requirements and responsibilities are cumulative. Capitalized terms used in this License are defined in the Glossary.

2. License Grants.
2.1. Original Contributor Grant. Subject to Your compliance with Sections 3, 8.10 and Attachment A of this License,

Original Contributor grants to You a worldwide, royalty-free, non-exclusive license, to the extent of Original Contributor’s
Intellectual Property Rights covering the Original Code, Upgraded Code and Specifications, to do the following:

a) Research Use License: (i) use, reproduce and modify the Original Code, Upgraded Code and Specifications to create
Modifications and Reformatted Specifications for Research Use by You, (ii) publish and display Original Code, Upgraded Code and
Specifications with, or as part of Modifications, as permitted under Section 3.1 b) below, (iii) reproduce and distribute copies
of Original Code and Upgraded Code to Licensees and students for Research Use by You, (iv) compile, reproduce and distribute
Original Code and Upgraded Code in Executable form, and Reformatted Specifications to anyone for Research Use by You.

b) Other than the licenses expressly granted in this License, Original Contributor retains all right, title, and interest in
Original Code and Upgraded Code and Specifications. 2.2. Your Grants.

a) To Other Licensees. You hereby grant to each Licensee a license to Your Error Corrections and Shared Modifications, of
the same scope and extent as Original Contributor’s licenses under Section 2.1 a) above relative to Research Use, Attachment C
relative to Internal Deployment Use, and Attachment D relative to Commercial Use.

b) To Original Contributor. You hereby grant to Original Contributor a worldwide, royalty-free, non-exclusive,
perpetual and irrevocable license, to the extent of Your Intellectual Property Rights covering Your Error Corrections, Shared
Modifications and Reformatted Specifications, to use, reproduce, modify, display and distribute Your Error Corrections, Shared
Modifications and Reformatted Specifications, in any form, including the right to sublicense such rights through multiple tiers
of distribution.

c) Other than the licenses expressly granted in Sections 2.2 a) and b) above, and the restriction set forth in Section
3.1 d)(iv) below, You retain all right, title, and interest in Your Error Corrections, Shared Modifications and Reformatted
Specifications.

2.3. Contributor Modifications. You may use, reproduce, modify, display and distribute Contributor Error Corrections,
Shared Modifications and Reformatted Specifications, obtained by You under this License, to the same scope and extent as with
Original Code, Upgraded Code and Specifications.

2.4. Subcontracting. You may deliver the Source Code of Covered Code to other Licensees having at least a Research Use
license, for the sole purpose of furnishing development services to You in connection with Your rights granted in this License.
All such Licensees must execute appropriate documents with respect to such work consistent with the terms of this License,
and acknowledging their work-made-for-hire status or assigning exclusive right to the work product and associated Intellectual
Property Rights to You.

3. Requirements and Responsibilities.
3.1. Research Use License. As a condition of exercising the rights granted under Section 2.1 a) above, You agree to comply

with the following:
a) Your Contribution to the Community. All Error Corrections and Shared Modifications which You create or contribute to

are automatically subject to the licenses granted under Section 2.2 above. You are encouraged to license all of Your other
Modifications under Section 2.2 as Shared Modifications, but are not required to do so. You agree to notify Original Contributor
of any errors in the Specification.

b) Source Code Availability. You agree to provide all Your Error Corrections to Original Contributor as soon as reasonably
practicable and, in any event, prior to Internal Deployment Use or Commercial Use, if applicable. Original Contributor may,
at its discretion, post Source Code for Your Error Corrections and Shared Modifications on the Community Webserver. You may
also post Error Corrections and Shared Modifications on a web-server of Your choice; provided, that You must take reasonable
precautions to ensure that only Licensees have access to such Error Corrections and Shared Modifications. Such precautions
shall include, without limitation, a password protection scheme limited to Licensees and a click-on, download certification of
Licensee status required of those attempting to download from the server. An example of an acceptable certification is attached
as Attachment A-2.

c) Notices. All Error Corrections and Shared Modifications You create or contribute to must include a file documenting
the additions and changes You made and the date of such additions and changes. You must also include the notice set forth
in Attachment A-1 in the file header. If it is not possible to put the notice in a particular Source Code file due to its
structure, then You must include the notice in a location (such as a relevant directory file), where a recipient would be most
likely to look for such a notice.

d) Redistribution.
(i) Source. Covered Code may be distributed in Source Code form only to another Licensee (except for students as provided

below). You may not offer or impose any terms on any Covered Code that alter the rights, requirements, or responsibilities of
such Licensee. You may distribute Covered Code to students for use in connection with their course work and research projects
undertaken at accredited educational institutions. Such students need not be Licensees, but must be given a copy of the notice
set forth in Attachment A-3 and such notice must also be included in a file header or prominent location in the Source Code made
available to such students.

(ii) Executable. You may distribute Executable version(s) of Covered Code to Licensees and other third parties only for the
purpose of evaluation and comment in connection with Research Use by You and under a license of Your choice, but which limits use
of such Executable version(s) of Covered Code only to that purpose.

(iii) Modified Class, Interface and Package Naming. In connection with Research Use by You only, You may use Original
Contributor’s class, interface and package names only to accurately reference or invoke the Source Code files You modify.
Original Contributor grants to You a limited license to the extent necessary for such purposes.

(iv) Modifications. You expressly agree that any distribution, in whole or in part, of Modifications developed by You shall
only be done pursuant to the term and conditions of this License.

e) Extensions.
(i) Covered Code. You may not include any Source Code of Community Code in any Extensions;
(ii) Publication. No later than the date on which You first distribute such Extension for Commercial Use, You must publish

to the industry, on a non-confidential basis and free of all copyright restrictions with respect to reproduction and use, an
accurate and current specification for any Extension. In addition, You must make available an appropriate test suite, pursuant
to the same rights as the specification, sufficiently detailed to allow any third party reasonably skilled in the technology to
produce implementations of the Extension compatible with the specification. Such test suites must be made available as soon as

178 APPENDIX C. LICENSES

reasonably practicable but, in no event, later than ninety (90) days after Your first Commercial Use of the Extension. You must
use reasonable efforts to promptly clarify and correct the specification and the test suite upon written request by Original
Contributor.

(iii) Open. You agree to refrain from enforcing any Intellectual Property Rights You may have covering any interface(s)
of Your Extension, which would prevent the implementation of such interface(s) by Original Contributor or any Licensee. This
obligation does not prevent You from enforcing any Intellectual Property Right You have that would otherwise be infringed by an
implementation of Your Extension.

(iv) Class, Interface and Package Naming. You may not add any packages, or any public or protected classes or interfaces
with names that originate or might appear to originate from Original Contributor including, without limitation, package or
class names which begin with "sun", "java", "javax", "jini", "net.jini", "com.sun" or their equivalents in any subsequent class,
interface and/or package naming convention adopted by Original Contributor. It is specifically suggested that You name any new
packages using the "Unique Package Naming Convention" as described in "The Java Language Specification" by James Gosling, Bill
Joy, and Guy Steele, ISBN 0-201-63451-1, August 1996. Section 7.7 "Unique Package Names", on page 125 of this specification
which states, in part:

"You form a unique package name by first having (or belonging to an organization that has) an Internet domain name, such as
"sun.com". You then reverse the name, component by component, to obtain, in this example, "Com.sun", and use this as a prefix
for Your package names, using a convention developed within Your organization to further administer package names."

3.2. Additional Requirements and Responsibilities. Any additional requirements and responsibilities relating to the
Technology are listed in Attachment F (Additional Requirements and Responsibilities), if applicable, and are hereby incorporated
into this Section 3.

4. Versions of the License.
4.1. License Versions. Original Contributor may publish revised versions of the License from time to time. Each version

will be given a distinguishing version number.
4.2. Effect. Once a particular version of Covered Code has been provided under a version of the License, You may always

continue to use such Covered Code under the terms of that version of the License. You may also choose to use such Covered Code
under the terms of any subsequent version of the License. No one other than Original Contributor has the right to promulgate
License versions.

5. Disclaimer of Warranty.
5.1. COVERED CODE IS PROVIDED UNDER THIS LICENSE "AS IS," WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,

INCLUDING, WITHOUT LIMITATION, WARRANTIES THAT THE COVERED CODE IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE
OR NON-INFRINGING. YOU AGREE TO BEAR THE ENTIRE RISK IN CONNECTION WITH YOUR USE AND DISTRIBUTION OF COVERED CODE UNDER THIS
LICENSE. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL PART OF THIS LICENSE. NO USE OF ANY COVERED CODE IS AUTHORIZED
HEREUNDER EXCEPT SUBJECT TO THIS DISCLAIMER.

5.2. You acknowledge that Original Code, Upgraded Code and Specifications are not designed or intended for use in (i)
on-line control of aircraft, air traffic, aircraft navigation or aircraft communications; or (ii) in the design, construction,
operation or maintenance of any nuclear facility. Original Contributor disclaims any express or implied warranty of fitness for
such uses.

6. Termination.
6.1. By You. You may terminate this Research Use license at anytime by providing written notice to Original Contributor.
6.2. By Original Contributor. This License and the rights granted hereunder will terminate: (i) automatically if You fail

to comply with the terms of this License and fail to cure such breach within 30 days of receipt of written notice of the breach;
(ii) immediately in the event of circumstances specified in Sections 7.1 and 8.4; or (iii) at Original Contributor’s discretion
upon any action initiated in the first instance by You alleging that use or distribution by Original Contributor or any Licensee,
of Original Code, Upgraded Code, Error Corrections or Shared Modifications contributed by You, or Specifications, infringe a
patent owned or controlled by You.

6.3. Effect of Termination. Upon termination, You agree to discontinue use and return or destroy all copies of Covered
Code in your possession. All sublicenses to the Covered Code which you have properly granted shall survive any termination of
this License. Provisions which, by their nature, should remain in effect beyond the termination of this License shall survive
including, without limitation, Sections 2.2, 3, 5, 7 and 8.

6.4. Each party waives and releases the other from any claim to compensation or indemnity for permitted or lawful
termination of the business relationship established by this License.

7. Liability.
7.1. Infringement. Should any of the Original Code, Upgraded Code, TCK or Specifications ("Materials") become the subject

of a claim of infringement, Original Contributor may, at its sole option, (i) attempt to procure the rights necessary for You to
continue using the Materials, (ii) modify the Materials so that they are no longer infringing, or (iii) terminate Your right to
use the Materials, immediately upon written notice, and refund to You the amount, if any, having then actually been paid by You
to Original Contributor for the Original Code, Upgraded Code and TCK, depreciated on a straight line, five year basis.

7.2. LIMITATION OF LIABILITY. TO THE FULL EXTENT ALLOWED BY APPLICABLE LAW, ORIGINAL CONTRIBUTOR’S LIABILITY TO YOU FOR
CLAIMS RELATING TO THIS LICENSE, WHETHER FOR BREACH OR IN TORT, SHALL BE LIMITED TO ONE HUNDRED PERCENT (100%) OF THE AMOUNT
HAVING THEN ACTUALLY BEEN PAID BY YOU TO ORIGINAL CONTRIBUTOR FOR ALL COPIES LICENSED HEREUNDER OF THE PARTICULAR ITEMS GIVING
RISE TO SUCH CLAIM, IF ANY. IN NO EVENT WILL YOU (RELATIVE TO YOUR SHARED MODIFICATIONS OR ERROR CORRECTIONS) OR ORIGINAL
CONTRIBUTOR BE LIABLE FOR ANY INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING
OUT OF THIS LICENSE (INCLUDING, WITHOUT LIMITATION, LOSS OF PROFITS, USE, DATA, OR OTHER ECONOMIC ADVANTAGE), HOWEVER IT ARISES
AND ON ANY THEORY OF LIABILITY, WHETHER IN AN ACTION FOR CONTRACT, STRICT LIABILITY OR TORT (INCLUDING NEGLIGENCE) OR OTHERWISE,
WHETHER OR NOT YOU OR ORIGINAL CONTRIBUTOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE AND NOTWITHSTANDING THE FAILURE OF
ESSENTIAL PURPOSE OF ANY REMEDY.

8. Miscellaneous.
8.1. Trademark. You agree to comply with the then current Sun Trademark & Logo Usage Requirements accessible through

the SCSL Webpage. Except as expressly provided in the License, You are granted no right, title or license to, or interest in,
any Sun Trademarks. You agree not to (i) challenge Original Contributor’s ownership or use of Sun Trademarks; (ii) attempt to
register any Sun Trademarks, or any mark or logo substantially similar thereto; or (iii) incorporate any Sun Trademarks into your
own trademarks, product names, service marks, company names, or domain names.

8.2. Integration. This License represents the complete agreement concerning the subject matter hereof.
8.3. Assignment. Original Contributor may assign this License, and its rights and obligations hereunder, in its sole

discretion. You may assign the Research Use portions of this License to a third party upon prior written notice to Original
Contributor (which may be provided via the Community Web-Server). You may not assign the Commercial Use license or TCK license,
including by way of merger (regardless of whether You are the surviving entity) or acquisition, without Original Contributor’s
prior written consent.

8.4. Severability. If any provision of this License is held to be unenforceable, such provision shall be reformed only
to the extent necessary to make it enforceable. Notwithstanding the foregoing, if You are prohibited by law from fully and
specifically complying with Sections 2.2 or 3, this License will immediately terminate and You must immediately discontinue any
use of Covered Code.

8.5. Governing Law. This License shall be governed by the laws of the United States and the State of California, as
applied to contracts entered into and to be performed in California between California residents. The application of the United
Nations Convention on Contracts for the International Sale of Goods is expressly excluded.

8.6. Dispute Resolution.
a) Any dispute arising out of or relating to this License shall be finally settled by arbitration as set out herein, except

that either party may bring any action, in a court of competent jurisdiction (which jurisdiction shall be exclusive), with
respect to any dispute relating to such party’s Intellectual Property Rights or with respect to Your compliance with the TCK
license. Arbitration shall be administered: (i) by the American Arbitration Association (AAA), (ii) in accordance with the
rules of the United Nations Commission on International Trade Law (UNCITRAL) (the "Rules") in effect at the time of arbitration
as modified herein; and (iii) the arbitrator will apply the substantive laws of California and United States. Judgment upon the
award rendered by the arbitrator may be entered in any court having jurisdiction to enforce such award.

C.2. JAVA LICENSES 179

b) All arbitration proceedings shall be conducted in English by a single arbitrator selected in accordance with the Rules,
who must be fluent in English and be either a retired judge or practicing attorney having at least ten (10) years litigation
experience and be reasonably familiar with the technology matters relative to the dispute. Unless otherwise agreed, arbitration
venue shall be in London, Tokyo, or San Francisco, whichever is closest to defendant’s principal business office. The arbitrator
may award monetary damages only and nothing shall preclude either party from seeking provisional or emergency relief from a court
of competent jurisdiction. The arbitrator shall have no authority to award damages in excess of those permitted in this License
and any such award in excess is void. All awards will be payable in U.S. dollars and may include, for the prevailing party (i)
pre-judgment award interest, (ii) reasonable attorneys’ fees incurred in connection with the arbitration, and (iii) reasonable
costs and expenses incurred in enforcing the award. The arbitrator will order each party to produce identified documents and
respond to no more than twenty-five single question interrogatories.

8.7. Construction. Any law or regulation which provides that the language of a contract shall be construed against the
drafter shall not apply to this License.

8.8. U.S. Government End Users. The Covered Code is a "commercial item," as that term is defined in 48 C.F.R. 2.101 (Oct.
1995), consisting of "commercial computer software" and "commercial computer software documentation," as such terms are used in
48 C.F.R. 12.212 (Sept. 1995). Consistent with 48 C.F.R. 12.212 and 48 C.F.R. 227.7202-1 through 227.7202-4 (June 1995), all
U.S. Government End Users acquire Covered Code with only those rights set forth herein. You agree to pass this notice to Your
licensees.

8.9. Press Announcements. All press announcements relative to the execution of this License must be reviewed and approved
by Original Contributor and You prior to release.

8.10. International Use.
a) Export/Import Laws. Covered Code is subject to U.S. export control laws and may be subject to export or import

regulations in other countries. Each party agrees to comply strictly with all such laws and regulations and acknowledges their
responsibility to obtain such licenses to export, re-export, or import as may be required. You agree to pass these obligations
to Your licensees.

b) Intellectual Property Protection. Due to limited intellectual property protection and enforcement in certain countries,
You agree not to redistribute the Original Code, Upgraded Code, TCK and Specifications to any country other than the list of
restricted countries on the SCSL Webpage.

8.11. Language. This License is in the English language only, which language shall be controlling in all respects, and
all versions of this License in any other language shall be for accommodation only and shall not be binding on the parties to
this License. All communications and notices made or given pursuant to this License, and all documentation and support to be
provided, unless otherwise noted, shall be in the English language.

PLEASE READ THE TERMS OF THIS LICENSE CAREFULLY. BY CLICKING ON THE "ACCEPT" BUTTON BELOW YOU ARE ACCEPTING AND AGREEING TO
THE TERMS AND CONDITIONS OF THIS LICENSE WITH SUN MICROSYSTEMS, INC. IF YOU ARE AGREEING TO THIS LICENSE ON BEHALF OF A COMPANY,
YOU REPRESENT THAT YOU ARE AUTHORIZED TO BIND THE COMPANY TO SUCH A LICENSE. WHETHER YOU ARE ACTING ON YOUR OWN BEHALF, OR
REPRESENTING A COMPANY, YOU MUST BE OF MAJORITY AGE AND BE OTHERWISE COMPETENT TO ENTER INTO CONTRACTS. IF YOU DO NOT MEET THIS
CRITERIA OR YOU DO NOT AGREE TO ANY OF THE TERMS AND CONDITIONS OF THIS LICENSE, CLICK ON THE REJECT BUTTON TO EXIT.

ACCEPT REJECT
GLOSSARY
1. "Commercial Use" means any use (excluding Internal Deployment Use) or distribution, directly or indirectly of Compliant

Covered Code by You to any third party, alone or bundled with any other software or hardware, for direct or indirect commercial
or strategic gain or advantage, subject to execution of Attachment D by You and Original Contributor.

2. "Community Code" means the Original Code, Upgraded Code, Error Corrections, Shared Modifications, or any combination
thereof.

3. "Community Webserver(s)" means the webservers designated by Original Contributor for posting Error Corrections and
Shared Modifications.

4. "Compliant Covered Code" means Covered Code that complies with the requirements of the TCK.
5. "Contributor" means each Licensee that creates or contributes to the creation of any Error Correction or Shared

Modification.
6. "Covered Code" means the Original Code, Upgraded Code, Modifications, or any combination thereof.
7. "Error Correction" means any change made to Community Code which conforms to the Specification and corrects the adverse

effect of a failure of Community Code to perform any function set forth in or required by the Specifications.
8. "Executable" means Covered Code that has been converted to a form other than Source Code.
9. "Extension(s)" means any additional classes or other programming code and/or interfaces developed by or for You which:

(i) are designed for use with the Technology; (ii) constitute an API for a library of computing functions or services; and (iii)
are disclosed to third party software developers for the purpose of developing software which invokes such additional classes or
other programming code and/or interfaces. The foregoing shall not apply to software development by Your subcontractors to be
exclusively used by You.

10. "Intellectual Property Rights" means worldwide statutory and common law rights associated solely with (i) patents and
patent applications; (ii) works of authorship including copyrights, copyright applications, copyright registrations and "moral
rights"; (iii) the protection of trade and industrial secrets and confidential information; and (iv) divisions, continuations,
renewals, and re-issuances of the foregoing now existing or acquired in the future.

11. "Internal Deployment Use" means use of Compliant Covered Code (excluding Research Use) within Your business or
organization only by Your employees and/or agents, subject to execution of Attachment C by You and Original Contributor, if
required.

12. "Licensee" means any party that has entered into and has in effect a version of this License with Original Contributor.
13. "Modification(s)" means (i) any change to Covered Code; (ii) any new file or other representation of computer

program statements that contains any portion of Covered Code; and/or (iii) any new Source Code implementing any portion of
the Specifications.

14. "Original Code" means the initial Source Code for the Technology as described on the Technology Download Site.
15. "Original Contributor" means Sun Microsystems, Inc., its affiliates and its successors and assigns.
16. "Reformatted Specifications" means any revision to the Specifications which translates or reformats the Specifications

(as for example in connection with Your documentation) but which does not alter, subset or superset the functional or operational
aspects of the Specifications.

17. "Research Use" means use and distribution of Covered Code only for Your research, development, educational or personal
and individual use, and expressly excludes Internal Deployment Use and Commercial Use.

18. "SCSL Webpage" means the Sun Community Source license webpage located at http://sun.com/software/communitysource, or
such other url that Original Contributor may designate from time to time.

19. "Shared Modifications" means Modifications provided by You, at Your option, pursuant to Section 2.2, or received by You
from a Contributor pursuant to Section 2.3.

20. "Source Code" means computer program statements written in any high-level, readable form suitable for modification and
development.

21. "Specifications" means the specifications for the Technology and other documentation, as designated on the Technology
Download Site, as may be revised by Original Contributor from time to time.

22. "Sun Trademarks" means Original Contributor’s SUN, JAVA, and JINI trademarks and logos, whether now used or adopted in
the future.

23. "Technology" means the technology described in Attachment B, and Upgrades.
24. "Technology Compatibility Kit" or "TCK" means the test programs, procedures and/or other requirements, designated by

Original Contributor for use in verifying compliance of Covered Code with the Specifications, in conjunction with the Original
Code and Upgraded Code. Original Contributor may, in its sole discretion and from time to time, revise a TCK to correct errors
and/or omissions and in connection with Upgrades.

25. "Technology Download Site" means the site(s) designated by Original Contributor for access to the Original Code,
Upgraded Code, TCK and Specifications.

180 APPENDIX C. LICENSES

26. "Upgrade(s)" means new versions of Technology designated exclusively by Original Contributor as an Upgrade and released
by Original Contributor from time to time.

27. "Upgraded Code" means the Source Code for Upgrades, possibly including Modifications made by Contributors.
28. "You(r)" means an individual, or a legal entity acting by and through an individual or individuals, exercising rights

either under this License or under a future version of this License issued pursuant to Section 4.1. For legal entities, "You(r)"
includes any entity that by majority voting interest controls, is controlled by, or is under common control with You.

ATTACHMENT A REQUIRED NOTICES
ATTACHMENT A-1 REQUIRED IN ALL CASES
"The contents of this file, or the files included with this file, are subject to the current version of Sun Community Source

License for [fill in name of applicable Technology] (the "License"); You may not use this file except in compliance with the
License. You may obtain a copy of the License at http:// sun.com/software/communitysource. See the License for the rights,
obligations and limitations governing use of the contents of the file.

The Original and Upgraded Code is [fill in name of applicable Technology]. The developer of the Original and Upgraded Code
is Sun Microsystems, Inc. Sun Microsystems, Inc. owns the copyrights in the portions it created. All Rights Reserved.

Contributor(s): --
Associated Test Suite(s) Location: --"
ATTACHMENT A-2 SAMPLE LICENSEE CERTIFICATION
"By clicking the ’Agree’ button below, You certify that You are a Licensee in good standing under the Sun Community Source

License, [fill in name of applicable Technology] ("License") and that Your access, use and distribution of code and information
You may obtain at this site is subject to the License."

ATTACHMENT A-3 REQUIRED STUDENT NOTIFICATION
"This software and related documentation has been obtained by your educational institution subject to the Sun Community

Source License, [fill in name of applicable Technology]. You have been provided access to the software and related documentation
for use only in connection with your course work and research activities as a matriculated student of your educational
institution. Any other use is expressly prohibited.

THIS SOFTWARE AND RELATED DOCUMENTATION CONTAINS PROPRIETARY MATERIAL OF SUN MICROSYSTEMS, INC, WHICH ARE PROTECTED BY
VARIOUS INTELLECTUAL PROPERTY RIGHTS.

You may not use this file except in compliance with the License. You may obtain a copy of the License on the web at
http://sun.com/software/ communitysource."

ATTACHMENT B
Java (tm) Platform, Standard Edition, JDK 6 Source Technology
Description of "Technology"
Java (tm) Platform, Standard Edition, JDK 6 Source Technology as described on the Technology Download Site.
ATTACHMENT C INTERNAL DEPLOYMENT USE
This Attachment C is only effective for the Technology specified in Attachment B, upon execution of Attachment D (Commercial

Use License) including the requirement to pay royalties. In the event of a conflict between the terms of this Attachment C and
Attachment D, the terms of Attachment D shall govern.

1. Internal Deployment License Grant. Subject to Your compliance with Section 2 below, and Section 8.10 of the Research
Use license; in addition to the Research Use license and the TCK license, Original Contributor grants to You a worldwide,
non-exclusive license, to the extent of Original Contributor’s Intellectual Property Rights covering the Original Code, Upgraded
Code and Specifications, to do the following:

a) reproduce and distribute internally, Original Code and Upgraded Code as part of Compliant Covered Code, and
Specifications, for Internal Deployment Use,

b) compile such Original Code and Upgraded Code, as part of Compliant Covered Code, and reproduce and distribute internally
the same in Executable form for Internal Deployment Use, and

c) reproduce and distribute internally, Reformatted Specifications for use in connection with Internal Deployment Use.
2. Additional Requirements and Responsibilities. In addition to the requirements and responsibilities described under

Section 3.1 of the Research Use license, and as a condition to exercising the rights granted under Section 3 above, You agree to
the following additional requirements and responsibilities:

2.1. Compatibility. All Covered Code must be Compliant Covered Code prior to any Internal Deployment Use or Commercial
Use, whether originating with You or acquired from a third party. Successful compatibility testing must be completed in
accordance with the TCK License. If You make any further Modifications to any Covered Code previously determined to be Compliant
Covered Code, you must ensure that it continues to be Compliant Covered Code.

ATTACHMENT D COMMERCIAL USE LICENSE
[Contact Sun Microsystems For Commercial Use Terms and Conditions]
ATTACHMENT E TECHNOLOGY COMPATIBILITY KIT
The following license is effective for the Java (tm) Platform, Standard Edition, JDK 6 Technology Compatibility Kit only

upon execution of a separate support agreement between You and Original Contributor (subject to an annual fee) as described on
the SCSL Webpage. The applicable Technology Compatibility Kit for the Technology specified in Attachment B may be accessed at
the Technology Download Site only upon execution of the support agreement.

1. TCK License.
a) Subject to the restrictions set forth in Section 1.b below and Section 8.10 of the Research Use license, in addition to

the Research Use license, Original Contributor grants to You a worldwide, non-exclusive, non-transferable license, to the extent
of Original Contributor’s Intellectual Property Rights in the TCK (without the right to sublicense), to use the TCK to develop
and test Covered Code.

b) TCK Use Restrictions. You are not authorized to create derivative works of the TCK or use the TCK to test any
implementation of the Specification that is not Covered Code. You may not publish your test results or make claims of
comparative compatibility with respect to other implementations of the Specification. In consideration for the license grant in
Section 1.a above you agree not to develop your own tests which are intended to validate conformation with the Specification.

2. Requirements for Determining Compliance.
2.1. Definitions.
a) "Added Value" means code which:
(i) has a principal purpose which is substantially different from that of the stand-alone Technology;
(ii) represents a significant functional and value enhancement to the Technology;
(iii) operates in conjunction with the Technology; and
(iv) is not marketed as a technology which replaces or substitutes for the Technology.
b) "Java Classes" means the specific class libraries associated with each Technology defined in Attachment B.
c) "Java Runtime Interpreter" means the program(s) which implement the Java virtual machine for the Technology as defined in

the Specification.
d) "Platform Dependent Part" means those Original Code and Upgraded Code files of the Technology which are not in a share

directory or subdirectory thereof.
e) "Shared Part" means those Original Code and Upgraded Code files of the Technology which are identified as "shared"

(or words of similar meaning) or which are in any "share" directory or subdirectory thereof, except those files specifically
designated by Original Contributor as modifiable.

f) "User’s Guide" means the users guide for the TCK which Original Contributor makes available to You to provide direction
in how to run the TCK and properly interpret the results, as may be revised by Original Contributor from time to time.

2.2. Development Restrictions. Compliant Covered Code:
a) must include Added Value;
b) must fully comply with the Specifications for the Technology specified in Attachment B;
c) must include the Shared Part, complete and unmodified;
d) may not modify the functional behavior of the Java Runtime Interpreter or the Java Classes;
e) may not modify, subset or superset the interfaces of the Java Runtime Interpreter or the Java Classes;
f) may not subset or superset the Java Classes;

C.3. APACHE LICENSE 2.0 181

g) may not modify or extend the required public class or public interface declarations whose names begin with "java",
"javax", "jini", "net.jini", "sun.hotjava", "COM.sun" or their equivalents in any subsequent naming convention;

h) Profiles. The following provisions apply if You are licensing a Java Platform, Micro Edition Connected Device
Configuration, Java Platform, Micro Edition Connected Limited Device Configuration and/or a Profile:

(i) Profiles may not include an implementation of any part of a Profile or use any of the APIs within a Profile, unless
You implement the Profile in its entirety in conformance with the applicable compatibility requirements and test suites as
developed and licensed by Original Contributor or other authorized party. "Profile" means: (A) for Java Platform, Micro
Edition Connected Device Configuration, Foundation Profile, Personal Profile or such other profile as may be developed under
or in connection with the Java Community Process or as otherwise authorized by Original Contributor; (B) for Java Platform,
Micro Edition Connected Limited Device Configuration, Java Platform, Micro Edition, Mobile Information Device Profile or such
other profile as may be developed under or in connection with the Java Community Process or as otherwise authorized by Original
Contributor. Notwithstanding the foregoing, nothing herein shall be construed as eliminating or modifying Your obligation to
include Added Value as set forth in Section 2.2(a), above; and

(ii) Profile(s) must be tightly integrated with, and must be configured to run in conjunction with, an implementation
of a Configuration from Original Contributor (or an authorized third party) which meets Original Contributor’s compatibility
requirements. "Configuration" means, as defined in Original Contributor’s compatibility requirements, either (A) Java Platform,
Micro Edition Connected Device Configuration; or (B) Java Platform, Micro Edition Connected Limited Device Configuration.

(iii) A Profile as integrated with a Configuration must pass the applicable TCK for the Technology.
2.3. Compatibility Testing. Successful compatibility testing must be completed by You, or at Original Contributor’s

option, a third party designated by Original Contributor to conduct such tests, in accordance with the User’s Guide. A
Technology must pass the applicable TCK for the Technology. You must use the most current version of the applicable TCK
available from Original Contributor one hundred twenty (120) days (two hundred forty [240] days in the case of silicon
implementations) prior to: (i) Your Internal Deployment Use; and (ii) each release of Compliant Covered Code by You for
Commercial Use. In the event that You elect to use a version of Upgraded Code that is newer than that which is required under
this Section 2.3, then You agree to pass the version of the TCK that corresponds to such newer version of Upgraded Code.

2.4. Test Results. You agree to provide to Original Contributor or the third party test facility if applicable, Your
test results that demonstrate that Covered Code is Compliant Covered Code and that Original Contributor may publish or otherwise
distribute such test results.

C.3 Apache License 2.0

NekoHTML is licensed under version 2 of the Apache License.

Apache License Version 2.0, January 2004
http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this
document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under
common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to
cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or
more of the outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications, including but not limited to software source code,
documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not
limited to compiled object code, generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work (an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for
which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of
authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely
link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the
copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes
of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its
representatives, including but not limited to communication on electronic mailing lists, source code control systems, and
issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work,
but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a
Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by
Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a
perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative
Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object
form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a
perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to
make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those
patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of
their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any
entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the
Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that
Work shall terminate as of the date such litigation is filed.

182 APPENDIX C. LICENSES

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or
without modifications, and in Source or Object form, provided that You meet the following conditions:

1. You must give any other recipients of the Work or Derivative Works a copy of this License; and

2. You must cause any modified files to carry prominent notices stating that You changed the files; and

3. You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative
Works; and

4. If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain
to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of
the Derivative Works; within the Source form or documentation, if provided long with the Derivative Works; or, within a display
generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are
for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works
that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution
notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or different license terms and
conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided
Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion
in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or
conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you
may have executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names
of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the
content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS
FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and
assume any risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or
otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall
any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of
any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to
damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses),
even if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to
offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent
with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility,
not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any
liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional
liability.

END OF TERMS AND CONDITIONS

C.4 Common Public License 1.0

JUnit is distributed under the Common Public License, version 1.0

Common Public License - v 1.0

THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF THIS COMMON PUBLIC LICENSE ("AGREEMENT"). ANY USE, REPRODUCTION OR
DISTRIBUTION OF THE PROGRAM CONSTITUTES RECIPIENT’S ACCEPTANCE OF THIS AGREEMENT.

1. DEFINITIONS

"Contribution" means:

a) in the case of the initial Contributor, the initial code and documentation distributed under this Agreement, and

b) in the case of each subsequent Contributor:

i) changes to the Program, and

ii) additions to the Program;

where such changes and/or additions to the Program originate from and are distributed by that particular Contributor. A
Contribution ’originates’ from a Contributor if it was added to the Program by such Contributor itself or anyone acting on
such Contributor’s behalf. Contributions do not include additions to the Program which: (i) are separate modules of software
distributed in conjunction with the Program under their own license agreement, and (ii) are not derivative works of the Program.

"Contributor" means any person or entity that distributes the Program.

"Licensed Patents " mean patent claims licensable by a Contributor which are necessarily infringed by the use or sale of its
Contribution alone or when combined with the Program.

"Program" means the Contributions distributed in accordance with this Agreement.

"Recipient" means anyone who receives the Program under this Agreement, including all Contributors.

2. GRANT OF RIGHTS

a) Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-exclusive, worldwide, royalty-free
copyright license to reproduce, prepare derivative works of, publicly display, publicly perform, distribute and sublicense the
Contribution of such Contributor, if any, and such derivative works, in source code and object code form.

C.4. COMMON PUBLIC LICENSE 1.0 183

b) Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-exclusive, worldwide, royalty-free
patent license under Licensed Patents to make, use, sell, offer to sell, import and otherwise transfer the Contribution of such
Contributor, if any, in source code and object code form. This patent license shall apply to the combination of the Contribution
and the Program if, at the time the Contribution is added by the Contributor, such addition of the Contribution causes such
combination to be covered by the Licensed Patents. The patent license shall not apply to any other combinations which include
the Contribution. No hardware per se is licensed hereunder.

c) Recipient understands that although each Contributor grants the licenses to its Contributions set forth herein, no assurances
are provided by any Contributor that the Program does not infringe the patent or other intellectual property rights of any other
entity. Each Contributor disclaims any liability to Recipient for claims brought by any other entity based on infringement
of intellectual property rights or otherwise. As a condition to exercising the rights and licenses granted hereunder, each
Recipient hereby assumes sole responsibility to secure any other intellectual property rights needed, if any. For example, if a
third party patent license is required to allow Recipient to distribute the Program, it is Recipient’s responsibility to acquire
that license before distributing the Program.

d) Each Contributor represents that to its knowledge it has sufficient copyright rights in its Contribution, if any, to grant the
copyright license set forth in this Agreement.

3. REQUIREMENTS

A Contributor may choose to distribute the Program in object code form under its own license agreement, provided that:

a) it complies with the terms and conditions of this Agreement; and

b) its license agreement:

i) effectively disclaims on behalf of all Contributors all warranties and conditions, express and implied, including warranties
or conditions of title and non-infringement, and implied warranties or conditions of merchantability and fitness for a particular
purpose;

ii) effectively excludes on behalf of all Contributors all liability for damages, including direct, indirect, special, incidental
and consequential damages, such as lost profits;

iii) states that any provisions which differ from this Agreement are offered by that Contributor alone and not by any other
party; and

iv) states that source code for the Program is available from such Contributor, and informs licensees how to obtain it in a
reasonable manner on or through a medium customarily used for software exchange.

When the Program is made available in source code form:

a) it must be made available under this Agreement; and

b) a copy of this Agreement must be included with each copy of the Program.

Contributors may not remove or alter any copyright notices contained within the Program.

Each Contributor must identify itself as the originator of its Contribution, if any, in a manner that reasonably allows
subsequent Recipients to identify the originator of the Contribution.

4. COMMERCIAL DISTRIBUTION

Commercial distributors of software may accept certain responsibilities with respect to end users, business partners and the
like. While this license is intended to facilitate the commercial use of the Program, the Contributor who includes the Program
in a commercial product offering should do so in a manner which does not create potential liability for other Contributors.
Therefore, if a Contributor includes the Program in a commercial product offering, such Contributor ("Commercial Contributor")
hereby agrees to defend and indemnify every other Contributor ("Indemnified Contributor") against any losses, damages and costs
(collectively "Losses") arising from claims, lawsuits and other legal actions brought by a third party against the Indemnified
Contributor to the extent caused by the acts or omissions of such Commercial Contributor in connection with its distribution of
the Program in a commercial product offering. The obligations in this section do not apply to any claims or Losses relating to
any actual or alleged intellectual property infringement. In order to qualify, an Indemnified Contributor must: a) promptly
notify the Commercial Contributor in writing of such claim, and b) allow the Commercial Contributor to control, and cooperate
with the Commercial Contributor in, the defense and any related settlement negotiations. The Indemnified Contributor may
participate in any such claim at its own expense.

For example, a Contributor might include the Program in a commercial product offering, Product X. That Contributor is then a
Commercial Contributor. If that Commercial Contributor then makes performance claims, or offers warranties related to Product
X, those performance claims and warranties are such Commercial Contributor’s responsibility alone. Under this section, the
Commercial Contributor would have to defend claims against the other Contributors related to those performance claims and
warranties, and if a court requires any other Contributor to pay any damages as a result, the Commercial Contributor must pay
those damages.

5. NO WARRANTY

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is solely responsible for determining the appropriateness of
using and distributing the Program and assumes all risks associated with its exercise of rights under this Agreement, including
but not limited to the risks and costs of program errors, compliance with applicable laws, damage to or loss of data, programs or
equipment, and unavailability or interruption of operations.

6. DISCLAIMER OF LIABILITY

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED HEREUNDER, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

7. GENERAL

If any provision of this Agreement is invalid or unenforceable under applicable law, it shall not affect the validity or
enforceability of the remainder of the terms of this Agreement, and without further action by the parties hereto, such provision
shall be reformed to the minimum extent necessary to make such provision valid and enforceable.

If Recipient institutes patent litigation against a Contributor with respect to a patent applicable to software (including a
cross-claim or counterclaim in a lawsuit), then any patent licenses granted by that Contributor to such Recipient under this
Agreement shall terminate as of the date such litigation is filed. In addition, if Recipient institutes patent litigation
against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Program itself (excluding
combinations of the Program with other software or hardware) infringes such Recipient’s patent(s), then such Recipient’s rights
granted under Section 2(b) shall terminate as of the date such litigation is filed.

All Recipient’s rights under this Agreement shall terminate if it fails to comply with any of the material terms or conditions

184 APPENDIX C. LICENSES

of this Agreement and does not cure such failure in a reasonable period of time after becoming aware of such noncompliance. If
all Recipient’s rights under this Agreement terminate, Recipient agrees to cease use and distribution of the Program as soon as
reasonably practicable. However, Recipient’s obligations under this Agreement and any licenses granted by Recipient relating to
the Program shall continue and survive.

Everyone is permitted to copy and distribute copies of this Agreement, but in order to avoid inconsistency the Agreement is
copyrighted and may only be modified in the following manner. The Agreement Steward reserves the right to publish new versions
(including revisions) of this Agreement from time to time. No one other than the Agreement Steward has the right to modify
this Agreement. IBM is the initial Agreement Steward. IBM may assign the responsibility to serve as the Agreement Steward
to a suitable separate entity. Each new version of the Agreement will be given a distinguishing version number. The Program
(including Contributions) may always be distributed subject to the version of the Agreement under which it was received. In
addition, after a new version of the Agreement is published, Contributor may elect to distribute the Program (including its
Contributions) under the new version. Except as expressly stated in Sections 2(a) and 2(b) above, Recipient receives no rights
or licenses to the intellectual property of any Contributor under this Agreement, whether expressly, by implication, estoppel or
otherwise. All rights in the Program not expressly granted under this Agreement are reserved.

This Agreement is governed by the laws of the State of New York and the intellectual property laws of the United States of
America. No party to this Agreement will bring a legal action under this Agreement more than one year after the cause of action
arose. Each party waives its rights to a jury trial in any resulting litigation.

C.5 X License

ICU is distributed under the X License, also known as the MIT License.

COPYRIGHT AND PERMISSION NOTICE

Copyright (c) 1995-2010 International Business Machines Corporation and others

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files
(the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
provided that the above copyright notice(s) and this permission notice appear in all copies of the Software and that both the
above copyright notice(s) and this permission notice appear in supporting documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the
sale, use or other dealings in this Software without prior written authorization of the copyright holder.

C.6 Creative Commons Attribution-Sharealike 3.0

Unported License

Text drawn from the Wikipedia is licensed under the Creative Commons
Attribution-Sharealike (CC-BY-SA) 3.0 Unported License, which we reproduce be-
low. The creative commons website is http://creativecommons.org/.

C.6.1 Creative Commons Deed
Creative Commons Deed

This is a human-readable summary of the full license below.

You are free:

* to Share--to copy, distribute and transmit the work, and * to Remix--to adapt the work

Under the following conditions:

* Attribution--You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests
that they endorse you or your use of the work.)

* Share Alike--If you alter, transform, or build upon this work, you may distribute the resulting work only under the same,
similar or a compatible license.

With the understanding that:

* Waiver--Any of the above conditions can be waived if you get permission from the copyright holder.

* Other Rights--In no way are any of the following rights affected by the license:

o your fair dealing or fair use rights;

o the author’s moral rights; and

o rights other persons may have either in the work itself or in how the work is used, such as publicity or privacy rights.

http://creativecommons.org/

C.6. CREATIVE COMMONS ATTRIBUTION-SHAREALIKE 3.0 UNPORTED LICENSE 185

* Notice--For any reuse or distribution, you must make clear to others the license terms of this work. The best way to do that
is with a link to http://creativecommons.org/licenses/by-sa/3.0/

C.6.2 License Text
THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE
WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR
COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT
THIS LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR
ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

1. Definitions

1. "Adaptation" means a work based upon the Work, or upon the Work and other pre-existing works, such as a translation,
adaptation, derivative work, arrangement of music or other alterations of a literary or artistic work, or phonogram or
performance and includes cinematographic adaptations or any other form in which the Work may be recast, transformed, or
adapted including in any form recognizably derived from the original, except that a work that constitutes a Collection will
not be considered an Adaptation for the purpose of this License. For the avoidance of doubt, where the Work is a musical work,
performance or phonogram, the synchronization of the Work in timed-relation with a moving image ("synching") will be considered
an Adaptation for the purpose of this License.

2. "Collection" means a collection of literary or artistic works, such as encyclopedias and anthologies, or performances,
phonograms or broadcasts, or other works or subject matter other than works listed in Section 1(f) below, which, by reason of the
selection and arrangement of their contents, constitute intellectual creations, in which the Work is included in its entirety in
unmodified form along with one or more other contributions, each constituting separate and independent works in themselves, which
together are assembled into a collective whole. A work that constitutes a Collection will not be considered an Adaptation (as
defined below) for the purposes of this License.

3. "Creative Commons Compatible License" means a license that is listed at http://creativecommons.org/compatiblelicenses that
has been approved by Creative Commons as being essentially equivalent to this License, including, at a minimum, because that
license: (i) contains terms that have the same purpose, meaning and effect as the License Elements of this License; and, (ii)
explicitly permits the relicensing of adaptations of works made available under that license under this License or a Creative
Commons jurisdiction license with the same License Elements as this License.

4. "Distribute" means to make available to the public the original and copies of the Work or Adaptation, as appropriate, through
sale or other transfer of ownership.

5. "License Elements" means the following high-level license attributes as selected by Licensor and indicated in the title of
this License: Attribution, ShareAlike.

6. "Licensor" means the individual, individuals, entity or entities that offer(s) the Work under the terms of this License.

7. "Original Author" means, in the case of a literary or artistic work, the individual, individuals, entity or entities who
created the Work or if no individual or entity can be identified, the publisher; and in addition (i) in the case of a performance
the actors, singers, musicians, dancers, and other persons who act, sing, deliver, declaim, play in, interpret or otherwise
perform literary or artistic works or expressions of folklore; (ii) in the case of a phonogram the producer being the person or
legal entity who first fixes the sounds of a performance or other sounds; and, (iii) in the case of broadcasts, the organization
that transmits the broadcast.

8. "Work" means the literary and/or artistic work offered under the terms of this License including without limitation any
production in the literary, scientific and artistic domain, whatever may be the mode or form of its expression including digital
form, such as a book, pamphlet and other writing; a lecture, address, sermon or other work of the same nature; a dramatic or
dramatico-musical work; a choreographic work or entertainment in dumb show; a musical composition with or without words; a
cinematographic work to which are assimilated works expressed by a process analogous to cinematography; a work of drawing,
painting, architecture, sculpture, engraving or lithography; a photographic work to which are assimilated works expressed by a
process analogous to photography; a work of applied art; an illustration, map, plan, sketch or three-dimensional work relative
to geography, topography, architecture or science; a performance; a broadcast; a phonogram; a compilation of data to the extent
it is protected as a copyrightable work; or a work performed by a variety or circus performer to the extent it is not otherwise
considered a literary or artistic work.

9. "You" means an individual or entity exercising rights under this License who has not previously violated the terms of this
License with respect to the Work, or who has received express permission from the Licensor to exercise rights under this License
despite a previous violation.

10. "Publicly Perform" means to perform public recitations of the Work and to communicate to the public those public
recitations, by any means or process, including by wire or wireless means or public digital performances; to make available
to the public Works in such a way that members of the public may access these Works from a place and at a place individually
chosen by them; to perform the Work to the public by any means or process and the communication to the public of the performances
of the Work, including by public digital performance; to broadcast and rebroadcast the Work by any means including signs, sounds
or images.

11. "Reproduce" means to make copies of the Work by any means including without limitation by sound or visual recordings and the
right of fixation and reproducing fixations of the Work, including storage of a protected performance or phonogram in digital
form or other electronic medium.

2. Fair Dealing Rights

Nothing in this License is intended to reduce, limit, or restrict any uses free from copyright or rights arising from limitations
or exceptions that are provided for in connection with the copyright protection under copyright law or other applicable laws.

3. License Grant

Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
perpetual (for the duration of the applicable copyright) license to exercise the rights in the Work as stated below:

1. to Reproduce the Work, to incorporate the Work into one or more Collections, and to Reproduce the Work as incorporated in the
Collections;

2. to create and Reproduce Adaptations provided that any such Adaptation, including any translation in any medium, takes
reasonable steps to clearly label, demarcate or otherwise identify that changes were made to the original Work. For example, a
translation could be marked "The original work was translated from English to Spanish," or a modification could indicate "The
original work has been modified.";

3. to Distribute and Publicly Perform the Work including as incorporated in Collections; and,

4. to Distribute and Publicly Perform Adaptations.

186 APPENDIX C. LICENSES

5. For the avoidance of doubt:

1. (intentionally blank)

2. Non-waivable Compulsory License Schemes. In those jurisdictions in which the right to collect royalties through any
statutory or compulsory licensing scheme cannot be waived, the Licensor reserves the exclusive right to collect such royalties
for any exercise by You of the rights granted under this License;

3. Waivable Compulsory License Schemes. In those jurisdictions in which the right to collect royalties through any statutory or
compulsory licensing scheme can be waived, the Licensor waives the exclusive right to collect such royalties for any exercise by
You of the rights granted under this License; and,

4. Voluntary License Schemes. The Licensor waives the right to collect royalties, whether individually or, in the event
that the Licensor is a member of a collecting society that administers voluntary licensing schemes, via that society, from any
exercise by You of the rights granted under this License.

The above rights may be exercised in all media and formats whether now known or hereafter devised. The above rights include
the right to make such modifications as are technically necessary to exercise the rights in other media and formats. Subject to
Section 8(f), all rights not expressly granted by Licensor are hereby reserved.

4. Restrictions

The license granted in Section 3 above is expressly made subject to and limited by the following restrictions:

1. You may Distribute or Publicly Perform the Work only under the terms of this License. You must include a copy of, or the
Uniform Resource Identifier (URI) for, this License with every copy of the Work You Distribute or Publicly Perform. You may
not offer or impose any terms on the Work that restrict the terms of this License or the ability of the recipient of the Work to
exercise the rights granted to that recipient under the terms of the License. You may not sublicense the Work. You must keep
intact all notices that refer to this License and to the disclaimer of warranties with every copy of the Work You Distribute or
Publicly Perform. When You Distribute or Publicly Perform the Work, You may not impose any effective technological measures on
the Work that restrict the ability of a recipient of the Work from You to exercise the rights granted to that recipient under
the terms of the License. This Section 4(a) applies to the Work as incorporated in a Collection, but this does not require the
Collection apart from the Work itself to be made subject to the terms of this License. If You create a Collection, upon notice
from any Licensor You must, to the extent practicable, remove from the Collection any credit as required by Section 4(c), as
requested. If You create an Adaptation, upon notice from any Licensor You must, to the extent practicable, remove from the
Adaptation any credit as required by Section 4(c), as requested.

2. You may Distribute or Publicly Perform an Adaptation only under the terms of: (i) this License; (ii) a later version of this
License with the same License Elements as this License; (iii) a Creative Commons jurisdiction license (either this or a later
license version) that contains the same License Elements as this License (e.g., Attribution-ShareAlike 3.0 US)); (iv) a Creative
Commons Compatible License. If you license the Adaptation under one of the licenses mentioned in (iv), you must comply with
the terms of that license. If you license the Adaptation under the terms of any of the licenses mentioned in (i), (ii) or (iii)
(the "Applicable License"), you must comply with the terms of the Applicable License generally and the following provisions: (I)
You must include a copy of, or the URI for, the Applicable License with every copy of each Adaptation You Distribute or Publicly
Perform; (II) You may not offer or impose any terms on the Adaptation that restrict the terms of the Applicable License or the
ability of the recipient of the Adaptation to exercise the rights granted to that recipient under the terms of the Applicable
License; (III) You must keep intact all notices that refer to the Applicable License and to the disclaimer of warranties with
every copy of the Work as included in the Adaptation You Distribute or Publicly Perform; (IV) when You Distribute or Publicly
Perform the Adaptation, You may not impose any effective technological measures on the Adaptation that restrict the ability of a
recipient of the Adaptation from You to exercise the rights granted to that recipient under the terms of the Applicable License.
This Section 4(b) applies to the Adaptation as incorporated in a Collection, but this does not require the Collection apart from
the Adaptation itself to be made subject to the terms of the Applicable License.

3. If You Distribute, or Publicly Perform the Work or any Adaptations or Collections, You must, unless a request has been made
pursuant to Section 4(a), keep intact all copyright notices for the Work and provide, reasonable to the medium or means You are
utilizing: (i) the name of the Original Author (or pseudonym, if applicable) if supplied, and/or if the Original Author and/or
Licensor designate another party or parties (e.g., a sponsor institute, publishing entity, journal) for attribution ("Attribution
Parties") in Licensor’s copyright notice, terms of service or by other reasonable means, the name of such party or parties; (ii)
the title of the Work if supplied; (iii) to the extent reasonably practicable, the URI, if any, that Licensor specifies to be
associated with the Work, unless such URI does not refer to the copyright notice or licensing information for the Work; and (iv)
, consistent with Ssection 3(b), in the case of an Adaptation, a credit identifying the use of the Work in the Adaptation (e.g.,
"French translation of the Work by Original Author," or "Screenplay based on original Work by Original Author"). The credit
required by this Section 4(c) may be implemented in any reasonable manner; provided, however, that in the case of a Adaptation
or Collection, at a minimum such credit will appear, if a credit for all contributing authors of the Adaptation or Collection
appears, then as part of these credits and in a manner at least as prominent as the credits for the other contributing authors.
For the avoidance of doubt, You may only use the credit required by this Section for the purpose of attribution in the manner set
out above and, by exercising Your rights under this License, You may not implicitly or explicitly assert or imply any connection
with, sponsorship or endorsement by the Original Author, Licensor and/or Attribution Parties, as appropriate, of You or Your use
of the Work, without the separate, express prior written permission of the Original Author, Licensor and/or Attribution Parties.

4. Except as otherwise agreed in writing by the Licensor or as may be otherwise permitted by applicable law, if You Reproduce,
Distribute or Publicly Perform the Work either by itself or as part of any Adaptations or Collections, You must not distort,
mutilate, modify or take other derogatory action in relation to the Work which would be prejudicial to the Original Author’s
honor or reputation. Licensor agrees that in those jurisdictions (e.g. Japan), in which any exercise of the right granted in
Section 3(b) of this License (the right to make Adaptations) would be deemed to be a distortion, mutilation, modification or
other derogatory action prejudicial to the Original Author’s honor and reputation, the Licensor will waive or not assert, as
appropriate, this Section, to the fullest extent permitted by the applicable national law, to enable You to reasonably exercise
Your right under Section 3(b) of this License (right to make Adaptations) but not otherwise.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES
OF TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS,
ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF
IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL,
INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

1. This License and the rights granted hereunder will terminate automatically upon any breach by You of the terms of this
License. Individuals or entities who have received Adaptations or Collections from You under this License, however, will not
have their licenses terminated provided such individuals or entities remain in full compliance with those licenses. Sections 1,
2, 5, 6, 7, and 8 will survive any termination of this License.

C.6. CREATIVE COMMONS ATTRIBUTION-SHAREALIKE 3.0 UNPORTED LICENSE 187

2. Subject to the above terms and conditions, the license granted here is perpetual (for the duration of the applicable
copyright in the Work). Notwithstanding the above, Licensor reserves the right to release the Work under different license
terms or to stop distributing the Work at any time; provided, however that any such election will not serve to withdraw this
License (or any other license that has been, or is required to be, granted under the terms of this License), and this License
will continue in full force and effect unless terminated as stated above.

8. Miscellaneous

1. Each time You Distribute or Publicly Perform the Work or a Collection, the Licensor offers to the recipient a license to the
Work on the same terms and conditions as the license granted to You under this License.

2. Each time You Distribute or Publicly Perform an Adaptation, Licensor offers to the recipient a license to the original Work
on the same terms and conditions as the license granted to You under this License.

3. If any provision of this License is invalid or unenforceable under applicable law, it shall not affect the validity or
enforceability of the remainder of the terms of this License, and without further action by the parties to this agreement, such
provision shall be reformed to the minimum extent necessary to make such provision valid and enforceable.

4. No term or provision of this License shall be deemed waived and no breach consented to unless such waiver or consent shall be
in writing and signed by the party to be charged with such waiver or consent.

5. This License constitutes the entire agreement between the parties with respect to the Work licensed here. There are no
understandings, agreements or representations with respect to the Work not specified here. Licensor shall not be bound by any
additional provisions that may appear in any communication from You. This License may not be modified without the mutual written
agreement of the Licensor and You.

6. The rights granted under, and the subject matter referenced, in this License were drafted utilizing the terminology of
the Berne Convention for the Protection of Literary and Artistic Works (as amended on September 28, 1979), the Rome Convention
of 1961, the WIPO Copyright Treaty of 1996, the WIPO Performances and Phonograms Treaty of 1996 and the Universal Copyright
Convention (as revised on July 24, 1971). These rights and subject matter take effect in the relevant jurisdiction in which
the License terms are sought to be enforced according to the corresponding provisions of the implementation of those treaty
provisions in the applicable national law. If the standard suite of rights granted under applicable copyright law includes
additional rights not granted under this License, such additional rights are deemed to be included in the License; this License
is not intended to restrict the license of any rights under applicable law.

188 APPENDIX C. LICENSES

Index

A
arithmetic

floating point, 22

B
binary, 20
bit, 20
byte, 21

H
hexadecimal, 20

notation, 20

J
Java

primitive
byte, 21

O
octal, 20

notation, 20

189

