
GNU Emacs Lisp Reference Manual
For Emacs Version 24.3

Revision 3.1, January 2013

by Bil Lewis, Dan LaLiberte, Richard Stallman,
the GNU Manual Group, et al.

This is edition 3.1 of the GNU Emacs Lisp Reference Manual,
corresponding to Emacs version 24.3.

Copyright c© 1990–1996, 1998–2013 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with the Invariant Sections
being “GNU General Public License,” with the Front-Cover texts being “A
GNU Manual,” and with the Back-Cover Texts as in (a) below. A copy of the
license is included in the section entitled “GNU Free Documentation License.”

(a) The FSF’s Back-Cover Text is: “You have the freedom to copy and modify
this GNU manual. Buying copies from the FSF supports it in developing GNU
and promoting software freedom.”

Published by the Free Software Foundation
51 Franklin St, Fifth Floor
Boston, MA 02110-1301
USA
ISBN 1-882114-74-4

Cover art by Etienne Suvasa.

i

Short Contents

1 Introduction . 1

2 Lisp Data Types . 8

3 Numbers . 33

4 Strings and Characters . 48

5 Lists . 64

6 Sequences, Arrays, and Vectors . 88

7 Hash Tables . 99
8 Symbols . 104

9 Evaluation . 112

10 Control Structures . 122

11 Variables . 141

12 Functions . 169

13 Macros . 188

14 Customization Settings . 196

15 Loading . 215

16 Byte Compilation . 229

17 Advising Emacs Lisp Functions . 239

18 Debugging Lisp Programs . 249

19 Reading and Printing Lisp Objects . 281

20 Minibuffers . 291

21 Command Loop . 321

22 Keymaps . 366

23 Major and Minor Modes . 404
24 Documentation . 459

25 Files . 469

26 Backups and Auto-Saving . 511

27 Buffers . 521

28 Windows . 538

29 Frames . 590

30 Positions . 623

31 Markers . 636

32 Text . 645

33 Non-ASCII Characters . 705

34 Searching and Matching . 732

35 Syntax Tables . 757

ii

36 Abbrevs and Abbrev Expansion . 773
37 Processes . 780

38 Emacs Display . 822
39 Operating System Interface . 910

40 Preparing Lisp code for distribution . 943

A Emacs 23 Antinews . 948

B GNU Free Documentation License . 950

C GNU General Public License . 958

D Tips and Conventions . 969

E GNU Emacs Internals . 982

F Standard Errors . 1003

G Standard Keymaps . 1007

H Standard Hooks . 1010
Index . 1014

iii

Table of Contents

1 Introduction . 1
1.1 Caveats . 1
1.2 Lisp History . 1
1.3 Conventions . 2

1.3.1 Some Terms . 2
1.3.2 nil and t . 2
1.3.3 Evaluation Notation . 3
1.3.4 Printing Notation . 3
1.3.5 Error Messages . 3
1.3.6 Buffer Text Notation . 4
1.3.7 Format of Descriptions . 4

1.3.7.1 A Sample Function Description . 4
1.3.7.2 A Sample Variable Description . 6

1.4 Version Information . 6
1.5 Acknowledgments . 7

2 Lisp Data Types . 8
2.1 Printed Representation and Read Syntax . 8
2.2 Comments . 9
2.3 Programming Types . 9

2.3.1 Integer Type . 9
2.3.2 Floating Point Type . 10
2.3.3 Character Type . 10

2.3.3.1 Basic Char Syntax . 10
2.3.3.2 General Escape Syntax . 11
2.3.3.3 Control-Character Syntax . 12
2.3.3.4 Meta-Character Syntax . 12
2.3.3.5 Other Character Modifier Bits . 12

2.3.4 Symbol Type . 13
2.3.5 Sequence Types . 14
2.3.6 Cons Cell and List Types . 14

2.3.6.1 Drawing Lists as Box Diagrams . 15
2.3.6.2 Dotted Pair Notation . 16
2.3.6.3 Association List Type . 17

2.3.7 Array Type . 18
2.3.8 String Type . 18

2.3.8.1 Syntax for Strings . 18
2.3.8.2 Non-ASCII Characters in Strings . 19
2.3.8.3 Nonprinting Characters in Strings 19
2.3.8.4 Text Properties in Strings . 20

2.3.9 Vector Type . 20
2.3.10 Char-Table Type . 21
2.3.11 Bool-Vector Type . 21

iv

2.3.12 Hash Table Type . 21
2.3.13 Function Type . 22
2.3.14 Macro Type . 22
2.3.15 Primitive Function Type . 22
2.3.16 Byte-Code Function Type . 23
2.3.17 Autoload Type . 23

2.4 Editing Types . 23
2.4.1 Buffer Type . 23
2.4.2 Marker Type . 24
2.4.3 Window Type . 24
2.4.4 Frame Type . 25
2.4.5 Terminal Type . 25
2.4.6 Window Configuration Type . 25
2.4.7 Frame Configuration Type . 25
2.4.8 Process Type . 25
2.4.9 Stream Type . 26
2.4.10 Keymap Type . 26
2.4.11 Overlay Type . 26
2.4.12 Font Type . 26

2.5 Read Syntax for Circular Objects . 27
2.6 Type Predicates . 27
2.7 Equality Predicates . 30

3 Numbers . 33
3.1 Integer Basics . 33
3.2 Floating Point Basics . 34
3.3 Type Predicates for Numbers . 35
3.4 Comparison of Numbers . 36
3.5 Numeric Conversions . 38
3.6 Arithmetic Operations . 39
3.7 Rounding Operations . 42
3.8 Bitwise Operations on Integers . 42
3.9 Standard Mathematical Functions . 46
3.10 Random Numbers . 47

4 Strings and Characters . 48
4.1 String and Character Basics . 48
4.2 Predicates for Strings . 49
4.3 Creating Strings . 49
4.4 Modifying Strings . 52
4.5 Comparison of Characters and Strings . 53
4.6 Conversion of Characters and Strings . 55
4.7 Formatting Strings . 57
4.8 Case Conversion in Lisp . 59
4.9 The Case Table . 61

v

5 Lists . 64
5.1 Lists and Cons Cells . 64
5.2 Predicates on Lists . 64
5.3 Accessing Elements of Lists . 65
5.4 Building Cons Cells and Lists . 68
5.5 Modifying List Variables . 72
5.6 Modifying Existing List Structure . 74

5.6.1 Altering List Elements with setcar . 74
5.6.2 Altering the CDR of a List . 75
5.6.3 Functions that Rearrange Lists . 76

5.7 Using Lists as Sets . 79
5.8 Association Lists . 82
5.9 Property Lists . 86

5.9.1 Property Lists and Association Lists . 86
5.9.2 Property Lists Outside Symbols . 86

6 Sequences, Arrays, and Vectors 88
6.1 Sequences . 88
6.2 Arrays . 90
6.3 Functions that Operate on Arrays . 91
6.4 Vectors . 92
6.5 Functions for Vectors . 93
6.6 Char-Tables . 94
6.7 Bool-vectors . 96
6.8 Managing a Fixed-Size Ring of Objects . 97

7 Hash Tables . 99
7.1 Creating Hash Tables . 99
7.2 Hash Table Access . 101
7.3 Defining Hash Comparisons . 102
7.4 Other Hash Table Functions . 103

8 Symbols . 104
8.1 Symbol Components . 104
8.2 Defining Symbols . 105
8.3 Creating and Interning Symbols . 106
8.4 Symbol Properties . 108

8.4.1 Accessing Symbol Properties . 109
8.4.2 Standard Symbol Properties . 110

vi

9 Evaluation . 112
9.1 Kinds of Forms . 113

9.1.1 Self-Evaluating Forms . 113
9.1.2 Symbol Forms . 113
9.1.3 Classification of List Forms . 114
9.1.4 Symbol Function Indirection . 114
9.1.5 Evaluation of Function Forms . 115
9.1.6 Lisp Macro Evaluation . 116
9.1.7 Special Forms . 116
9.1.8 Autoloading . 117

9.2 Quoting . 118
9.3 Backquote . 118
9.4 Eval . 119

10 Control Structures . 122
10.1 Sequencing . 122
10.2 Conditionals . 123

10.2.1 Pattern matching case statement . 125
10.3 Constructs for Combining Conditions . 127
10.4 Iteration . 128
10.5 Nonlocal Exits . 129

10.5.1 Explicit Nonlocal Exits: catch and throw 129
10.5.2 Examples of catch and throw . 131
10.5.3 Errors . 132

10.5.3.1 How to Signal an Error . 132
10.5.3.2 How Emacs Processes Errors . 134
10.5.3.3 Writing Code to Handle Errors . 134
10.5.3.4 Error Symbols and Condition Names 138

10.5.4 Cleaning Up from Nonlocal Exits . 139

11 Variables . 141
11.1 Global Variables . 141
11.2 Variables that Never Change . 141
11.3 Local Variables . 142
11.4 When a Variable is “Void” . 144
11.5 Defining Global Variables . 145
11.6 Tips for Defining Variables Robustly . 146
11.7 Accessing Variable Values . 148
11.8 Setting Variable Values . 149
11.9 Scoping Rules for Variable Bindings . 150

11.9.1 Dynamic Binding . 150
11.9.2 Proper Use of Dynamic Binding . 151
11.9.3 Lexical Binding . 152
11.9.4 Using Lexical Binding . 153

11.10 Buffer-Local Variables . 154
11.10.1 Introduction to Buffer-Local Variables 154
11.10.2 Creating and Deleting Buffer-Local Bindings 156

vii

11.10.3 The Default Value of a Buffer-Local Variable 159
11.11 File Local Variables . 160
11.12 Directory Local Variables . 163
11.13 Variable Aliases . 164
11.14 Variables with Restricted Values . 166
11.15 Generalized Variables . 166

11.15.1 The setf Macro . 166
11.15.2 Defining new setf forms . 167

12 Functions . 169
12.1 What Is a Function? . 169
12.2 Lambda Expressions . 171

12.2.1 Components of a Lambda Expression 171
12.2.2 A Simple Lambda Expression Example 171
12.2.3 Other Features of Argument Lists . 172
12.2.4 Documentation Strings of Functions . 173

12.3 Naming a Function . 174
12.4 Defining Functions . 175
12.5 Calling Functions . 176
12.6 Mapping Functions . 178
12.7 Anonymous Functions . 179
12.8 Accessing Function Cell Contents . 181
12.9 Closures . 182
12.10 Declaring Functions Obsolete . 182
12.11 Inline Functions . 183
12.12 The declare Form . 184
12.13 Telling the Compiler that a Function is Defined 185
12.14 Determining whether a Function is Safe to Call 186
12.15 Other Topics Related to Functions . 187

13 Macros . 188
13.1 A Simple Example of a Macro . 188
13.2 Expansion of a Macro Call . 188
13.3 Macros and Byte Compilation . 189
13.4 Defining Macros . 190
13.5 Common Problems Using Macros . 191

13.5.1 Wrong Time . 191
13.5.2 Evaluating Macro Arguments Repeatedly 191
13.5.3 Local Variables in Macro Expansions 192
13.5.4 Evaluating Macro Arguments in Expansion 193
13.5.5 How Many Times is the Macro Expanded? 194

13.6 Indenting Macros . 194

viii

14 Customization Settings . 196
14.1 Common Item Keywords . 196
14.2 Defining Customization Groups . 198
14.3 Defining Customization Variables . 199
14.4 Customization Types . 203

14.4.1 Simple Types . 203
14.4.2 Composite Types . 204
14.4.3 Splicing into Lists . 209
14.4.4 Type Keywords . 209
14.4.5 Defining New Types . 211

14.5 Applying Customizations . 212
14.6 Custom Themes . 213

15 Loading . 215
15.1 How Programs Do Loading . 215
15.2 Load Suffixes . 217
15.3 Library Search . 218
15.4 Loading Non-ASCII Characters . 219
15.5 Autoload . 220
15.6 Repeated Loading . 223
15.7 Features . 224
15.8 Which File Defined a Certain Symbol . 226
15.9 Unloading . 227
15.10 Hooks for Loading . 227

16 Byte Compilation . 229
16.1 Performance of Byte-Compiled Code . 229
16.2 Byte-Compilation Functions . 229
16.3 Documentation Strings and Compilation . 232
16.4 Dynamic Loading of Individual Functions 232
16.5 Evaluation During Compilation . 233
16.6 Compiler Errors . 234
16.7 Byte-Code Function Objects . 235
16.8 Disassembled Byte-Code . 236

17 Advising Emacs Lisp Functions 239
17.1 A Simple Advice Example . 239
17.2 Defining Advice . 240
17.3 Around-Advice . 242
17.4 Computed Advice . 243
17.5 Activation of Advice . 243
17.6 Enabling and Disabling Advice . 245
17.7 Preactivation . 246
17.8 Argument Access in Advice . 246
17.9 The Combined Definition . 248

ix

18 Debugging Lisp Programs 249
18.1 The Lisp Debugger . 249

18.1.1 Entering the Debugger on an Error . 249
18.1.2 Debugging Infinite Loops . 251
18.1.3 Entering the Debugger on a Function Call 251
18.1.4 Explicit Entry to the Debugger . 252
18.1.5 Using the Debugger . 252
18.1.6 Debugger Commands . 253
18.1.7 Invoking the Debugger . 255
18.1.8 Internals of the Debugger . 256

18.2 Edebug . 258
18.2.1 Using Edebug . 258
18.2.2 Instrumenting for Edebug . 259
18.2.3 Edebug Execution Modes . 260
18.2.4 Jumping . 261
18.2.5 Miscellaneous Edebug Commands . 262
18.2.6 Breaks . 262

18.2.6.1 Edebug Breakpoints . 263
18.2.6.2 Global Break Condition . 263
18.2.6.3 Source Breakpoints . 264

18.2.7 Trapping Errors . 264
18.2.8 Edebug Views . 264
18.2.9 Evaluation . 265
18.2.10 Evaluation List Buffer . 265
18.2.11 Printing in Edebug . 267
18.2.12 Trace Buffer . 267
18.2.13 Coverage Testing . 268
18.2.14 The Outside Context . 269

18.2.14.1 Checking Whether to Stop . 269
18.2.14.2 Edebug Display Update . 269
18.2.14.3 Edebug Recursive Edit . 270

18.2.15 Edebug and Macros . 271
18.2.15.1 Instrumenting Macro Calls . 271
18.2.15.2 Specification List . 272
18.2.15.3 Backtracking in Specifications . 274
18.2.15.4 Specification Examples . 275

18.2.16 Edebug Options . 276
18.3 Debugging Invalid Lisp Syntax . 278

18.3.1 Excess Open Parentheses . 278
18.3.2 Excess Close Parentheses . 279

18.4 Test Coverage . 279
18.5 Profiling . 279

x

19 Reading and Printing Lisp Objects 281
19.1 Introduction to Reading and Printing . 281
19.2 Input Streams . 281
19.3 Input Functions . 283
19.4 Output Streams . 284
19.5 Output Functions . 286
19.6 Variables Affecting Output . 289

20 Minibuffers . 291
20.1 Introduction to Minibuffers . 291
20.2 Reading Text Strings with the Minibuffer 292
20.3 Reading Lisp Objects with the Minibuffer 295
20.4 Minibuffer History . 296
20.5 Initial Input . 298
20.6 Completion . 298

20.6.1 Basic Completion Functions . 298
20.6.2 Completion and the Minibuffer . 301
20.6.3 Minibuffer Commands that Do Completion 303
20.6.4 High-Level Completion Functions . 305
20.6.5 Reading File Names . 307
20.6.6 Completion Variables . 310
20.6.7 Programmed Completion . 312
20.6.8 Completion in Ordinary Buffers . 313

20.7 Yes-or-No Queries . 314
20.8 Asking Multiple Y-or-N Questions . 316
20.9 Reading a Password . 317
20.10 Minibuffer Commands . 317
20.11 Minibuffer Windows . 318
20.12 Minibuffer Contents . 319
20.13 Recursive Minibuffers . 319
20.14 Minibuffer Miscellany . 320

21 Command Loop . 321
21.1 Command Loop Overview . 321
21.2 Defining Commands . 322

21.2.1 Using interactive . 322
21.2.2 Code Characters for interactive . 324
21.2.3 Examples of Using interactive . 327

21.3 Interactive Call . 327
21.4 Distinguish Interactive Calls . 329
21.5 Information from the Command Loop . 330
21.6 Adjusting Point After Commands . 333
21.7 Input Events . 333

21.7.1 Keyboard Events . 333
21.7.2 Function Keys . 334
21.7.3 Mouse Events . 335
21.7.4 Click Events . 336

xi

21.7.5 Drag Events . 338
21.7.6 Button-Down Events . 338
21.7.7 Repeat Events . 339
21.7.8 Motion Events . 340
21.7.9 Focus Events . 340
21.7.10 Miscellaneous System Events . 341
21.7.11 Event Examples . 342
21.7.12 Classifying Events . 343
21.7.13 Accessing Mouse Events . 345
21.7.14 Accessing Scroll Bar Events . 347
21.7.15 Putting Keyboard Events in Strings 347

21.8 Reading Input . 348
21.8.1 Key Sequence Input . 349
21.8.2 Reading One Event . 351
21.8.3 Modifying and Translating Input Events 353
21.8.4 Invoking the Input Method . 354
21.8.5 Quoted Character Input . 354
21.8.6 Miscellaneous Event Input Features . 355

21.9 Special Events . 356
21.10 Waiting for Elapsed Time or Input . 357
21.11 Quitting . 358
21.12 Prefix Command Arguments . 359
21.13 Recursive Editing . 361
21.14 Disabling Commands . 363
21.15 Command History . 364
21.16 Keyboard Macros . 364

22 Keymaps . 366
22.1 Key Sequences . 366
22.2 Keymap Basics . 367
22.3 Format of Keymaps . 367
22.4 Creating Keymaps . 369
22.5 Inheritance and Keymaps . 370
22.6 Prefix Keys . 371
22.7 Active Keymaps . 373
22.8 Searching the Active Keymaps . 374
22.9 Controlling the Active Keymaps . 375
22.10 Key Lookup . 378
22.11 Functions for Key Lookup . 379
22.12 Changing Key Bindings . 381
22.13 Remapping Commands . 384
22.14 Keymaps for Translating Sequences of Events 385

22.14.1 Interaction with normal keymaps . 387
22.15 Commands for Binding Keys . 387
22.16 Scanning Keymaps . 388
22.17 Menu Keymaps . 390

22.17.1 Defining Menus . 390
22.17.1.1 Simple Menu Items . 391

xii

22.17.1.2 Extended Menu Items . 392
22.17.1.3 Menu Separators . 393
22.17.1.4 Alias Menu Items . 395

22.17.2 Menus and the Mouse . 395
22.17.3 Menus and the Keyboard . 396
22.17.4 Menu Example . 396
22.17.5 The Menu Bar . 397
22.17.6 Tool bars . 398
22.17.7 Modifying Menus . 401
22.17.8 Easy Menu . 402

23 Major and Minor Modes 404
23.1 Hooks . 404

23.1.1 Running Hooks . 404
23.1.2 Setting Hooks . 406

23.2 Major Modes . 407
23.2.1 Major Mode Conventions . 407
23.2.2 How Emacs Chooses a Major Mode . 411
23.2.3 Getting Help about a Major Mode . 413
23.2.4 Defining Derived Modes . 413
23.2.5 Basic Major Modes . 415
23.2.6 Mode Hooks . 416
23.2.7 Tabulated List mode . 417
23.2.8 Generic Modes . 419
23.2.9 Major Mode Examples . 419

23.3 Minor Modes . 421
23.3.1 Conventions for Writing Minor Modes 421
23.3.2 Keymaps and Minor Modes . 423
23.3.3 Defining Minor Modes . 423

23.4 Mode Line Format . 426
23.4.1 Mode Line Basics . 427
23.4.2 The Data Structure of the Mode Line 427
23.4.3 The Top Level of Mode Line Control 429
23.4.4 Variables Used in the Mode Line . 430
23.4.5 %-Constructs in the Mode Line . 432
23.4.6 Properties in the Mode Line . 433
23.4.7 Window Header Lines . 434
23.4.8 Emulating Mode Line Formatting . 434

23.5 Imenu . 435
23.6 Font Lock Mode . 437

23.6.1 Font Lock Basics . 437
23.6.2 Search-based Fontification . 438
23.6.3 Customizing Search-Based Fontification 442
23.6.4 Other Font Lock Variables . 443
23.6.5 Levels of Font Lock . 444
23.6.6 Precalculated Fontification . 444
23.6.7 Faces for Font Lock . 444
23.6.8 Syntactic Font Lock . 445

xiii

23.6.9 Multiline Font Lock Constructs . 446
23.6.9.1 Font Lock Multiline . 447
23.6.9.2 Region to Fontify after a Buffer Change 448

23.7 Automatic Indentation of code . 448
23.7.1 Simple Minded Indentation Engine . 449

23.7.1.1 SMIE Setup and Features . 449
23.7.1.2 Operator Precedence Grammars 450
23.7.1.3 Defining the Grammar of a Language 451
23.7.1.4 Defining Tokens . 452
23.7.1.5 Living With a Weak Parser . 453
23.7.1.6 Specifying Indentation Rules . 454
23.7.1.7 Helper Functions for Indentation Rules 455
23.7.1.8 Sample Indentation Rules . 456

23.8 Desktop Save Mode . 457

24 Documentation . 459
24.1 Documentation Basics . 459
24.2 Access to Documentation Strings . 460
24.3 Substituting Key Bindings in Documentation 462
24.4 Describing Characters for Help Messages . 464
24.5 Help Functions . 465

25 Files . 469
25.1 Visiting Files . 469

25.1.1 Functions for Visiting Files . 469
25.1.2 Subroutines of Visiting . 472

25.2 Saving Buffers . 473
25.3 Reading from Files . 475
25.4 Writing to Files . 476
25.5 File Locks . 477
25.6 Information about Files . 479

25.6.1 Testing Accessibility . 479
25.6.2 Distinguishing Kinds of Files . 481
25.6.3 Truenames . 482
25.6.4 Other Information about Files . 483
25.6.5 How to Locate Files in Standard Places 486

25.7 Changing File Names and Attributes . 487
25.8 File Names . 490

25.8.1 File Name Components . 490
25.8.2 Absolute and Relative File Names . 492
25.8.3 Directory Names . 493
25.8.4 Functions that Expand Filenames . 494
25.8.5 Generating Unique File Names . 496
25.8.6 File Name Completion . 497
25.8.7 Standard File Names . 498

25.9 Contents of Directories . 499
25.10 Creating, Copying and Deleting Directories 501
25.11 Making Certain File Names “Magic” . 501

xiv

25.12 File Format Conversion . 506
25.12.1 Overview . 506
25.12.2 Round-Trip Specification . 506
25.12.3 Piecemeal Specification . 508

26 Backups and Auto-Saving 511
26.1 Backup Files . 511

26.1.1 Making Backup Files . 511
26.1.2 Backup by Renaming or by Copying? 513
26.1.3 Making and Deleting Numbered Backup Files 514
26.1.4 Naming Backup Files . 514

26.2 Auto-Saving . 516
26.3 Reverting . 519

27 Buffers . 521
27.1 Buffer Basics . 521
27.2 The Current Buffer . 521
27.3 Buffer Names . 524
27.4 Buffer File Name . 525
27.5 Buffer Modification . 527
27.6 Buffer Modification Time . 528
27.7 Read-Only Buffers . 529
27.8 The Buffer List . 530
27.9 Creating Buffers . 533
27.10 Killing Buffers . 533
27.11 Indirect Buffers . 535
27.12 Swapping Text Between Two Buffers . 536
27.13 The Buffer Gap . 536

28 Windows . 538
28.1 Basic Concepts of Emacs Windows . 538
28.2 Windows and Frames . 539
28.3 Window Sizes . 542
28.4 Resizing Windows . 544
28.5 Splitting Windows . 546
28.6 Deleting Windows . 549
28.7 Recombining Windows . 550
28.8 Selecting Windows . 555
28.9 Cyclic Ordering of Windows . 556
28.10 Buffers and Windows . 558
28.11 Switching to a Buffer in a Window . 560
28.12 Choosing a Window for Display . 562
28.13 Action Functions for display-buffer . 563
28.14 Additional Options for Displaying Buffers 566
28.15 Window History . 568
28.16 Dedicated Windows . 570
28.17 Quitting Windows . 570

xv

28.18 Windows and Point . 572
28.19 The Window Start and End Positions . 573
28.20 Textual Scrolling . 576
28.21 Vertical Fractional Scrolling . 579
28.22 Horizontal Scrolling . 580
28.23 Coordinates and Windows . 582
28.24 Window Configurations . 584
28.25 Window Parameters . 586
28.26 Hooks for Window Scrolling and Changes 588

29 Frames . 590
29.1 Creating Frames . 591
29.2 Multiple Terminals . 591
29.3 Frame Parameters . 594

29.3.1 Access to Frame Parameters . 594
29.3.2 Initial Frame Parameters . 594
29.3.3 Window Frame Parameters . 595

29.3.3.1 Basic Parameters . 595
29.3.3.2 Position Parameters . 596
29.3.3.3 Size Parameters . 597
29.3.3.4 Layout Parameters . 598
29.3.3.5 Buffer Parameters . 599
29.3.3.6 Window Management Parameters 599
29.3.3.7 Cursor Parameters . 600
29.3.3.8 Font and Color Parameters . 601

29.3.4 Frame Size And Position . 603
29.3.5 Geometry . 604

29.4 Terminal Parameters . 604
29.5 Frame Titles . 605
29.6 Deleting Frames . 606
29.7 Finding All Frames . 606
29.8 Minibuffers and Frames . 607
29.9 Input Focus . 607
29.10 Visibility of Frames . 609
29.11 Raising and Lowering Frames . 610
29.12 Frame Configurations . 611
29.13 Mouse Tracking . 611
29.14 Mouse Position . 611
29.15 Pop-Up Menus . 612
29.16 Dialog Boxes . 613
29.17 Pointer Shape . 614
29.18 Window System Selections . 615
29.19 Drag and Drop . 616
29.20 Color Names . 616
29.21 Text Terminal Colors . 618
29.22 X Resources . 618
29.23 Display Feature Testing . 619

xvi

30 Positions . 623
30.1 Point . 623
30.2 Motion . 624

30.2.1 Motion by Characters . 624
30.2.2 Motion by Words . 625
30.2.3 Motion to an End of the Buffer . 625
30.2.4 Motion by Text Lines . 626
30.2.5 Motion by Screen Lines . 627
30.2.6 Moving over Balanced Expressions . 630
30.2.7 Skipping Characters . 631

30.3 Excursions . 632
30.4 Narrowing . 633

31 Markers . 636
31.1 Overview of Markers . 636
31.2 Predicates on Markers . 637
31.3 Functions that Create Markers . 637
31.4 Information from Markers . 639
31.5 Marker Insertion Types . 639
31.6 Moving Marker Positions . 640
31.7 The Mark . 640
31.8 The Region . 644

32 Text . 645
32.1 Examining Text Near Point . 645
32.2 Examining Buffer Contents . 646
32.3 Comparing Text . 648
32.4 Inserting Text . 649
32.5 User-Level Insertion Commands . 650
32.6 Deleting Text . 651
32.7 User-Level Deletion Commands . 653
32.8 The Kill Ring . 655

32.8.1 Kill Ring Concepts . 655
32.8.2 Functions for Killing . 655
32.8.3 Yanking . 656
32.8.4 Functions for Yanking . 657
32.8.5 Low-Level Kill Ring . 658
32.8.6 Internals of the Kill Ring . 659

32.9 Undo . 660
32.10 Maintaining Undo Lists . 662
32.11 Filling . 664
32.12 Margins for Filling . 666
32.13 Adaptive Fill Mode . 668
32.14 Auto Filling . 669
32.15 Sorting Text . 670
32.16 Counting Columns . 673
32.17 Indentation . 674

xvii

32.17.1 Indentation Primitives . 674
32.17.2 Indentation Controlled by Major Mode 675
32.17.3 Indenting an Entire Region . 676
32.17.4 Indentation Relative to Previous Lines 677
32.17.5 Adjustable “Tab Stops” . 678
32.17.6 Indentation-Based Motion Commands 678

32.18 Case Changes . 678
32.19 Text Properties . 680

32.19.1 Examining Text Properties . 680
32.19.2 Changing Text Properties . 681
32.19.3 Text Property Search Functions . 683
32.19.4 Properties with Special Meanings . 685
32.19.5 Formatted Text Properties . 690
32.19.6 Stickiness of Text Properties . 691
32.19.7 Lazy Computation of Text Properties 692
32.19.8 Defining Clickable Text . 693
32.19.9 Defining and Using Fields . 695
32.19.10 Why Text Properties are not Intervals 697

32.20 Substituting for a Character Code . 698
32.21 Registers . 698
32.22 Transposition of Text . 700
32.23 Base 64 Encoding . 700
32.24 Checksum/Hash . 701
32.25 Parsing HTML and XML . 701
32.26 Atomic Change Groups . 702
32.27 Change Hooks . 703

33 Non-ASCII Characters . 705
33.1 Text Representations . 705
33.2 Converting Text Representations . 706
33.3 Selecting a Representation . 707
33.4 Character Codes . 708
33.5 Character Properties . 709
33.6 Character Sets . 712
33.7 Scanning for Character Sets . 714
33.8 Translation of Characters . 714
33.9 Coding Systems . 716

33.9.1 Basic Concepts of Coding Systems . 716
33.9.2 Encoding and I/O . 717
33.9.3 Coding Systems in Lisp . 718
33.9.4 User-Chosen Coding Systems . 721
33.9.5 Default Coding Systems . 722
33.9.6 Specifying a Coding System for One Operation 725
33.9.7 Explicit Encoding and Decoding . 726
33.9.8 Terminal I/O Encoding . 728
33.9.9 MS-DOS File Types . 728

33.10 Input Methods . 729
33.11 Locales . 730

xviii

34 Searching and Matching . 732
34.1 Searching for Strings . 732
34.2 Searching and Case . 734
34.3 Regular Expressions . 734

34.3.1 Syntax of Regular Expressions . 735
34.3.1.1 Special Characters in Regular Expressions 735
34.3.1.2 Character Classes . 738
34.3.1.3 Backslash Constructs in Regular Expressions 740

34.3.2 Complex Regexp Example . 743
34.3.3 Regular Expression Functions . 743

34.4 Regular Expression Searching . 744
34.5 POSIX Regular Expression Searching . 747
34.6 The Match Data . 748

34.6.1 Replacing the Text that Matched . 748
34.6.2 Simple Match Data Access . 749
34.6.3 Accessing the Entire Match Data . 751
34.6.4 Saving and Restoring the Match Data 752

34.7 Search and Replace . 753
34.8 Standard Regular Expressions Used in Editing 756

35 Syntax Tables . 757
35.1 Syntax Table Concepts . 757
35.2 Syntax Descriptors . 758

35.2.1 Table of Syntax Classes . 758
35.2.2 Syntax Flags . 761

35.3 Syntax Table Functions . 762
35.4 Syntax Properties . 764
35.5 Motion and Syntax . 765
35.6 Parsing Expressions . 765

35.6.1 Motion Commands Based on Parsing 766
35.6.2 Finding the Parse State for a Position 766
35.6.3 Parser State . 767
35.6.4 Low-Level Parsing . 768
35.6.5 Parameters to Control Parsing . 769

35.7 Syntax Table Internals . 769
35.8 Categories . 770

36 Abbrevs and Abbrev Expansion 773
36.1 Abbrev Tables . 773
36.2 Defining Abbrevs . 774
36.3 Saving Abbrevs in Files . 775
36.4 Looking Up and Expanding Abbreviations 776
36.5 Standard Abbrev Tables . 778
36.6 Abbrev Properties . 778
36.7 Abbrev Table Properties . 779

xix

37 Processes . 780
37.1 Functions that Create Subprocesses . 780
37.2 Shell Arguments . 781
37.3 Creating a Synchronous Process . 783
37.4 Creating an Asynchronous Process . 787
37.5 Deleting Processes . 789
37.6 Process Information . 789
37.7 Sending Input to Processes . 792
37.8 Sending Signals to Processes . 793
37.9 Receiving Output from Processes . 795

37.9.1 Process Buffers . 795
37.9.2 Process Filter Functions . 796
37.9.3 Decoding Process Output . 798
37.9.4 Accepting Output from Processes . 798

37.10 Sentinels: Detecting Process Status Changes 799
37.11 Querying Before Exit . 800
37.12 Accessing Other Processes . 801
37.13 Transaction Queues . 803
37.14 Network Connections . 804
37.15 Network Servers . 806
37.16 Datagrams . 807
37.17 Low-Level Network Access . 807

37.17.1 make-network-process . 807
37.17.2 Network Options . 810
37.17.3 Testing Availability of Network Features 811

37.18 Misc Network Facilities . 811
37.19 Communicating with Serial Ports . 812
37.20 Packing and Unpacking Byte Arrays . 815

37.20.1 Describing Data Layout . 815
37.20.2 Functions to Unpack and Pack Bytes 817
37.20.3 Examples of Byte Unpacking and Packing 818

38 Emacs Display . 822
38.1 Refreshing the Screen . 822
38.2 Forcing Redisplay . 822
38.3 Truncation . 823
38.4 The Echo Area . 825

38.4.1 Displaying Messages in the Echo Area 825
38.4.2 Reporting Operation Progress . 826
38.4.3 Logging Messages in *Messages* . 828
38.4.4 Echo Area Customization . 829

38.5 Reporting Warnings . 829
38.5.1 Warning Basics . 829
38.5.2 Warning Variables . 830
38.5.3 Warning Options . 831
38.5.4 Delayed Warnings . 832

38.6 Invisible Text . 832
38.7 Selective Display . 835

xx

38.8 Temporary Displays . 836
38.9 Overlays . 839

38.9.1 Managing Overlays . 839
38.9.2 Overlay Properties . 842
38.9.3 Searching for Overlays . 845

38.10 Width . 846
38.11 Line Height . 847
38.12 Faces . 848

38.12.1 Face Attributes . 849
38.12.2 Defining Faces . 852
38.12.3 Face Attribute Functions . 854
38.12.4 Displaying Faces . 857
38.12.5 Face Remapping . 858
38.12.6 Functions for Working with Faces . 859
38.12.7 Automatic Face Assignment . 860
38.12.8 Basic Faces . 860
38.12.9 Font Selection . 861
38.12.10 Looking Up Fonts . 863
38.12.11 Fontsets . 863
38.12.12 Low-Level Font Representation . 865

38.13 Fringes . 867
38.13.1 Fringe Size and Position . 868
38.13.2 Fringe Indicators . 868
38.13.3 Fringe Cursors . 870
38.13.4 Fringe Bitmaps . 870
38.13.5 Customizing Fringe Bitmaps . 871
38.13.6 The Overlay Arrow . 872

38.14 Scroll Bars . 873
38.15 The display Property . 874

38.15.1 Display Specs That Replace The Text 874
38.15.2 Specified Spaces . 875
38.15.3 Pixel Specification for Spaces . 876
38.15.4 Other Display Specifications . 877
38.15.5 Displaying in the Margins . 878

38.16 Images . 879
38.16.1 Image Formats . 879
38.16.2 Image Descriptors . 880
38.16.3 XBM Images . 883
38.16.4 XPM Images . 883
38.16.5 GIF Images . 884
38.16.6 TIFF Images . 884
38.16.7 PostScript Images . 884
38.16.8 ImageMagick Images . 884
38.16.9 Other Image Types . 885
38.16.10 Defining Images . 886
38.16.11 Showing Images . 887
38.16.12 Animated Images . 889
38.16.13 Image Cache . 889

xxi

38.17 Buttons . 890
38.17.1 Button Properties . 890
38.17.2 Button Types . 891
38.17.3 Making Buttons . 892
38.17.4 Manipulating Buttons . 892
38.17.5 Button Buffer Commands . 893

38.18 Abstract Display . 894
38.18.1 Abstract Display Functions . 895
38.18.2 Abstract Display Example . 897

38.19 Blinking Parentheses . 899
38.20 Character Display . 900

38.20.1 Usual Display Conventions . 900
38.20.2 Display Tables . 901
38.20.3 Active Display Table . 902
38.20.4 Glyphs . 903
38.20.5 Glyphless Character Display . 903

38.21 Beeping . 905
38.22 Window Systems . 905
38.23 Bidirectional Display . 906

39 Operating System Interface 910
39.1 Starting Up Emacs . 910

39.1.1 Summary: Sequence of Actions at Startup 910
39.1.2 The Init File . 913
39.1.3 Terminal-Specific Initialization . 914
39.1.4 Command-Line Arguments . 915

39.2 Getting Out of Emacs . 916
39.2.1 Killing Emacs . 916
39.2.2 Suspending Emacs . 917

39.3 Operating System Environment . 919
39.4 User Identification . 922
39.5 Time of Day . 923
39.6 Time Conversion . 925
39.7 Parsing and Formatting Times . 926
39.8 Processor Run time . 929
39.9 Time Calculations . 929
39.10 Timers for Delayed Execution . 930
39.11 Idle Timers . 932
39.12 Terminal Input . 934

39.12.1 Input Modes . 934
39.12.2 Recording Input . 934

39.13 Terminal Output . 935
39.14 Sound Output . 936
39.15 Operating on X11 Keysyms . 937
39.16 Batch Mode . 937
39.17 Session Management . 938
39.18 Desktop Notifications . 939
39.19 Dynamically Loaded Libraries . 942

xxii

40 Preparing Lisp code for distribution 943
40.1 Packaging Basics . 943
40.2 Simple Packages . 944
40.3 Multi-file Packages . 945
40.4 Creating and Maintaining Package Archives 946

Appendix A Emacs 23 Antinews 948
A.1 Old Lisp Features in Emacs 23 . 948

Appendix B GNU Free Documentation License
. 950

Appendix C GNU General Public License . . . 958

Appendix D Tips and Conventions 969
D.1 Emacs Lisp Coding Conventions . 969
D.2 Key Binding Conventions . 971
D.3 Emacs Programming Tips . 972
D.4 Tips for Making Compiled Code Fast . 974
D.5 Tips for Avoiding Compiler Warnings . 974
D.6 Tips for Documentation Strings . 975
D.7 Tips on Writing Comments . 978
D.8 Conventional Headers for Emacs Libraries 979

Appendix E GNU Emacs Internals 982
E.1 Building Emacs . 982
E.2 Pure Storage . 983
E.3 Garbage Collection . 984
E.4 Memory Usage . 988
E.5 Writing Emacs Primitives . 988
E.6 Object Internals . 992

E.6.1 Buffer Internals . 992
E.6.2 Window Internals . 997
E.6.3 Process Internals . 1001

Appendix F Standard Errors 1003

Appendix G Standard Keymaps 1007

Appendix H Standard Hooks 1010

Index . 1014

Chapter 1: Introduction 1

1 Introduction

Most of the GNU Emacs text editor is written in the programming language called Emacs
Lisp. You can write new code in Emacs Lisp and install it as an extension to the editor.
However, Emacs Lisp is more than a mere “extension language”; it is a full computer
programming language in its own right. You can use it as you would any other programming
language.

Because Emacs Lisp is designed for use in an editor, it has special features for scanning
and parsing text as well as features for handling files, buffers, displays, subprocesses, and
so on. Emacs Lisp is closely integrated with the editing facilities; thus, editing commands
are functions that can also conveniently be called from Lisp programs, and parameters for
customization are ordinary Lisp variables.

This manual attempts to be a full description of Emacs Lisp. For a beginner’s introduc-
tion to Emacs Lisp, see An Introduction to Emacs Lisp Programming, by Bob Chassell, also
published by the Free Software Foundation. This manual presumes considerable familiarity
with the use of Emacs for editing; see The GNU Emacs Manual for this basic information.

Generally speaking, the earlier chapters describe features of Emacs Lisp that have coun-
terparts in many programming languages, and later chapters describe features that are
peculiar to Emacs Lisp or relate specifically to editing.

This is edition 3.1 of the GNU Emacs Lisp Reference Manual, corresponding to Emacs
version 24.3.

1.1 Caveats

This manual has gone through numerous drafts. It is nearly complete but not flawless.
There are a few topics that are not covered, either because we consider them secondary
(such as most of the individual modes) or because they are yet to be written. Because we
are not able to deal with them completely, we have left out several parts intentionally.

The manual should be fully correct in what it does cover, and it is therefore open to
criticism on anything it says—from specific examples and descriptive text, to the ordering
of chapters and sections. If something is confusing, or you find that you have to look at
the sources or experiment to learn something not covered in the manual, then perhaps the
manual should be fixed. Please let us know.

As you use this manual, we ask that you mark pages with corrections so you can later
look them up and send them to us. If you think of a simple, real-life example for a function
or group of functions, please make an effort to write it up and send it in. Please reference
any comments to the chapter name, section name, and function name, as appropriate, since
page numbers and chapter and section numbers will change and we may have trouble finding
the text you are talking about. Also state the version of the edition you are criticizing.

Please send comments and corrections using M-x report-emacs-bug.

1.2 Lisp History

Lisp (LISt Processing language) was first developed in the late 1950s at the Massachusetts
Institute of Technology for research in artificial intelligence. The great power of the Lisp
language makes it ideal for other purposes as well, such as writing editing commands.

Chapter 1: Introduction 2

Dozens of Lisp implementations have been built over the years, each with its own id-
iosyncrasies. Many of them were inspired by Maclisp, which was written in the 1960s at
MIT’s Project MAC. Eventually the implementers of the descendants of Maclisp came to-
gether and developed a standard for Lisp systems, called Common Lisp. In the meantime,
Gerry Sussman and Guy Steele at MIT developed a simplified but very powerful dialect of
Lisp, called Scheme.

GNU Emacs Lisp is largely inspired by Maclisp, and a little by Common Lisp. If you
know Common Lisp, you will notice many similarities. However, many features of Common
Lisp have been omitted or simplified in order to reduce the memory requirements of GNU
Emacs. Sometimes the simplifications are so drastic that a Common Lisp user might be
very confused. We will occasionally point out how GNU Emacs Lisp differs from Common
Lisp. If you don’t know Common Lisp, don’t worry about it; this manual is self-contained.

A certain amount of Common Lisp emulation is available via the cl-lib library. See
Section “Overview” in Common Lisp Extensions.

Emacs Lisp is not at all influenced by Scheme; but the GNU project has an implementa-
tion of Scheme, called Guile. We use it in all new GNU software that calls for extensibility.

1.3 Conventions

This section explains the notational conventions that are used in this manual. You may
want to skip this section and refer back to it later.

1.3.1 Some Terms

Throughout this manual, the phrases “the Lisp reader” and “the Lisp printer” refer to those
routines in Lisp that convert textual representations of Lisp objects into actual Lisp objects,
and vice versa. See Section 2.1 [Printed Representation], page 8, for more details. You,
the person reading this manual, are thought of as “the programmer” and are addressed as
“you”. “The user” is the person who uses Lisp programs, including those you write.

Examples of Lisp code are formatted like this: (list 1 2 3). Names that represent
metasyntactic variables, or arguments to a function being described, are formatted like
this: first-number.

1.3.2 nil and t

In Emacs Lisp, the symbol nil has three separate meanings: it is a symbol with the name
‘nil’; it is the logical truth value false; and it is the empty list—the list of zero elements.
When used as a variable, nil always has the value nil.

As far as the Lisp reader is concerned, ‘()’ and ‘nil’ are identical: they stand for the
same object, the symbol nil. The different ways of writing the symbol are intended entirely
for human readers. After the Lisp reader has read either ‘()’ or ‘nil’, there is no way to
determine which representation was actually written by the programmer.

In this manual, we write () when we wish to emphasize that it means the empty list,
and we write nil when we wish to emphasize that it means the truth value false. That is
a good convention to use in Lisp programs also.

(cons ’foo ()) ; Emphasize the empty list
(setq foo-flag nil) ; Emphasize the truth value false

Chapter 1: Introduction 3

In contexts where a truth value is expected, any non-nil value is considered to be true.
However, t is the preferred way to represent the truth value true. When you need to choose
a value which represents true, and there is no other basis for choosing, use t. The symbol
t always has the value t.

In Emacs Lisp, nil and t are special symbols that always evaluate to themselves. This is
so that you do not need to quote them to use them as constants in a program. An attempt
to change their values results in a setting-constant error. See Section 11.2 [Constant
Variables], page 141.

[Function]booleanp object
Return non-nil if object is one of the two canonical boolean values: t or nil.

1.3.3 Evaluation Notation

A Lisp expression that you can evaluate is called a form. Evaluating a form always produces
a result, which is a Lisp object. In the examples in this manual, this is indicated with ‘⇒’:

(car ’(1 2))

⇒ 1

You can read this as “(car ’(1 2)) evaluates to 1”.

When a form is a macro call, it expands into a new form for Lisp to evaluate. We show
the result of the expansion with ‘ 7→’. We may or may not show the result of the evaluation
of the expanded form.

(third ’(a b c))

7→ (car (cdr (cdr ’(a b c))))

⇒ c

To help describe one form, we sometimes show another form that produces identical
results. The exact equivalence of two forms is indicated with ‘≡ ’.

(make-sparse-keymap) ≡ (list ’keymap)

1.3.4 Printing Notation

Many of the examples in this manual print text when they are evaluated. If you execute
example code in a Lisp Interaction buffer (such as the buffer *scratch*), the printed text is
inserted into the buffer. If you execute the example by other means (such as by evaluating
the function eval-region), the printed text is displayed in the echo area.

Examples in this manual indicate printed text with ‘ a ’, irrespective of where that text
goes. The value returned by evaluating the form follows on a separate line with ‘⇒’.

(progn (prin1 ’foo) (princ "\n") (prin1 ’bar))

a foo

a bar

⇒ bar

1.3.5 Error Messages

Some examples signal errors. This normally displays an error message in the echo area. We
show the error message on a line starting with ‘ error ’. Note that ‘ error ’ itself does not
appear in the echo area.

(+ 23 ’x)

error Wrong type argument: number-or-marker-p, x

Chapter 1: Introduction 4

1.3.6 Buffer Text Notation

Some examples describe modifications to the contents of a buffer, by showing the “before”
and “after” versions of the text. These examples show the contents of the buffer in question
between two lines of dashes containing the buffer name. In addition, ‘?’ indicates the
location of point. (The symbol for point, of course, is not part of the text in the buffer; it
indicates the place between two characters where point is currently located.)

---------- Buffer: foo ----------

This is the ?contents of foo.

---------- Buffer: foo ----------

(insert "changed ")

⇒ nil

---------- Buffer: foo ----------

This is the changed ?contents of foo.

---------- Buffer: foo ----------

1.3.7 Format of Descriptions

Functions, variables, macros, commands, user options, and special forms are described in
this manual in a uniform format. The first line of a description contains the name of the
item followed by its arguments, if any. The category—function, variable, or whatever—is
printed next to the right margin. The description follows on succeeding lines, sometimes
with examples.

1.3.7.1 A Sample Function Description

In a function description, the name of the function being described appears first. It is
followed on the same line by a list of argument names. These names are also used in the
body of the description, to stand for the values of the arguments.

The appearance of the keyword &optional in the argument list indicates that the sub-
sequent arguments may be omitted (omitted arguments default to nil). Do not write
&optional when you call the function.

The keyword &rest (which must be followed by a single argument name) indicates that
any number of arguments can follow. The single argument name following &rest receives,
as its value, a list of all the remaining arguments passed to the function. Do not write
&rest when you call the function.

Here is a description of an imaginary function foo:

[Function]foo integer1 &optional integer2 &rest integers
The function foo subtracts integer1 from integer2, then adds all the rest of the
arguments to the result. If integer2 is not supplied, then the number 19 is used by
default.

(foo 1 5 3 9)

⇒ 16

(foo 5)

⇒ 14

Chapter 1: Introduction 5

More generally,

(foo w x y...)

≡
(+ (- x w) y...)

By convention, any argument whose name contains the name of a type (e.g., integer,
integer1 or buffer) is expected to be of that type. A plural of a type (such as buffers)
often means a list of objects of that type. An argument named object may be of any type.
(For a list of Emacs object types, see Chapter 2 [Lisp Data Types], page 8.) An argument
with any other sort of name (e.g., new-file) is specific to the function; if the function has a
documentation string, the type of the argument should be described there (see Chapter 24
[Documentation], page 459).

See Section 12.2 [Lambda Expressions], page 171, for a more complete description of
arguments modified by &optional and &rest.

Command, macro, and special form descriptions have the same format, but the word
‘Function’ is replaced by ‘Command’, ‘Macro’, or ‘Special Form’, respectively. Commands
are simply functions that may be called interactively; macros process their arguments dif-
ferently from functions (the arguments are not evaluated), but are presented the same way.

The descriptions of macros and special forms use a more complex notation to specify
optional and repeated arguments, because they can break the argument list down into
separate arguments in more complicated ways. ‘[optional-arg]’ means that optional-arg
is optional and ‘repeated-args...’ stands for zero or more arguments. Parentheses are
used when several arguments are grouped into additional levels of list structure. Here is an
example:

[Special Form]count-loop (var [from to [inc]]) body. . .
This imaginary special form implements a loop that executes the body forms and
then increments the variable var on each iteration. On the first iteration, the variable
has the value from; on subsequent iterations, it is incremented by one (or by inc if
that is given). The loop exits before executing body if var equals to. Here is an
example:

(count-loop (i 0 10)

(prin1 i) (princ " ")

(prin1 (aref vector i))

(terpri))

If from and to are omitted, var is bound to nil before the loop begins, and the loop
exits if var is non-nil at the beginning of an iteration. Here is an example:

(count-loop (done)

(if (pending)

(fixit)

(setq done t)))

In this special form, the arguments from and to are optional, but must both be present
or both absent. If they are present, inc may optionally be specified as well. These
arguments are grouped with the argument var into a list, to distinguish them from
body, which includes all remaining elements of the form.

Chapter 1: Introduction 6

1.3.7.2 A Sample Variable Description

A variable is a name that can be bound (or set) to an object. The object to which a variable
is bound is called a value; we say also that variable holds that value. Although nearly all
variables can be set by the user, certain variables exist specifically so that users can change
them; these are called user options. Ordinary variables and user options are described using
a format like that for functions, except that there are no arguments.

Here is a description of the imaginary electric-future-map variable.

[Variable]electric-future-map
The value of this variable is a full keymap used by Electric Command Future mode.
The functions in this map allow you to edit commands you have not yet thought
about executing.

User option descriptions have the same format, but ‘Variable’ is replaced by ‘User
Option’.

1.4 Version Information

These facilities provide information about which version of Emacs is in use.

[Command]emacs-version &optional here
This function returns a string describing the version of Emacs that is running. It is
useful to include this string in bug reports.

(emacs-version)
⇒ "GNU Emacs 23.1 (i686-pc-linux-gnu, GTK+ Version 2.14.4)

of 2009-06-01 on cyd.mit.edu"

If here is non-nil, it inserts the text in the buffer before point, and returns nil.
When this function is called interactively, it prints the same information in the echo
area, but giving a prefix argument makes here non-nil.

[Variable]emacs-build-time
The value of this variable indicates the time at which Emacs was built. It is a list
of four integers, like the value of current-time (see Section 39.5 [Time of Day],
page 923).

emacs-build-time

⇒ (20614 63694 515336 438000)

[Variable]emacs-version
The value of this variable is the version of Emacs being run. It is a string such as
"23.1.1". The last number in this string is not really part of the Emacs release
version number; it is incremented each time Emacs is built in any given directory. A
value with four numeric components, such as "22.0.91.1", indicates an unreleased
test version.

[Variable]emacs-major-version
The major version number of Emacs, as an integer. For Emacs version 23.1, the value
is 23.

[Variable]emacs-minor-version
The minor version number of Emacs, as an integer. For Emacs version 23.1, the value
is 1.

Chapter 1: Introduction 7

1.5 Acknowledgments

This manual was originally written by Robert Krawitz, Bil Lewis, Dan LaLiberte,
Richard M. Stallman and Chris Welty, the volunteers of the GNU manual group, in an
effort extending over several years. Robert J. Chassell helped to review and edit the
manual, with the support of the Defense Advanced Research Projects Agency, ARPA
Order 6082, arranged by Warren A. Hunt, Jr. of Computational Logic, Inc. Additional
sections have since been written by Miles Bader, Lars Brinkhoff, Chong Yidong, Kenichi
Handa, Lute Kamstra, Juri Linkov, Glenn Morris, Thien-Thi Nguyen, Dan Nicolaescu,
Martin Rudalics, Kim F. Storm, Luc Teirlinck, and Eli Zaretskii, and others.

Corrections were supplied by Drew Adams, Juanma Barranquero, Karl Berry, Jim
Blandy, Bard Bloom, Stephane Boucher, David Boyes, Alan Carroll, Richard Davis,
Lawrence R. Dodd, Peter Doornbosch, David A. Duff, Chris Eich, Beverly Erlebacher,
David Eckelkamp, Ralf Fassel, Eirik Fuller, Stephen Gildea, Bob Glickstein, Eric
Hanchrow, Jesper Harder, George Hartzell, Nathan Hess, Masayuki Ida, Dan Jacobson,
Jak Kirman, Bob Knighten, Frederick M. Korz, Joe Lammens, Glenn M. Lewis, K.
Richard Magill, Brian Marick, Roland McGrath, Stefan Monnier, Skip Montanaro, John
Gardiner Myers, Thomas A. Peterson, Francesco Potorti, Friedrich Pukelsheim, Arnold
D. Robbins, Raul Rockwell, Jason Rumney, Per Starbäck, Shinichirou Sugou, Kimmo
Suominen, Edward Tharp, Bill Trost, Rickard Westman, Jean White, Eduard Wiebe,
Matthew Wilding, Carl Witty, Dale Worley, Rusty Wright, and David D. Zuhn.

For a more complete list of contributors, please see the relevant ChangeLog file in the
Emacs sources.

Chapter 2: Lisp Data Types 8

2 Lisp Data Types

A Lisp object is a piece of data used and manipulated by Lisp programs. For our purposes,
a type or data type is a set of possible objects.

Every object belongs to at least one type. Objects of the same type have similar struc-
tures and may usually be used in the same contexts. Types can overlap, and objects can
belong to two or more types. Consequently, we can ask whether an object belongs to a
particular type, but not for “the” type of an object.

A few fundamental object types are built into Emacs. These, from which all other
types are constructed, are called primitive types. Each object belongs to one and only one
primitive type. These types include integer, float, cons, symbol, string, vector, hash-table,
subr, and byte-code function, plus several special types, such as buffer, that are related to
editing. (See Section 2.4 [Editing Types], page 23.)

Each primitive type has a corresponding Lisp function that checks whether an object is
a member of that type.

Lisp is unlike many other languages in that its objects are self-typing : the primitive type
of each object is implicit in the object itself. For example, if an object is a vector, nothing
can treat it as a number; Lisp knows it is a vector, not a number.

In most languages, the programmer must declare the data type of each variable, and the
type is known by the compiler but not represented in the data. Such type declarations do not
exist in Emacs Lisp. A Lisp variable can have any type of value, and it remembers whatever
value you store in it, type and all. (Actually, a small number of Emacs Lisp variables can
only take on values of a certain type. See Section 11.14 [Variables with Restricted Values],
page 166.)

This chapter describes the purpose, printed representation, and read syntax of each of
the standard types in GNU Emacs Lisp. Details on how to use these types can be found in
later chapters.

2.1 Printed Representation and Read Syntax

The printed representation of an object is the format of the output generated by the Lisp
printer (the function prin1) for that object. Every data type has a unique printed repre-
sentation. The read syntax of an object is the format of the input accepted by the Lisp
reader (the function read) for that object. This is not necessarily unique; many kinds of
object have more than one syntax. See Chapter 19 [Read and Print], page 281.

In most cases, an object’s printed representation is also a read syntax for the object.
However, some types have no read syntax, since it does not make sense to enter objects of
these types as constants in a Lisp program. These objects are printed in hash notation,
which consists of the characters ‘#<’, a descriptive string (typically the type name followed
by the name of the object), and a closing ‘>’. For example:

(current-buffer)

⇒ #<buffer objects.texi>

Hash notation cannot be read at all, so the Lisp reader signals the error invalid-read-

syntax whenever it encounters ‘#<’.

Chapter 2: Lisp Data Types 9

In other languages, an expression is text; it has no other form. In Lisp, an expression
is primarily a Lisp object and only secondarily the text that is the object’s read syntax.
Often there is no need to emphasize this distinction, but you must keep it in the back of
your mind, or you will occasionally be very confused.

When you evaluate an expression interactively, the Lisp interpreter first reads the textual
representation of it, producing a Lisp object, and then evaluates that object (see Chapter 9
[Evaluation], page 112). However, evaluation and reading are separate activities. Reading
returns the Lisp object represented by the text that is read; the object may or may not be
evaluated later. See Section 19.3 [Input Functions], page 283, for a description of read, the
basic function for reading objects.

2.2 Comments

A comment is text that is written in a program only for the sake of humans that read the
program, and that has no effect on the meaning of the program. In Lisp, a semicolon (‘;’)
starts a comment if it is not within a string or character constant. The comment continues
to the end of line. The Lisp reader discards comments; they do not become part of the Lisp
objects which represent the program within the Lisp system.

The ‘#@count’ construct, which skips the next count characters, is useful for program-
generated comments containing binary data. The Emacs Lisp byte compiler uses this in its
output files (see Chapter 16 [Byte Compilation], page 229). It isn’t meant for source files,
however.

See Section D.7 [Comment Tips], page 978, for conventions for formatting comments.

2.3 Programming Types

There are two general categories of types in Emacs Lisp: those having to do with Lisp
programming, and those having to do with editing. The former exist in many Lisp imple-
mentations, in one form or another. The latter are unique to Emacs Lisp.

2.3.1 Integer Type

The range of values for integers in Emacs Lisp is −536870912 to 536870911 (30 bits; i.e.,
−229 to 229−1) on typical 32-bit machines. (Some machines provide a wider range.) Emacs
Lisp arithmetic functions do not check for overflow. Thus (1+ 536870911) is −536870912
if Emacs integers are 30 bits.

The read syntax for integers is a sequence of (base ten) digits with an optional sign at
the beginning and an optional period at the end. The printed representation produced by
the Lisp interpreter never has a leading ‘+’ or a final ‘.’.

-1 ; The integer -1.
1 ; The integer 1.
1. ; Also the integer 1.
+1 ; Also the integer 1.

As a special exception, if a sequence of digits specifies an integer too large or too small to be
a valid integer object, the Lisp reader reads it as a floating-point number (see Section 2.3.2
[Floating Point Type], page 10). For instance, if Emacs integers are 30 bits, 536870912 is
read as the floating-point number 536870912.0.

See Chapter 3 [Numbers], page 33, for more information.

Chapter 2: Lisp Data Types 10

2.3.2 Floating Point Type

Floating point numbers are the computer equivalent of scientific notation; you can think of
a floating point number as a fraction together with a power of ten. The precise number of
significant figures and the range of possible exponents is machine-specific; Emacs uses the
C data type double to store the value, and internally this records a power of 2 rather than
a power of 10.

The printed representation for floating point numbers requires either a decimal point
(with at least one digit following), an exponent, or both. For example, ‘1500.0’, ‘15e2’,
‘15.0e2’, ‘1.5e3’, and ‘.15e4’ are five ways of writing a floating point number whose value
is 1500. They are all equivalent.

See Chapter 3 [Numbers], page 33, for more information.

2.3.3 Character Type

A character in Emacs Lisp is nothing more than an integer. In other words, characters are
represented by their character codes. For example, the character A is represented as the
integer 65.

Individual characters are used occasionally in programs, but it is more common to work
with strings, which are sequences composed of characters. See Section 2.3.8 [String Type],
page 18.

Characters in strings and buffers are currently limited to the range of 0 to 4194303—
twenty two bits (see Section 33.4 [Character Codes], page 708). Codes 0 through 127 are
ASCII codes; the rest are non-ASCII (see Chapter 33 [Non-ASCII Characters], page 705).
Characters that represent keyboard input have a much wider range, to encode modifier keys
such as Control, Meta and Shift.

There are special functions for producing a human-readable textual description of a
character for the sake of messages. See Section 24.4 [Describing Characters], page 464.

2.3.3.1 Basic Char Syntax

Since characters are really integers, the printed representation of a character is a decimal
number. This is also a possible read syntax for a character, but writing characters that
way in Lisp programs is not clear programming. You should always use the special read
syntax formats that Emacs Lisp provides for characters. These syntax formats start with a
question mark.

The usual read syntax for alphanumeric characters is a question mark followed by the
character; thus, ‘?A’ for the character A, ‘?B’ for the character B, and ‘?a’ for the character
a.

For example:

?Q ⇒ 81 ?q ⇒ 113

You can use the same syntax for punctuation characters, but it is often a good idea
to add a ‘\’ so that the Emacs commands for editing Lisp code don’t get confused. For
example, ‘?\(’ is the way to write the open-paren character. If the character is ‘\’, you
must use a second ‘\’ to quote it: ‘?\\’.

You can express the characters control-g, backspace, tab, newline, vertical tab, formfeed,
space, return, del, and escape as ‘?\a’, ‘?\b’, ‘?\t’, ‘?\n’, ‘?\v’, ‘?\f’, ‘?\s’, ‘?\r’, ‘?\d’,

Chapter 2: Lisp Data Types 11

and ‘?\e’, respectively. (‘?\s’ followed by a dash has a different meaning—it applies the
“super” modifier to the following character.) Thus,

?\a ⇒ 7 ; control-g, C-g
?\b ⇒ 8 ; backspace, BS, C-h
?\t ⇒ 9 ; tab, TAB, C-i
?\n ⇒ 10 ; newline, C-j
?\v ⇒ 11 ; vertical tab, C-k
?\f ⇒ 12 ; formfeed character, C-l
?\r ⇒ 13 ; carriage return, RET, C-m
?\e ⇒ 27 ; escape character, ESC, C-[
?\s ⇒ 32 ; space character, SPC
?\\ ⇒ 92 ; backslash character, \
?\d ⇒ 127 ; delete character, DEL

These sequences which start with backslash are also known as escape sequences, because
backslash plays the role of an “escape character”; this terminology has nothing to do with
the character ESC. ‘\s’ is meant for use in character constants; in string constants, just
write the space.

A backslash is allowed, and harmless, preceding any character without a special escape
meaning; thus, ‘?\+’ is equivalent to ‘?+’. There is no reason to add a backslash before most
characters. However, you should add a backslash before any of the characters ‘()\|;’‘"#.,’
to avoid confusing the Emacs commands for editing Lisp code. You can also add a backslash
before whitespace characters such as space, tab, newline and formfeed. However, it is cleaner
to use one of the easily readable escape sequences, such as ‘\t’ or ‘\s’, instead of an actual
whitespace character such as a tab or a space. (If you do write backslash followed by a
space, you should write an extra space after the character constant to separate it from the
following text.)

2.3.3.2 General Escape Syntax

In addition to the specific escape sequences for special important control characters, Emacs
provides several types of escape syntax that you can use to specify non-ASCII text characters.

Firstly, you can specify characters by their Unicode values. ?\unnnn represents a charac-
ter with Unicode code point ‘U+nnnn’, where nnnn is (by convention) a hexadecimal number
with exactly four digits. The backslash indicates that the subsequent characters form an
escape sequence, and the ‘u’ specifies a Unicode escape sequence.

There is a slightly different syntax for specifying Unicode characters with code points
higher than U+ffff: ?\U00nnnnnn represents the character with code point ‘U+nnnnnn’,
where nnnnnn is a six-digit hexadecimal number. The Unicode Standard only defines code
points up to ‘U+10ffff’, so if you specify a code point higher than that, Emacs signals an
error.

Secondly, you can specify characters by their hexadecimal character codes. A hexadeci-
mal escape sequence consists of a backslash, ‘x’, and the hexadecimal character code. Thus,
‘?\x41’ is the character A, ‘?\x1’ is the character C-a, and ?\xe0 is the character ‘à’. You
can use any number of hex digits, so you can represent any character code in this way.

Thirdly, you can specify characters by their character code in octal. An octal escape
sequence consists of a backslash followed by up to three octal digits; thus, ‘?\101’ for the

Chapter 2: Lisp Data Types 12

character A, ‘?\001’ for the character C-a, and ?\002 for the character C-b. Only characters
up to octal code 777 can be specified this way.

These escape sequences may also be used in strings. See Section 2.3.8.2 [Non-ASCII in
Strings], page 19.

2.3.3.3 Control-Character Syntax

Control characters can be represented using yet another read syntax. This consists of a
question mark followed by a backslash, caret, and the corresponding non-control character,
in either upper or lower case. For example, both ‘?\^I’ and ‘?\^i’ are valid read syntax
for the character C-i, the character whose value is 9.

Instead of the ‘^’, you can use ‘C-’; thus, ‘?\C-i’ is equivalent to ‘?\^I’ and to ‘?\^i’:

?\^I ⇒ 9 ?\C-I ⇒ 9

In strings and buffers, the only control characters allowed are those that exist in ASCII;
but for keyboard input purposes, you can turn any character into a control character with
‘C-’. The character codes for these non-ASCII control characters include the 226 bit as well as
the code for the corresponding non-control character. Ordinary text terminals have no way
of generating non-ASCII control characters, but you can generate them straightforwardly
using X and other window systems.

For historical reasons, Emacs treats the DEL character as the control equivalent of ?:

?\^? ⇒ 127 ?\C-? ⇒ 127

As a result, it is currently not possible to represent the character Control-?, which is a
meaningful input character under X, using ‘\C-’. It is not easy to change this, as various
Lisp files refer to DEL in this way.

For representing control characters to be found in files or strings, we recommend the ‘^’
syntax; for control characters in keyboard input, we prefer the ‘C-’ syntax. Which one you
use does not affect the meaning of the program, but may guide the understanding of people
who read it.

2.3.3.4 Meta-Character Syntax

A meta character is a character typed with the META modifier key. The integer that repre-
sents such a character has the 227 bit set. We use high bits for this and other modifiers to
make possible a wide range of basic character codes.

In a string, the 27 bit attached to an ASCII character indicates a meta character; thus,
the meta characters that can fit in a string have codes in the range from 128 to 255, and are
the meta versions of the ordinary ASCII characters. See Section 21.7.15 [Strings of Events],
page 347, for details about META-handling in strings.

The read syntax for meta characters uses ‘\M-’. For example, ‘?\M-A’ stands for M-

A. You can use ‘\M-’ together with octal character codes (see below), with ‘\C-’, or with
any other syntax for a character. Thus, you can write M-A as ‘?\M-A’, or as ‘?\M-\101’.
Likewise, you can write C-M-b as ‘?\M-\C-b’, ‘?\C-\M-b’, or ‘?\M-\002’.

2.3.3.5 Other Character Modifier Bits

The case of a graphic character is indicated by its character code; for example, ASCII

distinguishes between the characters ‘a’ and ‘A’. But ASCII has no way to represent whether

Chapter 2: Lisp Data Types 13

a control character is upper case or lower case. Emacs uses the 225 bit to indicate that the
shift key was used in typing a control character. This distinction is possible only when
you use X terminals or other special terminals; ordinary text terminals do not report the
distinction. The Lisp syntax for the shift bit is ‘\S-’; thus, ‘?\C-\S-o’ or ‘?\C-\S-O’
represents the shifted-control-o character.

The X Window System defines three other modifier bits that can be set in a character:
hyper, super and alt. The syntaxes for these bits are ‘\H-’, ‘\s-’ and ‘\A-’. (Case is
significant in these prefixes.) Thus, ‘?\H-\M-\A-x’ represents Alt-Hyper-Meta-x. (Note
that ‘\s’ with no following ‘-’ represents the space character.) Numerically, the bit values
are 222 for alt, 223 for super and 224 for hyper.

2.3.4 Symbol Type

A symbol in GNU Emacs Lisp is an object with a name. The symbol name serves as the
printed representation of the symbol. In ordinary Lisp use, with one single obarray (see
Section 8.3 [Creating Symbols], page 106), a symbol’s name is unique—no two symbols have
the same name.

A symbol can serve as a variable, as a function name, or to hold a property list. Or
it may serve only to be distinct from all other Lisp objects, so that its presence in a data
structure may be recognized reliably. In a given context, usually only one of these uses is
intended. But you can use one symbol in all of these ways, independently.

A symbol whose name starts with a colon (‘:’) is called a keyword symbol. These symbols
automatically act as constants, and are normally used only by comparing an unknown
symbol with a few specific alternatives. See Section 11.2 [Constant Variables], page 141.

A symbol name can contain any characters whatever. Most symbol names are written
with letters, digits, and the punctuation characters ‘-+=*/’. Such names require no special
punctuation; the characters of the name suffice as long as the name does not look like a
number. (If it does, write a ‘\’ at the beginning of the name to force interpretation as a
symbol.) The characters ‘_~!@$%^&:<>{}?’ are less often used but also require no special
punctuation. Any other characters may be included in a symbol’s name by escaping them
with a backslash. In contrast to its use in strings, however, a backslash in the name of a
symbol simply quotes the single character that follows the backslash. For example, in a
string, ‘\t’ represents a tab character; in the name of a symbol, however, ‘\t’ merely quotes
the letter ‘t’. To have a symbol with a tab character in its name, you must actually use a
tab (preceded with a backslash). But it’s rare to do such a thing.

Common Lisp note: In Common Lisp, lower case letters are always “folded” to
upper case, unless they are explicitly escaped. In Emacs Lisp, upper case and
lower case letters are distinct.

Here are several examples of symbol names. Note that the ‘+’ in the fourth example
is escaped to prevent it from being read as a number. This is not necessary in the sixth
example because the rest of the name makes it invalid as a number.

foo ; A symbol named ‘foo’.
FOO ; A symbol named ‘FOO’, different from ‘foo’.
1+ ; A symbol named ‘1+’

; (not ‘+1’, which is an integer).
\+1 ; A symbol named ‘+1’

; (not a very readable name).

Chapter 2: Lisp Data Types 14

\(*\ 1\ 2\) ; A symbol named ‘(* 1 2)’ (a worse name).
+-*/_~!@$%^&=:<>{} ; A symbol named ‘+-*/_~!@$%^&=:<>{}’.

; These characters need not be escaped.

As an exception to the rule that a symbol’s name serves as its printed representation,
‘##’ is the printed representation for an interned symbol whose name is an empty string.
Furthermore, ‘#:foo’ is the printed representation for an uninterned symbol whose name
is foo. (Normally, the Lisp reader interns all symbols; see Section 8.3 [Creating Symbols],
page 106.)

2.3.5 Sequence Types

A sequence is a Lisp object that represents an ordered set of elements. There are two kinds
of sequence in Emacs Lisp: lists and arrays.

Lists are the most commonly-used sequences. A list can hold elements of any type, and
its length can be easily changed by adding or removing elements. See the next subsection
for more about lists.

Arrays are fixed-length sequences. They are further subdivided into strings, vectors,
char-tables and bool-vectors. Vectors can hold elements of any type, whereas string elements
must be characters, and bool-vector elements must be t or nil. Char-tables are like vectors
except that they are indexed by any valid character code. The characters in a string can have
text properties like characters in a buffer (see Section 32.19 [Text Properties], page 680), but
vectors do not support text properties, even when their elements happen to be characters.

Lists, strings and the other array types also share important similarities. For example,
all have a length l, and all have elements which can be indexed from zero to l minus one.
Several functions, called sequence functions, accept any kind of sequence. For example,
the function length reports the length of any kind of sequence. See Chapter 6 [Sequences
Arrays Vectors], page 88.

It is generally impossible to read the same sequence twice, since sequences are always
created anew upon reading. If you read the read syntax for a sequence twice, you get two
sequences with equal contents. There is one exception: the empty list () always stands for
the same object, nil.

2.3.6 Cons Cell and List Types

A cons cell is an object that consists of two slots, called the car slot and the cdr slot.
Each slot can hold any Lisp object. We also say that “the car of this cons cell is” whatever
object its car slot currently holds, and likewise for the cdr.

A list is a series of cons cells, linked together so that the cdr slot of each cons cell holds
either the next cons cell or the empty list. The empty list is actually the symbol nil. See
Chapter 5 [Lists], page 64, for details. Because most cons cells are used as part of lists, we
refer to any structure made out of cons cells as a list structure.

A note to C programmers: a Lisp list thus works as a linked list built up of
cons cells. Because pointers in Lisp are implicit, we do not distinguish between
a cons cell slot “holding” a value versus “pointing to” the value.

Because cons cells are so central to Lisp, we also have a word for “an object which is not
a cons cell”. These objects are called atoms.

Chapter 2: Lisp Data Types 15

The read syntax and printed representation for lists are identical, and consist of a left
parenthesis, an arbitrary number of elements, and a right parenthesis. Here are examples
of lists:

(A 2 "A") ; A list of three elements.
() ; A list of no elements (the empty list).
nil ; A list of no elements (the empty list).
("A ()") ; A list of one element: the string "A ()".
(A ()) ; A list of two elements: A and the empty list.
(A nil) ; Equivalent to the previous.
((A B C)) ; A list of one element

; (which is a list of three elements).

Upon reading, each object inside the parentheses becomes an element of the list. That
is, a cons cell is made for each element. The car slot of the cons cell holds the element,
and its cdr slot refers to the next cons cell of the list, which holds the next element in the
list. The cdr slot of the last cons cell is set to hold nil.

The names car and cdr derive from the history of Lisp. The original Lisp implementa-
tion ran on an IBM 704 computer which divided words into two parts, called the “address”
part and the “decrement”; car was an instruction to extract the contents of the address
part of a register, and cdr an instruction to extract the contents of the decrement. By
contrast, “cons cells” are named for the function cons that creates them, which in turn was
named for its purpose, the construction of cells.

2.3.6.1 Drawing Lists as Box Diagrams

A list can be illustrated by a diagram in which the cons cells are shown as pairs of boxes, like
dominoes. (The Lisp reader cannot read such an illustration; unlike the textual notation,
which can be understood by both humans and computers, the box illustrations can be
understood only by humans.) This picture represents the three-element list (rose violet

buttercup):

--- --- --- --- --- ---

| | |--> | | |--> | | |--> nil

--- --- --- --- --- ---

| | |

| | |

--> rose --> violet --> buttercup

In this diagram, each box represents a slot that can hold or refer to any Lisp object.
Each pair of boxes represents a cons cell. Each arrow represents a reference to a Lisp object,
either an atom or another cons cell.

In this example, the first box, which holds the car of the first cons cell, refers to or
“holds” rose (a symbol). The second box, holding the cdr of the first cons cell, refers to
the next pair of boxes, the second cons cell. The car of the second cons cell is violet, and
its cdr is the third cons cell. The cdr of the third (and last) cons cell is nil.

Here is another diagram of the same list, (rose violet buttercup), sketched in a dif-
ferent manner:

Chapter 2: Lisp Data Types 16

--------------- ---------------- -------------------

| car | cdr | | car | cdr | | car | cdr |

| rose | o-------->| violet | o-------->| buttercup | nil |

| | | | | | | | |

--------------- ---------------- -------------------

A list with no elements in it is the empty list; it is identical to the symbol nil. In other
words, nil is both a symbol and a list.

Here is the list (A ()), or equivalently (A nil), depicted with boxes and arrows:

--- --- --- ---

| | |--> | | |--> nil

--- --- --- ---

| |

| |

--> A --> nil

Here is a more complex illustration, showing the three-element list, ((pine needles)

oak maple), the first element of which is a two-element list:

--- --- --- --- --- ---

| | |--> | | |--> | | |--> nil

--- --- --- --- --- ---

| | |

| | |

| --> oak --> maple

|

| --- --- --- ---

--> | | |--> | | |--> nil

--- --- --- ---

| |

| |

--> pine --> needles

The same list represented in the second box notation looks like this:

-------------- -------------- --------------

| car | cdr | | car | cdr | | car | cdr |

| o | o------->| oak | o------->| maple | nil |

| | | | | | | | | |

-- | --------- -------------- --------------

|

|

| -------------- ----------------

| | car | cdr | | car | cdr |

------>| pine | o------->| needles | nil |

| | | | | |

-------------- ----------------

2.3.6.2 Dotted Pair Notation

Dotted pair notation is a general syntax for cons cells that represents the car and cdr
explicitly. In this syntax, (a . b) stands for a cons cell whose car is the object a and whose

Chapter 2: Lisp Data Types 17

cdr is the object b. Dotted pair notation is more general than list syntax because the cdr
does not have to be a list. However, it is more cumbersome in cases where list syntax would
work. In dotted pair notation, the list ‘(1 2 3)’ is written as ‘(1 . (2 . (3 . nil)))’. For
nil-terminated lists, you can use either notation, but list notation is usually clearer and
more convenient. When printing a list, the dotted pair notation is only used if the cdr of
a cons cell is not a list.

Here’s an example using boxes to illustrate dotted pair notation. This example shows
the pair (rose . violet):

--- ---

| | |--> violet

--- ---

|

|

--> rose

You can combine dotted pair notation with list notation to represent conveniently a
chain of cons cells with a non-nil final cdr. You write a dot after the last element of the
list, followed by the cdr of the final cons cell. For example, (rose violet . buttercup)

is equivalent to (rose . (violet . buttercup)). The object looks like this:

--- --- --- ---

| | |--> | | |--> buttercup

--- --- --- ---

| |

| |

--> rose --> violet

The syntax (rose . violet . buttercup) is invalid because there is nothing that it
could mean. If anything, it would say to put buttercup in the cdr of a cons cell whose
cdr is already used for violet.

The list (rose violet) is equivalent to (rose . (violet)), and looks like this:

--- --- --- ---

| | |--> | | |--> nil

--- --- --- ---

| |

| |

--> rose --> violet

Similarly, the three-element list (rose violet buttercup) is equivalent to (rose .

(violet . (buttercup))).

2.3.6.3 Association List Type

An association list or alist is a specially-constructed list whose elements are cons cells. In
each element, the car is considered a key, and the cdr is considered an associated value.
(In some cases, the associated value is stored in the car of the cdr.) Association lists are
often used as stacks, since it is easy to add or remove associations at the front of the list.

For example,

(setq alist-of-colors

Chapter 2: Lisp Data Types 18

’((rose . red) (lily . white) (buttercup . yellow)))

sets the variable alist-of-colors to an alist of three elements. In the first element, rose
is the key and red is the value.

See Section 5.8 [Association Lists], page 82, for a further explanation of alists and for
functions that work on alists. See Chapter 7 [Hash Tables], page 99, for another kind of
lookup table, which is much faster for handling a large number of keys.

2.3.7 Array Type

An array is composed of an arbitrary number of slots for holding or referring to other Lisp
objects, arranged in a contiguous block of memory. Accessing any element of an array takes
approximately the same amount of time. In contrast, accessing an element of a list requires
time proportional to the position of the element in the list. (Elements at the end of a list
take longer to access than elements at the beginning of a list.)

Emacs defines four types of array: strings, vectors, bool-vectors, and char-tables.

A string is an array of characters and a vector is an array of arbitrary objects. A bool-
vector can hold only t or nil. These kinds of array may have any length up to the largest
integer. Char-tables are sparse arrays indexed by any valid character code; they can hold
arbitrary objects.

The first element of an array has index zero, the second element has index 1, and so on.
This is called zero-origin indexing. For example, an array of four elements has indices 0, 1,
2, and 3. The largest possible index value is one less than the length of the array. Once an
array is created, its length is fixed.

All Emacs Lisp arrays are one-dimensional. (Most other programming languages support
multidimensional arrays, but they are not essential; you can get the same effect with nested
one-dimensional arrays.) Each type of array has its own read syntax; see the following
sections for details.

The array type is a subset of the sequence type, and contains the string type, the vector
type, the bool-vector type, and the char-table type.

2.3.8 String Type

A string is an array of characters. Strings are used for many purposes in Emacs, as can be
expected in a text editor; for example, as the names of Lisp symbols, as messages for the
user, and to represent text extracted from buffers. Strings in Lisp are constants: evaluation
of a string returns the same string.

See Chapter 4 [Strings and Characters], page 48, for functions that operate on strings.

2.3.8.1 Syntax for Strings

The read syntax for a string is a double-quote, an arbitrary number of characters, and
another double-quote, "like this". To include a double-quote in a string, precede it with
a backslash; thus, "\"" is a string containing just a single double-quote character. Likewise,
you can include a backslash by preceding it with another backslash, like this: "this \\ is

a single embedded backslash".

The newline character is not special in the read syntax for strings; if you write a new line
between the double-quotes, it becomes a character in the string. But an escaped newline—

Chapter 2: Lisp Data Types 19

one that is preceded by ‘\’—does not become part of the string; i.e., the Lisp reader ignores
an escaped newline while reading a string. An escaped space ‘\ ’ is likewise ignored.

"It is useful to include newlines

in documentation strings,

but the newline is \

ignored if escaped."

⇒ "It is useful to include newlines

in documentation strings,

but the newline is ignored if escaped."

2.3.8.2 Non-ASCII Characters in Strings

There are two text representations for non-ASCII characters in Emacs strings: multibyte
and unibyte (see Section 33.1 [Text Representations], page 705). Roughly speaking, unibyte
strings store raw bytes, while multibyte strings store human-readable text. Each character
in a unibyte string is a byte, i.e., its value is between 0 and 255. By contrast, each character
in a multibyte string may have a value between 0 to 4194303 (see Section 2.3.3 [Character
Type], page 10). In both cases, characters above 127 are non-ASCII.

You can include a non-ASCII character in a string constant by writing it literally. If
the string constant is read from a multibyte source, such as a multibyte buffer or string,
or a file that would be visited as multibyte, then Emacs reads each non-ASCII character
as a multibyte character and automatically makes the string a multibyte string. If the
string constant is read from a unibyte source, then Emacs reads the non-ASCII character
as unibyte, and makes the string unibyte.

Instead of writing a character literally into a multibyte string, you can write it as its
character code using an escape sequence. See Section 2.3.3.2 [General Escape Syntax],
page 11, for details about escape sequences.

If you use any Unicode-style escape sequence ‘\uNNNN’ or ‘\U00NNNNNN’ in a string con-
stant (even for an ASCII character), Emacs automatically assumes that it is multibyte.

You can also use hexadecimal escape sequences (‘\xn’) and octal escape sequences (‘\n’)
in string constants. But beware: If a string constant contains hexadecimal or octal escape
sequences, and these escape sequences all specify unibyte characters (i.e., less than 256),
and there are no other literal non-ASCII characters or Unicode-style escape sequences in
the string, then Emacs automatically assumes that it is a unibyte string. That is to say, it
assumes that all non-ASCII characters occurring in the string are 8-bit raw bytes.

In hexadecimal and octal escape sequences, the escaped character code may contain a
variable number of digits, so the first subsequent character which is not a valid hexadecimal
or octal digit terminates the escape sequence. If the next character in a string could be
interpreted as a hexadecimal or octal digit, write ‘\ ’ (backslash and space) to terminate
the escape sequence. For example, ‘\xe0\ ’ represents one character, ‘a’ with grave accent.
‘\ ’ in a string constant is just like backslash-newline; it does not contribute any character
to the string, but it does terminate any preceding hex escape.

2.3.8.3 Nonprinting Characters in Strings

You can use the same backslash escape-sequences in a string constant as in character literals
(but do not use the question mark that begins a character constant). For example, you can

Chapter 2: Lisp Data Types 20

write a string containing the nonprinting characters tab and C-a, with commas and spaces
between them, like this: "\t, \C-a". See Section 2.3.3 [Character Type], page 10, for a
description of the read syntax for characters.

However, not all of the characters you can write with backslash escape-sequences are
valid in strings. The only control characters that a string can hold are the ASCII control
characters. Strings do not distinguish case in ASCII control characters.

Properly speaking, strings cannot hold meta characters; but when a string is to be used
as a key sequence, there is a special convention that provides a way to represent meta
versions of ASCII characters in a string. If you use the ‘\M-’ syntax to indicate a meta
character in a string constant, this sets the 27 bit of the character in the string. If the string
is used in define-key or lookup-key, this numeric code is translated into the equivalent
meta character. See Section 2.3.3 [Character Type], page 10.

Strings cannot hold characters that have the hyper, super, or alt modifiers.

2.3.8.4 Text Properties in Strings

A string can hold properties for the characters it contains, in addition to the characters
themselves. This enables programs that copy text between strings and buffers to copy the
text’s properties with no special effort. See Section 32.19 [Text Properties], page 680, for an
explanation of what text properties mean. Strings with text properties use a special read
and print syntax:

#("characters" property-data...)

where property-data consists of zero or more elements, in groups of three as follows:

beg end plist

The elements beg and end are integers, and together specify a range of indices in the string;
plist is the property list for that range. For example,

#("foo bar" 0 3 (face bold) 3 4 nil 4 7 (face italic))

represents a string whose textual contents are ‘foo bar’, in which the first three characters
have a face property with value bold, and the last three have a face property with value
italic. (The fourth character has no text properties, so its property list is nil. It is not
actually necessary to mention ranges with nil as the property list, since any characters not
mentioned in any range will default to having no properties.)

2.3.9 Vector Type

A vector is a one-dimensional array of elements of any type. It takes a constant amount
of time to access any element of a vector. (In a list, the access time of an element is
proportional to the distance of the element from the beginning of the list.)

The printed representation of a vector consists of a left square bracket, the elements,
and a right square bracket. This is also the read syntax. Like numbers and strings, vectors
are considered constants for evaluation.

[1 "two" (three)] ; A vector of three elements.
⇒ [1 "two" (three)]

See Section 6.4 [Vectors], page 92, for functions that work with vectors.

Chapter 2: Lisp Data Types 21

2.3.10 Char-Table Type

A char-table is a one-dimensional array of elements of any type, indexed by character codes.
Char-tables have certain extra features to make them more useful for many jobs that involve
assigning information to character codes—for example, a char-table can have a parent to
inherit from, a default value, and a small number of extra slots to use for special purposes.
A char-table can also specify a single value for a whole character set.

The printed representation of a char-table is like a vector except that there is an extra
‘#^’ at the beginning.1

See Section 6.6 [Char-Tables], page 94, for special functions to operate on char-tables.
Uses of char-tables include:

• Case tables (see Section 4.9 [Case Tables], page 61).

• Character category tables (see Section 35.8 [Categories], page 770).

• Display tables (see Section 38.20.2 [Display Tables], page 901).

• Syntax tables (see Chapter 35 [Syntax Tables], page 757).

2.3.11 Bool-Vector Type

A bool-vector is a one-dimensional array whose elements must be t or nil.

The printed representation of a bool-vector is like a string, except that it begins with
‘#&’ followed by the length. The string constant that follows actually specifies the contents
of the bool-vector as a bitmap—each “character” in the string contains 8 bits, which specify
the next 8 elements of the bool-vector (1 stands for t, and 0 for nil). The least significant
bits of the character correspond to the lowest indices in the bool-vector.

(make-bool-vector 3 t)

⇒ #&3"^G"

(make-bool-vector 3 nil)

⇒ #&3"^@"

These results make sense, because the binary code for ‘C-g’ is 111 and ‘C-@’ is the character
with code 0.

If the length is not a multiple of 8, the printed representation shows extra elements,
but these extras really make no difference. For instance, in the next example, the two
bool-vectors are equal, because only the first 3 bits are used:

(equal #&3"\377" #&3"\007")

⇒ t

2.3.12 Hash Table Type

A hash table is a very fast kind of lookup table, somewhat like an alist in that it maps
keys to corresponding values, but much faster. The printed representation of a hash table
specifies its properties and contents, like this:

(make-hash-table)

⇒ #s(hash-table size 65 test eql rehash-size 1.5

rehash-threshold 0.8 data ())

See Chapter 7 [Hash Tables], page 99, for more information about hash tables.

1 You may also encounter ‘#^^’, used for “sub-char-tables”.

Chapter 2: Lisp Data Types 22

2.3.13 Function Type

Lisp functions are executable code, just like functions in other programming languages. In
Lisp, unlike most languages, functions are also Lisp objects. A non-compiled function in
Lisp is a lambda expression: that is, a list whose first element is the symbol lambda (see
Section 12.2 [Lambda Expressions], page 171).

In most programming languages, it is impossible to have a function without a name. In
Lisp, a function has no intrinsic name. A lambda expression can be called as a function
even though it has no name; to emphasize this, we also call it an anonymous function (see
Section 12.7 [Anonymous Functions], page 179). A named function in Lisp is just a symbol
with a valid function in its function cell (see Section 12.4 [Defining Functions], page 175).

Most of the time, functions are called when their names are written in Lisp expressions
in Lisp programs. However, you can construct or obtain a function object at run time
and then call it with the primitive functions funcall and apply. See Section 12.5 [Calling
Functions], page 176.

2.3.14 Macro Type

A Lisp macro is a user-defined construct that extends the Lisp language. It is represented
as an object much like a function, but with different argument-passing semantics. A Lisp
macro has the form of a list whose first element is the symbol macro and whose cdr is a
Lisp function object, including the lambda symbol.

Lisp macro objects are usually defined with the built-in defmacro function, but any list
that begins with macro is a macro as far as Emacs is concerned. See Chapter 13 [Macros],
page 188, for an explanation of how to write a macro.

Warning: Lisp macros and keyboard macros (see Section 21.16 [Keyboard Macros],
page 364) are entirely different things. When we use the word “macro” without qualification,
we mean a Lisp macro, not a keyboard macro.

2.3.15 Primitive Function Type

A primitive function is a function callable from Lisp but written in the C programming
language. Primitive functions are also called subrs or built-in functions. (The word “subr”
is derived from “subroutine”.) Most primitive functions evaluate all their arguments when
they are called. A primitive function that does not evaluate all its arguments is called a
special form (see Section 9.1.7 [Special Forms], page 116).

It does not matter to the caller of a function whether the function is primitive. However,
this does matter if you try to redefine a primitive with a function written in Lisp. The
reason is that the primitive function may be called directly from C code. Calls to the
redefined function from Lisp will use the new definition, but calls from C code may still use
the built-in definition. Therefore, we discourage redefinition of primitive functions.

The term function refers to all Emacs functions, whether written in Lisp or C. See
Section 2.3.13 [Function Type], page 22, for information about the functions written in
Lisp.

Primitive functions have no read syntax and print in hash notation with the name of the
subroutine.

Chapter 2: Lisp Data Types 23

(symbol-function ’car) ; Access the function cell
; of the symbol.

⇒ #<subr car>

(subrp (symbol-function ’car)) ; Is this a primitive function?
⇒ t ; Yes.

2.3.16 Byte-Code Function Type

Byte-code function objects are produced by byte-compiling Lisp code (see Chapter 16 [Byte
Compilation], page 229). Internally, a byte-code function object is much like a vector;
however, the evaluator handles this data type specially when it appears in a function call.
See Section 16.7 [Byte-Code Objects], page 235.

The printed representation and read syntax for a byte-code function object is like that
for a vector, with an additional ‘#’ before the opening ‘[’.

2.3.17 Autoload Type

An autoload object is a list whose first element is the symbol autoload. It is stored as the
function definition of a symbol, where it serves as a placeholder for the real definition. The
autoload object says that the real definition is found in a file of Lisp code that should be
loaded when necessary. It contains the name of the file, plus some other information about
the real definition.

After the file has been loaded, the symbol should have a new function definition that is
not an autoload object. The new definition is then called as if it had been there to begin
with. From the user’s point of view, the function call works as expected, using the function
definition in the loaded file.

An autoload object is usually created with the function autoload, which stores the
object in the function cell of a symbol. See Section 15.5 [Autoload], page 220, for more
details.

2.4 Editing Types

The types in the previous section are used for general programming purposes, and most of
them are common to most Lisp dialects. Emacs Lisp provides several additional data types
for purposes connected with editing.

2.4.1 Buffer Type

A buffer is an object that holds text that can be edited (see Chapter 27 [Buffers], page 521).
Most buffers hold the contents of a disk file (see Chapter 25 [Files], page 469) so they can
be edited, but some are used for other purposes. Most buffers are also meant to be seen by
the user, and therefore displayed, at some time, in a window (see Chapter 28 [Windows],
page 538). But a buffer need not be displayed in any window. Each buffer has a designated
position called point (see Chapter 30 [Positions], page 623); most editing commands act on
the contents of the current buffer in the neighborhood of point. At any time, one buffer is
the current buffer.

The contents of a buffer are much like a string, but buffers are not used like strings in
Emacs Lisp, and the available operations are different. For example, you can insert text

Chapter 2: Lisp Data Types 24

efficiently into an existing buffer, altering the buffer’s contents, whereas “inserting” text into
a string requires concatenating substrings, and the result is an entirely new string object.

Many of the standard Emacs functions manipulate or test the characters in the cur-
rent buffer; a whole chapter in this manual is devoted to describing these functions (see
Chapter 32 [Text], page 645).

Several other data structures are associated with each buffer:

• a local syntax table (see Chapter 35 [Syntax Tables], page 757);

• a local keymap (see Chapter 22 [Keymaps], page 366); and,

• a list of buffer-local variable bindings (see Section 11.10 [Buffer-Local Variables],
page 154).

• overlays (see Section 38.9 [Overlays], page 839).

• text properties for the text in the buffer (see Section 32.19 [Text Properties], page 680).

The local keymap and variable list contain entries that individually override global bindings
or values. These are used to customize the behavior of programs in different buffers, without
actually changing the programs.

A buffer may be indirect, which means it shares the text of another buffer, but presents
it differently. See Section 27.11 [Indirect Buffers], page 535.

Buffers have no read syntax. They print in hash notation, showing the buffer name.

(current-buffer)

⇒ #<buffer objects.texi>

2.4.2 Marker Type

A marker denotes a position in a specific buffer. Markers therefore have two components:
one for the buffer, and one for the position. Changes in the buffer’s text automatically
relocate the position value as necessary to ensure that the marker always points between
the same two characters in the buffer.

Markers have no read syntax. They print in hash notation, giving the current character
position and the name of the buffer.

(point-marker)

⇒ #<marker at 10779 in objects.texi>

See Chapter 31 [Markers], page 636, for information on how to test, create, copy, and
move markers.

2.4.3 Window Type

A window describes the portion of the terminal screen that Emacs uses to display a buffer.
Every window has one associated buffer, whose contents appear in the window. By contrast,
a given buffer may appear in one window, no window, or several windows.

Though many windows may exist simultaneously, at any time one window is designated
the selected window. This is the window where the cursor is (usually) displayed when Emacs
is ready for a command. The selected window usually displays the current buffer, but this
is not necessarily the case.

Windows are grouped on the screen into frames; each window belongs to one and only
one frame. See Section 2.4.4 [Frame Type], page 25.

Chapter 2: Lisp Data Types 25

Windows have no read syntax. They print in hash notation, giving the window number
and the name of the buffer being displayed. The window numbers exist to identify windows
uniquely, since the buffer displayed in any given window can change frequently.

(selected-window)

⇒ #<window 1 on objects.texi>

See Chapter 28 [Windows], page 538, for a description of the functions that work on
windows.

2.4.4 Frame Type

A frame is a screen area that contains one or more Emacs windows; we also use the term
“frame” to refer to the Lisp object that Emacs uses to refer to the screen area.

Frames have no read syntax. They print in hash notation, giving the frame’s title, plus
its address in core (useful to identify the frame uniquely).

(selected-frame)

⇒ #<frame emacs@psilocin.gnu.org 0xdac80>

See Chapter 29 [Frames], page 590, for a description of the functions that work on frames.

2.4.5 Terminal Type

A terminal is a device capable of displaying one or more Emacs frames (see Section 2.4.4
[Frame Type], page 25).

Terminals have no read syntax. They print in hash notation giving the terminal’s ordinal
number and its TTY device file name.

(get-device-terminal nil)

⇒ #<terminal 1 on /dev/tty>

2.4.6 Window Configuration Type

A window configuration stores information about the positions, sizes, and contents of the
windows in a frame, so you can recreate the same arrangement of windows later.

Window configurations do not have a read syntax; their print syntax looks like
‘#<window-configuration>’. See Section 28.24 [Window Configurations], page 584, for a
description of several functions related to window configurations.

2.4.7 Frame Configuration Type

A frame configuration stores information about the positions, sizes, and contents of the
windows in all frames. It is not a primitive type—it is actually a list whose car is frame-
configuration and whose cdr is an alist. Each alist element describes one frame, which
appears as the car of that element.

See Section 29.12 [Frame Configurations], page 611, for a description of several functions
related to frame configurations.

2.4.8 Process Type

The word process usually means a running program. Emacs itself runs in a process of
this sort. However, in Emacs Lisp, a process is a Lisp object that designates a subprocess
created by the Emacs process. Programs such as shells, GDB, ftp, and compilers, running

Chapter 2: Lisp Data Types 26

in subprocesses of Emacs, extend the capabilities of Emacs. An Emacs subprocess takes
textual input from Emacs and returns textual output to Emacs for further manipulation.
Emacs can also send signals to the subprocess.

Process objects have no read syntax. They print in hash notation, giving the name of
the process:

(process-list)

⇒ (#<process shell>)

See Chapter 37 [Processes], page 780, for information about functions that create, delete,
return information about, send input or signals to, and receive output from processes.

2.4.9 Stream Type

A stream is an object that can be used as a source or sink for characters—either to supply
characters for input or to accept them as output. Many different types can be used this
way: markers, buffers, strings, and functions. Most often, input streams (character sources)
obtain characters from the keyboard, a buffer, or a file, and output streams (character sinks)
send characters to a buffer, such as a *Help* buffer, or to the echo area.

The object nil, in addition to its other meanings, may be used as a stream. It stands
for the value of the variable standard-input or standard-output. Also, the object t as
a stream specifies input using the minibuffer (see Chapter 20 [Minibuffers], page 291) or
output in the echo area (see Section 38.4 [The Echo Area], page 825).

Streams have no special printed representation or read syntax, and print as whatever
primitive type they are.

See Chapter 19 [Read and Print], page 281, for a description of functions related to
streams, including parsing and printing functions.

2.4.10 Keymap Type

A keymap maps keys typed by the user to commands. This mapping controls how the user’s
command input is executed. A keymap is actually a list whose car is the symbol keymap.

See Chapter 22 [Keymaps], page 366, for information about creating keymaps, handling
prefix keys, local as well as global keymaps, and changing key bindings.

2.4.11 Overlay Type

An overlay specifies properties that apply to a part of a buffer. Each overlay applies to
a specified range of the buffer, and contains a property list (a list whose elements are
alternating property names and values). Overlay properties are used to present parts of the
buffer temporarily in a different display style. Overlays have no read syntax, and print in
hash notation, giving the buffer name and range of positions.

See Section 38.9 [Overlays], page 839, for information on how you can create and use
overlays.

2.4.12 Font Type

A font specifies how to display text on a graphical terminal. There are actually three
separate font types—font objects, font specs, and font entities—each of which has
slightly different properties. None of them have a read syntax; their print syntax

Chapter 2: Lisp Data Types 27

looks like ‘#<font-object>’, ‘#<font-spec>’, and ‘#<font-entity>’ respectively. See
Section 38.12.12 [Low-Level Font], page 865, for a description of these Lisp objects.

2.5 Read Syntax for Circular Objects

To represent shared or circular structures within a complex of Lisp objects, you can use the
reader constructs ‘#n=’ and ‘#n#’.

Use #n= before an object to label it for later reference; subsequently, you can use #n# to
refer the same object in another place. Here, n is some integer. For example, here is how
to make a list in which the first element recurs as the third element:

(#1=(a) b #1#)

This differs from ordinary syntax such as this

((a) b (a))

which would result in a list whose first and third elements look alike but are not the same
Lisp object. This shows the difference:

(prog1 nil

(setq x ’(#1=(a) b #1#)))

(eq (nth 0 x) (nth 2 x))

⇒ t

(setq x ’((a) b (a)))

(eq (nth 0 x) (nth 2 x))

⇒ nil

You can also use the same syntax to make a circular structure, which appears as an
“element” within itself. Here is an example:

#1=(a #1#)

This makes a list whose second element is the list itself. Here’s how you can see that it
really works:

(prog1 nil

(setq x ’#1=(a #1#)))

(eq x (cadr x))

⇒ t

The Lisp printer can produce this syntax to record circular and shared structure in a
Lisp object, if you bind the variable print-circle to a non-nil value. See Section 19.6
[Output Variables], page 289.

2.6 Type Predicates

The Emacs Lisp interpreter itself does not perform type checking on the actual arguments
passed to functions when they are called. It could not do so, since function arguments in
Lisp do not have declared data types, as they do in other programming languages. It is
therefore up to the individual function to test whether each actual argument belongs to a
type that the function can use.

All built-in functions do check the types of their actual arguments when appropriate,
and signal a wrong-type-argument error if an argument is of the wrong type. For example,
here is what happens if you pass an argument to + that it cannot handle:

Chapter 2: Lisp Data Types 28

(+ 2 ’a)

error Wrong type argument: number-or-marker-p, a

If you want your program to handle different types differently, you must do explicit
type checking. The most common way to check the type of an object is to call a type
predicate function. Emacs has a type predicate for each type, as well as some predicates
for combinations of types.

A type predicate function takes one argument; it returns t if the argument belongs to
the appropriate type, and nil otherwise. Following a general Lisp convention for predicate
functions, most type predicates’ names end with ‘p’.

Here is an example which uses the predicates listp to check for a list and symbolp to
check for a symbol.

(defun add-on (x)

(cond ((symbolp x)

;; If X is a symbol, put it on LIST.

(setq list (cons x list)))

((listp x)

;; If X is a list, add its elements to LIST.

(setq list (append x list)))

(t

;; We handle only symbols and lists.

(error "Invalid argument %s in add-on" x))))

Here is a table of predefined type predicates, in alphabetical order, with references to
further information.

atom See Section 5.2 [List-related Predicates], page 64.

arrayp See Section 6.3 [Array Functions], page 91.

bool-vector-p

See Section 6.7 [Bool-Vectors], page 96.

bufferp See Section 27.1 [Buffer Basics], page 521.

byte-code-function-p

See Section 2.3.16 [Byte-Code Type], page 23.

case-table-p

See Section 4.9 [Case Tables], page 61.

char-or-string-p

See Section 4.2 [Predicates for Strings], page 49.

char-table-p

See Section 6.6 [Char-Tables], page 94.

commandp See Section 21.3 [Interactive Call], page 327.

consp See Section 5.2 [List-related Predicates], page 64.

custom-variable-p

See Section 14.3 [Variable Definitions], page 199.

Chapter 2: Lisp Data Types 29

display-table-p

See Section 38.20.2 [Display Tables], page 901.

floatp See Section 3.3 [Predicates on Numbers], page 35.

fontp See Section 38.12.12 [Low-Level Font], page 865.

frame-configuration-p

See Section 29.12 [Frame Configurations], page 611.

frame-live-p

See Section 29.6 [Deleting Frames], page 606.

framep See Chapter 29 [Frames], page 590.

functionp

See Chapter 12 [Functions], page 169.

hash-table-p

See Section 7.4 [Other Hash], page 103.

integer-or-marker-p

See Section 31.2 [Predicates on Markers], page 637.

integerp See Section 3.3 [Predicates on Numbers], page 35.

keymapp See Section 22.4 [Creating Keymaps], page 369.

keywordp See Section 11.2 [Constant Variables], page 141.

listp See Section 5.2 [List-related Predicates], page 64.

markerp See Section 31.2 [Predicates on Markers], page 637.

wholenump

See Section 3.3 [Predicates on Numbers], page 35.

nlistp See Section 5.2 [List-related Predicates], page 64.

numberp See Section 3.3 [Predicates on Numbers], page 35.

number-or-marker-p

See Section 31.2 [Predicates on Markers], page 637.

overlayp See Section 38.9 [Overlays], page 839.

processp See Chapter 37 [Processes], page 780.

sequencep

See Section 6.1 [Sequence Functions], page 88.

stringp See Section 4.2 [Predicates for Strings], page 49.

subrp See Section 12.8 [Function Cells], page 181.

symbolp See Chapter 8 [Symbols], page 104.

syntax-table-p

See Chapter 35 [Syntax Tables], page 757.

vectorp See Section 6.4 [Vectors], page 92.

Chapter 2: Lisp Data Types 30

window-configuration-p

See Section 28.24 [Window Configurations], page 584.

window-live-p

See Section 28.6 [Deleting Windows], page 549.

windowp See Section 28.1 [Basic Windows], page 538.

booleanp See Section 1.3.2 [nil and t], page 2.

string-or-null-p

See Section 4.2 [Predicates for Strings], page 49.

The most general way to check the type of an object is to call the function type-of.
Recall that each object belongs to one and only one primitive type; type-of tells you which
one (see Chapter 2 [Lisp Data Types], page 8). But type-of knows nothing about non-
primitive types. In most cases, it is more convenient to use type predicates than type-of.

[Function]type-of object
This function returns a symbol naming the primitive type of object. The value
is one of the symbols bool-vector, buffer, char-table, compiled-function,
cons, float, font-entity, font-object, font-spec, frame, hash-table,
integer, marker, overlay, process, string, subr, symbol, vector, window, or
window-configuration.

(type-of 1)

⇒ integer

(type-of ’nil)

⇒ symbol

(type-of ’()) ; () is nil.
⇒ symbol

(type-of ’(x))

⇒ cons

2.7 Equality Predicates

Here we describe functions that test for equality between two objects. Other functions test
equality of contents between objects of specific types, e.g., strings. For these predicates, see
the appropriate chapter describing the data type.

[Function]eq object1 object2
This function returns t if object1 and object2 are the same object, and nil otherwise.

If object1 and object2 are integers with the same value, they are considered to be the
same object (i.e., eq returns t). If object1 and object2 are symbols with the same
name, they are normally the same object—but see Section 8.3 [Creating Symbols],
page 106 for exceptions. For other types (e.g., lists, vectors, strings), two arguments
with the same contents or elements are not necessarily eq to each other: they are eq
only if they are the same object, meaning that a change in the contents of one will
be reflected by the same change in the contents of the other.

(eq ’foo ’foo)

⇒ t

Chapter 2: Lisp Data Types 31

(eq 456 456)

⇒ t

(eq "asdf" "asdf")

⇒ nil

(eq "" "")

⇒ t

;; This exception occurs because Emacs Lisp
;; makes just one multibyte empty string, to save space.

(eq ’(1 (2 (3))) ’(1 (2 (3))))

⇒ nil

(setq foo ’(1 (2 (3))))

⇒ (1 (2 (3)))

(eq foo foo)

⇒ t

(eq foo ’(1 (2 (3))))

⇒ nil

(eq [(1 2) 3] [(1 2) 3])

⇒ nil

(eq (point-marker) (point-marker))

⇒ nil

The make-symbol function returns an uninterned symbol, distinct from the symbol
that is used if you write the name in a Lisp expression. Distinct symbols with the
same name are not eq. See Section 8.3 [Creating Symbols], page 106.

(eq (make-symbol "foo") ’foo)

⇒ nil

[Function]equal object1 object2
This function returns t if object1 and object2 have equal components, and nil oth-
erwise. Whereas eq tests if its arguments are the same object, equal looks inside
nonidentical arguments to see if their elements or contents are the same. So, if two
objects are eq, they are equal, but the converse is not always true.

(equal ’foo ’foo)

⇒ t

(equal 456 456)

⇒ t

(equal "asdf" "asdf")

⇒ t

Chapter 2: Lisp Data Types 32

(eq "asdf" "asdf")

⇒ nil

(equal ’(1 (2 (3))) ’(1 (2 (3))))

⇒ t

(eq ’(1 (2 (3))) ’(1 (2 (3))))

⇒ nil

(equal [(1 2) 3] [(1 2) 3])

⇒ t

(eq [(1 2) 3] [(1 2) 3])

⇒ nil

(equal (point-marker) (point-marker))

⇒ t

(eq (point-marker) (point-marker))

⇒ nil

Comparison of strings is case-sensitive, but does not take account of text properties—
it compares only the characters in the strings. See Section 32.19 [Text Properties],
page 680. Use equal-including-properties to also compare text properties. For
technical reasons, a unibyte string and a multibyte string are equal if and only if
they contain the same sequence of character codes and all these codes are either in
the range 0 through 127 (ASCII) or 160 through 255 (eight-bit-graphic). (see
Section 33.1 [Text Representations], page 705).

(equal "asdf" "ASDF")

⇒ nil

However, two distinct buffers are never considered equal, even if their textual contents
are the same.

The test for equality is implemented recursively; for example, given two cons cells x and
y, (equal x y) returns t if and only if both the expressions below return t:

(equal (car x) (car y))

(equal (cdr x) (cdr y))

Because of this recursive method, circular lists may therefore cause infinite recursion
(leading to an error).

[Function]equal-including-properties object1 object2
This function behaves like equal in all cases but also requires that for two strings to
be equal, they have the same text properties.

(equal "asdf" (propertize "asdf" ’(asdf t)))

⇒ t

(equal-including-properties "asdf"

(propertize "asdf" ’(asdf t)))

⇒ nil

Chapter 3: Numbers 33

3 Numbers

GNU Emacs supports two numeric data types: integers and floating point numbers. Integers
are whole numbers such as −3, 0, 7, 13, and 511. Their values are exact. Floating point
numbers are numbers with fractional parts, such as −4.5, 0.0, or 2.71828. They can also be
expressed in exponential notation: 1.5e2 equals 150; in this example, ‘e2’ stands for ten to
the second power, and that is multiplied by 1.5. Floating point values are not exact; they
have a fixed, limited amount of precision.

3.1 Integer Basics

The range of values for an integer depends on the machine. The minimum range is
−536870912 to 536870911 (30 bits; i.e., −229 to 229 − 1), but many machines provide a
wider range. Many examples in this chapter assume the minimum integer width of 30 bits.

The Lisp reader reads an integer as a sequence of digits with optional initial sign and
optional final period. An integer that is out of the Emacs range is treated as a floating-point
number.

1 ; The integer 1.
1. ; The integer 1.
+1 ; Also the integer 1.
-1 ; The integer −1.
1073741825 ; The floating point number 1073741825.0.
0 ; The integer 0.
-0 ; The integer 0.

The syntax for integers in bases other than 10 uses ‘#’ followed by a letter that specifies
the radix: ‘b’ for binary, ‘o’ for octal, ‘x’ for hex, or ‘radixr’ to specify radix radix. Case
is not significant for the letter that specifies the radix. Thus, ‘#binteger’ reads integer
in binary, and ‘#radixrinteger’ reads integer in radix radix. Allowed values of radix run
from 2 to 36. For example:

#b101100 ⇒ 44

#o54 ⇒ 44

#x2c ⇒ 44

#24r1k ⇒ 44

To understand how various functions work on integers, especially the bitwise operators
(see Section 3.8 [Bitwise Operations], page 42), it is often helpful to view the numbers in
their binary form.

In 30-bit binary, the decimal integer 5 looks like this:

0000...000101 (30 bits total)

(The ‘...’ stands for enough bits to fill out a 30-bit word; in this case, ‘...’ stands for
twenty 0 bits. Later examples also use the ‘...’ notation to make binary integers easier to
read.)

The integer −1 looks like this:

1111...111111 (30 bits total)

−1 is represented as 30 ones. (This is called two’s complement notation.)

Chapter 3: Numbers 34

The negative integer, −5, is creating by subtracting 4 from −1. In binary, the decimal
integer 4 is 100. Consequently, −5 looks like this:

1111...111011 (30 bits total)

In this implementation, the largest 30-bit binary integer value is 536,870,911 in decimal.
In binary, it looks like this:

0111...111111 (30 bits total)

Since the arithmetic functions do not check whether integers go outside their range,
when you add 1 to 536,870,911, the value is the negative integer −536,870,912:

(+ 1 536870911)

⇒ -536870912

⇒ 1000...000000 (30 bits total)

Many of the functions described in this chapter accept markers for arguments in place
of numbers. (See Chapter 31 [Markers], page 636.) Since the actual arguments to such
functions may be either numbers or markers, we often give these arguments the name
number-or-marker. When the argument value is a marker, its position value is used and its
buffer is ignored.

[Variable]most-positive-fixnum
The value of this variable is the largest integer that Emacs Lisp can handle.

[Variable]most-negative-fixnum
The value of this variable is the smallest integer that Emacs Lisp can handle. It is
negative.

In Emacs Lisp, text characters are represented by integers. Any integer between zero
and the value of max-char, inclusive, is considered to be valid as a character. See Section 4.1
[String Basics], page 48.

3.2 Floating Point Basics

Floating point numbers are useful for representing numbers that are not integral. The
precise range of floating point numbers is machine-specific; it is the same as the range of
the C data type double on the machine you are using. Emacs uses the IEEE floating point
standard, which is supported by all modern computers.

The read syntax for floating point numbers requires either a decimal point (with at least
one digit following), an exponent, or both. For example, ‘1500.0’, ‘15e2’, ‘15.0e2’, ‘1.5e3’,
and ‘.15e4’ are five ways of writing a floating point number whose value is 1500. They are
all equivalent. You can also use a minus sign to write negative floating point numbers, as
in ‘-1.0’.

Emacs Lisp treats -0.0 as equal to ordinary zero (with respect to equal and =), even
though the two are distinguishable in the IEEE floating point standard.

The IEEE floating point standard supports positive infinity and negative infinity as
floating point values. It also provides for a class of values called NaN or “not-a-number”;
numerical functions return such values in cases where there is no correct answer. For
example, (/ 0.0 0.0) returns a NaN. (NaN values can also carry a sign, but for practical
purposes there’s no significant difference between different NaN values in Emacs Lisp.)

Chapter 3: Numbers 35

When a function is documented to return a NaN, it returns an implementation-defined
value when Emacs is running on one of the now-rare platforms that do not use IEEE floating
point. For example, (log -1.0) typically returns a NaN, but on non-IEEE platforms it
returns an implementation-defined value.

Here are the read syntaxes for these special floating point values:

positive infinity
‘1.0e+INF’

negative infinity
‘-1.0e+INF’

Not-a-number
‘0.0e+NaN’ or ‘-0.0e+NaN’.

[Function]isnan number
This predicate tests whether its argument is NaN, and returns t if so, nil otherwise.
The argument must be a number.

The following functions are specialized for handling floating point numbers:

[Function]frexp x
This function returns a cons cell (sig . exp), where sig and exp are respectively the
significand and exponent of the floating point number x:

x = sig * 2^exp

sig is a floating point number between 0.5 (inclusive) and 1.0 (exclusive). If x is zero,
the return value is (0 . 0).

[Function]ldexp sig &optional exp
This function returns a floating point number corresponding to the significand sig
and exponent exp.

[Function]copysign x1 x2
This function copies the sign of x2 to the value of x1, and returns the result. x1 and
x2 must be floating point numbers.

[Function]logb number
This function returns the binary exponent of number. More precisely, the value is the
logarithm of |number| base 2, rounded down to an integer.

(logb 10)

⇒ 3

(logb 10.0e20)

⇒ 69

3.3 Type Predicates for Numbers

The functions in this section test for numbers, or for a specific type of number. The functions
integerp and floatp can take any type of Lisp object as argument (they would not be of
much use otherwise), but the zerop predicate requires a number as its argument. See also
integer-or-marker-p and number-or-marker-p, in Section 31.2 [Predicates on Markers],
page 637.

Chapter 3: Numbers 36

[Function]floatp object
This predicate tests whether its argument is a floating point number and returns t if
so, nil otherwise.

[Function]integerp object
This predicate tests whether its argument is an integer, and returns t if so, nil

otherwise.

[Function]numberp object
This predicate tests whether its argument is a number (either integer or floating
point), and returns t if so, nil otherwise.

[Function]natnump object
This predicate (whose name comes from the phrase “natural number”) tests to see
whether its argument is a nonnegative integer, and returns t if so, nil otherwise. 0
is considered non-negative.

This is a synonym for natnump.

[Function]zerop number
This predicate tests whether its argument is zero, and returns t if so, nil otherwise.
The argument must be a number.

(zerop x) is equivalent to (= x 0).

3.4 Comparison of Numbers

To test numbers for numerical equality, you should normally use =, not eq. There can be
many distinct floating point number objects with the same numeric value. If you use eq

to compare them, then you test whether two values are the same object. By contrast, =
compares only the numeric values of the objects.

In Emacs Lisp, each integer value is a unique Lisp object. Therefore, eq is equivalent
to = where integers are concerned. It is sometimes convenient to use eq for comparing an
unknown value with an integer, because eq does not report an error if the unknown value
is not a number—it accepts arguments of any type. By contrast, = signals an error if the
arguments are not numbers or markers. However, it is better programming practice to use
= if you can, even for comparing integers.

Sometimes it is useful to compare numbers with equal, which treats two numbers as
equal if they have the same data type (both integers, or both floating point) and the same
value. By contrast, = can treat an integer and a floating point number as equal. See
Section 2.7 [Equality Predicates], page 30.

There is another wrinkle: because floating point arithmetic is not exact, it is often a
bad idea to check for equality of two floating point values. Usually it is better to test for
approximate equality. Here’s a function to do this:

(defvar fuzz-factor 1.0e-6)

(defun approx-equal (x y)

(or (and (= x 0) (= y 0))

(< (/ (abs (- x y))

(max (abs x) (abs y)))

Chapter 3: Numbers 37

fuzz-factor)))

Common Lisp note: Comparing numbers in Common Lisp always requires =

because Common Lisp implements multi-word integers, and two distinct integer
objects can have the same numeric value. Emacs Lisp can have just one integer
object for any given value because it has a limited range of integer values.

[Function]= number-or-marker1 number-or-marker2
This function tests whether its arguments are numerically equal, and returns t if so,
nil otherwise.

[Function]eql value1 value2
This function acts like eq except when both arguments are numbers. It compares
numbers by type and numeric value, so that (eql 1.0 1) returns nil, but (eql 1.0

1.0) and (eql 1 1) both return t.

[Function]/= number-or-marker1 number-or-marker2
This function tests whether its arguments are numerically equal, and returns t if they
are not, and nil if they are.

[Function]< number-or-marker1 number-or-marker2
This function tests whether its first argument is strictly less than its second argument.
It returns t if so, nil otherwise.

[Function]<= number-or-marker1 number-or-marker2
This function tests whether its first argument is less than or equal to its second
argument. It returns t if so, nil otherwise.

[Function]> number-or-marker1 number-or-marker2
This function tests whether its first argument is strictly greater than its second argu-
ment. It returns t if so, nil otherwise.

[Function]>= number-or-marker1 number-or-marker2
This function tests whether its first argument is greater than or equal to its second
argument. It returns t if so, nil otherwise.

[Function]max number-or-marker &rest numbers-or-markers
This function returns the largest of its arguments. If any of the arguments is floating-
point, the value is returned as floating point, even if it was given as an integer.

(max 20)

⇒ 20

(max 1 2.5)

⇒ 2.5

(max 1 3 2.5)

⇒ 3.0

[Function]min number-or-marker &rest numbers-or-markers
This function returns the smallest of its arguments. If any of the arguments is floating-
point, the value is returned as floating point, even if it was given as an integer.

(min -4 1)

⇒ -4

Chapter 3: Numbers 38

[Function]abs number
This function returns the absolute value of number.

3.5 Numeric Conversions

To convert an integer to floating point, use the function float.

[Function]float number
This returns number converted to floating point. If number is already a floating point
number, float returns it unchanged.

There are four functions to convert floating point numbers to integers; they differ in
how they round. All accept an argument number and an optional argument divisor. Both
arguments may be integers or floating point numbers. divisor may also be nil. If divisor is
nil or omitted, these functions convert number to an integer, or return it unchanged if it
already is an integer. If divisor is non-nil, they divide number by divisor and convert the
result to an integer. integer. If divisor is zero (whether integer or floating-point), Emacs
signals an arith-error error.

[Function]truncate number &optional divisor
This returns number, converted to an integer by rounding towards zero.

(truncate 1.2)

⇒ 1

(truncate 1.7)

⇒ 1

(truncate -1.2)

⇒ -1

(truncate -1.7)

⇒ -1

[Function]floor number &optional divisor
This returns number, converted to an integer by rounding downward (towards nega-
tive infinity).

If divisor is specified, this uses the kind of division operation that corresponds to mod,
rounding downward.

(floor 1.2)

⇒ 1

(floor 1.7)

⇒ 1

(floor -1.2)

⇒ -2

(floor -1.7)

⇒ -2

(floor 5.99 3)

⇒ 1

[Function]ceiling number &optional divisor
This returns number, converted to an integer by rounding upward (towards positive
infinity).

Chapter 3: Numbers 39

(ceiling 1.2)

⇒ 2

(ceiling 1.7)

⇒ 2

(ceiling -1.2)

⇒ -1

(ceiling -1.7)

⇒ -1

[Function]round number &optional divisor
This returns number, converted to an integer by rounding towards the nearest integer.
Rounding a value equidistant between two integers may choose the integer closer to
zero, or it may prefer an even integer, depending on your machine.

(round 1.2)

⇒ 1

(round 1.7)

⇒ 2

(round -1.2)

⇒ -1

(round -1.7)

⇒ -2

3.6 Arithmetic Operations

Emacs Lisp provides the traditional four arithmetic operations (addition, subtraction, mul-
tiplication, and division), as well as remainder and modulus functions, and functions to add
or subtract 1. Except for %, each of these functions accepts both integer and floating point
arguments, and returns a floating point number if any argument is a floating point number.

It is important to note that in Emacs Lisp, arithmetic functions do not check for overflow.
Thus (1+ 536870911) may evaluate to −536870912, depending on your hardware.

[Function]1+ number-or-marker
This function returns number-or-marker plus 1. For example,

(setq foo 4)

⇒ 4

(1+ foo)

⇒ 5

This function is not analogous to the C operator ++—it does not increment a variable.
It just computes a sum. Thus, if we continue,

foo

⇒ 4

If you want to increment the variable, you must use setq, like this:

(setq foo (1+ foo))

⇒ 5

[Function]1- number-or-marker
This function returns number-or-marker minus 1.

Chapter 3: Numbers 40

[Function]+ &rest numbers-or-markers
This function adds its arguments together. When given no arguments, + returns 0.

(+)

⇒ 0

(+ 1)

⇒ 1

(+ 1 2 3 4)

⇒ 10

[Function]- &optional number-or-marker &rest more-numbers-or-markers
The - function serves two purposes: negation and subtraction. When - has a single
argument, the value is the negative of the argument. When there are multiple ar-
guments, - subtracts each of the more-numbers-or-markers from number-or-marker,
cumulatively. If there are no arguments, the result is 0.

(- 10 1 2 3 4)

⇒ 0

(- 10)

⇒ -10

(-)

⇒ 0

[Function]* &rest numbers-or-markers
This function multiplies its arguments together, and returns the product. When given
no arguments, * returns 1.

(*)

⇒ 1

(* 1)

⇒ 1

(* 1 2 3 4)

⇒ 24

[Function]/ dividend divisor &rest divisors
This function divides dividend by divisor and returns the quotient. If there are
additional arguments divisors, then it divides dividend by each divisor in turn. Each
argument may be a number or a marker.

If all the arguments are integers, the result is an integer, obtained by rounding the
quotient towards zero after each division. (Hypothetically, some machines may have
different rounding behavior for negative arguments, because / is implemented using
the C division operator, which permits machine-dependent rounding; but this does
not happen in practice.)

(/ 6 2)

⇒ 3

(/ 5 2)

⇒ 2

(/ 5.0 2)

⇒ 2.5

Chapter 3: Numbers 41

(/ 5 2.0)

⇒ 2.5

(/ 5.0 2.0)

⇒ 2.5

(/ 25 3 2)

⇒ 4

(/ -17 6)

⇒ -2

If you divide an integer by the integer 0, Emacs signals an arith-error error (see
Section 10.5.3 [Errors], page 132). If you divide a floating point number by 0, or divide
by the floating point number 0.0, the result is either positive or negative infinity (see
Section 3.2 [Float Basics], page 34).

[Function]% dividend divisor
This function returns the integer remainder after division of dividend by divisor. The
arguments must be integers or markers.

For any two integers dividend and divisor,

(+ (% dividend divisor)

(* (/ dividend divisor) divisor))

always equals dividend. If divisor is zero, Emacs signals an arith-error error.

(% 9 4)

⇒ 1

(% -9 4)

⇒ -1

(% 9 -4)

⇒ 1

(% -9 -4)

⇒ -1

[Function]mod dividend divisor
This function returns the value of dividend modulo divisor; in other words, the re-
mainder after division of dividend by divisor, but with the same sign as divisor. The
arguments must be numbers or markers.

Unlike %, mod permits floating point arguments; it rounds the quotient downward (to-
wards minus infinity) to an integer, and uses that quotient to compute the remainder.

If divisor is zero, mod signals an arith-error error if both arguments are integers,
and returns a NaN otherwise.

(mod 9 4)

⇒ 1

(mod -9 4)

⇒ 3

(mod 9 -4)

⇒ -3

(mod -9 -4)

⇒ -1

Chapter 3: Numbers 42

(mod 5.5 2.5)

⇒ .5

For any two numbers dividend and divisor,

(+ (mod dividend divisor)

(* (floor dividend divisor) divisor))

always equals dividend, subject to rounding error if either argument is floating point.
For floor, see Section 3.5 [Numeric Conversions], page 38.

3.7 Rounding Operations

The functions ffloor, fceiling, fround, and ftruncate take a floating point argument
and return a floating point result whose value is a nearby integer. ffloor returns the
nearest integer below; fceiling, the nearest integer above; ftruncate, the nearest integer
in the direction towards zero; fround, the nearest integer.

[Function]ffloor float
This function rounds float to the next lower integral value, and returns that value as
a floating point number.

[Function]fceiling float
This function rounds float to the next higher integral value, and returns that value
as a floating point number.

[Function]ftruncate float
This function rounds float towards zero to an integral value, and returns that value
as a floating point number.

[Function]fround float
This function rounds float to the nearest integral value, and returns that value as a
floating point number.

3.8 Bitwise Operations on Integers

In a computer, an integer is represented as a binary number, a sequence of bits (digits
which are either zero or one). A bitwise operation acts on the individual bits of such a
sequence. For example, shifting moves the whole sequence left or right one or more places,
reproducing the same pattern “moved over”.

The bitwise operations in Emacs Lisp apply only to integers.

[Function]lsh integer1 count
lsh, which is an abbreviation for logical shift, shifts the bits in integer1 to the left
count places, or to the right if count is negative, bringing zeros into the vacated bits.
If count is negative, lsh shifts zeros into the leftmost (most-significant) bit, producing
a positive result even if integer1 is negative. Contrast this with ash, below.

Here are two examples of lsh, shifting a pattern of bits one place to the left. We
show only the low-order eight bits of the binary pattern; the rest are all zero.

Chapter 3: Numbers 43

(lsh 5 1)

⇒ 10

;; Decimal 5 becomes decimal 10.
00000101 ⇒ 00001010

(lsh 7 1)

⇒ 14

;; Decimal 7 becomes decimal 14.
00000111 ⇒ 00001110

As the examples illustrate, shifting the pattern of bits one place to the left produces
a number that is twice the value of the previous number.

Shifting a pattern of bits two places to the left produces results like this (with 8-bit
binary numbers):

(lsh 3 2)

⇒ 12

;; Decimal 3 becomes decimal 12.
00000011 ⇒ 00001100

On the other hand, shifting one place to the right looks like this:

(lsh 6 -1)

⇒ 3

;; Decimal 6 becomes decimal 3.
00000110 ⇒ 00000011

(lsh 5 -1)

⇒ 2

;; Decimal 5 becomes decimal 2.
00000101 ⇒ 00000010

As the example illustrates, shifting one place to the right divides the value of a positive
integer by two, rounding downward.

The function lsh, like all Emacs Lisp arithmetic functions, does not check for overflow,
so shifting left can discard significant bits and change the sign of the number. For
example, left shifting 536,870,911 produces −2 in the 30-bit implementation:

(lsh 536870911 1) ; left shift
⇒ -2

In binary, the argument looks like this:

;; Decimal 536,870,911
0111...111111 (30 bits total)

which becomes the following when left shifted:

;; Decimal −2
1111...111110 (30 bits total)

[Function]ash integer1 count
ash (arithmetic shift) shifts the bits in integer1 to the left count places, or to the
right if count is negative.

Chapter 3: Numbers 44

ash gives the same results as lsh except when integer1 and count are both negative.
In that case, ash puts ones in the empty bit positions on the left, while lsh puts zeros
in those bit positions.

Thus, with ash, shifting the pattern of bits one place to the right looks like this:

(ash -6 -1) ⇒ -3

;; Decimal −6 becomes decimal −3.
1111...111010 (30 bits total)

⇒
1111...111101 (30 bits total)

In contrast, shifting the pattern of bits one place to the right with lsh looks like this:

(lsh -6 -1) ⇒ 536870909

;; Decimal −6 becomes decimal 536,870,909.
1111...111010 (30 bits total)

⇒
0111...111101 (30 bits total)

Here are other examples:

; 30-bit binary values

(lsh 5 2) ; 5 = 0000...000101
⇒ 20 ; = 0000...010100

(ash 5 2)
⇒ 20

(lsh -5 2) ; -5 = 1111...111011
⇒ -20 ; = 1111...101100

(ash -5 2)
⇒ -20

(lsh 5 -2) ; 5 = 0000...000101
⇒ 1 ; = 0000...000001

(ash 5 -2)
⇒ 1

(lsh -5 -2) ; -5 = 1111...111011
⇒ 268435454

; = 0011...111110
(ash -5 -2) ; -5 = 1111...111011

⇒ -2 ; = 1111...111110

[Function]logand &rest ints-or-markers
This function returns the “logical and” of the arguments: the nth bit is set in the
result if, and only if, the nth bit is set in all the arguments. (“Set” means that the
value of the bit is 1 rather than 0.)

For example, using 4-bit binary numbers, the “logical and” of 13 and 12 is 12: 1101
combined with 1100 produces 1100. In both the binary numbers, the leftmost two
bits are set (i.e., they are 1’s), so the leftmost two bits of the returned value are set.
However, for the rightmost two bits, each is zero in at least one of the arguments, so
the rightmost two bits of the returned value are 0’s.

Therefore,

(logand 13 12)

⇒ 12

Chapter 3: Numbers 45

If logand is not passed any argument, it returns a value of −1. This number is an
identity element for logand because its binary representation consists entirely of ones.
If logand is passed just one argument, it returns that argument.

; 30-bit binary values

(logand 14 13) ; 14 = 0000...001110
; 13 = 0000...001101

⇒ 12 ; 12 = 0000...001100

(logand 14 13 4) ; 14 = 0000...001110
; 13 = 0000...001101
; 4 = 0000...000100

⇒ 4 ; 4 = 0000...000100

(logand)
⇒ -1 ; -1 = 1111...111111

[Function]logior &rest ints-or-markers
This function returns the “inclusive or” of its arguments: the nth bit is set in the
result if, and only if, the nth bit is set in at least one of the arguments. If there are
no arguments, the result is zero, which is an identity element for this operation. If
logior is passed just one argument, it returns that argument.

; 30-bit binary values

(logior 12 5) ; 12 = 0000...001100
; 5 = 0000...000101

⇒ 13 ; 13 = 0000...001101

(logior 12 5 7) ; 12 = 0000...001100
; 5 = 0000...000101
; 7 = 0000...000111

⇒ 15 ; 15 = 0000...001111

[Function]logxor &rest ints-or-markers
This function returns the “exclusive or” of its arguments: the nth bit is set in the
result if, and only if, the nth bit is set in an odd number of the arguments. If there
are no arguments, the result is 0, which is an identity element for this operation. If
logxor is passed just one argument, it returns that argument.

; 30-bit binary values

(logxor 12 5) ; 12 = 0000...001100
; 5 = 0000...000101

⇒ 9 ; 9 = 0000...001001

(logxor 12 5 7) ; 12 = 0000...001100
; 5 = 0000...000101
; 7 = 0000...000111

⇒ 14 ; 14 = 0000...001110

[Function]lognot integer
This function returns the logical complement of its argument: the nth bit is one in
the result if, and only if, the nth bit is zero in integer, and vice-versa.

(lognot 5)

⇒ -6

Chapter 3: Numbers 46

;; 5 = 0000...000101 (30 bits total)

;; becomes
;; -6 = 1111...111010 (30 bits total)

3.9 Standard Mathematical Functions

These mathematical functions allow integers as well as floating point numbers as arguments.

[Function]sin arg
[Function]cos arg
[Function]tan arg

These are the basic trigonometric functions, with argument arg measured in radians.

[Function]asin arg
The value of (asin arg) is a number between −π/2 and π/2 (inclusive) whose sine
is arg. If arg is out of range (outside [−1, 1]), asin returns a NaN.

[Function]acos arg
The value of (acos arg) is a number between 0 and π (inclusive) whose cosine is arg.
If arg is out of range (outside [−1, 1]), acos returns a NaN.

[Function]atan y &optional x
The value of (atan y) is a number between −π/2 and π/2 (exclusive) whose tangent
is y. If the optional second argument x is given, the value of (atan y x) is the angle
in radians between the vector [x, y] and the X axis.

[Function]exp arg
This is the exponential function; it returns e to the power arg.

[Function]log arg &optional base
This function returns the logarithm of arg, with base base. If you don’t specify base,
the natural base e is used. If arg or base is negative, log returns a NaN.

[Function]log10 arg
This function returns the logarithm of arg, with base 10: (log10 x) ≡ (log x 10).

[Function]expt x y
This function returns x raised to power y. If both arguments are integers and y is
positive, the result is an integer; in this case, overflow causes truncation, so watch
out. If x is a finite negative number and y is a finite non-integer, expt returns a NaN.

[Function]sqrt arg
This returns the square root of arg. If arg is negative, sqrt returns a NaN.

In addition, Emacs defines the following common mathematical constants:

[Variable]float-e
The mathematical constant e (2.71828. . .).

[Variable]float-pi
The mathematical constant pi (3.14159. . .).

Chapter 3: Numbers 47

3.10 Random Numbers

A deterministic computer program cannot generate true random numbers. For most pur-
poses, pseudo-random numbers suffice. A series of pseudo-random numbers is generated in
a deterministic fashion. The numbers are not truly random, but they have certain proper-
ties that mimic a random series. For example, all possible values occur equally often in a
pseudo-random series.

Pseudo-random numbers are generated from a “seed”. Starting from any given seed,
the random function always generates the same sequence of numbers. By default, Emacs
initializes the random seed at startup, in such a way that the sequence of values of random
(with overwhelming likelihood) differs in each Emacs run.

Sometimes you want the random number sequence to be repeatable. For example, when
debugging a program whose behavior depends on the random number sequence, it is helpful
to get the same behavior in each program run. To make the sequence repeat, execute
(random ""). This sets the seed to a constant value for your particular Emacs executable
(though it may differ for other Emacs builds). You can use other strings to choose various
seed values.

[Function]random &optional limit
This function returns a pseudo-random integer. Repeated calls return a series of
pseudo-random integers.

If limit is a positive integer, the value is chosen to be nonnegative and less than limit.
Otherwise, the value might be any integer representable in Lisp, i.e., an integer be-
tween most-negative-fixnum and most-positive-fixnum (see Section 3.1 [Integer
Basics], page 33).

If limit is t, it means to choose a new seed based on the current time of day and on
Emacs’s process ID number.

If limit is a string, it means to choose a new seed based on the string’s contents.

Chapter 4: Strings and Characters 48

4 Strings and Characters

A string in Emacs Lisp is an array that contains an ordered sequence of characters. Strings
are used as names of symbols, buffers, and files; to send messages to users; to hold text being
copied between buffers; and for many other purposes. Because strings are so important,
Emacs Lisp has many functions expressly for manipulating them. Emacs Lisp programs use
strings more often than individual characters.

See Section 21.7.15 [Strings of Events], page 347, for special considerations for strings of
keyboard character events.

4.1 String and Character Basics

A character is a Lisp object which represents a single character of text. In Emacs Lisp,
characters are simply integers; whether an integer is a character or not is determined only
by how it is used. See Section 33.4 [Character Codes], page 708, for details about character
representation in Emacs.

A string is a fixed sequence of characters. It is a type of sequence called a array,
meaning that its length is fixed and cannot be altered once it is created (see Chapter 6
[Sequences Arrays Vectors], page 88). Unlike in C, Emacs Lisp strings are not terminated
by a distinguished character code.

Since strings are arrays, and therefore sequences as well, you can operate on them with
the general array and sequence functions documented in Chapter 6 [Sequences Arrays Vec-
tors], page 88. For example, you can access or change individual characters in a string
using the functions aref and aset (see Section 6.3 [Array Functions], page 91). However,
note that length should not be used for computing the width of a string on display; use
string-width (see Section 38.10 [Width], page 846) instead.

There are two text representations for non-ASCII characters in Emacs strings (and in
buffers): unibyte and multibyte. For most Lisp programming, you don’t need to be con-
cerned with these two representations. See Section 33.1 [Text Representations], page 705,
for details.

Sometimes key sequences are represented as unibyte strings. When a unibyte string is
a key sequence, string elements in the range 128 to 255 represent meta characters (which
are large integers) rather than character codes in the range 128 to 255. Strings cannot
hold characters that have the hyper, super or alt modifiers; they can hold ASCII control
characters, but no other control characters. They do not distinguish case in ASCII control
characters. If you want to store such characters in a sequence, such as a key sequence, you
must use a vector instead of a string. See Section 2.3.3 [Character Type], page 10, for more
information about keyboard input characters.

Strings are useful for holding regular expressions. You can also match regular expressions
against strings with string-match (see Section 34.4 [Regexp Search], page 744). The
functions match-string (see Section 34.6.2 [Simple Match Data], page 749) and replace-

match (see Section 34.6.1 [Replacing Match], page 748) are useful for decomposing and
modifying strings after matching regular expressions against them.

Like a buffer, a string can contain text properties for the characters in it, as well as
the characters themselves. See Section 32.19 [Text Properties], page 680. All the Lisp

Chapter 4: Strings and Characters 49

primitives that copy text from strings to buffers or other strings also copy the properties of
the characters being copied.

See Chapter 32 [Text], page 645, for information about functions that display strings
or copy them into buffers. See Section 2.3.3 [Character Type], page 10, and Section 2.3.8
[String Type], page 18, for information about the syntax of characters and strings. See
Chapter 33 [Non-ASCII Characters], page 705, for functions to convert between text repre-
sentations and to encode and decode character codes.

4.2 Predicates for Strings

For more information about general sequence and array predicates, see Chapter 6 [Sequences
Arrays Vectors], page 88, and Section 6.2 [Arrays], page 90.

[Function]stringp object
This function returns t if object is a string, nil otherwise.

[Function]string-or-null-p object
This function returns t if object is a string or nil. It returns nil otherwise.

[Function]char-or-string-p object
This function returns t if object is a string or a character (i.e., an integer), nil

otherwise.

4.3 Creating Strings

The following functions create strings, either from scratch, or by putting strings together,
or by taking them apart.

[Function]make-string count character
This function returns a string made up of count repetitions of character. If count is
negative, an error is signaled.

(make-string 5 ?x)

⇒ "xxxxx"

(make-string 0 ?x)

⇒ ""

Other functions to compare with this one include make-vector (see Section 6.4 [Vec-
tors], page 92) and make-list (see Section 5.4 [Building Lists], page 68).

[Function]string &rest characters
This returns a string containing the characters characters.

(string ?a ?b ?c)

⇒ "abc"

[Function]substring string start &optional end
This function returns a new string which consists of those characters from string in
the range from (and including) the character at the index start up to (but excluding)
the character at the index end. The first character is at index zero.

Chapter 4: Strings and Characters 50

(substring "abcdefg" 0 3)

⇒ "abc"

In the above example, the index for ‘a’ is 0, the index for ‘b’ is 1, and the index for ‘c’
is 2. The index 3—which is the fourth character in the string—marks the character
position up to which the substring is copied. Thus, ‘abc’ is copied from the string
"abcdefg".

A negative number counts from the end of the string, so that −1 signifies the index
of the last character of the string. For example:

(substring "abcdefg" -3 -1)

⇒ "ef"

In this example, the index for ‘e’ is −3, the index for ‘f’ is −2, and the index for ‘g’
is −1. Therefore, ‘e’ and ‘f’ are included, and ‘g’ is excluded.

When nil is used for end, it stands for the length of the string. Thus,

(substring "abcdefg" -3 nil)

⇒ "efg"

Omitting the argument end is equivalent to specifying nil. It follows that (substring
string 0) returns a copy of all of string.

(substring "abcdefg" 0)

⇒ "abcdefg"

But we recommend copy-sequence for this purpose (see Section 6.1 [Sequence Func-
tions], page 88).

If the characters copied from string have text properties, the properties are copied
into the new string also. See Section 32.19 [Text Properties], page 680.

substring also accepts a vector for the first argument. For example:

(substring [a b (c) "d"] 1 3)

⇒ [b (c)]

A wrong-type-argument error is signaled if start is not an integer or if end is neither
an integer nor nil. An args-out-of-range error is signaled if start indicates a
character following end, or if either integer is out of range for string.

Contrast this function with buffer-substring (see Section 32.2 [Buffer Contents],
page 646), which returns a string containing a portion of the text in the current buffer.
The beginning of a string is at index 0, but the beginning of a buffer is at index 1.

[Function]substring-no-properties string &optional start end
This works like substring but discards all text properties from the value.
Also, start may be omitted or nil, which is equivalent to 0. Thus,
(substring-no-properties string) returns a copy of string, with all text
properties removed.

[Function]concat &rest sequences
This function returns a new string consisting of the characters in the arguments passed
to it (along with their text properties, if any). The arguments may be strings, lists of
numbers, or vectors of numbers; they are not themselves changed. If concat receives
no arguments, it returns an empty string.

Chapter 4: Strings and Characters 51

(concat "abc" "-def")

⇒ "abc-def"

(concat "abc" (list 120 121) [122])

⇒ "abcxyz"

;; nil is an empty sequence.
(concat "abc" nil "-def")

⇒ "abc-def"

(concat "The " "quick brown " "fox.")

⇒ "The quick brown fox."

(concat)

⇒ ""

This function always constructs a new string that is not eq to any existing string,
except when the result is the empty string (to save space, Emacs makes only one
empty multibyte string).

For information about other concatenation functions, see the description of mapconcat
in Section 12.6 [Mapping Functions], page 178, vconcat in Section 6.5 [Vector Func-
tions], page 93, and append in Section 5.4 [Building Lists], page 68. For concatenating
individual command-line arguments into a string to be used as a shell command, see
Section 37.2 [Shell Arguments], page 781.

[Function]split-string string &optional separators omit-nulls
This function splits string into substrings based on the regular expression separators
(see Section 34.3 [Regular Expressions], page 734). Each match for separators defines
a splitting point; the substrings between splitting points are made into a list, which
is returned.

If omit-nulls is nil (or omitted), the result contains null strings whenever there are
two consecutive matches for separators, or a match is adjacent to the beginning or
end of string. If omit-nulls is t, these null strings are omitted from the result.

If separators is nil (or omitted), the default is the value of split-string-default-
separators.

As a special case, when separators is nil (or omitted), null strings are always omitted
from the result. Thus:

(split-string " two words ")

⇒ ("two" "words")

The result is not ("" "two" "words" ""), which would rarely be useful. If you need
such a result, use an explicit value for separators:

(split-string " two words "

split-string-default-separators)

⇒ ("" "two" "words" "")

More examples:

(split-string "Soup is good food" "o")

⇒ ("S" "up is g" "" "d f" "" "d")

(split-string "Soup is good food" "o" t)

⇒ ("S" "up is g" "d f" "d")

(split-string "Soup is good food" "o+")

Chapter 4: Strings and Characters 52

⇒ ("S" "up is g" "d f" "d")

Empty matches do count, except that split-string will not look for a final empty
match when it already reached the end of the string using a non-empty match or
when string is empty:

(split-string "aooob" "o*")

⇒ ("" "a" "" "b" "")

(split-string "ooaboo" "o*")

⇒ ("" "" "a" "b" "")

(split-string "" "")

⇒ ("")

However, when separators can match the empty string, omit-nulls is usually t, so
that the subtleties in the three previous examples are rarely relevant:

(split-string "Soup is good food" "o*" t)

⇒ ("S" "u" "p" " " "i" "s" " " "g" "d" " " "f" "d")

(split-string "Nice doggy!" "" t)

⇒ ("N" "i" "c" "e" " " "d" "o" "g" "g" "y" "!")

(split-string "" "" t)

⇒ nil

Somewhat odd, but predictable, behavior can occur for certain “non-greedy” values
of separators that can prefer empty matches over non-empty matches. Again, such
values rarely occur in practice:

(split-string "ooo" "o*" t)

⇒ nil

(split-string "ooo" "\\|o+" t)

⇒ ("o" "o" "o")

If you need to split a string into a list of individual command-line arguments suitable
for call-process or start-process, see Section 37.2 [Shell Arguments], page 781.

[Variable]split-string-default-separators
The default value of separators for split-string. Its usual value is
"[\f\t\n\r\v]+".

4.4 Modifying Strings

The most basic way to alter the contents of an existing string is with aset (see Section 6.3
[Array Functions], page 91). (aset string idx char) stores char into string at index idx.
Each character occupies one or more bytes, and if char needs a different number of bytes
from the character already present at that index, aset signals an error.

A more powerful function is store-substring:

[Function]store-substring string idx obj
This function alters part of the contents of the string string, by storing obj starting
at index idx. The argument obj may be either a character or a (smaller) string.

Since it is impossible to change the length of an existing string, it is an error if obj
doesn’t fit within string ’s actual length, or if any new character requires a different
number of bytes from the character currently present at that point in string.

Chapter 4: Strings and Characters 53

To clear out a string that contained a password, use clear-string:

[Function]clear-string string
This makes string a unibyte string and clears its contents to zeros. It may also change
string ’s length.

4.5 Comparison of Characters and Strings

[Function]char-equal character1 character2
This function returns t if the arguments represent the same character, nil otherwise.
This function ignores differences in case if case-fold-search is non-nil.

(char-equal ?x ?x)

⇒ t

(let ((case-fold-search nil))

(char-equal ?x ?X))

⇒ nil

[Function]string= string1 string2
This function returns t if the characters of the two strings match exactly. Symbols
are also allowed as arguments, in which case the symbol names are used. Case is
always significant, regardless of case-fold-search.

This function is equivalent to equal for comparing two strings (see Section 2.7 [Equal-
ity Predicates], page 30). In particular, the text properties of the two strings are
ignored. But if either argument is not a string or symbol, an error is signaled.

(string= "abc" "abc")

⇒ t

(string= "abc" "ABC")

⇒ nil

(string= "ab" "ABC")

⇒ nil

For technical reasons, a unibyte and a multibyte string are equal if and only if they
contain the same sequence of character codes and all these codes are either in the
range 0 through 127 (ASCII) or 160 through 255 (eight-bit-graphic). However,
when a unibyte string is converted to a multibyte string, all characters with codes
in the range 160 through 255 are converted to characters with higher codes, whereas
ASCII characters remain unchanged. Thus, a unibyte string and its conversion to
multibyte are only equal if the string is all ASCII. Character codes 160 through
255 are not entirely proper in multibyte text, even though they can occur. As a
consequence, the situation where a unibyte and a multibyte string are equal without
both being all ASCII is a technical oddity that very few Emacs Lisp programmers
ever get confronted with. See Section 33.1 [Text Representations], page 705.

[Function]string-equal string1 string2
string-equal is another name for string=.

[Function]string< string1 string2
This function compares two strings a character at a time. It scans both the strings at
the same time to find the first pair of corresponding characters that do not match. If

Chapter 4: Strings and Characters 54

the lesser character of these two is the character from string1, then string1 is less, and
this function returns t. If the lesser character is the one from string2, then string1 is
greater, and this function returns nil. If the two strings match entirely, the value is
nil.

Pairs of characters are compared according to their character codes. Keep in mind
that lower case letters have higher numeric values in the ASCII character set than
their upper case counterparts; digits and many punctuation characters have a lower
numeric value than upper case letters. An ASCII character is less than any non-ASCII

character; a unibyte non-ASCII character is always less than any multibyte non-ASCII

character (see Section 33.1 [Text Representations], page 705).

(string< "abc" "abd")

⇒ t

(string< "abd" "abc")

⇒ nil

(string< "123" "abc")

⇒ t

When the strings have different lengths, and they match up to the length of string1,
then the result is t. If they match up to the length of string2, the result is nil. A
string of no characters is less than any other string.

(string< "" "abc")

⇒ t

(string< "ab" "abc")

⇒ t

(string< "abc" "")

⇒ nil

(string< "abc" "ab")

⇒ nil

(string< "" "")

⇒ nil

Symbols are also allowed as arguments, in which case their print names are used.

[Function]string-lessp string1 string2
string-lessp is another name for string<.

[Function]string-prefix-p string1 string2 &optional ignore-case
This function returns non-nil if string1 is a prefix of string2; i.e., if string2 starts
with string1. If the optional argument ignore-case is non-nil, the comparison ignores
case differences.

[Function]compare-strings string1 start1 end1 string2 start2 end2 &optional
ignore-case

This function compares a specified part of string1 with a specified part of string2.
The specified part of string1 runs from index start1 (inclusive) up to index end1
(exclusive); nil for start1 means the start of the string, while nil for end1 means
the length of the string. Likewise, the specified part of string2 runs from index start2
up to index end2.

Chapter 4: Strings and Characters 55

The strings are compared by the numeric values of their characters. For instance,
str1 is considered “smaller than” str2 if its first differing character has a smaller
numeric value. If ignore-case is non-nil, characters are converted to lower-case be-
fore comparing them. Unibyte strings are converted to multibyte for comparison
(see Section 33.1 [Text Representations], page 705), so that a unibyte string and its
conversion to multibyte are always regarded as equal.

If the specified portions of the two strings match, the value is t. Otherwise, the value
is an integer which indicates how many leading characters agree, and which string
is less. Its absolute value is one plus the number of characters that agree at the
beginning of the two strings. The sign is negative if string1 (or its specified portion)
is less.

[Function]assoc-string key alist &optional case-fold
This function works like assoc, except that key must be a string or symbol, and
comparison is done using compare-strings. Symbols are converted to strings before
testing. If case-fold is non-nil, it ignores case differences. Unlike assoc, this function
can also match elements of the alist that are strings or symbols rather than conses.
In particular, alist can be a list of strings or symbols rather than an actual alist. See
Section 5.8 [Association Lists], page 82.

See also the function compare-buffer-substrings in Section 32.3 [Comparing Text],
page 648, for a way to compare text in buffers. The function string-match, which matches
a regular expression against a string, can be used for a kind of string comparison; see
Section 34.4 [Regexp Search], page 744.

4.6 Conversion of Characters and Strings

This section describes functions for converting between characters, strings and integers.
format (see Section 4.7 [Formatting Strings], page 57) and prin1-to-string (see
Section 19.5 [Output Functions], page 286) can also convert Lisp objects into strings.
read-from-string (see Section 19.3 [Input Functions], page 283) can “convert” a string
representation of a Lisp object into an object. The functions string-to-multibyte

and string-to-unibyte convert the text representation of a string (see Section 33.2
[Converting Representations], page 706).

See Chapter 24 [Documentation], page 459, for functions that produce textual descrip-
tions of text characters and general input events (single-key-description and text-

char-description). These are used primarily for making help messages.

[Function]number-to-string number
This function returns a string consisting of the printed base-ten representation of
number, which may be an integer or a floating point number. The returned value
starts with a minus sign if the argument is negative.

(number-to-string 256)

⇒ "256"

(number-to-string -23)

⇒ "-23"

(number-to-string -23.5)

⇒ "-23.5"

Chapter 4: Strings and Characters 56

int-to-string is a semi-obsolete alias for this function.

See also the function format in Section 4.7 [Formatting Strings], page 57.

[Function]string-to-number string &optional base
This function returns the numeric value of the characters in string. If base is non-nil,
it must be an integer between 2 and 16 (inclusive), and integers are converted in that
base. If base is nil, then base ten is used. Floating point conversion only works in
base ten; we have not implemented other radices for floating point numbers, because
that would be much more work and does not seem useful. If string looks like an
integer but its value is too large to fit into a Lisp integer, string-to-number returns
a floating point result.

The parsing skips spaces and tabs at the beginning of string, then reads as much of
string as it can interpret as a number in the given base. (On some systems it ignores
other whitespace at the beginning, not just spaces and tabs.) If the first character
after the ignored whitespace is neither a digit in the given base, nor a plus or minus
sign, nor the leading dot of a floating point number, this function returns 0.

(string-to-number "256")

⇒ 256

(string-to-number "25 is a perfect square.")

⇒ 25

(string-to-number "X256")

⇒ 0

(string-to-number "-4.5")

⇒ -4.5

(string-to-number "1e5")

⇒ 100000.0

string-to-int is an obsolete alias for this function.

[Function]char-to-string character
This function returns a new string containing one character, character. This func-
tion is semi-obsolete because the function string is more general. See Section 4.3
[Creating Strings], page 49.

[Function]string-to-char string
This function returns the first character in string. This mostly identical to (aref

string 0), except that it returns 0 if the string is empty. (The value is also 0 when
the first character of string is the null character, ASCII code 0.) This function may
be eliminated in the future if it does not seem useful enough to retain.

Here are some other functions that can convert to or from a string:

concat This function converts a vector or a list into a string. See Section 4.3 [Creating
Strings], page 49.

vconcat This function converts a string into a vector. See Section 6.5 [Vector Functions],
page 93.

append This function converts a string into a list. See Section 5.4 [Building Lists],
page 68.

Chapter 4: Strings and Characters 57

byte-to-string

This function converts a byte of character data into a unibyte string. See
Section 33.2 [Converting Representations], page 706.

4.7 Formatting Strings

Formatting means constructing a string by substituting computed values at various places
in a constant string. This constant string controls how the other values are printed, as well
as where they appear; it is called a format string.

Formatting is often useful for computing messages to be displayed. In fact, the functions
message and error provide the same formatting feature described here; they differ from
format only in how they use the result of formatting.

[Function]format string &rest objects
This function returns a new string that is made by copying string and then replacing
any format specification in the copy with encodings of the corresponding objects. The
arguments objects are the computed values to be formatted.

The characters in string, other than the format specifications, are copied directly into
the output, including their text properties, if any.

A format specification is a sequence of characters beginning with a ‘%’. Thus, if there
is a ‘%d’ in string, the format function replaces it with the printed representation of one of
the values to be formatted (one of the arguments objects). For example:

(format "The value of fill-column is %d." fill-column)

⇒ "The value of fill-column is 72."

Since format interprets ‘%’ characters as format specifications, you should never pass an
arbitrary string as the first argument. This is particularly true when the string is generated
by some Lisp code. Unless the string is known to never include any ‘%’ characters, pass
"%s", described below, as the first argument, and the string as the second, like this:

(format "%s" arbitrary-string)

If string contains more than one format specification, the format specifications corre-
spond to successive values from objects. Thus, the first format specification in string uses
the first such value, the second format specification uses the second such value, and so on.
Any extra format specifications (those for which there are no corresponding values) cause
an error. Any extra values to be formatted are ignored.

Certain format specifications require values of particular types. If you supply a value
that doesn’t fit the requirements, an error is signaled.

Here is a table of valid format specifications:

‘%s’ Replace the specification with the printed representation of the object, made
without quoting (that is, using princ, not prin1—see Section 19.5 [Output
Functions], page 286). Thus, strings are represented by their contents alone,
with no ‘"’ characters, and symbols appear without ‘\’ characters.

If the object is a string, its text properties are copied into the output. The text
properties of the ‘%s’ itself are also copied, but those of the object take priority.

Chapter 4: Strings and Characters 58

‘%S’ Replace the specification with the printed representation of the object, made
with quoting (that is, using prin1—see Section 19.5 [Output Functions],
page 286). Thus, strings are enclosed in ‘"’ characters, and ‘\’ characters
appear where necessary before special characters.

‘%o’ Replace the specification with the base-eight representation of an integer.

‘%d’ Replace the specification with the base-ten representation of an integer.

‘%x’
‘%X’ Replace the specification with the base-sixteen representation of an integer. ‘%x’

uses lower case and ‘%X’ uses upper case.

‘%c’ Replace the specification with the character which is the value given.

‘%e’ Replace the specification with the exponential notation for a floating point
number.

‘%f’ Replace the specification with the decimal-point notation for a floating point
number.

‘%g’ Replace the specification with notation for a floating point number, using either
exponential notation or decimal-point notation, whichever is shorter.

‘%%’ Replace the specification with a single ‘%’. This format specification is unusual
in that it does not use a value. For example, (format "%% %d" 30) returns "%
30".

Any other format character results in an ‘Invalid format operation’ error.

Here are several examples:

(format "The name of this buffer is %s." (buffer-name))

⇒ "The name of this buffer is strings.texi."

(format "The buffer object prints as %s." (current-buffer))

⇒ "The buffer object prints as strings.texi."

(format "The octal value of %d is %o,

and the hex value is %x." 18 18 18)

⇒ "The octal value of 18 is 22,

and the hex value is 12."

A specification can have a width, which is a decimal number between the ‘%’ and the
specification character. If the printed representation of the object contains fewer characters
than this width, format extends it with padding. The width specifier is ignored for the ‘%%’
specification. Any padding introduced by the width specifier normally consists of spaces
inserted on the left:

(format "%5d is padded on the left with spaces" 123)

⇒ " 123 is padded on the left with spaces"

If the width is too small, format does not truncate the object’s printed representation.
Thus, you can use a width to specify a minimum spacing between columns with no risk of
losing information. In the following three examples, ‘%7s’ specifies a minimum width of 7.
In the first case, the string inserted in place of ‘%7s’ has only 3 letters, and needs 4 blank

Chapter 4: Strings and Characters 59

spaces as padding. In the second case, the string "specification" is 13 letters wide but
is not truncated.

(format "The word ‘%7s’ has %d letters in it."

"foo" (length "foo"))

⇒ "The word ‘ foo’ has 3 letters in it."

(format "The word ‘%7s’ has %d letters in it."

"specification" (length "specification"))

⇒ "The word ‘specification’ has 13 letters in it."

Immediately after the ‘%’ and before the optional width specifier, you can also put certain
flag characters.

The flag ‘+’ inserts a plus sign before a positive number, so that it always has a sign.
A space character as flag inserts a space before a positive number. (Otherwise, positive
numbers start with the first digit.) These flags are useful for ensuring that positive numbers
and negative numbers use the same number of columns. They are ignored except for ‘%d’,
‘%e’, ‘%f’, ‘%g’, and if both flags are used, ‘+’ takes precedence.

The flag ‘#’ specifies an “alternate form” which depends on the format in use. For ‘%o’,
it ensures that the result begins with a ‘0’. For ‘%x’ and ‘%X’, it prefixes the result with
‘0x’ or ‘0X’. For ‘%e’, ‘%f’, and ‘%g’, the ‘#’ flag means include a decimal point even if the
precision is zero.

The flag ‘0’ ensures that the padding consists of ‘0’ characters instead of spaces. This
flag is ignored for non-numerical specification characters like ‘%s’, ‘%S’ and ‘%c’. These
specification characters accept the ‘0’ flag, but still pad with spaces.

The flag ‘-’ causes the padding inserted by the width specifier, if any, to be inserted on
the right rather than the left. If both ‘-’ and ‘0’ are present, the ‘0’ flag is ignored.

(format "%06d is padded on the left with zeros" 123)

⇒ "000123 is padded on the left with zeros"

(format "%-6d is padded on the right" 123)

⇒ "123 is padded on the right"

(format "The word ‘%-7s’ actually has %d letters in it."

"foo" (length "foo"))

⇒ "The word ‘foo ’ actually has 3 letters in it."

All the specification characters allow an optional precision before the character (after the
width, if present). The precision is a decimal-point ‘.’ followed by a digit-string. For the
floating-point specifications (‘%e’, ‘%f’, ‘%g’), the precision specifies how many decimal places
to show; if zero, the decimal-point itself is also omitted. For ‘%s’ and ‘%S’, the precision
truncates the string to the given width, so ‘%.3s’ shows only the first three characters of
the representation for object. Precision has no effect for other specification characters.

4.8 Case Conversion in Lisp

The character case functions change the case of single characters or of the contents of strings.
The functions normally convert only alphabetic characters (the letters ‘A’ through ‘Z’ and
‘a’ through ‘z’, as well as non-ASCII letters); other characters are not altered. You can

Chapter 4: Strings and Characters 60

specify a different case conversion mapping by specifying a case table (see Section 4.9 [Case
Tables], page 61).

These functions do not modify the strings that are passed to them as arguments.

The examples below use the characters ‘X’ and ‘x’ which have ASCII codes 88 and 120
respectively.

[Function]downcase string-or-char
This function converts string-or-char, which should be either a character or a string,
to lower case.

When string-or-char is a string, this function returns a new string in which each letter
in the argument that is upper case is converted to lower case. When string-or-char is
a character, this function returns the corresponding lower case character (an integer);
if the original character is lower case, or is not a letter, the return value is equal to
the original character.

(downcase "The cat in the hat")

⇒ "the cat in the hat"

(downcase ?X)

⇒ 120

[Function]upcase string-or-char
This function converts string-or-char, which should be either a character or a string,
to upper case.

When string-or-char is a string, this function returns a new string in which each letter
in the argument that is lower case is converted to upper case. When string-or-char is
a character, this function returns the corresponding upper case character (an integer);
if the original character is upper case, or is not a letter, the return value is equal to
the original character.

(upcase "The cat in the hat")

⇒ "THE CAT IN THE HAT"

(upcase ?x)

⇒ 88

[Function]capitalize string-or-char
This function capitalizes strings or characters. If string-or-char is a string, the func-
tion returns a new string whose contents are a copy of string-or-char in which each
word has been capitalized. This means that the first character of each word is con-
verted to upper case, and the rest are converted to lower case.

The definition of a word is any sequence of consecutive characters that are assigned
to the word constituent syntax class in the current syntax table (see Section 35.2.1
[Syntax Class Table], page 758).

When string-or-char is a character, this function does the same thing as upcase.

(capitalize "The cat in the hat")

⇒ "The Cat In The Hat"

Chapter 4: Strings and Characters 61

(capitalize "THE 77TH-HATTED CAT")

⇒ "The 77th-Hatted Cat"

(capitalize ?x)

⇒ 88

[Function]upcase-initials string-or-char
If string-or-char is a string, this function capitalizes the initials of the words in string-
or-char, without altering any letters other than the initials. It returns a new string
whose contents are a copy of string-or-char, in which each word has had its initial
letter converted to upper case.

The definition of a word is any sequence of consecutive characters that are assigned
to the word constituent syntax class in the current syntax table (see Section 35.2.1
[Syntax Class Table], page 758).

When the argument to upcase-initials is a character, upcase-initials has the
same result as upcase.

(upcase-initials "The CAT in the hAt")

⇒ "The CAT In The HAt"

See Section 4.5 [Text Comparison], page 53, for functions that compare strings; some of
them ignore case differences, or can optionally ignore case differences.

4.9 The Case Table

You can customize case conversion by installing a special case table. A case table specifies
the mapping between upper case and lower case letters. It affects both the case conversion
functions for Lisp objects (see the previous section) and those that apply to text in the
buffer (see Section 32.18 [Case Changes], page 678). Each buffer has a case table; there is
also a standard case table which is used to initialize the case table of new buffers.

A case table is a char-table (see Section 6.6 [Char-Tables], page 94) whose subtype
is case-table. This char-table maps each character into the corresponding lower case
character. It has three extra slots, which hold related tables:

upcase The upcase table maps each character into the corresponding upper case char-
acter.

canonicalize
The canonicalize table maps all of a set of case-related characters into a partic-
ular member of that set.

equivalences
The equivalences table maps each one of a set of case-related characters into
the next character in that set.

In simple cases, all you need to specify is the mapping to lower-case; the three related
tables will be calculated automatically from that one.

For some languages, upper and lower case letters are not in one-to-one correspondence.
There may be two different lower case letters with the same upper case equivalent. In these
cases, you need to specify the maps for both lower case and upper case.

Chapter 4: Strings and Characters 62

The extra table canonicalize maps each character to a canonical equivalent; any two
characters that are related by case-conversion have the same canonical equivalent character.
For example, since ‘a’ and ‘A’ are related by case-conversion, they should have the same
canonical equivalent character (which should be either ‘a’ for both of them, or ‘A’ for both
of them).

The extra table equivalences is a map that cyclically permutes each equivalence class (of
characters with the same canonical equivalent). (For ordinary ASCII, this would map ‘a’
into ‘A’ and ‘A’ into ‘a’, and likewise for each set of equivalent characters.)

When constructing a case table, you can provide nil for canonicalize; then Emacs fills
in this slot from the lower case and upper case mappings. You can also provide nil for
equivalences; then Emacs fills in this slot from canonicalize. In a case table that is actually
in use, those components are non-nil. Do not try to specify equivalences without also
specifying canonicalize.

Here are the functions for working with case tables:

[Function]case-table-p object
This predicate returns non-nil if object is a valid case table.

[Function]set-standard-case-table table
This function makes table the standard case table, so that it will be used in any
buffers created subsequently.

[Function]standard-case-table
This returns the standard case table.

[Function]current-case-table
This function returns the current buffer’s case table.

[Function]set-case-table table
This sets the current buffer’s case table to table.

[Macro]with-case-table table body. . .
The with-case-table macro saves the current case table, makes table the current
case table, evaluates the body forms, and finally restores the case table. The return
value is the value of the last form in body. The case table is restored even in case of
an abnormal exit via throw or error (see Section 10.5 [Nonlocal Exits], page 129).

Some language environments modify the case conversions of ASCII characters; for ex-
ample, in the Turkish language environment, the ASCII character ‘I’ is downcased into a
Turkish “dotless i”. This can interfere with code that requires ordinary ASCII case con-
version, such as implementations of ASCII-based network protocols. In that case, use the
with-case-table macro with the variable ascii-case-table, which stores the unmodified
case table for the ASCII character set.

[Variable]ascii-case-table
The case table for the ASCII character set. This should not be modified by any
language environment settings.

Chapter 4: Strings and Characters 63

The following three functions are convenient subroutines for packages that define non-
ASCII character sets. They modify the specified case table case-table; they also modify the
standard syntax table. See Chapter 35 [Syntax Tables], page 757. Normally you would use
these functions to change the standard case table.

[Function]set-case-syntax-pair uc lc case-table
This function specifies a pair of corresponding letters, one upper case and one lower
case.

[Function]set-case-syntax-delims l r case-table
This function makes characters l and r a matching pair of case-invariant delimiters.

[Function]set-case-syntax char syntax case-table
This function makes char case-invariant, with syntax syntax.

[Command]describe-buffer-case-table
This command displays a description of the contents of the current buffer’s case table.

Chapter 5: Lists 64

5 Lists

A list represents a sequence of zero or more elements (which may be any Lisp objects). The
important difference between lists and vectors is that two or more lists can share part of
their structure; in addition, you can insert or delete elements in a list without copying the
whole list.

5.1 Lists and Cons Cells

Lists in Lisp are not a primitive data type; they are built up from cons cells (see Section 2.3.6
[Cons Cell Type], page 14). A cons cell is a data object that represents an ordered pair.
That is, it has two slots, and each slot holds, or refers to, some Lisp object. One slot is
known as the car, and the other is known as the cdr. (These names are traditional; see
Section 2.3.6 [Cons Cell Type], page 14.) cdr is pronounced “could-er”.

We say that “the car of this cons cell is” whatever object its car slot currently holds,
and likewise for the cdr.

A list is a series of cons cells “chained together”, so that each cell refers to the next one.
There is one cons cell for each element of the list. By convention, the cars of the cons
cells hold the elements of the list, and the cdrs are used to chain the list (this asymmetry
between car and cdr is entirely a matter of convention; at the level of cons cells, the car
and cdr slots have similar properties). Hence, the cdr slot of each cons cell in a list refers
to the following cons cell.

Also by convention, the cdr of the last cons cell in a list is nil. We call such a nil-
terminated structure a true list. In Emacs Lisp, the symbol nil is both a symbol and a list
with no elements. For convenience, the symbol nil is considered to have nil as its cdr
(and also as its car).

Hence, the cdr of a true list is always a true list. The cdr of a nonempty true list is a
true list containing all the elements except the first.

If the cdr of a list’s last cons cell is some value other than nil, we call the structure a dot-
ted list, since its printed representation would use dotted pair notation (see Section 2.3.6.2
[Dotted Pair Notation], page 16). There is one other possibility: some cons cell’s cdr could
point to one of the previous cons cells in the list. We call that structure a circular list.

For some purposes, it does not matter whether a list is true, circular or dotted. If a
program doesn’t look far enough down the list to see the cdr of the final cons cell, it won’t
care. However, some functions that operate on lists demand true lists and signal errors if
given a dotted list. Most functions that try to find the end of a list enter infinite loops if
given a circular list.

Because most cons cells are used as part of lists, we refer to any structure made out of
cons cells as a list structure.

5.2 Predicates on Lists

The following predicates test whether a Lisp object is an atom, whether it is a cons cell or
is a list, or whether it is the distinguished object nil. (Many of these predicates can be
defined in terms of the others, but they are used so often that it is worth having them.)

Chapter 5: Lists 65

[Function]consp object
This function returns t if object is a cons cell, nil otherwise. nil is not a cons cell,
although it is a list.

[Function]atom object
This function returns t if object is an atom, nil otherwise. All objects except cons
cells are atoms. The symbol nil is an atom and is also a list; it is the only Lisp object
that is both.

(atom object) ≡ (not (consp object))

[Function]listp object
This function returns t if object is a cons cell or nil. Otherwise, it returns nil.

(listp ’(1))

⇒ t

(listp ’())

⇒ t

[Function]nlistp object
This function is the opposite of listp: it returns t if object is not a list. Otherwise,
it returns nil.

(listp object) ≡ (not (nlistp object))

[Function]null object
This function returns t if object is nil, and returns nil otherwise. This function is
identical to not, but as a matter of clarity we use null when object is considered a
list and not when it is considered a truth value (see not in Section 10.3 [Combining
Conditions], page 127).

(null ’(1))

⇒ nil

(null ’())

⇒ t

5.3 Accessing Elements of Lists

[Function]car cons-cell
This function returns the value referred to by the first slot of the cons cell cons-cell.
In other words, it returns the car of cons-cell.

As a special case, if cons-cell is nil, this function returns nil. Therefore, any list is
a valid argument. An error is signaled if the argument is not a cons cell or nil.

(car ’(a b c))

⇒ a

(car ’())

⇒ nil

[Function]cdr cons-cell
This function returns the value referred to by the second slot of the cons cell cons-cell.
In other words, it returns the cdr of cons-cell.

Chapter 5: Lists 66

As a special case, if cons-cell is nil, this function returns nil; therefore, any list is a
valid argument. An error is signaled if the argument is not a cons cell or nil.

(cdr ’(a b c))

⇒ (b c)

(cdr ’())

⇒ nil

[Function]car-safe object
This function lets you take the car of a cons cell while avoiding errors for other data
types. It returns the car of object if object is a cons cell, nil otherwise. This is in
contrast to car, which signals an error if object is not a list.

(car-safe object)

≡
(let ((x object))

(if (consp x)

(car x)

nil))

[Function]cdr-safe object
This function lets you take the cdr of a cons cell while avoiding errors for other data
types. It returns the cdr of object if object is a cons cell, nil otherwise. This is in
contrast to cdr, which signals an error if object is not a list.

(cdr-safe object)

≡
(let ((x object))

(if (consp x)

(cdr x)

nil))

[Macro]pop listname
This macro provides a convenient way to examine the car of a list, and take it off
the list, all at once. It operates on the list stored in listname. It removes the first
element from the list, saves the cdr into listname, then returns the removed element.

In the simplest case, listname is an unquoted symbol naming a list; in that case, this
macro is equivalent to (prog1 (car listname) (setq listname (cdr listname))).

x

⇒ (a b c)

(pop x)

⇒ a

x

⇒ (b c)

More generally, listname can be a generalized variable. In that case, this macro saves
into listname using setf. See Section 11.15 [Generalized Variables], page 166.

For the push macro, which adds an element to a list, See Section 5.5 [List Variables],
page 72.

Chapter 5: Lists 67

[Function]nth n list
This function returns the nth element of list. Elements are numbered starting with
zero, so the car of list is element number zero. If the length of list is n or less, the
value is nil.

If n is negative, nth returns the first element of list.

(nth 2 ’(1 2 3 4))

⇒ 3

(nth 10 ’(1 2 3 4))

⇒ nil

(nth -3 ’(1 2 3 4))

⇒ 1

(nth n x) ≡ (car (nthcdr n x))

The function elt is similar, but applies to any kind of sequence. For historical reasons,
it takes its arguments in the opposite order. See Section 6.1 [Sequence Functions],
page 88.

[Function]nthcdr n list
This function returns the nth cdr of list. In other words, it skips past the first n
links of list and returns what follows.

If n is zero or negative, nthcdr returns all of list. If the length of list is n or less,
nthcdr returns nil.

(nthcdr 1 ’(1 2 3 4))

⇒ (2 3 4)

(nthcdr 10 ’(1 2 3 4))

⇒ nil

(nthcdr -3 ’(1 2 3 4))

⇒ (1 2 3 4)

[Function]last list &optional n
This function returns the last link of list. The car of this link is the list’s last element.
If list is null, nil is returned. If n is non-nil, the nth-to-last link is returned instead,
or the whole of list if n is bigger than list’s length.

[Function]safe-length list
This function returns the length of list, with no risk of either an error or an infinite
loop. It generally returns the number of distinct cons cells in the list. However, for
circular lists, the value is just an upper bound; it is often too large.

If list is not nil or a cons cell, safe-length returns 0.

The most common way to compute the length of a list, when you are not worried that
it may be circular, is with length. See Section 6.1 [Sequence Functions], page 88.

[Function]caar cons-cell
This is the same as (car (car cons-cell)).

[Function]cadr cons-cell
This is the same as (car (cdr cons-cell)) or (nth 1 cons-cell).

Chapter 5: Lists 68

[Function]cdar cons-cell
This is the same as (cdr (car cons-cell)).

[Function]cddr cons-cell
This is the same as (cdr (cdr cons-cell)) or (nthcdr 2 cons-cell).

[Function]butlast x &optional n
This function returns the list x with the last element, or the last n elements, removed.
If n is greater than zero it makes a copy of the list so as not to damage the original
list. In general, (append (butlast x n) (last x n)) will return a list equal to x.

[Function]nbutlast x &optional n
This is a version of butlast that works by destructively modifying the cdr of the
appropriate element, rather than making a copy of the list.

5.4 Building Cons Cells and Lists

Many functions build lists, as lists reside at the very heart of Lisp. cons is the fundamental
list-building function; however, it is interesting to note that list is used more times in the
source code for Emacs than cons.

[Function]cons object1 object2
This function is the most basic function for building new list structure. It creates a
new cons cell, making object1 the car, and object2 the cdr. It then returns the new
cons cell. The arguments object1 and object2 may be any Lisp objects, but most
often object2 is a list.

(cons 1 ’(2))

⇒ (1 2)

(cons 1 ’())

⇒ (1)

(cons 1 2)

⇒ (1 . 2)

cons is often used to add a single element to the front of a list. This is called consing
the element onto the list.1 For example:

(setq list (cons newelt list))

Note that there is no conflict between the variable named list used in this example
and the function named list described below; any symbol can serve both purposes.

[Function]list &rest objects
This function creates a list with objects as its elements. The resulting list is always
nil-terminated. If no objects are given, the empty list is returned.

1 There is no strictly equivalent way to add an element to the end of a list. You can use (append listname

(list newelt)), which creates a whole new list by copying listname and adding newelt to its end. Or
you can use (nconc listname (list newelt)), which modifies listname by following all the cdrs and
then replacing the terminating nil. Compare this to adding an element to the beginning of a list with
cons, which neither copies nor modifies the list.

Chapter 5: Lists 69

(list 1 2 3 4 5)

⇒ (1 2 3 4 5)

(list 1 2 ’(3 4 5) ’foo)

⇒ (1 2 (3 4 5) foo)

(list)

⇒ nil

[Function]make-list length object
This function creates a list of length elements, in which each element is object. Com-
pare make-list with make-string (see Section 4.3 [Creating Strings], page 49).

(make-list 3 ’pigs)

⇒ (pigs pigs pigs)

(make-list 0 ’pigs)

⇒ nil

(setq l (make-list 3 ’(a b)))

⇒ ((a b) (a b) (a b))

(eq (car l) (cadr l))

⇒ t

[Function]append &rest sequences
This function returns a list containing all the elements of sequences. The sequences
may be lists, vectors, bool-vectors, or strings, but the last one should usually be a
list. All arguments except the last one are copied, so none of the arguments is altered.
(See nconc in Section 5.6.3 [Rearrangement], page 76, for a way to join lists with no
copying.)

More generally, the final argument to append may be any Lisp object. The final
argument is not copied or converted; it becomes the cdr of the last cons cell in
the new list. If the final argument is itself a list, then its elements become in effect
elements of the result list. If the final element is not a list, the result is a dotted list
since its final cdr is not nil as required in a true list.

Here is an example of using append:

(setq trees ’(pine oak))

⇒ (pine oak)

(setq more-trees (append ’(maple birch) trees))

⇒ (maple birch pine oak)

trees

⇒ (pine oak)

more-trees

⇒ (maple birch pine oak)

(eq trees (cdr (cdr more-trees)))

⇒ t

You can see how append works by looking at a box diagram. The variable trees is set
to the list (pine oak) and then the variable more-trees is set to the list (maple birch

pine oak). However, the variable trees continues to refer to the original list:

Chapter 5: Lists 70

more-trees trees

| |

| --- --- --- --- -> --- --- --- ---

--> | | |--> | | |--> | | |--> | | |--> nil

--- --- --- --- --- --- --- ---

| | | |

| | | |

--> maple -->birch --> pine --> oak

An empty sequence contributes nothing to the value returned by append. As a conse-
quence of this, a final nil argument forces a copy of the previous argument:

trees

⇒ (pine oak)

(setq wood (append trees nil))

⇒ (pine oak)

wood

⇒ (pine oak)

(eq wood trees)

⇒ nil

This once was the usual way to copy a list, before the function copy-sequence was invented.
See Chapter 6 [Sequences Arrays Vectors], page 88.

Here we show the use of vectors and strings as arguments to append:

(append [a b] "cd" nil)

⇒ (a b 99 100)

With the help of apply (see Section 12.5 [Calling Functions], page 176), we can append
all the lists in a list of lists:

(apply ’append ’((a b c) nil (x y z) nil))

⇒ (a b c x y z)

If no sequences are given, nil is returned:

(append)

⇒ nil

Here are some examples where the final argument is not a list:

(append ’(x y) ’z)

⇒ (x y . z)

(append ’(x y) [z])

⇒ (x y . [z])

The second example shows that when the final argument is a sequence but not a list, the
sequence’s elements do not become elements of the resulting list. Instead, the sequence
becomes the final cdr, like any other non-list final argument.

[Function]reverse list
This function creates a new list whose elements are the elements of list, but in reverse
order. The original argument list is not altered.

(setq x ’(1 2 3 4))

⇒ (1 2 3 4)

Chapter 5: Lists 71

(reverse x)

⇒ (4 3 2 1)

x

⇒ (1 2 3 4)

[Function]copy-tree tree &optional vecp
This function returns a copy of the tree tree. If tree is a cons cell, this makes a new
cons cell with the same car and cdr, then recursively copies the car and cdr in
the same way.

Normally, when tree is anything other than a cons cell, copy-tree simply returns
tree. However, if vecp is non-nil, it copies vectors too (and operates recursively on
their elements).

[Function]number-sequence from &optional to separation
This returns a list of numbers starting with from and incrementing by separation, and
ending at or just before to. separation can be positive or negative and defaults to 1.
If to is nil or numerically equal to from, the value is the one-element list (from). If
to is less than from with a positive separation, or greater than from with a negative
separation, the value is nil because those arguments specify an empty sequence.

If separation is 0 and to is neither nil nor numerically equal to from, number-

sequence signals an error, since those arguments specify an infinite sequence.

All arguments can be integers or floating point numbers. However, floating point
arguments can be tricky, because floating point arithmetic is inexact. For instance,
depending on the machine, it may quite well happen that (number-sequence 0.4 0.6

0.2) returns the one element list (0.4), whereas (number-sequence 0.4 0.8 0.2)

returns a list with three elements. The nth element of the list is computed by the
exact formula (+ from (* n separation)). Thus, if one wants to make sure that to is
included in the list, one can pass an expression of this exact type for to. Alternatively,
one can replace to with a slightly larger value (or a slightly more negative value if
separation is negative).

Some examples:

(number-sequence 4 9)

⇒ (4 5 6 7 8 9)

(number-sequence 9 4 -1)

⇒ (9 8 7 6 5 4)

(number-sequence 9 4 -2)

⇒ (9 7 5)

(number-sequence 8)

⇒ (8)

(number-sequence 8 5)

⇒ nil

(number-sequence 5 8 -1)

⇒ nil

(number-sequence 1.5 6 2)

⇒ (1.5 3.5 5.5)

Chapter 5: Lists 72

5.5 Modifying List Variables

These functions, and one macro, provide convenient ways to modify a list which is stored
in a variable.

[Macro]push element listname
This macro creates a new list whose car is element and whose cdr is the list
specified by listname, and saves that list in listname. In the simplest case,
listname is an unquoted symbol naming a list, and this macro is equivalent to
(setq listname (cons element listname)).

(setq l ’(a b))

⇒ (a b)

(push ’c l)

⇒ (c a b)

l

⇒ (c a b)

More generally, listname can be a generalized variable. In that case, this macro does
the equivalent of (setf listname (cons element listname)). See Section 11.15
[Generalized Variables], page 166.

For the pop macro, which removes the first element from a list, See Section 5.3 [List
Elements], page 65.

Two functions modify lists that are the values of variables.

[Function]add-to-list symbol element &optional append compare-fn
This function sets the variable symbol by consing element onto the old value, if
element is not already a member of that value. It returns the resulting list, whether
updated or not. The value of symbol had better be a list already before the call.
add-to-list uses compare-fn to compare element against existing list members; if
compare-fn is nil, it uses equal.

Normally, if element is added, it is added to the front of symbol, but if the optional
argument append is non-nil, it is added at the end.

The argument symbol is not implicitly quoted; add-to-list is an ordinary function,
like set and unlike setq. Quote the argument yourself if that is what you want.

Here’s a scenario showing how to use add-to-list:

(setq foo ’(a b))

⇒ (a b)

(add-to-list ’foo ’c) ;; Add c.
⇒ (c a b)

(add-to-list ’foo ’b) ;; No effect.
⇒ (c a b)

foo ;; foo was changed.
⇒ (c a b)

An equivalent expression for (add-to-list ’var value) is this:

Chapter 5: Lists 73

(or (member value var)

(setq var (cons value var)))

[Function]add-to-ordered-list symbol element &optional order
This function sets the variable symbol by inserting element into the old value, which
must be a list, at the position specified by order. If element is already a member of
the list, its position in the list is adjusted according to order. Membership is tested
using eq. This function returns the resulting list, whether updated or not.

The order is typically a number (integer or float), and the elements of the list are
sorted in non-decreasing numerical order.

order may also be omitted or nil. Then the numeric order of element stays unchanged
if it already has one; otherwise, element has no numeric order. Elements without a
numeric list order are placed at the end of the list, in no particular order.

Any other value for order removes the numeric order of element if it already has one;
otherwise, it is equivalent to nil.

The argument symbol is not implicitly quoted; add-to-ordered-list is an ordinary
function, like set and unlike setq. Quote the argument yourself if necessary.

The ordering information is stored in a hash table on symbol’s list-order property.

Here’s a scenario showing how to use add-to-ordered-list:

(setq foo ’())

⇒ nil

(add-to-ordered-list ’foo ’a 1) ;; Add a.
⇒ (a)

(add-to-ordered-list ’foo ’c 3) ;; Add c.
⇒ (a c)

(add-to-ordered-list ’foo ’b 2) ;; Add b.
⇒ (a b c)

(add-to-ordered-list ’foo ’b 4) ;; Move b.
⇒ (a c b)

(add-to-ordered-list ’foo ’d) ;; Append d.
⇒ (a c b d)

(add-to-ordered-list ’foo ’e) ;; Add e.

⇒ (a c b e d)

foo ;; foo was changed.
⇒ (a c b e d)

Chapter 5: Lists 74

5.6 Modifying Existing List Structure

You can modify the car and cdr contents of a cons cell with the primitives setcar and
setcdr. We call these “destructive” operations because they change existing list structure.

Common Lisp note: Common Lisp uses functions rplaca and rplacd to alter
list structure; they change structure the same way as setcar and setcdr, but
the Common Lisp functions return the cons cell while setcar and setcdr return
the new car or cdr.

5.6.1 Altering List Elements with setcar

Changing the car of a cons cell is done with setcar. When used on a list, setcar replaces
one element of a list with a different element.

[Function]setcar cons object
This function stores object as the new car of cons, replacing its previous car. In
other words, it changes the car slot of cons to refer to object. It returns the value
object. For example:

(setq x ’(1 2))

⇒ (1 2)

(setcar x 4)

⇒ 4

x

⇒ (4 2)

When a cons cell is part of the shared structure of several lists, storing a new car into
the cons changes one element of each of these lists. Here is an example:

;; Create two lists that are partly shared.
(setq x1 ’(a b c))

⇒ (a b c)

(setq x2 (cons ’z (cdr x1)))

⇒ (z b c)

;; Replace the car of a shared link.
(setcar (cdr x1) ’foo)

⇒ foo

x1 ; Both lists are changed.
⇒ (a foo c)

x2

⇒ (z foo c)

;; Replace the car of a link that is not shared.
(setcar x1 ’baz)

⇒ baz

x1 ; Only one list is changed.
⇒ (baz foo c)

x2

⇒ (z foo c)

Chapter 5: Lists 75

Here is a graphical depiction of the shared structure of the two lists in the variables x1
and x2, showing why replacing b changes them both:

--- --- --- --- --- ---

x1---> | | |----> | | |--> | | |--> nil

--- --- --- --- --- ---

| --> | |

| | | |

--> a | --> b --> c

|

--- --- |

x2--> | | |--

--- ---

|

|

--> z

Here is an alternative form of box diagram, showing the same relationship:

x1:

-------------- -------------- --------------

| car | cdr | | car | cdr | | car | cdr |

| a | o------->| b | o------->| c | nil |

| | | -->| | | | | |

-------------- | -------------- --------------

|

x2: |

-------------- |

| car | cdr | |

| z | o----

| | |

5.6.2 Altering the CDR of a List

The lowest-level primitive for modifying a cdr is setcdr:

[Function]setcdr cons object
This function stores object as the new cdr of cons, replacing its previous cdr. In
other words, it changes the cdr slot of cons to refer to object. It returns the value
object.

Here is an example of replacing the cdr of a list with a different list. All but the first
element of the list are removed in favor of a different sequence of elements. The first element
is unchanged, because it resides in the car of the list, and is not reached via the cdr.

(setq x ’(1 2 3))

⇒ (1 2 3)

(setcdr x ’(4))

⇒ (4)

x

⇒ (1 4)

Chapter 5: Lists 76

You can delete elements from the middle of a list by altering the cdrs of the cons cells
in the list. For example, here we delete the second element, b, from the list (a b c), by
changing the cdr of the first cons cell:

(setq x1 ’(a b c))

⇒ (a b c)

(setcdr x1 (cdr (cdr x1)))

⇒ (c)

x1

⇒ (a c)

Here is the result in box notation:

| |

-------------- | -------------- | --------------

| car | cdr | | | car | cdr | -->| car | cdr |

| a | o----- | b | o-------->| c | nil |

| | | | | | | | |

-------------- -------------- --------------

The second cons cell, which previously held the element b, still exists and its car is still b,
but it no longer forms part of this list.

It is equally easy to insert a new element by changing cdrs:

(setq x1 ’(a b c))

⇒ (a b c)

(setcdr x1 (cons ’d (cdr x1)))

⇒ (d b c)

x1

⇒ (a d b c)

Here is this result in box notation:

-------------- ------------- -------------

| car | cdr | | car | cdr | | car | cdr |

| a | o | -->| b | o------->| c | nil |

| | | | | | | | | | |

--------- | -- | ------------- -------------

| |

----- --------

| |

| --------------- |

| | car | cdr | |

-->| d | o------

| | |

5.6.3 Functions that Rearrange Lists

Here are some functions that rearrange lists “destructively” by modifying the cdrs of their
component cons cells. We call these functions “destructive” because they chew up the
original lists passed to them as arguments, relinking their cons cells to form a new list that
is the returned value.

The function delq in the following section is another example of destructive list manip-
ulation.

Chapter 5: Lists 77

[Function]nconc &rest lists
This function returns a list containing all the elements of lists. Unlike append (see
Section 5.4 [Building Lists], page 68), the lists are not copied. Instead, the last cdr
of each of the lists is changed to refer to the following list. The last of the lists is not
altered. For example:

(setq x ’(1 2 3))

⇒ (1 2 3)

(nconc x ’(4 5))

⇒ (1 2 3 4 5)

x

⇒ (1 2 3 4 5)

Since the last argument of nconc is not itself modified, it is reasonable to use a
constant list, such as ’(4 5), as in the above example. For the same reason, the last
argument need not be a list:

(setq x ’(1 2 3))

⇒ (1 2 3)

(nconc x ’z)

⇒ (1 2 3 . z)

x

⇒ (1 2 3 . z)

However, the other arguments (all but the last) must be lists.

A common pitfall is to use a quoted constant list as a non-last argument to nconc. If
you do this, your program will change each time you run it! Here is what happens:

(defun add-foo (x) ; We want this function to add
(nconc ’(foo) x)) ; foo to the front of its arg.

(symbol-function ’add-foo)
⇒ (lambda (x) (nconc (quote (foo)) x))

(setq xx (add-foo ’(1 2))) ; It seems to work.
⇒ (foo 1 2)

(setq xy (add-foo ’(3 4))) ; What happened?
⇒ (foo 1 2 3 4)

(eq xx xy)
⇒ t

(symbol-function ’add-foo)
⇒ (lambda (x) (nconc (quote (foo 1 2 3 4) x)))

[Function]nreverse list
This function reverses the order of the elements of list. Unlike reverse, nreverse
alters its argument by reversing the cdrs in the cons cells forming the list. The cons
cell that used to be the last one in list becomes the first cons cell of the value.

For example:

(setq x ’(a b c))

⇒ (a b c)

Chapter 5: Lists 78

x

⇒ (a b c)

(nreverse x)

⇒ (c b a)

;; The cons cell that was first is now last.
x

⇒ (a)

To avoid confusion, we usually store the result of nreverse back in the same variable
which held the original list:

(setq x (nreverse x))

Here is the nreverse of our favorite example, (a b c), presented graphically:

Original list head: Reversed list:
------------- ------------- ------------

| car | cdr | | car | cdr | | car | cdr |

| a | nil |<-- | b | o |<-- | c | o |

| | | | | | | | | | | | |

------------- | --------- | - | -------- | -

| | | |

------------- ------------

[Function]sort list predicate
This function sorts list stably, though destructively, and returns the sorted list. It
compares elements using predicate. A stable sort is one in which elements with equal
sort keys maintain their relative order before and after the sort. Stability is important
when successive sorts are used to order elements according to different criteria.

The argument predicate must be a function that accepts two arguments. It is called
with two elements of list. To get an increasing order sort, the predicate should return
non-nil if the first element is “less than” the second, or nil if not.

The comparison function predicate must give reliable results for any given pair of
arguments, at least within a single call to sort. It must be antisymmetric; that is,
if a is less than b, b must not be less than a. It must be transitive—that is, if a is
less than b, and b is less than c, then a must be less than c. If you use a comparison
function which does not meet these requirements, the result of sort is unpredictable.

The destructive aspect of sort is that it rearranges the cons cells forming list by
changing cdrs. A nondestructive sort function would create new cons cells to store the
elements in their sorted order. If you wish to make a sorted copy without destroying
the original, copy it first with copy-sequence and then sort.

Sorting does not change the cars of the cons cells in list; the cons cell that originally
contained the element a in list still has a in its car after sorting, but it now appears
in a different position in the list due to the change of cdrs. For example:

(setq nums ’(1 3 2 6 5 4 0))

⇒ (1 3 2 6 5 4 0)

(sort nums ’<)

⇒ (0 1 2 3 4 5 6)

nums

⇒ (1 2 3 4 5 6)

Chapter 5: Lists 79

Warning: Note that the list in nums no longer contains 0; this is the same cons cell
that it was before, but it is no longer the first one in the list. Don’t assume a variable
that formerly held the argument now holds the entire sorted list! Instead, save the
result of sort and use that. Most often we store the result back into the variable that
held the original list:

(setq nums (sort nums ’<))

See Section 32.15 [Sorting], page 670, for more functions that perform sorting. See
documentation in Section 24.2 [Accessing Documentation], page 460, for a useful
example of sort.

5.7 Using Lists as Sets

A list can represent an unordered mathematical set—simply consider a value an element of
a set if it appears in the list, and ignore the order of the list. To form the union of two sets,
use append (as long as you don’t mind having duplicate elements). You can remove equal
duplicates using delete-dups. Other useful functions for sets include memq and delq, and
their equal versions, member and delete.

Common Lisp note: Common Lisp has functions union (which avoids dupli-
cate elements) and intersection for set operations. Although standard GNU
Emacs Lisp does not have them, the cl-lib library provides versions. See
Section “Lists as Sets” in Common Lisp Extensions.

[Function]memq object list
This function tests to see whether object is a member of list. If it is, memq returns a
list starting with the first occurrence of object. Otherwise, it returns nil. The letter
‘q’ in memq says that it uses eq to compare object against the elements of the list. For
example:

(memq ’b ’(a b c b a))

⇒ (b c b a)

(memq ’(2) ’((1) (2))) ; (2) and (2) are not eq.
⇒ nil

[Function]delq object list
This function destructively removes all elements eq to object from list, and returns
the resulting list. The letter ‘q’ in delq says that it uses eq to compare object against
the elements of the list, like memq and remq.

Typically, when you invoke delq, you should use the return value by assigning it to
the variable which held the original list. The reason for this is explained below.

The delq function deletes elements from the front of the list by simply advancing down
the list, and returning a sublist that starts after those elements. For example:

(delq ’a ’(a b c)) ≡ (cdr ’(a b c))

When an element to be deleted appears in the middle of the list, removing it involves
changing the cdrs (see Section 5.6.2 [Setcdr], page 75).

(setq sample-list ’(a b c (4)))

⇒ (a b c (4))

Chapter 5: Lists 80

(delq ’a sample-list)

⇒ (b c (4))

sample-list

⇒ (a b c (4))

(delq ’c sample-list)

⇒ (a b (4))

sample-list

⇒ (a b (4))

Note that (delq ’c sample-list)modifies sample-list to splice out the third element,
but (delq ’a sample-list) does not splice anything—it just returns a shorter list. Don’t
assume that a variable which formerly held the argument list now has fewer elements, or
that it still holds the original list! Instead, save the result of delq and use that. Most often
we store the result back into the variable that held the original list:

(setq flowers (delq ’rose flowers))

In the following example, the (4) that delq attempts to match and the (4) in the
sample-list are not eq:

(delq ’(4) sample-list)

⇒ (a c (4))

If you want to delete elements that are equal to a given value, use delete (see below).

[Function]remq object list
This function returns a copy of list, with all elements removed which are eq to object.
The letter ‘q’ in remq says that it uses eq to compare object against the elements of
list.

(setq sample-list ’(a b c a b c))

⇒ (a b c a b c)

(remq ’a sample-list)

⇒ (b c b c)

sample-list

⇒ (a b c a b c)

[Function]memql object list
The function memql tests to see whether object is a member of list, comparing mem-
bers with object using eql, so floating point elements are compared by value. If object
is a member, memql returns a list starting with its first occurrence in list. Otherwise,
it returns nil.

Compare this with memq:

(memql 1.2 ’(1.1 1.2 1.3)) ; 1.2 and 1.2 are eql.
⇒ (1.2 1.3)

(memq 1.2 ’(1.1 1.2 1.3)) ; 1.2 and 1.2 are not eq.
⇒ nil

The following three functions are like memq, delq and remq, but use equal rather than
eq to compare elements. See Section 2.7 [Equality Predicates], page 30.

Chapter 5: Lists 81

[Function]member object list
The function member tests to see whether object is a member of list, comparing
members with object using equal. If object is a member, member returns a list
starting with its first occurrence in list. Otherwise, it returns nil.

Compare this with memq:

(member ’(2) ’((1) (2))) ; (2) and (2) are equal.
⇒ ((2))

(memq ’(2) ’((1) (2))) ; (2) and (2) are not eq.
⇒ nil

;; Two strings with the same contents are equal.
(member "foo" ’("foo" "bar"))

⇒ ("foo" "bar")

[Function]delete object sequence
This function removes all elements equal to object from sequence, and returns the
resulting sequence.

If sequence is a list, delete is to delq as member is to memq: it uses equal to compare
elements with object, like member; when it finds an element that matches, it cuts the
element out just as delq would. As with delq, you should typically use the return
value by assigning it to the variable which held the original list.

If sequence is a vector or string, delete returns a copy of sequence with all elements
equal to object removed.

For example:

(setq l ’((2) (1) (2)))

(delete ’(2) l)

⇒ ((1))

l

⇒ ((2) (1))

;; If you want to change l reliably,
;; write (setq l (delete ’(2) l)).
(setq l ’((2) (1) (2)))

(delete ’(1) l)

⇒ ((2) (2))

l

⇒ ((2) (2))

;; In this case, it makes no difference whether you set l,
;; but you should do so for the sake of the other case.
(delete ’(2) [(2) (1) (2)])

⇒ [(1)]

[Function]remove object sequence
This function is the non-destructive counterpart of delete. It returns a copy of
sequence, a list, vector, or string, with elements equal to object removed. For
example:

(remove ’(2) ’((2) (1) (2)))

⇒ ((1))

Chapter 5: Lists 82

(remove ’(2) [(2) (1) (2)])

⇒ [(1)]

Common Lisp note: The functions member, delete and remove in GNU Emacs
Lisp are derived from Maclisp, not Common Lisp. The Common Lisp versions
do not use equal to compare elements.

[Function]member-ignore-case object list
This function is like member, except that object should be a string and that it ignores
differences in letter-case and text representation: upper-case and lower-case letters are
treated as equal, and unibyte strings are converted to multibyte prior to comparison.

[Function]delete-dups list
This function destructively removes all equal duplicates from list, stores the result in
list and returns it. Of several equal occurrences of an element in list, delete-dups
keeps the first one.

See also the function add-to-list, in Section 5.5 [List Variables], page 72, for a way to
add an element to a list stored in a variable and used as a set.

5.8 Association Lists

An association list, or alist for short, records a mapping from keys to values. It is a list
of cons cells called associations: the car of each cons cell is the key, and the cdr is the
associated value.2

Here is an example of an alist. The key pine is associated with the value cones; the key
oak is associated with acorns; and the key maple is associated with seeds.

((pine . cones)

(oak . acorns)

(maple . seeds))

Both the values and the keys in an alist may be any Lisp objects. For example, in
the following alist, the symbol a is associated with the number 1, and the string "b" is
associated with the list (2 3), which is the cdr of the alist element:

((a . 1) ("b" 2 3))

Sometimes it is better to design an alist to store the associated value in the car of the
cdr of the element. Here is an example of such an alist:

((rose red) (lily white) (buttercup yellow))

Here we regard red as the value associated with rose. One advantage of this kind of alist
is that you can store other related information—even a list of other items—in the cdr of
the cdr. One disadvantage is that you cannot use rassq (see below) to find the element
containing a given value. When neither of these considerations is important, the choice is
a matter of taste, as long as you are consistent about it for any given alist.

The same alist shown above could be regarded as having the associated value in the cdr
of the element; the value associated with rose would be the list (red).

2 This usage of “key” is not related to the term “key sequence”; it means a value used to look up an item
in a table. In this case, the table is the alist, and the alist associations are the items.

Chapter 5: Lists 83

Association lists are often used to record information that you might otherwise keep on
a stack, since new associations may be added easily to the front of the list. When searching
an association list for an association with a given key, the first one found is returned, if
there is more than one.

In Emacs Lisp, it is not an error if an element of an association list is not a cons cell.
The alist search functions simply ignore such elements. Many other versions of Lisp signal
errors in such cases.

Note that property lists are similar to association lists in several respects. A property
list behaves like an association list in which each key can occur only once. See Section 5.9
[Property Lists], page 86, for a comparison of property lists and association lists.

[Function]assoc key alist
This function returns the first association for key in alist, comparing key against the
alist elements using equal (see Section 2.7 [Equality Predicates], page 30). It returns
nil if no association in alist has a car equal to key. For example:

(setq trees ’((pine . cones) (oak . acorns) (maple . seeds)))
⇒ ((pine . cones) (oak . acorns) (maple . seeds))

(assoc ’oak trees)
⇒ (oak . acorns)

(cdr (assoc ’oak trees))
⇒ acorns

(assoc ’birch trees)
⇒ nil

Here is another example, in which the keys and values are not symbols:

(setq needles-per-cluster

’((2 "Austrian Pine" "Red Pine")

(3 "Pitch Pine")

(5 "White Pine")))

(cdr (assoc 3 needles-per-cluster))
⇒ ("Pitch Pine")

(cdr (assoc 2 needles-per-cluster))
⇒ ("Austrian Pine" "Red Pine")

The function assoc-string is much like assoc except that it ignores certain differences
between strings. See Section 4.5 [Text Comparison], page 53.

[Function]rassoc value alist
This function returns the first association with value value in alist. It returns nil if
no association in alist has a cdr equal to value.

rassoc is like assoc except that it compares the cdr of each alist association instead
of the car. You can think of this as “reverse assoc”, finding the key for a given
value.

[Function]assq key alist
This function is like assoc in that it returns the first association for key in alist, but
it makes the comparison using eq instead of equal. assq returns nil if no association
in alist has a car eq to key. This function is used more often than assoc, since eq

is faster than equal and most alists use symbols as keys. See Section 2.7 [Equality
Predicates], page 30.

Chapter 5: Lists 84

(setq trees ’((pine . cones) (oak . acorns) (maple . seeds)))
⇒ ((pine . cones) (oak . acorns) (maple . seeds))

(assq ’pine trees)
⇒ (pine . cones)

On the other hand, assq is not usually useful in alists where the keys may not be
symbols:

(setq leaves

’(("simple leaves" . oak)

("compound leaves" . horsechestnut)))

(assq "simple leaves" leaves)
⇒ nil

(assoc "simple leaves" leaves)
⇒ ("simple leaves" . oak)

[Function]rassq value alist
This function returns the first association with value value in alist. It returns nil if
no association in alist has a cdr eq to value.

rassq is like assq except that it compares the cdr of each alist association instead
of the car. You can think of this as “reverse assq”, finding the key for a given value.

For example:

(setq trees ’((pine . cones) (oak . acorns) (maple . seeds)))

(rassq ’acorns trees)
⇒ (oak . acorns)

(rassq ’spores trees)
⇒ nil

rassq cannot search for a value stored in the car of the cdr of an element:

(setq colors ’((rose red) (lily white) (buttercup yellow)))

(rassq ’white colors)
⇒ nil

In this case, the cdr of the association (lily white) is not the symbol white, but
rather the list (white). This becomes clearer if the association is written in dotted
pair notation:

(lily white) ≡ (lily . (white))

[Function]assoc-default key alist &optional test default
This function searches alist for a match for key. For each element of alist, it compares
the element (if it is an atom) or the element’s car (if it is a cons) against key, by
calling test with two arguments: the element or its car, and key. The arguments are
passed in that order so that you can get useful results using string-match with an
alist that contains regular expressions (see Section 34.4 [Regexp Search], page 744).
If test is omitted or nil, equal is used for comparison.

If an alist element matches key by this criterion, then assoc-default returns a value
based on this element. If the element is a cons, then the value is the element’s cdr.
Otherwise, the return value is default.

If no alist element matches key, assoc-default returns nil.

Chapter 5: Lists 85

[Function]copy-alist alist
This function returns a two-level deep copy of alist: it creates a new copy of each
association, so that you can alter the associations of the new alist without changing
the old one.

(setq needles-per-cluster

’((2 . ("Austrian Pine" "Red Pine"))

(3 . ("Pitch Pine"))

(5 . ("White Pine"))))
⇒
((2 "Austrian Pine" "Red Pine")

(3 "Pitch Pine")

(5 "White Pine"))

(setq copy (copy-alist needles-per-cluster))
⇒
((2 "Austrian Pine" "Red Pine")

(3 "Pitch Pine")

(5 "White Pine"))

(eq needles-per-cluster copy)
⇒ nil

(equal needles-per-cluster copy)
⇒ t

(eq (car needles-per-cluster) (car copy))
⇒ nil

(cdr (car (cdr needles-per-cluster)))
⇒ ("Pitch Pine")

(eq (cdr (car (cdr needles-per-cluster)))

(cdr (car (cdr copy))))
⇒ t

This example shows how copy-alist makes it possible to change the associations of
one copy without affecting the other:

(setcdr (assq 3 copy) ’("Martian Vacuum Pine"))

(cdr (assq 3 needles-per-cluster))
⇒ ("Pitch Pine")

[Function]assq-delete-all key alist
This function deletes from alist all the elements whose car is eq to key, much as
if you used delq to delete each such element one by one. It returns the shortened
alist, and often modifies the original list structure of alist. For correct results, use the
return value of assq-delete-all rather than looking at the saved value of alist.

(setq alist ’((foo 1) (bar 2) (foo 3) (lose 4)))

⇒ ((foo 1) (bar 2) (foo 3) (lose 4))

(assq-delete-all ’foo alist)

⇒ ((bar 2) (lose 4))

alist

⇒ ((foo 1) (bar 2) (lose 4))

[Function]rassq-delete-all value alist
This function deletes from alist all the elements whose cdr is eq to value. It returns
the shortened alist, and often modifies the original list structure of alist. rassq-

delete-all is like assq-delete-all except that it compares the cdr of each alist
association instead of the car.

Chapter 5: Lists 86

5.9 Property Lists

A property list (plist for short) is a list of paired elements. Each of the pairs associates
a property name (usually a symbol) with a property or value. Here is an example of a
property list:

(pine cones numbers (1 2 3) color "blue")

This property list associates pine with cones, numbers with (1 2 3), and color with
"blue". The property names and values can be any Lisp objects, but the names are usually
symbols (as they are in this example).

Property lists are used in several contexts. For instance, the function put-text-

property takes an argument which is a property list, specifying text properties and
associated values which are to be applied to text in a string or buffer. See Section 32.19
[Text Properties], page 680.

Another prominent use of property lists is for storing symbol properties. Every symbol
possesses a list of properties, used to record miscellaneous information about the symbol;
these properties are stored in the form of a property list. See Section 8.4 [Symbol Properties],
page 108.

5.9.1 Property Lists and Association Lists

Association lists (see Section 5.8 [Association Lists], page 82) are very similar to property
lists. In contrast to association lists, the order of the pairs in the property list is not
significant, since the property names must be distinct.

Property lists are better than association lists for attaching information to various Lisp
function names or variables. If your program keeps all such information in one association
list, it will typically need to search that entire list each time it checks for an association for a
particular Lisp function name or variable, which could be slow. By contrast, if you keep the
same information in the property lists of the function names or variables themselves, each
search will scan only the length of one property list, which is usually short. This is why the
documentation for a variable is recorded in a property named variable-documentation.
The byte compiler likewise uses properties to record those functions needing special treat-
ment.

However, association lists have their own advantages. Depending on your application,
it may be faster to add an association to the front of an association list than to update
a property. All properties for a symbol are stored in the same property list, so there is
a possibility of a conflict between different uses of a property name. (For this reason, it
is a good idea to choose property names that are probably unique, such as by beginning
the property name with the program’s usual name-prefix for variables and functions.) An
association list may be used like a stack where associations are pushed on the front of the
list and later discarded; this is not possible with a property list.

5.9.2 Property Lists Outside Symbols

The following functions can be used to manipulate property lists. They all compare property
names using eq.

Chapter 5: Lists 87

[Function]plist-get plist property
This returns the value of the property property stored in the property list plist. It
accepts a malformed plist argument. If property is not found in the plist, it returns
nil. For example,

(plist-get ’(foo 4) ’foo)

⇒ 4

(plist-get ’(foo 4 bad) ’foo)

⇒ 4

(plist-get ’(foo 4 bad) ’bad)

⇒ nil

(plist-get ’(foo 4 bad) ’bar)

⇒ nil

[Function]plist-put plist property value
This stores value as the value of the property property in the property list plist.
It may modify plist destructively, or it may construct a new list structure without
altering the old. The function returns the modified property list, so you can store
that back in the place where you got plist. For example,

(setq my-plist ’(bar t foo 4))

⇒ (bar t foo 4)

(setq my-plist (plist-put my-plist ’foo 69))

⇒ (bar t foo 69)

(setq my-plist (plist-put my-plist ’quux ’(a)))

⇒ (bar t foo 69 quux (a))

[Function]lax-plist-get plist property
Like plist-get except that it compares properties using equal instead of eq.

[Function]lax-plist-put plist property value
Like plist-put except that it compares properties using equal instead of eq.

[Function]plist-member plist property
This returns non-nil if plist contains the given property. Unlike plist-get, this
allows you to distinguish between a missing property and a property with the value
nil. The value is actually the tail of plist whose car is property.

Chapter 6: Sequences, Arrays, and Vectors 88

6 Sequences, Arrays, and Vectors

The sequence type is the union of two other Lisp types: lists and arrays. In other words,
any list is a sequence, and any array is a sequence. The common property that all sequences
have is that each is an ordered collection of elements.

An array is a fixed-length object with a slot for each of its elements. All the elements
are accessible in constant time. The four types of arrays are strings, vectors, char-tables
and bool-vectors.

A list is a sequence of elements, but it is not a single primitive object; it is made of cons
cells, one cell per element. Finding the nth element requires looking through n cons cells,
so elements farther from the beginning of the list take longer to access. But it is possible
to add elements to the list, or remove elements.

The following diagram shows the relationship between these types:

| |

| Sequence |

| ______ ________________________________ |

| | | | | |

| | List | | Array | |

| | | | ________ ________ | |

| |______| | | | | | | |

| | | Vector | | String | | |

| | |________| |________| | |

| | ____________ _____________ | |

| | | | | | | |

| | | Char-table | | Bool-vector | | |

| | |____________| |_____________| | |

| |________________________________| |

|___|

6.1 Sequences

This section describes functions that accept any kind of sequence.

[Function]sequencep object
This function returns t if object is a list, vector, string, bool-vector, or char-table,
nil otherwise.

[Function]length sequence
This function returns the number of elements in sequence. If sequence is a dotted list,
a wrong-type-argument error is signaled. Circular lists may cause an infinite loop.
For a char-table, the value returned is always one more than the maximum Emacs
character code.

See [Definition of safe-length], page 67, for the related function safe-length.

(length ’(1 2 3))

⇒ 3

Chapter 6: Sequences, Arrays, and Vectors 89

(length ())

⇒ 0

(length "foobar")

⇒ 6

(length [1 2 3])

⇒ 3

(length (make-bool-vector 5 nil))

⇒ 5

See also string-bytes, in Section 33.1 [Text Representations], page 705.

If you need to compute the width of a string on display, you should use string-width

(see Section 38.10 [Width], page 846), not length, since length only counts the number of
characters, but does not account for the display width of each character.

[Function]elt sequence index
This function returns the element of sequence indexed by index. Legitimate values
of index are integers ranging from 0 up to one less than the length of sequence. If
sequence is a list, out-of-range values behave as for nth. See [Definition of nth],
page 67. Otherwise, out-of-range values trigger an args-out-of-range error.

(elt [1 2 3 4] 2)

⇒ 3

(elt ’(1 2 3 4) 2)

⇒ 3

;; We use string to show clearly which character elt returns.
(string (elt "1234" 2))

⇒ "3"

(elt [1 2 3 4] 4)

error Args out of range: [1 2 3 4], 4

(elt [1 2 3 4] -1)

error Args out of range: [1 2 3 4], -1

This function generalizes aref (see Section 6.3 [Array Functions], page 91) and nth

(see [Definition of nth], page 67).

[Function]copy-sequence sequence
This function returns a copy of sequence. The copy is the same type of object as the
original sequence, and it has the same elements in the same order.

Storing a new element into the copy does not affect the original sequence, and vice
versa. However, the elements of the new sequence are not copies; they are identical
(eq) to the elements of the original. Therefore, changes made within these elements,
as found via the copied sequence, are also visible in the original sequence.

If the sequence is a string with text properties, the property list in the copy is itself
a copy, not shared with the original’s property list. However, the actual values of the
properties are shared. See Section 32.19 [Text Properties], page 680.

This function does not work for dotted lists. Trying to copy a circular list may cause
an infinite loop.

Chapter 6: Sequences, Arrays, and Vectors 90

See also append in Section 5.4 [Building Lists], page 68, concat in Section 4.3 [Cre-
ating Strings], page 49, and vconcat in Section 6.5 [Vector Functions], page 93, for
other ways to copy sequences.

(setq bar ’(1 2))

⇒ (1 2)

(setq x (vector ’foo bar))

⇒ [foo (1 2)]

(setq y (copy-sequence x))

⇒ [foo (1 2)]

(eq x y)

⇒ nil

(equal x y)

⇒ t

(eq (elt x 1) (elt y 1))

⇒ t

;; Replacing an element of one sequence.
(aset x 0 ’quux)

x ⇒ [quux (1 2)]

y ⇒ [foo (1 2)]

;; Modifying the inside of a shared element.
(setcar (aref x 1) 69)

x ⇒ [quux (69 2)]

y ⇒ [foo (69 2)]

6.2 Arrays

An array object has slots that hold a number of other Lisp objects, called the elements of
the array. Any element of an array may be accessed in constant time. In contrast, the time
to access an element of a list is proportional to the position of that element in the list.

Emacs defines four types of array, all one-dimensional: strings (see Section 2.3.8 [String
Type], page 18), vectors (see Section 2.3.9 [Vector Type], page 20), bool-vectors (see
Section 2.3.11 [Bool-Vector Type], page 21), and char-tables (see Section 2.3.10 [Char-
Table Type], page 21). Vectors and char-tables can hold elements of any type, but strings
can only hold characters, and bool-vectors can only hold t and nil.

All four kinds of array share these characteristics:

• The first element of an array has index zero, the second element has index 1, and so on.
This is called zero-origin indexing. For example, an array of four elements has indices
0, 1, 2, and 3.

• The length of the array is fixed once you create it; you cannot change the length of an
existing array.

• For purposes of evaluation, the array is a constant—i.e., it evaluates to itself.

• The elements of an array may be referenced or changed with the functions aref and
aset, respectively (see Section 6.3 [Array Functions], page 91).

Chapter 6: Sequences, Arrays, and Vectors 91

When you create an array, other than a char-table, you must specify its length. You can-
not specify the length of a char-table, because that is determined by the range of character
codes.

In principle, if you want an array of text characters, you could use either a string or a
vector. In practice, we always choose strings for such applications, for four reasons:

• They occupy one-fourth the space of a vector of the same elements.

• Strings are printed in a way that shows the contents more clearly as text.

• Strings can hold text properties. See Section 32.19 [Text Properties], page 680.

• Many of the specialized editing and I/O facilities of Emacs accept only strings. For
example, you cannot insert a vector of characters into a buffer the way you can insert
a string. See Chapter 4 [Strings and Characters], page 48.

By contrast, for an array of keyboard input characters (such as a key sequence), a vector
may be necessary, because many keyboard input characters are outside the range that will
fit in a string. See Section 21.8.1 [Key Sequence Input], page 349.

6.3 Functions that Operate on Arrays

In this section, we describe the functions that accept all types of arrays.

[Function]arrayp object
This function returns t if object is an array (i.e., a vector, a string, a bool-vector or
a char-table).

(arrayp [a])

⇒ t

(arrayp "asdf")

⇒ t

(arrayp (syntax-table)) ;; A char-table.
⇒ t

[Function]aref array index
This function returns the indexth element of array. The first element is at index zero.

(setq primes [2 3 5 7 11 13])

⇒ [2 3 5 7 11 13]

(aref primes 4)

⇒ 11

(aref "abcdefg" 1)

⇒ 98 ; ‘b’ is ASCII code 98.

See also the function elt, in Section 6.1 [Sequence Functions], page 88.

[Function]aset array index object
This function sets the indexth element of array to be object. It returns object.

(setq w [foo bar baz])

⇒ [foo bar baz]

(aset w 0 ’fu)

⇒ fu

w

⇒ [fu bar baz]

Chapter 6: Sequences, Arrays, and Vectors 92

(setq x "asdfasfd")

⇒ "asdfasfd"

(aset x 3 ?Z)

⇒ 90

x

⇒ "asdZasfd"

If array is a string and object is not a character, a wrong-type-argument error results.
The function converts a unibyte string to multibyte if necessary to insert a character.

[Function]fillarray array object
This function fills the array array with object, so that each element of array is object.
It returns array.

(setq a [a b c d e f g])

⇒ [a b c d e f g]

(fillarray a 0)

⇒ [0 0 0 0 0 0 0]

a

⇒ [0 0 0 0 0 0 0]

(setq s "When in the course")

⇒ "When in the course"

(fillarray s ?-)

⇒ "------------------"

If array is a string and object is not a character, a wrong-type-argument error results.

The general sequence functions copy-sequence and length are often useful for objects
known to be arrays. See Section 6.1 [Sequence Functions], page 88.

6.4 Vectors

A vector is a general-purpose array whose elements can be any Lisp objects. (By contrast,
the elements of a string can only be characters. See Chapter 4 [Strings and Characters],
page 48.) Vectors are used in Emacs for many purposes: as key sequences (see Section 22.1
[Key Sequences], page 366), as symbol-lookup tables (see Section 8.3 [Creating Symbols],
page 106), as part of the representation of a byte-compiled function (see Chapter 16 [Byte
Compilation], page 229), and more.

Like other arrays, vectors use zero-origin indexing: the first element has index 0.

Vectors are printed with square brackets surrounding the elements. Thus, a vector whose
elements are the symbols a, b and a is printed as [a b a]. You can write vectors in the
same way in Lisp input.

A vector, like a string or a number, is considered a constant for evaluation: the result
of evaluating it is the same vector. This does not evaluate or even examine the elements of
the vector. See Section 9.1.1 [Self-Evaluating Forms], page 113.

Here are examples illustrating these principles:

Chapter 6: Sequences, Arrays, and Vectors 93

(setq avector [1 two ’(three) "four" [five]])

⇒ [1 two (quote (three)) "four" [five]]

(eval avector)

⇒ [1 two (quote (three)) "four" [five]]

(eq avector (eval avector))

⇒ t

6.5 Functions for Vectors

Here are some functions that relate to vectors:

[Function]vectorp object
This function returns t if object is a vector.

(vectorp [a])

⇒ t

(vectorp "asdf")

⇒ nil

[Function]vector &rest objects
This function creates and returns a vector whose elements are the arguments, objects.

(vector ’foo 23 [bar baz] "rats")

⇒ [foo 23 [bar baz] "rats"]

(vector)

⇒ []

[Function]make-vector length object
This function returns a new vector consisting of length elements, each initialized to
object.

(setq sleepy (make-vector 9 ’Z))

⇒ [Z Z Z Z Z Z Z Z Z]

[Function]vconcat &rest sequences
This function returns a new vector containing all the elements of sequences. The ar-
guments sequences may be true lists, vectors, strings or bool-vectors. If no sequences
are given, an empty vector is returned.

The value is a newly constructed vector that is not eq to any existing vector.

(setq a (vconcat ’(A B C) ’(D E F)))

⇒ [A B C D E F]

(eq a (vconcat a))

⇒ nil

(vconcat)

⇒ []

(vconcat [A B C] "aa" ’(foo (6 7)))

⇒ [A B C 97 97 foo (6 7)]

The vconcat function also allows byte-code function objects as arguments. This is a
special feature to make it easy to access the entire contents of a byte-code function
object. See Section 16.7 [Byte-Code Objects], page 235.

Chapter 6: Sequences, Arrays, and Vectors 94

For other concatenation functions, see mapconcat in Section 12.6 [Mapping Func-
tions], page 178, concat in Section 4.3 [Creating Strings], page 49, and append in
Section 5.4 [Building Lists], page 68.

The append function also provides a way to convert a vector into a list with the same
elements:

(setq avector [1 two (quote (three)) "four" [five]])

⇒ [1 two (quote (three)) "four" [five]]

(append avector nil)

⇒ (1 two (quote (three)) "four" [five])

6.6 Char-Tables

A char-table is much like a vector, except that it is indexed by character codes. Any valid
character code, without modifiers, can be used as an index in a char-table. You can access
a char-table’s elements with aref and aset, as with any array. In addition, a char-table
can have extra slots to hold additional data not associated with particular character codes.
Like vectors, char-tables are constants when evaluated, and can hold elements of any type.

Each char-table has a subtype, a symbol, which serves two purposes:

• The subtype provides an easy way to tell what the char-table is for. For instance,
display tables are char-tables with display-table as the subtype, and syntax tables
are char-tables with syntax-table as the subtype. The subtype can be queried using
the function char-table-subtype, described below.

• The subtype controls the number of extra slots in the char-table. This number is
specified by the subtype’s char-table-extra-slots symbol property (see Section 8.4
[Symbol Properties], page 108), whose value should be an integer between 0 and 10. If
the subtype has no such symbol property, the char-table has no extra slots.

A char-table can have a parent, which is another char-table. If it does, then whenever
the char-table specifies nil for a particular character c, it inherits the value specified in
the parent. In other words, (aref char-table c) returns the value from the parent of
char-table if char-table itself specifies nil.

A char-table can also have a default value. If so, then (aref char-table c) returns the
default value whenever the char-table does not specify any other non-nil value.

[Function]make-char-table subtype &optional init
Return a newly-created char-table, with subtype subtype (a symbol). Each element is
initialized to init, which defaults to nil. You cannot alter the subtype of a char-table
after the char-table is created.

There is no argument to specify the length of the char-table, because all char-tables
have room for any valid character code as an index.

If subtype has the char-table-extra-slots symbol property, that specifies the num-
ber of extra slots in the char-table. This should be an integer between 0 and 10;
otherwise, make-char-table raises an error. If subtype has no char-table-extra-

slots symbol property (see Section 5.9 [Property Lists], page 86), the char-table has
no extra slots.

Chapter 6: Sequences, Arrays, and Vectors 95

[Function]char-table-p object
This function returns t if object is a char-table, and nil otherwise.

[Function]char-table-subtype char-table
This function returns the subtype symbol of char-table.

There is no special function to access default values in a char-table. To do that, use
char-table-range (see below).

[Function]char-table-parent char-table
This function returns the parent of char-table. The parent is always either nil or
another char-table.

[Function]set-char-table-parent char-table new-parent
This function sets the parent of char-table to new-parent.

[Function]char-table-extra-slot char-table n
This function returns the contents of extra slot n of char-table. The number of extra
slots in a char-table is determined by its subtype.

[Function]set-char-table-extra-slot char-table n value
This function stores value in extra slot n of char-table.

A char-table can specify an element value for a single character code; it can also specify
a value for an entire character set.

[Function]char-table-range char-table range
This returns the value specified in char-table for a range of characters range. Here
are the possibilities for range:

nil Refers to the default value.

char Refers to the element for character char (supposing char is a valid char-
acter code).

(from . to)

A cons cell refers to all the characters in the inclusive range ‘[from..to]’.

[Function]set-char-table-range char-table range value
This function sets the value in char-table for a range of characters range. Here are
the possibilities for range:

nil Refers to the default value.

t Refers to the whole range of character codes.

char Refers to the element for character char (supposing char is a valid char-
acter code).

(from . to)

A cons cell refers to all the characters in the inclusive range ‘[from..to]’.

Chapter 6: Sequences, Arrays, and Vectors 96

[Function]map-char-table function char-table
This function calls its argument function for each element of char-table that has a
non-nil value. The call to function is with two arguments, a key and a value. The
key is a possible range argument for char-table-range—either a valid character or
a cons cell (from . to), specifying a range of characters that share the same value.
The value is what (char-table-range char-table key) returns.

Overall, the key-value pairs passed to function describe all the values stored in char-
table.

The return value is always nil; to make calls to map-char-table useful, function
should have side effects. For example, here is how to examine the elements of the
syntax table:

(let (accumulator)

(map-char-table

#’(lambda (key value)

(setq accumulator

(cons (list

(if (consp key)

(list (car key) (cdr key))

key)

value)

accumulator)))

(syntax-table))

accumulator)

⇒
(((2597602 4194303) (2)) ((2597523 2597601) (3))

... (65379 (5 . 65378)) (65378 (4 . 65379)) (65377 (1))

... (12 (0)) (11 (3)) (10 (12)) (9 (0)) ((0 8) (3)))

6.7 Bool-vectors

A bool-vector is much like a vector, except that it stores only the values t and nil. If you
try to store any non-nil value into an element of the bool-vector, the effect is to store t

there. As with all arrays, bool-vector indices start from 0, and the length cannot be changed
once the bool-vector is created. Bool-vectors are constants when evaluated.

There are two special functions for working with bool-vectors; aside from that, you
manipulate them with same functions used for other kinds of arrays.

[Function]make-bool-vector length initial
Return a new bool-vector of length elements, each one initialized to initial.

[Function]bool-vector-p object
This returns t if object is a bool-vector, and nil otherwise.

Here is an example of creating, examining, and updating a bool-vector. Note that the
printed form represents up to 8 boolean values as a single character.

(setq bv (make-bool-vector 5 t))

⇒ #&5"^_"

Chapter 6: Sequences, Arrays, and Vectors 97

(aref bv 1)

⇒ t

(aset bv 3 nil)

⇒ nil

bv

⇒ #&5"^W"

These results make sense because the binary codes for control- and control-W are 11111
and 10111, respectively.

6.8 Managing a Fixed-Size Ring of Objects

A ring is a fixed-size data structure that supports insertion, deletion, rotation, and modulo-
indexed reference and traversal. An efficient ring data structure is implemented by the ring
package. It provides the functions listed in this section.

Note that several “rings” in Emacs, like the kill ring and the mark ring, are actually
implemented as simple lists, not using the ring package; thus the following functions won’t
work on them.

[Function]make-ring size
This returns a new ring capable of holding size objects. size should be an integer.

[Function]ring-p object
This returns t if object is a ring, nil otherwise.

[Function]ring-size ring
This returns the maximum capacity of the ring.

[Function]ring-length ring
This returns the number of objects that ring currently contains. The value will never
exceed that returned by ring-size.

[Function]ring-elements ring
This returns a list of the objects in ring, in order, newest first.

[Function]ring-copy ring
This returns a new ring which is a copy of ring. The new ring contains the same (eq)
objects as ring.

[Function]ring-empty-p ring
This returns t if ring is empty, nil otherwise.

The newest element in the ring always has index 0. Higher indices correspond to older
elements. Indices are computed modulo the ring length. Index −1 corresponds to the oldest
element, −2 to the next-oldest, and so forth.

[Function]ring-ref ring index
This returns the object in ring found at index index. index may be negative or greater
than the ring length. If ring is empty, ring-ref signals an error.

Chapter 6: Sequences, Arrays, and Vectors 98

[Function]ring-insert ring object
This inserts object into ring, making it the newest element, and returns object.

If the ring is full, insertion removes the oldest element to make room for the new
element.

[Function]ring-remove ring &optional index
Remove an object from ring, and return that object. The argument index specifies
which item to remove; if it is nil, that means to remove the oldest item. If ring is
empty, ring-remove signals an error.

[Function]ring-insert-at-beginning ring object
This inserts object into ring, treating it as the oldest element. The return value is
not significant.

If the ring is full, this function removes the newest element to make room for the
inserted element.

If you are careful not to exceed the ring size, you can use the ring as a first-in-first-out
queue. For example:

(let ((fifo (make-ring 5)))

(mapc (lambda (obj) (ring-insert fifo obj))

’(0 one "two"))

(list (ring-remove fifo) t

(ring-remove fifo) t

(ring-remove fifo)))

⇒ (0 t one t "two")

Chapter 7: Hash Tables 99

7 Hash Tables

A hash table is a very fast kind of lookup table, somewhat like an alist (see Section 5.8
[Association Lists], page 82) in that it maps keys to corresponding values. It differs from
an alist in these ways:

• Lookup in a hash table is extremely fast for large tables—in fact, the time required
is essentially independent of how many elements are stored in the table. For smaller
tables (a few tens of elements) alists may still be faster because hash tables have a
more-or-less constant overhead.

• The correspondences in a hash table are in no particular order.

• There is no way to share structure between two hash tables, the way two alists can
share a common tail.

Emacs Lisp provides a general-purpose hash table data type, along with a series of
functions for operating on them. Hash tables have a special printed representation, which
consists of ‘#s’ followed by a list specifying the hash table properties and contents. See
Section 7.1 [Creating Hash], page 99. (Note that the term “hash notation”, which refers
to the initial ‘#’ character used in the printed representations of objects with no read
representation, has nothing to do with the term “hash table”. See Section 2.1 [Printed
Representation], page 8.)

Obarrays are also a kind of hash table, but they are a different type of object and are
used only for recording interned symbols (see Section 8.3 [Creating Symbols], page 106).

7.1 Creating Hash Tables

The principal function for creating a hash table is make-hash-table.

[Function]make-hash-table &rest keyword-args
This function creates a new hash table according to the specified arguments. The
arguments should consist of alternating keywords (particular symbols recognized spe-
cially) and values corresponding to them.

Several keywords make sense in make-hash-table, but the only two that you really
need to know about are :test and :weakness.

:test test

This specifies the method of key lookup for this hash table. The default
is eql; eq and equal are other alternatives:

eql Keys which are numbers are “the same” if they are equal,
that is, if they are equal in value and either both are integers
or both are floating point numbers; otherwise, two distinct
objects are never “the same”.

eq Any two distinct Lisp objects are “different” as keys.

equal Two Lisp objects are “the same”, as keys, if they are equal
according to equal.

You can use define-hash-table-test (see Section 7.3 [Defining Hash],
page 102) to define additional possibilities for test.

Chapter 7: Hash Tables 100

:weakness weak

The weakness of a hash table specifies whether the presence of a key or
value in the hash table preserves it from garbage collection.

The value, weak, must be one of nil, key, value, key-or-value, key-
and-value, or t which is an alias for key-and-value. If weak is key then
the hash table does not prevent its keys from being collected as garbage
(if they are not referenced anywhere else); if a particular key does get
collected, the corresponding association is removed from the hash table.

If weak is value, then the hash table does not prevent values from being
collected as garbage (if they are not referenced anywhere else); if a par-
ticular value does get collected, the corresponding association is removed
from the hash table.

If weak is key-and-value or t, both the key and the value must be live in
order to preserve the association. Thus, the hash table does not protect
either keys or values from garbage collection; if either one is collected as
garbage, that removes the association.

If weak is key-or-value, either the key or the value can preserve the as-
sociation. Thus, associations are removed from the hash table when both
their key and value would be collected as garbage (if not for references
from weak hash tables).

The default for weak is nil, so that all keys and values referenced in the
hash table are preserved from garbage collection.

:size size

This specifies a hint for how many associations you plan to store in the
hash table. If you know the approximate number, you can make things
a little more efficient by specifying it this way. If you specify too small
a size, the hash table will grow automatically when necessary, but doing
that takes some extra time.

The default size is 65.

:rehash-size rehash-size

When you add an association to a hash table and the table is “full”, it
grows automatically. This value specifies how to make the hash table
larger, at that time.

If rehash-size is an integer, it should be positive, and the hash table grows
by adding that much to the nominal size. If rehash-size is a floating point
number, it had better be greater than 1, and the hash table grows by
multiplying the old size by that number.

The default value is 1.5.

:rehash-threshold threshold

This specifies the criterion for when the hash table is “full” (so it should
be made larger). The value, threshold, should be a positive floating point
number, no greater than 1. The hash table is “full” whenever the actual
number of entries exceeds this fraction of the nominal size. The default
for threshold is 0.8.

Chapter 7: Hash Tables 101

[Function]makehash &optional test
This is equivalent to make-hash-table, but with a different style argument list. The
argument test specifies the method of key lookup.

This function is obsolete. Use make-hash-table instead.

You can also create a new hash table using the printed representation for hash tables.
The Lisp reader can read this printed representation, provided each element in the specified
hash table has a valid read syntax (see Section 2.1 [Printed Representation], page 8). For
instance, the following specifies a new hash table containing the keys key1 and key2 (both
symbols) associated with val1 (a symbol) and 300 (a number) respectively.

#s(hash-table size 30 data (key1 val1 key2 300))

The printed representation for a hash table consists of ‘#s’ followed by a list beginning
with ‘hash-table’. The rest of the list should consist of zero or more property-value pairs
specifying the hash table’s properties and initial contents. The properties and values are
read literally. Valid property names are size, test, weakness, rehash-size, rehash-
threshold, and data. The data property should be a list of key-value pairs for the initial
contents; the other properties have the same meanings as the matching make-hash-table

keywords (:size, :test, etc.), described above.

Note that you cannot specify a hash table whose initial contents include objects that
have no read syntax, such as buffers and frames. Such objects may be added to the hash
table after it is created.

7.2 Hash Table Access

This section describes the functions for accessing and storing associations in a hash table. In
general, any Lisp object can be used as a hash key, unless the comparison method imposes
limits. Any Lisp object can also be used as the value.

[Function]gethash key table &optional default
This function looks up key in table, and returns its associated value—or default, if
key has no association in table.

[Function]puthash key value table
This function enters an association for key in table, with value value. If key already
has an association in table, value replaces the old associated value.

[Function]remhash key table
This function removes the association for key from table, if there is one. If key has
no association, remhash does nothing.

Common Lisp note: In Common Lisp, remhash returns non-nil if it actually removed
an association and nil otherwise. In Emacs Lisp, remhash always returns nil.

[Function]clrhash table
This function removes all the associations from hash table table, so that it becomes
empty. This is also called clearing the hash table.

Common Lisp note: In Common Lisp, clrhash returns the empty table. In Emacs
Lisp, it returns nil.

Chapter 7: Hash Tables 102

[Function]maphash function table
This function calls function once for each of the associations in table. The function
function should accept two arguments—a key listed in table, and its associated value.
maphash returns nil.

7.3 Defining Hash Comparisons

You can define new methods of key lookup by means of define-hash-table-test. In order
to use this feature, you need to understand how hash tables work, and what a hash code
means.

You can think of a hash table conceptually as a large array of many slots, each capable
of holding one association. To look up a key, gethash first computes an integer, the hash
code, from the key. It reduces this integer modulo the length of the array, to produce an
index in the array. Then it looks in that slot, and if necessary in other nearby slots, to see
if it has found the key being sought.

Thus, to define a new method of key lookup, you need to specify both a function to
compute the hash code from a key, and a function to compare two keys directly.

[Function]define-hash-table-test name test-fn hash-fn
This function defines a new hash table test, named name.

After defining name in this way, you can use it as the test argument in make-hash-

table. When you do that, the hash table will use test-fn to compare key values, and
hash-fn to compute a “hash code” from a key value.

The function test-fn should accept two arguments, two keys, and return non-nil if
they are considered “the same”.

The function hash-fn should accept one argument, a key, and return an integer that
is the “hash code” of that key. For good results, the function should use the whole
range of integer values for hash codes, including negative integers.

The specified functions are stored in the property list of name under the property
hash-table-test; the property value’s form is (test-fn hash-fn).

[Function]sxhash obj
This function returns a hash code for Lisp object obj. This is an integer which reflects
the contents of obj and the other Lisp objects it points to.

If two objects obj1 and obj2 are equal, then (sxhash obj1) and (sxhash obj2) are
the same integer.

If the two objects are not equal, the values returned by sxhash are usually different,
but not always; once in a rare while, by luck, you will encounter two distinct-looking
objects that give the same result from sxhash.

This example creates a hash table whose keys are strings that are compared case-
insensitively.

(defun case-fold-string= (a b)

(eq t (compare-strings a nil nil b nil nil t)))

(defun case-fold-string-hash (a)

(sxhash (upcase a)))

Chapter 7: Hash Tables 103

(define-hash-table-test ’case-fold

’case-fold-string= ’case-fold-string-hash)

(make-hash-table :test ’case-fold)

Here is how you could define a hash table test equivalent to the predefined test value
equal. The keys can be any Lisp object, and equal-looking objects are considered the same
key.

(define-hash-table-test ’contents-hash ’equal ’sxhash)

(make-hash-table :test ’contents-hash)

7.4 Other Hash Table Functions

Here are some other functions for working with hash tables.

[Function]hash-table-p table
This returns non-nil if table is a hash table object.

[Function]copy-hash-table table
This function creates and returns a copy of table. Only the table itself is copied—the
keys and values are shared.

[Function]hash-table-count table
This function returns the actual number of entries in table.

[Function]hash-table-test table
This returns the test value that was given when table was created, to specify how
to hash and compare keys. See make-hash-table (see Section 7.1 [Creating Hash],
page 99).

[Function]hash-table-weakness table
This function returns the weak value that was specified for hash table table.

[Function]hash-table-rehash-size table
This returns the rehash size of table.

[Function]hash-table-rehash-threshold table
This returns the rehash threshold of table.

[Function]hash-table-size table
This returns the current nominal size of table.

Chapter 8: Symbols 104

8 Symbols

A symbol is an object with a unique name. This chapter describes symbols, their com-
ponents, their property lists, and how they are created and interned. Separate chapters
describe the use of symbols as variables and as function names; see Chapter 11 [Variables],
page 141, and Chapter 12 [Functions], page 169. For the precise read syntax for symbols,
see Section 2.3.4 [Symbol Type], page 13.

You can test whether an arbitrary Lisp object is a symbol with symbolp:

[Function]symbolp object
This function returns t if object is a symbol, nil otherwise.

8.1 Symbol Components

Each symbol has four components (or “cells”), each of which references another object:

Print name
The symbol’s name.

Value The symbol’s current value as a variable.

Function The symbol’s function definition. It can also hold a symbol, a keymap, or a
keyboard macro.

Property list
The symbol’s property list.

The print name cell always holds a string, and cannot be changed. Each of the other three
cells can be set to any Lisp object.

The print name cell holds the string that is the name of a symbol. Since symbols are
represented textually by their names, it is important not to have two symbols with the same
name. The Lisp reader ensures this: every time it reads a symbol, it looks for an existing
symbol with the specified name before it creates a new one. To get a symbol’s name, use
the function symbol-name (see Section 8.3 [Creating Symbols], page 106).

The value cell holds a symbol’s value as a variable, which is what you get if the symbol
itself is evaluated as a Lisp expression. See Chapter 11 [Variables], page 141, for details
about how values are set and retrieved, including complications such as local bindings and
scoping rules. Most symbols can have any Lisp object as a value, but certain special symbols
have values that cannot be changed; these include nil and t, and any symbol whose name
starts with ‘:’ (those are called keywords). See Section 11.2 [Constant Variables], page 141.

The function cell holds a symbol’s function definition. Often, we refer to “the func-
tion foo” when we really mean the function stored in the function cell of foo; we make
the distinction explicit only when necessary. Typically, the function cell is used to hold
a function (see Chapter 12 [Functions], page 169) or a macro (see Chapter 13 [Macros],
page 188). However, it can also be used to hold a symbol (see Section 9.1.4 [Function
Indirection], page 114), keyboard macro (see Section 21.16 [Keyboard Macros], page 364),
keymap (see Chapter 22 [Keymaps], page 366), or autoload object (see Section 9.1.8 [Au-
toloading], page 117). To get the contents of a symbol’s function cell, use the function
symbol-function (see Section 12.8 [Function Cells], page 181).

Chapter 8: Symbols 105

The property list cell normally should hold a correctly formatted property list. To get a
symbol’s property list, use the function symbol-plist. See Section 8.4 [Symbol Properties],
page 108.

The function cell or the value cell may be void, which means that the cell does not
reference any object. (This is not the same thing as holding the symbol void, nor the same
as holding the symbol nil.) Examining a function or value cell that is void results in an
error, such as ‘Symbol’s value as variable is void’.

Because each symbol has separate value and function cells, variables names and function
names do not conflict. For example, the symbol buffer-file-name has a value (the name
of the file being visited in the current buffer) as well as a function definition (a primitive
function that returns the name of the file):

buffer-file-name

⇒ "/gnu/elisp/symbols.texi"

(symbol-function ’buffer-file-name)

⇒ #<subr buffer-file-name>

8.2 Defining Symbols

A definition is a special kind of Lisp expression that announces your intention to use a
symbol in a particular way. It typically specifies a value or meaning for the symbol for
one kind of use, plus documentation for its meaning when used in this way. Thus, when
you define a symbol as a variable, you can supply an initial value for the variable, plus
documentation for the variable.

defvar and defconst are special forms that define a symbol as a global variable—a
variable that can be accessed at any point in a Lisp program. See Chapter 11 [Variables],
page 141, for details about variables. To define a customizable variable, use the defcustom
macro, which also calls defvar as a subroutine (see Chapter 14 [Customization], page 196).

In principle, you can assign a variable value to any symbol with setq, whether not it has
first been defined as a variable. However, you ought to write a variable definition for each
global variable that you want to use; otherwise, your Lisp program may not act correctly if
it is evaluated with lexical scoping enabled (see Section 11.9 [Variable Scoping], page 150).

defun defines a symbol as a function, creating a lambda expression and storing it in the
function cell of the symbol. This lambda expression thus becomes the function definition of
the symbol. (The term “function definition”, meaning the contents of the function cell, is
derived from the idea that defun gives the symbol its definition as a function.) defsubst

and defalias are two other ways of defining a function. See Chapter 12 [Functions],
page 169.

defmacro defines a symbol as a macro. It creates a macro object and stores it in the
function cell of the symbol. Note that a given symbol can be a macro or a function, but
not both at once, because both macro and function definitions are kept in the function cell,
and that cell can hold only one Lisp object at any given time. See Chapter 13 [Macros],
page 188.

As previously noted, Emacs Lisp allows the same symbol to be defined both as a variable
(e.g., with defvar) and as a function or macro (e.g., with defun). Such definitions do not
conflict.

Chapter 8: Symbols 106

These definition also act as guides for programming tools. For example, the C-h f and
C-h v commands create help buffers containing links to the relevant variable, function, or
macro definitions. See Section “Name Help” in The GNU Emacs Manual.

8.3 Creating and Interning Symbols

To understand how symbols are created in GNU Emacs Lisp, you must know how Lisp
reads them. Lisp must ensure that it finds the same symbol every time it reads the same
set of characters. Failure to do so would cause complete confusion.

When the Lisp reader encounters a symbol, it reads all the characters of the name. Then
it “hashes” those characters to find an index in a table called an obarray. Hashing is an
efficient method of looking something up. For example, instead of searching a telephone
book cover to cover when looking up Jan Jones, you start with the J’s and go from there.
That is a simple version of hashing. Each element of the obarray is a bucket which holds
all the symbols with a given hash code; to look for a given name, it is sufficient to look
through all the symbols in the bucket for that name’s hash code. (The same idea is used for
general Emacs hash tables, but they are a different data type; see Chapter 7 [Hash Tables],
page 99.)

If a symbol with the desired name is found, the reader uses that symbol. If the obarray
does not contain a symbol with that name, the reader makes a new symbol and adds it to
the obarray. Finding or adding a symbol with a certain name is called interning it, and the
symbol is then called an interned symbol.

Interning ensures that each obarray has just one symbol with any particular name. Other
like-named symbols may exist, but not in the same obarray. Thus, the reader gets the same
symbols for the same names, as long as you keep reading with the same obarray.

Interning usually happens automatically in the reader, but sometimes other programs
need to do it. For example, after the M-x command obtains the command name as a string
using the minibuffer, it then interns the string, to get the interned symbol with that name.

No obarray contains all symbols; in fact, some symbols are not in any obarray. They are
called uninterned symbols. An uninterned symbol has the same four cells as other symbols;
however, the only way to gain access to it is by finding it in some other object or as the
value of a variable.

Creating an uninterned symbol is useful in generating Lisp code, because an uninterned
symbol used as a variable in the code you generate cannot clash with any variables used in
other Lisp programs.

In Emacs Lisp, an obarray is actually a vector. Each element of the vector is a bucket;
its value is either an interned symbol whose name hashes to that bucket, or 0 if the bucket is
empty. Each interned symbol has an internal link (invisible to the user) to the next symbol
in the bucket. Because these links are invisible, there is no way to find all the symbols in an
obarray except using mapatoms (below). The order of symbols in a bucket is not significant.

In an empty obarray, every element is 0, so you can create an obarray with (make-vector

length 0). This is the only valid way to create an obarray. Prime numbers as lengths tend
to result in good hashing; lengths one less than a power of two are also good.

Do not try to put symbols in an obarray yourself. This does not work—only intern

can enter a symbol in an obarray properly.

Chapter 8: Symbols 107

Common Lisp note: Unlike Common Lisp, Emacs Lisp does not provide for
interning a single symbol in several obarrays.

Most of the functions below take a name and sometimes an obarray as arguments. A
wrong-type-argument error is signaled if the name is not a string, or if the obarray is not
a vector.

[Function]symbol-name symbol
This function returns the string that is symbol’s name. For example:

(symbol-name ’foo)

⇒ "foo"

Warning: Changing the string by substituting characters does change the name of
the symbol, but fails to update the obarray, so don’t do it!

[Function]make-symbol name
This function returns a newly-allocated, uninterned symbol whose name is name
(which must be a string). Its value and function definition are void, and its property
list is nil. In the example below, the value of sym is not eq to foo because it is a
distinct uninterned symbol whose name is also ‘foo’.

(setq sym (make-symbol "foo"))

⇒ foo

(eq sym ’foo)

⇒ nil

[Function]intern name &optional obarray
This function returns the interned symbol whose name is name. If there is no such
symbol in the obarray obarray, intern creates a new one, adds it to the obarray, and
returns it. If obarray is omitted, the value of the global variable obarray is used.

(setq sym (intern "foo"))

⇒ foo

(eq sym ’foo)

⇒ t

(setq sym1 (intern "foo" other-obarray))

⇒ foo

(eq sym1 ’foo)

⇒ nil

Common Lisp note: In Common Lisp, you can intern an existing symbol in an
obarray. In Emacs Lisp, you cannot do this, because the argument to intern

must be a string, not a symbol.

[Function]intern-soft name &optional obarray
This function returns the symbol in obarray whose name is name, or nil if obarray
has no symbol with that name. Therefore, you can use intern-soft to test whether
a symbol with a given name is already interned. If obarray is omitted, the value of
the global variable obarray is used.

The argument name may also be a symbol; in that case, the function returns name
if name is interned in the specified obarray, and otherwise nil.

Chapter 8: Symbols 108

(intern-soft "frazzle") ; No such symbol exists.
⇒ nil

(make-symbol "frazzle") ; Create an uninterned one.
⇒ frazzle

(intern-soft "frazzle") ; That one cannot be found.
⇒ nil

(setq sym (intern "frazzle")) ; Create an interned one.
⇒ frazzle

(intern-soft "frazzle") ; That one can be found!
⇒ frazzle

(eq sym ’frazzle) ; And it is the same one.
⇒ t

[Variable]obarray
This variable is the standard obarray for use by intern and read.

[Function]mapatoms function &optional obarray
This function calls function once with each symbol in the obarray obarray. Then it
returns nil. If obarray is omitted, it defaults to the value of obarray, the standard
obarray for ordinary symbols.

(setq count 0)

⇒ 0

(defun count-syms (s)

(setq count (1+ count)))

⇒ count-syms

(mapatoms ’count-syms)

⇒ nil

count

⇒ 1871

See documentation in Section 24.2 [Accessing Documentation], page 460, for another
example using mapatoms.

[Function]unintern symbol obarray
This function deletes symbol from the obarray obarray. If symbol is not actually in
the obarray, unintern does nothing. If obarray is nil, the current obarray is used.

If you provide a string instead of a symbol as symbol, it stands for a symbol name.
Then unintern deletes the symbol (if any) in the obarray which has that name. If
there is no such symbol, unintern does nothing.

If unintern does delete a symbol, it returns t. Otherwise it returns nil.

8.4 Symbol Properties

A symbol may possess any number of symbol properties, which can be used to record
miscellaneous information about the symbol. For example, when a symbol has a risky-

local-variable property with a non-nil value, that means the variable which the symbol
names is a risky file-local variable (see Section 11.11 [File Local Variables], page 160).

Chapter 8: Symbols 109

Each symbol’s properties and property values are stored in the symbol’s property list
cell (see Section 8.1 [Symbol Components], page 104), in the form of a property list (see
Section 5.9 [Property Lists], page 86).

8.4.1 Accessing Symbol Properties

The following functions can be used to access symbol properties.

[Function]get symbol property
This function returns the value of the property named property in symbol’s property
list. If there is no such property, it returns nil. Thus, there is no distinction between
a value of nil and the absence of the property.

The name property is compared with the existing property names using eq, so any
object is a legitimate property.

See put for an example.

[Function]put symbol property value
This function puts value onto symbol’s property list under the property name
property, replacing any previous property value. The put function returns value.

(put ’fly ’verb ’transitive)

⇒’transitive

(put ’fly ’noun ’(a buzzing little bug))

⇒ (a buzzing little bug)

(get ’fly ’verb)

⇒ transitive

(symbol-plist ’fly)

⇒ (verb transitive noun (a buzzing little bug))

[Function]symbol-plist symbol
This function returns the property list of symbol.

[Function]setplist symbol plist
This function sets symbol’s property list to plist. Normally, plist should be a well-
formed property list, but this is not enforced. The return value is plist.

(setplist ’foo ’(a 1 b (2 3) c nil))

⇒ (a 1 b (2 3) c nil)

(symbol-plist ’foo)

⇒ (a 1 b (2 3) c nil)

For symbols in special obarrays, which are not used for ordinary purposes, it may
make sense to use the property list cell in a nonstandard fashion; in fact, the abbrev
mechanism does so (see Chapter 36 [Abbrevs], page 773).

You could define put in terms of setplist and plist-put, as follows:

(defun put (symbol prop value)

(setplist symbol

(plist-put (symbol-plist symbol) prop value)))

Chapter 8: Symbols 110

[Function]function-get symbol property
This function is identical to get, except that if symbol is the name of a function alias,
it looks in the property list of the symbol naming the actual function. See Section 12.4
[Defining Functions], page 175.

8.4.2 Standard Symbol Properties

Here, we list the symbol properties which are used for special purposes in Emacs. In the
following table, whenever we say “the named function”, that means the function whose
name is the relevant symbol; similarly for “the named variable” etc.

:advertised-binding

This property value specifies the preferred key binding, when showing docu-
mentation, for the named function. See Section 24.3 [Keys in Documentation],
page 462.

char-table-extra-slots

The value, if non-nil, specifies the number of extra slots in the named char-
table type. See Section 6.6 [Char-Tables], page 94.

customized-face

face-defface-spec

saved-face

theme-face

These properties are used to record a face’s standard, saved, customized, and
themed face specs. Do not set them directly; they are managed by defface

and related functions. See Section 38.12.2 [Defining Faces], page 852.

customized-value

saved-value

standard-value

theme-value

These properties are used to record a customizable variable’s standard value,
saved value, customized-but-unsaved value, and themed values. Do not set
them directly; they are managed by defcustom and related functions. See
Section 14.3 [Variable Definitions], page 199.

disabled If the value is non-nil, the named function is disabled as a command. See
Section 21.14 [Disabling Commands], page 363.

face-documentation

The value stores the documentation string of the named face. This is set auto-
matically by defface. See Section 38.12.2 [Defining Faces], page 852.

history-length

The value, if non-nil, specifies the maximum minibuffer history length for the
named history list variable. See Section 20.4 [Minibuffer History], page 296.

interactive-form

The value is an interactive form for the named function. Normally, you should
not set this directly; use the interactive special form instead. See Section 21.3
[Interactive Call], page 327.

Chapter 8: Symbols 111

menu-enable

The value is an expression for determining whether the named menu item should
be enabled in menus. See Section 22.17.1.1 [Simple Menu Items], page 391.

mode-class

If the value is special, the named major mode is “special”. See Section 23.2.1
[Major Mode Conventions], page 407.

permanent-local

If the value is non-nil, the named variable is a buffer-local variable whose value
should not be reset when changing major modes. See Section 11.10.2 [Creating
Buffer-Local], page 156.

permanent-local-hook

If the value is non-nil, the named function should not be deleted from the
local value of a hook variable when changing major modes. See Section 23.1.2
[Setting Hooks], page 406.

pure This property is used internally to mark certain named functions for byte com-
piler optimization. Do not set it.

risky-local-variable

If the value is non-nil, the named variable is considered risky as a file-local
variable. See Section 11.11 [File Local Variables], page 160.

safe-function

If the value is non-nil, the named function is considered generally safe for
evaluation. See Section 12.14 [Function Safety], page 186.

safe-local-eval-function

If the value is non-nil, the named function is safe to call in file-local evaluation
forms. See Section 11.11 [File Local Variables], page 160.

safe-local-variable

The value specifies a function for determining safe file-local values for the named
variable. See Section 11.11 [File Local Variables], page 160.

side-effect-free

A non-nil value indicates that the named function is free of side-effects, for
determining function safety (see Section 12.14 [Function Safety], page 186) as
well as for byte compiler optimizations. Do not set it.

variable-documentation

If non-nil, this specifies the named vaariable’s documentation string. This is
set automatically by defvar and related functions. See Section 38.12.2 [Defining
Faces], page 852.

Chapter 9: Evaluation 112

9 Evaluation

The evaluation of expressions in Emacs Lisp is performed by the Lisp interpreter—a program
that receives a Lisp object as input and computes its value as an expression. How it does
this depends on the data type of the object, according to rules described in this chapter.
The interpreter runs automatically to evaluate portions of your program, but can also be
called explicitly via the Lisp primitive function eval.

A Lisp object that is intended for evaluation is called a form or expression1. The fact that
forms are data objects and not merely text is one of the fundamental differences between
Lisp-like languages and typical programming languages. Any object can be evaluated, but
in practice only numbers, symbols, lists and strings are evaluated very often.

In subsequent sections, we will describe the details of what evaluation means for each
kind of form.

It is very common to read a Lisp form and then evaluate the form, but reading and
evaluation are separate activities, and either can be performed alone. Reading per se does
not evaluate anything; it converts the printed representation of a Lisp object to the object
itself. It is up to the caller of read to specify whether this object is a form to be evaluated,
or serves some entirely different purpose. See Section 19.3 [Input Functions], page 283.

Evaluation is a recursive process, and evaluating a form often involves evaluating parts
within that form. For instance, when you evaluate a function call form such as (car x),
Emacs first evaluates the argument (the subform x). After evaluating the argument, Emacs
executes the function (car), and if the function is written in Lisp, execution works by
evaluating the body of the function (in this example, however, car is not a Lisp function; it
is a primitive function implemented in C). See Chapter 12 [Functions], page 169, for more
information about functions and function calls.

Evaluation takes place in a context called the environment, which consists of the current
values and bindings of all Lisp variables (see Chapter 11 [Variables], page 141).2 Whenever
a form refers to a variable without creating a new binding for it, the variable evaluates to
the value given by the current environment. Evaluating a form may also temporarily alter
the environment by binding variables (see Section 11.3 [Local Variables], page 142).

Evaluating a form may also make changes that persist; these changes are called side
effects. An example of a form that produces a side effect is (setq foo 1).

Do not confuse evaluation with command key interpretation. The editor command loop
translates keyboard input into a command (an interactively callable function) using the
active keymaps, and then uses call-interactively to execute that command. Executing
the command usually involves evaluation, if the command is written in Lisp; however, this
step is not considered a part of command key interpretation. See Chapter 21 [Command
Loop], page 321.

1 It is sometimes also referred to as an S-expression or sexp, but we generally do not use this terminology
in this manual.

2 This definition of “environment” is specifically not intended to include all the data that can affect the
result of a program.

Chapter 9: Evaluation 113

9.1 Kinds of Forms

A Lisp object that is intended to be evaluated is called a form (or an expression). How
Emacs evaluates a form depends on its data type. Emacs has three different kinds of form
that are evaluated differently: symbols, lists, and “all other types”. This section describes
all three kinds, one by one, starting with the “all other types” which are self-evaluating
forms.

9.1.1 Self-Evaluating Forms

A self-evaluating form is any form that is not a list or symbol. Self-evaluating forms evaluate
to themselves: the result of evaluation is the same object that was evaluated. Thus, the
number 25 evaluates to 25, and the string "foo" evaluates to the string "foo". Likewise,
evaluating a vector does not cause evaluation of the elements of the vector—it returns the
same vector with its contents unchanged.

’123 ; A number, shown without evaluation.
⇒ 123

123 ; Evaluated as usual—result is the same.
⇒ 123

(eval ’123) ; Evaluated ‘‘by hand”—result is the same.
⇒ 123

(eval (eval ’123)) ; Evaluating twice changes nothing.
⇒ 123

It is common to write numbers, characters, strings, and even vectors in Lisp code, taking
advantage of the fact that they self-evaluate. However, it is quite unusual to do this for
types that lack a read syntax, because there’s no way to write them textually. It is possible
to construct Lisp expressions containing these types by means of a Lisp program. Here is
an example:

;; Build an expression containing a buffer object.
(setq print-exp (list ’print (current-buffer)))

⇒ (print #<buffer eval.texi>)

;; Evaluate it.
(eval print-exp)

a #<buffer eval.texi>

⇒ #<buffer eval.texi>

9.1.2 Symbol Forms

When a symbol is evaluated, it is treated as a variable. The result is the variable’s value,
if it has one. If the symbol has no value as a variable, the Lisp interpreter signals an error.
For more information on the use of variables, see Chapter 11 [Variables], page 141.

In the following example, we set the value of a symbol with setq. Then we evaluate the
symbol, and get back the value that setq stored.

(setq a 123)

⇒ 123

(eval ’a)

⇒ 123

a

⇒ 123

Chapter 9: Evaluation 114

The symbols nil and t are treated specially, so that the value of nil is always nil, and
the value of t is always t; you cannot set or bind them to any other values. Thus, these two
symbols act like self-evaluating forms, even though eval treats them like any other symbol.
A symbol whose name starts with ‘:’ also self-evaluates in the same way; likewise, its value
ordinarily cannot be changed. See Section 11.2 [Constant Variables], page 141.

9.1.3 Classification of List Forms

A form that is a nonempty list is either a function call, a macro call, or a special form,
according to its first element. These three kinds of forms are evaluated in different ways,
described below. The remaining list elements constitute the arguments for the function,
macro, or special form.

The first step in evaluating a nonempty list is to examine its first element. This element
alone determines what kind of form the list is and how the rest of the list is to be processed.
The first element is not evaluated, as it would be in some Lisp dialects such as Scheme.

9.1.4 Symbol Function Indirection

If the first element of the list is a symbol then evaluation examines the symbol’s function
cell, and uses its contents instead of the original symbol. If the contents are another symbol,
this process, called symbol function indirection, is repeated until it obtains a non-symbol.
See Section 12.3 [Function Names], page 174, for more information about symbol function
indirection.

One possible consequence of this process is an infinite loop, in the event that a symbol’s
function cell refers to the same symbol. Or a symbol may have a void function cell, in
which case the subroutine symbol-function signals a void-function error. But if neither
of these things happens, we eventually obtain a non-symbol, which ought to be a function
or other suitable object.

More precisely, we should now have a Lisp function (a lambda expression), a byte-code
function, a primitive function, a Lisp macro, a special form, or an autoload object. Each of
these types is a case described in one of the following sections. If the object is not one of
these types, Emacs signals an invalid-function error.

The following example illustrates the symbol indirection process. We use fset to set
the function cell of a symbol and symbol-function to get the function cell contents (see
Section 12.8 [Function Cells], page 181). Specifically, we store the symbol car into the
function cell of first, and the symbol first into the function cell of erste.

;; Build this function cell linkage:
;; ------------- ----- ------- -------

;; | #<subr car> | <-- | car | <-- | first | <-- | erste |

;; ------------- ----- ------- -------

(symbol-function ’car)

⇒ #<subr car>

(fset ’first ’car)

⇒ car

(fset ’erste ’first)

⇒ first

(erste ’(1 2 3)) ; Call the function referenced by erste.
⇒ 1

Chapter 9: Evaluation 115

By contrast, the following example calls a function without any symbol function indi-
rection, because the first element is an anonymous Lisp function, not a symbol.

((lambda (arg) (erste arg))

’(1 2 3))

⇒ 1

Executing the function itself evaluates its body; this does involve symbol function indirection
when calling erste.

This form is rarely used and is now deprecated. Instead, you should write it as:

(funcall (lambda (arg) (erste arg))

’(1 2 3))

or just

(let ((arg ’(1 2 3))) (erste arg))

The built-in function indirect-function provides an easy way to perform symbol func-
tion indirection explicitly.

[Function]indirect-function function &optional noerror
This function returns the meaning of function as a function. If function is a symbol,
then it finds function’s function definition and starts over with that value. If function
is not a symbol, then it returns function itself.

This function signals a void-function error if the final symbol is unbound and op-
tional argument noerror is nil or omitted. Otherwise, if noerror is non-nil, it returns
nil if the final symbol is unbound.

It signals a cyclic-function-indirection error if there is a loop in the chain of
symbols.

Here is how you could define indirect-function in Lisp:

(defun indirect-function (function)

(if (symbolp function)

(indirect-function (symbol-function function))

function))

9.1.5 Evaluation of Function Forms

If the first element of a list being evaluated is a Lisp function object, byte-code object or
primitive function object, then that list is a function call. For example, here is a call to the
function +:

(+ 1 x)

The first step in evaluating a function call is to evaluate the remaining elements of
the list from left to right. The results are the actual argument values, one value for each
list element. The next step is to call the function with this list of arguments, effectively
using the function apply (see Section 12.5 [Calling Functions], page 176). If the function
is written in Lisp, the arguments are used to bind the argument variables of the function
(see Section 12.2 [Lambda Expressions], page 171); then the forms in the function body are
evaluated in order, and the value of the last body form becomes the value of the function
call.

Chapter 9: Evaluation 116

9.1.6 Lisp Macro Evaluation

If the first element of a list being evaluated is a macro object, then the list is a macro
call. When a macro call is evaluated, the elements of the rest of the list are not initially
evaluated. Instead, these elements themselves are used as the arguments of the macro. The
macro definition computes a replacement form, called the expansion of the macro, to be
evaluated in place of the original form. The expansion may be any sort of form: a self-
evaluating constant, a symbol, or a list. If the expansion is itself a macro call, this process
of expansion repeats until some other sort of form results.

Ordinary evaluation of a macro call finishes by evaluating the expansion. However, the
macro expansion is not necessarily evaluated right away, or at all, because other programs
also expand macro calls, and they may or may not evaluate the expansions.

Normally, the argument expressions are not evaluated as part of computing the macro
expansion, but instead appear as part of the expansion, so they are computed when the
expansion is evaluated.

For example, given a macro defined as follows:

(defmacro cadr (x)

(list ’car (list ’cdr x)))

an expression such as (cadr (assq ’handler list)) is a macro call, and its expansion is:

(car (cdr (assq ’handler list)))

Note that the argument (assq ’handler list) appears in the expansion.

See Chapter 13 [Macros], page 188, for a complete description of Emacs Lisp macros.

9.1.7 Special Forms

A special form is a primitive function specially marked so that its arguments are not all
evaluated. Most special forms define control structures or perform variable bindings—things
which functions cannot do.

Each special form has its own rules for which arguments are evaluated and which are
used without evaluation. Whether a particular argument is evaluated may depend on the
results of evaluating other arguments.

Here is a list, in alphabetical order, of all of the special forms in Emacs Lisp with a
reference to where each is described.

and see Section 10.3 [Combining Conditions], page 127

catch see Section 10.5.1 [Catch and Throw], page 129

cond see Section 10.2 [Conditionals], page 123

condition-case

see Section 10.5.3.3 [Handling Errors], page 134

defconst see Section 11.5 [Defining Variables], page 145

defvar see Section 11.5 [Defining Variables], page 145

function see Section 12.7 [Anonymous Functions], page 179

if see Section 10.2 [Conditionals], page 123

Chapter 9: Evaluation 117

interactive

see Section 21.3 [Interactive Call], page 327

let

let* see Section 11.3 [Local Variables], page 142

or see Section 10.3 [Combining Conditions], page 127

prog1

prog2

progn see Section 10.1 [Sequencing], page 122

quote see Section 9.2 [Quoting], page 118

save-current-buffer

see Section 27.2 [Current Buffer], page 521

save-excursion

see Section 30.3 [Excursions], page 632

save-restriction

see Section 30.4 [Narrowing], page 633

setq see Section 11.8 [Setting Variables], page 149

setq-default

see Section 11.10.2 [Creating Buffer-Local], page 156

track-mouse

see Section 29.13 [Mouse Tracking], page 611

unwind-protect

see Section 10.5 [Nonlocal Exits], page 129

while see Section 10.4 [Iteration], page 128

Common Lisp note: Here are some comparisons of special forms in GNU Emacs
Lisp and Common Lisp. setq, if, and catch are special forms in both Emacs
Lisp and Common Lisp. save-excursion is a special form in Emacs Lisp,
but doesn’t exist in Common Lisp. throw is a special form in Common Lisp
(because it must be able to throw multiple values), but it is a function in Emacs
Lisp (which doesn’t have multiple values).

9.1.8 Autoloading

The autoload feature allows you to call a function or macro whose function definition has
not yet been loaded into Emacs. It specifies which file contains the definition. When an
autoload object appears as a symbol’s function definition, calling that symbol as a function
automatically loads the specified file; then it calls the real definition loaded from that file.
The way to arrange for an autoload object to appear as a symbol’s function definition is
described in Section 15.5 [Autoload], page 220.

Chapter 9: Evaluation 118

9.2 Quoting

The special form quote returns its single argument, as written, without evaluating it. This
provides a way to include constant symbols and lists, which are not self-evaluating objects,
in a program. (It is not necessary to quote self-evaluating objects such as numbers, strings,
and vectors.)

[Special Form]quote object
This special form returns object, without evaluating it.

Because quote is used so often in programs, Lisp provides a convenient read syntax for
it. An apostrophe character (‘’’) followed by a Lisp object (in read syntax) expands to a
list whose first element is quote, and whose second element is the object. Thus, the read
syntax ’x is an abbreviation for (quote x).

Here are some examples of expressions that use quote:

(quote (+ 1 2))

⇒ (+ 1 2)

(quote foo)

⇒ foo

’foo

⇒ foo

’’foo

⇒ (quote foo)

’(quote foo)

⇒ (quote foo)

[’foo]

⇒ [(quote foo)]

Other quoting constructs include function (see Section 12.7 [Anonymous Functions],
page 179), which causes an anonymous lambda expression written in Lisp to be compiled,
and ‘‘’ (see Section 9.3 [Backquote], page 118), which is used to quote only part of a list,
while computing and substituting other parts.

9.3 Backquote

Backquote constructs allow you to quote a list, but selectively evaluate elements of that
list. In the simplest case, it is identical to the special form quote For example, these two
forms yield identical results:

‘(a list of (+ 2 3) elements)

⇒ (a list of (+ 2 3) elements)

’(a list of (+ 2 3) elements)

⇒ (a list of (+ 2 3) elements)

The special marker ‘,’ inside of the argument to backquote indicates a value that isn’t
constant. The Emacs Lisp evaluator evaluates the argument of ‘,’, and puts the value in
the list structure:

‘(a list of ,(+ 2 3) elements)

⇒ (a list of 5 elements)

Substitution with ‘,’ is allowed at deeper levels of the list structure also. For example:

Chapter 9: Evaluation 119

‘(1 2 (3 ,(+ 4 5)))

⇒ (1 2 (3 9))

You can also splice an evaluated value into the resulting list, using the special marker
‘,@’. The elements of the spliced list become elements at the same level as the other elements
of the resulting list. The equivalent code without using ‘‘’ is often unreadable. Here are
some examples:

(setq some-list ’(2 3))

⇒ (2 3)

(cons 1 (append some-list ’(4) some-list))

⇒ (1 2 3 4 2 3)

‘(1 ,@some-list 4 ,@some-list)

⇒ (1 2 3 4 2 3)

(setq list ’(hack foo bar))

⇒ (hack foo bar)

(cons ’use

(cons ’the

(cons ’words (append (cdr list) ’(as elements)))))

⇒ (use the words foo bar as elements)

‘(use the words ,@(cdr list) as elements)

⇒ (use the words foo bar as elements)

9.4 Eval

Most often, forms are evaluated automatically, by virtue of their occurrence in a program
being run. On rare occasions, you may need to write code that evaluates a form that is
computed at run time, such as after reading a form from text being edited or getting one
from a property list. On these occasions, use the eval function. Often eval is not needed
and something else should be used instead. For example, to get the value of a variable, while
eval works, symbol-value is preferable; or rather than store expressions in a property list
that then need to go through eval, it is better to store functions instead that are then
passed to funcall.

The functions and variables described in this section evaluate forms, specify limits to the
evaluation process, or record recently returned values. Loading a file also does evaluation
(see Chapter 15 [Loading], page 215).

It is generally cleaner and more flexible to store a function in a data structure, and call
it with funcall or apply, than to store an expression in the data structure and evaluate
it. Using functions provides the ability to pass information to them as arguments.

[Function]eval form &optional lexical
This is the basic function for evaluating an expression. It evaluates form in the current
environment and returns the result. How the evaluation proceeds depends on the type
of the object (see Section 9.1 [Forms], page 113).

The argument lexical, if non-nil, means to evaluate form using lexical scoping rules
for variables, instead of the default dynamic scoping rules. See Section 11.9.3 [Lexical
Binding], page 152.

Chapter 9: Evaluation 120

Since eval is a function, the argument expression that appears in a call to eval is
evaluated twice: once as preparation before eval is called, and again by the eval

function itself. Here is an example:

(setq foo ’bar)

⇒ bar

(setq bar ’baz)

⇒ baz

;; Here eval receives argument foo
(eval ’foo)

⇒ bar

;; Here eval receives argument bar, which is the value of foo
(eval foo)

⇒ baz

The number of currently active calls to eval is limited to max-lisp-eval-depth (see
below).

[Command]eval-region start end &optional stream read-function
This function evaluates the forms in the current buffer in the region defined by the
positions start and end. It reads forms from the region and calls eval on them until
the end of the region is reached, or until an error is signaled and not handled.

By default, eval-region does not produce any output. However, if stream is non-
nil, any output produced by output functions (see Section 19.5 [Output Functions],
page 286), as well as the values that result from evaluating the expressions in the
region are printed using stream. See Section 19.4 [Output Streams], page 284.

If read-function is non-nil, it should be a function, which is used instead of read to
read expressions one by one. This function is called with one argument, the stream
for reading input. You can also use the variable load-read-function (see [How
Programs Do Loading], page 217) to specify this function, but it is more robust to
use the read-function argument.

eval-region does not move point. It always returns nil.

[Command]eval-buffer &optional buffer-or-name stream filename unibyte print
This is similar to eval-region, but the arguments provide different optional fea-
tures. eval-buffer operates on the entire accessible portion of buffer buffer-or-name.
buffer-or-name can be a buffer, a buffer name (a string), or nil (or omitted), which
means to use the current buffer. stream is used as in eval-region, unless stream is
nil and print non-nil. In that case, values that result from evaluating the expres-
sions are still discarded, but the output of the output functions is printed in the echo
area. filename is the file name to use for load-history (see Section 15.9 [Unloading],
page 227), and defaults to buffer-file-name (see Section 27.4 [Buffer File Name],
page 525). If unibyte is non-nil, read converts strings to unibyte whenever possible.

eval-current-buffer is an alias for this command.

[User Option]max-lisp-eval-depth
This variable defines the maximum depth allowed in calls to eval, apply, and funcall

before an error is signaled (with error message "Lisp nesting exceeds max-lisp-

eval-depth").

Chapter 9: Evaluation 121

This limit, with the associated error when it is exceeded, is one way Emacs Lisp
avoids infinite recursion on an ill-defined function. If you increase the value of max-
lisp-eval-depth too much, such code can cause stack overflow instead.

The depth limit counts internal uses of eval, apply, and funcall, such as for calling
the functions mentioned in Lisp expressions, and recursive evaluation of function call
arguments and function body forms, as well as explicit calls in Lisp code.

The default value of this variable is 400. If you set it to a value less than 100, Lisp
will reset it to 100 if the given value is reached. Entry to the Lisp debugger increases
the value, if there is little room left, to make sure the debugger itself has room to
execute.

max-specpdl-size provides another limit on nesting. See [Local Variables], page 143.

[Variable]values
The value of this variable is a list of the values returned by all the expressions that were
read, evaluated, and printed from buffers (including the minibuffer) by the standard
Emacs commands which do this. (Note that this does not include evaluation in
ielm buffers, nor evaluation using C-j in lisp-interaction-mode.) The elements
are ordered most recent first.

(setq x 1)

⇒ 1

(list ’A (1+ 2) auto-save-default)

⇒ (A 3 t)

values

⇒ ((A 3 t) 1 ...)

This variable is useful for referring back to values of forms recently evaluated. It is
generally a bad idea to print the value of values itself, since this may be very long.
Instead, examine particular elements, like this:

;; Refer to the most recent evaluation result.
(nth 0 values)

⇒ (A 3 t)

;; That put a new element on,
;; so all elements move back one.
(nth 1 values)

⇒ (A 3 t)

;; This gets the element that was next-to-most-recent
;; before this example.
(nth 3 values)

⇒ 1

Chapter 10: Control Structures 122

10 Control Structures

A Lisp program consists of a set of expressions, or forms (see Section 9.1 [Forms], page 113).
We control the order of execution of these forms by enclosing them in control structures.
Control structures are special forms which control when, whether, or how many times to
execute the forms they contain.

The simplest order of execution is sequential execution: first form a, then form b, and
so on. This is what happens when you write several forms in succession in the body of a
function, or at top level in a file of Lisp code—the forms are executed in the order written.
We call this textual order. For example, if a function body consists of two forms a and b,
evaluation of the function evaluates first a and then b. The result of evaluating b becomes
the value of the function.

Explicit control structures make possible an order of execution other than sequential.

Emacs Lisp provides several kinds of control structure, including other varieties of se-
quencing, conditionals, iteration, and (controlled) jumps—all discussed below. The built-in
control structures are special forms since their subforms are not necessarily evaluated or not
evaluated sequentially. You can use macros to define your own control structure constructs
(see Chapter 13 [Macros], page 188).

10.1 Sequencing

Evaluating forms in the order they appear is the most common way control passes from one
form to another. In some contexts, such as in a function body, this happens automatically.
Elsewhere you must use a control structure construct to do this: progn, the simplest control
construct of Lisp.

A progn special form looks like this:

(progn a b c ...)

and it says to execute the forms a, b, c, and so on, in that order. These forms are called
the body of the progn form. The value of the last form in the body becomes the value of
the entire progn. (progn) returns nil.

In the early days of Lisp, progn was the only way to execute two or more forms in
succession and use the value of the last of them. But programmers found they often needed
to use a progn in the body of a function, where (at that time) only one form was allowed.
So the body of a function was made into an “implicit progn”: several forms are allowed
just as in the body of an actual progn. Many other control structures likewise contain an
implicit progn. As a result, progn is not used as much as it was many years ago. It is
needed now most often inside an unwind-protect, and, or, or in the then-part of an if.

[Special Form]progn forms. . .
This special form evaluates all of the forms, in textual order, returning the result of
the final form.

Chapter 10: Control Structures 123

(progn (print "The first form")

(print "The second form")

(print "The third form"))

a "The first form"

a "The second form"

a "The third form"

⇒ "The third form"

Two other constructs likewise evaluate a series of forms but return different values:

[Special Form]prog1 form1 forms. . .
This special form evaluates form1 and all of the forms, in textual order, returning the
result of form1.

(prog1 (print "The first form")

(print "The second form")

(print "The third form"))

a "The first form"

a "The second form"

a "The third form"

⇒ "The first form"

Here is a way to remove the first element from a list in the variable x, then return
the value of that former element:

(prog1 (car x) (setq x (cdr x)))

[Special Form]prog2 form1 form2 forms. . .
This special form evaluates form1, form2, and all of the following forms, in textual
order, returning the result of form2.

(prog2 (print "The first form")

(print "The second form")

(print "The third form"))

a "The first form"

a "The second form"

a "The third form"

⇒ "The second form"

10.2 Conditionals

Conditional control structures choose among alternatives. Emacs Lisp has four conditional
forms: if, which is much the same as in other languages; when and unless, which are
variants of if; and cond, which is a generalized case statement.

[Special Form]if condition then-form else-forms. . .
if chooses between the then-form and the else-forms based on the value of condition.
If the evaluated condition is non-nil, then-form is evaluated and the result returned.
Otherwise, the else-forms are evaluated in textual order, and the value of the last one
is returned. (The else part of if is an example of an implicit progn. See Section 10.1
[Sequencing], page 122.)

If condition has the value nil, and no else-forms are given, if returns nil.

Chapter 10: Control Structures 124

if is a special form because the branch that is not selected is never evaluated—it is
ignored. Thus, in this example, true is not printed because print is never called:

(if nil

(print ’true)

’very-false)

⇒ very-false

[Macro]when condition then-forms. . .
This is a variant of if where there are no else-forms, and possibly several then-forms.
In particular,

(when condition a b c)

is entirely equivalent to

(if condition (progn a b c) nil)

[Macro]unless condition forms. . .
This is a variant of if where there is no then-form:

(unless condition a b c)

is entirely equivalent to

(if condition nil

a b c)

[Special Form]cond clause. . .
cond chooses among an arbitrary number of alternatives. Each clause in the cond

must be a list. The car of this list is the condition; the remaining elements, if any,
the body-forms. Thus, a clause looks like this:

(condition body-forms...)

cond tries the clauses in textual order, by evaluating the condition of each clause.
If the value of condition is non-nil, the clause “succeeds”; then cond evaluates its
body-forms, and the value of the last of body-forms becomes the value of the cond.
The remaining clauses are ignored.

If the value of condition is nil, the clause “fails”, so the condmoves on to the following
clause, trying its condition.

If every condition evaluates to nil, so that every clause fails, cond returns nil.

A clause may also look like this:

(condition)

Then, if condition is non-nil when tested, the value of condition becomes the value
of the cond form.

The following example has four clauses, which test for the cases where the value of x
is a number, string, buffer and symbol, respectively:

(cond ((numberp x) x)

((stringp x) x)

((bufferp x)

(setq temporary-hack x) ; multiple body-forms
(buffer-name x)) ; in one clause
((symbolp x) (symbol-value x)))

Chapter 10: Control Structures 125

Often we want to execute the last clause whenever none of the previous clauses was
successful. To do this, we use t as the condition of the last clause, like this: (t

body-forms). The form t evaluates to t, which is never nil, so this clause never
fails, provided the cond gets to it at all. For example:

(setq a 5)

(cond ((eq a ’hack) ’foo)

(t "default"))

⇒ "default"

This cond expression returns foo if the value of a is hack, and returns the string
"default" otherwise.

Any conditional construct can be expressed with cond or with if. Therefore, the choice
between them is a matter of style. For example:

(if a b c)

≡
(cond (a b) (t c))

10.2.1 Pattern matching case statement

To compare a particular value against various possible cases, the macro pcase can come
handy. It takes the following form:

(pcase exp branch1 branch2 branch3 ...)

where each branch takes the form (upattern body-forms...).

It will first evaluate exp and then compare the value against each upattern to see which
branch to use, after which it will run the corresponding body-forms. A common use case is
to distinguish between a few different constant values:

(pcase (get-return-code x)

(‘success (message "Done!"))

(‘would-block (message "Sorry, can’t do it now"))

(‘read-only (message "The shmliblick is read-only"))

(‘access-denied (message "You do not have the needed rights"))

(code (message "Unknown return code %S" code)))

In the last clause, code is a variable that gets bound to the value that was returned by
(get-return-code x).

To give a more complex example, a simple interpreter for a little expression language
could look like:

(defun evaluate (exp env)

(pcase exp

(‘(add ,x ,y) (+ (evaluate x env) (evaluate y env)))

(‘(call ,fun ,arg) (funcall (evaluate fun) (evaluate arg env)))

(‘(fn ,arg ,body) (lambda (val)

(evaluate body (cons (cons arg val) env))))

((pred numberp) exp)

((pred symbolp) (cdr (assq exp env)))

(_ (error "Unknown expression %S" exp))))

Chapter 10: Control Structures 126

Where ‘(add ,x ,y) is a pattern that checks that exp is a three element list starting
with the symbol add, then extracts the second and third elements and binds them to the
variables x and y. (pred numberp) is a pattern that simply checks that exp is a number,
and _ is the catch-all pattern that matches anything.

There are two kinds of patterns involved in pcase, called U-patterns and Q-patterns.
The upattern mentioned above are U-patterns and can take the following forms:

‘qpattern

This is one of the most common form of patterns. The intention is to mimic
the backquote macro: this pattern matches those values that could have been
built by such a backquote expression. Since we’re pattern matching rather than
building a value, the unquote does not indicate where to plug an expression,
but instead it lets one specify a U-pattern that should match the value at that
location.

More specifically, a Q-pattern can take the following forms:

(qpattern1 . qpattern2)

This pattern matches any cons cell whose car matches QPAT-
TERN1 and whose cdr matches PATTERN2.

atom This pattern matches any atom equal to atom.

,upattern

This pattern matches any object that matches the upattern.

symbol A mere symbol in a U-pattern matches anything, and additionally let-binds this
symbol to the value that it matched, so that you can later refer to it, either in
the body-forms or also later in the pattern.

_ This so-called don’t care pattern matches anything, like the previous one, but
unless symbol patterns it does not bind any variable.

(pred pred)

This pattern matches if the function pred returns non-nil when called with the
object being matched.

(or upattern1 upattern2...)

This pattern matches as soon as one of the argument patterns succeeds. All
argument patterns should let-bind the same variables.

(and upattern1 upattern2...)

This pattern matches only if all the argument patterns succeed.

(guard exp)

This pattern ignores the object being examined and simply succeeds if exp
evaluates to non-nil and fails otherwise. It is typically used inside an and

pattern. For example, (and x (guard (< x 10))) is a pattern which matches
any number smaller than 10 and let-binds it to the variable x.

Chapter 10: Control Structures 127

10.3 Constructs for Combining Conditions

This section describes three constructs that are often used together with if and cond to
express complicated conditions. The constructs and and or can also be used individually
as kinds of multiple conditional constructs.

[Function]not condition
This function tests for the falsehood of condition. It returns t if condition is nil, and
nil otherwise. The function not is identical to null, and we recommend using the
name null if you are testing for an empty list.

[Special Form]and conditions. . .
The and special form tests whether all the conditions are true. It works by evaluating
the conditions one by one in the order written.

If any of the conditions evaluates to nil, then the result of the and must be nil

regardless of the remaining conditions; so and returns nil right away, ignoring the
remaining conditions.

If all the conditions turn out non-nil, then the value of the last of them becomes the
value of the and form. Just (and), with no conditions, returns t, appropriate because
all the conditions turned out non-nil. (Think about it; which one did not?)

Here is an example. The first condition returns the integer 1, which is not nil.
Similarly, the second condition returns the integer 2, which is not nil. The third
condition is nil, so the remaining condition is never evaluated.

(and (print 1) (print 2) nil (print 3))

a 1

a 2

⇒ nil

Here is a more realistic example of using and:

(if (and (consp foo) (eq (car foo) ’x))

(message "foo is a list starting with x"))

Note that (car foo) is not executed if (consp foo) returns nil, thus avoiding an
error.

and expressions can also be written using either if or cond. Here’s how:

(and arg1 arg2 arg3)

≡
(if arg1 (if arg2 arg3))

≡
(cond (arg1 (cond (arg2 arg3))))

[Special Form]or conditions. . .
The or special form tests whether at least one of the conditions is true. It works by
evaluating all the conditions one by one in the order written.

If any of the conditions evaluates to a non-nil value, then the result of the or must
be non-nil; so or returns right away, ignoring the remaining conditions. The value
it returns is the non-nil value of the condition just evaluated.

Chapter 10: Control Structures 128

If all the conditions turn out nil, then the or expression returns nil. Just (or),
with no conditions, returns nil, appropriate because all the conditions turned out
nil. (Think about it; which one did not?)

For example, this expression tests whether x is either nil or the integer zero:

(or (eq x nil) (eq x 0))

Like the and construct, or can be written in terms of cond. For example:

(or arg1 arg2 arg3)

≡
(cond (arg1)

(arg2)

(arg3))

You could almost write or in terms of if, but not quite:

(if arg1 arg1

(if arg2 arg2

arg3))

This is not completely equivalent because it can evaluate arg1 or arg2 twice. By
contrast, (or arg1 arg2 arg3) never evaluates any argument more than once.

10.4 Iteration

Iteration means executing part of a program repetitively. For example, you might want to
repeat some computation once for each element of a list, or once for each integer from 0 to
n. You can do this in Emacs Lisp with the special form while:

[Special Form]while condition forms. . .
while first evaluates condition. If the result is non-nil, it evaluates forms in textual
order. Then it reevaluates condition, and if the result is non-nil, it evaluates forms
again. This process repeats until condition evaluates to nil.

There is no limit on the number of iterations that may occur. The loop will continue
until either condition evaluates to nil or until an error or throw jumps out of it (see
Section 10.5 [Nonlocal Exits], page 129).

The value of a while form is always nil.

(setq num 0)

⇒ 0

(while (< num 4)

(princ (format "Iteration %d." num))

(setq num (1+ num)))

a Iteration 0.

a Iteration 1.

a Iteration 2.

a Iteration 3.

⇒ nil

To write a “repeat...until” loop, which will execute something on each iteration and
then do the end-test, put the body followed by the end-test in a progn as the first
argument of while, as shown here:

Chapter 10: Control Structures 129

(while (progn

(forward-line 1)

(not (looking-at "^$"))))

This moves forward one line and continues moving by lines until it reaches an empty
line. It is peculiar in that the while has no body, just the end test (which also does
the real work of moving point).

The dolist and dotimes macros provide convenient ways to write two common kinds
of loops.

[Macro]dolist (var list [result]) body. . .
This construct executes body once for each element of list, binding the variable var
locally to hold the current element. Then it returns the value of evaluating result, or
nil if result is omitted. For example, here is how you could use dolist to define the
reverse function:

(defun reverse (list)

(let (value)

(dolist (elt list value)

(setq value (cons elt value)))))

[Macro]dotimes (var count [result]) body. . .
This construct executes body once for each integer from 0 (inclusive) to count (exclu-
sive), binding the variable var to the integer for the current iteration. Then it returns
the value of evaluating result, or nil if result is omitted. Here is an example of using
dotimes to do something 100 times:

(dotimes (i 100)

(insert "I will not obey absurd orders\n"))

10.5 Nonlocal Exits

A nonlocal exit is a transfer of control from one point in a program to another remote point.
Nonlocal exits can occur in Emacs Lisp as a result of errors; you can also use them under
explicit control. Nonlocal exits unbind all variable bindings made by the constructs being
exited.

10.5.1 Explicit Nonlocal Exits: catch and throw

Most control constructs affect only the flow of control within the construct itself. The
function throw is the exception to this rule of normal program execution: it performs a
nonlocal exit on request. (There are other exceptions, but they are for error handling only.)
throw is used inside a catch, and jumps back to that catch. For example:

Chapter 10: Control Structures 130

(defun foo-outer ()

(catch ’foo

(foo-inner)))

(defun foo-inner ()

...

(if x

(throw ’foo t))

...)

The throw form, if executed, transfers control straight back to the corresponding catch,
which returns immediately. The code following the throw is not executed. The second
argument of throw is used as the return value of the catch.

The function throw finds the matching catch based on the first argument: it searches for
a catch whose first argument is eq to the one specified in the throw. If there is more than
one applicable catch, the innermost one takes precedence. Thus, in the above example, the
throw specifies foo, and the catch in foo-outer specifies the same symbol, so that catch
is the applicable one (assuming there is no other matching catch in between).

Executing throw exits all Lisp constructs up to the matching catch, including function
calls. When binding constructs such as let or function calls are exited in this way, the
bindings are unbound, just as they are when these constructs exit normally (see Section 11.3
[Local Variables], page 142). Likewise, throw restores the buffer and position saved by
save-excursion (see Section 30.3 [Excursions], page 632), and the narrowing status saved
by save-restriction. It also runs any cleanups established with the unwind-protect

special form when it exits that form (see Section 10.5.4 [Cleanups], page 139).

The throw need not appear lexically within the catch that it jumps to. It can equally
well be called from another function called within the catch. As long as the throw takes
place chronologically after entry to the catch, and chronologically before exit from it, it
has access to that catch. This is why throw can be used in commands such as exit-

recursive-edit that throw back to the editor command loop (see Section 21.13 [Recursive
Editing], page 361).

Common Lisp note: Most other versions of Lisp, including Common Lisp, have
several ways of transferring control nonsequentially: return, return-from, and
go, for example. Emacs Lisp has only throw. The cl-lib library provides
versions of some of these. See Section “Blocks and Exits” in Common Lisp
Extensions.

[Special Form]catch tag body. . .
catch establishes a return point for the throw function. The return point is distin-
guished from other such return points by tag, which may be any Lisp object except
nil. The argument tag is evaluated normally before the return point is established.

With the return point in effect, catch evaluates the forms of the body in textual
order. If the forms execute normally (without error or nonlocal exit) the value of the
last body form is returned from the catch.

If a throw is executed during the execution of body, specifying the same value tag,
the catch form exits immediately; the value it returns is whatever was specified as
the second argument of throw.

Chapter 10: Control Structures 131

[Function]throw tag value
The purpose of throw is to return from a return point previously established with
catch. The argument tag is used to choose among the various existing return points;
it must be eq to the value specified in the catch. If multiple return points match tag,
the innermost one is used.

The argument value is used as the value to return from that catch.

If no return point is in effect with tag tag, then a no-catch error is signaled with
data (tag value).

10.5.2 Examples of catch and throw

One way to use catch and throw is to exit from a doubly nested loop. (In most languages,
this would be done with a “goto”.) Here we compute (foo i j) for i and j varying from 0
to 9:

(defun search-foo ()

(catch ’loop

(let ((i 0))

(while (< i 10)

(let ((j 0))

(while (< j 10)

(if (foo i j)

(throw ’loop (list i j)))

(setq j (1+ j))))

(setq i (1+ i))))))

If foo ever returns non-nil, we stop immediately and return a list of i and j. If foo always
returns nil, the catch returns normally, and the value is nil, since that is the result of the
while.

Here are two tricky examples, slightly different, showing two return points at once. First,
two return points with the same tag, hack:

(defun catch2 (tag)

(catch tag

(throw ’hack ’yes)))

⇒ catch2

(catch ’hack

(print (catch2 ’hack))

’no)

a yes

⇒ no

Since both return points have tags that match the throw, it goes to the inner one, the one
established in catch2. Therefore, catch2 returns normally with value yes, and this value
is printed. Finally the second body form in the outer catch, which is ’no, is evaluated and
returned from the outer catch.

Now let’s change the argument given to catch2:

Chapter 10: Control Structures 132

(catch ’hack

(print (catch2 ’quux))

’no)

⇒ yes

We still have two return points, but this time only the outer one has the tag hack; the inner
one has the tag quux instead. Therefore, throw makes the outer catch return the value
yes. The function print is never called, and the body-form ’no is never evaluated.

10.5.3 Errors

When Emacs Lisp attempts to evaluate a form that, for some reason, cannot be evaluated,
it signals an error.

When an error is signaled, Emacs’s default reaction is to print an error message and
terminate execution of the current command. This is the right thing to do in most cases,
such as if you type C-f at the end of the buffer.

In complicated programs, simple termination may not be what you want. For example,
the program may have made temporary changes in data structures, or created temporary
buffers that should be deleted before the program is finished. In such cases, you would
use unwind-protect to establish cleanup expressions to be evaluated in case of error. (See
Section 10.5.4 [Cleanups], page 139.) Occasionally, you may wish the program to continue
execution despite an error in a subroutine. In these cases, you would use condition-case

to establish error handlers to recover control in case of error.

Resist the temptation to use error handling to transfer control from one part of the
program to another; use catch and throw instead. See Section 10.5.1 [Catch and Throw],
page 129.

10.5.3.1 How to Signal an Error

Signaling an error means beginning error processing. Error processing normally aborts all
or part of the running program and returns to a point that is set up to handle the error (see
Section 10.5.3.2 [Processing of Errors], page 134). Here we describe how to signal an error.

Most errors are signaled “automatically” within Lisp primitives which you call for other
purposes, such as if you try to take the car of an integer or move forward a character at
the end of the buffer. You can also signal errors explicitly with the functions error and
signal.

Quitting, which happens when the user types C-g, is not considered an error, but it is
handled almost like an error. See Section 21.11 [Quitting], page 358.

Every error specifies an error message, one way or another. The message should state
what is wrong (“File does not exist”), not how things ought to be (“File must exist”).
The convention in Emacs Lisp is that error messages should start with a capital letter, but
should not end with any sort of punctuation.

[Function]error format-string &rest args
This function signals an error with an error message constructed by applying format

(see Section 4.7 [Formatting Strings], page 57) to format-string and args.

These examples show typical uses of error:

Chapter 10: Control Structures 133

(error "That is an error -- try something else")

error That is an error -- try something else

(error "You have committed %d errors" 10)

error You have committed 10 errors

error works by calling signal with two arguments: the error symbol error, and a
list containing the string returned by format.

Warning: If you want to use your own string as an error message verbatim, don’t
just write (error string). If string contains ‘%’, it will be interpreted as a format
specifier, with undesirable results. Instead, use (error "%s" string).

[Function]signal error-symbol data
This function signals an error named by error-symbol. The argument data is a list of
additional Lisp objects relevant to the circumstances of the error.

The argument error-symbol must be an error symbol—a symbol bearing a property
error-conditions whose value is a list of condition names. This is how Emacs Lisp
classifies different sorts of errors. See Section 10.5.3.4 [Error Symbols], page 138, for
a description of error symbols, error conditions and condition names.

If the error is not handled, the two arguments are used in printing the error message.
Normally, this error message is provided by the error-message property of error-
symbol. If data is non-nil, this is followed by a colon and a comma separated list of
the unevaluated elements of data. For error, the error message is the car of data
(that must be a string). Subcategories of file-error are handled specially.

The number and significance of the objects in data depends on error-symbol. For
example, with a wrong-type-argument error, there should be two objects in the list:
a predicate that describes the type that was expected, and the object that failed to
fit that type.

Both error-symbol and data are available to any error handlers that handle the error:
condition-case binds a local variable to a list of the form (error-symbol . data)

(see Section 10.5.3.3 [Handling Errors], page 134).

The function signal never returns.

(signal ’wrong-number-of-arguments ’(x y))

error Wrong number of arguments: x, y

(signal ’no-such-error ’("My unknown error condition"))

error peculiar error: "My unknown error condition"

[Function]user-error format-string &rest args
This function behaves exactly like error, except that it uses the error symbol user-
error rather than error. As the name suggests, this is intended to report errors on
the part of the user, rather than errors in the code itself. For example, if you try
to use the command Info-history-back (l) to move back beyond the start of your
Info browsing history, Emacs signals a user-error. Such errors do not cause entry
to the debugger, even when debug-on-error is non-nil. See Section 18.1.1 [Error
Debugging], page 249.

Chapter 10: Control Structures 134

Common Lisp note: Emacs Lisp has nothing like the Common Lisp concept of
continuable errors.

10.5.3.2 How Emacs Processes Errors

When an error is signaled, signal searches for an active handler for the error. A handler is
a sequence of Lisp expressions designated to be executed if an error happens in part of the
Lisp program. If the error has an applicable handler, the handler is executed, and control
resumes following the handler. The handler executes in the environment of the condition-
case that established it; all functions called within that condition-case have already been
exited, and the handler cannot return to them.

If there is no applicable handler for the error, it terminates the current command and
returns control to the editor command loop. (The command loop has an implicit handler
for all kinds of errors.) The command loop’s handler uses the error symbol and associated
data to print an error message. You can use the variable command-error-function to
control how this is done:

[Variable]command-error-function
This variable, if non-nil, specifies a function to use to handle errors that return
control to the Emacs command loop. The function should take three arguments:
data, a list of the same form that condition-case would bind to its variable; context,
a string describing the situation in which the error occurred, or (more often) nil; and
caller, the Lisp function which called the primitive that signaled the error.

An error that has no explicit handler may call the Lisp debugger. The debugger is
enabled if the variable debug-on-error (see Section 18.1.1 [Error Debugging], page 249) is
non-nil. Unlike error handlers, the debugger runs in the environment of the error, so that
you can examine values of variables precisely as they were at the time of the error.

10.5.3.3 Writing Code to Handle Errors

The usual effect of signaling an error is to terminate the command that is running and
return immediately to the Emacs editor command loop. You can arrange to trap errors
occurring in a part of your program by establishing an error handler, with the special form
condition-case. A simple example looks like this:

(condition-case nil

(delete-file filename)

(error nil))

This deletes the file named filename, catching any error and returning nil if an error occurs.
(You can use the macro ignore-errors for a simple case like this; see below.)

The condition-case construct is often used to trap errors that are predictable, such as
failure to open a file in a call to insert-file-contents. It is also used to trap errors that
are totally unpredictable, such as when the program evaluates an expression read from the
user.

The second argument of condition-case is called the protected form. (In the example
above, the protected form is a call to delete-file.) The error handlers go into effect when
this form begins execution and are deactivated when this form returns. They remain in
effect for all the intervening time. In particular, they are in effect during the execution

Chapter 10: Control Structures 135

of functions called by this form, in their subroutines, and so on. This is a good thing,
since, strictly speaking, errors can be signaled only by Lisp primitives (including signal

and error) called by the protected form, not by the protected form itself.

The arguments after the protected form are handlers. Each handler lists one or more
condition names (which are symbols) to specify which errors it will handle. The error
symbol specified when an error is signaled also defines a list of condition names. A handler
applies to an error if they have any condition names in common. In the example above,
there is one handler, and it specifies one condition name, error, which covers all errors.

The search for an applicable handler checks all the established handlers starting with the
most recently established one. Thus, if two nested condition-case forms offer to handle
the same error, the inner of the two gets to handle it.

If an error is handled by some condition-case form, this ordinarily prevents the de-
bugger from being run, even if debug-on-error says this error should invoke the debugger.

If you want to be able to debug errors that are caught by a condition-case, set the
variable debug-on-signal to a non-nil value. You can also specify that a particular
handler should let the debugger run first, by writing debug among the conditions, like this:

(condition-case nil

(delete-file filename)

((debug error) nil))

The effect of debug here is only to prevent condition-case from suppressing the call to the
debugger. Any given error will invoke the debugger only if debug-on-error and the other
usual filtering mechanisms say it should. See Section 18.1.1 [Error Debugging], page 249.

[Macro]condition-case-unless-debug var protected-form handlers. . .
The macro condition-case-unless-debug provides another way to handle debug-
ging of such forms. It behaves exactly like condition-case, unless the variable
debug-on-error is non-nil, in which case it does not handle any errors at all.

Once Emacs decides that a certain handler handles the error, it returns control to that
handler. To do so, Emacs unbinds all variable bindings made by binding constructs that
are being exited, and executes the cleanups of all unwind-protect forms that are being
exited. Once control arrives at the handler, the body of the handler executes normally.

After execution of the handler body, execution returns from the condition-case form.
Because the protected form is exited completely before execution of the handler, the handler
cannot resume execution at the point of the error, nor can it examine variable bindings that
were made within the protected form. All it can do is clean up and proceed.

Error signaling and handling have some resemblance to throw and catch (see
Section 10.5.1 [Catch and Throw], page 129), but they are entirely separate facilities. An
error cannot be caught by a catch, and a throw cannot be handled by an error handler
(though using throw when there is no suitable catch signals an error that can be handled).

[Special Form]condition-case var protected-form handlers. . .
This special form establishes the error handlers handlers around the execution of
protected-form. If protected-form executes without error, the value it returns becomes
the value of the condition-case form; in this case, the condition-case has no effect.

Chapter 10: Control Structures 136

The condition-case form makes a difference when an error occurs during protected-
form.

Each of the handlers is a list of the form (conditions body...). Here conditions is
an error condition name to be handled, or a list of condition names (which can include
debug to allow the debugger to run before the handler); body is one or more Lisp
expressions to be executed when this handler handles an error. Here are examples of
handlers:

(error nil)

(arith-error (message "Division by zero"))

((arith-error file-error)

(message

"Either division by zero or failure to open a file"))

Each error that occurs has an error symbol that describes what kind of error it
is. The error-conditions property of this symbol is a list of condition names (see
Section 10.5.3.4 [Error Symbols], page 138). Emacs searches all the active condition-
case forms for a handler that specifies one or more of these condition names; the
innermost matching condition-case handles the error. Within this condition-

case, the first applicable handler handles the error.

After executing the body of the handler, the condition-case returns normally, using
the value of the last form in the handler body as the overall value.

The argument var is a variable. condition-case does not bind this variable when
executing the protected-form, only when it handles an error. At that time, it binds
var locally to an error description, which is a list giving the particulars of the error.
The error description has the form (error-symbol . data). The handler can refer to
this list to decide what to do. For example, if the error is for failure opening a file, the
file name is the second element of data—the third element of the error description.

If var is nil, that means no variable is bound. Then the error symbol and associated
data are not available to the handler.

Sometimes it is necessary to re-throw a signal caught by condition-case, for some
outer-level handler to catch. Here’s how to do that:

(signal (car err) (cdr err))

where err is the error description variable, the first argument to condition-case

whose error condition you want to re-throw. See [Definition of signal], page 133.

[Function]error-message-string error-descriptor
This function returns the error message string for a given error descriptor. It is useful
if you want to handle an error by printing the usual error message for that error. See
[Definition of signal], page 133.

Here is an example of using condition-case to handle the error that results from
dividing by zero. The handler displays the error message (but without a beep), then returns
a very large number.

Chapter 10: Control Structures 137

(defun safe-divide (dividend divisor)

(condition-case err

;; Protected form.
(/ dividend divisor)

;; The handler.
(arith-error ; Condition.
;; Display the usual message for this error.
(message "%s" (error-message-string err))

1000000)))

⇒ safe-divide

(safe-divide 5 0)

a Arithmetic error: (arith-error)

⇒ 1000000

The handler specifies condition name arith-error so that it will handle only division-by-
zero errors. Other kinds of errors will not be handled (by this condition-case). Thus:

(safe-divide nil 3)

error Wrong type argument: number-or-marker-p, nil

Here is a condition-case that catches all kinds of errors, including those from error:

(setq baz 34)

⇒ 34

(condition-case err

(if (eq baz 35)

t

;; This is a call to the function error.
(error "Rats! The variable %s was %s, not 35" ’baz baz))

;; This is the handler; it is not a form.
(error (princ (format "The error was: %s" err))

2))

a The error was: (error "Rats! The variable baz was 34, not 35")

⇒ 2

[Macro]ignore-errors body. . .
This construct executes body, ignoring any errors that occur during its execution. If
the execution is without error, ignore-errors returns the value of the last form in
body ; otherwise, it returns nil.

Here’s the example at the beginning of this subsection rewritten using ignore-

errors:

(ignore-errors

(delete-file filename))

[Macro]with-demoted-errors body. . .
This macro is like a milder version of ignore-errors. Rather than suppressing errors
altogether, it converts them into messages. Use this form around code that is not
expected to signal errors, but should be robust if one does occur. Note that this
macro uses condition-case-unless-debug rather than condition-case.

Chapter 10: Control Structures 138

10.5.3.4 Error Symbols and Condition Names

When you signal an error, you specify an error symbol to specify the kind of error you have
in mind. Each error has one and only one error symbol to categorize it. This is the finest
classification of errors defined by the Emacs Lisp language.

These narrow classifications are grouped into a hierarchy of wider classes called error
conditions, identified by condition names. The narrowest such classes belong to the error
symbols themselves: each error symbol is also a condition name. There are also condition
names for more extensive classes, up to the condition name error which takes in all kinds
of errors (but not quit). Thus, each error has one or more condition names: error, the
error symbol if that is distinct from error, and perhaps some intermediate classifications.

In order for a symbol to be an error symbol, it must have an error-conditions property
which gives a list of condition names. This list defines the conditions that this kind of error
belongs to. (The error symbol itself, and the symbol error, should always be members
of this list.) Thus, the hierarchy of condition names is defined by the error-conditions

properties of the error symbols. Because quitting is not considered an error, the value of
the error-conditions property of quit is just (quit).

In addition to the error-conditions list, the error symbol should have an error-

message property whose value is a string to be printed when that error is signaled but not
handled. If the error symbol has no error-message property or if the error-message prop-
erty exists, but is not a string, the error message ‘peculiar error’ is used. See [Definition
of signal], page 133.

Here is how we define a new error symbol, new-error:

(put ’new-error

’error-conditions

’(error my-own-errors new-error))

⇒ (error my-own-errors new-error)

(put ’new-error ’error-message "A new error")

⇒ "A new error"

This error has three condition names: new-error, the narrowest classification; my-own-
errors, which we imagine is a wider classification; and error, which is the widest of all.

The error string should start with a capital letter but it should not end with a period.
This is for consistency with the rest of Emacs.

Naturally, Emacs will never signal new-error on its own; only an explicit call to signal

(see [Definition of signal], page 133) in your code can do this:

(signal ’new-error ’(x y))

error A new error: x, y

This error can be handled through any of the three condition names. This example
handles new-error and any other errors in the class my-own-errors:

(condition-case foo

(bar nil t)

(my-own-errors nil))

The significant way that errors are classified is by their condition names—the names
used to match errors with handlers. An error symbol serves only as a convenient way to

Chapter 10: Control Structures 139

specify the intended error message and list of condition names. It would be cumbersome to
give signal a list of condition names rather than one error symbol.

By contrast, using only error symbols without condition names would seriously decrease
the power of condition-case. Condition names make it possible to categorize errors at
various levels of generality when you write an error handler. Using error symbols alone
would eliminate all but the narrowest level of classification.

See Appendix F [Standard Errors], page 1003, for a list of the main error symbols and
their conditions.

10.5.4 Cleaning Up from Nonlocal Exits

The unwind-protect construct is essential whenever you temporarily put a data structure
in an inconsistent state; it permits you to make the data consistent again in the event of
an error or throw. (Another more specific cleanup construct that is used only for changes
in buffer contents is the atomic change group; Section 32.26 [Atomic Changes], page 702.)

[Special Form]unwind-protect body-form cleanup-forms. . .
unwind-protect executes body-form with a guarantee that the cleanup-forms will be
evaluated if control leaves body-form, no matter how that happens. body-form may
complete normally, or execute a throw out of the unwind-protect, or cause an error;
in all cases, the cleanup-forms will be evaluated.

If body-form finishes normally, unwind-protect returns the value of body-form, after
it evaluates the cleanup-forms. If body-form does not finish, unwind-protect does
not return any value in the normal sense.

Only body-form is protected by the unwind-protect. If any of the cleanup-forms
themselves exits nonlocally (via a throw or an error), unwind-protect is not guar-
anteed to evaluate the rest of them. If the failure of one of the cleanup-forms has the
potential to cause trouble, then protect it with another unwind-protect around that
form.

The number of currently active unwind-protect forms counts, together with the
number of local variable bindings, against the limit max-specpdl-size (see [Local
Variables], page 143).

For example, here we make an invisible buffer for temporary use, and make sure to kill
it before finishing:

(let ((buffer (get-buffer-create " *temp*")))

(with-current-buffer buffer

(unwind-protect

body-form

(kill-buffer buffer))))

You might think that we could just as well write (kill-buffer (current-buffer)) and
dispense with the variable buffer. However, the way shown above is safer, if body-form
happens to get an error after switching to a different buffer! (Alternatively, you could write
a save-current-buffer around body-form, to ensure that the temporary buffer becomes
current again in time to kill it.)

Chapter 10: Control Structures 140

Emacs includes a standard macro called with-temp-buffer which expands into more or
less the code shown above (see [Current Buffer], page 523). Several of the macros defined
in this manual use unwind-protect in this way.

Here is an actual example derived from an FTP package. It creates a process (see
Chapter 37 [Processes], page 780) to try to establish a connection to a remote machine.
As the function ftp-login is highly susceptible to numerous problems that the writer of
the function cannot anticipate, it is protected with a form that guarantees deletion of the
process in the event of failure. Otherwise, Emacs might fill up with useless subprocesses.

(let ((win nil))

(unwind-protect

(progn

(setq process (ftp-setup-buffer host file))

(if (setq win (ftp-login process host user password))

(message "Logged in")

(error "Ftp login failed")))

(or win (and process (delete-process process)))))

This example has a small bug: if the user types C-g to quit, and the quit happens
immediately after the function ftp-setup-buffer returns but before the variable process
is set, the process will not be killed. There is no easy way to fix this bug, but at least it is
very unlikely.

Chapter 11: Variables 141

11 Variables

A variable is a name used in a program to stand for a value. In Lisp, each variable is
represented by a Lisp symbol (see Chapter 8 [Symbols], page 104). The variable name is
simply the symbol’s name, and the variable’s value is stored in the symbol’s value cell1.
See Section 8.1 [Symbol Components], page 104. In Emacs Lisp, the use of a symbol as a
variable is independent of its use as a function name.

As previously noted in this manual, a Lisp program is represented primarily by Lisp
objects, and only secondarily as text. The textual form of a Lisp program is given by the
read syntax of the Lisp objects that constitute the program. Hence, the textual form of a
variable in a Lisp program is written using the read syntax for the symbol representing the
variable.

11.1 Global Variables

The simplest way to use a variable is globally. This means that the variable has just one
value at a time, and this value is in effect (at least for the moment) throughout the Lisp
system. The value remains in effect until you specify a new one. When a new value replaces
the old one, no trace of the old value remains in the variable.

You specify a value for a symbol with setq. For example,

(setq x ’(a b))

gives the variable x the value (a b). Note that setq is a special form (see Section 9.1.7
[Special Forms], page 116); it does not evaluate its first argument, the name of the variable,
but it does evaluate the second argument, the new value.

Once the variable has a value, you can refer to it by using the symbol itself as an
expression. Thus,

x ⇒ (a b)

assuming the setq form shown above has already been executed.

If you do set the same variable again, the new value replaces the old one:

x

⇒ (a b)

(setq x 4)

⇒ 4

x

⇒ 4

11.2 Variables that Never Change

In Emacs Lisp, certain symbols normally evaluate to themselves. These include nil and
t, as well as any symbol whose name starts with ‘:’ (these are called keywords). These
symbols cannot be rebound, nor can their values be changed. Any attempt to set or bind
nil or t signals a setting-constant error. The same is true for a keyword (a symbol

1 To be precise, under the default dynamic binding rules the value cell always holds the variable’s current
value, but this is not the case under lexical binding rules. See Section 11.9 [Variable Scoping], page 150,
for details.

Chapter 11: Variables 142

whose name starts with ‘:’), if it is interned in the standard obarray, except that setting
such a symbol to itself is not an error.

nil ≡ ’nil

⇒ nil

(setq nil 500)

error Attempt to set constant symbol: nil

[Function]keywordp object
function returns t if object is a symbol whose name starts with ‘:’, interned in the
standard obarray, and returns nil otherwise.

These constants are fundamentally different from the “constants” defined using the
defconst special form (see Section 11.5 [Defining Variables], page 145). A defconst form
serves to inform human readers that you do not intend to change the value of a variable,
but Emacs does not raise an error if you actually change it.

11.3 Local Variables

Global variables have values that last until explicitly superseded with new values. Some-
times it is useful to give a variable a local value—a value that takes effect only within a
certain part of a Lisp program. When a variable has a local value, we say that it is locally
bound to that value, and that it is a local variable.

For example, when a function is called, its argument variables receive local values, which
are the actual arguments supplied to the function call; these local bindings take effect
within the body of the function. To take another example, the let special form explicitly
establishes local bindings for specific variables, which take effect within the body of the let
form.

We also speak of the global binding, which is where (conceptually) the global value is
kept.

Establishing a local binding saves away the variable’s previous value (or lack of one). We
say that the previous value is shadowed. Both global and local values may be shadowed.
If a local binding is in effect, using setq on the local variable stores the specified value in
the local binding. When that local binding is no longer in effect, the previously shadowed
value (or lack of one) comes back.

A variable can have more than one local binding at a time (e.g., if there are nested let

forms that bind the variable). The current binding is the local binding that is actually in
effect. It determines the value returned by evaluating the variable symbol, and it is the
binding acted on by setq.

For most purposes, you can think of the current binding as the “innermost” local binding,
or the global binding if there is no local binding. To be more precise, a rule called the scoping
rule determines where in a program a local binding takes effect. The default scoping rule
in Emacs Lisp is called dynamic scoping, which simply states that the current binding at
any given point in the execution of a program is the most recently-created binding for that
variable that still exists. For details about dynamic scoping, and an alternative scoping rule
called lexical scoping, See Section 11.9 [Variable Scoping], page 150.

The special forms let and let* exist to create local bindings:

Chapter 11: Variables 143

[Special Form]let (bindings. . .) forms. . .
This special form sets up local bindings for a certain set of variables, as specified by
bindings, and then evaluates all of the forms in textual order. Its return value is the
value of the last form in forms.

Each of the bindings is either (i) a symbol, in which case that symbol is locally bound
to nil; or (ii) a list of the form (symbol value-form), in which case symbol is locally
bound to the result of evaluating value-form. If value-form is omitted, nil is used.

All of the value-forms in bindings are evaluated in the order they appear and before
binding any of the symbols to them. Here is an example of this: z is bound to the
old value of y, which is 2, not the new value of y, which is 1.

(setq y 2)

⇒ 2

(let ((y 1)

(z y))

(list y z))

⇒ (1 2)

[Special Form]let* (bindings. . .) forms. . .
This special form is like let, but it binds each variable right after computing its local
value, before computing the local value for the next variable. Therefore, an expression
in bindings can refer to the preceding symbols bound in this let* form. Compare
the following example with the example above for let.

(setq y 2)

⇒ 2

(let* ((y 1)

(z y)) ; Use the just-established value of y.
(list y z))

⇒ (1 1)

Here is a complete list of the other facilities that create local bindings:

• Function calls (see Chapter 12 [Functions], page 169).

• Macro calls (see Chapter 13 [Macros], page 188).

• condition-case (see Section 10.5.3 [Errors], page 132).

Variables can also have buffer-local bindings (see Section 11.10 [Buffer-Local Variables],
page 154); a few variables have terminal-local bindings (see Section 29.2 [Multiple Termi-
nals], page 591). These kinds of bindings work somewhat like ordinary local bindings, but
they are localized depending on “where” you are in Emacs.

[User Option]max-specpdl-size
This variable defines the limit on the total number of local variable bindings and
unwind-protect cleanups (see Section 10.5.4 [Cleaning Up from Nonlocal Exits],
page 139) that are allowed before Emacs signals an error (with data "Variable

binding depth exceeds max-specpdl-size").

Chapter 11: Variables 144

This limit, with the associated error when it is exceeded, is one way that Lisp avoids
infinite recursion on an ill-defined function. max-lisp-eval-depth provides another
limit on depth of nesting. See [Eval], page 120.

The default value is 1300. Entry to the Lisp debugger increases the value, if there is
little room left, to make sure the debugger itself has room to execute.

11.4 When a Variable is “Void”

We say that a variable is void if its symbol has an unassigned value cell (see Section 8.1
[Symbol Components], page 104). Under Emacs Lisp’s default dynamic binding rules (see
Section 11.9 [Variable Scoping], page 150), the value cell stores the variable’s current (local
or global) value. Note that an unassigned value cell is not the same as having nil in the
value cell. The symbol nil is a Lisp object and can be the value of a variable, just as
any other object can be; but it is still a value. If a variable is void, trying to evaluate the
variable signals a void-variable error rather than a value.

Under lexical binding rules, the value cell only holds the variable’s global value, i.e., the
value outside of any lexical binding construct. When a variable is lexically bound, the local
value is determined by the lexical environment; the variable may have a local value if its
symbol’s value cell is unassigned.

[Function]makunbound symbol
This function empties out the value cell of symbol, making the variable void. It
returns symbol.

If symbol has a dynamic local binding, makunbound voids the current binding, and
this voidness lasts only as long as the local binding is in effect. Afterwards, the
previously shadowed local or global binding is reexposed; then the variable will no
longer be void, unless the reexposed binding is void too.

Here are some examples (assuming dynamic binding is in effect):
(setq x 1) ; Put a value in the global binding.

⇒ 1

(let ((x 2)) ; Locally bind it.
(makunbound ’x) ; Void the local binding.
x)
error Symbol’s value as variable is void: x

x ; The global binding is unchanged.
⇒ 1

(let ((x 2)) ; Locally bind it.
(let ((x 3)) ; And again.
(makunbound ’x) ; Void the innermost-local binding.
x)) ; And refer: it’s void.

error Symbol’s value as variable is void: x

(let ((x 2))

(let ((x 3))

(makunbound ’x)) ; Void inner binding, then remove it.
x) ; Now outer let binding is visible.
⇒ 2

[Function]boundp variable
This function returns t if variable (a symbol) is not void, and nil if it is void.

Chapter 11: Variables 145

Here are some examples (assuming dynamic binding is in effect):
(boundp ’abracadabra) ; Starts out void.

⇒ nil

(let ((abracadabra 5)) ; Locally bind it.
(boundp ’abracadabra))
⇒ t

(boundp ’abracadabra) ; Still globally void.
⇒ nil

(setq abracadabra 5) ; Make it globally nonvoid.
⇒ 5

(boundp ’abracadabra)
⇒ t

11.5 Defining Global Variables

A variable definition is a construct that announces your intention to use a symbol as a global
variable. It uses the special forms defvar or defconst, which are documented below.

A variable definition serves three purposes. First, it informs people who read the code
that the symbol is intended to be used a certain way (as a variable). Second, it informs
the Lisp system of this, optionally supplying an initial value and a documentation string.
Third, it provides information to programming tools such as etags, allowing them to find
where the variable was defined.

The difference between defconst and defvar is mainly a matter of intent, serving to
inform human readers of whether the value should ever change. Emacs Lisp does not
actually prevent you from changing the value of a variable defined with defconst. One
notable difference between the two forms is that defconst unconditionally initializes the
variable, whereas defvar initializes it only if it is originally void.

To define a customizable variable, you should use defcustom (which calls defvar as a
subroutine). See Section 14.3 [Variable Definitions], page 199.

[Special Form]defvar symbol [value [doc-string]]
This special form defines symbol as a variable. Note that symbol is not evaluated;
the symbol to be defined should appear explicitly in the defvar form. The vari-
able is marked as special, meaning that it should always be dynamically bound (see
Section 11.9 [Variable Scoping], page 150).

If symbol is void and value is specified, defvar evaluates value and sets symbol to
the result. But if symbol already has a value (i.e., it is not void), value is not even
evaluated, and symbol’s value remains unchanged. If value is omitted, the value of
symbol is not changed in any case.

If symbol has a buffer-local binding in the current buffer, defvar operates on the
default value, which is buffer-independent, not the current (buffer-local) binding. It
sets the default value if the default value is void. See Section 11.10 [Buffer-Local
Variables], page 154.

When you evaluate a top-level defvar form with C-M-x in Emacs Lisp mode (eval-
defun), a special feature of eval-defun arranges to set the variable unconditionally,
without testing whether its value is void.

If the doc-string argument is supplied, it specifies the documentation string for the
variable (stored in the symbol’s variable-documentation property). See Chapter 24
[Documentation], page 459.

Chapter 11: Variables 146

Here are some examples. This form defines foo but does not initialize it:

(defvar foo)

⇒ foo

This example initializes the value of bar to 23, and gives it a documentation string:

(defvar bar 23

"The normal weight of a bar.")

⇒ bar

The defvar form returns symbol, but it is normally used at top level in a file where
its value does not matter.

[Special Form]defconst symbol value [doc-string]
This special form defines symbol as a value and initializes it. It informs a person
reading your code that symbol has a standard global value, established here, that
should not be changed by the user or by other programs. Note that symbol is not
evaluated; the symbol to be defined must appear explicitly in the defconst.

The defconst form, like defvar, marks the variable as special, meaning that it
should always be dynamically bound (see Section 11.9 [Variable Scoping], page 150).
In addition, it marks the variable as risky (see Section 11.11 [File Local Variables],
page 160).

defconst always evaluates value, and sets the value of symbol to the result. If symbol
does have a buffer-local binding in the current buffer, defconst sets the default value,
not the buffer-local value. (But you should not be making buffer-local bindings for a
symbol that is defined with defconst.)

An example of the use of defconst is Emacs’s definition of float-pi—the math-
ematical constant pi, which ought not to be changed by anyone (attempts by the
Indiana State Legislature notwithstanding). As the second form illustrates, however,
defconst is only advisory.

(defconst float-pi 3.141592653589793 "The value of Pi.")

⇒ float-pi

(setq float-pi 3)

⇒ float-pi

float-pi

⇒ 3

Warning: If you use a defconst or defvar special form while the variable has a local
binding (made with let, or a function argument), it sets the local binding rather than the
global binding. This is not what you usually want. To prevent this, use these special forms
at top level in a file, where normally no local binding is in effect, and make sure to load the
file before making a local binding for the variable.

11.6 Tips for Defining Variables Robustly

When you define a variable whose value is a function, or a list of functions, use a name that
ends in ‘-function’ or ‘-functions’, respectively.

There are several other variable name conventions; here is a complete list:

Chapter 11: Variables 147

‘...-hook’
The variable is a normal hook (see Section 23.1 [Hooks], page 404).

‘...-function’
The value is a function.

‘...-functions’
The value is a list of functions.

‘...-form’
The value is a form (an expression).

‘...-forms’
The value is a list of forms (expressions).

‘...-predicate’
The value is a predicate—a function of one argument that returns non-nil for
“good” arguments and nil for “bad” arguments.

‘...-flag’
The value is significant only as to whether it is nil or not. Since such variables
often end up acquiring more values over time, this convention is not strongly
recommended.

‘...-program’
The value is a program name.

‘...-command’
The value is a whole shell command.

‘...-switches’
The value specifies options for a command.

When you define a variable, always consider whether you should mark it as “safe” or
“risky”; see Section 11.11 [File Local Variables], page 160.

When defining and initializing a variable that holds a complicated value (such as a
keymap with bindings in it), it’s best to put the entire computation of the value into the
defvar, like this:

(defvar my-mode-map

(let ((map (make-sparse-keymap)))

(define-key map "\C-c\C-a" ’my-command)

...

map)

docstring)

This method has several benefits. First, if the user quits while loading the file, the variable
is either still uninitialized or initialized properly, never in-between. If it is still uninitialized,
reloading the file will initialize it properly. Second, reloading the file once the variable is
initialized will not alter it; that is important if the user has run hooks to alter part of
the contents (such as, to rebind keys). Third, evaluating the defvar form with C-M-x will
reinitialize the map completely.

Putting so much code in the defvar form has one disadvantage: it puts the documen-
tation string far away from the line which names the variable. Here’s a safe way to avoid
that:

Chapter 11: Variables 148

(defvar my-mode-map nil

docstring)

(unless my-mode-map

(let ((map (make-sparse-keymap)))

(define-key map "\C-c\C-a" ’my-command)

...

(setq my-mode-map map)))

This has all the same advantages as putting the initialization inside the defvar, except that
you must type C-M-x twice, once on each form, if you do want to reinitialize the variable.

11.7 Accessing Variable Values

The usual way to reference a variable is to write the symbol which names it. See Section 9.1.2
[Symbol Forms], page 113.

Occasionally, you may want to reference a variable which is only determined at run time.
In that case, you cannot specify the variable name in the text of the program. You can use
the symbol-value function to extract the value.

[Function]symbol-value symbol
This function returns the value stored in symbol’s value cell. This is where the
variable’s current (dynamic) value is stored. If the variable has no local binding, this
is simply its global value. If the variable is void, a void-variable error is signaled.

If the variable is lexically bound, the value reported by symbol-value is not nec-
essarily the same as the variable’s lexical value, which is determined by the lexical
environment rather than the symbol’s value cell. See Section 11.9 [Variable Scoping],
page 150.

(setq abracadabra 5)

⇒ 5

(setq foo 9)

⇒ 9

;; Here the symbol abracadabra
;; is the symbol whose value is examined.
(let ((abracadabra ’foo))

(symbol-value ’abracadabra))

⇒ foo

;; Here, the value of abracadabra,
;; which is foo,
;; is the symbol whose value is examined.
(let ((abracadabra ’foo))

(symbol-value abracadabra))

⇒ 9

(symbol-value ’abracadabra)

⇒ 5

Chapter 11: Variables 149

11.8 Setting Variable Values

The usual way to change the value of a variable is with the special form setq. When you
need to compute the choice of variable at run time, use the function set.

[Special Form]setq [symbol form]. . .
This special form is the most common method of changing a variable’s value. Each
symbol is given a new value, which is the result of evaluating the corresponding form.
The current binding of the symbol is changed.

setq does not evaluate symbol; it sets the symbol that you write. We say that this
argument is automatically quoted. The ‘q’ in setq stands for “quoted”.

The value of the setq form is the value of the last form.

(setq x (1+ 2))

⇒ 3

x ; x now has a global value.
⇒ 3

(let ((x 5))

(setq x 6) ; The local binding of x is set.
x)

⇒ 6

x ; The global value is unchanged.
⇒ 3

Note that the first form is evaluated, then the first symbol is set, then the second
form is evaluated, then the second symbol is set, and so on:

(setq x 10 ; Notice that x is set before
y (1+ x)) ; the value of y is computed.
⇒ 11

[Function]set symbol value
This function puts value in the value cell of symbol. Since it is a function rather than
a special form, the expression written for symbol is evaluated to obtain the symbol
to set. The return value is value.

When dynamic variable binding is in effect (the default), set has the same effect as
setq, apart from the fact that set evaluates its symbol argument whereas setq does
not. But when a variable is lexically bound, set affects its dynamic value, whereas
setq affects its current (lexical) value. See Section 11.9 [Variable Scoping], page 150.

(set one 1)

error Symbol’s value as variable is void: one

(set ’one 1)

⇒ 1

(set ’two ’one)

⇒ one

(set two 2) ; two evaluates to symbol one.
⇒ 2

Chapter 11: Variables 150

one ; So it is one that was set.
⇒ 2

(let ((one 1)) ; This binding of one is set,
(set ’one 3) ; not the global value.
one)

⇒ 3

one

⇒ 2

If symbol is not actually a symbol, a wrong-type-argument error is signaled.

(set ’(x y) ’z)

error Wrong type argument: symbolp, (x y)

11.9 Scoping Rules for Variable Bindings

When you create a local binding for a variable, that binding takes effect only within a
limited portion of the program (see Section 11.3 [Local Variables], page 142). This section
describes exactly what this means.

Each local binding has a certain scope and extent. Scope refers to where in the textual
source code the binding can be accessed. Extent refers to when, as the program is executing,
the binding exists.

By default, the local bindings that Emacs creates are dynamic bindings. Such a binding
has indefinite scope, meaning that any part of the program can potentially access the
variable binding. It also has dynamic extent, meaning that the binding lasts only while the
binding construct (such as the body of a let form) is being executed.

Emacs can optionally create lexical bindings. A lexical binding has lexical scope, meaning
that any reference to the variable must be located textually within the binding construct. It
also has indefinite extent, meaning that under some circumstances the binding can live on
even after the binding construct has finished executing, by means of special objects called
closures.

The following subsections describe dynamic binding and lexical binding in greater detail,
and how to enable lexical binding in Emacs Lisp programs.

11.9.1 Dynamic Binding

By default, the local variable bindings made by Emacs are dynamic bindings. When a
variable is dynamically bound, its current binding at any point in the execution of the Lisp
program is simply the most recently-created dynamic local binding for that symbol, or the
global binding if there is no such local binding.

Dynamic bindings have indefinite scope and dynamic extent, as shown by the following
example:

Chapter 11: Variables 151

(defvar x -99) ; x receives an initial value of -99.

(defun getx ()

x) ; x is used ‘‘free” in this function.

(let ((x 1)) ; x is dynamically bound.
(getx))

⇒ 1

;; After the let form finishes, x reverts to its
;; previous value, which is -99.

(getx)

⇒ -99

The function getx refers to x. This is a “free” reference, in the sense that there is no
binding for x within that defun construct itself. When we call getx from within a let form
in which x is (dynamically) bound, it retrieves the local value of x (i.e., 1). But when we
call getx outside the let form, it retrieves the global value of x (i.e., -99).

Here is another example, which illustrates setting a dynamically bound variable using
setq:

(defvar x -99) ; x receives an initial value of -99.

(defun addx ()

(setq x (1+ x))) ; Add 1 to x and return its new value.

(let ((x 1))

(addx)

(addx))

⇒ 3 ; The two addx calls add to x twice.

;; After the let form finishes, x reverts to its
;; previous value, which is -99.

(addx)

⇒ -98

Dynamic binding is implemented in Emacs Lisp in a simple way. Each symbol has a
value cell, which specifies its current dynamic value (or absence of value). See Section 8.1
[Symbol Components], page 104. When a symbol is given a dynamic local binding, Emacs
records the contents of the value cell (or absence thereof) in a stack, and stores the new
local value in the value cell. When the binding construct finishes executing, Emacs pops
the old value off the stack, and puts it in the value cell.

11.9.2 Proper Use of Dynamic Binding

Dynamic binding is a powerful feature, as it allows programs to refer to variables that are
not defined within their local textual scope. However, if used without restraint, this can
also make programs hard to understand. There are two clean ways to use this technique:

Chapter 11: Variables 152

• If a variable has no global definition, use it as a local variable only within a binding
construct, e.g., the body of the let form where the variable was bound, or the body
of the function for an argument variable. If this convention is followed consistently
throughout a program, the value of the variable will not affect, nor be affected by, any
uses of the same variable symbol elsewhere in the program.

• Otherwise, define the variable with defvar, defconst, or defcustom. See Section 11.5
[Defining Variables], page 145. Usually, the definition should be at top-level in an Emacs
Lisp file. As far as possible, it should include a documentation string which explains
the meaning and purpose of the variable. You should also choose the variable’s name
to avoid name conflicts (see Section D.1 [Coding Conventions], page 969).

Then you can bind the variable anywhere in a program, knowing reliably what the
effect will be. Wherever you encounter the variable, it will be easy to refer back to
the definition, e.g., via the C-h v command (provided the variable definition has been
loaded into Emacs). See Section “Name Help” in The GNU Emacs Manual.

For example, it is common to use local bindings for customizable variables like case-

fold-search:

(defun search-for-abc ()

"Search for the string \"abc\", ignoring case differences."

(let ((case-fold-search nil))

(re-search-forward "abc")))

11.9.3 Lexical Binding

Optionally, you can create lexical bindings in Emacs Lisp. A lexically bound variable has
lexical scope, meaning that any reference to the variable must be located textually within
the binding construct.

Here is an example (see the next subsection, for how to actually enable lexical binding):

(let ((x 1)) ; x is lexically bound.
(+ x 3))

⇒ 4

(defun getx ()

x) ; x is used ‘‘free” in this function.

(let ((x 1)) ; x is lexically bound.
(getx))

error Symbol’s value as variable is void: x

Here, the variable x has no global value. When it is lexically bound within a let form, it
can be used in the textual confines of that let form. But it can not be used from within a
getx function called from the let form, since the function definition of getx occurs outside
the let form itself.

Here is how lexical binding works. Each binding construct defines a lexical environment,
specifying the symbols that are bound within the construct and their local values. When the
Lisp evaluator wants the current value of a variable, it looks first in the lexical environment;
if the variable is not specified in there, it looks in the symbol’s value cell, where the dynamic
value is stored.

Chapter 11: Variables 153

Lexical bindings have indefinite extent. Even after a binding construct has finished
executing, its lexical environment can be “kept around” in Lisp objects called closures. A
closure is created when you define a named or anonymous function with lexical binding
enabled. See Section 12.9 [Closures], page 182, for details.

When a closure is called as a function, any lexical variable references within its definition
use the retained lexical environment. Here is an example:

(defvar my-ticker nil) ; We will use this dynamically bound
; variable to store a closure.

(let ((x 0)) ; x is lexically bound.
(setq my-ticker (lambda ()

(setq x (1+ x)))))

⇒ (closure ((x . 0) t) ()

(1+ x))

(funcall my-ticker)

⇒ 1

(funcall my-ticker)

⇒ 2

(funcall my-ticker)

⇒ 3

x ; Note that x has no global value.
error Symbol’s value as variable is void: x

The let binding defines a lexical environment in which the variable x is locally bound to
0. Within this binding construct, we define a lambda expression which increments x by one
and returns the incremented value. This lambda expression is automatically turned into a
closure, in which the lexical environment lives on even after the let binding construct has
exited. Each time we evaluate the closure, it increments x, using the binding of x in that
lexical environment.

Note that functions like symbol-value, boundp, and set only retrieve or modify a
variable’s dynamic binding (i.e., the contents of its symbol’s value cell). Also, the code in
the body of a defun or defmacro cannot refer to surrounding lexical variables.

Currently, lexical binding is not much used within the Emacs sources. However, we
expect its importance to increase in the future. Lexical binding opens up a lot more oppor-
tunities for optimization, so Emacs Lisp code that makes use of lexical binding is likely to
run faster in future Emacs versions. Such code is also much more friendly to concurrency,
which we want to add to Emacs in the near future.

11.9.4 Using Lexical Binding

When loading an Emacs Lisp file or evaluating a Lisp buffer, lexical binding is enabled if
the buffer-local variable lexical-binding is non-nil:

Chapter 11: Variables 154

[Variable]lexical-binding
If this buffer-local variable is non-nil, Emacs Lisp files and buffers are evaluated
using lexical binding instead of dynamic binding. (However, special variables are still
dynamically bound; see below.) If nil, dynamic binding is used for all local variables.
This variable is typically set for a whole Emacs Lisp file, as a file local variable (see
Section 11.11 [File Local Variables], page 160). Note that unlike other such variables,
this one must be set in the first line of a file.

When evaluating Emacs Lisp code directly using an eval call, lexical binding is enabled if
the lexical argument to eval is non-nil. See Section 9.4 [Eval], page 119.

Even when lexical binding is enabled, certain variables will continue to be dynamically
bound. These are called special variables. Every variable that has been defined with
defvar, defcustom or defconst is a special variable (see Section 11.5 [Defining Variables],
page 145). All other variables are subject to lexical binding.

[Function]special-variable-p symbol
This function returns non-nil if symbol is a special variable (i.e., it has a defvar,
defcustom, or defconst variable definition). Otherwise, the return value is nil.

The use of a special variable as a formal argument in a function is discouraged. Doing so
gives rise to unspecified behavior when lexical binding mode is enabled (it may use lexical
binding sometimes, and dynamic binding other times).

Converting an Emacs Lisp program to lexical binding is pretty easy. First, add a file-
local variable setting of lexical-binding to t in the Emacs Lisp source file. Second, check
that every variable in the program which needs to be dynamically bound has a variable
definition, so that it is not inadvertently bound lexically.

A simple way to find out which variables need a variable definition is to byte-compile
the source file. See Chapter 16 [Byte Compilation], page 229. If a non-special variable is
used outside of a let form, the byte-compiler will warn about reference or assignment to
a “free variable”. If a non-special variable is bound but not used within a let form, the
byte-compiler will warn about an “unused lexical variable”. The byte-compiler will also
issue a warning if you use a special variable as a function argument.

(To silence byte-compiler warnings about unused variables, just use a variable name that
start with an underscore. The byte-compiler interprets this as an indication that this is a
variable known not to be used.)

11.10 Buffer-Local Variables

Global and local variable bindings are found in most programming languages in one form
or another. Emacs, however, also supports additional, unusual kinds of variable binding,
such as buffer-local bindings, which apply only in one buffer. Having different values for a
variable in different buffers is an important customization method. (Variables can also have
bindings that are local to each terminal. See Section 29.2 [Multiple Terminals], page 591.)

11.10.1 Introduction to Buffer-Local Variables

A buffer-local variable has a buffer-local binding associated with a particular buffer. The
binding is in effect when that buffer is current; otherwise, it is not in effect. If you set

Chapter 11: Variables 155

the variable while a buffer-local binding is in effect, the new value goes in that binding, so
its other bindings are unchanged. This means that the change is visible only in the buffer
where you made it.

The variable’s ordinary binding, which is not associated with any specific buffer, is called
the default binding. In most cases, this is the global binding.

A variable can have buffer-local bindings in some buffers but not in other buffers. The
default binding is shared by all the buffers that don’t have their own bindings for the
variable. (This includes all newly-created buffers.) If you set the variable in a buffer that
does not have a buffer-local binding for it, this sets the default binding, so the new value is
visible in all the buffers that see the default binding.

The most common use of buffer-local bindings is for major modes to change variables
that control the behavior of commands. For example, C mode and Lisp mode both set the
variable paragraph-start to specify that only blank lines separate paragraphs. They do
this by making the variable buffer-local in the buffer that is being put into C mode or Lisp
mode, and then setting it to the new value for that mode. See Section 23.2 [Major Modes],
page 407.

The usual way to make a buffer-local binding is with make-local-variable, which is
what major mode commands typically use. This affects just the current buffer; all other
buffers (including those yet to be created) will continue to share the default value unless
they are explicitly given their own buffer-local bindings.

A more powerful operation is to mark the variable as automatically buffer-local by
calling make-variable-buffer-local. You can think of this as making the variable local
in all buffers, even those yet to be created. More precisely, the effect is that setting the
variable automatically makes the variable local to the current buffer if it is not already
so. All buffers start out by sharing the default value of the variable as usual, but setting
the variable creates a buffer-local binding for the current buffer. The new value is stored
in the buffer-local binding, leaving the default binding untouched. This means that the
default value cannot be changed with setq in any buffer; the only way to change it is with
setq-default.

Warning: When a variable has buffer-local bindings in one or more buffers, let rebinds
the binding that’s currently in effect. For instance, if the current buffer has a buffer-local
value, let temporarily rebinds that. If no buffer-local bindings are in effect, let rebinds
the default value. If inside the let you then change to a different current buffer in which a
different binding is in effect, you won’t see the let binding any more. And if you exit the
let while still in the other buffer, you won’t see the unbinding occur (though it will occur
properly). Here is an example to illustrate:

(setq foo ’g)

(set-buffer "a")

(make-local-variable ’foo)

(setq foo ’a)

(let ((foo ’temp))

;; foo ⇒ ’temp ; let binding in buffer ‘a’
(set-buffer "b")

;; foo ⇒ ’g ; the global value since foo is not local in ‘b’
body...)

Chapter 11: Variables 156

foo ⇒ ’g ; exiting restored the local value in buffer ‘a’,
; but we don’t see that in buffer ‘b’

(set-buffer "a") ; verify the local value was restored
foo ⇒ ’a

Note that references to foo in body access the buffer-local binding of buffer ‘b’.

When a file specifies local variable values, these become buffer-local values when you
visit the file. See Section “File Variables” in The GNU Emacs Manual.

A buffer-local variable cannot be made terminal-local (see Section 29.2 [Multiple Termi-
nals], page 591).

11.10.2 Creating and Deleting Buffer-Local Bindings

[Command]make-local-variable variable
This function creates a buffer-local binding in the current buffer for variable (a sym-
bol). Other buffers are not affected. The value returned is variable.

The buffer-local value of variable starts out as the same value variable previously
had. If variable was void, it remains void.

;; In buffer ‘b1’:
(setq foo 5) ; Affects all buffers.

⇒ 5

(make-local-variable ’foo) ; Now it is local in ‘b1’.
⇒ foo

foo ; That did not change
⇒ 5 ; the value.

(setq foo 6) ; Change the value
⇒ 6 ; in ‘b1’.

foo

⇒ 6

;; In buffer ‘b2’, the value hasn’t changed.
(with-current-buffer "b2"

foo)

⇒ 5

Making a variable buffer-local within a let-binding for that variable does not work
reliably, unless the buffer in which you do this is not current either on entry to or
exit from the let. This is because let does not distinguish between different kinds
of bindings; it knows only which variable the binding was made for.

If the variable is terminal-local (see Section 29.2 [Multiple Terminals], page 591), this
function signals an error. Such variables cannot have buffer-local bindings as well.

Warning: do not use make-local-variable for a hook variable. The hook variables
are automatically made buffer-local as needed if you use the local argument to add-

hook or remove-hook.

[Macro]setq-local variable value
This macro creates a buffer-local binding in the current buffer for variable, and gives it
the buffer-local value value. It is equivalent to calling make-local-variable followed
by setq. variable should be an unquoted symbol.

Chapter 11: Variables 157

[Command]make-variable-buffer-local variable
This function marks variable (a symbol) automatically buffer-local, so that any sub-
sequent attempt to set it will make it local to the current buffer at the time. Unlike
make-local-variable, with which it is often confused, this cannot be undone, and
affects the behavior of the variable in all buffers.

A peculiar wrinkle of this feature is that binding the variable (with let or other
binding constructs) does not create a buffer-local binding for it. Only setting the
variable (with set or setq), while the variable does not have a let-style binding that
was made in the current buffer, does so.

If variable does not have a default value, then calling this command will give it a
default value of nil. If variable already has a default value, that value remains
unchanged. Subsequently calling makunbound on variable will result in a void buffer-
local value and leave the default value unaffected.

The value returned is variable.

Warning: Don’t assume that you should use make-variable-buffer-local for user-
option variables, simply because users might want to customize them differently in
different buffers. Users can make any variable local, when they wish to. It is better
to leave the choice to them.

The time to use make-variable-buffer-local is when it is crucial that no two
buffers ever share the same binding. For example, when a variable is used for internal
purposes in a Lisp program which depends on having separate values in separate
buffers, then using make-variable-buffer-local can be the best solution.

[Macro]defvar-local variable value &optional docstring
This macro defines variable as a variable with initial value value and docstring, and
marks it as automatically buffer-local. It is equivalent to calling defvar followed by
make-variable-buffer-local. variable should be an unquoted symbol.

[Function]local-variable-p variable &optional buffer
This returns t if variable is buffer-local in buffer buffer (which defaults to the current
buffer); otherwise, nil.

[Function]local-variable-if-set-p variable &optional buffer
This returns t if variable either has a buffer-local value in buffer buffer, or is auto-
matically buffer-local. Otherwise, it returns nil. If omitted or nil, buffer defaults
to the current buffer.

[Function]buffer-local-value variable buffer
This function returns the buffer-local binding of variable (a symbol) in buffer buffer.
If variable does not have a buffer-local binding in buffer buffer, it returns the default
value (see Section 11.10.3 [Default Value], page 159) of variable instead.

[Function]buffer-local-variables &optional buffer
This function returns a list describing the buffer-local variables in buffer buffer. (If
buffer is omitted, the current buffer is used.) Normally, each list element has the form
(sym . val), where sym is a buffer-local variable (a symbol) and val is its buffer-local
value. But when a variable’s buffer-local binding in buffer is void, its list element is
just sym.

Chapter 11: Variables 158

(make-local-variable ’foobar)

(makunbound ’foobar)

(make-local-variable ’bind-me)

(setq bind-me 69)

(setq lcl (buffer-local-variables))

;; First, built-in variables local in all buffers:
⇒ ((mark-active . nil)

(buffer-undo-list . nil)

(mode-name . "Fundamental")

...

;; Next, non-built-in buffer-local variables.
;; This one is buffer-local and void:
foobar

;; This one is buffer-local and nonvoid:
(bind-me . 69))

Note that storing new values into the cdrs of cons cells in this list does not change
the buffer-local values of the variables.

[Command]kill-local-variable variable
This function deletes the buffer-local binding (if any) for variable (a symbol) in the
current buffer. As a result, the default binding of variable becomes visible in this
buffer. This typically results in a change in the value of variable, since the default
value is usually different from the buffer-local value just eliminated.

If you kill the buffer-local binding of a variable that automatically becomes buffer-
local when set, this makes the default value visible in the current buffer. However, if
you set the variable again, that will once again create a buffer-local binding for it.

kill-local-variable returns variable.

This function is a command because it is sometimes useful to kill one buffer-local
variable interactively, just as it is useful to create buffer-local variables interactively.

[Function]kill-all-local-variables
This function eliminates all the buffer-local variable bindings of the current buffer
except for variables marked as “permanent” and local hook functions that have a non-
nil permanent-local-hook property (see Section 23.1.2 [Setting Hooks], page 406).
As a result, the buffer will see the default values of most variables.

This function also resets certain other information pertaining to the buffer: it sets
the local keymap to nil, the syntax table to the value of (standard-syntax-table),
the case table to (standard-case-table), and the abbrev table to the value of
fundamental-mode-abbrev-table.

The very first thing this function does is run the normal hook change-major-mode-

hook (see below).

Every major mode command begins by calling this function, which has the effect of
switching to Fundamental mode and erasing most of the effects of the previous major
mode. To ensure that this does its job, the variables that major modes set should
not be marked permanent.

kill-all-local-variables returns nil.

Chapter 11: Variables 159

[Variable]change-major-mode-hook
The function kill-all-local-variables runs this normal hook before it does any-
thing else. This gives major modes a way to arrange for something special to be done
if the user switches to a different major mode. It is also useful for buffer-specific
minor modes that should be forgotten if the user changes the major mode.

For best results, make this variable buffer-local, so that it will disappear after doing its
job and will not interfere with the subsequent major mode. See Section 23.1 [Hooks],
page 404.

A buffer-local variable is permanent if the variable name (a symbol) has a
permanent-local property that is non-nil. Such variables are unaffected by kill-all-

local-variables, and their local bindings are therefore not cleared by changing major
modes. Permanent locals are appropriate for data pertaining to where the file came from
or how to save it, rather than with how to edit the contents.

11.10.3 The Default Value of a Buffer-Local Variable

The global value of a variable with buffer-local bindings is also called the default value,
because it is the value that is in effect whenever neither the current buffer nor the selected
frame has its own binding for the variable.

The functions default-value and setq-default access and change a variable’s default
value regardless of whether the current buffer has a buffer-local binding. For example, you
could use setq-default to change the default setting of paragraph-start for most buffers;
and this would work even when you are in a C or Lisp mode buffer that has a buffer-local
value for this variable.

The special forms defvar and defconst also set the default value (if they set the variable
at all), rather than any buffer-local value.

[Function]default-value symbol
This function returns symbol’s default value. This is the value that is seen in buffers
and frames that do not have their own values for this variable. If symbol is not
buffer-local, this is equivalent to symbol-value (see Section 11.7 [Accessing Vari-
ables], page 148).

[Function]default-boundp symbol
The function default-boundp tells you whether symbol’s default value is nonvoid.
If (default-boundp ’foo) returns nil, then (default-value ’foo) would get an
error.

default-boundp is to default-value as boundp is to symbol-value.

[Special Form]setq-default [symbol form]. . .
This special form gives each symbol a new default value, which is the result of eval-
uating the corresponding form. It does not evaluate symbol, but does evaluate form.
The value of the setq-default form is the value of the last form.

If a symbol is not buffer-local for the current buffer, and is not marked automatically
buffer-local, setq-default has the same effect as setq. If symbol is buffer-local for
the current buffer, then this changes the value that other buffers will see (as long as
they don’t have a buffer-local value), but not the value that the current buffer sees.

Chapter 11: Variables 160

;; In buffer ‘foo’:
(make-local-variable ’buffer-local)

⇒ buffer-local

(setq buffer-local ’value-in-foo)

⇒ value-in-foo

(setq-default buffer-local ’new-default)

⇒ new-default

buffer-local

⇒ value-in-foo

(default-value ’buffer-local)

⇒ new-default

;; In (the new) buffer ‘bar’:
buffer-local

⇒ new-default

(default-value ’buffer-local)

⇒ new-default

(setq buffer-local ’another-default)

⇒ another-default

(default-value ’buffer-local)

⇒ another-default

;; Back in buffer ‘foo’:
buffer-local

⇒ value-in-foo

(default-value ’buffer-local)

⇒ another-default

[Function]set-default symbol value
This function is like setq-default, except that symbol is an ordinary evaluated
argument.

(set-default (car ’(a b c)) 23)

⇒ 23

(default-value ’a)

⇒ 23

11.11 File Local Variables

A file can specify local variable values; Emacs uses these to create buffer-local bindings for
those variables in the buffer visiting that file. See Section “Local Variables in Files” in The
GNU Emacs Manual, for basic information about file-local variables. This section describes
the functions and variables that affect how file-local variables are processed.

If a file-local variable could specify an arbitrary function or Lisp expression that would
be called later, visiting a file could take over your Emacs. Emacs protects against this by
automatically setting only those file-local variables whose specified values are known to be
safe. Other file-local variables are set only if the user agrees.

Chapter 11: Variables 161

For additional safety, read-circle is temporarily bound to nil when Emacs reads file-
local variables (see Section 19.3 [Input Functions], page 283). This prevents the Lisp reader
from recognizing circular and shared Lisp structures (see Section 2.5 [Circular Objects],
page 27).

[User Option]enable-local-variables
This variable controls whether to process file-local variables. The possible values are:

t (the default)
Set the safe variables, and query (once) about any unsafe variables.

:safe Set only the safe variables and do not query.

:all Set all the variables and do not query.

nil Don’t set any variables.

anything else
Query (once) about all the variables.

[Variable]inhibit-local-variables-regexps
This is a list of regular expressions. If a file has a name matching an element of this
list, then it is not scanned for any form of file-local variable. For examples of why
you might want to use this, see Section 23.2.2 [Auto Major Mode], page 411.

[Function]hack-local-variables &optional mode-only
This function parses, and binds or evaluates as appropriate, any local variables spec-
ified by the contents of the current buffer. The variable enable-local-variables

has its effect here. However, this function does not look for the ‘mode:’ local variable
in the ‘-*-’ line. set-auto-mode does that, also taking enable-local-variables

into account (see Section 23.2.2 [Auto Major Mode], page 411).

This function works by walking the alist stored in file-local-variables-alist and
applying each local variable in turn. It calls before-hack-local-variables-hook

and hack-local-variables-hook before and after applying the variables, respec-
tively. It only calls the before-hook if the alist is non-nil; it always calls the other
hook. This function ignores a ‘mode’ element if it specifies the same major mode as
the buffer already has.

If the optional argument mode-only is non-nil, then all this function does is return a
symbol specifying the major mode, if the ‘-*-’ line or the local variables list specifies
one, and nil otherwise. It does not set the mode nor any other file-local variable.

[Variable]file-local-variables-alist
This buffer-local variable holds the alist of file-local variable settings. Each element of
the alist is of the form (var . value), where var is a symbol of the local variable and
value is its value. When Emacs visits a file, it first collects all the file-local variables
into this alist, and then the hack-local-variables function applies them one by
one.

[Variable]before-hack-local-variables-hook
Emacs calls this hook immediately before applying file-local variables stored in file-

local-variables-alist.

Chapter 11: Variables 162

[Variable]hack-local-variables-hook
Emacs calls this hook immediately after it finishes applying file-local variables stored
in file-local-variables-alist.

You can specify safe values for a variable with a safe-local-variable property. The
property has to be a function of one argument; any value is safe if the function returns
non-nil given that value. Many commonly-encountered file variables have safe-local-

variable properties; these include fill-column, fill-prefix, and indent-tabs-mode.
For boolean-valued variables that are safe, use booleanp as the property value. Lambda
expressions should be quoted so that describe-variable can display the predicate.

When defining a user option using defcustom, you can set its safe-local-variable

property by adding the arguments :safe function to defcustom (see Section 14.3 [Variable
Definitions], page 199).

[User Option]safe-local-variable-values
This variable provides another way to mark some variable values as safe. It is a list
of cons cells (var . val), where var is a variable name and val is a value which is
safe for that variable.

When Emacs asks the user whether or not to obey a set of file-local variable specifica-
tions, the user can choose to mark them as safe. Doing so adds those variable/value
pairs to safe-local-variable-values, and saves it to the user’s custom file.

[Function]safe-local-variable-p sym val
This function returns non-nil if it is safe to give sym the value val, based on the
above criteria.

Some variables are considered risky. If a variable is risky, it is never entered auto-
matically into safe-local-variable-values; Emacs always queries before setting a risky
variable, unless the user explicitly allows a value by customizing safe-local-variable-

values directly.

Any variable whose name has a non-nil risky-local-variable property is
considered risky. When you define a user option using defcustom, you can set its
risky-local-variable property by adding the arguments :risky value to defcustom

(see Section 14.3 [Variable Definitions], page 199). In addition, any variable whose
name ends in any of ‘-command’, ‘-frame-alist’, ‘-function’, ‘-functions’, ‘-hook’,
‘-hooks’, ‘-form’, ‘-forms’, ‘-map’, ‘-map-alist’, ‘-mode-alist’, ‘-program’, or
‘-predicate’ is automatically considered risky. The variables ‘font-lock-keywords’,
‘font-lock-keywords’ followed by a digit, and ‘font-lock-syntactic-keywords’ are
also considered risky.

[Function]risky-local-variable-p sym
This function returns non-nil if sym is a risky variable, based on the above criteria.

[Variable]ignored-local-variables
This variable holds a list of variables that should not be given local values by files.
Any value specified for one of these variables is completely ignored.

The ‘Eval:’ “variable” is also a potential loophole, so Emacs normally asks for confir-
mation before handling it.

Chapter 11: Variables 163

[User Option]enable-local-eval
This variable controls processing of ‘Eval:’ in ‘-*-’ lines or local variables lists in files
being visited. A value of t means process them unconditionally; nil means ignore
them; anything else means ask the user what to do for each file. The default value is
maybe.

[User Option]safe-local-eval-forms
This variable holds a list of expressions that are safe to evaluate when found in the
‘Eval:’ “variable” in a file local variables list.

If the expression is a function call and the function has a safe-local-eval-function

property, the property value determines whether the expression is safe to evaluate. The
property value can be a predicate to call to test the expression, a list of such predicates (it’s
safe if any predicate succeeds), or t (always safe provided the arguments are constant).

Text properties are also potential loopholes, since their values could include functions to
call. So Emacs discards all text properties from string values specified for file-local variables.

11.12 Directory Local Variables

A directory can specify local variable values common to all files in that directory; Emacs
uses these to create buffer-local bindings for those variables in buffers visiting any file in
that directory. This is useful when the files in the directory belong to some project and
therefore share the same local variables.

There are two different methods for specifying directory local variables: by putting them
in a special file, or by defining a project class for that directory.

[Constant]dir-locals-file
This constant is the name of the file where Emacs expects to find the directory-
local variables. The name of the file is .dir-locals.el2. A file by that name in a
directory causes Emacs to apply its settings to any file in that directory or any of its
subdirectories (optionally, you can exclude subdirectories; see below). If some of the
subdirectories have their own .dir-locals.el files, Emacs uses the settings from the
deepest file it finds starting from the file’s directory and moving up the directory tree.
The file specifies local variables as a specially formatted list; see Section “Per-directory
Local Variables” in The GNU Emacs Manual, for more details.

[Function]hack-dir-local-variables
This function reads the .dir-locals.el file and stores the directory-local variables
in file-local-variables-alist that is local to the buffer visiting any file in the
directory, without applying them. It also stores the directory-local settings in dir-

locals-class-alist, where it defines a special class for the directory in which .dir-

locals.el file was found. This function works by calling dir-locals-set-class-

variables and dir-locals-set-directory-class, described below.

[Function]hack-dir-local-variables-non-file-buffer
This function looks for directory-local variables, and immediately applies them in
the current buffer. It is intended to be called in the mode commands for non-file

2 The MS-DOS version of Emacs uses _dir-locals.el instead, due to limitations of the DOS filesystems.

Chapter 11: Variables 164

buffers, such as Dired buffers, to let them obey directory-local variable settings. For
non-file buffers, Emacs looks for directory-local variables in default-directory and
its parent directories.

[Function]dir-locals-set-class-variables class variables
This function defines a set of variable settings for the named class, which is a symbol.
You can later assign the class to one or more directories, and Emacs will apply those
variable settings to all files in those directories. The list in variables can be of one of
the two forms: (major-mode . alist) or (directory . list). With the first form,
if the file’s buffer turns on a mode that is derived from major-mode, then the all
the variables in the associated alist are applied; alist should be of the form (name

. value). A special value nil for major-mode means the settings are applicable to
any mode. In alist, you can use a special name: subdirs. If the associated value
is nil, the alist is only applied to files in the relevant directory, not to those in any
subdirectories.

With the second form of variables, if directory is the initial substring of the file’s
directory, then list is applied recursively by following the above rules; list should be
of one of the two forms accepted by this function in variables.

[Function]dir-locals-set-directory-class directory class &optional mtime
This function assigns class to all the files in directory and its subdirectories. There-
after, all the variable settings specified for class will be applied to any visited file in
directory and its children. class must have been already defined by dir-locals-set-

class-variables.

Emacs uses this function internally when it loads directory variables from a .dir-

locals.el file. In that case, the optional argument mtime holds the file modification
time (as returned by file-attributes). Emacs uses this time to check stored local
variables are still valid. If you are assigning a class directly, not via a file, this
argument should be nil.

[Variable]dir-locals-class-alist
This alist holds the class symbols and the associated variable settings. It is updated
by dir-locals-set-class-variables.

[Variable]dir-locals-directory-cache
This alist holds directory names, their assigned class names, and modification times
of the associated directory local variables file (if there is one). The function dir-

locals-set-directory-class updates this list.

11.13 Variable Aliases

It is sometimes useful to make two variables synonyms, so that both variables always have
the same value, and changing either one also changes the other. Whenever you change the
name of a variable—either because you realize its old name was not well chosen, or because
its meaning has partly changed—it can be useful to keep the old name as an alias of the
new one for compatibility. You can do this with defvaralias.

[Function]defvaralias new-alias base-variable &optional docstring
This function defines the symbol new-alias as a variable alias for symbol base-variable.
This means that retrieving the value of new-alias returns the value of base-variable,

Chapter 11: Variables 165

and changing the value of new-alias changes the value of base-variable. The two
aliased variable names always share the same value and the same bindings.

If the docstring argument is non-nil, it specifies the documentation for new-alias;
otherwise, the alias gets the same documentation as base-variable has, if any, unless
base-variable is itself an alias, in which case new-alias gets the documentation of the
variable at the end of the chain of aliases.

This function returns base-variable.

Variable aliases are convenient for replacing an old name for a variable with a new name.
make-obsolete-variable declares that the old name is obsolete and therefore that it may
be removed at some stage in the future.

[Function]make-obsolete-variable obsolete-name current-name when &optional
access-type

This function makes the byte compiler warn that the variable obsolete-name is ob-
solete. If current-name is a symbol, it is the variable’s new name; then the warning
message says to use current-name instead of obsolete-name. If current-name is a
string, this is the message and there is no replacement variable. when should be a
string indicating when the variable was first made obsolete (usually a version number
string).

The optional argument access-type, if non-nil, should should specify the kind of
access that will trigger obsolescence warnings; it can be either get or set.

You can make two variables synonyms and declare one obsolete at the same time using
the macro define-obsolete-variable-alias.

[Macro]define-obsolete-variable-alias obsolete-name current-name
&optional when docstring

This macro marks the variable obsolete-name as obsolete and also makes it an alias
for the variable current-name. It is equivalent to the following:

(defvaralias obsolete-name current-name docstring)

(make-obsolete-variable obsolete-name current-name when)

[Function]indirect-variable variable
This function returns the variable at the end of the chain of aliases of variable. If
variable is not a symbol, or if variable is not defined as an alias, the function returns
variable.

This function signals a cyclic-variable-indirection error if there is a loop in the
chain of symbols.

(defvaralias ’foo ’bar)

(indirect-variable ’foo)

⇒ bar

(indirect-variable ’bar)

⇒ bar

(setq bar 2)

bar

⇒ 2

Chapter 11: Variables 166

foo

⇒ 2

(setq foo 0)

bar

⇒ 0

foo

⇒ 0

11.14 Variables with Restricted Values

Ordinary Lisp variables can be assigned any value that is a valid Lisp object. However,
certain Lisp variables are not defined in Lisp, but in C. Most of these variables are defined
in the C code using DEFVAR_LISP. Like variables defined in Lisp, these can take on any
value. However, some variables are defined using DEFVAR_INT or DEFVAR_BOOL. See [Writing
Emacs Primitives], page 991, in particular the description of functions of the type syms_

of_filename, for a brief discussion of the C implementation.

Variables of type DEFVAR_BOOL can only take on the values nil or t. Attempting to
assign them any other value will set them to t:

(let ((display-hourglass 5))

display-hourglass)

⇒ t

[Variable]byte-boolean-vars
This variable holds a list of all variables of type DEFVAR_BOOL.

Variables of type DEFVAR_INT can only take on integer values. Attempting to assign
them any other value will result in an error:

(setq undo-limit 1000.0)

error Wrong type argument: integerp, 1000.0

11.15 Generalized Variables

A generalized variable or place form is one of the many places in Lisp memory where values
can be stored. The simplest place form is a regular Lisp variable. But the cars and cdrs
of lists, elements of arrays, properties of symbols, and many other locations are also places
where Lisp values are stored.

Generalized variables are analogous to “lvalues” in the C language, where ‘x = a[i]’ gets
an element from an array and ‘a[i] = x’ stores an element using the same notation. Just as
certain forms like a[i] can be lvalues in C, there is a set of forms that can be generalized
variables in Lisp.

11.15.1 The setf Macro

The setf macro is the most basic way to operate on generalized variables. The setf form
is like setq, except that it accepts arbitrary place forms on the left side rather than just
symbols. For example, (setf (car a) b) sets the car of a to b, doing the same operation
as (setcar a b), but without having to remember two separate functions for setting and
accessing every type of place.

Chapter 11: Variables 167

[Macro]setf [place form]. . .
This macro evaluates form and stores it in place, which must be a valid generalized
variable form. If there are several place and form pairs, the assignments are done
sequentially just as with setq. setf returns the value of the last form.

The following Lisp forms will work as generalized variables, and so may appear in the
place argument of setf:

• A symbol naming a variable. In other words, (setf x y) is exactly equivalent to (setq
x y), and setq itself is strictly speaking redundant given that setf exists. Many
programmers continue to prefer setq for setting simple variables, though, purely for
stylistic or historical reasons. The macro (setf x y) actually expands to (setq x y),
so there is no performance penalty for using it in compiled code.

• A call to any of the following standard Lisp functions:
aref cddr symbol-function

car elt symbol-plist

caar get symbol-value

cadr gethash

cdr nth

cdar nthcdr

• A call to any of the following Emacs-specific functions:
default-value process-get

frame-parameter process-sentinel

terminal-parameter window-buffer

keymap-parent window-display-table

match-data window-dedicated-p

overlay-get window-hscroll

overlay-start window-parameter

overlay-end window-point

process-buffer window-start

process-filter

setf signals an error if you pass a place form that it does not know how to handle.

Note that for nthcdr, the list argument of the function must itself be a valid place form.
For example, (setf (nthcdr 0 foo) 7) will set foo itself to 7.

The macros push (see Section 5.5 [List Variables], page 72) and pop (see Section 5.3
[List Elements], page 65) can manipulate generalized variables, not just lists. (pop place)

removes and returns the first element of the list stored in place. It is analogous to (prog1

(car place) (setf place (cdr place))), except that it takes care to evaluate all subforms
only once. (push x place) inserts x at the front of the list stored in place. It is analogous
to (setf place (cons x place)), except for evaluation of the subforms. Note that push
and pop on an nthcdr place can be used to insert or delete at any position in a list.

The cl-lib library defines various extensions for generalized variables, including addi-
tional setf places. See Section “Generalized Variables” in Common Lisp Extensions.

11.15.2 Defining new setf forms

This section describes how to define new forms that setf can operate on.

[Macro]gv-define-simple-setter name setter &optional fix-return
This macro enables you to easily define setf methods for simple cases. name is
the name of a function, macro, or special form. You can use this macro whenever

Chapter 11: Variables 168

name has a directly corresponding setter function that updates it, e.g., (gv-define-
simple-setter car setcar).

This macro translates a call of the form

(setf (name args...) value)

into

(setter args... value)

Such a setf call is documented to return value. This is no problem with, e.g., car
and setcar, because setcar returns the value that it set. If your setter function
does not return value, use a non-nil value for the fix-return argument of gv-define-
simple-setter. This expands into something equivalent to

(let ((temp value))

(setter args... temp)

temp)

so ensuring that it returns the correct result.

[Macro]gv-define-setter name arglist &rest body
This macro allows for more complex setf expansions than the previous form. You
may need to use this form, for example, if there is no simple setter function to call,
or if there is one but it requires different arguments to the place form.

This macro expands the form (setf (name args...) value) by first binding the
setf argument forms (value args...) according to arglist, and then executing body.
body should return a Lisp form that does the assignment, and finally returns the value
that was set. An example of using this macro is:

(gv-define-setter caar (val x) ‘(setcar (car ,x) ,val))

For more control over the expansion, see the macro gv-define-expander. The macro
gv-letplace can be useful in defining macros that perform similarly to setf; for example,
the incf macro of Common Lisp. Consult the source file gv.el for more details.

Common Lisp note: Common Lisp defines another way to specify the setf

behavior of a function, namely “setf functions”, whose names are lists (setf
name) rather than symbols. For example, (defun (setf foo) ...) defines the
function that is used when setf is applied to foo. Emacs does not support
this. It is a compile-time error to use setf on a form that has not already had
an appropriate expansion defined. In Common Lisp, this is not an error since
the function (setf func) might be defined later.

Chapter 12: Functions 169

12 Functions

A Lisp program is composed mainly of Lisp functions. This chapter explains what functions
are, how they accept arguments, and how to define them.

12.1 What Is a Function?

In a general sense, a function is a rule for carrying out a computation given input values
called arguments. The result of the computation is called the value or return value of the
function. The computation can also have side effects, such as lasting changes in the values
of variables or the contents of data structures.

In most computer languages, every function has a name. But in Lisp, a function in
the strictest sense has no name: it is an object which can optionally be associated with a
symbol (e.g., car) that serves as the function name. See Section 12.3 [Function Names],
page 174. When a function has been given a name, we usually also refer to that symbol as
a “function” (e.g., we refer to “the function car”). In this manual, the distinction between
a function name and the function object itself is usually unimportant, but we will take note
wherever it is relevant.

Certain function-like objects, called special forms and macros, also accept arguments to
carry out computations. However, as explained below, these are not considered functions
in Emacs Lisp.

Here are important terms for functions and function-like objects:

lambda expression
A function (in the strict sense, i.e., a function object) which is written in Lisp.
These are described in the following section.

primitive A function which is callable from Lisp but is actually written in C. Primitives
are also called built-in functions, or subrs. Examples include functions like
car and append. In addition, all special forms (see below) are also considered
primitives.

Usually, a function is implemented as a primitive because it is a fundamental
part of Lisp (e.g., car), or because it provides a low-level interface to operating
system services, or because it needs to run fast. Unlike functions defined in
Lisp, primitives can be modified or added only by changing the C sources and
recompiling Emacs. See Section E.5 [Writing Emacs Primitives], page 988.

special form
A primitive that is like a function but does not evaluate all of its arguments in
the usual way. It may evaluate only some of the arguments, or may evaluate
them in an unusual order, or several times. Examples include if, and, and
while. See Section 9.1.7 [Special Forms], page 116.

macro A construct defined in Lisp, which differs from a function in that it translates a
Lisp expression into another expression which is to be evaluated instead of the
original expression. Macros enable Lisp programmers to do the sorts of things
that special forms can do. See Chapter 13 [Macros], page 188.

Chapter 12: Functions 170

command An object which can be invoked via the command-execute primitive, usually due
to the user typing in a key sequence bound to that command. See Section 21.3
[Interactive Call], page 327. A command is usually a function; if the function
is written in Lisp, it is made into a command by an interactive form in the
function definition (see Section 21.2 [Defining Commands], page 322). Com-
mands that are functions can also be called from Lisp expressions, just like
other functions.

Keyboard macros (strings and vectors) are commands also, even though they
are not functions. See Section 21.16 [Keyboard Macros], page 364. We say that
a symbol is a command if its function cell contains a command (see Section 8.1
[Symbol Components], page 104); such a named command can be invoked with
M-x.

closure A function object that is much like a lambda expression, except that it also en-
closes an “environment” of lexical variable bindings. See Section 12.9 [Closures],
page 182.

byte-code function
A function that has been compiled by the byte compiler. See Section 2.3.16
[Byte-Code Type], page 23.

autoload object
A place-holder for a real function. If the autoload object is called, Emacs loads
the file containing the definition of the real function, and then calls the real
function. See Section 15.5 [Autoload], page 220.

You can use the function functionp to test if an object is a function:

[Function]functionp object
This function returns t if object is any kind of function, i.e., can be passed to funcall.
Note that functionp returns t for symbols that are function names, and returns nil
for special forms.

Unlike functionp, the next three functions do not treat a symbol as its function definition.

[Function]subrp object
This function returns t if object is a built-in function (i.e., a Lisp primitive).

(subrp ’message) ; message is a symbol,
⇒ nil ; not a subr object.

(subrp (symbol-function ’message))

⇒ t

[Function]byte-code-function-p object
This function returns t if object is a byte-code function. For example:

(byte-code-function-p (symbol-function ’next-line))

⇒ t

[Function]subr-arity subr
This function provides information about the argument list of a primitive, subr. The
returned value is a pair (min . max). min is the minimum number of args. max is
the maximum number or the symbol many, for a function with &rest arguments, or
the symbol unevalled if subr is a special form.

Chapter 12: Functions 171

12.2 Lambda Expressions

A lambda expression is a function object written in Lisp. Here is an example:

(lambda (x)

"Return the hyperbolic cosine of X."

(* 0.5 (+ (exp x) (exp (- x)))))

In Emacs Lisp, such a list is valid as an expression—it evaluates to itself. But its main use
is not to be evaluated as an expression, but to be called as a function.

A lambda expression, by itself, has no name; it is an anonymous function. Although
lambda expressions can be used this way (see Section 12.7 [Anonymous Functions],
page 179), they are more commonly associated with symbols to make named functions (see
Section 12.3 [Function Names], page 174). Before going into these details, the following
subsections describe the components of a lambda expression and what they do.

12.2.1 Components of a Lambda Expression

A lambda expression is a list that looks like this:

(lambda (arg-variables...)

[documentation-string]

[interactive-declaration]

body-forms...)

The first element of a lambda expression is always the symbol lambda. This indicates
that the list represents a function. The reason functions are defined to start with lambda

is so that other lists, intended for other uses, will not accidentally be valid as functions.

The second element is a list of symbols—the argument variable names. This is called the
lambda list. When a Lisp function is called, the argument values are matched up against
the variables in the lambda list, which are given local bindings with the values provided.
See Section 11.3 [Local Variables], page 142.

The documentation string is a Lisp string object placed within the function definition
to describe the function for the Emacs help facilities. See Section 12.2.4 [Function Docu-
mentation], page 173.

The interactive declaration is a list of the form (interactive code-string). This
declares how to provide arguments if the function is used interactively. Functions with
this declaration are called commands; they can be called using M-x or bound to a key.
Functions not intended to be called in this way should not have interactive declarations.
See Section 21.2 [Defining Commands], page 322, for how to write an interactive declaration.

The rest of the elements are the body of the function: the Lisp code to do the work of
the function (or, as a Lisp programmer would say, “a list of Lisp forms to evaluate”). The
value returned by the function is the value returned by the last element of the body.

12.2.2 A Simple Lambda Expression Example

Consider the following example:

(lambda (a b c) (+ a b c))

We can call this function by passing it to funcall, like this:

(funcall (lambda (a b c) (+ a b c))

1 2 3)

Chapter 12: Functions 172

This call evaluates the body of the lambda expression with the variable a bound to 1, b
bound to 2, and c bound to 3. Evaluation of the body adds these three numbers, producing
the result 6; therefore, this call to the function returns the value 6.

Note that the arguments can be the results of other function calls, as in this example:

(funcall (lambda (a b c) (+ a b c))

1 (* 2 3) (- 5 4))

This evaluates the arguments 1, (* 2 3), and (- 5 4) from left to right. Then it applies
the lambda expression to the argument values 1, 6 and 1 to produce the value 8.

As these examples show, you can use a form with a lambda expression as its car to make
local variables and give them values. In the old days of Lisp, this technique was the only
way to bind and initialize local variables. But nowadays, it is clearer to use the special form
let for this purpose (see Section 11.3 [Local Variables], page 142). Lambda expressions
are mainly used as anonymous functions for passing as arguments to other functions (see
Section 12.7 [Anonymous Functions], page 179), or stored as symbol function definitions to
produce named functions (see Section 12.3 [Function Names], page 174).

12.2.3 Other Features of Argument Lists

Our simple sample function, (lambda (a b c) (+ a b c)), specifies three argument vari-
ables, so it must be called with three arguments: if you try to call it with only two arguments
or four arguments, you get a wrong-number-of-arguments error.

It is often convenient to write a function that allows certain arguments to be omitted.
For example, the function substring accepts three arguments—a string, the start index
and the end index—but the third argument defaults to the length of the string if you omit
it. It is also convenient for certain functions to accept an indefinite number of arguments,
as the functions list and + do.

To specify optional arguments that may be omitted when a function is called, simply
include the keyword &optional before the optional arguments. To specify a list of zero or
more extra arguments, include the keyword &rest before one final argument.

Thus, the complete syntax for an argument list is as follows:

(required-vars...

[&optional optional-vars...]
[&rest rest-var])

The square brackets indicate that the &optional and &rest clauses, and the variables that
follow them, are optional.

A call to the function requires one actual argument for each of the required-vars. There
may be actual arguments for zero or more of the optional-vars, and there cannot be any
actual arguments beyond that unless the lambda list uses &rest. In that case, there may
be any number of extra actual arguments.

If actual arguments for the optional and rest variables are omitted, then they always
default to nil. There is no way for the function to distinguish between an explicit argument
of nil and an omitted argument. However, the body of the function is free to consider nil
an abbreviation for some other meaningful value. This is what substring does; nil as the
third argument to substring means to use the length of the string supplied.

Chapter 12: Functions 173

Common Lisp note: Common Lisp allows the function to specify what default
value to use when an optional argument is omitted; Emacs Lisp always uses
nil. Emacs Lisp does not support “supplied-p” variables that tell you whether
an argument was explicitly passed.

For example, an argument list that looks like this:

(a b &optional c d &rest e)

binds a and b to the first two actual arguments, which are required. If one or two more
arguments are provided, c and d are bound to them respectively; any arguments after the
first four are collected into a list and e is bound to that list. If there are only two arguments,
c is nil; if two or three arguments, d is nil; if four arguments or fewer, e is nil.

There is no way to have required arguments following optional ones—it would not make
sense. To see why this must be so, suppose that c in the example were optional and d

were required. Suppose three actual arguments are given; which variable would the third
argument be for? Would it be used for the c, or for d? One can argue for both possibilities.
Similarly, it makes no sense to have any more arguments (either required or optional) after
a &rest argument.

Here are some examples of argument lists and proper calls:

(funcall (lambda (n) (1+ n)) ; One required:
1) ; requires exactly one argument.

⇒ 2

(funcall (lambda (n &optional n1) ; One required and one optional:
(if n1 (+ n n1) (1+ n))) ; 1 or 2 arguments.

1 2)

⇒ 3

(funcall (lambda (n &rest ns) ; One required and one rest:
(+ n (apply ’+ ns))) ; 1 or more arguments.

1 2 3 4 5)

⇒ 15

12.2.4 Documentation Strings of Functions

A lambda expression may optionally have a documentation string just after the lambda
list. This string does not affect execution of the function; it is a kind of comment, but
a systematized comment which actually appears inside the Lisp world and can be used
by the Emacs help facilities. See Chapter 24 [Documentation], page 459, for how the
documentation string is accessed.

It is a good idea to provide documentation strings for all the functions in your program,
even those that are called only from within your program. Documentation strings are like
comments, except that they are easier to access.

The first line of the documentation string should stand on its own, because apropos

displays just this first line. It should consist of one or two complete sentences that summarize
the function’s purpose.

The start of the documentation string is usually indented in the source file, but since
these spaces come before the starting double-quote, they are not part of the string. Some
people make a practice of indenting any additional lines of the string so that the text lines
up in the program source. That is a mistake. The indentation of the following lines is inside

Chapter 12: Functions 174

the string; what looks nice in the source code will look ugly when displayed by the help
commands.

You may wonder how the documentation string could be optional, since there are re-
quired components of the function that follow it (the body). Since evaluation of a string
returns that string, without any side effects, it has no effect if it is not the last form in the
body. Thus, in practice, there is no confusion between the first form of the body and the
documentation string; if the only body form is a string then it serves both as the return
value and as the documentation.

The last line of the documentation string can specify calling conventions different from
the actual function arguments. Write text like this:

\(fn arglist)

following a blank line, at the beginning of the line, with no newline following it inside the
documentation string. (The ‘\’ is used to avoid confusing the Emacs motion commands.)
The calling convention specified in this way appears in help messages in place of the one
derived from the actual arguments of the function.

This feature is particularly useful for macro definitions, since the arguments written in
a macro definition often do not correspond to the way users think of the parts of the macro
call.

12.3 Naming a Function

A symbol can serve as the name of a function. This happens when the symbol’s function
cell (see Section 8.1 [Symbol Components], page 104) contains a function object (e.g., a
lambda expression). Then the symbol itself becomes a valid, callable function, equivalent
to the function object in its function cell.

The contents of the function cell are also called the symbol’s function definition. The
procedure of using a symbol’s function definition in place of the symbol is called symbol
function indirection; see Section 9.1.4 [Function Indirection], page 114. If you have not
given a symbol a function definition, its function cell is said to be void, and it cannot be
used as a function.

In practice, nearly all functions have names, and are referred to by their names. You can
create a named Lisp function by defining a lambda expression and putting it in a function
cell (see Section 12.8 [Function Cells], page 181). However, it is more common to use the
defun special form, described in the next section.

We give functions names because it is convenient to refer to them by their names in
Lisp expressions. Also, a named Lisp function can easily refer to itself—it can be recursive.
Furthermore, primitives can only be referred to textually by their names, since primitive
function objects (see Section 2.3.15 [Primitive Function Type], page 22) have no read syntax.

A function need not have a unique name. A given function object usually appears in
the function cell of only one symbol, but this is just a convention. It is easy to store it in
several symbols using fset; then each of the symbols is a valid name for the same function.

Note that a symbol used as a function name may also be used as a variable; these two
uses of a symbol are independent and do not conflict. (This is not the case in some dialects
of Lisp, like Scheme.)

Chapter 12: Functions 175

12.4 Defining Functions

We usually give a name to a function when it is first created. This is called defining a
function, and it is done with the defun macro.

[Macro]defun name args [doc] [declare] [interactive] body. . .
defun is the usual way to define new Lisp functions. It defines the symbol name as
a function with argument list args and body forms given by body. Neither name nor
args should be quoted.

doc, if present, should be a string specifying the function’s documentation string
(see Section 12.2.4 [Function Documentation], page 173). declare, if present, should
be a declare form specifying function metadata (see Section 12.12 [Declare Form],
page 184). interactive, if present, should be an interactive form specifying how the
function is to be called interactively (see Section 21.3 [Interactive Call], page 327).

The return value of defun is undefined.

Here are some examples:

(defun foo () 5)

(foo)

⇒ 5

(defun bar (a &optional b &rest c)

(list a b c))

(bar 1 2 3 4 5)

⇒ (1 2 (3 4 5))

(bar 1)

⇒ (1 nil nil)

(bar)

error Wrong number of arguments.

(defun capitalize-backwards ()

"Upcase the last letter of the word at point."

(interactive)

(backward-word 1)

(forward-word 1)

(backward-char 1)

(capitalize-word 1))

Be careful not to redefine existing functions unintentionally. defun redefines even
primitive functions such as car without any hesitation or notification. Emacs does
not prevent you from doing this, because redefining a function is sometimes done de-
liberately, and there is no way to distinguish deliberate redefinition from unintentional
redefinition.

[Function]defalias name definition &optional doc
This function defines the symbol name as a function, with definition definition (which
can be any valid Lisp function). Its return value is undefined.

If doc is non-nil, it becomes the function documentation of name. Otherwise, any
documentation provided by definition is used.

Chapter 12: Functions 176

The proper place to use defalias is where a specific function name is being defined—
especially where that name appears explicitly in the source file being loaded. This
is because defalias records which file defined the function, just like defun (see
Section 15.9 [Unloading], page 227).

By contrast, in programs that manipulate function definitions for other purposes, it
is better to use fset, which does not keep such records. See Section 12.8 [Function
Cells], page 181.

You cannot create a new primitive function with defun or defalias, but you can use
them to change the function definition of any symbol, even one such as car or x-popup-
menu whose normal definition is a primitive. However, this is risky: for instance, it is next
to impossible to redefine car without breaking Lisp completely. Redefining an obscure
function such as x-popup-menu is less dangerous, but it still may not work as you expect. If
there are calls to the primitive from C code, they call the primitive’s C definition directly,
so changing the symbol’s definition will have no effect on them.

See also defsubst, which defines a function like defun and tells the Lisp compiler to
perform inline expansion on it. See Section 12.11 [Inline Functions], page 183.

12.5 Calling Functions

Defining functions is only half the battle. Functions don’t do anything until you call them,
i.e., tell them to run. Calling a function is also known as invocation.

The most common way of invoking a function is by evaluating a list. For example,
evaluating the list (concat "a" "b") calls the function concat with arguments "a" and
"b". See Chapter 9 [Evaluation], page 112, for a description of evaluation.

When you write a list as an expression in your program, you specify which function to
call, and how many arguments to give it, in the text of the program. Usually that’s just
what you want. Occasionally you need to compute at run time which function to call. To
do that, use the function funcall. When you also need to determine at run time how many
arguments to pass, use apply.

[Function]funcall function &rest arguments
funcall calls function with arguments, and returns whatever function returns.

Since funcall is a function, all of its arguments, including function, are evaluated
before funcall is called. This means that you can use any expression to obtain
the function to be called. It also means that funcall does not see the expressions
you write for the arguments, only their values. These values are not evaluated a
second time in the act of calling function; the operation of funcall is like the normal
procedure for calling a function, once its arguments have already been evaluated.

The argument function must be either a Lisp function or a primitive function. Special
forms and macros are not allowed, because they make sense only when given the
“unevaluated” argument expressions. funcall cannot provide these because, as we
saw above, it never knows them in the first place.

(setq f ’list)

⇒ list

(funcall f ’x ’y ’z)

⇒ (x y z)

Chapter 12: Functions 177

(funcall f ’x ’y ’(z))

⇒ (x y (z))

(funcall ’and t nil)

error Invalid function: #<subr and>

Compare these examples with the examples of apply.

[Function]apply function &rest arguments
apply calls function with arguments, just like funcall but with one difference: the
last of arguments is a list of objects, which are passed to function as separate ar-
guments, rather than a single list. We say that apply spreads this list so that each
individual element becomes an argument.

apply returns the result of calling function. As with funcall, function must either
be a Lisp function or a primitive function; special forms and macros do not make
sense in apply.

(setq f ’list)

⇒ list

(apply f ’x ’y ’z)

error Wrong type argument: listp, z

(apply ’+ 1 2 ’(3 4))

⇒ 10

(apply ’+ ’(1 2 3 4))

⇒ 10

(apply ’append ’((a b c) nil (x y z) nil))

⇒ (a b c x y z)

For an interesting example of using apply, see [Definition of mapcar], page 178.

Sometimes it is useful to fix some of the function’s arguments at certain values, and
leave the rest of arguments for when the function is actually called. The act of fixing some
of the function’s arguments is called partial application of the function1. The result is a
new function that accepts the rest of arguments and calls the original function with all the
arguments combined.

Here’s how to do partial application in Emacs Lisp:

[Function]apply-partially func &rest args
This function returns a new function which, when called, will call func with the list
of arguments composed from args and additional arguments specified at the time of
the call. If func accepts n arguments, then a call to apply-partially with m < n

arguments will produce a new function of n - m arguments.

Here’s how we could define the built-in function 1+, if it didn’t exist, using apply-

partially and +, another built-in function:

(defalias ’1+ (apply-partially ’+ 1)

"Increment argument by one.")

(1+ 10)

⇒ 11

1 This is related to, but different from currying, which transforms a function that takes multiple arguments
in such a way that it can be called as a chain of functions, each one with a single argument.

Chapter 12: Functions 178

It is common for Lisp functions to accept functions as arguments or find them in data
structures (especially in hook variables and property lists) and call them using funcall or
apply. Functions that accept function arguments are often called functionals.

Sometimes, when you call a functional, it is useful to supply a no-op function as the
argument. Here are two different kinds of no-op function:

[Function]identity arg
This function returns arg and has no side effects.

[Function]ignore &rest args
This function ignores any arguments and returns nil.

Some functions are user-visible commands, which can be called interactively (usually by
a key sequence). It is possible to invoke such a command exactly as though it was called
interactively, by using the call-interactively function. See Section 21.3 [Interactive
Call], page 327.

12.6 Mapping Functions

A mapping function applies a given function (not a special form or macro) to each el-
ement of a list or other collection. Emacs Lisp has several such functions; this section
describes mapcar, mapc, and mapconcat, which map over a list. See [Definition of map-
atoms], page 108, for the function mapatoms which maps over the symbols in an obarray.
See [Definition of maphash], page 102, for the function maphash which maps over key/value
associations in a hash table.

These mapping functions do not allow char-tables because a char-table is a sparse array
whose nominal range of indices is very large. To map over a char-table in a way that
deals properly with its sparse nature, use the function map-char-table (see Section 6.6
[Char-Tables], page 94).

[Function]mapcar function sequence
mapcar applies function to each element of sequence in turn, and returns a list of the
results.

The argument sequence can be any kind of sequence except a char-table; that is, a
list, a vector, a bool-vector, or a string. The result is always a list. The length of the
result is the same as the length of sequence. For example:

(mapcar ’car ’((a b) (c d) (e f)))

⇒ (a c e)

(mapcar ’1+ [1 2 3])

⇒ (2 3 4)

(mapcar ’string "abc")

⇒ ("a" "b" "c")

;; Call each function in my-hooks.
(mapcar ’funcall my-hooks)

Chapter 12: Functions 179

(defun mapcar* (function &rest args)

"Apply FUNCTION to successive cars of all ARGS.

Return the list of results."

;; If no list is exhausted,
(if (not (memq nil args))

;; apply function to cars.
(cons (apply function (mapcar ’car args))

(apply ’mapcar* function

;; Recurse for rest of elements.
(mapcar ’cdr args)))))

(mapcar* ’cons ’(a b c) ’(1 2 3 4))

⇒ ((a . 1) (b . 2) (c . 3))

[Function]mapc function sequence
mapc is like mapcar except that function is used for side-effects only—the values it
returns are ignored, not collected into a list. mapc always returns sequence.

[Function]mapconcat function sequence separator
mapconcat applies function to each element of sequence: the results, which must
be strings, are concatenated. Between each pair of result strings, mapconcat inserts
the string separator. Usually separator contains a space or comma or other suitable
punctuation.

The argument function must be a function that can take one argument and return a
string. The argument sequence can be any kind of sequence except a char-table; that
is, a list, a vector, a bool-vector, or a string.

(mapconcat ’symbol-name

’(The cat in the hat)

" ")

⇒ "The cat in the hat"

(mapconcat (function (lambda (x) (format "%c" (1+ x))))

"HAL-8000"

"")

⇒ "IBM.9111"

12.7 Anonymous Functions

Although functions are usually defined with defun and given names at the same time,
it is sometimes convenient to use an explicit lambda expression—an anonymous function.
Anonymous functions are valid wherever function names are. They are often assigned as
variable values, or as arguments to functions; for instance, you might pass one as the function
argument to mapcar, which applies that function to each element of a list (see Section 12.6
[Mapping Functions], page 178). See [describe-symbols example], page 461, for a realistic
example of this.

When defining a lambda expression that is to be used as an anonymous function, you
can in principle use any method to construct the list. But typically you should use the
lambda macro, or the function special form, or the #’ read syntax:

Chapter 12: Functions 180

[Macro]lambda args [doc] [interactive] body. . .
This macro returns an anonymous function with argument list args, documentation
string doc (if any), interactive spec interactive (if any), and body forms given by
body.

In effect, this macro makes lambda forms “self-quoting”: evaluating a form whose
car is lambda yields the form itself:

(lambda (x) (* x x))

⇒ (lambda (x) (* x x))

The lambda form has one other effect: it tells the Emacs evaluator and byte-compiler
that its argument is a function, by using function as a subroutine (see below).

[Special Form]function function-object
This special form returns function-object without evaluating it. In this, it is similar
to quote (see Section 9.2 [Quoting], page 118). But unlike quote, it also serves as a
note to the Emacs evaluator and byte-compiler that function-object is intended to be
used as a function. Assuming function-object is a valid lambda expression, this has
two effects:

• When the code is byte-compiled, function-object is compiled into a byte-code
function object (see Chapter 16 [Byte Compilation], page 229).

• When lexical binding is enabled, function-object is converted into a closure. See
Section 12.9 [Closures], page 182.

The read syntax #’ is a short-hand for using function. The following forms are all
equivalent:

(lambda (x) (* x x))

(function (lambda (x) (* x x)))

#’(lambda (x) (* x x))

In the following example, we define a change-property function that takes a function
as its third argument, followed by a double-property function that makes use of change-
property by passing it an anonymous function:

(defun change-property (symbol prop function)

(let ((value (get symbol prop)))

(put symbol prop (funcall function value))))

(defun double-property (symbol prop)

(change-property symbol prop (lambda (x) (* 2 x))))

Note that we do not quote the lambda form.

If you compile the above code, the anonymous function is also compiled. This would not
happen if, say, you had constructed the anonymous function by quoting it as a list:

(defun double-property (symbol prop)

(change-property symbol prop (lambda (x) (* 2 x))))

In that case, the anonymous function is kept as a lambda expression in the compiled code.
The byte-compiler cannot assume this list is a function, even though it looks like one, since
it does not know that change-property intends to use it as a function.

Chapter 12: Functions 181

12.8 Accessing Function Cell Contents

The function definition of a symbol is the object stored in the function cell of the symbol.
The functions described here access, test, and set the function cell of symbols.

See also the function indirect-function. See [Definition of indirect-function], page 115.

[Function]symbol-function symbol
This returns the object in the function cell of symbol. If the symbol’s function cell is
void, a void-function error is signaled.

This function does not check that the returned object is a legitimate function.

(defun bar (n) (+ n 2))

(symbol-function ’bar)

⇒ (lambda (n) (+ n 2))

(fset ’baz ’bar)

⇒ bar

(symbol-function ’baz)

⇒ bar

If you have never given a symbol any function definition, we say that that symbol’s
function cell is void. In other words, the function cell does not have any Lisp object in it.
If you try to call such a symbol as a function, it signals a void-function error.

Note that void is not the same as nil or the symbol void. The symbols nil and void

are Lisp objects, and can be stored into a function cell just as any other object can be (and
they can be valid functions if you define them in turn with defun). A void function cell
contains no object whatsoever.

You can test the voidness of a symbol’s function definition with fboundp. After you have
given a symbol a function definition, you can make it void once more using fmakunbound.

[Function]fboundp symbol
This function returns t if the symbol has an object in its function cell, nil otherwise.
It does not check that the object is a legitimate function.

[Function]fmakunbound symbol
This function makes symbol’s function cell void, so that a subsequent attempt to
access this cell will cause a void-function error. It returns symbol. (See also
makunbound, in Section 11.4 [Void Variables], page 144.)

(defun foo (x) x)

(foo 1)

⇒1

(fmakunbound ’foo)

⇒ foo

(foo 1)

error Symbol’s function definition is void: foo

[Function]fset symbol definition
This function stores definition in the function cell of symbol. The result is definition.
Normally definition should be a function or the name of a function, but this is not
checked. The argument symbol is an ordinary evaluated argument.

Chapter 12: Functions 182

The primary use of this function is as a subroutine by constructs that define or alter
functions, like defadvice (see Chapter 17 [Advising Functions], page 239). (If defun
were not a primitive, it could be written as a Lisp macro using fset.) You can also
use it to give a symbol a function definition that is not a list, e.g., a keyboard macro
(see Section 21.16 [Keyboard Macros], page 364):

;; Define a named keyboard macro.
(fset ’kill-two-lines "\^u2\^k")

⇒ "\^u2\^k"

It you wish to use fset to make an alternate name for a function, consider using
defalias instead. See [Definition of defalias], page 175.

12.9 Closures

As explained in Section 11.9 [Variable Scoping], page 150, Emacs can optionally enable
lexical binding of variables. When lexical binding is enabled, any named function that you
create (e.g., with defun), as well as any anonymous function that you create using the
lambda macro or the function special form or the #’ syntax (see Section 12.7 [Anonymous
Functions], page 179), is automatically converted into a closure.

A closure is a function that also carries a record of the lexical environment that existed
when the function was defined. When it is invoked, any lexical variable references within
its definition use the retained lexical environment. In all other respects, closures behave
much like ordinary functions; in particular, they can be called in the same way as ordinary
functions.

See Section 11.9.3 [Lexical Binding], page 152, for an example of using a closure.

Currently, an Emacs Lisp closure object is represented by a list with the symbol closure
as the first element, a list representing the lexical environment as the second element, and
the argument list and body forms as the remaining elements:

;; lexical binding is enabled.
(lambda (x) (* x x))

⇒ (closure (t) (x) (* x x))

However, the fact that the internal structure of a closure is “exposed” to the rest of the
Lisp world is considered an internal implementation detail. For this reason, we recommend
against directly examining or altering the structure of closure objects.

12.10 Declaring Functions Obsolete

You can mark a named function as obsolete, meaning that it may be removed at some
point in the future. This causes Emacs to warn that the function is obsolete whenever it
byte-compiles code containing that function, and whenever it displays the documentation
for that function. In all other respects, an obsolete function behaves like any other function.

The easiest way to mark a function as obsolete is to put a (declare (obsolete ...))

form in the function’s defun definition. See Section 12.12 [Declare Form], page 184. Alter-
natively, you can use the make-obsolete function, described below.

A macro (see Chapter 13 [Macros], page 188) can also be marked obsolete with make-

obsolete; this has the same effects as for a function. An alias for a function or macro can

Chapter 12: Functions 183

also be marked as obsolete; this makes the alias itself obsolete, not the function or macro
which it resolves to.

[Function]make-obsolete obsolete-name current-name &optional when
This function marks obsolete-name as obsolete. obsolete-name should be a symbol
naming a function or macro, or an alias for a function or macro.

If current-name is a symbol, the warning message says to use current-name instead of
obsolete-name. current-name does not need to be an alias for obsolete-name; it can
be a different function with similar functionality. current-name can also be a string,
which serves as the warning message. The message should begin in lower case, and
end with a period. It can also be nil, in which case the warning message provides no
additional details.

If provided, when should be a string indicating when the function was first made
obsolete—for example, a date or a release number.

[Macro]define-obsolete-function-alias obsolete-name current-name
&optional when doc

This convenience macro marks the function obsolete-name obsolete and also defines
it as an alias for the function current-name. It is equivalent to the following:

(defalias obsolete-name current-name doc)

(make-obsolete obsolete-name current-name when)

In addition, you can mark a certain a particular calling convention for a function as
obsolete:

[Function]set-advertised-calling-convention function signature when
This function specifies the argument list signature as the correct way to call function.
This causes the Emacs byte compiler to issue a warning whenever it comes across an
Emacs Lisp program that calls function any other way (however, it will still allow the
code to be byte compiled). when should be a string indicating when the variable was
first made obsolete (usually a version number string).

For instance, in old versions of Emacs the sit-for function accepted three arguments,
like this

(sit-for seconds milliseconds nodisp)

However, calling sit-for this way is considered obsolete (see Section 21.10 [Waiting],
page 357). The old calling convention is deprecated like this:

(set-advertised-calling-convention

’sit-for ’(seconds &optional nodisp) "22.1")

12.11 Inline Functions

An inline function is a function that works just like an ordinary function, except for one
thing: when you byte-compile a call to the function (see Chapter 16 [Byte Compilation],
page 229), the function’s definition is expanded into the caller. To define an inline function,
use defsubst instead of defun.

Chapter 12: Functions 184

[Macro]defsubst name args [doc] [declare] [interactive] body. . .
This macro defines an inline function. Its syntax is exactly the same as defun (see
Section 12.4 [Defining Functions], page 175).

Making a function inline often makes its function calls run faster. But it also has
disadvantages. For one thing, it reduces flexibility; if you change the definition of the
function, calls already inlined still use the old definition until you recompile them.

Another disadvantage is that making a large function inline can increase the size of
compiled code both in files and in memory. Since the speed advantage of inline functions
is greatest for small functions, you generally should not make large functions inline.

Also, inline functions do not behave well with respect to debugging, tracing, and advising
(see Chapter 17 [Advising Functions], page 239). Since ease of debugging and the flexibility
of redefining functions are important features of Emacs, you should not make a function
inline, even if it’s small, unless its speed is really crucial, and you’ve timed the code to
verify that using defun actually has performance problems.

It’s possible to define a macro to expand into the same code that an inline function
would execute (see Chapter 13 [Macros], page 188). But the macro would be limited to
direct use in expressions—a macro cannot be called with apply, mapcar and so on. Also,
it takes some work to convert an ordinary function into a macro. To convert it into an
inline function is easy; just replace defun with defsubst. Since each argument of an inline
function is evaluated exactly once, you needn’t worry about how many times the body uses
the arguments, as you do for macros.

After an inline function is defined, its inline expansion can be performed later on in the
same file, just like macros.

12.12 The declare Form

declare is a special macro which can be used to add “meta” properties to a function or
macro: for example, marking it as obsolete, or giving its forms a special TAB indentation
convention in Emacs Lisp mode.

[Macro]declare specs. . .
This macro ignores its arguments and evaluates to nil; it has no run-time effect. How-
ever, when a declare form occurs in the declare argument of a defun or defsubst
function definition (see Section 12.4 [Defining Functions], page 175) or a defmacro

macro definition (see Section 13.4 [Defining Macros], page 190), it appends the prop-
erties specified by specs to the function or macro. This work is specially performed
by defun, defsubst, and defmacro.

Each element in specs should have the form (property args...), which should not
be quoted. These have the following effects:

(advertised-calling-convention signature when)

This acts like a call to set-advertised-calling-convention (see
Section 12.10 [Obsolete Functions], page 182); signature specifies the
correct argument list for calling the function or macro, and when should
be a string indicating when the variable was first made obsolete.

Chapter 12: Functions 185

(debug edebug-form-spec)

This is valid for macros only. When stepping through the macro with Ede-
bug, use edebug-form-spec. See Section 18.2.15.1 [Instrumenting Macro
Calls], page 271.

(doc-string n)

Use element number n, if any, as the documentation string.

(indent indent-spec)

Indent calls to this function or macro according to indent-spec. This
is typically used for macros, though it works for functions too. See
Section 13.6 [Indenting Macros], page 194.

(obsolete current-name when)

Mark the function or macro as obsolete, similar to a call to
make-obsolete (see Section 12.10 [Obsolete Functions], page 182).
current-name should be a symbol (in which case the warning message
says to use that instead), a string (specifying the warning message), or
nil (in which case the warning message gives no extra details). when
should be a string indicating when the function or macro was first made
obsolete.

12.13 Telling the Compiler that a Function is Defined

Byte-compiling a file often produces warnings about functions that the compiler doesn’t
know about (see Section 16.6 [Compiler Errors], page 234). Sometimes this indicates a real
problem, but usually the functions in question are defined in other files which would be
loaded if that code is run. For example, byte-compiling fortran.el used to warn:

In end of data:

fortran.el:2152:1:Warning: the function ‘gud-find-c-expr’ is not

known to be defined.

In fact, gud-find-c-expr is only used in the function that Fortran mode uses for the
local value of gud-find-expr-function, which is a callback from GUD; if it is called, the
GUD functions will be loaded. When you know that such a warning does not indicate a
real problem, it is good to suppress the warning. That makes new warnings which might
mean real problems more visible. You do that with declare-function.

All you need to do is add a declare-function statement before the first use of the
function in question:

(declare-function gud-find-c-expr "gud.el" nil)

This says that gud-find-c-expr is defined in gud.el (the ‘.el’ can be omitted). The
compiler takes for granted that that file really defines the function, and does not check.

The optional third argument specifies the argument list of gud-find-c-expr. In this
case, it takes no arguments (nil is different from not specifying a value). In other cases,
this might be something like (file &optional overwrite). You don’t have to specify the
argument list, but if you do the byte compiler can check that the calls match the declaration.

Chapter 12: Functions 186

[Macro]declare-function function file &optional arglist fileonly
Tell the byte compiler to assume that function is defined, with arguments arglist, and
that the definition should come from the file file. fileonly non-nil means only check
that file exists, not that it actually defines function.

To verify that these functions really are declared where declare-function says they
are, use check-declare-file to check all declare-function calls in one source file, or use
check-declare-directory check all the files in and under a certain directory.

These commands find the file that ought to contain a function’s definition using locate-
library; if that finds no file, they expand the definition file name relative to the directory
of the file that contains the declare-function call.

You can also say that a function is a primitive by specifying a file name ending in ‘.c’ or
‘.m’. This is useful only when you call a primitive that is defined only on certain systems.
Most primitives are always defined, so they will never give you a warning.

Sometimes a file will optionally use functions from an external package. If you prefix
the filename in the declare-function statement with ‘ext:’, then it will be checked if it
is found, otherwise skipped without error.

There are some function definitions that ‘check-declare’ does not understand (e.g.,
defstruct and some other macros). In such cases, you can pass a non-nil fileonly argument
to declare-function, meaning to only check that the file exists, not that it actually defines
the function. Note that to do this without having to specify an argument list, you should
set the arglist argument to t (because nil means an empty argument list, as opposed to
an unspecified one).

12.14 Determining whether a Function is Safe to Call

Some major modes, such as SES, call functions that are stored in user files. (See Info file
ses, node ‘Top’, for more information on SES.) User files sometimes have poor pedigrees—
you can get a spreadsheet from someone you’ve just met, or you can get one through email
from someone you’ve never met. So it is risky to call a function whose source code is stored
in a user file until you have determined that it is safe.

[Function]unsafep form &optional unsafep-vars
Returns nil if form is a safe Lisp expression, or returns a list that describes why
it might be unsafe. The argument unsafep-vars is a list of symbols known to have
temporary bindings at this point; it is mainly used for internal recursive calls. The
current buffer is an implicit argument, which provides a list of buffer-local bindings.

Being quick and simple, unsafep does a very light analysis and rejects many Lisp ex-
pressions that are actually safe. There are no known cases where unsafep returns nil for
an unsafe expression. However, a “safe” Lisp expression can return a string with a display

property, containing an associated Lisp expression to be executed after the string is inserted
into a buffer. This associated expression can be a virus. In order to be safe, you must delete
properties from all strings calculated by user code before inserting them into buffers.

Chapter 12: Functions 187

12.15 Other Topics Related to Functions

Here is a table of several functions that do things related to function calling and function
definitions. They are documented elsewhere, but we provide cross references here.

apply See Section 12.5 [Calling Functions], page 176.

autoload See Section 15.5 [Autoload], page 220.

call-interactively

See Section 21.3 [Interactive Call], page 327.

called-interactively-p

See Section 21.4 [Distinguish Interactive], page 329.

commandp See Section 21.3 [Interactive Call], page 327.

documentation

See Section 24.2 [Accessing Documentation], page 460.

eval See Section 9.4 [Eval], page 119.

funcall See Section 12.5 [Calling Functions], page 176.

function See Section 12.7 [Anonymous Functions], page 179.

ignore See Section 12.5 [Calling Functions], page 176.

indirect-function

See Section 9.1.4 [Function Indirection], page 114.

interactive

See Section 21.2.1 [Using Interactive], page 322.

interactive-p

See Section 21.4 [Distinguish Interactive], page 329.

mapatoms See Section 8.3 [Creating Symbols], page 106.

mapcar See Section 12.6 [Mapping Functions], page 178.

map-char-table

See Section 6.6 [Char-Tables], page 94.

mapconcat

See Section 12.6 [Mapping Functions], page 178.

undefined

See Section 22.11 [Functions for Key Lookup], page 379.

Chapter 13: Macros 188

13 Macros

Macros enable you to define new control constructs and other language features. A macro
is defined much like a function, but instead of telling how to compute a value, it tells how
to compute another Lisp expression which will in turn compute the value. We call this
expression the expansion of the macro.

Macros can do this because they operate on the unevaluated expressions for the ar-
guments, not on the argument values as functions do. They can therefore construct an
expansion containing these argument expressions or parts of them.

If you are using a macro to do something an ordinary function could do, just for the sake
of speed, consider using an inline function instead. See Section 12.11 [Inline Functions],
page 183.

13.1 A Simple Example of a Macro

Suppose we would like to define a Lisp construct to increment a variable value, much like
the ++ operator in C. We would like to write (inc x) and have the effect of (setq x (1+

x)). Here’s a macro definition that does the job:

(defmacro inc (var)

(list ’setq var (list ’1+ var)))

When this is called with (inc x), the argument var is the symbol x—not the value of x,
as it would be in a function. The body of the macro uses this to construct the expansion,
which is (setq x (1+ x)). Once the macro definition returns this expansion, Lisp proceeds
to evaluate it, thus incrementing x.

13.2 Expansion of a Macro Call

A macro call looks just like a function call in that it is a list which starts with the name of
the macro. The rest of the elements of the list are the arguments of the macro.

Evaluation of the macro call begins like evaluation of a function call except for one
crucial difference: the macro arguments are the actual expressions appearing in the macro
call. They are not evaluated before they are given to the macro definition. By contrast, the
arguments of a function are results of evaluating the elements of the function call list.

Having obtained the arguments, Lisp invokes the macro definition just as a function is
invoked. The argument variables of the macro are bound to the argument values from the
macro call, or to a list of them in the case of a &rest argument. And the macro body
executes and returns its value just as a function body does.

The second crucial difference between macros and functions is that the value returned by
the macro body is an alternate Lisp expression, also known as the expansion of the macro.
The Lisp interpreter proceeds to evaluate the expansion as soon as it comes back from the
macro.

Since the expansion is evaluated in the normal manner, it may contain calls to other
macros. It may even be a call to the same macro, though this is unusual.

Note that Emacs tries to expand macros when loading an uncompiled Lisp file. This is
not always possible, but if it is, it speeds up subsequent execution. See Section 15.1 [How
Programs Do Loading], page 215.

Chapter 13: Macros 189

You can see the expansion of a given macro call by calling macroexpand.

[Function]macroexpand form &optional environment
This function expands form, if it is a macro call. If the result is another macro call,
it is expanded in turn, until something which is not a macro call results. That is
the value returned by macroexpand. If form is not a macro call to begin with, it is
returned as given.

Note that macroexpand does not look at the subexpressions of form (although some
macro definitions may do so). Even if they are macro calls themselves, macroexpand
does not expand them.

The function macroexpand does not expand calls to inline functions. Normally there
is no need for that, since a call to an inline function is no harder to understand than
a call to an ordinary function.

If environment is provided, it specifies an alist of macro definitions that shadow the
currently defined macros. Byte compilation uses this feature.

(defmacro inc (var)

(list ’setq var (list ’1+ var)))

(macroexpand ’(inc r))

⇒ (setq r (1+ r))

(defmacro inc2 (var1 var2)

(list ’progn (list ’inc var1) (list ’inc var2)))

(macroexpand ’(inc2 r s))

⇒ (progn (inc r) (inc s)) ; inc not expanded here.

[Function]macroexpand-all form &optional environment
macroexpand-all expands macros like macroexpand, but will look for and expand
all macros in form, not just at the top-level. If no macros are expanded, the return
value is eq to form.

Repeating the example used for macroexpand above with macroexpand-all, we see
that macroexpand-all does expand the embedded calls to inc:

(macroexpand-all ’(inc2 r s))

⇒ (progn (setq r (1+ r)) (setq s (1+ s)))

13.3 Macros and Byte Compilation

You might ask why we take the trouble to compute an expansion for a macro and then
evaluate the expansion. Why not have the macro body produce the desired results directly?
The reason has to do with compilation.

When a macro call appears in a Lisp program being compiled, the Lisp compiler calls
the macro definition just as the interpreter would, and receives an expansion. But instead
of evaluating this expansion, it compiles the expansion as if it had appeared directly in the
program. As a result, the compiled code produces the value and side effects intended for
the macro, but executes at full compiled speed. This would not work if the macro body

Chapter 13: Macros 190

computed the value and side effects itself—they would be computed at compile time, which
is not useful.

In order for compilation of macro calls to work, the macros must already be defined in
Lisp when the calls to them are compiled. The compiler has a special feature to help you
do this: if a file being compiled contains a defmacro form, the macro is defined temporarily
for the rest of the compilation of that file.

Byte-compiling a file also executes any require calls at top-level in the file, so you can
ensure that necessary macro definitions are available during compilation by requiring the
files that define them (see Section 15.7 [Named Features], page 224). To avoid loading the
macro definition files when someone runs the compiled program, write eval-when-compile
around the require calls (see Section 16.5 [Eval During Compile], page 233).

13.4 Defining Macros

A Lisp macro object is a list whose car is macro, and whose cdr is a lambda expression.
Expansion of the macro works by applying the lambda expression (with apply) to the list
of unevaluated arguments from the macro call.

It is possible to use an anonymous Lisp macro just like an anonymous function, but this
is never done, because it does not make sense to pass an anonymous macro to functionals
such as mapcar. In practice, all Lisp macros have names, and they are almost always defined
with the defmacro macro.

[Macro]defmacro name args [doc] [declare] body. . .
defmacro defines the symbol name (which should not be quoted) as a macro that
looks like this:

(macro lambda args . body)

(Note that the cdr of this list is a lambda expression.) This macro object is stored
in the function cell of name. The meaning of args is the same as in a function, and
the keywords &rest and &optional may be used (see Section 12.2.3 [Argument List],
page 172). Neither name nor args should be quoted. The return value of defmacro
is undefined.

doc, if present, should be a string specifying the macro’s documentation string.
declare, if present, should be a declare form specifying metadata for the macro (see
Section 12.12 [Declare Form], page 184). Note that macros cannot have interactive
declarations, since they cannot be called interactively.

Macros often need to construct large list structures from a mixture of constants and
nonconstant parts. To make this easier, use the ‘‘’ syntax (see Section 9.3 [Backquote],
page 118). For example:

(defmacro t-becomes-nil (variable)

‘(if (eq ,variable t)

(setq ,variable nil)))

(t-becomes-nil foo)

≡ (if (eq foo t) (setq foo nil))

The body of a macro definition can include a declare form, which specifies additional
properties about the macro. See Section 12.12 [Declare Form], page 184.

Chapter 13: Macros 191

13.5 Common Problems Using Macros

Macro expansion can have counterintuitive consequences. This section describes some im-
portant consequences that can lead to trouble, and rules to follow to avoid trouble.

13.5.1 Wrong Time

The most common problem in writing macros is doing some of the real work prematurely—
while expanding the macro, rather than in the expansion itself. For instance, one real
package had this macro definition:

(defmacro my-set-buffer-multibyte (arg)

(if (fboundp ’set-buffer-multibyte)

(set-buffer-multibyte arg)))

With this erroneous macro definition, the program worked fine when interpreted but
failed when compiled. This macro definition called set-buffer-multibyte during compi-
lation, which was wrong, and then did nothing when the compiled package was run. The
definition that the programmer really wanted was this:

(defmacro my-set-buffer-multibyte (arg)

(if (fboundp ’set-buffer-multibyte)

‘(set-buffer-multibyte ,arg)))

This macro expands, if appropriate, into a call to set-buffer-multibyte that will be
executed when the compiled program is actually run.

13.5.2 Evaluating Macro Arguments Repeatedly

When defining a macro you must pay attention to the number of times the arguments
will be evaluated when the expansion is executed. The following macro (used to facilitate
iteration) illustrates the problem. This macro allows us to write a “for” loop construct.

(defmacro for (var from init to final do &rest body)

"Execute a simple \"for\" loop.

For example, (for i from 1 to 10 do (print i))."

(list ’let (list (list var init))

(cons ’while

(cons (list ’<= var final)

(append body (list (list ’inc var)))))))

(for i from 1 to 3 do

(setq square (* i i))

(princ (format "\n%d %d" i square)))

7→
(let ((i 1))

(while (<= i 3)

(setq square (* i i))

(princ (format "\n%d %d" i square))

(inc i)))

Chapter 13: Macros 192

a 1 1

a 2 4

a 3 9

⇒ nil

The arguments from, to, and do in this macro are “syntactic sugar”; they are entirely
ignored. The idea is that you will write noise words (such as from, to, and do) in those
positions in the macro call.

Here’s an equivalent definition simplified through use of backquote:

(defmacro for (var from init to final do &rest body)

"Execute a simple \"for\" loop.

For example, (for i from 1 to 10 do (print i))."

‘(let ((,var ,init))

(while (<= ,var ,final)

,@body

(inc ,var))))

Both forms of this definition (with backquote and without) suffer from the defect that
final is evaluated on every iteration. If final is a constant, this is not a problem. If it is a
more complex form, say (long-complex-calculation x), this can slow down the execution
significantly. If final has side effects, executing it more than once is probably incorrect.

A well-designed macro definition takes steps to avoid this problem by producing an
expansion that evaluates the argument expressions exactly once unless repeated evaluation
is part of the intended purpose of the macro. Here is a correct expansion for the for macro:

(let ((i 1)

(max 3))

(while (<= i max)

(setq square (* i i))

(princ (format "%d %d" i square))

(inc i)))

Here is a macro definition that creates this expansion:

(defmacro for (var from init to final do &rest body)

"Execute a simple for loop: (for i from 1 to 10 do (print i))."

‘(let ((,var ,init)

(max ,final))

(while (<= ,var max)

,@body

(inc ,var))))

Unfortunately, this fix introduces another problem, described in the following section.

13.5.3 Local Variables in Macro Expansions

The new definition of for has a new problem: it introduces a local variable named max

which the user does not expect. This causes trouble in examples such as the following:

Chapter 13: Macros 193

(let ((max 0))

(for x from 0 to 10 do

(let ((this (frob x)))

(if (< max this)

(setq max this)))))

The references to max inside the body of the for, which are supposed to refer to the user’s
binding of max, really access the binding made by for.

The way to correct this is to use an uninterned symbol instead of max (see Section 8.3
[Creating Symbols], page 106). The uninterned symbol can be bound and referred to just
like any other symbol, but since it is created by for, we know that it cannot already appear
in the user’s program. Since it is not interned, there is no way the user can put it into the
program later. It will never appear anywhere except where put by for. Here is a definition
of for that works this way:

(defmacro for (var from init to final do &rest body)

"Execute a simple for loop: (for i from 1 to 10 do (print i))."

(let ((tempvar (make-symbol "max")))

‘(let ((,var ,init)

(,tempvar ,final))

(while (<= ,var ,tempvar)

,@body

(inc ,var)))))

This creates an uninterned symbol named max and puts it in the expansion instead of the
usual interned symbol max that appears in expressions ordinarily.

13.5.4 Evaluating Macro Arguments in Expansion

Another problem can happen if the macro definition itself evaluates any of the macro argu-
ment expressions, such as by calling eval (see Section 9.4 [Eval], page 119). If the argument
is supposed to refer to the user’s variables, you may have trouble if the user happens to use
a variable with the same name as one of the macro arguments. Inside the macro body, the
macro argument binding is the most local binding of this variable, so any references inside
the form being evaluated do refer to it. Here is an example:

(defmacro foo (a)

(list ’setq (eval a) t))

(setq x ’b)

(foo x) 7→ (setq b t)

⇒ t ; and b has been set.
;; but
(setq a ’c)

(foo a) 7→ (setq a t)

⇒ t ; but this set a, not c.

It makes a difference whether the user’s variable is named a or x, because a conflicts
with the macro argument variable a.

Another problem with calling eval in a macro definition is that it probably won’t do
what you intend in a compiled program. The byte compiler runs macro definitions while

Chapter 13: Macros 194

compiling the program, when the program’s own computations (which you might have
wished to access with eval) don’t occur and its local variable bindings don’t exist.

To avoid these problems, don’t evaluate an argument expression while computing the
macro expansion. Instead, substitute the expression into the macro expansion, so that its
value will be computed as part of executing the expansion. This is how the other examples
in this chapter work.

13.5.5 How Many Times is the Macro Expanded?

Occasionally problems result from the fact that a macro call is expanded each time it is
evaluated in an interpreted function, but is expanded only once (during compilation) for
a compiled function. If the macro definition has side effects, they will work differently
depending on how many times the macro is expanded.

Therefore, you should avoid side effects in computation of the macro expansion, unless
you really know what you are doing.

One special kind of side effect can’t be avoided: constructing Lisp objects. Almost all
macro expansions include constructed lists; that is the whole point of most macros. This is
usually safe; there is just one case where you must be careful: when the object you construct
is part of a quoted constant in the macro expansion.

If the macro is expanded just once, in compilation, then the object is constructed just
once, during compilation. But in interpreted execution, the macro is expanded each time
the macro call runs, and this means a new object is constructed each time.

In most clean Lisp code, this difference won’t matter. It can matter only if you perform
side-effects on the objects constructed by the macro definition. Thus, to avoid trouble,
avoid side effects on objects constructed by macro definitions. Here is an example of how
such side effects can get you into trouble:

(defmacro empty-object ()

(list ’quote (cons nil nil)))

(defun initialize (condition)

(let ((object (empty-object)))

(if condition

(setcar object condition))

object))

If initialize is interpreted, a new list (nil) is constructed each time initialize is
called. Thus, no side effect survives between calls. If initialize is compiled, then the
macro empty-object is expanded during compilation, producing a single “constant” (nil)

that is reused and altered each time initialize is called.

One way to avoid pathological cases like this is to think of empty-object as a funny
kind of constant, not as a memory allocation construct. You wouldn’t use setcar on a
constant such as ’(nil), so naturally you won’t use it on (empty-object) either.

13.6 Indenting Macros

Within a macro definition, you can use the declare form (see Section 13.4 [Defining Macros],
page 190) to specify how TAB should indent calls to the macro. An indentation specification
is written like this:

Chapter 13: Macros 195

(declare (indent indent-spec))

Here are the possibilities for indent-spec:

nil This is the same as no property—use the standard indentation pattern.

defun Handle this function like a ‘def’ construct: treat the second line as the start of
a body.

an integer, number
The first number arguments of the function are distinguished arguments; the
rest are considered the body of the expression. A line in the expression is
indented according to whether the first argument on it is distinguished or not.
If the argument is part of the body, the line is indented lisp-body-indent

more columns than the open-parenthesis starting the containing expression. If
the argument is distinguished and is either the first or second argument, it is
indented twice that many extra columns. If the argument is distinguished and
not the first or second argument, the line uses the standard pattern.

a symbol, symbol
symbol should be a function name; that function is called to calculate the in-
dentation of a line within this expression. The function receives two arguments:

pos The position at which the line being indented begins.

state The value returned by parse-partial-sexp (a Lisp primitive for
indentation and nesting computation) when it parses up to the
beginning of this line.

It should return either a number, which is the number of columns of indentation
for that line, or a list whose car is such a number. The difference between
returning a number and returning a list is that a number says that all following
lines at the same nesting level should be indented just like this one; a list says
that following lines might call for different indentations. This makes a difference
when the indentation is being computed by C-M-q; if the value is a number,
C-M-q need not recalculate indentation for the following lines until the end of
the list.

Chapter 14: Customization Settings 196

14 Customization Settings

Users of Emacs can customize variables and faces without writing Lisp code, by using the
Customize interface. See Section “Easy Customization” in The GNU Emacs Manual. This
chapter describes how to define customization items that users can interact with through
the Customize interface.

Customization items include customizable variables, which are defined with the
defcustom macro; customizable faces, which are defined with defface (described
separately in Section 38.12.2 [Defining Faces], page 852); and customization groups,
defined with defgroup, which act as containers for groups of related customization items.

14.1 Common Item Keywords

The customization declarations that we will describe in the next few sections—defcustom,
defgroup, etc.—all accept keyword arguments (see Section 11.2 [Constant Variables],
page 141) for specifying various information. This section describes keywords that apply
to all types of customization declarations.

All of these keywords, except :tag, can be used more than once in a given item. Each
use of the keyword has an independent effect. The keyword :tag is an exception because
any given item can only display one name.

:tag label

Use label, a string, instead of the item’s name, to label the item in customization
menus and buffers. Don’t use a tag which is substantially different from the
item’s real name; that would cause confusion.

:group group

Put this customization item in group group. When you use :group in a
defgroup, it makes the new group a subgroup of group.

If you use this keyword more than once, you can put a single item into more
than one group. Displaying any of those groups will show this item. Please
don’t overdo this, since the result would be annoying.

:link link-data

Include an external link after the documentation string for this item. This is a
sentence containing a button that references some other documentation.

There are several alternatives you can use for link-data:

(custom-manual info-node)

Link to an Info node; info-node is a string which specifies the node
name, as in "(emacs)Top". The link appears as ‘[Manual]’ in the
customization buffer and enters the built-in Info reader on info-
node.

(info-link info-node)

Like custom-manual except that the link appears in the customiza-
tion buffer with the Info node name.

Chapter 14: Customization Settings 197

(url-link url)

Link to a web page; url is a string which specifies the URL. The link
appears in the customization buffer as url and invokes the WWW
browser specified by browse-url-browser-function.

(emacs-commentary-link library)

Link to the commentary section of a library; library is a string
which specifies the library name. See Section D.8 [Library Headers],
page 979.

(emacs-library-link library)

Link to an Emacs Lisp library file; library is a string which specifies
the library name.

(file-link file)

Link to a file; file is a string which specifies the name of the file to
visit with find-file when the user invokes this link.

(function-link function)

Link to the documentation of a function; function is a string
which specifies the name of the function to describe with
describe-function when the user invokes this link.

(variable-link variable)

Link to the documentation of a variable; variable is a string
which specifies the name of the variable to describe with
describe-variable when the user invokes this link.

(custom-group-link group)

Link to another customization group. Invoking it creates a new
customization buffer for group.

You can specify the text to use in the customization buffer by adding :tag name

after the first element of the link-data; for example, (info-link :tag "foo"

"(emacs)Top") makes a link to the Emacs manual which appears in the buffer
as ‘foo’.

You can use this keyword more than once, to add multiple links.

:load file

Load file file (a string) before displaying this customization item (see Chapter 15
[Loading], page 215). Loading is done with load, and only if the file is not
already loaded.

:require feature

Execute (require ’feature) when your saved customizations set the value of
this item. feature should be a symbol.

The most common reason to use :require is when a variable enables a feature
such as a minor mode, and just setting the variable won’t have any effect unless
the code which implements the mode is loaded.

Chapter 14: Customization Settings 198

:version version

This keyword specifies that the item was first introduced in Emacs version
version, or that its default value was changed in that version. The value version
must be a string.

:package-version ’(package . version)

This keyword specifies that the item was first introduced in package version
version, or that its meaning or default value was changed in that version. This
keyword takes priority over :version.

package should be the official name of the package, as a symbol (e.g., MH-E).
version should be a string. If the package package is released as part of Emacs,
package and version should appear in the value of customize-package-emacs-
version-alist.

Packages distributed as part of Emacs that use the :package-version keyword must
also update the customize-package-emacs-version-alist variable.

[Variable]customize-package-emacs-version-alist
This alist provides a mapping for the versions of Emacs that are associated with
versions of a package listed in the :package-version keyword. Its elements are:

(package (pversion . eversion)...)

For each package, which is a symbol, there are one or more elements that contain a
package version pversion with an associated Emacs version eversion. These versions
are strings. For example, the MH-E package updates this alist with the following:

(add-to-list ’customize-package-emacs-version-alist

’(MH-E ("6.0" . "22.1") ("6.1" . "22.1") ("7.0" . "22.1")

("7.1" . "22.1") ("7.2" . "22.1") ("7.3" . "22.1")

("7.4" . "22.1") ("8.0" . "22.1")))

The value of package needs to be unique and it needs to match the package value
appearing in the :package-version keyword. Since the user might see the value in
an error message, a good choice is the official name of the package, such as MH-E or
Gnus.

14.2 Defining Customization Groups

Each Emacs Lisp package should have one main customization group which contains all
the options, faces and other groups in the package. If the package has a small number of
options and faces, use just one group and put everything in it. When there are more than
twenty or so options and faces, then you should structure them into subgroups, and put
the subgroups under the package’s main customization group. It is OK to put some of the
options and faces in the package’s main group alongside the subgroups.

The package’s main or only group should be a member of one or more of the standard
customization groups. (To display the full list of them, use M-x customize.) Choose one
or more of them (but not too many), and add your group to each of them using the :group
keyword.

The way to declare new customization groups is with defgroup.

Chapter 14: Customization Settings 199

[Macro]defgroup group members doc [keyword value]. . .
Declare group as a customization group containingmembers. Do not quote the symbol
group. The argument doc specifies the documentation string for the group.

The argument members is a list specifying an initial set of customization items to
be members of the group. However, most often members is nil, and you specify the
group’s members by using the :group keyword when defining those members.

If you want to specify group members throughmembers, each element should have the
form (name widget). Here name is a symbol, and widget is a widget type for editing
that symbol. Useful widgets are custom-variable for a variable, custom-face for a
face, and custom-group for a group.

When you introduce a new group into Emacs, use the :version keyword in the
defgroup; then you need not use it for the individual members of the group.

In addition to the common keywords (see Section 14.1 [Common Keywords],
page 196), you can also use this keyword in defgroup:

:prefix prefix

If the name of an item in the group starts with prefix, and the cus-
tomizable variable custom-unlispify-remove-prefixes is non-nil, the
item’s tag will omit prefix. A group can have any number of prefixes.

[User Option]custom-unlispify-remove-prefixes
If this variable is non-nil, the prefixes specified by a group’s :prefix keyword are
omitted from tag names, whenever the user customizes the group.

The default value is nil, i.e., the prefix-discarding feature is disabled. This is because
discarding prefixes often leads to confusing names for options and faces.

14.3 Defining Customization Variables

Customizable variables, also called user options, are global Lisp variables whose values can
be set through the Customize interface. Unlike other global variables, which are defined with
defvar (see Section 11.5 [Defining Variables], page 145), customizable variables are defined
using the defcustommacro. In addition to calling defvar as a subroutine, defcustom states
how the variable should be displayed in the Customize interface, the values it is allowed to
take, etc.

[Macro]defcustom option standard doc [keyword value]. . .
This macro declares option as a user option (i.e., a customizable variable). You should
not quote option.

The argument standard is an expression that specifies the standard value for option.
Evaluating the defcustom form evaluates standard, but does not necessarily install
the standard value. If option already has a default value, defcustom does not change
it. If the user has saved a customization for option, defcustom installs the user’s
customized value as option’s default value. If neither of those cases applies, defcustom
installs the result of evaluating standard as the default value.

The expression standard can be evaluated at various other times, too—whenever the
customization facility needs to know option’s standard value. So be sure to use an
expression which is harmless to evaluate at any time.

Chapter 14: Customization Settings 200

The argument doc specifies the documentation string for the variable.

If a defcustom does not specify any :group, the last group defined with defgroup in
the same file will be used. This way, most defcustom do not need an explicit :group.

When you evaluate a defcustom form with C-M-x in Emacs Lisp mode (eval-defun),
a special feature of eval-defun arranges to set the variable unconditionally, with-
out testing whether its value is void. (The same feature applies to defvar.) See
Section 11.5 [Defining Variables], page 145.

If you put a defcustom in a pre-loaded Emacs Lisp file (see Section E.1 [Building
Emacs], page 982), the standard value installed at dump time might be incorrect,
e.g., because another variable that it depends on has not been assigned the right
value yet. In that case, use custom-reevaluate-setting, described below, to re-
evaluate the standard value after Emacs starts up.

In addition to the keywords listed in Section 14.1 [Common Keywords], page 196, this
macro accepts the following keywords:

:type type

Use type as the data type for this option. It specifies which values are legitimate,
and how to display the value (see Section 14.4 [Customization Types], page 203).

:options value-list

Specify the list of reasonable values for use in this option. The user is not
restricted to using only these values, but they are offered as convenient alter-
natives.

This is meaningful only for certain types, currently including hook, plist and
alist. See the definition of the individual types for a description of how to use
:options.

:set setfunction

Specify setfunction as the way to change the value of this option when using
the Customize interface. The function setfunction should take two arguments,
a symbol (the option name) and the new value, and should do whatever is
necessary to update the value properly for this option (which may not mean
simply setting the option as a Lisp variable). The default for setfunction is
set-default.

If you specify this keyword, the variable’s documentation string should describe
how to do the same job in hand-written Lisp code.

:get getfunction

Specify getfunction as the way to extract the value of this option. The function
getfunction should take one argument, a symbol, and should return whatever
customize should use as the “current value” for that symbol (which need not
be the symbol’s Lisp value). The default is default-value.

You have to really understand the workings of Custom to use :get correctly. It
is meant for values that are treated in Custom as variables but are not actually
stored in Lisp variables. It is almost surely a mistake to specify getfunction for
a value that really is stored in a Lisp variable.

Chapter 14: Customization Settings 201

:initialize function

function should be a function used to initialize the variable when the defcustom
is evaluated. It should take two arguments, the option name (a symbol) and
the value. Here are some predefined functions meant for use in this way:

custom-initialize-set

Use the variable’s :set function to initialize the variable, but do
not reinitialize it if it is already non-void.

custom-initialize-default

Like custom-initialize-set, but use the function set-default

to set the variable, instead of the variable’s :set function. This
is the usual choice for a variable whose :set function enables or
disables a minor mode; with this choice, defining the variable will
not call the minor mode function, but customizing the variable will
do so.

custom-initialize-reset

Always use the :set function to initialize the variable. If the vari-
able is already non-void, reset it by calling the :set function using
the current value (returned by the :get method). This is the de-
fault :initialize function.

custom-initialize-changed

Use the :set function to initialize the variable, if it is already set
or has been customized; otherwise, just use set-default.

custom-initialize-safe-set

custom-initialize-safe-default

These functions behave like custom-initialize-set (custom-
initialize-default, respectively), but catch errors. If an error
occurs during initialization, they set the variable to nil using
set-default, and signal no error.

These functions are meant for options defined in pre-loaded files,
where the standard expression may signal an error because some
required variable or function is not yet defined. The value nor-
mally gets updated in startup.el, ignoring the value computed by
defcustom. After startup, if one unsets the value and reevaluates
the defcustom, the standard expression can be evaluated without
error.

:risky value

Set the variable’s risky-local-variable property to value (see Section 11.11
[File Local Variables], page 160).

:safe function

Set the variable’s safe-local-variable property to function (see Section 11.11
[File Local Variables], page 160).

:set-after variables

When setting variables according to saved customizations, make sure to set the
variables variables before this one; i.e., delay setting this variable until after

Chapter 14: Customization Settings 202

those others have been handled. Use :set-after if setting this variable won’t
work properly unless those other variables already have their intended values.

It is useful to specify the :require keyword for an option that “turns on” a certain
feature. This causes Emacs to load the feature, if it is not already loaded, whenever the
option is set. See Section 14.1 [Common Keywords], page 196. Here is an example, from
the library saveplace.el:

(defcustom save-place nil

"Non-nil means automatically save place in each file..."

:type ’boolean

:require ’saveplace

:group ’save-place)

If a customization item has a type such as hook or alist, which supports :options,
you can add additional values to the list from outside the defcustom declaration by call-
ing custom-add-frequent-value. For example, if you define a function my-lisp-mode-

initialization intended to be called from emacs-lisp-mode-hook, you might want to
add that to the list of reasonable values for emacs-lisp-mode-hook, but not by editing its
definition. You can do it thus:

(custom-add-frequent-value ’emacs-lisp-mode-hook

’my-lisp-mode-initialization)

[Function]custom-add-frequent-value symbol value
For the customization option symbol, add value to the list of reasonable values.

The precise effect of adding a value depends on the customization type of symbol.

Internally, defcustom uses the symbol property standard-value to record the expres-
sion for the standard value, saved-value to record the value saved by the user with the
customization buffer, and customized-value to record the value set by the user with the
customization buffer, but not saved. See Section 8.4 [Symbol Properties], page 108. These
properties are lists, the car of which is an expression that evaluates to the value.

[Function]custom-reevaluate-setting symbol
This function re-evaluates the standard value of symbol, which should be a user option
declared via defcustom. If the variable was customized, this function re-evaluates the
saved value instead. Then it sets the user option to that value (using the option’s
:set property if that is defined).

This is useful for customizable options that are defined before their value could be
computed correctly. For example, during startup Emacs calls this function for some
user options that were defined in pre-loaded Emacs Lisp files, but whose initial values
depend on information available only at run-time.

[Function]custom-variable-p arg
This function returns non-nil if arg is a customizable variable. A customizable vari-
able is either a variable that has a standard-value or custom-autoload property
(usually meaning it was declared with defcustom), or an alias for another customiz-
able variable.

Chapter 14: Customization Settings 203

14.4 Customization Types

When you define a user option with defcustom, you must specify its customization type.
That is a Lisp object which describes (1) which values are legitimate and (2) how to display
the value in the customization buffer for editing.

You specify the customization type in defcustom with the :type keyword. The argument
of :type is evaluated, but only once when the defcustom is executed, so it isn’t useful for
the value to vary. Normally we use a quoted constant. For example:

(defcustom diff-command "diff"

"The command to use to run diff."

:type ’(string)

:group ’diff)

In general, a customization type is a list whose first element is a symbol, one of the cus-
tomization type names defined in the following sections. After this symbol come a number
of arguments, depending on the symbol. Between the type symbol and its arguments, you
can optionally write keyword-value pairs (see Section 14.4.4 [Type Keywords], page 209).

Some type symbols do not use any arguments; those are called simple types. For a simple
type, if you do not use any keyword-value pairs, you can omit the parentheses around the
type symbol. For example just string as a customization type is equivalent to (string).

All customization types are implemented as widgets; see Section “Introduction” in The
Emacs Widget Library , for details.

14.4.1 Simple Types

This section describes all the simple customization types. For several of these customization
types, the customization widget provides inline completion with C-M-i or M-TAB.

sexp The value may be any Lisp object that can be printed and read back. You can
use sexp as a fall-back for any option, if you don’t want to take the time to
work out a more specific type to use.

integer The value must be an integer.

number The value must be a number (floating point or integer).

float The value must be a floating point number.

string The value must be a string. The customization buffer shows the string without
delimiting ‘"’ characters or ‘\’ quotes.

regexp Like string except that the string must be a valid regular expression.

character

The value must be a character code. A character code is actually an integer,
but this type shows the value by inserting the character in the buffer, rather
than by showing the number.

file The value must be a file name. The widget provides completion.

(file :must-match t)

The value must be a file name for an existing file. The widget provides com-
pletion.

Chapter 14: Customization Settings 204

directory

The value must be a directory name. The widget provides completion.

hook The value must be a list of functions. This customization type is used for hook
variables. You can use the :options keyword in a hook variable’s defcustom
to specify a list of functions recommended for use in the hook; See Section 14.3
[Variable Definitions], page 199.

symbol The value must be a symbol. It appears in the customization buffer as the
symbol name. The widget provides completion.

function The value must be either a lambda expression or a function name. The widget
provides completion for function names.

variable The value must be a variable name. The widget provides completion.

face The value must be a symbol which is a face name. The widget provides com-
pletion.

boolean The value is boolean—either nil or t. Note that by using choice and const

together (see the next section), you can specify that the value must be nil or
t, but also specify the text to describe each value in a way that fits the specific
meaning of the alternative.

key-sequence

The value is a key sequence. The customization buffer shows the key sequence
using the same syntax as the kbd function. See Section 22.1 [Key Sequences],
page 366.

coding-system

The value must be a coding-system name, and you can do completion with
M-TAB.

color The value must be a valid color name. The widget provides completion for color
names, as well as a sample and a button for selecting a color name from a list
of color names shown in a *Colors* buffer.

14.4.2 Composite Types

When none of the simple types is appropriate, you can use composite types, which build
new types from other types or from specified data. The specified types or data are called
the arguments of the composite type. The composite type normally looks like this:

(constructor arguments...)

but you can also add keyword-value pairs before the arguments, like this:

(constructor {keyword value}... arguments...)

Here is a table of constructors and how to use them to write composite types:

(cons car-type cdr-type)

The value must be a cons cell, its car must fit car-type, and its cdr must fit
cdr-type. For example, (cons string symbol) is a customization type which
matches values such as ("foo" . foo).

In the customization buffer, the car and cdr are displayed and edited sepa-
rately, each according to their specified type.

Chapter 14: Customization Settings 205

(list element-types...)

The value must be a list with exactly as many elements as the element-types
given; and each element must fit the corresponding element-type.

For example, (list integer string function) describes a list of three ele-
ments; the first element must be an integer, the second a string, and the third
a function.

In the customization buffer, each element is displayed and edited separately,
according to the type specified for it.

(group element-types...)

This works like list except for the formatting of text in the Custom buffer.
list labels each element value with its tag; group does not.

(vector element-types...)

Like list except that the value must be a vector instead of a list. The elements
work the same as in list.

(alist :key-type key-type :value-type value-type)

The value must be a list of cons-cells, the car of each cell representing a key of
customization type key-type, and the cdr of the same cell representing a value
of customization type value-type. The user can add and delete key/value pairs,
and edit both the key and the value of each pair.

If omitted, key-type and value-type default to sexp.

The user can add any key matching the specified key type, but you can give
some keys a preferential treatment by specifying them with the :options (see
Section 14.3 [Variable Definitions], page 199). The specified keys will always be
shown in the customize buffer (together with a suitable value), with a checkbox
to include or exclude or disable the key/value pair from the alist. The user will
not be able to edit the keys specified by the :options keyword argument.

The argument to the :options keywords should be a list of specifications for
reasonable keys in the alist. Ordinarily, they are simply atoms, which stand for
themselves. For example:

:options ’("foo" "bar" "baz")

specifies that there are three “known” keys, namely "foo", "bar" and "baz",
which will always be shown first.

You may want to restrict the value type for specific keys, for example, the value
associated with the "bar" key can only be an integer. You can specify this by
using a list instead of an atom in the list. The first element will specify the key,
like before, while the second element will specify the value type. For example:

:options ’("foo" ("bar" integer) "baz")

Finally, you may want to change how the key is presented. By default, the
key is simply shown as a const, since the user cannot change the special keys
specified with the :options keyword. However, you may want to use a more
specialized type for presenting the key, like function-item if you know it is a
symbol with a function binding. This is done by using a customization type
specification instead of a symbol for the key.

Chapter 14: Customization Settings 206

:options ’("foo"

((function-item some-function) integer)

"baz")

Many alists use lists with two elements, instead of cons cells. For example,

(defcustom list-alist

’(("foo" 1) ("bar" 2) ("baz" 3))

"Each element is a list of the form (KEY VALUE).")

instead of

(defcustom cons-alist

’(("foo" . 1) ("bar" . 2) ("baz" . 3))

"Each element is a cons-cell (KEY . VALUE).")

Because of the way lists are implemented on top of cons cells, you can treat
list-alist in the example above as a cons cell alist, where the value type is a
list with a single element containing the real value.

(defcustom list-alist ’(("foo" 1) ("bar" 2) ("baz" 3))

"Each element is a list of the form (KEY VALUE)."

:type ’(alist :value-type (group integer)))

The group widget is used here instead of list only because the formatting is
better suited for the purpose.

Similarly, you can have alists with more values associated with each key, using
variations of this trick:

(defcustom person-data ’(("brian" 50 t)

("dorith" 55 nil)

("ken" 52 t))

"Alist of basic info about people.

Each element has the form (NAME AGE MALE-FLAG)."

:type ’(alist :value-type (group integer boolean)))

(plist :key-type key-type :value-type value-type)

This customization type is similar to alist (see above), except that (i) the in-
formation is stored as a property list, (see Section 5.9 [Property Lists], page 86),
and (ii) key-type, if omitted, defaults to symbol rather than sexp.

(choice alternative-types...)

The value must fit one of alternative-types. For example, (choice integer

string) allows either an integer or a string.

In the customization buffer, the user selects an alternative using a menu, and
can then edit the value in the usual way for that alternative.

Normally the strings in this menu are determined automatically from the
choices; however, you can specify different strings for the menu by including
the :tag keyword in the alternatives. For example, if an integer stands for a
number of spaces, while a string is text to use verbatim, you might write the
customization type this way,

(choice (integer :tag "Number of spaces")

(string :tag "Literal text"))

Chapter 14: Customization Settings 207

so that the menu offers ‘Number of spaces’ and ‘Literal text’.

In any alternative for which nil is not a valid value, other than a const, you
should specify a valid default for that alternative using the :value keyword.
See Section 14.4.4 [Type Keywords], page 209.

If some values are covered by more than one of the alternatives, customize will
choose the first alternative that the value fits. This means you should always
list the most specific types first, and the most general last. Here’s an example
of proper usage:

(choice (const :tag "Off" nil)

symbol (sexp :tag "Other"))

This way, the special value nil is not treated like other symbols, and symbols
are not treated like other Lisp expressions.

(radio element-types...)

This is similar to choice, except that the choices are displayed using ‘radio
buttons’ rather than a menu. This has the advantage of displaying documenta-
tion for the choices when applicable and so is often a good choice for a choice
between constant functions (function-item customization types).

(const value)

The value must be value—nothing else is allowed.

The main use of const is inside of choice. For example, (choice integer

(const nil)) allows either an integer or nil.

:tag is often used with const, inside of choice. For example,

(choice (const :tag "Yes" t)

(const :tag "No" nil)

(const :tag "Ask" foo))

describes a variable for which t means yes, nil means no, and foo means “ask”.

(other value)

This alternative can match any Lisp value, but if the user chooses this alterna-
tive, that selects the value value.

The main use of other is as the last element of choice. For example,

(choice (const :tag "Yes" t)

(const :tag "No" nil)

(other :tag "Ask" foo))

describes a variable for which t means yes, nil means no, and anything else
means “ask”. If the user chooses ‘Ask’ from the menu of alternatives, that
specifies the value foo; but any other value (not t, nil or foo) displays as
‘Ask’, just like foo.

(function-item function)

Like const, but used for values which are functions. This displays the docu-
mentation string as well as the function name. The documentation string is
either the one you specify with :doc, or function’s own documentation string.

Chapter 14: Customization Settings 208

(variable-item variable)

Like const, but used for values which are variable names. This displays the
documentation string as well as the variable name. The documentation string
is either the one you specify with :doc, or variable’s own documentation string.

(set types...)

The value must be a list, and each element of the list must match one of the
types specified.

This appears in the customization buffer as a checklist, so that each of types
may have either one corresponding element or none. It is not possible to specify
two different elements that match the same one of types. For example, (set
integer symbol) allows one integer and/or one symbol in the list; it does
not allow multiple integers or multiple symbols. As a result, it is rare to use
nonspecific types such as integer in a set.

Most often, the types in a set are const types, as shown here:

(set (const :bold) (const :italic))

Sometimes they describe possible elements in an alist:

(set (cons :tag "Height" (const height) integer)

(cons :tag "Width" (const width) integer))

That lets the user specify a height value optionally and a width value optionally.

(repeat element-type)

The value must be a list and each element of the list must fit the type element-
type. This appears in the customization buffer as a list of elements, with ‘[INS]’
and ‘[DEL]’ buttons for adding more elements or removing elements.

(restricted-sexp :match-alternatives criteria)

This is the most general composite type construct. The value may be any Lisp
object that satisfies one of criteria. criteria should be a list, and each element
should be one of these possibilities:

• A predicate—that is, a function of one argument that has no side effects,
and returns either nil or non-nil according to the argument. Using a
predicate in the list says that objects for which the predicate returns non-
nil are acceptable.

• A quoted constant—that is, ’object. This sort of element in the list says
that object itself is an acceptable value.

For example,

(restricted-sexp :match-alternatives

(integerp ’t ’nil))

allows integers, t and nil as legitimate values.

The customization buffer shows all legitimate values using their read syntax,
and the user edits them textually.

Here is a table of the keywords you can use in keyword-value pairs in a composite type:

:tag tag Use tag as the name of this alternative, for user communication purposes. This
is useful for a type that appears inside of a choice.

Chapter 14: Customization Settings 209

:match-alternatives criteria

Use criteria to match possible values. This is used only in restricted-sexp.

:args argument-list

Use the elements of argument-list as the arguments of the type construct. For
instance, (const :args (foo)) is equivalent to (const foo). You rarely need
to write :args explicitly, because normally the arguments are recognized auto-
matically as whatever follows the last keyword-value pair.

14.4.3 Splicing into Lists

The :inline feature lets you splice a variable number of elements into the middle of a
list or vector customization type. You use it by adding :inline t to a type specification
which is contained in a list or vector specification.

Normally, each entry in a list or vector type specification describes a single element
type. But when an entry contains :inline t, the value it matches is merged directly into
the containing sequence. For example, if the entry matches a list with three elements, those
become three elements of the overall sequence. This is analogous to ‘,@’ in a backquote
construct (see Section 9.3 [Backquote], page 118).

For example, to specify a list whose first element must be baz and whose remaining
arguments should be zero or more of foo and bar, use this customization type:

(list (const baz) (set :inline t (const foo) (const bar)))

This matches values such as (baz), (baz foo), (baz bar) and (baz foo bar).

When the element-type is a choice, you use :inline not in the choice itself, but in
(some of) the alternatives of the choice. For example, to match a list which must start
with a file name, followed either by the symbol t or two strings, use this customization
type:

(list file

(choice (const t)

(list :inline t string string)))

If the user chooses the first alternative in the choice, then the overall list has two elements
and the second element is t. If the user chooses the second alternative, then the overall list
has three elements and the second and third must be strings.

14.4.4 Type Keywords

You can specify keyword-argument pairs in a customization type after the type name sym-
bol. Here are the keywords you can use, and their meanings:

:value default

Provide a default value.

If nil is not a valid value for the alternative, then it is essential to specify a
valid default with :value.

If you use this for a type that appears as an alternative inside of choice; it
specifies the default value to use, at first, if and when the user selects this
alternative with the menu in the customization buffer.

Of course, if the actual value of the option fits this alternative, it will appear
showing the actual value, not default.

Chapter 14: Customization Settings 210

:format format-string

This string will be inserted in the buffer to represent the value corresponding
to the type. The following ‘%’ escapes are available for use in format-string :

‘%[button%]’
Display the text buttonmarked as a button. The :action attribute
specifies what the button will do if the user invokes it; its value is a
function which takes two arguments—the widget which the button
appears in, and the event.

There is no way to specify two different buttons with different ac-
tions.

‘%{sample%}’
Show sample in a special face specified by :sample-face.

‘%v’ Substitute the item’s value. How the value is represented depends
on the kind of item, and (for variables) on the customization type.

‘%d’ Substitute the item’s documentation string.

‘%h’ Like ‘%d’, but if the documentation string is more than one line,
add a button to control whether to show all of it or just the first
line.

‘%t’ Substitute the tag here. You specify the tag with the :tag keyword.

‘%%’ Display a literal ‘%’.

:action action

Perform action if the user clicks on a button.

:button-face face

Use the face face (a face name or a list of face names) for button text displayed
with ‘%[...%]’.

:button-prefix prefix

:button-suffix suffix

These specify the text to display before and after a button. Each can be:

nil No text is inserted.

a string The string is inserted literally.

a symbol The symbol’s value is used.

:tag tag Use tag (a string) as the tag for the value (or part of the value) that corresponds
to this type.

:doc doc Use doc as the documentation string for this value (or part of the value) that
corresponds to this type. In order for this to work, you must specify a value
for :format, and use ‘%d’ or ‘%h’ in that value.

The usual reason to specify a documentation string for a type is to provide
more information about the meanings of alternatives inside a :choice type or
the parts of some other composite type.

Chapter 14: Customization Settings 211

:help-echo motion-doc

When you move to this item with widget-forward or widget-backward, it
will display the string motion-doc in the echo area. In addition, motion-doc is
used as the mouse help-echo string and may actually be a function or form
evaluated to yield a help string. If it is a function, it is called with one argument,
the widget.

:match function

Specify how to decide whether a value matches the type. The corresponding
value, function, should be a function that accepts two arguments, a widget and
a value; it should return non-nil if the value is acceptable.

:validate function

Specify a validation function for input. function takes a widget as an argument,
and should return nil if the widget’s current value is valid for the widget.
Otherwise, it should return the widget containing the invalid data, and set that
widget’s :error property to a string explaining the error.

14.4.5 Defining New Types

In the previous sections we have described how to construct elaborate type specifications
for defcustom. In some cases you may want to give such a type specification a name. The
obvious case is when you are using the same type for many user options: rather than repeat
the specification for each option, you can give the type specification a name, and use that
name each defcustom. The other case is when a user option’s value is a recursive data
structure. To make it possible for a datatype to refer to itself, it needs to have a name.

Since custom types are implemented as widgets, the way to define a new customize type
is to define a new widget. We are not going to describe the widget interface here in details,
see Section “Introduction” in The Emacs Widget Library , for that. Instead we are going to
demonstrate the minimal functionality needed for defining new customize types by a simple
example.

(define-widget ’binary-tree-of-string ’lazy

"A binary tree made of cons-cells and strings."

:offset 4

:tag "Node"

:type ’(choice (string :tag "Leaf" :value "")

(cons :tag "Interior"

:value ("" . "")

binary-tree-of-string

binary-tree-of-string)))

(defcustom foo-bar ""

"Sample variable holding a binary tree of strings."

:type ’binary-tree-of-string)

The function to define a new widget is called define-widget. The first argument is the
symbol we want to make a new widget type. The second argument is a symbol representing
an existing widget, the new widget is going to be defined in terms of difference from the
existing widget. For the purpose of defining new customization types, the lazy widget is

Chapter 14: Customization Settings 212

perfect, because it accepts a :type keyword argument with the same syntax as the keyword
argument to defcustom with the same name. The third argument is a documentation string
for the new widget. You will be able to see that string with the M-x widget-browse RET

binary-tree-of-string RET command.

After these mandatory arguments follow the keyword arguments. The most important
is :type, which describes the data type we want to match with this widget. Here a binary-
tree-of-string is described as being either a string, or a cons-cell whose car and cdr are
themselves both binary-tree-of-string. Note the reference to the widget type we are
currently in the process of defining. The :tag attribute is a string to name the widget
in the user interface, and the :offset argument is there to ensure that child nodes are
indented four spaces relative to the parent node, making the tree structure apparent in the
customization buffer.

The defcustom shows how the new widget can be used as an ordinary customization
type.

The reason for the name lazy is that the other composite widgets convert their inferior
widgets to internal form when the widget is instantiated in a buffer. This conversion is
recursive, so the inferior widgets will convert their inferior widgets. If the data structure
is itself recursive, this conversion is an infinite recursion. The lazy widget prevents the
recursion: it convert its :type argument only when needed.

14.5 Applying Customizations

The following functions are responsible for installing the user’s customization settings for
variables and faces, respectively. When the user invokes ‘Save for future sessions’ in
the Customize interface, that takes effect by writing a custom-set-variables and/or a
custom-set-faces form into the custom file, to be evaluated the next time Emacs starts.

[Function]custom-set-variables &rest args
This function installs the variable customizations specified by args. Each argument
in args should have the form

(var expression [now [request [comment]]])

var is a variable name (a symbol), and expression is an expression which evaluates to
the desired customized value.

If the defcustom form for var has been evaluated prior to this custom-set-variables
call, expression is immediately evaluated, and the variable’s value is set to the result.
Otherwise, expression is stored into the variable’s saved-value property, to be eval-
uated when the relevant defcustom is called (usually when the library defining that
variable is loaded into Emacs).

The now, request, and comment entries are for internal use only, and may be omitted.
now, if non-nil, means to set the variable’s value now, even if the variable’s defcustom
form has not been evaluated. request is a list of features to be loaded immediately
(see Section 15.7 [Named Features], page 224). comment is a string describing the
customization.

[Function]custom-set-faces &rest args
This function installs the face customizations specified by args. Each argument in
args should have the form

Chapter 14: Customization Settings 213

(face spec [now [comment]])

face is a face name (a symbol), and spec is the customized face specification for that
face (see Section 38.12.2 [Defining Faces], page 852).

The now and comment entries are for internal use only, and may be omitted. now,
if non-nil, means to install the face specification now, even if the defface form has
not been evaluated. comment is a string describing the customization.

14.6 Custom Themes

Custom themes are collections of settings that can be enabled or disabled as a unit. See
Section “Custom Themes” in The GNU Emacs Manual. Each Custom theme is defined by
an Emacs Lisp source file, which should follow the conventions described in this section.
(Instead of writing a Custom theme by hand, you can also create one using a Customize-like
interface; see Section “Creating Custom Themes” in The GNU Emacs Manual.)

A Custom theme file should be named foo-theme.el, where foo is the theme name.
The first Lisp form in the file should be a call to deftheme, and the last form should be a
call to provide-theme.

[Macro]deftheme theme &optional doc
This macro declares theme (a symbol) as the name of a Custom theme. The optional
argument doc should be a string describing the theme; this is the description shown
when the user invokes the describe-theme command or types ? in the ‘*Custom
Themes*’ buffer.

Two special theme names are disallowed (using them causes an error): user is a
“dummy” theme that stores the user’s direct customization settings, and changed is
a “dummy” theme that stores changes made outside of the Customize system.

[Macro]provide-theme theme
This macro declares that the theme named theme has been fully specified.

In between deftheme and provide-theme are Lisp forms specifying the theme settings:
usually a call to custom-theme-set-variables and/or a call to custom-theme-set-faces.

[Function]custom-theme-set-variables theme &rest args
This function specifies the Custom theme theme’s variable settings. theme should be
a symbol. Each argument in args should be a list of the form

(var expression [now [request [comment]]])

where the list entries have the same meanings as in custom-set-variables. See
Section 14.5 [Applying Customizations], page 212.

[Function]custom-theme-set-faces theme &rest args
This function specifies the Custom theme theme’s face settings. theme should be a
symbol. Each argument in args should be a list of the form

(face spec [now [comment]])

where the list entries have the same meanings as in custom-set-faces. See
Section 14.5 [Applying Customizations], page 212.

Chapter 14: Customization Settings 214

In theory, a theme file can also contain other Lisp forms, which would be evaluated when
loading the theme, but that is “bad form”. To protect against loading themes containing
malicious code, Emacs displays the source file and asks for confirmation from the user before
loading any non-built-in theme for the first time.

The following functions are useful for programmatically enabling and disabling themes:

[Function]custom-theme-p theme
This function return a non-nil value if theme (a symbol) is the name of a Custom
theme (i.e., a Custom theme which has been loaded into Emacs, whether or not the
theme is enabled). Otherwise, it returns nil.

[Command]load-theme theme &optional no-confirm no-enable
This function loads the Custom theme named theme from its source file, looking
for the source file in the directories specified by the variable custom-theme-load-

path. See Section “Custom Themes” in The GNU Emacs Manual. It also enables
the theme (unless the optional argument no-enable is non-nil), causing its variable
and face settings to take effect. It prompts the user for confirmation before loading
the theme, unless the optional argument no-confirm is non-nil.

[Command]enable-theme theme
This function enables the Custom theme named theme. It signals an error if no such
theme has been loaded.

[Command]disable-theme theme
This function disables the Custom theme named theme. The theme remains loaded,
so that a subsequent call to enable-theme will re-enable it.

Chapter 15: Loading 215

15 Loading

Loading a file of Lisp code means bringing its contents into the Lisp environment in the
form of Lisp objects. Emacs finds and opens the file, reads the text, evaluates each form,
and then closes the file. Such a file is also called a Lisp library.

The load functions evaluate all the expressions in a file just as the eval-buffer function
evaluates all the expressions in a buffer. The difference is that the load functions read and
evaluate the text in the file as found on disk, not the text in an Emacs buffer.

The loaded file must contain Lisp expressions, either as source code or as byte-compiled
code. Each form in the file is called a top-level form. There is no special format for the
forms in a loadable file; any form in a file may equally well be typed directly into a buffer
and evaluated there. (Indeed, most code is tested this way.) Most often, the forms are
function definitions and variable definitions.

15.1 How Programs Do Loading

Emacs Lisp has several interfaces for loading. For example, autoload creates a placeholder
object for a function defined in a file; trying to call the autoloading function loads the file
to get the function’s real definition (see Section 15.5 [Autoload], page 220). require loads
a file if it isn’t already loaded (see Section 15.7 [Named Features], page 224). Ultimately,
all these facilities call the load function to do the work.

[Function]load filename &optional missing-ok nomessage nosuffix must-suffix
This function finds and opens a file of Lisp code, evaluates all the forms in it, and
closes the file.

To find the file, load first looks for a file named filename.elc, that is, for a file
whose name is filename with the extension ‘.elc’ appended. If such a file exists, it is
loaded. If there is no file by that name, then load looks for a file named filename.el.
If that file exists, it is loaded. Finally, if neither of those names is found, load looks
for a file named filename with nothing appended, and loads it if it exists. (The load
function is not clever about looking at filename. In the perverse case of a file named
foo.el.el, evaluation of (load "foo.el") will indeed find it.)

If Auto Compression mode is enabled, as it is by default, then if load can not find a
file, it searches for a compressed version of the file before trying other file names. It
decompresses and loads it if it exists. It looks for compressed versions by appending
each of the suffixes in jka-compr-load-suffixes to the file name. The value of this
variable must be a list of strings. Its standard value is (".gz").

If the optional argument nosuffix is non-nil, then load does not try the suffixes ‘.elc’
and ‘.el’. In this case, you must specify the precise file name you want, except that, if
Auto Compression mode is enabled, load will still use jka-compr-load-suffixes to
find compressed versions. By specifying the precise file name and using t for nosuffix,
you can prevent file names like foo.el.el from being tried.

If the optional argument must-suffix is non-nil, then load insists that the file name
used must end in either ‘.el’ or ‘.elc’ (possibly extended with a compression suffix),
unless it contains an explicit directory name.

Chapter 15: Loading 216

If filename is a relative file name, such as foo or baz/foo.bar, load searches for
the file using the variable load-path. It appends filename to each of the directories
listed in load-path, and loads the first file it finds whose name matches. The current
default directory is tried only if it is specified in load-path, where nil stands for
the default directory. load tries all three possible suffixes in the first directory in
load-path, then all three suffixes in the second directory, and so on. See Section 15.3
[Library Search], page 218.

Whatever the name under which the file is eventually found, and the directory where
Emacs found it, Emacs sets the value of the variable load-file-name to that file’s
name.

If you get a warning that foo.elc is older than foo.el, it means you should consider
recompiling foo.el. See Chapter 16 [Byte Compilation], page 229.

When loading a source file (not compiled), load performs character set translation
just as Emacs would do when visiting the file. See Section 33.9 [Coding Systems],
page 716.

When loading an uncompiled file, Emacs tries to expand any macros that the file
contains (see Chapter 13 [Macros], page 188). We refer to this as eager macro expan-
sion. Doing this (rather than deferring the expansion until the relevant code runs)
can significantly speed up the execution of uncompiled code. Sometimes, this macro
expansion cannot be done, owing to a cyclic dependency. In the simplest example of
this, the file you are loading refers to a macro defined in another file, and that file
in turn requires the file you are loading. This is generally harmless. Emacs prints a
warning (‘Eager macro-expansion skipped due to cycle...’) giving details of the
problem, but it still loads the file, just leaving the macro unexpanded for now. You
may wish to restructure your code so that this does not happen. Loading a com-
piled file does not cause macroexpansion, because this should already have happened
during compilation. See Section 13.3 [Compiling Macros], page 189.

Messages like ‘Loading foo...’ and ‘Loading foo...done’ appear in the echo area
during loading unless nomessage is non-nil.

Any unhandled errors while loading a file terminate loading. If the load was done for
the sake of autoload, any function definitions made during the loading are undone.

If load can’t find the file to load, then normally it signals the error file-error (with
‘Cannot open load file filename’). But if missing-ok is non-nil, then load just
returns nil.

You can use the variable load-read-function to specify a function for load to use
instead of read for reading expressions. See below.

load returns t if the file loads successfully.

[Command]load-file filename
This command loads the file filename. If filename is a relative file name, then the
current default directory is assumed. This command does not use load-path, and
does not append suffixes. However, it does look for compressed versions (if Auto
Compression Mode is enabled). Use this command if you wish to specify precisely
the file name to load.

Chapter 15: Loading 217

[Command]load-library library
This command loads the library named library. It is equivalent to load, except for
the way it reads its argument interactively. See Section “Lisp Libraries” in The GNU
Emacs Manual.

[Variable]load-in-progress
This variable is non-nil if Emacs is in the process of loading a file, and it is nil

otherwise.

[Variable]load-file-name
When Emacs is in the process of loading a file, this variable’s value is the name of
that file, as Emacs found it during the search described earlier in this section.

[Variable]load-read-function
This variable specifies an alternate expression-reading function for load and eval-

region to use instead of read. The function should accept one argument, just as
read does.

Normally, the variable’s value is nil, which means those functions should use read.

Instead of using this variable, it is cleaner to use another, newer feature: to pass the
function as the read-function argument to eval-region. See [Eval], page 120.

For information about how load is used in building Emacs, see Section E.1 [Building
Emacs], page 982.

15.2 Load Suffixes

We now describe some technical details about the exact suffixes that load tries.

[Variable]load-suffixes
This is a list of suffixes indicating (compiled or source) Emacs Lisp files. It should
not include the empty string. load uses these suffixes in order when it appends
Lisp suffixes to the specified file name. The standard value is (".elc" ".el") which
produces the behavior described in the previous section.

[Variable]load-file-rep-suffixes
This is a list of suffixes that indicate representations of the same file. This list should
normally start with the empty string. When load searches for a file it appends the
suffixes in this list, in order, to the file name, before searching for another file.

Enabling Auto Compression mode appends the suffixes in jka-compr-load-suffixes

to this list and disabling Auto Compression mode removes them again. The standard
value of load-file-rep-suffixes if Auto Compression mode is disabled is ("").
Given that the standard value of jka-compr-load-suffixes is (".gz"), the stan-
dard value of load-file-rep-suffixes if Auto Compression mode is enabled is (""
".gz").

[Function]get-load-suffixes
This function returns the list of all suffixes that load should try, in order, when
its must-suffix argument is non-nil. This takes both load-suffixes and load-

file-rep-suffixes into account. If load-suffixes, jka-compr-load-suffixes

Chapter 15: Loading 218

and load-file-rep-suffixes all have their standard values, this function returns
(".elc" ".elc.gz" ".el" ".el.gz") if Auto Compression mode is enabled and
(".elc" ".el") if Auto Compression mode is disabled.

To summarize, load normally first tries the suffixes in the value of (get-load-suffixes)
and then those in load-file-rep-suffixes. If nosuffix is non-nil, it skips the former
group, and if must-suffix is non-nil, it skips the latter group.

15.3 Library Search

When Emacs loads a Lisp library, it searches for the library in a list of directories specified
by the variable load-path.

[Variable]load-path
The value of this variable is a list of directories to search when loading files with load.
Each element is a string (which must be a directory name) or nil (which stands for
the current working directory).

Each time Emacs starts up, it sets up the value of load-path in several steps. First, it ini-
tializes load-path to the directories specified by the environment variable EMACSLOADPATH,
if that exists. The syntax of EMACSLOADPATH is the same as used for PATH; directory names
are separated by ‘:’ (or ‘;’, on some operating systems), and ‘.’ stands for the current
default directory. Here is an example of how to set EMACSLOADPATH variable from sh:

export EMACSLOADPATH

EMACSLOADPATH=/home/foo/.emacs.d/lisp:/opt/emacs/lisp

Here is how to set it from csh:

setenv EMACSLOADPATH /home/foo/.emacs.d/lisp:/opt/emacs/lisp

If EMACSLOADPATH is not set (which is usually the case), Emacs initializes load-path

with the following two directories:

"/usr/local/share/emacs/version/site-lisp"

and

"/usr/local/share/emacs/site-lisp"

The first one is for locally installed packages for a particular Emacs version; the second is
for locally installed packages meant for use with all installed Emacs versions.

If you run Emacs from the directory where it was built—that is, an executable that has
not been formally installed—Emacs puts two more directories in load-path. These are the
lisp and site-lisp subdirectories of the main build directory. (Both are represented as
absolute file names.)

Next, Emacs “expands” the initial list of directories in load-path by adding the sub-
directories of those directories. Both immediate subdirectories and subdirectories multiple
levels down are added. But it excludes subdirectories whose names do not start with a
letter or digit, and subdirectories named RCS or CVS, and subdirectories containing a file
named .nosearch.

Next, Emacs adds any extra load directory that you specify using the ‘-L’ command-
line option (see Section “Action Arguments” in The GNU Emacs Manual). It also adds

Chapter 15: Loading 219

the directories where optional packages are installed, if any (see Section 40.1 [Packaging
Basics], page 943).

It is common to add code to one’s init file (see Section 39.1.2 [Init File], page 913) to
add one or more directories to load-path. For example:

(push "~/.emacs.d/lisp" load-path)

Dumping Emacs uses a special value of load-path. If the value of load-path at the end
of dumping is unchanged (that is, still the same special value), the dumped Emacs switches
to the ordinary load-path value when it starts up, as described above. But if load-path
has any other value at the end of dumping, that value is used for execution of the dumped
Emacs also.

[Command]locate-library library &optional nosuffix path interactive-call
This command finds the precise file name for library library. It searches for the library
in the same way load does, and the argument nosuffix has the same meaning as in
load: don’t add suffixes ‘.elc’ or ‘.el’ to the specified name library.

If the path is non-nil, that list of directories is used instead of load-path.

When locate-library is called from a program, it returns the file name as a string.
When the user runs locate-library interactively, the argument interactive-call is t,
and this tells locate-library to display the file name in the echo area.

[Command]list-load-path-shadows &optional stringp
This command shows a list of shadowed Emacs Lisp files. A shadowed file is one that
will not normally be loaded, despite being in a directory on load-path, due to the
existence of another similarly-named file in a directory earlier on load-path.

For instance, suppose load-path is set to

("/opt/emacs/site-lisp" "/usr/share/emacs/23.3/lisp")

and that both these directories contain a file named foo.el. Then (require ’foo)

never loads the file in the second directory. Such a situation might indicate a problem
in the way Emacs was installed.

When called from Lisp, this function prints a message listing the shadowed files,
instead of displaying them in a buffer. If the optional argument stringp is non-nil,
it instead returns the shadowed files as a string.

15.4 Loading Non-ASCII Characters

When Emacs Lisp programs contain string constants with non-ASCII characters, these
can be represented within Emacs either as unibyte strings or as multibyte strings (see
Section 33.1 [Text Representations], page 705). Which representation is used depends on
how the file is read into Emacs. If it is read with decoding into multibyte representation, the
text of the Lisp program will be multibyte text, and its string constants will be multibyte
strings. If a file containing Latin-1 characters (for example) is read without decoding, the
text of the program will be unibyte text, and its string constants will be unibyte strings.
See Section 33.9 [Coding Systems], page 716.

In most Emacs Lisp programs, the fact that non-ASCII strings are multibyte strings
should not be noticeable, since inserting them in unibyte buffers converts them to unibyte
automatically. However, if this does make a difference, you can force a particular Lisp file to

Chapter 15: Loading 220

be interpreted as unibyte by writing ‘coding: raw-text’ in a local variables section. With
that designator, the file will unconditionally be interpreted as unibyte. This can matter
when making keybindings to non-ASCII characters written as ?vliteral.

15.5 Autoload

The autoload facility lets you register the existence of a function or macro, but put off
loading the file that defines it. The first call to the function automatically loads the proper
library, in order to install the real definition and other associated code, then runs the real
definition as if it had been loaded all along. Autoloading can also be triggered by looking
up the documentation of the function or macro (see Section 24.1 [Documentation Basics],
page 459).

There are two ways to set up an autoloaded function: by calling autoload, and by
writing a special “magic” comment in the source before the real definition. autoload is
the low-level primitive for autoloading; any Lisp program can call autoload at any time.
Magic comments are the most convenient way to make a function autoload, for packages
installed along with Emacs. These comments do nothing on their own, but they serve as a
guide for the command update-file-autoloads, which constructs calls to autoload and
arranges to execute them when Emacs is built.

[Function]autoload function filename &optional docstring interactive type
This function defines the function (or macro) named function so as to load automat-
ically from filename. The string filename specifies the file to load to get the real
definition of function.

If filename does not contain either a directory name, or the suffix .el or .elc, this
function insists on adding one of these suffixes, and it will not load from a file whose
name is just filename with no added suffix. (The variable load-suffixes specifies
the exact required suffixes.)

The argument docstring is the documentation string for the function. Specifying
the documentation string in the call to autoload makes it possible to look at the
documentation without loading the function’s real definition. Normally, this should
be identical to the documentation string in the function definition itself. If it isn’t,
the function definition’s documentation string takes effect when it is loaded.

If interactive is non-nil, that says function can be called interactively. This lets
completion in M-x work without loading function’s real definition. The complete
interactive specification is not given here; it’s not needed unless the user actually
calls function, and when that happens, it’s time to load the real definition.

You can autoload macros and keymaps as well as ordinary functions. Specify type
as macro if function is really a macro. Specify type as keymap if function is really a
keymap. Various parts of Emacs need to know this information without loading the
real definition.

An autoloaded keymap loads automatically during key lookup when a prefix key’s
binding is the symbol function. Autoloading does not occur for other kinds of access
to the keymap. In particular, it does not happen when a Lisp program gets the
keymap from the value of a variable and calls define-key; not even if the variable
name is the same symbol function.

Chapter 15: Loading 221

if function already has non-void function definition that is not an autoload object, this
function does nothing and returns nil. Otherwise, it constructs an autoload object
(see Section 2.3.17 [Autoload Type], page 23), and stores it as the function definition
for function. The autoload object has this form:

(autoload filename docstring interactive type)

For example,

(symbol-function ’run-prolog)

⇒ (autoload "prolog" 169681 t nil)

In this case, "prolog" is the name of the file to load, 169681 refers to the documen-
tation string in the emacs/etc/DOC-version file (see Section 24.1 [Documentation
Basics], page 459), t means the function is interactive, and nil that it is not a macro
or a keymap.

[Function]autoloadp object
This function returns non-nil if object is an autoload object. For example, to check
if run-prolog is defined as an autoloaded function, evaluate

(autoloadp (symbol-function ’run-prolog))

The autoloaded file usually contains other definitions and may require or provide one
or more features. If the file is not completely loaded (due to an error in the evaluation of
its contents), any function definitions or provide calls that occurred during the load are
undone. This is to ensure that the next attempt to call any function autoloading from this
file will try again to load the file. If not for this, then some of the functions in the file might
be defined by the aborted load, but fail to work properly for the lack of certain subroutines
not loaded successfully because they come later in the file.

If the autoloaded file fails to define the desired Lisp function or macro, then an error is
signaled with data "Autoloading failed to define function function-name".

A magic autoload comment (often called an autoload cookie) consists of
‘;;;###autoload’, on a line by itself, just before the real definition of the function
in its autoloadable source file. The command M-x update-file-autoloads writes a
corresponding autoload call into loaddefs.el. (The string that serves as the autoload
cookie and the name of the file generated by update-file-autoloads can be changed
from the above defaults, see below.) Building Emacs loads loaddefs.el and thus calls
autoload. M-x update-directory-autoloads is even more powerful; it updates autoloads
for all files in the current directory.

The same magic comment can copy any kind of form into loaddefs.el. The form
following the magic comment is copied verbatim, except if it is one of the forms which the
autoload facility handles specially (e.g., by conversion into an autoload call). The forms
which are not copied verbatim are the following:

Definitions for function or function-like objects:
defun and defmacro; also cl-defun and cl-defmacro (see Section “Argument
Lists” in Common Lisp Extensions), and define-overloadable-function (see
the commentary in mode-local.el).

Definitions for major or minor modes:
define-minor-mode, define-globalized-minor-mode, define-

generic-mode, define-derived-mode, easy-mmode-define-minor-mode,

Chapter 15: Loading 222

easy-mmode-define-global-mode, define-compilation-mode, and
define-global-minor-mode.

Other definition types:
defcustom, defgroup, defclass (see EIEIO), and define-skeleton (see the
commentary in skeleton.el).

You can also use a magic comment to execute a form at build time without executing
it when the file itself is loaded. To do this, write the form on the same line as the magic
comment. Since it is in a comment, it does nothing when you load the source file; but
M-x update-file-autoloads copies it to loaddefs.el, where it is executed while building
Emacs.

The following example shows how doctor is prepared for autoloading with a magic
comment:

;;;###autoload

(defun doctor ()

"Switch to *doctor* buffer and start giving psychotherapy."

(interactive)

(switch-to-buffer "*doctor*")

(doctor-mode))

Here’s what that produces in loaddefs.el:

(autoload (quote doctor) "doctor" "\

Switch to *doctor* buffer and start giving psychotherapy.

\(fn)" t nil)

The backslash and newline immediately following the double-quote are a convention used
only in the preloaded uncompiled Lisp files such as loaddefs.el; they tell make-docfile
to put the documentation string in the etc/DOC file. See Section E.1 [Building Emacs],
page 982. See also the commentary in lib-src/make-docfile.c. ‘(fn)’ in the usage part
of the documentation string is replaced with the function’s name when the various help
functions (see Section 24.5 [Help Functions], page 465) display it.

If you write a function definition with an unusual macro that is not one of the known
and recognized function definition methods, use of an ordinary magic autoload comment
would copy the whole definition into loaddefs.el. That is not desirable. You can put the
desired autoload call into loaddefs.el instead by writing this:

;;;###autoload (autoload ’foo "myfile")

(mydefunmacro foo

...)

You can use a non-default string as the autoload cookie and have the corresponding
autoload calls written into a file whose name is different from the default loaddefs.el.
Emacs provides two variables to control this:

[Variable]generate-autoload-cookie
The value of this variable should be a string whose syntax is a Lisp comment. M-x

update-file-autoloads copies the Lisp form that follows the cookie into the au-
toload file it generates. The default value of this variable is ";;;###autoload".

Chapter 15: Loading 223

[Variable]generated-autoload-file
The value of this variable names an Emacs Lisp file where the autoload calls should
go. The default value is loaddefs.el, but you can override that, e.g., in the “Local
Variables” section of a .el file (see Section 11.11 [File Local Variables], page 160).
The autoload file is assumed to contain a trailer starting with a formfeed character.

The following function may be used to explicitly load the library specified by an autoload
object:

[Function]autoload-do-load autoload &optional name macro-only
This function performs the loading specified by autoload, which should be an autoload
object. The optional argument name, if non-nil, should be a symbol whose function
value is autoload; in that case, the return value of this function is the symbol’s
new function value. If the value of the optional argument macro-only is macro, this
function avoids loading a function, only a macro.

15.6 Repeated Loading

You can load a given file more than once in an Emacs session. For example, after you have
rewritten and reinstalled a function definition by editing it in a buffer, you may wish to
return to the original version; you can do this by reloading the file it came from.

When you load or reload files, bear in mind that the load and load-library functions
automatically load a byte-compiled file rather than a non-compiled file of similar name.
If you rewrite a file that you intend to save and reinstall, you need to byte-compile the
new version; otherwise Emacs will load the older, byte-compiled file instead of your newer,
non-compiled file! If that happens, the message displayed when loading the file includes,
‘(compiled; note, source is newer)’, to remind you to recompile it.

When writing the forms in a Lisp library file, keep in mind that the file might be loaded
more than once. For example, think about whether each variable should be reinitialized
when you reload the library; defvar does not change the value if the variable is already
initialized. (See Section 11.5 [Defining Variables], page 145.)

The simplest way to add an element to an alist is like this:

(push ’(leif-mode " Leif") minor-mode-alist)

But this would add multiple elements if the library is reloaded. To avoid the problem, use
add-to-list (see Section 5.5 [List Variables], page 72):

(add-to-list ’minor-mode-alist ’(leif-mode " Leif"))

Occasionally you will want to test explicitly whether a library has already been loaded.
If the library uses provide to provide a named feature, you can use featurep earlier in
the file to test whether the provide call has been executed before (see Section 15.7 [Named
Features], page 224). Alternatively, you could use something like this:

(defvar foo-was-loaded nil)

(unless foo-was-loaded

execute-first-time-only

(setq foo-was-loaded t))

Chapter 15: Loading 224

15.7 Features

provide and require are an alternative to autoload for loading files automatically. They
work in terms of named features. Autoloading is triggered by calling a specific function,
but a feature is loaded the first time another program asks for it by name.

A feature name is a symbol that stands for a collection of functions, variables, etc. The
file that defines them should provide the feature. Another program that uses them may
ensure they are defined by requiring the feature. This loads the file of definitions if it hasn’t
been loaded already.

To require the presence of a feature, call require with the feature name as argument.
require looks in the global variable features to see whether the desired feature has been
provided already. If not, it loads the feature from the appropriate file. This file should call
provide at the top level to add the feature to features; if it fails to do so, require signals
an error.

For example, in idlwave.el, the definition for idlwave-complete-filename includes
the following code:

(defun idlwave-complete-filename ()

"Use the comint stuff to complete a file name."

(require ’comint)

(let* ((comint-file-name-chars "~/A-Za-z0-9+_.$#%={}\\-")

(comint-completion-addsuffix nil)

...)

(comint-dynamic-complete-filename)))

The expression (require ’comint) loads the file comint.el if it has not yet been loaded,
ensuring that comint-dynamic-complete-filename is defined. Features are normally
named after the files that provide them, so that require need not be given the file name.
(Note that it is important that the require statement be outside the body of the let.
Loading a library while its variables are let-bound can have unintended consequences,
namely the variables becoming unbound after the let exits.)

The comint.el file contains the following top-level expression:

(provide ’comint)

This adds comint to the global features list, so that (require ’comint) will henceforth
know that nothing needs to be done.

When require is used at top level in a file, it takes effect when you byte-compile that
file (see Chapter 16 [Byte Compilation], page 229) as well as when you load it. This is in
case the required package contains macros that the byte compiler must know about. It also
avoids byte compiler warnings for functions and variables defined in the file loaded with
require.

Although top-level calls to require are evaluated during byte compilation, provide
calls are not. Therefore, you can ensure that a file of definitions is loaded before it is byte-
compiled by including a provide followed by a require for the same feature, as in the
following example.

(provide ’my-feature) ; Ignored by byte compiler,
; evaluated by load.

(require ’my-feature) ; Evaluated by byte compiler.

Chapter 15: Loading 225

The compiler ignores the provide, then processes the require by loading the file in ques-
tion. Loading the file does execute the provide call, so the subsequent require call does
nothing when the file is loaded.

[Function]provide feature &optional subfeatures
This function announces that feature is now loaded, or being loaded, into the current
Emacs session. This means that the facilities associated with feature are or will be
available for other Lisp programs.

The direct effect of calling provide is if not already in features then to add fea-
ture to the front of that list and call any eval-after-load code waiting for it (see
Section 15.10 [Hooks for Loading], page 227). The argument feature must be a sym-
bol. provide returns feature.

If provided, subfeatures should be a list of symbols indicating a set of specific subfea-
tures provided by this version of feature. You can test the presence of a subfeature
using featurep. The idea of subfeatures is that you use them when a package (which
is one feature) is complex enough to make it useful to give names to various parts or
functionalities of the package, which might or might not be loaded, or might or might
not be present in a given version. See Section 37.17.3 [Network Feature Testing],
page 811, for an example.

features

⇒ (bar bish)

(provide ’foo)

⇒ foo

features

⇒ (foo bar bish)

When a file is loaded to satisfy an autoload, and it stops due to an error in the
evaluation of its contents, any function definitions or provide calls that occurred
during the load are undone. See Section 15.5 [Autoload], page 220.

[Function]require feature &optional filename noerror
This function checks whether feature is present in the current Emacs session (using
(featurep feature); see below). The argument feature must be a symbol.

If the feature is not present, then require loads filename with load. If filename is
not supplied, then the name of the symbol feature is used as the base file name to
load. However, in this case, require insists on finding feature with an added ‘.el’
or ‘.elc’ suffix (possibly extended with a compression suffix); a file whose name is
just feature won’t be used. (The variable load-suffixes specifies the exact required
Lisp suffixes.)

If noerror is non-nil, that suppresses errors from actual loading of the file. In that
case, require returns nil if loading the file fails. Normally, require returns feature.

If loading the file succeeds but does not provide feature, require signals an error,
‘Required feature feature was not provided’.

[Function]featurep feature &optional subfeature
This function returns t if feature has been provided in the current Emacs session
(i.e., if feature is a member of features.) If subfeature is non-nil, then the function

Chapter 15: Loading 226

returns t only if that subfeature is provided as well (i.e., if subfeature is a member of
the subfeature property of the feature symbol.)

[Variable]features
The value of this variable is a list of symbols that are the features loaded in the
current Emacs session. Each symbol was put in this list with a call to provide. The
order of the elements in the features list is not significant.

15.8 Which File Defined a Certain Symbol

[Function]symbol-file symbol &optional type
This function returns the name of the file that defined symbol. If type is nil, then any
kind of definition is acceptable. If type is defun, defvar, or defface, that specifies
function definition, variable definition, or face definition only.

The value is normally an absolute file name. It can also be nil, if the definition is
not associated with any file. If symbol specifies an autoloaded function, the value can
be a relative file name without extension.

The basis for symbol-file is the data in the variable load-history.

[Variable]load-history
The value of this variable is an alist that associates the names of loaded library files
with the names of the functions and variables they defined, as well as the features
they provided or required.

Each element in this alist describes one loaded library (including libraries that are
preloaded at startup). It is a list whose car is the absolute file name of the library
(a string). The rest of the list elements have these forms:

var The symbol var was defined as a variable.

(defun . fun)

The function fun was defined.

(t . fun) The function fun was previously an autoload before this library redefined
it as a function. The following element is always (defun . fun), which
represents defining fun as a function.

(autoload . fun)

The function fun was defined as an autoload.

(defface . face)

The face face was defined.

(require . feature)

The feature feature was required.

(provide . feature)

The feature feature was provided.

The value of load-history may have one element whose car is nil. This element
describes definitions made with eval-buffer on a buffer that is not visiting a file.

Chapter 15: Loading 227

The command eval-region updates load-history, but does so by adding the symbols
defined to the element for the file being visited, rather than replacing that element. See
Section 9.4 [Eval], page 119.

15.9 Unloading

You can discard the functions and variables loaded by a library to reclaim memory for other
Lisp objects. To do this, use the function unload-feature:

[Command]unload-feature feature &optional force
This command unloads the library that provided feature feature. It undefines all func-
tions, macros, and variables defined in that library with defun, defalias, defsubst,
defmacro, defconst, defvar, and defcustom. It then restores any autoloads for-
merly associated with those symbols. (Loading saves these in the autoload property
of the symbol.)

Before restoring the previous definitions, unload-feature runs remove-hook to re-
move functions in the library from certain hooks. These hooks include variables
whose names end in ‘-hook’ (or the deprecated suffix ‘-hooks’), plus those listed in
unload-feature-special-hooks, as well as auto-mode-alist. This is to prevent
Emacs from ceasing to function because important hooks refer to functions that are
no longer defined.

Standard unloading activities also undoes ELP profiling of functions in that library,
unprovides any features provided by the library, and cancels timers held in variables
defined by the library.

If these measures are not sufficient to prevent malfunction, a library can define an
explicit unloader named feature-unload-function. If that symbol is defined as
a function, unload-feature calls it with no arguments before doing anything else.
It can do whatever is appropriate to unload the library. If it returns nil, unload-
feature proceeds to take the normal unload actions. Otherwise it considers the job
to be done.

Ordinarily, unload-feature refuses to unload a library on which other loaded libraries
depend. (A library a depends on library b if a contains a require for b.) If the
optional argument force is non-nil, dependencies are ignored and you can unload
any library.

The unload-feature function is written in Lisp; its actions are based on the variable
load-history.

[Variable]unload-feature-special-hooks
This variable holds a list of hooks to be scanned before unloading a library, to remove
functions defined in the library.

15.10 Hooks for Loading

You can ask for code to be executed each time Emacs loads a library, by using the variable
after-load-functions:

Chapter 15: Loading 228

[Variable]after-load-functions
This abnormal hook is run after loading a file. Each function in the hook is called
with a single argument, the absolute filename of the file that was just loaded.

If you want code to be executed when a particular library is loaded, use the function
eval-after-load:

[Function]eval-after-load library form
This function arranges to evaluate form at the end of loading the file library, each
time library is loaded. If library is already loaded, it evaluates form right away. Don’t
forget to quote form!

You don’t need to give a directory or extension in the file name library. Normally,
you just give a bare file name, like this:

(eval-after-load "edebug" ’(def-edebug-spec c-point t))

To restrict which files can trigger the evaluation, include a directory or an extension
or both in library. Only a file whose absolute true name (i.e., the name with all
symbolic links chased out) matches all the given name components will match. In the
following example, my_inst.elc or my_inst.elc.gz in some directory/foo/bar
will trigger the evaluation, but not my_inst.el:

(eval-after-load "foo/bar/my_inst.elc" ...)

library can also be a feature (i.e., a symbol), in which case form is evaluated at the
end of any file where (provide library) is called.

An error in form does not undo the load, but does prevent execution of the rest of
form.

Normally, well-designed Lisp programs should not use eval-after-load. If you need to
examine and set the variables defined in another library (those meant for outside use), you
can do it immediately—there is no need to wait until the library is loaded. If you need to
call functions defined by that library, you should load the library, preferably with require

(see Section 15.7 [Named Features], page 224).

[Variable]after-load-alist
This variable stores an alist built by eval-after-load, containing the expressions to
evaluate when certain libraries are loaded. Each element looks like this:

(regexp-or-feature forms...)

The key regexp-or-feature is either a regular expression or a symbol, and the value
is a list of forms. The forms are evaluated when the key matches the absolute true
name or feature name of the library being loaded.

Chapter 16: Byte Compilation 229

16 Byte Compilation

Emacs Lisp has a compiler that translates functions written in Lisp into a special represen-
tation called byte-code that can be executed more efficiently. The compiler replaces Lisp
function definitions with byte-code. When a byte-code function is called, its definition is
evaluated by the byte-code interpreter.

Because the byte-compiled code is evaluated by the byte-code interpreter, instead of
being executed directly by the machine’s hardware (as true compiled code is), byte-code
is completely transportable from machine to machine without recompilation. It is not,
however, as fast as true compiled code.

In general, any version of Emacs can run byte-compiled code produced by recent earlier
versions of Emacs, but the reverse is not true.

If you do not want a Lisp file to be compiled, ever, put a file-local variable binding for
no-byte-compile into it, like this:

;; -*-no-byte-compile: t; -*-

16.1 Performance of Byte-Compiled Code

A byte-compiled function is not as efficient as a primitive function written in C, but runs
much faster than the version written in Lisp. Here is an example:

(defun silly-loop (n)

"Return the time, in seconds, to run N iterations of a loop."

(let ((t1 (float-time)))

(while (> (setq n (1- n)) 0))

(- (float-time) t1)))

⇒ silly-loop

(silly-loop 50000000)

⇒ 10.235304117202759

(byte-compile ’silly-loop)

⇒ [Compiled code not shown]

(silly-loop 50000000)

⇒ 3.705854892730713

In this example, the interpreted code required 10 seconds to run, whereas the byte-
compiled code required less than 4 seconds. These results are representative, but actual
results may vary.

16.2 Byte-Compilation Functions

You can byte-compile an individual function or macro definition with the byte-compile

function. You can compile a whole file with byte-compile-file, or several files with
byte-recompile-directory or batch-byte-compile.

Sometimes, the byte compiler produces warning and/or error messages (see Section 16.6
[Compiler Errors], page 234, for details). These messages are recorded in a buffer called

Chapter 16: Byte Compilation 230

Compile-Log, which uses Compilation mode. See Section “Compilation Mode” in The
GNU Emacs Manual.

Be careful when writing macro calls in files that you intend to byte-compile. Since macro
calls are expanded when they are compiled, the macros need to be loaded into Emacs or
the byte compiler will not do the right thing. The usual way to handle this is with require

forms which specify the files containing the needed macro definitions (see Section 15.7
[Named Features], page 224). Normally, the byte compiler does not evaluate the code that
it is compiling, but it handles require forms specially, by loading the specified libraries.
To avoid loading the macro definition files when someone runs the compiled program, write
eval-when-compile around the require calls (see Section 16.5 [Eval During Compile],
page 233). For more details, See Section 13.3 [Compiling Macros], page 189.

Inline (defsubst) functions are less troublesome; if you compile a call to such a function
before its definition is known, the call will still work right, it will just run slower.

[Function]byte-compile symbol
This function byte-compiles the function definition of symbol, replacing the previous
definition with the compiled one. The function definition of symbol must be the actual
code for the function; byte-compile does not handle function indirection. The return
value is the byte-code function object which is the compiled definition of symbol (see
Section 16.7 [Byte-Code Objects], page 235).

(defun factorial (integer)

"Compute factorial of INTEGER."

(if (= 1 integer) 1

(* integer (factorial (1- integer)))))

⇒ factorial

(byte-compile ’factorial)

⇒
#[(integer)

"^H\301U\203^H^@\301\207\302^H\303^HS!\"\207"

[integer 1 * factorial]

4 "Compute factorial of INTEGER."]

If symbol’s definition is a byte-code function object, byte-compile does nothing and
returns nil. It does not “compile the symbol’s definition again”, since the original
(non-compiled) code has already been replaced in the symbol’s function cell by the
byte-compiled code.

The argument to byte-compile can also be a lambda expression. In that case, the
function returns the corresponding compiled code but does not store it anywhere.

[Command]compile-defun &optional arg
This command reads the defun containing point, compiles it, and evaluates the result.
If you use this on a defun that is actually a function definition, the effect is to install
a compiled version of that function.

compile-defun normally displays the result of evaluation in the echo area, but if arg
is non-nil, it inserts the result in the current buffer after the form it compiled.

Chapter 16: Byte Compilation 231

[Command]byte-compile-file filename &optional load
This function compiles a file of Lisp code named filename into a file of byte-code. The
output file’s name is made by changing the ‘.el’ suffix into ‘.elc’; if filename does
not end in ‘.el’, it adds ‘.elc’ to the end of filename.

Compilation works by reading the input file one form at a time. If it is a definition
of a function or macro, the compiled function or macro definition is written out.
Other forms are batched together, then each batch is compiled, and written so that
its compiled code will be executed when the file is read. All comments are discarded
when the input file is read.

This command returns t if there were no errors and nil otherwise. When called
interactively, it prompts for the file name.

If load is non-nil, this command loads the compiled file after compiling it. Interac-
tively, load is the prefix argument.

% ls -l push*

-rw-r--r-- 1 lewis 791 Oct 5 20:31 push.el

(byte-compile-file "~/emacs/push.el")

⇒ t

% ls -l push*

-rw-r--r-- 1 lewis 791 Oct 5 20:31 push.el

-rw-rw-rw- 1 lewis 638 Oct 8 20:25 push.elc

[Command]byte-recompile-directory directory &optional flag force
This command recompiles every ‘.el’ file in directory (or its subdirectories) that
needs recompilation. A file needs recompilation if a ‘.elc’ file exists but is older than
the ‘.el’ file.

When a ‘.el’ file has no corresponding ‘.elc’ file, flag says what to do. If it is nil,
this command ignores these files. If flag is 0, it compiles them. If it is neither nil nor
0, it asks the user whether to compile each such file, and asks about each subdirectory
as well.

Interactively, byte-recompile-directory prompts for directory and flag is the prefix
argument.

If force is non-nil, this command recompiles every ‘.el’ file that has a ‘.elc’ file.

The returned value is unpredictable.

[Function]batch-byte-compile &optional noforce
This function runs byte-compile-file on files specified on the command line. This
function must be used only in a batch execution of Emacs, as it kills Emacs on
completion. An error in one file does not prevent processing of subsequent files, but
no output file will be generated for it, and the Emacs process will terminate with a
nonzero status code.

If noforce is non-nil, this function does not recompile files that have an up-to-date
‘.elc’ file.

% emacs -batch -f batch-byte-compile *.el

Chapter 16: Byte Compilation 232

16.3 Documentation Strings and Compilation

Functions and variables loaded from a byte-compiled file access their documentation strings
dynamically from the file whenever needed. This saves space within Emacs, and makes
loading faster because the documentation strings themselves need not be processed while
loading the file. Actual access to the documentation strings becomes slower as a result, but
this normally is not enough to bother users.

Dynamic access to documentation strings does have drawbacks:

• If you delete or move the compiled file after loading it, Emacs can no longer access the
documentation strings for the functions and variables in the file.

• If you alter the compiled file (such as by compiling a new version), then further access
to documentation strings in this file will probably give nonsense results.

These problems normally occur only if you build Emacs yourself and use it from the directory
where you built it, and you happen to edit and/or recompile the Lisp source files. They
can be easily cured by reloading each file after recompiling it.

The dynamic documentation string feature writes compiled files that use a special Lisp
reader construct, ‘#@count’. This construct skips the next count characters. It also uses
the ‘#$’ construct, which stands for “the name of this file, as a string”. It is usually best
not to use these constructs in Lisp source files, since they are not designed to be clear to
humans reading the file.

You can disable the dynamic documentation string feature at compile time by setting
byte-compile-dynamic-docstrings to nil; this is useful mainly if you expect to change
the file, and you want Emacs processes that have already loaded it to keep working when
the file changes. You can do this globally, or for one source file by specifying a file-local
binding for the variable. One way to do that is by adding this string to the file’s first line:

-*-byte-compile-dynamic-docstrings: nil;-*-

[User Option]byte-compile-dynamic-docstrings
If this is non-nil, the byte compiler generates compiled files that are set up for
dynamic loading of documentation strings.

16.4 Dynamic Loading of Individual Functions

When you compile a file, you can optionally enable the dynamic function loading feature
(also known as lazy loading). With dynamic function loading, loading the file doesn’t
fully read the function definitions in the file. Instead, each function definition contains a
place-holder which refers to the file. The first time each function is called, it reads the full
definition from the file, to replace the place-holder.

The advantage of dynamic function loading is that loading the file becomes much faster.
This is a good thing for a file which contains many separate user-callable functions, if using
one of them does not imply you will probably also use the rest. A specialized mode which
provides many keyboard commands often has that usage pattern: a user may invoke the
mode, but use only a few of the commands it provides.

The dynamic loading feature has certain disadvantages:

• If you delete or move the compiled file after loading it, Emacs can no longer load the
remaining function definitions not already loaded.

Chapter 16: Byte Compilation 233

• If you alter the compiled file (such as by compiling a new version), then trying to load
any function not already loaded will usually yield nonsense results.

These problems will never happen in normal circumstances with installed Emacs files.
But they are quite likely to happen with Lisp files that you are changing. The easiest
way to prevent these problems is to reload the new compiled file immediately after each
recompilation.

The byte compiler uses the dynamic function loading feature if the variable byte-

compile-dynamic is non-nil at compilation time. Do not set this variable globally, since
dynamic loading is desirable only for certain files. Instead, enable the feature for specific
source files with file-local variable bindings. For example, you could do it by writing this
text in the source file’s first line:

-*-byte-compile-dynamic: t;-*-

[Variable]byte-compile-dynamic
If this is non-nil, the byte compiler generates compiled files that are set up for
dynamic function loading.

[Function]fetch-bytecode function
If function is a byte-code function object, this immediately finishes loading the byte
code of function from its byte-compiled file, if it is not fully loaded already. Otherwise,
it does nothing. It always returns function.

16.5 Evaluation During Compilation

These features permit you to write code to be evaluated during compilation of a program.

[Special Form]eval-and-compile body. . .
This form marks body to be evaluated both when you compile the containing code
and when you run it (whether compiled or not).

You can get a similar result by putting body in a separate file and referring to that
file with require. That method is preferable when body is large. Effectively require

is automatically eval-and-compile, the package is loaded both when compiling and
executing.

autoload is also effectively eval-and-compile too. It’s recognized when compiling,
so uses of such a function don’t produce “not known to be defined” warnings.

Most uses of eval-and-compile are fairly sophisticated.

If a macro has a helper function to build its result, and that macro is used both locally
and outside the package, then eval-and-compile should be used to get the helper
both when compiling and then later when running.

If functions are defined programmatically (with fset say), then eval-and-compile

can be used to have that done at compile-time as well as run-time, so calls to those
functions are checked (and warnings about “not known to be defined” suppressed).

[Special Form]eval-when-compile body. . .
This form marks body to be evaluated at compile time but not when the compiled
program is loaded. The result of evaluation by the compiler becomes a constant which

Chapter 16: Byte Compilation 234

appears in the compiled program. If you load the source file, rather than compiling
it, body is evaluated normally.

If you have a constant that needs some calculation to produce, eval-when-compile
can do that at compile-time. For example,

(defvar my-regexp

(eval-when-compile (regexp-opt ’("aaa" "aba" "abb"))))

If you’re using another package, but only need macros from it (the byte compiler will
expand those), then eval-when-compile can be used to load it for compiling, but
not executing. For example,

(eval-when-compile

(require ’my-macro-package))

The same sort of thing goes for macros and defsubst functions defined locally and
only for use within the file. They are needed for compiling the file, but in most cases
they are not needed for execution of the compiled file. For example,

(eval-when-compile

(unless (fboundp ’some-new-thing)

(defmacro ’some-new-thing ()

(compatibility code))))

This is often good for code that’s only a fallback for compatibility with other versions
of Emacs.

Common Lisp Note: At top level, eval-when-compile is analogous to the Common
Lisp idiom (eval-when (compile eval) ...). Elsewhere, the Common Lisp ‘#.’
reader macro (but not when interpreting) is closer to what eval-when-compile does.

16.6 Compiler Errors

Byte compilation outputs all errors and warnings into the buffer *Compile-Log*. The
messages include file names and line numbers that identify the location of the problem.
The usual Emacs commands for operating on compiler diagnostics work properly on these
messages.

When an error is due to invalid syntax in the program, the byte compiler might get
confused about the errors’ exact location. One way to investigate is to switch to the buffer
Compiler Input. (This buffer name starts with a space, so it does not show up in M-x

list-buffers.) This buffer contains the program being compiled, and point shows how far
the byte compiler was able to read; the cause of the error might be nearby. See Section 18.3
[Syntax Errors], page 278, for some tips for locating syntax errors.

When the byte compiler warns about functions that were used but not defined, it always
reports the line number for the end of the file, not the locations where the missing functions
were called. To find the latter, you must search for the function names.

You can suppress the compiler warning for calling an undefined function func by condi-
tionalizing the function call on an fboundp test, like this:

(if (fboundp ’func) ...(func ...)...)

The call to func must be in the then-form of the if, and func must appear quoted in the
call to fboundp. (This feature operates for cond as well.)

Chapter 16: Byte Compilation 235

You can tell the compiler that a function is defined using declare-function (see
Section 12.13 [Declaring Functions], page 185). Likewise, you can tell the compiler that
a variable is defined using defvar with no initial value.

You can suppress the compiler warning for a specific use of an undefined variable variable
by conditionalizing its use on a boundp test, like this:

(if (boundp ’variable) ...variable...)

The reference to variable must be in the then-form of the if, and variable must appear
quoted in the call to boundp.

You can suppress any and all compiler warnings within a certain expression using the
construct with-no-warnings:

[Special Form]with-no-warnings body. . .
In execution, this is equivalent to (progn body...), but the compiler does not issue
warnings for anything that occurs inside body.

We recommend that you use this construct around the smallest possible piece of code,
to avoid missing possible warnings other than one you intend to suppress.

More precise control of warnings is possible by setting the variable byte-compile-

warnings.

16.7 Byte-Code Function Objects

Byte-compiled functions have a special data type: they are byte-code function objects.
Whenever such an object appears as a function to be called, Emacs uses the byte-code
interpreter to execute the byte-code.

Internally, a byte-code function object is much like a vector; its elements can be accessed
using aref. Its printed representation is like that for a vector, with an additional ‘#’ before
the opening ‘[’. It must have at least four elements; there is no maximum number, but only
the first six elements have any normal use. They are:

arglist The list of argument symbols.

byte-code The string containing the byte-code instructions.

constants The vector of Lisp objects referenced by the byte code. These include symbols
used as function names and variable names.

stacksize The maximum stack size this function needs.

docstring The documentation string (if any); otherwise, nil. The value may be a number
or a list, in case the documentation string is stored in a file. Use the function
documentation to get the real documentation string (see Section 24.2 [Access-
ing Documentation], page 460).

interactive
The interactive spec (if any). This can be a string or a Lisp expression. It is
nil for a function that isn’t interactive.

Here’s an example of a byte-code function object, in printed representation. It is the
definition of the command backward-sexp.

Chapter 16: Byte Compilation 236

#[(&optional arg)

"^H\204^F^@\301^P\302^H[!\207"

[arg 1 forward-sexp]

2

254435

"^p"]

The primitive way to create a byte-code object is with make-byte-code:

[Function]make-byte-code &rest elements
This function constructs and returns a byte-code function object with elements as its
elements.

You should not try to come up with the elements for a byte-code function yourself,
because if they are inconsistent, Emacs may crash when you call the function. Always leave
it to the byte compiler to create these objects; it makes the elements consistent (we hope).

16.8 Disassembled Byte-Code

People do not write byte-code; that job is left to the byte compiler. But we provide a
disassembler to satisfy a cat-like curiosity. The disassembler converts the byte-compiled
code into human-readable form.

The byte-code interpreter is implemented as a simple stack machine. It pushes values
onto a stack of its own, then pops them off to use them in calculations whose results are
themselves pushed back on the stack. When a byte-code function returns, it pops a value
off the stack and returns it as the value of the function.

In addition to the stack, byte-code functions can use, bind, and set ordinary Lisp vari-
ables, by transferring values between variables and the stack.

[Command]disassemble object &optional buffer-or-name
This command displays the disassembled code for object. In interactive use, or if
buffer-or-name is nil or omitted, the output goes in a buffer named *Disassemble*.
If buffer-or-name is non-nil, it must be a buffer or the name of an existing buffer.
Then the output goes there, at point, and point is left before the output.

The argument object can be a function name, a lambda expression or a byte-code
object. If it is a lambda expression, disassemble compiles it and disassembles the
resulting compiled code.

Here are two examples of using the disassemble function. We have added explanatory
comments to help you relate the byte-code to the Lisp source; these do not appear in the
output of disassemble.

(defun factorial (integer)

"Compute factorial of an integer."

(if (= 1 integer) 1

(* integer (factorial (1- integer)))))

⇒ factorial

(factorial 4)

⇒ 24

Chapter 16: Byte Compilation 237

(disassemble ’factorial)

a byte-code for factorial:

doc: Compute factorial of an integer.

args: (integer)

0 varref integer ; Get the value of integer and
; push it onto the stack.

1 constant 1 ; Push 1 onto stack.
2 eqlsign ; Pop top two values off stack, compare

; them, and push result onto stack.
3 goto-if-nil 1 ; Pop and test top of stack;

; if nil, go to 1, else continue.
6 constant 1 ; Push 1 onto top of stack.
7 return ; Return the top element of the stack.
8:1 varref integer ; Push value of integer onto stack.
9 constant factorial ; Push factorial onto stack.
10 varref integer ; Push value of integer onto stack.
11 sub1 ; Pop integer, decrement value,

; push new value onto stack.
12 call 1 ; Call function factorial using first

; (i.e., top) stack element as argument;
; push returned value onto stack.

13 mult ; Pop top two values off stack, multiply
; them, and push result onto stack.

14 return ; Return the top element of the stack.

The silly-loop function is somewhat more complex:

(defun silly-loop (n)

"Return time before and after N iterations of a loop."

(let ((t1 (current-time-string)))

(while (> (setq n (1- n))

0))

(list t1 (current-time-string))))

⇒ silly-loop

(disassemble ’silly-loop)

a byte-code for silly-loop:

doc: Return time before and after N iterations of a loop.

args: (n)

0 constant current-time-string ; Push current-time-string

; onto top of stack.
1 call 0 ; Call current-time-string with no

; argument, push result onto stack.
2 varbind t1 ; Pop stack and bind t1 to popped value.

Chapter 16: Byte Compilation 238

3:1 varref n ; Get value of n from the environment
; and push the value on the stack.

4 sub1 ; Subtract 1 from top of stack.
5 dup ; Duplicate top of stack; i.e., copy the top

; of the stack and push copy onto stack.
6 varset n ; Pop the top of the stack,

; and bind n to the value.

;; (In effect, the sequence dup varset copies the top of the stack
;; into the value of n without popping it.)

7 constant 0 ; Push 0 onto stack.
8 gtr ; Pop top two values off stack,

; test if n is greater than 0
; and push result onto stack.

9 goto-if-not-nil 1 ; Goto 1 if n > 0
; (this continues the while loop)
; else continue.

12 varref t1 ; Push value of t1 onto stack.
13 constant current-time-string ; Push current-time-string

; onto the top of the stack.
14 call 0 ; Call current-time-string again.
15 unbind 1 ; Unbind t1 in local environment.
16 list2 ; Pop top two elements off stack, create a

; list of them, and push it onto stack.
17 return ; Return value of the top of stack.

Chapter 17: Advising Emacs Lisp Functions 239

17 Advising Emacs Lisp Functions

The advice feature lets you add to the existing definition of a function, by advising the
function. This is a cleaner method for a library to customize functions defined within
Emacs—cleaner than redefining the whole function.

Each function can have multiple pieces of advice, each of which can be separately defined
and then enabled or disabled. All the enabled pieces of advice for any given function actually
take effect when you activate advice for that function, or when you define or redefine the
function. Note that enabling a piece of advice and activating advice for a function are not
the same thing.

Advice is useful for altering the behavior of existing calls to an existing function. If you
want the new behavior for new function calls or new key bindings, you should define a new
function or command, and have it use the existing function as a subroutine.

Advising a function can cause confusion in debugging, since people who debug calls to
the original function may not notice that it has been modified with advice. Therefore, if
you have the possibility to change the code of that function to run a hook, please solve
the problem that way. Advice should be reserved for the cases where you cannot get the
function changed. In particular, Emacs’s own source files should not put advice on functions
in Emacs. There are currently a few exceptions to this convention, but we aim to correct
them.

Unless you know what you are doing, do not advise a primitive (see Section 12.1 [What
Is a Function], page 169). Some primitives are used by the advice mechanism; advising
them could cause an infinite recursion. Also, many primitives are called directly from C
code. Calls to the primitive from Lisp code will take note of the advice, but calls from C
code will ignore the advice.

17.1 A Simple Advice Example

The command next-line moves point down vertically one or more lines; it is the standard
binding of C-n. When used on the last line of the buffer, this command inserts a newline
to create a line to move to if next-line-add-newlines is non-nil (its default is nil.)

Suppose you wanted to add a similar feature to previous-line, which would insert a
new line at the beginning of the buffer for the command to move to (when next-line-add-

newlines is non-nil). How could you do this?

You could do it by redefining the whole function, but that is not modular. The advice
feature provides a cleaner alternative: you can effectively add your code to the existing
function definition, without actually changing or even seeing that definition. Here is how
to do this:

(defadvice previous-line (before next-line-at-end

(&optional arg try-vscroll))

"Insert an empty line when moving up from the top line."

(if (and next-line-add-newlines (= arg 1)

(save-excursion (beginning-of-line) (bobp)))

(progn

(beginning-of-line)

(newline))))

Chapter 17: Advising Emacs Lisp Functions 240

This expression defines a piece of advice for the function previous-line. This piece of
advice is named next-line-at-end, and the symbol before says that it is before-advice
which should run before the regular definition of previous-line. (&optional arg try-

vscroll) specifies how the advice code can refer to the function’s arguments.

When this piece of advice runs, it creates an additional line, in the situation where that
is appropriate, but does not move point to that line. This is the correct way to write the
advice, because the normal definition will run afterward and will move back to the newly
inserted line.

Defining the advice doesn’t immediately change the function previous-line. That
happens when you activate the advice, like this:

(ad-activate ’previous-line)

This is what actually begins to use the advice that has been defined so far for the function
previous-line. Henceforth, whenever that function is run, whether invoked by the user
with C-p or M-x, or called from Lisp, it runs the advice first, and its regular definition
second.

This example illustrates before-advice, which is one class of advice: it runs before the
function’s base definition. There are two other advice classes: after-advice, which runs after
the base definition, and around-advice, which lets you specify an expression to wrap around
the invocation of the base definition.

17.2 Defining Advice

To define a piece of advice, use the macro defadvice. A call to defadvice has the following
syntax, which is based on the syntax of defun and defmacro, but adds more:

(defadvice function (class name

[position] [arglist]
flags...)

[documentation-string]
[interactive-form]
body-forms...)

Here, function is the name of the function (or macro or special form) to be advised. From
now on, we will write just “function” when describing the entity being advised, but this
always includes macros and special forms.

In place of the argument list in an ordinary definition, an advice definition calls for
several different pieces of information.

class specifies the class of the advice—one of before, after, or around. Before-advice
runs before the function itself; after-advice runs after the function itself; around-advice is
wrapped around the execution of the function itself. After-advice and around-advice can
override the return value by setting ad-return-value.

[Variable]ad-return-value
While advice is executing, after the function’s original definition has been executed,
this variable holds its return value, which will ultimately be returned to the caller
after finishing all the advice. After-advice and around-advice can arrange to return
some other value by storing it in this variable.

Chapter 17: Advising Emacs Lisp Functions 241

The argument name is the name of the advice, a non-nil symbol. The advice name
uniquely identifies one piece of advice, within all the pieces of advice in a particular class
for a particular function. The name allows you to refer to the piece of advice—to redefine
it, or to enable or disable it.

The optional position specifies where, in the current list of advice of the specified class,
this new advice should be placed. It should be either first, last or a number that specifies
a zero-based position (first is equivalent to 0). If no position is specified, the default is
first. Position values outside the range of existing positions in this class are mapped to
the beginning or the end of the range, whichever is closer. The position value is ignored
when redefining an existing piece of advice.

The optional arglist can be used to define the argument list for the sake of advice. This
becomes the argument list of the combined definition that is generated in order to run the
advice (see Section 17.9 [Combined Definition], page 248). Therefore, the advice expressions
can use the argument variables in this list to access argument values.

The argument list used in advice need not be the same as the argument list used in
the original function, but must be compatible with it, so that it can handle the ways the
function is actually called. If two pieces of advice for a function both specify an argument
list, they must specify the same argument list.

See Section 17.8 [Argument Access in Advice], page 246, for more information about
argument lists and advice, and a more flexible way for advice to access the arguments.

The remaining elements, flags, are symbols that specify further information about how
to use this piece of advice. Here are the valid symbols and their meanings:

activate Activate the advice for function now. Changes in a function’s advice always
take effect the next time you activate advice for the function; this flag says to
do so, for function, immediately after defining this piece of advice.

This flag has no immediate effect if function itself is not defined yet (a situation
known as forward advice), because it is impossible to activate an undefined
function’s advice. However, defining function will automatically activate its
advice.

protect Protect this piece of advice against non-local exits and errors in preceding code
and advice. Protecting advice places it as a cleanup in an unwind-protect

form, so that it will execute even if the previous code gets an error or uses
throw. See Section 10.5.4 [Cleanups], page 139.

compile Compile the combined definition that is used to run the advice. This flag is ig-
nored unless activate is also specified. See Section 17.9 [Combined Definition],
page 248.

disable Initially disable this piece of advice, so that it will not be used unless subse-
quently explicitly enabled. See Section 17.6 [Enabling Advice], page 245.

preactivate

Activate advice for function when this defadvice is compiled or macroex-
panded. This generates a compiled advised definition according to the cur-
rent advice state, which will be used during activation if appropriate. See
Section 17.7 [Preactivation], page 246.

This is useful only if this defadvice is byte-compiled.

Chapter 17: Advising Emacs Lisp Functions 242

The optional documentation-string serves to document this piece of advice. When advice
is active for function, the documentation for function (as returned by documentation)
combines the documentation strings of all the advice for function with the documentation
string of its original function definition.

The optional interactive-form form can be supplied to change the interactive behavior
of the original function. If more than one piece of advice has an interactive-form, then the
first one (the one with the smallest position) found among all the advice takes precedence.

The possibly empty list of body-forms specifies the body of the advice. The body of an
advice can access or change the arguments, the return value, the binding environment, and
perform any other kind of side effect.

Warning: When you advise a macro, keep in mind that macros are expanded when a
program is compiled, not when a compiled program is run. All subroutines used by the
advice need to be available when the byte compiler expands the macro.

[Command]ad-unadvise function
This command deletes all pieces of advice from function.

[Command]ad-unadvise-all
This command deletes all pieces of advice from all functions.

17.3 Around-Advice

Around-advice lets you “wrap” a Lisp expression “around” the original function definition.
You specify where the original function definition should go by means of the special symbol
ad-do-it. Where this symbol occurs inside the around-advice body, it is replaced with a
progn containing the forms of the surrounded code. Here is an example:

(defadvice foo (around foo-around)

"Ignore case in ‘foo’."

(let ((case-fold-search t))

ad-do-it))

Its effect is to make sure that case is ignored in searches when the original definition of foo
is run.

[Variable]ad-do-it
This is not really a variable, rather a place-holder that looks like a variable. You use
it in around-advice to specify the place to run the function’s original definition and
other “earlier” around-advice.

If the around-advice does not use ad-do-it, then it does not run the original function
definition. This provides a way to override the original definition completely. (It also
overrides lower-positioned pieces of around-advice).

If the around-advice uses ad-do-it more than once, the original definition is run at each
place. In this way, around-advice can execute the original definition (and lower-positioned
pieces of around-advice) several times. Another way to do that is by using ad-do-it inside
of a loop.

Chapter 17: Advising Emacs Lisp Functions 243

17.4 Computed Advice

The macro defadvice resembles defun in that the code for the advice, and all other infor-
mation about it, are explicitly stated in the source code. You can also create advice whose
details are computed, using the function ad-add-advice.

[Function]ad-add-advice function advice class position
Calling ad-add-advice adds advice as a piece of advice to function in class class.
The argument advice has this form:

(name protected enabled definition)

Here, protected and enabled are flags; if protected is non-nil, the advice is protected
against non-local exits (see Section 17.2 [Defining Advice], page 240), and if enabled
is nil the advice is initially disabled (see Section 17.6 [Enabling Advice], page 245).
definition should have the form

(advice . lambda)

where lambda is a lambda expression; this lambda expression is called in order to
perform the advice. See Section 12.2 [Lambda Expressions], page 171.

If the function argument to ad-add-advice already has one or more pieces of advice
in the specified class, then position specifies where in the list to put the new piece
of advice. The value of position can either be first, last, or a number (counting
from 0 at the beginning of the list). Numbers outside the range are mapped to the
beginning or the end of the range, whichever is closer. The position value is ignored
when redefining an existing piece of advice.

If function already has a piece of advice with the same name, then the position
argument is ignored and the old advice is replaced with the new one.

17.5 Activation of Advice

By default, advice does not take effect when you define it—only when you activate advice for
the function. However, the advice will be activated automatically if you define or redefine
the function later. You can request the activation of advice for a function when you define
the advice, by specifying the activate flag in the defadvice; or you can activate the advice
separately by calling the function ad-activate or one of the other activation commands
listed below.

Separating the activation of advice from the act of defining it permits you to add several
pieces of advice to one function efficiently, without redefining the function over and over
as each advice is added. More importantly, it permits defining advice for a function before
that function is actually defined.

When a function’s advice is first activated, the function’s original definition is saved,
and all enabled pieces of advice for that function are combined with the original definition
to make a new definition. (Pieces of advice that are currently disabled are not used; see
Section 17.6 [Enabling Advice], page 245.) This definition is installed, and optionally byte-
compiled as well, depending on conditions described below.

In all of the commands to activate advice, if compile is t (or anything but nil or a
negative number), the command also compiles the combined definition which implements
the advice. If it is nil or a negative number, what happens depends on ad-default-

compilation-action as described below.

Chapter 17: Advising Emacs Lisp Functions 244

[Command]ad-activate function &optional compile
This command activates all the advice defined for function.

Activating advice does nothing if function’s advice is already active. But if there is new
advice, added since the previous time you activated advice for function, it activates the new
advice.

[Command]ad-deactivate function
This command deactivates the advice for function.

[Command]ad-update function &optional compile
This command activates the advice for function if its advice is already activated. This
is useful if you change the advice.

[Command]ad-activate-all &optional compile
This command activates the advice for all functions.

[Command]ad-deactivate-all
This command deactivates the advice for all functions.

[Command]ad-update-all &optional compile
This command activates the advice for all functions whose advice is already activated.
This is useful if you change the advice of some functions.

[Command]ad-activate-regexp regexp &optional compile
This command activates all pieces of advice whose names match regexp. More pre-
cisely, it activates all advice for any function which has at least one piece of advice
that matches regexp.

[Command]ad-deactivate-regexp regexp
This command deactivates all pieces of advice whose names match regexp. More
precisely, it deactivates all advice for any function which has at least one piece of
advice that matches regexp.

[Command]ad-update-regexp regexp &optional compile
This command activates pieces of advice whose names match regexp, but only those
for functions whose advice is already activated.

Reactivating a function’s advice is useful for putting into effect all the changes that
have been made in its advice (including enabling and disabling specific pieces of ad-
vice; see Section 17.6 [Enabling Advice], page 245) since the last time it was activated.

[Command]ad-start-advice
Turn on automatic advice activation when a function is defined or redefined. This is
the default mode.

[Command]ad-stop-advice
Turn off automatic advice activation when a function is defined or redefined.

Chapter 17: Advising Emacs Lisp Functions 245

[User Option]ad-default-compilation-action
This variable controls whether to compile the combined definition that results from
activating advice for a function.

A value of always specifies to compile unconditionally. A value of never specifies
never compile the advice.

A value of maybe specifies to compile if the byte compiler is already loaded. A value of
like-original specifies to compile the advice if the original definition of the advised
function is compiled or a built-in function.

This variable takes effect only if the compile argument of ad-activate (or any of the
above functions) did not force compilation.

If the advised definition was constructed during “preactivation” (see Section 17.7 [Pre-
activation], page 246), then that definition must already be compiled, because it was
constructed during byte-compilation of the file that contained the defadvice with the
preactivate flag.

17.6 Enabling and Disabling Advice

Each piece of advice has a flag that says whether it is enabled or not. By enabling or
disabling a piece of advice, you can turn it on and off without having to undefine and
redefine it. For example, here is how to disable a particular piece of advice named my-

advice for the function foo:

(ad-disable-advice ’foo ’before ’my-advice)

This function by itself only changes the enable flag for a piece of advice. To make the
change take effect in the advised definition, you must activate the advice for foo again:

(ad-activate ’foo)

[Command]ad-disable-advice function class name
This command disables the piece of advice named name in class class on function.

[Command]ad-enable-advice function class name
This command enables the piece of advice named name in class class on function.

You can also disable many pieces of advice at once, for various functions, using a regular
expression. As always, the changes take real effect only when you next reactivate advice for
the functions in question.

[Command]ad-disable-regexp regexp
This command disables all pieces of advice whose names match regexp, in all classes,
on all functions.

[Command]ad-enable-regexp regexp
This command enables all pieces of advice whose names match regexp, in all classes,
on all functions.

Chapter 17: Advising Emacs Lisp Functions 246

17.7 Preactivation

Constructing a combined definition to execute advice is moderately expensive. When a
library advises many functions, this can make loading the library slow. In that case, you
can use preactivation to construct suitable combined definitions in advance.

To use preactivation, specify the preactivate flag when you define the advice with
defadvice. This defadvice call creates a combined definition which embodies this piece
of advice (whether enabled or not) plus any other currently enabled advice for the same
function, and the function’s own definition. If the defadvice is compiled, that compiles
the combined definition also.

When the function’s advice is subsequently activated, if the enabled advice for the func-
tion matches what was used to make this combined definition, then the existing combined
definition is used, thus avoiding the need to construct one. Thus, preactivation never causes
wrong results—but it may fail to do any good, if the enabled advice at the time of activation
doesn’t match what was used for preactivation.

Here are some symptoms that can indicate that a preactivation did not work properly,
because of a mismatch.

• Activation of the advised function takes longer than usual.

• The byte compiler gets loaded while an advised function gets activated.

• byte-compile is included in the value of features even though you did not ever
explicitly use the byte compiler.

Compiled preactivated advice works properly even if the function itself is not defined
until later; however, the function needs to be defined when you compile the preactivated
advice.

There is no elegant way to find out why preactivated advice is not being used. What you
can do is to trace the function ad-cache-id-verification-code (with the function trace-

function-background) before the advised function’s advice is activated. After activation,
check the value returned by ad-cache-id-verification-code for that function: verified
means that the preactivated advice was used, while other values give some information about
why they were considered inappropriate.

Warning: There is one known case that can make preactivation fail, in that a precon-
structed combined definition is used even though it fails to match the current state of advice.
This can happen when two packages define different pieces of advice with the same name,
in the same class, for the same function. But you should avoid that anyway.

17.8 Argument Access in Advice

The simplest way to access the arguments of an advised function in the body of a piece of
advice is to use the same names that the function definition uses. To do this, you need to
know the names of the argument variables of the original function.

While this simple method is sufficient in many cases, it has a disadvantage: it is not
robust, because it hard-codes the argument names into the advice. If the definition of the
original function changes, the advice might break.

Another method is to specify an argument list in the advice itself. This avoids the need
to know the original function definition’s argument names, but it has a limitation: all the

Chapter 17: Advising Emacs Lisp Functions 247

advice on any particular function must use the same argument list, because the argument
list actually used for all the advice comes from the first piece of advice for that function.

A more robust method is to use macros that are translated into the proper access forms
at activation time, i.e., when constructing the advised definition. Access macros access
actual arguments by their (zero-based) position, regardless of how these actual arguments
get distributed onto the argument variables of a function. This is robust because in Emacs
Lisp the meaning of an argument is strictly determined by its position in the argument list.

[Macro]ad-get-arg position
This returns the actual argument that was supplied at position.

[Macro]ad-get-args position
This returns the list of actual arguments supplied starting at position.

[Macro]ad-set-arg position value
This sets the value of the actual argument at position to value

[Macro]ad-set-args position value-list
This sets the list of actual arguments starting at position to value-list.

Now an example. Suppose the function foo is defined as

(defun foo (x y &optional z &rest r) ...)

and is then called with

(foo 0 1 2 3 4 5 6)

which means that x is 0, y is 1, z is 2 and r is (3 4 5 6) within the body of foo. Here is
what ad-get-arg and ad-get-args return in this case:

(ad-get-arg 0) ⇒ 0

(ad-get-arg 1) ⇒ 1

(ad-get-arg 2) ⇒ 2

(ad-get-arg 3) ⇒ 3

(ad-get-args 2) ⇒ (2 3 4 5 6)

(ad-get-args 4) ⇒ (4 5 6)

Setting arguments also makes sense in this example:

(ad-set-arg 5 "five")

has the effect of changing the sixth argument to "five". If this happens in advice executed
before the body of foo is run, then r will be (3 4 "five" 6) within that body.

Here is an example of setting a tail of the argument list:

(ad-set-args 0 ’(5 4 3 2 1 0))

If this happens in advice executed before the body of foo is run, then within that body, x
will be 5, y will be 4, z will be 3, and r will be (2 1 0) inside the body of foo.

These argument constructs are not really implemented as Lisp macros. Instead they are
implemented specially by the advice mechanism.

Chapter 17: Advising Emacs Lisp Functions 248

17.9 The Combined Definition

Suppose that a function has n pieces of before-advice (numbered from 0 through n−1),
m pieces of around-advice and k pieces of after-advice. Assuming no piece of advice is
protected, the combined definition produced to implement the advice for a function looks
like this:

(lambda arglist

[[advised-docstring] [(interactive ...)]]
(let (ad-return-value)

before-0-body-form...

....

before-n−1-body-form...

around-0-body-form...

around-1-body-form...

....

around-m−1-body-form...

(setq ad-return-value

apply original definition to arglist)
end-of-around-m−1-body-form...

....

end-of-around-1-body-form...

end-of-around-0-body-form...

after-0-body-form...

....

after-k−1-body-form...

ad-return-value))

Macros are redefined as macros, which means adding macro to the beginning of the
combined definition.

The interactive form is present if the original function or some piece of advice specifies
one. When an interactive primitive function is advised, advice uses a special method: it
calls the primitive with call-interactively so that it will read its own arguments. In
this case, the advice cannot access the arguments.

The body forms of the various advice in each class are assembled according to their
specified order. The forms of around-advice l are included in one of the forms of around-
advice l − 1.

The innermost part of the around advice onion is

apply original definition to arglist

whose form depends on the type of the original function. The variable ad-return-value is
set to whatever this returns. The variable is visible to all pieces of advice, which can access
and modify it before it is actually returned from the advised function.

The semantic structure of advised functions that contain protected pieces of advice is the
same. The only difference is that unwind-protect forms ensure that the protected advice
gets executed even if some previous piece of advice had an error or a non-local exit. If any
around-advice is protected, then the whole around-advice onion is protected as a result.

Chapter 18: Debugging Lisp Programs 249

18 Debugging Lisp Programs

There are several ways to find and investigate problems in an Emacs Lisp program.

• If a problem occurs when you run the program, you can use the built-in Emacs Lisp
debugger to suspend the Lisp evaluator, and examine and/or alter its internal state.

• You can use Edebug, a source-level debugger for Emacs Lisp.

• If a syntactic problem is preventing Lisp from even reading the program, you can locate
it using Lisp editing commands.

• You can look at the error and warning messages produced by the byte compiler when
it compiles the program. See Section 16.6 [Compiler Errors], page 234.

• You can use the Testcover package to perform coverage testing on the program.

• You can use the ERT package to write regression tests for the program. See ERT:
Emacs Lisp Regression Testing .

• You can profile the program to get hints about how to make it more efficient.

Other useful tools for debugging input and output problems are the dribble file
(see Section 39.12 [Terminal Input], page 934) and the open-termscript function (see
Section 39.13 [Terminal Output], page 935).

18.1 The Lisp Debugger

The ordinary Lisp debugger provides the ability to suspend evaluation of a form. While
evaluation is suspended (a state that is commonly known as a break), you may examine the
run time stack, examine the values of local or global variables, or change those values. Since
a break is a recursive edit, all the usual editing facilities of Emacs are available; you can
even run programs that will enter the debugger recursively. See Section 21.13 [Recursive
Editing], page 361.

18.1.1 Entering the Debugger on an Error

The most important time to enter the debugger is when a Lisp error happens. This allows
you to investigate the immediate causes of the error.

However, entry to the debugger is not a normal consequence of an error. Many commands
signal Lisp errors when invoked inappropriately, and during ordinary editing it would be
very inconvenient to enter the debugger each time this happens. So if you want errors to
enter the debugger, set the variable debug-on-error to non-nil. (The command toggle-

debug-on-error provides an easy way to do this.)

[User Option]debug-on-error
This variable determines whether the debugger is called when an error is signaled and
not handled. If debug-on-error is t, all kinds of errors call the debugger, except those
listed in debug-ignored-errors (see below). If it is nil, none call the debugger.

The value can also be a list of error conditions (see Section 10.5.3.1 [Signaling Errors],
page 132). Then the debugger is called only for error conditions in this list (except
those also listed in debug-ignored-errors). For example, if you set debug-on-error
to the list (void-variable), the debugger is only called for errors about a variable
that has no value.

Chapter 18: Debugging Lisp Programs 250

Note that eval-expression-debug-on-error overrides this variable in some cases;
see below.

When this variable is non-nil, Emacs does not create an error handler around process
filter functions and sentinels. Therefore, errors in these functions also invoke the
debugger. See Chapter 37 [Processes], page 780.

[User Option]debug-ignored-errors
This variable specifies errors which should not enter the debugger, regardless of the
value of debug-on-error. Its value is a list of error condition symbols and/or regular
expressions. If the error has any of those condition symbols, or if the error message
matches any of the regular expressions, then that error does not enter the debugger.

The normal value of this variable includes user-error, as well as several errors that
happen often during editing but rarely result from bugs in Lisp programs. However,
“rarely” is not “never”; if your program fails with an error that matches this list,
you may try changing this list to debug the error. The easiest way is usually to set
debug-ignored-errors to nil.

[User Option]eval-expression-debug-on-error
If this variable has a non-nil value (the default), running the command eval-

expression causes debug-on-error to be temporarily bound to to t. See Section
“Evaluating Emacs-Lisp Expressions” in The GNU Emacs Manual.

If eval-expression-debug-on-error is nil, then the value of debug-on-error is
not changed during eval-expression.

[Variable]debug-on-signal
Normally, errors caught by condition-case never invoke the debugger. The
condition-case gets a chance to handle the error before the debugger gets a chance.

If you change debug-on-signal to a non-nil value, the debugger gets the first chance
at every error, regardless of the presence of condition-case. (To invoke the debug-
ger, the error must still fulfill the criteria specified by debug-on-error and debug-

ignored-errors.)

Warning: Setting this variable to non-nil may have annoying effects. Various parts of
Emacs catch errors in the normal course of affairs, and you may not even realize that
errors happen there. If you need to debug code wrapped in condition-case, con-
sider using condition-case-unless-debug (see Section 10.5.3.3 [Handling Errors],
page 134).

[User Option]debug-on-event
If you set debug-on-event to a special event (see Section 21.9 [Special Events],
page 356), Emacs will try to enter the debugger as soon as it receives this event,
bypassing special-event-map. At present, the only supported values correspond
to the signals SIGUSR1 and SIGUSR2 (this is the default). This can be helpful when
inhibit-quit is set and Emacs is not otherwise responding.

[Variable]debug-on-message
If you set debug-on-message to a regular expression, Emacs will enter the debugger
if it displays a matching message in the echo area. For example, this can be useful
when trying to find the cause of a particular message.

Chapter 18: Debugging Lisp Programs 251

To debug an error that happens during loading of the init file, use the option
‘--debug-init’. This binds debug-on-error to t while loading the init file, and bypasses
the condition-case which normally catches errors in the init file.

18.1.2 Debugging Infinite Loops

When a program loops infinitely and fails to return, your first problem is to stop the loop.
On most operating systems, you can do this with C-g, which causes a quit. See Section 21.11
[Quitting], page 358.

Ordinary quitting gives no information about why the program was looping. To get
more information, you can set the variable debug-on-quit to non-nil. Once you have the
debugger running in the middle of the infinite loop, you can proceed from the debugger
using the stepping commands. If you step through the entire loop, you may get enough
information to solve the problem.

Quitting with C-g is not considered an error, and debug-on-error has no effect on the
handling of C-g. Likewise, debug-on-quit has no effect on errors.

[User Option]debug-on-quit
This variable determines whether the debugger is called when quit is signaled and
not handled. If debug-on-quit is non-nil, then the debugger is called whenever you
quit (that is, type C-g). If debug-on-quit is nil (the default), then the debugger is
not called when you quit.

18.1.3 Entering the Debugger on a Function Call

To investigate a problem that happens in the middle of a program, one useful technique is
to enter the debugger whenever a certain function is called. You can do this to the function
in which the problem occurs, and then step through the function, or you can do this to a
function called shortly before the problem, step quickly over the call to that function, and
then step through its caller.

[Command]debug-on-entry function-name
This function requests function-name to invoke the debugger each time it is called.
It works by inserting the form (implement-debug-on-entry) into the function defi-
nition as the first form.

Any function or macro defined as Lisp code may be set to break on entry, regardless
of whether it is interpreted code or compiled code. If the function is a command, it
will enter the debugger when called from Lisp and when called interactively (after the
reading of the arguments). You can also set debug-on-entry for primitive functions
(i.e., those written in C) this way, but it only takes effect when the primitive is called
from Lisp code. Debug-on-entry is not allowed for special forms.

When debug-on-entry is called interactively, it prompts for function-name in the
minibuffer. If the function is already set up to invoke the debugger on entry, debug-
on-entry does nothing. debug-on-entry always returns function-name.

Warning: if you redefine a function after using debug-on-entry on it, the code to
enter the debugger is discarded by the redefinition. In effect, redefining the function
cancels the break-on-entry feature for that function.

Here’s an example to illustrate use of this function:

Chapter 18: Debugging Lisp Programs 252

(defun fact (n)

(if (zerop n) 1

(* n (fact (1- n)))))

⇒ fact

(debug-on-entry ’fact)

⇒ fact

(fact 3)

------ Buffer: *Backtrace* ------

Debugger entered--entering a function:

* fact(3)

eval((fact 3))

eval-last-sexp-1(nil)

eval-last-sexp(nil)

call-interactively(eval-last-sexp)

------ Buffer: *Backtrace* ------

(symbol-function ’fact)

⇒ (lambda (n)

(debug (quote debug))

(if (zerop n) 1 (* n (fact (1- n)))))

[Command]cancel-debug-on-entry &optional function-name
This function undoes the effect of debug-on-entry on function-name. When called
interactively, it prompts for function-name in the minibuffer. If function-name is
omitted or nil, it cancels break-on-entry for all functions. Calling cancel-debug-

on-entry does nothing to a function which is not currently set up to break on entry.

18.1.4 Explicit Entry to the Debugger

You can cause the debugger to be called at a certain point in your program by writing the
expression (debug) at that point. To do this, visit the source file, insert the text ‘(debug)’
at the proper place, and type C-M-x (eval-defun, a Lisp mode key binding). Warning: if
you do this for temporary debugging purposes, be sure to undo this insertion before you
save the file!

The place where you insert ‘(debug)’ must be a place where an additional form can
be evaluated and its value ignored. (If the value of (debug) isn’t ignored, it will alter the
execution of the program!) The most common suitable places are inside a progn or an
implicit progn (see Section 10.1 [Sequencing], page 122).

If you don’t know exactly where in the source code you want to put the debug statement,
but you want to display a backtrace when a certain message is displayed, you can set debug-
on-message to a regular expression matching the desired message.

18.1.5 Using the Debugger

When the debugger is entered, it displays the previously selected buffer in one window and
a buffer named *Backtrace* in another window. The backtrace buffer contains one line for
each level of Lisp function execution currently going on. At the beginning of this buffer is

Chapter 18: Debugging Lisp Programs 253

a message describing the reason that the debugger was invoked (such as the error message
and associated data, if it was invoked due to an error).

The backtrace buffer is read-only and uses a special major mode, Debugger mode, in
which letters are defined as debugger commands. The usual Emacs editing commands are
available; thus, you can switch windows to examine the buffer that was being edited at the
time of the error, switch buffers, visit files, or do any other sort of editing. However, the
debugger is a recursive editing level (see Section 21.13 [Recursive Editing], page 361) and
it is wise to go back to the backtrace buffer and exit the debugger (with the q command)
when you are finished with it. Exiting the debugger gets out of the recursive edit and buries
the backtrace buffer. (You can customize what the q command does with the backtrace
buffer by setting the variable debugger-bury-or-kill. For example, set it to kill if you
prefer to kill the buffer rather than bury it. Consult the variable’s documentation for more
possibilities.)

When the debugger has been entered, the debug-on-error variable is temporarily set
according to eval-expression-debug-on-error. If the latter variable is non-nil, debug-
on-error will temporarily be set to t. This means that any further errors that occur while
doing a debugging session will (by default) trigger another backtrace. If this is not what you
want, you can either set eval-expression-debug-on-error to nil, or set debug-on-error
to nil in debugger-mode-hook.

The backtrace buffer shows you the functions that are executing and their argument
values. It also allows you to specify a stack frame by moving point to the line describing
that frame. (A stack frame is the place where the Lisp interpreter records information
about a particular invocation of a function.) The frame whose line point is on is considered
the current frame. Some of the debugger commands operate on the current frame. If a line
starts with a star, that means that exiting that frame will call the debugger again. This is
useful for examining the return value of a function.

If a function name is underlined, that means the debugger knows where its source code
is located. You can click with the mouse on that name, or move to it and type RET, to visit
the source code.

The debugger itself must be run byte-compiled, since it makes assumptions about how
many stack frames are used for the debugger itself. These assumptions are false if the
debugger is running interpreted.

18.1.6 Debugger Commands

The debugger buffer (in Debugger mode) provides special commands in addition to the
usual Emacs commands. The most important use of debugger commands is for stepping
through code, so that you can see how control flows. The debugger can step through the
control structures of an interpreted function, but cannot do so in a byte-compiled function.
If you would like to step through a byte-compiled function, replace it with an interpreted
definition of the same function. (To do this, visit the source for the function and type C-M-x
on its definition.) You cannot use the Lisp debugger to step through a primitive function.

Here is a list of Debugger mode commands:

c Exit the debugger and continue execution. This resumes execution of the pro-
gram as if the debugger had never been entered (aside from any side-effects

Chapter 18: Debugging Lisp Programs 254

that you caused by changing variable values or data structures while inside the
debugger).

d Continue execution, but enter the debugger the next time any Lisp function is
called. This allows you to step through the subexpressions of an expression,
seeing what values the subexpressions compute, and what else they do.

The stack frame made for the function call which enters the debugger in this
way will be flagged automatically so that the debugger will be called again when
the frame is exited. You can use the u command to cancel this flag.

b Flag the current frame so that the debugger will be entered when the frame
is exited. Frames flagged in this way are marked with stars in the backtrace
buffer.

u Don’t enter the debugger when the current frame is exited. This cancels a b

command on that frame. The visible effect is to remove the star from the line
in the backtrace buffer.

j Flag the current frame like b. Then continue execution like c, but temporarily
disable break-on-entry for all functions that are set up to do so by debug-on-

entry.

e Read a Lisp expression in the minibuffer, evaluate it, and print the value in the
echo area. The debugger alters certain important variables, and the current
buffer, as part of its operation; e temporarily restores their values from outside
the debugger, so you can examine and change them. This makes the debugger
more transparent. By contrast, M-: does nothing special in the debugger; it
shows you the variable values within the debugger.

R Like e, but also save the result of evaluation in the buffer *Debugger-record*.

q Terminate the program being debugged; return to top-level Emacs command
execution.

If the debugger was entered due to a C-g but you really want to quit, and not
debug, use the q command.

r Return a value from the debugger. The value is computed by reading an ex-
pression with the minibuffer and evaluating it.

The r command is useful when the debugger was invoked due to exit from a
Lisp call frame (as requested with b or by entering the frame with d); then the
value specified in the r command is used as the value of that frame. It is also
useful if you call debug and use its return value. Otherwise, r has the same
effect as c, and the specified return value does not matter.

You can’t use r when the debugger was entered due to an error.

l Display a list of functions that will invoke the debugger when called. This
is a list of functions that are set to break on entry by means of debug-on-
entry. Warning: if you redefine such a function and thus cancel the effect of
debug-on-entry, it may erroneously show up in this list.

Chapter 18: Debugging Lisp Programs 255

18.1.7 Invoking the Debugger

Here we describe in full detail the function debug that is used to invoke the debugger.

[Command]debug &rest debugger-args
This function enters the debugger. It switches buffers to a buffer named *Backtrace*

(or *Backtrace*<2> if it is the second recursive entry to the debugger, etc.), and fills
it with information about the stack of Lisp function calls. It then enters a recursive
edit, showing the backtrace buffer in Debugger mode.

The Debugger mode c, d, j, and r commands exit the recursive edit; then debug

switches back to the previous buffer and returns to whatever called debug. This is
the only way the function debug can return to its caller.

The use of the debugger-args is that debug displays the rest of its arguments at the
top of the *Backtrace* buffer, so that the user can see them. Except as described
below, this is the only way these arguments are used.

However, certain values for first argument to debug have a special significance. (Nor-
mally, these values are used only by the internals of Emacs, and not by programmers
calling debug.) Here is a table of these special values:

lambda A first argument of lambda means debug was called because of entry to a
function when debug-on-next-call was non-nil. The debugger displays
‘Debugger entered--entering a function:’ as a line of text at the top
of the buffer.

debug debug as first argument means debug was called because of entry to a
function that was set to debug on entry. The debugger displays the string
‘Debugger entered--entering a function:’, just as in the lambda case.
It also marks the stack frame for that function so that it will invoke the
debugger when exited.

t When the first argument is t, this indicates a call to debug due to eval-
uation of a function call form when debug-on-next-call is non-nil.
The debugger displays ‘Debugger entered--beginning evaluation of

function call form:’ as the top line in the buffer.

exit When the first argument is exit, it indicates the exit of a stack frame
previously marked to invoke the debugger on exit. The second argument
given to debug in this case is the value being returned from the frame.
The debugger displays ‘Debugger entered--returning value:’ in the
top line of the buffer, followed by the value being returned.

error When the first argument is error, the debugger indicates that it is being
entered because an error or quit was signaled and not handled, by dis-
playing ‘Debugger entered--Lisp error:’ followed by the error signaled
and any arguments to signal. For example,

(let ((debug-on-error t))

(/ 1 0))

Chapter 18: Debugging Lisp Programs 256

------ Buffer: *Backtrace* ------

Debugger entered--Lisp error: (arith-error)

/(1 0)

...

------ Buffer: *Backtrace* ------

If an error was signaled, presumably the variable debug-on-error is non-
nil. If quit was signaled, then presumably the variable debug-on-quit
is non-nil.

nil Use nil as the first of the debugger-args when you want to enter the
debugger explicitly. The rest of the debugger-args are printed on the
top line of the buffer. You can use this feature to display messages—for
example, to remind yourself of the conditions under which debug is called.

18.1.8 Internals of the Debugger

This section describes functions and variables used internally by the debugger.

[Variable]debugger
The value of this variable is the function to call to invoke the debugger. Its value
must be a function of any number of arguments, or, more typically, the name of a
function. This function should invoke some kind of debugger. The default value of
the variable is debug.

The first argument that Lisp hands to the function indicates why it was called. The
convention for arguments is detailed in the description of debug (see Section 18.1.7
[Invoking the Debugger], page 255).

[Command]backtrace
This function prints a trace of Lisp function calls currently active. This is the function
used by debug to fill up the *Backtrace* buffer. It is written in C, since it must have
access to the stack to determine which function calls are active. The return value is
always nil.

In the following example, a Lisp expression calls backtrace explicitly. This prints
the backtrace to the stream standard-output, which, in this case, is the buffer
‘backtrace-output’.

Each line of the backtrace represents one function call. The line shows the values of
the function’s arguments if they are all known; if they are still being computed, the
line says so. The arguments of special forms are elided.

(with-output-to-temp-buffer "backtrace-output"

(let ((var 1))

(save-excursion

(setq var (eval ’(progn

(1+ var)

(list ’testing (backtrace))))))))

⇒ (testing nil)

----------- Buffer: backtrace-output ------------

backtrace()

(list ...computing arguments...)

Chapter 18: Debugging Lisp Programs 257

(progn ...)

eval((progn (1+ var) (list (quote testing) (backtrace))))

(setq ...)

(save-excursion ...)

(let ...)

(with-output-to-temp-buffer ...)

eval((with-output-to-temp-buffer ...))

eval-last-sexp-1(nil)

eval-last-sexp(nil)

call-interactively(eval-last-sexp)

----------- Buffer: backtrace-output ------------

[Variable]debug-on-next-call
If this variable is non-nil, it says to call the debugger before the next eval, apply
or funcall. Entering the debugger sets debug-on-next-call to nil.

The d command in the debugger works by setting this variable.

[Function]backtrace-debug level flag
This function sets the debug-on-exit flag of the stack frame level levels down the stack,
giving it the value flag. If flag is non-nil, this will cause the debugger to be entered
when that frame later exits. Even a nonlocal exit through that frame will enter the
debugger.

This function is used only by the debugger.

[Variable]command-debug-status
This variable records the debugging status of the current interactive command. Each
time a command is called interactively, this variable is bound to nil. The debugger
can set this variable to leave information for future debugger invocations during the
same command invocation.

The advantage of using this variable rather than an ordinary global variable is that
the data will never carry over to a subsequent command invocation.

[Function]backtrace-frame frame-number
The function backtrace-frame is intended for use in Lisp debuggers. It returns
information about what computation is happening in the stack frame frame-number
levels down.

If that frame has not evaluated the arguments yet, or is a special form, the value is
(nil function arg-forms...).

If that frame has evaluated its arguments and called its function already, the return
value is (t function arg-values...).

In the return value, function is whatever was supplied as the car of the evaluated
list, or a lambda expression in the case of a macro call. If the function has a &rest

argument, that is represented as the tail of the list arg-values.

If frame-number is out of range, backtrace-frame returns nil.

Chapter 18: Debugging Lisp Programs 258

18.2 Edebug

Edebug is a source-level debugger for Emacs Lisp programs, with which you can:

• Step through evaluation, stopping before and after each expression.

• Set conditional or unconditional breakpoints.

• Stop when a specified condition is true (the global break event).

• Trace slow or fast, stopping briefly at each stop point, or at each breakpoint.

• Display expression results and evaluate expressions as if outside of Edebug.

• Automatically re-evaluate a list of expressions and display their results each time Ede-
bug updates the display.

• Output trace information on function calls and returns.

• Stop when an error occurs.

• Display a backtrace, omitting Edebug’s own frames.

• Specify argument evaluation for macros and defining forms.

• Obtain rudimentary coverage testing and frequency counts.

The first three sections below should tell you enough about Edebug to start using it.

18.2.1 Using Edebug

To debug a Lisp program with Edebug, you must first instrument the Lisp code that you
want to debug. A simple way to do this is to first move point into the definition of a function
or macro and then do C-u C-M-x (eval-defun with a prefix argument). See Section 18.2.2
[Instrumenting], page 259, for alternative ways to instrument code.

Once a function is instrumented, any call to the function activates Edebug. Depending
on which Edebug execution mode you have selected, activating Edebug may stop execution
and let you step through the function, or it may update the display and continue execution
while checking for debugging commands. The default execution mode is step, which stops
execution. See Section 18.2.3 [Edebug Execution Modes], page 260.

Within Edebug, you normally view an Emacs buffer showing the source of the Lisp code
you are debugging. This is referred to as the source code buffer, and it is temporarily
read-only.

An arrow in the left fringe indicates the line where the function is executing. Point
initially shows where within the line the function is executing, but this ceases to be true if
you move point yourself.

If you instrument the definition of fac (shown below) and then execute (fac 3), here is
what you would normally see. Point is at the open-parenthesis before if.

(defun fac (n)

=>?(if (< 0 n)

(* n (fac (1- n)))

1))

The places within a function where Edebug can stop execution are called stop points.
These occur both before and after each subexpression that is a list, and also after each
variable reference. Here we use periods to show the stop points in the function fac:

Chapter 18: Debugging Lisp Programs 259

(defun fac (n)

.(if .(< 0 n.).

.(* n. .(fac .(1- n.).).).

1).)

The special commands of Edebug are available in the source code buffer in addition to
the commands of Emacs Lisp mode. For example, you can type the Edebug command SPC

to execute until the next stop point. If you type SPC once after entry to fac, here is the
display you will see:

(defun fac (n)

=>(if ?(< 0 n)

(* n (fac (1- n)))

1))

When Edebug stops execution after an expression, it displays the expression’s value in
the echo area.

Other frequently used commands are b to set a breakpoint at a stop point, g to execute
until a breakpoint is reached, and q to exit Edebug and return to the top-level command
loop. Type ? to display a list of all Edebug commands.

18.2.2 Instrumenting for Edebug

In order to use Edebug to debug Lisp code, you must first instrument the code. Instru-
menting code inserts additional code into it, to invoke Edebug at the proper places.

When you invoke command C-M-x (eval-defun) with a prefix argument on a function
definition, it instruments the definition before evaluating it. (This does not modify the
source code itself.) If the variable edebug-all-defs is non-nil, that inverts the meaning
of the prefix argument: in this case, C-M-x instruments the definition unless it has a prefix
argument. The default value of edebug-all-defs is nil. The command M-x edebug-all-

defs toggles the value of the variable edebug-all-defs.

If edebug-all-defs is non-nil, then the commands eval-region, eval-current-

buffer, and eval-buffer also instrument any definitions they evaluate. Similarly, edebug-
all-forms controls whether eval-region should instrument any form, even non-defining
forms. This doesn’t apply to loading or evaluations in the minibuffer. The command M-x

edebug-all-forms toggles this option.

Another command, M-x edebug-eval-top-level-form, is available to instrument
any top-level form regardless of the values of edebug-all-defs and edebug-all-forms.
edebug-defun is an alias for edebug-eval-top-level-form.

While Edebug is active, the command I (edebug-instrument-callee) instruments the
definition of the function or macro called by the list form after point, if it is not already in-
strumented. This is possible only if Edebug knows where to find the source for that function;
for this reason, after loading Edebug, eval-region records the position of every definition
it evaluates, even if not instrumenting it. See also the i command (see Section 18.2.4
[Jumping], page 261), which steps into the call after instrumenting the function.

Edebug knows how to instrument all the standard special forms, interactive forms
with an expression argument, anonymous lambda expressions, and other defining forms.
However, Edebug cannot determine on its own what a user-defined macro will do with the

Chapter 18: Debugging Lisp Programs 260

arguments of a macro call, so you must provide that information using Edebug specifications;
for details, see Section 18.2.15 [Edebug and Macros], page 271.

When Edebug is about to instrument code for the first time in a session, it runs the hook
edebug-setup-hook, then sets it to nil. You can use this to load Edebug specifications
associated with a package you are using, but only when you use Edebug.

To remove instrumentation from a definition, simply re-evaluate its definition in a way
that does not instrument. There are two ways of evaluating forms that never instrument
them: from a file with load, and from the minibuffer with eval-expression (M-:).

If Edebug detects a syntax error while instrumenting, it leaves point at the erroneous
code and signals an invalid-read-syntax error.

See Section 18.2.9 [Edebug Eval], page 265, for other evaluation functions available inside
of Edebug.

18.2.3 Edebug Execution Modes

Edebug supports several execution modes for running the program you are debugging. We
call these alternatives Edebug execution modes; do not confuse them with major or minor
modes. The current Edebug execution mode determines how far Edebug continues execution
before stopping—whether it stops at each stop point, or continues to the next breakpoint,
for example—and how much Edebug displays the progress of the evaluation before it stops.

Normally, you specify the Edebug execution mode by typing a command to continue the
program in a certain mode. Here is a table of these commands; all except for S resume
execution of the program, at least for a certain distance.

S Stop: don’t execute any more of the program, but wait for more Edebug com-
mands (edebug-stop).

SPC Step: stop at the next stop point encountered (edebug-step-mode).

n Next: stop at the next stop point encountered after an expression
(edebug-next-mode). Also see edebug-forward-sexp in Section 18.2.4
[Jumping], page 261.

t Trace: pause (normally one second) at each Edebug stop point (edebug-trace-
mode).

T Rapid trace: update the display at each stop point, but don’t actually pause
(edebug-Trace-fast-mode).

g Go: run until the next breakpoint (edebug-go-mode). See Section 18.2.6.1
[Breakpoints], page 263.

c Continue: pause one second at each breakpoint, and then continue (edebug-
continue-mode).

C Rapid continue: move point to each breakpoint, but don’t pause (edebug-
Continue-fast-mode).

G Go non-stop: ignore breakpoints (edebug-Go-nonstop-mode). You can still
stop the program by typing S, or any editing command.

Chapter 18: Debugging Lisp Programs 261

In general, the execution modes earlier in the above list run the program more slowly or
stop sooner than the modes later in the list.

While executing or tracing, you can interrupt the execution by typing any Edebug com-
mand. Edebug stops the program at the next stop point and then executes the command
you typed. For example, typing t during execution switches to trace mode at the next stop
point. You can use S to stop execution without doing anything else.

If your function happens to read input, a character you type intending to interrupt
execution may be read by the function instead. You can avoid such unintended results by
paying attention to when your program wants input.

Keyboard macros containing the commands in this section do not completely work:
exiting from Edebug, to resume the program, loses track of the keyboard macro. This
is not easy to fix. Also, defining or executing a keyboard macro outside of Edebug does
not affect commands inside Edebug. This is usually an advantage. See also the edebug-

continue-kbd-macro option in Section 18.2.16 [Edebug Options], page 276.

When you enter a new Edebug level, the initial execution mode comes from the value of
the variable edebug-initial-mode (see Section 18.2.16 [Edebug Options], page 276). By
default, this specifies step mode. Note that you may reenter the same Edebug level several
times if, for example, an instrumented function is called several times from one command.

[User Option]edebug-sit-for-seconds
This option specifies how many seconds to wait between execution steps in trace mode
or continue mode. The default is 1 second.

18.2.4 Jumping

The commands described in this section execute until they reach a specified location. All
except imake a temporary breakpoint to establish the place to stop, then switch to go mode.
Any other breakpoint reached before the intended stop point will also stop execution. See
Section 18.2.6.1 [Breakpoints], page 263, for the details on breakpoints.

These commands may fail to work as expected in case of nonlocal exit, as that can bypass
the temporary breakpoint where you expected the program to stop.

h Proceed to the stop point near where point is (edebug-goto-here).

f Run the program for one expression (edebug-forward-sexp).

o Run the program until the end of the containing sexp (edebug-step-out).

i Step into the function or macro called by the form after point (edebug-step-
in).

The h command proceeds to the stop point at or after the current location of point,
using a temporary breakpoint.

The f command runs the program forward over one expression. More precisely, it sets
a temporary breakpoint at the position that forward-sexp would reach, then executes in
go mode so that the program will stop at breakpoints.

With a prefix argument n, the temporary breakpoint is placed n sexps beyond point. If
the containing list ends before n more elements, then the place to stop is after the containing
expression.

Chapter 18: Debugging Lisp Programs 262

You must check that the position forward-sexp finds is a place that the program will
really get to. In cond, for example, this may not be true.

For flexibility, the f command does forward-sexp starting at point, rather than at the
stop point. If you want to execute one expression from the current stop point, first type w

(edebug-where) to move point there, and then type f.

The o command continues “out of” an expression. It places a temporary breakpoint at
the end of the sexp containing point. If the containing sexp is a function definition itself, o
continues until just before the last sexp in the definition. If that is where you are now, it
returns from the function and then stops. In other words, this command does not exit the
currently executing function unless you are positioned after the last sexp.

The i command steps into the function or macro called by the list form after point, and
stops at its first stop point. Note that the form need not be the one about to be evaluated.
But if the form is a function call about to be evaluated, remember to use this command
before any of the arguments are evaluated, since otherwise it will be too late.

The i command instruments the function or macro it’s supposed to step into, if it isn’t
instrumented already. This is convenient, but keep in mind that the function or macro
remains instrumented unless you explicitly arrange to deinstrument it.

18.2.5 Miscellaneous Edebug Commands

Some miscellaneous Edebug commands are described here.

? Display the help message for Edebug (edebug-help).

C-] Abort one level back to the previous command level (abort-recursive-edit).

q Return to the top level editor command loop (top-level). This exits all re-
cursive editing levels, including all levels of Edebug activity. However, instru-
mented code protected with unwind-protect or condition-case forms may
resume debugging.

Q Like q, but don’t stop even for protected code (edebug-top-level-nonstop).

r Redisplay the most recently known expression result in the echo area (edebug-
previous-result).

d Display a backtrace, excluding Edebug’s own functions for clarity (edebug-
backtrace).

You cannot use debugger commands in the backtrace buffer in Edebug as you
would in the standard debugger.

The backtrace buffer is killed automatically when you continue execution.

You can invoke commands from Edebug that activate Edebug again recursively. When-
ever Edebug is active, you can quit to the top level with q or abort one recursive edit level
with C-]. You can display a backtrace of all the pending evaluations with d.

18.2.6 Breaks

Edebug’s step mode stops execution when the next stop point is reached. There are three
other ways to stop Edebug execution once it has started: breakpoints, the global break
condition, and source breakpoints.

Chapter 18: Debugging Lisp Programs 263

18.2.6.1 Edebug Breakpoints

While using Edebug, you can specify breakpoints in the program you are testing: these are
places where execution should stop. You can set a breakpoint at any stop point, as defined
in Section 18.2.1 [Using Edebug], page 258. For setting and unsetting breakpoints, the stop
point that is affected is the first one at or after point in the source code buffer. Here are
the Edebug commands for breakpoints:

b Set a breakpoint at the stop point at or after point (edebug-set-breakpoint).
If you use a prefix argument, the breakpoint is temporary—it turns off the first
time it stops the program.

u Unset the breakpoint (if any) at the stop point at or after point (edebug-unset-
breakpoint).

x condition RET

Set a conditional breakpoint which stops the program only if evaluating condi-
tion produces a non-nil value (edebug-set-conditional-breakpoint). With
a prefix argument, the breakpoint is temporary.

B Move point to the next breakpoint in the current definition (edebug-next-
breakpoint).

While in Edebug, you can set a breakpoint with b and unset one with u. First move
point to the Edebug stop point of your choice, then type b or u to set or unset a breakpoint
there. Unsetting a breakpoint where none has been set has no effect.

Re-evaluating or reinstrumenting a definition removes all of its previous breakpoints.

A conditional breakpoint tests a condition each time the program gets there. Any errors
that occur as a result of evaluating the condition are ignored, as if the result were nil. To
set a conditional breakpoint, use x, and specify the condition expression in the minibuffer.
Setting a conditional breakpoint at a stop point that has a previously established conditional
breakpoint puts the previous condition expression in the minibuffer so you can edit it.

You can make a conditional or unconditional breakpoint temporary by using a prefix
argument with the command to set the breakpoint. When a temporary breakpoint stops
the program, it is automatically unset.

Edebug always stops or pauses at a breakpoint, except when the Edebug mode is Go-
nonstop. In that mode, it ignores breakpoints entirely.

To find out where your breakpoints are, use the B command, which moves point to the
next breakpoint following point, within the same function, or to the first breakpoint if there
are no following breakpoints. This command does not continue execution—it just moves
point in the buffer.

18.2.6.2 Global Break Condition

A global break condition stops execution when a specified condition is satisfied, no matter
where that may occur. Edebug evaluates the global break condition at every stop point; if
it evaluates to a non-nil value, then execution stops or pauses depending on the execution
mode, as if a breakpoint had been hit. If evaluating the condition gets an error, execution
does not stop.

Chapter 18: Debugging Lisp Programs 264

The condition expression is stored in edebug-global-break-condition. You can spec-
ify a new expression using the X command from the source code buffer while Edebug is
active, or using C-x X X from any buffer at any time, as long as Edebug is loaded (edebug-
set-global-break-condition).

The global break condition is the simplest way to find where in your code some event
occurs, but it makes code run much more slowly. So you should reset the condition to nil

when not using it.

18.2.6.3 Source Breakpoints

All breakpoints in a definition are forgotten each time you reinstrument it. If you wish to
make a breakpoint that won’t be forgotten, you can write a source breakpoint, which is
simply a call to the function edebug in your source code. You can, of course, make such
a call conditional. For example, in the fac function, you can insert the first line as shown
below, to stop when the argument reaches zero:

(defun fac (n)

(if (= n 0) (edebug))

(if (< 0 n)

(* n (fac (1- n)))

1))

When the fac definition is instrumented and the function is called, the call to edebug

acts as a breakpoint. Depending on the execution mode, Edebug stops or pauses there.

If no instrumented code is being executed when edebug is called, that function calls
debug.

18.2.7 Trapping Errors

Emacs normally displays an error message when an error is signaled and not handled with
condition-case. While Edebug is active and executing instrumented code, it normally
responds to all unhandled errors. You can customize this with the options edebug-on-

error and edebug-on-quit; see Section 18.2.16 [Edebug Options], page 276.

When Edebug responds to an error, it shows the last stop point encountered before the
error. This may be the location of a call to a function which was not instrumented, and
within which the error actually occurred. For an unbound variable error, the last known
stop point might be quite distant from the offending variable reference. In that case, you
might want to display a full backtrace (see Section 18.2.5 [Edebug Misc], page 262).

If you change debug-on-error or debug-on-quit while Edebug is active, these changes
will be forgotten when Edebug becomes inactive. Furthermore, during Edebug’s recursive
edit, these variables are bound to the values they had outside of Edebug.

18.2.8 Edebug Views

These Edebug commands let you view aspects of the buffer and window status as they were
before entry to Edebug. The outside window configuration is the collection of windows and
contents that were in effect outside of Edebug.

v Switch to viewing the outside window configuration (edebug-view-outside).
Type C-x X w to return to Edebug.

Chapter 18: Debugging Lisp Programs 265

p Temporarily display the outside current buffer with point at its outside position
(edebug-bounce-point), pausing for one second before returning to Edebug.
With a prefix argument n, pause for n seconds instead.

w Move point back to the current stop point in the source code buffer (edebug-
where).

If you use this command in a different window displaying the same buffer, that
window will be used instead to display the current definition in the future.

W Toggle whether Edebug saves and restores the outside window configuration
(edebug-toggle-save-windows).

With a prefix argument, W only toggles saving and restoring of the selected
window. To specify a window that is not displaying the source code buffer, you
must use C-x X W from the global keymap.

You can view the outside window configuration with v or just bounce to the point in the
current buffer with p, even if it is not normally displayed.

After moving point, you may wish to jump back to the stop point. You can do that with
w from a source code buffer. You can jump back to the stop point in the source code buffer
from any buffer using C-x X w.

Each time you use W to turn saving off, Edebug forgets the saved outside window
configuration—so that even if you turn saving back on, the current window configuration
remains unchanged when you next exit Edebug (by continuing the program). However, the
automatic redisplay of *edebug* and *edebug-trace* may conflict with the buffers you
wish to see unless you have enough windows open.

18.2.9 Evaluation

While within Edebug, you can evaluate expressions as if Edebug were not running. Edebug
tries to be invisible to the expression’s evaluation and printing. Evaluation of expressions
that cause side effects will work as expected, except for changes to data that Edebug ex-
plicitly saves and restores. See Section 18.2.14 [The Outside Context], page 269, for details
on this process.

e exp RET Evaluate expression exp in the context outside of Edebug (edebug-eval-
expression). That is, Edebug tries to minimize its interference with the
evaluation.

M-: exp RET

Evaluate expression exp in the context of Edebug itself (eval-expression).

C-x C-e Evaluate the expression before point, in the context outside of Edebug (edebug-
eval-last-sexp).

Edebug supports evaluation of expressions containing references to lexically bound sym-
bols created by the following constructs in cl.el: lexical-let, macrolet, and symbol-

macrolet.

18.2.10 Evaluation List Buffer

You can use the evaluation list buffer, called *edebug*, to evaluate expressions interactively.
You can also set up the evaluation list of expressions to be evaluated automatically each
time Edebug updates the display.

Chapter 18: Debugging Lisp Programs 266

E Switch to the evaluation list buffer *edebug* (edebug-visit-eval-list).

In the *edebug* buffer you can use the commands of Lisp Interaction mode (see Section
“Lisp Interaction” in The GNU Emacs Manual) as well as these special commands:

C-j Evaluate the expression before point, in the outside context, and insert the
value in the buffer (edebug-eval-print-last-sexp).

C-x C-e Evaluate the expression before point, in the context outside of Edebug (edebug-
eval-last-sexp).

C-c C-u Build a new evaluation list from the contents of the buffer (edebug-update-
eval-list).

C-c C-d Delete the evaluation list group that point is in (edebug-delete-eval-item).

C-c C-w Switch back to the source code buffer at the current stop point (edebug-where).

You can evaluate expressions in the evaluation list window with C-j or C-x C-e, just as
you would in *scratch*; but they are evaluated in the context outside of Edebug.

The expressions you enter interactively (and their results) are lost when you continue
execution; but you can set up an evaluation list consisting of expressions to be evaluated
each time execution stops.

To do this, write one or more evaluation list groups in the evaluation list buffer. An
evaluation list group consists of one or more Lisp expressions. Groups are separated by
comment lines.

The command C-c C-u (edebug-update-eval-list) rebuilds the evaluation list, scan-
ning the buffer and using the first expression of each group. (The idea is that the second
expression of the group is the value previously computed and displayed.)

Each entry to Edebug redisplays the evaluation list by inserting each expression in the
buffer, followed by its current value. It also inserts comment lines so that each expression
becomes its own group. Thus, if you type C-c C-u again without changing the buffer text,
the evaluation list is effectively unchanged.

If an error occurs during an evaluation from the evaluation list, the error message is
displayed in a string as if it were the result. Therefore, expressions using variables that are
not currently valid do not interrupt your debugging.

Here is an example of what the evaluation list window looks like after several expressions
have been added to it:

(current-buffer)

#<buffer *scratch*>

;---

(selected-window)

#<window 16 on *scratch*>

;---

(point)

196

;---

bad-var

"Symbol’s value as variable is void: bad-var"

;---

(recursion-depth)

0

Chapter 18: Debugging Lisp Programs 267

;---

this-command

eval-last-sexp

;---

To delete a group, move point into it and type C-c C-d, or simply delete the text for
the group and update the evaluation list with C-c C-u. To add a new expression to the
evaluation list, insert the expression at a suitable place, insert a new comment line, then
type C-c C-u. You need not insert dashes in the comment line—its contents don’t matter.

After selecting *edebug*, you can return to the source code buffer with C-c C-w. The
edebug buffer is killed when you continue execution, and recreated next time it is needed.

18.2.11 Printing in Edebug

If an expression in your program produces a value containing circular list structure, you
may get an error when Edebug attempts to print it.

One way to cope with circular structure is to set print-length or print-level to
truncate the printing. Edebug does this for you; it binds print-length and print-level

to the values of the variables edebug-print-length and edebug-print-level (so long as
they have non-nil values). See Section 19.6 [Output Variables], page 289.

[User Option]edebug-print-length
If non-nil, Edebug binds print-length to this value while printing results. The
default value is 50.

[User Option]edebug-print-level
If non-nil, Edebug binds print-level to this value while printing results. The
default value is 50.

You can also print circular structures and structures that share elements more informa-
tively by binding print-circle to a non-nil value.

Here is an example of code that creates a circular structure:

(setq a ’(x y))

(setcar a a)

Custom printing prints this as ‘Result: #1=(#1# y)’. The ‘#1=’ notation labels the struc-
ture that follows it with the label ‘1’, and the ‘#1#’ notation references the previously labeled
structure. This notation is used for any shared elements of lists or vectors.

[User Option]edebug-print-circle
If non-nil, Edebug binds print-circle to this value while printing results. The
default value is t.

Other programs can also use custom printing; see cust-print.el for details.

18.2.12 Trace Buffer

Edebug can record an execution trace, storing it in a buffer named *edebug-trace*. This
is a log of function calls and returns, showing the function names and their arguments and
values. To enable trace recording, set edebug-trace to a non-nil value.

Making a trace buffer is not the same thing as using trace execution mode (see
Section 18.2.3 [Edebug Execution Modes], page 260).

Chapter 18: Debugging Lisp Programs 268

When trace recording is enabled, each function entry and exit adds lines to the trace
buffer. A function entry record consists of ‘::::{’, followed by the function name and
argument values. A function exit record consists of ‘::::}’, followed by the function name
and result of the function.

The number of ‘:’s in an entry shows its recursion depth. You can use the braces in the
trace buffer to find the matching beginning or end of function calls.

You can customize trace recording for function entry and exit by redefining the functions
edebug-print-trace-before and edebug-print-trace-after.

[Macro]edebug-tracing string body. . .
This macro requests additional trace information around the execution of the body
forms. The argument string specifies text to put in the trace buffer, after the ‘{’ or
‘}’. All the arguments are evaluated, and edebug-tracing returns the value of the
last form in body.

[Function]edebug-trace format-string &rest format-args
This function inserts text in the trace buffer. It computes the text with (apply

’format format-string format-args). It also appends a newline to separate en-
tries.

edebug-tracing and edebug-trace insert lines in the trace buffer whenever they are
called, even if Edebug is not active. Adding text to the trace buffer also scrolls its window
to show the last lines inserted.

18.2.13 Coverage Testing

Edebug provides rudimentary coverage testing and display of execution frequency.

Coverage testing works by comparing the result of each expression with the previous
result; each form in the program is considered “covered” if it has returned two different
values since you began testing coverage in the current Emacs session. Thus, to do coverage
testing on your program, execute it under various conditions and note whether it behaves
correctly; Edebug will tell you when you have tried enough different conditions that each
form has returned two different values.

Coverage testing makes execution slower, so it is only done if edebug-test-coverage is
non-nil. Frequency counting is performed for all executions of an instrumented function,
even if the execution mode is Go-nonstop, and regardless of whether coverage testing is
enabled.

Use C-x X = (edebug-display-freq-count) to display both the coverage information
and the frequency counts for a definition. Just = (edebug-temp-display-freq-count)
displays the same information temporarily, only until you type another key.

[Command]edebug-display-freq-count
This command displays the frequency count data for each line of the current definition.

It inserts frequency counts as comment lines after each line of code. You can undo
all insertions with one undo command. The counts appear under the ‘(’ before an
expression or the ‘)’ after an expression, or on the last character of a variable. To
simplify the display, a count is not shown if it is equal to the count of an earlier
expression on the same line.

Chapter 18: Debugging Lisp Programs 269

The character ‘=’ following the count for an expression says that the expression has
returned the same value each time it was evaluated. In other words, it is not yet
“covered” for coverage testing purposes.

To clear the frequency count and coverage data for a definition, simply reinstrument
it with eval-defun.

For example, after evaluating (fac 5) with a source breakpoint, and setting edebug-

test-coverage to t, when the breakpoint is reached, the frequency data looks like this:

(defun fac (n)

(if (= n 0) (edebug))

;#6 1 = =5

(if (< 0 n)

;#5 =

(* n (fac (1- n)))

;# 5 0

1))

;# 0

The comment lines show that fac was called 6 times. The first if statement returned
5 times with the same result each time; the same is true of the condition on the second if.
The recursive call of fac did not return at all.

18.2.14 The Outside Context

Edebug tries to be transparent to the program you are debugging, but it does not succeed
completely. Edebug also tries to be transparent when you evaluate expressions with e or
with the evaluation list buffer, by temporarily restoring the outside context. This section
explains precisely what context Edebug restores, and how Edebug fails to be completely
transparent.

18.2.14.1 Checking Whether to Stop

Whenever Edebug is entered, it needs to save and restore certain data before even deciding
whether to make trace information or stop the program.

• max-lisp-eval-depth and max-specpdl-size are both increased to reduce Edebug’s
impact on the stack. You could, however, still run out of stack space when using
Edebug.

• The state of keyboard macro execution is saved and restored. While Edebug is active,
executing-kbd-macro is bound to nil unless edebug-continue-kbd-macro is non-
nil.

18.2.14.2 Edebug Display Update

When Edebug needs to display something (e.g., in trace mode), it saves the current window
configuration from “outside” Edebug (see Section 28.24 [Window Configurations], page 584).
When you exit Edebug, it restores the previous window configuration.

Emacs redisplays only when it pauses. Usually, when you continue execution, the pro-
gram re-enters Edebug at a breakpoint or after stepping, without pausing or reading input

Chapter 18: Debugging Lisp Programs 270

in between. In such cases, Emacs never gets a chance to redisplay the “outside” configura-
tion. Consequently, what you see is the same window configuration as the last time Edebug
was active, with no interruption.

Entry to Edebug for displaying something also saves and restores the following data
(though some of them are deliberately not restored if an error or quit signal occurs).

• Which buffer is current, and the positions of point and the mark in the current buffer,
are saved and restored.

• The outside window configuration is saved and restored if edebug-save-windows is
non-nil (see Section 18.2.16 [Edebug Options], page 276).

The window configuration is not restored on error or quit, but the outside selected
window is reselected even on error or quit in case a save-excursion is active. If the
value of edebug-save-windows is a list, only the listed windows are saved and restored.

The window start and horizontal scrolling of the source code buffer are not restored,
however, so that the display remains coherent within Edebug.

• The value of point in each displayed buffer is saved and restored if edebug-save-

displayed-buffer-points is non-nil.

• The variables overlay-arrow-position and overlay-arrow-string are saved and
restored, so you can safely invoke Edebug from the recursive edit elsewhere in the same
buffer.

• cursor-in-echo-area is locally bound to nil so that the cursor shows up in the
window.

18.2.14.3 Edebug Recursive Edit

When Edebug is entered and actually reads commands from the user, it saves (and later
restores) these additional data:

• The current match data. See Section 34.6 [Match Data], page 748.

• The variables last-command, this-command, last-command-event, last-input-

event, last-event-frame, last-nonmenu-event, and track-mouse. Commands in
Edebug do not affect these variables outside of Edebug.

Executing commands within Edebug can change the key sequence that would be re-
turned by this-command-keys, and there is no way to reset the key sequence from
Lisp.

Edebug cannot save and restore the value of unread-command-events. Entering Ede-
bug while this variable has a nontrivial value can interfere with execution of the program
you are debugging.

• Complex commands executed while in Edebug are added to the variable command-

history. In rare cases this can alter execution.

• Within Edebug, the recursion depth appears one deeper than the recursion depth
outside Edebug. This is not true of the automatically updated evaluation list window.

• standard-output and standard-input are bound to nil by the recursive-edit, but
Edebug temporarily restores them during evaluations.

• The state of keyboard macro definition is saved and restored. While Edebug is active,
defining-kbd-macro is bound to edebug-continue-kbd-macro.

Chapter 18: Debugging Lisp Programs 271

18.2.15 Edebug and Macros

To make Edebug properly instrument expressions that call macros, some extra care is
needed. This subsection explains the details.

18.2.15.1 Instrumenting Macro Calls

When Edebug instruments an expression that calls a Lisp macro, it needs additional infor-
mation about the macro to do the job properly. This is because there is no a-priori way
to tell which subexpressions of the macro call are forms to be evaluated. (Evaluation may
occur explicitly in the macro body, or when the resulting expansion is evaluated, or any
time later.)

Therefore, you must define an Edebug specification for each macro that Edebug will
encounter, to explain the format of calls to that macro. To do this, add a debug declaration
to the macro definition. Here is a simple example that shows the specification for the for

example macro (see Section 13.5.2 [Argument Evaluation], page 191).
(defmacro for (var from init to final do &rest body)

"Execute a simple \"for\" loop.

For example, (for i from 1 to 10 do (print i))."

(declare (debug (symbolp "from" form "to" form "do" &rest form)))

...)

The Edebug specification says which parts of a call to the macro are forms to be evalu-
ated. For simple macros, the specification often looks very similar to the formal argument
list of the macro definition, but specifications are much more general than macro arguments.
See Section 13.4 [Defining Macros], page 190, for more explanation of the declare form.

Take care to ensure that the specifications are known to Edebug when you instrument
code. If you are instrumenting a function from a file that uses eval-when-compile to
require another file containing macro definitions, you may need to explicitly load that file.

You can also define an edebug specification for a macro separately from the macro defini-
tion with def-edebug-spec. Adding debug declarations is preferred, and more convenient,
for macro definitions in Lisp, but def-edebug-spec makes it possible to define Edebug
specifications for special forms implemented in C.

[Macro]def-edebug-spec macro specification
Specify which expressions of a call to macro macro are forms to be evaluated. speci-
fication should be the edebug specification. Neither argument is evaluated.

The macro argument can actually be any symbol, not just a macro name.

Here is a table of the possibilities for specification and how each directs processing of
arguments.

t All arguments are instrumented for evaluation.

0 None of the arguments is instrumented.

a symbol The symbol must have an Edebug specification, which is used instead. This
indirection is repeated until another kind of specification is found. This allows
you to inherit the specification from another macro.

a list The elements of the list describe the types of the arguments of a calling form.
The possible elements of a specification list are described in the following sec-
tions.

Chapter 18: Debugging Lisp Programs 272

If a macro has no Edebug specification, neither through a debug declaration nor through
a def-edebug-spec call, the variable edebug-eval-macro-args comes into play.

[User Option]edebug-eval-macro-args
This controls the way Edebug treats macro arguments with no explicit Edebug specifi-
cation. If it is nil (the default), none of the arguments is instrumented for evaluation.
Otherwise, all arguments are instrumented.

18.2.15.2 Specification List

A specification list is required for an Edebug specification if some arguments of a macro call
are evaluated while others are not. Some elements in a specification list match one or more
arguments, but others modify the processing of all following elements. The latter, called
specification keywords, are symbols beginning with ‘&’ (such as &optional).

A specification list may contain sublists, which match arguments that are themselves
lists, or it may contain vectors used for grouping. Sublists and groups thus subdivide
the specification list into a hierarchy of levels. Specification keywords apply only to the
remainder of the sublist or group they are contained in.

When a specification list involves alternatives or repetition, matching it against an actual
macro call may require backtracking. For more details, see Section 18.2.15.3 [Backtracking],
page 274.

Edebug specifications provide the power of regular expression matching, plus some
context-free grammar constructs: the matching of sublists with balanced parentheses, re-
cursive processing of forms, and recursion via indirect specifications.

Here’s a table of the possible elements of a specification list, with their meanings (see
Section 18.2.15.4 [Specification Examples], page 275, for the referenced examples):

sexp A single unevaluated Lisp object, which is not instrumented.

form A single evaluated expression, which is instrumented.

place A generalized variable. See Section 11.15 [Generalized Variables], page 166.

body Short for &rest form. See &rest below.

function-form

A function form: either a quoted function symbol, a quoted lambda expression,
or a form (that should evaluate to a function symbol or lambda expression).
This is useful when an argument that’s a lambda expression might be quoted
with quote rather than function, since it instruments the body of the lambda
expression either way.

lambda-expr

A lambda expression with no quoting.

&optional

All following elements in the specification list are optional; as soon as one does
not match, Edebug stops matching at this level.

To make just a few elements optional, followed by non-optional elements, use
[&optional specs...]. To specify that several elements must all match or
none, use &optional [specs...]. See the defun example.

Chapter 18: Debugging Lisp Programs 273

&rest All following elements in the specification list are repeated zero or more times.
In the last repetition, however, it is not a problem if the expression runs out
before matching all of the elements of the specification list.

To repeat only a few elements, use [&rest specs...]. To specify several ele-
ments that must all match on every repetition, use &rest [specs...].

&or Each of the following elements in the specification list is an alternative. One of
the alternatives must match, or the &or specification fails.

Each list element following &or is a single alternative. To group two or more
list elements as a single alternative, enclose them in [...].

¬ Each of the following elements is matched as alternatives as if by using &or, but
if any of them match, the specification fails. If none of them match, nothing is
matched, but the ¬ specification succeeds.

&define Indicates that the specification is for a defining form. The defining form itself
is not instrumented (that is, Edebug does not stop before and after the defining
form), but forms inside it typically will be instrumented. The &define keyword
should be the first element in a list specification.

nil This is successful when there are no more arguments to match at the current ar-
gument list level; otherwise it fails. See sublist specifications and the backquote
example.

gate No argument is matched but backtracking through the gate is disabled while
matching the remainder of the specifications at this level. This is primarily
used to generate more specific syntax error messages. See Section 18.2.15.3
[Backtracking], page 274, for more details. Also see the let example.

other-symbol

Any other symbol in a specification list may be a predicate or an indirect
specification.

If the symbol has an Edebug specification, this indirect specification should
be either a list specification that is used in place of the symbol, or a function
that is called to process the arguments. The specification may be defined with
def-edebug-spec just as for macros. See the defun example.

Otherwise, the symbol should be a predicate. The predicate is called with
the argument, and if the predicate returns nil, the specification fails and the
argument is not instrumented.

Some suitable predicates include symbolp, integerp, stringp, vectorp, and
atom.

[elements...]

A vector of elements groups the elements into a single group specification. Its
meaning has nothing to do with vectors.

"string" The argument should be a symbol named string. This specification is equivalent
to the quoted symbol, ’symbol, where the name of symbol is the string, but
the string form is preferred.

Chapter 18: Debugging Lisp Programs 274

(vector elements...)

The argument should be a vector whose elements must match the elements in
the specification. See the backquote example.

(elements...)

Any other list is a sublist specification and the argument must be a list whose
elements match the specification elements.

A sublist specification may be a dotted list and the corresponding list argu-
ment may then be a dotted list. Alternatively, the last cdr of a dotted list
specification may be another sublist specification (via a grouping or an indi-
rect specification, e.g., (spec . [(more specs...)])) whose elements match
the non-dotted list arguments. This is useful in recursive specifications such as
in the backquote example. Also see the description of a nil specification above
for terminating such recursion.

Note that a sublist specification written as (specs . nil) is equivalent to
(specs), and (specs . (sublist-elements...)) is equivalent to (specs

sublist-elements...).

Here is a list of additional specifications that may appear only after &define. See the
defun example.

name The argument, a symbol, is the name of the defining form.

A defining form is not required to have a name field; and it may have multiple
name fields.

:name This construct does not actually match an argument. The element following
:name should be a symbol; it is used as an additional name component for the
definition. You can use this to add a unique, static component to the name of
the definition. It may be used more than once.

arg The argument, a symbol, is the name of an argument of the defining form.
However, lambda-list keywords (symbols starting with ‘&’) are not allowed.

lambda-list

This matches a lambda list—the argument list of a lambda expression.

def-body The argument is the body of code in a definition. This is like body, described
above, but a definition body must be instrumented with a different Edebug call
that looks up information associated with the definition. Use def-body for the
highest level list of forms within the definition.

def-form The argument is a single, highest-level form in a definition. This is like def-

body, except it is used to match a single form rather than a list of forms. As a
special case, def-form also means that tracing information is not output when
the form is executed. See the interactive example.

18.2.15.3 Backtracking in Specifications

If a specification fails to match at some point, this does not necessarily mean a syntax
error will be signaled; instead, backtracking will take place until all alternatives have been

Chapter 18: Debugging Lisp Programs 275

exhausted. Eventually every element of the argument list must be matched by some ele-
ment in the specification, and every required element in the specification must match some
argument.

When a syntax error is detected, it might not be reported until much later, after higher-
level alternatives have been exhausted, and with the point positioned further from the real
error. But if backtracking is disabled when an error occurs, it can be reported immediately.
Note that backtracking is also reenabled automatically in several situations; when a new
alternative is established by &optional, &rest, or &or, or at the start of processing a
sublist, group, or indirect specification. The effect of enabling or disabling backtracking is
limited to the remainder of the level currently being processed and lower levels.

Backtracking is disabled while matching any of the form specifications (that is, form,
body, def-form, and def-body). These specifications will match any form so any error
must be in the form itself rather than at a higher level.

Backtracking is also disabled after successfully matching a quoted symbol or string spec-
ification, since this usually indicates a recognized construct. But if you have a set of alter-
native constructs that all begin with the same symbol, you can usually work around this
constraint by factoring the symbol out of the alternatives, e.g., ["foo" &or [first case]

[second case] ...].

Most needs are satisfied by these two ways that backtracking is automatically disabled,
but occasionally it is useful to explicitly disable backtracking by using the gate specification.
This is useful when you know that no higher alternatives could apply. See the example of
the let specification.

18.2.15.4 Specification Examples

It may be easier to understand Edebug specifications by studying the examples provided
here.

A let special form has a sequence of bindings and a body. Each of the bindings is either
a symbol or a sublist with a symbol and optional expression. In the specification below,
notice the gate inside of the sublist to prevent backtracking once a sublist is found.

(def-edebug-spec let

((&rest

&or symbolp (gate symbolp &optional form))

body))

Edebug uses the following specifications for defun and the associated argument list and
interactive specifications. It is necessary to handle interactive forms specially since an
expression argument is actually evaluated outside of the function body. (The specification
for defmacro is very similar to that for defun, but allows for the declare statement.)

(def-edebug-spec defun

(&define name lambda-list

[&optional stringp] ; Match the doc string, if present.
[&optional ("interactive" interactive)]

def-body))

(def-edebug-spec lambda-list

(([&rest arg]

[&optional ["&optional" arg &rest arg]]

&optional ["&rest" arg]

Chapter 18: Debugging Lisp Programs 276

)))

(def-edebug-spec interactive

(&optional &or stringp def-form)) ; Notice: def-form

The specification for backquote below illustrates how to match dotted lists and use nil to
terminate recursion. It also illustrates how components of a vector may be matched. (The
actual specification defined by Edebug is a little different, and does not support dotted lists
because doing so causes very deep recursion that could fail.)

(def-edebug-spec \‘ (backquote-form)) ; Alias just for clarity.

(def-edebug-spec backquote-form

(&or ([&or "," ",@"] &or ("quote" backquote-form) form)

(backquote-form . [&or nil backquote-form])

(vector &rest backquote-form)

sexp))

18.2.16 Edebug Options

These options affect the behavior of Edebug:

[User Option]edebug-setup-hook
Functions to call before Edebug is used. Each time it is set to a new value, Edebug
will call those functions once and then reset edebug-setup-hook to nil. You could
use this to load up Edebug specifications associated with a package you are using,
but only when you also use Edebug. See Section 18.2.2 [Instrumenting], page 259.

[User Option]edebug-all-defs
If this is non-nil, normal evaluation of defining forms such as defun and defmacro

instruments them for Edebug. This applies to eval-defun, eval-region, eval-

buffer, and eval-current-buffer.

Use the command M-x edebug-all-defs to toggle the value of this option. See
Section 18.2.2 [Instrumenting], page 259.

[User Option]edebug-all-forms
If this is non-nil, the commands eval-defun, eval-region, eval-buffer, and eval-
current-buffer instrument all forms, even those that don’t define anything. This
doesn’t apply to loading or evaluations in the minibuffer.

Use the command M-x edebug-all-forms to toggle the value of this option. See
Section 18.2.2 [Instrumenting], page 259.

[User Option]edebug-save-windows
If this is non-nil, Edebug saves and restores the window configuration. That takes
some time, so if your program does not care what happens to the window configura-
tions, it is better to set this variable to nil.

If the value is a list, only the listed windows are saved and restored.

You can use the W command in Edebug to change this variable interactively. See
Section 18.2.14.2 [Edebug Display Update], page 269.

[User Option]edebug-save-displayed-buffer-points
If this is non-nil, Edebug saves and restores point in all displayed buffers.

Chapter 18: Debugging Lisp Programs 277

Saving and restoring point in other buffers is necessary if you are debugging code that
changes the point of a buffer that is displayed in a non-selected window. If Edebug
or the user then selects the window, point in that buffer will move to the window’s
value of point.

Saving and restoring point in all buffers is expensive, since it requires selecting each
window twice, so enable this only if you need it. See Section 18.2.14.2 [Edebug Display
Update], page 269.

[User Option]edebug-initial-mode
If this variable is non-nil, it specifies the initial execution mode for Edebug when it is
first activated. Possible values are step, next, go, Go-nonstop, trace, Trace-fast,
continue, and Continue-fast.

The default value is step. See Section 18.2.3 [Edebug Execution Modes], page 260.

[User Option]edebug-trace
If this is non-nil, trace each function entry and exit. Tracing output is displayed in
a buffer named *edebug-trace*, one function entry or exit per line, indented by the
recursion level.

Also see edebug-tracing, in Section 18.2.12 [Trace Buffer], page 267.

[User Option]edebug-test-coverage
If non-nil, Edebug tests coverage of all expressions debugged. See Section 18.2.13
[Coverage Testing], page 268.

[User Option]edebug-continue-kbd-macro
If non-nil, continue defining or executing any keyboard macro that is executing
outside of Edebug. Use this with caution since it is not debugged. See Section 18.2.3
[Edebug Execution Modes], page 260.

[User Option]edebug-unwrap-results
If non-nil, Edebug tries to remove any of its own instrumentation when showing the
results of expressions. This is relevant when debugging macros where the results of
expressions are themselves instrumented expressions. As a very artificial example,
suppose that the example function fac has been instrumented, and consider a macro
of the form:

(defmacro test () "Edebug example."

(if (symbol-function ’fac)

...))

If you instrument the test macro and step through it, then by default the result of
the symbol-function call has numerous edebug-after and edebug-before forms,
which can make it difficult to see the “actual” result. If edebug-unwrap-results is
non-nil, Edebug tries to remove these forms from the result.

[User Option]edebug-on-error
Edebug binds debug-on-error to this value, if debug-on-error was previously nil.
See Section 18.2.7 [Trapping Errors], page 264.

[User Option]edebug-on-quit
Edebug binds debug-on-quit to this value, if debug-on-quit was previously nil.
See Section 18.2.7 [Trapping Errors], page 264.

Chapter 18: Debugging Lisp Programs 278

If you change the values of edebug-on-error or edebug-on-quit while Edebug is active,
their values won’t be used until the next time Edebug is invoked via a new command.

[User Option]edebug-global-break-condition
If non-nil, an expression to test for at every stop point. If the result is non-nil, then
break. Errors are ignored. See Section 18.2.6.2 [Global Break Condition], page 263.

18.3 Debugging Invalid Lisp Syntax

The Lisp reader reports invalid syntax, but cannot say where the real problem is. For
example, the error “End of file during parsing” in evaluating an expression indicates an
excess of open parentheses (or square brackets). The reader detects this imbalance at the
end of the file, but it cannot figure out where the close parenthesis should have been.
Likewise, “Invalid read syntax: ")"” indicates an excess close parenthesis or missing open
parenthesis, but does not say where the missing parenthesis belongs. How, then, to find
what to change?

If the problem is not simply an imbalance of parentheses, a useful technique is to try
C-M-e at the beginning of each defun, and see if it goes to the place where that defun
appears to end. If it does not, there is a problem in that defun.

However, unmatched parentheses are the most common syntax errors in Lisp, and we
can give further advice for those cases. (In addition, just moving point through the code
with Show Paren mode enabled might find the mismatch.)

18.3.1 Excess Open Parentheses

The first step is to find the defun that is unbalanced. If there is an excess open parenthesis,
the way to do this is to go to the end of the file and type C-u C-M-u. This will move you to
the beginning of the first defun that is unbalanced.

The next step is to determine precisely what is wrong. There is no way to be sure of this
except by studying the program, but often the existing indentation is a clue to where the
parentheses should have been. The easiest way to use this clue is to reindent with C-M-q

and see what moves. But don’t do this yet! Keep reading, first.

Before you do this, make sure the defun has enough close parentheses. Otherwise, C-M-q
will get an error, or will reindent all the rest of the file until the end. So move to the end of
the defun and insert a close parenthesis there. Don’t use C-M-e to move there, since that
too will fail to work until the defun is balanced.

Now you can go to the beginning of the defun and type C-M-q. Usually all the lines from
a certain point to the end of the function will shift to the right. There is probably a missing
close parenthesis, or a superfluous open parenthesis, near that point. (However, don’t
assume this is true; study the code to make sure.) Once you have found the discrepancy,
undo the C-M-q with C-_, since the old indentation is probably appropriate to the intended
parentheses.

After you think you have fixed the problem, use C-M-q again. If the old indentation
actually fit the intended nesting of parentheses, and you have put back those parentheses,
C-M-q should not change anything.

Chapter 18: Debugging Lisp Programs 279

18.3.2 Excess Close Parentheses

To deal with an excess close parenthesis, first go to the beginning of the file, then type C-u
-1 C-M-u to find the end of the first unbalanced defun.

Then find the actual matching close parenthesis by typing C-M-f at the beginning of
that defun. This will leave you somewhere short of the place where the defun ought to end.
It is possible that you will find a spurious close parenthesis in that vicinity.

If you don’t see a problem at that point, the next thing to do is to type C-M-q at
the beginning of the defun. A range of lines will probably shift left; if so, the missing
open parenthesis or spurious close parenthesis is probably near the first of those lines.
(However, don’t assume this is true; study the code to make sure.) Once you have found
the discrepancy, undo the C-M-q with C-_, since the old indentation is probably appropriate
to the intended parentheses.

After you think you have fixed the problem, use C-M-q again. If the old indentation
actually fits the intended nesting of parentheses, and you have put back those parentheses,
C-M-q should not change anything.

18.4 Test Coverage

You can do coverage testing for a file of Lisp code by loading the testcover library and
using the command M-x testcover-start RET file RET to instrument the code. Then test
your code by calling it one or more times. Then use the command M-x testcover-mark-

all to display colored highlights on the code to show where coverage is insufficient. The
command M-x testcover-next-mark will move point forward to the next highlighted spot.

Normally, a red highlight indicates the form was never completely evaluated; a brown
highlight means it always evaluated to the same value (meaning there has been little testing
of what is done with the result). However, the red highlight is skipped for forms that can’t
possibly complete their evaluation, such as error. The brown highlight is skipped for forms
that are expected to always evaluate to the same value, such as (setq x 14).

For difficult cases, you can add do-nothing macros to your code to give advice to the
test coverage tool.

[Macro]1value form
Evaluate form and return its value, but inform coverage testing that form’s value
should always be the same.

[Macro]noreturn form
Evaluate form, informing coverage testing that form should never return. If it ever
does return, you get a run-time error.

Edebug also has a coverage testing feature (see Section 18.2.13 [Coverage Testing],
page 268). These features partly duplicate each other, and it would be cleaner to com-
bine them.

18.5 Profiling

If your program is working correctly, but you want to make it run more quickly or efficiently,
the first thing to do is profile your code so that you know how it is using resources. If you

Chapter 18: Debugging Lisp Programs 280

find that one particular function is responsible for a significant portion of the runtime, you
can start looking for ways to optimize that piece.

Emacs has built-in support for this. To begin profiling, type M-x profiler-start. You
can choose to profile by processor usage, memory usage, or both. After doing some work,
type M-x profiler-report to display a summary buffer for each resource that you chose
to profile. The names of the report buffers include the times at which the reports were gen-
erated, so you can generate another report later on without erasing previous results. When
you have finished profiling, type M-x profiler-stop (there is a small overhead associated
with profiling).

The profiler report buffer shows, on each line, a function that was called, followed by
how much resource (processor or memory) it used in absolute and percentage times since
profiling started. If a given line has a ‘+’ symbol at the left-hand side, you can expand
that line by typing RET, in order to see the function(s) called by the higher-level function.
Pressing RET again will collapse back to the original state.

Press j or mouse-2 to jump to the definition of a function. Press d to view a function’s
documentation. You can save a profile to a file using C-x C-w. You can compare two profiles
using =.

The elp library offers an alternative approach. See the file elp.el for instructions.

You can check the speed of individual Emacs Lisp forms using the benchmark library.
See the functions benchmark-run and benchmark-run-compiled in benchmark.el.

Chapter 19: Reading and Printing Lisp Objects 281

19 Reading and Printing Lisp Objects

Printing and reading are the operations of converting Lisp objects to textual form and vice
versa. They use the printed representations and read syntax described in Chapter 2 [Lisp
Data Types], page 8.

This chapter describes the Lisp functions for reading and printing. It also describes
streams, which specify where to get the text (if reading) or where to put it (if printing).

19.1 Introduction to Reading and Printing

Reading a Lisp object means parsing a Lisp expression in textual form and producing a
corresponding Lisp object. This is how Lisp programs get into Lisp from files of Lisp code.
We call the text the read syntax of the object. For example, the text ‘(a . 5)’ is the read
syntax for a cons cell whose car is a and whose cdr is the number 5.

Printing a Lisp object means producing text that represents that object—converting
the object to its printed representation (see Section 2.1 [Printed Representation], page 8).
Printing the cons cell described above produces the text ‘(a . 5)’.

Reading and printing are more or less inverse operations: printing the object that results
from reading a given piece of text often produces the same text, and reading the text that
results from printing an object usually produces a similar-looking object. For example,
printing the symbol foo produces the text ‘foo’, and reading that text returns the symbol
foo. Printing a list whose elements are a and b produces the text ‘(a b)’, and reading that
text produces a list (but not the same list) with elements a and b.

However, these two operations are not precisely inverse to each other. There are three
kinds of exceptions:

• Printing can produce text that cannot be read. For example, buffers, windows, frames,
subprocesses and markers print as text that starts with ‘#’; if you try to read this text,
you get an error. There is no way to read those data types.

• One object can have multiple textual representations. For example, ‘1’ and ‘01’ rep-
resent the same integer, and ‘(a b)’ and ‘(a . (b))’ represent the same list. Reading
will accept any of the alternatives, but printing must choose one of them.

• Comments can appear at certain points in the middle of an object’s read sequence
without affecting the result of reading it.

19.2 Input Streams

Most of the Lisp functions for reading text take an input stream as an argument. The input
stream specifies where or how to get the characters of the text to be read. Here are the
possible types of input stream:

buffer The input characters are read from buffer, starting with the character directly
after point. Point advances as characters are read.

marker The input characters are read from the buffer thatmarker is in, starting with the
character directly after the marker. The marker position advances as characters
are read. The value of point in the buffer has no effect when the stream is a
marker.

Chapter 19: Reading and Printing Lisp Objects 282

string The input characters are taken from string, starting at the first character in the
string and using as many characters as required.

function The input characters are generated by function, which must support two kinds
of calls:

• When it is called with no arguments, it should return the next character.

• When it is called with one argument (always a character), function should
save the argument and arrange to return it on the next call. This is called
unreading the character; it happens when the Lisp reader reads one char-
acter too many and wants to “put it back where it came from”. In this
case, it makes no difference what value function returns.

t t used as a stream means that the input is read from the minibuffer. In fact,
the minibuffer is invoked once and the text given by the user is made into a
string that is then used as the input stream. If Emacs is running in batch mode,
standard input is used instead of the minibuffer. For example,

(message "%s" (read t))

will read a Lisp expression from standard input and print the result to standard
output.

nil nil supplied as an input stream means to use the value of standard-input
instead; that value is the default input stream, and must be a non-nil input
stream.

symbol A symbol as input stream is equivalent to the symbol’s function definition (if
any).

Here is an example of reading from a stream that is a buffer, showing where point is
located before and after:

---------- Buffer: foo ----------

This? is the contents of foo.

---------- Buffer: foo ----------

(read (get-buffer "foo"))

⇒ is

(read (get-buffer "foo"))

⇒ the

---------- Buffer: foo ----------

This is the? contents of foo.

---------- Buffer: foo ----------

Note that the first read skips a space. Reading skips any amount of whitespace preceding
the significant text.

Here is an example of reading from a stream that is a marker, initially positioned at the
beginning of the buffer shown. The value read is the symbol This.

---------- Buffer: foo ----------

This is the contents of foo.

---------- Buffer: foo ----------

Chapter 19: Reading and Printing Lisp Objects 283

(setq m (set-marker (make-marker) 1 (get-buffer "foo")))

⇒ #<marker at 1 in foo>

(read m)

⇒ This

m

⇒ #<marker at 5 in foo> ;; Before the first space.

Here we read from the contents of a string:

(read "(When in) the course")

⇒ (When in)

The following example reads from the minibuffer. The prompt is: ‘Lisp expression: ’.
(That is always the prompt used when you read from the stream t.) The user’s input is
shown following the prompt.

(read t)

⇒ 23

---------- Buffer: Minibuffer ----------

Lisp expression: 23 RET

---------- Buffer: Minibuffer ----------

Finally, here is an example of a stream that is a function, named useless-stream.
Before we use the stream, we initialize the variable useless-list to a list of characters.
Then each call to the function useless-stream obtains the next character in the list or
unreads a character by adding it to the front of the list.

(setq useless-list (append "XY()" nil))

⇒ (88 89 40 41)

(defun useless-stream (&optional unread)

(if unread

(setq useless-list (cons unread useless-list))

(prog1 (car useless-list)

(setq useless-list (cdr useless-list)))))

⇒ useless-stream

Now we read using the stream thus constructed:

(read ’useless-stream)

⇒ XY

useless-list

⇒ (40 41)

Note that the open and close parentheses remain in the list. The Lisp reader encountered
the open parenthesis, decided that it ended the input, and unread it. Another attempt to
read from the stream at this point would read ‘()’ and return nil.

19.3 Input Functions

This section describes the Lisp functions and variables that pertain to reading.

Chapter 19: Reading and Printing Lisp Objects 284

In the functions below, stream stands for an input stream (see the previous section). If
stream is nil or omitted, it defaults to the value of standard-input.

An end-of-file error is signaled if reading encounters an unterminated list, vector, or
string.

[Function]read &optional stream
This function reads one textual Lisp expression from stream, returning it as a Lisp
object. This is the basic Lisp input function.

[Function]read-from-string string &optional start end
This function reads the first textual Lisp expression from the text in string. It returns
a cons cell whose car is that expression, and whose cdr is an integer giving the
position of the next remaining character in the string (i.e., the first one not read).

If start is supplied, then reading begins at index start in the string (where the first
character is at index 0). If you specify end, then reading is forced to stop just before
that index, as if the rest of the string were not there.

For example:

(read-from-string "(setq x 55) (setq y 5)")

⇒ ((setq x 55) . 11)

(read-from-string "\"A short string\"")

⇒ ("A short string" . 16)

;; Read starting at the first character.
(read-from-string "(list 112)" 0)

⇒ ((list 112) . 10)

;; Read starting at the second character.
(read-from-string "(list 112)" 1)

⇒ (list . 5)

;; Read starting at the seventh character,
;; and stopping at the ninth.
(read-from-string "(list 112)" 6 8)

⇒ (11 . 8)

[Variable]standard-input
This variable holds the default input stream—the stream that read uses when the
stream argument is nil. The default is t, meaning use the minibuffer.

[Variable]read-circle
If non-nil, this variable enables the reading of circular and shared structures. See
Section 2.5 [Circular Objects], page 27. Its default value is t.

19.4 Output Streams

An output stream specifies what to do with the characters produced by printing. Most
print functions accept an output stream as an optional argument. Here are the possible
types of output stream:

buffer The output characters are inserted into buffer at point. Point advances as
characters are inserted.

Chapter 19: Reading and Printing Lisp Objects 285

marker The output characters are inserted into the buffer that marker points into, at
the marker position. The marker position advances as characters are inserted.
The value of point in the buffer has no effect on printing when the stream is a
marker, and this kind of printing does not move point (except that if the marker
points at or before the position of point, point advances with the surrounding
text, as usual).

function The output characters are passed to function, which is responsible for storing
them away. It is called with a single character as argument, as many times as
there are characters to be output, and is responsible for storing the characters
wherever you want to put them.

t The output characters are displayed in the echo area.

nil nil specified as an output stream means to use the value of standard-output
instead; that value is the default output stream, and must not be nil.

symbol A symbol as output stream is equivalent to the symbol’s function definition (if
any).

Many of the valid output streams are also valid as input streams. The difference between
input and output streams is therefore more a matter of how you use a Lisp object, than of
different types of object.

Here is an example of a buffer used as an output stream. Point is initially located as
shown immediately before the ‘h’ in ‘the’. At the end, point is located directly before that
same ‘h’.

---------- Buffer: foo ----------

This is t?he contents of foo.

---------- Buffer: foo ----------

(print "This is the output" (get-buffer "foo"))

⇒ "This is the output"

---------- Buffer: foo ----------

This is t

"This is the output"

?he contents of foo.

---------- Buffer: foo ----------

Now we show a use of a marker as an output stream. Initially, the marker is in buffer
foo, between the ‘t’ and the ‘h’ in the word ‘the’. At the end, the marker has advanced over
the inserted text so that it remains positioned before the same ‘h’. Note that the location
of point, shown in the usual fashion, has no effect.

---------- Buffer: foo ----------

This is the ?output
---------- Buffer: foo ----------

(setq m (copy-marker 10))

⇒ #<marker at 10 in foo>

Chapter 19: Reading and Printing Lisp Objects 286

(print "More output for foo." m)

⇒ "More output for foo."

---------- Buffer: foo ----------

This is t

"More output for foo."

he ?output
---------- Buffer: foo ----------

m

⇒ #<marker at 34 in foo>

The following example shows output to the echo area:

(print "Echo Area output" t)

⇒ "Echo Area output"

---------- Echo Area ----------

"Echo Area output"

---------- Echo Area ----------

Finally, we show the use of a function as an output stream. The function eat-output

takes each character that it is given and conses it onto the front of the list last-output
(see Section 5.4 [Building Lists], page 68). At the end, the list contains all the characters
output, but in reverse order.

(setq last-output nil)

⇒ nil

(defun eat-output (c)

(setq last-output (cons c last-output)))

⇒ eat-output

(print "This is the output" ’eat-output)

⇒ "This is the output"

last-output

⇒ (10 34 116 117 112 116 117 111 32 101 104

116 32 115 105 32 115 105 104 84 34 10)

Now we can put the output in the proper order by reversing the list:

(concat (nreverse last-output))

⇒ "

\"This is the output\"

"

Calling concat converts the list to a string so you can see its contents more clearly.

19.5 Output Functions

This section describes the Lisp functions for printing Lisp objects—converting objects into
their printed representation.

Chapter 19: Reading and Printing Lisp Objects 287

Some of the Emacs printing functions add quoting characters to the output when nec-
essary so that it can be read properly. The quoting characters used are ‘"’ and ‘\’; they
distinguish strings from symbols, and prevent punctuation characters in strings and sym-
bols from being taken as delimiters when reading. See Section 2.1 [Printed Representation],
page 8, for full details. You specify quoting or no quoting by the choice of printing function.

If the text is to be read back into Lisp, then you should print with quoting characters
to avoid ambiguity. Likewise, if the purpose is to describe a Lisp object clearly for a Lisp
programmer. However, if the purpose of the output is to look nice for humans, then it is
usually better to print without quoting.

Lisp objects can refer to themselves. Printing a self-referential object in the normal way
would require an infinite amount of text, and the attempt could cause infinite recursion.
Emacs detects such recursion and prints ‘#level’ instead of recursively printing an object
already being printed. For example, here ‘#0’ indicates a recursive reference to the object
at level 0 of the current print operation:

(setq foo (list nil))

⇒ (nil)

(setcar foo foo)

⇒ (#0)

In the functions below, stream stands for an output stream. (See the previous section
for a description of output streams.) If stream is nil or omitted, it defaults to the value of
standard-output.

[Function]print object &optional stream
The print function is a convenient way of printing. It outputs the printed represen-
tation of object to stream, printing in addition one newline before object and another
after it. Quoting characters are used. print returns object. For example:

(progn (print ’The\ cat\ in)

(print "the hat")

(print " came back"))

a
a The\ cat\ in

a
a "the hat"

a
a " came back"

⇒ " came back"

[Function]prin1 object &optional stream
This function outputs the printed representation of object to stream. It does not
print newlines to separate output as print does, but it does use quoting characters
just like print. It returns object.

(progn (prin1 ’The\ cat\ in)

(prin1 "the hat")

(prin1 " came back"))

a The\ cat\ in"the hat"" came back"

⇒ " came back"

Chapter 19: Reading and Printing Lisp Objects 288

[Function]princ object &optional stream
This function outputs the printed representation of object to stream. It returns
object.

This function is intended to produce output that is readable by people, not by read,
so it doesn’t insert quoting characters and doesn’t put double-quotes around the
contents of strings. It does not add any spacing between calls.

(progn

(princ ’The\ cat)

(princ " in the \"hat\""))

a The cat in the "hat"

⇒ " in the \"hat\""

[Function]terpri &optional stream
This function outputs a newline to stream. The name stands for “terminate print”.

[Function]write-char character &optional stream
This function outputs character to stream. It returns character.

[Function]prin1-to-string object &optional noescape
This function returns a string containing the text that prin1 would have printed for
the same argument.

(prin1-to-string ’foo)

⇒ "foo"

(prin1-to-string (mark-marker))

⇒ "#<marker at 2773 in strings.texi>"

If noescape is non-nil, that inhibits use of quoting characters in the output. (This
argument is supported in Emacs versions 19 and later.)

(prin1-to-string "foo")

⇒ "\"foo\""

(prin1-to-string "foo" t)

⇒ "foo"

See format, in Section 4.7 [Formatting Strings], page 57, for other ways to obtain the
printed representation of a Lisp object as a string.

[Macro]with-output-to-string body. . .
This macro executes the body forms with standard-output set up to feed output
into a string. Then it returns that string.

For example, if the current buffer name is ‘foo’,

(with-output-to-string

(princ "The buffer is ")

(princ (buffer-name)))

returns "The buffer is foo".

[Function]pp object &optional stream
This function outputs object to stream, just like prin1, but does it in a more “pretty”
way. That is, it’ll indent and fill the object to make it more readable for humans.

Chapter 19: Reading and Printing Lisp Objects 289

19.6 Variables Affecting Output

[Variable]standard-output
The value of this variable is the default output stream—the stream that print func-
tions use when the stream argument is nil. The default is t, meaning display in the
echo area.

[Variable]print-quoted
If this is non-nil, that means to print quoted forms using abbreviated reader syntax,
e.g., (quote foo) prints as ’foo, and (function foo) as #’foo.

[Variable]print-escape-newlines
If this variable is non-nil, then newline characters in strings are printed as ‘\n’ and
formfeeds are printed as ‘\f’. Normally these characters are printed as actual newlines
and formfeeds.

This variable affects the print functions prin1 and print that print with quoting. It
does not affect princ. Here is an example using prin1:

(prin1 "a\nb")

a "a

a b"

⇒ "a

b"

(let ((print-escape-newlines t))

(prin1 "a\nb"))

a "a\nb"

⇒ "a

b"

In the second expression, the local binding of print-escape-newlines is in effect
during the call to prin1, but not during the printing of the result.

[Variable]print-escape-nonascii
If this variable is non-nil, then unibyte non-ASCII characters in strings are uncondi-
tionally printed as backslash sequences by the print functions prin1 and print that
print with quoting.

Those functions also use backslash sequences for unibyte non-ASCII characters, re-
gardless of the value of this variable, when the output stream is a multibyte buffer or
a marker pointing into one.

[Variable]print-escape-multibyte
If this variable is non-nil, then multibyte non-ASCII characters in strings are un-
conditionally printed as backslash sequences by the print functions prin1 and print

that print with quoting.

Those functions also use backslash sequences for multibyte non-ASCII characters,
regardless of the value of this variable, when the output stream is a unibyte buffer or
a marker pointing into one.

Chapter 19: Reading and Printing Lisp Objects 290

[Variable]print-length
The value of this variable is the maximum number of elements to print in any list,
vector or bool-vector. If an object being printed has more than this many elements,
it is abbreviated with an ellipsis.

If the value is nil (the default), then there is no limit.

(setq print-length 2)

⇒ 2

(print ’(1 2 3 4 5))

a (1 2 ...)

⇒ (1 2 ...)

[Variable]print-level
The value of this variable is the maximum depth of nesting of parentheses and brackets
when printed. Any list or vector at a depth exceeding this limit is abbreviated with
an ellipsis. A value of nil (which is the default) means no limit.

[User Option]eval-expression-print-length
[User Option]eval-expression-print-level

These are the values for print-length and print-level used by eval-expression,
and thus, indirectly, by many interactive evaluation commands (see Section “Evalu-
ating Emacs-Lisp Expressions” in The GNU Emacs Manual).

These variables are used for detecting and reporting circular and shared structure:

[Variable]print-circle
If non-nil, this variable enables detection of circular and shared structure in printing.
See Section 2.5 [Circular Objects], page 27.

[Variable]print-gensym
If non-nil, this variable enables detection of uninterned symbols (see Section 8.3
[Creating Symbols], page 106) in printing. When this is enabled, uninterned symbols
print with the prefix ‘#:’, which tells the Lisp reader to produce an uninterned symbol.

[Variable]print-continuous-numbering
If non-nil, that means number continuously across print calls. This affects the num-
bers printed for ‘#n=’ labels and ‘#m#’ references. Don’t set this variable with setq;
you should only bind it temporarily to t with let. When you do that, you should
also bind print-number-table to nil.

[Variable]print-number-table
This variable holds a vector used internally by printing to implement the print-

circle feature. You should not use it except to bind it to nil when you bind
print-continuous-numbering.

[Variable]float-output-format
This variable specifies how to print floating point numbers. The default is nil, mean-
ing use the shortest output that represents the number without losing information.

To control output format more precisely, you can put a string in this variable. The
string should hold a ‘%’-specification to be used in the C function sprintf. For further
restrictions on what you can use, see the variable’s documentation string.

Chapter 20: Minibuffers 291

20 Minibuffers

A minibuffer is a special buffer that Emacs commands use to read arguments more compli-
cated than the single numeric prefix argument. These arguments include file names, buffer
names, and command names (as in M-x). The minibuffer is displayed on the bottom line of
the frame, in the same place as the echo area (see Section 38.4 [The Echo Area], page 825),
but only while it is in use for reading an argument.

20.1 Introduction to Minibuffers

In most ways, a minibuffer is a normal Emacs buffer. Most operations within a buffer,
such as editing commands, work normally in a minibuffer. However, many operations for
managing buffers do not apply to minibuffers. The name of a minibuffer always has the
form ‘ *Minibuf-number*’, and it cannot be changed. Minibuffers are displayed only in
special windows used only for minibuffers; these windows always appear at the bottom of
a frame. (Sometimes frames have no minibuffer window, and sometimes a special kind of
frame contains nothing but a minibuffer window; see Section 29.8 [Minibuffers and Frames],
page 607.)

The text in the minibuffer always starts with the prompt string, the text that was spec-
ified by the program that is using the minibuffer to tell the user what sort of input to type.
This text is marked read-only so you won’t accidentally delete or change it. It is also marked
as a field (see Section 32.19.9 [Fields], page 695), so that certain motion functions, including
beginning-of-line, forward-word, forward-sentence, and forward-paragraph, stop at
the boundary between the prompt and the actual text.

The minibuffer’s window is normally a single line; it grows automatically if the contents
require more space. Whilst it is active, you can explicitly resize it temporarily with the
window sizing commands; it reverts to its normal size when the minibuffer is exited. When
the minibuffer is not active, you can resize it permanently by using the window sizing
commands in the frame’s other window, or dragging the mode line with the mouse. (Due to
details of the current implementation, for this to work resize-mini-windows must be nil.)
If the frame contains just a minibuffer, you can change the minibuffer’s size by changing
the frame’s size.

Use of the minibuffer reads input events, and that alters the values of variables such as
this-command and last-command (see Section 21.5 [Command Loop Info], page 330). Your
program should bind them around the code that uses the minibuffer, if you do not want
that to change them.

Under some circumstances, a command can use a minibuffer even if there is an active
minibuffer; such a minibuffer is called a recursive minibuffer. The first minibuffer is named
‘ *Minibuf-1*’. Recursive minibuffers are named by incrementing the number at the end
of the name. (The names begin with a space so that they won’t show up in normal buffer
lists.) Of several recursive minibuffers, the innermost (or most recently entered) is the active
minibuffer. We usually call this “the” minibuffer. You can permit or forbid recursive mini-
buffers by setting the variable enable-recursive-minibuffers, or by putting properties
of that name on command symbols (See Section 20.13 [Recursive Mini], page 319.)

Like other buffers, a minibuffer uses a local keymap (see Chapter 22 [Keymaps], page 366)
to specify special key bindings. The function that invokes the minibuffer also sets up its

Chapter 20: Minibuffers 292

local map according to the job to be done. See Section 20.2 [Text from Minibuffer], page 292,
for the non-completion minibuffer local maps. See Section 20.6.3 [Completion Commands],
page 303, for the minibuffer local maps for completion.

When a minibuffer is inactive, its major mode is minibuffer-inactive-mode, with
keymap minibuffer-inactive-mode-map. This is only really useful if the minibuffer is in
a separate frame. See Section 29.8 [Minibuffers and Frames], page 607.

When Emacs is running in batch mode, any request to read from the minibuffer actually
reads a line from the standard input descriptor that was supplied when Emacs was started.

20.2 Reading Text Strings with the Minibuffer

The most basic primitive for minibuffer input is read-from-minibuffer, which can be used
to read either a string or a Lisp object in textual form. The function read-regexp is used
for reading regular expressions (see Section 34.3 [Regular Expressions], page 734), which
are a special kind of string. There are also specialized functions for reading commands,
variables, file names, etc. (see Section 20.6 [Completion], page 298).

In most cases, you should not call minibuffer input functions in the middle of a Lisp
function. Instead, do all minibuffer input as part of reading the arguments for a command,
in the interactive specification. See Section 21.2 [Defining Commands], page 322.

[Function]read-from-minibuffer prompt &optional initial keymap read history
default inherit-input-method

This function is the most general way to get input from the minibuffer. By default, it
accepts arbitrary text and returns it as a string; however, if read is non-nil, then it
uses read to convert the text into a Lisp object (see Section 19.3 [Input Functions],
page 283).

The first thing this function does is to activate a minibuffer and display it with prompt
(which must be a string) as the prompt. Then the user can edit text in the minibuffer.

When the user types a command to exit the minibuffer, read-from-minibuffer

constructs the return value from the text in the minibuffer. Normally it returns a
string containing that text. However, if read is non-nil, read-from-minibuffer
reads the text and returns the resulting Lisp object, unevaluated. (See Section 19.3
[Input Functions], page 283, for information about reading.)

The argument default specifies default values to make available through the history
commands. It should be a string, a list of strings, or nil. The string or strings
become the minibuffer’s “future history”, available to the user with M-n.

If read is non-nil, then default is also used as the input to read, if the user enters
empty input. If default is a list of strings, the first string is used as the input. If
default is nil, empty input results in an end-of-file error. However, in the usual
case (where read is nil), read-from-minibuffer ignores default when the user enters
empty input and returns an empty string, "". In this respect, it differs from all the
other minibuffer input functions in this chapter.

If keymap is non-nil, that keymap is the local keymap to use in the minibuffer.
If keymap is omitted or nil, the value of minibuffer-local-map is used as the
keymap. Specifying a keymap is the most important way to customize the minibuffer
for various applications such as completion.

Chapter 20: Minibuffers 293

The argument history specifies a history list variable to use for saving the input and for
history commands used in the minibuffer. It defaults to minibuffer-history. You
can optionally specify a starting position in the history list as well. See Section 20.4
[Minibuffer History], page 296.

If the variable minibuffer-allow-text-properties is non-nil, then the string that
is returned includes whatever text properties were present in the minibuffer. Other-
wise all the text properties are stripped when the value is returned.

If the argument inherit-input-method is non-nil, then the minibuffer inherits the
current input method (see Section 33.10 [Input Methods], page 729) and the setting of
enable-multibyte-characters (see Section 33.1 [Text Representations], page 705)
from whichever buffer was current before entering the minibuffer.

Use of initial is mostly deprecated; we recommend using a non-nil value only in
conjunction with specifying a cons cell for history. See Section 20.5 [Initial Input],
page 298.

[Function]read-string prompt &optional initial history default
inherit-input-method

This function reads a string from the minibuffer and returns it. The ar-
guments prompt, initial, history and inherit-input-method are used as in
read-from-minibuffer. The keymap used is minibuffer-local-map.

The optional argument default is used as in read-from-minibuffer, except that, if
non-nil, it also specifies a default value to return if the user enters null input. As
in read-from-minibuffer it should be a string, a list of strings, or nil, which is
equivalent to an empty string. When default is a string, that string is the default
value. When it is a list of strings, the first string is the default value. (All these
strings are available to the user in the “future minibuffer history”.)

This function works by calling the read-from-minibuffer function:
(read-string prompt initial history default inherit)

≡
(let ((value

(read-from-minibuffer prompt initial nil nil

history default inherit)))

(if (and (equal value "") default)

(if (consp default) (car default) default)

value))

[Function]read-regexp prompt &optional default history
This function reads a regular expression as a string from the minibuffer and returns
it. The argument prompt is used as in read-from-minibuffer.

The optional argument default specifies a default value to return if the user enters
null input; it should be a string, or nil, which is equivalent to an empty string.

The optional argument history, if non-nil, is a symbol specifying a minibuffer history
list to use (see Section 20.4 [Minibuffer History], page 296). If it is omitted or nil,
the history list defaults to regexp-history.

read-regexp also collects a few useful candidates for input and passes them to read-
from-minibuffer, to make them available to the user as the “future minibuffer his-
tory list” (see Section “Minibuffer History” in The GNU Emacs Manual). These
candidates are:

Chapter 20: Minibuffers 294

− The word or symbol at point.

− The last regexp used in an incremental search.

− The last string used in an incremental search.

− The last string or pattern used in query-replace commands.

This function works by calling the read-from-minibuffer function, after computing
the list of defaults as described above.

[Variable]minibuffer-allow-text-properties
If this variable is nil, then read-from-minibuffer and read-string strip all text
properties from the minibuffer input before returning it. However, read-no-blanks-
input (see below), as well as read-minibuffer and related functions (see Section 20.3
[Reading Lisp Objects With the Minibuffer], page 295), and all functions that do
minibuffer input with completion, discard text properties unconditionally, regardless
of the value of this variable.

[Variable]minibuffer-local-map
This is the default local keymap for reading from the minibuffer. By default, it makes
the following bindings:

C-j exit-minibuffer

RET exit-minibuffer

C-g abort-recursive-edit

M-n

DOWN next-history-element

M-p

UP previous-history-element

M-s next-matching-history-element

M-r previous-matching-history-element

[Function]read-no-blanks-input prompt &optional initial inherit-input-method
This function reads a string from the minibuffer, but does not allow whitespace char-
acters as part of the input: instead, those characters terminate the input. The
arguments prompt, initial, and inherit-input-method are used as in read-from-

minibuffer.

This is a simplified interface to the read-from-minibuffer function, and passes the
value of the minibuffer-local-ns-map keymap as the keymap argument for that
function. Since the keymap minibuffer-local-ns-map does not rebind C-q, it is
possible to put a space into the string, by quoting it.

This function discards text properties, regardless of the value of minibuffer-allow-
text-properties.

(read-no-blanks-input prompt initial)

≡
(let (minibuffer-allow-text-properties)

(read-from-minibuffer prompt initial minibuffer-local-ns-map))

Chapter 20: Minibuffers 295

[Variable]minibuffer-local-ns-map
This built-in variable is the keymap used as the minibuffer local keymap in the func-
tion read-no-blanks-input. By default, it makes the following bindings, in addition
to those of minibuffer-local-map:

SPC exit-minibuffer

TAB exit-minibuffer

? self-insert-and-exit

20.3 Reading Lisp Objects with the Minibuffer

This section describes functions for reading Lisp objects with the minibuffer.

[Function]read-minibuffer prompt &optional initial
This function reads a Lisp object using the minibuffer, and returns it without evalu-
ating it. The arguments prompt and initial are used as in read-from-minibuffer.

This is a simplified interface to the read-from-minibuffer function:
(read-minibuffer prompt initial)

≡
(let (minibuffer-allow-text-properties)

(read-from-minibuffer prompt initial nil t))

Here is an example in which we supply the string "(testing)" as initial input:
(read-minibuffer

"Enter an expression: " (format "%s" ’(testing)))

;; Here is how the minibuffer is displayed:

---------- Buffer: Minibuffer ----------

Enter an expression: (testing)?
---------- Buffer: Minibuffer ----------

The user can type RET immediately to use the initial input as a default, or can edit
the input.

[Function]eval-minibuffer prompt &optional initial
This function reads a Lisp expression using the minibuffer, evaluates it, then returns
the result. The arguments prompt and initial are used as in read-from-minibuffer.

This function simply evaluates the result of a call to read-minibuffer:
(eval-minibuffer prompt initial)

≡
(eval (read-minibuffer prompt initial))

[Function]edit-and-eval-command prompt form
This function reads a Lisp expression in the minibuffer, evaluates it, then returns
the result. The difference between this command and eval-minibuffer is that here
the initial form is not optional and it is treated as a Lisp object to be converted to
printed representation rather than as a string of text. It is printed with prin1, so if
it is a string, double-quote characters (‘"’) appear in the initial text. See Section 19.5
[Output Functions], page 286.

In the following example, we offer the user an expression with initial text that is
already a valid form:

Chapter 20: Minibuffers 296

(edit-and-eval-command "Please edit: " ’(forward-word 1))

;; After evaluation of the preceding expression,
;; the following appears in the minibuffer:

---------- Buffer: Minibuffer ----------

Please edit: (forward-word 1)?
---------- Buffer: Minibuffer ----------

Typing RET right away would exit the minibuffer and evaluate the expression, thus
moving point forward one word.

20.4 Minibuffer History

A minibuffer history list records previous minibuffer inputs so the user can reuse them
conveniently. It is a variable whose value is a list of strings (previous inputs), most recent
first.

There are many separate minibuffer history lists, used for different kinds of inputs. It’s
the Lisp programmer’s job to specify the right history list for each use of the minibuffer.

You specify a minibuffer history list with the optional history argument to read-from-

minibuffer or completing-read. Here are the possible values for it:

variable Use variable (a symbol) as the history list.

(variable . startpos)
Use variable (a symbol) as the history list, and assume that the initial history
position is startpos (a nonnegative integer).

Specifying 0 for startpos is equivalent to just specifying the symbol variable.
previous-history-element will display the most recent element of the history
list in the minibuffer. If you specify a positive startpos, the minibuffer history
functions behave as if (elt variable (1- startpos)) were the history element
currently shown in the minibuffer.

For consistency, you should also specify that element of the history as the initial
minibuffer contents, using the initial argument to the minibuffer input function
(see Section 20.5 [Initial Input], page 298).

If you don’t specify history, then the default history list minibuffer-history is used.
For other standard history lists, see below. You can also create your own history list
variable; just initialize it to nil before the first use.

Both read-from-minibuffer and completing-read add new elements to the history
list automatically, and provide commands to allow the user to reuse items on the list. The
only thing your program needs to do to use a history list is to initialize it and to pass its
name to the input functions when you wish. But it is safe to modify the list by hand when
the minibuffer input functions are not using it.

Emacs functions that add a new element to a history list can also delete old elements
if the list gets too long. The variable history-length specifies the maximum length for
most history lists. To specify a different maximum length for a particular history list,
put the length in the history-length property of the history list symbol. The variable
history-delete-duplicates specifies whether to delete duplicates in history.

Chapter 20: Minibuffers 297

[Function]add-to-history history-var newelt &optional maxelt keep-all
This function adds a new element newelt, if it isn’t the empty string, to the history list
stored in the variable history-var, and returns the updated history list. It limits the list
length to the value of maxelt (if non-nil) or history-length (described below). The
possible values of maxelt have the same meaning as the values of history-length.

Normally, add-to-history removes duplicate members from the history list if
history-delete-duplicates is non-nil. However, if keep-all is non-nil, that says
not to remove duplicates, and to add newelt to the list even if it is empty.

[Variable]history-add-new-input
If the value of this variable is nil, standard functions that read from the minibuffer
don’t add new elements to the history list. This lets Lisp programs explicitly manage
input history by using add-to-history. The default value is t.

[User Option]history-length
The value of this variable specifies the maximum length for all history lists that
don’t specify their own maximum lengths. If the value is t, that means there is no
maximum (don’t delete old elements). If a history list variable’s symbol has a non-nil
history-length property, it overrides this variable for that particular history list.

[User Option]history-delete-duplicates
If the value of this variable is t, that means when adding a new history element, all
previous identical elements are deleted.

Here are some of the standard minibuffer history list variables:

[Variable]minibuffer-history
The default history list for minibuffer history input.

[Variable]query-replace-history
A history list for arguments to query-replace (and similar arguments to other com-
mands).

[Variable]file-name-history
A history list for file-name arguments.

[Variable]buffer-name-history
A history list for buffer-name arguments.

[Variable]regexp-history
A history list for regular expression arguments.

[Variable]extended-command-history
A history list for arguments that are names of extended commands.

[Variable]shell-command-history
A history list for arguments that are shell commands.

[Variable]read-expression-history
A history list for arguments that are Lisp expressions to evaluate.

[Variable]face-name-history
A history list for arguments that are faces.

Chapter 20: Minibuffers 298

20.5 Initial Input

Several of the functions for minibuffer input have an argument called initial. This is a
mostly-deprecated feature for specifying that the minibuffer should start out with certain
text, instead of empty as usual.

If initial is a string, the minibuffer starts out containing the text of the string, with point
at the end, when the user starts to edit the text. If the user simply types RET to exit the
minibuffer, it will use the initial input string to determine the value to return.

We discourage use of a non-nil value for initial, because initial input is an intrusive
interface. History lists and default values provide a much more convenient method to offer
useful default inputs to the user.

There is just one situation where you should specify a string for an initial argument.
This is when you specify a cons cell for the history argument. See Section 20.4 [Minibuffer
History], page 296.

initial can also be a cons cell of the form (string . position). This means to insert
string in the minibuffer but put point at position within the string’s text.

As a historical accident, position was implemented inconsistently in different functions.
In completing-read, position’s value is interpreted as origin-zero; that is, a value of 0 means
the beginning of the string, 1 means after the first character, etc. In read-minibuffer, and
the other non-completion minibuffer input functions that support this argument, 1 means
the beginning of the string, 2 means after the first character, etc.

Use of a cons cell as the value for initial arguments is deprecated.

20.6 Completion

Completion is a feature that fills in the rest of a name starting from an abbreviation for
it. Completion works by comparing the user’s input against a list of valid names and
determining how much of the name is determined uniquely by what the user has typed. For
example, when you type C-x b (switch-to-buffer) and then type the first few letters of the
name of the buffer to which you wish to switch, and then type TAB (minibuffer-complete),
Emacs extends the name as far as it can.

Standard Emacs commands offer completion for names of symbols, files, buffers, and
processes; with the functions in this section, you can implement completion for other kinds
of names.

The try-completion function is the basic primitive for completion: it returns the longest
determined completion of a given initial string, with a given set of strings to match against.

The function completing-read provides a higher-level interface for completion. A call
to completing-read specifies how to determine the list of valid names. The function then
activates the minibuffer with a local keymap that binds a few keys to commands useful for
completion. Other functions provide convenient simple interfaces for reading certain kinds
of names with completion.

20.6.1 Basic Completion Functions

The following completion functions have nothing in themselves to do with minibuffers. We
describe them here to keep them near the higher-level completion features that do use the
minibuffer.

Chapter 20: Minibuffers 299

[Function]try-completion string collection &optional predicate
This function returns the longest common substring of all possible completions of
string in collection.

collection is called the completion table. Its value must be a list of strings or cons
cells, an obarray, a hash table, or a completion function.

try-completion compares string against each of the permissible completions speci-
fied by the completion table. If no permissible completions match, it returns nil. If
there is just one matching completion, and the match is exact, it returns t. Otherwise,
it returns the longest initial sequence common to all possible matching completions.

If collection is an list, the permissible completions are specified by the elements of
the list, each of which should be either a string, or a cons cell whose car is either a
string or a symbol (a symbol is converted to a string using symbol-name). If the list
contains elements of any other type, those are ignored.

If collection is an obarray (see Section 8.3 [Creating Symbols], page 106), the names
of all symbols in the obarray form the set of permissible completions.

If collection is a hash table, then the keys that are strings are the possible completions.
Other keys are ignored.

You can also use a function as collection. Then the function is solely responsible for
performing completion; try-completion returns whatever this function returns. The
function is called with three arguments: string, predicate and nil (the third argument
is so that the same function can be used in all-completions and do the appropriate
thing in either case). See Section 20.6.7 [Programmed Completion], page 312.

If the argument predicate is non-nil, then it must be a function of one argument,
unless collection is a hash table, in which case it should be a function of two arguments.
It is used to test each possible match, and the match is accepted only if predicate
returns non-nil. The argument given to predicate is either a string or a cons cell
(the car of which is a string) from the alist, or a symbol (not a symbol name) from
the obarray. If collection is a hash table, predicate is called with two arguments, the
string key and the associated value.

In addition, to be acceptable, a completion must also match all the regular expressions
in completion-regexp-list. (Unless collection is a function, in which case that
function has to handle completion-regexp-list itself.)

In the first of the following examples, the string ‘foo’ is matched by three of the alist
cars. All of the matches begin with the characters ‘fooba’, so that is the result. In
the second example, there is only one possible match, and it is exact, so the return
value is t.

(try-completion

"foo"

’(("foobar1" 1) ("barfoo" 2) ("foobaz" 3) ("foobar2" 4)))
⇒ "fooba"

(try-completion "foo" ’(("barfoo" 2) ("foo" 3)))
⇒ t

In the following example, numerous symbols begin with the characters ‘forw’, and all
of them begin with the word ‘forward’. In most of the symbols, this is followed with
a ‘-’, but not in all, so no more than ‘forward’ can be completed.

Chapter 20: Minibuffers 300

(try-completion "forw" obarray)
⇒ "forward"

Finally, in the following example, only two of the three possible matches pass the
predicate test (the string ‘foobaz’ is too short). Both of those begin with the string
‘foobar’.

(defun test (s)

(> (length (car s)) 6))
⇒ test

(try-completion

"foo"

’(("foobar1" 1) ("barfoo" 2) ("foobaz" 3) ("foobar2" 4))

’test)
⇒ "foobar"

[Function]all-completions string collection &optional predicate
This function returns a list of all possible completions of string. The arguments to
this function are the same as those of try-completion, and it uses completion-

regexp-list in the same way that try-completion does.

If collection is a function, it is called with three arguments: string, predicate and
t; then all-completions returns whatever the function returns. See Section 20.6.7
[Programmed Completion], page 312.

Here is an example, using the function test shown in the example for
try-completion:

(defun test (s)

(> (length (car s)) 6))
⇒ test

(all-completions

"foo"

’(("foobar1" 1) ("barfoo" 2) ("foobaz" 3) ("foobar2" 4))

’test)
⇒ ("foobar1" "foobar2")

[Function]test-completion string collection &optional predicate
This function returns non-nil if string is a valid completion alternative specified by
collection and predicate. The arguments are the same as in try-completion. For
instance, if collection is a list of strings, this is true if string appears in the list and
predicate is satisfied.

This function uses completion-regexp-list in the same way that try-completion
does.

If predicate is non-nil and if collection contains several strings that are equal to each
other, as determined by compare-strings according to completion-ignore-case,
then predicate should accept either all or none of them. Otherwise, the return value
of test-completion is essentially unpredictable.

If collection is a function, it is called with three arguments, the values string, predicate
and lambda; whatever it returns, test-completion returns in turn.

[Function]completion-boundaries string collection predicate suffix
This function returns the boundaries of the field on which collection will operate,
assuming that string holds the text before point and suffix holds the text after point.

Chapter 20: Minibuffers 301

Normally completion operates on the whole string, so for all normal collections,
this will always return (0 . (length suffix)). But more complex completion
such as completion on files is done one field at a time. For example, completion
of "/usr/sh" will include "/usr/share/" but not "/usr/share/doc" even if
"/usr/share/doc" exists. Also all-completions on "/usr/sh" will not include
"/usr/share/" but only "share/". So if string is "/usr/sh" and suffix is "e/doc",
completion-boundaries will return (5 . 1) which tells us that the collection will
only return completion information that pertains to the area after "/usr/" and
before "/doc".

If you store a completion alist in a variable, you should mark the variable as “risky”
by giving it a non-nil risky-local-variable property. See Section 11.11 [File Local
Variables], page 160.

[Variable]completion-ignore-case
If the value of this variable is non-nil, case is not considered significant in
completion. Within read-file-name, this variable is overridden by read-file-

name-completion-ignore-case (see Section 20.6.5 [Reading File Names], page 307);
within read-buffer, it is overridden by read-buffer-completion-ignore-case

(see Section 20.6.4 [High-Level Completion], page 305).

[Variable]completion-regexp-list
This is a list of regular expressions. The completion functions only consider a com-
pletion acceptable if it matches all regular expressions in this list, with case-fold-

search (see Section 34.2 [Searching and Case], page 734) bound to the value of
completion-ignore-case.

[Macro]lazy-completion-table var fun
This macro provides a way to initialize the variable var as a collection for completion
in a lazy way, not computing its actual contents until they are first needed. You use
this macro to produce a value that you store in var. The actual computation of the
proper value is done the first time you do completion using var. It is done by calling
fun with no arguments. The value fun returns becomes the permanent value of var.

Here is an example:
(defvar foo (lazy-completion-table foo make-my-alist))

There are several functions that take an existing completion table and return a modi-
fied version. completion-table-case-fold returns a case-insensitive table. completion-
table-in-turn combines multiple input tables. completion-table-subvert alters a table
to use a different initial prefix. completion-table-with-quoting returns a table suitable
for operating on quoted text. completion-table-with-predicate filters a table with a
predicate function. completion-table-with-terminator adds a terminating string.

20.6.2 Completion and the Minibuffer

This section describes the basic interface for reading from the minibuffer with completion.

[Function]completing-read prompt collection &optional predicate require-match
initial history default inherit-input-method

This function reads a string in the minibuffer, assisting the user by providing com-
pletion. It activates the minibuffer with prompt prompt, which must be a string.

Chapter 20: Minibuffers 302

The actual completion is done by passing the completion table collection and the
completion predicate predicate to the function try-completion (see Section 20.6.1
[Basic Completion], page 298). This happens in certain commands bound in the local
keymaps used for completion. Some of these commands also call test-completion.
Thus, if predicate is non-nil, it should be compatible with collection and
completion-ignore-case. See [Definition of test-completion], page 300.

The value of the optional argument require-match determines how the user may exit
the minibuffer:

• If nil, the usual minibuffer exit commands work regardless of the input in the
minibuffer.

• If t, the usual minibuffer exit commands won’t exit unless the input completes
to an element of collection.

• If confirm, the user can exit with any input, but is asked for confirmation if the
input is not an element of collection.

• If confirm-after-completion, the user can exit with any input, but is asked
for confirmation if the preceding command was a completion command (i.e., one
of the commands in minibuffer-confirm-exit-commands) and the resulting
input is not an element of collection. See Section 20.6.3 [Completion Commands],
page 303.

• Any other value of require-match behaves like t, except that the exit commands
won’t exit if it performs completion.

However, empty input is always permitted, regardless of the value of require-match;
in that case, completing-read returns the first element of default, if it is a list; "",
if default is nil; or default. The string or strings in default are also available to the
user through the history commands.

The function completing-read uses minibuffer-local-completion-map as the
keymap if require-match is nil, and uses minibuffer-local-must-match-map if
require-match is non-nil. See Section 20.6.3 [Completion Commands], page 303.

The argument history specifies which history list variable to use for saving the in-
put and for minibuffer history commands. It defaults to minibuffer-history. See
Section 20.4 [Minibuffer History], page 296.

The argument initial is mostly deprecated; we recommend using a non-nil value only
in conjunction with specifying a cons cell for history. See Section 20.5 [Initial Input],
page 298. For default input, use default instead.

If the argument inherit-input-method is non-nil, then the minibuffer inherits the
current input method (see Section 33.10 [Input Methods], page 729) and the setting of
enable-multibyte-characters (see Section 33.1 [Text Representations], page 705)
from whichever buffer was current before entering the minibuffer.

If the variable completion-ignore-case is non-nil, completion ignores case when
comparing the input against the possible matches. See Section 20.6.1 [Basic Comple-
tion], page 298. In this mode of operation, predicate must also ignore case, or you
will get surprising results.

Here’s an example of using completing-read:

Chapter 20: Minibuffers 303

(completing-read

"Complete a foo: "

’(("foobar1" 1) ("barfoo" 2) ("foobaz" 3) ("foobar2" 4))

nil t "fo")

;; After evaluation of the preceding expression,
;; the following appears in the minibuffer:

---------- Buffer: Minibuffer ----------

Complete a foo: fo?
---------- Buffer: Minibuffer ----------

If the user then types DEL DEL b RET, completing-read returns barfoo.

The completing-read function binds variables to pass information to the commands
that actually do completion. They are described in the following section.

[Variable]completing-read-function
The value of this variable must be a function, which is called by completing-read

to actually do its work. It should accept the same arguments as completing-read.
This can be bound to a different function to completely override the normal behavior
of completing-read.

20.6.3 Minibuffer Commands that Do Completion

This section describes the keymaps, commands and user options used in the minibuffer to
do completion.

[Variable]minibuffer-completion-table
The value of this variable is the completion table used for completion in the mini-
buffer. This is the global variable that contains what completing-read passes to
try-completion. It is used by minibuffer completion commands such as minibuffer-
complete-word.

[Variable]minibuffer-completion-predicate
This variable’s value is the predicate that completing-read passes to try-

completion. The variable is also used by the other minibuffer completion
functions.

[Variable]minibuffer-completion-confirm
This variable determines whether Emacs asks for confirmation before exiting the
minibuffer; completing-read binds this variable, and the function minibuffer-

complete-and-exit checks the value before exiting. If the value is nil, confirmation
is not required. If the value is confirm, the user may exit with an input that is
not a valid completion alternative, but Emacs asks for confirmation. If the value
is confirm-after-completion, the user may exit with an input that is not a valid
completion alternative, but Emacs asks for confirmation if the user submitted the
input right after any of the completion commands in minibuffer-confirm-exit-

commands.

[Variable]minibuffer-confirm-exit-commands
This variable holds a list of commands that cause Emacs to ask for confirmation
before exiting the minibuffer, if the require-match argument to completing-read is

Chapter 20: Minibuffers 304

confirm-after-completion. The confirmation is requested if the user attempts to
exit the minibuffer immediately after calling any command in this list.

[Command]minibuffer-complete-word
This function completes the minibuffer contents by at most a single word. Even if
the minibuffer contents have only one completion, minibuffer-complete-word does
not add any characters beyond the first character that is not a word constituent. See
Chapter 35 [Syntax Tables], page 757.

[Command]minibuffer-complete
This function completes the minibuffer contents as far as possible.

[Command]minibuffer-complete-and-exit
This function completes the minibuffer contents, and exits if confirmation is not
required, i.e., if minibuffer-completion-confirm is nil. If confirmation is required,
it is given by repeating this command immediately—the command is programmed to
work without confirmation when run twice in succession.

[Command]minibuffer-completion-help
This function creates a list of the possible completions of the current minibuffer
contents. It works by calling all-completions using the value of the variable
minibuffer-completion-table as the collection argument, and the value of
minibuffer-completion-predicate as the predicate argument. The list of
completions is displayed as text in a buffer named *Completions*.

[Function]display-completion-list completions &optional common-substring
This function displays completions to the stream in standard-output, usually a
buffer. (See Chapter 19 [Read and Print], page 281, for more information about
streams.) The argument completions is normally a list of completions just returned
by all-completions, but it does not have to be. Each element may be a symbol or
a string, either of which is simply printed. It can also be a list of two strings, which is
printed as if the strings were concatenated. The first of the two strings is the actual
completion, the second string serves as annotation.

The argument common-substring is the prefix that is common to all the comple-
tions. With normal Emacs completion, it is usually the same as the string that was
completed. display-completion-list uses this to highlight text in the completion
list for better visual feedback. This is not needed in the minibuffer; for minibuffer
completion, you can pass nil.

This function is called by minibuffer-completion-help. A common way to use it
is together with with-output-to-temp-buffer, like this:

(with-output-to-temp-buffer "*Completions*"

(display-completion-list

(all-completions (buffer-string) my-alist)

(buffer-string)))

[User Option]completion-auto-help
If this variable is non-nil, the completion commands automatically display a list of
possible completions whenever nothing can be completed because the next character
is not uniquely determined.

Chapter 20: Minibuffers 305

[Variable]minibuffer-local-completion-map
completing-read uses this value as the local keymap when an exact match of one
of the completions is not required. By default, this keymap makes the following
bindings:

? minibuffer-completion-help

SPC minibuffer-complete-word

TAB minibuffer-complete

and uses minibuffer-local-map as its parent keymap (see [Definition of minibuffer-
local-map], page 294).

[Variable]minibuffer-local-must-match-map
completing-read uses this value as the local keymap when an exact match of one of
the completions is required. Therefore, no keys are bound to exit-minibuffer, the
command that exits the minibuffer unconditionally. By default, this keymap makes
the following bindings:

C-j minibuffer-complete-and-exit

RET minibuffer-complete-and-exit

and uses minibuffer-local-completion-map as its parent keymap.

[Variable]minibuffer-local-filename-completion-map
This is a sparse keymap that simply unbinds SPC; because filenames can contain spa-
ces. The function read-file-name combines this keymap with either minibuffer-
local-completion-map or minibuffer-local-must-match-map.

20.6.4 High-Level Completion Functions

This section describes the higher-level convenience functions for reading certain sorts of
names with completion.

In most cases, you should not call these functions in the middle of a Lisp function. When
possible, do all minibuffer input as part of reading the arguments for a command, in the
interactive specification. See Section 21.2 [Defining Commands], page 322.

[Function]read-buffer prompt &optional default require-match
This function reads the name of a buffer and returns it as a string. The argument
default is the default name to use, the value to return if the user exits with an empty
minibuffer. If non-nil, it should be a string, a list of strings, or a buffer. If it is a
list, the default value is the first element of this list. It is mentioned in the prompt,
but is not inserted in the minibuffer as initial input.

The argument prompt should be a string ending with a colon and a space. If default
is non-nil, the function inserts it in prompt before the colon to follow the convention
for reading from the minibuffer with a default value (see Section D.3 [Programming
Tips], page 972).

The optional argument require-match has the same meaning as in completing-read.
See Section 20.6.2 [Minibuffer Completion], page 301.

Chapter 20: Minibuffers 306

In the following example, the user enters ‘minibuffer.t’, and then types RET. The
argument require-match is t, and the only buffer name starting with the given input
is ‘minibuffer.texi’, so that name is the value.

(read-buffer "Buffer name: " "foo" t)

;; After evaluation of the preceding expression,
;; the following prompt appears,
;; with an empty minibuffer:

---------- Buffer: Minibuffer ----------

Buffer name (default foo): ?
---------- Buffer: Minibuffer ----------

;; The user types minibuffer.t RET.
⇒ "minibuffer.texi"

[User Option]read-buffer-function
This variable, if non-nil, specifies a function for reading buffer names. read-buffer
calls this function instead of doing its usual work, with the same arguments passed
to read-buffer.

[User Option]read-buffer-completion-ignore-case
If this variable is non-nil, read-buffer ignores case when performing completion.

[Function]read-command prompt &optional default
This function reads the name of a command and returns it as a Lisp symbol. The
argument prompt is used as in read-from-minibuffer. Recall that a command is
anything for which commandp returns t, and a command name is a symbol for which
commandp returns t. See Section 21.3 [Interactive Call], page 327.

The argument default specifies what to return if the user enters null input. It can
be a symbol, a string or a list of strings. If it is a string, read-command interns it
before returning it. If it is a list, read-command interns the first element of this list.
If default is nil, that means no default has been specified; then if the user enters null
input, the return value is (intern ""), that is, a symbol whose name is an empty
string.

(read-command "Command name? ")

;; After evaluation of the preceding expression,
;; the following prompt appears with an empty minibuffer:

---------- Buffer: Minibuffer ----------

Command name?

---------- Buffer: Minibuffer ----------

If the user types forward-c RET, then this function returns forward-char.

The read-command function is a simplified interface to completing-read. It uses the
variable obarray so as to complete in the set of extant Lisp symbols, and it uses the
commandp predicate so as to accept only command names:

Chapter 20: Minibuffers 307

(read-command prompt)

≡
(intern (completing-read prompt obarray

’commandp t nil))

[Function]read-variable prompt &optional default
This function reads the name of a customizable variable and returns it as a symbol. Its
arguments have the same form as those of read-command. It behaves just like read-
command, except that it uses the predicate custom-variable-p instead of commandp.

[Command]read-color &optional prompt convert allow-empty display
This function reads a string that is a color specification, either the color’s name or an
RGB hex value such as #RRRGGGBBB. It prompts with prompt (default: "Color (name

or #RGB triplet):") and provides completion for color names, but not for hex RGB
values. In addition to names of standard colors, completion candidates include the
foreground and background colors at point.

Valid RGB values are described in Section 29.20 [Color Names], page 616.

The function’s return value is the string typed by the user in the minibuffer. However,
when called interactively or if the optional argument convert is non-nil, it converts
any input color name into the corresponding RGB value string and instead returns
that. This function requires a valid color specification to be input. Empty color
names are allowed when allow-empty is non-nil and the user enters null input.

Interactively, or when display is non-nil, the return value is also displayed in the
echo area.

See also the functions read-coding-system and read-non-nil-coding-system, in
Section 33.9.4 [User-Chosen Coding Systems], page 721, and read-input-method-name,
in Section 33.10 [Input Methods], page 729.

20.6.5 Reading File Names

The high-level completion functions read-file-name, read-directory-name, and read-

shell-command are designed to read file names, directory names, and shell commands,
respectively. They provide special features, including automatic insertion of the default
directory.

[Function]read-file-name prompt &optional directory default require-match
initial predicate

This function reads a file name, prompting with prompt and providing completion.

As an exception, this function reads a file name using a graphical file dialog instead
of the minibuffer, if all of the following are true:

1. It is invoked via a mouse command.

2. The selected frame is on a graphical display supporting such dialogs.

3. The variable use-dialog-box is non-nil. See Section “Dialog Boxes” in The
GNU Emacs Manual.

4. The directory argument, described below, does not specify a remote file. See
Section “Remote Files” in The GNU Emacs Manual.

Chapter 20: Minibuffers 308

The exact behavior when using a graphical file dialog is platform-dependent. Here,
we simply document the behavior when using the minibuffer.

read-file-name does not automatically expand the returned file name. You must
call expand-file-name yourself if an absolute file name is required.

The optional argument require-match has the same meaning as in completing-read.
See Section 20.6.2 [Minibuffer Completion], page 301.

The argument directory specifies the directory to use for completing relative file
names. It should be an absolute directory name. If the variable insert-default-

directory is non-nil, directory is also inserted in the minibuffer as initial input. It
defaults to the current buffer’s value of default-directory.

If you specify initial, that is an initial file name to insert in the buffer (after directory,
if that is inserted). In this case, point goes at the beginning of initial. The default for
initial is nil—don’t insert any file name. To see what initial does, try the command
C-x C-v in a buffer visiting a file. Please note: we recommend using default rather
than initial in most cases.

If default is non-nil, then the function returns default if the user exits the minibuffer
with the same non-empty contents that read-file-name inserted initially. The initial
minibuffer contents are always non-empty if insert-default-directory is non-nil,
as it is by default. default is not checked for validity, regardless of the value of require-
match. However, if require-match is non-nil, the initial minibuffer contents should
be a valid file (or directory) name. Otherwise read-file-name attempts completion
if the user exits without any editing, and does not return default. default is also
available through the history commands.

If default is nil, read-file-name tries to find a substitute default to use in its place,
which it treats in exactly the same way as if it had been specified explicitly. If default
is nil, but initial is non-nil, then the default is the absolute file name obtained from
directory and initial. If both default and initial are nil and the buffer is visiting a
file, read-file-name uses the absolute file name of that file as default. If the buffer
is not visiting a file, then there is no default. In that case, if the user types RET

without any editing, read-file-name simply returns the pre-inserted contents of the
minibuffer.

If the user types RET in an empty minibuffer, this function returns an empty string,
regardless of the value of require-match. This is, for instance, how the user can make
the current buffer visit no file using M-x set-visited-file-name.

If predicate is non-nil, it specifies a function of one argument that decides which file
names are acceptable completion alternatives. A file name is an acceptable value if
predicate returns non-nil for it.

Here is an example of using read-file-name:

(read-file-name "The file is ")

;; After evaluation of the preceding expression,
;; the following appears in the minibuffer:

Chapter 20: Minibuffers 309

---------- Buffer: Minibuffer ----------

The file is /gp/gnu/elisp/?
---------- Buffer: Minibuffer ----------

Typing manual TAB results in the following:

---------- Buffer: Minibuffer ----------

The file is /gp/gnu/elisp/manual.texi?
---------- Buffer: Minibuffer ----------

If the user types RET, read-file-name returns the file name as the string
"/gp/gnu/elisp/manual.texi".

[Variable]read-file-name-function
If non-nil, this should be a function that accepts the same arguments as read-

file-name. When read-file-name is called, it calls this function with the supplied
arguments instead of doing its usual work.

[User Option]read-file-name-completion-ignore-case
If this variable is non-nil, read-file-name ignores case when performing completion.

[Function]read-directory-name prompt &optional directory default
require-match initial

This function is like read-file-name but allows only directory names as completion
alternatives.

If default is nil and initial is non-nil, read-directory-name constructs a substitute
default by combining directory (or the current buffer’s default directory if directory
is nil) and initial. If both default and initial are nil, this function uses directory as
substitute default, or the current buffer’s default directory if directory is nil.

[User Option]insert-default-directory
This variable is used by read-file-name, and thus, indirectly, by most commands
reading file names. (This includes all commands that use the code letters ‘f’ or
‘F’ in their interactive form. See Section 21.2.2 [Code Characters for interactive],
page 324.) Its value controls whether read-file-name starts by placing the name
of the default directory in the minibuffer, plus the initial file name, if any. If the
value of this variable is nil, then read-file-name does not place any initial input
in the minibuffer (unless you specify initial input with the initial argument). In that
case, the default directory is still used for completion of relative file names, but is not
displayed.

If this variable is nil and the initial minibuffer contents are empty, the user may have
to explicitly fetch the next history element to access a default value. If the variable
is non-nil, the initial minibuffer contents are always non-empty and the user can
always request a default value by immediately typing RET in an unedited minibuffer.
(See above.)

For example:

;; Here the minibuffer starts out with the default directory.
(let ((insert-default-directory t))

(read-file-name "The file is "))

Chapter 20: Minibuffers 310

---------- Buffer: Minibuffer ----------

The file is ~lewis/manual/?
---------- Buffer: Minibuffer ----------

;; Here the minibuffer is empty and only the prompt
;; appears on its line.
(let ((insert-default-directory nil))

(read-file-name "The file is "))

---------- Buffer: Minibuffer ----------

The file is ?
---------- Buffer: Minibuffer ----------

[Function]read-shell-command prompt &optional initial history &rest args
This function reads a shell command from the minibuffer, prompting with prompt and
providing intelligent completion. It completes the first word of the command using
candidates that are appropriate for command names, and the rest of the command
words as file names.

This function uses minibuffer-local-shell-command-map as the keymap for mini-
buffer input. The history argument specifies the history list to use; if is omitted or
nil, it defaults to shell-command-history (see Section 20.4 [Minibuffer History],
page 296). The optional argument initial specifies the initial content of the minibuf-
fer (see Section 20.5 [Initial Input], page 298). The rest of args, if present, are used
as the default and inherit-input-method arguments in read-from-minibuffer (see
Section 20.2 [Text from Minibuffer], page 292).

[Variable]minibuffer-local-shell-command-map
This keymap is used by read-shell-command for completing command and file names
that are part of a shell command. It uses minibuffer-local-map as its parent
keymap, and binds TAB to completion-at-point.

20.6.6 Completion Variables

Here are some variables that can be used to alter the default completion behavior.

[User Option]completion-styles
The value of this variable is a list of completion style (symbols) to use for performing
completion. A completion style is a set of rules for generating completions. Each
symbol occurring this list must have a corresponding entry in completion-styles-

alist.

[Variable]completion-styles-alist
This variable stores a list of available completion styles. Each element in the list has
the form

(style try-completion all-completions doc)

Here, style is the name of the completion style (a symbol), which may be used in the
completion-styles variable to refer to this style; try-completion is the function that
does the completion; all-completions is the function that lists the completions; and
doc is a string describing the completion style.

Chapter 20: Minibuffers 311

The try-completion and all-completions functions should each accept four arguments:
string, collection, predicate, and point. The string, collection, and predicate ar-
guments have the same meanings as in try-completion (see Section 20.6.1 [Basic
Completion], page 298), and the point argument is the position of point within string.
Each function should return a non-nil value if it performed its job, and nil if it did
not (e.g., if there is no way to complete string according to the completion style).

When the user calls a completion command like minibuffer-complete (see
Section 20.6.3 [Completion Commands], page 303), Emacs looks for the first
style listed in completion-styles and calls its try-completion function. If this
function returns nil, Emacs moves to the next listed completion style and calls
its try-completion function, and so on until one of the try-completion functions
successfully performs completion and returns a non-nil value. A similar procedure
is used for listing completions, via the all-completions functions.

See Section “Completion Styles” in The GNU Emacs Manual, for a description of the
available completion styles.

[User Option]completion-category-overrides
This variable specifies special completion styles and other completion behaviors to use
when completing certain types of text. Its value should be an alist with elements of the
form (category . alist). category is a symbol describing what is being completed;
currently, the buffer, file, and unicode-name categories are defined, but others
can be defined via specialized completion functions (see Section 20.6.7 [Programmed
Completion], page 312). alist is an association list describing how completion should
behave for the corresponding category. The following alist keys are supported:

styles The value should be a list of completion styles (symbols).

cycle The value should be a value for completion-cycle-threshold (see
Section “Completion Options” in The GNU Emacs Manual) for this
category.

Additional alist entries may be defined in the future.

[Variable]completion-extra-properties
This variable is used to specify extra properties of the current completion command.
It is intended to be let-bound by specialized completion commands. Its value should
be a list of property and value pairs. The following properties are supported:

:annotation-function

The value should be a function to add annotations in the completions
buffer. This function must accept one argument, a completion, and should
either return nil or a string to be displayed next to the completion.

:exit-function

The value should be a function to run after performing completion. The
function should accept two arguments, string and status, where string
is the text to which the field was completed, and status indicates what
kind of operation happened: finished if text is now complete, sole if
the text cannot be further completed but completion is not finished, or
exact if the text is a valid completion but may be further completed.

Chapter 20: Minibuffers 312

20.6.7 Programmed Completion

Sometimes it is not possible or convenient to create an alist or an obarray containing all
the intended possible completions ahead of time. In such a case, you can supply your own
function to compute the completion of a given string. This is called programmed completion.
Emacs uses programmed completion when completing file names (see Section 25.8.6 [File
Name Completion], page 497), among many other cases.

To use this feature, pass a function as the collection argument to completing-read.
The function completing-read arranges to pass your completion function along to try-

completion, all-completions, and other basic completion functions, which will then let
your function do all the work.

The completion function should accept three arguments:

• The string to be completed.

• A predicate function with which to filter possible matches, or nil if none. The function
should call the predicate for each possible match, and ignore the match if the predicate
returns nil.

• A flag specifying the type of completion operation to perform. This is one of the
following four values:

nil This specifies a try-completion operation. The function should return t

if the specified string is a unique and exact match; if there is more than one
match, it should return the common substring of all matches (if the string
is an exact match for one completion alternative but also matches other
longer alternatives, the return value is the string); if there are no matches,
it should return nil.

t This specifies an all-completions operation. The function should return
a list of all possible completions of the specified string.

lambda This specifies a test-completion operation. The function should return
t if the specified string is an exact match for some completion alternative;
nil otherwise.

(boundaries . suffix)

This specifies a completion-boundaries operation. The function should
return (boundaries start . end), where start is the position of the be-
ginning boundary in the specified string, and end is the position of the end
boundary in suffix.

metadata This specifies a request for information about the state of the current com-
pletion. The return value should have the form (metadata . alist), where
alist is an alist whose elements are described below.

If the flag has any other value, the completion function should return nil.

The following is a list of metadata entries that a completion function may return in
response to a metadata flag argument:

category The value should be a symbol describing what kind of text the completion
function is trying to complete. If the symbol matches one of the keys in
completion-category-overrides, the usual completion behavior is overrid-
den. See Section 20.6.6 [Completion Variables], page 310.

Chapter 20: Minibuffers 313

annotation-function

The value should be a function for annotating completions. The function should
take one argument, string, which is a possible completion. It should return a
string, which is displayed after the completion string in the *Completions*

buffer.

display-sort-function

The value should be a function for sorting completions. The function should
take one argument, a list of completion strings, and return a sorted list of
completion strings. It is allowed to alter the input list destructively.

cycle-sort-function

The value should be a function for sorting completions, when completion-

cycle-threshold is non-nil and the user is cycling through completion alter-
natives. See Section “Completion Options” in The GNU Emacs Manual. Its
argument list and return value are the same as for display-sort-function.

[Function]completion-table-dynamic function
This function is a convenient way to write a function that can act as a programmed
completion function. The argument function should be a function that takes one
argument, a string, and returns an alist of possible completions of it. You can think of
completion-table-dynamic as a transducer between that interface and the interface
for programmed completion functions.

20.6.8 Completion in Ordinary Buffers

Although completion is usually done in the minibuffer, the completion facility can also be
used on the text in ordinary Emacs buffers. In many major modes, in-buffer completion is
performed by the C-M-i or M-TAB command, bound to completion-at-point. See Section
“Symbol Completion” in The GNU Emacs Manual. This command uses the abnormal hook
variable completion-at-point-functions:

[Variable]completion-at-point-functions
The value of this abnormal hook should be a list of functions, which are used to
compute a completion table for completing the text at point. It can be used by major
modes to provide mode-specific completion tables (see Section 23.2.1 [Major Mode
Conventions], page 407).

When the command completion-at-point runs, it calls the functions in the list one
by one, without any argument. Each function should return nil if it is unable to
produce a completion table for the text at point. Otherwise it should return a list of
the form

(start end collection . props)

start and end delimit the text to complete (which should enclose point). collection is
a completion table for completing that text, in a form suitable for passing as the sec-
ond argument to try-completion (see Section 20.6.1 [Basic Completion], page 298);
completion alternatives will be generated from this completion table in the usual way,
via the completion styles defined in completion-styles (see Section 20.6.6 [Comple-
tion Variables], page 310). props is a property list for additional information; any of

Chapter 20: Minibuffers 314

the properties in completion-extra-properties are recognized (see Section 20.6.6
[Completion Variables], page 310), as well as the following additional ones:

:predicate

The value should be a predicate that completion candidates need to sat-
isfy.

:exclusive

If the value is no, then if the completion table fails to match the text
at point, completion-at-point moves on to the next function in
completion-at-point-functions instead of reporting a completion
failure.

A function in completion-at-point-functions may also return a function. In that
case, that returned function is called, with no argument, and it is entirely responsible
for performing the completion. We discourage this usage; it is intended to help convert
old code to using completion-at-point.

The first function in completion-at-point-functions to return a non-nil value
is used by completion-at-point. The remaining functions are not called. The
exception to this is when there is an :exclusive specification, as described above.

The following function provides a convenient way to perform completion on an arbitrary
stretch of text in an Emacs buffer:

[Function]completion-in-region start end collection &optional predicate
This function completes the text in the current buffer between the positions start
and end, using collection. The argument collection has the same meaning as in try-

completion (see Section 20.6.1 [Basic Completion], page 298).

This function inserts the completion text directly into the current buffer. Unlike
completing-read (see Section 20.6.2 [Minibuffer Completion], page 301), it does not
activate the minibuffer.

For this function to work, point must be somewhere between start and end.

20.7 Yes-or-No Queries

This section describes functions used to ask the user a yes-or-no question. The function
y-or-n-p can be answered with a single character; it is useful for questions where an
inadvertent wrong answer will not have serious consequences. yes-or-no-p is suitable for
more momentous questions, since it requires three or four characters to answer.

If either of these functions is called in a command that was invoked using the mouse—
more precisely, if last-nonmenu-event (see Section 21.5 [Command Loop Info], page 330)
is either nil or a list—then it uses a dialog box or pop-up menu to ask the question.
Otherwise, it uses keyboard input. You can force use either of the mouse or of keyboard
input by binding last-nonmenu-event to a suitable value around the call.

Strictly speaking, yes-or-no-p uses the minibuffer and y-or-n-p does not; but it seems
best to describe them together.

[Function]y-or-n-p prompt
This function asks the user a question, expecting input in the echo area. It returns t
if the user types y, nil if the user types n. This function also accepts SPC to mean yes

Chapter 20: Minibuffers 315

and DEL to mean no. It accepts C-] to mean “quit”, like C-g, because the question
might look like a minibuffer and for that reason the user might try to use C-] to get
out. The answer is a single character, with no RET needed to terminate it. Upper and
lower case are equivalent.

“Asking the question” means printing prompt in the echo area, followed by the string
‘(y or n) ’. If the input is not one of the expected answers (y, n, SPC, DEL, or
something that quits), the function responds ‘Please answer y or n.’, and repeats
the request.

This function does not actually use the minibuffer, since it does not allow editing
of the answer. It actually uses the echo area (see Section 38.4 [The Echo Area],
page 825), which uses the same screen space as the minibuffer. The cursor moves to
the echo area while the question is being asked.

The answers and their meanings, even ‘y’ and ‘n’, are not hardwired, and are specified
by the keymap query-replace-map (see Section 34.7 [Search and Replace], page 753).
In particular, if the user enters the special responses recenter, scroll-up, scroll-
down, scroll-other-window, or scroll-other-window-down (respectively bound to
C-l, C-v, M-v, C-M-v and C-M-S-v in query-replace-map), this function performs
the specified window recentering or scrolling operation, and poses the question again.

We show successive lines of echo area messages, but only one actually appears on the
screen at a time.

[Function]y-or-n-p-with-timeout prompt seconds default
Like y-or-n-p, except that if the user fails to answer within seconds seconds, this
function stops waiting and returns default. It works by setting up a timer; see
Section 39.10 [Timers], page 930. The argument seconds may be an integer or a
floating point number.

[Function]yes-or-no-p prompt
This function asks the user a question, expecting input in the minibuffer. It returns t
if the user enters ‘yes’, nil if the user types ‘no’. The user must type RET to finalize
the response. Upper and lower case are equivalent.

yes-or-no-p starts by displaying prompt in the echo area, followed by ‘(yes or no) ’.
The user must type one of the expected responses; otherwise, the function responds
‘Please answer yes or no.’, waits about two seconds and repeats the request.

yes-or-no-p requires more work from the user than y-or-n-p and is appropriate for
more crucial decisions.

Here is an example:
(yes-or-no-p "Do you really want to remove everything? ")

;; After evaluation of the preceding expression,
;; the following prompt appears,
;; with an empty minibuffer:

---------- Buffer: minibuffer ----------

Do you really want to remove everything? (yes or no)

---------- Buffer: minibuffer ----------

If the user first types y RET, which is invalid because this function demands the entire
word ‘yes’, it responds by displaying these prompts, with a brief pause between them:

Chapter 20: Minibuffers 316

---------- Buffer: minibuffer ----------

Please answer yes or no.

Do you really want to remove everything? (yes or no)

---------- Buffer: minibuffer ----------

20.8 Asking Multiple Y-or-N Questions

When you have a series of similar questions to ask, such as “Do you want to save this
buffer” for each buffer in turn, you should use map-y-or-n-p to ask the collection of ques-
tions, rather than asking each question individually. This gives the user certain convenient
facilities such as the ability to answer the whole series at once.

[Function]map-y-or-n-p prompter actor list &optional help action-alist
no-cursor-in-echo-area

This function asks the user a series of questions, reading a single-character answer in
the echo area for each one.

The value of list specifies the objects to ask questions about. It should be either a list
of objects or a generator function. If it is a function, it should expect no arguments,
and should return either the next object to ask about, or nil, meaning to stop asking
questions.

The argument prompter specifies how to ask each question. If prompter is a string,
the question text is computed like this:

(format prompter object)

where object is the next object to ask about (as obtained from list).

If not a string, prompter should be a function of one argument (the next object to
ask about) and should return the question text. If the value is a string, that is the
question to ask the user. The function can also return t, meaning do act on this
object (and don’t ask the user), or nil, meaning ignore this object (and don’t ask
the user).

The argument actor says how to act on the answers that the user gives. It should be
a function of one argument, and it is called with each object that the user says yes
for. Its argument is always an object obtained from list.

If the argument help is given, it should be a list of this form:

(singular plural action)

where singular is a string containing a singular noun that describes the objects con-
ceptually being acted on, plural is the corresponding plural noun, and action is a
transitive verb describing what actor does.

If you don’t specify help, the default is ("object" "objects" "act on").

Each time a question is asked, the user may enter y, Y, or SPC to act on that object;
n, N, or DEL to skip that object; ! to act on all following objects; ESC or q to exit
(skip all following objects); . (period) to act on the current object and then exit;
or C-h to get help. These are the same answers that query-replace accepts. The
keymap query-replace-map defines their meaning for map-y-or-n-p as well as for
query-replace; see Section 34.7 [Search and Replace], page 753.

You can use action-alist to specify additional possible answers and what they mean.
It is an alist of elements of the form (char function help), each of which defines

Chapter 20: Minibuffers 317

one additional answer. In this element, char is a character (the answer); function is
a function of one argument (an object from list); help is a string.

When the user responds with char, map-y-or-n-p calls function. If it returns non-
nil, the object is considered “acted upon”, and map-y-or-n-p advances to the next
object in list. If it returns nil, the prompt is repeated for the same object.

Normally, map-y-or-n-p binds cursor-in-echo-area while prompting. But if no-
cursor-in-echo-area is non-nil, it does not do that.

If map-y-or-n-p is called in a command that was invoked using the mouse—more
precisely, if last-nonmenu-event (see Section 21.5 [Command Loop Info], page 330)
is either nil or a list—then it uses a dialog box or pop-up menu to ask the question.
In this case, it does not use keyboard input or the echo area. You can force use either
of the mouse or of keyboard input by binding last-nonmenu-event to a suitable
value around the call.

The return value of map-y-or-n-p is the number of objects acted on.

20.9 Reading a Password

To read a password to pass to another program, you can use the function read-passwd.

[Function]read-passwd prompt &optional confirm default
This function reads a password, prompting with prompt. It does not echo the pass-
word as the user types it; instead, it echoes ‘.’ for each character in the password.

The optional argument confirm, if non-nil, says to read the password twice and insist
it must be the same both times. If it isn’t the same, the user has to type it over and
over until the last two times match.

The optional argument default specifies the default password to return if the user
enters empty input. If default is nil, then read-passwd returns the null string in
that case.

20.10 Minibuffer Commands

This section describes some commands meant for use in the minibuffer.

[Command]exit-minibuffer
This command exits the active minibuffer. It is normally bound to keys in minibuffer
local keymaps.

[Command]self-insert-and-exit
This command exits the active minibuffer after inserting the last character typed on
the keyboard (found in last-command-event; see Section 21.5 [Command Loop Info],
page 330).

[Command]previous-history-element n
This command replaces the minibuffer contents with the value of the nth previous
(older) history element.

[Command]next-history-element n
This command replaces the minibuffer contents with the value of the nth more recent
history element.

Chapter 20: Minibuffers 318

[Command]previous-matching-history-element pattern n
This command replaces the minibuffer contents with the value of the nth previous
(older) history element that matches pattern (a regular expression).

[Command]next-matching-history-element pattern n
This command replaces the minibuffer contents with the value of the nth next (newer)
history element that matches pattern (a regular expression).

[Command]previous-complete-history-element n
This command replaces the minibuffer contents with the value of the nth previous
(older) history element that completes the current contents of the minibuffer before
the point.

[Command]next-complete-history-element n
This command replaces the minibuffer contents with the value of the nth next (newer)
history element that completes the current contents of the minibuffer before the point.

20.11 Minibuffer Windows

These functions access and select minibuffer windows and test whether they are active.

[Function]active-minibuffer-window
This function returns the currently active minibuffer window, or nil if there is none.

[Function]minibuffer-window &optional frame
This function returns the minibuffer window used for frame frame. If frame is nil,
that stands for the current frame. Note that the minibuffer window used by a frame
need not be part of that frame—a frame that has no minibuffer of its own necessarily
uses some other frame’s minibuffer window.

[Function]set-minibuffer-window window
This function specifies window as the minibuffer window to use. This affects where
the minibuffer is displayed if you put text in it without invoking the usual minibuffer
commands. It has no effect on the usual minibuffer input functions because they all
start by choosing the minibuffer window according to the current frame.

[Function]window-minibuffer-p &optional window
This function returns non-nil if window is a minibuffer window. window defaults to
the selected window.

It is not correct to determine whether a given window is a minibuffer by comparing it
with the result of (minibuffer-window), because there can be more than one minibuffer
window if there is more than one frame.

[Function]minibuffer-window-active-p window
This function returns non-nil if window is the currently active minibuffer window.

Chapter 20: Minibuffers 319

20.12 Minibuffer Contents

These functions access the minibuffer prompt and contents.

[Function]minibuffer-prompt
This function returns the prompt string of the currently active minibuffer. If no
minibuffer is active, it returns nil.

[Function]minibuffer-prompt-end
This function returns the current position of the end of the minibuffer prompt, if a
minibuffer is current. Otherwise, it returns the minimum valid buffer position.

[Function]minibuffer-prompt-width
This function returns the current display-width of the minibuffer prompt, if a mini-
buffer is current. Otherwise, it returns zero.

[Function]minibuffer-contents
This function returns the editable contents of the minibuffer (that is, everything
except the prompt) as a string, if a minibuffer is current. Otherwise, it returns the
entire contents of the current buffer.

[Function]minibuffer-contents-no-properties
This is like minibuffer-contents, except that it does not copy text properties, just
the characters themselves. See Section 32.19 [Text Properties], page 680.

[Function]minibuffer-completion-contents
This is like minibuffer-contents, except that it returns only the contents before
point. That is the part that completion commands operate on. See Section 20.6.2
[Minibuffer Completion], page 301.

[Function]delete-minibuffer-contents
This function erases the editable contents of the minibuffer (that is, everything except
the prompt), if a minibuffer is current. Otherwise, it erases the entire current buffer.

20.13 Recursive Minibuffers

These functions and variables deal with recursive minibuffers (see Section 21.13 [Recursive
Editing], page 361):

[Function]minibuffer-depth
This function returns the current depth of activations of the minibuffer, a nonnegative
integer. If no minibuffers are active, it returns zero.

[User Option]enable-recursive-minibuffers
If this variable is non-nil, you can invoke commands (such as find-file) that use
minibuffers even while the minibuffer window is active. Such invocation produces a
recursive editing level for a new minibuffer. The outer-level minibuffer is invisible
while you are editing the inner one.

If this variable is nil, you cannot invoke minibuffer commands when the minibuffer
window is active, not even if you switch to another window to do it.

Chapter 20: Minibuffers 320

If a command name has a property enable-recursive-minibuffers that is non-nil,
then the command can use the minibuffer to read arguments even if it is invoked from the
minibuffer. A command can also achieve this by binding enable-recursive-minibuffers

to t in the interactive declaration (see Section 21.2.1 [Using Interactive], page 322). The
minibuffer command next-matching-history-element (normally M-s in the minibuffer)
does the latter.

20.14 Minibuffer Miscellany

[Function]minibufferp &optional buffer-or-name
This function returns non-nil if buffer-or-name is a minibuffer. If buffer-or-name is
omitted, it tests the current buffer.

[Variable]minibuffer-setup-hook
This is a normal hook that is run whenever the minibuffer is entered. See Section 23.1
[Hooks], page 404.

[Variable]minibuffer-exit-hook
This is a normal hook that is run whenever the minibuffer is exited. See Section 23.1
[Hooks], page 404.

[Variable]minibuffer-help-form
The current value of this variable is used to rebind help-form locally inside the
minibuffer (see Section 24.5 [Help Functions], page 465).

[Variable]minibuffer-scroll-window
If the value of this variable is non-nil, it should be a window object. When the
function scroll-other-window is called in the minibuffer, it scrolls this window.

[Function]minibuffer-selected-window
This function returns the window that was selected when the minibuffer was entered.
If selected window is not a minibuffer window, it returns nil.

[User Option]max-mini-window-height
This variable specifies the maximum height for resizing minibuffer windows. If a float,
it specifies a fraction of the height of the frame. If an integer, it specifies a number
of lines.

[Function]minibuffer-message string &rest args
This function displays string temporarily at the end of the minibuffer text, for a few
seconds, or until the next input event arrives, whichever comes first. The variable
minibuffer-message-timeout specifies the number of seconds to wait in the absence
of input. It defaults to 2. If args is non-nil, the actual message is obtained by passing
string and args through format. See Section 4.7 [Formatting Strings], page 57.

[Command]minibuffer-inactive-mode
This is the major mode used in inactive minibuffers. It uses keymap minibuffer-

inactive-mode-map. This can be useful if the minibuffer is in a separate frame. See
Section 29.8 [Minibuffers and Frames], page 607.

Chapter 21: Command Loop 321

21 Command Loop

When you run Emacs, it enters the editor command loop almost immediately. This loop
reads key sequences, executes their definitions, and displays the results. In this chapter,
we describe how these things are done, and the subroutines that allow Lisp programs to do
them.

21.1 Command Loop Overview

The first thing the command loop must do is read a key sequence, which is a sequence of
input events that translates into a command. It does this by calling the function read-

key-sequence. Lisp programs can also call this function (see Section 21.8.1 [Key Sequence
Input], page 349). They can also read input at a lower level with read-key or read-

event (see Section 21.8.2 [Reading One Event], page 351), or discard pending input with
discard-input (see Section 21.8.6 [Event Input Misc], page 355).

The key sequence is translated into a command through the currently active keymaps.
See Section 22.10 [Key Lookup], page 378, for information on how this is done. The result
should be a keyboard macro or an interactively callable function. If the key is M-x, then
it reads the name of another command, which it then calls. This is done by the command
execute-extended-command (see Section 21.3 [Interactive Call], page 327).

Prior to executing the command, Emacs runs undo-boundary to create an undo bound-
ary. See Section 32.10 [Maintaining Undo], page 662.

To execute a command, Emacs first reads its arguments by calling command-execute (see
Section 21.3 [Interactive Call], page 327). For commands written in Lisp, the interactive
specification says how to read the arguments. This may use the prefix argument (see
Section 21.12 [Prefix Command Arguments], page 359) or may read with prompting in the
minibuffer (see Chapter 20 [Minibuffers], page 291). For example, the command find-file

has an interactive specification which says to read a file name using the minibuffer. The
function body of find-file does not use the minibuffer, so if you call find-file as a
function from Lisp code, you must supply the file name string as an ordinary Lisp function
argument.

If the command is a keyboard macro (i.e., a string or vector), Emacs executes it using
execute-kbd-macro (see Section 21.16 [Keyboard Macros], page 364).

[Variable]pre-command-hook
This normal hook is run by the editor command loop before it executes each command.
At that time, this-command contains the command that is about to run, and last-

command describes the previous command. See Section 21.5 [Command Loop Info],
page 330.

[Variable]post-command-hook
This normal hook is run by the editor command loop after it executes each command
(including commands terminated prematurely by quitting or by errors). At that time,
this-command refers to the command that just ran, and last-command refers to the
command before that.

This hook is also run when Emacs first enters the command loop (at which point
this-command and last-command are both nil).

Chapter 21: Command Loop 322

Quitting is suppressed while running pre-command-hook and post-command-hook. If
an error happens while executing one of these hooks, it does not terminate execution of the
hook; instead the error is silenced and the function in which the error occurred is removed
from the hook.

A request coming into the Emacs server (see Section “Emacs Server” in The GNU Emacs
Manual) runs these two hooks just as a keyboard command does.

21.2 Defining Commands

The special form interactive turns a Lisp function into a command. The interactive

form must be located at top-level in the function body (usually as the first form in the body),
or in the interactive-form property of the function symbol. When the interactive form
is located in the function body, it does nothing when actually executed. Its presence serves
as a flag, which tells the Emacs command loop that the function can be called interactively.
The argument of the interactive form controls the reading of arguments for an interactive
call.

21.2.1 Using interactive

This section describes how to write the interactive form that makes a Lisp function an
interactively-callable command, and how to examine a command’s interactive form.

[Special Form]interactive arg-descriptor
This special form declares that a function is a command, and that it may therefore
be called interactively (via M-x or by entering a key sequence bound to it). The
argument arg-descriptor declares how to compute the arguments to the command
when the command is called interactively.

A command may be called from Lisp programs like any other function, but then the
caller supplies the arguments and arg-descriptor has no effect.

The interactive form must be located at top-level in the function body, or in the
function symbol’s interactive-form property (see Section 8.4 [Symbol Properties],
page 108). It has its effect because the command loop looks for it before calling the
function (see Section 21.3 [Interactive Call], page 327). Once the function is called,
all its body forms are executed; at this time, if the interactive form occurs within
the body, the form simply returns nil without even evaluating its argument.

By convention, you should put the interactive form in the function body, as the
first top-level form. If there is an interactive form in both the interactive-

form symbol property and the function body, the former takes precedence. The
interactive-form symbol property can be used to add an interactive form to an
existing function, or change how its arguments are processed interactively, without
redefining the function.

There are three possibilities for the argument arg-descriptor:

• It may be omitted or nil; then the command is called with no arguments. This leads
quickly to an error if the command requires one or more arguments.

• It may be a string; its contents are a sequence of elements separated by newlines, one
for each argument1. Each element consists of a code character (see Section 21.2.2 [Inter-

1 Some elements actually supply two arguments.

Chapter 21: Command Loop 323

active Codes], page 324) optionally followed by a prompt (which some code characters
use and some ignore). Here is an example:

(interactive "P\nbFrobnicate buffer: ")

The code letter ‘P’ sets the command’s first argument to the raw command prefix
(see Section 21.12 [Prefix Command Arguments], page 359). ‘bFrobnicate buffer: ’
prompts the user with ‘Frobnicate buffer: ’ to enter the name of an existing buffer,
which becomes the second and final argument.

The prompt string can use ‘%’ to include previous argument values (starting with the
first argument) in the prompt. This is done using format (see Section 4.7 [Formatting
Strings], page 57). For example, here is how you could read the name of an existing
buffer followed by a new name to give to that buffer:

(interactive "bBuffer to rename: \nsRename buffer %s to: ")

If ‘*’ appears at the beginning of the string, then an error is signaled if the buffer is
read-only.

If ‘@’ appears at the beginning of the string, and if the key sequence used to invoke
the command includes any mouse events, then the window associated with the first of
those events is selected before the command is run.

If ‘^’ appears at the beginning of the string, and if the command was invoked through
shift-translation, set the mark and activate the region temporarily, or extend an al-
ready active region, before the command is run. If the command was invoked without
shift-translation, and the region is temporarily active, deactivate the region before the
command is run. Shift-translation is controlled on the user level by shift-select-

mode; see Section “Shift Selection” in The GNU Emacs Manual.

You can use ‘*’, ‘@’, and ^ together; the order does not matter. Actual reading of
arguments is controlled by the rest of the prompt string (starting with the first character
that is not ‘*’, ‘@’, or ‘^’).

• It may be a Lisp expression that is not a string; then it should be a form that is
evaluated to get a list of arguments to pass to the command. Usually this form will
call various functions to read input from the user, most often through the minibuffer
(see Chapter 20 [Minibuffers], page 291) or directly from the keyboard (see Section 21.8
[Reading Input], page 348).

Providing point or the mark as an argument value is also common, but if you do this
and read input (whether using the minibuffer or not), be sure to get the integer values
of point or the mark after reading. The current buffer may be receiving subprocess
output; if subprocess output arrives while the command is waiting for input, it could
relocate point and the mark.

Here’s an example of what not to do:

(interactive

(list (region-beginning) (region-end)

(read-string "Foo: " nil ’my-history)))

Here’s how to avoid the problem, by examining point and the mark after reading the
keyboard input:

(interactive

(let ((string (read-string "Foo: " nil ’my-history)))

(list (region-beginning) (region-end) string)))

Chapter 21: Command Loop 324

Warning: the argument values should not include any data types that can’t be printed
and then read. Some facilities save command-history in a file to be read in the subse-
quent sessions; if a command’s arguments contain a data type that prints using ‘#<...>’
syntax, those facilities won’t work.

There are, however, a few exceptions: it is ok to use a limited set of expressions such as
(point), (mark), (region-beginning), and (region-end), because Emacs recognizes
them specially and puts the expression (rather than its value) into the command history.
To see whether the expression you wrote is one of these exceptions, run the command,
then examine (car command-history).

[Function]interactive-form function
This function returns the interactive form of function. If function is an interac-
tively callable function (see Section 21.3 [Interactive Call], page 327), the value is the
command’s interactive form (interactive spec), which specifies how to compute
its arguments. Otherwise, the value is nil. If function is a symbol, its function
definition is used.

21.2.2 Code Characters for interactive

The code character descriptions below contain a number of key words, defined here as
follows:

Completion
Provide completion. TAB, SPC, and RET perform name completion because
the argument is read using completing-read (see Section 20.6 [Completion],
page 298). ? displays a list of possible completions.

Existing Require the name of an existing object. An invalid name is not accepted; the
commands to exit the minibuffer do not exit if the current input is not valid.

Default A default value of some sort is used if the user enters no text in the minibuffer.
The default depends on the code character.

No I/O This code letter computes an argument without reading any input. Therefore,
it does not use a prompt string, and any prompt string you supply is ignored.

Even though the code letter doesn’t use a prompt string, you must follow it
with a newline if it is not the last code character in the string.

Prompt A prompt immediately follows the code character. The prompt ends either with
the end of the string or with a newline.

Special This code character is meaningful only at the beginning of the interactive string,
and it does not look for a prompt or a newline. It is a single, isolated character.

Here are the code character descriptions for use with interactive:

‘*’ Signal an error if the current buffer is read-only. Special.

‘@’ Select the window mentioned in the first mouse event in the key sequence that
invoked this command. Special.

‘^’ If the command was invoked through shift-translation, set the mark and activate
the region temporarily, or extend an already active region, before the command

Chapter 21: Command Loop 325

is run. If the command was invoked without shift-translation, and the region is
temporarily active, deactivate the region before the command is run. Special.

‘a’ A function name (i.e., a symbol satisfying fboundp). Existing, Completion,
Prompt.

‘b’ The name of an existing buffer. By default, uses the name of the current buffer
(see Chapter 27 [Buffers], page 521). Existing, Completion, Default, Prompt.

‘B’ A buffer name. The buffer need not exist. By default, uses the name of a re-
cently used buffer other than the current buffer. Completion, Default, Prompt.

‘c’ A character. The cursor does not move into the echo area. Prompt.

‘C’ A command name (i.e., a symbol satisfying commandp). Existing, Completion,
Prompt.

‘d’ The position of point, as an integer (see Section 30.1 [Point], page 623). No
I/O.

‘D’ A directory name. The default is the current default directory of the cur-
rent buffer, default-directory (see Section 25.8.4 [File Name Expansion],
page 494). Existing, Completion, Default, Prompt.

‘e’ The first or next non-keyboard event in the key sequence that invoked the
command. More precisely, ‘e’ gets events that are lists, so you can look at the
data in the lists. See Section 21.7 [Input Events], page 333. No I/O.

You use ‘e’ for mouse events and for special system events (see Section 21.7.10
[Misc Events], page 341). The event list that the command receives depends on
the event. See Section 21.7 [Input Events], page 333, which describes the forms
of the list for each event in the corresponding subsections.

You can use ‘e’ more than once in a single command’s interactive specification.
If the key sequence that invoked the command has n events that are lists, the
nth ‘e’ provides the nth such event. Events that are not lists, such as function
keys and ASCII characters, do not count where ‘e’ is concerned.

‘f’ A file name of an existing file (see Section 25.8 [File Names], page 490). The de-
fault directory is default-directory. Existing, Completion, Default, Prompt.

‘F’ A file name. The file need not exist. Completion, Default, Prompt.

‘G’ A file name. The file need not exist. If the user enters just a directory name,
then the value is just that directory name, with no file name within the directory
added. Completion, Default, Prompt.

‘i’ An irrelevant argument. This code always supplies nil as the argument’s value.
No I/O.

‘k’ A key sequence (see Section 22.1 [Key Sequences], page 366). This keeps reading
events until a command (or undefined command) is found in the current key
maps. The key sequence argument is represented as a string or vector. The
cursor does not move into the echo area. Prompt.

If ‘k’ reads a key sequence that ends with a down-event, it also reads and
discards the following up-event. You can get access to that up-event with the
‘U’ code character.

Chapter 21: Command Loop 326

This kind of input is used by commands such as describe-key and global-

set-key.

‘K’ A key sequence, whose definition you intend to change. This works like ‘k’,
except that it suppresses, for the last input event in the key sequence, the
conversions that are normally used (when necessary) to convert an undefined
key into a defined one.

‘m’ The position of the mark, as an integer. No I/O.

‘M’ Arbitrary text, read in the minibuffer using the current buffer’s input method,
and returned as a string (see Section “Input Methods” in The GNU Emacs
Manual). Prompt.

‘n’ A number, read with the minibuffer. If the input is not a number, the user has
to try again. ‘n’ never uses the prefix argument. Prompt.

‘N’ The numeric prefix argument; but if there is no prefix argument, read a number
as with n. The value is always a number. See Section 21.12 [Prefix Command
Arguments], page 359. Prompt.

‘p’ The numeric prefix argument. (Note that this ‘p’ is lower case.) No I/O.

‘P’ The raw prefix argument. (Note that this ‘P’ is upper case.) No I/O.

‘r’ Point and the mark, as two numeric arguments, smallest first. This is the only
code letter that specifies two successive arguments rather than one. No I/O.

‘s’ Arbitrary text, read in the minibuffer and returned as a string (see Section 20.2
[Text from Minibuffer], page 292). Terminate the input with either C-j or RET.
(C-q may be used to include either of these characters in the input.) Prompt.

‘S’ An interned symbol whose name is read in the minibuffer. Terminate the input
with either C-j or RET. Other characters that normally terminate a symbol
(e.g., whitespace, parentheses and brackets) do not do so here. Prompt.

‘U’ A key sequence or nil. Can be used after a ‘k’ or ‘K’ argument to get the
up-event that was discarded (if any) after ‘k’ or ‘K’ read a down-event. If no
up-event has been discarded, ‘U’ provides nil as the argument. No I/O.

‘v’ A variable declared to be a user option (i.e., satisfying the predicate custom-

variable-p). This reads the variable using read-variable. See [Definition of
read-variable], page 307. Existing, Completion, Prompt.

‘x’ A Lisp object, specified with its read syntax, terminated with a C-j or RET. The
object is not evaluated. See Section 20.3 [Object from Minibuffer], page 295.
Prompt.

‘X’ A Lisp form’s value. ‘X’ reads as ‘x’ does, then evaluates the form so that its
value becomes the argument for the command. Prompt.

‘z’ A coding system name (a symbol). If the user enters null input, the argu-
ment value is nil. See Section 33.9 [Coding Systems], page 716. Completion,
Existing, Prompt.

Chapter 21: Command Loop 327

‘Z’ A coding system name (a symbol)—but only if this command has a prefix
argument. With no prefix argument, ‘Z’ provides nil as the argument value.
Completion, Existing, Prompt.

21.2.3 Examples of Using interactive

Here are some examples of interactive:

(defun foo1 () ; foo1 takes no arguments,
(interactive) ; just moves forward two words.
(forward-word 2))

⇒ foo1

(defun foo2 (n) ; foo2 takes one argument,
(interactive "^p") ; which is the numeric prefix.

; under shift-select-mode,
; will activate or extend region.

(forward-word (* 2 n)))

⇒ foo2

(defun foo3 (n) ; foo3 takes one argument,
(interactive "nCount:") ; which is read with the Minibuffer.
(forward-word (* 2 n)))

⇒ foo3

(defun three-b (b1 b2 b3)

"Select three existing buffers.

Put them into three windows, selecting the last one."

(interactive "bBuffer1:\nbBuffer2:\nbBuffer3:")

(delete-other-windows)

(split-window (selected-window) 8)

(switch-to-buffer b1)

(other-window 1)

(split-window (selected-window) 8)

(switch-to-buffer b2)

(other-window 1)

(switch-to-buffer b3))

⇒ three-b

(three-b "*scratch*" "declarations.texi" "*mail*")

⇒ nil

21.3 Interactive Call

After the command loop has translated a key sequence into a command, it invokes that
command using the function command-execute. If the command is a function, command-
execute calls call-interactively, which reads the arguments and calls the command.
You can also call these functions yourself.

Chapter 21: Command Loop 328

Note that the term “command”, in this context, refers to an interactively callable func-
tion (or function-like object), or a keyboard macro. It does not refer to the key sequence
used to invoke a command (see Chapter 22 [Keymaps], page 366).

[Function]commandp object &optional for-call-interactively
This function returns t if object is a command. Otherwise, it returns nil.

Commands include strings and vectors (which are treated as keyboard macros),
lambda expressions that contain a top-level interactive form (see Section 21.2.1
[Using Interactive], page 322), byte-code function objects made from such lambda ex-
pressions, autoload objects that are declared as interactive (non-nil fourth argument
to autoload), and some primitive functions. Also, a symbol is considered a command
if it has a non-nil interactive-form property, or if its function definition satisfies
commandp.

If for-call-interactively is non-nil, then commandp returns t only for objects that
call-interactively could call—thus, not for keyboard macros.

See documentation in Section 24.2 [Accessing Documentation], page 460, for a real-
istic example of using commandp.

[Function]call-interactively command &optional record-flag keys
This function calls the interactively callable function command, providing arguments
according to its interactive calling specifications. It returns whatever command re-
turns.

If, for instance, you have a function with the following signature:

(defun foo (begin end)

(interactive "r")

...)

then saying

(call-interactively ’foo)

will call foo with the region (point and mark) as the arguments.

An error is signaled if command is not a function or if it cannot be called interactively
(i.e., is not a command). Note that keyboard macros (strings and vectors) are not
accepted, even though they are considered commands, because they are not functions.
If command is a symbol, then call-interactively uses its function definition.

If record-flag is non-nil, then this command and its arguments are unconditionally
added to the list command-history. Otherwise, the command is added only if it uses
the minibuffer to read an argument. See Section 21.15 [Command History], page 364.

The argument keys, if given, should be a vector which specifies the sequence of events
to supply if the command inquires which events were used to invoke it. If keys is
omitted or nil, the default is the return value of this-command-keys-vector. See
[Definition of this-command-keys-vector], page 332.

[Function]command-execute command &optional record-flag keys special
This function executes command. The argument command must satisfy the commandp
predicate; i.e., it must be an interactively callable function or a keyboard macro.

Chapter 21: Command Loop 329

A string or vector as command is executed with execute-kbd-macro. A function
is passed to call-interactively (see above), along with the record-flag and keys
arguments.

If command is a symbol, its function definition is used in its place. A symbol with an
autoload definition counts as a command if it was declared to stand for an interac-
tively callable function. Such a definition is handled by loading the specified library
and then rechecking the definition of the symbol.

The argument special, if given, means to ignore the prefix argument and not clear it.
This is used for executing special events (see Section 21.9 [Special Events], page 356).

[Command]execute-extended-command prefix-argument
This function reads a command name from the minibuffer using completing-read

(see Section 20.6 [Completion], page 298). Then it uses command-execute to call the
specified command. Whatever that command returns becomes the value of execute-
extended-command.

If the command asks for a prefix argument, it receives the value prefix-argument. If
execute-extended-command is called interactively, the current raw prefix argument
is used for prefix-argument, and thus passed on to whatever command is run.

execute-extended-command is the normal definition of M-x, so it uses the string
‘M-x ’ as a prompt. (It would be better to take the prompt from the events used to
invoke execute-extended-command, but that is painful to implement.) A description
of the value of the prefix argument, if any, also becomes part of the prompt.

(execute-extended-command 3)

---------- Buffer: Minibuffer ----------

3 M-x forward-word RET

---------- Buffer: Minibuffer ----------

⇒ t

21.4 Distinguish Interactive Calls

Sometimes a command should display additional visual feedback (such as an informative
message in the echo area) for interactive calls only. There are three ways to do this. The
recommended way to test whether the function was called using call-interactively is
to give it an optional argument print-message and use the interactive spec to make it
non-nil in interactive calls. Here’s an example:

(defun foo (&optional print-message)

(interactive "p")

(when print-message

(message "foo")))

We use "p" because the numeric prefix argument is never nil. Defined in this way, the
function does display the message when called from a keyboard macro.

The above method with the additional argument is usually best, because it allows callers
to say “treat this call as interactive”. But you can also do the job by testing called-

interactively-p.

Chapter 21: Command Loop 330

[Function]called-interactively-p kind
This function returns t when the calling function was called using call-

interactively.

The argument kind should be either the symbol interactive or the symbol any.
If it is interactive, then called-interactively-p returns t only if the call was
made directly by the user—e.g., if the user typed a key sequence bound to the calling
function, but not if the user ran a keyboard macro that called the function (see
Section 21.16 [Keyboard Macros], page 364). If kind is any, called-interactively-
p returns t for any kind of interactive call, including keyboard macros.

If in doubt, use any; the only known proper use of interactive is if you need to
decide whether to display a helpful message while a function is running.

A function is never considered to be called interactively if it was called via Lisp
evaluation (or with apply or funcall).

Here is an example of using called-interactively-p:

(defun foo ()

(interactive)

(when (called-interactively-p ’any)

(message "Interactive!")

’foo-called-interactively))

;; Type M-x foo.
a Interactive!

(foo)

⇒ nil

Here is another example that contrasts direct and indirect calls to called-interactively-
p.

(defun bar ()

(interactive)

(message "%s" (list (foo) (called-interactively-p ’any))))

;; Type M-x bar.
a (nil t)

21.5 Information from the Command Loop

The editor command loop sets several Lisp variables to keep status records for itself and
for commands that are run. With the exception of this-command and last-command it’s
generally a bad idea to change any of these variables in a Lisp program.

[Variable]last-command
This variable records the name of the previous command executed by the command
loop (the one before the current command). Normally the value is a symbol with a
function definition, but this is not guaranteed.

Chapter 21: Command Loop 331

The value is copied from this-command when a command returns to the command
loop, except when the command has specified a prefix argument for the following
command.

This variable is always local to the current terminal and cannot be buffer-local. See
Section 29.2 [Multiple Terminals], page 591.

[Variable]real-last-command
This variable is set up by Emacs just like last-command, but never altered by Lisp
programs.

[Variable]last-repeatable-command
This variable stores the most recently executed command that was not part of an
input event. This is the command repeat will try to repeat, See Section “Repeating”
in The GNU Emacs Manual.

[Variable]this-command
This variable records the name of the command now being executed by the editor
command loop. Like last-command, it is normally a symbol with a function definition.

The command loop sets this variable just before running a command, and copies its
value into last-command when the command finishes (unless the command specified
a prefix argument for the following command).

Some commands set this variable during their execution, as a flag for whatever com-
mand runs next. In particular, the functions for killing text set this-command to
kill-region so that any kill commands immediately following will know to append
the killed text to the previous kill.

If you do not want a particular command to be recognized as the previous command in
the case where it got an error, you must code that command to prevent this. One way is
to set this-command to t at the beginning of the command, and set this-command back to
its proper value at the end, like this:

(defun foo (args...)

(interactive ...)

(let ((old-this-command this-command))

(setq this-command t)

. . .do the work. . .
(setq this-command old-this-command)))

We do not bind this-command with let because that would restore the old value in case
of error—a feature of let which in this case does precisely what we want to avoid.

[Variable]this-original-command
This has the same value as this-command except when command remapping occurs
(see Section 22.13 [Remapping Commands], page 384). In that case, this-command
gives the command actually run (the result of remapping), and this-original-

command gives the command that was specified to run but remapped into another
command.

Chapter 21: Command Loop 332

[Function]this-command-keys
This function returns a string or vector containing the key sequence that invoked the
present command, plus any previous commands that generated the prefix argument
for this command. Any events read by the command using read-event without a
timeout get tacked on to the end.

However, if the command has called read-key-sequence, it returns the last read key
sequence. See Section 21.8.1 [Key Sequence Input], page 349. The value is a string if
all events in the sequence were characters that fit in a string. See Section 21.7 [Input
Events], page 333.

(this-command-keys)

;; Now use C-u C-x C-e to evaluate that.
⇒ "^U^X^E"

[Function]this-command-keys-vector
Like this-command-keys, except that it always returns the events in a vector, so
you don’t need to deal with the complexities of storing input events in a string (see
Section 21.7.15 [Strings of Events], page 347).

[Function]clear-this-command-keys &optional keep-record
This function empties out the table of events for this-command-keys to return. Un-
less keep-record is non-nil, it also empties the records that the function recent-keys

(see Section 39.12.2 [Recording Input], page 934) will subsequently return. This is
useful after reading a password, to prevent the password from echoing inadvertently
as part of the next command in certain cases.

[Variable]last-nonmenu-event
This variable holds the last input event read as part of a key sequence, not counting
events resulting from mouse menus.

One use of this variable is for telling x-popup-menu where to pop up a menu. It is
also used internally by y-or-n-p (see Section 20.7 [Yes-or-No Queries], page 314).

[Variable]last-command-event
This variable is set to the last input event that was read by the command loop as
part of a command. The principal use of this variable is in self-insert-command,
which uses it to decide which character to insert.

last-command-event

;; Now use C-u C-x C-e to evaluate that.
⇒ 5

The value is 5 because that is the ASCII code for C-e.

[Variable]last-event-frame
This variable records which frame the last input event was directed to. Usually this
is the frame that was selected when the event was generated, but if that frame has
redirected input focus to another frame, the value is the frame to which the event was
redirected. See Section 29.9 [Input Focus], page 607.

If the last event came from a keyboard macro, the value is macro.

Chapter 21: Command Loop 333

21.6 Adjusting Point After Commands

It is not easy to display a value of point in the middle of a sequence of text that has the
display, composition or is invisible. Therefore, after a command finishes and returns to
the command loop, if point is within such a sequence, the command loop normally moves
point to the edge of the sequence.

A command can inhibit this feature by setting the variable disable-point-adjustment:

[Variable]disable-point-adjustment
If this variable is non-nil when a command returns to the command loop, then the
command loop does not check for those text properties, and does not move point out
of sequences that have them.

The command loop sets this variable to nil before each command, so if a command
sets it, the effect applies only to that command.

[Variable]global-disable-point-adjustment
If you set this variable to a non-nil value, the feature of moving point out of these
sequences is completely turned off.

21.7 Input Events

The Emacs command loop reads a sequence of input events that represent keyboard or
mouse activity, or system events sent to Emacs. The events for keyboard activity are char-
acters or symbols; other events are always lists. This section describes the representation
and meaning of input events in detail.

[Function]eventp object
This function returns non-nil if object is an input event or event type.

Note that any symbol might be used as an event or an event type. eventp cannot
distinguish whether a symbol is intended by Lisp code to be used as an event. Instead,
it distinguishes whether the symbol has actually been used in an event that has been
read as input in the current Emacs session. If a symbol has not yet been so used,
eventp returns nil.

21.7.1 Keyboard Events

There are two kinds of input you can get from the keyboard: ordinary keys, and function
keys. Ordinary keys correspond to characters; the events they generate are represented in
Lisp as characters. The event type of a character event is the character itself (an integer);
see Section 21.7.12 [Classifying Events], page 343.

An input character event consists of a basic code between 0 and 524287, plus any or all
of these modifier bits:

meta The 227 bit in the character code indicates a character typed with the meta key
held down.

control The 226 bit in the character code indicates a non-ASCII control character.

ascii control characters such as C-a have special basic codes of their own, so
Emacs needs no special bit to indicate them. Thus, the code for C-a is just 1.

Chapter 21: Command Loop 334

But if you type a control combination not in ASCII, such as % with the control
key, the numeric value you get is the code for % plus 226 (assuming the terminal
supports non-ASCII control characters).

shift The 225 bit in the character code indicates an ASCII control character typed
with the shift key held down.

For letters, the basic code itself indicates upper versus lower case; for digits and
punctuation, the shift key selects an entirely different character with a different
basic code. In order to keep within the ASCII character set whenever possible,
Emacs avoids using the 225 bit for those characters.

However, ASCII provides no way to distinguish C-A from C-a, so Emacs uses
the 225 bit in C-A and not in C-a.

hyper The 224 bit in the character code indicates a character typed with the hyper
key held down.

super The 223 bit in the character code indicates a character typed with the super
key held down.

alt The 222 bit in the character code indicates a character typed with the alt key
held down. (The key labeled Alt on most keyboards is actually treated as the
meta key, not this.)

It is best to avoid mentioning specific bit numbers in your program. To test the modifier
bits of a character, use the function event-modifiers (see Section 21.7.12 [Classifying
Events], page 343). When making key bindings, you can use the read syntax for characters
with modifier bits (‘\C-’, ‘\M-’, and so on). For making key bindings with define-key,
you can use lists such as (control hyper ?x) to specify the characters (see Section 22.12
[Changing Key Bindings], page 381). The function event-convert-list converts such a
list into an event type (see Section 21.7.12 [Classifying Events], page 343).

21.7.2 Function Keys

Most keyboards also have function keys—keys that have names or symbols that are not
characters. Function keys are represented in Emacs Lisp as symbols; the symbol’s name is
the function key’s label, in lower case. For example, pressing a key labeled F1 generates an
input event represented by the symbol f1.

The event type of a function key event is the event symbol itself. See Section 21.7.12
[Classifying Events], page 343.

Here are a few special cases in the symbol-naming convention for function keys:

backspace, tab, newline, return, delete
These keys correspond to common ASCII control characters that have special
keys on most keyboards.

In ASCII, C-i and TAB are the same character. If the terminal can distinguish
between them, Emacs conveys the distinction to Lisp programs by representing
the former as the integer 9, and the latter as the symbol tab.

Most of the time, it’s not useful to distinguish the two. So normally local-

function-key-map (see Section 22.14 [Translation Keymaps], page 385) is set
up to map tab into 9. Thus, a key binding for character code 9 (the character

Chapter 21: Command Loop 335

C-i) also applies to tab. Likewise for the other symbols in this group. The
function read-char likewise converts these events into characters.

In ASCII, BS is really C-h. But backspace converts into the character code 127
(DEL), not into code 8 (BS). This is what most users prefer.

left, up, right, down
Cursor arrow keys

kp-add, kp-decimal, kp-divide, . . .
Keypad keys (to the right of the regular keyboard).

kp-0, kp-1, . . .
Keypad keys with digits.

kp-f1, kp-f2, kp-f3, kp-f4
Keypad PF keys.

kp-home, kp-left, kp-up, kp-right, kp-down
Keypad arrow keys. Emacs normally translates these into the corresponding
non-keypad keys home, left, . . .

kp-prior, kp-next, kp-end, kp-begin, kp-insert, kp-delete
Additional keypad duplicates of keys ordinarily found elsewhere. Emacs nor-
mally translates these into the like-named non-keypad keys.

You can use the modifier keys ALT, CTRL, HYPER, META, SHIFT, and SUPER with function
keys. The way to represent them is with prefixes in the symbol name:

‘A-’ The alt modifier.

‘C-’ The control modifier.

‘H-’ The hyper modifier.

‘M-’ The meta modifier.

‘S-’ The shift modifier.

‘s-’ The super modifier.

Thus, the symbol for the key F3 with META held down is M-f3. When you use more than
one prefix, we recommend you write them in alphabetical order; but the order does not
matter in arguments to the key-binding lookup and modification functions.

21.7.3 Mouse Events

Emacs supports four kinds of mouse events: click events, drag events, button-down events,
and motion events. All mouse events are represented as lists. The car of the list is the event
type; this says which mouse button was involved, and which modifier keys were used with
it. The event type can also distinguish double or triple button presses (see Section 21.7.7
[Repeat Events], page 339). The rest of the list elements give position and time information.

For key lookup, only the event type matters: two events of the same type necessarily
run the same command. The command can access the full values of these events using the
‘e’ interactive code. See Section 21.2.2 [Interactive Codes], page 324.

Chapter 21: Command Loop 336

A key sequence that starts with a mouse event is read using the keymaps of the buffer
in the window that the mouse was in, not the current buffer. This does not imply that
clicking in a window selects that window or its buffer—that is entirely under the control of
the command binding of the key sequence.

21.7.4 Click Events

When the user presses a mouse button and releases it at the same location, that generates
a click event. All mouse click event share the same format:

(event-type position click-count)

event-type This is a symbol that indicates which mouse button was used. It is one of the
symbols mouse-1, mouse-2, . . . , where the buttons are numbered left to right.

You can also use prefixes ‘A-’, ‘C-’, ‘H-’, ‘M-’, ‘S-’ and ‘s-’ for modifiers alt,
control, hyper, meta, shift and super, just as you would with function keys.

This symbol also serves as the event type of the event. Key bindings describe
events by their types; thus, if there is a key binding for mouse-1, that binding
would apply to all events whose event-type is mouse-1.

position This is a mouse position list specifying where the mouse click occurred; see
below for details.

click-count
This is the number of rapid repeated presses so far of the same mouse button.
See Section 21.7.7 [Repeat Events], page 339.

To access the contents of a mouse position list in the position slot of a click event,
you should typically use the functions documented in Section 21.7.13 [Accessing Mouse],
page 345. The explicit format of the list depends on where the click occurred. For clicks in
the text area, mode line, header line, or in the fringe or marginal areas, the mouse position
list has the form

(window pos-or-area (x . y) timestamp

object text-pos (col . row)

image (dx . dy) (width . height))

The meanings of these list elements are as follows:

window The window in which the click occurred.

pos-or-area
The buffer position of the character clicked on in the text area; or, if the click
was outside the text area, the window area where it occurred. It is one of
the symbols mode-line, header-line, vertical-line, left-margin, right-
margin, left-fringe, or right-fringe.

In one special case, pos-or-area is a list containing a symbol (one of the symbols
listed above) instead of just the symbol. This happens after the imaginary prefix
keys for the event are registered by Emacs. See Section 21.8.1 [Key Sequence
Input], page 349.

x, y The relative pixel coordinates of the click. For clicks in the text area of a
window, the coordinate origin (0 . 0) is taken to be the top left corner of the

Chapter 21: Command Loop 337

text area. See Section 28.3 [Window Sizes], page 542. For clicks in a mode
line or header line, the coordinate origin is the top left corner of the window
itself. For fringes, margins, and the vertical border, x does not have meaningful
data. For fringes and margins, y is relative to the bottom edge of the header
line. In all cases, the x and y coordinates increase rightward and downward
respectively.

timestamp
The time at which the event occurred, as an integer number of milliseconds
since a system-dependent initial time.

object Either nil if there is no string-type text property at the click position, or a
cons cell of the form (string . string-pos) if there is one:

string The string which was clicked on, including any properties.

string-pos The position in the string where the click occurred.

text-pos For clicks on a marginal area or on a fringe, this is the buffer position of the
first visible character in the corresponding line in the window. For other events,
it is the current buffer position in the window.

col, row These are the actual column and row coordinate numbers of the glyph under
the x, y position. If x lies beyond the last column of actual text on its line, col
is reported by adding fictional extra columns that have the default character
width. Row 0 is taken to be the header line if the window has one, or the
topmost row of the text area otherwise. Column 0 is taken to be the leftmost
column of the text area for clicks on a window text area, or the leftmost mode
line or header line column for clicks there. For clicks on fringes or vertical
borders, these have no meaningful data. For clicks on margins, col is measured
from the left edge of the margin area and row is measured from the top of the
margin area.

image This is the image object on which the click occurred. It is either nil if there
is no image at the position clicked on, or it is an image object as returned by
find-image if click was in an image.

dx, dy These are the pixel coordinates of the click, relative to the top left corner of
object, which is (0 . 0). If object is nil, the coordinates are relative to the
top left corner of the character glyph clicked on.

width, height
These are the pixel width and height of object or, if this is nil, those of the
character glyph clicked on.

For clicks on a scroll bar, position has this form:

(window area (portion . whole) timestamp part)

window The window whose scroll bar was clicked on.

area This is the symbol vertical-scroll-bar.

portion The number of pixels from the top of the scroll bar to the click position. On
some toolkits, including GTK+, Emacs cannot extract this data, so the value
is always 0.

Chapter 21: Command Loop 338

whole The total length, in pixels, of the scroll bar. On some toolkits, including GTK+,
Emacs cannot extract this data, so the value is always 0.

timestamp
The time at which the event occurred, in milliseconds. On some toolkits, in-
cluding GTK+, Emacs cannot extract this data, so the value is always 0.

part The part of the scroll bar on which the click occurred. It is one of the symbols
handle (the scroll bar handle), above-handle (the area above the handle),
below-handle (the area below the handle), up (the up arrow at one end of the
scroll bar), or down (the down arrow at one end of the scroll bar).

21.7.5 Drag Events

With Emacs, you can have a drag event without even changing your clothes. A drag
event happens every time the user presses a mouse button and then moves the mouse to a
different character position before releasing the button. Like all mouse events, drag events
are represented in Lisp as lists. The lists record both the starting mouse position and the
final position, like this:

(event-type

(window1 START-POSITION)

(window2 END-POSITION))

For a drag event, the name of the symbol event-type contains the prefix ‘drag-’. For
example, dragging the mouse with button 2 held down generates a drag-mouse-2 event.
The second and third elements of the event give the starting and ending position of the
drag, as mouse position lists (see Section 21.7.4 [Click Events], page 336). You can access
the second element of any mouse event in the same way, with no need to distinguish drag
events from others.

The ‘drag-’ prefix follows the modifier key prefixes such as ‘C-’ and ‘M-’.

If read-key-sequence receives a drag event that has no key binding, and the corre-
sponding click event does have a binding, it changes the drag event into a click event at the
drag’s starting position. This means that you don’t have to distinguish between click and
drag events unless you want to.

21.7.6 Button-Down Events

Click and drag events happen when the user releases a mouse button. They cannot happen
earlier, because there is no way to distinguish a click from a drag until the button is released.

If you want to take action as soon as a button is pressed, you need to handle button-down
events.2 These occur as soon as a button is pressed. They are represented by lists that
look exactly like click events (see Section 21.7.4 [Click Events], page 336), except that the
event-type symbol name contains the prefix ‘down-’. The ‘down-’ prefix follows modifier
key prefixes such as ‘C-’ and ‘M-’.

The function read-key-sequence ignores any button-down events that don’t have com-
mand bindings; therefore, the Emacs command loop ignores them too. This means that you
need not worry about defining button-down events unless you want them to do something.
The usual reason to define a button-down event is so that you can track mouse motion (by

2 Button-down is the conservative antithesis of drag.

Chapter 21: Command Loop 339

reading motion events) until the button is released. See Section 21.7.8 [Motion Events],
page 340.

21.7.7 Repeat Events

If you press the same mouse button more than once in quick succession without moving the
mouse, Emacs generates special repeat mouse events for the second and subsequent presses.

The most common repeat events are double-click events. Emacs generates a double-click
event when you click a button twice; the event happens when you release the button (as is
normal for all click events).

The event type of a double-click event contains the prefix ‘double-’. Thus, a double
click on the second mouse button with meta held down comes to the Lisp program as M-
double-mouse-2. If a double-click event has no binding, the binding of the corresponding
ordinary click event is used to execute it. Thus, you need not pay attention to the double
click feature unless you really want to.

When the user performs a double click, Emacs generates first an ordinary click event, and
then a double-click event. Therefore, you must design the command binding of the double
click event to assume that the single-click command has already run. It must produce the
desired results of a double click, starting from the results of a single click.

This is convenient, if the meaning of a double click somehow “builds on” the meaning
of a single click—which is recommended user interface design practice for double clicks.

If you click a button, then press it down again and start moving the mouse with the
button held down, then you get a double-drag event when you ultimately release the button.
Its event type contains ‘double-drag’ instead of just ‘drag’. If a double-drag event has no
binding, Emacs looks for an alternate binding as if the event were an ordinary drag.

Before the double-click or double-drag event, Emacs generates a double-down event when
the user presses the button down for the second time. Its event type contains ‘double-down’
instead of just ‘down’. If a double-down event has no binding, Emacs looks for an alternate
binding as if the event were an ordinary button-down event. If it finds no binding that way
either, the double-down event is ignored.

To summarize, when you click a button and then press it again right away, Emacs
generates a down event and a click event for the first click, a double-down event when you
press the button again, and finally either a double-click or a double-drag event.

If you click a button twice and then press it again, all in quick succession, Emacs gener-
ates a triple-down event, followed by either a triple-click or a triple-drag. The event types
of these events contain ‘triple’ instead of ‘double’. If any triple event has no binding,
Emacs uses the binding that it would use for the corresponding double event.

If you click a button three or more times and then press it again, the events for the
presses beyond the third are all triple events. Emacs does not have separate event types
for quadruple, quintuple, etc. events. However, you can look at the event list to find out
precisely how many times the button was pressed.

[Function]event-click-count event
This function returns the number of consecutive button presses that led up to event.
If event is a double-down, double-click or double-drag event, the value is 2. If event
is a triple event, the value is 3 or greater. If event is an ordinary mouse event (not a
repeat event), the value is 1.

Chapter 21: Command Loop 340

[User Option]double-click-fuzz
To generate repeat events, successive mouse button presses must be at approximately
the same screen position. The value of double-click-fuzz specifies the maximum
number of pixels the mouse may be moved (horizontally or vertically) between two
successive clicks to make a double-click.

This variable is also the threshold for motion of the mouse to count as a drag.

[User Option]double-click-time
To generate repeat events, the number of milliseconds between successive button
presses must be less than the value of double-click-time. Setting double-click-

time to nil disables multi-click detection entirely. Setting it to t removes the time
limit; Emacs then detects multi-clicks by position only.

21.7.8 Motion Events

Emacs sometimes generates mouse motion events to describe motion of the mouse without
any button activity. Mouse motion events are represented by lists that look like this:

(mouse-movement POSITION)

position is a mouse position list (see Section 21.7.4 [Click Events], page 336), specifying the
current position of the mouse cursor.

The special form track-mouse enables generation of motion events within its body.
Outside of track-mouse forms, Emacs does not generate events for mere motion of the
mouse, and these events do not appear. See Section 29.13 [Mouse Tracking], page 611.

21.7.9 Focus Events

Window systems provide general ways for the user to control which window gets keyboard
input. This choice of window is called the focus. When the user does something to switch
between Emacs frames, that generates a focus event. The normal definition of a focus event,
in the global keymap, is to select a new frame within Emacs, as the user would expect. See
Section 29.9 [Input Focus], page 607.

Focus events are represented in Lisp as lists that look like this:

(switch-frame new-frame)

where new-frame is the frame switched to.

Some X window managers are set up so that just moving the mouse into a window is
enough to set the focus there. Usually, there is no need for a Lisp program to know about
the focus change until some other kind of input arrives. Emacs generates a focus event only
when the user actually types a keyboard key or presses a mouse button in the new frame;
just moving the mouse between frames does not generate a focus event.

A focus event in the middle of a key sequence would garble the sequence. So Emacs
never generates a focus event in the middle of a key sequence. If the user changes focus in
the middle of a key sequence—that is, after a prefix key—then Emacs reorders the events
so that the focus event comes either before or after the multi-event key sequence, and not
within it.

Chapter 21: Command Loop 341

21.7.10 Miscellaneous System Events

A few other event types represent occurrences within the system.

(delete-frame (frame))

This kind of event indicates that the user gave the window manager a command
to delete a particular window, which happens to be an Emacs frame.

The standard definition of the delete-frame event is to delete frame.

(iconify-frame (frame))

This kind of event indicates that the user iconified frame using the window
manager. Its standard definition is ignore; since the frame has already been
iconified, Emacs has no work to do. The purpose of this event type is so that
you can keep track of such events if you want to.

(make-frame-visible (frame))

This kind of event indicates that the user deiconified frame using the window
manager. Its standard definition is ignore; since the frame has already been
made visible, Emacs has no work to do.

(wheel-up position)

(wheel-down position)

These kinds of event are generated by moving a mouse wheel. The position
element is a mouse position list (see Section 21.7.4 [Click Events], page 336),
specifying the position of the mouse cursor when the event occurred.

This kind of event is generated only on some kinds of systems. On some systems,
mouse-4 and mouse-5 are used instead. For portable code, use the variables
mouse-wheel-up-event and mouse-wheel-down-event defined in mwheel.el

to determine what event types to expect for the mouse wheel.

(drag-n-drop position files)

This kind of event is generated when a group of files is selected in an application
outside of Emacs, and then dragged and dropped onto an Emacs frame.

The element position is a list describing the position of the event, in the
same format as used in a mouse-click event (see Section 21.7.4 [Click Events],
page 336), and files is the list of file names that were dragged and dropped.
The usual way to handle this event is by visiting these files.

This kind of event is generated, at present, only on some kinds of systems.

help-echo

This kind of event is generated when a mouse pointer moves onto a portion of
buffer text which has a help-echo text property. The generated event has this
form:

(help-echo frame help window object pos)

The precise meaning of the event parameters and the way these parameters are
used to display the help-echo text are described in [Text help-echo], page 686.

sigusr1

sigusr2 These events are generated when the Emacs process receives the signals SIGUSR1
and SIGUSR2. They contain no additional data because signals do not carry

Chapter 21: Command Loop 342

additional information. They can be useful for debugging (see Section 18.1.1
[Error Debugging], page 249).

To catch a user signal, bind the corresponding event to an interactive command
in the special-event-map (see Section 22.7 [Active Keymaps], page 373). The
command is called with no arguments, and the specific signal event is available
in last-input-event. For example:

(defun sigusr-handler ()

(interactive)

(message "Caught signal %S" last-input-event))

(define-key special-event-map [sigusr1] ’sigusr-handler)

To test the signal handler, you can make Emacs send a signal to itself:

(signal-process (emacs-pid) ’sigusr1)

language-change

This kind of event is generated on MS-Windows when the input language has
changed. This typically means that the keyboard keys will send to Emacs
characters from a different language. The generated event has this form:

(language-change frame codepage language-id)

Here frame is the frame which was current when the input language changed;
codepage is the new codepage number; and language-id is the numerical ID of
the new input language. The coding-system (see Section 33.9 [Coding Systems],
page 716) that corresponds to codepage is cpcodepage or windows-codepage.
To convert language-id to a string (e.g., to use it for various language-dependent
features, such as set-language-environment), use the w32-get-locale-info
function, like this:

;; Get the abbreviated language name, such as "ENU" for English

(w32-get-locale-info language-id)

;; Get the full English name of the language,

;; such as "English (United States)"

(w32-get-locale-info language-id 4097)

;; Get the full localized name of the language

(w32-get-locale-info language-id t)

If one of these events arrives in the middle of a key sequence—that is, after a prefix
key—then Emacs reorders the events so that this event comes either before or after the
multi-event key sequence, not within it.

21.7.11 Event Examples

If the user presses and releases the left mouse button over the same location, that generates
a sequence of events like this:

(down-mouse-1 (#<window 18 on NEWS> 2613 (0 . 38) -864320))

(mouse-1 (#<window 18 on NEWS> 2613 (0 . 38) -864180))

While holding the control key down, the user might hold down the second mouse button,
and drag the mouse from one line to the next. That produces two events, as shown here:

(C-down-mouse-2 (#<window 18 on NEWS> 3440 (0 . 27) -731219))

(C-drag-mouse-2 (#<window 18 on NEWS> 3440 (0 . 27) -731219)

(#<window 18 on NEWS> 3510 (0 . 28) -729648))

Chapter 21: Command Loop 343

While holding down the meta and shift keys, the user might press the second mouse
button on the window’s mode line, and then drag the mouse into another window. That
produces a pair of events like these:

(M-S-down-mouse-2 (#<window 18 on NEWS> mode-line (33 . 31) -457844))

(M-S-drag-mouse-2 (#<window 18 on NEWS> mode-line (33 . 31) -457844)

(#<window 20 on carlton-sanskrit.tex> 161 (33 . 3)

-453816))

To handle a SIGUSR1 signal, define an interactive function, and bind it to the signal

usr1 event sequence:
(defun usr1-handler ()

(interactive)

(message "Got USR1 signal"))

(global-set-key [signal usr1] ’usr1-handler)

21.7.12 Classifying Events

Every event has an event type, which classifies the event for key binding purposes. For a
keyboard event, the event type equals the event value; thus, the event type for a character
is the character, and the event type for a function key symbol is the symbol itself. For
events that are lists, the event type is the symbol in the car of the list. Thus, the event
type is always a symbol or a character.

Two events of the same type are equivalent where key bindings are concerned; thus, they
always run the same command. That does not necessarily mean they do the same things,
however, as some commands look at the whole event to decide what to do. For example,
some commands use the location of a mouse event to decide where in the buffer to act.

Sometimes broader classifications of events are useful. For example, you might want to
ask whether an event involved the META key, regardless of which other key or mouse button
was used.

The functions event-modifiers and event-basic-type are provided to get such infor-
mation conveniently.

[Function]event-modifiers event
This function returns a list of the modifiers that event has. The modifiers are symbols;
they include shift, control, meta, alt, hyper and super. In addition, the modifiers
list of a mouse event symbol always contains one of click, drag, and down. For double
or triple events, it also contains double or triple.

The argument event may be an entire event object, or just an event type. If event
is a symbol that has never been used in an event that has been read as input in
the current Emacs session, then event-modifiers can return nil, even when event
actually has modifiers.

Here are some examples:

(event-modifiers ?a)

⇒ nil

(event-modifiers ?A)

⇒ (shift)

(event-modifiers ?\C-a)

⇒ (control)

(event-modifiers ?\C-%)

Chapter 21: Command Loop 344

⇒ (control)

(event-modifiers ?\C-\S-a)

⇒ (control shift)

(event-modifiers ’f5)

⇒ nil

(event-modifiers ’s-f5)

⇒ (super)

(event-modifiers ’M-S-f5)

⇒ (meta shift)

(event-modifiers ’mouse-1)

⇒ (click)

(event-modifiers ’down-mouse-1)

⇒ (down)

The modifiers list for a click event explicitly contains click, but the event symbol
name itself does not contain ‘click’.

[Function]event-basic-type event
This function returns the key or mouse button that event describes, with all modifiers
removed. The event argument is as in event-modifiers. For example:

(event-basic-type ?a)

⇒ 97

(event-basic-type ?A)

⇒ 97

(event-basic-type ?\C-a)

⇒ 97

(event-basic-type ?\C-\S-a)

⇒ 97

(event-basic-type ’f5)

⇒ f5

(event-basic-type ’s-f5)

⇒ f5

(event-basic-type ’M-S-f5)

⇒ f5

(event-basic-type ’down-mouse-1)

⇒ mouse-1

[Function]mouse-movement-p object
This function returns non-nil if object is a mouse movement event.

[Function]event-convert-list list
This function converts a list of modifier names and a basic event type to an event
type which specifies all of them. The basic event type must be the last element of the
list. For example,

(event-convert-list ’(control ?a))

⇒ 1

(event-convert-list ’(control meta ?a))

⇒ -134217727

Chapter 21: Command Loop 345

(event-convert-list ’(control super f1))

⇒ C-s-f1

21.7.13 Accessing Mouse Events

This section describes convenient functions for accessing the data in a mouse button or
motion event.

The following two functions return a mouse position list (see Section 21.7.4 [Click Events],
page 336), specifying the position of a mouse event.

[Function]event-start event
This returns the starting position of event.

If event is a click or button-down event, this returns the location of the event. If
event is a drag event, this returns the drag’s starting position.

[Function]event-end event
This returns the ending position of event.

If event is a drag event, this returns the position where the user released the mouse
button. If event is a click or button-down event, the value is actually the starting
position, which is the only position such events have.

[Function]posnp object
This function returns non-nil if object is a mouse position list, in either of the formats
documented in Section 21.7.4 [Click Events], page 336); and nil otherwise.

These functions take a mouse position list as argument, and return various parts of it:

[Function]posn-window position
Return the window that position is in.

[Function]posn-area position
Return the window area recorded in position. It returns nil when the event occurred
in the text area of the window; otherwise, it is a symbol identifying the area in which
the event occurred.

[Function]posn-point position
Return the buffer position in position. When the event occurred in the text area of
the window, in a marginal area, or on a fringe, this is an integer specifying a buffer
position. Otherwise, the value is undefined.

[Function]posn-x-y position
Return the pixel-based x and y coordinates in position, as a cons cell (x . y). These
coordinates are relative to the window given by posn-window.

This example shows how to convert the window-relative coordinates in the text area
of a window into frame-relative coordinates:

(defun frame-relative-coordinates (position)

"Return frame-relative coordinates from POSITION.

POSITION is assumed to lie in a window text area."

(let* ((x-y (posn-x-y position))

Chapter 21: Command Loop 346

(window (posn-window position))

(edges (window-inside-pixel-edges window)))

(cons (+ (car x-y) (car edges))

(+ (cdr x-y) (cadr edges)))))

[Function]posn-col-row position
This function returns a cons cell (col . row), containing the estimated column and
row corresponding to buffer position position. The return value is given in units of
the frame’s default character width and height, as computed from the x and y values
corresponding to position. (So, if the actual characters have non-default sizes, the
actual row and column may differ from these computed values.)

Note that row is counted from the top of the text area. If the window possesses a
header line (see Section 23.4.7 [Header Lines], page 434), it is not counted as the first
line.

[Function]posn-actual-col-row position
Return the actual row and column in position, as a cons cell (col . row). The values
are the actual row and column numbers in the window. See Section 21.7.4 [Click
Events], page 336, for details. It returns nil if position does not include actual
positions values.

[Function]posn-string position
Return the string object in position, either nil, or a cons cell (string . string-

pos).

[Function]posn-image position
Return the image object in position, either nil, or an image (image ...).

[Function]posn-object position
Return the image or string object in position, either nil, an image (image ...), or
a cons cell (string . string-pos).

[Function]posn-object-x-y position
Return the pixel-based x and y coordinates relative to the upper left corner of the
object in position as a cons cell (dx . dy). If the position is a buffer position, return
the relative position in the character at that position.

[Function]posn-object-width-height position
Return the pixel width and height of the object in position as a cons cell (width .

height). If the position is a buffer position, return the size of the character at that
position.

[Function]posn-timestamp position
Return the timestamp in position. This is the time at which the event occurred, in
milliseconds.

These functions compute a position list given particular buffer position or screen position.
You can access the data in this position list with the functions described above.

Chapter 21: Command Loop 347

[Function]posn-at-point &optional pos window
This function returns a position list for position pos in window. pos defaults to point
in window ; window defaults to the selected window.

posn-at-point returns nil if pos is not visible in window.

[Function]posn-at-x-y x y &optional frame-or-window whole
This function returns position information corresponding to pixel coordinates x and
y in a specified frame or window, frame-or-window, which defaults to the selected
window. The coordinates x and y are relative to the frame or window used. If whole
is nil, the coordinates are relative to the window text area, otherwise they are relative
to the entire window area including scroll bars, margins and fringes.

21.7.14 Accessing Scroll Bar Events

These functions are useful for decoding scroll bar events.

[Function]scroll-bar-event-ratio event
This function returns the fractional vertical position of a scroll bar event within the
scroll bar. The value is a cons cell (portion . whole) containing two integers whose
ratio is the fractional position.

[Function]scroll-bar-scale ratio total
This function multiplies (in effect) ratio by total, rounding the result to an integer.
The argument ratio is not a number, but rather a pair (num . denom)—typically a
value returned by scroll-bar-event-ratio.

This function is handy for scaling a position on a scroll bar into a buffer position.
Here’s how to do that:

(+ (point-min)

(scroll-bar-scale

(posn-x-y (event-start event))

(- (point-max) (point-min))))

Recall that scroll bar events have two integers forming a ratio, in place of a pair of x
and y coordinates.

21.7.15 Putting Keyboard Events in Strings

In most of the places where strings are used, we conceptualize the string as containing
text characters—the same kind of characters found in buffers or files. Occasionally Lisp
programs use strings that conceptually contain keyboard characters; for example, they may
be key sequences or keyboard macro definitions. However, storing keyboard characters in
a string is a complex matter, for reasons of historical compatibility, and it is not always
possible.

We recommend that new programs avoid dealing with these complexities by not storing
keyboard events in strings. Here is how to do that:

• Use vectors instead of strings for key sequences, when you plan to use them for any-
thing other than as arguments to lookup-key and define-key. For example, you can
use read-key-sequence-vector instead of read-key-sequence, and this-command-

keys-vector instead of this-command-keys.

Chapter 21: Command Loop 348

• Use vectors to write key sequence constants containing meta characters, even when
passing them directly to define-key.

• When you have to look at the contents of a key sequence that might be a string,
use listify-key-sequence (see Section 21.8.6 [Event Input Misc], page 355) first, to
convert it to a list.

The complexities stem from the modifier bits that keyboard input characters can include.
Aside from the Meta modifier, none of these modifier bits can be included in a string, and
the Meta modifier is allowed only in special cases.

The earliest GNU Emacs versions represented meta characters as codes in the range of
128 to 255. At that time, the basic character codes ranged from 0 to 127, so all keyboard
character codes did fit in a string. Many Lisp programs used ‘\M-’ in string constants to
stand for meta characters, especially in arguments to define-key and similar functions,
and key sequences and sequences of events were always represented as strings.

When we added support for larger basic character codes beyond 127, and additional
modifier bits, we had to change the representation of meta characters. Now the flag that
represents the Meta modifier in a character is 227 and such numbers cannot be included in
a string.

To support programs with ‘\M-’ in string constants, there are special rules for including
certain meta characters in a string. Here are the rules for interpreting a string as a sequence
of input characters:

• If the keyboard character value is in the range of 0 to 127, it can go in the string
unchanged.

• The meta variants of those characters, with codes in the range of 227 to 227 + 127, can
also go in the string, but you must change their numeric values. You must set the 27

bit instead of the 227 bit, resulting in a value between 128 and 255. Only a unibyte
string can include these codes.

• Non-ASCII characters above 256 can be included in a multibyte string.

• Other keyboard character events cannot fit in a string. This includes keyboard events
in the range of 128 to 255.

Functions such as read-key-sequence that construct strings of keyboard input charac-
ters follow these rules: they construct vectors instead of strings, when the events won’t fit
in a string.

When you use the read syntax ‘\M-’ in a string, it produces a code in the range of 128
to 255—the same code that you get if you modify the corresponding keyboard event to put
it in the string. Thus, meta events in strings work consistently regardless of how they get
into the strings.

However, most programs would do well to avoid these issues by following the recommen-
dations at the beginning of this section.

21.8 Reading Input

The editor command loop reads key sequences using the function read-key-sequence,
which uses read-event. These and other functions for event input are also available for
use in Lisp programs. See also momentary-string-display in Section 38.8 [Temporary

Chapter 21: Command Loop 349

Displays], page 836, and sit-for in Section 21.10 [Waiting], page 357. See Section 39.12
[Terminal Input], page 934, for functions and variables for controlling terminal input modes
and debugging terminal input.

For higher-level input facilities, see Chapter 20 [Minibuffers], page 291.

21.8.1 Key Sequence Input

The command loop reads input a key sequence at a time, by calling read-key-sequence.
Lisp programs can also call this function; for example, describe-key uses it to read the
key to describe.

[Function]read-key-sequence prompt &optional continue-echo dont-downcase-last
switch-frame-ok command-loop

This function reads a key sequence and returns it as a string or vector. It keeps
reading events until it has accumulated a complete key sequence; that is, enough to
specify a non-prefix command using the currently active keymaps. (Remember that
a key sequence that starts with a mouse event is read using the keymaps of the buffer
in the window that the mouse was in, not the current buffer.)

If the events are all characters and all can fit in a string, then read-key-sequence

returns a string (see Section 21.7.15 [Strings of Events], page 347). Otherwise, it
returns a vector, since a vector can hold all kinds of events—characters, symbols, and
lists. The elements of the string or vector are the events in the key sequence.

Reading a key sequence includes translating the events in various ways. See
Section 22.14 [Translation Keymaps], page 385.

The argument prompt is either a string to be displayed in the echo area as a prompt,
or nil, meaning not to display a prompt. The argument continue-echo, if non-nil,
means to echo this key as a continuation of the previous key.

Normally any upper case event is converted to lower case if the original event is
undefined and the lower case equivalent is defined. The argument dont-downcase-last,
if non-nil, means do not convert the last event to lower case. This is appropriate for
reading a key sequence to be defined.

The argument switch-frame-ok, if non-nil, means that this function should process
a switch-frame event if the user switches frames before typing anything. If the user
switches frames in the middle of a key sequence, or at the start of the sequence but
switch-frame-ok is nil, then the event will be put off until after the current key
sequence.

The argument command-loop, if non-nil, means that this key sequence is being read
by something that will read commands one after another. It should be nil if the
caller will read just one key sequence.

In the following example, Emacs displays the prompt ‘?’ in the echo area, and then
the user types C-x C-f.

(read-key-sequence "?")

Chapter 21: Command Loop 350

---------- Echo Area ----------

?C-x C-f

---------- Echo Area ----------

⇒ "^X^F"

The function read-key-sequence suppresses quitting: C-g typed while reading with
this function works like any other character, and does not set quit-flag. See
Section 21.11 [Quitting], page 358.

[Function]read-key-sequence-vector prompt &optional continue-echo
dont-downcase-last switch-frame-ok command-loop

This is like read-key-sequence except that it always returns the key sequence as a
vector, never as a string. See Section 21.7.15 [Strings of Events], page 347.

If an input character is upper-case (or has the shift modifier) and has no key binding,
but its lower-case equivalent has one, then read-key-sequence converts the character to
lower case. Note that lookup-key does not perform case conversion in this way.

When reading input results in such a shift-translation, Emacs sets the variable this-

command-keys-shift-translated to a non-nil value. Lisp programs can examine this
variable if they need to modify their behavior when invoked by shift-translated keys. For
example, the function handle-shift-selection examines the value of this variable to
determine how to activate or deactivate the region (see Section 31.7 [The Mark], page 640).

The function read-key-sequence also transforms some mouse events. It converts un-
bound drag events into click events, and discards unbound button-down events entirely. It
also reshuffles focus events and miscellaneous window events so that they never appear in
a key sequence with any other events.

When mouse events occur in special parts of a window, such as a mode line or a scroll bar,
the event type shows nothing special—it is the same symbol that would normally represent
that combination of mouse button and modifier keys. The information about the window
part is kept elsewhere in the event—in the coordinates. But read-key-sequence translates
this information into imaginary “prefix keys”, all of which are symbols: header-line,
horizontal-scroll-bar, menu-bar, mode-line, vertical-line, and vertical-scroll-

bar. You can define meanings for mouse clicks in special window parts by defining key
sequences using these imaginary prefix keys.

For example, if you call read-key-sequence and then click the mouse on the window’s
mode line, you get two events, like this:

(read-key-sequence "Click on the mode line: ")

⇒ [mode-line

(mouse-1

(#<window 6 on NEWS> mode-line

(40 . 63) 5959987))]

[Variable]num-input-keys
This variable’s value is the number of key sequences processed so far in this Emacs
session. This includes key sequences read from the terminal and key sequences read
from keyboard macros being executed.

Chapter 21: Command Loop 351

21.8.2 Reading One Event

The lowest level functions for command input are read-event, read-char, and read-char-

exclusive.

[Function]read-event &optional prompt inherit-input-method seconds
This function reads and returns the next event of command input, waiting if necessary
until an event is available. Events can come directly from the user or from a keyboard
macro.

If the optional argument prompt is non-nil, it should be a string to display in the echo
area as a prompt. Otherwise, read-event does not display any message to indicate
it is waiting for input; instead, it prompts by echoing: it displays descriptions of the
events that led to or were read by the current command. See Section 38.4 [The Echo
Area], page 825.

If inherit-input-method is non-nil, then the current input method (if any) is employed
to make it possible to enter a non-ASCII character. Otherwise, input method handling
is disabled for reading this event.

If cursor-in-echo-area is non-nil, then read-event moves the cursor temporarily
to the echo area, to the end of any message displayed there. Otherwise read-event

does not move the cursor.

If seconds is non-nil, it should be a number specifying the maximum time to wait
for input, in seconds. If no input arrives within that time, read-event stops waiting
and returns nil. A floating-point value for seconds means to wait for a fractional
number of seconds. Some systems support only a whole number of seconds; on these
systems, seconds is rounded down. If seconds is nil, read-event waits as long as
necessary for input to arrive.

If seconds is nil, Emacs is considered idle while waiting for user input to arrive. Idle
timers—those created with run-with-idle-timer (see Section 39.11 [Idle Timers],
page 932)—can run during this period. However, if seconds is non-nil, the state
of idleness remains unchanged. If Emacs is non-idle when read-event is called, it
remains non-idle throughout the operation of read-event; if Emacs is idle (which
can happen if the call happens inside an idle timer), it remains idle.

If read-event gets an event that is defined as a help character, then in some cases
read-event processes the event directly without returning. See Section 24.5 [Help
Functions], page 465. Certain other events, called special events, are also processed
directly within read-event (see Section 21.9 [Special Events], page 356).

Here is what happens if you call read-event and then press the right-arrow function
key:

(read-event)

⇒ right

[Function]read-char &optional prompt inherit-input-method seconds
This function reads and returns a character of command input. If the user generates
an event which is not a character (i.e., a mouse click or function key event), read-char
signals an error. The arguments work as in read-event.

In the first example, the user types the character 1 (ASCII code 49). The second
example shows a keyboard macro definition that calls read-char from the minibuffer

Chapter 21: Command Loop 352

using eval-expression. read-char reads the keyboard macro’s very next character,
which is 1. Then eval-expression displays its return value in the echo area.

(read-char)

⇒ 49

;; We assume here you use M-: to evaluate this.
(symbol-function ’foo)

⇒ "^[:(read-char)^M1"

(execute-kbd-macro ’foo)

a 49

⇒ nil

[Function]read-char-exclusive &optional prompt inherit-input-method seconds
This function reads and returns a character of command input. If the user generates
an event which is not a character, read-char-exclusive ignores it and reads another
event, until it gets a character. The arguments work as in read-event.

None of the above functions suppress quitting.

[Variable]num-nonmacro-input-events
This variable holds the total number of input events received so far from the
terminal—not counting those generated by keyboard macros.

We emphasize that, unlike read-key-sequence, the functions read-event, read-char,
and read-char-exclusive do not perform the translations described in Section 22.14
[Translation Keymaps], page 385. If you wish to read a single key taking these transla-
tions into account, use the function read-key:

[Function]read-key &optional prompt
This function reads a single key. It is “intermediate” between read-key-sequence

and read-event. Unlike the former, it reads a single key, not a key sequence. Unlike
the latter, it does not return a raw event, but decodes and translates the user input
according to input-decode-map, local-function-key-map, and key-translation-

map (see Section 22.14 [Translation Keymaps], page 385).

The argument prompt is either a string to be displayed in the echo area as a prompt,
or nil, meaning not to display a prompt.

[Function]read-char-choice prompt chars &optional inhibit-quit
This function uses read-key to read and return a single character. It ignores any
input that is not a member of chars, a list of accepted characters. Optionally, it will
also ignore keyboard-quit events while it is waiting for valid input. If you bind help-

form (see Section 24.5 [Help Functions], page 465) to a non-nil value while calling
read-char-choice, then pressing help-char causes it to evaluate help-form and
display the result. It then continues to wait for a valid input character, or keyboard-
quit.

Chapter 21: Command Loop 353

21.8.3 Modifying and Translating Input Events

Emacs modifies every event it reads according to extra-keyboard-modifiers, then trans-
lates it through keyboard-translate-table (if applicable), before returning it from read-

event.

[Variable]extra-keyboard-modifiers
This variable lets Lisp programs “press” the modifier keys on the keyboard. The
value is a character. Only the modifiers of the character matter. Each time the user
types a keyboard key, it is altered as if those modifier keys were held down. For
instance, if you bind extra-keyboard-modifiers to ?\C-\M-a, then all keyboard
input characters typed during the scope of the binding will have the control and meta
modifiers applied to them. The character ?\C-@, equivalent to the integer 0, does not
count as a control character for this purpose, but as a character with no modifiers.
Thus, setting extra-keyboard-modifiers to zero cancels any modification.

When using a window system, the program can “press” any of the modifier keys in
this way. Otherwise, only the CTL and META keys can be virtually pressed.

Note that this variable applies only to events that really come from the keyboard,
and has no effect on mouse events or any other events.

[Variable]keyboard-translate-table
This terminal-local variable is the translate table for keyboard characters. It lets you
reshuffle the keys on the keyboard without changing any command bindings. Its value
is normally a char-table, or else nil. (It can also be a string or vector, but this is
considered obsolete.)

If keyboard-translate-table is a char-table (see Section 6.6 [Char-Tables],
page 94), then each character read from the keyboard is looked up in this char-table.
If the value found there is non-nil, then it is used instead of the actual input
character.

Note that this translation is the first thing that happens to a character after it is read
from the terminal. Record-keeping features such as recent-keys and dribble files
record the characters after translation.

Note also that this translation is done before the characters are supplied to input
methods (see Section 33.10 [Input Methods], page 729). Use translation-table-

for-input (see Section 33.8 [Translation of Characters], page 714), if you want to
translate characters after input methods operate.

[Function]keyboard-translate from to
This function modifies keyboard-translate-table to translate character code from
into character code to. It creates the keyboard translate table if necessary.

Here’s an example of using the keyboard-translate-table to make C-x, C-c and C-v

perform the cut, copy and paste operations:

(keyboard-translate ?\C-x ’control-x)

(keyboard-translate ?\C-c ’control-c)

(keyboard-translate ?\C-v ’control-v)

(global-set-key [control-x] ’kill-region)

Chapter 21: Command Loop 354

(global-set-key [control-c] ’kill-ring-save)

(global-set-key [control-v] ’yank)

On a graphical terminal that supports extended ASCII input, you can still get the standard
Emacs meanings of one of those characters by typing it with the shift key. That makes it
a different character as far as keyboard translation is concerned, but it has the same usual
meaning.

See Section 22.14 [Translation Keymaps], page 385, for mechanisms that translate event
sequences at the level of read-key-sequence.

21.8.4 Invoking the Input Method

The event-reading functions invoke the current input method, if any (see Section 33.10
[Input Methods], page 729). If the value of input-method-function is non-nil, it should
be a function; when read-event reads a printing character (including SPC) with no modifier
bits, it calls that function, passing the character as an argument.

[Variable]input-method-function
If this is non-nil, its value specifies the current input method function.

Warning: don’t bind this variable with let. It is often buffer-local, and if you bind
it around reading input (which is exactly when you would bind it), switching buffers
asynchronously while Emacs is waiting will cause the value to be restored in the wrong
buffer.

The input method function should return a list of events which should be used as input.
(If the list is nil, that means there is no input, so read-event waits for another event.)
These events are processed before the events in unread-command-events (see Section 21.8.6
[Event Input Misc], page 355). Events returned by the input method function are not passed
to the input method function again, even if they are printing characters with no modifier
bits.

If the input method function calls read-event or read-key-sequence, it should bind
input-method-function to nil first, to prevent recursion.

The input method function is not called when reading the second and subsequent events
of a key sequence. Thus, these characters are not subject to input method processing. The
input method function should test the values of overriding-local-map and overriding-

terminal-local-map; if either of these variables is non-nil, the input method should put
its argument into a list and return that list with no further processing.

21.8.5 Quoted Character Input

You can use the function read-quoted-char to ask the user to specify a character, and
allow the user to specify a control or meta character conveniently, either literally or as an
octal character code. The command quoted-insert uses this function.

[Function]read-quoted-char &optional prompt
This function is like read-char, except that if the first character read is an octal
digit (0–7), it reads any number of octal digits (but stopping if a non-octal digit is
found), and returns the character represented by that numeric character code. If the
character that terminates the sequence of octal digits is RET, it is discarded. Any
other terminating character is used as input after this function returns.

Chapter 21: Command Loop 355

Quitting is suppressed when the first character is read, so that the user can enter a
C-g. See Section 21.11 [Quitting], page 358.

If prompt is supplied, it specifies a string for prompting the user. The prompt string
is always displayed in the echo area, followed by a single ‘-’.

In the following example, the user types in the octal number 177 (which is 127 in
decimal).

(read-quoted-char "What character")

---------- Echo Area ----------

What character 1 7 7-

---------- Echo Area ----------

⇒ 127

21.8.6 Miscellaneous Event Input Features

This section describes how to “peek ahead” at events without using them up, how to check
for pending input, and how to discard pending input. See also the function read-passwd

(see Section 20.9 [Reading a Password], page 317).

[Variable]unread-command-events
This variable holds a list of events waiting to be read as command input. The events
are used in the order they appear in the list, and removed one by one as they are
used.

The variable is needed because in some cases a function reads an event and then
decides not to use it. Storing the event in this variable causes it to be processed
normally, by the command loop or by the functions to read command input.

For example, the function that implements numeric prefix arguments reads any num-
ber of digits. When it finds a non-digit event, it must unread the event so that it
can be read normally by the command loop. Likewise, incremental search uses this
feature to unread events with no special meaning in a search, because these events
should exit the search and then execute normally.

The reliable and easy way to extract events from a key sequence so as to put them in
unread-command-events is to use listify-key-sequence (see below).

Normally you add events to the front of this list, so that the events most recently
unread will be reread first.

Events read from this list are not normally added to the current command’s key
sequence (as returned by, e.g., this-command-keys), as the events will already have
been added once as they were read for the first time. An element of the form (t .

event) forces event to be added to the current command’s key sequence.

[Function]listify-key-sequence key
This function converts the string or vector key to a list of individual events, which
you can put in unread-command-events.

Chapter 21: Command Loop 356

[Function]input-pending-p
This function determines whether any command input is currently available to be
read. It returns immediately, with value t if there is available input, nil otherwise.
On rare occasions it may return t when no input is available.

[Variable]last-input-event
This variable records the last terminal input event read, whether as part of a command
or explicitly by a Lisp program.

In the example below, the Lisp program reads the character 1, ASCII code 49. It
becomes the value of last-input-event, while C-e (we assume C-x C-e command is
used to evaluate this expression) remains the value of last-command-event.

(progn (print (read-char))

(print last-command-event)

last-input-event)

a 49

a 5

⇒ 49

[Macro]while-no-input body. . .
This construct runs the body forms and returns the value of the last one—but only
if no input arrives. If any input arrives during the execution of the body forms, it
aborts them (working much like a quit). The while-no-input form returns nil if
aborted by a real quit, and returns t if aborted by arrival of other input.

If a part of body binds inhibit-quit to non-nil, arrival of input during those parts
won’t cause an abort until the end of that part.

If you want to be able to distinguish all possible values computed by body from both
kinds of abort conditions, write the code like this:

(while-no-input

(list

(progn . body)))

[Function]discard-input
This function discards the contents of the terminal input buffer and cancels any
keyboard macro that might be in the process of definition. It returns nil.

In the following example, the user may type a number of characters right after starting
the evaluation of the form. After the sleep-for finishes sleeping, discard-input
discards any characters typed during the sleep.

(progn (sleep-for 2)

(discard-input))

⇒ nil

21.9 Special Events

Certain special events are handled at a very low level—as soon as they are read. The read-
event function processes these events itself, and never returns them. Instead, it keeps
waiting for the first event that is not special and returns that one.

Chapter 21: Command Loop 357

Special events do not echo, they are never grouped into key sequences, and they never
appear in the value of last-command-event or (this-command-keys). They do not discard
a numeric argument, they cannot be unread with unread-command-events, they may not
appear in a keyboard macro, and they are not recorded in a keyboard macro while you are
defining one.

Special events do, however, appear in last-input-event immediately after they are
read, and this is the way for the event’s definition to find the actual event.

The events types iconify-frame, make-frame-visible, delete-frame, drag-n-drop,
language-change, and user signals like sigusr1 are normally handled in this way. The
keymap which defines how to handle special events—and which events are special—is in the
variable special-event-map (see Section 22.7 [Active Keymaps], page 373).

21.10 Waiting for Elapsed Time or Input

The wait functions are designed to wait for a certain amount of time to pass or until there
is input. For example, you may wish to pause in the middle of a computation to allow
the user time to view the display. sit-for pauses and updates the screen, and returns
immediately if input comes in, while sleep-for pauses without updating the screen.

[Function]sit-for seconds &optional nodisp
This function performs redisplay (provided there is no pending input from the user),
then waits seconds seconds, or until input is available. The usual purpose of sit-for
is to give the user time to read text that you display. The value is t if sit-for waited
the full time with no input arriving (see Section 21.8.6 [Event Input Misc], page 355).
Otherwise, the value is nil.

The argument seconds need not be an integer. If it is a floating point number, sit-
for waits for a fractional number of seconds. Some systems support only a whole
number of seconds; on these systems, seconds is rounded down.

The expression (sit-for 0) is equivalent to (redisplay), i.e., it requests a redisplay,
without any delay, if there is no pending input. See Section 38.2 [Forcing Redisplay],
page 822.

If nodisp is non-nil, then sit-for does not redisplay, but it still returns as soon as
input is available (or when the timeout elapses).

In batch mode (see Section 39.16 [Batch Mode], page 937), sit-for cannot be in-
terrupted, even by input from the standard input descriptor. It is thus equivalent to
sleep-for, which is described below.

It is also possible to call sit-for with three arguments, as (sit-for seconds mil-

lisec nodisp), but that is considered obsolete.

[Function]sleep-for seconds &optional millisec
This function simply pauses for seconds seconds without updating the display. It
pays no attention to available input. It returns nil.

The argument seconds need not be an integer. If it is a floating point number, sleep-
for waits for a fractional number of seconds. Some systems support only a whole
number of seconds; on these systems, seconds is rounded down.

Chapter 21: Command Loop 358

The optional argument millisec specifies an additional waiting period measured in
milliseconds. This adds to the period specified by seconds. If the system doesn’t
support waiting fractions of a second, you get an error if you specify nonzero millisec.

Use sleep-for when you wish to guarantee a delay.

See Section 39.5 [Time of Day], page 923, for functions to get the current time.

21.11 Quitting

Typing C-g while a Lisp function is running causes Emacs to quit whatever it is doing. This
means that control returns to the innermost active command loop.

Typing C-g while the command loop is waiting for keyboard input does not cause a quit;
it acts as an ordinary input character. In the simplest case, you cannot tell the difference,
because C-g normally runs the command keyboard-quit, whose effect is to quit. However,
when C-g follows a prefix key, they combine to form an undefined key. The effect is to
cancel the prefix key as well as any prefix argument.

In the minibuffer, C-g has a different definition: it aborts out of the minibuffer. This
means, in effect, that it exits the minibuffer and then quits. (Simply quitting would return
to the command loop within the minibuffer.) The reason why C-g does not quit directly
when the command reader is reading input is so that its meaning can be redefined in the
minibuffer in this way. C-g following a prefix key is not redefined in the minibuffer, and it
has its normal effect of canceling the prefix key and prefix argument. This too would not
be possible if C-g always quit directly.

When C-g does directly quit, it does so by setting the variable quit-flag to t. Emacs
checks this variable at appropriate times and quits if it is not nil. Setting quit-flag

non-nil in any way thus causes a quit.

At the level of C code, quitting cannot happen just anywhere; only at the special places
that check quit-flag. The reason for this is that quitting at other places might leave
an inconsistency in Emacs’s internal state. Because quitting is delayed until a safe place,
quitting cannot make Emacs crash.

Certain functions such as read-key-sequence or read-quoted-char prevent quitting
entirely even though they wait for input. Instead of quitting, C-g serves as the requested
input. In the case of read-key-sequence, this serves to bring about the special behavior
of C-g in the command loop. In the case of read-quoted-char, this is so that C-q can be
used to quote a C-g.

You can prevent quitting for a portion of a Lisp function by binding the variable
inhibit-quit to a non-nil value. Then, although C-g still sets quit-flag to t as usual,
the usual result of this—a quit—is prevented. Eventually, inhibit-quit will become nil

again, such as when its binding is unwound at the end of a let form. At that time, if
quit-flag is still non-nil, the requested quit happens immediately. This behavior is ideal
when you wish to make sure that quitting does not happen within a “critical section” of
the program.

In some functions (such as read-quoted-char), C-g is handled in a special way that
does not involve quitting. This is done by reading the input with inhibit-quit bound to
t, and setting quit-flag to nil before inhibit-quit becomes nil again. This excerpt

Chapter 21: Command Loop 359

from the definition of read-quoted-char shows how this is done; it also shows that normal
quitting is permitted after the first character of input.

(defun read-quoted-char (&optional prompt)

"...documentation..."

(let ((message-log-max nil) done (first t) (code 0) char)

(while (not done)

(let ((inhibit-quit first)

...)

(and prompt (message "%s-" prompt))

(setq char (read-event))

(if inhibit-quit (setq quit-flag nil)))

. . . set the variable code. . .)
code))

[Variable]quit-flag
If this variable is non-nil, then Emacs quits immediately, unless inhibit-quit is
non-nil. Typing C-g ordinarily sets quit-flag non-nil, regardless of inhibit-quit.

[Variable]inhibit-quit
This variable determines whether Emacs should quit when quit-flag is set to a value
other than nil. If inhibit-quit is non-nil, then quit-flag has no special effect.

[Macro]with-local-quit body. . .
This macro executes body forms in sequence, but allows quitting, at least locally,
within body even if inhibit-quit was non-nil outside this construct. It returns the
value of the last form in body, unless exited by quitting, in which case it returns nil.

If inhibit-quit is nil on entry to with-local-quit, it only executes the body,
and setting quit-flag causes a normal quit. However, if inhibit-quit is non-nil
so that ordinary quitting is delayed, a non-nil quit-flag triggers a special kind of
local quit. This ends the execution of body and exits the with-local-quit body
with quit-flag still non-nil, so that another (ordinary) quit will happen as soon as
that is allowed. If quit-flag is already non-nil at the beginning of body, the local
quit happens immediately and the body doesn’t execute at all.

This macro is mainly useful in functions that can be called from timers, process filters,
process sentinels, pre-command-hook, post-command-hook, and other places where
inhibit-quit is normally bound to t.

[Command]keyboard-quit
This function signals the quit condition with (signal ’quit nil). This is the same
thing that quitting does. (See signal in Section 10.5.3 [Errors], page 132.)

You can specify a character other than C-g to use for quitting. See the function set-

input-mode in Section 39.12 [Terminal Input], page 934.

21.12 Prefix Command Arguments

Most Emacs commands can use a prefix argument, a number specified before the command
itself. (Don’t confuse prefix arguments with prefix keys.) The prefix argument is at all times

Chapter 21: Command Loop 360

represented by a value, which may be nil, meaning there is currently no prefix argument.
Each command may use the prefix argument or ignore it.

There are two representations of the prefix argument: raw and numeric. The editor
command loop uses the raw representation internally, and so do the Lisp variables that
store the information, but commands can request either representation.

Here are the possible values of a raw prefix argument:

• nil, meaning there is no prefix argument. Its numeric value is 1, but numerous com-
mands make a distinction between nil and the integer 1.

• An integer, which stands for itself.

• A list of one element, which is an integer. This form of prefix argument results from
one or a succession of C-us with no digits. The numeric value is the integer in the list,
but some commands make a distinction between such a list and an integer alone.

• The symbol -. This indicates that M-- or C-u - was typed, without following digits.
The equivalent numeric value is −1, but some commands make a distinction between
the integer −1 and the symbol -.

We illustrate these possibilities by calling the following function with various prefixes:

(defun display-prefix (arg)

"Display the value of the raw prefix arg."

(interactive "P")

(message "%s" arg))

Here are the results of calling display-prefix with various raw prefix arguments:

M-x display-prefix a nil

C-u M-x display-prefix a (4)

C-u C-u M-x display-prefix a (16)

C-u 3 M-x display-prefix a 3

M-3 M-x display-prefix a 3 ; (Same as C-u 3.)

C-u - M-x display-prefix a -

M-- M-x display-prefix a - ; (Same as C-u -.)

C-u - 7 M-x display-prefix a -7

M-- 7 M-x display-prefix a -7 ; (Same as C-u -7.)

Emacs uses two variables to store the prefix argument: prefix-arg and current-

prefix-arg. Commands such as universal-argument that set up prefix arguments for
other commands store them in prefix-arg. In contrast, current-prefix-arg conveys the
prefix argument to the current command, so setting it has no effect on the prefix arguments
for future commands.

Chapter 21: Command Loop 361

Normally, commands specify which representation to use for the prefix argument, either
numeric or raw, in the interactive specification. (See Section 21.2.1 [Using Interactive],
page 322.) Alternatively, functions may look at the value of the prefix argument directly in
the variable current-prefix-arg, but this is less clean.

[Function]prefix-numeric-value arg
This function returns the numeric meaning of a valid raw prefix argument value,
arg. The argument may be a symbol, a number, or a list. If it is nil, the value 1 is
returned; if it is -, the value −1 is returned; if it is a number, that number is returned;
if it is a list, the car of that list (which should be a number) is returned.

[Variable]current-prefix-arg
This variable holds the raw prefix argument for the current command. Commands
may examine it directly, but the usual method for accessing it is with (interactive

"P").

[Variable]prefix-arg
The value of this variable is the raw prefix argument for the next editing command.
Commands such as universal-argument that specify prefix arguments for the fol-
lowing command work by setting this variable.

[Variable]last-prefix-arg
The raw prefix argument value used by the previous command.

The following commands exist to set up prefix arguments for the following command.
Do not call them for any other reason.

[Command]universal-argument
This command reads input and specifies a prefix argument for the following command.
Don’t call this command yourself unless you know what you are doing.

[Command]digit-argument arg
This command adds to the prefix argument for the following command. The argument
arg is the raw prefix argument as it was before this command; it is used to compute
the updated prefix argument. Don’t call this command yourself unless you know what
you are doing.

[Command]negative-argument arg
This command adds to the numeric argument for the next command. The argument
arg is the raw prefix argument as it was before this command; its value is negated
to form the new prefix argument. Don’t call this command yourself unless you know
what you are doing.

21.13 Recursive Editing

The Emacs command loop is entered automatically when Emacs starts up. This top-level
invocation of the command loop never exits; it keeps running as long as Emacs does. Lisp
programs can also invoke the command loop. Since this makes more than one activation of
the command loop, we call it recursive editing. A recursive editing level has the effect of

Chapter 21: Command Loop 362

suspending whatever command invoked it and permitting the user to do arbitrary editing
before resuming that command.

The commands available during recursive editing are the same ones available in the
top-level editing loop and defined in the keymaps. Only a few special commands exit
the recursive editing level; the others return to the recursive editing level when they finish.
(The special commands for exiting are always available, but they do nothing when recursive
editing is not in progress.)

All command loops, including recursive ones, set up all-purpose error handlers so that
an error in a command run from the command loop will not exit the loop.

Minibuffer input is a special kind of recursive editing. It has a few special wrinkles, such
as enabling display of the minibuffer and the minibuffer window, but fewer than you might
suppose. Certain keys behave differently in the minibuffer, but that is only because of the
minibuffer’s local map; if you switch windows, you get the usual Emacs commands.

To invoke a recursive editing level, call the function recursive-edit. This function
contains the command loop; it also contains a call to catch with tag exit, which makes it
possible to exit the recursive editing level by throwing to exit (see Section 10.5.1 [Catch
and Throw], page 129). If you throw a value other than t, then recursive-edit returns
normally to the function that called it. The command C-M-c (exit-recursive-edit) does
this. Throwing a t value causes recursive-edit to quit, so that control returns to the
command loop one level up. This is called aborting, and is done by C-] (abort-recursive-
edit).

Most applications should not use recursive editing, except as part of using the minibuffer.
Usually it is more convenient for the user if you change the major mode of the current
buffer temporarily to a special major mode, which should have a command to go back to
the previous mode. (The e command in Rmail uses this technique.) Or, if you wish to give
the user different text to edit “recursively”, create and select a new buffer in a special mode.
In this mode, define a command to complete the processing and go back to the previous
buffer. (The m command in Rmail does this.)

Recursive edits are useful in debugging. You can insert a call to debug into a function
definition as a sort of breakpoint, so that you can look around when the function gets there.
debug invokes a recursive edit but also provides the other features of the debugger.

Recursive editing levels are also used when you type C-r in query-replace or use C-x

q (kbd-macro-query).

[Command]recursive-edit
This function invokes the editor command loop. It is called automatically by the ini-
tialization of Emacs, to let the user begin editing. When called from a Lisp program,
it enters a recursive editing level.

If the current buffer is not the same as the selected window’s buffer, recursive-edit
saves and restores the current buffer. Otherwise, if you switch buffers, the buffer you
switched to is current after recursive-edit returns.

In the following example, the function simple-rec first advances point one word,
then enters a recursive edit, printing out a message in the echo area. The user can
then do any editing desired, and then type C-M-c to exit and continue executing
simple-rec.

Chapter 21: Command Loop 363

(defun simple-rec ()

(forward-word 1)

(message "Recursive edit in progress")

(recursive-edit)

(forward-word 1))

⇒ simple-rec

(simple-rec)

⇒ nil

[Command]exit-recursive-edit
This function exits from the innermost recursive edit (including minibuffer input).
Its definition is effectively (throw ’exit nil).

[Command]abort-recursive-edit
This function aborts the command that requested the innermost recursive edit (includ-
ing minibuffer input), by signaling quit after exiting the recursive edit. Its definition
is effectively (throw ’exit t). See Section 21.11 [Quitting], page 358.

[Command]top-level
This function exits all recursive editing levels; it does not return a value, as it jumps
completely out of any computation directly back to the main command loop.

[Function]recursion-depth
This function returns the current depth of recursive edits. When no recursive edit is
active, it returns 0.

21.14 Disabling Commands

Disabling a command marks the command as requiring user confirmation before it can be
executed. Disabling is used for commands which might be confusing to beginning users, to
prevent them from using the commands by accident.

The low-level mechanism for disabling a command is to put a non-nil disabled property
on the Lisp symbol for the command. These properties are normally set up by the user’s
init file (see Section 39.1.2 [Init File], page 913) with Lisp expressions such as this:

(put ’upcase-region ’disabled t)

For a few commands, these properties are present by default (you can remove them in your
init file if you wish).

If the value of the disabled property is a string, the message saying the command is
disabled includes that string. For example:

(put ’delete-region ’disabled

"Text deleted this way cannot be yanked back!\n")

See Section “Disabling” in The GNU Emacs Manual, for the details on what happens
when a disabled command is invoked interactively. Disabling a command has no effect on
calling it as a function from Lisp programs.

[Command]enable-command command
Allow command (a symbol) to be executed without special confirmation from now
on, and alter the user’s init file (see Section 39.1.2 [Init File], page 913) so that this
will apply to future sessions.

Chapter 21: Command Loop 364

[Command]disable-command command
Require special confirmation to execute command from now on, and alter the user’s
init file so that this will apply to future sessions.

[Variable]disabled-command-function
The value of this variable should be a function. When the user invokes a disabled
command interactively, this function is called instead of the disabled command. It
can use this-command-keys to determine what the user typed to run the command,
and thus find the command itself.

The value may also be nil. Then all commands work normally, even disabled ones.

By default, the value is a function that asks the user whether to proceed.

21.15 Command History

The command loop keeps a history of the complex commands that have been executed, to
make it convenient to repeat these commands. A complex command is one for which the
interactive argument reading uses the minibuffer. This includes any M-x command, any M-:

command, and any command whose interactive specification reads an argument from the
minibuffer. Explicit use of the minibuffer during the execution of the command itself does
not cause the command to be considered complex.

[Variable]command-history
This variable’s value is a list of recent complex commands, each represented as a form
to evaluate. It continues to accumulate all complex commands for the duration of the
editing session, but when it reaches the maximum size (see Section 20.4 [Minibuffer
History], page 296), the oldest elements are deleted as new ones are added.

command-history

⇒ ((switch-to-buffer "chistory.texi")

(describe-key "^X^[")

(visit-tags-table "~/emacs/src/")

(find-tag "repeat-complex-command"))

This history list is actually a special case of minibuffer history (see Section 20.4 [Mini-
buffer History], page 296), with one special twist: the elements are expressions rather than
strings.

There are a number of commands devoted to the editing and recall of previous com-
mands. The commands repeat-complex-command, and list-command-history are de-
scribed in the user manual (see Section “Repetition” in The GNU Emacs Manual). Within
the minibuffer, the usual minibuffer history commands are available.

21.16 Keyboard Macros

A keyboard macro is a canned sequence of input events that can be considered a command
and made the definition of a key. The Lisp representation of a keyboard macro is a string
or vector containing the events. Don’t confuse keyboard macros with Lisp macros (see
Chapter 13 [Macros], page 188).

Chapter 21: Command Loop 365

[Function]execute-kbd-macro kbdmacro &optional count loopfunc
This function executes kbdmacro as a sequence of events. If kbdmacro is a string or
vector, then the events in it are executed exactly as if they had been input by the
user. The sequence is not expected to be a single key sequence; normally a keyboard
macro definition consists of several key sequences concatenated.

If kbdmacro is a symbol, then its function definition is used in place of kbdmacro. If
that is another symbol, this process repeats. Eventually the result should be a string
or vector. If the result is not a symbol, string, or vector, an error is signaled.

The argument count is a repeat count; kbdmacro is executed that many times. If
count is omitted or nil, kbdmacro is executed once. If it is 0, kbdmacro is executed
over and over until it encounters an error or a failing search.

If loopfunc is non-nil, it is a function that is called, without arguments, prior to
each iteration of the macro. If loopfunc returns nil, then this stops execution of the
macro.

See Section 21.8.2 [Reading One Event], page 351, for an example of using execute-

kbd-macro.

[Variable]executing-kbd-macro
This variable contains the string or vector that defines the keyboard macro that is
currently executing. It is nil if no macro is currently executing. A command can
test this variable so as to behave differently when run from an executing macro. Do
not set this variable yourself.

[Variable]defining-kbd-macro
This variable is non-nil if and only if a keyboard macro is being defined. A command
can test this variable so as to behave differently while a macro is being defined. The
value is append while appending to the definition of an existing macro. The commands
start-kbd-macro, kmacro-start-macro and end-kbd-macro set this variable—do
not set it yourself.

The variable is always local to the current terminal and cannot be buffer-local. See
Section 29.2 [Multiple Terminals], page 591.

[Variable]last-kbd-macro
This variable is the definition of the most recently defined keyboard macro. Its value
is a string or vector, or nil.

The variable is always local to the current terminal and cannot be buffer-local. See
Section 29.2 [Multiple Terminals], page 591.

[Variable]kbd-macro-termination-hook
This normal hook is run when a keyboard macro terminates, regardless of what caused
it to terminate (reaching the macro end or an error which ended the macro prema-
turely).

Chapter 22: Keymaps 366

22 Keymaps

The command bindings of input events are recorded in data structures called keymaps.
Each entry in a keymap associates (or binds) an individual event type, either to another
keymap or to a command. When an event type is bound to a keymap, that keymap is
used to look up the next input event; this continues until a command is found. The whole
process is called key lookup.

22.1 Key Sequences

A key sequence, or key for short, is a sequence of one or more input events that form a unit.
Input events include characters, function keys, mouse actions, or system events external to
Emacs, such as iconify-frame (see Section 21.7 [Input Events], page 333). The Emacs Lisp
representation for a key sequence is a string or vector. Unless otherwise stated, any Emacs
Lisp function that accepts a key sequence as an argument can handle both representations.

In the string representation, alphanumeric characters ordinarily stand for themselves;
for example, "a" represents a and "2" represents 2. Control character events are prefixed
by the substring "\C-", and meta characters by "\M-"; for example, "\C-x" represents
the key C-x. In addition, the TAB, RET, ESC, and DEL events are represented by "\t",
"\r", "\e", and "\d" respectively. The string representation of a complete key sequence
is the concatenation of the string representations of the constituent events; thus, "\C-xl"
represents the key sequence C-x l.

Key sequences containing function keys, mouse button events, system events, or non-
ASCII characters such as C-= or H-a cannot be represented as strings; they have to be
represented as vectors.

In the vector representation, each element of the vector represents an input event, in its
Lisp form. See Section 21.7 [Input Events], page 333. For example, the vector [?\C-x ?l]

represents the key sequence C-x l.

For examples of key sequences written in string and vector representations, Section “Init
Rebinding” in The GNU Emacs Manual.

[Function]kbd keyseq-text
This function converts the text keyseq-text (a string constant) into a key sequence
(a string or vector constant). The contents of keyseq-text should use the same syn-
tax as in the buffer invoked by the C-x C-k RET (kmacro-edit-macro) command; in
particular, you must surround function key names with ‘<...>’. See Section “Edit
Keyboard Macro” in The GNU Emacs Manual.

(kbd "C-x") ⇒ "\C-x"

(kbd "C-x C-f") ⇒ "\C-x\C-f"

(kbd "C-x 4 C-f") ⇒ "\C-x4\C-f"

(kbd "X") ⇒ "X"

(kbd "RET") ⇒ "\^M"

(kbd "C-c SPC") ⇒ "\C-c "

(kbd "<f1> SPC") ⇒ [f1 32]

(kbd "C-M-<down>") ⇒ [C-M-down]

Chapter 22: Keymaps 367

22.2 Keymap Basics

A keymap is a Lisp data structure that specifies key bindings for various key sequences.

A single keymap directly specifies definitions for individual events. When a key sequence
consists of a single event, its binding in a keymap is the keymap’s definition for that event.
The binding of a longer key sequence is found by an iterative process: first find the definition
of the first event (which must itself be a keymap); then find the second event’s definition in
that keymap, and so on until all the events in the key sequence have been processed.

If the binding of a key sequence is a keymap, we call the key sequence a prefix key.
Otherwise, we call it a complete key (because no more events can be added to it). If the
binding is nil, we call the key undefined. Examples of prefix keys are C-c, C-x, and C-x

4. Examples of defined complete keys are X, RET, and C-x 4 C-f. Examples of undefined
complete keys are C-x C-g, and C-c 3. See Section 22.6 [Prefix Keys], page 371, for more
details.

The rule for finding the binding of a key sequence assumes that the intermediate bindings
(found for the events before the last) are all keymaps; if this is not so, the sequence of events
does not form a unit—it is not really one key sequence. In other words, removing one or
more events from the end of any valid key sequence must always yield a prefix key. For
example, C-f C-n is not a key sequence; C-f is not a prefix key, so a longer sequence starting
with C-f cannot be a key sequence.

The set of possible multi-event key sequences depends on the bindings for prefix keys;
therefore, it can be different for different keymaps, and can change when bindings are
changed. However, a one-event sequence is always a key sequence, because it does not
depend on any prefix keys for its well-formedness.

At any time, several primary keymaps are active—that is, in use for finding key bindings.
These are the global map, which is shared by all buffers; the local keymap, which is usually
associated with a specific major mode; and zero or more minor mode keymaps, which belong
to currently enabled minor modes. (Not all minor modes have keymaps.) The local keymap
bindings shadow (i.e., take precedence over) the corresponding global bindings. The minor
mode keymaps shadow both local and global keymaps. See Section 22.7 [Active Keymaps],
page 373, for details.

22.3 Format of Keymaps

Each keymap is a list whose car is the symbol keymap. The remaining elements of the list
define the key bindings of the keymap. A symbol whose function definition is a keymap is
also a keymap. Use the function keymapp (see below) to test whether an object is a keymap.

Several kinds of elements may appear in a keymap, after the symbol keymap that begins
it:

(type . binding)

This specifies one binding, for events of type type. Each ordinary binding
applies to events of a particular event type, which is always a character or a
symbol. See Section 21.7.12 [Classifying Events], page 343. In this kind of
binding, binding is a command.

Chapter 22: Keymaps 368

(type item-name . binding)

This specifies a binding which is also a simple menu item that displays as item-
name in the menu. See Section 22.17.1.1 [Simple Menu Items], page 391.

(type item-name help-string . binding)

This is a simple menu item with help string help-string.

(type menu-item . details)

This specifies a binding which is also an extended menu item. This allows use
of other features. See Section 22.17.1.2 [Extended Menu Items], page 392.

(t . binding)

This specifies a default key binding ; any event not bound by other elements of
the keymap is given binding as its binding. Default bindings allow a keymap to
bind all possible event types without having to enumerate all of them. A keymap
that has a default binding completely masks any lower-precedence keymap,
except for events explicitly bound to nil (see below).

char-table

If an element of a keymap is a char-table, it counts as holding bindings for all
character events with no modifier bits (see [modifier bits], page 13): element n
is the binding for the character with code n. This is a compact way to record
lots of bindings. A keymap with such a char-table is called a full keymap. Other
keymaps are called sparse keymaps.

string Aside from elements that specify bindings for keys, a keymap can also have
a string as an element. This is called the overall prompt string and makes it
possible to use the keymap as a menu. See Section 22.17.1 [Defining Menus],
page 390.

(keymap ...)

If an element of a keymap is itself a keymap, it counts as if this inner keymap
were inlined in the outer keymap. This is used for multiple-inheritance, such
as in make-composed-keymap.

When the binding is nil, it doesn’t constitute a definition but it does take precedence
over a default binding or a binding in the parent keymap. On the other hand, a binding of
nil does not override lower-precedence keymaps; thus, if the local map gives a binding of
nil, Emacs uses the binding from the global map.

Keymaps do not directly record bindings for the meta characters. Instead, meta char-
acters are regarded for purposes of key lookup as sequences of two characters, the first of
which is ESC (or whatever is currently the value of meta-prefix-char). Thus, the key
M-a is internally represented as ESC a, and its global binding is found at the slot for a in
esc-map (see Section 22.6 [Prefix Keys], page 371).

This conversion applies only to characters, not to function keys or other input events;
thus, M-end has nothing to do with ESC end.

Here as an example is the local keymap for Lisp mode, a sparse keymap. It defines
bindings for DEL, C-c C-z, C-M-q, and C-M-x (the actual value also contains a menu binding,
which is omitted here for the sake of brevity).

Chapter 22: Keymaps 369

lisp-mode-map

⇒
(keymap

(3 keymap

;; C-c C-z

(26 . run-lisp))

(27 keymap

;; C-M-x, treated as ESC C-x

(24 . lisp-send-defun))

;; This part is inherited from lisp-mode-shared-map.
keymap

;; DEL

(127 . backward-delete-char-untabify)

(27 keymap

;; C-M-q, treated as ESC C-q

(17 . indent-sexp)))

[Function]keymapp object
This function returns t if object is a keymap, nil otherwise. More precisely, this
function tests for a list whose car is keymap, or for a symbol whose function definition
satisfies keymapp.

(keymapp ’(keymap))

⇒ t

(fset ’foo ’(keymap))

(keymapp ’foo)

⇒ t

(keymapp (current-global-map))

⇒ t

22.4 Creating Keymaps

Here we describe the functions for creating keymaps.

[Function]make-sparse-keymap &optional prompt
This function creates and returns a new sparse keymap with no entries. (A sparse
keymap is the kind of keymap you usually want.) The new keymap does not contain
a char-table, unlike make-keymap, and does not bind any events.

(make-sparse-keymap)

⇒ (keymap)

If you specify prompt, that becomes the overall prompt string for the keymap. You
should specify this only for menu keymaps (see Section 22.17.1 [Defining Menus],
page 390). A keymap with an overall prompt string will always present a mouse
menu or a keyboard menu if it is active for looking up the next input event. Don’t
specify an overall prompt string for the main map of a major or minor mode, because
that would cause the command loop to present a keyboard menu every time.

Chapter 22: Keymaps 370

[Function]make-keymap &optional prompt
This function creates and returns a new full keymap. That keymap contains a char-
table (see Section 6.6 [Char-Tables], page 94) with slots for all characters without
modifiers. The new keymap initially binds all these characters to nil, and does not
bind any other kind of event. The argument prompt specifies a prompt string, as in
make-sparse-keymap.

(make-keymap)

⇒ (keymap #^[nil nil keymap nil nil nil ...])

A full keymap is more efficient than a sparse keymap when it holds lots of bindings;
for just a few, the sparse keymap is better.

[Function]copy-keymap keymap
This function returns a copy of keymap. Any keymaps that appear directly as bindings
in keymap are also copied recursively, and so on to any number of levels. However,
recursive copying does not take place when the definition of a character is a symbol
whose function definition is a keymap; the same symbol appears in the new copy.

(setq map (copy-keymap (current-local-map)))

⇒ (keymap

;; (This implements meta characters.)
(27 keymap

(83 . center-paragraph)

(115 . center-line))

(9 . tab-to-tab-stop))

(eq map (current-local-map))

⇒ nil

(equal map (current-local-map))

⇒ t

22.5 Inheritance and Keymaps

A keymap can inherit the bindings of another keymap, which we call the parent keymap.
Such a keymap looks like this:

(keymap elements... . parent-keymap)

The effect is that this keymap inherits all the bindings of parent-keymap, whatever they
may be at the time a key is looked up, but can add to them or override them with elements.

If you change the bindings in parent-keymap using define-key or other key-binding
functions, these changed bindings are visible in the inheriting keymap, unless shadowed by
the bindings made by elements. The converse is not true: if you use define-key to change
bindings in the inheriting keymap, these changes are recorded in elements, but have no
effect on parent-keymap.

The proper way to construct a keymap with a parent is to use set-keymap-parent; if
you have code that directly constructs a keymap with a parent, please convert the program
to use set-keymap-parent instead.

Chapter 22: Keymaps 371

[Function]keymap-parent keymap
This returns the parent keymap of keymap. If keymap has no parent, keymap-parent
returns nil.

[Function]set-keymap-parent keymap parent
This sets the parent keymap of keymap to parent, and returns parent. If parent is
nil, this function gives keymap no parent at all.

If keymap has submaps (bindings for prefix keys), they too receive new parent
keymaps that reflect what parent specifies for those prefix keys.

Here is an example showing how to make a keymap that inherits from text-mode-map:

(let ((map (make-sparse-keymap)))

(set-keymap-parent map text-mode-map)

map)

A non-sparse keymap can have a parent too, but this is not very useful. A non-sparse
keymap always specifies something as the binding for every numeric character code without
modifier bits, even if it is nil, so these character’s bindings are never inherited from the
parent keymap.

Sometimes you want to make a keymap that inherits from more than one map. You can
use the function make-composed-keymap for this.

[Function]make-composed-keymap maps &optional parent
This function returns a new keymap composed of the existing keymap(s) maps, and
optionally inheriting from a parent keymap parent. maps can be a single keymap or
a list of more than one. When looking up a key in the resulting new map, Emacs
searches in each of the maps in turn, and then in parent, stopping at the first match.
A nil binding in any one of maps overrides any binding in parent, but it does not
override any non-nil binding in any other of the maps.

For example, here is how Emacs sets the parent of help-mode-map, such that it inherits
from both button-buffer-map and special-mode-map:

(defvar help-mode-map

(let ((map (make-sparse-keymap)))

(set-keymap-parent map

(make-composed-keymap button-buffer-map special-mode-map))

... map) ...)

22.6 Prefix Keys

A prefix key is a key sequence whose binding is a keymap. The keymap defines what to do
with key sequences that extend the prefix key. For example, C-x is a prefix key, and it uses
a keymap that is also stored in the variable ctl-x-map. This keymap defines bindings for
key sequences starting with C-x.

Some of the standard Emacs prefix keys use keymaps that are also found in Lisp variables:

• esc-map is the global keymap for the ESC prefix key. Thus, the global definitions of
all meta characters are actually found here. This map is also the function definition of
ESC-prefix.

Chapter 22: Keymaps 372

• help-map is the global keymap for the C-h prefix key.

• mode-specific-map is the global keymap for the prefix key C-c. This map is actually
global, not mode-specific, but its name provides useful information about C-c in the
output of C-h b (display-bindings), since the main use of this prefix key is for mode-
specific bindings.

• ctl-x-map is the global keymap used for the C-x prefix key. This map is found via the
function cell of the symbol Control-X-prefix.

• mule-keymap is the global keymap used for the C-x RET prefix key.

• ctl-x-4-map is the global keymap used for the C-x 4 prefix key.

• ctl-x-5-map is the global keymap used for the C-x 5 prefix key.

• 2C-mode-map is the global keymap used for the C-x 6 prefix key.

• vc-prefix-map is the global keymap used for the C-x v prefix key.

• goto-map is the global keymap used for the M-g prefix key.

• search-map is the global keymap used for the M-s prefix key.

• facemenu-keymap is the global keymap used for the M-o prefix key.

• The other Emacs prefix keys are C-x @, C-x a i, C-x ESC and ESC ESC. They use
keymaps that have no special names.

The keymap binding of a prefix key is used for looking up the event that follows the
prefix key. (It may instead be a symbol whose function definition is a keymap. The effect is
the same, but the symbol serves as a name for the prefix key.) Thus, the binding of C-x is
the symbol Control-X-prefix, whose function cell holds the keymap for C-x commands.
(The same keymap is also the value of ctl-x-map.)

Prefix key definitions can appear in any active keymap. The definitions of C-c, C-x, C-h
and ESC as prefix keys appear in the global map, so these prefix keys are always available.
Major and minor modes can redefine a key as a prefix by putting a prefix key definition for
it in the local map or the minor mode’s map. See Section 22.7 [Active Keymaps], page 373.

If a key is defined as a prefix in more than one active map, then its various definitions
are in effect merged: the commands defined in the minor mode keymaps come first, followed
by those in the local map’s prefix definition, and then by those from the global map.

In the following example, we make C-p a prefix key in the local keymap, in such a way
that C-p is identical to C-x. Then the binding for C-p C-f is the function find-file, just
like C-x C-f. The key sequence C-p 6 is not found in any active keymap.

(use-local-map (make-sparse-keymap))

⇒ nil

(local-set-key "\C-p" ctl-x-map)

⇒ nil

(key-binding "\C-p\C-f")

⇒ find-file

(key-binding "\C-p6")

⇒ nil

Chapter 22: Keymaps 373

[Function]define-prefix-command symbol &optional mapvar prompt
This function prepares symbol for use as a prefix key’s binding: it creates a sparse
keymap and stores it as symbol’s function definition. Subsequently binding a key
sequence to symbol will make that key sequence into a prefix key. The return value
is symbol.

This function also sets symbol as a variable, with the keymap as its value. But if
mapvar is non-nil, it sets mapvar as a variable instead.

If prompt is non-nil, that becomes the overall prompt string for the keymap. The
prompt string should be given for menu keymaps (see Section 22.17.1 [Defining
Menus], page 390).

22.7 Active Keymaps

Emacs normally contains many keymaps; at any given time, just a few of them are active,
meaning that they participate in the interpretation of user input. All the active keymaps
are used together to determine what command to execute when a key is entered.

Normally the active keymaps are the keymap property keymap, the keymaps of any
enabled minor modes, the current buffer’s local keymap, and the global keymap, in that
order. Emacs searches for each input key sequence in all these keymaps. See Section 22.8
[Searching Keymaps], page 374, for more details of this procedure.

When the key sequence starts with a mouse event, the active keymaps are determined
based on the position in that event. If the event happened on a string embedded with a
display, before-string, or after-string property (see Section 32.19.4 [Special Proper-
ties], page 685), the non-nil map properties of the string override those of the buffer (if
the underlying buffer text contains map properties in its text properties or overlays, they
are ignored).

The global keymap holds the bindings of keys that are defined regardless of the current
buffer, such as C-f. The variable global-map holds this keymap, which is always active.

Each buffer may have another keymap, its local keymap, which may contain new or
overriding definitions for keys. The current buffer’s local keymap is always active except
when overriding-local-map overrides it. The local-map text or overlay property can
specify an alternative local keymap for certain parts of the buffer; see Section 32.19.4
[Special Properties], page 685.

Each minor mode can have a keymap; if it does, the keymap is active when the minor
mode is enabled. Modes for emulation can specify additional active keymaps through the
variable emulation-mode-map-alists.

The highest precedence normal keymap comes from the keymap text or overlay property.
If that is non-nil, it is the first keymap to be processed, in normal circumstances. Next
comes any keymap added by the function set-temporary-overlay-map. See Section 22.9
[Controlling Active Maps], page 375.

However, there are also special ways for programs to substitute other keymaps for some
of those. The variable overriding-local-map, if non-nil, specifies a keymap that replaces
all the usual active keymaps except the global keymap. Another way to do this is with
overriding-terminal-local-map; it operates on a per-terminal basis. These variables are
documented below.

Chapter 22: Keymaps 374

Since every buffer that uses the same major mode normally uses the same local keymap,
you can think of the keymap as local to the mode. A change to the local keymap of a
buffer (using local-set-key, for example) is seen also in the other buffers that share that
keymap.

The local keymaps that are used for Lisp mode and some other major modes exist even
if they have not yet been used. These local keymaps are the values of variables such as
lisp-mode-map. For most major modes, which are less frequently used, the local keymap
is constructed only when the mode is used for the first time in a session.

The minibuffer has local keymaps, too; they contain various completion and exit com-
mands. See Section 20.1 [Intro to Minibuffers], page 291.

Emacs has other keymaps that are used in a different way—translating events within
read-key-sequence. See Section 22.14 [Translation Keymaps], page 385.

See Appendix G [Standard Keymaps], page 1007, for a list of some standard keymaps.

[Function]current-active-maps &optional olp position
This returns the list of active keymaps that would be used by the command loop in the
current circumstances to look up a key sequence. Normally it ignores overriding-
local-map and overriding-terminal-local-map, but if olp is non-nil then it pays
attention to them. position can optionally be either an event position as returned
by event-start or a buffer position, and may change the keymaps as described for
key-binding.

[Function]key-binding key &optional accept-defaults no-remap position
This function returns the binding for key according to the current active keymaps.
The result is nil if key is undefined in the keymaps.

The argument accept-defaults controls checking for default bindings, as in lookup-

key (see Section 22.11 [Functions for Key Lookup], page 379).

When commands are remapped (see Section 22.13 [Remapping Commands],
page 384), key-binding normally processes command remappings so as to return
the remapped command that will actually be executed. However, if no-remap is
non-nil, key-binding ignores remappings and returns the binding directly specified
for key.

If key starts with a mouse event (perhaps following a prefix event), the maps to
be consulted are determined based on the event’s position. Otherwise, they are de-
termined based on the value of point. However, you can override either of them
by specifying position. If position is non-nil, it should be either a buffer position
or an event position like the value of event-start. Then the maps consulted are
determined based on position.

An error is signaled if key is not a string or a vector.

(key-binding "\C-x\C-f")

⇒ find-file

22.8 Searching the Active Keymaps

After translation of event subsequences (see Section 22.14 [Translation Keymaps], page 385)
Emacs looks for them in the active keymaps. Here is a pseudo-Lisp description of the order
and conditions for searching them:

Chapter 22: Keymaps 375

(or (cond

(overriding-terminal-local-map

(find-in overriding-terminal-local-map))

(overriding-local-map

(find-in overriding-local-map))

((or (find-in (get-char-property (point) ’keymap))

(find-in temp-map)

(find-in-any emulation-mode-map-alists)

(find-in-any minor-mode-overriding-map-alist)

(find-in-any minor-mode-map-alist)

(if (get-text-property (point) ’local-map)

(find-in (get-char-property (point) ’local-map))

(find-in (current-local-map))))))

(find-in (current-global-map)))

find-in and find-in-any are pseudo functions that search in one keymap and in an alist of
keymaps, respectively. (Searching a single keymap for a binding is called key lookup; see
Section 22.10 [Key Lookup], page 378.) If the key sequence starts with a mouse event,
that event’s position is used instead of point and the current buffer. Mouse events on an
embedded string use non-nil text properties from that string instead of the buffer. temp-
map is a pseudo variable that represents the effect of a set-temporary-overlay-map call.

When a match is found (see Section 22.10 [Key Lookup], page 378), if the binding in the
keymap is a function, the search is over. However if the keymap entry is a symbol with a
value or a string, Emacs replaces the input key sequences with the variable’s value or the
string, and restarts the search of the active keymaps.

The function finally found might also be remapped. See Section 22.13 [Remapping
Commands], page 384.

22.9 Controlling the Active Keymaps

[Variable]global-map
This variable contains the default global keymap that maps Emacs keyboard input to
commands. The global keymap is normally this keymap. The default global keymap
is a full keymap that binds self-insert-command to all of the printing characters.

It is normal practice to change the bindings in the global keymap, but you should not
assign this variable any value other than the keymap it starts out with.

[Function]current-global-map
This function returns the current global keymap. This is the same as the value of
global-map unless you change one or the other. The return value is a reference, not
a copy; if you use define-key or other functions on it you will alter global bindings.

(current-global-map)

⇒ (keymap [set-mark-command beginning-of-line ...

delete-backward-char])

[Function]current-local-map
This function returns the current buffer’s local keymap, or nil if it has none. In
the following example, the keymap for the *scratch* buffer (using Lisp Interaction

Chapter 22: Keymaps 376

mode) is a sparse keymap in which the entry for ESC, ASCII code 27, is another sparse
keymap.

(current-local-map)

⇒ (keymap

(10 . eval-print-last-sexp)

(9 . lisp-indent-line)

(127 . backward-delete-char-untabify)

(27 keymap

(24 . eval-defun)

(17 . indent-sexp)))

current-local-map returns a reference to the local keymap, not a copy of it; if you use
define-key or other functions on it you will alter local bindings.

[Function]current-minor-mode-maps
This function returns a list of the keymaps of currently enabled minor modes.

[Function]use-global-map keymap
This function makes keymap the new current global keymap. It returns nil.

It is very unusual to change the global keymap.

[Function]use-local-map keymap
This function makes keymap the new local keymap of the current buffer. If keymap is
nil, then the buffer has no local keymap. use-local-map returns nil. Most major
mode commands use this function.

[Variable]minor-mode-map-alist
This variable is an alist describing keymaps that may or may not be active according
to the values of certain variables. Its elements look like this:

(variable . keymap)

The keymap keymap is active whenever variable has a non-nil value. Typically
variable is the variable that enables or disables a minor mode. See Section 23.3.2
[Keymaps and Minor Modes], page 423.

Note that elements of minor-mode-map-alist do not have the same structure as
elements of minor-mode-alist. The map must be the cdr of the element; a list with
the map as the second element will not do. The cdr can be either a keymap (a list)
or a symbol whose function definition is a keymap.

When more than one minor mode keymap is active, the earlier one in minor-mode-

map-alist takes priority. But you should design minor modes so that they don’t
interfere with each other. If you do this properly, the order will not matter.

See Section 23.3.2 [Keymaps and Minor Modes], page 423, for more information about
minor modes. See also minor-mode-key-binding (see Section 22.11 [Functions for
Key Lookup], page 379).

[Variable]minor-mode-overriding-map-alist
This variable allows major modes to override the key bindings for particular minor
modes. The elements of this alist look like the elements of minor-mode-map-alist:
(variable . keymap).

Chapter 22: Keymaps 377

If a variable appears as an element of minor-mode-overriding-map-alist, the map
specified by that element totally replaces any map specified for the same variable in
minor-mode-map-alist.

minor-mode-overriding-map-alist is automatically buffer-local in all buffers.

[Variable]overriding-local-map
If non-nil, this variable holds a keymap to use instead of the buffer’s local keymap,
any text property or overlay keymaps, and any minor mode keymaps. This keymap, if
specified, overrides all other maps that would have been active, except for the current
global map.

[Variable]overriding-terminal-local-map
If non-nil, this variable holds a keymap to use instead of overriding-local-map,
the buffer’s local keymap, text property or overlay keymaps, and all the minor mode
keymaps.

This variable is always local to the current terminal and cannot be buffer-local. See
Section 29.2 [Multiple Terminals], page 591. It is used to implement incremental
search mode.

[Variable]overriding-local-map-menu-flag
If this variable is non-nil, the value of overriding-local-map or overriding-

terminal-local-map can affect the display of the menu bar. The default value is
nil, so those map variables have no effect on the menu bar.

Note that these two map variables do affect the execution of key sequences entered
using the menu bar, even if they do not affect the menu bar display. So if a menu
bar key sequence comes in, you should clear the variables before looking up and
executing that key sequence. Modes that use the variables would typically do this
anyway; normally they respond to events that they do not handle by “unreading”
them and exiting.

[Variable]special-event-map
This variable holds a keymap for special events. If an event type has a binding in this
keymap, then it is special, and the binding for the event is run directly by read-event.
See Section 21.9 [Special Events], page 356.

[Variable]emulation-mode-map-alists
This variable holds a list of keymap alists to use for emulations modes. It is intended
for modes or packages using multiple minor-mode keymaps. Each element is a keymap
alist which has the same format and meaning as minor-mode-map-alist, or a symbol
with a variable binding which is such an alist. The “active” keymaps in each alist are
used before minor-mode-map-alist and minor-mode-overriding-map-alist.

[Function]set-temporary-overlay-map keymap &optional keep
This function adds keymap as a temporary keymap that takes precedence over most
other keymaps. It does not take precedence over the “overriding” maps (see above);
and unlike them, if no match for a key is found in keymap, the search continues.

Normally, keymap is used only once. If the optional argument pred is t, the map stays
active if a key from keymap is used. pred can also be a function of no arguments: if
it returns non-nil then keymap stays active.

Chapter 22: Keymaps 378

For a pseudo-Lisp description of exactly how and when this keymap applies, see
Section 22.8 [Searching Keymaps], page 374.

22.10 Key Lookup

Key lookup is the process of finding the binding of a key sequence from a given keymap.
The execution or use of the binding is not part of key lookup.

Key lookup uses just the event type of each event in the key sequence; the rest of the
event is ignored. In fact, a key sequence used for key lookup may designate a mouse event
with just its types (a symbol) instead of the entire event (a list). See Section 21.7 [Input
Events], page 333. Such a “key sequence” is insufficient for command-execute to run, but
it is sufficient for looking up or rebinding a key.

When the key sequence consists of multiple events, key lookup processes the events
sequentially: the binding of the first event is found, and must be a keymap; then the second
event’s binding is found in that keymap, and so on until all the events in the key sequence
are used up. (The binding thus found for the last event may or may not be a keymap.)
Thus, the process of key lookup is defined in terms of a simpler process for looking up a
single event in a keymap. How that is done depends on the type of object associated with
the event in that keymap.

Let’s use the term keymap entry to describe the value found by looking up an event type
in a keymap. (This doesn’t include the item string and other extra elements in a keymap
element for a menu item, because lookup-key and other key lookup functions don’t include
them in the returned value.) While any Lisp object may be stored in a keymap as a keymap
entry, not all make sense for key lookup. Here is a table of the meaningful types of keymap
entries:

nil nil means that the events used so far in the lookup form an undefined key.
When a keymap fails to mention an event type at all, and has no default binding,
that is equivalent to a binding of nil for that event type.

command The events used so far in the lookup form a complete key, and command is its
binding. See Section 12.1 [What Is a Function], page 169.

array The array (either a string or a vector) is a keyboard macro. The events used
so far in the lookup form a complete key, and the array is its binding. See
Section 21.16 [Keyboard Macros], page 364, for more information.

keymap The events used so far in the lookup form a prefix key. The next event of the
key sequence is looked up in keymap.

list The meaning of a list depends on what it contains:

• If the car of list is the symbol keymap, then the list is a keymap, and is
treated as a keymap (see above).

• If the car of list is lambda, then the list is a lambda expression. This is
presumed to be a function, and is treated as such (see above). In order
to execute properly as a key binding, this function must be a command—
it must have an interactive specification. See Section 21.2 [Defining
Commands], page 322.

Chapter 22: Keymaps 379

• If the car of list is a keymap and the cdr is an event type, then this is an
indirect entry :

(othermap . othertype)

When key lookup encounters an indirect entry, it looks up instead the
binding of othertype in othermap and uses that.

This feature permits you to define one key as an alias for another key. For
example, an entry whose car is the keymap called esc-map and whose
cdr is 32 (the code for SPC) means, “Use the global binding of Meta-SPC,
whatever that may be”.

symbol The function definition of symbol is used in place of symbol. If that too is a
symbol, then this process is repeated, any number of times. Ultimately this
should lead to an object that is a keymap, a command, or a keyboard macro.
A list is allowed if it is a keymap or a command, but indirect entries are not
understood when found via symbols.

Note that keymaps and keyboard macros (strings and vectors) are not valid
functions, so a symbol with a keymap, string, or vector as its function definition
is invalid as a function. It is, however, valid as a key binding. If the definition
is a keyboard macro, then the symbol is also valid as an argument to command-

execute (see Section 21.3 [Interactive Call], page 327).

The symbol undefined is worth special mention: it means to treat the key as
undefined. Strictly speaking, the key is defined, and its binding is the command
undefined; but that command does the same thing that is done automatically
for an undefined key: it rings the bell (by calling ding) but does not signal an
error.

undefined is used in local keymaps to override a global key binding and make
the key “undefined” locally. A local binding of nil would fail to do this because
it would not override the global binding.

anything else
If any other type of object is found, the events used so far in the lookup form
a complete key, and the object is its binding, but the binding is not executable
as a command.

In short, a keymap entry may be a keymap, a command, a keyboard macro, a symbol
that leads to one of them, or an indirection or nil.

22.11 Functions for Key Lookup

Here are the functions and variables pertaining to key lookup.

[Function]lookup-key keymap key &optional accept-defaults
This function returns the definition of key in keymap. All the other functions de-
scribed in this chapter that look up keys use lookup-key. Here are examples:

(lookup-key (current-global-map) "\C-x\C-f")

⇒ find-file

(lookup-key (current-global-map) (kbd "C-x C-f"))

⇒ find-file

Chapter 22: Keymaps 380

(lookup-key (current-global-map) "\C-x\C-f12345")

⇒ 2

If the string or vector key is not a valid key sequence according to the prefix keys
specified in keymap, it must be “too long” and have extra events at the end that do
not fit into a single key sequence. Then the value is a number, the number of events
at the front of key that compose a complete key.

If accept-defaults is non-nil, then lookup-key considers default bindings as well as
bindings for the specific events in key. Otherwise, lookup-key reports only bindings
for the specific sequence key, ignoring default bindings except when you explicitly ask
about them. (To do this, supply t as an element of key ; see Section 22.3 [Format of
Keymaps], page 367.)

If key contains a meta character (not a function key), that character is implicitly
replaced by a two-character sequence: the value of meta-prefix-char, followed by
the corresponding non-meta character. Thus, the first example below is handled by
conversion into the second example.

(lookup-key (current-global-map) "\M-f")

⇒ forward-word

(lookup-key (current-global-map) "\ef")

⇒ forward-word

Unlike read-key-sequence, this function does not modify the specified events in
ways that discard information (see Section 21.8.1 [Key Sequence Input], page 349).
In particular, it does not convert letters to lower case and it does not change drag
events to clicks.

[Command]undefined
Used in keymaps to undefine keys. It calls ding, but does not cause an error.

[Function]local-key-binding key &optional accept-defaults
This function returns the binding for key in the current local keymap, or nil if it is
undefined there.

The argument accept-defaults controls checking for default bindings, as in lookup-

key (above).

[Function]global-key-binding key &optional accept-defaults
This function returns the binding for command key in the current global keymap, or
nil if it is undefined there.

The argument accept-defaults controls checking for default bindings, as in lookup-

key (above).

[Function]minor-mode-key-binding key &optional accept-defaults
This function returns a list of all the active minor mode bindings of key. More
precisely, it returns an alist of pairs (modename . binding), where modename is the
variable that enables the minor mode, and binding is key ’s binding in that mode. If
key has no minor-mode bindings, the value is nil.

If the first binding found is not a prefix definition (a keymap or a symbol defined as
a keymap), all subsequent bindings from other minor modes are omitted, since they

Chapter 22: Keymaps 381

would be completely shadowed. Similarly, the list omits non-prefix bindings that
follow prefix bindings.

The argument accept-defaults controls checking for default bindings, as in lookup-

key (above).

[User Option]meta-prefix-char
This variable is the meta-prefix character code. It is used for translating a meta
character to a two-character sequence so it can be looked up in a keymap. For useful
results, the value should be a prefix event (see Section 22.6 [Prefix Keys], page 371).
The default value is 27, which is the ASCII code for ESC.

As long as the value of meta-prefix-char remains 27, key lookup translates M-b into
ESC b, which is normally defined as the backward-word command. However, if you
were to set meta-prefix-char to 24, the code for C-x, then Emacs will translate
M-b into C-x b, whose standard binding is the switch-to-buffer command. (Don’t
actually do this!) Here is an illustration of what would happen:

meta-prefix-char ; The default value.
⇒ 27

(key-binding "\M-b")
⇒ backward-word

?\C-x ; The print representation
⇒ 24 ; of a character.

(setq meta-prefix-char 24)
⇒ 24

(key-binding "\M-b")
⇒ switch-to-buffer ; Now, typing M-b is

; like typing C-x b.

(setq meta-prefix-char 27) ; Avoid confusion!
⇒ 27 ; Restore the default value!

This translation of one event into two happens only for characters, not for other kinds
of input events. Thus, M-F1, a function key, is not converted into ESC F1.

22.12 Changing Key Bindings

The way to rebind a key is to change its entry in a keymap. If you change a binding
in the global keymap, the change is effective in all buffers (though it has no direct effect
in buffers that shadow the global binding with a local one). If you change the current
buffer’s local map, that usually affects all buffers using the same major mode. The global-
set-key and local-set-key functions are convenient interfaces for these operations (see
Section 22.15 [Key Binding Commands], page 387). You can also use define-key, a more
general function; then you must explicitly specify the map to change.

When choosing the key sequences for Lisp programs to rebind, please follow the Emacs
conventions for use of various keys (see Section D.2 [Key Binding Conventions], page 971).

In writing the key sequence to rebind, it is good to use the special escape sequences for
control and meta characters (see Section 2.3.8 [String Type], page 18). The syntax ‘\C-’
means that the following character is a control character and ‘\M-’ means that the following
character is a meta character. Thus, the string "\M-x" is read as containing a single M-x,
"\C-f" is read as containing a single C-f, and "\M-\C-x" and "\C-\M-x" are both read
as containing a single C-M-x. You can also use this escape syntax in vectors, as well as

Chapter 22: Keymaps 382

others that aren’t allowed in strings; one example is ‘[?\C-\H-x home]’. See Section 2.3.3
[Character Type], page 10.

The key definition and lookup functions accept an alternate syntax for event types in
a key sequence that is a vector: you can use a list containing modifier names plus one
base event (a character or function key name). For example, (control ?a) is equivalent to
?\C-a and (hyper control left) is equivalent to C-H-left. One advantage of such lists
is that the precise numeric codes for the modifier bits don’t appear in compiled files.

The functions below signal an error if keymap is not a keymap, or if key is not a string
or vector representing a key sequence. You can use event types (symbols) as shorthand for
events that are lists. The kbd function (see Section 22.1 [Key Sequences], page 366) is a
convenient way to specify the key sequence.

[Function]define-key keymap key binding
This function sets the binding for key in keymap. (If key is more than one event long,
the change is actually made in another keymap reached from keymap.) The argument
binding can be any Lisp object, but only certain types are meaningful. (For a list of
meaningful types, see Section 22.10 [Key Lookup], page 378.) The value returned by
define-key is binding.

If key is [t], this sets the default binding in keymap. When an event has no binding
of its own, the Emacs command loop uses the keymap’s default binding, if there is
one.

Every prefix of key must be a prefix key (i.e., bound to a keymap) or undefined;
otherwise an error is signaled. If some prefix of key is undefined, then define-key

defines it as a prefix key so that the rest of key can be defined as specified.

If there was previously no binding for key in keymap, the new binding is added at
the beginning of keymap. The order of bindings in a keymap makes no difference
for keyboard input, but it does matter for menu keymaps (see Section 22.17 [Menu
Keymaps], page 390).

This example creates a sparse keymap and makes a number of bindings in it:

(setq map (make-sparse-keymap))
⇒ (keymap)

(define-key map "\C-f" ’forward-char)
⇒ forward-char

map
⇒ (keymap (6 . forward-char))

;; Build sparse submap for C-x and bind f in that.
(define-key map (kbd "C-x f") ’forward-word)

⇒ forward-word

map
⇒ (keymap

(24 keymap ; C-x

(102 . forward-word)) ; f

(6 . forward-char)) ; C-f

;; Bind C-p to the ctl-x-map.
(define-key map (kbd "C-p") ctl-x-map)

;; ctl-x-map
⇒ [nil ... find-file ... backward-kill-sentence]

Chapter 22: Keymaps 383

;; Bind C-f to foo in the ctl-x-map.
(define-key map (kbd "C-p C-f") ’foo)
⇒ ’foo

map
⇒ (keymap ; Note foo in ctl-x-map.

(16 keymap [nil ... foo ... backward-kill-sentence])

(24 keymap

(102 . forward-word))

(6 . forward-char))

Note that storing a new binding for C-p C-f actually works by changing an entry in ctl-

x-map, and this has the effect of changing the bindings of both C-p C-f and C-x C-f in the
default global map.

The function substitute-key-definition scans a keymap for keys that have a certain
binding and rebinds them with a different binding. Another feature which is cleaner and
can often produce the same results to remap one command into another (see Section 22.13
[Remapping Commands], page 384).

[Function]substitute-key-definition olddef newdef keymap &optional oldmap
This function replaces olddef with newdef for any keys in keymap that were bound
to olddef. In other words, olddef is replaced with newdef wherever it appears. The
function returns nil.

For example, this redefines C-x C-f, if you do it in an Emacs with standard bindings:
(substitute-key-definition

’find-file ’find-file-read-only (current-global-map))

If oldmap is non-nil, that changes the behavior of substitute-key-definition:
the bindings in oldmap determine which keys to rebind. The rebindings still happen
in keymap, not in oldmap. Thus, you can change one map under the control of the
bindings in another. For example,

(substitute-key-definition

’delete-backward-char ’my-funny-delete

my-map global-map)

puts the special deletion command in my-map for whichever keys are globally bound
to the standard deletion command.

Here is an example showing a keymap before and after substitution:
(setq map ’(keymap

(?1 . olddef-1)

(?2 . olddef-2)

(?3 . olddef-1)))
⇒ (keymap (49 . olddef-1) (50 . olddef-2) (51 . olddef-1))

(substitute-key-definition ’olddef-1 ’newdef map)
⇒ nil

map
⇒ (keymap (49 . newdef) (50 . olddef-2) (51 . newdef))

[Function]suppress-keymap keymap &optional nodigits
This function changes the contents of the full keymap keymap by remapping self-

insert-command to the command undefined (see Section 22.13 [Remapping Com-
mands], page 384). This has the effect of undefining all printing characters, thus
making ordinary insertion of text impossible. suppress-keymap returns nil.

Chapter 22: Keymaps 384

If nodigits is nil, then suppress-keymap defines digits to run digit-argument, and
- to run negative-argument. Otherwise it makes them undefined like the rest of the
printing characters.

The suppress-keymap function does not make it impossible to modify a buffer, as
it does not suppress commands such as yank and quoted-insert. To prevent any
modification of a buffer, make it read-only (see Section 27.7 [Read Only Buffers],
page 529).

Since this function modifies keymap, you would normally use it on a newly created
keymap. Operating on an existing keymap that is used for some other purpose is likely
to cause trouble; for example, suppressing global-map would make it impossible to
use most of Emacs.

This function can be used to initialize the local keymap of a major mode for which
insertion of text is not desirable. But usually such a mode should be derived from
special-mode (see Section 23.2.5 [Basic Major Modes], page 415); then its keymap
will automatically inherit from special-mode-map, which is already suppressed. Here
is how special-mode-map is defined:

(defvar special-mode-map

(let ((map (make-sparse-keymap)))

(suppress-keymap map)

(define-key map "q" ’quit-window)

...

map))

22.13 Remapping Commands

A special kind of key binding can be used to remap one command to another, without
having to refer to the key sequence(s) bound to the original command. To use this feature,
make a key binding for a key sequence that starts with the dummy event remap, followed by
the command name you want to remap; for the binding, specify the new definition (usually
a command name, but possibly any other valid definition for a key binding).

For example, suppose My mode provides a special command my-kill-line, which
should be invoked instead of kill-line. To establish this, its mode keymap should contain
the following remapping:

(define-key my-mode-map [remap kill-line] ’my-kill-line)

Then, whenever my-mode-map is active, if the user types C-k (the default global key sequence
for kill-line) Emacs will instead run my-kill-line.

Note that remapping only takes place through active keymaps; for example, putting a
remapping in a prefix keymap like ctl-x-map typically has no effect, as such keymaps are
not themselves active. In addition, remapping only works through a single level; in the
following example,

(define-key my-mode-map [remap kill-line] ’my-kill-line)

(define-key my-mode-map [remap my-kill-line] ’my-other-kill-line)

kill-line is not remapped to my-other-kill-line. Instead, if an ordinary key binding
specifies kill-line, it is remapped to my-kill-line; if an ordinary binding specifies my-
kill-line, it is remapped to my-other-kill-line.

To undo the remapping of a command, remap it to nil; e.g.,
(define-key my-mode-map [remap kill-line] nil)

Chapter 22: Keymaps 385

[Function]command-remapping command &optional position keymaps
This function returns the remapping for command (a symbol), given the current
active keymaps. If command is not remapped (which is the usual situation), or not a
symbol, the function returns nil. position can optionally specify a buffer position
or an event position to determine the keymaps to use, as in key-binding.

If the optional argument keymaps is non-nil, it specifies a list of keymaps to search
in. This argument is ignored if position is non-nil.

22.14 Keymaps for Translating Sequences of Events

This section describes keymaps that are used during reading a key sequence, to translate
certain event sequences into others. read-key-sequence checks every subsequence of the
key sequence being read, as it is read, against input-decode-map, then local-function-

key-map, and then against key-translation-map.

These keymaps have the same structure as other keymaps, but they are used differently:
they specify translations to make while reading key sequences, rather than bindings for key
sequences.

If one of these keymaps “binds” a key sequence k to a vector v, then when k appears as
a subsequence anywhere in a key sequence, it is replaced with the events in v.

For example, VT100 terminals send ESC O P when the keypad PF1 key is pressed. There-
fore, we want Emacs to translate that sequence of events into the single event pf1. We
accomplish this by “binding” ESC O P to [pf1] in input-decode-map, when using a VT100.

Thus, typing C-c PF1 sends the character sequence C-c ESC O P; later the function read-

key-sequence translates this back into C-c PF1, which it returns as the vector [?\C-c pf1].

[Variable]input-decode-map
This variable holds a keymap that describes the character sequences sent by function
keys on an ordinary character terminal.

The value of input-decode-map is usually set up automatically according to the
terminal’s Terminfo or Termcap entry, but sometimes those need help from terminal-
specific Lisp files. Emacs comes with terminal-specific files for many common termi-
nals; their main purpose is to make entries in input-decode-map beyond those that
can be deduced from Termcap and Terminfo. See Section 39.1.3 [Terminal-Specific],
page 914.

[Variable]local-function-key-map
This variable holds a keymap similar to input-decode-map except that it describes
key sequences which should be translated to alternative interpretations that are usu-
ally preferred. It applies after input-decode-map and before key-translation-map.

Entries in local-function-key-map are ignored if they conflict with bindings made
in the minor mode, local, or global keymaps. I.e., the remapping only applies if the
original key sequence would otherwise not have any binding.

local-function-key-map inherits from function-key-map, but the latter should
not be used directly.

Chapter 22: Keymaps 386

[Variable]key-translation-map
This variable is another keymap used just like input-decode-map to translate input
events into other events. It differs from input-decode-map in that it goes to work
after local-function-key-map is finished rather than before; it receives the results
of translation by local-function-key-map.

Just like input-decode-map, but unlike local-function-key-map, this keymap is
applied regardless of whether the input key-sequence has a normal binding. Note
however that actual key bindings can have an effect on key-translation-map, even
though they are overridden by it. Indeed, actual key bindings override local-

function-key-map and thus may alter the key sequence that key-translation-map
receives. Clearly, it is better to avoid this type of situation.

The intent of key-translation-map is for users to map one character set to another,
including ordinary characters normally bound to self-insert-command.

You can use input-decode-map, local-function-key-map, and key-translation-map

for more than simple aliases, by using a function, instead of a key sequence, as the “trans-
lation” of a key. Then this function is called to compute the translation of that key.

The key translation function receives one argument, which is the prompt that was speci-
fied in read-key-sequence—or nil if the key sequence is being read by the editor command
loop. In most cases you can ignore the prompt value.

If the function reads input itself, it can have the effect of altering the event that follows.
For example, here’s how to define C-c h to turn the character that follows into a Hyper
character:

(defun hyperify (prompt)

(let ((e (read-event)))

(vector (if (numberp e)

(logior (lsh 1 24) e)

(if (memq ’hyper (event-modifiers e))

e

(add-event-modifier "H-" e))))))

(defun add-event-modifier (string e)

(let ((symbol (if (symbolp e) e (car e))))

(setq symbol (intern (concat string

(symbol-name symbol))))

(if (symbolp e)

symbol

(cons symbol (cdr e)))))

(define-key local-function-key-map "\C-ch" ’hyperify)

If you have enabled keyboard character set decoding using set-keyboard-coding-

system, decoding is done before the translations listed above. See Section 33.9.8 [Terminal
I/O Encoding], page 728.

Chapter 22: Keymaps 387

22.14.1 Interaction with normal keymaps

The end of a key sequence is detected when that key sequence either is bound to a command,
or when Emacs determines that no additional event can lead to a sequence that is bound
to a command.

This means that, while input-decode-map and key-translation-map apply regardless
of whether the original key sequence would have a binding, the presence of such a binding
can still prevent translation from taking place. For example, let us return to our VT100
example above and add a binding for C-c ESC to the global map; now when the user hits
C-c PF1 Emacs will fail to decode C-c ESC O P into C-c PF1 because it will stop reading
keys right after C-x ESC, leaving O P for later. This is in case the user really hit C-c ESC, in
which case Emacs should not sit there waiting for the next key to decide whether the user
really pressed ESC or PF1.

For that reason, it is better to avoid binding commands to key sequences where the end of
the key sequence is a prefix of a key translation. The main such problematic suffixes/prefixes
are ESC, M-O (which is really ESC O) and M-[(which is really ESC [).

22.15 Commands for Binding Keys

This section describes some convenient interactive interfaces for changing key bindings.
They work by calling define-key.

People often use global-set-key in their init files (see Section 39.1.2 [Init File],
page 913) for simple customization. For example,

(global-set-key (kbd "C-x C-\\") ’next-line)

or
(global-set-key [?\C-x ?\C-\\] ’next-line)

or
(global-set-key [(control ?x) (control ?\\)] ’next-line)

redefines C-x C-\ to move down a line.
(global-set-key [M-mouse-1] ’mouse-set-point)

redefines the first (leftmost) mouse button, entered with the Meta key, to set point where
you click.

Be careful when using non-ASCII text characters in Lisp specifications of keys to bind.
If these are read as multibyte text, as they usually will be in a Lisp file (see Section 15.4
[Loading Non-ASCII], page 219), you must type the keys as multibyte too. For instance, if
you use this:

(global-set-key "ö" ’my-function) ; bind o-umlaut

or
(global-set-key ?ö ’my-function) ; bind o-umlaut

and your language environment is multibyte Latin-1, these commands actually bind the
multibyte character with code 246, not the byte code 246 (M-v) sent by a Latin-1 terminal.
In order to use this binding, you need to teach Emacs how to decode the keyboard by using
an appropriate input method (see Section “Input Methods” in The GNU Emacs Manual).

[Command]global-set-key key binding
This function sets the binding of key in the current global map to binding.

Chapter 22: Keymaps 388

(global-set-key key binding)

≡
(define-key (current-global-map) key binding)

[Command]global-unset-key key
This function removes the binding of key from the current global map.

One use of this function is in preparation for defining a longer key that uses key as a
prefix—which would not be allowed if key has a non-prefix binding. For example:

(global-unset-key "\C-l")
⇒ nil

(global-set-key "\C-l\C-l" ’redraw-display)
⇒ nil

This function is equivalent to using define-key as follows:

(global-unset-key key)

≡
(define-key (current-global-map) key nil)

[Command]local-set-key key binding
This function sets the binding of key in the current local keymap to binding.

(local-set-key key binding)

≡
(define-key (current-local-map) key binding)

[Command]local-unset-key key
This function removes the binding of key from the current local map.

(local-unset-key key)

≡
(define-key (current-local-map) key nil)

22.16 Scanning Keymaps

This section describes functions used to scan all the current keymaps for the sake of printing
help information.

[Function]accessible-keymaps keymap &optional prefix
This function returns a list of all the keymaps that can be reached (via zero or more
prefix keys) from keymap. The value is an association list with elements of the form
(key . map), where key is a prefix key whose definition in keymap is map.

The elements of the alist are ordered so that the key increases in length. The first
element is always ([] . keymap), because the specified keymap is accessible from
itself with a prefix of no events.

If prefix is given, it should be a prefix key sequence; then accessible-keymaps

includes only the submaps whose prefixes start with prefix. These elements look just
as they do in the value of (accessible-keymaps); the only difference is that some
elements are omitted.

In the example below, the returned alist indicates that the key ESC, which is displayed
as ‘^[’, is a prefix key whose definition is the sparse keymap (keymap (83 . center-

paragraph) (115 . foo)).

Chapter 22: Keymaps 389

(accessible-keymaps (current-local-map))
⇒(([] keymap

(27 keymap ; Note this keymap for ESC is repeated below.
(83 . center-paragraph)

(115 . center-line))

(9 . tab-to-tab-stop))

("^[" keymap

(83 . center-paragraph)

(115 . foo)))

In the following example, C-h is a prefix key that uses a sparse keymap starting with
(keymap (118 . describe-variable)...). Another prefix, C-x 4, uses a keymap
which is also the value of the variable ctl-x-4-map. The event mode-line is one of
several dummy events used as prefixes for mouse actions in special parts of a window.

(accessible-keymaps (current-global-map))
⇒ (([] keymap [set-mark-command beginning-of-line ...

delete-backward-char])

("^H" keymap (118 . describe-variable) ...

(8 . help-for-help))

("^X" keymap [x-flush-mouse-queue ...

backward-kill-sentence])

("^[" keymap [mark-sexp backward-sexp ...

backward-kill-word])

("^X4" keymap (15 . display-buffer) ...)

([mode-line] keymap

(S-mouse-2 . mouse-split-window-horizontally) ...))

These are not all the keymaps you would see in actuality.

[Function]map-keymap function keymap
The function map-keymap calls function once for each binding in keymap. It passes
two arguments, the event type and the value of the binding. If keymap has a parent,
the parent’s bindings are included as well. This works recursively: if the parent has
itself a parent, then the grandparent’s bindings are also included and so on.

This function is the cleanest way to examine all the bindings in a keymap.

[Function]where-is-internal command &optional keymap firstonly noindirect
no-remap

This function is a subroutine used by the where-is command (see Section “Help” in
The GNU Emacs Manual). It returns a list of all key sequences (of any length) that
are bound to command in a set of keymaps.

The argument command can be any object; it is compared with all keymap entries
using eq.

If keymap is nil, then the maps used are the current active keymaps, disregarding
overriding-local-map (that is, pretending its value is nil). If keymap is a keymap,
then the maps searched are keymap and the global keymap. If keymap is a list of
keymaps, only those keymaps are searched.

Usually it’s best to use overriding-local-map as the expression for keymap. Then
where-is-internal searches precisely the keymaps that are active. To search only
the global map, pass the value (keymap) (an empty keymap) as keymap.

Chapter 22: Keymaps 390

If firstonly is non-ascii, then the value is a single vector representing the first key
sequence found, rather than a list of all possible key sequences. If firstonly is t, then
the value is the first key sequence, except that key sequences consisting entirely of
ASCII characters (or meta variants of ASCII characters) are preferred to all other key
sequences and that the return value can never be a menu binding.

If noindirect is non-nil, where-is-internal doesn’t follow indirect keymap bindings.
This makes it possible to search for an indirect definition itself.

The fifth argument, no-remap, determines how this function treats command remap-
pings (see Section 22.13 [Remapping Commands], page 384). There are two cases of
interest:

If a command other-command is remapped to command:
If no-remap is nil, find the bindings for other-command and treat them
as though they are also bindings for command. If no-remap is non-nil,
include the vector [remap other-command] in the list of possible key
sequences, instead of finding those bindings.

If command is remapped to other-command:
If no-remap is nil, return the bindings for other-command rather than
command. If no-remap is non-nil, return the bindings for command,
ignoring the fact that it is remapped.

[Command]describe-bindings &optional prefix buffer-or-name
This function creates a listing of all current key bindings, and displays it in a buffer
named *Help*. The text is grouped by modes—minor modes first, then the major
mode, then global bindings.

If prefix is non-nil, it should be a prefix key; then the listing includes only keys that
start with prefix.

When several characters with consecutive ASCII codes have the same definition, they
are shown together, as ‘firstchar..lastchar’. In this instance, you need to know
the ASCII codes to understand which characters this means. For example, in the
default global map, the characters ‘SPC .. ~’ are described by a single line. SPC is
ASCII 32, ~ is ASCII 126, and the characters between them include all the normal
printing characters, (e.g., letters, digits, punctuation, etc.); all these characters are
bound to self-insert-command.

If buffer-or-name is non-nil, it should be a buffer or a buffer name. Then describe-

bindings lists that buffer’s bindings, instead of the current buffer’s.

22.17 Menu Keymaps

A keymap can operate as a menu as well as defining bindings for keyboard keys and mouse
buttons. Menus are usually actuated with the mouse, but they can function with the
keyboard also. If a menu keymap is active for the next input event, that activates the
keyboard menu feature.

22.17.1 Defining Menus

A keymap acts as a menu if it has an overall prompt string, which is a string that appears
as an element of the keymap. (See Section 22.3 [Format of Keymaps], page 367.) The string

Chapter 22: Keymaps 391

should describe the purpose of the menu’s commands. Emacs displays the overall prompt
string as the menu title in some cases, depending on the toolkit (if any) used for displaying
menus.1 Keyboard menus also display the overall prompt string.

The easiest way to construct a keymap with a prompt string is to specify the string
as an argument when you call make-keymap, make-sparse-keymap (see Section 22.4 [Cre-
ating Keymaps], page 369), or define-prefix-command (see [Definition of define-prefix-
command], page 373). If you do not want the keymap to operate as a menu, don’t specify
a prompt string for it.

[Function]keymap-prompt keymap
This function returns the overall prompt string of keymap, or nil if it has none.

The menu’s items are the bindings in the keymap. Each binding associates an event type
to a definition, but the event types have no significance for the menu appearance. (Usually
we use pseudo-events, symbols that the keyboard cannot generate, as the event types for
menu item bindings.) The menu is generated entirely from the bindings that correspond in
the keymap to these events.

The order of items in the menu is the same as the order of bindings in the keymap. Since
define-key puts new bindings at the front, you should define the menu items starting at the
bottom of the menu and moving to the top, if you care about the order. When you add an
item to an existing menu, you can specify its position in the menu using define-key-after
(see Section 22.17.7 [Modifying Menus], page 401).

22.17.1.1 Simple Menu Items

The simpler (and original) way to define a menu item is to bind some event type (it doesn’t
matter what event type) to a binding like this:

(item-string . real-binding)

The car, item-string, is the string to be displayed in the menu. It should be short—
preferably one to three words. It should describe the action of the command it corresponds
to. Note that not all graphical toolkits can display non-ASCII text in menus (it will work
for keyboard menus and will work to a large extent with the GTK+ toolkit).

You can also supply a second string, called the help string, as follows:

(item-string help . real-binding)

help specifies a “help-echo” string to display while the mouse is on that item in the same
way as help-echo text properties (see [Help display], page 690).

As far as define-key is concerned, item-string and help-string are part of the event’s
binding. However, lookup-key returns just real-binding, and only real-binding is used for
executing the key.

If real-binding is nil, then item-string appears in the menu but cannot be selected.

If real-binding is a symbol and has a non-nil menu-enable property, that property is
an expression that controls whether the menu item is enabled. Every time the keymap is
used to display a menu, Emacs evaluates the expression, and it enables the menu item only
if the expression’s value is non-nil. When a menu item is disabled, it is displayed in a
“fuzzy” fashion, and cannot be selected.

1 It is required for menus which do not use a toolkit, e.g., under MS-DOS.

Chapter 22: Keymaps 392

The menu bar does not recalculate which items are enabled every time you look at a
menu. This is because the X toolkit requires the whole tree of menus in advance. To force
recalculation of the menu bar, call force-mode-line-update (see Section 23.4 [Mode Line
Format], page 426).

22.17.1.2 Extended Menu Items

An extended-format menu item is a more flexible and also cleaner alternative to the simple
format. You define an event type with a binding that’s a list starting with the symbol
menu-item. For a non-selectable string, the binding looks like this:

(menu-item item-name)

A string starting with two or more dashes specifies a separator line; see Section 22.17.1.3
[Menu Separators], page 393.

To define a real menu item which can be selected, the extended format binding looks
like this:

(menu-item item-name real-binding

. item-property-list)

Here, item-name is an expression which evaluates to the menu item string. Thus, the string
need not be a constant. The third element, real-binding, is the command to execute. The
tail of the list, item-property-list, has the form of a property list which contains other
information.

Here is a table of the properties that are supported:

:enable form

The result of evaluating form determines whether the item is enabled (non-nil
means yes). If the item is not enabled, you can’t really click on it.

:visible form

The result of evaluating form determines whether the item should actually
appear in the menu (non-nil means yes). If the item does not appear, then the
menu is displayed as if this item were not defined at all.

:help help

The value of this property, help, specifies a “help-echo” string to display while
the mouse is on that item. This is displayed in the same way as help-echo text
properties (see [Help display], page 690). Note that this must be a constant
string, unlike the help-echo property for text and overlays.

:button (type . selected)

This property provides a way to define radio buttons and toggle buttons. The
car, type, says which: it should be :toggle or :radio. The cdr, selected,
should be a form; the result of evaluating it says whether this button is currently
selected.

A toggle is a menu item which is labeled as either “on” or “off” according to
the value of selected. The command itself should toggle selected, setting it to
t if it is nil, and to nil if it is t. Here is how the menu item to toggle the
debug-on-error flag is defined:

Chapter 22: Keymaps 393

(menu-item "Debug on Error" toggle-debug-on-error

:button (:toggle

. (and (boundp ’debug-on-error)

debug-on-error)))

This works because toggle-debug-on-error is defined as a command which
toggles the variable debug-on-error.

Radio buttons are a group of menu items, in which at any time one and only
one is “selected”. There should be a variable whose value says which one is
selected at any time. The selected form for each radio button in the group
should check whether the variable has the right value for selecting that button.
Clicking on the button should set the variable so that the button you clicked
on becomes selected.

:key-sequence key-sequence

This property specifies which key sequence is likely to be bound to the same
command invoked by this menu item. If you specify the right key sequence,
that makes preparing the menu for display run much faster.

If you specify the wrong key sequence, it has no effect; before Emacs displays
key-sequence in the menu, it verifies that key-sequence is really equivalent to
this menu item.

:key-sequence nil

This property indicates that there is normally no key binding which is equivalent
to this menu item. Using this property saves time in preparing the menu for
display, because Emacs does not need to search the keymaps for a keyboard
equivalent for this menu item.

However, if the user has rebound this item’s definition to a key sequence, Emacs
ignores the :keys property and finds the keyboard equivalent anyway.

:keys string

This property specifies that string is the string to display as the keyboard equiv-
alent for this menu item. You can use the ‘\\[...]’ documentation construct
in string.

:filter filter-fn

This property provides a way to compute the menu item dynamically. The
property value filter-fn should be a function of one argument; when it is called,
its argument will be real-binding. The function should return the binding to
use instead.

Emacs can call this function at any time that it does redisplay or operates on
menu data structures, so you should write it so it can safely be called at any
time.

22.17.1.3 Menu Separators

A menu separator is a kind of menu item that doesn’t display any text—instead, it divides
the menu into subparts with a horizontal line. A separator looks like this in the menu
keymap:

Chapter 22: Keymaps 394

(menu-item separator-type)

where separator-type is a string starting with two or more dashes.

In the simplest case, separator-type consists of only dashes. That specifies the default
kind of separator. (For compatibility, "" and - also count as separators.)

Certain other values of separator-type specify a different style of separator. Here is a
table of them:

"--no-line"

"--space"

An extra vertical space, with no actual line.

"--single-line"

A single line in the menu’s foreground color.

"--double-line"

A double line in the menu’s foreground color.

"--single-dashed-line"

A single dashed line in the menu’s foreground color.

"--double-dashed-line"

A double dashed line in the menu’s foreground color.

"--shadow-etched-in"

A single line with a 3D sunken appearance. This is the default, used separators
consisting of dashes only.

"--shadow-etched-out"

A single line with a 3D raised appearance.

"--shadow-etched-in-dash"

A single dashed line with a 3D sunken appearance.

"--shadow-etched-out-dash"

A single dashed line with a 3D raised appearance.

"--shadow-double-etched-in"

Two lines with a 3D sunken appearance.

"--shadow-double-etched-out"

Two lines with a 3D raised appearance.

"--shadow-double-etched-in-dash"

Two dashed lines with a 3D sunken appearance.

"--shadow-double-etched-out-dash"

Two dashed lines with a 3D raised appearance.

You can also give these names in another style, adding a colon after the double-dash
and replacing each single dash with capitalization of the following word. Thus,
"--:singleLine", is equivalent to "--single-line".

You can use a longer form to specify keywords such as :enable and :visible for a
menu separator:

(menu-item separator-type nil . item-property-list)

For example:

Chapter 22: Keymaps 395

(menu-item "--" nil :visible (boundp ’foo))

Some systems and display toolkits don’t really handle all of these separator types. If
you use a type that isn’t supported, the menu displays a similar kind of separator that is
supported.

22.17.1.4 Alias Menu Items

Sometimes it is useful to make menu items that use the “same” command but with different
enable conditions. The best way to do this in Emacs now is with extended menu items;
before that feature existed, it could be done by defining alias commands and using them in
menu items. Here’s an example that makes two aliases for read-only-mode and gives them
different enable conditions:

(defalias ’make-read-only ’read-only-mode)

(put ’make-read-only ’menu-enable ’(not buffer-read-only))

(defalias ’make-writable ’read-only-mode)

(put ’make-writable ’menu-enable ’buffer-read-only)

When using aliases in menus, often it is useful to display the equivalent key bindings
for the “real” command name, not the aliases (which typically don’t have any key bindings
except for the menu itself). To request this, give the alias symbol a non-nil menu-alias

property. Thus,

(put ’make-read-only ’menu-alias t)

(put ’make-writable ’menu-alias t)

causes menu items for make-read-only and make-writable to show the keyboard bindings
for read-only-mode.

22.17.2 Menus and the Mouse

The usual way to make a menu keymap produce a menu is to make it the definition of a
prefix key. (A Lisp program can explicitly pop up a menu and receive the user’s choice—see
Section 29.15 [Pop-Up Menus], page 612.)

If the prefix key ends with a mouse event, Emacs handles the menu keymap by popping
up a visible menu, so that the user can select a choice with the mouse. When the user clicks
on a menu item, the event generated is whatever character or symbol has the binding that
brought about that menu item. (A menu item may generate a series of events if the menu
has multiple levels or comes from the menu bar.)

It’s often best to use a button-down event to trigger the menu. Then the user can select
a menu item by releasing the button.

If the menu keymap contains a binding to a nested keymap, the nested keymap specifies
a submenu. There will be a menu item, labeled by the nested keymap’s item string, and
clicking on this item automatically pops up the specified submenu. As a special exception,
if the menu keymap contains a single nested keymap and no other menu items, the menu
shows the contents of the nested keymap directly, not as a submenu.

However, if Emacs is compiled without X toolkit support, submenus are not supported.
Each nested keymap is shown as a menu item, but clicking on it does not automatically
pop up the submenu. If you wish to imitate the effect of submenus, you can do that by
giving a nested keymap an item string which starts with ‘@’. This causes Emacs to display
the nested keymap using a separate menu pane; the rest of the item string after the ‘@’ is

Chapter 22: Keymaps 396

the pane label. If Emacs is compiled without X toolkit support, menu panes are not used;
in that case, a ‘@’ at the beginning of an item string is omitted when the menu label is
displayed, and has no other effect.

22.17.3 Menus and the Keyboard

When a prefix key ending with a keyboard event (a character or function key) has a definition
that is a menu keymap, the keymap operates as a keyboard menu; the user specifies the
next event by choosing a menu item with the keyboard.

Emacs displays the keyboard menu with the map’s overall prompt string, followed by
the alternatives (the item strings of the map’s bindings), in the echo area. If the bindings
don’t all fit at once, the user can type SPC to see the next line of alternatives. Successive
uses of SPC eventually get to the end of the menu and then cycle around to the beginning.
(The variable menu-prompt-more-char specifies which character is used for this; SPC is the
default.)

When the user has found the desired alternative from the menu, he or she should type
the corresponding character—the one whose binding is that alternative.

[Variable]menu-prompt-more-char
This variable specifies the character to use to ask to see the next line of a menu. Its
initial value is 32, the code for SPC.

22.17.4 Menu Example

Here is a complete example of defining a menu keymap. It is the definition of the ‘Replace’
submenu in the ‘Edit’ menu in the menu bar, and it uses the extended menu item format
(see Section 22.17.1.2 [Extended Menu Items], page 392). First we create the keymap, and
give it a name:

(defvar menu-bar-replace-menu (make-sparse-keymap "Replace"))

Next we define the menu items:

(define-key menu-bar-replace-menu [tags-repl-continue]

’(menu-item "Continue Replace" tags-loop-continue

:help "Continue last tags replace operation"))

(define-key menu-bar-replace-menu [tags-repl]

’(menu-item "Replace in tagged files" tags-query-replace

:help "Interactively replace a regexp in all tagged files"))

(define-key menu-bar-replace-menu [separator-replace-tags]

’(menu-item "--"))

;; . . .

Note the symbols which the bindings are “made for”; these appear inside square brackets,
in the key sequence being defined. In some cases, this symbol is the same as the command
name; sometimes it is different. These symbols are treated as “function keys”, but they are
not real function keys on the keyboard. They do not affect the functioning of the menu
itself, but they are “echoed” in the echo area when the user selects from the menu, and
they appear in the output of where-is and apropos.

The menu in this example is intended for use with the mouse. If a menu is intended
for use with the keyboard, that is, if it is bound to a key sequence ending with a keyboard
event, then the menu items should be bound to characters or “real” function keys, that can
be typed with the keyboard.

Chapter 22: Keymaps 397

The binding whose definition is ("--") is a separator line. Like a real menu item, the
separator has a key symbol, in this case separator-replace-tags. If one menu has two
separators, they must have two different key symbols.

Here is how we make this menu appear as an item in the parent menu:

(define-key menu-bar-edit-menu [replace]

(list ’menu-item "Replace" menu-bar-replace-menu))

Note that this incorporates the submenu keymap, which is the value of the variable menu-

bar-replace-menu, rather than the symbol menu-bar-replace-menu itself. Using that
symbol in the parent menu item would be meaningless because menu-bar-replace-menu is
not a command.

If you wanted to attach the same replace menu to a mouse click, you can do it this way:

(define-key global-map [C-S-down-mouse-1]

menu-bar-replace-menu)

22.17.5 The Menu Bar

On graphical displays, there is usually a menu bar at the top of each frame. See Section
“Menu Bars” in The GNU Emacs Manual. Menu bar items are subcommands of the fake
“function key” menu-bar, as defined in the active keymaps.

To add an item to the menu bar, invent a fake “function key” of your own (let’s call it
key), and make a binding for the key sequence [menu-bar key]. Most often, the binding
is a menu keymap, so that pressing a button on the menu bar item leads to another menu.

When more than one active keymap defines the same “function key” for the menu bar,
the item appears just once. If the user clicks on that menu bar item, it brings up a single,
combined menu containing all the subcommands of that item—the global subcommands,
the local subcommands, and the minor mode subcommands.

The variable overriding-local-map is normally ignored when determining the menu
bar contents. That is, the menu bar is computed from the keymaps that would be active if
overriding-local-map were nil. See Section 22.7 [Active Keymaps], page 373.

Here’s an example of setting up a menu bar item:

;; Make a menu keymap (with a prompt string)
;; and make it the menu bar item’s definition.
(define-key global-map [menu-bar words]

(cons "Words" (make-sparse-keymap "Words")))

;; Define specific subcommands in this menu.
(define-key global-map

[menu-bar words forward]

’("Forward word" . forward-word))

(define-key global-map

[menu-bar words backward]

’("Backward word" . backward-word))

A local keymap can cancel a menu bar item made by the global keymap by rebinding
the same fake function key with undefined as the binding. For example, this is how Dired
suppresses the ‘Edit’ menu bar item:

Chapter 22: Keymaps 398

(define-key dired-mode-map [menu-bar edit] ’undefined)

Here, edit is the fake function key used by the global map for the ‘Edit’ menu bar item.
The main reason to suppress a global menu bar item is to regain space for mode-specific
items.

[Variable]menu-bar-final-items
Normally the menu bar shows global items followed by items defined by the local
maps.

This variable holds a list of fake function keys for items to display at the end of the
menu bar rather than in normal sequence. The default value is (help-menu); thus,
the ‘Help’ menu item normally appears at the end of the menu bar, following local
menu items.

[Variable]menu-bar-update-hook
This normal hook is run by redisplay to update the menu bar contents, before re-
displaying the menu bar. You can use it to update submenus whose contents should
vary. Since this hook is run frequently, we advise you to ensure that the functions it
calls do not take much time in the usual case.

Next to every menu bar item, Emacs displays a key binding that runs the same command
(if such a key binding exists). This serves as a convenient hint for users who do not know
the key binding. If a command has multiple bindings, Emacs normally displays the first one
it finds. You can specify one particular key binding by assigning an :advertised-binding

symbol property to the command. See Section 24.3 [Keys in Documentation], page 462.

22.17.6 Tool bars

A tool bar is a row of clickable icons at the top of a frame, just below the menu bar. See
Section “Tool Bars” in The GNU Emacs Manual.

On each frame, the frame parameter tool-bar-lines controls how many lines’ worth
of height to reserve for the tool bar. A zero value suppresses the tool bar. If the value
is nonzero, and auto-resize-tool-bars is non-nil, the tool bar expands and contracts
automatically as needed to hold the specified contents. If the value is grow-only, the tool
bar expands automatically, but does not contract automatically.

The tool bar contents are controlled by a menu keymap attached to a fake “function
key” called tool-bar (much like the way the menu bar is controlled). So you define a tool
bar item using define-key, like this:

(define-key global-map [tool-bar key] item)

where key is a fake “function key” to distinguish this item from other items, and item is
a menu item key binding (see Section 22.17.1.2 [Extended Menu Items], page 392), which
says how to display this item and how it behaves.

The usual menu keymap item properties, :visible, :enable, :button, and :filter,
are useful in tool bar bindings and have their normal meanings. The real-binding in the
item must be a command, not a keymap; in other words, it does not work to define a tool
bar icon as a prefix key.

The :help property specifies a “help-echo” string to display while the mouse is on that
item. This is displayed in the same way as help-echo text properties (see [Help display],
page 690).

Chapter 22: Keymaps 399

In addition, you should use the :image property; this is how you specify the image to
display in the tool bar:

:image image

images is either a single image specification or a vector of four image specifica-
tions. If you use a vector of four, one of them is used, depending on circum-
stances:

item 0 Used when the item is enabled and selected.

item 1 Used when the item is enabled and deselected.

item 2 Used when the item is disabled and selected.

item 3 Used when the item is disabled and deselected.

If image is a single image specification, Emacs draws the tool bar button in disabled
state by applying an edge-detection algorithm to the image.

The :rtl property specifies an alternative image to use for right-to-left languages. Only
the GTK+ version of Emacs supports this at present.

Like the menu bar, the tool bar can display separators (see Section 22.17.1.3 [Menu
Separators], page 393). Tool bar separators are vertical rather than horizontal, though, and
only a single style is supported. They are represented in the tool bar keymap by (menu-

item "--") entries; properties like :visible are not supported for tool bar separators.
Separators are rendered natively in GTK+ and Nextstep tool bars; in the other cases, they
are rendered using an image of a vertical line.

The default tool bar is defined so that items specific to editing do not appear for major
modes whose command symbol has a mode-class property of special (see Section 23.2.1
[Major Mode Conventions], page 407). Major modes may add items to the global bar by
binding [tool-bar foo] in their local map. It makes sense for some major modes to replace
the default tool bar items completely, since not many can be accommodated conveniently,
and the default bindings make this easy by using an indirection through tool-bar-map.

[Variable]tool-bar-map
By default, the global map binds [tool-bar] as follows:

(global-set-key [tool-bar]

‘(menu-item ,(purecopy "tool bar") ignore

:filter tool-bar-make-keymap))

The function tool-bar-make-keymap, in turn, derives the actual tool bar map dy-
namically from the value of the variable tool-bar-map. Hence, you should normally
adjust the default (global) tool bar by changing that map. Some major modes, such
as Info mode, completely replace the global tool bar by making tool-bar-map buffer-
local and setting it to a different keymap.

There are two convenience functions for defining tool bar items, as follows.

[Function]tool-bar-add-item icon def key &rest props
This function adds an item to the tool bar by modifying tool-bar-map. The image
to use is defined by icon, which is the base name of an XPM, XBM or PBM image file
to be located by find-image. Given a value ‘"exit"’, say, exit.xpm, exit.pbm and

Chapter 22: Keymaps 400

exit.xbm would be searched for in that order on a color display. On a monochrome
display, the search order is ‘.pbm’, ‘.xbm’ and ‘.xpm’. The binding to use is the
command def, and key is the fake function key symbol in the prefix keymap. The
remaining arguments props are additional property list elements to add to the menu
item specification.

To define items in some local map, bind tool-bar-map with let around calls of this
function:

(defvar foo-tool-bar-map

(let ((tool-bar-map (make-sparse-keymap)))

(tool-bar-add-item ...)

...

tool-bar-map))

[Function]tool-bar-add-item-from-menu command icon &optional map &rest
props

This function is a convenience for defining tool bar items which are consistent with
existing menu bar bindings. The binding of command is looked up in the menu bar
in map (default global-map) and modified to add an image specification for icon,
which is found in the same way as by tool-bar-add-item. The resulting binding is
then placed in tool-bar-map, so use this function only for global tool bar items.

map must contain an appropriate keymap bound to [menu-bar]. The remaining
arguments props are additional property list elements to add to the menu item spec-
ification.

[Function]tool-bar-local-item-from-menu command icon in-map &optional
from-map &rest props

This function is used for making non-global tool bar items. Use it like tool-bar-add-
item-from-menu except that in-map specifies the local map to make the definition
in. The argument from-map is like the map argument of tool-bar-add-item-from-
menu.

[Variable]auto-resize-tool-bars
If this variable is non-nil, the tool bar automatically resizes to show all defined tool
bar items—but not larger than a quarter of the frame’s height.

If the value is grow-only, the tool bar expands automatically, but does not contract
automatically. To contract the tool bar, the user has to redraw the frame by entering
C-l.

If Emacs is built with GTK or Nextstep, the tool bar can only show one line, so this
variable has no effect.

[Variable]auto-raise-tool-bar-buttons
If this variable is non-nil, tool bar items display in raised form when the mouse
moves over them.

[Variable]tool-bar-button-margin
This variable specifies an extra margin to add around tool bar items. The value is an
integer, a number of pixels. The default is 4.

Chapter 22: Keymaps 401

[Variable]tool-bar-button-relief
This variable specifies the shadow width for tool bar items. The value is an integer,
a number of pixels. The default is 1.

[Variable]tool-bar-border
This variable specifies the height of the border drawn below the tool bar area. An
integer value specifies height as a number of pixels. If the value is one of internal-
border-width (the default) or border-width, the tool bar border height corresponds
to the corresponding frame parameter.

You can define a special meaning for clicking on a tool bar item with the shift, control,
meta, etc., modifiers. You do this by setting up additional items that relate to the origi-
nal item through the fake function keys. Specifically, the additional items should use the
modified versions of the same fake function key used to name the original item.

Thus, if the original item was defined this way,

(define-key global-map [tool-bar shell]

’(menu-item "Shell" shell

:image (image :type xpm :file "shell.xpm")))

then here is how you can define clicking on the same tool bar image with the shift modifier:

(define-key global-map [tool-bar S-shell] ’some-command)

See Section 21.7.2 [Function Keys], page 334, for more information about how to add
modifiers to function keys.

22.17.7 Modifying Menus

When you insert a new item in an existing menu, you probably want to put it in a particular
place among the menu’s existing items. If you use define-key to add the item, it normally
goes at the front of the menu. To put it elsewhere in the menu, use define-key-after:

[Function]define-key-after map key binding &optional after
Define a binding inmap for key, with value binding, just like define-key, but position
the binding in map after the binding for the event after. The argument key should be
of length one—a vector or string with just one element. But after should be a single
event type—a symbol or a character, not a sequence. The new binding goes after the
binding for after. If after is t or is omitted, then the new binding goes last, at the
end of the keymap. However, new bindings are added before any inherited keymap.

Here is an example:

(define-key-after my-menu [drink]

’("Drink" . drink-command) ’eat)

makes a binding for the fake function key DRINK and puts it right after the binding
for EAT.

Here is how to insert an item called ‘Work’ in the ‘Signals’ menu of Shell mode, after
the item break:

(define-key-after

(lookup-key shell-mode-map [menu-bar signals])

[work] ’("Work" . work-command) ’break)

Chapter 22: Keymaps 402

22.17.8 Easy Menu

The following macro provides a convenient way to define pop-up menus and/or menu bar
menus.

[Macro]easy-menu-define symbol maps doc menu
This macro defines a pop-up menu and/or menu bar submenu, whose contents are
given by menu.

If symbol is non-nil, it should be a symbol; then this macro defines symbol as a
function for popping up the menu (see Section 29.15 [Pop-Up Menus], page 612),
with doc as its documentation string. symbol should not be quoted.

Regardless of the value of symbol, if maps is a keymap, the menu is added to that
keymap, as a top-level menu for the menu bar (see Section 22.17.5 [Menu Bar],
page 397). It can also be a list of keymaps, in which case the menu is added separately
to each of those keymaps.

The first element of menu must be a string, which serves as the menu label. It may
be followed by any number of the following keyword-argument pairs:

:filter function

function must be a function which, if called with one argument—the list
of the other menu items—returns the actual items to be displayed in the
menu.

:visible include

include is an expression; if it evaluates to nil, the menu is made invisible.
:included is an alias for :visible.

:active enable

enable is an expression; if it evaluates to nil, the menu is not selectable.
:enable is an alias for :active.

The remaining elements in menu are menu items.

A menu item can be a vector of three elements, [name callback enable]. name is
the menu item name (a string). callback is a command to run, or an expression to
evaluate, when the item is chosen. enable is an expression; if it evaluates to nil, the
item is disabled for selection.

Alternatively, a menu item may have the form:
[name callback [keyword arg]...]

where name and callback have the same meanings as above, and each optional key-
word and arg pair should be one of the following:

:keys keys

keys is a keyboard equivalent to the menu item (a string). This is nor-
mally not needed, as keyboard equivalents are computed automatically.
keys is expanded with substitute-command-keys before it is displayed
(see Section 24.3 [Keys in Documentation], page 462).

:key-sequence keys

keys is a hint for speeding up Emacs’s first display of the menu. It
should be nil if you know that the menu item has no keyboard equivalent;

Chapter 22: Keymaps 403

otherwise it should be a string or vector specifying a keyboard equivalent
for the menu item.

:active enable

enable is an expression; if it evaluates to nil, the item is make unse-
lectable.. :enable is an alias for :active.

:visible include

include is an expression; if it evaluates to nil, the item is made invisible.
:included is an alias for :visible.

:label form

form is an expression that is evaluated to obtain a value which serves as
the menu item’s label (the default is name).

:suffix form

form is an expression that is dynamically evaluated and whose value is
concatenated with the menu entry’s label.

:style style

style is a symbol describing the type of menu item; it should be toggle

(a checkbox), or radio (a radio button), or anything else (meaning an
ordinary menu item).

:selected selected

selected is an expression; the checkbox or radio button is selected when-
ever the expression’s value is non-nil.

:help help

help is a string describing the menu item.

Alternatively, a menu item can be a string. Then that string appears in the menu
as unselectable text. A string consisting of dashes is displayed as a separator (see
Section 22.17.1.3 [Menu Separators], page 393).

Alternatively, a menu item can be a list with the same format as menu. This is a
submenu.

Here is an example of using easy-menu-define to define a menu similar to the one
defined in the example in Section 22.17.5 [Menu Bar], page 397:

(easy-menu-define words-menu global-map

"Menu for word navigation commands."

’("Words"

["Forward word" forward-word]

["Backward word" backward-word]))

Chapter 23: Major and Minor Modes 404

23 Major and Minor Modes

A mode is a set of definitions that customize Emacs and can be turned on and off while
you edit. There are two varieties of modes: major modes, which are mutually exclusive
and used for editing particular kinds of text, and minor modes, which provide features that
users can enable individually.

This chapter describes how to write both major and minor modes, how to indicate them
in the mode line, and how they run hooks supplied by the user. For related topics such as
keymaps and syntax tables, see Chapter 22 [Keymaps], page 366, and Chapter 35 [Syntax
Tables], page 757.

23.1 Hooks

A hook is a variable where you can store a function or functions to be called on a particular
occasion by an existing program. Emacs provides hooks for the sake of customization. Most
often, hooks are set up in the init file (see Section 39.1.2 [Init File], page 913), but Lisp
programs can set them also. See Appendix H [Standard Hooks], page 1010, for a list of
some standard hook variables.

Most of the hooks in Emacs are normal hooks. These variables contain lists of functions
to be called with no arguments. By convention, whenever the hook name ends in ‘-hook’,
that tells you it is normal. We try to make all hooks normal, as much as possible, so that
you can use them in a uniform way.

Every major mode command is supposed to run a normal hook called the mode hook
as one of the last steps of initialization. This makes it easy for a user to customize the
behavior of the mode, by overriding the buffer-local variable assignments already made by
the mode. Most minor mode functions also run a mode hook at the end. But hooks are
used in other contexts too. For example, the hook suspend-hook runs just before Emacs
suspends itself (see Section 39.2.2 [Suspending Emacs], page 917).

The recommended way to add a hook function to a hook is by calling add-hook (see
Section 23.1.2 [Setting Hooks], page 406). The hook functions may be any of the valid kinds
of functions that funcall accepts (see Section 12.1 [What Is a Function], page 169). Most
normal hook variables are initially void; add-hook knows how to deal with this. You can
add hooks either globally or buffer-locally with add-hook.

If the hook variable’s name does not end with ‘-hook’, that indicates it is probably an
abnormal hook. That means the hook functions are called with arguments, or their return
values are used in some way. The hook’s documentation says how the functions are called.
You can use add-hook to add a function to an abnormal hook, but you must write the
function to follow the hook’s calling convention.

By convention, abnormal hook names end in ‘-functions’. If the variable’s name ends
in ‘-function’, then its value is just a single function, not a list of functions.

23.1.1 Running Hooks

In this section, we document the run-hooks function, which is used to run a normal hook.
We also document the functions for running various kinds of abnormal hooks.

Chapter 23: Major and Minor Modes 405

[Function]run-hooks &rest hookvars
This function takes one or more normal hook variable names as arguments, and runs
each hook in turn. Each argument should be a symbol that is a normal hook variable.
These arguments are processed in the order specified.

If a hook variable has a non-nil value, that value should be a list of functions. run-
hooks calls all the functions, one by one, with no arguments.

The hook variable’s value can also be a single function—either a lambda expression
or a symbol with a function definition—which run-hooks calls. But this usage is
obsolete.

If the hook variable is buffer-local, the buffer-local variable will be used instead of
the global variable. However, if the buffer-local variable contains the element t, the
global hook variable will be run as well.

[Function]run-hook-with-args hook &rest args
This function runs an abnormal hook by calling all the hook functions in hook, passing
each one the arguments args.

[Function]run-hook-with-args-until-failure hook &rest args
This function runs an abnormal hook by calling each hook function in turn, stopping
if one of them “fails” by returning nil. Each hook function is passed the arguments
args. If this function stops because one of the hook functions fails, it returns nil;
otherwise it returns a non-nil value.

[Function]run-hook-with-args-until-success hook &rest args
This function runs an abnormal hook by calling each hook function, stopping if one
of them “succeeds” by returning a non-nil value. Each hook function is passed the
arguments args. If this function stops because one of the hook functions returns a
non-nil value, it returns that value; otherwise it returns nil.

[Macro]with-wrapper-hook hook args &rest body
This macro runs the abnormal hook hook as a series of nested “wrapper functions”
around the body forms. The effect is similar to nested around advices (see
Section 17.3 [Around-Advice], page 242).

Each hook function should accept an argument list consisting of a function fun, fol-
lowed by the additional arguments listed in args. The first hook function is passed a
function fun that, if it is called with arguments args, performs body (i.e., the default
operation). The fun passed to each successive hook function is constructed from all
the preceding hook functions (and body); if this fun is called with arguments args, it
does what the with-wrapper-hook call would if the preceding hook functions were
the only ones in hook.

Each hook function may call its fun argument as many times as it wishes, including
never. In that case, such a hook function acts to replace the default definition al-
together, and any preceding hook functions. Of course, a subsequent hook function
may do the same thing.

Each hook function definition is used to construct the fun passed to the next hook
function in hook, if any. The last or “outermost” fun is called once to produce the
overall effect.

Chapter 23: Major and Minor Modes 406

When might you want to use a wrapper hook? The function filter-buffer-

substring illustrates a common case. There is a basic functionality, performed
by body—in this case, to extract a buffer-substring. Then any number of hook
functions can act in sequence to modify that string, before returning the final result.
A wrapper-hook also allows for a hook function to completely replace the default
definition (by not calling fun).

[Function]run-hook-wrapped hook wrap-function &rest args
This function is similar to run-hook-with-args-until-success. Like that function,
it runs the functions on the abnormal hook hook, stopping at the first one that returns
non-nil. Instead of calling the hook functions directly, though, it actually calls wrap-
function with arguments fun and args.

23.1.2 Setting Hooks

Here’s an example that uses a mode hook to turn on Auto Fill mode when in Lisp Interaction
mode:

(add-hook ’lisp-interaction-mode-hook ’auto-fill-mode)

[Function]add-hook hook function &optional append local
This function is the handy way to add function function to hook variable hook. You
can use it for abnormal hooks as well as for normal hooks. function can be any Lisp
function that can accept the proper number of arguments for hook. For example,

(add-hook ’text-mode-hook ’my-text-hook-function)

adds my-text-hook-function to the hook called text-mode-hook.

If function is already present in hook (comparing using equal), then add-hook does
not add it a second time.

If function has a non-nil property permanent-local-hook, then kill-all-local-

variables (or changing major modes) won’t delete it from the hook variable’s local
value.

For a normal hook, hook functions should be designed so that the order in which they
are executed does not matter. Any dependence on the order is asking for trouble.
However, the order is predictable: normally, function goes at the front of the hook
list, so it is executed first (barring another add-hook call). If the optional argument
append is non-nil, the new hook function goes at the end of the hook list and is
executed last.

add-hook can handle the cases where hook is void or its value is a single function; it
sets or changes the value to a list of functions.

If local is non-nil, that says to add function to the buffer-local hook list instead of to
the global hook list. This makes the hook buffer-local and adds t to the buffer-local
value. The latter acts as a flag to run the hook functions in the default value as well
as in the local value.

[Function]remove-hook hook function &optional local
This function removes function from the hook variable hook. It compares function
with elements of hook using equal, so it works for both symbols and lambda expres-
sions.

Chapter 23: Major and Minor Modes 407

If local is non-nil, that says to remove function from the buffer-local hook list instead
of from the global hook list.

23.2 Major Modes

Major modes specialize Emacs for editing particular kinds of text. Each buffer has one
major mode at a time. Every major mode is associated with a major mode command,
whose name should end in ‘-mode’. This command takes care of switching to that mode
in the current buffer, by setting various buffer-local variables such as a local keymap. See
Section 23.2.1 [Major Mode Conventions], page 407.

The least specialized major mode is called Fundamental mode, which has no mode-
specific definitions or variable settings.

[Command]fundamental-mode
This is the major mode command for Fundamental mode. Unlike other mode com-
mands, it does not run any mode hooks (see Section 23.2.1 [Major Mode Conventions],
page 407), since you are not supposed to customize this mode.

The easiest way to write a major mode is to use the macro define-derived-mode, which
sets up the new mode as a variant of an existing major mode. See Section 23.2.4 [Derived
Modes], page 413. We recommend using define-derived-mode even if the new mode is not
an obvious derivative of another mode, as it automatically enforces many coding conventions
for you. See Section 23.2.5 [Basic Major Modes], page 415, for common modes to derive
from.

The standard GNU Emacs Lisp directory tree contains the code for several major modes,
in files such as text-mode.el, texinfo.el, lisp-mode.el, and rmail.el. You can study
these libraries to see how modes are written.

[User Option]major-mode
The buffer-local value of this variable holds the symbol for the current major mode.
Its default value holds the default major mode for new buffers. The standard default
value is fundamental-mode.

If the default value is nil, then whenever Emacs creates a new buffer via a command
such as C-x b (switch-to-buffer), the new buffer is put in the major mode of the
previously current buffer. As an exception, if the major mode of the previous buffer
has a mode-class symbol property with value special, the new buffer is put in
Fundamental mode (see Section 23.2.1 [Major Mode Conventions], page 407).

23.2.1 Major Mode Conventions

The code for every major mode should follow various coding conventions, including con-
ventions for local keymap and syntax table initialization, function and variable names, and
hooks.

If you use the define-derived-modemacro, it will take care of many of these conventions
automatically. See Section 23.2.4 [Derived Modes], page 413. Note also that Fundamental
mode is an exception to many of these conventions, because it represents the default state
of Emacs.

The following list of conventions is only partial. Each major mode should aim for con-
sistency in general with other Emacs major modes, as this makes Emacs as a whole more

Chapter 23: Major and Minor Modes 408

coherent. It is impossible to list here all the possible points where this issue might come
up; if the Emacs developers point out an area where your major mode deviates from the
usual conventions, please make it compatible.

• Define a major mode command whose name ends in ‘-mode’. When called with no
arguments, this command should switch to the new mode in the current buffer by
setting up the keymap, syntax table, and buffer-local variables in an existing buffer. It
should not change the buffer’s contents.

• Write a documentation string for this command that describes the special commands
available in this mode. See Section 23.2.3 [Mode Help], page 413.

The documentation string may include the special documentation substrings,
‘\[command]’, ‘\{keymap}’, and ‘\<keymap>’, which allow the help display to
adapt automatically to the user’s own key bindings. See Section 24.3 [Keys in
Documentation], page 462.

• The major mode command should start by calling kill-all-local-variables. This
runs the normal hook change-major-mode-hook, then gets rid of the buffer-local vari-
ables of the major mode previously in effect. See Section 11.10.2 [Creating Buffer-
Local], page 156.

• The major mode command should set the variable major-mode to the major mode
command symbol. This is how describe-mode discovers which documentation to print.

• The major mode command should set the variable mode-name to the “pretty” name
of the mode, usually a string (but see Section 23.4.2 [Mode Line Data], page 427, for
other possible forms). The name of the mode appears in the mode line.

• Since all global names are in the same name space, all the global variables, constants,
and functions that are part of the mode should have names that start with the major
mode name (or with an abbreviation of it if the name is long). See Section D.1 [Coding
Conventions], page 969.

• In a major mode for editing some kind of structured text, such as a programming
language, indentation of text according to structure is probably useful. So the mode
should set indent-line-function to a suitable function, and probably customize other
variables for indentation. See Section 23.7 [Auto-Indentation], page 448.

• The major mode should usually have its own keymap, which is used as the local keymap
in all buffers in that mode. The major mode command should call use-local-map to
install this local map. See Section 22.7 [Active Keymaps], page 373, for more informa-
tion.

This keymap should be stored permanently in a global variable named modename-mode-

map. Normally the library that defines the mode sets this variable.

See Section 11.6 [Tips for Defining], page 146, for advice about how to write the code
to set up the mode’s keymap variable.

• The key sequences bound in a major mode keymap should usually start with C-c,
followed by a control character, a digit, or {, }, <, >, : or ;. The other punctuation
characters are reserved for minor modes, and ordinary letters are reserved for users.

A major mode can also rebind the keys M-n, M-p and M-s. The bindings for M-n and
M-p should normally be some kind of “moving forward and backward”, but this does
not necessarily mean cursor motion.

Chapter 23: Major and Minor Modes 409

It is legitimate for a major mode to rebind a standard key sequence if it provides a
command that does “the same job” in a way better suited to the text this mode is used
for. For example, a major mode for editing a programming language might redefine
C-M-a to “move to the beginning of a function” in a way that works better for that
language.

It is also legitimate for a major mode to rebind a standard key sequence whose standard
meaning is rarely useful in that mode. For instance, minibuffer modes rebind M-r, whose
standard meaning is rarely of any use in the minibuffer. Major modes such as Dired or
Rmail that do not allow self-insertion of text can reasonably redefine letters and other
printing characters as special commands.

• Major modes for editing text should not define RET to do anything other than insert a
newline. However, it is ok for specialized modes for text that users don’t directly edit,
such as Dired and Info modes, to redefine RET to do something entirely different.

• Major modes should not alter options that are primarily a matter of user preference,
such as whether Auto-Fill mode is enabled. Leave this to each user to decide. How-
ever, a major mode should customize other variables so that Auto-Fill mode will work
usefully if the user decides to use it.

• The mode may have its own syntax table or may share one with other related modes.
If it has its own syntax table, it should store this in a variable named modename-mode-

syntax-table. See Chapter 35 [Syntax Tables], page 757.

• If the mode handles a language that has a syntax for comments, it should set the vari-
ables that define the comment syntax. See Section “Options Controlling Comments”
in The GNU Emacs Manual.

• The mode may have its own abbrev table or may share one with other related modes.
If it has its own abbrev table, it should store this in a variable named modename-mode-

abbrev-table. If the major mode command defines any abbrevs itself, it should pass t
for the system-flag argument to define-abbrev. See Section 36.2 [Defining Abbrevs],
page 774.

• The mode should specify how to do highlighting for Font Lock mode, by setting up a
buffer-local value for the variable font-lock-defaults (see Section 23.6 [Font Lock
Mode], page 437).

• Each face that the mode defines should, if possible, inherit from an existing Emacs
face. See Section 38.12.8 [Basic Faces], page 860, and Section 23.6.7 [Faces for Font
Lock], page 444.

• The mode should specify how Imenu should find the definitions or sections of a buffer,
by setting up a buffer-local value for the variable imenu-generic-expression, for the
two variables imenu-prev-index-position-function and imenu-extract-index-

name-function, or for the variable imenu-create-index-function (see Section 23.5
[Imenu], page 435).

• The mode can specify a local value for eldoc-documentation-function to tell ElDoc
mode how to handle this mode.

• The mode can specify how to complete various keywords by adding one or more buffer-
local entries to the special hook completion-at-point-functions. See Section 20.6.8
[Completion in Buffers], page 313.

Chapter 23: Major and Minor Modes 410

• To make a buffer-local binding for an Emacs customization variable, use make-local-
variable in the major mode command, not make-variable-buffer-local. The latter
function would make the variable local to every buffer in which it is subsequently set,
which would affect buffers that do not use this mode. It is undesirable for a mode to
have such global effects. See Section 11.10 [Buffer-Local Variables], page 154.

With rare exceptions, the only reasonable way to use make-variable-buffer-local

in a Lisp package is for a variable which is used only within that package. Using it on
a variable used by other packages would interfere with them.

• Each major mode should have a normal mode hook named modename-mode-hook. The
very last thing the major mode command should do is to call run-mode-hooks. This
runs the normal hook change-major-mode-after-body-hook, the mode hook, and
then the normal hook after-change-major-mode-hook. See Section 23.2.6 [Mode
Hooks], page 416.

• The major mode command may start by calling some other major mode command
(called the parent mode) and then alter some of its settings. A mode that does this
is called a derived mode. The recommended way to define one is to use the define-

derived-mode macro, but this is not required. Such a mode should call the parent
mode command inside a delay-mode-hooks form. (Using define-derived-mode does
this automatically.) See Section 23.2.4 [Derived Modes], page 413, and Section 23.2.6
[Mode Hooks], page 416.

• If something special should be done if the user switches a buffer from this mode to any
other major mode, this mode can set up a buffer-local value for change-major-mode-
hook (see Section 11.10.2 [Creating Buffer-Local], page 156).

• If this mode is appropriate only for specially-prepared text produced by the mode
itself (rather than by the user typing at the keyboard or by an external file), then the
major mode command symbol should have a property named mode-class with value
special, put on as follows:

(put ’funny-mode ’mode-class ’special)

This tells Emacs that new buffers created while the current buffer is in Funny mode
should not be put in Funny mode, even though the default value of major-mode is nil.
By default, the value of nil for major-mode means to use the current buffer’s major
mode when creating new buffers (see Section 23.2.2 [Auto Major Mode], page 411), but
with such special modes, Fundamental mode is used instead. Modes such as Dired,
Rmail, and Buffer List use this feature.

The function view-buffer does not enable View mode in buffers whose mode-class is
special, because such modes usually provide their own View-like bindings.

The define-derived-mode macro automatically marks the derived mode as special
if the parent mode is special. Special mode is a convenient parent for such modes to
inherit from; See Section 23.2.5 [Basic Major Modes], page 415.

• If you want to make the new mode the default for files with certain recognizable names,
add an element to auto-mode-alist to select the mode for those file names (see
Section 23.2.2 [Auto Major Mode], page 411). If you define the mode command to
autoload, you should add this element in the same file that calls autoload. If you use
an autoload cookie for the mode command, you can also use an autoload cookie for the
form that adds the element (see [autoload cookie], page 221). If you do not autoload

Chapter 23: Major and Minor Modes 411

the mode command, it is sufficient to add the element in the file that contains the mode
definition.

• The top-level forms in the file defining the mode should be written so that they may
be evaluated more than once without adverse consequences. For instance, use defvar

or defcustom to set mode-related variables, so that they are not reinitialized if they
already have a value (see Section 11.5 [Defining Variables], page 145).

23.2.2 How Emacs Chooses a Major Mode

When Emacs visits a file, it automatically selects a major mode for the buffer based on
information in the file name or in the file itself. It also processes local variables specified in
the file text.

[Command]normal-mode &optional find-file
This function establishes the proper major mode and buffer-local variable bindings for
the current buffer. First it calls set-auto-mode (see below), then it runs hack-local-
variables to parse, and bind or evaluate as appropriate, the file’s local variables (see
Section 11.11 [File Local Variables], page 160).

If the find-file argument to normal-mode is non-nil, normal-mode assumes that the
find-file function is calling it. In this case, it may process local variables in the
‘-*-’ line or at the end of the file. The variable enable-local-variables controls
whether to do so. See Section “Local Variables in Files” in The GNU Emacs Manual,
for the syntax of the local variables section of a file.

If you run normal-mode interactively, the argument find-file is normally nil. In this
case, normal-mode unconditionally processes any file local variables.

The function calls set-auto-mode to choose a major mode. If this does not specify a
mode, the buffer stays in the major mode determined by the default value of major-
mode (see below).

normal-mode uses condition-case around the call to the major mode command, so
errors are caught and reported as a ‘File mode specification error’, followed by
the original error message.

[Function]set-auto-mode &optional keep-mode-if-same
This function selects the major mode that is appropriate for the current buffer. It
bases its decision (in order of precedence) on the ‘-*-’ line, on any ‘mode:’ local
variable near the end of a file, on the ‘#!’ line (using interpreter-mode-alist),
on the text at the beginning of the buffer (using magic-mode-alist), and finally
on the visited file name (using auto-mode-alist). See Section “How Major Modes
are Chosen” in The GNU Emacs Manual. If enable-local-variables is nil, set-
auto-mode does not check the ‘-*-’ line, or near the end of the file, for any mode
tag.

There are some file types where it is not appropriate to scan the file contents for
a mode specifier. For example, a tar archive may happen to contain, near the end
of the file, a member file that has a local variables section specifying a mode for
that particular file. This should not be applied to the containing tar file. Similarly,
a tiff image file might just happen to contain a first line that seems to match the
‘-*-’ pattern. For these reasons, both these file extensions are members of the list

Chapter 23: Major and Minor Modes 412

inhibit-local-variables-regexps. Add patterns to this list to prevent Emacs
searching them for local variables of any kind (not just mode specifiers).

If keep-mode-if-same is non-nil, this function does not call the mode command if the
buffer is already in the proper major mode. For instance, set-visited-file-name
sets this to t to avoid killing buffer local variables that the user may have set.

[Function]set-buffer-major-mode buffer
This function sets the major mode of buffer to the default value of major-mode; if that
is nil, it uses the current buffer’s major mode (if that is suitable). As an exception,
if buffer’s name is *scratch*, it sets the mode to initial-major-mode.

The low-level primitives for creating buffers do not use this function, but medium-
level commands such as switch-to-buffer and find-file-noselect use it whenever
they create buffers.

[User Option]initial-major-mode
The value of this variable determines the major mode of the initial *scratch* buffer.
The value should be a symbol that is a major mode command. The default value is
lisp-interaction-mode.

[Variable]interpreter-mode-alist
This variable specifies major modes to use for scripts that specify a command inter-
preter in a ‘#!’ line. Its value is an alist with elements of the form (interpreter .

mode); for example, ("perl" . perl-mode) is one element present by default. The
element says to use mode mode if the file specifies an interpreter which matches
interpreter.

[Variable]magic-mode-alist
This variable’s value is an alist with elements of the form (regexp . function),
where regexp is a regular expression and function is a function or nil. After visiting
a file, set-auto-mode calls function if the text at the beginning of the buffer matches
regexp and function is non-nil; if function is nil, auto-mode-alist gets to decide
the mode.

[Variable]magic-fallback-mode-alist
This works like magic-mode-alist, except that it is handled only if auto-mode-alist
does not specify a mode for this file.

[Variable]auto-mode-alist
This variable contains an association list of file name patterns (regular expressions)
and corresponding major mode commands. Usually, the file name patterns test for
suffixes, such as ‘.el’ and ‘.c’, but this need not be the case. An ordinary element
of the alist looks like (regexp . mode-function).

For example,
(("\\‘/tmp/fol/" . text-mode)

("\\.texinfo\\’" . texinfo-mode)

("\\.texi\\’" . texinfo-mode)

("\\.el\\’" . emacs-lisp-mode)

("\\.c\\’" . c-mode)

("\\.h\\’" . c-mode)

...)

Chapter 23: Major and Minor Modes 413

When you visit a file whose expanded file name (see Section 25.8.4 [File Name Expan-
sion], page 494), with version numbers and backup suffixes removed using file-name-
sans-versions (see Section 25.8.1 [File Name Components], page 490), matches a
regexp, set-auto-mode calls the corresponding mode-function. This feature enables
Emacs to select the proper major mode for most files.

If an element of auto-mode-alist has the form (regexp function t), then after call-
ing function, Emacs searches auto-mode-alist again for a match against the portion
of the file name that did not match before. This feature is useful for uncompression
packages: an entry of the form ("\\.gz\\’" function t) can uncompress the file
and then put the uncompressed file in the proper mode according to the name sans
‘.gz’.

Here is an example of how to prepend several pattern pairs to auto-mode-alist.
(You might use this sort of expression in your init file.)

(setq auto-mode-alist

(append

;; File name (within directory) starts with a dot.
’(("/\\.[^/]*\\’" . fundamental-mode)

;; File name has no dot.
("/[^\\./]*\\’" . fundamental-mode)

;; File name ends in ‘.C’.
("\\.C\\’" . c++-mode))

auto-mode-alist))

23.2.3 Getting Help about a Major Mode

The describe-mode function provides information about major modes. It is normally
bound to C-h m. It uses the value of the variable major-mode (see Section 23.2 [Major
Modes], page 407), which is why every major mode command needs to set that variable.

[Command]describe-mode &optional buffer
This command displays the documentation of the current buffer’s major mode and
minor modes. It uses the documentation function to retrieve the documentation
strings of the major and minor mode commands (see Section 24.2 [Accessing Docu-
mentation], page 460).

If called from Lisp with a non-nil buffer argument, this function displays the docu-
mentation for that buffer’s major and minor modes, rather than those of the current
buffer.

23.2.4 Defining Derived Modes

The recommended way to define a new major mode is to derive it from an existing one
using define-derived-mode. If there is no closely related mode, you should inherit from
either text-mode, special-mode, or prog-mode. See Section 23.2.5 [Basic Major Modes],
page 415. If none of these are suitable, you can inherit from fundamental-mode (see
Section 23.2 [Major Modes], page 407).

[Macro]define-derived-mode variant parent name docstring keyword-args. . .
body. . .

This macro defines variant as a major mode command, using name as the string form
of the mode name. variant and parent should be unquoted symbols.

Chapter 23: Major and Minor Modes 414

The new command variant is defined to call the function parent, then override certain
aspects of that parent mode:

• The new mode has its own sparse keymap, named variant-map. define-

derived-mode makes the parent mode’s keymap the parent of the new map,
unless variant-map is already set and already has a parent.

• The new mode has its own syntax table, kept in the variable variant-syntax-

table, unless you override this using the :syntax-table keyword (see below).
define-derived-mode makes the parent mode’s syntax-table the parent of
variant-syntax-table, unless the latter is already set and already has a
parent different from the standard syntax table.

• The new mode has its own abbrev table, kept in the variable variant-abbrev-

table, unless you override this using the :abbrev-table keyword (see below).

• The new mode has its own mode hook, variant-hook. It runs this hook, after
running the hooks of its ancestor modes, with run-mode-hooks, as the last thing
it does. See Section 23.2.6 [Mode Hooks], page 416.

In addition, you can specify how to override other aspects of parent with body. The
command variant evaluates the forms in body after setting up all its usual overrides,
just before running the mode hooks.

If parent has a non-nil mode-class symbol property, then define-derived-mode

sets the mode-class property of variant to the same value. This ensures, for example,
that if parent is a special mode, then variant is also a special mode (see Section 23.2.1
[Major Mode Conventions], page 407).

You can also specify nil for parent. This gives the new mode no parent. Then
define-derived-mode behaves as described above, but, of course, omits all actions
connected with parent.

The argument docstring specifies the documentation string for the new mode.
define-derived-mode adds some general information about the mode’s hook,
followed by the mode’s keymap, at the end of this documentation string. If you omit
docstring, define-derived-mode generates a documentation string.

The keyword-args are pairs of keywords and values. The values are evaluated. The
following keywords are currently supported:

:syntax-table

You can use this to explicitly specify a syntax table for the new mode.
If you specify a nil value, the new mode uses the same syntax table as
parent, or the standard syntax table if parent is nil. (Note that this
does not follow the convention used for non-keyword arguments that a
nil value is equivalent with not specifying the argument.)

:abbrev-table

You can use this to explicitly specify an abbrev table for the new mode.
If you specify a nil value, the new mode uses the same abbrev table as
parent, or fundamental-mode-abbrev-table if parent is nil. (Again, a
nil value is not equivalent to not specifying this keyword.)

:group If this is specified, the value should be the customization group for this
mode. (Not all major modes have one.) Only the (still experimental and

Chapter 23: Major and Minor Modes 415

unadvertised) command customize-mode currently uses this. define-

derived-mode does not automatically define the specified customization
group.

Here is a hypothetical example:

(define-derived-mode hypertext-mode

text-mode "Hypertext"

"Major mode for hypertext.

\\{hypertext-mode-map}"

(setq case-fold-search nil))

(define-key hypertext-mode-map

[down-mouse-3] ’do-hyper-link)

Do not write an interactive spec in the definition; define-derived-mode does that
automatically.

[Function]derived-mode-p &rest modes
This function returns non-nil if the current major mode is derived from any of the
major modes given by the symbols modes.

23.2.5 Basic Major Modes

Apart from Fundamental mode, there are three major modes that other major modes com-
monly derive from: Text mode, Prog mode, and Special mode. While Text mode is useful
in its own right (e.g., for editing files ending in .txt), Prog mode and Special mode exist
mainly to let other modes derive from them.

As far as possible, new major modes should be derived, either directly or indirectly, from
one of these three modes. One reason is that this allows users to customize a single mode
hook (e.g., prog-mode-hook) for an entire family of relevant modes (e.g., all programming
language modes).

[Command]text-mode
Text mode is a major mode for editing human languages. It defines the ‘"’ and
‘\’ characters as having punctuation syntax (see Section 35.2.1 [Syntax Class Table],
page 758), and binds M-TAB to ispell-complete-word (see Section “Spelling” in The
GNU Emacs Manual).

An example of a major mode derived from Text mode is HTML mode. See Section
“SGML and HTML Modes” in The GNU Emacs Manual.

[Command]prog-mode
Prog mode is a basic major mode for buffers containing programming language source
code. Most of the programming language major modes built into Emacs are derived
from it.

Prog mode binds parse-sexp-ignore-comments to t (see Section 35.6.1 [Motion
via Parsing], page 766) and bidi-paragraph-direction to left-to-right (see
Section 38.23 [Bidirectional Display], page 906).

Chapter 23: Major and Minor Modes 416

[Command]special-mode
Special mode is a basic major mode for buffers containing text that is produced
specially by Emacs, rather than directly from a file. Major modes derived from
Special mode are given a mode-class property of special (see Section 23.2.1 [Major
Mode Conventions], page 407).

Special mode sets the buffer to read-only. Its keymap defines several common bind-
ings, including q for quit-window and g for revert-buffer (see Section 26.3 [Re-
verting], page 519).

An example of a major mode derived from Special mode is Buffer Menu mode, which
is used by the *Buffer List* buffer. See Section “Listing Existing Buffers” in The
GNU Emacs Manual.

In addition, modes for buffers of tabulated data can inherit from Tabulated List mode,
which is in turn derived from Special mode. See Section 23.2.7 [Tabulated List Mode],
page 417.

23.2.6 Mode Hooks

Every major mode command should finish by running the mode-independent normal
hook change-major-mode-after-body-hook, its mode hook, and the normal hook
after-change-major-mode-hook. It does this by calling run-mode-hooks. If the major
mode is a derived mode, that is if it calls another major mode (the parent mode) in its
body, it should do this inside delay-mode-hooks so that the parent won’t run these hooks
itself. Instead, the derived mode’s call to run-mode-hooks runs the parent’s mode hook
too. See Section 23.2.1 [Major Mode Conventions], page 407.

Emacs versions before Emacs 22 did not have delay-mode-hooks. Versions before 24 did
not have change-major-mode-after-body-hook. When user-implemented major modes do
not use run-mode-hooks and have not been updated to use these newer features, they won’t
entirely follow these conventions: they may run the parent’s mode hook too early, or fail to
run after-change-major-mode-hook. If you encounter such a major mode, please correct
it to follow these conventions.

When you defined a major mode using define-derived-mode, it automatically makes
sure these conventions are followed. If you define a major mode “by hand”, not using
define-derived-mode, use the following functions to handle these conventions automati-
cally.

[Function]run-mode-hooks &rest hookvars
Major modes should run their mode hook using this function. It is similar to run-

hooks (see Section 23.1 [Hooks], page 404), but it also runs change-major-mode-

after-body-hook and after-change-major-mode-hook.

When this function is called during the execution of a delay-mode-hooks form, it
does not run the hooks immediately. Instead, it arranges for the next call to run-

mode-hooks to run them.

[Macro]delay-mode-hooks body. . .
When one major mode command calls another, it should do so inside of delay-mode-
hooks.

Chapter 23: Major and Minor Modes 417

This macro executes body, but tells all run-mode-hooks calls during the execution
of body to delay running their hooks. The hooks will actually run during the next
call to run-mode-hooks after the end of the delay-mode-hooks construct.

[Variable]change-major-mode-after-body-hook
This is a normal hook run by run-mode-hooks. It is run before the mode hooks.

[Variable]after-change-major-mode-hook
This is a normal hook run by run-mode-hooks. It is run at the very end of every
properly-written major mode command.

23.2.7 Tabulated List mode

Tabulated List mode is a major mode for displaying tabulated data, i.e., data consisting
of entries, each entry occupying one row of text with its contents divided into columns.
Tabulated List mode provides facilities for pretty-printing rows and columns, and sorting
the rows according to the values in each column. It is derived from Special mode (see
Section 23.2.5 [Basic Major Modes], page 415).

Tabulated List mode is intended to be used as a parent mode by a more specialized
major mode. Examples include Process Menu mode (see Section 37.6 [Process Information],
page 789) and Package Menu mode (see Section “Package Menu” in The GNU Emacs
Manual).

Such a derived mode should use define-derived-mode in the usual way, specifying
tabulated-list-mode as the second argument (see Section 23.2.4 [Derived Modes],
page 413). The body of the define-derived-mode form should specify the format of the
tabulated data, by assigning values to the variables documented below; then, it should call
the function tabulated-list-init-header to initialize the header line.

The derived mode should also define a listing command. This, not the mode command,
is what the user calls (e.g., M-x list-processes). The listing command should create or
switch to a buffer, turn on the derived mode, specify the tabulated data, and finally call
tabulated-list-print to populate the buffer.

[Variable]tabulated-list-format
This buffer-local variable specifies the format of the Tabulated List data. Its value
should be a vector. Each element of the vector represents a data column, and should
be a list (name width sort), where

• name is the column’s name (a string).

• width is the width to reserve for the column (an integer). This is meaningless
for the last column, which runs to the end of each line.

• sort specifies how to sort entries by the column. If nil, the column cannot be
used for sorting. If t, the column is sorted by comparing string values. Otherwise,
this should be a predicate function for sort (see Section 5.6.3 [Rearrangement],
page 76), which accepts two arguments with the same form as the elements of
tabulated-list-entries (see below).

[Variable]tabulated-list-entries
This buffer-local variable specifies the entries displayed in the Tabulated List buffer.
Its value should be either a list, or a function.

Chapter 23: Major and Minor Modes 418

If the value is a list, each list element corresponds to one entry, and should have the
form (id contents), where

• id is either nil, or a Lisp object that identifies the entry. If the latter, the cursor
stays on the “same” entry when re-sorting entries. Comparison is done with
equal.

• contents is a vector with the same number of elements as tabulated-list-

format. Each vector element is either a string, which is inserted into the buffer as-
is, or a list (label . properties), which means to insert a text button by calling
insert-text-button with label and properties as arguments (see Section 38.17.3
[Making Buttons], page 892).

There should be no newlines in any of these strings.

Otherwise, the value should be a function which returns a list of the above form when
called with no arguments.

[Variable]tabulated-list-revert-hook
This normal hook is run prior to reverting a Tabulated List buffer. A derived mode
can add a function to this hook to recompute tabulated-list-entries.

[Variable]tabulated-list-printer
The value of this variable is the function called to insert an entry at point, including
its terminating newline. The function should accept two arguments, id and contents,
having the same meanings as in tabulated-list-entries. The default value is a
function which inserts an entry in a straightforward way; a mode which uses Tabulated
List mode in a more complex way can specify another function.

[Variable]tabulated-list-sort-key
The value of this variable specifies the current sort key for the Tabulated List buffer. If
it is nil, no sorting is done. Otherwise, it should have the form (name . flip), where
name is a string matching one of the column names in tabulated-list-format, and
flip, if non-nil, means to invert the sort order.

[Function]tabulated-list-init-header
This function computes and sets header-line-format for the Tabulated List buffer
(see Section 23.4.7 [Header Lines], page 434), and assigns a keymap to the header line
to allow sort entries by clicking on column headers.

Modes derived from Tabulated List mode should call this after setting the above
variables (in particular, only after setting tabulated-list-format).

[Function]tabulated-list-print &optional remember-pos
This function populates the current buffer with entries. It should be called by the
listing command. It erases the buffer, sorts the entries specified by tabulated-list-

entries according to tabulated-list-sort-key, then calls the function specified
by tabulated-list-printer to insert each entry.

If the optional argument remember-pos is non-nil, this function looks for the id
element on the current line, if any, and tries to move to that entry after all the entries
are (re)inserted.

Chapter 23: Major and Minor Modes 419

23.2.8 Generic Modes

Generic modes are simple major modes with basic support for comment syntax and Font
Lock mode. To define a generic mode, use the macro define-generic-mode. See the file
generic-x.el for some examples of the use of define-generic-mode.

[Macro]define-generic-mode mode comment-list keyword-list font-lock-list
auto-mode-list function-list &optional docstring

This macro defines a generic mode command named mode (a symbol, not quoted).
The optional argument docstring is the documentation for the mode command. If
you do not supply it, define-generic-mode generates one by default.

The argument comment-list is a list in which each element is either a character, a
string of one or two characters, or a cons cell. A character or a string is set up in
the mode’s syntax table as a “comment starter”. If the entry is a cons cell, the car
is set up as a “comment starter” and the cdr as a “comment ender”. (Use nil

for the latter if you want comments to end at the end of the line.) Note that the
syntax table mechanism has limitations about what comment starters and enders are
actually possible. See Chapter 35 [Syntax Tables], page 757.

The argument keyword-list is a list of keywords to highlight with font-lock-

keyword-face. Each keyword should be a string. Meanwhile, font-lock-list is a list
of additional expressions to highlight. Each element of this list should have the
same form as an element of font-lock-keywords. See Section 23.6.2 [Search-based
Fontification], page 438.

The argument auto-mode-list is a list of regular expressions to add to the variable
auto-mode-alist. They are added by the execution of the define-generic-mode

form, not by expanding the macro call.

Finally, function-list is a list of functions for the mode command to call for additional
setup. It calls these functions just before it runs the mode hook variable mode-hook.

23.2.9 Major Mode Examples

Text mode is perhaps the simplest mode besides Fundamental mode. Here are excerpts
from text-mode.el that illustrate many of the conventions listed above:

;; Create the syntax table for this mode.
(defvar text-mode-syntax-table

(let ((st (make-syntax-table)))

(modify-syntax-entry ?\" ". " st)

(modify-syntax-entry ?\\ ". " st)

;; Add ‘p’ so M-c on ‘hello’ leads to ‘Hello’, not ‘hello’.

(modify-syntax-entry ?’ "w p" st)

st)

"Syntax table used while in ‘text-mode’.")

;; Create the keymap for this mode.
(defvar text-mode-map

(let ((map (make-sparse-keymap)))

(define-key map "\e\t" ’ispell-complete-word)

map)

"Keymap for ‘text-mode’.

Many other modes, such as ‘mail-mode’, ‘outline-mode’ and

‘indented-text-mode’, inherit all the commands defined in this map.")

Chapter 23: Major and Minor Modes 420

Here is how the actual mode command is defined now:
(define-derived-mode text-mode nil "Text"

"Major mode for editing text written for humans to read.

In this mode, paragraphs are delimited only by blank or white lines.

You can thus get the full benefit of adaptive filling

(see the variable ‘adaptive-fill-mode’).

\\{text-mode-map}

Turning on Text mode runs the normal hook ‘text-mode-hook’."

(set (make-local-variable ’text-mode-variant) t)

(set (make-local-variable ’require-final-newline)

mode-require-final-newline)

(set (make-local-variable ’indent-line-function) ’indent-relative))

(The last line is redundant nowadays, since indent-relative is the default value, and we’ll
delete it in a future version.)

The three Lisp modes (Lisp mode, Emacs Lisp mode, and Lisp Interaction mode) have
more features than Text mode and the code is correspondingly more complicated. Here are
excerpts from lisp-mode.el that illustrate how these modes are written.

Here is how the Lisp mode syntax and abbrev tables are defined:
;; Create mode-specific table variables.
(defvar lisp-mode-abbrev-table nil)

(define-abbrev-table ’lisp-mode-abbrev-table ())

(defvar lisp-mode-syntax-table

(let ((table (copy-syntax-table emacs-lisp-mode-syntax-table)))

(modify-syntax-entry ?\["_ " table)

(modify-syntax-entry ?\] "_ " table)

(modify-syntax-entry ?# "’ 14" table)

(modify-syntax-entry ?| "\" 23bn" table)

table)

"Syntax table used in ‘lisp-mode’.")

The three modes for Lisp share much of their code. For instance, each calls the following
function to set various variables:

(defun lisp-mode-variables (&optional syntax keywords-case-insensitive)

(when syntax

(set-syntax-table lisp-mode-syntax-table))

(setq local-abbrev-table lisp-mode-abbrev-table)

...

Amongst other things, this function sets up the comment-start variable to handle Lisp
comments:

(make-local-variable ’comment-start)

(setq comment-start ";")

...

Each of the different Lisp modes has a slightly different keymap. For example, Lisp mode
binds C-c C-z to run-lisp, but the other Lisp modes do not. However, all Lisp modes have
some commands in common. The following code sets up the common commands:

(defvar lisp-mode-shared-map

(let ((map (make-sparse-keymap)))

(define-key map "\e\C-q" ’indent-sexp)

(define-key map "\177" ’backward-delete-char-untabify)

map)

"Keymap for commands shared by all sorts of Lisp modes.")

And here is the code to set up the keymap for Lisp mode:

Chapter 23: Major and Minor Modes 421

(defvar lisp-mode-map

(let ((map (make-sparse-keymap))

(menu-map (make-sparse-keymap "Lisp")))

(set-keymap-parent map lisp-mode-shared-map)

(define-key map "\e\C-x" ’lisp-eval-defun)

(define-key map "\C-c\C-z" ’run-lisp)

...

map)

"Keymap for ordinary Lisp mode.

All commands in ‘lisp-mode-shared-map’ are inherited by this map.")

Finally, here is the major mode command for Lisp mode:

(define-derived-mode lisp-mode prog-mode "Lisp"

"Major mode for editing Lisp code for Lisps other than GNU Emacs Lisp.

Commands:

Delete converts tabs to spaces as it moves back.

Blank lines separate paragraphs. Semicolons start comments.

\\{lisp-mode-map}

Note that ‘run-lisp’ may be used either to start an inferior Lisp job

or to switch back to an existing one.

Entry to this mode calls the value of ‘lisp-mode-hook’

if that value is non-nil."

(lisp-mode-variables nil t)

(set (make-local-variable ’find-tag-default-function)

’lisp-find-tag-default)

(set (make-local-variable ’comment-start-skip)

"\\(\\(^\\|[^\\\\\n]\\)\\(\\\\\\\\\\)*\\)\\(;+\\|#|\\) *")

(setq imenu-case-fold-search t))

23.3 Minor Modes

A minor mode provides optional features that users may enable or disable independently
of the choice of major mode. Minor modes can be enabled individually or in combination.

Most minor modes implement features that are independent of the major mode, and can
thus be used with most major modes. For example, Auto Fill mode works with any major
mode that permits text insertion. A few minor modes, however, are specific to a particular
major mode. For example, Diff Auto Refine mode is a minor mode that is intended to be
used only with Diff mode.

Ideally, a minor mode should have its desired effect regardless of the other minor modes
in effect. It should be possible to activate and deactivate minor modes in any order.

[Variable]minor-mode-list
The value of this variable is a list of all minor mode commands.

23.3.1 Conventions for Writing Minor Modes

There are conventions for writing minor modes just as there are for major modes. These
conventions are described below. The easiest way to follow them is to use the macro
define-minor-mode. See Section 23.3.3 [Defining Minor Modes], page 423.

• Define a variable whose name ends in ‘-mode’. We call this the mode variable. The
minor mode command should set this variable. The value will be nil if the mode is

Chapter 23: Major and Minor Modes 422

disabled, and non-nil if the mode is enabled. The variable should be buffer-local if the
minor mode is buffer-local.

This variable is used in conjunction with the minor-mode-alist to display the minor
mode name in the mode line. It also determines whether the minor mode keymap
is active, via minor-mode-map-alist (see Section 22.9 [Controlling Active Maps],
page 375). Individual commands or hooks can also check its value.

• Define a command, called the mode command, whose name is the same as the mode
variable. Its job is to set the value of the mode variable, plus anything else that needs
to be done to actually enable or disable the mode’s features.

The mode command should accept one optional argument. If called interactively with
no prefix argument, it should toggle the mode (i.e., enable if it is disabled, and disable
if it is enabled). If called interactively with a prefix argument, it should enable the
mode if the argument is positive and disable it otherwise.

If the mode command is called from Lisp (i.e., non-interactively), it should enable the
mode if the argument is omitted or nil; it should toggle the mode if the argument is
the symbol toggle; otherwise it should treat the argument in the same way as for an
interactive call with a numeric prefix argument, as described above.

The following example shows how to implement this behavior (it is similar to the code
generated by the define-minor-mode macro):

(interactive (list (or current-prefix-arg ’toggle)))

(let ((enable (if (eq arg ’toggle)

(not foo-mode) ; this mode’s mode variable
(> (prefix-numeric-value arg) 0))))

(if enable

do-enable

do-disable))

The reason for this somewhat complex behavior is that it lets users easily toggle the
minor mode interactively, and also lets the minor mode be easily enabled in a mode
hook, like this:

(add-hook ’text-mode-hook ’foo-mode)

This behaves correctly whether or not foo-mode was already enabled, since the foo-

mode mode command unconditionally enables the minor mode when it is called from
Lisp with no argument. Disabling a minor mode in a mode hook is a little uglier:

(add-hook ’text-mode-hook (lambda () (foo-mode -1)))

However, this is not very commonly done.

• Add an element to minor-mode-alist for each minor mode (see [Definition of minor-
mode-alist], page 431), if you want to indicate the minor mode in the mode line. This
element should be a list of the following form:

(mode-variable string)

Here mode-variable is the variable that controls enabling of the minor mode, and string
is a short string, starting with a space, to represent the mode in the mode line. These
strings must be short so that there is room for several of them at once.

When you add an element to minor-mode-alist, use assq to check for an existing
element, to avoid duplication. For example:

Chapter 23: Major and Minor Modes 423

(unless (assq ’leif-mode minor-mode-alist)

(push ’(leif-mode " Leif") minor-mode-alist))

or like this, using add-to-list (see Section 5.5 [List Variables], page 72):

(add-to-list ’minor-mode-alist ’(leif-mode " Leif"))

In addition, several major mode conventions apply to minor modes as well: those regard-
ing the names of global symbols, the use of a hook at the end of the initialization function,
and the use of keymaps and other tables.

The minor mode should, if possible, support enabling and disabling via Custom (see
Chapter 14 [Customization], page 196). To do this, the mode variable should be defined
with defcustom, usually with :type ’boolean. If just setting the variable is not sufficient to
enable the mode, you should also specify a :setmethod which enables the mode by invoking
the mode command. Note in the variable’s documentation string that setting the variable
other than via Custom may not take effect. Also, mark the definition with an autoload
cookie (see [autoload cookie], page 221), and specify a :require so that customizing the
variable will load the library that defines the mode. For example:

;;;###autoload

(defcustom msb-mode nil

"Toggle msb-mode.

Setting this variable directly does not take effect;

use either \\[customize] or the function ‘msb-mode’."

:set ’custom-set-minor-mode

:initialize ’custom-initialize-default

:version "20.4"

:type ’boolean

:group ’msb

:require ’msb)

23.3.2 Keymaps and Minor Modes

Each minor mode can have its own keymap, which is active when the mode is enabled. To
set up a keymap for a minor mode, add an element to the alist minor-mode-map-alist.
See [Definition of minor-mode-map-alist], page 376.

One use of minor mode keymaps is to modify the behavior of certain self-inserting
characters so that they do something else as well as self-insert. (Another way to customize
self-insert-command is through post-self-insert-hook. Apart from this, the facilities
for customizing self-insert-command are limited to special cases, designed for abbrevs
and Auto Fill mode. Do not try substituting your own definition of self-insert-command
for the standard one. The editor command loop handles this function specially.)

The key sequences bound in a minor mode should consist of C-c followed by one of
.,/?‘’"[]\|~!#$%^&*()-_+=. (The other punctuation characters are reserved for major
modes.)

23.3.3 Defining Minor Modes

The macro define-minor-mode offers a convenient way of implementing a mode in one
self-contained definition.

Chapter 23: Major and Minor Modes 424

[Macro]define-minor-mode mode doc [init-value [lighter [keymap]]]
keyword-args. . . body. . .

This macro defines a new minor mode whose name is mode (a symbol). It defines
a command named mode to toggle the minor mode, with doc as its documentation
string.

The toggle command takes one optional (prefix) argument. If called interactively
with no argument it toggles the mode on or off. A positive prefix argument enables
the mode, any other prefix argument disables it. From Lisp, an argument of toggle
toggles the mode, whereas an omitted or nil argument enables the mode. This makes
it easy to enable the minor mode in a major mode hook, for example. If doc is nil,
the macro supplies a default documentation string explaining the above.

By default, it also defines a variable named mode, which is set to t or nil by enabling
or disabling the mode. The variable is initialized to init-value. Except in unusual
circumstances (see below), this value must be nil.

The string lighter says what to display in the mode line when the mode is enabled; if
it is nil, the mode is not displayed in the mode line.

The optional argument keymap specifies the keymap for the minor mode. If non-nil,
it should be a variable name (whose value is a keymap), a keymap, or an alist of the
form

(key-sequence . definition)

where each key-sequence and definition are arguments suitable for passing to define-
key (see Section 22.12 [Changing Key Bindings], page 381). If keymap is a keymap
or an alist, this also defines the variable mode-map.

The above three arguments init-value, lighter, and keymap can be (partially) omit-
ted when keyword-args are used. The keyword-args consist of keywords followed by
corresponding values. A few keywords have special meanings:

:group group

Custom group name to use in all generated defcustom forms. Defaults
to mode without the possible trailing ‘-mode’. Warning: don’t use this
default group name unless you have written a defgroup to define that
group properly. See Section 14.2 [Group Definitions], page 198.

:global global

If non-nil, this specifies that the minor mode should be global rather
than buffer-local. It defaults to nil.

One of the effects of making a minor mode global is that the mode vari-
able becomes a customization variable. Toggling it through the Customize
interface turns the mode on and off, and its value can be saved for fu-
ture Emacs sessions (see Section “Saving Customizations” in The GNU
Emacs Manual. For the saved variable to work, you should ensure that
the define-minor-mode form is evaluated each time Emacs starts; for
packages that are not part of Emacs, the easiest way to do this is to
specify a :require keyword.

:init-value init-value

This is equivalent to specifying init-value positionally.

Chapter 23: Major and Minor Modes 425

:lighter lighter

This is equivalent to specifying lighter positionally.

:keymap keymap

This is equivalent to specifying keymap positionally.

:variable place

This replaces the default variable mode, used to store the state of the
mode. If you specify this, the mode variable is not defined, and any init-
value argument is unused. place can be a different named variable (which
you must define yourself), or anything that can be used with the setf

function (see Section 11.15 [Generalized Variables], page 166). place can
also be a cons (get . set), where get is an expression that returns the
current state, and set is a function of one argument (a state) that sets it.

:after-hook after-hook

This defines a single Lisp form which is evaluated after the mode hooks
have run. It should not be quoted.

Any other keyword arguments are passed directly to the defcustom generated for the
variable mode.

The command named mode first performs the standard actions such as setting the
variable named mode and then executes the body forms, if any. It then runs the
mode hook variable mode-hook and finishes by evaluating any form in :after-hook.

The initial value must be nil except in cases where (1) the mode is preloaded in Emacs,
or (2) it is painless for loading to enable the mode even though the user did not request it.
For instance, if the mode has no effect unless something else is enabled, and will always be
loaded by that time, enabling it by default is harmless. But these are unusual circumstances.
Normally, the initial value must be nil.

The name easy-mmode-define-minor-mode is an alias for this macro.

Here is an example of using define-minor-mode:
(define-minor-mode hungry-mode

"Toggle Hungry mode.

Interactively with no argument, this command toggles the mode.

A positive prefix argument enables the mode, any other prefix

argument disables it. From Lisp, argument omitted or nil enables

the mode, ‘toggle’ toggles the state.

When Hungry mode is enabled, the control delete key

gobbles all preceding whitespace except the last.

See the command \\[hungry-electric-delete]."

;; The initial value.

nil

;; The indicator for the mode line.

" Hungry"

;; The minor mode bindings.

’(([C-backspace] . hungry-electric-delete))

:group ’hunger)

This defines a minor mode named “Hungry mode”, a command named hungry-mode to
toggle it, a variable named hungry-mode which indicates whether the mode is enabled, and
a variable named hungry-mode-map which holds the keymap that is active when the mode

Chapter 23: Major and Minor Modes 426

is enabled. It initializes the keymap with a key binding for C-DEL. It puts the variable
hungry-mode into custom group hunger. There are no body forms—many minor modes
don’t need any.

Here’s an equivalent way to write it:

(define-minor-mode hungry-mode

"Toggle Hungry mode.

...rest of documentation as before..."

;; The initial value.

:init-value nil

;; The indicator for the mode line.

:lighter " Hungry"

;; The minor mode bindings.

:keymap

’(([C-backspace] . hungry-electric-delete)

([C-M-backspace]

. (lambda ()

(interactive)

(hungry-electric-delete t))))

:group ’hunger)

[Macro]define-globalized-minor-mode global-mode mode turn-on
keyword-args. . .

This defines a global toggle named global-mode whose meaning is to enable or disable
the buffer-local minor mode mode in all buffers. To turn on the minor mode in a
buffer, it uses the function turn-on; to turn off the minor mode, it calls mode with −1
as argument.

Globally enabling the mode also affects buffers subsequently created by visiting files,
and buffers that use a major mode other than Fundamental mode; but it does not
detect the creation of a new buffer in Fundamental mode.

This defines the customization option global-mode (see Chapter 14 [Customization],
page 196), which can be toggled in the Customize interface to turn the minor mode
on and off. As with define-minor-mode, you should ensure that the define-

globalized-minor-mode form is evaluated each time Emacs starts, for example by
providing a :require keyword.

Use :group group in keyword-args to specify the custom group for the mode variable
of the global minor mode.

Generally speaking, when you define a globalized minor mode, you should also define
a non-globalized version, so that people can use (or disable) it in individual buffers.
This also allows them to disable a globally enabled minor mode in a specific major
mode, by using that mode’s hook.

23.4 Mode Line Format

Each Emacs window (aside from minibuffer windows) typically has a mode line at the
bottom, which displays status information about the buffer displayed in the window. The
mode line contains information about the buffer, such as its name, associated file, depth
of recursive editing, and major and minor modes. A window can also have a header line,
which is much like the mode line but appears at the top of the window.

Chapter 23: Major and Minor Modes 427

This section describes how to control the contents of the mode line and header line. We
include it in this chapter because much of the information displayed in the mode line relates
to the enabled major and minor modes.

23.4.1 Mode Line Basics

The contents of each mode line are specified by the buffer-local variable mode-line-format
(see Section 23.4.3 [Mode Line Top], page 429). This variable holds a mode line construct:
a template that controls what is displayed on the buffer’s mode line. The value of header-
line-format specifies the buffer’s header line in the same way. All windows for the same
buffer use the same mode-line-format and header-line-format.

For efficiency, Emacs does not continuously recompute each window’s mode line and
header line. It does so when circumstances appear to call for it—for instance, if you change
the window configuration, switch buffers, narrow or widen the buffer, scroll, or modify the
buffer. If you alter any of the variables referenced by mode-line-format or header-line-
format (see Section 23.4.4 [Mode Line Variables], page 430), or any other data structures
that affect how text is displayed (see Chapter 38 [Display], page 822), you should use the
function force-mode-line-update to update the display.

[Function]force-mode-line-update &optional all
This function forces Emacs to update the current buffer’s mode line and header line,
based on the latest values of all relevant variables, during its next redisplay cycle.
If the optional argument all is non-nil, it forces an update for all mode lines and
header lines.

This function also forces an update of the menu bar and frame title.

The selected window’s mode line is usually displayed in a different color using the face
mode-line. Other windows’ mode lines appear in the face mode-line-inactive instead.
See Section 38.12 [Faces], page 848.

23.4.2 The Data Structure of the Mode Line

The mode line contents are controlled by a data structure called amode line construct, made
up of lists, strings, symbols, and numbers kept in buffer-local variables. Each data type
has a specific meaning for the mode line appearance, as described below. The same data
structure is used for constructing frame titles (see Section 29.5 [Frame Titles], page 605)
and header lines (see Section 23.4.7 [Header Lines], page 434).

A mode line construct may be as simple as a fixed string of text, but it usually specifies
how to combine fixed strings with variables’ values to construct the text. Many of these
variables are themselves defined to have mode line constructs as their values.

Here are the meanings of various data types as mode line constructs:

string A string as a mode line construct appears verbatim except for %-constructs in it.
These stand for substitution of other data; see Section 23.4.5 [%-Constructs],
page 432.

If parts of the string have face properties, they control display of the text just
as they would text in the buffer. Any characters which have no face proper-
ties are displayed, by default, in the face mode-line or mode-line-inactive
(see Section “Standard Faces” in The GNU Emacs Manual). The help-echo

Chapter 23: Major and Minor Modes 428

and local-map properties in string have special meanings. See Section 23.4.6
[Properties in Mode], page 433.

symbol A symbol as a mode line construct stands for its value. The value of symbol is
used as a mode line construct, in place of symbol. However, the symbols t and
nil are ignored, as is any symbol whose value is void.

There is one exception: if the value of symbol is a string, it is displayed verba-
tim: the %-constructs are not recognized.

Unless symbol is marked as “risky” (i.e., it has a non-nil risky-local-

variable property), all text properties specified in symbol’s value are ignored.
This includes the text properties of strings in symbol’s value, as well as all
:eval and :propertize forms in it. (The reason for this is security: non-risky
variables could be set automatically from file variables without prompting the
user.)

(string rest...)

(list rest...)

A list whose first element is a string or list means to process all the elements
recursively and concatenate the results. This is the most common form of mode
line construct.

(:eval form)

A list whose first element is the symbol :eval says to evaluate form, and use
the result as a string to display. Make sure this evaluation cannot load any
files, as doing so could cause infinite recursion.

(:propertize elt props...)

A list whose first element is the symbol :propertize says to process the mode
line construct elt recursively, then add the text properties specified by props
to the result. The argument props should consist of zero or more pairs text-
property value.

(symbol then else)

A list whose first element is a symbol that is not a keyword specifies a condi-
tional. Its meaning depends on the value of symbol. If symbol has a non-nil
value, the second element, then, is processed recursively as a mode line con-
struct. Otherwise, the third element, else, is processed recursively. You may
omit else; then the mode line construct displays nothing if the value of symbol
is nil or void.

(width rest...)

A list whose first element is an integer specifies truncation or padding of the
results of rest. The remaining elements rest are processed recursively as mode
line constructs and concatenated together. When width is positive, the result is
space filled on the right if its width is less than width. When width is negative,
the result is truncated on the right to −width columns if its width exceeds
−width.
For example, the usual way to show what percentage of a buffer is above the
top of the window is to use a list like this: (-3 "%p").

Chapter 23: Major and Minor Modes 429

23.4.3 The Top Level of Mode Line Control

The variable in overall control of the mode line is mode-line-format.

[User Option]mode-line-format
The value of this variable is a mode line construct that controls the contents of the
mode-line. It is always buffer-local in all buffers.

If you set this variable to nil in a buffer, that buffer does not have a mode line. (A
window that is just one line tall also does not display a mode line.)

The default value of mode-line-format is designed to use the values of other variables
such as mode-line-position and mode-line-modes (which in turn incorporates the values
of the variables mode-name and minor-mode-alist). Very few modes need to alter mode-
line-format itself. For most purposes, it is sufficient to alter some of the variables that
mode-line-format either directly or indirectly refers to.

If you do alter mode-line-format itself, the new value should use the same variables
that appear in the default value (see Section 23.4.4 [Mode Line Variables], page 430), rather
than duplicating their contents or displaying the information in another fashion. This way,
customizations made by the user or by Lisp programs (such as display-time and major
modes) via changes to those variables remain effective.

Here is a hypothetical example of a mode-line-format that might be useful for Shell
mode (in reality, Shell mode does not set mode-line-format):

(setq mode-line-format

(list "-"

’mode-line-mule-info

’mode-line-modified

’mode-line-frame-identification

"%b--"

;; Note that this is evaluated while making the list.
;; It makes a mode line construct which is just a string.
(getenv "HOST")

":"

’default-directory

" "

’global-mode-string

" %[("

’(:eval (mode-line-mode-name))

’mode-line-process

’minor-mode-alist

"%n"

")%]--"

’(which-func-mode ("" which-func-format "--"))

’(line-number-mode "L%l--")

’(column-number-mode "C%c--")

’(-3 "%p")))

Chapter 23: Major and Minor Modes 430

(The variables line-number-mode, column-number-mode and which-func-mode enable
particular minor modes; as usual, these variable names are also the minor mode command
names.)

23.4.4 Variables Used in the Mode Line

This section describes variables incorporated by the standard value of mode-line-format
into the text of the mode line. There is nothing inherently special about these variables;
any other variables could have the same effects on the mode line if the value of mode-line-
format is changed to use them. However, various parts of Emacs set these variables on the
understanding that they will control parts of the mode line; therefore, practically speaking,
it is essential for the mode line to use them.

[Variable]mode-line-mule-info
This variable holds the value of the mode line construct that displays information
about the language environment, buffer coding system, and current input method.
See Chapter 33 [Non-ASCII Characters], page 705.

[Variable]mode-line-modified
This variable holds the value of the mode line construct that displays whether the
current buffer is modified. Its default value displays ‘**’ if the buffer is modified, ‘--’
if the buffer is not modified, ‘%%’ if the buffer is read only, and ‘%*’ if the buffer is
read only and modified.

Changing this variable does not force an update of the mode line.

[Variable]mode-line-frame-identification
This variable identifies the current frame. Its default value displays " " if you are
using a window system which can show multiple frames, or "-%F " on an ordinary
terminal which shows only one frame at a time.

[Variable]mode-line-buffer-identification
This variable identifies the buffer being displayed in the window. Its default value
displays the buffer name, padded with spaces to at least 12 columns.

[User Option]mode-line-position
This variable indicates the position in the buffer. Its default value displays the buffer
percentage and, optionally, the buffer size, the line number and the column number.

[Variable]vc-mode
The variable vc-mode, buffer-local in each buffer, records whether the buffer’s visited
file is maintained with version control, and, if so, which kind. Its value is a string
that appears in the mode line, or nil for no version control.

[User Option]mode-line-modes
This variable displays the buffer’s major and minor modes. Its default value also
displays the recursive editing level, information on the process status, and whether
narrowing is in effect.

[Variable]mode-line-remote
This variable is used to show whether default-directory for the current buffer is
remote.

Chapter 23: Major and Minor Modes 431

[Variable]mode-line-client
This variable is used to identify emacsclient frames.

The following three variables are used in mode-line-modes:

[Variable]mode-name
This buffer-local variable holds the “pretty” name of the current buffer’s major mode.
Each major mode should set this variable so that the mode name will appear in the
mode line. The value does not have to be a string, but can use any of the data types
valid in a mode-line construct (see Section 23.4.2 [Mode Line Data], page 427). To
compute the string that will identify the mode name in the mode line, use format-

mode-line (see Section 23.4.8 [Emulating Mode Line], page 434).

[Variable]mode-line-process
This buffer-local variable contains the mode line information on process status in
modes used for communicating with subprocesses. It is displayed immediately follow-
ing the major mode name, with no intervening space. For example, its value in the
shell buffer is (":%s"), which allows the shell to display its status along with the
major mode as: ‘(Shell:run)’. Normally this variable is nil.

[Variable]minor-mode-alist
This variable holds an association list whose elements specify how the mode line
should indicate that a minor mode is active. Each element of the minor-mode-alist
should be a two-element list:

(minor-mode-variable mode-line-string)

More generally, mode-line-string can be any mode line construct. It appears in the
mode line when the value of minor-mode-variable is non-nil, and not otherwise.
These strings should begin with spaces so that they don’t run together. Convention-
ally, the minor-mode-variable for a specific mode is set to a non-nil value when that
minor mode is activated.

minor-mode-alist itself is not buffer-local. Each variable mentioned in the alist
should be buffer-local if its minor mode can be enabled separately in each buffer.

[Variable]global-mode-string
This variable holds a mode line construct that, by default, appears in the mode line
just after the which-func-mode minor mode if set, else after mode-line-modes. The
command display-time sets global-mode-string to refer to the variable display-
time-string, which holds a string containing the time and load information.

The ‘%M’ construct substitutes the value of global-mode-string, but that is obsolete,
since the variable is included in the mode line from mode-line-format.

Here is a simplified version of the default value of mode-line-format. The real default
value also specifies addition of text properties.

("-"

mode-line-mule-info

mode-line-modified

mode-line-frame-identification

mode-line-buffer-identification

Chapter 23: Major and Minor Modes 432

" "

mode-line-position

(vc-mode vc-mode)

" "

mode-line-modes

(which-func-mode ("" which-func-format "--"))

(global-mode-string ("--" global-mode-string))

"-%-")

23.4.5 %-Constructs in the Mode Line

Strings used as mode line constructs can use certain %-constructs to substitute various kinds
of data. The following is a list of the defined %-constructs, and what they mean.

In any construct except ‘%%’, you can add a decimal integer after the ‘%’ to specify a
minimum field width. If the width is less, the field is padded to that width. Purely numeric
constructs (‘c’, ‘i’, ‘I’, and ‘l’) are padded by inserting spaces to the left, and others are
padded by inserting spaces to the right.

%b The current buffer name, obtained with the buffer-name function. See
Section 27.3 [Buffer Names], page 524.

%c The current column number of point.

%e When Emacs is nearly out of memory for Lisp objects, a brief message saying
so. Otherwise, this is empty.

%f The visited file name, obtained with the buffer-file-name function. See
Section 27.4 [Buffer File Name], page 525.

%F The title (only on a window system) or the name of the selected frame. See
Section 29.3.3.1 [Basic Parameters], page 595.

%i The size of the accessible part of the current buffer; basically (- (point-max)

(point-min)).

%I Like ‘%i’, but the size is printed in a more readable way by using ‘k’ for 10^3,
‘M’ for 10^6, ‘G’ for 10^9, etc., to abbreviate.

%l The current line number of point, counting within the accessible portion of the
buffer.

%n ‘Narrow’ when narrowing is in effect; nothing otherwise (see narrow-to-region
in Section 30.4 [Narrowing], page 633).

%p The percentage of the buffer text above the top of window, or ‘Top’, ‘Bottom’
or ‘All’. Note that the default mode line construct truncates this to three
characters.

%P The percentage of the buffer text that is above the bottom of the window (which
includes the text visible in the window, as well as the text above the top), plus
‘Top’ if the top of the buffer is visible on screen; or ‘Bottom’ or ‘All’.

%s The status of the subprocess belonging to the current buffer, obtained with
process-status. See Section 37.6 [Process Information], page 789.

Chapter 23: Major and Minor Modes 433

%t Whether the visited file is a text file or a binary file. This is a meaningful
distinction only on certain operating systems (see Section 33.9.9 [MS-DOS File
Types], page 728).

%z The mnemonics of keyboard, terminal, and buffer coding systems.

%Z Like ‘%z’, but including the end-of-line format.

%* ‘%’ if the buffer is read only (see buffer-read-only);
‘*’ if the buffer is modified (see buffer-modified-p);
‘-’ otherwise. See Section 27.5 [Buffer Modification], page 527.

%+ ‘*’ if the buffer is modified (see buffer-modified-p);
‘%’ if the buffer is read only (see buffer-read-only);
‘-’ otherwise. This differs from ‘%*’ only for a modified read-only buffer. See
Section 27.5 [Buffer Modification], page 527.

%& ‘*’ if the buffer is modified, and ‘-’ otherwise.

%[An indication of the depth of recursive editing levels (not counting minibuffer
levels): one ‘[’ for each editing level. See Section 21.13 [Recursive Editing],
page 361.

%] One ‘]’ for each recursive editing level (not counting minibuffer levels).

%- Dashes sufficient to fill the remainder of the mode line.

%% The character ‘%’—this is how to include a literal ‘%’ in a string in which %-
constructs are allowed.

The following two %-constructs are still supported, but they are obsolete, since you can
get the same results with the variables mode-name and global-mode-string.

%m The value of mode-name.

%M The value of global-mode-string.

23.4.6 Properties in the Mode Line

Certain text properties are meaningful in the mode line. The face property affects the
appearance of text; the help-echo property associates help strings with the text, and
local-map can make the text mouse-sensitive.

There are four ways to specify text properties for text in the mode line:

1. Put a string with a text property directly into the mode line data structure.

2. Put a text property on a mode line %-construct such as ‘%12b’; then the expansion of
the %-construct will have that same text property.

3. Use a (:propertize elt props...) construct to give elt a text property specified by
props.

4. Use a list containing :eval form in the mode line data structure, and make form
evaluate to a string that has a text property.

You can use the local-map property to specify a keymap. This keymap only takes real
effect for mouse clicks; binding character keys and function keys to it has no effect, since it
is impossible to move point into the mode line.

Chapter 23: Major and Minor Modes 434

When the mode line refers to a variable which does not have a non-nil risky-local-

variable property, any text properties given or specified within that variable’s values are
ignored. This is because such properties could otherwise specify functions to be called, and
those functions could come from file local variables.

23.4.7 Window Header Lines

A window can have a header line at the top, just as it can have a mode line at the bottom.
The header line feature works just like the mode line feature, except that it’s controlled by
header-line-format:

[Variable]header-line-format
This variable, local in every buffer, specifies how to display the header line, for win-
dows displaying the buffer. The format of the value is the same as for mode-line-
format (see Section 23.4.2 [Mode Line Data], page 427). It is normally nil, so that
ordinary buffers have no header line.

A window that is just one line tall never displays a header line. A window that is two
lines tall cannot display both a mode line and a header line at once; if it has a mode line,
then it does not display a header line.

23.4.8 Emulating Mode Line Formatting

You can use the function format-mode-line to compute the text that would appear in a
mode line or header line based on a certain mode line construct.

[Function]format-mode-line format &optional face window buffer
This function formats a line of text according to format as if it were generating the
mode line for window, but it also returns the text as a string. The argument window
defaults to the selected window. If buffer is non-nil, all the information used is taken
from buffer; by default, it comes from window ’s buffer.

The value string normally has text properties that correspond to the faces, keymaps,
etc., that the mode line would have. Any character for which no face property is
specified by format gets a default value determined by face. If face is t, that stands
for either mode-line if window is selected, otherwise mode-line-inactive. If face
is nil or omitted, that stands for the default face. If face is an integer, the value
returned by this function will have no text properties.

You can also specify other valid faces as the value of face. If specified, that face
provides the face property for characters whose face is not specified by format.

Note that using mode-line, mode-line-inactive, or header-line as face will actu-
ally redisplay the mode line or the header line, respectively, using the current defini-
tions of the corresponding face, in addition to returning the formatted string. (Other
faces do not cause redisplay.)

For example, (format-mode-line header-line-format) returns the text that would
appear in the selected window’s header line ("" if it has no header line). (format-

mode-line header-line-format ’header-line) returns the same text, with each
character carrying the face that it will have in the header line itself, and also redraws
the header line.

Chapter 23: Major and Minor Modes 435

23.5 Imenu

Imenu is a feature that lets users select a definition or section in the buffer, from a menu
which lists all of them, to go directly to that location in the buffer. Imenu works by
constructing a buffer index which lists the names and buffer positions of the definitions, or
other named portions of the buffer; then the user can choose one of them and move point
to it. Major modes can add a menu bar item to use Imenu using imenu-add-to-menubar.

[Command]imenu-add-to-menubar name
This function defines a local menu bar item named name to run Imenu.

The user-level commands for using Imenu are described in the Emacs Manual (see Section
“Imenu” in the Emacs Manual). This section explains how to customize Imenu’s method
of finding definitions or buffer portions for a particular major mode.

The usual and simplest way is to set the variable imenu-generic-expression:

[Variable]imenu-generic-expression
This variable, if non-nil, is a list that specifies regular expressions for finding defini-
tions for Imenu. Simple elements of imenu-generic-expression look like this:

(menu-title regexp index)

Here, if menu-title is non-nil, it says that the matches for this element should go in
a submenu of the buffer index; menu-title itself specifies the name for the submenu.
If menu-title is nil, the matches for this element go directly in the top level of the
buffer index.

The second item in the list, regexp, is a regular expression (see Section 34.3 [Reg-
ular Expressions], page 734); anything in the buffer that it matches is considered a
definition, something to mention in the buffer index. The third item, index, is a non-
negative integer that indicates which subexpression in regexp matches the definition’s
name.

An element can also look like this:

(menu-title regexp index function arguments...)

Each match for this element creates an index item, and when the index item is selected
by the user, it calls function with arguments consisting of the item name, the buffer
position, and arguments.

For Emacs Lisp mode, imenu-generic-expression could look like this:

((nil "^\\s-*(def\\(un\\|subst\\|macro\\|advice\\)\

\\s-+\\([-A-Za-z0-9+]+\\)" 2)

("*Vars*" "^\\s-*(def\\(var\\|const\\)\

\\s-+\\([-A-Za-z0-9+]+\\)" 2)

("*Types*"

"^\\s-*\

(def\\(type\\|struct\\|class\\|ine-condition\\)\

\\s-+\\([-A-Za-z0-9+]+\\)" 2))

Setting this variable makes it buffer-local in the current buffer.

Chapter 23: Major and Minor Modes 436

[Variable]imenu-case-fold-search
This variable controls whether matching against the regular expressions in the value of
imenu-generic-expression is case-sensitive: t, the default, means matching should
ignore case.

Setting this variable makes it buffer-local in the current buffer.

[Variable]imenu-syntax-alist
This variable is an alist of syntax table modifiers to use while processing imenu-

generic-expression, to override the syntax table of the current buffer. Each element
should have this form:

(characters . syntax-description)

The car, characters, can be either a character or a string. The element says to
give that character or characters the syntax specified by syntax-description, which
is passed to modify-syntax-entry (see Section 35.3 [Syntax Table Functions],
page 762).

This feature is typically used to give word syntax to characters which normally
have symbol syntax, and thus to simplify imenu-generic-expression and speed
up matching. For example, Fortran mode uses it this way:

(setq imenu-syntax-alist ’(("_$" . "w")))

The imenu-generic-expression regular expressions can then use ‘\\sw+’ instead
of ‘\\(\\sw\\|\\s_\\)+’. Note that this technique may be inconvenient when the
mode needs to limit the initial character of a name to a smaller set of characters than
are allowed in the rest of a name.

Setting this variable makes it buffer-local in the current buffer.

Another way to customize Imenu for a major mode is to set the variables imenu-prev-
index-position-function and imenu-extract-index-name-function:

[Variable]imenu-prev-index-position-function
If this variable is non-nil, its value should be a function that finds the next “def-
inition” to put in the buffer index, scanning backward in the buffer from point. It
should return nil if it doesn’t find another “definition” before point. Otherwise it
should leave point at the place it finds a “definition” and return any non-nil value.

Setting this variable makes it buffer-local in the current buffer.

[Variable]imenu-extract-index-name-function
If this variable is non-nil, its value should be a function to return the name for a
definition, assuming point is in that definition as the imenu-prev-index-position-
function function would leave it.

Setting this variable makes it buffer-local in the current buffer.

The last way to customize Imenu for a major mode is to set the variable imenu-create-
index-function:

[Variable]imenu-create-index-function
This variable specifies the function to use for creating a buffer index. The function
should take no arguments, and return an index alist for the current buffer. It is called
within save-excursion, so where it leaves point makes no difference.

Chapter 23: Major and Minor Modes 437

The index alist can have three types of elements. Simple elements look like this:

(index-name . index-position)

Selecting a simple element has the effect of moving to position index-position in the
buffer. Special elements look like this:

(index-name index-position function arguments...)

Selecting a special element performs:

(funcall function

index-name index-position arguments...)

A nested sub-alist element looks like this:

(menu-title sub-alist)

It creates the submenu menu-title specified by sub-alist.

The default value of imenu-create-index-function is imenu-default-create-

index-function. This function calls the value of imenu-prev-index-position-

function and the value of imenu-extract-index-name-function to produce the
index alist. However, if either of these two variables is nil, the default function uses
imenu-generic-expression instead.

Setting this variable makes it buffer-local in the current buffer.

23.6 Font Lock Mode

Font Lock mode is a buffer-local minor mode that automatically attaches face properties
to certain parts of the buffer based on their syntactic role. How it parses the buffer depends
on the major mode; most major modes define syntactic criteria for which faces to use in
which contexts. This section explains how to customize Font Lock for a particular major
mode.

Font Lock mode finds text to highlight in two ways: through syntactic parsing based
on the syntax table, and through searching (usually for regular expressions). Syntactic
fontification happens first; it finds comments and string constants and highlights them.
Search-based fontification happens second.

23.6.1 Font Lock Basics

There are several variables that control how Font Lock mode highlights text. But major
modes should not set any of these variables directly. Instead, they should set font-lock-
defaults as a buffer-local variable. The value assigned to this variable is used, if and when
Font Lock mode is enabled, to set all the other variables.

[Variable]font-lock-defaults
This variable is set by major modes to specify how to fontify text in that mode. It
automatically becomes buffer-local when set. If its value is nil, Font Lock mode
does no highlighting, and you can use the ‘Faces’ menu (under ‘Edit’ and then ‘Text
Properties’ in the menu bar) to assign faces explicitly to text in the buffer.

If non-nil, the value should look like this:

(keywords [keywords-only [case-fold

[syntax-alist [syntax-begin other-vars...]]]])

Chapter 23: Major and Minor Modes 438

The first element, keywords, indirectly specifies the value of font-lock-keywords
which directs search-based fontification. It can be a symbol, a variable or a function
whose value is the list to use for font-lock-keywords. It can also be a list of several
such symbols, one for each possible level of fontification. The first symbol specifies
the ‘mode default’ level of fontification, the next symbol level 1 fontification, the
next level 2, and so on. The ‘mode default’ level is normally the same as level 1. It
is used when font-lock-maximum-decoration has a nil value. See Section 23.6.5
[Levels of Font Lock], page 444.

The second element, keywords-only, specifies the value of the variable font-lock-

keywords-only. If this is omitted or nil, syntactic fontification (of strings and com-
ments) is also performed. If this is non-nil, syntactic fontification is not performed.
See Section 23.6.8 [Syntactic Font Lock], page 445.

The third element, case-fold, specifies the value of font-lock-keywords-case-fold-
search. If it is non-nil, Font Lock mode ignores case during search-based fontifica-
tion.

If the fourth element, syntax-alist, is non-nil, it should be a list of cons cells of
the form (char-or-string . string). These are used to set up a syntax table for
syntactic fontification; the resulting syntax table is stored in font-lock-syntax-

table. If syntax-alist is omitted or nil, syntactic fontification uses the syntax table
returned by the syntax-table function. See Section 35.3 [Syntax Table Functions],
page 762.

The fifth element, syntax-begin, specifies the value of font-lock-beginning-of-

syntax-function. We recommend setting this variable to nil and using syntax-

begin-function instead.

All the remaining elements (if any) are collectively called other-vars. Each of these
elements should have the form (variable . value)—which means, make variable
buffer-local and then set it to value. You can use these other-vars to set other variables
that affect fontification, aside from those you can control with the first five elements.
See Section 23.6.4 [Other Font Lock Variables], page 443.

If your mode fontifies text explicitly by adding font-lock-face properties, it can specify
(nil t) for font-lock-defaults to turn off all automatic fontification. However, this is
not required; it is possible to fontify some things using font-lock-face properties and set
up automatic fontification for other parts of the text.

23.6.2 Search-based Fontification

The variable which directly controls search-based fontification is font-lock-keywords,
which is typically specified via the keywords element in font-lock-defaults.

[Variable]font-lock-keywords
The value of this variable is a list of the keywords to highlight. Lisp programs should
not set this variable directly. Normally, the value is automatically set by Font Lock
mode, using the keywords element in font-lock-defaults. The value can also
be altered using the functions font-lock-add-keywords and font-lock-remove-

keywords (see Section 23.6.3 [Customizing Keywords], page 442).

Chapter 23: Major and Minor Modes 439

Each element of font-lock-keywords specifies how to find certain cases of text, and how
to highlight those cases. Font Lock mode processes the elements of font-lock-keywords
one by one, and for each element, it finds and handles all matches. Ordinarily, once part
of the text has been fontified already, this cannot be overridden by a subsequent match
in the same text; but you can specify different behavior using the override element of a
subexp-highlighter.

Each element of font-lock-keywords should have one of these forms:

regexp Highlight all matches for regexp using font-lock-keyword-face. For example,

;; Highlight occurrences of the word ‘foo’
;; using font-lock-keyword-face.
"\\<foo\\>"

Be careful when composing these regular expressions; a poorly written
pattern can dramatically slow things down! The function regexp-opt (see
Section 34.3.3 [Regexp Functions], page 743) is useful for calculating optimal
regular expressions to match several keywords.

function Find text by calling function, and highlight the matches it finds using font-

lock-keyword-face.

When function is called, it receives one argument, the limit of the search; it
should begin searching at point, and not search beyond the limit. It should
return non-nil if it succeeds, and set the match data to describe the match
that was found. Returning nil indicates failure of the search.

Fontification will call function repeatedly with the same limit, and with point
where the previous invocation left it, until function fails. On failure, function
need not reset point in any particular way.

(matcher . subexp)

In this kind of element, matcher is either a regular expression or a function, as
described above. The cdr, subexp, specifies which subexpression of matcher
should be highlighted (instead of the entire text that matcher matched).

;; Highlight the ‘bar’ in each occurrence of ‘fubar’,
;; using font-lock-keyword-face.
("fu\\(bar\\)" . 1)

If you use regexp-opt to produce the regular expression matcher, you can
use regexp-opt-depth (see Section 34.3.3 [Regexp Functions], page 743) to
calculate the value for subexp.

(matcher . facespec)

In this kind of element, facespec is an expression whose value specifies the face
to use for highlighting. In the simplest case, facespec is a Lisp variable (a
symbol) whose value is a face name.

;; Highlight occurrences of ‘fubar’,
;; using the face which is the value of fubar-face.
("fubar" . fubar-face)

However, facespec can also evaluate to a list of this form:

Chapter 23: Major and Minor Modes 440

(face face prop1 val1 prop2 val2...)

to specify the face face and various additional text properties to put on the
text that matches. If you do this, be sure to add the other text property
names that you set in this way to the value of font-lock-extra-managed-
props so that the properties will also be cleared out when they are no longer
appropriate. Alternatively, you can set the variable font-lock-unfontify-

region-function to a function that clears these properties. See Section 23.6.4
[Other Font Lock Variables], page 443.

(matcher . subexp-highlighter)

In this kind of element, subexp-highlighter is a list which specifies how to
highlight matches found by matcher. It has the form:

(subexp facespec [override [laxmatch]])

The car, subexp, is an integer specifying which subexpression of the match to
fontify (0 means the entire matching text). The second subelement, facespec,
is an expression whose value specifies the face, as described above.

The last two values in subexp-highlighter, override and laxmatch, are optional
flags. If override is t, this element can override existing fontification made by
previous elements of font-lock-keywords. If it is keep, then each character
is fontified if it has not been fontified already by some other element. If it
is prepend, the face specified by facespec is added to the beginning of the
font-lock-face property. If it is append, the face is added to the end of the
font-lock-face property.

If laxmatch is non-nil, it means there should be no error if there is no subexpres-
sion numbered subexp in matcher. Obviously, fontification of the subexpression
numbered subexp will not occur. However, fontification of other subexpressions
(and other regexps) will continue. If laxmatch is nil, and the specified subex-
pression is missing, then an error is signaled which terminates search-based
fontification.

Here are some examples of elements of this kind, and what they do:

;; Highlight occurrences of either ‘foo’ or ‘bar’, using
;; foo-bar-face, even if they have already been highlighted.
;; foo-bar-face should be a variable whose value is a face.
("foo\\|bar" 0 foo-bar-face t)

;; Highlight the first subexpression within each occurrence
;; that the function fubar-match finds,
;; using the face which is the value of fubar-face.
(fubar-match 1 fubar-face)

(matcher . anchored-highlighter)

In this kind of element, anchored-highlighter specifies how to highlight text
that follows a match found by matcher. So a match found by matcher acts
as the anchor for further searches specified by anchored-highlighter. anchored-
highlighter is a list of the following form:

(anchored-matcher pre-form post-form

subexp-highlighters...)

Chapter 23: Major and Minor Modes 441

Here, anchored-matcher, like matcher, is either a regular expression or a func-
tion. After a match of matcher is found, point is at the end of the match.
Now, Font Lock evaluates the form pre-form. Then it searches for matches of
anchored-matcher and uses subexp-highlighters to highlight these. A subexp-
highlighter is as described above. Finally, Font Lock evaluates post-form.

The forms pre-form and post-form can be used to initialize before, and cleanup
after, anchored-matcher is used. Typically, pre-form is used to move point to
some position relative to the match of matcher, before starting with anchored-
matcher. post-form might be used to move back, before resuming with matcher.

After Font Lock evaluates pre-form, it does not search for anchored-matcher
beyond the end of the line. However, if pre-form returns a buffer position that is
greater than the position of point after pre-form is evaluated, then the position
returned by pre-form is used as the limit of the search instead. It is generally a
bad idea to return a position greater than the end of the line; in other words,
the anchored-matcher search should not span lines.

For example,
;; Highlight occurrences of the word ‘item’ following
;; an occurrence of the word ‘anchor’ (on the same line)
;; in the value of item-face.
("\\<anchor\\>" "\\<item\\>" nil nil (0 item-face))

Here, pre-form and post-form are nil. Therefore searching for ‘item’ starts
at the end of the match of ‘anchor’, and searching for subsequent instances of
‘anchor’ resumes from where searching for ‘item’ concluded.

(matcher highlighters...)

This sort of element specifies several highlighter lists for a single matcher. A
highlighter list can be of the type subexp-highlighter or anchored-highlighter
as described above.

For example,
;; Highlight occurrences of the word ‘anchor’ in the value
;; of anchor-face, and subsequent occurrences of the word
;; ‘item’ (on the same line) in the value of item-face.
("\\<anchor\\>" (0 anchor-face)

("\\<item\\>" nil nil (0 item-face)))

(eval . form)

Here form is an expression to be evaluated the first time this value of font-
lock-keywords is used in a buffer. Its value should have one of the forms
described in this table.

Warning: Do not design an element of font-lock-keywords to match text which spans
lines; this does not work reliably. For details, see See Section 23.6.9 [Multiline Font Lock],
page 446.

You can use case-fold in font-lock-defaults to specify the value of font-lock-

keywords-case-fold-search which says whether search-based fontification should be case-
insensitive.

[Variable]font-lock-keywords-case-fold-search
Non-nilmeans that regular expression matching for the sake of font-lock-keywords
should be case-insensitive.

Chapter 23: Major and Minor Modes 442

23.6.3 Customizing Search-Based Fontification

You can use font-lock-add-keywords to add additional search-based fontification rules to
a major mode, and font-lock-remove-keywords to remove rules.

[Function]font-lock-add-keywords mode keywords &optional how
This function adds highlighting keywords, for the current buffer or for major mode
mode. The argument keywords should be a list with the same format as the variable
font-lock-keywords.

If mode is a symbol which is a major mode command name, such as c-mode, the effect
is that enabling Font Lock mode in mode will add keywords to font-lock-keywords.
Calling with a non-nil value of mode is correct only in your ~/.emacs file.

If mode is nil, this function adds keywords to font-lock-keywords in the current
buffer. This way of calling font-lock-add-keywords is usually used in mode hook
functions.

By default, keywords are added at the beginning of font-lock-keywords. If the
optional argument how is set, they are used to replace the value of font-lock-
keywords. If how is any other non-nil value, they are added at the end of font-
lock-keywords.

Some modes provide specialized support you can use in additional highlighting pat-
terns. See the variables c-font-lock-extra-types, c++-font-lock-extra-types,
and java-font-lock-extra-types, for example.

Warning: Major mode commands must not call font-lock-add-keywords under any
circumstances, either directly or indirectly, except through their mode hooks. (Doing
so would lead to incorrect behavior for some minor modes.) They should set up their
rules for search-based fontification by setting font-lock-keywords.

[Function]font-lock-remove-keywords mode keywords
This function removes keywords from font-lock-keywords for the current buffer or
for major mode mode. As in font-lock-add-keywords, mode should be a major
mode command name or nil. All the caveats and requirements for font-lock-add-
keywords apply here too.

For example, the following code adds two fontification patterns for C mode: one to
fontify the word ‘FIXME’, even in comments, and another to fontify the words ‘and’, ‘or’
and ‘not’ as keywords.

(font-lock-add-keywords ’c-mode

’(("\\<\\(FIXME\\):" 1 font-lock-warning-face prepend)

("\\<\\(and\\|or\\|not\\)\\>" . font-lock-keyword-face)))

This example affects only C mode proper. To add the same patterns to C mode and all
modes derived from it, do this instead:

(add-hook ’c-mode-hook

(lambda ()

(font-lock-add-keywords nil

’(("\\<\\(FIXME\\):" 1 font-lock-warning-face prepend)

("\\<\\(and\\|or\\|not\\)\\>" .

font-lock-keyword-face)))))

Chapter 23: Major and Minor Modes 443

23.6.4 Other Font Lock Variables

This section describes additional variables that a major mode can set by means of other-vars
in font-lock-defaults (see Section 23.6.1 [Font Lock Basics], page 437).

[Variable]font-lock-mark-block-function
If this variable is non-nil, it should be a function that is called with no arguments,
to choose an enclosing range of text for refontification for the command M-o M-o

(font-lock-fontify-block).

The function should report its choice by placing the region around it. A good choice
is a range of text large enough to give proper results, but not too large so that
refontification becomes slow. Typical values are mark-defun for programming modes
or mark-paragraph for textual modes.

[Variable]font-lock-extra-managed-props
This variable specifies additional properties (other than font-lock-face) that are
being managed by Font Lock mode. It is used by font-lock-default-unfontify-

region, which normally only manages the font-lock-face property. If you want
Font Lock to manage other properties as well, you must specify them in a facespec in
font-lock-keywords as well as add them to this list. See Section 23.6.2 [Search-based
Fontification], page 438.

[Variable]font-lock-fontify-buffer-function
Function to use for fontifying the buffer. The default value is font-lock-default-
fontify-buffer.

[Variable]font-lock-unfontify-buffer-function
Function to use for unfontifying the buffer. This is used when turning off Font Lock
mode. The default value is font-lock-default-unfontify-buffer.

[Variable]font-lock-fontify-region-function
Function to use for fontifying a region. It should take two arguments, the beginning
and end of the region, and an optional third argument verbose. If verbose is non-nil,
the function should print status messages. The default value is font-lock-default-
fontify-region.

[Variable]font-lock-unfontify-region-function
Function to use for unfontifying a region. It should take two arguments, the beginning
and end of the region. The default value is font-lock-default-unfontify-region.

[Function]jit-lock-register function &optional contextual
This function tells Font Lock mode to run the Lisp function function any time it
has to fontify or refontify part of the current buffer. It calls function before calling
the default fontification functions, and gives it two arguments, start and end, which
specify the region to be fontified or refontified.

The optional argument contextual, if non-nil, forces Font Lock mode to always re-
fontify a syntactically relevant part of the buffer, and not just the modified lines. This
argument can usually be omitted.

Chapter 23: Major and Minor Modes 444

[Function]jit-lock-unregister function
If function was previously registered as a fontification function using jit-lock-

register, this function unregisters it.

23.6.5 Levels of Font Lock

Some major modes offer three different levels of fontification. You can define multiple levels
by using a list of symbols for keywords in font-lock-defaults. Each symbol specifies one
level of fontification; it is up to the user to choose one of these levels, normally by setting
font-lock-maximum-decoration (see Section “Font Lock” in the GNU Emacs Manual).
The chosen level’s symbol value is used to initialize font-lock-keywords.

Here are the conventions for how to define the levels of fontification:

• Level 1: highlight function declarations, file directives (such as include or import di-
rectives), strings and comments. The idea is speed, so only the most important and
top-level components are fontified.

• Level 2: in addition to level 1, highlight all language keywords, including type names
that act like keywords, as well as named constant values. The idea is that all keywords
(either syntactic or semantic) should be fontified appropriately.

• Level 3: in addition to level 2, highlight the symbols being defined in function and
variable declarations, and all builtin function names, wherever they appear.

23.6.6 Precalculated Fontification

Some major modes such as list-buffers and occur construct the buffer text program-
matically. The easiest way for them to support Font Lock mode is to specify the faces of
text when they insert the text in the buffer.

The way to do this is to specify the faces in the text with the special text property font-

lock-face (see Section 32.19.4 [Special Properties], page 685). When Font Lock mode is
enabled, this property controls the display, just like the face property. When Font Lock
mode is disabled, font-lock-face has no effect on the display.

It is ok for a mode to use font-lock-face for some text and also use the normal Font
Lock machinery. But if the mode does not use the normal Font Lock machinery, it should
not set the variable font-lock-defaults.

23.6.7 Faces for Font Lock

Font Lock mode can highlight using any face, but Emacs defines several faces specifically
for Font Lock to use to highlight text. These Font Lock faces are listed below. They can
also be used by major modes for syntactic highlighting outside of Font Lock mode (see
Section 23.2.1 [Major Mode Conventions], page 407).

Each of these symbols is both a face name, and a variable whose default value is the
symbol itself. Thus, the default value of font-lock-comment-face is font-lock-comment-
face.

The faces are listed with descriptions of their typical usage, and in order of greater
to lesser “prominence”. If a mode’s syntactic categories do not fit well with the usage
descriptions, the faces can be assigned using the ordering as a guide.

Chapter 23: Major and Minor Modes 445

font-lock-warning-face

for a construct that is peculiar, or that greatly changes the meaning of other
text, like ‘;;;###autoload’ in Emacs Lisp and ‘#error’ in C.

font-lock-function-name-face

for the name of a function being defined or declared.

font-lock-variable-name-face

for the name of a variable being defined or declared.

font-lock-keyword-face

for a keyword with special syntactic significance, like ‘for’ and ‘if’ in C.

font-lock-comment-face

for comments.

font-lock-comment-delimiter-face

for comments delimiters, like ‘/*’ and ‘*/’ in C. On most terminals, this inherits
from font-lock-comment-face.

font-lock-type-face

for the names of user-defined data types.

font-lock-constant-face

for the names of constants, like ‘NULL’ in C.

font-lock-builtin-face

for the names of built-in functions.

font-lock-preprocessor-face

for preprocessor commands. This inherits, by default, from font-lock-

builtin-face.

font-lock-string-face

for string constants.

font-lock-doc-face

for documentation strings in the code. This inherits, by default, from font-

lock-string-face.

font-lock-negation-char-face

for easily-overlooked negation characters.

23.6.8 Syntactic Font Lock

Syntactic fontification uses a syntax table (see Chapter 35 [Syntax Tables], page 757) to find
and highlight syntactically relevant text. If enabled, it runs prior to search-based fontifica-
tion. The variable font-lock-syntactic-face-function, documented below, determines
which syntactic constructs to highlight. There are several variables that affect syntactic
fontification; you should set them by means of font-lock-defaults (see Section 23.6.1
[Font Lock Basics], page 437).

Whenever Font Lock mode performs syntactic fontification on a stretch of text, it first
calls the function specified by syntax-propertize-function. Major modes can use this to
apply syntax-table text properties to override the buffer’s syntax table in special cases.
See Section 35.4 [Syntax Properties], page 764.

Chapter 23: Major and Minor Modes 446

[Variable]font-lock-keywords-only
If the value of this variable is non-nil, Font Lock does not do syntactic fontification,
only search-based fontification based on font-lock-keywords. It is normally set by
Font Lock mode based on the keywords-only element in font-lock-defaults.

[Variable]font-lock-syntax-table
This variable holds the syntax table to use for fontification of comments and strings.
It is normally set by Font Lock mode based on the syntax-alist element in font-

lock-defaults. If this value is nil, syntactic fontification uses the buffer’s syntax
table (the value returned by the function syntax-table; see Section 35.3 [Syntax
Table Functions], page 762).

[Variable]font-lock-beginning-of-syntax-function
If this variable is non-nil, it should be a function to move point back to a position
that is syntactically at “top level” and outside of strings or comments. The value is
normally set through an other-vars element in font-lock-defaults. If it is nil, Font
Lock uses syntax-begin-function to move back outside of any comment, string, or
sexp (see Section 35.6.2 [Position Parse], page 766).

This variable is semi-obsolete; we usually recommend setting syntax-begin-

function instead. One of its uses is to tune the behavior of syntactic fontification,
e.g., to ensure that different kinds of strings or comments are highlighted differently.

The specified function is called with no arguments. It should leave point at the begin-
ning of any enclosing syntactic block. Typical values are beginning-of-line (used
when the start of the line is known to be outside a syntactic block), or beginning-
of-defun for programming modes, or backward-paragraph for textual modes.

[Variable]font-lock-syntactic-face-function
If this variable is non-nil, it should be a function to determine which face to use for
a given syntactic element (a string or a comment). The value is normally set through
an other-vars element in font-lock-defaults.

The function is called with one argument, the parse state at point returned
by parse-partial-sexp, and should return a face. The default value returns
font-lock-comment-face for comments and font-lock-string-face for strings
(see Section 23.6.7 [Faces for Font Lock], page 444).

23.6.9 Multiline Font Lock Constructs

Normally, elements of font-lock-keywords should not match across multiple lines; that
doesn’t work reliably, because Font Lock usually scans just part of the buffer, and it can
miss a multi-line construct that crosses the line boundary where the scan starts. (The scan
normally starts at the beginning of a line.)

Making elements that match multiline constructs work properly has two aspects: correct
identification and correct rehighlighting. The first means that Font Lock finds all multiline
constructs. The second means that Font Lock will correctly rehighlight all the relevant text
when a multiline construct is changed—for example, if some of the text that was previously
part of a multiline construct ceases to be part of it. The two aspects are closely related,
and often getting one of them to work will appear to make the other also work. However,
for reliable results you must attend explicitly to both aspects.

Chapter 23: Major and Minor Modes 447

There are three ways to ensure correct identification of multiline constructs:

• Add a function to font-lock-extend-region-functions that does the identification
and extends the scan so that the scanned text never starts or ends in the middle of a
multiline construct.

• Use the font-lock-fontify-region-function hook similarly to extend the scan so
that the scanned text never starts or ends in the middle of a multiline construct.

• Somehow identify the multiline construct right when it gets inserted into the buffer (or
at any point after that but before font-lock tries to highlight it), and mark it with a
font-lock-multiline which will instruct font-lock not to start or end the scan in the
middle of the construct.

There are three ways to do rehighlighting of multiline constructs:

• Place a font-lock-multiline property on the construct. This will rehighlight the
whole construct if any part of it is changed. In some cases you can do this automatically
by setting the font-lock-multiline variable, which see.

• Make sure jit-lock-contextually is set and rely on it doing its job. This will only
rehighlight the part of the construct that follows the actual change, and will do it after
a short delay. This only works if the highlighting of the various parts of your multiline
construct never depends on text in subsequent lines. Since jit-lock-contextually

is activated by default, this can be an attractive solution.

• Place a jit-lock-defer-multiline property on the construct. This works only if
jit-lock-contextually is used, and with the same delay before rehighlighting, but
like font-lock-multiline, it also handles the case where highlighting depends on
subsequent lines.

23.6.9.1 Font Lock Multiline

One way to ensure reliable rehighlighting of multiline Font Lock constructs is to put on
them the text property font-lock-multiline. It should be present and non-nil for text
that is part of a multiline construct.

When Font Lock is about to highlight a range of text, it first extends the boundaries
of the range as necessary so that they do not fall within text marked with the font-

lock-multiline property. Then it removes any font-lock-multiline properties from
the range, and highlights it. The highlighting specification (mostly font-lock-keywords)
must reinstall this property each time, whenever it is appropriate.

Warning: don’t use the font-lock-multiline property on large ranges of text, because
that will make rehighlighting slow.

[Variable]font-lock-multiline
If the font-lock-multiline variable is set to t, Font Lock will try to add the font-
lock-multiline property automatically on multiline constructs. This is not a uni-
versal solution, however, since it slows down Font Lock somewhat. It can miss some
multiline constructs, or make the property larger or smaller than necessary.

For elements whose matcher is a function, the function should ensure that submatch
0 covers the whole relevant multiline construct, even if only a small subpart will be
highlighted. It is often just as easy to add the font-lock-multiline property by
hand.

Chapter 23: Major and Minor Modes 448

The font-lock-multiline property is meant to ensure proper refontification; it does
not automatically identify new multiline constructs. Identifying the requires that Font Lock
mode operate on large enough chunks at a time. This will happen by accident on many
cases, which may give the impression that multiline constructs magically work. If you set
the font-lock-multiline variable non-nil, this impression will be even stronger, since
the highlighting of those constructs which are found will be properly updated from then on.
But that does not work reliably.

To find multiline constructs reliably, you must either manually place the font-lock-

multiline property on the text before Font Lock mode looks at it, or use font-lock-

fontify-region-function.

23.6.9.2 Region to Fontify after a Buffer Change

When a buffer is changed, the region that Font Lock refontifies is by default the smallest
sequence of whole lines that spans the change. While this works well most of the time,
sometimes it doesn’t—for example, when a change alters the syntactic meaning of text on
an earlier line.

You can enlarge (or even reduce) the region to refontify by setting the following variable:

[Variable]font-lock-extend-after-change-region-function
This buffer-local variable is either nil or a function for Font Lock mode to call to
determine the region to scan and fontify.

The function is given three parameters, the standard beg, end, and old-len from
after-change-functions (see Section 32.27 [Change Hooks], page 703). It should
return either a cons of the beginning and end buffer positions (in that order) of the
region to fontify, or nil (which means choose the region in the standard way). This
function needs to preserve point, the match-data, and the current restriction. The
region it returns may start or end in the middle of a line.

Since this function is called after every buffer change, it should be reasonably fast.

23.7 Automatic Indentation of code

For programming languages, an important feature of a major mode is to provide automatic
indentation. This is controlled in Emacs by indent-line-function (see Section 32.17.2
[Mode-Specific Indent], page 675). Writing a good indentation function can be difficult and
to a large extent it is still a black art.

Many major mode authors will start by writing a simple indentation function that works
for simple cases, for example by comparing with the indentation of the previous text line. For
most programming languages that are not really line-based, this tends to scale very poorly:
improving such a function to let it handle more diverse situations tends to become more
and more difficult, resulting in the end with a large, complex, unmaintainable indentation
function which nobody dares to touch.

A good indentation function will usually need to actually parse the text, according to
the syntax of the language. Luckily, it is not necessary to parse the text in as much detail
as would be needed for a compiler, but on the other hand, the parser embedded in the
indentation code will want to be somewhat friendly to syntactically incorrect code.

Chapter 23: Major and Minor Modes 449

Good maintainable indentation functions usually fall into two categories: either parsing
forward from some “safe” starting point until the position of interest, or parsing backward
from the position of interest. Neither of the two is a clearly better choice than the other:
parsing backward is often more difficult than parsing forward because programming lan-
guages are designed to be parsed forward, but for the purpose of indentation it has the
advantage of not needing to guess a “safe” starting point, and it generally enjoys the prop-
erty that only a minimum of text will be analyzed to decide the indentation of a line, so
indentation will tend to be unaffected by syntax errors in some earlier unrelated piece of
code. Parsing forward on the other hand is usually easier and has the advantage of making
it possible to reindent efficiently a whole region at a time, with a single parse.

Rather than write your own indentation function from scratch, it is often preferable to
try and reuse some existing ones or to rely on a generic indentation engine. There are sadly
few such engines. The CC-mode indentation code (used with C, C++, Java, Awk and a few
other such modes) has been made more generic over the years, so if your language seems
somewhat similar to one of those languages, you might try to use that engine. Another
one is SMIE which takes an approach in the spirit of Lisp sexps and adapts it to non-Lisp
languages.

23.7.1 Simple Minded Indentation Engine

SMIE is a package that provides a generic navigation and indentation engine. Based on a
very simple parser using an “operator precedence grammar”, it lets major modes extend
the sexp-based navigation of Lisp to non-Lisp languages as well as provide a simple to use
but reliable auto-indentation.

Operator precedence grammar is a very primitive technology for parsing compared to
some of the more common techniques used in compilers. It has the following characteristics:
its parsing power is very limited, and it is largely unable to detect syntax errors, but it has
the advantage of being algorithmically efficient and able to parse forward just as well as
backward. In practice that means that SMIE can use it for indentation based on backward
parsing, that it can provide both forward-sexp and backward-sexp functionality, and that
it will naturally work on syntactically incorrect code without any extra effort. The downside
is that it also means that most programming languages cannot be parsed correctly using
SMIE, at least not without resorting to some special tricks (see Section 23.7.1.5 [SMIE
Tricks], page 453).

23.7.1.1 SMIE Setup and Features

SMIE is meant to be a one-stop shop for structural navigation and various other features
which rely on the syntactic structure of code, in particular automatic indentation. The
main entry point is smie-setup which is a function typically called while setting up a
major mode.

[Function]smie-setup grammar rules-function &rest keywords
Setup SMIE navigation and indentation. grammar is a grammar table generated by
smie-prec2->grammar. rules-function is a set of indentation rules for use on smie-

rules-function. keywords are additional arguments, which can include the following
keywords:

• :forward-token fun: Specify the forward lexer to use.

Chapter 23: Major and Minor Modes 450

• :backward-token fun: Specify the backward lexer to use.

Calling this function is sufficient to make commands such as forward-sexp, backward-
sexp, and transpose-sexps be able to properly handle structural elements other than just
the paired parentheses already handled by syntax tables. For example, if the provided
grammar is precise enough, transpose-sexps can correctly transpose the two arguments
of a + operator, taking into account the precedence rules of the language.

Calling ‘smie-setup’ is also sufficient to make TAB indentation work in the expected way,
extends blink-matching-paren to apply to elements like begin...end, and provides some
commands that you can bind in the major mode keymap.

[Command]smie-close-block
This command closes the most recently opened (and not yet closed) block.

[Command]smie-down-list &optional arg
This command is like down-list but it also pays attention to nesting of tokens other
than parentheses, such as begin...end.

23.7.1.2 Operator Precedence Grammars

SMIE’s precedence grammars simply give to each token a pair of precedences: the left-
precedence and the right-precedence. We say T1 < T2 if the right-precedence of token T1

is less than the left-precedence of token T2. A good way to read this < is as a kind of
parenthesis: if we find ... T1 something T2 ... then that should be parsed as ... T1

(something T2 ... rather than as ... T1 something) T2 The latter interpretation
would be the case if we had T1 > T2. If we have T1 = T2, it means that token T2 follows
token T1 in the same syntactic construction, so typically we have "begin" = "end". Such
pairs of precedences are sufficient to express left-associativity or right-associativity of infix
operators, nesting of tokens like parentheses and many other cases.

[Function]smie-prec2->grammar table
This function takes a prec2 grammar table and returns an alist suitable for use in
smie-setup. The prec2 table is itself meant to be built by one of the functions below.

[Function]smie-merge-prec2s &rest tables
This function takes several prec2 tables and merges them into a new prec2 table.

[Function]smie-precs->prec2 precs
This function builds a prec2 table from a table of precedences precs. precs should be
a list, sorted by precedence (for example "+" will come before "*"), of elements of the
form (assoc op ...), where each op is a token that acts as an operator; assoc is their
associativity, which can be either left, right, assoc, or nonassoc. All operators in
a given element share the same precedence level and associativity.

[Function]smie-bnf->prec2 bnf &rest resolvers
This function lets you specify the grammar using a BNF notation. It accepts a bnf
description of the grammar along with a set of conflict resolution rules resolvers, and
returns a prec2 table.

bnf is a list of nonterminal definitions of the form (nonterm rhs1 rhs2 ...) where
each rhs is a (non-empty) list of terminals (aka tokens) or non-terminals.

Chapter 23: Major and Minor Modes 451

Not all grammars are accepted:

• An rhs cannot be an empty list (an empty list is never needed, since SMIE allows
all non-terminals to match the empty string anyway).

• An rhs cannot have 2 consecutive non-terminals: each pair of non-terminals needs
to be separated by a terminal (aka token). This is a fundamental limitation of
operator precedence grammars.

Additionally, conflicts can occur:

• The returned prec2 table holds constraints between pairs of tokens, and for any
given pair only one constraint can be present: T1 < T2, T1 = T2, or T1 > T2.

• A token can be an opener (something similar to an open-paren), a closer (like
a close-paren), or neither of the two (e.g., an infix operator, or an inner token
like "else").

Precedence conflicts can be resolved via resolvers, which is a list of precs tables (see
smie-precs->prec2): for each precedence conflict, if those precs tables specify a
particular constraint, then the conflict is resolved by using this constraint instead,
else a conflict is reported and one of the conflicting constraints is picked arbitrarily
and the others are simply ignored.

23.7.1.3 Defining the Grammar of a Language

The usual way to define the SMIE grammar of a language is by defining a new global
variable that holds the precedence table by giving a set of BNF rules. For example, the
grammar definition for a small Pascal-like language could look like:

(require ’smie)

(defvar sample-smie-grammar

(smie-prec2->grammar

(smie-bnf->prec2

’((id)

(inst ("begin" insts "end")

("if" exp "then" inst "else" inst)

(id ":=" exp)

(exp))

(insts (insts ";" insts) (inst))

(exp (exp "+" exp)

(exp "*" exp)

("(" exps ")"))

(exps (exps "," exps) (exp)))

’((assoc ";"))

’((assoc ","))

’((assoc "+") (assoc "*")))))

A few things to note:

• The above grammar does not explicitly mention the syntax of function calls: SMIE will
automatically allow any sequence of sexps, such as identifiers, balanced parentheses, or
begin ... end blocks to appear anywhere anyway.

Chapter 23: Major and Minor Modes 452

• The grammar category id has no right hand side: this does not mean that it can match
only the empty string, since as mentioned any sequence of sexps can appear anywhere
anyway.

• Because non terminals cannot appear consecutively in the BNF grammar, it is difficult
to correctly handle tokens that act as terminators, so the above grammar treats ";"
as a statement separator instead, which SMIE can handle very well.

• Separators used in sequences (such as "," and ";" above) are best defined with BNF
rules such as (foo (foo "separator" foo) ...) which generate precedence conflicts
which are then resolved by giving them an explicit (assoc "separator").

• The ("(" exps ")") rule was not needed to pair up parens, since SMIE will pair up
any characters that are marked as having paren syntax in the syntax table. What this
rule does instead (together with the definition of exps) is to make it clear that ","

should not appear outside of parentheses.

• Rather than have a single precs table to resolve conflicts, it is preferable to have several
tables, so as to let the BNF part of the grammar specify relative precedences where
possible.

• Unless there is a very good reason to prefer left or right, it is usually preferable to
mark operators as associative, using assoc. For that reason "+" and "*" are defined
above as assoc, although the language defines them formally as left associative.

23.7.1.4 Defining Tokens

SMIE comes with a predefined lexical analyzer which uses syntax tables in the following
way: any sequence of characters that have word or symbol syntax is considered a token, and
so is any sequence of characters that have punctuation syntax. This default lexer is often
a good starting point but is rarely actually correct for any given language. For example, it
will consider "2,+3" to be composed of 3 tokens: "2", ",+", and "3".

To describe the lexing rules of your language to SMIE, you need 2 functions, one to
fetch the next token, and another to fetch the previous token. Those functions will usually
first skip whitespace and comments and then look at the next chunk of text to see if it is a
special token. If so it should skip the token and return a description of this token. Usually
this is simply the string extracted from the buffer, but it can be anything you want. For
example:

(defvar sample-keywords-regexp

(regexp-opt ’("+" "*" "," ";" ">" ">=" "<" "<=" ":=" "=")))

(defun sample-smie-forward-token ()

(forward-comment (point-max))

(cond

((looking-at sample-keywords-regexp)

(goto-char (match-end 0))

(match-string-no-properties 0))

(t (buffer-substring-no-properties

(point)

(progn (skip-syntax-forward "w_")

(point))))))

Chapter 23: Major and Minor Modes 453

(defun sample-smie-backward-token ()

(forward-comment (- (point)))

(cond

((looking-back sample-keywords-regexp (- (point) 2) t)

(goto-char (match-beginning 0))

(match-string-no-properties 0))

(t (buffer-substring-no-properties

(point)

(progn (skip-syntax-backward "w_")

(point))))))

Notice how those lexers return the empty string when in front of parentheses. This
is because SMIE automatically takes care of the parentheses defined in the syntax table.
More specifically if the lexer returns nil or an empty string, SMIE tries to handle the
corresponding text as a sexp according to syntax tables.

23.7.1.5 Living With a Weak Parser

The parsing technique used by SMIE does not allow tokens to behave differently in different
contexts. For most programming languages, this manifests itself by precedence conflicts
when converting the BNF grammar.

Sometimes, those conflicts can be worked around by expressing the grammar slightly
differently. For example, for Modula-2 it might seem natural to have a BNF grammar that
looks like this:

...

(inst ("IF" exp "THEN" insts "ELSE" insts "END")

("CASE" exp "OF" cases "END")

...)

(cases (cases "|" cases)

(caselabel ":" insts)

("ELSE" insts))

...

But this will create conflicts for "ELSE": on the one hand, the IF rule implies (among
many other things) that "ELSE" = "END"; but on the other hand, since "ELSE" appears
within cases, which appears left of "END", we also have "ELSE" > "END". We can solve the
conflict either by using:

...

(inst ("IF" exp "THEN" insts "ELSE" insts "END")

("CASE" exp "OF" cases "END")

("CASE" exp "OF" cases "ELSE" insts "END")

...)

(cases (cases "|" cases) (caselabel ":" insts))

...

or

...

(inst ("IF" exp "THEN" else "END")

("CASE" exp "OF" cases "END")

Chapter 23: Major and Minor Modes 454

...)

(else (insts "ELSE" insts))

(cases (cases "|" cases) (caselabel ":" insts) (else))

...

Reworking the grammar to try and solve conflicts has its downsides, tho, because SMIE
assumes that the grammar reflects the logical structure of the code, so it is preferable to
keep the BNF closer to the intended abstract syntax tree.

Other times, after careful consideration you may conclude that those conflicts are not
serious and simply resolve them via the resolvers argument of smie-bnf->prec2. Usually
this is because the grammar is simply ambiguous: the conflict does not affect the set of
programs described by the grammar, but only the way those programs are parsed. This is
typically the case for separators and associative infix operators, where you want to add a
resolver like ’((assoc "|")). Another case where this can happen is for the classic dangling
else problem, where you will use ’((assoc "else" "then")). It can also happen for cases
where the conflict is real and cannot really be resolved, but it is unlikely to pose a problem
in practice.

Finally, in many cases some conflicts will remain despite all efforts to restructure the
grammar. Do not despair: while the parser cannot be made more clever, you can make
the lexer as smart as you want. So, the solution is then to look at the tokens involved
in the conflict and to split one of those tokens into 2 (or more) different tokens. E.g., if
the grammar needs to distinguish between two incompatible uses of the token "begin",
make the lexer return different tokens (say "begin-fun" and "begin-plain") depending
on which kind of "begin" it finds. This pushes the work of distinguishing the different cases
to the lexer, which will thus have to look at the surrounding text to find ad-hoc clues.

23.7.1.6 Specifying Indentation Rules

Based on the provided grammar, SMIE will be able to provide automatic indentation with-
out any extra effort. But in practice, this default indentation style will probably not be
good enough. You will want to tweak it in many different cases.

SMIE indentation is based on the idea that indentation rules should be as local as
possible. To this end, it relies on the idea of virtual indentation, which is the indentation
that a particular program point would have if it were at the beginning of a line. Of course, if
that program point is indeed at the beginning of a line, its virtual indentation is its current
indentation. But if not, then SMIE uses the indentation algorithm to compute the virtual
indentation of that point. Now in practice, the virtual indentation of a program point does
not have to be identical to the indentation it would have if we inserted a newline before it.
To see how this works, the SMIE rule for indentation after a { in C does not care whether
the { is standing on a line of its own or is at the end of the preceding line. Instead, these
different cases are handled in the indentation rule that decides how to indent before a {.

Another important concept is the notion of parent : The parent of a token, is the head
token of the nearest enclosing syntactic construct. For example, the parent of an else

is the if to which it belongs, and the parent of an if, in turn, is the lead token of the
surrounding construct. The command backward-sexp jumps from a token to its parent,
but there are some caveats: for openers (tokens which start a construct, like if), you need
to start with point before the token, while for others you need to start with point after the

Chapter 23: Major and Minor Modes 455

token. backward-sexp stops with point before the parent token if that is the opener of the
token of interest, and otherwise it stops with point after the parent token.

SMIE indentation rules are specified using a function that takes two arguments method
and arg where the meaning of arg and the expected return value depend on method.

method can be:

• :after, in which case arg is a token and the function should return the offset to use
for indentation after arg.

• :before, in which case arg is a token and the function should return the offset to use
to indent arg itself.

• :elem, in which case the function should return either the offset to use to indent
function arguments (if arg is the symbol arg) or the basic indentation step (if arg is
the symbol basic).

• :list-intro, in which case arg is a token and the function should return non-nil if
the token is followed by a list of expressions (not separated by any token) rather than
an expression.

When arg is a token, the function is called with point just before that token. A return
value of nil always means to fallback on the default behavior, so the function should return
nil for arguments it does not expect.

offset can be:

• nil: use the default indentation rule.

• (column . column): indent to column column.

• number: offset by number, relative to a base token which is the current token for
:after and its parent for :before.

23.7.1.7 Helper Functions for Indentation Rules

SMIE provides various functions designed specifically for use in the indentation rules func-
tion (several of those functions break if used in another context). These functions all start
with the prefix smie-rule-.

[Function]smie-rule-bolp
Return non-nil if the current token is the first on the line.

[Function]smie-rule-hanging-p
Return non-nil if the current token is hanging. A token is hanging if it is the last
token on the line and if it is preceded by other tokens: a lone token on a line is not
hanging.

[Function]smie-rule-next-p &rest tokens
Return non-nil if the next token is among tokens.

[Function]smie-rule-prev-p &rest tokens
Return non-nil if the previous token is among tokens.

[Function]smie-rule-parent-p &rest parents
Return non-nil if the current token’s parent is among parents.

Chapter 23: Major and Minor Modes 456

[Function]smie-rule-sibling-p
Return non-nil if the current token’s parent is actually a sibling. This is the case for
example when the parent of a "," is just the previous ",".

[Function]smie-rule-parent &optional offset
Return the proper offset to align the current token with the parent. If non-nil, offset
should be an integer giving an additional offset to apply.

[Function]smie-rule-separator method
Indent current token as a separator.

By separator, we mean here a token whose sole purpose is to separate various elements
within some enclosing syntactic construct, and which does not have any semantic
significance in itself (i.e., it would typically not exist as a node in an abstract syntax
tree).

Such a token is expected to have an associative syntax and be closely tied to its
syntactic parent. Typical examples are "," in lists of arguments (enclosed inside
parentheses), or ";" in sequences of instructions (enclosed in a {...} or begin...end
block).

method should be the method name that was passed to ‘smie-rules-function’.

23.7.1.8 Sample Indentation Rules

Here is an example of an indentation function:

(defun sample-smie-rules (kind token)

(pcase (cons kind token)

(‘(:elem . basic) sample-indent-basic)

(‘(,_ . ",") (smie-rule-separator kind))

(‘(:after . ":=") sample-indent-basic)

(‘(:before . ,(or ‘"begin" ‘"(" ‘"{")))

(if (smie-rule-hanging-p) (smie-rule-parent)))

(‘(:before . "if")

(and (not (smie-rule-bolp)) (smie-rule-prev-p "else")

(smie-rule-parent)))))

A few things to note:

• The first case indicates the basic indentation increment to use. If sample-indent-
basic is nil, then SMIE uses the global setting smie-indent-basic. The major mode
could have set smie-indent-basic buffer-locally instead, but that is discouraged.

• The rule for the token "," make SMIE try to be more clever when the comma separator
is placed at the beginning of lines. It tries to outdent the separator so as to align the
code after the comma; for example:

x = longfunctionname (

arg1

, arg2

);

• The rule for indentation after ":=" exists because otherwise SMIE would treat ":="
as an infix operator and would align the right argument with the left one.

Chapter 23: Major and Minor Modes 457

• The rule for indentation before "begin" is an example of the use of virtual indentation:
This rule is used only when "begin" is hanging, which can happen only when "begin"

is not at the beginning of a line. So this is not used when indenting "begin" itself but
only when indenting something relative to this "begin". Concretely, this rule changes
the indentation from:

if x > 0 then begin

dosomething(x);

end

to

if x > 0 then begin

dosomething(x);

end

• The rule for indentation before "if" is similar to the one for "begin", but where the
purpose is to treat "else if" as a single unit, so as to align a sequence of tests rather
than indent each test further to the right. This function does this only in the case
where the "if" is not placed on a separate line, hence the smie-rule-bolp test.

If we know that the "else" is always aligned with its "if" and is always at the
beginning of a line, we can use a more efficient rule:

((equal token "if")

(and (not (smie-rule-bolp))

(smie-rule-prev-p "else")

(save-excursion

(sample-smie-backward-token)

(cons ’column (current-column)))))

The advantage of this formulation is that it reuses the indentation of the previous
"else", rather than going all the way back to the first "if" of the sequence.

23.8 Desktop Save Mode

Desktop Save Mode is a feature to save the state of Emacs from one session to another.
The user-level commands for using Desktop Save Mode are described in the GNU Emacs
Manual (see Section “Saving Emacs Sessions” in the GNU Emacs Manual). Modes whose
buffers visit a file, don’t have to do anything to use this feature.

For buffers not visiting a file to have their state saved, the major mode must bind the
buffer local variable desktop-save-buffer to a non-nil value.

[Variable]desktop-save-buffer
If this buffer-local variable is non-nil, the buffer will have its state saved in the
desktop file at desktop save. If the value is a function, it is called at desktop save
with argument desktop-dirname, and its value is saved in the desktop file along with
the state of the buffer for which it was called. When file names are returned as part
of the auxiliary information, they should be formatted using the call

(desktop-file-name file-name desktop-dirname)

For buffers not visiting a file to be restored, the major mode must define a function to
do the job, and that function must be listed in the alist desktop-buffer-mode-handlers.

Chapter 23: Major and Minor Modes 458

[Variable]desktop-buffer-mode-handlers
Alist with elements

(major-mode . restore-buffer-function)

The function restore-buffer-function will be called with argument list

(buffer-file-name buffer-name desktop-buffer-misc)

and it should return the restored buffer. Here desktop-buffer-misc is the value re-
turned by the function optionally bound to desktop-save-buffer.

Chapter 24: Documentation 459

24 Documentation

GNU Emacs has convenient built-in help facilities, most of which derive their information
from documentation strings associated with functions and variables. This chapter describes
how to access documentation strings in Lisp programs. See Section D.6 [Documentation
Tips], page 975, for how to write good documentation strings.

Note that the documentation strings for Emacs are not the same thing as the Emacs
manual. Manuals have their own source files, written in the Texinfo language; documenta-
tion strings are specified in the definitions of the functions and variables they apply to. A
collection of documentation strings is not sufficient as a manual because a good manual is
not organized in that fashion; it is organized in terms of topics of discussion.

For commands to display documentation strings, see Section “Help” in The GNU Emacs
Manual.

24.1 Documentation Basics

A documentation string is written using the Lisp syntax for strings, with double-quote
characters surrounding the text of the string. This is because it really is a Lisp string
object. The string serves as documentation when it is written in the proper place in the
definition of a function or variable. In a function definition, the documentation string follows
the argument list. In a variable definition, the documentation string follows the initial value
of the variable.

When you write a documentation string, make the first line a complete sentence (or
two complete sentences) that briefly describes what the function or variable does. Some
commands, such as apropos, show only the first line of a multi-line documentation string.
Also, you should not indent the second line of a documentation string, if it has one, because
that looks odd when you use C-h f (describe-function) or C-h v (describe-variable)
to view the documentation string. There are many other conventions for documentation
strings; see Section D.6 [Documentation Tips], page 975.

Documentation strings can contain several special text sequences, referring to key bind-
ings which are looked up in the current keymaps when the user views the documentation.
This allows the help commands to display the correct keys even if a user rearranges the
default key bindings. See Section 24.3 [Keys in Documentation], page 462.

In the documentation string of an autoloaded command (see Section 15.5 [Autoload],
page 220), these special text sequences have an additional special effect: they cause C-h f

(describe-function) on the command to trigger autoloading. (This is needed for correctly
setting up the hyperlinks in the *Help* buffer).

Emacs Lisp mode fills documentation strings to the width specified by emacs-lisp-

docstring-fill-column.

Exactly where a documentation string is stored depends on how its function or variable
was defined or loaded into memory:

• When you define a function (see Section 12.2 [Lambda Expressions], page 171, and
see Section 12.2.4 [Function Documentation], page 173), the documentation string is
stored in the function definition itself. You can also put function documentation in
the function-documentation property of a function name. That is useful for function
definitions which can’t hold a documentation string, such as keyboard macros.

Chapter 24: Documentation 460

• When you define a variable with a defvar or related form (see Section 11.5 [Defin-
ing Variables], page 145), the documentation is stored in the variable’s variable-

documentation property.

• To save memory, the documentation for preloaded functions and variables (including
primitive functions and autoloaded functions) is not kept in memory, but in the file
emacs/etc/DOC-version, where version is the Emacs version number (see Section 1.4
[Version Info], page 6).

• When a function or variable is loaded from a byte-compiled file during the Emacs
session, its documentation string is not loaded into memory. Instead, Emacs looks
it up in the byte-compiled file as needed. See Section 16.3 [Docs and Compilation],
page 232.

Regardless of where the documentation string is stored, you can retrieve it using the
documentation or documentation-property function, described in the next section.

24.2 Access to Documentation Strings

[Function]documentation-property symbol property &optional verbatim
This function returns the documentation string recorded in symbol’s property list
under property property. It is most often used to look up the documentation strings
of variables, for which property is variable-documentation. However, it can also
be used to look up other kinds of documentation, such as for customization groups
(but for function documentation, use the documentation command, below).

If the value recorded in the property list refers to a documentation string stored in a
DOC-version file or a byte-compiled file, it looks up that string and returns it. If the
property value isn’t nil, isn’t a string, and doesn’t refer to text in a file, then it is
evaluated as a Lisp expression to obtain a string.

The last thing this function does is pass the string through substitute-command-

keys to substitute actual key bindings (see Section 24.3 [Keys in Documentation],
page 462). However, it skips this step if verbatim is non-nil.

(documentation-property ’command-line-processed

’variable-documentation)
⇒ "Non-nil once command line has been processed"

(symbol-plist ’command-line-processed)
⇒ (variable-documentation 188902)

(documentation-property ’emacs ’group-documentation)
⇒ "Customization of the One True Editor."

[Function]documentation function &optional verbatim
This function returns the documentation string of function. It handles macros, named
keyboard macros, and special forms, as well as ordinary functions.

If function is a symbol, this function first looks for the function-documentation

property of that symbol; if that has a non-nil value, the documentation comes from
that value (if the value is not a string, it is evaluated). If function is not a symbol,
or if it has no function-documentation property, then documentation extracts the
documentation string from the actual function definition, reading it from a file if
called for.

Chapter 24: Documentation 461

Finally, unless verbatim is non-nil, it calls substitute-command-keys so as to return
a value containing the actual (current) key bindings.

The function documentation signals a void-function error if function has no func-
tion definition. However, it is OK if the function definition has no documentation
string. In that case, documentation returns nil.

[Function]face-documentation face
This function returns the documentation string of face as a face.

Here is an example of using the two functions, documentation and documentation-

property, to display the documentation strings for several symbols in a *Help* buffer.
(defun describe-symbols (pattern)

"Describe the Emacs Lisp symbols matching PATTERN.

All symbols that have PATTERN in their name are described

in the ‘*Help*’ buffer."

(interactive "sDescribe symbols matching: ")

(let ((describe-func

(function

(lambda (s)

;; Print description of symbol.
(if (fboundp s) ; It is a function.

(princ

(format "%s\t%s\n%s\n\n" s

(if (commandp s)

(let ((keys (where-is-internal s)))

(if keys

(concat

"Keys: "

(mapconcat ’key-description

keys " "))

"Keys: none"))

"Function")

(or (documentation s)

"not documented"))))

(if (boundp s) ; It is a variable.
(princ

(format "%s\t%s\n%s\n\n" s

(if (custom-variable-p s)

"Option " "Variable")

(or (documentation-property

s ’variable-documentation)

"not documented")))))))

sym-list)

;; Build a list of symbols that match pattern.
(mapatoms (function

(lambda (sym)

(if (string-match pattern (symbol-name sym))

(setq sym-list (cons sym sym-list))))))

;; Display the data.
(help-setup-xref (list ’describe-symbols pattern) (interactive-p))

(with-help-window (help-buffer)

(mapcar describe-func (sort sym-list ’string<)))))

The describe-symbols function works like apropos, but provides more information.

Chapter 24: Documentation 462

(describe-symbols "goal")

---------- Buffer: *Help* ----------

goal-column Option

Semipermanent goal column for vertical motion, as set by ...

set-goal-column Keys: C-x C-n

Set the current horizontal position as a goal for C-n and C-p.

Those commands will move to this position in the line moved to

rather than trying to keep the same horizontal position.

With a non-nil argument, clears out the goal column

so that C-n and C-p resume vertical motion.

The goal column is stored in the variable ‘goal-column’.

temporary-goal-column Variable

Current goal column for vertical motion.

It is the column where point was

at the start of current run of vertical motion commands.

When the ‘track-eol’ feature is doing its job, the value is 9999.

---------- Buffer: *Help* ----------

[Function]Snarf-documentation filename
This function is used when building Emacs, just before the runnable Emacs is dumped.
It finds the positions of the documentation strings stored in the file filename, and
records those positions into memory in the function definitions and variable property
lists. See Section E.1 [Building Emacs], page 982.

Emacs reads the file filename from the emacs/etc directory. When the dumped Emacs
is later executed, the same file will be looked for in the directory doc-directory.
Usually filename is "DOC-version".

[Variable]doc-directory
This variable holds the name of the directory which should contain the file "DOC-

version" that contains documentation strings for built-in and preloaded functions
and variables.

In most cases, this is the same as data-directory. They may be different when you
run Emacs from the directory where you built it, without actually installing it. See
[Definition of data-directory], page 467.

24.3 Substituting Key Bindings in Documentation

When documentation strings refer to key sequences, they should use the current, actual key
bindings. They can do so using certain special text sequences described below. Accessing
documentation strings in the usual way substitutes current key binding information for
these special sequences. This works by calling substitute-command-keys. You can also
call that function yourself.

Here is a list of the special sequences and what they mean:

\[command]

stands for a key sequence that will invoke command, or ‘M-x command’ if com-
mand has no key bindings.

Chapter 24: Documentation 463

\{mapvar}

stands for a summary of the keymap which is the value of the variable mapvar.
The summary is made using describe-bindings.

\<mapvar>

stands for no text itself. It is used only for a side effect: it specifies mapvar’s
value as the keymap for any following ‘\[command]’ sequences in this documen-
tation string.

\= quotes the following character and is discarded; thus, ‘\=\[’ puts ‘\[’ into the
output, and ‘\=\=’ puts ‘\=’ into the output.

Please note: Each ‘\’ must be doubled when written in a string in Emacs Lisp.

[Function]substitute-command-keys string
This function scans string for the above special sequences and replaces them by what
they stand for, returning the result as a string. This permits display of documentation
that refers accurately to the user’s own customized key bindings.

If a command has multiple bindings, this function normally uses the first one it finds.
You can specify one particular key binding by assigning an :advertised-binding

symbol property to the command, like this:

(put ’undo :advertised-binding [?\C-/])

The :advertised-binding property also affects the binding shown in menu items
(see Section 22.17.5 [Menu Bar], page 397). The property is ignored if it specifies a
key binding that the command does not actually have.

Here are examples of the special sequences:

(substitute-command-keys

"To abort recursive edit, type: \\[abort-recursive-edit]")
⇒ "To abort recursive edit, type: C-]"

(substitute-command-keys

"The keys that are defined for the minibuffer here are:

\\{minibuffer-local-must-match-map}")
⇒ "The keys that are defined for the minibuffer here are:

? minibuffer-completion-help

SPC minibuffer-complete-word

TAB minibuffer-complete

C-j minibuffer-complete-and-exit

RET minibuffer-complete-and-exit

C-g abort-recursive-edit

"

(substitute-command-keys

"To abort a recursive edit from the minibuffer, type\

\\<minibuffer-local-must-match-map>\\[abort-recursive-edit].")
⇒ "To abort a recursive edit from the minibuffer, type C-g."

There are other special conventions for the text in documentation strings—for instance,
you can refer to functions, variables, and sections of this manual. See Section D.6 [Docu-
mentation Tips], page 975, for details.

Chapter 24: Documentation 464

24.4 Describing Characters for Help Messages

These functions convert events, key sequences, or characters to textual descriptions. These
descriptions are useful for including arbitrary text characters or key sequences in messages,
because they convert non-printing and whitespace characters to sequences of printing char-
acters. The description of a non-whitespace printing character is the character itself.

[Function]key-description sequence &optional prefix
This function returns a string containing the Emacs standard notation for the input
events in sequence. If prefix is non-nil, it is a sequence of input events leading up to
sequence and is included in the return value. Both arguments may be strings, vectors
or lists. See Section 21.7 [Input Events], page 333, for more information about valid
events.

(key-description [?\M-3 delete])
⇒ "M-3 <delete>"

(key-description [delete] "\M-3")
⇒ "M-3 <delete>"

See also the examples for single-key-description, below.

[Function]single-key-description event &optional no-angles
This function returns a string describing event in the standard Emacs notation for
keyboard input. A normal printing character appears as itself, but a control character
turns into a string starting with ‘C-’, a meta character turns into a string starting
with ‘M-’, and space, tab, etc., appear as ‘SPC’, ‘TAB’, etc. A function key symbol
appears inside angle brackets ‘<...>’. An event that is a list appears as the name of
the symbol in the car of the list, inside angle brackets.

If the optional argument no-angles is non-nil, the angle brackets around function
keys and event symbols are omitted; this is for compatibility with old versions of
Emacs which didn’t use the brackets.

(single-key-description ?\C-x)
⇒ "C-x"

(key-description "\C-x \M-y \n \t \r \f123")
⇒ "C-x SPC M-y SPC C-j SPC TAB SPC RET SPC C-l 1 2 3"

(single-key-description ’delete)
⇒ "<delete>"

(single-key-description ’C-mouse-1)
⇒ "<C-mouse-1>"

(single-key-description ’C-mouse-1 t)
⇒ "C-mouse-1"

[Function]text-char-description character
This function returns a string describing character in the standard Emacs notation
for characters that appear in text—like single-key-description, except that con-
trol characters are represented with a leading caret (which is how control charac-
ters in Emacs buffers are usually displayed). Another difference is that text-char-
description recognizes the 2**7 bit as the Meta character, whereas single-key-

description uses the 2**27 bit for Meta.

(text-char-description ?\C-c)
⇒ "^C"

(text-char-description ?\M-m)
⇒ "\xed"

Chapter 24: Documentation 465

(text-char-description ?\C-\M-m)
⇒ "\x8d"

(text-char-description (+ 128 ?m))
⇒ "M-m"

(text-char-description (+ 128 ?\C-m))
⇒ "M-^M"

[Command]read-kbd-macro string &optional need-vector
This function is used mainly for operating on keyboard macros, but it can also be
used as a rough inverse for key-description. You call it with a string containing
key descriptions, separated by spaces; it returns a string or vector containing the
corresponding events. (This may or may not be a single valid key sequence, depending
on what events you use; see Section 22.1 [Key Sequences], page 366.) If need-vector
is non-nil, the return value is always a vector.

24.5 Help Functions

Emacs provides a variety of on-line help functions, all accessible to the user as subcommands
of the prefix C-h. For more information about them, see Section “Help” in The GNU Emacs
Manual. Here we describe some program-level interfaces to the same information.

[Command]apropos pattern &optional do-all
This function finds all “meaningful” symbols whose names contain a match for the
apropos pattern pattern. An apropos pattern is either a word to match, a space-
separated list of words of which at least two must match, or a regular expression (if
any special regular expression characters occur). A symbol is “meaningful” if it has
a definition as a function, variable, or face, or has properties.

The function returns a list of elements that look like this:

(symbol score function-doc variable-doc

plist-doc widget-doc face-doc group-doc)

Here, score is an integer measure of how important the symbol seems to be as a
match. Each of the remaining elements is a documentation string, or nil, for symbol
as a function, variable, etc.

It also displays the symbols in a buffer named *Apropos*, each with a one-line de-
scription taken from the beginning of its documentation string.

If do-all is non-nil, or if the user option apropos-do-all is non-nil, then apropos

also shows key bindings for the functions that are found; it also shows all interned
symbols, not just meaningful ones (and it lists them in the return value as well).

[Variable]help-map
The value of this variable is a local keymap for characters following the Help key, C-h.

[Prefix Command]help-command
This symbol is not a function; its function definition cell holds the keymap known as
help-map. It is defined in help.el as follows:

(define-key global-map (string help-char) ’help-command)

(fset ’help-command help-map)

Chapter 24: Documentation 466

[User Option]help-char
The value of this variable is the help character—the character that Emacs recognizes
as meaning Help. By default, its value is 8, which stands for C-h. When Emacs reads
this character, if help-form is a non-nil Lisp expression, it evaluates that expression,
and displays the result in a window if it is a string.

Usually the value of help-form is nil. Then the help character has no special meaning
at the level of command input, and it becomes part of a key sequence in the normal
way. The standard key binding of C-h is a prefix key for several general-purpose help
features.

The help character is special after prefix keys, too. If it has no binding as a subcom-
mand of the prefix key, it runs describe-prefix-bindings, which displays a list of
all the subcommands of the prefix key.

[User Option]help-event-list
The value of this variable is a list of event types that serve as alternative “help
characters”. These events are handled just like the event specified by help-char.

[Variable]help-form
If this variable is non-nil, its value is a form to evaluate whenever the character
help-char is read. If evaluating the form produces a string, that string is displayed.

A command that calls read-event, read-char-choice, or read-char probably
should bind help-form to a non-nil expression while it does input. (The time
when you should not do this is when C-h has some other meaning.) Evaluating this
expression should result in a string that explains what the input is for and how to
enter it properly.

Entry to the minibuffer binds this variable to the value of minibuffer-help-form
(see [Definition of minibuffer-help-form], page 320).

[Variable]prefix-help-command
This variable holds a function to print help for a prefix key. The function is called
when the user types a prefix key followed by the help character, and the help character
has no binding after that prefix. The variable’s default value is describe-prefix-
bindings.

[Command]describe-prefix-bindings
This function calls describe-bindings to display a list of all the subcommands of
the prefix key of the most recent key sequence. The prefix described consists of all
but the last event of that key sequence. (The last event is, presumably, the help
character.)

The following two functions are meant for modes that want to provide help without
relinquishing control, such as the “electric” modes. Their names begin with ‘Helper’ to
distinguish them from the ordinary help functions.

[Command]Helper-describe-bindings
This command pops up a window displaying a help buffer containing a listing of all
of the key bindings from both the local and global keymaps. It works by calling
describe-bindings.

Chapter 24: Documentation 467

[Command]Helper-help
This command provides help for the current mode. It prompts the user in the mini-
buffer with the message ‘Help (Type ? for further options)’, and then provides
assistance in finding out what the key bindings are, and what the mode is intended
for. It returns nil.

This can be customized by changing the map Helper-help-map.

[Variable]data-directory
This variable holds the name of the directory in which Emacs finds certain documen-
tation and text files that come with Emacs.

[Function]help-buffer
This function returns the name of the help buffer, which is normally *Help*; if such
a buffer does not exist, it is first created.

[Macro]with-help-window buffer-name body. . .
This macro evaluates the body forms, inserting any output they produce into a buffer
named buffer-name like with-output-to-temp-buffer (see Section 38.8 [Temporary
Displays], page 836). (Usually, buffer-name should be the value returned by the
function help-buffer.) It also puts the specified buffer into Help mode and displays
a message telling the user how to quit and scroll the help window.

[Function]help-setup-xref item interactive-p
This function updates the cross reference data in the *Help* buffer, which is used
to regenerate the help information when the user clicks on the ‘Back’ or ‘Forward’
buttons. Most commands that use the *Help* buffer should invoke this function
before clearing the buffer. The item argument should have the form (function .

args), where function is a function to call, with argument list args, to regenerate
the help buffer. The interactive-p argument is non-nil if the calling command was
invoked interactively; in that case, the stack of items for the *Help* buffer’s ‘Back’
buttons is cleared.

See [describe-symbols example], page 461, for an example of using help-buffer, with-
help-window, and help-setup-xref.

[Macro]make-help-screen fname help-line help-text help-map
This macro defines a help command named fname that acts like a prefix key that
shows a list of the subcommands it offers.

When invoked, fname displays help-text in a window, then reads and executes a key
sequence according to help-map. The string help-text should describe the bindings
available in help-map.

The command fname is defined to handle a few events itself, by scrolling the display
of help-text. When fname reads one of those special events, it does the scrolling and
then reads another event. When it reads an event that is not one of those few, and
which has a binding in help-map, it executes that key’s binding and then returns.

The argument help-line should be a single-line summary of the alternatives in help-
map. In the current version of Emacs, this argument is used only if you set the option
three-step-help to t.

This macro is used in the command help-for-help which is the binding of C-h C-h.

Chapter 24: Documentation 468

[User Option]three-step-help
If this variable is non-nil, commands defined with make-help-screen display their
help-line strings in the echo area at first, and display the longer help-text strings only
if the user types the help character again.

Chapter 25: Files 469

25 Files

This chapter describes the Emacs Lisp functions and variables to find, create, view, save,
and otherwise work with files and file directories. A few other file-related functions are
described in Chapter 27 [Buffers], page 521, and those related to backups and auto-saving
are described in Chapter 26 [Backups and Auto-Saving], page 511.

Many of the file functions take one or more arguments that are file names. A file name
is actually a string. Most of these functions expand file name arguments by calling expand-

file-name, so that ~ is handled correctly, as are relative file names (including ‘../’). See
Section 25.8.4 [File Name Expansion], page 494.

In addition, certain magic file names are handled specially. For example, when a remote
file name is specified, Emacs accesses the file over the network via an appropriate protocol
(see Section “Remote Files” in The GNU Emacs Manual). This handling is done at a
very low level, so you may assume that all the functions described in this chapter accept
magic file names as file name arguments, except where noted. See Section 25.11 [Magic File
Names], page 501, for details.

When file I/O functions signal Lisp errors, they usually use the condition file-error

(see Section 10.5.3.3 [Handling Errors], page 134). The error message is in most cases ob-
tained from the operating system, according to locale system-messages-locale, and de-
coded using coding system locale-coding-system (see Section 33.11 [Locales], page 730).

25.1 Visiting Files

Visiting a file means reading a file into a buffer. Once this is done, we say that the buffer
is visiting that file, and call the file “the visited file” of the buffer.

A file and a buffer are two different things. A file is information recorded permanently
in the computer (unless you delete it). A buffer, on the other hand, is information inside
of Emacs that will vanish at the end of the editing session (or when you kill the buffer).
Usually, a buffer contains information that you have copied from a file; then we say the buffer
is visiting that file. The copy in the buffer is what you modify with editing commands. Such
changes to the buffer do not change the file; therefore, to make the changes permanent, you
must save the buffer, which means copying the altered buffer contents back into the file.

In spite of the distinction between files and buffers, people often refer to a file when
they mean a buffer and vice-versa. Indeed, we say, “I am editing a file”, rather than, “I am
editing a buffer that I will soon save as a file of the same name”. Humans do not usually
need to make the distinction explicit. When dealing with a computer program, however, it
is good to keep the distinction in mind.

25.1.1 Functions for Visiting Files

This section describes the functions normally used to visit files. For historical reasons, these
functions have names starting with ‘find-’ rather than ‘visit-’. See Section 27.4 [Buffer
File Name], page 525, for functions and variables that access the visited file name of a buffer
or that find an existing buffer by its visited file name.

In a Lisp program, if you want to look at the contents of a file but not alter it, the
fastest way is to use insert-file-contents in a temporary buffer. Visiting the file is not
necessary and takes longer. See Section 25.3 [Reading from Files], page 475.

Chapter 25: Files 470

[Command]find-file filename &optional wildcards
This command selects a buffer visiting the file filename, using an existing buffer if
there is one, and otherwise creating a new buffer and reading the file into it. It also
returns that buffer.

Aside from some technical details, the body of the find-file function is basically
equivalent to:

(switch-to-buffer (find-file-noselect filename nil nil wildcards))

(See switch-to-buffer in Section 28.11 [Switching Buffers], page 560.)

If wildcards is non-nil, which is always true in an interactive call, then find-file

expands wildcard characters in filename and visits all the matching files.

When find-file is called interactively, it prompts for filename in the minibuffer.

[Command]find-file-literally filename
This command visits filename, like find-file does, but it does not perform any
format conversions (see Section 25.12 [Format Conversion], page 506), character code
conversions (see Section 33.9 [Coding Systems], page 716), or end-of-line conversions
(see Section 33.9.1 [Coding System Basics], page 716). The buffer visiting the file is
made unibyte, and its major mode is Fundamental mode, regardless of the file name.
File local variable specifications in the file (see Section 11.11 [File Local Variables],
page 160) are ignored, and automatic decompression and adding a newline at the
end of the file due to require-final-newline (see Section 25.2 [Saving Buffers],
page 473) are also disabled.

Note that if Emacs already has a buffer visiting the same file non-literally, it will not
visit the same file literally, but instead just switch to the existing buffer. If you want
to be sure of accessing a file’s contents literally, you should create a temporary buffer
and then read the file contents into it using insert-file-contents-literally (see
Section 25.3 [Reading from Files], page 475).

[Function]find-file-noselect filename &optional nowarn rawfile wildcards
This function is the guts of all the file-visiting functions. It returns a buffer visiting
the file filename. You may make the buffer current or display it in a window if you
wish, but this function does not do so.

The function returns an existing buffer if there is one; otherwise it creates a new buffer
and reads the file into it. When find-file-noselect uses an existing buffer, it first
verifies that the file has not changed since it was last visited or saved in that buffer.
If the file has changed, this function asks the user whether to reread the changed file.
If the user says ‘yes’, any edits previously made in the buffer are lost.

Reading the file involves decoding the file’s contents (see Section 33.9 [Coding
Systems], page 716), including end-of-line conversion, and format conversion (see
Section 25.12 [Format Conversion], page 506). If wildcards is non-nil, then
find-file-noselect expands wildcard characters in filename and visits all the
matching files.

This function displays warning or advisory messages in various peculiar cases, unless
the optional argument nowarn is non-nil. For example, if it needs to create a buffer,
and there is no file named filename, it displays the message ‘(New file)’ in the echo
area, and leaves the buffer empty.

Chapter 25: Files 471

The find-file-noselect function normally calls after-find-file after reading the
file (see Section 25.1.2 [Subroutines of Visiting], page 472). That function sets the
buffer major mode, parses local variables, warns the user if there exists an auto-save
file more recent than the file just visited, and finishes by running the functions in
find-file-hook.

If the optional argument rawfile is non-nil, then after-find-file is not called, and
the find-file-not-found-functions are not run in case of failure. What’s more, a
non-nil rawfile value suppresses coding system conversion and format conversion.

The find-file-noselect function usually returns the buffer that is visiting the file
filename. But, if wildcards are actually used and expanded, it returns a list of buffers
that are visiting the various files.

(find-file-noselect "/etc/fstab")

⇒ #<buffer fstab>

[Command]find-file-other-window filename &optional wildcards
This command selects a buffer visiting the file filename, but does so in a window other
than the selected window. It may use another existing window or split a window; see
Section 28.11 [Switching Buffers], page 560.

When this command is called interactively, it prompts for filename.

[Command]find-file-read-only filename &optional wildcards
This command selects a buffer visiting the file filename, like find-file, but it marks
the buffer as read-only. See Section 27.7 [Read Only Buffers], page 529, for related
functions and variables.

When this command is called interactively, it prompts for filename.

[User Option]find-file-wildcards
If this variable is non-nil, then the various find-file commands check for wildcard
characters and visit all the files that match them (when invoked interactively or
when their wildcards argument is non-nil). If this option is nil, then the find-

file commands ignore their wildcards argument and never treat wildcard characters
specially.

[User Option]find-file-hook
The value of this variable is a list of functions to be called after a file is visited. The
file’s local-variables specification (if any) will have been processed before the hooks
are run. The buffer visiting the file is current when the hook functions are run.

This variable is a normal hook. See Section 23.1 [Hooks], page 404.

[Variable]find-file-not-found-functions
The value of this variable is a list of functions to be called when find-file or find-
file-noselect is passed a nonexistent file name. find-file-noselect calls these
functions as soon as it detects a nonexistent file. It calls them in the order of the list,
until one of them returns non-nil. buffer-file-name is already set up.

This is not a normal hook because the values of the functions are used, and in many
cases only some of the functions are called.

Chapter 25: Files 472

[Variable]find-file-literally
This buffer-local variable, if set to a non-nil value, makes save-buffer behave as
if the buffer were visiting its file literally, i.e., without conversions of any kind. The
command find-file-literally sets this variable’s local value, but other equivalent
functions and commands can do that as well, e.g., to avoid automatic addition of a
newline at the end of the file. This variable is permanent local, so it is unaffected by
changes of major modes.

25.1.2 Subroutines of Visiting

The find-file-noselect function uses two important subroutines which are sometimes
useful in user Lisp code: create-file-buffer and after-find-file. This section explains
how to use them.

[Function]create-file-buffer filename
This function creates a suitably named buffer for visiting filename, and returns it. It
uses filename (sans directory) as the name if that name is free; otherwise, it appends
a string such as ‘<2>’ to get an unused name. See also Section 27.9 [Creating Buffers],
page 533.

Please note: create-file-buffer does not associate the new buffer with a file and
does not select the buffer. It also does not use the default major mode.

(create-file-buffer "foo")

⇒ #<buffer foo>

(create-file-buffer "foo")

⇒ #<buffer foo<2>>

(create-file-buffer "foo")

⇒ #<buffer foo<3>>

This function is used by find-file-noselect. It uses generate-new-buffer (see
Section 27.9 [Creating Buffers], page 533).

[Function]after-find-file &optional error warn noauto
after-find-file-from-revert-buffer nomodes

This function sets the buffer major mode, and parses local variables (see Section 23.2.2
[Auto Major Mode], page 411). It is called by find-file-noselect and by the default
revert function (see Section 26.3 [Reverting], page 519).

If reading the file got an error because the file does not exist, but its directory does
exist, the caller should pass a non-nil value for error. In that case, after-find-file
issues a warning: ‘(New file)’. For more serious errors, the caller should usually not
call after-find-file.

If warn is non-nil, then this function issues a warning if an auto-save file exists and
is more recent than the visited file.

If noauto is non-nil, that says not to enable or disable Auto-Save mode. The mode
remains enabled if it was enabled before.

If after-find-file-from-revert-buffer is non-nil, that means this call was from revert-

buffer. This has no direct effect, but some mode functions and hook functions check
the value of this variable.

Chapter 25: Files 473

If nomodes is non-nil, that means don’t alter the buffer’s major mode, don’t process
local variables specifications in the file, and don’t run find-file-hook. This feature
is used by revert-buffer in some cases.

The last thing after-find-file does is call all the functions in the list find-file-
hook.

25.2 Saving Buffers

When you edit a file in Emacs, you are actually working on a buffer that is visiting that
file—that is, the contents of the file are copied into the buffer and the copy is what you
edit. Changes to the buffer do not change the file until you save the buffer, which means
copying the contents of the buffer into the file.

[Command]save-buffer &optional backup-option
This function saves the contents of the current buffer in its visited file if the buffer
has been modified since it was last visited or saved. Otherwise it does nothing.

save-buffer is responsible for making backup files. Normally, backup-option is nil,
and save-buffer makes a backup file only if this is the first save since visiting the
file. Other values for backup-option request the making of backup files in other
circumstances:

• With an argument of 4 or 64, reflecting 1 or 3 C-u’s, the save-buffer function
marks this version of the file to be backed up when the buffer is next saved.

• With an argument of 16 or 64, reflecting 2 or 3 C-u’s, the save-buffer function
unconditionally backs up the previous version of the file before saving it.

• With an argument of 0, unconditionally do not make any backup file.

[Command]save-some-buffers &optional save-silently-p pred
This command saves some modified file-visiting buffers. Normally it asks the user
about each buffer. But if save-silently-p is non-nil, it saves all the file-visiting buffers
without querying the user.

The optional pred argument controls which buffers to ask about (or to save silently
if save-silently-p is non-nil). If it is nil, that means to ask only about file-visiting
buffers. If it is t, that means also offer to save certain other non-file buffers—those that
have a non-nil buffer-local value of buffer-offer-save (see Section 27.10 [Killing
Buffers], page 533). A user who says ‘yes’ to saving a non-file buffer is asked to specify
the file name to use. The save-buffers-kill-emacs function passes the value t for
pred.

If pred is neither t nor nil, then it should be a function of no arguments. It will
be called in each buffer to decide whether to offer to save that buffer. If it returns a
non-nil value in a certain buffer, that means do offer to save that buffer.

[Command]write-file filename &optional confirm
This function writes the current buffer into file filename, makes the buffer visit that
file, and marks it not modified. Then it renames the buffer based on filename, ap-
pending a string like ‘<2>’ if necessary to make a unique buffer name. It does most
of this work by calling set-visited-file-name (see Section 27.4 [Buffer File Name],
page 525) and save-buffer.

Chapter 25: Files 474

If confirm is non-nil, that means to ask for confirmation before overwriting an existing
file. Interactively, confirmation is required, unless the user supplies a prefix argument.

If filename is an existing directory, or a symbolic link to one, write-file uses the
name of the visited file, in directory filename. If the buffer is not visiting a file, it
uses the buffer name instead.

Saving a buffer runs several hooks. It also performs format conversion (see Section 25.12
[Format Conversion], page 506).

[Variable]write-file-functions
The value of this variable is a list of functions to be called before writing out a buffer
to its visited file. If one of them returns non-nil, the file is considered already written
and the rest of the functions are not called, nor is the usual code for writing the file
executed.

If a function in write-file-functions returns non-nil, it is responsible for making
a backup file (if that is appropriate). To do so, execute the following code:

(or buffer-backed-up (backup-buffer))

You might wish to save the file modes value returned by backup-buffer and use that
(if non-nil) to set the mode bits of the file that you write. This is what save-buffer
normally does. See Section 26.1.1 [Making Backup Files], page 511.

The hook functions in write-file-functions are also responsible for encoding the
data (if desired): they must choose a suitable coding system and end-of-line conversion
(see Section 33.9.3 [Lisp and Coding Systems], page 718), perform the encoding (see
Section 33.9.7 [Explicit Encoding], page 726), and set last-coding-system-used to
the coding system that was used (see Section 33.9.2 [Encoding and I/O], page 717).

If you set this hook locally in a buffer, it is assumed to be associated with the file or
the way the contents of the buffer were obtained. Thus the variable is marked as a
permanent local, so that changing the major mode does not alter a buffer-local value.
On the other hand, calling set-visited-file-name will reset it. If this is not what
you want, you might like to use write-contents-functions instead.

Even though this is not a normal hook, you can use add-hook and remove-hook to
manipulate the list. See Section 23.1 [Hooks], page 404.

[Variable]write-contents-functions
This works just like write-file-functions, but it is intended for hooks that pertain
to the buffer’s contents, not to the particular visited file or its location. Such hooks
are usually set up by major modes, as buffer-local bindings for this variable. This
variable automatically becomes buffer-local whenever it is set; switching to a new
major mode always resets this variable, but calling set-visited-file-name does
not.

If any of the functions in this hook returns non-nil, the file is considered already
written and the rest are not called and neither are the functions in write-file-

functions.

[User Option]before-save-hook
This normal hook runs before a buffer is saved in its visited file, regardless of whether
that is done normally or by one of the hooks described above. For instance, the

Chapter 25: Files 475

copyright.el program uses this hook to make sure the file you are saving has the
current year in its copyright notice.

[User Option]after-save-hook
This normal hook runs after a buffer has been saved in its visited file. One use of this
hook is in Fast Lock mode; it uses this hook to save the highlighting information in
a cache file.

[User Option]file-precious-flag
If this variable is non-nil, then save-buffer protects against I/O errors while saving
by writing the new file to a temporary name instead of the name it is supposed to
have, and then renaming it to the intended name after it is clear there are no errors.
This procedure prevents problems such as a lack of disk space from resulting in an
invalid file.

As a side effect, backups are necessarily made by copying. See Section 26.1.2 [Rename
or Copy], page 513. Yet, at the same time, saving a precious file always breaks all
hard links between the file you save and other file names.

Some modes give this variable a non-nil buffer-local value in particular buffers.

[User Option]require-final-newline
This variable determines whether files may be written out that do not end with a
newline. If the value of the variable is t, then save-buffer silently adds a newline at
the end of the buffer whenever it does not already end in one. If the value is visit,
Emacs adds a missing newline just after it visits the file. If the value is visit-save,
Emacs adds a missing newline both on visiting and on saving. For any other non-nil
value, save-buffer asks the user whether to add a newline each time the case arises.

If the value of the variable is nil, then save-buffer doesn’t add newlines at all. nil
is the default value, but a few major modes set it to t in particular buffers.

See also the function set-visited-file-name (see Section 27.4 [Buffer File Name],
page 525).

25.3 Reading from Files

You can copy a file from the disk and insert it into a buffer using the insert-file-contents
function. Don’t use the user-level command insert-file in a Lisp program, as that sets
the mark.

[Function]insert-file-contents filename &optional visit beg end replace
This function inserts the contents of file filename into the current buffer after point.
It returns a list of the absolute file name and the length of the data inserted. An
error is signaled if filename is not the name of a file that can be read.

This function checks the file contents against the defined file formats, and converts
the file contents if appropriate and also calls the functions in the list after-insert-
file-functions. See Section 25.12 [Format Conversion], page 506. Normally, one
of the functions in the after-insert-file-functions list determines the coding
system (see Section 33.9 [Coding Systems], page 716) used for decoding the file’s
contents, including end-of-line conversion. However, if the file contains null bytes,

Chapter 25: Files 476

it is by default visited without any code conversions. See Section 33.9.3 [Lisp and
Coding Systems], page 718.

If visit is non-nil, this function additionally marks the buffer as unmodified and sets
up various fields in the buffer so that it is visiting the file filename: these include
the buffer’s visited file name and its last save file modtime. This feature is used by
find-file-noselect and you probably should not use it yourself.

If beg and end are non-nil, they should be integers specifying the portion of the file
to insert. In this case, visit must be nil. For example,

(insert-file-contents filename nil 0 500)

inserts the first 500 characters of a file.

If the argument replace is non-nil, it means to replace the contents of the buffer
(actually, just the accessible portion) with the contents of the file. This is better
than simply deleting the buffer contents and inserting the whole file, because (1) it
preserves some marker positions and (2) it puts less data in the undo list.

It is possible to read a special file (such as a FIFO or an I/O device) with insert-

file-contents, as long as replace and visit are nil.

[Function]insert-file-contents-literally filename &optional visit beg end
replace

This function works like insert-file-contents except that it does not run find-

file-hook, and does not do format decoding, character code conversion, automatic
uncompression, and so on.

If you want to pass a file name to another process so that another program can read the
file, use the function file-local-copy; see Section 25.11 [Magic File Names], page 501.

25.4 Writing to Files

You can write the contents of a buffer, or part of a buffer, directly to a file on disk using
the append-to-file and write-region functions. Don’t use these functions to write to
files that are being visited; that could cause confusion in the mechanisms for visiting.

[Command]append-to-file start end filename
This function appends the contents of the region delimited by start and end in the
current buffer to the end of file filename. If that file does not exist, it is created. This
function returns nil.

An error is signaled if filename specifies a nonwritable file, or a nonexistent file in a
directory where files cannot be created.

When called from Lisp, this function is completely equivalent to:

(write-region start end filename t)

[Command]write-region start end filename &optional append visit lockname
mustbenew

This function writes the region delimited by start and end in the current buffer into
the file specified by filename.

If start is nil, then the command writes the entire buffer contents (not just the
accessible portion) to the file and ignores end.

Chapter 25: Files 477

If start is a string, then write-region writes or appends that string, rather than text
from the buffer. end is ignored in this case.

If append is non-nil, then the specified text is appended to the existing file contents
(if any). If append is an integer, write-region seeks to that byte offset from the
start of the file and writes the data from there.

If mustbenew is non-nil, then write-region asks for confirmation if filename names
an existing file. Ifmustbenew is the symbol excl, then write-region does not ask for
confirmation, but instead it signals an error file-already-exists if the file already
exists.

The test for an existing file, when mustbenew is excl, uses a special system feature.
At least for files on a local disk, there is no chance that some other program could
create a file of the same name before Emacs does, without Emacs’s noticing.

If visit is t, then Emacs establishes an association between the buffer and the file:
the buffer is then visiting that file. It also sets the last file modification time for the
current buffer to filename’s modtime, and marks the buffer as not modified. This
feature is used by save-buffer, but you probably should not use it yourself.

If visit is a string, it specifies the file name to visit. This way, you can write the data
to one file (filename) while recording the buffer as visiting another file (visit). The
argument visit is used in the echo area message and also for file locking; visit is stored
in buffer-file-name. This feature is used to implement file-precious-flag; don’t
use it yourself unless you really know what you’re doing.

The optional argument lockname, if non-nil, specifies the file name to use for purposes
of locking and unlocking, overriding filename and visit for that purpose.

The function write-region converts the data which it writes to the appropriate
file formats specified by buffer-file-format and also calls the functions in the
list write-region-annotate-functions. See Section 25.12 [Format Conversion],
page 506.

Normally, write-region displays the message ‘Wrote filename’ in the echo area. If
visit is neither t nor nil nor a string, then this message is inhibited. This feature is
useful for programs that use files for internal purposes, files that the user does not
need to know about.

[Macro]with-temp-file file body. . .
The with-temp-file macro evaluates the body forms with a temporary buffer as
the current buffer; then, at the end, it writes the buffer contents into file file. It kills
the temporary buffer when finished, restoring the buffer that was current before the
with-temp-file form. Then it returns the value of the last form in body.

The current buffer is restored even in case of an abnormal exit via throw or error (see
Section 10.5 [Nonlocal Exits], page 129).

See also with-temp-buffer in [The Current Buffer], page 523.

25.5 File Locks

When two users edit the same file at the same time, they are likely to interfere with each
other. Emacs tries to prevent this situation from arising by recording a file lock when a file

Chapter 25: Files 478

is being modified. (File locks are not implemented on Microsoft systems.) Emacs can then
detect the first attempt to modify a buffer visiting a file that is locked by another Emacs
job, and ask the user what to do. The file lock is really a file, a symbolic link with a special
name, stored in the same directory as the file you are editing.

When you access files using NFS, there may be a small probability that you and another
user will both lock the same file “simultaneously”. If this happens, it is possible for the two
users to make changes simultaneously, but Emacs will still warn the user who saves second.
Also, the detection of modification of a buffer visiting a file changed on disk catches some
cases of simultaneous editing; see Section 27.6 [Modification Time], page 528.

[Function]file-locked-p filename
This function returns nil if the file filename is not locked. It returns t if it is locked
by this Emacs process, and it returns the name of the user who has locked it if it is
locked by some other job.

(file-locked-p "foo")

⇒ nil

[Function]lock-buffer &optional filename
This function locks the file filename, if the current buffer is modified. The argument
filename defaults to the current buffer’s visited file. Nothing is done if the current
buffer is not visiting a file, or is not modified, or if the system does not support
locking.

[Function]unlock-buffer
This function unlocks the file being visited in the current buffer, if the buffer is
modified. If the buffer is not modified, then the file should not be locked, so this
function does nothing. It also does nothing if the current buffer is not visiting a file,
or if the system does not support locking.

File locking is not supported on some systems. On systems that do not support it, the
functions lock-buffer, unlock-buffer and file-locked-p do nothing and return nil. It
is also possible to disable locking, by setting the variable create-lockfiles.

[User Option]create-lockfiles
If this variable is nil, Emacs does not lock files.

[Function]ask-user-about-lock file other-user
This function is called when the user tries to modify file, but it is locked by another
user named other-user. The default definition of this function asks the user to say
what to do. The value this function returns determines what Emacs does next:

• A value of t says to grab the lock on the file. Then this user may edit the file
and other-user loses the lock.

• A value of nil says to ignore the lock and let this user edit the file anyway.

• This function may instead signal a file-locked error, in which case the change
that the user was about to make does not take place.

The error message for this error looks like this:

Chapter 25: Files 479

error File is locked: file other-user

where file is the name of the file and other-user is the name of the user who
has locked the file.

If you wish, you can replace the ask-user-about-lock function with your own ver-
sion that makes the decision in another way. The code for its usual definition is in
userlock.el.

25.6 Information about Files

The functions described in this section all operate on strings that designate file names.
With a few exceptions, all the functions have names that begin with the word ‘file’.
These functions all return information about actual files or directories, so their arguments
must all exist as actual files or directories unless otherwise noted.

25.6.1 Testing Accessibility

These functions test for permission to access a file in specific ways. Unless explicitly stated
otherwise, they recursively follow symbolic links for their file name arguments, at all levels
(at the level of the file itself and at all levels of parent directories).

[Function]file-exists-p filename
This function returns t if a file named filename appears to exist. This does not mean
you can necessarily read the file, only that you can find out its attributes. (On Unix
and GNU/Linux, this is true if the file exists and you have execute permission on the
containing directories, regardless of the permissions of the file itself.)

If the file does not exist, or if fascist access control policies prevent you from finding
the attributes of the file, this function returns nil.

Directories are files, so file-exists-p returns t when given a directory name. How-
ever, symbolic links are treated specially; file-exists-p returns t for a symbolic
link name only if the target file exists.

[Function]file-readable-p filename
This function returns t if a file named filename exists and you can read it. It returns
nil otherwise.

(file-readable-p "files.texi")

⇒ t

(file-exists-p "/usr/spool/mqueue")

⇒ t

(file-readable-p "/usr/spool/mqueue")

⇒ nil

[Function]file-executable-p filename
This function returns t if a file named filename exists and you can execute it. It
returns nil otherwise. On Unix and GNU/Linux, if the file is a directory, execute
permission means you can check the existence and attributes of files inside the direc-
tory, and open those files if their modes permit.

Chapter 25: Files 480

[Function]file-writable-p filename
This function returns t if the file filename can be written or created by you, and nil

otherwise. A file is writable if the file exists and you can write it. It is creatable
if it does not exist, but the specified directory does exist and you can write in that
directory.

In the third example below, foo is not writable because the parent directory does not
exist, even though the user could create such a directory.

(file-writable-p "~/foo")

⇒ t

(file-writable-p "/foo")

⇒ nil

(file-writable-p "~/no-such-dir/foo")

⇒ nil

[Function]file-accessible-directory-p dirname
This function returns t if you have permission to open existing files in the directory
whose name as a file is dirname; otherwise (or if there is no such directory), it returns
nil. The value of dirname may be either a directory name (such as /foo/) or the
file name of a file which is a directory (such as /foo, without the final slash).

Example: after the following,

(file-accessible-directory-p "/foo")

⇒ nil

we can deduce that any attempt to read a file in /foo/ will give an error.

[Function]access-file filename string
This function opens file filename for reading, then closes it and returns nil. However,
if the open fails, it signals an error using string as the error message text.

[Function]file-ownership-preserved-p filename
This function returns t if deleting the file filename and then creating it anew would
keep the file’s owner unchanged. It also returns t for nonexistent files.

If filename is a symbolic link, then, unlike the other functions discussed here, file-
ownership-preserved-p does not replace filename with its target. However, it does
recursively follow symbolic links at all levels of parent directories.

[Function]file-newer-than-file-p filename1 filename2
This function returns t if the file filename1 is newer than file filename2. If filename1
does not exist, it returns nil. If filename1 does exist, but filename2 does not, it
returns t.

In the following example, assume that the file aug-19 was written on the 19th, aug-20
was written on the 20th, and the file no-file doesn’t exist at all.

(file-newer-than-file-p "aug-19" "aug-20")

⇒ nil

(file-newer-than-file-p "aug-20" "aug-19")

⇒ t

(file-newer-than-file-p "aug-19" "no-file")

⇒ t

Chapter 25: Files 481

(file-newer-than-file-p "no-file" "aug-19")

⇒ nil

You can use file-attributes to get a file’s last modification time as a list of four
integers. See Section 25.6.4 [File Attributes], page 483.

25.6.2 Distinguishing Kinds of Files

This section describes how to distinguish various kinds of files, such as directories, symbolic
links, and ordinary files.

[Function]file-symlink-p filename
If the file filename is a symbolic link, the file-symlink-p function returns the (non-
recursive) link target as a string. (Determining the file name that the link points to
from the target is nontrivial.) First, this function recursively follows symbolic links
at all levels of parent directories.

If the file filename is not a symbolic link (or there is no such file), file-symlink-p
returns nil.

(file-symlink-p "foo")

⇒ nil

(file-symlink-p "sym-link")

⇒ "foo"

(file-symlink-p "sym-link2")

⇒ "sym-link"

(file-symlink-p "/bin")

⇒ "/pub/bin"

The next two functions recursively follow symbolic links at all levels for filename.

[Function]file-directory-p filename
This function returns t if filename is the name of an existing directory, nil otherwise.

(file-directory-p "~rms")

⇒ t

(file-directory-p "~rms/lewis/files.texi")

⇒ nil

(file-directory-p "~rms/lewis/no-such-file")

⇒ nil

(file-directory-p "$HOME")

⇒ nil

(file-directory-p

(substitute-in-file-name "$HOME"))

⇒ t

[Function]file-regular-p filename
This function returns t if the file filename exists and is a regular file (not a directory,
named pipe, terminal, or other I/O device).

[Function]file-equal-p file1 file2
This function returns t if the files file1 and file2 name the same file. If file1 or file2
does not exist, the return value is unspecified.

Chapter 25: Files 482

[Function]file-in-directory-p file dir
This function returns t if file is a file in directory dir, or in a subdirectory of dir. It
also returns t if file and dir are the same directory. It compares the file-truename
values of the two directories (see Section 25.6.3 [Truenames], page 482). If dir does
not name an existing directory, the return value is nil.

25.6.3 Truenames

The truename of a file is the name that you get by following symbolic links at all levels until
none remain, then simplifying away ‘.’ and ‘..’ appearing as name components. This results
in a sort of canonical name for the file. A file does not always have a unique truename;
the number of distinct truenames a file has is equal to the number of hard links to the file.
However, truenames are useful because they eliminate symbolic links as a cause of name
variation.

[Function]file-truename filename
This function returns the truename of the file filename. If the argument is not an
absolute file name, this function first expands it against default-directory.

This function does not expand environment variables. Only substitute-in-file-

name does that. See [Definition of substitute-in-file-name], page 495.

If you may need to follow symbolic links preceding ‘..’ appearing as a name compo-
nent, you should make sure to call file-truename without prior direct or indirect
calls to expand-file-name, as otherwise the file name component immediately pre-
ceding ‘..’ will be “simplified away” before file-truename is called. To eliminate
the need for a call to expand-file-name, file-truename handles ‘~’ in the same way
that expand-file-name does. See Section 25.8.4 [Functions that Expand Filenames],
page 494.

[Function]file-chase-links filename &optional limit
This function follows symbolic links, starting with filename, until it finds a file name
which is not the name of a symbolic link. Then it returns that file name. This function
does not follow symbolic links at the level of parent directories.

If you specify a number for limit, then after chasing through that many links, the
function just returns what it has even if that is still a symbolic link.

To illustrate the difference between file-chase-links and file-truename, suppose
that /usr/foo is a symbolic link to the directory /home/foo, and /home/foo/hello is an
ordinary file (or at least, not a symbolic link) or nonexistent. Then we would have:

(file-chase-links "/usr/foo/hello")

;; This does not follow the links in the parent directories.
⇒ "/usr/foo/hello"

(file-truename "/usr/foo/hello")

;; Assuming that /home is not a symbolic link.
⇒ "/home/foo/hello"

See Section 27.4 [Buffer File Name], page 525, for related information.

Chapter 25: Files 483

25.6.4 Other Information about Files

This section describes the functions for getting detailed information about a file, other than
its contents. This information includes the mode bits that control access permissions, the
owner and group numbers, the number of names, the inode number, the size, and the times
of access and modification.

[Function]file-modes filename
This function returns the mode bits describing the file permissions of filename, as an
integer. It recursively follows symbolic links in filename at all levels. If filename does
not exist, the return value is nil.

See Section “File Permissions” in The gnu Coreutils Manual, for a description of
mode bits. If the low-order bit is 1, then the file is executable by all users, if the
second-lowest-order bit is 1, then the file is writable by all users, etc. The highest
value returnable is 4095 (7777 octal), meaning that everyone has read, write, and
execute permission, that the SUID bit is set for both others and group, and that the
sticky bit is set.

(file-modes "~/junk/diffs")

⇒ 492 ; Decimal integer.
(format "%o" 492)

⇒ "754" ; Convert to octal.

(set-file-modes "~/junk/diffs" #o666)

⇒ nil

% ls -l diffs

-rw-rw-rw- 1 lewis 0 3063 Oct 30 16:00 diffs

See Section 25.7 [Changing Files], page 487, for functions that change file permissions,
such as set-file-modes.

MS-DOS note: On MS-DOS, there is no such thing as an “executable” file mode bit.
So file-modes considers a file executable if its name ends in one of the standard exe-
cutable extensions, such as .com, .bat, .exe, and some others. Files that begin with
the Unix-standard ‘#!’ signature, such as shell and Perl scripts, are also considered
executable. Directories are also reported as executable, for compatibility with Unix.
These conventions are also followed by file-attributes, below.

If the filename argument to the next two functions is a symbolic link, then these function
do not replace it with its target. However, they both recursively follow symbolic links at
all levels of parent directories.

[Function]file-nlinks filename
This functions returns the number of names (i.e., hard links) that file filename has. If
the file does not exist, then this function returns nil. Note that symbolic links have
no effect on this function, because they are not considered to be names of the files
they link to.

% ls -l foo*

-rw-rw-rw- 2 rms 4 Aug 19 01:27 foo

-rw-rw-rw- 2 rms 4 Aug 19 01:27 foo1

Chapter 25: Files 484

(file-nlinks "foo")

⇒ 2

(file-nlinks "doesnt-exist")

⇒ nil

[Function]file-attributes filename &optional id-format
This function returns a list of attributes of file filename. If the specified file cannot
be opened, it returns nil. The optional parameter id-format specifies the preferred
format of attributes UID and GID (see below)—the valid values are ’string and
’integer. The latter is the default, but we plan to change that, so you should
specify a non-nil value for id-format if you use the returned UID or GID.

The elements of the list, in order, are:

0. t for a directory, a string for a symbolic link (the name linked to), or nil for a
text file.

1. The number of names the file has. Alternate names, also known as hard links, can
be created by using the add-name-to-file function (see Section 25.7 [Changing
Files], page 487).

2. The file’s UID, normally as a string. However, if it does not correspond to a
named user, the value is an integer or a floating point number.

3. The file’s GID, likewise.

4. The time of last access, as a list of four integers (sec-high sec-low microsec

picosec). (This is similar to the value of current-time; see Section 39.5 [Time
of Day], page 923.) Note that on some FAT-based filesystems, only the date of
last access is recorded, so this time will always hold the midnight of the day of
last access.

5. The time of last modification as a list of four integers (as above). This is the last
time when the file’s contents were modified.

6. The time of last status change as a list of four integers (as above). This is the time
of the last change to the file’s access mode bits, its owner and group, and other
information recorded in the filesystem for the file, beyond the file’s contents.

7. The size of the file in bytes. If the size is too large to fit in a Lisp integer, this is
a floating point number.

8. The file’s modes, as a string of ten letters or dashes, as in ‘ls -l’.

9. t if the file’s GID would change if file were deleted and recreated; nil otherwise.

10. The file’s inode number. If possible, this is an integer. If the inode number is too
large to be represented as an integer in Emacs Lisp but dividing it by 216 yields
a representable integer, then the value has the form (high . low), where low
holds the low 16 bits. If the inode number is too wide for even that, the value
is of the form (high middle . low), where high holds the high bits, middle the
middle 24 bits, and low the low 16 bits.

11. The filesystem number of the device that the file is on. Depending on the magni-
tude of the value, this can be either an integer or a cons cell, in the same manner
as the inode number. This element and the file’s inode number together give

Chapter 25: Files 485

enough information to distinguish any two files on the system—no two files can
have the same values for both of these numbers.

For example, here are the file attributes for files.texi:

(file-attributes "files.texi" ’string)

⇒ (nil 1 "lh" "users"

(20614 64019 50040 152000)

(20000 23 0 0)

(20614 64555 902289 872000)

122295 "-rw-rw-rw-"

nil (5888 2 . 43978)

(15479 . 46724))

and here is how the result is interpreted:

nil is neither a directory nor a symbolic link.

1 has only one name (the name files.texi in the current default direc-
tory).

"lh" is owned by the user with name "lh".

"users" is in the group with name "users".

(20614 64019 50040 152000)

was last accessed on October 23, 2012, at 20:12:03.050040152 UTC.

(20000 23 0 0)

was last modified on July 15, 2001, at 08:53:43 UTC.

(20614 64555 902289 872000)

last had its status changed on October 23, 2012, at 20:20:59.902289872
UTC.

122295 is 122295 bytes long. (It may not contain 122295 characters, though, if
some of the bytes belong to multibyte sequences, and also if the end-of-
line format is CR-LF.)

"-rw-rw-rw-"

has a mode of read and write access for the owner, group, and world.

nil would retain the same GID if it were recreated.

(5888 2 . 43978)

has an inode number of 6473924464520138.

(15479 . 46724)

is on the file-system device whose number is 1014478468.

SELinux is a Linux kernel feature which provides more sophisticated file access controls
than ordinary “Unix-style” file permissions. If Emacs has been compiled with SELinux sup-
port on a system with SELinux enabled, you can use the function file-selinux-context

to retrieve a file’s SELinux security context. For the function set-file-selinux-context,
see Section 25.7 [Changing Files], page 487.

Chapter 25: Files 486

[Function]file-selinux-context filename
This function returns the SELinux security context of the file filename. This return
value is a list of the form (user role type range), whose elements are the context’s
user, role, type, and range respectively, as Lisp strings. See the SELinux documenta-
tion for details about what these actually mean.

If the file does not exist or is inaccessible, or if the system does not support SELinux,
or if Emacs was not compiled with SELinux support, then the return value is (nil
nil nil nil).

25.6.5 How to Locate Files in Standard Places

This section explains how to search for a file in a list of directories (a path), or for an
executable file in the standard list of executable file directories.

To search for a user-specific configuration file, See Section 25.8.7 [Standard File Names],
page 498, for the locate-user-emacs-file function.

[Function]locate-file filename path &optional suffixes predicate
This function searches for a file whose name is filename in a list of directories given by
path, trying the suffixes in suffixes. If it finds such a file, it returns the file’s absolute
file name (see Section 25.8.2 [Relative File Names], page 492); otherwise it returns
nil.

The optional argument suffixes gives the list of file-name suffixes to append to filename
when searching. locate-file tries each possible directory with each of these suffixes.
If suffixes is nil, or (""), then there are no suffixes, and filename is used only as-is.
Typical values of suffixes are exec-suffixes (see Section 37.1 [Subprocess Creation],
page 780), load-suffixes, load-file-rep-suffixes and the return value of the
function get-load-suffixes (see Section 15.2 [Load Suffixes], page 217).

Typical values for path are exec-path (see Section 37.1 [Subprocess Creation],
page 780) when looking for executable programs, or load-path (see Section 15.3
[Library Search], page 218) when looking for Lisp files. If filename is absolute, path
has no effect, but the suffixes in suffixes are still tried.

The optional argument predicate, if non-nil, specifies a predicate function for testing
whether a candidate file is suitable. The predicate is passed the candidate file name
as its single argument. If predicate is nil or omitted, locate-file uses file-

readable-p as the predicate. See Section 25.6.2 [Kinds of Files], page 481, for other
useful predicates, e.g., file-executable-p and file-directory-p.

For compatibility, predicate can also be one of the symbols executable, readable,
writable, exists, or a list of one or more of these symbols.

[Function]executable-find program
This function searches for the executable file of the named program and returns the
absolute file name of the executable, including its file-name extensions, if any. It
returns nil if the file is not found. The functions searches in all the directories in
exec-path, and tries all the file-name extensions in exec-suffixes (see Section 37.1
[Subprocess Creation], page 780).

Chapter 25: Files 487

25.7 Changing File Names and Attributes

The functions in this section rename, copy, delete, link, and set the modes (permissions) of
files.

In the functions that have an argument newname, if a file by the name of newname
already exists, the actions taken depend on the value of the argument ok-if-already-exists:

• Signal a file-already-exists error if ok-if-already-exists is nil.

• Request confirmation if ok-if-already-exists is a number.

• Replace the old file without confirmation if ok-if-already-exists is any other value.

The next four commands all recursively follow symbolic links at all levels of parent
directories for their first argument, but, if that argument is itself a symbolic link, then only
copy-file replaces it with its (recursive) target.

[Command]add-name-to-file oldname newname &optional ok-if-already-exists
This function gives the file named oldname the additional name newname. This
means that newname becomes a new “hard link” to oldname.

In the first part of the following example, we list two files, foo and foo3.

% ls -li fo*

81908 -rw-rw-rw- 1 rms 29 Aug 18 20:32 foo

84302 -rw-rw-rw- 1 rms 24 Aug 18 20:31 foo3

Now we create a hard link, by calling add-name-to-file, then list the files again.
This shows two names for one file, foo and foo2.

(add-name-to-file "foo" "foo2")

⇒ nil

% ls -li fo*

81908 -rw-rw-rw- 2 rms 29 Aug 18 20:32 foo

81908 -rw-rw-rw- 2 rms 29 Aug 18 20:32 foo2

84302 -rw-rw-rw- 1 rms 24 Aug 18 20:31 foo3

Finally, we evaluate the following:

(add-name-to-file "foo" "foo3" t)

and list the files again. Now there are three names for one file: foo, foo2, and foo3.
The old contents of foo3 are lost.

(add-name-to-file "foo1" "foo3")

⇒ nil

% ls -li fo*

81908 -rw-rw-rw- 3 rms 29 Aug 18 20:32 foo

81908 -rw-rw-rw- 3 rms 29 Aug 18 20:32 foo2

81908 -rw-rw-rw- 3 rms 29 Aug 18 20:32 foo3

This function is meaningless on operating systems where multiple names for one file
are not allowed. Some systems implement multiple names by copying the file instead.

See also file-nlinks in Section 25.6.4 [File Attributes], page 483.

Chapter 25: Files 488

[Command]rename-file filename newname &optional ok-if-already-exists
This command renames the file filename as newname.

If filename has additional names aside from filename, it continues to have those names.
In fact, adding the name newname with add-name-to-file and then deleting file-
name has the same effect as renaming, aside from momentary intermediate states.

[Command]copy-file oldname newname &optional ok-if-exists time
preserve-uid-gid preserve-selinux

This command copies the file oldname to newname. An error is signaled if oldname
does not exist. If newname names a directory, it copies oldname into that directory,
preserving its final name component.

If time is non-nil, then this function gives the new file the same last-modified time
that the old one has. (This works on only some operating systems.) If setting the
time gets an error, copy-file signals a file-date-error error. In an interactive
call, a prefix argument specifies a non-nil value for time.

This function copies the file modes, too.

If argument preserve-uid-gid is nil, we let the operating system decide the user and
group ownership of the new file (this is usually set to the user running Emacs). If
preserve-uid-gid is non-nil, we attempt to copy the user and group ownership of the
file. This works only on some operating systems, and only if you have the correct
permissions to do so.

If the optional argument preserve-selinux is non-nil, and Emacs has been compiled
with SELinux support, this function attempts to copy the file’s SELinux context (see
Section 25.6.4 [File Attributes], page 483).

[Command]make-symbolic-link filename newname &optional ok-if-exists
This command makes a symbolic link to filename, named newname. This is like the
shell command ‘ln -s filename newname’.

This function is not available on systems that don’t support symbolic links.

[Command]delete-file filename &optional trash
This command deletes the file filename. If the file has multiple names, it continues
to exist under the other names. If filename is a symbolic link, delete-file deletes
only the symbolic link and not its target (though it does follow symbolic links at all
levels of parent directories).

A suitable kind of file-error error is signaled if the file does not exist, or is not
deletable. (On Unix and GNU/Linux, a file is deletable if its directory is writable.)

If the optional argument trash is non-nil and the variable delete-by-moving-to-

trash is non-nil, this command moves the file into the system Trash instead of
deleting it. See Section “Miscellaneous File Operations” in The GNU Emacs Manual.
When called interactively, trash is t if no prefix argument is given, and nil otherwise.

See also delete-directory in Section 25.10 [Create/Delete Dirs], page 501.

[Command]set-file-modes filename mode
This function sets the file mode (or file permissions) of filename to mode. It recur-
sively follows symbolic links at all levels for filename.

Chapter 25: Files 489

If called non-interactively, mode must be an integer. Only the lowest 12 bits of the
integer are used; on most systems, only the lowest 9 bits are meaningful. You can use
the Lisp construct for octal numbers to enter mode. For example,

(set-file-modes #o644)

specifies that the file should be readable and writable for its owner, readable for group
members, and readable for all other users. See Section “File Permissions” in The gnu
Coreutils Manual, for a description of mode bit specifications.

Interactively, mode is read from the minibuffer using read-file-modes (see below),
which lets the user type in either an integer or a string representing the permissions
symbolically.

See Section 25.6.4 [File Attributes], page 483, for the function file-modes, which
returns the permissions of a file.

[Function]set-default-file-modes mode
This function sets the default file permissions for new files created by Emacs and
its subprocesses. Every file created with Emacs initially has these permissions, or a
subset of them (write-region will not grant execute permissions even if the default
file permissions allow execution). On Unix and GNU/Linux, the default permissions
are given by the bitwise complement of the “umask” value.

The argument mode should be an integer which specifies the permissions, similar to
set-file-modes above. Only the lowest 9 bits are meaningful.

The default file permissions have no effect when you save a modified version of an
existing file; saving a file preserves its existing permissions.

[Function]default-file-modes
This function returns the default file permissions, as an integer.

[Function]read-file-modes &optional prompt base-file
This function reads a set of file mode bits from the minibuffer. The first optional
argument prompt specifies a non-default prompt. Second second optional argument
base-file is the name of a file on whose permissions to base the mode bits that this
function returns, if what the user types specifies mode bits relative to permissions of
an existing file.

If user input represents an octal number, this function returns that number. If it is a
complete symbolic specification of mode bits, as in "u=rwx", the function converts it
to the equivalent numeric value using file-modes-symbolic-to-number and returns
the result. If the specification is relative, as in "o+g", then the permissions on which
the specification is based are taken from the mode bits of base-file. If base-file is
omitted or nil, the function uses 0 as the base mode bits. The complete and relative
specifications can be combined, as in "u+r,g+rx,o+r,g-w". See Section “File Per-
missions” in The gnu Coreutils Manual, for a description of file mode specifications.

[Function]file-modes-symbolic-to-number modes &optional base-modes
This function converts a symbolic file mode specification in modes into the equivalent
integer value. If the symbolic specification is based on an existing file, that file’s mode
bits are taken from the optional argument base-modes; if that argument is omitted
or nil, it defaults to 0, i.e., no access rights at all.

Chapter 25: Files 490

[Function]set-file-times filename &optional time
This function sets the access and modification times of filename to time. The return
value is t if the times are successfully set, otherwise it is nil. time defaults to the
current time and must be in the format returned by current-time (see Section 39.5
[Time of Day], page 923).

[Function]set-file-selinux-context filename context
This function sets the SELinux security context of the file filename to context. See
Section 25.6.4 [File Attributes], page 483, for a brief description of SELinux contexts.
The context argument should be a list (user role type range), like the return value
of file-selinux-context. The function does nothing if SELinux is disabled, or if
Emacs was compiled without SELinux support.

25.8 File Names

Files are generally referred to by their names, in Emacs as elsewhere. File names in Emacs
are represented as strings. The functions that operate on a file all expect a file name
argument.

In addition to operating on files themselves, Emacs Lisp programs often need to operate
on file names; i.e., to take them apart and to use part of a name to construct related file
names. This section describes how to manipulate file names.

The functions in this section do not actually access files, so they can operate on file
names that do not refer to an existing file or directory.

On MS-DOS and MS-Windows, these functions (like the function that actually operate
on files) accept MS-DOS or MS-Windows file-name syntax, where backslashes separate the
components, as well as Unix syntax; but they always return Unix syntax. This enables Lisp
programs to specify file names in Unix syntax and work properly on all systems without
change.1

25.8.1 File Name Components

The operating system groups files into directories. To specify a file, you must specify the
directory and the file’s name within that directory. Therefore, Emacs considers a file name
as having two main parts: the directory name part, and the nondirectory part (or file name
within the directory). Either part may be empty. Concatenating these two parts reproduces
the original file name.

On most systems, the directory part is everything up to and including the last slash
(backslash is also allowed in input on MS-DOS or MS-Windows); the nondirectory part is
the rest.

For some purposes, the nondirectory part is further subdivided into the name proper
and the version number. On most systems, only backup files have version numbers in their
names.

1 In MS-Windows versions of Emacs compiled for the Cygwin environment, you can use the functions
cygwin-convert-file-name-to-windows and cygwin-convert-file-name-from-windows to convert be-
tween the two file-name syntaxes.

Chapter 25: Files 491

[Function]file-name-directory filename
This function returns the directory part of filename, as a directory name (see
Section 25.8.3 [Directory Names], page 493), or nil if filename does not include a
directory part.

On GNU and Unix systems, a string returned by this function always ends in a slash.
On MS-DOS it can also end in a colon.

(file-name-directory "lewis/foo") ; Unix example
⇒ "lewis/"

(file-name-directory "foo") ; Unix example
⇒ nil

[Function]file-name-nondirectory filename
This function returns the nondirectory part of filename.

(file-name-nondirectory "lewis/foo")

⇒ "foo"

(file-name-nondirectory "foo")

⇒ "foo"

(file-name-nondirectory "lewis/")

⇒ ""

[Function]file-name-sans-versions filename &optional keep-backup-version
This function returns filename with any file version numbers, backup version numbers,
or trailing tildes discarded.

If keep-backup-version is non-nil, then true file version numbers understood as such
by the file system are discarded from the return value, but backup version numbers
are kept.

(file-name-sans-versions "~rms/foo.~1~")

⇒ "~rms/foo"

(file-name-sans-versions "~rms/foo~")

⇒ "~rms/foo"

(file-name-sans-versions "~rms/foo")

⇒ "~rms/foo"

[Function]file-name-extension filename &optional period
This function returns filename’s final “extension”, if any, after applying file-name-

sans-versions to remove any version/backup part. The extension, in a file name,
is the part that follows the last ‘.’ in the last name component (minus any ver-
sion/backup part).

This function returns nil for extensionless file names such as foo. It returns "" for
null extensions, as in foo.. If the last component of a file name begins with a ‘.’,
that ‘.’ doesn’t count as the beginning of an extension. Thus, .emacs’s “extension”
is nil, not ‘.emacs’.

If period is non-nil, then the returned value includes the period that delimits the
extension, and if filename has no extension, the value is "".

[Function]file-name-sans-extension filename
This function returns filename minus its extension, if any. The version/backup part,
if present, is only removed if the file has an extension. For example,

Chapter 25: Files 492

(file-name-sans-extension "foo.lose.c")

⇒ "foo.lose"

(file-name-sans-extension "big.hack/foo")

⇒ "big.hack/foo"

(file-name-sans-extension "/my/home/.emacs")

⇒ "/my/home/.emacs"

(file-name-sans-extension "/my/home/.emacs.el")

⇒ "/my/home/.emacs"

(file-name-sans-extension "~/foo.el.~3~")

⇒ "~/foo"

(file-name-sans-extension "~/foo.~3~")

⇒ "~/foo.~3~"

Note that the ‘.~3~’ in the two last examples is the backup part, not an extension.

[Function]file-name-base &optional filename
This function is the composition of file-name-sans-extension and file-name-

nondirectory. For example,

(file-name-base "/my/home/foo.c")

⇒ "foo"

The filename argument defaults to buffer-file-name.

25.8.2 Absolute and Relative File Names

All the directories in the file system form a tree starting at the root directory. A file name
can specify all the directory names starting from the root of the tree; then it is called an
absolute file name. Or it can specify the position of the file in the tree relative to a default
directory; then it is called a relative file name. On Unix and GNU/Linux, an absolute file
name starts with a ‘/’ or a ‘~’ (see [abbreviate-file-name], page 494), and a relative one
does not. On MS-DOS and MS-Windows, an absolute file name starts with a slash or a
backslash, or with a drive specification ‘x:/’, where x is the drive letter.

[Function]file-name-absolute-p filename
This function returns t if file filename is an absolute file name, nil otherwise.

(file-name-absolute-p "~rms/foo")

⇒ t

(file-name-absolute-p "rms/foo")

⇒ nil

(file-name-absolute-p "/user/rms/foo")

⇒ t

Given a possibly relative file name, you can convert it to an absolute name using expand-
file-name (see Section 25.8.4 [File Name Expansion], page 494). This function converts
absolute file names to relative names:

[Function]file-relative-name filename &optional directory
This function tries to return a relative name that is equivalent to filename, assuming
the result will be interpreted relative to directory (an absolute directory name or
directory file name). If directory is omitted or nil, it defaults to the current buffer’s
default directory.

Chapter 25: Files 493

On some operating systems, an absolute file name begins with a device name. On
such systems, filename has no relative equivalent based on directory if they start with
two different device names. In this case, file-relative-name returns filename in
absolute form.

(file-relative-name "/foo/bar" "/foo/")

⇒ "bar"

(file-relative-name "/foo/bar" "/hack/")

⇒ "../foo/bar"

25.8.3 Directory Names

A directory name is the name of a directory. A directory is actually a kind of file, so it has
a file name, which is related to the directory name but not identical to it. (This is not quite
the same as the usual Unix terminology.) These two different names for the same entity
are related by a syntactic transformation. On GNU and Unix systems, this is simple: a
directory name ends in a slash, whereas the directory’s name as a file lacks that slash. On
MS-DOS the relationship is more complicated.

The difference between a directory name and its name as a file is subtle but crucial.
When an Emacs variable or function argument is described as being a directory name, a
file name of a directory is not acceptable. When file-name-directory returns a string,
that is always a directory name.

The following two functions convert between directory names and file names. They do
nothing special with environment variable substitutions such as ‘$HOME’, and the constructs
‘~’, ‘.’ and ‘..’.

[Function]file-name-as-directory filename
This function returns a string representing filename in a form that the operating sys-
tem will interpret as the name of a directory. On most systems, this means appending
a slash to the string (if it does not already end in one).

(file-name-as-directory "~rms/lewis")

⇒ "~rms/lewis/"

[Function]directory-file-name dirname
This function returns a string representing dirname in a form that the operating
system will interpret as the name of a file. On most systems, this means removing
the final slash (or backslash) from the string.

(directory-file-name "~lewis/")

⇒ "~lewis"

Given a directory name, you can combine it with a relative file name using concat:

(concat dirname relfile)

Be sure to verify that the file name is relative before doing that. If you use an absolute file
name, the results could be syntactically invalid or refer to the wrong file.

If you want to use a directory file name in making such a combination, you must first
convert it to a directory name using file-name-as-directory:

(concat (file-name-as-directory dirfile) relfile)

Don’t try concatenating a slash by hand, as in

Chapter 25: Files 494

;;; Wrong!
(concat dirfile "/" relfile)

because this is not portable. Always use file-name-as-directory.

To convert a directory name to its abbreviation, use this function:

[Function]abbreviate-file-name filename
This function returns an abbreviated form of filename. It applies the abbreviations
specified in directory-abbrev-alist (see Section “File Aliases” in The GNU Emacs
Manual), then substitutes ‘~’ for the user’s home directory if the argument names a
file in the home directory or one of its subdirectories. If the home directory is a root
directory, it is not replaced with ‘~’, because this does not make the result shorter on
many systems.

You can use this function for directory names and for file names, because it recognizes
abbreviations even as part of the name.

25.8.4 Functions that Expand Filenames

Expanding a file name means converting a relative file name to an absolute one. Since
this is done relative to a default directory, you must specify the default directory name as
well as the file name to be expanded. It also involves expanding abbreviations like ~/ and
eliminating redundancies like ./ and name/../.

[Function]expand-file-name filename &optional directory
This function converts filename to an absolute file name. If directory is supplied,
it is the default directory to start with if filename is relative. (The value of direc-
tory should itself be an absolute directory name or directory file name; it may start
with ‘~’.) Otherwise, the current buffer’s value of default-directory is used. For
example:

(expand-file-name "foo")

⇒ "/xcssun/users/rms/lewis/foo"

(expand-file-name "../foo")

⇒ "/xcssun/users/rms/foo"

(expand-file-name "foo" "/usr/spool/")

⇒ "/usr/spool/foo"

(expand-file-name "$HOME/foo")

⇒ "/xcssun/users/rms/lewis/$HOME/foo"

If the part of the combined file name before the first slash is ‘~’, it expands to the
value of the HOME environment variable (usually your home directory). If the part
before the first slash is ‘~user’ and if user is a valid login name, it expands to user’s
home directory.

Filenames containing ‘.’ or ‘..’ are simplified to their canonical form:

(expand-file-name "bar/../foo")

⇒ "/xcssun/users/rms/lewis/foo"

In some cases, a leading ‘..’ component can remain in the output:

(expand-file-name "../home" "/")

⇒ "/../home"

Chapter 25: Files 495

This is for the sake of filesystems that have the concept of a “superroot” above the
root directory /. On other filesystems, /../ is interpreted exactly the same as /.

Note that expand-file-name does not expand environment variables; only
substitute-in-file-name does that.

Note also that expand-file-name does not follow symbolic links at any level. This
results in a difference between the way file-truename and expand-file-name treat
‘..’. Assuming that ‘/tmp/bar’ is a symbolic link to the directory ‘/tmp/foo/bar’
we get:

(file-truename "/tmp/bar/../myfile")

⇒ "/tmp/foo/myfile"

(expand-file-name "/tmp/bar/../myfile")

⇒ "/tmp/myfile"

If you may need to follow symbolic links preceding ‘..’, you should make sure to
call file-truename without prior direct or indirect calls to expand-file-name. See
Section 25.6.3 [Truenames], page 482.

[Variable]default-directory
The value of this buffer-local variable is the default directory for the current buffer.
It should be an absolute directory name; it may start with ‘~’. This variable is
buffer-local in every buffer.

expand-file-name uses the default directory when its second argument is nil.

The value is always a string ending with a slash.

default-directory

⇒ "/user/lewis/manual/"

[Function]substitute-in-file-name filename
This function replaces environment variable references in filename with the envi-
ronment variable values. Following standard Unix shell syntax, ‘$’ is the prefix to
substitute an environment variable value. If the input contains ‘$$’, that is converted
to ‘$’; this gives the user a way to “quote” a ‘$’.

The environment variable name is the series of alphanumeric characters (including
underscores) that follow the ‘$’. If the character following the ‘$’ is a ‘{’, then the
variable name is everything up to the matching ‘}’.

Calling substitute-in-file-name on output produced by substitute-in-file-

name tends to give incorrect results. For instance, use of ‘$$’ to quote a single ‘$’
won’t work properly, and ‘$’ in an environment variable’s value could lead to repeated
substitution. Therefore, programs that call this function and put the output where it
will be passed to this function need to double all ‘$’ characters to prevent subsequent
incorrect results.

Here we assume that the environment variable HOME, which holds the user’s home
directory name, has value ‘/xcssun/users/rms’.

(substitute-in-file-name "$HOME/foo")

⇒ "/xcssun/users/rms/foo"

After substitution, if a ‘~’ or a ‘/’ appears immediately after another ‘/’, the function
discards everything before it (up through the immediately preceding ‘/’).

Chapter 25: Files 496

(substitute-in-file-name "bar/~/foo")

⇒ "~/foo"

(substitute-in-file-name "/usr/local/$HOME/foo")

⇒ "/xcssun/users/rms/foo"

;; /usr/local/ has been discarded.

25.8.5 Generating Unique File Names

Some programs need to write temporary files. Here is the usual way to construct a name
for such a file:

(make-temp-file name-of-application)

The job of make-temp-file is to prevent two different users or two different jobs from
trying to use the exact same file name.

[Function]make-temp-file prefix &optional dir-flag suffix
This function creates a temporary file and returns its name. Emacs creates the
temporary file’s name by adding to prefix some random characters that are different
in each Emacs job. The result is guaranteed to be a newly created empty file. On MS-
DOS, this function can truncate the string prefix to fit into the 8+3 file-name limits.
If prefix is a relative file name, it is expanded against temporary-file-directory.

(make-temp-file "foo")

⇒ "/tmp/foo232J6v"

When make-temp-file returns, the file has been created and is empty. At that point,
you should write the intended contents into the file.

If dir-flag is non-nil, make-temp-file creates an empty directory instead of an
empty file. It returns the file name, not the directory name, of that directory. See
Section 25.8.3 [Directory Names], page 493.

If suffix is non-nil, make-temp-file adds it at the end of the file name.

To prevent conflicts among different libraries running in the same Emacs, each Lisp
program that uses make-temp-file should have its own prefix. The number added
to the end of prefix distinguishes between the same application running in different
Emacs jobs. Additional added characters permit a large number of distinct names
even in one Emacs job.

The default directory for temporary files is controlled by the variable temporary-file-
directory. This variable gives the user a uniform way to specify the directory for all
temporary files. Some programs use small-temporary-file-directory instead, if that is
non-nil. To use it, you should expand the prefix against the proper directory before calling
make-temp-file.

[User Option]temporary-file-directory
This variable specifies the directory name for creating temporary files. Its value should
be a directory name (see Section 25.8.3 [Directory Names], page 493), but it is good
for Lisp programs to cope if the value is a directory’s file name instead. Using the
value as the second argument to expand-file-name is a good way to achieve that.

The default value is determined in a reasonable way for your operating system; it
is based on the TMPDIR, TMP and TEMP environment variables, with a fall-back to a
system-dependent name if none of these variables is defined.

Chapter 25: Files 497

Even if you do not use make-temp-file to create the temporary file, you should still
use this variable to decide which directory to put the file in. However, if you expect
the file to be small, you should use small-temporary-file-directory first if that
is non-nil.

[User Option]small-temporary-file-directory
This variable specifies the directory name for creating certain temporary files, which
are likely to be small.

If you want to write a temporary file which is likely to be small, you should compute
the directory like this:

(make-temp-file

(expand-file-name prefix

(or small-temporary-file-directory

temporary-file-directory)))

[Function]make-temp-name base-name
This function generates a string that can be used as a unique file name. The name
starts with base-name, and has several random characters appended to it, which are
different in each Emacs job. It is like make-temp-file except that (i) it just constructs
a name, and does not create a file, and (ii) base-name should be an absolute file name
(on MS-DOS, this function can truncate base-name to fit into the 8+3 file-name
limits).

Warning: In most cases, you should not use this function; use make-temp-file in-
stead! This function is susceptible to a race condition, between the make-temp-name
call and the creation of the file, which in some cases may cause a security hole.

25.8.6 File Name Completion

This section describes low-level subroutines for completing a file name. For higher level
functions, see Section 20.6.5 [Reading File Names], page 307.

[Function]file-name-all-completions partial-filename directory
This function returns a list of all possible completions for a file whose name starts
with partial-filename in directory directory. The order of the completions is the order
of the files in the directory, which is unpredictable and conveys no useful information.

The argument partial-filename must be a file name containing no directory part and
no slash (or backslash on some systems). The current buffer’s default directory is
prepended to directory, if directory is not absolute.

In the following example, suppose that ~rms/lewis is the current default directory,
and has five files whose names begin with ‘f’: foo, file~, file.c, file.c.~1~, and
file.c.~2~.

(file-name-all-completions "f" "")

⇒ ("foo" "file~" "file.c.~2~"

"file.c.~1~" "file.c")

(file-name-all-completions "fo" "")

⇒ ("foo")

Chapter 25: Files 498

[Function]file-name-completion filename directory &optional predicate
This function completes the file name filename in directory directory. It returns
the longest prefix common to all file names in directory directory that start with
filename. If predicate is non-nil then it ignores possible completions that don’t satisfy
predicate, after calling that function with one argument, the expanded absolute file
name.

If only one match exists and filename matches it exactly, the function returns t. The
function returns nil if directory directory contains no name starting with filename.

In the following example, suppose that the current default directory has five files
whose names begin with ‘f’: foo, file~, file.c, file.c.~1~, and file.c.~2~.

(file-name-completion "fi" "")

⇒ "file"

(file-name-completion "file.c.~1" "")

⇒ "file.c.~1~"

(file-name-completion "file.c.~1~" "")

⇒ t

(file-name-completion "file.c.~3" "")

⇒ nil

[User Option]completion-ignored-extensions
file-name-completion usually ignores file names that end in any string in this list.
It does not ignore them when all the possible completions end in one of these suffixes.
This variable has no effect on file-name-all-completions.

A typical value might look like this:

completion-ignored-extensions

⇒ (".o" ".elc" "~" ".dvi")

If an element of completion-ignored-extensions ends in a slash ‘/’, it signals a
directory. The elements which do not end in a slash will never match a directory;
thus, the above value will not filter out a directory named foo.elc.

25.8.7 Standard File Names

Sometimes, an Emacs Lisp program needs to specify a standard file name for a particular
use—typically, to hold configuration data specified by the current user. Usually, such files
should be located in the directory specified by user-emacs-directory, which is ~/.emacs.d
by default (see Section 39.1.2 [Init File], page 913). For example, abbrev definitions are
stored by default in ~/.emacs.d/abbrev_defs. The easiest way to specify such a file name
is to use the function locate-user-emacs-file.

[Function]locate-user-emacs-file base-name &optional old-name
This function returns an absolute file name for an Emacs-specific configuration or
data file. The argument base-name should be a relative file name. The return value
is the absolute name of a file in the directory specified by user-emacs-directory; if
that directory does not exist, this function creates it.

Chapter 25: Files 499

If the optional argument old-name is non-nil, it specifies a file in the user’s home
directory, ~/old-name. If such a file exists, the return value is the absolute name of
that file, instead of the file specified by base-name. This argument is intended to be
used by Emacs packages to provide backward compatibility. For instance, prior to the
introduction of user-emacs-directory, the abbrev file was located in ~/.abbrev_

defs. Here is the definition of abbrev-file-name:

(defcustom abbrev-file-name

(locate-user-emacs-file "abbrev_defs" ".abbrev_defs")

"Default name of file from which to read abbrevs."

...

:type ’file)

A lower-level function for standardizing file names, which locate-user-emacs-file

uses as a subroutine, is convert-standard-filename.

[Function]convert-standard-filename filename
This function returns a file name based on filename, which fits the conventions of the
current operating system.

On GNU and Unix systems, this simply returns filename. On other operating systems,
it may enforce system-specific file name conventions; for example, on MS-DOS this
function performs a variety of changes to enforce MS-DOS file name limitations,
including converting any leading ‘.’ to ‘_’ and truncating to three characters after
the ‘.’.

The recommended way to use this function is to specify a name which fits the con-
ventions of GNU and Unix systems, and pass it to convert-standard-filename.

25.9 Contents of Directories

A directory is a kind of file that contains other files entered under various names. Directories
are a feature of the file system.

Emacs can list the names of the files in a directory as a Lisp list, or display the names in
a buffer using the ls shell command. In the latter case, it can optionally display information
about each file, depending on the options passed to the ls command.

[Function]directory-files directory &optional full-name match-regexp nosort
This function returns a list of the names of the files in the directory directory. By
default, the list is in alphabetical order.

If full-name is non-nil, the function returns the files’ absolute file names. Otherwise,
it returns the names relative to the specified directory.

If match-regexp is non-nil, this function returns only those file names that contain
a match for that regular expression—the other file names are excluded from the list.
On case-insensitive filesystems, the regular expression matching is case-insensitive.

If nosort is non-nil, directory-files does not sort the list, so you get the file names
in no particular order. Use this if you want the utmost possible speed and don’t care
what order the files are processed in. If the order of processing is visible to the user,
then the user will probably be happier if you do sort the names.

Chapter 25: Files 500

(directory-files "~lewis")

⇒ ("#foo#" "#foo.el#" "." ".."

"dired-mods.el" "files.texi"

"files.texi.~1~")

An error is signaled if directory is not the name of a directory that can be read.

[Function]directory-files-and-attributes directory &optional full-name
match-regexp nosort id-format

This is similar to directory-files in deciding which files to report on and how to
report their names. However, instead of returning a list of file names, it returns for
each file a list (filename . attributes), where attributes is what file-attributes
would return for that file. The optional argument id-format has the same meaning as
the corresponding argument to file-attributes (see [Definition of file-attributes],
page 484).

[Function]file-expand-wildcards pattern &optional full
This function expands the wildcard pattern pattern, returning a list of file names that
match it.

If pattern is written as an absolute file name, the values are absolute also.

If pattern is written as a relative file name, it is interpreted relative to the current
default directory. The file names returned are normally also relative to the current
default directory. However, if full is non-nil, they are absolute.

[Function]insert-directory file switches &optional wildcard full-directory-p
This function inserts (in the current buffer) a directory listing for directory file, for-
matted with ls according to switches. It leaves point after the inserted text. switches
may be a string of options, or a list of strings representing individual options.

The argument file may be either a directory name or a file specification including
wildcard characters. If wildcard is non-nil, that means treat file as a file specification
with wildcards.

If full-directory-p is non-nil, that means the directory listing is expected to show the
full contents of a directory. You should specify t when file is a directory and switches
do not contain ‘-d’. (The ‘-d’ option to ls says to describe a directory itself as a file,
rather than showing its contents.)

On most systems, this function works by running a directory listing program whose
name is in the variable insert-directory-program. If wildcard is non-nil, it also
runs the shell specified by shell-file-name, to expand the wildcards.

MS-DOS and MS-Windows systems usually lack the standard Unix program ls, so
this function emulates the standard Unix program ls with Lisp code.

As a technical detail, when switches contains the long ‘--dired’ option, insert-
directory treats it specially, for the sake of dired. However, the normally equivalent
short ‘-D’ option is just passed on to insert-directory-program, as any other op-
tion.

Chapter 25: Files 501

[Variable]insert-directory-program
This variable’s value is the program to run to generate a directory listing for the
function insert-directory. It is ignored on systems which generate the listing with
Lisp code.

25.10 Creating, Copying and Deleting Directories

Most Emacs Lisp file-manipulation functions get errors when used on files that are directo-
ries. For example, you cannot delete a directory with delete-file. These special functions
exist to create and delete directories.

[Command]make-directory dirname &optional parents
This command creates a directory named dirname. If parents is non-nil, as is always
the case in an interactive call, that means to create the parent directories first, if they
don’t already exist.

mkdir is an alias for this.

[Command]copy-directory dirname newname &optional keep-time parents
copy-contents

This command copies the directory named dirname to newname. If newname names
an existing directory, dirname will be copied to a subdirectory there.

It always sets the file modes of the copied files to match the corresponding original
file.

The third argument keep-time non-nil means to preserve the modification time of
the copied files. A prefix arg makes keep-time non-nil.

The fourth argument parents says whether to create parent directories if they don’t
exist. Interactively, this happens by default.

The fifth argument copy-contents, if non-nil, means to copy the contents of dirname
directly into newname if the latter is an existing directory, instead of copying dirname
into it as a subdirectory.

[Command]delete-directory dirname &optional recursive trash
This command deletes the directory named dirname. The function delete-file does
not work for files that are directories; you must use delete-directory for them. If
recursive is nil, and the directory contains any files, delete-directory signals an
error.

delete-directory only follows symbolic links at the level of parent directories.

If the optional argument trash is non-nil and the variable delete-by-moving-to-

trash is non-nil, this command moves the file into the system Trash instead of
deleting it. See Section “Miscellaneous File Operations” in The GNU Emacs Manual.
When called interactively, trash is t if no prefix argument is given, and nil otherwise.

25.11 Making Certain File Names “Magic”

You can implement special handling for certain file names. This is called making those
names magic. The principal use for this feature is in implementing access to remote files
(see Section “Remote Files” in The GNU Emacs Manual).

Chapter 25: Files 502

To define a kind of magic file name, you must supply a regular expression to define the
class of names (all those that match the regular expression), plus a handler that implements
all the primitive Emacs file operations for file names that match.

The variable file-name-handler-alist holds a list of handlers, together with regular
expressions that determine when to apply each handler. Each element has this form:

(regexp . handler)

All the Emacs primitives for file access and file name transformation check the given file
name against file-name-handler-alist. If the file name matches regexp, the primitives
handle that file by calling handler.

The first argument given to handler is the name of the primitive, as a symbol; the
remaining arguments are the arguments that were passed to that primitive. (The first of
these arguments is most often the file name itself.) For example, if you do this:

(file-exists-p filename)

and filename has handler handler, then handler is called like this:

(funcall handler ’file-exists-p filename)

When a function takes two or more arguments that must be file names, it checks each
of those names for a handler. For example, if you do this:

(expand-file-name filename dirname)

then it checks for a handler for filename and then for a handler for dirname. In either case,
the handler is called like this:

(funcall handler ’expand-file-name filename dirname)

The handler then needs to figure out whether to handle filename or dirname.

If the specified file name matches more than one handler, the one whose match starts
last in the file name gets precedence. This rule is chosen so that handlers for jobs such as
uncompression are handled first, before handlers for jobs such as remote file access.

Here are the operations that a magic file name handler gets to handle:

access-file, add-name-to-file,
byte-compiler-base-file-name,
copy-directory, copy-file,
delete-directory, delete-file,
diff-latest-backup-file,
directory-file-name,
directory-files,
directory-files-and-attributes,
dired-compress-file, dired-uncache,
expand-file-name,
file-accessible-directory-p,
file-attributes,
file-directory-p,
file-executable-p, file-exists-p,
file-local-copy, file-remote-p,
file-modes, file-name-all-completions,
file-name-as-directory,

Chapter 25: Files 503

file-name-completion,
file-name-directory,
file-name-nondirectory,
file-name-sans-versions, file-newer-than-file-p,
file-ownership-preserved-p,
file-readable-p, file-regular-p, file-symlink-p,
file-truename, file-writable-p,
find-backup-file-name,
get-file-buffer,
insert-directory,
insert-file-contents,
load, make-directory,
make-directory-internal,
make-symbolic-link,
process-file,
rename-file, set-file-modes,
set-visited-file-modtime, shell-command,
start-file-process,
substitute-in-file-name,
unhandled-file-name-directory,
vc-registered,
verify-visited-file-modtime,
write-region.

Handlers for insert-file-contents typically need to clear the buffer’s modified flag,
with (set-buffer-modified-p nil), if the visit argument is non-nil. This also has the
effect of unlocking the buffer if it is locked.

The handler function must handle all of the above operations, and possibly others to be
added in the future. It need not implement all these operations itself—when it has nothing
special to do for a certain operation, it can reinvoke the primitive, to handle the operation
“in the usual way”. It should always reinvoke the primitive for an operation it does not
recognize. Here’s one way to do this:

(defun my-file-handler (operation &rest args)

;; First check for the specific operations
;; that we have special handling for.
(cond ((eq operation ’insert-file-contents) ...)

((eq operation ’write-region) ...)

...

;; Handle any operation we don’t know about.
(t (let ((inhibit-file-name-handlers

(cons ’my-file-handler

(and (eq inhibit-file-name-operation operation)

inhibit-file-name-handlers)))

(inhibit-file-name-operation operation))

(apply operation args)))))

When a handler function decides to call the ordinary Emacs primitive for the operation
at hand, it needs to prevent the primitive from calling the same handler once again, thus
leading to an infinite recursion. The example above shows how to do this, with the vari-
ables inhibit-file-name-handlers and inhibit-file-name-operation. Be careful to

Chapter 25: Files 504

use them exactly as shown above; the details are crucial for proper behavior in the case of
multiple handlers, and for operations that have two file names that may each have handlers.

Handlers that don’t really do anything special for actual access to the file—such as the
ones that implement completion of host names for remote file names—should have a non-nil
safe-magic property. For instance, Emacs normally “protects” directory names it finds in
PATH from becoming magic, if they look like magic file names, by prefixing them with ‘/:’.
But if the handler that would be used for them has a non-nil safe-magic property, the
‘/:’ is not added.

A file name handler can have an operations property to declare which operations it
handles in a nontrivial way. If this property has a non-nil value, it should be a list of
operations; then only those operations will call the handler. This avoids inefficiency, but
its main purpose is for autoloaded handler functions, so that they won’t be loaded except
when they have real work to do.

Simply deferring all operations to the usual primitives does not work. For instance, if
the file name handler applies to file-exists-p, then it must handle load itself, because
the usual load code won’t work properly in that case. However, if the handler uses the
operations property to say it doesn’t handle file-exists-p, then it need not handle load
nontrivially.

[Variable]inhibit-file-name-handlers
This variable holds a list of handlers whose use is presently inhibited for a certain
operation.

[Variable]inhibit-file-name-operation
The operation for which certain handlers are presently inhibited.

[Function]find-file-name-handler file operation
This function returns the handler function for file name file, or nil if there is none.
The argument operation should be the operation to be performed on the file—the
value you will pass to the handler as its first argument when you call it. If opera-
tion equals inhibit-file-name-operation, or if it is not found in the operations

property of the handler, this function returns nil.

[Function]file-local-copy filename
This function copies file filename to an ordinary non-magic file on the local machine, if
it isn’t on the local machine already. Magic file names should handle the file-local-
copy operation if they refer to files on other machines. A magic file name that is used
for other purposes than remote file access should not handle file-local-copy; then
this function will treat the file as local.

If filename is local, whether magic or not, this function does nothing and returns nil.
Otherwise it returns the file name of the local copy file.

[Function]file-remote-p filename &optional identification connected
This function tests whether filename is a remote file. If filename is local (not remote),
the return value is nil. If filename is indeed remote, the return value is a string that
identifies the remote system.

Chapter 25: Files 505

This identifier string can include a host name and a user name, as well as characters
designating the method used to access the remote system. For example, the remote
identifier string for the filename /sudo::/some/file is /sudo:root@localhost:.

If file-remote-p returns the same identifier for two different filenames, that means
they are stored on the same file system and can be accessed locally with respect to
each other. This means, for example, that it is possible to start a remote process
accessing both files at the same time. Implementers of file handlers need to ensure
this principle is valid.

identification specifies which part of the identifier shall be returned as string. identi-
fication can be the symbol method, user or host; any other value is handled like nil
and means to return the complete identifier string. In the example above, the remote
user identifier string would be root.

If connected is non-nil, this function returns nil even if filename is remote, if Emacs
has no network connection to its host. This is useful when you want to avoid the
delay of making connections when they don’t exist.

[Function]unhandled-file-name-directory filename
This function returns the name of a directory that is not magic. It uses the directory
part of filename if that is not magic. For a magic file name, it invokes the file name
handler, which therefore decides what value to return. If filename is not accessible
from a local process, then the file name handler should indicate it by returning nil.

This is useful for running a subprocess; every subprocess must have a non-magic
directory to serve as its current directory, and this function is a good way to come up
with one.

[User Option]remote-file-name-inhibit-cache
The attributes of remote files can be cached for better performance. If they are
changed outside of Emacs’s control, the cached values become invalid, and must be
reread.

When this variable is set to nil, cached values are never expired. Use this setting
with caution, only if you are sure nothing other than Emacs ever changes the remote
files. If it is set to t, cached values are never used. This is the safest value, but could
result in performance degradation.

A compromise is to set it to a positive number. This means that cached values are
used for that amount of seconds since they were cached. If a remote file is checked
regularly, it might be a good idea to let-bind this variable to a value less than the
time period between consecutive checks. For example:

(defun display-time-file-nonempty-p (file)

(let ((remote-file-name-inhibit-cache

(- display-time-interval 5)))

(and (file-exists-p file)

(< 0 (nth 7 (file-attributes

(file-chase-links file)))))))

Chapter 25: Files 506

25.12 File Format Conversion

Emacs performs several steps to convert the data in a buffer (text, text properties, and
possibly other information) to and from a representation suitable for storing into a file. This
section describes the fundamental functions that perform this format conversion, namely
insert-file-contents for reading a file into a buffer, and write-region for writing a
buffer into a file.

25.12.1 Overview

The function insert-file-contents:

• initially, inserts bytes from the file into the buffer;

• decodes bytes to characters as appropriate;

• processes formats as defined by entries in format-alist; and

• calls functions in after-insert-file-functions.

The function write-region:

• initially, calls functions in write-region-annotate-functions;

• processes formats as defined by entries in format-alist;

• encodes characters to bytes as appropriate; and

• modifies the file with the bytes.

This shows the symmetry of the lowest-level operations; reading and writing handle
things in opposite order. The rest of this section describes the two facilities surrounding
the three variables named above, as well as some related functions. Section 33.9 [Coding
Systems], page 716, for details on character encoding and decoding.

25.12.2 Round-Trip Specification

The most general of the two facilities is controlled by the variable format-alist, a list of
file format specifications, which describe textual representations used in files for the data
in an Emacs buffer. The descriptions for reading and writing are paired, which is why
we call this “round-trip” specification (see Section 25.12.3 [Format Conversion Piecemeal],
page 508, for non-paired specification).

[Variable]format-alist
This list contains one format definition for each defined file format. Each format
definition is a list of this form:

(name doc-string regexp from-fn to-fn modify mode-fn preserve)

Here is what the elements in a format definition mean:

name The name of this format.

doc-string A documentation string for the format.

regexp A regular expression which is used to recognize files represented in this format.
If nil, the format is never applied automatically.

from-fn A shell command or function to decode data in this format (to convert file data
into the usual Emacs data representation).

Chapter 25: Files 507

A shell command is represented as a string; Emacs runs the command as a filter
to perform the conversion.

If from-fn is a function, it is called with two arguments, begin and end, which
specify the part of the buffer it should convert. It should convert the text by
editing it in place. Since this can change the length of the text, from-fn should
return the modified end position.

One responsibility of from-fn is to make sure that the beginning of the file no
longer matches regexp. Otherwise it is likely to get called again.

to-fn A shell command or function to encode data in this format—that is, to convert
the usual Emacs data representation into this format.

If to-fn is a string, it is a shell command; Emacs runs the command as a filter
to perform the conversion.

If to-fn is a function, it is called with three arguments: begin and end, which
specify the part of the buffer it should convert, and buffer, which specifies which
buffer. There are two ways it can do the conversion:

• By editing the buffer in place. In this case, to-fn should return the end-
position of the range of text, as modified.

• By returning a list of annotations. This is a list of elements of the form
(position . string), where position is an integer specifying the relative
position in the text to be written, and string is the annotation to add there.
The list must be sorted in order of position when to-fn returns it.

When write-region actually writes the text from the buffer to the file,
it intermixes the specified annotations at the corresponding positions. All
this takes place without modifying the buffer.

modify A flag, t if the encoding function modifies the buffer, and nil if it works by
returning a list of annotations.

mode-fn A minor-mode function to call after visiting a file converted from this format.
The function is called with one argument, the integer 1; that tells a minor-mode
function to enable the mode.

preserve A flag, t if format-write-file should not remove this format from buffer-

file-format.

The function insert-file-contents automatically recognizes file formats when it reads
the specified file. It checks the text of the beginning of the file against the regular expressions
of the format definitions, and if it finds a match, it calls the decoding function for that
format. Then it checks all the known formats over again. It keeps checking them until none
of them is applicable.

Visiting a file, with find-file-noselect or the commands that use it, performs conver-
sion likewise (because it calls insert-file-contents); it also calls the mode function for
each format that it decodes. It stores a list of the format names in the buffer-local variable
buffer-file-format.

Chapter 25: Files 508

[Variable]buffer-file-format
This variable states the format of the visited file. More precisely, this is a list of the
file format names that were decoded in the course of visiting the current buffer’s file.
It is always buffer-local in all buffers.

When write-region writes data into a file, it first calls the encoding functions for the
formats listed in buffer-file-format, in the order of appearance in the list.

[Command]format-write-file file format &optional confirm
This command writes the current buffer contents into the file file in a format based
on format, which is a list of format names. It constructs the actual format starting
from format, then appending any elements from the value of buffer-file-format
with a non-nil preserve flag (see above), if they are not already present in format.
It then updates buffer-file-format with this format, making it the default for
future saves. Except for the format argument, this command is similar to write-

file. In particular, confirm has the same meaning and interactive treatment as the
corresponding argument to write-file. See [Definition of write-file], page 473.

[Command]format-find-file file format
This command finds the file file, converting it according to format format. It also
makes format the default if the buffer is saved later.

The argument format is a list of format names. If format is nil, no conversion takes
place. Interactively, typing just RET for format specifies nil.

[Command]format-insert-file file format &optional beg end
This command inserts the contents of file file, converting it according to format format.
If beg and end are non-nil, they specify which part of the file to read, as in insert-

file-contents (see Section 25.3 [Reading from Files], page 475).

The return value is like what insert-file-contents returns: a list of the absolute
file name and the length of the data inserted (after conversion).

The argument format is a list of format names. If format is nil, no conversion takes
place. Interactively, typing just RET for format specifies nil.

[Variable]buffer-auto-save-file-format
This variable specifies the format to use for auto-saving. Its value is a list of format
names, just like the value of buffer-file-format; however, it is used instead of
buffer-file-format for writing auto-save files. If the value is t, the default, auto-
saving uses the same format as a regular save in the same buffer. This variable is
always buffer-local in all buffers.

25.12.3 Piecemeal Specification

In contrast to the round-trip specification described in the previous subsection (see
Section 25.12.2 [Format Conversion Round-Trip], page 506), you can use the variables
after-insert-file-functions and write-region-annotate-functions to separately
control the respective reading and writing conversions.

Conversion starts with one representation and produces another representation. When
there is only one conversion to do, there is no conflict about what to start with. However,

Chapter 25: Files 509

when there are multiple conversions involved, conflict may arise when two conversions need
to start with the same data.

This situation is best understood in the context of converting text properties during
write-region. For example, the character at position 42 in a buffer is ‘X’ with a text
property foo. If the conversion for foo is done by inserting into the buffer, say, ‘FOO:’, then
that changes the character at position 42 from ‘X’ to ‘F’. The next conversion will start
with the wrong data straight away.

To avoid conflict, cooperative conversions do not modify the buffer, but instead spec-
ify annotations, a list of elements of the form (position . string), sorted in order of
increasing position.

If there is more than one conversion, write-region merges their annotations destruc-
tively into one sorted list. Later, when the text from the buffer is actually written to the
file, it intermixes the specified annotations at the corresponding positions. All this takes
place without modifying the buffer.

In contrast, when reading, the annotations intermixed with the text are handled imme-
diately. insert-file-contents sets point to the beginning of some text to be converted,
then calls the conversion functions with the length of that text. These functions should al-
ways return with point at the beginning of the inserted text. This approach makes sense for
reading because annotations removed by the first converter can’t be mistakenly processed
by a later converter. Each conversion function should scan for the annotations it recognizes,
remove the annotation, modify the buffer text (to set a text property, for example), and
return the updated length of the text, as it stands after those changes. The value returned
by one function becomes the argument to the next function.

[Variable]write-region-annotate-functions
A list of functions for write-region to call. Each function in the list is called with
two arguments: the start and end of the region to be written. These functions should
not alter the contents of the buffer. Instead, they should return annotations.

As a special case, a function may return with a different buffer current. Emacs takes
this to mean that the current buffer contains altered text to be output. It therefore
changes the start and end arguments of the write-region call, giving them the
values of point-min and point-max in the new buffer, respectively. It also discards
all previous annotations, because they should have been dealt with by this function.

[Variable]write-region-post-annotation-function
The value of this variable, if non-nil, should be a function. This function is called,
with no arguments, after write-region has completed.

If any function in write-region-annotate-functions returns with a different buffer
current, Emacs calls write-region-post-annotation-function more than once.
Emacs calls it with the last buffer that was current, and again with the buffer before
that, and so on back to the original buffer.

Thus, a function in write-region-annotate-functions can create a buffer, give this
variable the local value of kill-buffer in that buffer, set up the buffer with altered
text, and make the buffer current. The buffer will be killed after write-region is
done.

Chapter 25: Files 510

[Variable]after-insert-file-functions
Each function in this list is called by insert-file-contents with one argument, the
number of characters inserted, and with point at the beginning of the inserted text.
Each function should leave point unchanged, and return the new character count
describing the inserted text as modified by the function.

We invite users to write Lisp programs to store and retrieve text properties in files,
using these hooks, and thus to experiment with various data formats and find good ones.
Eventually we hope users will produce good, general extensions we can install in Emacs.

We suggest not trying to handle arbitrary Lisp objects as text property names or values—
because a program that general is probably difficult to write, and slow. Instead, choose a
set of possible data types that are reasonably flexible, and not too hard to encode.

Chapter 26: Backups and Auto-Saving 511

26 Backups and Auto-Saving

Backup files and auto-save files are two methods by which Emacs tries to protect the user
from the consequences of crashes or of the user’s own errors. Auto-saving preserves the text
from earlier in the current editing session; backup files preserve file contents prior to the
current session.

26.1 Backup Files

A backup file is a copy of the old contents of a file you are editing. Emacs makes a backup
file the first time you save a buffer into its visited file. Thus, normally, the backup file
contains the contents of the file as it was before the current editing session. The contents
of the backup file normally remain unchanged once it exists.

Backups are usually made by renaming the visited file to a new name. Optionally, you
can specify that backup files should be made by copying the visited file. This choice makes
a difference for files with multiple names; it also can affect whether the edited file remains
owned by the original owner or becomes owned by the user editing it.

By default, Emacs makes a single backup file for each file edited. You can alternatively
request numbered backups; then each new backup file gets a new name. You can delete
old numbered backups when you don’t want them any more, or Emacs can delete them
automatically.

26.1.1 Making Backup Files

[Function]backup-buffer
This function makes a backup of the file visited by the current buffer, if appropriate.
It is called by save-buffer before saving the buffer the first time.

If a backup was made by renaming, the return value is a cons cell of the form (modes
context backupname), where modes are the mode bits of the original file, as returned
by file-modes (see Section 25.6.4 [Other Information about Files], page 483), con-
text is a list describing the original file’s SELinux context (see Section 25.6.4 [File
Attributes], page 483), and backupname is the name of the backup. In all other cases,
that is, if a backup was made by copying or if no backup was made, this function
returns nil.

[Variable]buffer-backed-up
This buffer-local variable says whether this buffer’s file has been backed up on account
of this buffer. If it is non-nil, the backup file has been written. Otherwise, the
file should be backed up when it is next saved (if backups are enabled). This is a
permanent local; kill-all-local-variables does not alter it.

[User Option]make-backup-files
This variable determines whether or not to make backup files. If it is non-nil, then
Emacs creates a backup of each file when it is saved for the first time—provided that
backup-inhibited is nil (see below).

The following example shows how to change the make-backup-files variable only
in the Rmail buffers and not elsewhere. Setting it nil stops Emacs from making

Chapter 26: Backups and Auto-Saving 512

backups of these files, which may save disk space. (You would put this code in your
init file.)

(add-hook ’rmail-mode-hook

(lambda ()

(set (make-local-variable ’make-backup-files) nil)))

[Variable]backup-enable-predicate
This variable’s value is a function to be called on certain occasions to decide whether
a file should have backup files. The function receives one argument, an absolute file
name to consider. If the function returns nil, backups are disabled for that file.
Otherwise, the other variables in this section say whether and how to make backups.

The default value is normal-backup-enable-predicate, which checks for files in
temporary-file-directory and small-temporary-file-directory.

[Variable]backup-inhibited
If this variable is non-nil, backups are inhibited. It records the result of testing
backup-enable-predicate on the visited file name. It can also coherently be used
by other mechanisms that inhibit backups based on which file is visited. For example,
VC sets this variable non-nil to prevent making backups for files managed with a
version control system.

This is a permanent local, so that changing the major mode does not lose its value.
Major modes should not set this variable—they should set make-backup-files in-
stead.

[User Option]backup-directory-alist
This variable’s value is an alist of filename patterns and backup directory names.
Each element looks like

(regexp . directory)

Backups of files with names matching regexp will be made in directory. directory
may be relative or absolute. If it is absolute, so that all matching files are backed up
into the same directory, the file names in this directory will be the full name of the
file backed up with all directory separators changed to ‘!’ to prevent clashes. This
will not work correctly if your filesystem truncates the resulting name.

For the common case of all backups going into one directory, the alist should contain
a single element pairing ‘"."’ with the appropriate directory name.

If this variable is nil (the default), or it fails to match a filename, the backup is made
in the original file’s directory.

On MS-DOS filesystems without long names this variable is always ignored.

[User Option]make-backup-file-name-function
This variable’s value is a function to use for making backups instead of the default
make-backup-file-name. A value of nil gives the default make-backup-file-name
behavior. See Section 26.1.4 [Naming Backup Files], page 514.

This could be buffer-local to do something special for specific files. If you define it,
you may need to change backup-file-name-p and file-name-sans-versions too.

Chapter 26: Backups and Auto-Saving 513

26.1.2 Backup by Renaming or by Copying?

There are two ways that Emacs can make a backup file:

• Emacs can rename the original file so that it becomes a backup file, and then write the
buffer being saved into a new file. After this procedure, any other names (i.e., hard
links) of the original file now refer to the backup file. The new file is owned by the user
doing the editing, and its group is the default for new files written by the user in that
directory.

• Emacs can copy the original file into a backup file, and then overwrite the original
file with new contents. After this procedure, any other names (i.e., hard links) of the
original file continue to refer to the current (updated) version of the file. The file’s
owner and group will be unchanged.

The first method, renaming, is the default.

The variable backup-by-copying, if non-nil, says to use the second method, which is
to copy the original file and overwrite it with the new buffer contents. The variable file-

precious-flag, if non-nil, also has this effect (as a sideline of its main significance). See
Section 25.2 [Saving Buffers], page 473.

[User Option]backup-by-copying
If this variable is non-nil, Emacs always makes backup files by copying. The default
is nil.

The following three variables, when non-nil, cause the second method to be used in
certain special cases. They have no effect on the treatment of files that don’t fall into the
special cases.

[User Option]backup-by-copying-when-linked
If this variable is non-nil, Emacs makes backups by copying for files with multiple
names (hard links). The default is nil.

This variable is significant only if backup-by-copying is nil, since copying is always
used when that variable is non-nil.

[User Option]backup-by-copying-when-mismatch
If this variable is non-nil (the default), Emacs makes backups by copying in cases
where renaming would change either the owner or the group of the file.

The value has no effect when renaming would not alter the owner or group of the file;
that is, for files which are owned by the user and whose group matches the default
for a new file created there by the user.

This variable is significant only if backup-by-copying is nil, since copying is always
used when that variable is non-nil.

[User Option]backup-by-copying-when-privileged-mismatch
This variable, if non-nil, specifies the same behavior as backup-by-copying-when-
mismatch, but only for certain user-id values: namely, those less than or equal to a
certain number. You set this variable to that number.

Thus, if you set backup-by-copying-when-privileged-mismatch to 0, backup by
copying is done for the superuser only, when necessary to prevent a change in the
owner of the file.

Chapter 26: Backups and Auto-Saving 514

The default is 200.

26.1.3 Making and Deleting Numbered Backup Files

If a file’s name is foo, the names of its numbered backup versions are foo.~v~, for various
integers v, like this: foo.~1~, foo.~2~, foo.~3~, . . . , foo.~259~, and so on.

[User Option]version-control
This variable controls whether to make a single non-numbered backup file or multiple
numbered backups.

nil Make numbered backups if the visited file already has numbered backups;
otherwise, do not. This is the default.

never Do not make numbered backups.

anything else
Make numbered backups.

The use of numbered backups ultimately leads to a large number of backup versions,
which must then be deleted. Emacs can do this automatically or it can ask the user whether
to delete them.

[User Option]kept-new-versions
The value of this variable is the number of newest versions to keep when a new
numbered backup is made. The newly made backup is included in the count. The
default value is 2.

[User Option]kept-old-versions
The value of this variable is the number of oldest versions to keep when a new num-
bered backup is made. The default value is 2.

If there are backups numbered 1, 2, 3, 5, and 7, and both of these variables have the
value 2, then the backups numbered 1 and 2 are kept as old versions and those numbered
5 and 7 are kept as new versions; backup version 3 is excess. The function find-backup-

file-name (see Section 26.1.4 [Backup Names], page 514) is responsible for determining
which backup versions to delete, but does not delete them itself.

[User Option]delete-old-versions
If this variable is t, then saving a file deletes excess backup versions silently. If it is
nil, that means to ask for confirmation before deleting excess backups. Otherwise,
they are not deleted at all.

[User Option]dired-kept-versions
This variable specifies how many of the newest backup versions to keep in the Dired
command . (dired-clean-directory). That’s the same thing kept-new-versions

specifies when you make a new backup file. The default is 2.

26.1.4 Naming Backup Files

The functions in this section are documented mainly because you can customize the naming
conventions for backup files by redefining them. If you change one, you probably need to
change the rest.

Chapter 26: Backups and Auto-Saving 515

[Function]backup-file-name-p filename
This function returns a non-nil value if filename is a possible name for a backup file.
It just checks the name, not whether a file with the name filename exists.

(backup-file-name-p "foo")
⇒ nil

(backup-file-name-p "foo~")
⇒ 3

The standard definition of this function is as follows:

(defun backup-file-name-p (file)

"Return non-nil if FILE is a backup file \

name (numeric or not)..."

(string-match "~\\’" file))

Thus, the function returns a non-nil value if the file name ends with a ‘~’. (We use a
backslash to split the documentation string’s first line into two lines in the text, but
produce just one line in the string itself.)

This simple expression is placed in a separate function to make it easy to redefine for
customization.

[Function]make-backup-file-name filename
This function returns a string that is the name to use for a non-numbered backup file
for file filename. On Unix, this is just filename with a tilde appended.

The standard definition of this function, on most operating systems, is as follows:

(defun make-backup-file-name (file)

"Create the non-numeric backup file name for FILE..."

(concat file "~"))

You can change the backup-file naming convention by redefining this function. The
following example redefines make-backup-file-name to prepend a ‘.’ in addition to
appending a tilde:

(defun make-backup-file-name (filename)

(expand-file-name

(concat "." (file-name-nondirectory filename) "~")

(file-name-directory filename)))

(make-backup-file-name "backups.texi")
⇒ ".backups.texi~"

Some parts of Emacs, including some Dired commands, assume that backup file names
end with ‘~’. If you do not follow that convention, it will not cause serious problems,
but these commands may give less-than-desirable results.

[Function]find-backup-file-name filename
This function computes the file name for a new backup file for filename. It may also
propose certain existing backup files for deletion. find-backup-file-name returns a
list whose car is the name for the new backup file and whose cdr is a list of backup
files whose deletion is proposed. The value can also be nil, which means not to make
a backup.

Two variables, kept-old-versions and kept-new-versions, determine which
backup versions should be kept. This function keeps those versions by excluding
them from the cdr of the value. See Section 26.1.3 [Numbered Backups], page 514.

Chapter 26: Backups and Auto-Saving 516

In this example, the value says that ~rms/foo.~5~ is the name to use for the new
backup file, and ~rms/foo.~3~ is an “excess” version that the caller should consider
deleting now.

(find-backup-file-name "~rms/foo")
⇒ ("~rms/foo.~5~" "~rms/foo.~3~")

[Function]file-newest-backup filename
This function returns the name of the most recent backup file for filename, or nil if
that file has no backup files.

Some file comparison commands use this function so that they can automatically
compare a file with its most recent backup.

26.2 Auto-Saving

Emacs periodically saves all files that you are visiting; this is called auto-saving. Auto-
saving prevents you from losing more than a limited amount of work if the system crashes.
By default, auto-saves happen every 300 keystrokes, or after around 30 seconds of idle time.
See Section “Auto-Saving: Protection Against Disasters” in The GNU Emacs Manual, for
information on auto-save for users. Here we describe the functions used to implement
auto-saving and the variables that control them.

[Variable]buffer-auto-save-file-name
This buffer-local variable is the name of the file used for auto-saving the current
buffer. It is nil if the buffer should not be auto-saved.

buffer-auto-save-file-name

⇒ "/xcssun/users/rms/lewis/#backups.texi#"

[Command]auto-save-mode arg
This is the mode command for Auto Save mode, a buffer-local minor mode. When
Auto Save mode is enabled, auto-saving is enabled in the buffer. The calling conven-
tion is the same as for other minor mode commands (see Section 23.3.1 [Minor Mode
Conventions], page 421).

Unlike most minor modes, there is no auto-save-mode variable. Auto Save mode
is enabled if buffer-auto-save-file-name is non-nil and buffer-saved-size (see
below) is non-zero.

[Function]auto-save-file-name-p filename
This function returns a non-nil value if filename is a string that could be the name
of an auto-save file. It assumes the usual naming convention for auto-save files: a
name that begins and ends with hash marks (‘#’) is a possible auto-save file name.
The argument filename should not contain a directory part.

(make-auto-save-file-name)

⇒ "/xcssun/users/rms/lewis/#backups.texi#"

(auto-save-file-name-p "#backups.texi#")

⇒ 0

(auto-save-file-name-p "backups.texi")

⇒ nil

The standard definition of this function is as follows:

Chapter 26: Backups and Auto-Saving 517

(defun auto-save-file-name-p (filename)

"Return non-nil if FILENAME can be yielded by..."

(string-match "^#.*#$" filename))

This function exists so that you can customize it if you wish to change the naming
convention for auto-save files. If you redefine it, be sure to redefine the function
make-auto-save-file-name correspondingly.

[Function]make-auto-save-file-name
This function returns the file name to use for auto-saving the current buffer. This
is just the file name with hash marks (‘#’) prepended and appended to it. This
function does not look at the variable auto-save-visited-file-name (described
below); callers of this function should check that variable first.

(make-auto-save-file-name)

⇒ "/xcssun/users/rms/lewis/#backups.texi#"

Here is a simplified version of the standard definition of this function:

(defun make-auto-save-file-name ()

"Return file name to use for auto-saves \

of current buffer.."

(if buffer-file-name

(concat

(file-name-directory buffer-file-name)

"#"

(file-name-nondirectory buffer-file-name)

"#")

(expand-file-name

(concat "#%" (buffer-name) "#"))))

This exists as a separate function so that you can redefine it to customize the nam-
ing convention for auto-save files. Be sure to change auto-save-file-name-p in a
corresponding way.

[User Option]auto-save-visited-file-name
If this variable is non-nil, Emacs auto-saves buffers in the files they are visiting. That
is, the auto-save is done in the same file that you are editing. Normally, this variable
is nil, so auto-save files have distinct names that are created by make-auto-save-

file-name.

When you change the value of this variable, the new value does not take effect in
an existing buffer until the next time auto-save mode is reenabled in it. If auto-
save mode is already enabled, auto-saves continue to go in the same file name until
auto-save-mode is called again.

[Function]recent-auto-save-p
This function returns t if the current buffer has been auto-saved since the last time
it was read in or saved.

[Function]set-buffer-auto-saved
This function marks the current buffer as auto-saved. The buffer will not be auto-
saved again until the buffer text is changed again. The function returns nil.

Chapter 26: Backups and Auto-Saving 518

[User Option]auto-save-interval
The value of this variable specifies how often to do auto-saving, in terms of number
of input events. Each time this many additional input events are read, Emacs does
auto-saving for all buffers in which that is enabled. Setting this to zero disables
autosaving based on the number of characters typed.

[User Option]auto-save-timeout
The value of this variable is the number of seconds of idle time that should cause
auto-saving. Each time the user pauses for this long, Emacs does auto-saving for all
buffers in which that is enabled. (If the current buffer is large, the specified timeout
is multiplied by a factor that increases as the size increases; for a million-byte buffer,
the factor is almost 4.)

If the value is zero or nil, then auto-saving is not done as a result of idleness, only
after a certain number of input events as specified by auto-save-interval.

[Variable]auto-save-hook
This normal hook is run whenever an auto-save is about to happen.

[User Option]auto-save-default
If this variable is non-nil, buffers that are visiting files have auto-saving enabled by
default. Otherwise, they do not.

[Command]do-auto-save &optional no-message current-only
This function auto-saves all buffers that need to be auto-saved. It saves all buffers for
which auto-saving is enabled and that have been changed since the previous auto-save.

If any buffers are auto-saved, do-auto-save normally displays a message saying
‘Auto-saving...’ in the echo area while auto-saving is going on. However, if no-
message is non-nil, the message is inhibited.

If current-only is non-nil, only the current buffer is auto-saved.

[Function]delete-auto-save-file-if-necessary &optional force
This function deletes the current buffer’s auto-save file if delete-auto-save-files
is non-nil. It is called every time a buffer is saved.

Unless force is non-nil, this function only deletes the file if it was written by the
current Emacs session since the last true save.

[User Option]delete-auto-save-files
This variable is used by the function delete-auto-save-file-if-necessary. If it
is non-nil, Emacs deletes auto-save files when a true save is done (in the visited file).
This saves disk space and unclutters your directory.

[Function]rename-auto-save-file
This function adjusts the current buffer’s auto-save file name if the visited file name
has changed. It also renames an existing auto-save file, if it was made in the current
Emacs session. If the visited file name has not changed, this function does nothing.

[Variable]buffer-saved-size
The value of this buffer-local variable is the length of the current buffer, when it was
last read in, saved, or auto-saved. This is used to detect a substantial decrease in
size, and turn off auto-saving in response.

Chapter 26: Backups and Auto-Saving 519

If it is −1, that means auto-saving is temporarily shut off in this buffer due to a
substantial decrease in size. Explicitly saving the buffer stores a positive value in this
variable, thus reenabling auto-saving. Turning auto-save mode off or on also updates
this variable, so that the substantial decrease in size is forgotten.

If it is −2, that means this buffer should disregard changes in buffer size; in particular,
it should not shut off auto-saving temporarily due to changes in buffer size.

[Variable]auto-save-list-file-name
This variable (if non-nil) specifies a file for recording the names of all the auto-save
files. Each time Emacs does auto-saving, it writes two lines into this file for each
buffer that has auto-saving enabled. The first line gives the name of the visited file
(it’s empty if the buffer has none), and the second gives the name of the auto-save
file.

When Emacs exits normally, it deletes this file; if Emacs crashes, you can look in the
file to find all the auto-save files that might contain work that was otherwise lost.
The recover-session command uses this file to find them.

The default name for this file specifies your home directory and starts with ‘.saves-’.
It also contains the Emacs process ID and the host name.

[User Option]auto-save-list-file-prefix
After Emacs reads your init file, it initializes auto-save-list-file-name (if you
have not already set it non-nil) based on this prefix, adding the host name and
process ID. If you set this to nil in your init file, then Emacs does not initialize
auto-save-list-file-name.

26.3 Reverting

If you have made extensive changes to a file and then change your mind about them, you
can get rid of them by reading in the previous version of the file with the revert-buffer

command. See Section “Reverting a Buffer” in The GNU Emacs Manual.

[Command]revert-buffer &optional ignore-auto noconfirm preserve-modes
This command replaces the buffer text with the text of the visited file on disk. This
action undoes all changes since the file was visited or saved.

By default, if the latest auto-save file is more recent than the visited file, and the
argument ignore-auto is nil, revert-buffer asks the user whether to use that auto-
save instead. When you invoke this command interactively, ignore-auto is t if there is
no numeric prefix argument; thus, the interactive default is not to check the auto-save
file.

Normally, revert-buffer asks for confirmation before it changes the buffer; but if
the argument noconfirm is non-nil, revert-buffer does not ask for confirmation.

Normally, this command reinitializes the buffer’s major and minor modes using
normal-mode. But if preserve-modes is non-nil, the modes remain unchanged.

Reverting tries to preserve marker positions in the buffer by using the replacement
feature of insert-file-contents. If the buffer contents and the file contents are
identical before the revert operation, reverting preserves all the markers. If they are
not identical, reverting does change the buffer; in that case, it preserves the markers

Chapter 26: Backups and Auto-Saving 520

in the unchanged text (if any) at the beginning and end of the buffer. Preserving any
additional markers would be problematical.

[Variable]revert-buffer-in-progress-p
revert-buffer binds this variable to a non-nil value while it is working.

You can customize how revert-buffer does its work by setting the variables described
in the rest of this section.

[User Option]revert-without-query
This variable holds a list of files that should be reverted without query. The value
is a list of regular expressions. If the visited file name matches one of these regular
expressions, and the file has changed on disk but the buffer is not modified, then
revert-buffer reverts the file without asking the user for confirmation.

Some major modes customize revert-buffer by making buffer-local bindings for these
variables:

[Variable]revert-buffer-function
The value of this variable is the function to use to revert this buffer. If non-nil, it
should be a function with two optional arguments to do the work of reverting. The
two optional arguments, ignore-auto and noconfirm, are the arguments that revert-
buffer received. If the value is nil, reverting works the usual way.

Modes such as Dired mode, in which the text being edited does not consist of a
file’s contents but can be regenerated in some other fashion, can give this variable a
buffer-local value that is a function to regenerate the contents.

[Variable]revert-buffer-insert-file-contents-function
The value of this variable, if non-nil, specifies the function to use to insert the
updated contents when reverting this buffer. The function receives two arguments:
first the file name to use; second, t if the user has asked to read the auto-save file.

The reason for a mode to set this variable instead of revert-buffer-function is
to avoid duplicating or replacing the rest of what revert-buffer does: asking for
confirmation, clearing the undo list, deciding the proper major mode, and running
the hooks listed below.

[Variable]before-revert-hook
This normal hook is run by revert-buffer before inserting the modified contents—
but only if revert-buffer-function is nil.

[Variable]after-revert-hook
This normal hook is run by revert-buffer after inserting the modified contents—but
only if revert-buffer-function is nil.

[Variable]buffer-stale-function
The value of this variable, if non-nil, specifies a function to call to check whether
a non-file buffer needs reverting (see Section “Supporting additional buffers” in Spe-
cialized Emacs Features).

Chapter 27: Buffers 521

27 Buffers

A buffer is a Lisp object containing text to be edited. Buffers are used to hold the contents
of files that are being visited; there may also be buffers that are not visiting files. While
several buffers may exist at one time, only one buffer is designated the current buffer at
any time. Most editing commands act on the contents of the current buffer. Each buffer,
including the current buffer, may or may not be displayed in any windows.

27.1 Buffer Basics

Buffers in Emacs editing are objects that have distinct names and hold text that can be
edited. Buffers appear to Lisp programs as a special data type. You can think of the
contents of a buffer as a string that you can extend; insertions and deletions may occur in
any part of the buffer. See Chapter 32 [Text], page 645.

A Lisp buffer object contains numerous pieces of information. Some of this information
is directly accessible to the programmer through variables, while other information is acces-
sible only through special-purpose functions. For example, the visited file name is directly
accessible through a variable, while the value of point is accessible only through a primitive
function.

Buffer-specific information that is directly accessible is stored in buffer-local variable
bindings, which are variable values that are effective only in a particular buffer. This feature
allows each buffer to override the values of certain variables. Most major modes override
variables such as fill-column or comment-column in this way. For more information
about buffer-local variables and functions related to them, see Section 11.10 [Buffer-Local
Variables], page 154.

For functions and variables related to visiting files in buffers, see Section 25.1 [Visiting
Files], page 469 and Section 25.2 [Saving Buffers], page 473. For functions and variables
related to the display of buffers in windows, see Section 28.10 [Buffers and Windows],
page 558.

[Function]bufferp object
This function returns t if object is a buffer, nil otherwise.

27.2 The Current Buffer

There are, in general, many buffers in an Emacs session. At any time, one of them is
designated the current buffer—the buffer in which most editing takes place. Most of the
primitives for examining or changing text operate implicitly on the current buffer (see
Chapter 32 [Text], page 645).

Normally, the buffer displayed in the selected window is the current buffer, but this is
not always so: a Lisp program can temporarily designate any buffer as current in order to
operate on its contents, without changing what is displayed on the screen. The most basic
function for designating a current buffer is set-buffer.

[Function]current-buffer
This function returns the current buffer.

(current-buffer)

⇒ #<buffer buffers.texi>

Chapter 27: Buffers 522

[Function]set-buffer buffer-or-name
This function makes buffer-or-name the current buffer. buffer-or-name must be an
existing buffer or the name of an existing buffer. The return value is the buffer made
current.

This function does not display the buffer in any window, so the user cannot necessarily
see the buffer. But Lisp programs will now operate on it.

When an editing command returns to the editor command loop, Emacs automatically
calls set-buffer on the buffer shown in the selected window. This is to prevent confusion:
it ensures that the buffer that the cursor is in, when Emacs reads a command, is the buffer
to which that command applies (see Chapter 21 [Command Loop], page 321). Thus, you
should not use set-buffer to switch visibly to a different buffer; for that, use the functions
described in Section 28.11 [Switching Buffers], page 560.

When writing a Lisp function, do not rely on this behavior of the command loop to
restore the current buffer after an operation. Editing commands can also be called as Lisp
functions by other programs, not just from the command loop; it is convenient for the caller
if the subroutine does not change which buffer is current (unless, of course, that is the
subroutine’s purpose).

To operate temporarily on another buffer, put the set-buffer within a save-current-

buffer form. Here, as an example, is a simplified version of the command append-to-

buffer:

(defun append-to-buffer (buffer start end)

"Append the text of the region to BUFFER."

(interactive "BAppend to buffer: \nr")

(let ((oldbuf (current-buffer)))

(save-current-buffer

(set-buffer (get-buffer-create buffer))

(insert-buffer-substring oldbuf start end))))

Here, we bind a local variable to record the current buffer, and then save-current-buffer

arranges to make it current again later. Next, set-buffer makes the specified buffer
current, and insert-buffer-substring copies the string from the original buffer to the
specified (and now current) buffer.

Alternatively, we can use the with-current-buffer macro:

(defun append-to-buffer (buffer start end)

"Append the text of the region to BUFFER."

(interactive "BAppend to buffer: \nr")

(let ((oldbuf (current-buffer)))

(with-current-buffer (get-buffer-create buffer)

(insert-buffer-substring oldbuf start end))))

In either case, if the buffer appended to happens to be displayed in some window, the
next redisplay will show how its text has changed. If it is not displayed in any window,
you will not see the change immediately on the screen. The command causes the buffer to
become current temporarily, but does not cause it to be displayed.

If you make local bindings (with let or function arguments) for a variable that may
also have buffer-local bindings, make sure that the same buffer is current at the beginning

Chapter 27: Buffers 523

and at the end of the local binding’s scope. Otherwise you might bind it in one buffer and
unbind it in another!

Do not rely on using set-buffer to change the current buffer back, because that won’t
do the job if a quit happens while the wrong buffer is current. For instance, in the previous
example, it would have been wrong to do this:

(let ((oldbuf (current-buffer)))

(set-buffer (get-buffer-create buffer))

(insert-buffer-substring oldbuf start end)

(set-buffer oldbuf))

Using save-current-buffer or with-current-buffer, as we did, correctly handles quit-
ting, errors, and throw, as well as ordinary evaluation.

[Special Form]save-current-buffer body. . .
The save-current-buffer special form saves the identity of the current buffer, eval-
uates the body forms, and finally restores that buffer as current. The return value is
the value of the last form in body. The current buffer is restored even in case of an
abnormal exit via throw or error (see Section 10.5 [Nonlocal Exits], page 129).

If the buffer that used to be current has been killed by the time of exit from save-

current-buffer, then it is not made current again, of course. Instead, whichever
buffer was current just before exit remains current.

[Macro]with-current-buffer buffer-or-name body. . .
The with-current-buffer macro saves the identity of the current buffer, makes
buffer-or-name current, evaluates the body forms, and finally restores the current
buffer. buffer-or-name must specify an existing buffer or the name of an existing
buffer.

The return value is the value of the last form in body. The current buffer is restored
even in case of an abnormal exit via throw or error (see Section 10.5 [Nonlocal Exits],
page 129).

[Macro]with-temp-buffer body. . .
The with-temp-buffer macro evaluates the body forms with a temporary buffer as
the current buffer. It saves the identity of the current buffer, creates a temporary
buffer and makes it current, evaluates the body forms, and finally restores the previous
current buffer while killing the temporary buffer. By default, undo information (see
Section 32.9 [Undo], page 660) is not recorded in the buffer created by this macro
(but body can enable that, if needed).

The return value is the value of the last form in body. You can return the contents
of the temporary buffer by using (buffer-string) as the last form.

The current buffer is restored even in case of an abnormal exit via throw or error (see
Section 10.5 [Nonlocal Exits], page 129).

See also with-temp-file in [Writing to Files], page 477.

Chapter 27: Buffers 524

27.3 Buffer Names

Each buffer has a unique name, which is a string. Many of the functions that work on
buffers accept either a buffer or a buffer name as an argument. Any argument called buffer-
or-name is of this sort, and an error is signaled if it is neither a string nor a buffer. Any
argument called buffer must be an actual buffer object, not a name.

Buffers that are ephemeral and generally uninteresting to the user have names starting
with a space, so that the list-buffers and buffer-menu commands don’t mention them
(but if such a buffer visits a file, it is mentioned). A name starting with space also initially
disables recording undo information; see Section 32.9 [Undo], page 660.

[Function]buffer-name &optional buffer
This function returns the name of buffer as a string. buffer defaults to the current
buffer.

If buffer-name returns nil, it means that buffer has been killed. See Section 27.10
[Killing Buffers], page 533.

(buffer-name)

⇒ "buffers.texi"

(setq foo (get-buffer "temp"))

⇒ #<buffer temp>

(kill-buffer foo)

⇒ nil

(buffer-name foo)

⇒ nil

foo

⇒ #<killed buffer>

[Command]rename-buffer newname &optional unique
This function renames the current buffer to newname. An error is signaled if newname
is not a string.

Ordinarily, rename-buffer signals an error if newname is already in use. However,
if unique is non-nil, it modifies newname to make a name that is not in use. Inter-
actively, you can make unique non-nil with a numeric prefix argument. (This is how
the command rename-uniquely is implemented.)

This function returns the name actually given to the buffer.

[Function]get-buffer buffer-or-name
This function returns the buffer specified by buffer-or-name. If buffer-or-name is a
string and there is no buffer with that name, the value is nil. If buffer-or-name is
a buffer, it is returned as given; that is not very useful, so the argument is usually a
name. For example:

(setq b (get-buffer "lewis"))

⇒ #<buffer lewis>

(get-buffer b)

⇒ #<buffer lewis>

(get-buffer "Frazzle-nots")

⇒ nil

Chapter 27: Buffers 525

See also the function get-buffer-create in Section 27.9 [Creating Buffers], page 533.

[Function]generate-new-buffer-name starting-name &optional ignore
This function returns a name that would be unique for a new buffer—but does not
create the buffer. It starts with starting-name, and produces a name not currently in
use for any buffer by appending a number inside of ‘<...>’. It starts at 2 and keeps
incrementing the number until it is not the name of an existing buffer.

If the optional second argument ignore is non-nil, it should be a string, a potential
buffer name. It means to consider that potential buffer acceptable, if it is tried, even
it is the name of an existing buffer (which would normally be rejected). Thus, if
buffers named ‘foo’, ‘foo<2>’, ‘foo<3>’ and ‘foo<4>’ exist,

(generate-new-buffer-name "foo")

⇒ "foo<5>"

(generate-new-buffer-name "foo" "foo<3>")

⇒ "foo<3>"

(generate-new-buffer-name "foo" "foo<6>")

⇒ "foo<5>"

See the related function generate-new-buffer in Section 27.9 [Creating Buffers],
page 533.

27.4 Buffer File Name

The buffer file name is the name of the file that is visited in that buffer. When a buffer is
not visiting a file, its buffer file name is nil. Most of the time, the buffer name is the same
as the nondirectory part of the buffer file name, but the buffer file name and the buffer
name are distinct and can be set independently. See Section 25.1 [Visiting Files], page 469.

[Function]buffer-file-name &optional buffer
This function returns the absolute file name of the file that buffer is visiting. If buffer
is not visiting any file, buffer-file-name returns nil. If buffer is not supplied, it
defaults to the current buffer.

(buffer-file-name (other-buffer))

⇒ "/usr/user/lewis/manual/files.texi"

[Variable]buffer-file-name
This buffer-local variable contains the name of the file being visited in the current
buffer, or nil if it is not visiting a file. It is a permanent local variable, unaffected
by kill-all-local-variables.

buffer-file-name

⇒ "/usr/user/lewis/manual/buffers.texi"

It is risky to change this variable’s value without doing various other things. Normally
it is better to use set-visited-file-name (see below); some of the things done there,
such as changing the buffer name, are not strictly necessary, but others are essential
to avoid confusing Emacs.

[Variable]buffer-file-truename
This buffer-local variable holds the abbreviated truename of the file visited in the
current buffer, or nil if no file is visited. It is a permanent local, unaffected by kill-

Chapter 27: Buffers 526

all-local-variables. See Section 25.6.3 [Truenames], page 482, and [abbreviate-
file-name], page 494.

[Variable]buffer-file-number
This buffer-local variable holds the file number and directory device number of the
file visited in the current buffer, or nil if no file or a nonexistent file is visited. It is
a permanent local, unaffected by kill-all-local-variables.

The value is normally a list of the form (filenum devnum). This pair of numbers
uniquely identifies the file among all files accessible on the system. See the function
file-attributes, in Section 25.6.4 [File Attributes], page 483, for more information
about them.

If buffer-file-name is the name of a symbolic link, then both numbers refer to the
recursive target.

[Function]get-file-buffer filename
This function returns the buffer visiting file filename. If there is no such buffer,
it returns nil. The argument filename, which must be a string, is expanded (see
Section 25.8.4 [File Name Expansion], page 494), then compared against the visited
file names of all live buffers. Note that the buffer’s buffer-file-name must match
the expansion of filename exactly. This function will not recognize other names for
the same file.

(get-file-buffer "buffers.texi")

⇒ #<buffer buffers.texi>

In unusual circumstances, there can be more than one buffer visiting the same file
name. In such cases, this function returns the first such buffer in the buffer list.

[Function]find-buffer-visiting filename &optional predicate
This is like get-file-buffer, except that it can return any buffer visiting the file
possibly under a different name. That is, the buffer’s buffer-file-name does not
need to match the expansion of filename exactly, it only needs to refer to the same
file. If predicate is non-nil, it should be a function of one argument, a buffer visiting
filename. The buffer is only considered a suitable return value if predicate returns
non-nil. If it can not find a suitable buffer to return, find-buffer-visiting returns
nil.

[Command]set-visited-file-name filename &optional no-query along-with-file
If filename is a non-empty string, this function changes the name of the file visited
in the current buffer to filename. (If the buffer had no visited file, this gives it one.)
The next time the buffer is saved it will go in the newly-specified file.

This command marks the buffer as modified, since it does not (as far as Emacs
knows) match the contents of filename, even if it matched the former visited file. It
also renames the buffer to correspond to the new file name, unless the new name is
already in use.

If filename is nil or the empty string, that stands for “no visited file”. In this case,
set-visited-file-name marks the buffer as having no visited file, without changing
the buffer’s modified flag.

Chapter 27: Buffers 527

Normally, this function asks the user for confirmation if there already is a buffer
visiting filename. If no-query is non-nil, that prevents asking this question. If there
already is a buffer visiting filename, and the user confirms or query is non-nil, this
function makes the new buffer name unique by appending a number inside of ‘<...>’
to filename.

If along-with-file is non-nil, that means to assume that the former visited file has
been renamed to filename. In this case, the command does not change the buffer’s
modified flag, nor the buffer’s recorded last file modification time as reported by
visited-file-modtime (see Section 27.6 [Modification Time], page 528). If along-
with-file is nil, this function clears the recorded last file modification time, after
which visited-file-modtime returns zero.

When the function set-visited-file-name is called interactively, it prompts for
filename in the minibuffer.

[Variable]list-buffers-directory
This buffer-local variable specifies a string to display in a buffer listing where the
visited file name would go, for buffers that don’t have a visited file name. Dired
buffers use this variable.

27.5 Buffer Modification

Emacs keeps a flag called the modified flag for each buffer, to record whether you have
changed the text of the buffer. This flag is set to t whenever you alter the contents of the
buffer, and cleared to nil when you save it. Thus, the flag shows whether there are unsaved
changes. The flag value is normally shown in the mode line (see Section 23.4.4 [Mode Line
Variables], page 430), and controls saving (see Section 25.2 [Saving Buffers], page 473) and
auto-saving (see Section 26.2 [Auto-Saving], page 516).

Some Lisp programs set the flag explicitly. For example, the function set-visited-

file-name sets the flag to t, because the text does not match the newly-visited file, even
if it is unchanged from the file formerly visited.

The functions that modify the contents of buffers are described in Chapter 32 [Text],
page 645.

[Function]buffer-modified-p &optional buffer
This function returns t if the buffer buffer has been modified since it was last read
in from a file or saved, or nil otherwise. If buffer is not supplied, the current buffer
is tested.

[Function]set-buffer-modified-p flag
This function marks the current buffer as modified if flag is non-nil, or as unmodified
if the flag is nil.

Another effect of calling this function is to cause unconditional redisplay of the mode
line for the current buffer. In fact, the function force-mode-line-update works by
doing this:

(set-buffer-modified-p (buffer-modified-p))

[Function]restore-buffer-modified-p flag
Like set-buffer-modified-p, but does not force redisplay of mode lines.

Chapter 27: Buffers 528

[Command]not-modified &optional arg
This command marks the current buffer as unmodified, and not needing to be saved.
If arg is non-nil, it marks the buffer as modified, so that it will be saved at the next
suitable occasion. Interactively, arg is the prefix argument.

Don’t use this function in programs, since it prints a message in the echo area; use
set-buffer-modified-p (above) instead.

[Function]buffer-modified-tick &optional buffer
This function returns buffer’s modification-count. This is a counter that increments
every time the buffer is modified. If buffer is nil (or omitted), the current buffer is
used. The counter can wrap around occasionally.

[Function]buffer-chars-modified-tick &optional buffer
This function returns buffer’s character-change modification-count. Changes to text
properties leave this counter unchanged; however, each time text is inserted or re-
moved from the buffer, the counter is reset to the value that would be returned by
buffer-modified-tick. By comparing the values returned by two buffer-chars-

modified-tick calls, you can tell whether a character change occurred in that buffer
in between the calls. If buffer is nil (or omitted), the current buffer is used.

27.6 Buffer Modification Time

Suppose that you visit a file and make changes in its buffer, and meanwhile the file itself is
changed on disk. At this point, saving the buffer would overwrite the changes in the file.
Occasionally this may be what you want, but usually it would lose valuable information.
Emacs therefore checks the file’s modification time using the functions described below
before saving the file. (See Section 25.6.4 [File Attributes], page 483, for how to examine a
file’s modification time.)

[Function]verify-visited-file-modtime &optional buffer
This function compares what buffer (by default, the current-buffer) has recorded for
the modification time of its visited file against the actual modification time of the file
as recorded by the operating system. The two should be the same unless some other
process has written the file since Emacs visited or saved it.

The function returns t if the last actual modification time and Emacs’s recorded
modification time are the same, nil otherwise. It also returns t if the buffer has no
recorded last modification time, that is if visited-file-modtime would return zero.

It always returns t for buffers that are not visiting a file, even if visited-file-
modtime returns a non-zero value. For instance, it always returns t for dired buffers.
It returns t for buffers that are visiting a file that does not exist and never existed,
but nil for file-visiting buffers whose file has been deleted.

[Function]clear-visited-file-modtime
This function clears out the record of the last modification time of the file being
visited by the current buffer. As a result, the next attempt to save this buffer will
not complain of a discrepancy in file modification times.

This function is called in set-visited-file-name and other exceptional places where
the usual test to avoid overwriting a changed file should not be done.

Chapter 27: Buffers 529

[Function]visited-file-modtime
This function returns the current buffer’s recorded last file modification time, as a
list of the form (high low microsec picosec). (This is the same format that file-
attributes uses to return time values; see Section 25.6.4 [File Attributes], page 483.)

If the buffer has no recorded last modification time, this function returns zero. This
case occurs, for instance, if the buffer is not visiting a file or if the time has been
explicitly cleared by clear-visited-file-modtime. Note, however, that visited-
file-modtime returns a list for some non-file buffers too. For instance, in a Dired
buffer listing a directory, it returns the last modification time of that directory, as
recorded by Dired.

For a new buffer visiting a not yet existing file, high is −1 and low is 65535, that is,
216 − 1.

[Function]set-visited-file-modtime &optional time
This function updates the buffer’s record of the last modification time of the visited
file, to the value specified by time if time is not nil, and otherwise to the last
modification time of the visited file.

If time is neither nil nor zero, it should have the form (high low microsec picosec),
the format used by current-time (see Section 39.5 [Time of Day], page 923).

This function is useful if the buffer was not read from the file normally, or if the file
itself has been changed for some known benign reason.

[Function]ask-user-about-supersession-threat filename
This function is used to ask a user how to proceed after an attempt to modify an
buffer visiting file filename when the file is newer than the buffer text. Emacs detects
this because the modification time of the file on disk is newer than the last save-time
of the buffer. This means some other program has probably altered the file.

Depending on the user’s answer, the function may return normally, in which case the
modification of the buffer proceeds, or it may signal a file-supersession error with
data (filename), in which case the proposed buffer modification is not allowed.

This function is called automatically by Emacs on the proper occasions. It exists so
you can customize Emacs by redefining it. See the file userlock.el for the standard
definition.

See also the file locking mechanism in Section 25.5 [File Locks], page 477.

27.7 Read-Only Buffers

If a buffer is read-only, then you cannot change its contents, although you may change your
view of the contents by scrolling and narrowing.

Read-only buffers are used in two kinds of situations:

• A buffer visiting a write-protected file is normally read-only.

Here, the purpose is to inform the user that editing the buffer with the aim of saving it
in the file may be futile or undesirable. The user who wants to change the buffer text
despite this can do so after clearing the read-only flag with C-x C-q.

Chapter 27: Buffers 530

• Modes such as Dired and Rmail make buffers read-only when altering the contents with
the usual editing commands would probably be a mistake.

The special commands of these modes bind buffer-read-only to nil (with let) or
bind inhibit-read-only to t around the places where they themselves change the
text.

[Variable]buffer-read-only
This buffer-local variable specifies whether the buffer is read-only. The buffer is read-
only if this variable is non-nil.

[Variable]inhibit-read-only
If this variable is non-nil, then read-only buffers and, depending on the actual value,
some or all read-only characters may be modified. Read-only characters in a buffer
are those that have a non-nil read-only text property. See Section 32.19.4 [Special
Properties], page 685, for more information about text properties.

If inhibit-read-only is t, all read-only character properties have no effect. If
inhibit-read-only is a list, then read-only character properties have no effect if
they are members of the list (comparison is done with eq).

[Command]read-only-mode &optional arg
This is the mode command for Read Only minor mode, a buffer-local minor mode.
When the mode is enabled, buffer-read-only is non-nil in the buffer; when dis-
abled, buffer-read-only is nil in the buffer. The calling convention is the same
as for other minor mode commands (see Section 23.3.1 [Minor Mode Conventions],
page 421).

This minor mode mainly serves as a wrapper for buffer-read-only; unlike most
minor modes, there is no separate read-only-mode variable. Even when Read Only
mode is disabled, characters with non-nil read-only text properties remain read-
only. To temporarily ignore all read-only states, bind inhibit-read-only, as de-
scribed above.

When enabling Read Only mode, this mode command also enables View mode if the
option view-read-only is non-nil. See Section “Miscellaneous Buffer Operations”
in The GNU Emacs Manual. When disabling Read Only mode, it disables View mode
if View mode was enabled.

[Function]barf-if-buffer-read-only
This function signals a buffer-read-only error if the current buffer is read-only. See
Section 21.2.1 [Using Interactive], page 322, for another way to signal an error if the
current buffer is read-only.

27.8 The Buffer List

The buffer list is a list of all live buffers. The order of the buffers in this list is based
primarily on how recently each buffer has been displayed in a window. Several functions,
notably other-buffer, use this ordering. A buffer list displayed for the user also follows
this order.

Creating a buffer adds it to the end of the buffer list, and killing a buffer removes it
from that list. A buffer moves to the front of this list whenever it is chosen for display

Chapter 27: Buffers 531

in a window (see Section 28.11 [Switching Buffers], page 560) or a window displaying it is
selected (see Section 28.8 [Selecting Windows], page 555). A buffer moves to the end of the
list when it is buried (see bury-buffer, below). There are no functions available to the
Lisp programmer which directly manipulate the buffer list.

In addition to the fundamental buffer list just described, Emacs maintains a local buffer
list for each frame, in which the buffers that have been displayed (or had their windows
selected) in that frame come first. (This order is recorded in the frame’s buffer-list frame
parameter; see Section 29.3.3.5 [Buffer Parameters], page 599.) Buffers never displayed in
that frame come afterward, ordered according to the fundamental buffer list.

[Function]buffer-list &optional frame
This function returns the buffer list, including all buffers, even those whose names
begin with a space. The elements are actual buffers, not their names.

If frame is a frame, this returns frame’s local buffer list. If frame is nil or omitted,
the fundamental buffer list is used: the buffers appear in order of most recent display
or selection, regardless of which frames they were displayed on.

(buffer-list)

⇒ (#<buffer buffers.texi>

#<buffer *Minibuf-1*> #<buffer buffer.c>

#<buffer *Help*> #<buffer TAGS>)

;; Note that the name of the minibuffer
;; begins with a space!
(mapcar (function buffer-name) (buffer-list))

⇒ ("buffers.texi" " *Minibuf-1*"

"buffer.c" "*Help*" "TAGS")

The list returned by buffer-list is constructed specifically; it is not an internal Emacs
data structure, and modifying it has no effect on the order of buffers. If you want to change
the order of buffers in the fundamental buffer list, here is an easy way:

(defun reorder-buffer-list (new-list)

(while new-list

(bury-buffer (car new-list))

(setq new-list (cdr new-list))))

With this method, you can specify any order for the list, but there is no danger of losing
a buffer or adding something that is not a valid live buffer.

To change the order or value of a specific frame’s buffer list, set that frame’s buffer-
list parameter with modify-frame-parameters (see Section 29.3.1 [Parameter Access],
page 594).

[Function]other-buffer &optional buffer visible-ok frame
This function returns the first buffer in the buffer list other than buffer. Usually,
this is the buffer appearing in the most recently selected window (in frame frame or
else the selected frame, see Section 29.9 [Input Focus], page 607), aside from buffer.
Buffers whose names start with a space are not considered at all.

Chapter 27: Buffers 532

If buffer is not supplied (or if it is not a live buffer), then other-buffer returns the
first buffer in the selected frame’s local buffer list. (If frame is non-nil, it returns the
first buffer in frame’s local buffer list instead.)

If frame has a non-nil buffer-predicate parameter, then other-buffer uses that
predicate to decide which buffers to consider. It calls the predicate once for each
buffer, and if the value is nil, that buffer is ignored. See Section 29.3.3.5 [Buffer
Parameters], page 599.

If visible-ok is nil, other-buffer avoids returning a buffer visible in any window on
any visible frame, except as a last resort. If visible-ok is non-nil, then it does not
matter whether a buffer is displayed somewhere or not.

If no suitable buffer exists, the buffer *scratch* is returned (and created, if neces-
sary).

[Function]last-buffer &optional buffer visible-ok frame
This function returns the last buffer in frame’s buffer list other than BUFFER. If
frame is omitted or nil, it uses the selected frame’s buffer list.

The argument visible-ok is handled as with other-buffer, see above. If no suitable
buffer can be found, the buffer *scratch* is returned.

[Command]bury-buffer &optional buffer-or-name
This command puts buffer-or-name at the end of the buffer list, without changing
the order of any of the other buffers on the list. This buffer therefore becomes the
least desirable candidate for other-buffer to return. The argument can be either a
buffer itself or the name of one.

This function operates on each frame’s buffer-list parameter as well as the funda-
mental buffer list; therefore, the buffer that you bury will come last in the value of
(buffer-list frame) and in the value of (buffer-list). In addition, it also puts
the buffer at the end of the list of buffer of the selected window (see Section 28.15
[Window History], page 568) provided it is shown in that window.

If buffer-or-name is nil or omitted, this means to bury the current buffer. In addition,
if the current buffer is displayed in the selected window, this makes sure that the
window is either deleted or another buffer is shown in it. More precisely, if the selected
window is dedicated (see Section 28.16 [Dedicated Windows], page 570) and there are
other windows on its frame, the window is deleted. If it is the only window on its
frame and that frame is not the only frame on its terminal, the frame is “dismissed”
by calling the function specified by frame-auto-hide-function (see Section 28.17
[Quitting Windows], page 570). Otherwise, it calls switch-to-prev-buffer (see
Section 28.15 [Window History], page 568) to show another buffer in that window. If
buffer-or-name is displayed in some other window, it remains displayed there.

To replace a buffer in all the windows that display it, use replace-buffer-in-

windows, See Section 28.10 [Buffers and Windows], page 558.

[Command]unbury-buffer
This command switches to the last buffer in the local buffer list of the selected frame.
More precisely, it calls the function switch-to-buffer (see Section 28.11 [Switching
Buffers], page 560), to display the buffer returned by last-buffer (see above), in the
selected window.

Chapter 27: Buffers 533

27.9 Creating Buffers

This section describes the two primitives for creating buffers. get-buffer-create creates
a buffer if it finds no existing buffer with the specified name; generate-new-buffer always
creates a new buffer and gives it a unique name.

Other functions you can use to create buffers include with-output-to-temp-buffer (see
Section 38.8 [Temporary Displays], page 836) and create-file-buffer (see Section 25.1
[Visiting Files], page 469). Starting a subprocess can also create a buffer (see Chapter 37
[Processes], page 780).

[Function]get-buffer-create buffer-or-name
This function returns a buffer named buffer-or-name. The buffer returned does not
become the current buffer—this function does not change which buffer is current.

buffer-or-name must be either a string or an existing buffer. If it is a string and a
live buffer with that name already exists, get-buffer-create returns that buffer. If
no such buffer exists, it creates a new buffer. If buffer-or-name is a buffer instead of
a string, it is returned as given, even if it is dead.

(get-buffer-create "foo")

⇒ #<buffer foo>

The major mode for a newly created buffer is set to Fundamental mode. (The default
value of the variable major-mode is handled at a higher level; see Section 23.2.2 [Auto
Major Mode], page 411.) If the name begins with a space, the buffer initially disables
undo information recording (see Section 32.9 [Undo], page 660).

[Function]generate-new-buffer name
This function returns a newly created, empty buffer, but does not make it current.
The name of the buffer is generated by passing name to the function generate-new-

buffer-name (see Section 27.3 [Buffer Names], page 524). Thus, if there is no buffer
named name, then that is the name of the new buffer; if that name is in use, a suffix
of the form ‘<n>’, where n is an integer, is appended to name.

An error is signaled if name is not a string.

(generate-new-buffer "bar")

⇒ #<buffer bar>

(generate-new-buffer "bar")

⇒ #<buffer bar<2>>

(generate-new-buffer "bar")

⇒ #<buffer bar<3>>

The major mode for the new buffer is set to Fundamental mode. The default value of
the variable major-mode is handled at a higher level. See Section 23.2.2 [Auto Major
Mode], page 411.

27.10 Killing Buffers

Killing a buffer makes its name unknown to Emacs and makes the memory space it occupied
available for other use.

The buffer object for the buffer that has been killed remains in existence as long as
anything refers to it, but it is specially marked so that you cannot make it current or

Chapter 27: Buffers 534

display it. Killed buffers retain their identity, however; if you kill two distinct buffers, they
remain distinct according to eq although both are dead.

If you kill a buffer that is current or displayed in a window, Emacs automatically selects
or displays some other buffer instead. This means that killing a buffer can change the
current buffer. Therefore, when you kill a buffer, you should also take the precautions
associated with changing the current buffer (unless you happen to know that the buffer
being killed isn’t current). See Section 27.2 [Current Buffer], page 521.

If you kill a buffer that is the base buffer of one or more indirect buffers, the indirect
buffers are automatically killed as well.

The buffer-name of a buffer is nil if, and only if, the buffer is killed. A buffer that
has not been killed is called a live buffer. To test whether a buffer is live or killed, use the
function buffer-live-p (see below).

[Command]kill-buffer &optional buffer-or-name
This function kills the buffer buffer-or-name, freeing all its memory for other uses or
to be returned to the operating system. If buffer-or-name is nil or omitted, it kills
the current buffer.

Any processes that have this buffer as the process-buffer are sent the SIGHUP

(“hangup”) signal, which normally causes them to terminate. See Section 37.8 [Signals
to Processes], page 793.

If the buffer is visiting a file and contains unsaved changes, kill-buffer asks the
user to confirm before the buffer is killed. It does this even if not called interactively.
To prevent the request for confirmation, clear the modified flag before calling kill-

buffer. See Section 27.5 [Buffer Modification], page 527.

This function calls replace-buffer-in-windows for cleaning up all windows cur-
rently displaying the buffer to be killed.

Killing a buffer that is already dead has no effect.

This function returns t if it actually killed the buffer. It returns nil if the user refuses
to confirm or if buffer-or-name was already dead.

(kill-buffer "foo.unchanged")
⇒ t

(kill-buffer "foo.changed")

---------- Buffer: Minibuffer ----------

Buffer foo.changed modified; kill anyway? (yes or no) yes

---------- Buffer: Minibuffer ----------

⇒ t

[Variable]kill-buffer-query-functions
After confirming unsaved changes, kill-buffer calls the functions in the list kill-
buffer-query-functions, in order of appearance, with no arguments. The buffer
being killed is the current buffer when they are called. The idea of this feature is that
these functions will ask for confirmation from the user. If any of them returns nil,
kill-buffer spares the buffer’s life.

[Variable]kill-buffer-hook
This is a normal hook run by kill-buffer after asking all the questions it is going to
ask, just before actually killing the buffer. The buffer to be killed is current when the

Chapter 27: Buffers 535

hook functions run. See Section 23.1 [Hooks], page 404. This variable is a permanent
local, so its local binding is not cleared by changing major modes.

[User Option]buffer-offer-save
This variable, if non-nil in a particular buffer, tells save-buffers-kill-emacs and
save-some-buffers (if the second optional argument to that function is t) to of-
fer to save that buffer, just as they offer to save file-visiting buffers. See [Definition
of save-some-buffers], page 473. The variable buffer-offer-save automatically be-
comes buffer-local when set for any reason. See Section 11.10 [Buffer-Local Variables],
page 154.

[Variable]buffer-save-without-query
This variable, if non-nil in a particular buffer, tells save-buffers-kill-emacs and
save-some-buffers to save this buffer (if it’s modified) without asking the user. The
variable automatically becomes buffer-local when set for any reason.

[Function]buffer-live-p object
This function returns t if object is a live buffer (a buffer which has not been killed),
nil otherwise.

27.11 Indirect Buffers

An indirect buffer shares the text of some other buffer, which is called the base buffer of
the indirect buffer. In some ways it is the analogue, for buffers, of a symbolic link among
files. The base buffer may not itself be an indirect buffer.

The text of the indirect buffer is always identical to the text of its base buffer; changes
made by editing either one are visible immediately in the other. This includes the text
properties as well as the characters themselves.

In all other respects, the indirect buffer and its base buffer are completely separate. They
have different names, independent values of point, independent narrowing, independent
markers and overlays (though inserting or deleting text in either buffer relocates the markers
and overlays for both), independent major modes, and independent buffer-local variable
bindings.

An indirect buffer cannot visit a file, but its base buffer can. If you try to save the
indirect buffer, that actually saves the base buffer.

Killing an indirect buffer has no effect on its base buffer. Killing the base buffer effectively
kills the indirect buffer in that it cannot ever again be the current buffer.

[Command]make-indirect-buffer base-buffer name &optional clone
This creates and returns an indirect buffer named name whose base buffer is base-
buffer. The argument base-buffer may be a live buffer or the name (a string) of an
existing buffer. If name is the name of an existing buffer, an error is signaled.

If clone is non-nil, then the indirect buffer originally shares the “state” of base-buffer
such as major mode, minor modes, buffer local variables and so on. If clone is omitted
or nil the indirect buffer’s state is set to the default state for new buffers.

If base-buffer is an indirect buffer, its base buffer is used as the base for the new
buffer. If, in addition, clone is non-nil, the initial state is copied from the actual
base buffer, not from base-buffer.

Chapter 27: Buffers 536

[Command]clone-indirect-buffer newname display-flag &optional norecord
This function creates and returns a new indirect buffer that shares the current buffer’s
base buffer and copies the rest of the current buffer’s attributes. (If the current buffer
is not indirect, it is used as the base buffer.)

If display-flag is non-nil, that means to display the new buffer by calling pop-to-

buffer. If norecord is non-nil, that means not to put the new buffer to the front of
the buffer list.

[Function]buffer-base-buffer &optional buffer
This function returns the base buffer of buffer, which defaults to the current buffer. If
buffer is not indirect, the value is nil. Otherwise, the value is another buffer, which
is never an indirect buffer.

27.12 Swapping Text Between Two Buffers

Specialized modes sometimes need to let the user access from the same buffer several vastly
different types of text. For example, you may need to display a summary of the buffer text,
in addition to letting the user access the text itself.

This could be implemented with multiple buffers (kept in sync when the user edits the
text), or with narrowing (see Section 30.4 [Narrowing], page 633). But these alternatives
might sometimes become tedious or prohibitively expensive, especially if each type of text
requires expensive buffer-global operations in order to provide correct display and editing
commands.

Emacs provides another facility for such modes: you can quickly swap buffer text between
two buffers with buffer-swap-text. This function is very fast because it doesn’t move any
text, it only changes the internal data structures of the buffer object to point to a different
chunk of text. Using it, you can pretend that a group of two or more buffers are actually a
single virtual buffer that holds the contents of all the individual buffers together.

[Function]buffer-swap-text buffer
This function swaps the text of the current buffer and that of its argument buffer.
It signals an error if one of the two buffers is an indirect buffer (see Section 27.11
[Indirect Buffers], page 535) or is a base buffer of an indirect buffer.

All the buffer properties that are related to the buffer text are swapped as well: the
positions of point and mark, all the markers, the overlays, the text properties, the
undo list, the value of the enable-multibyte-characters flag (see Section 33.1 [Text
Representations], page 705), etc.

If you use buffer-swap-text on a file-visiting buffer, you should set up a hook to save
the buffer’s original text rather than what it was swapped with. write-region-annotate-
functions works for this purpose. You should probably set buffer-saved-size to −2 in
the buffer, so that changes in the text it is swapped with will not interfere with auto-saving.

27.13 The Buffer Gap

Emacs buffers are implemented using an invisible gap to make insertion and deletion faster.
Insertion works by filling in part of the gap, and deletion adds to the gap. Of course, this
means that the gap must first be moved to the locus of the insertion or deletion. Emacs

Chapter 27: Buffers 537

moves the gap only when you try to insert or delete. This is why your first editing command
in one part of a large buffer, after previously editing in another far-away part, sometimes
involves a noticeable delay.

This mechanism works invisibly, and Lisp code should never be affected by the gap’s
current location, but these functions are available for getting information about the gap
status.

[Function]gap-position
This function returns the current gap position in the current buffer.

[Function]gap-size
This function returns the current gap size of the current buffer.

Chapter 28: Windows 538

28 Windows

This chapter describes the functions and variables related to Emacs windows. See
Chapter 29 [Frames], page 590, for how windows are assigned an area of screen available
for Emacs to use. See Chapter 38 [Display], page 822, for information on how text is
displayed in windows.

28.1 Basic Concepts of Emacs Windows

A window is an area of the screen that is used to display a buffer (see Chapter 27 [Buffers],
page 521). In Emacs Lisp, windows are represented by a special Lisp object type.

Windows are grouped into frames (see Chapter 29 [Frames], page 590). Each frame
contains at least one window; the user can subdivide it into multiple, non-overlapping
windows to view several buffers at once. Lisp programs can use multiple windows for a
variety of purposes. In Rmail, for example, you can view a summary of message titles in
one window, and the contents of the selected message in another window.

Emacs uses the word “window” with a different meaning than in graphical desktop
environments and window systems, such as the X Window System. When Emacs is run
on X, each of its graphical X windows is an Emacs frame (containing one or more Emacs
windows). When Emacs is run on a text terminal, the frame fills the entire terminal screen.

Unlike X windows, Emacs windows are tiled; they never overlap within the area of the
frame. When a window is created, resized, or deleted, the change in window space is taken
from or given to the adjacent windows, so that the total area of the frame is unchanged.

[Function]windowp object
This function returns t if object is a window (whether or not it displays a buffer).
Otherwise, it returns nil.

A live window is one that is actually displaying a buffer in a frame.

[Function]window-live-p object
This function returns t if object is a live window and nil otherwise. A live window
is one that displays a buffer.

The windows in each frame are organized into a window tree. See Section 28.2 [Windows
and Frames], page 539. The leaf nodes of each window tree are live windows—the ones
actually displaying buffers. The internal nodes of the window tree are internal windows,
which are not live.

A valid window is one that is either live or internal. A valid window can be deleted, i.e.,
removed from its frame (see Section 28.6 [Deleting Windows], page 549); then it is no longer
valid, but the Lisp object representing it might be still referenced from other Lisp objects.
A deleted window may be made valid again by restoring a saved window configuration (see
Section 28.24 [Window Configurations], page 584).

You can distinguish valid windows from deleted windows with window-valid-p.

[Function]window-valid-p object
This function returns t if object is a live window, or an internal window in a window
tree. Otherwise, it returns nil, including for the case where object is a deleted
window.

Chapter 28: Windows 539

In each frame, at any time, exactly one Emacs window is designated as selected within
the frame. For the selected frame, that window is called the selected window—the one in
which most editing takes place, and in which the cursor for selected windows appears (see
Section 29.3.3.7 [Cursor Parameters], page 600). The selected window’s buffer is usually also
the current buffer, except when set-buffer has been used (see Section 27.2 [Current Buffer],
page 521). As for non-selected frames, the window selected within the frame becomes the
selected window if the frame is ever selected. See Section 28.8 [Selecting Windows], page 555.

[Function]selected-window
This function returns the selected window (which is always a live window).

28.2 Windows and Frames

Each window belongs to exactly one frame (see Chapter 29 [Frames], page 590).

[Function]window-frame window
This function returns the frame that the window window belongs to. If window is
nil, it defaults to the selected window.

[Function]window-list &optional frame minibuffer window
This function returns a list of live windows belonging to the frame frame. If frame is
omitted or nil, it defaults to the selected frame.

The optional argument minibuffer specifies whether to include the minibuffer window
in the returned list. Ifminibuffer is t, the minibuffer window is included. Ifminibuffer
is nil or omitted, the minibuffer window is included only if it is active. If minibuffer
is neither nil nor t, the minibuffer window is never included.

The optional argument window, if non-nil, should be a live window on the specified
frame; then window will be the first element in the returned list. If window is omitted
or nil, the window selected within the frame is the first element.

Windows in the same frame are organized into a window tree, whose leaf nodes are the
live windows. The internal nodes of a window tree are not live; they exist for the purpose
of organizing the relationships between live windows. The root node of a window tree is
called the root window. It can be either a live window (if the frame has just one window),
or an internal window.

A minibuffer window (see Section 20.11 [Minibuffer Windows], page 318) is not part of its
frame’s window tree unless the frame is a minibuffer-only frame. Nonetheless, most of the
functions in this section accept the minibuffer window as an argument. Also, the function
window-tree described at the end of this section lists the minibuffer window alongside the
actual window tree.

[Function]frame-root-window &optional frame-or-window
This function returns the root window for frame-or-window. The argument frame-or-
window should be either a window or a frame; if omitted or nil, it defaults to the
selected frame. If frame-or-window is a window, the return value is the root window
of that window’s frame.

When a window is split, there are two live windows where previously there was one. One
of these is represented by the same Lisp window object as the original window, and the other

Chapter 28: Windows 540

is represented by a newly-created Lisp window object. Both of these live windows become
leaf nodes of the window tree, as child windows of a single internal window. If necessary,
Emacs automatically creates this internal window, which is also called the parent window,
and assigns it to the appropriate position in the window tree. A set of windows that share
the same parent are called siblings.

[Function]window-parent &optional window
This function returns the parent window of window. If window is omitted or nil,
it defaults to the selected window. The return value is nil if window has no parent
(i.e., it is a minibuffer window or the root window of its frame).

Each internal window always has at least two child windows. If this number falls to one
as a result of window deletion, Emacs automatically deletes the internal window, and its
sole remaining child window takes its place in the window tree.

Each child window can be either a live window, or an internal window (which in turn
would have its own child windows). Therefore, each internal window can be thought of as
occupying a certain rectangular screen area—the union of the areas occupied by the live
windows that are ultimately descended from it.

For each internal window, the screen areas of the immediate children are arranged either
vertically or horizontally (never both). If the child windows are arranged one above the
other, they are said to form a vertical combination; if they are arranged side by side, they
are said to form a horizontal combination. Consider the following example:

| ______ ____________________________ |

|| || __________________________ ||

|| ||| |||

|| ||| |||

|| ||| |||

|| |||____________W4____________|||

|| || __________________________ ||

|| ||| |||

|| ||| |||

|| |||____________W5____________|||

||__W2__||_____________W3_____________ |

|__________________W1__________________|

The root window of this frame is an internal window, W1. Its child windows form a
horizontal combination, consisting of the live window W2 and the internal window W3.
The child windows of W3 form a vertical combination, consisting of the live windows W4
and W5. Hence, the live windows in this window tree are W2 W4, and W5.

The following functions can be used to retrieve a child window of an internal window,
and the siblings of a child window.

[Function]window-top-child window
This function returns the topmost child window of window, if window is an internal
window whose children form a vertical combination. For any other type of window,
the return value is nil.

Chapter 28: Windows 541

[Function]window-left-child window
This function returns the leftmost child window of window, if window is an internal
window whose children form a horizontal combination. For any other type of window,
the return value is nil.

[Function]window-child window
This function returns the first child window of the internal window window—the
topmost child window for a vertical combination, or the leftmost child window for a
horizontal combination. If window is a live window, the return value is nil.

[Function]window-combined-p &optional window horizontal
This function returns a non-nil value if and only if window is part of a vertical
combination. If window is omitted or nil, it defaults to the selected one.

If the optional argument horizontal is non-nil, this means to return non-nil if and
only if window is part of a horizontal combination.

[Function]window-next-sibling &optional window
This function returns the next sibling of the window window. If omitted or nil,
window defaults to the selected window. The return value is nil if window is the
last child of its parent.

[Function]window-prev-sibling &optional window
This function returns the previous sibling of the window window. If omitted or nil,
window defaults to the selected window. The return value is nil if window is the
first child of its parent.

The functions window-next-sibling and window-prev-sibling should not be confused
with the functions next-window and previous-window, which return the next and previous
window, respectively, in the cyclic ordering of windows (see Section 28.9 [Cyclic Window
Ordering], page 556).

You can use the following functions to find the first live window on a frame and the
window nearest to a given window.

[Function]frame-first-window &optional frame-or-window
This function returns the live window at the upper left corner of the frame specified
by frame-or-window. The argument frame-or-window must denote a window or a live
frame and defaults to the selected frame. If frame-or-window specifies a window, this
function returns the first window on that window’s frame. Under the assumption that
the frame from our canonical example is selected (frame-first-window) returnsW2.

[Function]window-in-direction direction &optional window ignore
This function returns the nearest live window in direction direction as seen from the
position of window-point in window window. The argument direction must be one
of above, below, left or right. The optional argument window must denote a live
window and defaults to the selected one.

This function does not return a window whose no-other-window parameter is non-
nil (see Section 28.25 [Window Parameters], page 586). If the nearest window’s
no-other-window parameter is non-nil, this function tries to find another window

Chapter 28: Windows 542

in the indicated direction whose no-other-window parameter is nil. If the optional
argument ignore is non-nil, a window may be returned even if its no-other-window
parameter is non-nil.

If it doesn’t find a suitable window, this function returns nil.

The following function allows to retrieve the entire window tree of a frame:

[Function]window-tree &optional frame
This function returns a list representing the window tree for frame frame. If frame is
omitted or nil, it defaults to the selected frame.

The return value is a list of the form (root mini), where root represents the window
tree of the frame’s root window, and mini is the frame’s minibuffer window.

If the root window is live, root is that window itself. Otherwise, root is a list (dir
edges w1 w2 ...) where dir is nil for a horizontal combination and t for a vertical
combination, edges gives the size and position of the combination, and the remaining
elements are the child windows. Each child window may again be a window object
(for a live window) or a list with the same format as above (for an internal window).
The edges element is a list (left top right bottom), similar to the value returned
by window-edges (see Section 28.23 [Coordinates and Windows], page 582).

28.3 Window Sizes

The following schematic shows the structure of a live window:

^ |______________ Header Line_______________|

| |LS|LF|LM| |RM|RF|RS| ^

| | | | | | | | | |

Window | | | | Text Area | | | | Window

Total | | | | (Window Body) | | | | Body

Height | | | | | | | | Height

| | | | |<- Window Body Width ->| | | | |

| |__|__|__|_______________________|__|__|__| v

v |_______________ Mode Line _______________|

<----------- Window Total Width -------->

At the center of the window is the text area, or body, where the buffer text is dis-
played. On each side of the text area is a series of vertical areas; from innermost to
outermost, these are the left and right margins, denoted by LM and RM in the schematic
(see Section 38.15.5 [Display Margins], page 878); the left and right fringes, denoted by LF
and RF (see Section 38.13 [Fringes], page 867); and the left or right scroll bar, only one
of which is present at any time, denoted by LS and RS (see Section 38.14 [Scroll Bars],
page 873). At the top of the window is an optional header line (see Section 23.4.7 [Header
Lines], page 434), and at the bottom of the window is the mode line (see Section 23.4 [Mode
Line Format], page 426).

Emacs provides several functions for finding the height and width of a window. Except
where noted, Emacs reports window heights and widths as integer numbers of lines and
columns, respectively. On a graphical display, each “line” and “column” actually corre-
sponds to the height and width of a “default” character specified by the frame’s default

Chapter 28: Windows 543

font. Thus, if a window is displaying text with a different font or size, the reported height
and width for that window may differ from the actual number of text lines or columns
displayed within it.

The total height of a window is the distance between the top and bottom of the window,
including the header line (if one exists) and the mode line. The total width of a window is
the distance between the left and right edges of the mode line. Note that the height of a
frame is not the same as the height of its windows, since a frame may also contain an echo
area, menu bar, and tool bar (see Section 29.3.4 [Size and Position], page 603).

[Function]window-total-height &optional window
This function returns the total height, in lines, of the window window. If window is
omitted or nil, it defaults to the selected window. If window is an internal window,
the return value is the total height occupied by its descendant windows.

[Function]window-total-width &optional window
This function returns the total width, in columns, of the window window. If window
is omitted or nil, it defaults to the selected window. If window is internal, the return
value is the total width occupied by its descendant windows.

[Function]window-total-size &optional window horizontal
This function returns either the total height or width of the window window. If
horizontal is omitted or nil, this is equivalent to calling window-total-height for
window ; otherwise it is equivalent to calling window-total-width for window.

The following functions can be used to determine whether a given window has any
adjacent windows.

[Function]window-full-height-p &optional window
This function returns non-nil if window has no other window above or below it in its
frame, i.e., its total height equals the total height of the root window on that frame.
If window is omitted or nil, it defaults to the selected window.

[Function]window-full-width-p &optional window
This function returns non-nil if window has no other window to the left or right in
its frame, i.e., its total width equals that of the root window on that frame. If window
is omitted or nil, it defaults to the selected window.

The body height of a window is the height of its text area, which does not include the
mode or header line. Similarly, the body width is the width of the text area, which does
not include the scroll bar, fringes, or margins.

[Function]window-body-height &optional window
This function returns the body height, in lines, of the window window. If window is
omitted or nil, it defaults to the selected window; otherwise it must be a live window.

If there is a partially-visible line at the bottom of the text area, that counts as a
whole line; to exclude such a partially-visible line, use window-text-height, below.

[Function]window-body-width &optional window
This function returns the body width, in columns, of the window window. If window
is omitted or nil, it defaults to the selected window; otherwise it must be a live
window.

Chapter 28: Windows 544

[Function]window-body-size &optional window horizontal
This function returns the body height or body width of window. If horizontal is
omitted or nil, it is equivalent to calling window-body-height for window ; otherwise
it is equivalent to calling window-body-width.

[Function]window-text-height &optional window
This function is like window-body-height, except that any partially-visible line at
the bottom of the text area is not counted.

For compatibility with previous versions of Emacs, window-height is an alias for
window-total-height, and window-width is an alias for window-body-width. These
aliases are considered obsolete and will be removed in the future.

Commands that change the size of windows (see Section 28.4 [Resizing Windows],
page 544), or split them (see Section 28.5 [Splitting Windows], page 546), obey the
variables window-min-height and window-min-width, which specify the smallest
allowable window height and width. See Section “Deleting and Rearranging Windows” in
The GNU Emacs Manual. They also obey the variable window-size-fixed, with which a
window can be fixed in size:

[Variable]window-size-fixed
If this buffer-local variable is non-nil, the size of any window displaying the buffer
cannot normally be changed. Deleting a window or changing the frame’s size may
still change its size, if there is no choice.

If the value is height, then only the window’s height is fixed; if the value is width,
then only the window’s width is fixed. Any other non-nil value fixes both the width
and the height.

[Function]window-size-fixed-p &optional window horizontal
This function returns a non-nil value if window ’s height is fixed. If window is omitted
or nil, it defaults to the selected window. If the optional argument horizontal is non-
nil, the return value is non-nil if window ’s width is fixed.

A nil return value does not necessarily mean that window can be resized in the
desired direction. To determine that, use the function window-resizable. See
Section 28.4 [Resizing Windows], page 544.

See Section 28.23 [Coordinates and Windows], page 582, for more functions that report
the positions of various parts of a window relative to the frame, from which you can calculate
its size. In particular, you can use the functions window-pixel-edges and window-inside-

pixel-edges to find the size in pixels, for graphical displays.

28.4 Resizing Windows

This section describes functions for resizing a window without changing the size of its frame.
Because live windows do not overlap, these functions are meaningful only on frames that
contain two or more windows: resizing a window also changes the size of a neighboring
window. If there is just one window on a frame, its size cannot be changed except by
resizing the frame (see Section 29.3.4 [Size and Position], page 603).

Except where noted, these functions also accept internal windows as arguments. Resizing
an internal window causes its child windows to be resized to fit the same space.

Chapter 28: Windows 545

[Function]window-resizable window delta &optional horizontal ignore
This function returns delta if the size of window can be changed vertically by delta
lines. If the optional argument horizontal is non-nil, it instead returns delta if
window can be resized horizontally by delta columns. It does not actually change the
window size.

If window is nil, it defaults to the selected window.

A positive value of delta means to check whether the window can be enlarged by that
number of lines or columns; a negative value of delta means to check whether the
window can be shrunk by that many lines or columns. If delta is non-zero, a return
value of 0 means that the window cannot be resized.

Normally, the variables window-min-height and window-min-width specify the
smallest allowable window size. See Section “Deleting and Rearranging Windows”
in The GNU Emacs Manual. However, if the optional argument ignore is non-nil,
this function ignores window-min-height and window-min-width, as well as
window-size-fixed. Instead, it considers the minimum-height window to be one
consisting of a header (if any), a mode line, plus a text area one line tall; and a
minimum-width window as one consisting of fringes, margins, and scroll bar (if any),
plus a text area two columns wide.

[Function]window-resize window delta &optional horizontal ignore
This function resizes window by delta increments. If horizontal is nil, it changes the
height by delta lines; otherwise, it changes the width by delta columns. A positive
delta means to enlarge the window, and a negative delta means to shrink it.

If window is nil, it defaults to the selected window. If the window cannot be resized
as demanded, an error is signaled.

The optional argument ignore has the same meaning as for the function window-

resizable above.

The choice of which window edges this function alters depends on the values of the
option window-combination-resize and the combination limits of the involved win-
dows; in some cases, it may alter both edges. See Section 28.7 [Recombining Win-
dows], page 550. To resize by moving only the bottom or right edge of a window, use
the function adjust-window-trailing-edge, below.

[Function]adjust-window-trailing-edge window delta &optional horizontal
This function moves window ’s bottom edge by delta lines. If optional argument
horizontal is non-nil, it instead moves the right edge by delta columns. If window is
nil, it defaults to the selected window.

A positive delta moves the edge downwards or to the right; a negative delta moves it
upwards or to the left. If the edge cannot be moved as far as specified by delta, this
function moves it as far as possible but does not signal a error.

This function tries to resize windows adjacent to the edge that is moved. If this is
not possible for some reason (e.g., if that adjacent window is fixed-size), it may resize
other windows.

The following commands resize windows in more specific ways. When called interactively,
they act on the selected window.

Chapter 28: Windows 546

[Command]fit-window-to-buffer &optional window max-height min-height
override

This command adjusts the height of window to fit the text in it. It returns non-nil
if it was able to resize window, and nil otherwise. If window is omitted or nil, it
defaults to the selected window. Otherwise, it should be a live window.

The optional argument max-height, if non-nil, specifies the maximum total height
that this function can give window. The optional argument min-height, if non-nil,
specifies the minimum total height that it can give, which overrides the variable
window-min-height.

If the optional argument override is non-nil, this function ignores any size restrictions
imposed by window-min-height and window-min-width.

If the option fit-frame-to-buffer is non-nil, this command may resize the frame
to fit its contents.

[Command]shrink-window-if-larger-than-buffer &optional window
This command attempts to reduce window ’s height as much as possible while still
showing its full buffer, but no less than window-min-height lines. The return value
is non-nil if the window was resized, and nil otherwise. If window is omitted or
nil, it defaults to the selected window. Otherwise, it should be a live window.

This command does nothing if the window is already too short to display all of its
buffer, or if any of the buffer is scrolled off-screen, or if the window is the only live
window in its frame.

[Command]balance-windows &optional window-or-frame
This function balances windows in a way that gives more space to full-width and/or
full-height windows. If window-or-frame specifies a frame, it balances all windows on
that frame. If window-or-frame specifies a window, it balances only that window and
its siblings (see Section 28.2 [Windows and Frames], page 539).

[Command]balance-windows-area
This function attempts to give all windows on the selected frame approximately the
same share of the screen area. Full-width or full-height windows are not given more
space than other windows.

[Command]maximize-window &optional window
This function attempts to make window as large as possible, in both dimensions,
without resizing its frame or deleting other windows. If window is omitted or nil, it
defaults to the selected window.

[Command]minimize-window &optional window
This function attempts to make window as small as possible, in both dimensions,
without deleting it or resizing its frame. If window is omitted or nil, it defaults to
the selected window.

28.5 Splitting Windows

This section describes functions for creating a new window by splitting an existing one.

Chapter 28: Windows 547

[Command]split-window &optional window size side
This function creates a new live window next to the window window. If window
is omitted or nil, it defaults to the selected window. That window is “split”, and
reduced in size. The space is taken up by the new window, which is returned.

The optional second argument size determines the sizes of window and/or the new
window. If it is omitted or nil, both windows are given equal sizes; if there is an odd
line, it is allocated to the new window. If size is a positive number, window is given
size lines (or columns, depending on the value of side). If size is a negative number,
the new window is given −size lines (or columns).

If size is nil, this function obeys the variables window-min-height and window-

min-width. See Section “Deleting and Rearranging Windows” in The GNU Emacs
Manual. Thus, it signals an error if splitting would result in making a window smaller
than those variables specify. However, a non-nil value for size causes those variables
to be ignored; in that case, the smallest allowable window is considered to be one
that has space for a text area one line tall and/or two columns wide.

The optional third argument side determines the position of the new window relative
to window. If it is nil or below, the new window is placed below window. If it is
above, the new window is placed above window. In both these cases, size specifies a
total window height, in lines.

If side is t or right, the new window is placed on the right of window. If side is left,
the new window is placed on the left of window. In both these cases, size specifies a
total window width, in columns.

If window is a live window, the new window inherits various properties from it,
including margins and scroll bars. If window is an internal window, the new window
inherits the properties of the window selected within window ’s frame.

The behavior of this function may be altered by the window parameters of window,
so long as the variable ignore-window-parameters is nil. If the value of the split-
window window parameter is t, this function ignores all other window parameters.
Otherwise, if the value of the split-window window parameter is a function, that
function is called with the arguments window, size, and side, in lieu of the usual action
of split-window. Otherwise, this function obeys the window-atom or window-side
window parameter, if any. See Section 28.25 [Window Parameters], page 586.

As an example, here is a sequence of split-window calls that yields the window config-
uration discussed in Section 28.2 [Windows and Frames], page 539. This example demon-
strates splitting a live window as well as splitting an internal window. We begin with a
frame containing a single window (a live root window), which we denote by W4. Calling
(split-window W4) yields this window configuration:

Chapter 28: Windows 548

| ____________________________________ |

|| ||

|| ||

|| ||

||_________________W4_________________||

| ____________________________________ |

|| ||

|| ||

|| ||

||_________________W5_________________||

|__________________W3__________________|

The split-window call has created a new live window, denoted by W5. It has also created
a new internal window, denoted by W3, which becomes the root window and the parent of
both W4 and W5.

Next, we call (split-window W3 nil ’left), passing the internal window W3 as the
argument. The result:

| ______ ____________________________ |

|| || __________________________ ||

|| ||| |||

|| ||| |||

|| ||| |||

|| |||____________W4____________|||

|| || __________________________ ||

|| ||| |||

|| ||| |||

|| |||____________W5____________|||

||__W2__||_____________W3_____________ |

|__________________W1__________________|

A new live window W2 is created, to the left of the internal window W3. A new internal
window W1 is created, becoming the new root window.

For interactive use, Emacs provides two commands which always split the selected win-
dow. These call split-window internally.

[Command]split-window-right &optional size
This function splits the selected window into two side-by-side windows, putting the
selected window on the left. If size is positive, the left window gets size columns; if
size is negative, the right window gets −size columns.

[Command]split-window-below &optional size
This function splits the selected window into two windows, one above the other,
leaving the upper window selected. If size is positive, the upper window gets size
lines; if size is negative, the lower window gets −size lines.

[User Option]split-window-keep-point
If the value of this variable is non-nil (the default), split-window-below behaves
as described above.

If it is nil, split-window-below adjusts point in each of the two windows to minimize
redisplay. (This is useful on slow terminals.) It selects whichever window contains the

Chapter 28: Windows 549

screen line that point was previously on. Note that this only affects split-window-
below, not the lower-level split-window function.

28.6 Deleting Windows

Deleting a window removes it from the frame’s window tree. If the window is a live window,
it disappears from the screen. If the window is an internal window, its child windows are
deleted too.

Even after a window is deleted, it continues to exist as a Lisp object, until there are
no more references to it. Window deletion can be reversed, by restoring a saved window
configuration (see Section 28.24 [Window Configurations], page 584).

[Command]delete-window &optional window
This function removes window from display and returns nil. If window is omitted or
nil, it defaults to the selected window. If deleting the window would leave no more
windows in the window tree (e.g., if it is the only live window in the frame), an error
is signaled.

By default, the space taken up by window is given to one of its adjacent sibling
windows, if any. However, if the variable window-combination-resize is non-nil,
the space is proportionally distributed among any remaining windows in the window
combination. See Section 28.7 [Recombining Windows], page 550.

The behavior of this function may be altered by the window parameters of window, so
long as the variable ignore-window-parameters is nil. If the value of the delete-
window window parameter is t, this function ignores all other window parameters.
Otherwise, if the value of the delete-window window parameter is a function, that
function is called with the argument window, in lieu of the usual action of delete-
window. Otherwise, this function obeys the window-atom or window-side window
parameter, if any. See Section 28.25 [Window Parameters], page 586.

[Command]delete-other-windows &optional window
This function makes window fill its frame, by deleting other windows as necessary.
If window is omitted or nil, it defaults to the selected window. The return value is
nil.

The behavior of this function may be altered by the window parameters of window, so
long as the variable ignore-window-parameters is nil. If the value of the delete-
other-windows window parameter is t, this function ignores all other window pa-
rameters. Otherwise, if the value of the delete-other-windows window parameter
is a function, that function is called with the argument window, in lieu of the usual
action of delete-other-windows. Otherwise, this function obeys the window-atom

or window-side window parameter, if any. See Section 28.25 [Window Parameters],
page 586.

[Command]delete-windows-on &optional buffer-or-name frame
This function deletes all windows showing buffer-or-name, by calling delete-window

on those windows. buffer-or-name should be a buffer, or the name of a buffer; if
omitted or nil, it defaults to the current buffer. If there are no windows showing the
specified buffer, this function does nothing. If the specified buffer is a minibuffer, an
error is signaled.

Chapter 28: Windows 550

If there is a dedicated window showing the buffer, and that window is the only one
on its frame, this function also deletes that frame if it is not the only frame on the
terminal.

The optional argument frame specifies which frames to operate on:

• nil means operate on all frames.

• t means operate on the selected frame.

• visible means operate on all visible frames.

• 0 means operate on all visible or iconified frames.

• A frame means operate on that frame.

Note that this argument does not have the same meaning as in other functions which
scan all live windows (see Section 28.9 [Cyclic Window Ordering], page 556). Specifi-
cally, the meanings of t and nil here are the opposite of what they are in those other
functions.

28.7 Recombining Windows

When deleting the last sibling of a window W, its parent window is deleted too, with W
replacing it in the window tree. This means that W must be recombined with its par-
ent’s siblings to form a new window combination (see Section 28.2 [Windows and Frames],
page 539). In some occasions, deleting a live window may even entail the deletion of two
internal windows.

| ______ ____________________________ |

|| || __________________________ ||

|| ||| ___________ ___________ |||

|| |||| || ||||

|| ||||____W6_____||_____W7____||||

|| |||____________W4____________|||

|| || __________________________ ||

|| ||| |||

|| ||| |||

|| |||____________W5____________|||

||__W2__||_____________W3_____________ |

|__________________W1__________________|

Deleting W5 in this configuration normally causes the deletion of W3 and W4. The remain-
ing live windows W2, W6 and W7 are recombined to form a new horizontal combination
with parent W1.

Sometimes, however, it makes sense to not delete a parent window like W4. In partic-
ular, a parent window should not be removed when it was used to preserve a combination
embedded in a combination of the same type. Such embeddings make sense to assure that
when you split a window and subsequently delete the new window, Emacs reestablishes the
layout of the associated frame as it existed before the splitting.

Consider a scenario starting with two live windows W2 and W3 and their parent W1.

Chapter 28: Windows 551

| ____________________________________ |

|| ||

|| ||

|| ||

|| ||

|| ||

|| ||

||_________________W2_________________||

| ____________________________________ |

|| ||

|| ||

||_________________W3_________________||

|__________________W1__________________|

Split W2 to make a new window W4 as follows.

| ____________________________________ |

|| ||

|| ||

||_________________W2_________________||

| ____________________________________ |

|| ||

|| ||

||_________________W4_________________||

| ____________________________________ |

|| ||

|| ||

||_________________W3_________________||

|__________________W1__________________|

Now, when enlarging a window vertically, Emacs tries to obtain the corresponding space
from its lower sibling, provided such a window exists. In our scenario, enlarging W4 will
steal space from W3.

| ____________________________________ |

|| ||

|| ||

||_________________W2_________________||

| ____________________________________ |

|| ||

|| ||

|| ||

|| ||

||_________________W4_________________||

| ____________________________________ |

||_________________W3_________________||

|__________________W1__________________|

Deleting W4 will now give its entire space to W2, including the space earlier stolen from
W3.

Chapter 28: Windows 552

| ____________________________________ |

|| ||

|| ||

|| ||

|| ||

|| ||

|| ||

|| ||

|| ||

||_________________W2_________________||

| ____________________________________ |

||_________________W3_________________||

|__________________W1__________________|

This can be counterintutive, in particular if W4 were used for displaying a buffer only
temporarily (see Section 38.8 [Temporary Displays], page 836), and you want to continue
working with the initial layout.

The behavior can be fixed by making a new parent window when splitting W2. The
variable described next allows to do that.

[User Option]window-combination-limit
This variable controls whether splitting a window shall make a new parent window.
The following values are recognized:

nil This means that the new live window is allowed to share the existing par-
ent window, if one exists, provided the split occurs in the same direction
as the existing window combination (otherwise, a new internal window is
created anyway).

window-size

In this case display-buffer makes a new parent window if it is passed
a window-height or window-width entry in the alist argument (see
Section 28.13 [Display Action Functions], page 563).

temp-buffer

This value causes the creation of a new parent window when a window
is split for showing a temporary buffer (see Section 38.8 [Temporary Dis-
plays], page 836) only.

display-buffer

This means that when display-buffer (see Section 28.12 [Choosing
Window], page 562) splits a window it always makes a new parent win-
dow.

t In this case a new parent window is always created when splitting a
window. Thus, if the value of this variable is at all times t, then at all
times every window tree is a binary tree (a tree where each window except
the root window has exactly one sibling).

The default is nil. Other values are reserved for future use.

If, as a consequence of this variable’s setting, split-window makes a new parent win-
dow, it also calls set-window-combination-limit (see below) on the newly-created

Chapter 28: Windows 553

internal window. This affects how the window tree is rearranged when the child
windows are deleted (see below).

If window-combination-limit is t, splitting W2 in the initial configuration of our
scenario would have produced this:

| ____________________________________ |

|| __________________________________ ||

||| |||

|||________________W2________________|||

|| __________________________________ ||

||| |||

|||________________W4________________|||

||_________________W5_________________||

| ____________________________________ |

|| ||

|| ||

||_________________W3_________________||

|__________________W1__________________|

A new internal window W5 has been created; its children are W2 and the new live window
W4. Now, W2 is the only sibling of W4, so enlarging W4 will try to shrink W2, leaving W3
unaffected. Observe that W5 represents a vertical combination of two windows embedded
in the vertical combination W1.

[Function]set-window-combination-limit window limit
This functions sets the combination limit of the window window to limit. This value
can be retrieved via the function window-combination-limit. See below for its
effects; note that it is only meaningful for internal windows. The split-window

function automatically calls this function, passing it t as limit, provided the value of
the variable window-combination-limit is t when it is called.

[Function]window-combination-limit window
This function returns the combination limit for window.

The combination limit is meaningful only for an internal window. If it is nil, then
Emacs is allowed to automatically delete window, in response to a window deletion,
in order to group the child windows of window with its sibling windows to form a
new window combination. If the combination limit is t, the child windows of window
are never automatically recombined with its siblings.

If, in the configuration shown at the beginning of this section, the combination limit
of W4 (the parent window of W6 and W7) is t, deleting W5 will not implicitly delete
W4 too.

Alternatively, the problems sketched above can be avoided by always resizing all windows
in the same combination whenever one of its windows is split or deleted. This also permits
to split windows that would be otherwise too small for such an operation.

[User Option]window-combination-resize
If this variable is nil, split-window can only split a window (denoted by window) if
window ’s screen area is large enough to accommodate both itself and the new window.

Chapter 28: Windows 554

If this variable is t, split-window tries to resize all windows that are part of the same
combination as window, in order to accommodate the new window. In particular, this
may allow split-window to succeed even if window is a fixed-size window or too small
to ordinarily split. Furthermore, subsequently resizing or deleting window may resize
all other windows in its combination.

The default is nil. Other values are reserved for future use. The value of this variable
is ignored when window-combination-limit is non-nil.

To illustrate the effect of window-combination-resize, consider the following frame
layout.

| ____________________________________ |

|| ||

|| ||

|| ||

|| ||

||_________________W2_________________||

| ____________________________________ |

|| ||

|| ||

|| ||

|| ||

||_________________W3_________________||

|__________________W1__________________|

If window-combination-resize is nil, splitting window W3 leaves the size of W2 un-
changed:

| ____________________________________ |

|| ||

|| ||

|| ||

|| ||

||_________________W2_________________||

| ____________________________________ |

|| ||

||_________________W3_________________||

| ____________________________________ |

|| ||

||_________________W4_________________||

|__________________W1__________________|

If window-combination-resize is t, splitting W3 instead leaves all three live windows
with approximately the same height:

Chapter 28: Windows 555

| ____________________________________ |

|| ||

|| ||

||_________________W2_________________||

| ____________________________________ |

|| ||

|| ||

||_________________W3_________________||

| ____________________________________ |

|| ||

|| ||

||_________________W4_________________||

|__________________W1__________________|

Deleting any of the live windows W2, W3 or W4 will distribute its space proportionally
among the two remaining live windows.

28.8 Selecting Windows

[Function]select-window window &optional norecord
This function makes window the selected window and the window selected within its
frame (see Section 28.1 [Basic Windows], page 538) and selects that frame. window
must be a live window. This function also makes window ’s buffer (see Section 28.10
[Buffers and Windows], page 558) current and sets that buffer’s value of point to the
value of window-point (see Section 28.18 [Window Point], page 572) in window. The
return value is window.

By default, this function also moves window ’s buffer to the front of the buffer list
(see Section 27.8 [The Buffer List], page 530), and makes window the most recently
selected window. However, if the optional argument norecord is non-nil, these addi-
tional actions are omitted.

The sequence of calls to select-window with a non-nil norecord argument determines
an ordering of windows by their selection time. The function get-lru-window can be
used to retrieve the least recently selected live window (see Section 28.9 [Cyclic Window
Ordering], page 556).

[Macro]save-selected-window forms. . .
This macro records the selected frame, as well as the selected window of each frame,
executes forms in sequence, then restores the earlier selected frame and windows. It
also saves and restores the current buffer. It returns the value of the last form in
forms.

This macro does not save or restore anything about the sizes, arrangement or contents
of windows; therefore, if forms change them, the change persists. If the previously
selected window of some frame is no longer live at the time of exit from forms, that
frame’s selected window is left alone. If the previously selected window is no longer
live, then whatever window is selected at the end of forms remains selected. The
current buffer is restored if and only if it is still live when exiting forms.

This macro changes neither the ordering of recently selected windows nor the buffer
list.

Chapter 28: Windows 556

[Macro]with-selected-window window forms. . .
This macro selects window, executes forms in sequence, then restores the previously
selected window and current buffer. The ordering of recently selected windows and
the buffer list remain unchanged unless you deliberately change them within forms;
for example, by calling select-window with argument norecord nil.

This macro does not change the order of recently selected windows or the buffer list.

[Function]frame-selected-window &optional frame
This function returns the window on frame that is selected within that frame. frame
should be a live frame; if omitted or nil, it defaults to the selected frame.

[Function]set-frame-selected-window frame window &optional norecord
This function makes window the window selected within the frame frame. frame
should be a live frame; if omitted or nil, it defaults to the selected frame. window
should be a live window; if omitted or nil, it defaults to the selected window.

If frame is the selected frame, this makes window the selected window.

If the optional argument norecord is non-nil, this function does not alter the list of
most recently selected windows, nor the buffer list.

28.9 Cyclic Ordering of Windows

When you use the command C-x o (other-window) to select some other window, it moves
through live windows in a specific order. For any given configuration of windows, this order
never varies. It is called the cyclic ordering of windows.

The ordering is determined by a depth-first traversal of the frame’s window tree, retriev-
ing the live windows which are the leaf nodes of the tree (see Section 28.2 [Windows and
Frames], page 539). If the minibuffer is active, the minibuffer window is included too. The
ordering is cyclic, so the last window in the sequence is followed by the first one.

[Function]next-window &optional window minibuf all-frames
This function returns a live window, the one following window in the cyclic ordering
of windows. window should be a live window; if omitted or nil, it defaults to the
selected window.

The optional argument minibuf specifies whether minibuffer windows should be in-
cluded in the cyclic ordering. Normally, when minibuf is nil, a minibuffer window
is included only if it is currently “active”; this matches the behavior of C-x o. (Note
that a minibuffer window is active as long as its minibuffer is in use; see Chapter 20
[Minibuffers], page 291).

If minibuf is t, the cyclic ordering includes all minibuffer windows. If minibuf is
neither t nor nil, minibuffer windows are not included even if they are active.

The optional argument all-frames specifies which frames to consider:

• nil means to consider windows on window ’s frame. If the minibuffer window is
considered (as specified by the minibuf argument), then frames that share the
minibuffer window are considered too.

• t means to consider windows on all existing frames.

• visible means to consider windows on all visible frames.

Chapter 28: Windows 557

• 0 means to consider windows on all visible or iconified frames.

• A frame means to consider windows on that specific frame.

• Anything else means to consider windows on window ’s frame, and no others.

If more than one frame is considered, the cyclic ordering is obtained by appending
the orderings for those frames, in the same order as the list of all live frames (see
Section 29.7 [Finding All Frames], page 606).

[Function]previous-window &optional window minibuf all-frames
This function returns a live window, the one preceding window in the cyclic ordering
of windows. The other arguments are handled like in next-window.

[Command]other-window count &optional all-frames
This function selects a live window, one count places from the selected window in
the cyclic ordering of windows. If count is a positive number, it skips count windows
forwards; if count is negative, it skips −count windows backwards; if count is zero,
that simply re-selects the selected window. When called interactively, count is the
numeric prefix argument.

The optional argument all-frames has the same meaning as in next-window, like a
nil minibuf argument to next-window.

This function does not select a window that has a non-nil no-other-window window
parameter (see Section 28.25 [Window Parameters], page 586).

[Function]walk-windows fun &optional minibuf all-frames
This function calls the function fun once for each live window, with the window as
the argument.

It follows the cyclic ordering of windows. The optional arguments minibuf and all-
frames specify the set of windows included; these have the same arguments as in
next-window. If all-frames specifies a frame, the first window walked is the first
window on that frame (the one returned by frame-first-window), not necessarily
the selected window.

If fun changes the window configuration by splitting or deleting windows, that does
not alter the set of windows walked, which is determined prior to calling fun for the
first time.

[Function]one-window-p &optional no-mini all-frames
This function returns t if the selected window is the only live window, and nil

otherwise.

If the minibuffer window is active, it is normally considered (so that this function
returns nil). However, if the optional argument no-mini is non-nil, the minibuffer
window is ignored even if active. The optional argument all-frames has the same
meaning as for next-window.

The following functions return a window which satisfies some criterion, without selecting
it:

Chapter 28: Windows 558

[Function]get-lru-window &optional all-frames dedicated not-selected
This function returns a live window which is heuristically the “least recently used”
window. The optional argument all-frames has the same meaning as in next-window.

If any full-width windows are present, only those windows are considered. A minibuf-
fer window is never a candidate. A dedicated window (see Section 28.16 [Dedicated
Windows], page 570) is never a candidate unless the optional argument dedicated
is non-nil. The selected window is never returned, unless it is the only candidate.
However, if the optional argument not-selected is non-nil, this function returns nil
in that case.

[Function]get-largest-window &optional all-frames dedicated not-selected
This function returns the window with the largest area (height times width). The op-
tional argument all-frames specifies the windows to search, and has the same meaning
as in next-window.

A minibuffer window is never a candidate. A dedicated window (see Section 28.16
[Dedicated Windows], page 570) is never a candidate unless the optional argument
dedicated is non-nil. The selected window is not a candidate if the optional argument
not-selected is non-nil. If the optional argument not-selected is non-nil and the
selected window is the only candidate, this function returns nil.

If there are two candidate windows of the same size, this function prefers the one that
comes first in the cyclic ordering of windows, starting from the selected window.

[Function]get-window-with-predicate predicate &optional minibuf all-frames
default

This function calls the function predicate for each of the windows in the cyclic order
of windows in turn, passing it the window as an argument. If the predicate returns
non-nil for any window, this function stops and returns that window. If no such
window is found, the return value is default (which defaults to nil).

The optional arguments minibuf and all-frames specify the windows to search, and
have the same meanings as in next-window.

28.10 Buffers and Windows

This section describes low-level functions for examining and setting the contents of windows.
See Section 28.11 [Switching Buffers], page 560, for higher-level functions for displaying a
specific buffer in a window.

[Function]window-buffer &optional window
This function returns the buffer that window is displaying. If window is omitted or
nil it defaults to the selected window. If window is an internal window, this function
returns nil.

[Function]set-window-buffer window buffer-or-name &optional keep-margins
This function makes window display buffer-or-name. window should be a live window;
if nil, it defaults to the selected window. buffer-or-name should be a buffer, or the
name of an existing buffer. This function does not change which window is selected,
nor does it directly change which buffer is current (see Section 27.2 [Current Buffer],
page 521). Its return value is nil.

Chapter 28: Windows 559

If window is strongly dedicated to a buffer and buffer-or-name does not specify
that buffer, this function signals an error. See Section 28.16 [Dedicated Windows],
page 570.

By default, this function resets window ’s position, display margins, fringe widths,
and scroll bar settings, based on the local variables in the specified buffer. However,
if the optional argument keep-margins is non-nil, it leaves the display margins and
fringe widths unchanged.

When writing an application, you should normally use the higher-level functions de-
scribed in Section 28.11 [Switching Buffers], page 560, instead of calling set-window-

buffer directly.

This runs window-scroll-functions, followed by window-configuration-change-

hook. See Section 28.26 [Window Hooks], page 588.

[Variable]buffer-display-count
This buffer-local variable records the number of times a buffer has been displayed in
a window. It is incremented each time set-window-buffer is called for the buffer.

[Variable]buffer-display-time
This buffer-local variable records the time at which a buffer was last displayed in
a window. The value is nil if the buffer has never been displayed. It is updated
each time set-window-buffer is called for the buffer, with the value returned by
current-time (see Section 39.5 [Time of Day], page 923).

[Function]get-buffer-window &optional buffer-or-name all-frames
This function returns the first window displaying buffer-or-name in the cyclic ordering
of windows, starting from the selected window (see Section 28.9 [Cyclic Window
Ordering], page 556). If no such window exists, the return value is nil.

buffer-or-name should be a buffer or the name of a buffer; if omitted or nil, it defaults
to the current buffer. The optional argument all-frames specifies which windows to
consider:

• t means consider windows on all existing frames.

• visible means consider windows on all visible frames.

• 0 means consider windows on all visible or iconified frames.

• A frame means consider windows on that frame only.

• Any other value means consider windows on the selected frame.

Note that these meanings differ slightly from those of the all-frames argument to
next-window (see Section 28.9 [Cyclic Window Ordering], page 556). This function
may be changed in a future version of Emacs to eliminate this discrepancy.

[Function]get-buffer-window-list &optional buffer-or-name minibuf all-frames
This function returns a list of all windows currently displaying buffer-or-name. buffer-
or-name should be a buffer or the name of an existing buffer. If omitted or nil, it
defaults to the current buffer.

The arguments minibuf and all-frames have the same meanings as in the function
next-window (see Section 28.9 [Cyclic Window Ordering], page 556). Note that the
all-frames argument does not behave exactly like in get-buffer-window.

Chapter 28: Windows 560

[Command]replace-buffer-in-windows &optional buffer-or-name
This command replaces buffer-or-name with some other buffer, in all windows dis-
playing it. buffer-or-name should be a buffer, or the name of an existing buffer; if
omitted or nil, it defaults to the current buffer.

The replacement buffer in each window is chosen via switch-to-prev-buffer (see
Section 28.15 [Window History], page 568). Any dedicated window displaying buffer-
or-name is deleted if possible (see Section 28.16 [Dedicated Windows], page 570). If
such a window is the only window on its frame and there are other frames on the same
terminal, the frame is deleted as well. If the dedicated window is the only window on
the only frame on its terminal, the buffer is replaced anyway.

28.11 Switching to a Buffer in a Window

This section describes high-level functions for switching to a specified buffer in some window.
In general, “switching to a buffer” means to (1) show the buffer in some window, (2) make
that window the selected window (and its frame the selected frame), and (3) make the buffer
the current buffer.

Do not use these functions to make a buffer temporarily current just so a Lisp program
can access or modify it. They have side-effects, such as changing window histories (see
Section 28.15 [Window History], page 568), which will surprise the user if used that way.
If you want to make a buffer current to modify it in Lisp, use with-current-buffer,
save-current-buffer, or set-buffer. See Section 27.2 [Current Buffer], page 521.

[Command]switch-to-buffer buffer-or-name &optional norecord
force-same-window

This command attempts to display buffer-or-name in the selected window and make
it the current buffer. It is often used interactively (as the binding of C-x b), as well
as in Lisp programs. The return value is the buffer switched to.

If buffer-or-name is nil, it defaults to the buffer returned by other-buffer (see
Section 27.8 [The Buffer List], page 530). If buffer-or-name is a string that is not the
name of any existing buffer, this function creates a new buffer with that name; the
new buffer’s major mode is determined by the variable major-mode (see Section 23.2
[Major Modes], page 407).

Normally, the specified buffer is put at the front of the buffer list—both the global
buffer list and the selected frame’s buffer list (see Section 27.8 [The Buffer List],
page 530). However, this is not done if the optional argument norecord is non-nil.

Sometimes, switch-to-buffer may be unable to display the buffer in the selected
window. This happens if the selected window is a minibuffer window, or if the selected
window is strongly dedicated to its buffer (see Section 28.16 [Dedicated Windows],
page 570). In that case, the command normally tries to display the buffer in some
other window, by invoking pop-to-buffer (see below). However, if the optional
argument force-same-window is non-nil, it signals an error instead.

By default, switch-to-buffer shows the buffer at its position of point. This behavior
can be tuned using the following option.

Chapter 28: Windows 561

[User Option]switch-to-buffer-preserve-window-point
If this variable is nil, switch-to-buffer displays the buffer specified by buffer-or-
name at the position of that buffer’s point. If this variable is already-displayed, it
tries to display the buffer at its previous position in the selected window, provided the
buffer is currently displayed in some other window on any visible or iconified frame.
If this variable is t, switch-to-buffer unconditionally tries to display the buffer at
its previous position in the selected window.

This variable is ignored if the buffer is already displayed in the selected window or
never appeared in it before, or if switch-to-buffer calls pop-to-buffer to display
the buffer.

The next two commands are similar to switch-to-buffer, except for the described
features.

[Command]switch-to-buffer-other-window buffer-or-name &optional norecord
This function displays the buffer specified by buffer-or-name in some window other
than the selected window. It uses the function pop-to-buffer internally (see below).

If the selected window already displays the specified buffer, it continues to do so, but
another window is nonetheless found to display it as well.

The buffer-or-name and norecord arguments have the same meanings as in switch-

to-buffer.

[Command]switch-to-buffer-other-frame buffer-or-name &optional norecord
This function displays the buffer specified by buffer-or-name in a new frame. It uses
the function pop-to-buffer internally (see below).

If the specified buffer is already displayed in another window, in any frame on the cur-
rent terminal, this switches to that window instead of creating a new frame. However,
the selected window is never used for this.

The buffer-or-name and norecord arguments have the same meanings as in switch-

to-buffer.

The above commands use the function pop-to-buffer, which flexibly displays a buffer in
some window and selects that window for editing. In turn, pop-to-buffer uses display-
buffer for displaying the buffer. Hence, all the variables affecting display-buffer will
affect it as well. See Section 28.12 [Choosing Window], page 562, for the documentation of
display-buffer.

[Command]pop-to-buffer buffer-or-name &optional action norecord
This function makes buffer-or-name the current buffer and displays it in some window,
preferably not the window previously selected. It then selects the displaying window.
If that window is on a different graphical frame, that frame is given input focus if
possible (see Section 29.9 [Input Focus], page 607). The return value is the buffer
that was switched to.

If buffer-or-name is nil, it defaults to the buffer returned by other-buffer (see
Section 27.8 [The Buffer List], page 530). If buffer-or-name is a string that is not the
name of any existing buffer, this function creates a new buffer with that name; the
new buffer’s major mode is determined by the variable major-mode (see Section 23.2
[Major Modes], page 407).

Chapter 28: Windows 562

If action is non-nil, it should be a display action to pass to display-buffer (see
Section 28.12 [Choosing Window], page 562). Alternatively, a non-nil, non-list value
means to pop to a window other than the selected one—even if the buffer is already
displayed in the selected window.

Like switch-to-buffer, this function updates the buffer list unless norecord is non-
nil.

28.12 Choosing a Window for Display

The command display-buffer flexibly chooses a window for display, and displays a speci-
fied buffer in that window. It can be called interactively, via the key binding C-x 4 C-o. It is
also used as a subroutine by many functions and commands, including switch-to-buffer

and pop-to-buffer (see Section 28.11 [Switching Buffers], page 560).

This command performs several complex steps to find a window to display in. These
steps are described by means of display actions, which have the form (function . alist).
Here, function is either a function or a list of functions, which we refer to as action functions;
alist is an association list, which we refer to as action alists.

An action function accepts two arguments: the buffer to display and an action alist.
It attempts to display the buffer in some window, picking or creating a window according
to its own criteria. If successful, it returns the window; otherwise, it returns nil. See
Section 28.13 [Display Action Functions], page 563, for a list of predefined action functions.

display-buffer works by combining display actions from several sources, and calling
the action functions in turn, until one of them manages to display the buffer and returns a
non-nil value.

[Command]display-buffer buffer-or-name &optional action frame
This command makes buffer-or-name appear in some window, without selecting the
window or making the buffer current. The argument buffer-or-name must be a buffer
or the name of an existing buffer. The return value is the window chosen to display
the buffer.

The optional argument action, if non-nil, should normally be a display action (de-
scribed above). display-buffer builds a list of action functions and an action alist,
by consolidating display actions from the following sources (in order):

• The variable display-buffer-overriding-action.

• The user option display-buffer-alist.

• The action argument.

• The user option display-buffer-base-action.

• The constant display-buffer-fallback-action.

Each action function is called in turn, passing the buffer as the first argument and
the combined action alist as the second argument, until one of the functions returns
non-nil.

The argument action can also have a non-nil, non-list value. This has the special
meaning that the buffer should be displayed in a window other than the selected one,
even if the selected window is already displaying it. If called interactively with a
prefix argument, action is t.

Chapter 28: Windows 563

The optional argument frame, if non-nil, specifies which frames to check when de-
ciding whether the buffer is already displayed. It is equivalent to adding an element
(reusable-frames . frame) to the action alist of action. See Section 28.13 [Display
Action Functions], page 563.

[Variable]display-buffer-overriding-action
The value of this variable should be a display action, which is treated with the highest
priority by display-buffer. The default value is empty, i.e., (nil . nil).

[User Option]display-buffer-alist
The value of this option is an alist mapping conditions to display actions. Each
condition may be either a regular expression matching a buffer name or a function
that takes two arguments: a buffer name and the action argument passed to display-
buffer. If the name of the buffer passed to display-buffer either matches a regular
expression in this alist or the function specified by a condition returns non-nil, then
display-buffer uses the corresponding display action to display the buffer.

[User Option]display-buffer-base-action
The value of this option should be a display action. This option can be used to define
a “standard” display action for calls to display-buffer.

[Constant]display-buffer-fallback-action
This display action specifies the fallback behavior for display-buffer if no other
display actions are given.

28.13 Action Functions for display-buffer

The following basic action functions are defined in Emacs. Each of these functions takes
two arguments: buffer, the buffer to display, and alist, an action alist. Each action function
returns the window if it succeeds, and nil if it fails.

[Function]display-buffer-same-window buffer alist
This function tries to display buffer in the selected window. It fails if the selected
window is a minibuffer window or is dedicated to another buffer (see Section 28.16
[Dedicated Windows], page 570). It also fails if alist has a non-nil inhibit-same-

window entry.

[Function]display-buffer-reuse-window buffer alist
This function tries to “display” buffer by finding a window that is already displaying
it.

If alist has a non-nil inhibit-same-window entry, the selected window is not eligible
for reuse. If alist contains a reusable-frames entry, its value determines which
frames to search for a reusable window:

• nil means consider windows on the selected frame. (Actually, the last non-
minibuffer frame.)

• t means consider windows on all frames.

• visible means consider windows on all visible frames.

• 0 means consider windows on all visible or iconified frames.

Chapter 28: Windows 564

• A frame means consider windows on that frame only.

If alist contains no reusable-frames entry, this function normally searches just
the selected frame; however, if the variable pop-up-frames is non-nil, it searches
all frames on the current terminal. See Section 28.14 [Choosing Window Options],
page 566.

If this function chooses a window on another frame, it makes that frame visible and,
unless alist contains an inhibit-switch-frame entry (see Section 28.14 [Choosing
Window Options], page 566), raises that frame if necessary.

[Function]display-buffer-pop-up-frame buffer alist
This function creates a new frame, and displays the buffer in that frame’s window.
It actually performs the frame creation by calling the function specified in pop-up-

frame-function (see Section 28.14 [Choosing Window Options], page 566). If alist
contains a pop-up-frame-parameters entry, the associated value is added to the
newly created frame’s parameters.

[Function]display-buffer-pop-up-window buffer alist
This function tries to display buffer by splitting the largest or least recently-used
window (typically one on the selected frame). It actually performs the split by call-
ing the function specified in split-window-preferred-function (see Section 28.14
[Choosing Window Options], page 566).

The size of the new window can be adjusted by supplying window-height and
window-width entries in alist. To adjust the window’s height, use an entry whose
car is window-height and whose cdr is one of:

• nil means to leave the height of the new window alone.

• A number specifies the desired height of the new window. An integer number
specifies the number of lines of the window. A floating point number gives the
fraction of the window’s height with respect to the height of the frame’s root
window.

• If the cdr specifies a function, that function is called with one argument: the
new window. The function is supposed to adjust the height of the window;
its return value is ignored. Suitable functions are shrink-window-if-larger-

than-buffer and fit-window-to-buffer, see Section 28.4 [Resizing Windows],
page 544.

To adjust the window’s width, use an entry whose car is window-width and whose
cdr is one of:

• nil means to leave the width of the new window alone.

• A number specifies the desired width of the new window. An integer number
specifies the number of columns of the window. A floating point number gives
the fraction of the window’s width with respect to the width of the frame’s root
window.

• If the cdr specifies a function, that function is called with one argument: the
new window. The function is supposed to adjust the width of the window; its
return value is ignored.

Chapter 28: Windows 565

This function can fail if no window splitting can be performed for some reason (e.g., if
the selected frame has an unsplittable frame parameter; see Section 29.3.3.5 [Buffer
Parameters], page 599).

[Function]display-buffer-below-selected buffer alist
This function tries to display buffer in a window below the selected window. This
means to either split the selected window or use the window below the selected one.
If it does create a new window, it will also adjust its size provided alist contains a
suitable window-height or window-width entry, see above.

[Function]display-buffer-in-previous-window buffer alist
This function tries to display buffer in a window previously showing it. If alist has a
non-nil inhibit-same-window entry, the selected window is not eligible for reuse. If
alist contains a reusable-frames entry, its value determines which frames to search
for a suitable window as with display-buffer-reuse-window.

If alist has a previous-window entry, the window specified by that entry will override
any other window found by the methods above, even if that window never showed
buffer before.

[Function]display-buffer-use-some-window buffer alist
This function tries to display buffer by choosing an existing window and displaying
the buffer in that window. It can fail if all windows are dedicated to another buffer
(see Section 28.16 [Dedicated Windows], page 570).

To illustrate the use of action functions, consider the following example.

(display-buffer

(get-buffer-create "*foo*")

’((display-buffer-reuse-window

display-buffer-pop-up-window

display-buffer-pop-up-frame)

(reusable-frames . 0)

(window-height . 10) (window-width . 40)))

Evaluating the form above will cause display-buffer to proceed as follows: If a buffer
called *foo* already appears on a visible or iconified frame, it will reuse its window. Other-
wise, it will try to pop up a new window or, if that is impossible, a new frame and show the
buffer there. If all these steps fail, it will proceed using whatever display-buffer-base-
action and display-buffer-fallback-action prescribe.

Furthermore, display-buffer will try to adjust a reused window (provided *foo* was
put by display-buffer there before) or a popped-up window as follows: If the window
is part of a vertical combination, it will set its height to ten lines. Note that if, instead
of the number “10”, we specified the function fit-window-to-buffer, display-buffer
would come up with a one-line window to fit the empty buffer. If the window is part
of a horizontal combination, it sets its width to 40 columns. Whether a new window is
vertically or horizontally combined depends on the shape of the window split and the val-
ues of split-window-preferred-function, split-height-threshold and split-width-

threshold (see Section 28.14 [Choosing Window Options], page 566).

Now suppose we combine this call with a preexisting setup for ‘display-buffer-alist’ as
follows.

Chapter 28: Windows 566

(let ((display-buffer-alist

(cons

’("*foo*"

(display-buffer-reuse-window display-buffer-below-selected)

(reusable-frames)

(window-height . 5))

display-buffer-alist)))

(display-buffer

(get-buffer-create "*foo*")

’((display-buffer-reuse-window

display-buffer-pop-up-window

display-buffer-pop-up-frame)

(reusable-frames . 0)

(window-height . 10) (window-width . 40))))

This form will have display-buffer first try reusing a window that shows *foo* on the
selected frame. If there’s no such window, it will try to split the selected window or, if that
is impossible, use the window below the selected window.

If there’s no window below the selected one, or the window below the selected one is
dedicated to its buffer, display-buffer will proceed as described in the previous example.
Note, however, that when it tries to adjust the height of any reused or popped-up window,
it will in any case try to set its number of lines to “5” since that value overrides the
corresponding specification in the action argument of display-buffer.

28.14 Additional Options for Displaying Buffers

The behavior of the standard display actions of display-buffer (see Section 28.12 [Choos-
ing Window], page 562) can be modified by a variety of user options.

[User Option]pop-up-windows
If the value of this variable is non-nil, display-buffer is allowed to split an existing
window to make a new window for displaying in. This is the default.

This variable is provided mainly for backward compatibility. It is obeyed by
display-buffer via a special mechanism in display-buffer-fallback-action,
which only calls the action function display-buffer-pop-up-window (see
Section 28.13 [Display Action Functions], page 563) when the value is nil. It is not
consulted by display-buffer-pop-up-window itself, which the user may specify
directly in display-buffer-alist etc.

[User Option]split-window-preferred-function
This variable specifies a function for splitting a window, in order to make a new win-
dow for displaying a buffer. It is used by the display-buffer-pop-up-window action
function to actually split the window (see Section 28.13 [Display Action Functions],
page 563).

The default value is split-window-sensibly, which is documented below. The value
must be a function that takes one argument, a window, and return either a new
window (which will be used to display the desired buffer) or nil (which means the
splitting failed).

Chapter 28: Windows 567

[Function]split-window-sensibly window
This function tries to split window, and return the newly created window. If window
cannot be split, it returns nil.

This function obeys the usual rules that determine when a window may be split (see
Section 28.5 [Splitting Windows], page 546). It first tries to split by placing the new
window below, subject to the restriction imposed by split-height-threshold (see
below), in addition to any other restrictions. If that fails, it tries to split by placing
the new window to the right, subject to split-width-threshold (see below). If that
fails, and the window is the only window on its frame, this function again tries to
split and place the new window below, disregarding split-height-threshold. If
this fails as well, this function gives up and returns nil.

[User Option]split-height-threshold
This variable, used by split-window-sensibly, specifies whether to split the window
placing the new window below. If it is an integer, that means to split only if the
original window has at least that many lines. If it is nil, that means not to split this
way.

[User Option]split-width-threshold
This variable, used by split-window-sensibly, specifies whether to split the window
placing the new window to the right. If the value is an integer, that means to split
only if the original window has at least that many columns. If the value is nil, that
means not to split this way.

[User Option]pop-up-frames
If the value of this variable is non-nil, that means display-buffer may display
buffers by making new frames. The default is nil.

A non-nil value also means that when display-buffer is looking for a window
already displaying buffer-or-name, it can search any visible or iconified frame, not
just the selected frame.

This variable is provided mainly for backward compatibility. It is obeyed by display-
buffer via a special mechanism in display-buffer-fallback-action, which calls
the action function display-buffer-pop-up-frame (see Section 28.13 [Display Ac-
tion Functions], page 563) if the value is non-nil. (This is done before attempting to
split a window.) This variable is not consulted by display-buffer-pop-up-frame

itself, which the user may specify directly in display-buffer-alist etc.

[User Option]pop-up-frame-function
This variable specifies a function for creating a new frame, in order to make a new
window for displaying a buffer. It is used by the display-buffer-pop-up-frame

action function (see Section 28.13 [Display Action Functions], page 563).

The value should be a function that takes no arguments and returns a frame, or nil
if no frame could be created. The default value is a function that creates a frame
using the parameters specified by pop-up-frame-alist (see below).

[User Option]pop-up-frame-alist
This variable holds an alist of frame parameters (see Section 29.3 [Frame Parameters],
page 594), which is used by the default function in pop-up-frame-function to make
a new frame. The default is nil.

Chapter 28: Windows 568

[User Option]same-window-buffer-names
A list of buffer names for buffers that should be displayed in the selected window. If
a buffer’s name is in this list, display-buffer handles the buffer by showing it in
the selected window.

[User Option]same-window-regexps
A list of regular expressions that specify buffers that should be displayed in the
selected window. If the buffer’s name matches any of the regular expressions in this
list, display-buffer handles the buffer by showing it in the selected window.

[Function]same-window-p buffer-name
This function returns t if displaying a buffer named buffer-name with display-

buffer would put it in the selected window.

28.15 Window History

Each window remembers in a list the buffers it has previously displayed, and the order in
which these buffers were removed from it. This history is used, for example, by replace-

buffer-in-windows (see Section 28.10 [Buffers and Windows], page 558). The list is auto-
matically maintained by Emacs, but you can use the following functions to explicitly inspect
or alter it:

[Function]window-prev-buffers &optional window
This function returns a list specifying the previous contents of window. The optional
argument window should be a live window and defaults to the selected one.

Each list element has the form (buffer window-start window-pos), where buffer is
a buffer previously shown in the window, window-start is the window start position
when that buffer was last shown, and window-pos is the point position when that
buffer was last shown in window.

The list is ordered so that earlier elements correspond to more recently-shown buffers,
and the first element usually corresponds to the buffer most recently removed from
the window.

[Function]set-window-prev-buffers window prev-buffers
This function sets window ’s previous buffers to the value of prev-buffers. The argu-
ment window must be a live window and defaults to the selected one. The argument
prev-buffers should be a list of the same form as that returned by window-prev-

buffers.

In addition, each buffer maintains a list of next buffers, which is a list of buffers re-shown
by switch-to-prev-buffer (see below). This list is mainly used by switch-to-prev-

buffer and switch-to-next-buffer for choosing buffers to switch to.

[Function]window-next-buffers &optional window
This function returns the list of buffers recently re-shown in window via switch-to-

prev-buffer. The window argument must denote a live window or nil (meaning
the selected window).

Chapter 28: Windows 569

[Function]set-window-next-buffers window next-buffers
This function sets the next buffer list of window to next-buffers. The window argu-
ment should be a live window or nil (meaning the selected window). The argument
next-buffers should be a list of buffers.

The following commands can be used to cycle through the global buffer list, much like
bury-buffer and unbury-buffer. However, they cycle according to the specified window’s
history list, rather than the global buffer list. In addition, they restore window-specific
window start and point positions, and may show a buffer even if it is already shown in an-
other window. The switch-to-prev-buffer command, in particular, is used by replace-

buffer-in-windows, bury-buffer and quit-window to find a replacement buffer for a
window.

[Command]switch-to-prev-buffer &optional window bury-or-kill
This command displays the previous buffer in window. The argument window should
be a live window or nil (meaning the selected window). If the optional argument
bury-or-kill is non-nil, this means that the buffer currently shown in window is about
to be buried or killed and consequently should not be switched to in future invocations
of this command.

The previous buffer is usually the buffer shown before the buffer currently shown
in window. However, a buffer that has been buried or killed, or has been already
shown by a recent invocation of switch-to-prev-buffer, does not qualify as previous
buffer.

If repeated invocations of this command have already shown all buffers previously
shown in window, further invocations will show buffers from the buffer list of the
frame window appears on (see Section 27.8 [The Buffer List], page 530), trying to
skip buffers that are already shown in another window on that frame.

[Command]switch-to-next-buffer &optional window
This command switches to the next buffer in window, thus undoing the effect of the
last switch-to-prev-buffer command in window. The argument window must be
a live window and defaults to the selected one.

If there is no recent invocation of switch-to-prev-buffer that can be undone, this
function tries to show a buffer from the buffer list of the frame window appears on
(see Section 27.8 [The Buffer List], page 530).

By default switch-to-prev-buffer and switch-to-next-buffer can switch to a buffer
that is already shown in another window on the same frame. The following option can be
used to override this behavior.

[User Option]switch-to-visible-buffer
If this variable is non-nil, switch-to-prev-buffer and switch-to-next-buffer

may switch to a buffer that is already visible on the same frame, provided the buffer
was shown in the relevant window before. If it is nil, switch-to-prev-buffer and
switch-to-next-buffer always try to avoid switching to a buffer that is already
visible in another window on the same frame.

Chapter 28: Windows 570

28.16 Dedicated Windows

Functions for displaying a buffer can be told to not use specific windows by marking these
windows as dedicated to their buffers. display-buffer (see Section 28.12 [Choosing Win-
dow], page 562) never uses a dedicated window for displaying another buffer in it. get-lru-
window and get-largest-window (see Section 28.9 [Cyclic Window Ordering], page 556) do
not consider dedicated windows as candidates when their dedicated argument is non-nil.
The behavior of set-window-buffer (see Section 28.10 [Buffers and Windows], page 558)
with respect to dedicated windows is slightly different, see below.

Functions supposed to remove a buffer from a window or a window from a frame can
behave specially when a window they operate on is dedicated. We will distinguish three
basic cases, namely where (1) the window is not the only window on its frame, (2) the
window is the only window on its frame but there are other frames on the same terminal
left, and (3) the window is the only window on the only frame on the same terminal.

In particular, delete-windows-on (see Section 28.6 [Deleting Windows], page 549) han-
dles case (2) by deleting the associated frame and case (3) by showing another buffer in
that frame’s only window. The function replace-buffer-in-windows (see Section 28.10
[Buffers and Windows], page 558) which is called when a buffer gets killed, deletes the
window in case (1) and behaves like delete-windows-on otherwise.

When bury-buffer (see Section 27.8 [The Buffer List], page 530) operates on the selected
window (which shows the buffer that shall be buried), it handles case (2) by calling frame-

auto-hide-function (see Section 28.17 [Quitting Windows], page 570) to deal with the
selected frame. The other two cases are handled as with replace-buffer-in-windows.

[Function]window-dedicated-p &optional window
This function returns non-nil if window is dedicated to its buffer and nil otherwise.
More precisely, the return value is the value assigned by the last call of set-window-
dedicated-p for window, or nil if that function was never called with window as its
argument. The default for window is the selected window.

[Function]set-window-dedicated-p window flag
This function marks window as dedicated to its buffer if flag is non-nil, and non-
dedicated otherwise.

As a special case, if flag is t, window becomes strongly dedicated to its buffer. set-
window-buffer signals an error when the window it acts upon is strongly dedicated
to its buffer and does not already display the buffer it is asked to display. Other
functions do not treat t differently from any non-nil value.

28.17 Quitting Windows

When you want to get rid of a window used for displaying a buffer, you can call delete-
window or delete-windows-on (see Section 28.6 [Deleting Windows], page 549) to remove
that window from its frame. If the buffer is shown on a separate frame, you might want to
call delete-frame (see Section 29.6 [Deleting Frames], page 606) instead. If, on the other
hand, a window has been reused for displaying the buffer, you might prefer showing the
buffer previously shown in that window, by calling the function switch-to-prev-buffer

(see Section 28.15 [Window History], page 568). Finally, you might want to either bury

Chapter 28: Windows 571

(see Section 27.8 [The Buffer List], page 530) or kill (see Section 27.10 [Killing Buffers],
page 533) the window’s buffer.

The following command uses information on how the window for displaying the buffer
was obtained in the first place, thus attempting to automate the above decisions for you.

[Command]quit-window &optional kill window
This command quits window and buries its buffer. The argument window must be
a live window and defaults to the selected one. With prefix argument kill non-nil,
it kills the buffer instead of burying it. It calls the function quit-restore-window

described next to deal with the window and its buffer.

[Function]quit-restore-window &optional window bury-or-kill
This function tries to restore the state of window that existed before its buffer was
displayed in it. The optional argument window must be a live window and defaults
to the selected one.

If window was created specially for displaying its buffer, this function deletes window
provided its frame contains at least one other live window. If window is the only
window on its frame and there are other frames on the frame’s terminal, the value
of the optional argument bury-or-kill determines how to proceed with the window.
If bury-or-kill equals kill, the frame is deleted unconditionally. Otherwise, the fate
of the frame is determined by calling frame-auto-hide-function (see below) with
that frame as sole argument.

Otherwise, this function tries to redisplay the buffer previously shown in window. It
also tries to restore the window start (see Section 28.19 [Window Start and End],
page 573) and point (see Section 28.18 [Window Point], page 572) positions of the
previously shown buffer. If, in addition, window ’s buffer was temporarily resized, this
function will also try to restore the original height of window.

The cases described so far require that the buffer shown in window is still the buffer
displayed by the last buffer display function for this window. If another buffer has been
shown in the meantime, or the buffer previously shown no longer exists, this function
calls switch-to-prev-buffer (see Section 28.15 [Window History], page 568) to show
some other buffer instead.

The optional argument bury-or-kill specifes how to deal with window ’s buffer. The
following values are handled:

nil This means to not deal with the buffer in any particular way. As a
consequence, if window is not deleted, invoking switch-to-prev-buffer
will usually show the buffer again.

append This means that if window is not deleted, its buffer is moved to the end of
window ’s list of previous buffers, so it’s less likely that a future invocation
of switch-to-prev-buffer will switch to it. Also, it moves the buffer to
the end of the frame’s buffer list.

bury This means that if window is not deleted, its buffer is removed from
window ’s list of previous buffers. Also, it moves the buffer to the end
of the frame’s buffer list. This value provides the most reliable remedy
to not have switch-to-prev-buffer switch to this buffer again without
killing the buffer.

Chapter 28: Windows 572

kill This means to kill window ’s buffer.

quit-restore-window bases its decisions on information stored in window ’s quit-
restore window parameter (see Section 28.25 [Window Parameters], page 586), and
resets that parameter to nil after it’s done.

The following option specifies how to deal with a frame containing just one window that
should be either quit, or whose buffer should be buried.

[User Option]frame-auto-hide-function
The function specified by this option is called to automatically hide frames. This
function is called with one argument—a frame.

The function specified here is called by bury-buffer (see Section 27.8 [The Buffer
List], page 530) when the selected window is dedicated and shows the buffer to bury.
It is also called by quit-restore-window (see above) when the frame of the window
to quit has been specially created for displaying that window’s buffer and the buffer
is not killed.

The default is to call iconify-frame (see Section 29.10 [Visibility of Frames],
page 609). Alternatively, you may specify either delete-frame (see Section 29.6
[Deleting Frames], page 606) to remove the frame from its display, ignore to
leave the frame unchanged, or any other function that can take a frame as its sole
argument.

Note that the function specified by this option is called only if the specified frame
contains just one live window and there is at least one other frame on the same
terminal.

28.18 Windows and Point

Each window has its own value of point (see Section 30.1 [Point], page 623), independent
of the value of point in other windows displaying the same buffer. This makes it useful to
have multiple windows showing one buffer.

• The window point is established when a window is first created; it is initialized from
the buffer’s point, or from the window point of another window opened on the buffer
if such a window exists.

• Selecting a window sets the value of point in its buffer from the window’s value of
point. Conversely, deselecting a window sets the window’s value of point from that of
the buffer. Thus, when you switch between windows that display a given buffer, the
point value for the selected window is in effect in the buffer, while the point values for
the other windows are stored in those windows.

• As long as the selected window displays the current buffer, the window’s point and the
buffer’s point always move together; they remain equal.

As far as the user is concerned, point is where the cursor is, and when the user switches
to another buffer, the cursor jumps to the position of point in that buffer.

[Function]window-point &optional window
This function returns the current position of point in window. For a nonselected
window, this is the value point would have (in that window’s buffer) if that window
were selected. The default for window is the selected window.

Chapter 28: Windows 573

When window is the selected window, the value returned is the value of point in that
window’s buffer. Strictly speaking, it would be more correct to return the “top-level”
value of point, outside of any save-excursion forms. But that value is hard to find.

[Function]set-window-point window position
This function positions point in window at position position in window ’s buffer. It
returns position.

If window is selected, this simply does goto-char in window ’s buffer.

[Variable]window-point-insertion-type
This variable specifies the marker insertion type (see Section 31.5 [Marker Insertion
Types], page 639) of window-point. The default is nil, so window-point will stay
behind text inserted there.

28.19 The Window Start and End Positions

Each window maintains a marker used to keep track of a buffer position that specifies where
in the buffer display should start. This position is called the display-start position of the
window (or just the start). The character after this position is the one that appears at the
upper left corner of the window. It is usually, but not inevitably, at the beginning of a text
line.

After switching windows or buffers, and in some other cases, if the window start is in the
middle of a line, Emacs adjusts the window start to the start of a line. This prevents certain
operations from leaving the window start at a meaningless point within a line. This feature
may interfere with testing some Lisp code by executing it using the commands of Lisp mode,
because they trigger this readjustment. To test such code, put it into a command and bind
the command to a key.

[Function]window-start &optional window
This function returns the display-start position of window window. If window is nil,
the selected window is used.

When you create a window, or display a different buffer in it, the display-start position
is set to a display-start position recently used for the same buffer, or to point-min if
the buffer doesn’t have any.

Redisplay updates the window-start position (if you have not specified it explicitly
since the previous redisplay)—to make sure point appears on the screen. Nothing
except redisplay automatically changes the window-start position; if you move point,
do not expect the window-start position to change in response until after the next
redisplay.

[Function]window-end &optional window update
This function returns the position where display of its buffer ends in window. The
default for window is the selected window.

Simply changing the buffer text or moving point does not update the value that
window-end returns. The value is updated only when Emacs redisplays and redisplay
completes without being preempted.

Chapter 28: Windows 574

If the last redisplay of window was preempted, and did not finish, Emacs does not
know the position of the end of display in that window. In that case, this function
returns nil.

If update is non-nil, window-end always returns an up-to-date value for where display
ends, based on the current window-start value. If a previously saved value of that
position is still valid, window-end returns that value; otherwise it computes the correct
value by scanning the buffer text.

Even if update is non-nil, window-end does not attempt to scroll the display if point
has moved off the screen, the way real redisplay would do. It does not alter the
window-start value. In effect, it reports where the displayed text will end if scrolling
is not required.

[Function]set-window-start window position &optional noforce
This function sets the display-start position of window to position in window ’s buffer.
It returns position.

The display routines insist that the position of point be visible when a buffer is dis-
played. Normally, they change the display-start position (that is, scroll the window)
whenever necessary to make point visible. However, if you specify the start position
with this function using nil for noforce, it means you want display to start at position
even if that would put the location of point off the screen. If this does place point off
screen, the display routines move point to the left margin on the middle line in the
window.

For example, if point is 1 and you set the start of the window to 37, the start of the
next line, point will be “above” the top of the window. The display routines will
automatically move point if it is still 1 when redisplay occurs. Here is an example:

;; Here is what ‘foo’ looks like before executing
;; the set-window-start expression.

---------- Buffer: foo ----------

?This is the contents of buffer foo.

2

3

4

5

6

---------- Buffer: foo ----------

(set-window-start

(selected-window)

(save-excursion

(goto-char 1)

(forward-line 1)

(point)))

⇒ 37

Chapter 28: Windows 575

;; Here is what ‘foo’ looks like after executing
;; the set-window-start expression.
---------- Buffer: foo ----------

2

3

?4
5

6

---------- Buffer: foo ----------

If noforce is non-nil, and position would place point off screen at the next redisplay,
then redisplay computes a new window-start position that works well with point, and
thus position is not used.

[Function]pos-visible-in-window-p &optional position window partially
This function returns non-nil if position is within the range of text currently visible
on the screen in window. It returns nil if position is scrolled vertically out of view.
Locations that are partially obscured are not considered visible unless partially is
non-nil. The argument position defaults to the current position of point in window ;
window, to the selected window. If position is t, that means to check the last visible
position in window.

This function considers only vertical scrolling. If position is out of view only because
window has been scrolled horizontally, pos-visible-in-window-p returns non-nil
anyway. See Section 28.22 [Horizontal Scrolling], page 580.

If position is visible, pos-visible-in-window-p returns t if partially is nil; if par-
tially is non-nil, and the character following position is fully visible, it returns a list
of the form (x y), where x and y are the pixel coordinates relative to the top left
corner of the window; otherwise it returns an extended list of the form (x y rtop

rbot rowh vpos), where rtop and rbot specify the number of off-window pixels at
the top and bottom of the row at position, rowh specifies the visible height of that
row, and vpos specifies the vertical position (zero-based row number) of that row.

Here is an example:

;; If point is off the screen now, recenter it now.
(or (pos-visible-in-window-p

(point) (selected-window))

(recenter 0))

[Function]window-line-height &optional line window
This function returns the height of text line line in window. If line is one of header-
line or mode-line, window-line-height returns information about the correspond-
ing line of the window. Otherwise, line is a text line number starting from 0. A
negative number counts from the end of the window. The default for line is the
current line in window ; the default for window is the selected window.

If the display is not up to date, window-line-height returns nil. In that case,
pos-visible-in-window-p may be used to obtain related information.

If there is no line corresponding to the specified line, window-line-height returns
nil. Otherwise, it returns a list (height vpos ypos offbot), where height is the

Chapter 28: Windows 576

height in pixels of the visible part of the line, vpos and ypos are the vertical position
in lines and pixels of the line relative to the top of the first text line, and offbot is the
number of off-window pixels at the bottom of the text line. If there are off-window
pixels at the top of the (first) text line, ypos is negative.

28.20 Textual Scrolling

Textual scrolling means moving the text up or down through a window. It works by
changing the window’s display-start location. It may also change the value of window-
point to keep point on the screen (see Section 28.18 [Window Point], page 572).

The basic textual scrolling functions are scroll-up (which scrolls forward) and scroll-

down (which scrolls backward). In these function names, “up” and “down” refer to the
direction of motion of the buffer text relative to the window. Imagine that the text is
written on a long roll of paper and that the scrolling commands move the paper up and
down. Thus, if you are looking at the middle of a buffer and repeatedly call scroll-down,
you will eventually see the beginning of the buffer.

Unfortunately, this sometimes causes confusion, because some people tend to think in
terms of the opposite convention: they imagine the window moving over text that remains
in place, so that “down” commands take you to the end of the buffer. This convention is
consistent with fact that such a command is bound to a key named PageDown on modern
keyboards.

Textual scrolling functions (aside from scroll-other-window) have unpredictable re-
sults if the current buffer is not the one displayed in the selected window. See Section 27.2
[Current Buffer], page 521.

If the window contains a row taller than the height of the window (for example in
the presence of a large image), the scroll functions will adjust the window’s vertical scroll
position to scroll the partially visible row. Lisp callers can disable this feature by binding
the variable auto-window-vscroll to nil (see Section 28.21 [Vertical Scrolling], page 579).

[Command]scroll-up &optional count
This function scrolls forward by count lines in the selected window.

If count is negative, it scrolls backward instead. If count is nil (or omitted), the
distance scrolled is next-screen-context-lines lines less than the height of the
window’s text area.

If the selected window cannot be scrolled any further, this function signals an error.
Otherwise, it returns nil.

[Command]scroll-down &optional count
This function scrolls backward by count lines in the selected window.

If count is negative, it scrolls forward instead. In other respects, it behaves the same
way as scroll-up does.

[Command]scroll-up-command &optional count
This behaves like scroll-up, except that if the selected window cannot be scrolled
any further and the value of the variable scroll-error-top-bottom is t, it tries to
move to the end of the buffer instead. If point is already there, it signals an error.

Chapter 28: Windows 577

[Command]scroll-down-command &optional count
This behaves like scroll-down, except that if the selected window cannot be scrolled
any further and the value of the variable scroll-error-top-bottom is t, it tries to
move to the beginning of the buffer instead. If point is already there, it signals an
error.

[Command]scroll-other-window &optional count
This function scrolls the text in another window upward count lines. Negative values
of count, or nil, are handled as in scroll-up.

You can specify which buffer to scroll by setting the variable other-window-scroll-
buffer to a buffer. If that buffer isn’t already displayed, scroll-other-window

displays it in some window.

When the selected window is the minibuffer, the next window is normally the left-
most one immediately above it. You can specify a different window to scroll, when
the minibuffer is selected, by setting the variable minibuffer-scroll-window. This
variable has no effect when any other window is selected. When it is non-nil and the
minibuffer is selected, it takes precedence over other-window-scroll-buffer. See
[Definition of minibuffer-scroll-window], page 320.

When the minibuffer is active, it is the next window if the selected window is the one
at the bottom right corner. In this case, scroll-other-window attempts to scroll
the minibuffer. If the minibuffer contains just one line, it has nowhere to scroll to,
so the line reappears after the echo area momentarily displays the message ‘End of

buffer’.

[Variable]other-window-scroll-buffer
If this variable is non-nil, it tells scroll-other-window which buffer’s window to
scroll.

[User Option]scroll-margin
This option specifies the size of the scroll margin—a minimum number of lines between
point and the top or bottom of a window. Whenever point gets within this many
lines of the top or bottom of the window, redisplay scrolls the text automatically (if
possible) to move point out of the margin, closer to the center of the window.

[User Option]scroll-conservatively
This variable controls how scrolling is done automatically when point moves off the
screen (or into the scroll margin). If the value is a positive integer n, then redisplay
scrolls the text up to n lines in either direction, if that will bring point back into proper
view. This behavior is called conservative scrolling. Otherwise, scrolling happens in
the usual way, under the control of other variables such as scroll-up-aggressively
and scroll-down-aggressively.

The default value is zero, which means that conservative scrolling never happens.

[User Option]scroll-down-aggressively
The value of this variable should be either nil or a fraction f between 0 and 1. If
it is a fraction, that specifies where on the screen to put point when scrolling down.
More precisely, when a window scrolls down because point is above the window start,

Chapter 28: Windows 578

the new start position is chosen to put point f part of the window height from the
top. The larger f, the more aggressive the scrolling.

A value of nil is equivalent to .5, since its effect is to center point. This variable
automatically becomes buffer-local when set in any fashion.

[User Option]scroll-up-aggressively
Likewise, for scrolling up. The value, f, specifies how far point should be placed from
the bottom of the window; thus, as with scroll-up-aggressively, a larger value
scrolls more aggressively.

[User Option]scroll-step
This variable is an older variant of scroll-conservatively. The difference is that
if its value is n, that permits scrolling only by precisely n lines, not a smaller number.
This feature does not work with scroll-margin. The default value is zero.

[User Option]scroll-preserve-screen-position
If this option is t, whenever a scrolling command moves point off-window, Emacs
tries to adjust point to keep the cursor at its old vertical position in the window,
rather than the window edge.

If the value is non-nil and not t, Emacs adjusts point to keep the cursor at the same
vertical position, even if the scrolling command didn’t move point off-window.

This option affects all scroll commands that have a non-nil scroll-command symbol
property.

[User Option]next-screen-context-lines
The value of this variable is the number of lines of continuity to retain when scrolling
by full screens. For example, scroll-up with an argument of nil scrolls so that this
many lines at the bottom of the window appear instead at the top. The default value
is 2.

[User Option]scroll-error-top-bottom
If this option is nil (the default), scroll-up-command and scroll-down-command

simply signal an error when no more scrolling is possible.

If the value is t, these commands instead move point to the beginning or end of the
buffer (depending on scrolling direction); only if point is already on that position do
they signal an error.

[Command]recenter &optional count
This function scrolls the text in the selected window so that point is displayed at a
specified vertical position within the window. It does not “move point” with respect
to the text.

If count is a non-negative number, that puts the line containing point count lines
down from the top of the window. If count is a negative number, then it counts
upward from the bottom of the window, so that −1 stands for the last usable line in
the window.

If count is nil (or a non-nil list), recenter puts the line containing point in the
middle of the window. If count is nil, this function may redraw the frame, according
to the value of recenter-redisplay.

Chapter 28: Windows 579

When recenter is called interactively, count is the raw prefix argument. Thus, typing
C-u as the prefix sets the count to a non-nil list, while typing C-u 4 sets count to 4,
which positions the current line four lines from the top.

With an argument of zero, recenter positions the current line at the top of the win-
dow. The command recenter-top-bottom offers a more convenient way to achieve
this.

[User Option]recenter-redisplay
If this variable is non-nil, calling recenter with a nil argument redraws the frame.
The default value is tty, which means only redraw the frame if it is a tty frame.

[Command]recenter-top-bottom &optional count
This command, which is the default binding for C-l, acts like recenter, except if
called with no argument. In that case, successive calls place point according to the
cycling order defined by the variable recenter-positions.

[User Option]recenter-positions
This variable controls how recenter-top-bottom behaves when called with no ar-
gument. The default value is (middle top bottom), which means that successive
calls of recenter-top-bottom with no argument cycle between placing point at the
middle, top, and bottom of the window.

28.21 Vertical Fractional Scrolling

Vertical fractional scrolling means shifting text in a window up or down by a specified
multiple or fraction of a line. Each window has a vertical scroll position, which is a number,
never less than zero. It specifies how far to raise the contents of the window. Raising the
window contents generally makes all or part of some lines disappear off the top, and all or
part of some other lines appear at the bottom. The usual value is zero.

The vertical scroll position is measured in units of the normal line height, which is the
height of the default font. Thus, if the value is .5, that means the window contents are
scrolled up half the normal line height. If it is 3.3, that means the window contents are
scrolled up somewhat over three times the normal line height.

What fraction of a line the vertical scrolling covers, or how many lines, depends on what
the lines contain. A value of .5 could scroll a line whose height is very short off the screen,
while a value of 3.3 could scroll just part of the way through a tall line or an image.

[Function]window-vscroll &optional window pixels-p
This function returns the current vertical scroll position of window. The default for
window is the selected window. If pixels-p is non-nil, the return value is measured
in pixels, rather than in units of the normal line height.

(window-vscroll)

⇒ 0

[Function]set-window-vscroll window lines &optional pixels-p
This function sets window ’s vertical scroll position to lines. If window is nil, the
selected window is used. The argument lines should be zero or positive; if not, it is
taken as zero.

Chapter 28: Windows 580

The actual vertical scroll position must always correspond to an integral number of
pixels, so the value you specify is rounded accordingly.

The return value is the result of this rounding.

(set-window-vscroll (selected-window) 1.2)

⇒ 1.13

If pixels-p is non-nil, lines specifies a number of pixels. In this case, the return value
is lines.

[Variable]auto-window-vscroll
If this variable is non-nil, the line-move, scroll-up, and scroll-down functions
will automatically modify the vertical scroll position to scroll through display rows
that are taller than the height of the window, for example in the presence of large
images.

28.22 Horizontal Scrolling

Horizontal scrolling means shifting the image in the window left or right by a specified
multiple of the normal character width. Each window has a horizontal scroll position,
which is a number, never less than zero. It specifies how far to shift the contents left.
Shifting the window contents left generally makes all or part of some characters disappear
off the left, and all or part of some other characters appear at the right. The usual value is
zero.

The horizontal scroll position is measured in units of the normal character width, which
is the width of space in the default font. Thus, if the value is 5, that means the window
contents are scrolled left by 5 times the normal character width. How many characters
actually disappear off to the left depends on their width, and could vary from line to line.

Because we read from side to side in the “inner loop”, and from top to bottom in the
“outer loop”, the effect of horizontal scrolling is not like that of textual or vertical scrolling.
Textual scrolling involves selection of a portion of text to display, and vertical scrolling
moves the window contents contiguously; but horizontal scrolling causes part of each line
to go off screen.

Usually, no horizontal scrolling is in effect; then the leftmost column is at the left edge of
the window. In this state, scrolling to the right is meaningless, since there is no data to the
left of the edge to be revealed by it; so this is not allowed. Scrolling to the left is allowed; it
scrolls the first columns of text off the edge of the window and can reveal additional columns
on the right that were truncated before. Once a window has a nonzero amount of leftward
horizontal scrolling, you can scroll it back to the right, but only so far as to reduce the net
horizontal scroll to zero. There is no limit to how far left you can scroll, but eventually all
the text will disappear off the left edge.

If auto-hscroll-mode is set, redisplay automatically alters the horizontal scrolling of
a window as necessary to ensure that point is always visible. However, you can still set
the horizontal scrolling value explicitly. The value you specify serves as a lower bound for
automatic scrolling, i.e., automatic scrolling will not scroll a window to a column less than
the specified one.

Chapter 28: Windows 581

[Command]scroll-left &optional count set-minimum
This function scrolls the selected window count columns to the left (or to the right if
count is negative). The default for count is the window width, minus 2.

The return value is the total amount of leftward horizontal scrolling in effect after the
change—just like the value returned by window-hscroll (below).

Once you scroll a window as far right as it can go, back to its normal position where
the total leftward scrolling is zero, attempts to scroll any farther right have no effect.

If set-minimum is non-nil, the new scroll amount becomes the lower bound for au-
tomatic scrolling; that is, automatic scrolling will not scroll a window to a column
less than the value returned by this function. Interactive calls pass non-nil for set-
minimum.

[Command]scroll-right &optional count set-minimum
This function scrolls the selected window count columns to the right (or to the left if
count is negative). The default for count is the window width, minus 2. Aside from
the direction of scrolling, this works just like scroll-left.

[Function]window-hscroll &optional window
This function returns the total leftward horizontal scrolling of window—the number
of columns by which the text in window is scrolled left past the left margin. The
default for window is the selected window.

The return value is never negative. It is zero when no horizontal scrolling has been
done in window (which is usually the case).

(window-hscroll)

⇒ 0

(scroll-left 5)

⇒ 5

(window-hscroll)

⇒ 5

[Function]set-window-hscroll window columns
This function sets horizontal scrolling of window. The value of columns specifies the
amount of scrolling, in terms of columns from the left margin. The argument columns
should be zero or positive; if not, it is taken as zero. Fractional values of columns are
not supported at present.

Note that set-window-hscroll may appear not to work if you test it by evaluating a
call with M-: in a simple way. What happens is that the function sets the horizontal
scroll value and returns, but then redisplay adjusts the horizontal scrolling to make
point visible, and this overrides what the function did. You can observe the function’s
effect if you call it while point is sufficiently far from the left margin that it will remain
visible.

The value returned is columns.

(set-window-hscroll (selected-window) 10)

⇒ 10

Here is how you can determine whether a given position position is off the screen due to
horizontal scrolling:

Chapter 28: Windows 582

(defun hscroll-on-screen (window position)

(save-excursion

(goto-char position)

(and

(>= (- (current-column) (window-hscroll window)) 0)

(< (- (current-column) (window-hscroll window))

(window-width window)))))

28.23 Coordinates and Windows

This section describes functions that report the position of a window. Most of these func-
tions report positions relative to the window’s frame. In this case, the coordinate origin
‘(0,0)’ lies near the upper left corner of the frame. For technical reasons, on graphical
displays the origin is not located at the exact corner of the graphical window as it appears
on the screen. If Emacs is built with the GTK+ toolkit, the origin is at the upper left corner
of the frame area used for displaying Emacs windows, below the title-bar, GTK+ menu bar,
and tool bar (since these are drawn by the window manager and/or GTK+, not by Emacs).
But if Emacs is not built with GTK+, the origin is at the upper left corner of the tool bar
(since in this case Emacs itself draws the tool bar). In both cases, the X and Y coordinates
increase rightward and downward respectively.

Except where noted, X and Y coordinates are reported in integer character units, i.e.,
numbers of lines and columns respectively. On a graphical display, each “line” and “column”
corresponds to the height and width of a default character specified by the frame’s default
font.

[Function]window-edges &optional window
This function returns a list of the edge coordinates of window. If window is omitted
or nil, it defaults to the selected window.

The return value has the form (left top right bottom). These list elements are,
respectively, the X coordinate of the leftmost column occupied by the window, the
Y coordinate of the topmost row, the X coordinate one column to the right of the
rightmost column, and the Y coordinate one row down from the bottommost row.

Note that these are the actual outer edges of the window, including any header line,
mode line, scroll bar, fringes, and display margins. On a text terminal, if the window
has a neighbor on its right, its right edge includes the separator line between the
window and its neighbor.

[Function]window-inside-edges &optional window
This function is similar to window-edges, but the returned edge values are for the
text area of the window. They exclude any header line, mode line, scroll bar, fringes,
display margins, and vertical separator.

[Function]window-top-line &optional window
This function returns the Y coordinate of the topmost row of window, equivalent to
the top entry in the list returned by window-edges.

[Function]window-left-column &optional window
This function returns the X coordinate of the leftmost column of window, equivalent
to the left entry in the list returned by window-edges.

Chapter 28: Windows 583

The following functions can be used to relate a set of frame-relative coordinates to a
window:

[Function]window-at x y &optional frame
This function returns the live window at the frame-relative coordinates x and y, on
frame frame. If there is no window at that position, the return value is nil. If frame
is omitted or nil, it defaults to the selected frame.

[Function]coordinates-in-window-p coordinates window
This function checks whether a window window occupies the frame-relative coordi-
nates coordinates, and if so, which part of the window that is. window should be a
live window. coordinates should be a cons cell of the form (x . y), where x and y
are frame-relative coordinates.

If there is no window at the specified position, the return value is nil . Otherwise,
the return value is one of the following:

(relx . rely)

The coordinates are inside window. The numbers relx and rely are the
equivalent window-relative coordinates for the specified position, counting
from 0 at the top left corner of the window.

mode-line

The coordinates are in the mode line of window.

header-line

The coordinates are in the header line of window.

vertical-line

The coordinates are in the vertical line between window and its neighbor
to the right. This value occurs only if the window doesn’t have a scroll
bar; positions in a scroll bar are considered outside the window for these
purposes.

left-fringe

right-fringe

The coordinates are in the left or right fringe of the window.

left-margin

right-margin

The coordinates are in the left or right margin of the window.

nil The coordinates are not in any part of window.

The function coordinates-in-window-p does not require a frame as argument be-
cause it always uses the frame that window is on.

The following functions return window positions in pixels, rather than character units.
Though mostly useful on graphical displays, they can also be called on text terminals, where
the screen area of each text character is taken to be “one pixel”.

[Function]window-pixel-edges &optional window
This function returns a list of pixel coordinates for the edges of window. If window
is omitted or nil, it defaults to the selected window.

Chapter 28: Windows 584

The return value has the form (left top right bottom). The list elements are,
respectively, the X pixel coordinate of the left window edge, the Y pixel coordinate of
the top edge, one more than the X pixel coordinate of the right edge, and one more
than the Y pixel coordinate of the bottom edge.

[Function]window-inside-pixel-edges &optional window
This function is like window-pixel-edges, except that it returns the pixel coordinates
for the edges of the window’s text area, rather than the pixel coordinates for the edges
of the window itself. window must specify a live window.

The following functions return window positions in pixels, relative to the display screen
rather than the frame:

[Function]window-absolute-pixel-edges &optional window
This function is like window-pixel-edges, except that it returns the edge pixel co-
ordinates relative to the top left corner of the display screen.

[Function]window-inside-absolute-pixel-edges &optional window
This function is like window-inside-pixel-edges, except that it returns the edge
pixel coordinates relative to the top left corner of the display screen. window must
specify a live window.

28.24 Window Configurations

A window configuration records the entire layout of one frame—all windows, their sizes,
which buffers they contain, how those buffers are scrolled, and their values of point and
the mark; also their fringes, margins, and scroll bar settings. It also includes the value of
minibuffer-scroll-window. As a special exception, the window configuration does not
record the value of point in the selected window for the current buffer.

You can bring back an entire frame layout by restoring a previously saved window
configuration. If you want to record the layout of all frames instead of just one, use a frame
configuration instead of a window configuration. See Section 29.12 [Frame Configurations],
page 611.

[Function]current-window-configuration &optional frame
This function returns a new object representing frame’s current window configura-
tion. The default for frame is the selected frame. The variable window-persistent-
parameters specifies which window parameters (if any) are saved by this function.
See Section 28.25 [Window Parameters], page 586.

[Function]set-window-configuration configuration
This function restores the configuration of windows and buffers as specified by
configuration, for the frame that configuration was created for.

The argument configuration must be a value that was previously returned by
current-window-configuration. The configuration is restored in the frame
from which configuration was made, whether that frame is selected or not.
This always counts as a window size change and triggers execution of the
window-size-change-functions (see Section 28.26 [Window Hooks], page 588),

Chapter 28: Windows 585

because set-window-configuration doesn’t know how to tell whether the new
configuration actually differs from the old one.

If the frame from which configuration was saved is dead, all this function does is
restore the three variables window-min-height, window-min-width and minibuffer-
scroll-window. In this case, the function returns nil. Otherwise, it returns t.

Here is a way of using this function to get the same effect as save-window-excursion:

(let ((config (current-window-configuration)))

(unwind-protect

(progn (split-window-below nil)

...)

(set-window-configuration config)))

[Macro]save-window-excursion forms. . .
This macro records the window configuration of the selected frame, executes forms
in sequence, then restores the earlier window configuration. The return value is the
value of the final form in forms.

Most Lisp code should not use this macro; save-selected-window is typically suf-
ficient. In particular, this macro cannot reliably prevent the code in forms from
opening new windows, because new windows might be opened in other frames (see
Section 28.12 [Choosing Window], page 562), and save-window-excursion only saves
and restores the window configuration on the current frame.

Do not use this macro in window-size-change-functions; exiting the macro triggers
execution of window-size-change-functions, leading to an endless loop.

[Function]window-configuration-p object
This function returns t if object is a window configuration.

[Function]compare-window-configurations config1 config2
This function compares two window configurations as regards the structure of win-
dows, but ignores the values of point and mark and the saved scrolling positions—it
can return t even if those aspects differ.

The function equal can also compare two window configurations; it regards configu-
rations as unequal if they differ in any respect, even a saved point or mark.

[Function]window-configuration-frame config
This function returns the frame for which the window configuration config was made.

Other primitives to look inside of window configurations would make sense, but are
not implemented because we did not need them. See the file winner.el for some more
operations on windows configurations.

The objects returned by current-window-configuration die together with the Emacs
process. In order to store a window configuration on disk and read it back in another Emacs
session, you can use the functions described next. These functions are also useful to clone
the state of a frame into an arbitrary live window (set-window-configuration effectively
clones the windows of a frame into the root window of that very frame only).

Chapter 28: Windows 586

[Function]window-state-get &optional window writable
This function returns the state of window as a Lisp object. The argument window
must be a valid window and defaults to the root window of the selected frame.

If the optional argument writable is non-nil, this means to not use markers for
sampling positions like window-point or window-start. This argument should be
non-nil when the state will be written to disk and read back in another session.

Together, the argument writable and the variable window-persistent-parameters

specify which window parameters are saved by this function. See Section 28.25 [Win-
dow Parameters], page 586.

The value returned by window-state-get can be used in the same session to make a
clone of a window in another window. It can be also written to disk and read back in another
session. In either case, use the following function to restore the state of the window.

[Function]window-state-put state &optional window ignore
This function puts the window state state into window. The argument state should
be the state of a window returned by an earlier invocation of window-state-get, see
above. The optional argument window must specify a live window and defaults to
the selected one.

If the optional argument ignore is non-nil, it means to ignore minimum window sizes
and fixed-size restrictions. If ignore is safe, this means windows can get as small as
one line and/or two columns.

28.25 Window Parameters

This section describes how window parameters can be used to associate additional informa-
tion with windows.

[Function]window-parameter window parameter
This function returns window ’s value for parameter. The default for window is the
selected window. If window has no setting for parameter, this function returns nil.

[Function]window-parameters &optional window
This function returns all parameters of window and their values. The default for
window is the selected window. The return value is either nil, or an association list
whose elements have the form (parameter . value).

[Function]set-window-parameter window parameter value
This function sets window ’s value of parameter to value and returns value. The
default for window is the selected window.

By default, the functions that save and restore window configurations or the states of
windows (see Section 28.24 [Window Configurations], page 584) do not care about window
parameters. This means that when you change the value of a parameter within the body
of a save-window-excursion, the previous value is not restored when that macro exits. It
also means that when you restore via window-state-put a window state saved earlier by
window-state-get, all cloned windows have their parameters reset to nil. The following
variable allows you to override the standard behavior:

Chapter 28: Windows 587

[Variable]window-persistent-parameters
This variable is an alist specifying which parameters get saved by current-window-

configuration and window-state-get, and subsequently restored by set-window-

configuration and window-state-put. See Section 28.24 [Window Configurations],
page 584.

The car of each entry of this alist is a symbol specifying the parameter. The cdr
should be one of the following:

nil This value means the parameter is saved neither by window-state-get

nor by current-window-configuration.

t This value specifies that the parameter is saved by current-window-

configuration and (provided its writable argument is nil) by window-

state-get.

writable This means that the parameter is saved unconditionally by both current-

window-configuration and window-state-get. This value should not
be used for parameters whose values do not have a read syntax. Oth-
erwise, invoking window-state-put in another session may fail with an
invalid-read-syntax error.

Some functions (notably delete-window, delete-other-windows and split-window),
may behave specially when their window argument has a parameter set. You can override
such special behavior by binding the following variable to a non-nil value:

[Variable]ignore-window-parameters
If this variable is non-nil, some standard functions do not process window parameters.
The functions currently affected by this are split-window, delete-window, delete-
other-windows, and other-window.

An application can bind this variable to a non-nil value around calls to these func-
tions. If it does so, the application is fully responsible for correctly assigning the
parameters of all involved windows when exiting that function.

The following parameters are currently used by the window management code:

delete-window

This parameter affects the execution of delete-window (see Section 28.6 [Delet-
ing Windows], page 549).

delete-other-windows

This parameter affects the execution of delete-other-windows (see
Section 28.6 [Deleting Windows], page 549).

split-window

This parameter affects the execution of split-window (see Section 28.5 [Split-
ting Windows], page 546).

other-window

This parameter affects the execution of other-window (see Section 28.9 [Cyclic
Window Ordering], page 556).

Chapter 28: Windows 588

no-other-window

This parameter marks the window as not selectable by other-window (see
Section 28.9 [Cyclic Window Ordering], page 556).

clone-of This parameter specifies the window that this one has been cloned from. It
is installed by window-state-get (see Section 28.24 [Window Configurations],
page 584).

quit-restore

This parameter is installed by the buffer display functions (see Section 28.12
[Choosing Window], page 562) and consulted by quit-restore-window (see
Section 28.17 [Quitting Windows], page 570). It contains four elements:

The first element is one of the symbols window, meaning that the window has
been specially created by display-buffer; frame, a separate frame has been
created; same, the window has displayed the same buffer before; or other, the
window showed another buffer before.

The second element is either one of the symbols window or frame, or a list whose
elements are the buffer shown in the window before, that buffer’s window start
and window point positions, and the window’s height at that time.

The third element is the window selected at the time the parameter was cre-
ated. The function quit-restore-window tries to reselect that window when
it deletes the window passed to it as argument.

The fourth element is the buffer whose display caused the creation of this pa-
rameter. quit-restore-window deletes the specified window only if it still
shows that buffer.

There are additional parameters window-atom and window-side; these are reserved and
should not be used by applications.

28.26 Hooks for Window Scrolling and Changes

This section describes how a Lisp program can take action whenever a window displays a
different part of its buffer or a different buffer. There are three actions that can change this:
scrolling the window, switching buffers in the window, and changing the size of the window.
The first two actions run window-scroll-functions; the last runs window-size-change-
functions.

[Variable]window-scroll-functions
This variable holds a list of functions that Emacs should call before redisplaying a
window with scrolling. Displaying a different buffer in the window also runs these
functions.

This variable is not a normal hook, because each function is called with two arguments:
the window, and its new display-start position.

These functions must take care when using window-end (see Section 28.19 [Window
Start and End], page 573); if you need an up-to-date value, you must use the update
argument to ensure you get it.

Warning: don’t use this feature to alter the way the window is scrolled. It’s not
designed for that, and such use probably won’t work.

Chapter 28: Windows 589

[Variable]window-size-change-functions
This variable holds a list of functions to be called if the size of any window changes
for any reason. The functions are called just once per redisplay, and just once for
each frame on which size changes have occurred.

Each function receives the frame as its sole argument. There is no direct way to find
out which windows on that frame have changed size, or precisely how. However, if a
size-change function records, at each call, the existing windows and their sizes, it can
also compare the present sizes and the previous sizes.

Creating or deleting windows counts as a size change, and therefore causes these
functions to be called. Changing the frame size also counts, because it changes the
sizes of the existing windows.

You may use save-selected-window in these functions (see Section 28.8 [Selecting
Windows], page 555). However, do not use save-window-excursion (see
Section 28.24 [Window Configurations], page 584); exiting that macro counts as a
size change, which would cause these functions to be called over and over.

[Variable]window-configuration-change-hook
A normal hook that is run every time you change the window configuration of an
existing frame. This includes splitting or deleting windows, changing the sizes of
windows, or displaying a different buffer in a window.

The buffer-local part of this hook is run once for each window on the affected frame,
with the relevant window selected and its buffer current. The global part is run once
for the modified frame, with that frame selected.

In addition, you can use jit-lock-register to register a Font Lock fontification func-
tion, which will be called whenever parts of a buffer are (re)fontified because a window was
scrolled or its size changed. See Section 23.6.4 [Other Font Lock Variables], page 443.

Chapter 29: Frames 590

29 Frames

A frame is a screen object that contains one or more Emacs windows (see Chapter 28
[Windows], page 538). It is the kind of object called a “window” in the terminology of
graphical environments; but we can’t call it a “window” here, because Emacs uses that
word in a different way. In Emacs Lisp, a frame object is a Lisp object that represents a
frame on the screen. See Section 2.4.4 [Frame Type], page 25.

A frame initially contains a single main window and/or a minibuffer window; you can
subdivide the main window vertically or horizontally into smaller windows. See Section 28.5
[Splitting Windows], page 546.

A terminal is a display device capable of displaying one or more Emacs frames. In
Emacs Lisp, a terminal object is a Lisp object that represents a terminal. See Section 2.4.5
[Terminal Type], page 25.

There are two classes of terminals: text terminals and graphical terminals. Text termi-
nals are non-graphics-capable displays, including xterm and other terminal emulators. On
a text terminal, each Emacs frame occupies the terminal’s entire screen; although you can
create additional frames and switch between them, the terminal only shows one frame at a
time. Graphical terminals, on the other hand, are managed by graphical display systems
such as the X Window System, which allow Emacs to show multiple frames simultaneously
on the same display.

On GNU and Unix systems, you can create additional frames on any available terminal,
within a single Emacs session, regardless of whether Emacs was started on a text or graphical
terminal. Emacs can display on both graphical and text terminals simultaneously. This
comes in handy, for instance, when you connect to the same session from several remote
locations. See Section 29.2 [Multiple Terminals], page 591.

[Function]framep object
This predicate returns a non-nil value if object is a frame, and nil otherwise. For a
frame, the value indicates which kind of display the frame uses:

t The frame is displayed on a text terminal.

x The frame is displayed on an X graphical terminal.

w32 The frame is displayed on a MS-Windows graphical terminal.

ns The frame is displayed on a GNUstep or Macintosh Cocoa graphical ter-
minal.

pc The frame is displayed on an MS-DOS terminal.

[Function]frame-terminal &optional frame
This function returns the terminal object that displays frame. If frame is nil or
unspecified, it defaults to the selected frame.

[Function]terminal-live-p object
This predicate returns a non-nil value if object is a terminal that is live (i.e., not
deleted), and nil otherwise. For live terminals, the return value indicates what kind
of frames are displayed on that terminal; the list of possible values is the same as for
framep above.

Chapter 29: Frames 591

29.1 Creating Frames

To create a new frame, call the function make-frame.

[Command]make-frame &optional alist
This function creates and returns a new frame, displaying the current buffer.

The alist argument is an alist that specifies frame parameters for the new frame. See
Section 29.3 [Frame Parameters], page 594. If you specify the terminal parameter
in alist, the new frame is created on that terminal. Otherwise, if you specify the
window-system frame parameter in alist, that determines whether the frame should
be displayed on a text terminal or a graphical terminal. See Section 38.22 [Window
Systems], page 905. If neither is specified, the new frame is created in the same
terminal as the selected frame.

Any parameters not mentioned in alist default to the values in the alist default-

frame-alist (see Section 29.3.2 [Initial Parameters], page 594); parameters not spec-
ified there default from the X resources or its equivalent on your operating system
(see Section “X Resources” in The GNU Emacs Manual). After the frame is created,
Emacs applies any parameters listed in frame-inherited-parameters (see below)
and not present in the argument, taking the values from the frame that was selected
when make-frame was called.

This function itself does not make the new frame the selected frame. See Section 29.9
[Input Focus], page 607. The previously selected frame remains selected. On graphical
terminals, however, the windowing system may select the new frame for its own
reasons.

[Variable]before-make-frame-hook
A normal hook run by make-frame before it creates the frame.

[Variable]after-make-frame-functions
An abnormal hook run by make-frame after it creates the frame. Each function in
after-make-frame-functions receives one argument, the frame just created.

[Variable]frame-inherited-parameters
This variable specifies the list of frame parameters that a newly created frame inherits
from the currently selected frame. For each parameter (a symbol) that is an element
in the list and is not present in the argument to make-frame, the function sets the
value of that parameter in the created frame to its value in the selected frame.

29.2 Multiple Terminals

Emacs represents each terminal as a terminal object data type (see Section 2.4.5 [Terminal
Type], page 25). On GNU and Unix systems, Emacs can use multiple terminals simultane-
ously in each session. On other systems, it can only use a single terminal. Each terminal
object has the following attributes:

• The name of the device used by the terminal (e.g., ‘:0.0’ or /dev/tty).

• The terminal and keyboard coding systems used on the terminal. See Section 33.9.8
[Terminal I/O Encoding], page 728.

Chapter 29: Frames 592

• The kind of display associated with the terminal. This is the symbol returned by
the function terminal-live-p (i.e., x, t, w32, ns, or pc). See Chapter 29 [Frames],
page 590.

• A list of terminal parameters. See Section 29.4 [Terminal Parameters], page 604.

There is no primitive for creating terminal objects. Emacs creates them as needed, such
as when you call make-frame-on-display (described below).

[Function]terminal-name &optional terminal
This function returns the file name of the device used by terminal. If terminal is
omitted or nil, it defaults to the selected frame’s terminal. terminal can also be a
frame, meaning that frame’s terminal.

[Function]terminal-list
This function returns a list of all live terminal objects.

[Function]get-device-terminal device
This function returns a terminal whose device name is given by device. If device is a
string, it can be either the file name of a terminal device, or the name of an X display
of the form ‘host:server.screen’. If device is a frame, this function returns that
frame’s terminal; nil means the selected frame. Finally, if device is a terminal object
that represents a live terminal, that terminal is returned. The function signals an
error if its argument is none of the above.

[Function]delete-terminal &optional terminal force
This function deletes all frames on terminal and frees the resources used by it. It runs
the abnormal hook delete-terminal-functions, passing terminal as the argument
to each function.

If terminal is omitted or nil, it defaults to the selected frame’s terminal. terminal
can also be a frame, meaning that frame’s terminal.

Normally, this function signals an error if you attempt to delete the sole active ter-
minal, but if force is non-nil, you are allowed to do so. Emacs automatically calls
this function when the last frame on a terminal is deleted (see Section 29.6 [Deleting
Frames], page 606).

[Variable]delete-terminal-functions
An abnormal hook run by delete-terminal. Each function receives one argument,
the terminal argument passed to delete-terminal. Due to technical details, the
functions may be called either just before the terminal is deleted, or just afterwards.

A few Lisp variables are terminal-local; that is, they have a separate binding for each
terminal. The binding in effect at any time is the one for the terminal that the currently
selected frame belongs to. These variables include default-minibuffer-frame, defining-
kbd-macro, last-kbd-macro, and system-key-alist. They are always terminal-local, and
can never be buffer-local (see Section 11.10 [Buffer-Local Variables], page 154).

On GNU and Unix systems, each X display is a separate graphical terminal. When
Emacs is started from within the X window system, it uses the X display specified by the
DISPLAY environment variable, or by the ‘--display’ option (see Section “Initial Options”

Chapter 29: Frames 593

in The GNU Emacs Manual). Emacs can connect to other X displays via the command
make-frame-on-display. Each X display has its own selected frame and its own minibuffer
windows; however, only one of those frames is “the selected frame” at any given moment
(see Section 29.9 [Input Focus], page 607). Emacs can even connect to other text terminals,
by interacting with the emacsclient program. See Section “Emacs Server” in The GNU
Emacs Manual.

A single X server can handle more than one display. Each X display has a three-part
name, ‘host:server.screen’. The first two parts, host and server, identify the X server;
the third part, screen, identifies a screen number on that X server. When you use two or
more screens belonging to one server, Emacs knows by the similarity in their names that
they share a single keyboard.

On some “multi-monitor” setups, a single X display outputs to more than one physical
monitor. Currently, there is no way for Emacs to distinguish between the different physical
monitors.

[Command]make-frame-on-display display &optional parameters
This function creates and returns a new frame on display, taking the other frame
parameters from the alist parameters. display should be the name of an X display (a
string).

Before creating the frame, this function ensures that Emacs is “set up” to display
graphics. For instance, if Emacs has not processed X resources (e.g., if it was started
on a text terminal), it does so at this time. In all other respects, this function behaves
like make-frame (see Section 29.1 [Creating Frames], page 591).

[Function]x-display-list
This function returns a list that indicates which X displays Emacs has a connection
to. The elements of the list are strings, and each one is a display name.

[Function]x-open-connection display &optional xrm-string must-succeed
This function opens a connection to the X display display, without creating a frame
on that display. Normally, Emacs Lisp programs need not call this function, as make-
frame-on-display calls it automatically. The only reason for calling it is to check
whether communication can be established with a given X display.

The optional argument xrm-string, if not nil, is a string of resource names and values,
in the same format used in the .Xresources file. See Section “X Resources” in The
GNU Emacs Manual. These values apply to all Emacs frames created on this display,
overriding the resource values recorded in the X server. Here’s an example of what
this string might look like:

"*BorderWidth: 3\n*InternalBorder: 2\n"

If must-succeed is non-nil, failure to open the connection terminates Emacs. Other-
wise, it is an ordinary Lisp error.

[Function]x-close-connection display
This function closes the connection to display display. Before you can do this, you
must first delete all the frames that were open on that display (see Section 29.6
[Deleting Frames], page 606).

Chapter 29: Frames 594

29.3 Frame Parameters

A frame has many parameters that control its appearance and behavior. Just what param-
eters a frame has depends on what display mechanism it uses.

Frame parameters exist mostly for the sake of graphical displays. Most frame parameters
have no effect when applied to a frame on a text terminal; only the height, width, name,
title, menu-bar-lines, buffer-list and buffer-predicate parameters do something
special. If the terminal supports colors, the parameters foreground-color, background-
color, background-mode and display-type are also meaningful. If the terminal supports
frame transparency, the parameter alpha is also meaningful.

29.3.1 Access to Frame Parameters

These functions let you read and change the parameter values of a frame.

[Function]frame-parameter frame parameter
This function returns the value of the parameter parameter (a symbol) of frame. If
frame is nil, it returns the selected frame’s parameter. If frame has no setting for
parameter, this function returns nil.

[Function]frame-parameters &optional frame
The function frame-parameters returns an alist listing all the parameters of frame
and their values. If frame is nil or omitted, this returns the selected frame’s param-
eters

[Function]modify-frame-parameters frame alist
This function alters the parameters of frame frame based on the elements of alist.
Each element of alist has the form (parm . value), where parm is a symbol naming
a parameter. If you don’t mention a parameter in alist, its value doesn’t change. If
frame is nil, it defaults to the selected frame.

[Function]set-frame-parameter frame parm value
This function sets the frame parameter parm to the specified value. If frame is nil,
it defaults to the selected frame.

[Function]modify-all-frames-parameters alist
This function alters the frame parameters of all existing frames according to alist,
then modifies default-frame-alist (and, if necessary, initial-frame-alist) to
apply the same parameter values to frames that will be created henceforth.

29.3.2 Initial Frame Parameters

You can specify the parameters for the initial startup frame by setting initial-frame-

alist in your init file (see Section 39.1.2 [Init File], page 913).

[User Option]initial-frame-alist
This variable’s value is an alist of parameter values used when creating the initial
frame. You can set this variable to specify the appearance of the initial frame without
altering subsequent frames. Each element has the form:

(parameter . value)

Chapter 29: Frames 595

Emacs creates the initial frame before it reads your init file. After reading that
file, Emacs checks initial-frame-alist, and applies the parameter settings in the
altered value to the already created initial frame.

If these settings affect the frame geometry and appearance, you’ll see the frame appear
with the wrong ones and then change to the specified ones. If that bothers you, you
can specify the same geometry and appearance with X resources; those do take effect
before the frame is created. See Section “X Resources” in The GNU Emacs Manual.

X resource settings typically apply to all frames. If you want to specify some X
resources solely for the sake of the initial frame, and you don’t want them to apply to
subsequent frames, here’s how to achieve this. Specify parameters in default-frame-

alist to override the X resources for subsequent frames; then, to prevent these from
affecting the initial frame, specify the same parameters in initial-frame-alist with
values that match the X resources.

If these parameters include (minibuffer . nil), that indicates that the initial frame
should have no minibuffer. In this case, Emacs creates a separate minibuffer-only frame as
well.

[User Option]minibuffer-frame-alist
This variable’s value is an alist of parameter values used when creating an initial
minibuffer-only frame (i.e., the minibuffer-only frame that Emacs creates if initial-
frame-alist specifies a frame with no minibuffer).

[User Option]default-frame-alist
This is an alist specifying default values of frame parameters for all Emacs frames—
the first frame, and subsequent frames. When using the X Window System, you can
get the same results by means of X resources in many cases.

Setting this variable does not affect existing frames. Furthermore, functions that
display a buffer in a separate frame may override the default parameters by supplying
their own parameters.

If you invoke Emacs with command-line options that specify frame appearance, those
options take effect by adding elements to either initial-frame-alist or default-frame-
alist. Options which affect just the initial frame, such as ‘-geometry’ and ‘--maximized’,
add to initial-frame-alist; the others add to default-frame-alist. see Section “Com-
mand Line Arguments for Emacs Invocation” in The GNU Emacs Manual.

29.3.3 Window Frame Parameters

Just what parameters a frame has depends on what display mechanism it uses. This section
describes the parameters that have special meanings on some or all kinds of terminals. Of
these, name, title, height, width, buffer-list and buffer-predicate provide mean-
ingful information in terminal frames, and tty-color-mode is meaningful only for frames
on text terminals.

29.3.3.1 Basic Parameters

These frame parameters give the most basic information about the frame. title and name

are meaningful on all terminals.

Chapter 29: Frames 596

display The display on which to open this frame. It should be a string of the form
"host:dpy.screen", just like the DISPLAY environment variable.

display-type

This parameter describes the range of possible colors that can be used in this
frame. Its value is color, grayscale or mono.

title If a frame has a non-nil title, it appears in the window system’s title
bar at the top of the frame, and also in the mode line of windows in that
frame if mode-line-frame-identification uses ‘%F’ (see Section 23.4.5
[%-Constructs], page 432). This is normally the case when Emacs is not using
a window system, and can only display one frame at a time. See Section 29.5
[Frame Titles], page 605.

name The name of the frame. The frame name serves as a default for the frame title, if
the title parameter is unspecified or nil. If you don’t specify a name, Emacs
sets the frame name automatically (see Section 29.5 [Frame Titles], page 605).

If you specify the frame name explicitly when you create the frame, the name
is also used (instead of the name of the Emacs executable) when looking up X
resources for the frame.

explicit-name

If the frame name was specified explicitly when the frame was created, this pa-
rameter will be that name. If the frame wasn’t explicitly named, this parameter
will be nil.

29.3.3.2 Position Parameters

Position parameters’ values are normally measured in pixels, but on text terminals they
count characters or lines instead.

left The position, in pixels, of the left (or right) edge of the frame with respect to
the left (or right) edge of the screen. The value may be:

an integer A positive integer relates the left edge of the frame to the left edge
of the screen. A negative integer relates the right frame edge to the
right screen edge.

(+ pos) This specifies the position of the left frame edge relative to the
left screen edge. The integer pos may be positive or negative; a
negative value specifies a position outside the screen.

(- pos) This specifies the position of the right frame edge relative to the
right screen edge. The integer pos may be positive or negative; a
negative value specifies a position outside the screen.

Some window managers ignore program-specified positions. If you want to be
sure the position you specify is not ignored, specify a non-nil value for the
user-position parameter as well.

top The screen position of the top (or bottom) edge, in pixels, with respect to the
top (or bottom) edge of the screen. It works just like left, except vertically
instead of horizontally.

Chapter 29: Frames 597

icon-left

The screen position of the left edge of the frame’s icon, in pixels, counting from
the left edge of the screen. This takes effect when the frame is iconified, if the
window manager supports this feature. If you specify a value for this parameter,
then you must also specify a value for icon-top and vice versa.

icon-top The screen position of the top edge of the frame’s icon, in pixels, counting from
the top edge of the screen. This takes effect when the frame is iconified, if the
window manager supports this feature.

user-position

When you create a frame and specify its screen position with the left and
top parameters, use this parameter to say whether the specified position was
user-specified (explicitly requested in some way by a human user) or merely
program-specified (chosen by a program). A non-nil value says the position
was user-specified.

Window managers generally heed user-specified positions, and some heed
program-specified positions too. But many ignore program-specified positions,
placing the window in a default fashion or letting the user place it with the
mouse. Some window managers, including twm, let the user specify whether to
obey program-specified positions or ignore them.

When you call make-frame, you should specify a non-nil value for this param-
eter if the values of the left and top parameters represent the user’s stated
preference; otherwise, use nil.

29.3.3.3 Size Parameters

Frame parameters specify frame sizes in character units. On graphical displays, the default
face determines the actual pixel sizes of these character units (see Section 38.12.1 [Face
Attributes], page 849).

height The height of the frame contents, in characters. (To get the height in pixels,
call frame-pixel-height; see Section 29.3.4 [Size and Position], page 603.)

width The width of the frame contents, in characters. (To get the width in pixels, call
frame-pixel-width; see Section 29.3.4 [Size and Position], page 603.)

user-size

This does for the size parameters height and width what the user-position
parameter (see Section 29.3.3.2 [Position Parameters], page 596) does for the
position parameters top and left.

fullscreen

Specify that width, height or both shall be maximized. The value fullwidth

specifies that width shall be as wide as possible. The value fullheight specifies
that height shall be as tall as possible. The value fullboth specifies that
both the width and the height shall be set to the size of the screen. The
value maximized specifies that the frame shall be maximized. The difference
between maximized and fullboth is that the former still has window manager
decorations while the latter really covers the whole screen.

Chapter 29: Frames 598

29.3.3.4 Layout Parameters

These frame parameters enable or disable various parts of the frame, or control their sizes.

border-width

The width in pixels of the frame’s border.

internal-border-width

The distance in pixels between text (or fringe) and the frame’s border.

vertical-scroll-bars

Whether the frame has scroll bars for vertical scrolling, and which side of the
frame they should be on. The possible values are left, right, and nil for no
scroll bars.

scroll-bar-width

The width of vertical scroll bars, in pixels, or nil meaning to use the default
width.

left-fringe

right-fringe

The default width of the left and right fringes of windows in this frame (see
Section 38.13 [Fringes], page 867). If either of these is zero, that effectively
removes the corresponding fringe.

When you use frame-parameter to query the value of either of these two frame
parameters, the return value is always an integer. When using set-frame-

parameter, passing a nil value imposes an actual default value of 8 pixels.

The combined fringe widths must add up to an integral number of columns, so
the actual default fringe widths for the frame, as reported by frame-parameter,
may be larger than what you specify. Any extra width is distributed evenly
between the left and right fringe. However, you can force one fringe or the
other to a precise width by specifying that width as a negative integer. If both
widths are negative, only the left fringe gets the specified width.

menu-bar-lines

The number of lines to allocate at the top of the frame for a menu bar. The
default is 1 if Menu Bar mode is enabled, and 0 otherwise. See Section “Menu
Bars” in The GNU Emacs Manual.

tool-bar-lines

The number of lines to use for the tool bar. The default is 1 if Tool Bar mode is
enabled, and 0 otherwise. See Section “Tool Bars” in The GNU Emacs Manual.

tool-bar-position

The position of the tool bar. Currently only for the GTK tool bar. Value can
be one of top, bottom left, right. The default is top.

line-spacing

Additional space to leave below each text line, in pixels (a positive integer).
See Section 38.11 [Line Height], page 847, for more information.

Chapter 29: Frames 599

29.3.3.5 Buffer Parameters

These frame parameters, meaningful on all kinds of terminals, deal with which buffers have
been, or should, be displayed in the frame.

minibuffer

Whether this frame has its own minibuffer. The value t means yes, nil means
no, only means this frame is just a minibuffer. If the value is a minibuffer
window (in some other frame), the frame uses that minibuffer.

This frame parameter takes effect when the frame is created, and can not be
changed afterwards.

buffer-predicate

The buffer-predicate function for this frame. The function other-buffer uses
this predicate (from the selected frame) to decide which buffers it should con-
sider, if the predicate is not nil. It calls the predicate with one argument, a
buffer, once for each buffer; if the predicate returns a non-nil value, it considers
that buffer.

buffer-list

A list of buffers that have been selected in this frame, ordered most-recently-
selected first.

unsplittable

If non-nil, this frame’s window is never split automatically.

29.3.3.6 Window Management Parameters

The following frame parameters control various aspects of the frame’s interaction with the
window manager. They have no effect on text terminals.

visibility

The state of visibility of the frame. There are three possibilities: nil for invisi-
ble, t for visible, and icon for iconified. See Section 29.10 [Visibility of Frames],
page 609.

auto-raise

If non-nil, Emacs automatically raises the frame when it is selected. Some
window managers do not allow this.

auto-lower

If non-nil, Emacs automatically lowers the frame when it is deselected. Some
window managers do not allow this.

icon-type

The type of icon to use for this frame. If the value is a string, that specifies a
file containing a bitmap to use; nil specifies no icon (in which case the window
manager decides what to show); any other non-nil value specifies the default
Emacs icon.

icon-name

The name to use in the icon for this frame, when and if the icon appears. If
this is nil, the frame’s title is used.

Chapter 29: Frames 600

window-id

The ID number which the graphical display uses for this frame. Emacs assigns
this parameter when the frame is created; changing the parameter has no effect
on the actual ID number.

outer-window-id

The ID number of the outermost window-system window in which the frame
exists. As with window-id, changing this parameter has no actual effect.

wait-for-wm

If non-nil, tell Xt to wait for the window manager to confirm geometry changes.
Some window managers, including versions of Fvwm2 and KDE, fail to confirm,
so Xt hangs. Set this to nil to prevent hanging with those window managers.

sticky If non-nil, the frame is visible on all virtual desktops on systems with virtual
desktops.

29.3.3.7 Cursor Parameters

This frame parameter controls the way the cursor looks.

cursor-type

How to display the cursor. Legitimate values are:

box Display a filled box. (This is the default.)

hollow Display a hollow box.

nil Don’t display a cursor.

bar Display a vertical bar between characters.

(bar . width)

Display a vertical bar width pixels wide between characters.

hbar Display a horizontal bar.

(hbar . height)

Display a horizontal bar height pixels high.

The cursor-type frame parameter may be overridden by the variables cursor-type

and cursor-in-non-selected-windows:

[Variable]cursor-type
This buffer-local variable controls how the cursor looks in a selected window showing
the buffer. If its value is t, that means to use the cursor specified by the cursor-type
frame parameter. Otherwise, the value should be one of the cursor types listed above,
and it overrides the cursor-type frame parameter.

[User Option]cursor-in-non-selected-windows
This buffer-local variable controls how the cursor looks in a window that is not se-
lected. It supports the same values as the cursor-type frame parameter; also, nil
means don’t display a cursor in nonselected windows, and t (the default) means use
a standard modification of the usual cursor type (solid box becomes hollow box, and
bar becomes a narrower bar).

Chapter 29: Frames 601

[User Option]blink-cursor-alist
This variable specifies how to blink the cursor. Each element has the form (on-state

. off-state). Whenever the cursor type equals on-state (comparing using equal),
the corresponding off-state specifies what the cursor looks like when it blinks “off”.
Both on-state and off-state should be suitable values for the cursor-type frame
parameter.

There are various defaults for how to blink each type of cursor, if the type is not men-
tioned as an on-state here. Changes in this variable do not take effect immediately,
only when you specify the cursor-type frame parameter.

29.3.3.8 Font and Color Parameters

These frame parameters control the use of fonts and colors.

font-backend

A list of symbols, specifying the font backends to use for drawing fonts in
the frame, in order of priority. On X, there are currently two available font
backends: x (the X core font driver) and xft (the Xft font driver). OnWindows,
there are currently two available font backends: gdi and uniscribe (see Section
“Windows Fonts” in The GNU Emacs Manual). On other systems, there is
only one available font backend, so it does not make sense to modify this frame
parameter.

background-mode

This parameter is either dark or light, according to whether the background
color is a light one or a dark one.

tty-color-mode

This parameter overrides the terminal’s color support as given by the system’s
terminal capabilities database in that this parameter’s value specifies the color
mode to use on a text terminal. The value can be either a symbol or a number.
A number specifies the number of colors to use (and, indirectly, what commands
to issue to produce each color). For example, (tty-color-mode . 8) specifies
use of the ANSI escape sequences for 8 standard text colors. A value of -1 turns
off color support.

If the parameter’s value is a symbol, it specifies a number through the value of
tty-color-mode-alist, and the associated number is used instead.

screen-gamma

If this is a number, Emacs performs “gamma correction” which adjusts the
brightness of all colors. The value should be the screen gamma of your display,
a floating point number.

Usual PC monitors have a screen gamma of 2.2, so color values in Emacs, and in
X windows generally, are calibrated to display properly on a monitor with that
gamma value. If you specify 2.2 for screen-gamma, that means no correction is
needed. Other values request correction, designed to make the corrected colors
appear on your screen the way they would have appeared without correction
on an ordinary monitor with a gamma value of 2.2.

Chapter 29: Frames 602

If your monitor displays colors too light, you should specify a screen-gamma

value smaller than 2.2. This requests correction that makes colors darker. A
screen gamma value of 1.5 may give good results for LCD color displays.

alpha This parameter specifies the opacity of the frame, on graphical displays that
support variable opacity. It should be an integer between 0 and 100, where 0
means completely transparent and 100 means completely opaque. It can also
have a nil value, which tells Emacs not to set the frame opacity (leaving it to
the window manager).

To prevent the frame from disappearing completely from view, the variable
frame-alpha-lower-limit defines a lower opacity limit. If the value of the
frame parameter is less than the value of this variable, Emacs uses the latter.
By default, frame-alpha-lower-limit is 20.

The alpha frame parameter can also be a cons cell (‘active’ . ‘inactive’),
where ‘active’ is the opacity of the frame when it is selected, and ‘inactive’
is the opacity when it is not selected.

The following frame parameters are semi-obsolete in that they are automatically equiv-
alent to particular face attributes of particular faces (see Section “Standard Faces” in The
Emacs Manual):

font The name of the font for displaying text in the frame. This is a string, ei-
ther a valid font name for your system or the name of an Emacs fontset (see
Section 38.12.11 [Fontsets], page 863). It is equivalent to the font attribute of
the default face.

foreground-color

The color to use for the image of a character. It is equivalent to the :foreground
attribute of the default face.

background-color

The color to use for the background of characters. It is equivalent to the
:background attribute of the default face.

mouse-color

The color for the mouse pointer. It is equivalent to the :background attribute
of the mouse face.

cursor-color

The color for the cursor that shows point. It is equivalent to the :background
attribute of the cursor face.

border-color

The color for the border of the frame. It is equivalent to the :background

attribute of the border face.

scroll-bar-foreground

If non-nil, the color for the foreground of scroll bars. It is equivalent to the
:foreground attribute of the scroll-bar face.

scroll-bar-background

If non-nil, the color for the background of scroll bars. It is equivalent to the
:background attribute of the scroll-bar face.

Chapter 29: Frames 603

29.3.4 Frame Size And Position

You can read or change the size and position of a frame using the frame parameters left,
top, height, and width. Whatever geometry parameters you don’t specify are chosen by
the window manager in its usual fashion.

Here are some special features for working with sizes and positions. (For the pre-
cise meaning of “selected frame” used by these functions, see Section 29.9 [Input Focus],
page 607.)

[Function]set-frame-position frame left top
This function sets the position of the top left corner of frame to left and top. These
arguments are measured in pixels, and normally count from the top left corner of the
screen.

Negative parameter values position the bottom edge of the window up from the bot-
tom edge of the screen, or the right window edge to the left of the right edge of the
screen. It would probably be better if the values were always counted from the left
and top, so that negative arguments would position the frame partly off the top or
left edge of the screen, but it seems inadvisable to change that now.

[Function]frame-height &optional frame
[Function]frame-width &optional frame

These functions return the height and width of frame, measured in lines and columns.
If you don’t supply frame, they use the selected frame.

[Function]frame-pixel-height &optional frame
[Function]frame-pixel-width &optional frame

These functions return the height and width of the main display area of frame, mea-
sured in pixels. If you don’t supply frame, they use the selected frame. For a text
terminal, the results are in characters rather than pixels.

These values include the internal borders, and windows’ scroll bars and fringes (which
belong to individual windows, not to the frame itself). The exact value of the heights
depends on the window-system and toolkit in use. With GTK+, the height does not
include any tool bar or menu bar. With the Motif or Lucid toolkits, it includes the
tool bar but not the menu bar. In a graphical version with no toolkit, it includes both
the tool bar and menu bar. For a text terminal, the result includes the menu bar.

[Function]frame-char-height &optional frame
[Function]frame-char-width &optional frame

These functions return the height and width of a character in frame, measured in
pixels. The values depend on the choice of font. If you don’t supply frame, these
functions use the selected frame.

[Function]set-frame-size frame cols rows
This function sets the size of frame, measured in characters; cols and rows specify
the new width and height.

To set the size based on values measured in pixels, use frame-char-height and
frame-char-width to convert them to units of characters.

Chapter 29: Frames 604

[Function]set-frame-height frame lines &optional pretend
This function resizes frame to a height of lines lines. The sizes of existing windows
in frame are altered proportionally to fit.

If pretend is non-nil, then Emacs displays lines lines of output in frame, but does
not change its value for the actual height of the frame. This is only useful on text
terminals. Using a smaller height than the terminal actually implements may be useful
to reproduce behavior observed on a smaller screen, or if the terminal malfunctions
when using its whole screen. Setting the frame height “for real” does not always
work, because knowing the correct actual size may be necessary for correct cursor
positioning on text terminals.

[Function]set-frame-width frame width &optional pretend
This function sets the width of frame, measured in characters. The argument pretend
has the same meaning as in set-frame-height.

[Command]fit-frame-to-buffer &optional frame max-height min-height
This command adjusts the height of frame (the default is the selected frame) to fit its
contents. The optional arguments max-height and min-height specify the maximum
and minimum new frame heights, respectively.

The default minimum height corresponds to window-min-height. The default max-
imum height is the screen height below the current top position of the frame, minus
any margin specified by the option fit-frame-to-buffer-bottom-margin.

29.3.5 Geometry

Here’s how to examine the data in an X-style window geometry specification:

[Function]x-parse-geometry geom
The function x-parse-geometry converts a standard X window geometry string to
an alist that you can use as part of the argument to make-frame.

The alist describes which parameters were specified in geom, and gives the values
specified for them. Each element looks like (parameter . value). The possible
parameter values are left, top, width, and height.

For the size parameters, the value must be an integer. The position parameter names
left and top are not totally accurate, because some values indicate the position of
the right or bottom edges instead. The value possibilities for the position parame-
ters are: an integer, a list (+ pos), or a list (- pos); as previously described (see
Section 29.3.3.2 [Position Parameters], page 596).

Here is an example:

(x-parse-geometry "35x70+0-0")

⇒ ((height . 70) (width . 35)

(top - 0) (left . 0))

29.4 Terminal Parameters

Each terminal has a list of associated parameters. These terminal parameters are mostly a
convenient way of storage for terminal-local variables, but some terminal parameters have
a special meaning.

Chapter 29: Frames 605

This section describes functions to read and change the parameter values of a terminal.
They all accept as their argument either a terminal or a frame; the latter means use that
frame’s terminal. An argument of nil means the selected frame’s terminal.

[Function]terminal-parameters &optional terminal
This function returns an alist listing all the parameters of terminal and their values.

[Function]terminal-parameter terminal parameter
This function returns the value of the parameter parameter (a symbol) of terminal.
If terminal has no setting for parameter, this function returns nil.

[Function]set-terminal-parameter terminal parameter value
This function sets the parameter parm of terminal to the specified value, and returns
the previous value of that parameter.

Here’s a list of a few terminal parameters that have a special meaning:

background-mode

The classification of the terminal’s background color, either light or dark.

normal-erase-is-backspace

Value is either 1 or 0, depending on whether normal-erase-is-backspace-

mode is turned on or off on this terminal. See Section “DEL Does Not Delete”
in The Emacs Manual.

terminal-initted

After the terminal is initialized, this is set to the terminal-specific initialization
function.

29.5 Frame Titles

Every frame has a name parameter; this serves as the default for the frame title which
window systems typically display at the top of the frame. You can specify a name explicitly
by setting the name frame property.

Normally you don’t specify the name explicitly, and Emacs computes the frame name
automatically based on a template stored in the variable frame-title-format. Emacs
recomputes the name each time the frame is redisplayed.

[Variable]frame-title-format
This variable specifies how to compute a name for a frame when you have not explicitly
specified one. The variable’s value is actually a mode line construct, just like mode-

line-format, except that the ‘%c’ and ‘%l’ constructs are ignored. See Section 23.4.2
[Mode Line Data], page 427.

[Variable]icon-title-format
This variable specifies how to compute the name for an iconified frame, when you
have not explicitly specified the frame title. This title appears in the icon itself.

[Variable]multiple-frames
This variable is set automatically by Emacs. Its value is t when there are two or
more frames (not counting minibuffer-only frames or invisible frames). The default

Chapter 29: Frames 606

value of frame-title-format uses multiple-frames so as to put the buffer name in
the frame title only when there is more than one frame.

The value of this variable is not guaranteed to be accurate except while processing
frame-title-format or icon-title-format.

29.6 Deleting Frames

A live frame is one that has not been deleted. When a frame is deleted, it is removed from
its terminal display, although it may continue to exist as a Lisp object until there are no
more references to it.

[Command]delete-frame &optional frame force
This function deletes the frame frame. Unless frame is a tooltip, it first runs the hook
delete-frame-functions (each function gets one argument, frame). By default,
frame is the selected frame.

A frame cannot be deleted if its minibuffer is used by other frames. Normally, you
cannot delete a frame if all other frames are invisible, but if force is non-nil, then
you are allowed to do so.

[Function]frame-live-p frame
The function frame-live-p returns non-nil if the frame frame has not been deleted.
The possible non-nil return values are like those of framep. See Chapter 29 [Frames],
page 590.

Some window managers provide a command to delete a window. These work by sending
a special message to the program that operates the window. When Emacs gets one of these
commands, it generates a delete-frame event, whose normal definition is a command that
calls the function delete-frame. See Section 21.7.10 [Misc Events], page 341.

29.7 Finding All Frames

[Function]frame-list
This function returns a list of all the live frames, i.e., those that have not been deleted.
It is analogous to buffer-list for buffers, and includes frames on all terminals. The
list that you get is newly created, so modifying the list doesn’t have any effect on the
internals of Emacs.

[Function]visible-frame-list
This function returns a list of just the currently visible frames. See Section 29.10
[Visibility of Frames], page 609. Frames on text terminals always count as “visible”,
even though only the selected one is actually displayed.

[Function]next-frame &optional frame minibuf
This function lets you cycle conveniently through all the frames on the current display
from an arbitrary starting point. It returns the “next” frame after frame in the cycle.
If frame is omitted or nil, it defaults to the selected frame (see Section 29.9 [Input
Focus], page 607).

The second argument, minibuf, says which frames to consider:

Chapter 29: Frames 607

nil Exclude minibuffer-only frames.

visible Consider all visible frames.

0 Consider all visible or iconified frames.

a window Consider only the frames using that particular window as their minibuffer.

anything else
Consider all frames.

[Function]previous-frame &optional frame minibuf
Like next-frame, but cycles through all frames in the opposite direction.

See also next-window and previous-window, in Section 28.9 [Cyclic Window Ordering],
page 556.

29.8 Minibuffers and Frames

Normally, each frame has its own minibuffer window at the bottom, which is used whenever
that frame is selected. If the frame has a minibuffer, you can get it with minibuffer-window

(see [Definition of minibuffer-window], page 318).

However, you can also create a frame with no minibuffer. Such a frame must use the
minibuffer window of some other frame. When you create the frame, you can explicitly
specify the minibuffer window to use (in some other frame). If you don’t, then the minibuffer
is found in the frame which is the value of the variable default-minibuffer-frame. Its
value should be a frame that does have a minibuffer.

If you use a minibuffer-only frame, you might want that frame to raise when you enter
the minibuffer. If so, set the variable minibuffer-auto-raise to t. See Section 29.11
[Raising and Lowering], page 610.

[Variable]default-minibuffer-frame
This variable specifies the frame to use for the minibuffer window, by default. It does
not affect existing frames. It is always local to the current terminal and cannot be
buffer-local. See Section 29.2 [Multiple Terminals], page 591.

29.9 Input Focus

At any time, one frame in Emacs is the selected frame. The selected window always resides
on the selected frame.

When Emacs displays its frames on several terminals (see Section 29.2 [Multiple Termi-
nals], page 591), each terminal has its own selected frame. But only one of these is “the
selected frame”: it’s the frame that belongs to the terminal from which the most recent
input came. That is, when Emacs runs a command that came from a certain terminal, the
selected frame is the one of that terminal. Since Emacs runs only a single command at any
given time, it needs to consider only one selected frame at a time; this frame is what we
call the selected frame in this manual. The display on which the selected frame is shown is
the selected frame’s display.

[Function]selected-frame
This function returns the selected frame.

Chapter 29: Frames 608

Some window systems and window managers direct keyboard input to the window object
that the mouse is in; others require explicit clicks or commands to shift the focus to various
window objects. Either way, Emacs automatically keeps track of which frame has the
focus. To explicitly switch to a different frame from a Lisp function, call select-frame-
set-input-focus.

Lisp programs can also switch frames “temporarily” by calling the function select-

frame. This does not alter the window system’s concept of focus; rather, it escapes from
the window manager’s control until that control is somehow reasserted.

When using a text terminal, only one frame can be displayed at a time on the terminal,
so after a call to select-frame, the next redisplay actually displays the newly selected
frame. This frame remains selected until a subsequent call to select-frame. Each frame
on a text terminal has a number which appears in the mode line before the buffer name
(see Section 23.4.4 [Mode Line Variables], page 430).

[Function]select-frame-set-input-focus frame &optional norecord
This function selects frame, raises it (should it happen to be obscured by other frames)
and tries to give it the X server’s focus. On a text terminal, the next redisplay displays
the new frame on the entire terminal screen. The optional argument norecord has the
same meaning as for select-frame (see below). The return value of this function is
not significant.

[Command]select-frame frame &optional norecord
This function selects frame frame, temporarily disregarding the focus of the X server
if any. The selection of frame lasts until the next time the user does something to
select a different frame, or until the next time this function is called. (If you are using
a window system, the previously selected frame may be restored as the selected frame
after return to the command loop, because it still may have the window system’s
input focus.)

The specified frame becomes the selected frame, and its terminal becomes the se-
lected terminal. This function then calls select-window as a subroutine, passing
the window selected within frame as its first argument and norecord as its second
argument (hence, if norecord is non-nil, this avoids changing the order of recently
selected windows nor the buffer list). See Section 28.8 [Selecting Windows], page 555.

This function returns frame, or nil if frame has been deleted.

In general, you should never use select-frame in a way that could switch to a
different terminal without switching back when you’re done.

Emacs cooperates with the window system by arranging to select frames as the server
and window manager request. It does so by generating a special kind of input event, called
a focus event, when appropriate. The command loop handles a focus event by calling
handle-switch-frame. See Section 21.7.9 [Focus Events], page 340.

[Command]handle-switch-frame frame
This function handles a focus event by selecting frame frame.

Focus events normally do their job by invoking this command. Don’t call it for any
other reason.

Chapter 29: Frames 609

[Function]redirect-frame-focus frame &optional focus-frame
This function redirects focus from frame to focus-frame. This means that focus-
frame will receive subsequent keystrokes and events intended for frame. After such
an event, the value of last-event-frame will be focus-frame. Also, switch-frame
events specifying frame will instead select focus-frame.

If focus-frame is omitted or nil, that cancels any existing redirection for frame, which
therefore once again receives its own events.

One use of focus redirection is for frames that don’t have minibuffers. These frames
use minibuffers on other frames. Activating a minibuffer on another frame redirects
focus to that frame. This puts the focus on the minibuffer’s frame, where it belongs,
even though the mouse remains in the frame that activated the minibuffer.

Selecting a frame can also change focus redirections. Selecting frame bar, when foo

had been selected, changes any redirections pointing to foo so that they point to bar

instead. This allows focus redirection to work properly when the user switches from
one frame to another using select-window.

This means that a frame whose focus is redirected to itself is treated differently from
a frame whose focus is not redirected. select-frame affects the former but not the
latter.

The redirection lasts until redirect-frame-focus is called to change it.

[User Option]focus-follows-mouse
This option is how you inform Emacs whether the window manager transfers focus
when the user moves the mouse. Non-nil says that it does. When this is so, the com-
mand other-frame moves the mouse to a position consistent with the new selected
frame.

29.10 Visibility of Frames

A frame on a graphical display may be visible, invisible, or iconified. If it is visible, its con-
tents are displayed in the usual manner. If it is iconified, its contents are not displayed, but
there is a little icon somewhere to bring the frame back into view (some window managers
refer to this state as minimized rather than iconified, but from Emacs’ point of view they
are the same thing). If a frame is invisible, it is not displayed at all.

Visibility is meaningless on text terminals, since only the selected one is actually dis-
played in any case.

[Function]frame-visible-p frame
This function returns the visibility status of frame frame. The value is t if frame is
visible, nil if it is invisible, and icon if it is iconified.

On a text terminal, all frames are considered “visible” for the purposes of this function,
even though only one frame is displayed. See Section 29.11 [Raising and Lowering],
page 610.

[Command]iconify-frame &optional frame
This function iconifies frame frame. If you omit frame, it iconifies the selected frame.

Chapter 29: Frames 610

[Command]make-frame-visible &optional frame
This function makes frame frame visible. If you omit frame, it makes the selected
frame visible. This does not raise the frame, but you can do that with raise-frame

if you wish (see Section 29.11 [Raising and Lowering], page 610).

[Command]make-frame-invisible &optional frame force
This function makes frame frame invisible. If you omit frame, it makes the selected
frame invisible.

Unless force is non-nil, this function refuses to make frame invisible if all other frames
are invisible..

The visibility status of a frame is also available as a frame parameter. You can read or
change it as such. See Section 29.3.3.6 [Management Parameters], page 599. The user can
also iconify and deiconify frames with the window manager. This happens below the level
at which Emacs can exert any control, but Emacs does provide events that you can use to
keep track of such changes. See Section 21.7.10 [Misc Events], page 341.

29.11 Raising and Lowering Frames

Most window systems use a desktop metaphor. Part of this metaphor is the idea that
system-level windows (e.g., Emacs frames) are stacked in a notional third dimension per-
pendicular to the screen surface. Where two overlap, the one higher up covers the one
underneath. You can raise or lower a frame using the functions raise-frame and lower-

frame.

[Command]raise-frame &optional frame
This function raises frame frame (default, the selected frame). If frame is invisible or
iconified, this makes it visible.

[Command]lower-frame &optional frame
This function lowers frame frame (default, the selected frame).

[User Option]minibuffer-auto-raise
If this is non-nil, activation of the minibuffer raises the frame that the minibuffer
window is in.

On window systems, you can also enable auto-raising (on frame selection) or auto-
lowering (on frame deselection) using frame parameters. See Section 29.3.3.6 [Management
Parameters], page 599.

The concept of raising and lowering frames also applies to text terminal frames. On each
text terminal, only the top frame is displayed at any one time.

[Function]tty-top-frame terminal
This function returns the top frame on terminal. terminal should be a terminal
object, a frame (meaning that frame’s terminal), or nil (meaning the selected frame’s
terminal). If it does not refer to a text terminal, the return value is nil.

Chapter 29: Frames 611

29.12 Frame Configurations

A frame configuration records the current arrangement of frames, all their properties,
and the window configuration of each one. (See Section 28.24 [Window Configurations],
page 584.)

[Function]current-frame-configuration
This function returns a frame configuration list that describes the current arrangement
of frames and their contents.

[Function]set-frame-configuration configuration &optional nodelete
This function restores the state of frames described in configuration. However, this
function does not restore deleted frames.

Ordinarily, this function deletes all existing frames not listed in configuration. But if
nodelete is non-nil, the unwanted frames are iconified instead.

29.13 Mouse Tracking

Sometimes it is useful to track the mouse, which means to display something to indicate
where the mouse is and move the indicator as the mouse moves. For efficient mouse tracking,
you need a way to wait until the mouse actually moves.

The convenient way to track the mouse is to ask for events to represent mouse motion.
Then you can wait for motion by waiting for an event. In addition, you can easily handle
any other sorts of events that may occur. That is useful, because normally you don’t want
to track the mouse forever—only until some other event, such as the release of a button.

[Special Form]track-mouse body. . .
This special form executes body, with generation of mouse motion events enabled.
Typically, body would use read-event to read the motion events and modify the
display accordingly. See Section 21.7.8 [Motion Events], page 340, for the format of
mouse motion events.

The value of track-mouse is that of the last form in body. You should design body to
return when it sees the up-event that indicates the release of the button, or whatever
kind of event means it is time to stop tracking.

The usual purpose of tracking mouse motion is to indicate on the screen the consequences
of pushing or releasing a button at the current position.

In many cases, you can avoid the need to track the mouse by using the mouse-face text
property (see Section 32.19.4 [Special Properties], page 685). That works at a much lower
level and runs more smoothly than Lisp-level mouse tracking.

29.14 Mouse Position

The functions mouse-position and set-mouse-position give access to the current position
of the mouse.

[Function]mouse-position
This function returns a description of the position of the mouse. The value looks like
(frame x . y), where x and y are integers giving the position in characters relative
to the top left corner of the inside of frame.

Chapter 29: Frames 612

[Variable]mouse-position-function
If non-nil, the value of this variable is a function for mouse-position to call. mouse-
position calls this function just before returning, with its normal return value as the
sole argument, and it returns whatever this function returns to it.

This abnormal hook exists for the benefit of packages like xt-mouse.el that need to
do mouse handling at the Lisp level.

[Function]set-mouse-position frame x y
This function warps the mouse to position x, y in frame frame. The arguments x and
y are integers, giving the position in characters relative to the top left corner of the
inside of frame. If frame is not visible, this function does nothing. The return value
is not significant.

[Function]mouse-pixel-position
This function is like mouse-position except that it returns coordinates in units of
pixels rather than units of characters.

[Function]set-mouse-pixel-position frame x y
This function warps the mouse like set-mouse-position except that x and y are in
units of pixels rather than units of characters. These coordinates are not required to
be within the frame.

If frame is not visible, this function does nothing. The return value is not significant.

[Function]frame-pointer-visible-p &optional frame
This predicate function returns non-nil if the mouse pointer displayed on frame is
visible; otherwise it returns nil. frame omitted or nil means the selected frame.
This is useful when make-pointer-invisible is set to t: it allows to know if the
pointer has been hidden. See Section “Mouse Avoidance” in The Emacs Manual.

29.15 Pop-Up Menus

When using a window system, a Lisp program can pop up a menu so that the user can
choose an alternative with the mouse.

[Function]x-popup-menu position menu
This function displays a pop-up menu and returns an indication of what selection the
user makes.

The argument position specifies where on the screen to put the top left corner of the
menu. It can be either a mouse button event (which says to put the menu where the
user actuated the button) or a list of this form:

((xoffset yoffset) window)

where xoffset and yoffset are coordinates, measured in pixels, counting from the top
left corner of window. window may be a window or a frame.

If position is t, it means to use the current mouse position. If position is nil, it
means to precompute the key binding equivalents for the keymaps specified in menu,
without actually displaying or popping up the menu.

Chapter 29: Frames 613

The argument menu says what to display in the menu. It can be a keymap or a list
of keymaps (see Section 22.17 [Menu Keymaps], page 390). In this case, the return
value is the list of events corresponding to the user’s choice. This list has more than
one element if the choice occurred in a submenu. (Note that x-popup-menu does not
actually execute the command bound to that sequence of events.) On toolkits that
support menu titles, the title is taken from the prompt string of menu if menu is
a keymap, or from the prompt string of the first keymap in menu if it is a list of
keymaps (see Section 22.17.1 [Defining Menus], page 390).

Alternatively, menu can have the following form:

(title pane1 pane2...)

where each pane is a list of form

(title item1 item2...)

Each item should be a cons cell, (line . value), where line is a string and value
is the value to return if that line is chosen. Unlike in a menu keymap, a nil value
does not make the menu item non-selectable. Alternatively, each item can be a string
rather than a cons cell; this makes a non-selectable menu item.

If the user gets rid of the menu without making a valid choice, for instance by clicking
the mouse away from a valid choice or by typing keyboard input, then this normally
results in a quit and x-popup-menu does not return. But if position is a mouse button
event (indicating that the user invoked the menu with the mouse) then no quit occurs
and x-popup-menu returns nil.

Usage note: Don’t use x-popup-menu to display a menu if you could do the job with a
prefix key defined with a menu keymap. If you use a menu keymap to implement a menu,
C-h c and C-h a can see the individual items in that menu and provide help for them. If
instead you implement the menu by defining a command that calls x-popup-menu, the help
facilities cannot know what happens inside that command, so they cannot give any help for
the menu’s items.

The menu bar mechanism, which lets you switch between submenus by moving the
mouse, cannot look within the definition of a command to see that it calls x-popup-menu.
Therefore, if you try to implement a submenu using x-popup-menu, it cannot work with the
menu bar in an integrated fashion. This is why all menu bar submenus are implemented with
menu keymaps within the parent menu, and never with x-popup-menu. See Section 22.17.5
[Menu Bar], page 397.

If you want a menu bar submenu to have contents that vary, you should still use a menu
keymap to implement it. To make the contents vary, add a hook function to menu-bar-

update-hook to update the contents of the menu keymap as necessary.

29.16 Dialog Boxes

A dialog box is a variant of a pop-up menu—it looks a little different, it always appears
in the center of a frame, and it has just one level and one or more buttons. The main use
of dialog boxes is for asking questions that the user can answer with “yes”, “no”, and a
few other alternatives. With a single button, they can also force the user to acknowledge
important information. The functions y-or-n-p and yes-or-no-p use dialog boxes instead
of the keyboard, when called from commands invoked by mouse clicks.

Chapter 29: Frames 614

[Function]x-popup-dialog position contents &optional header
This function displays a pop-up dialog box and returns an indication of what selection
the user makes. The argument contents specifies the alternatives to offer; it has this
format:

(title (string . value)...)

which looks like the list that specifies a single pane for x-popup-menu.

The return value is value from the chosen alternative.

As for x-popup-menu, an element of the list may be just a string instead of a cons
cell (string . value). That makes a box that cannot be selected.

If nil appears in the list, it separates the left-hand items from the right-hand items;
items that precede the nil appear on the left, and items that follow the nil appear
on the right. If you don’t include a nil in the list, then approximately half the items
appear on each side.

Dialog boxes always appear in the center of a frame; the argument position specifies
which frame. The possible values are as in x-popup-menu, but the precise coordinates
or the individual window don’t matter; only the frame matters.

If header is non-nil, the frame title for the box is ‘Information’, otherwise it is
‘Question’. The former is used for message-box (see [message-box], page 826).

In some configurations, Emacs cannot display a real dialog box; so instead it displays
the same items in a pop-up menu in the center of the frame.

If the user gets rid of the dialog box without making a valid choice, for instance using
the window manager, then this produces a quit and x-popup-dialog does not return.

29.17 Pointer Shape

You can specify the mouse pointer style for particular text or images using the pointer

text property, and for images with the :pointer and :map image properties. The values
you can use in these properties are text (or nil), arrow, hand, vdrag, hdrag, modeline,
and hourglass. text stands for the usual mouse pointer style used over text.

Over void parts of the window (parts that do not correspond to any of the buffer con-
tents), the mouse pointer usually uses the arrow style, but you can specify a different style
(one of those above) by setting void-text-area-pointer.

[User Option]void-text-area-pointer
This variable specifies the mouse pointer style for void text areas. These include the
areas after the end of a line or below the last line in the buffer. The default is to use
the arrow (non-text) pointer style.

When using X, you can specify what the text pointer style really looks like by setting
the variable x-pointer-shape.

[Variable]x-pointer-shape
This variable specifies the pointer shape to use ordinarily in the Emacs frame, for the
text pointer style.

Chapter 29: Frames 615

[Variable]x-sensitive-text-pointer-shape
This variable specifies the pointer shape to use when the mouse is over mouse-sensitive
text.

These variables affect newly created frames. They do not normally affect existing frames;
however, if you set the mouse color of a frame, that also installs the current value of those
two variables. See Section 29.3.3.8 [Font and Color Parameters], page 601.

The values you can use, to specify either of these pointer shapes, are defined in the file
lisp/term/x-win.el. Use M-x apropos RET x-pointer RET to see a list of them.

29.18 Window System Selections

In the X window system, data can be transferred between different applications by means
of selections. X defines an arbitrary number of selection types, each of which can store its
own data; however, only three are commonly used: the clipboard, primary selection, and
secondary selection. See Section “Cut and Paste” in The GNU Emacs Manual, for Emacs
commands that make use of these selections. This section documents the low-level functions
for reading and setting X selections.

[Command]x-set-selection type data
This function sets an X selection. It takes two arguments: a selection type type, and
the value to assign to it, data.

type should be a symbol; it is usually one of PRIMARY, SECONDARY or CLIPBOARD. These
are symbols with upper-case names, in accord with X Window System conventions.
If type is nil, that stands for PRIMARY.

If data is nil, it means to clear out the selection. Otherwise, data may be a string,
a symbol, an integer (or a cons of two integers or list of two integers), an overlay, or
a cons of two markers pointing to the same buffer. An overlay or a pair of markers
stands for text in the overlay or between the markers. The argument data may also
be a vector of valid non-vector selection values.

This function returns data.

[Function]x-get-selection &optional type data-type
This function accesses selections set up by Emacs or by other X clients. It takes two
optional arguments, type and data-type. The default for type, the selection type, is
PRIMARY.

The data-type argument specifies the form of data conversion to use, to convert the
raw data obtained from another X client into Lisp data. Meaningful values include
TEXT, STRING, UTF8_STRING, TARGETS, LENGTH, DELETE, FILE_NAME, CHARACTER_

POSITION, NAME, LINE_NUMBER, COLUMN_NUMBER, OWNER_OS, HOST_NAME, USER, CLASS,
ATOM, and INTEGER. (These are symbols with upper-case names in accord with X
conventions.) The default for data-type is STRING.

[User Option]selection-coding-system
This variable specifies the coding system to use when reading and writing selections or
the clipboard. See Section 33.9 [Coding Systems], page 716. The default is compound-
text-with-extensions, which converts to the text representation that X11 normally
uses.

Chapter 29: Frames 616

When Emacs runs on MS-Windows, it does not implement X selections in general, but
it does support the clipboard. x-get-selection and x-set-selection on MS-Windows
support the text data type only; if the clipboard holds other types of data, Emacs treats
the clipboard as empty.

29.19 Drag and Drop

When a user drags something from another application over Emacs, that other application
expects Emacs to tell it if Emacs can handle the data that is dragged. The variable x-

dnd-test-function is used by Emacs to determine what to reply. The default value is
x-dnd-default-test-function which accepts drops if the type of the data to be dropped
is present in x-dnd-known-types. You can customize x-dnd-test-function and/or x-

dnd-known-types if you want Emacs to accept or reject drops based on some other criteria.

If you want to change the way Emacs handles drop of different types or add a new
type, customize x-dnd-types-alist. This requires detailed knowledge of what types other
applications use for drag and drop.

When an URL is dropped on Emacs it may be a file, but it may also be another URL
type (ftp, http, etc.). Emacs first checks dnd-protocol-alist to determine what to do
with the URL. If there is no match there and if browse-url-browser-function is an alist,
Emacs looks for a match there. If no match is found the text for the URL is inserted. If
you want to alter Emacs behavior, you can customize these variables.

29.20 Color Names

A color name is text (usually in a string) that specifies a color. Symbolic names such
as ‘black’, ‘white’, ‘red’, etc., are allowed; use M-x list-colors-display to see a list
of defined names. You can also specify colors numerically in forms such as ‘#rgb’ and
‘RGB:r/g/b’, where r specifies the red level, g specifies the green level, and b specifies the
blue level. You can use either one, two, three, or four hex digits for r; then you must use
the same number of hex digits for all g and b as well, making either 3, 6, 9 or 12 hex digits
in all. (See the documentation of the X Window System for more details about numerical
RGB specification of colors.)

These functions provide a way to determine which color names are valid, and what they
look like. In some cases, the value depends on the selected frame, as described below; see
Section 29.9 [Input Focus], page 607, for the meaning of the term “selected frame”.

To read user input of color names with completion, use read-color (see Section 20.6.4
[High-Level Completion], page 305).

[Function]color-defined-p color &optional frame
This function reports whether a color name is meaningful. It returns t if so; otherwise,
nil. The argument frame says which frame’s display to ask about; if frame is omitted
or nil, the selected frame is used.

Note that this does not tell you whether the display you are using really supports
that color. When using X, you can ask for any defined color on any kind of display,
and you will get some result—typically, the closest it can do. To determine whether
a frame can really display a certain color, use color-supported-p (see below).

Chapter 29: Frames 617

This function used to be called x-color-defined-p, and that name is still supported
as an alias.

[Function]defined-colors &optional frame
This function returns a list of the color names that are defined and supported on
frame frame (default, the selected frame). If frame does not support colors, the value
is nil.

This function used to be called x-defined-colors, and that name is still supported
as an alias.

[Function]color-supported-p color &optional frame background-p
This returns t if frame can really display the color color (or at least something close
to it). If frame is omitted or nil, the question applies to the selected frame.

Some terminals support a different set of colors for foreground and background. If
background-p is non-nil, that means you are asking whether color can be used as a
background; otherwise you are asking whether it can be used as a foreground.

The argument color must be a valid color name.

[Function]color-gray-p color &optional frame
This returns t if color is a shade of gray, as defined on frame’s display. If frame is
omitted or nil, the question applies to the selected frame. If color is not a valid color
name, this function returns nil.

[Function]color-values color &optional frame
This function returns a value that describes what color should ideally look like on
frame. If color is defined, the value is a list of three integers, which give the amount
of red, the amount of green, and the amount of blue. Each integer ranges in principle
from 0 to 65535, but some displays may not use the full range. This three-element
list is called the rgb values of the color.

If color is not defined, the value is nil.

(color-values "black")

⇒ (0 0 0)

(color-values "white")

⇒ (65280 65280 65280)

(color-values "red")

⇒ (65280 0 0)

(color-values "pink")

⇒ (65280 49152 51968)

(color-values "hungry")

⇒ nil

The color values are returned for frame’s display. If frame is omitted or nil, the
information is returned for the selected frame’s display. If the frame cannot display
colors, the value is nil.

This function used to be called x-color-values, and that name is still supported as
an alias.

Chapter 29: Frames 618

29.21 Text Terminal Colors

Text terminals usually support only a small number of colors, and the computer uses small
integers to select colors on the terminal. This means that the computer cannot reliably tell
what the selected color looks like; instead, you have to inform your application which small
integers correspond to which colors. However, Emacs does know the standard set of colors
and will try to use them automatically.

The functions described in this section control how terminal colors are used by Emacs.

Several of these functions use or return rgb values, described in Section 29.20 [Color
Names], page 616.

These functions accept a display (either a frame or the name of a terminal) as an optional
argument. We hope in the future to make Emacs support different colors on different text
terminals; then this argument will specify which terminal to operate on (the default being
the selected frame’s terminal; see Section 29.9 [Input Focus], page 607). At present, though,
the frame argument has no effect.

[Function]tty-color-define name number &optional rgb frame
This function associates the color name name with color number number on the
terminal.

The optional argument rgb, if specified, is an rgb value, a list of three numbers that
specify what the color actually looks like. If you do not specify rgb, then this color
cannot be used by tty-color-approximate to approximate other colors, because
Emacs will not know what it looks like.

[Function]tty-color-clear &optional frame
This function clears the table of defined colors for a text terminal.

[Function]tty-color-alist &optional frame
This function returns an alist recording the known colors supported by a text terminal.

Each element has the form (name number . rgb) or (name number). Here, name is
the color name, number is the number used to specify it to the terminal. If present,
rgb is a list of three color values (for red, green, and blue) that says what the color
actually looks like.

[Function]tty-color-approximate rgb &optional frame
This function finds the closest color, among the known colors supported for display,
to that described by the rgb value rgb (a list of color values). The return value is an
element of tty-color-alist.

[Function]tty-color-translate color &optional frame
This function finds the closest color to color among the known colors supported for
display and returns its index (an integer). If the name color is not defined, the value
is nil.

29.22 X Resources

This section describes some of the functions and variables for querying and using X re-
sources, or their equivalent on your operating system. See Section “X Resources” in The
GNU Emacs Manual, for more information about X resources.

Chapter 29: Frames 619

[Function]x-get-resource attribute class &optional component subclass
The function x-get-resource retrieves a resource value from the X Window defaults
database.

Resources are indexed by a combination of a key and a class. This function searches
using a key of the form ‘instance.attribute’ (where instance is the name under
which Emacs was invoked), and using ‘Emacs.class’ as the class.

The optional arguments component and subclass add to the key and the class, re-
spectively. You must specify both of them or neither. If you specify them, the key is
‘instance.component.attribute’, and the class is ‘Emacs.class.subclass’.

[Variable]x-resource-class
This variable specifies the application name that x-get-resource should look up.
The default value is "Emacs". You can examine X resources for application names
other than “Emacs” by binding this variable to some other string, around a call to
x-get-resource.

[Variable]x-resource-name
This variable specifies the instance name that x-get-resource should look up. The
default value is the name Emacs was invoked with, or the value specified with the
‘-name’ or ‘-rn’ switches.

To illustrate some of the above, suppose that you have the line:

xterm.vt100.background: yellow

in your X resources file (whose name is usually ~/.Xdefaults or ~/.Xresources). Then:

(let ((x-resource-class "XTerm") (x-resource-name "xterm"))

(x-get-resource "vt100.background" "VT100.Background"))

⇒ "yellow"

(let ((x-resource-class "XTerm") (x-resource-name "xterm"))

(x-get-resource "background" "VT100" "vt100" "Background"))

⇒ "yellow"

[Variable]inhibit-x-resources
If this variable is non-nil, Emacs does not look up X resources, and X resources do
not have any effect when creating new frames.

29.23 Display Feature Testing

The functions in this section describe the basic capabilities of a particular display. Lisp
programs can use them to adapt their behavior to what the display can do. For example,
a program that ordinarily uses a popup menu could use the minibuffer if popup menus are
not supported.

The optional argument display in these functions specifies which display to ask the
question about. It can be a display name, a frame (which designates the display that frame
is on), or nil (which refers to the selected frame’s display, see Section 29.9 [Input Focus],
page 607).

See Section 29.20 [Color Names], page 616, Section 29.21 [Text Terminal Colors],
page 618, for other functions to obtain information about displays.

Chapter 29: Frames 620

[Function]display-popup-menus-p &optional display
This function returns t if popup menus are supported on display, nil if not. Support
for popup menus requires that the mouse be available, since the user cannot choose
menu items without a mouse.

[Function]display-graphic-p &optional display
This function returns t if display is a graphic display capable of displaying several
frames and several different fonts at once. This is true for displays that use a window
system such as X, and false for text terminals.

[Function]display-mouse-p &optional display
This function returns t if display has a mouse available, nil if not.

[Function]display-color-p &optional display
This function returns t if the screen is a color screen. It used to be called x-display-

color-p, and that name is still supported as an alias.

[Function]display-grayscale-p &optional display
This function returns t if the screen can display shades of gray. (All color displays
can do this.)

[Function]display-supports-face-attributes-p attributes &optional display
This function returns non-nil if all the face attributes in attributes are supported
(see Section 38.12.1 [Face Attributes], page 849).

The definition of ‘supported’ is somewhat heuristic, but basically means that a face
containing all the attributes in attributes, when merged with the default face for
display, can be represented in a way that’s

1. different in appearance than the default face, and

2. ‘close in spirit’ to what the attributes specify, if not exact.

Point (2) implies that a :weight black attribute will be satisfied by any display
that can display bold, as will :foreground "yellow" as long as some yellowish color
can be displayed, but :slant italic will not be satisfied by the tty display code’s
automatic substitution of a ‘dim’ face for italic.

[Function]display-selections-p &optional display
This function returns t if display supports selections. Windowed displays normally
support selections, but they may also be supported in some other cases.

[Function]display-images-p &optional display
This function returns t if display can display images. Windowed displays ought in
principle to handle images, but some systems lack the support for that. On a display
that does not support images, Emacs cannot display a tool bar.

[Function]display-screens &optional display
This function returns the number of screens associated with the display.

[Function]display-pixel-height &optional display
This function returns the height of the screen in pixels. On a character terminal, it
gives the height in characters.

Chapter 29: Frames 621

For graphical terminals, note that on “multi-monitor” setups this refers to the pixel
width for all physical monitors associated with display. See Section 29.2 [Multiple
Terminals], page 591.

[Function]display-pixel-width &optional display
This function returns the width of the screen in pixels. On a character terminal, it
gives the width in characters.

For graphical terminals, note that on “multi-monitor” setups this refers to the pixel
width for all physical monitors associated with display. See Section 29.2 [Multiple
Terminals], page 591.

[Function]display-mm-height &optional display
This function returns the height of the screen in millimeters, or nil if Emacs cannot
get that information.

[Function]display-mm-width &optional display
This function returns the width of the screen in millimeters, or nil if Emacs cannot
get that information.

[User Option]display-mm-dimensions-alist
This variable allows the user to specify the dimensions of graphical displays returned
by display-mm-height and display-mm-width in case the system provides incorrect
values.

[Function]display-backing-store &optional display
This function returns the backing store capability of the display. Backing store means
recording the pixels of windows (and parts of windows) that are not exposed, so that
when exposed they can be displayed very quickly.

Values can be the symbols always, when-mapped, or not-useful. The function can
also return nil when the question is inapplicable to a certain kind of display.

[Function]display-save-under &optional display
This function returns non-nil if the display supports the SaveUnder feature. That
feature is used by pop-up windows to save the pixels they obscure, so that they can
pop down quickly.

[Function]display-planes &optional display
This function returns the number of planes the display supports. This is typically
the number of bits per pixel. For a tty display, it is log to base two of the number of
colors supported.

[Function]display-visual-class &optional display
This function returns the visual class for the screen. The value is one of the symbols
static-gray (a limited, unchangeable number of grays), gray-scale (a full range of
grays), static-color (a limited, unchangeable number of colors), pseudo-color (a
limited number of colors), true-color (a full range of colors), and direct-color (a
full range of colors).

[Function]display-color-cells &optional display
This function returns the number of color cells the screen supports.

Chapter 29: Frames 622

These functions obtain additional information specifically about X displays.

[Function]x-server-version &optional display
This function returns the list of version numbers of the X server running the display.
The value is a list of three integers: the major and minor version numbers of the X
protocol, and the distributor-specific release number of the X server software itself.

[Function]x-server-vendor &optional display
This function returns the “vendor” that provided the X server software (as a string).
Really this means whoever distributes the X server.

When the developers of X labeled software distributors as “vendors”, they showed
their false assumption that no system could ever be developed and distributed non-
commercially.

Chapter 30: Positions 623

30 Positions

A position is the index of a character in the text of a buffer. More precisely, a position
identifies the place between two characters (or before the first character, or after the last
character), so we can speak of the character before or after a given position. However, we
often speak of the character “at” a position, meaning the character after that position.

Positions are usually represented as integers starting from 1, but can also be represented
as markers—special objects that relocate automatically when text is inserted or deleted
so they stay with the surrounding characters. Functions that expect an argument to be a
position (an integer), but accept a marker as a substitute, normally ignore which buffer the
marker points into; they convert the marker to an integer, and use that integer, exactly as
if you had passed the integer as the argument, even if the marker points to the “wrong”
buffer. A marker that points nowhere cannot convert to an integer; using it instead of an
integer causes an error. See Chapter 31 [Markers], page 636.

See also the “field” feature (see Section 32.19.9 [Fields], page 695), which provides func-
tions that are used by many cursor-motion commands.

30.1 Point

Point is a special buffer position used by many editing commands, including the self-
inserting typed characters and text insertion functions. Other commands move point
through the text to allow editing and insertion at different places.

Like other positions, point designates a place between two characters (or before the first
character, or after the last character), rather than a particular character. Usually terminals
display the cursor over the character that immediately follows point; point is actually before
the character on which the cursor sits.

The value of point is a number no less than 1, and no greater than the buffer size plus 1.
If narrowing is in effect (see Section 30.4 [Narrowing], page 633), then point is constrained
to fall within the accessible portion of the buffer (possibly at one end of it).

Each buffer has its own value of point, which is independent of the value of point in
other buffers. Each window also has a value of point, which is independent of the value of
point in other windows on the same buffer. This is why point can have different values in
various windows that display the same buffer. When a buffer appears in only one window,
the buffer’s point and the window’s point normally have the same value, so the distinction
is rarely important. See Section 28.18 [Window Point], page 572, for more details.

[Function]point
This function returns the value of point in the current buffer, as an integer.

(point)

⇒ 175

[Function]point-min
This function returns the minimum accessible value of point in the current buffer.
This is normally 1, but if narrowing is in effect, it is the position of the start of the
region that you narrowed to. (See Section 30.4 [Narrowing], page 633.)

Chapter 30: Positions 624

[Function]point-max
This function returns the maximum accessible value of point in the current buffer.
This is (1+ (buffer-size)), unless narrowing is in effect, in which case it is the
position of the end of the region that you narrowed to. (See Section 30.4 [Narrowing],
page 633.)

[Function]buffer-end flag
This function returns (point-max) if flag is greater than 0, (point-min) otherwise.
The argument flag must be a number.

[Function]buffer-size &optional buffer
This function returns the total number of characters in the current buffer. In the
absence of any narrowing (see Section 30.4 [Narrowing], page 633), point-max returns
a value one larger than this.

If you specify a buffer, buffer, then the value is the size of buffer.

(buffer-size)

⇒ 35

(point-max)

⇒ 36

30.2 Motion

Motion functions change the value of point, either relative to the current value of point,
relative to the beginning or end of the buffer, or relative to the edges of the selected window.
See Section 30.1 [Point], page 623.

30.2.1 Motion by Characters

These functions move point based on a count of characters. goto-char is the fundamental
primitive; the other functions use that.

[Command]goto-char position
This function sets point in the current buffer to the value position. If position is less
than 1, it moves point to the beginning of the buffer. If position is greater than the
length of the buffer, it moves point to the end.

If narrowing is in effect, position still counts from the beginning of the buffer, but
point cannot go outside the accessible portion. If position is out of range, goto-char
moves point to the beginning or the end of the accessible portion.

When this function is called interactively, position is the numeric prefix argument, if
provided; otherwise it is read from the minibuffer.

goto-char returns position.

[Command]forward-char &optional count
This function moves point count characters forward, towards the end of the buffer (or
backward, towards the beginning of the buffer, if count is negative). If count is nil,
the default is 1.

If this attempts to move past the beginning or end of the buffer (or the limits of the
accessible portion, when narrowing is in effect), it signals an error with error symbol
beginning-of-buffer or end-of-buffer.

Chapter 30: Positions 625

In an interactive call, count is the numeric prefix argument.

[Command]backward-char &optional count
This is just like forward-char except that it moves in the opposite direction.

30.2.2 Motion by Words

These functions for parsing words use the syntax table to decide whether a given character
is part of a word. See Chapter 35 [Syntax Tables], page 757.

[Command]forward-word &optional count
This function moves point forward count words (or backward if count is negative). If
count is nil, it moves forward one word.

“Moving one word” means moving until point crosses a word-constituent character
and then encounters a word-separator character. However, this function cannot move
point past the boundary of the accessible portion of the buffer, or across a field
boundary (see Section 32.19.9 [Fields], page 695). The most common case of a field
boundary is the end of the prompt in the minibuffer.

If it is possible to move count words, without being stopped prematurely by the buffer
boundary or a field boundary, the value is t. Otherwise, the return value is nil and
point stops at the buffer boundary or field boundary.

If inhibit-field-text-motion is non-nil, this function ignores field boundaries.

In an interactive call, count is specified by the numeric prefix argument. If count is
omitted or nil, it defaults to 1.

[Command]backward-word &optional count
This function is just like forward-word, except that it moves backward until encoun-
tering the front of a word, rather than forward.

[User Option]words-include-escapes
This variable affects the behavior of forward-word and everything that uses it. If
it is non-nil, then characters in the “escape” and “character quote” syntax classes
count as part of words. Otherwise, they do not.

[Variable]inhibit-field-text-motion
If this variable is non-nil, certain motion functions including forward-word,
forward-sentence, and forward-paragraph ignore field boundaries.

30.2.3 Motion to an End of the Buffer

To move point to the beginning of the buffer, write:

(goto-char (point-min))

Likewise, to move to the end of the buffer, use:

(goto-char (point-max))

Here are two commands that users use to do these things. They are documented here to
warn you not to use them in Lisp programs, because they set the mark and display messages
in the echo area.

Chapter 30: Positions 626

[Command]beginning-of-buffer &optional n
This function moves point to the beginning of the buffer (or the limits of the accessible
portion, when narrowing is in effect), setting the mark at the previous position (except
in Transient Mark mode, if the mark is already active, it does not set the mark.)

If n is non-nil, then it puts point n tenths of the way from the beginning of the ac-
cessible portion of the buffer. In an interactive call, n is the numeric prefix argument,
if provided; otherwise n defaults to nil.

Warning: Don’t use this function in Lisp programs!

[Command]end-of-buffer &optional n
This function moves point to the end of the buffer (or the limits of the accessible
portion, when narrowing is in effect), setting the mark at the previous position (except
in Transient Mark mode when the mark is already active). If n is non-nil, then it
puts point n tenths of the way from the end of the accessible portion of the buffer.

In an interactive call, n is the numeric prefix argument, if provided; otherwise n
defaults to nil.

Warning: Don’t use this function in Lisp programs!

30.2.4 Motion by Text Lines

Text lines are portions of the buffer delimited by newline characters, which are regarded as
part of the previous line. The first text line begins at the beginning of the buffer, and the
last text line ends at the end of the buffer whether or not the last character is a newline.
The division of the buffer into text lines is not affected by the width of the window, by line
continuation in display, or by how tabs and control characters are displayed.

[Command]beginning-of-line &optional count
This function moves point to the beginning of the current line. With an argument
count not nil or 1, it moves forward count−1 lines and then to the beginning of the
line.

This function does not move point across a field boundary (see Section 32.19.9 [Fields],
page 695) unless doing so would move beyond there to a different line; therefore, if
count is nil or 1, and point starts at a field boundary, point does not move. To
ignore field boundaries, either bind inhibit-field-text-motion to t, or use the
forward-line function instead. For instance, (forward-line 0) does the same thing
as (beginning-of-line), except that it ignores field boundaries.

If this function reaches the end of the buffer (or of the accessible portion, if narrowing
is in effect), it positions point there. No error is signaled.

[Function]line-beginning-position &optional count
Return the position that (beginning-of-line count) would move to.

[Command]end-of-line &optional count
This function moves point to the end of the current line. With an argument count
not nil or 1, it moves forward count−1 lines and then to the end of the line.

This function does not move point across a field boundary (see Section 32.19.9 [Fields],
page 695) unless doing so would move beyond there to a different line; therefore, if

Chapter 30: Positions 627

count is nil or 1, and point starts at a field boundary, point does not move. To ignore
field boundaries, bind inhibit-field-text-motion to t.

If this function reaches the end of the buffer (or of the accessible portion, if narrowing
is in effect), it positions point there. No error is signaled.

[Function]line-end-position &optional count
Return the position that (end-of-line count) would move to.

[Command]forward-line &optional count
This function moves point forward count lines, to the beginning of the line. If count
is negative, it moves point −count lines backward, to the beginning of a line. If count
is zero, it moves point to the beginning of the current line. If count is nil, that means
1.

If forward-line encounters the beginning or end of the buffer (or of the accessible
portion) before finding that many lines, it sets point there. No error is signaled.

forward-line returns the difference between count and the number of lines actually
moved. If you attempt to move down five lines from the beginning of a buffer that
has only three lines, point stops at the end of the last line, and the value will be 2.

In an interactive call, count is the numeric prefix argument.

[Function]count-lines start end
This function returns the number of lines between the positions start and end in the
current buffer. If start and end are equal, then it returns 0. Otherwise it returns at
least 1, even if start and end are on the same line. This is because the text between
them, considered in isolation, must contain at least one line unless it is empty.

[Command]count-words start end
This function returns the number of words between the positions start and end in the
current buffer.

This function can also be called interactively. In that case, it prints a message re-
porting the number of lines, words, and characters in the buffer, or in the region if
the region is active.

[Function]line-number-at-pos &optional pos
This function returns the line number in the current buffer corresponding to the buffer
position pos. If pos is nil or omitted, the current buffer position is used.

Also see the functions bolp and eolp in Section 32.1 [Near Point], page 645. These
functions do not move point, but test whether it is already at the beginning or end of a
line.

30.2.5 Motion by Screen Lines

The line functions in the previous section count text lines, delimited only by newline char-
acters. By contrast, these functions count screen lines, which are defined by the way the
text appears on the screen. A text line is a single screen line if it is short enough to fit the
width of the selected window, but otherwise it may occupy several screen lines.

Chapter 30: Positions 628

In some cases, text lines are truncated on the screen rather than continued onto addi-
tional screen lines. In these cases, vertical-motion moves point much like forward-line.
See Section 38.3 [Truncation], page 823.

Because the width of a given string depends on the flags that control the appearance of
certain characters, vertical-motion behaves differently, for a given piece of text, depending
on the buffer it is in, and even on the selected window (because the width, the truncation
flag, and display table may vary between windows). See Section 38.20.1 [Usual Display],
page 900.

These functions scan text to determine where screen lines break, and thus take time
proportional to the distance scanned. If you intend to use them heavily, Emacs provides
caches which may improve the performance of your code. See Section 38.3 [Truncation],
page 823.

[Function]vertical-motion count &optional window
This function moves point to the start of the screen line count screen lines down from
the screen line containing point. If count is negative, it moves up instead.

The count argument can be a cons cell, (cols . lines), instead of an integer. Then
the function moves by lines screen lines, and puts point cols columns from the start
of that screen line.

The return value is the number of screen lines over which point was moved. The value
may be less in absolute value than count if the beginning or end of the buffer was
reached.

The window window is used for obtaining parameters such as the width, the horizontal
scrolling, and the display table. But vertical-motion always operates on the current
buffer, even if window currently displays some other buffer.

[Function]count-screen-lines &optional beg end count-final-newline window
This function returns the number of screen lines in the text from beg to end. The
number of screen lines may be different from the number of actual lines, due to line
continuation, the display table, etc. If beg and end are nil or omitted, they default
to the beginning and end of the accessible portion of the buffer.

If the region ends with a newline, that is ignored unless the optional third argument
count-final-newline is non-nil.

The optional fourth argument window specifies the window for obtaining parameters
such as width, horizontal scrolling, and so on. The default is to use the selected
window’s parameters.

Like vertical-motion, count-screen-lines always uses the current buffer, regard-
less of which buffer is displayed in window. This makes possible to use count-screen-
lines in any buffer, whether or not it is currently displayed in some window.

[Command]move-to-window-line count
This function moves point with respect to the text currently displayed in the selected
window. It moves point to the beginning of the screen line count screen lines from
the top of the window. If count is negative, that specifies a position −count lines
from the bottom (or the last line of the buffer, if the buffer ends above the specified
screen position).

Chapter 30: Positions 629

If count is nil, then point moves to the beginning of the line in the middle of the
window. If the absolute value of count is greater than the size of the window, then
point moves to the place that would appear on that screen line if the window were tall
enough. This will probably cause the next redisplay to scroll to bring that location
onto the screen.

In an interactive call, count is the numeric prefix argument.

The value returned is the window line number point has moved to, with the top line
in the window numbered 0.

[Function]compute-motion from frompos to topos width offsets window
This function scans the current buffer, calculating screen positions. It scans the
buffer forward from position from, assuming that is at screen coordinates frompos, to
position to or coordinates topos, whichever comes first. It returns the ending buffer
position and screen coordinates.

The coordinate arguments frompos and topos are cons cells of the form (hpos .

vpos).

The argument width is the number of columns available to display text; this affects
handling of continuation lines. nil means the actual number of usable text columns
in the window, which is equivalent to the value returned by (window-width window).

The argument offsets is either nil or a cons cell of the form (hscroll . tab-offset).
Here hscroll is the number of columns not being displayed at the left margin; most
callers get this by calling window-hscroll. Meanwhile, tab-offset is the offset between
column numbers on the screen and column numbers in the buffer. This can be nonzero
in a continuation line, when the previous screen lines’ widths do not add up to a
multiple of tab-width. It is always zero in a non-continuation line.

The window window serves only to specify which display table to use. compute-

motion always operates on the current buffer, regardless of what buffer is displayed
in window.

The return value is a list of five elements:

(pos hpos vpos prevhpos contin)

Here pos is the buffer position where the scan stopped, vpos is the vertical screen
position, and hpos is the horizontal screen position.

The result prevhpos is the horizontal position one character back from pos. The result
contin is t if the last line was continued after (or within) the previous character.

For example, to find the buffer position of column col of screen line line of a certain
window, pass the window’s display start location as from and the window’s upper-left
coordinates as frompos. Pass the buffer’s (point-max) as to, to limit the scan to the
end of the accessible portion of the buffer, and pass line and col as topos. Here’s a
function that does this:

(defun coordinates-of-position (col line)

(car (compute-motion (window-start)

’(0 . 0)

(point-max)

(cons col line)

Chapter 30: Positions 630

(window-width)

(cons (window-hscroll) 0)

(selected-window))))

When you use compute-motion for the minibuffer, you need to use minibuffer-

prompt-width to get the horizontal position of the beginning of the first screen line.
See Section 20.12 [Minibuffer Contents], page 319.

30.2.6 Moving over Balanced Expressions

Here are several functions concerned with balanced-parenthesis expressions (also called
sexps in connection with moving across them in Emacs). The syntax table controls how
these functions interpret various characters; see Chapter 35 [Syntax Tables], page 757. See
Section 35.6 [Parsing Expressions], page 765, for lower-level primitives for scanning sexps or
parts of sexps. For user-level commands, see Section “Commands for Editing with Paren-
theses” in The GNU Emacs Manual.

[Command]forward-list &optional arg
This function moves forward across arg (default 1) balanced groups of parentheses.
(Other syntactic entities such as words or paired string quotes are ignored.)

[Command]backward-list &optional arg
This function moves backward across arg (default 1) balanced groups of parentheses.
(Other syntactic entities such as words or paired string quotes are ignored.)

[Command]up-list &optional arg
This function moves forward out of arg (default 1) levels of parentheses. A negative
argument means move backward but still to a less deep spot.

[Command]down-list &optional arg
This function moves forward into arg (default 1) levels of parentheses. A negative
argument means move backward but still go deeper in parentheses (−arg levels).

[Command]forward-sexp &optional arg
This function moves forward across arg (default 1) balanced expressions. Balanced
expressions include both those delimited by parentheses and other kinds, such as
words and string constants. See Section 35.6 [Parsing Expressions], page 765. For
example,

---------- Buffer: foo ----------

(concat? "foo " (car x) y z)

---------- Buffer: foo ----------

(forward-sexp 3)

⇒ nil

---------- Buffer: foo ----------

(concat "foo " (car x) y? z)

---------- Buffer: foo ----------

[Command]backward-sexp &optional arg
This function moves backward across arg (default 1) balanced expressions.

Chapter 30: Positions 631

[Command]beginning-of-defun &optional arg
This function moves back to the argth beginning of a defun. If arg is negative, this
actually moves forward, but it still moves to the beginning of a defun, not to the end
of one. arg defaults to 1.

[Command]end-of-defun &optional arg
This function moves forward to the argth end of a defun. If arg is negative, this
actually moves backward, but it still moves to the end of a defun, not to the beginning
of one. arg defaults to 1.

[User Option]defun-prompt-regexp
If non-nil, this buffer-local variable holds a regular expression that specifies what
text can appear before the open-parenthesis that starts a defun. That is to say, a
defun begins on a line that starts with a match for this regular expression, followed
by a character with open-parenthesis syntax.

[User Option]open-paren-in-column-0-is-defun-start
If this variable’s value is non-nil, an open parenthesis in column 0 is considered to
be the start of a defun. If it is nil, an open parenthesis in column 0 has no special
meaning. The default is t.

[Variable]beginning-of-defun-function
If non-nil, this variable holds a function for finding the beginning of a defun. The
function beginning-of-defun calls this function instead of using its normal method,
passing it its optional argument. If the argument is non-nil, the function should
move back by that many functions, like beginning-of-defun does.

[Variable]end-of-defun-function
If non-nil, this variable holds a function for finding the end of a defun. The function
end-of-defun calls this function instead of using its normal method.

30.2.7 Skipping Characters

The following two functions move point over a specified set of characters. For example,
they are often used to skip whitespace. For related functions, see Section 35.5 [Motion and
Syntax], page 765.

These functions convert the set string to multibyte if the buffer is multibyte, and they
convert it to unibyte if the buffer is unibyte, as the search functions do (see Chapter 34
[Searching and Matching], page 732).

[Function]skip-chars-forward character-set &optional limit
This function moves point in the current buffer forward, skipping over a given set
of characters. It examines the character following point, then advances point if the
character matches character-set. This continues until it reaches a character that does
not match. The function returns the number of characters moved over.

The argument character-set is a string, like the inside of a ‘[...]’ in a regular ex-
pression except that ‘]’ does not terminate it, and ‘\’ quotes ‘^’, ‘-’ or ‘\’. Thus,
"a-zA-Z" skips over all letters, stopping before the first nonletter, and "^a-zA-Z"

Chapter 30: Positions 632

skips nonletters stopping before the first letter. See See Section 34.3 [Regular Ex-
pressions], page 734. Character classes can also be used, e.g., "[:alnum:]". See see
Section 34.3.1.2 [Char Classes], page 738.

If limit is supplied (it must be a number or a marker), it specifies the maximum
position in the buffer that point can be skipped to. Point will stop at or before limit.

In the following example, point is initially located directly before the ‘T’. After the
form is evaluated, point is located at the end of that line (between the ‘t’ of ‘hat’
and the newline). The function skips all letters and spaces, but not newlines.

---------- Buffer: foo ----------

I read "?The cat in the hat

comes back" twice.

---------- Buffer: foo ----------

(skip-chars-forward "a-zA-Z ")

⇒ 18

---------- Buffer: foo ----------

I read "The cat in the hat?
comes back" twice.

---------- Buffer: foo ----------

[Function]skip-chars-backward character-set &optional limit
This function moves point backward, skipping characters that match character-set,
until limit. It is just like skip-chars-forward except for the direction of motion.

The return value indicates the distance traveled. It is an integer that is zero or less.

30.3 Excursions

It is often useful to move point “temporarily” within a localized portion of the program.
This is called an excursion, and it is done with the save-excursion special form. This
construct remembers the initial identity of the current buffer, and its values of point and
the mark, and restores them after the excursion completes. It is the standard way to move
point within one part of a program and avoid affecting the rest of the program, and is used
thousands of times in the Lisp sources of Emacs.

If you only need to save and restore the identity of the current buffer, use save-current-
buffer or with-current-buffer instead (see Section 27.2 [Current Buffer], page 521). If
you need to save or restore window configurations, see the forms described in Section 28.24
[Window Configurations], page 584 and in Section 29.12 [Frame Configurations], page 611.

[Special Form]save-excursion body. . .
This special form saves the identity of the current buffer and the values of point and
the mark in it, evaluates body, and finally restores the buffer and its saved values of
point and the mark. All three saved values are restored even in case of an abnormal
exit via throw or error (see Section 10.5 [Nonlocal Exits], page 129).

The value returned by save-excursion is the result of the last form in body, or nil
if no body forms were given.

Chapter 30: Positions 633

Because save-excursion only saves point and mark for the buffer that was current
at the start of the excursion, any changes made to point and/or mark in other buffers,
during the excursion, will remain in effect afterward. This frequently leads to unintended
consequences, so the byte compiler warns if you call set-buffer during an excursion:

Warning: Use ‘with-current-buffer’ rather than

save-excursion+set-buffer

To avoid such problems, you should call save-excursion only after setting the desired
current buffer, as in the following example:

(defun append-string-to-buffer (string buffer)

"Append STRING to the end of BUFFER."

(with-current-buffer buffer

(save-excursion

(goto-char (point-max))

(insert string))))

Likewise, save-excursion does not restore window-buffer correspondences altered by
functions such as switch-to-buffer.

Warning: Ordinary insertion of text adjacent to the saved point value relocates the
saved value, just as it relocates all markers. More precisely, the saved value is a marker
with insertion type nil. See Section 31.5 [Marker Insertion Types], page 639. Therefore,
when the saved point value is restored, it normally comes before the inserted text.

Although save-excursion saves the location of the mark, it does not prevent functions
which modify the buffer from setting deactivate-mark, and thus causing the deactivation
of the mark after the command finishes. See Section 31.7 [The Mark], page 640.

30.4 Narrowing

Narrowing means limiting the text addressable by Emacs editing commands to a limited
range of characters in a buffer. The text that remains addressable is called the accessible
portion of the buffer.

Narrowing is specified with two buffer positions, which become the beginning and end of
the accessible portion. For most editing commands and primitives, these positions replace
the values of the beginning and end of the buffer. While narrowing is in effect, no text
outside the accessible portion is displayed, and point cannot move outside the accessible
portion. Note that narrowing does not alter actual buffer positions (see Section 30.1 [Point],
page 623); it only determines which positions are considered the accessible portion of the
buffer. Most functions refuse to operate on text that is outside the accessible portion.

Commands for saving buffers are unaffected by narrowing; they save the entire buffer
regardless of any narrowing.

If you need to display in a single buffer several very different types of text, consider using
an alternative facility described in Section 27.12 [Swapping Text], page 536.

[Command]narrow-to-region start end
This function sets the accessible portion of the current buffer to start at start and
end at end. Both arguments should be character positions.

In an interactive call, start and end are set to the bounds of the current region (point
and the mark, with the smallest first).

Chapter 30: Positions 634

[Command]narrow-to-page &optional move-count
This function sets the accessible portion of the current buffer to include just the
current page. An optional first argument move-count non-nil means to move forward
or backward by move-count pages and then narrow to one page. The variable page-
delimiter specifies where pages start and end (see Section 34.8 [Standard Regexps],
page 756).

In an interactive call, move-count is set to the numeric prefix argument.

[Command]widen
This function cancels any narrowing in the current buffer, so that the entire contents
are accessible. This is called widening. It is equivalent to the following expression:

(narrow-to-region 1 (1+ (buffer-size)))

[Function]buffer-narrowed-p
This function returns non-nil if the buffer is narrowed, and nil otherwise.

[Special Form]save-restriction body. . .
This special form saves the current bounds of the accessible portion, evaluates the
body forms, and finally restores the saved bounds, thus restoring the same state of
narrowing (or absence thereof) formerly in effect. The state of narrowing is restored
even in the event of an abnormal exit via throw or error (see Section 10.5 [Nonlo-
cal Exits], page 129). Therefore, this construct is a clean way to narrow a buffer
temporarily.

The value returned by save-restriction is that returned by the last form in body,
or nil if no body forms were given.

Caution: it is easy to make a mistake when using the save-restriction construct.
Read the entire description here before you try it.

If body changes the current buffer, save-restriction still restores the restrictions
on the original buffer (the buffer whose restrictions it saved from), but it does not
restore the identity of the current buffer.

save-restriction does not restore point and the mark; use save-excursion for
that. If you use both save-restriction and save-excursion together, save-

excursion should come first (on the outside). Otherwise, the old point value would
be restored with temporary narrowing still in effect. If the old point value were outside
the limits of the temporary narrowing, this would fail to restore it accurately.

Here is a simple example of correct use of save-restriction:

---------- Buffer: foo ----------

This is the contents of foo

This is the contents of foo

This is the contents of foo?
---------- Buffer: foo ----------

Chapter 30: Positions 635

(save-excursion

(save-restriction

(goto-char 1)

(forward-line 2)

(narrow-to-region 1 (point))

(goto-char (point-min))

(replace-string "foo" "bar")))

---------- Buffer: foo ----------

This is the contents of bar

This is the contents of bar

This is the contents of foo?
---------- Buffer: foo ----------

Chapter 31: Markers 636

31 Markers

A marker is a Lisp object used to specify a position in a buffer relative to the surrounding
text. A marker changes its offset from the beginning of the buffer automatically whenever
text is inserted or deleted, so that it stays with the two characters on either side of it.

31.1 Overview of Markers

A marker specifies a buffer and a position in that buffer. A marker can be used to represent
a position in functions that require one, just as an integer could be used. In that case, the
marker’s buffer is normally ignored. Of course, a marker used in this way usually points to
a position in the buffer that the function operates on, but that is entirely the programmer’s
responsibility. See Chapter 30 [Positions], page 623, for a complete description of positions.

A marker has three attributes: the marker position, the marker buffer, and the insertion
type. The marker position is an integer that is equivalent (at a given time) to the marker
as a position in that buffer. But the marker’s position value can change during the life of
the marker, and often does. Insertion and deletion of text in the buffer relocate the marker.
The idea is that a marker positioned between two characters remains between those two
characters despite insertion and deletion elsewhere in the buffer. Relocation changes the
integer equivalent of the marker.

Deleting text around a marker’s position leaves the marker between the characters imme-
diately before and after the deleted text. Inserting text at the position of a marker normally
leaves the marker either in front of or after the new text, depending on the marker’s in-
sertion type (see Section 31.5 [Marker Insertion Types], page 639)—unless the insertion is
done with insert-before-markers (see Section 32.4 [Insertion], page 649).

Insertion and deletion in a buffer must check all the markers and relocate them if neces-
sary. This slows processing in a buffer with a large number of markers. For this reason, it
is a good idea to make a marker point nowhere if you are sure you don’t need it any more.
Markers that can no longer be accessed are eventually removed (see Section E.3 [Garbage
Collection], page 984).

Because it is common to perform arithmetic operations on a marker position, most of
these operations (including + and -) accept markers as arguments. In such cases, the marker
stands for its current position.

Here are examples of creating markers, setting markers, and moving point to markers:

;; Make a new marker that initially does not point anywhere:
(setq m1 (make-marker))

⇒ #<marker in no buffer>

;; Set m1 to point between the 99th and 100th characters
;; in the current buffer:
(set-marker m1 100)

⇒ #<marker at 100 in markers.texi>

Chapter 31: Markers 637

;; Now insert one character at the beginning of the buffer:
(goto-char (point-min))

⇒ 1

(insert "Q")

⇒ nil

;; m1 is updated appropriately.
m1

⇒ #<marker at 101 in markers.texi>

;; Two markers that point to the same position
;; are not eq, but they are equal.
(setq m2 (copy-marker m1))

⇒ #<marker at 101 in markers.texi>

(eq m1 m2)

⇒ nil

(equal m1 m2)

⇒ t

;; When you are finished using a marker, make it point nowhere.
(set-marker m1 nil)

⇒ #<marker in no buffer>

31.2 Predicates on Markers

You can test an object to see whether it is a marker, or whether it is either an integer or
a marker. The latter test is useful in connection with the arithmetic functions that work
with both markers and integers.

[Function]markerp object
This function returns t if object is a marker, nil otherwise. Note that integers are
not markers, even though many functions will accept either a marker or an integer.

[Function]integer-or-marker-p object
This function returns t if object is an integer or a marker, nil otherwise.

[Function]number-or-marker-p object
This function returns t if object is a number (either integer or floating point) or a
marker, nil otherwise.

31.3 Functions that Create Markers

When you create a new marker, you can make it point nowhere, or point to the present
position of point, or to the beginning or end of the accessible portion of the buffer, or to
the same place as another given marker.

The next four functions all return markers with insertion type nil. See Section 31.5
[Marker Insertion Types], page 639.

Chapter 31: Markers 638

[Function]make-marker
This function returns a newly created marker that does not point anywhere.

(make-marker)

⇒ #<marker in no buffer>

[Function]point-marker
This function returns a new marker that points to the present position of point in the
current buffer. See Section 30.1 [Point], page 623. For an example, see copy-marker,
below.

[Function]point-min-marker
This function returns a new marker that points to the beginning of the accessible
portion of the buffer. This will be the beginning of the buffer unless narrowing is in
effect. See Section 30.4 [Narrowing], page 633.

[Function]point-max-marker
This function returns a new marker that points to the end of the accessible portion
of the buffer. This will be the end of the buffer unless narrowing is in effect. See
Section 30.4 [Narrowing], page 633.

Here are examples of this function and point-min-marker, shown in a buffer con-
taining a version of the source file for the text of this chapter.

(point-min-marker)

⇒ #<marker at 1 in markers.texi>

(point-max-marker)

⇒ #<marker at 24080 in markers.texi>

(narrow-to-region 100 200)

⇒ nil

(point-min-marker)

⇒ #<marker at 100 in markers.texi>

(point-max-marker)

⇒ #<marker at 200 in markers.texi>

[Function]copy-marker &optional marker-or-integer insertion-type
If passed a marker as its argument, copy-marker returns a new marker that points
to the same place and the same buffer as does marker-or-integer. If passed an integer
as its argument, copy-marker returns a new marker that points to position marker-
or-integer in the current buffer.

The new marker’s insertion type is specified by the argument insertion-type. See
Section 31.5 [Marker Insertion Types], page 639.

If passed an integer argument less than 1, copy-marker returns a new marker that
points to the beginning of the current buffer. If passed an integer argument greater
than the length of the buffer, copy-marker returns a new marker that points to the
end of the buffer.

(copy-marker 0)

⇒ #<marker at 1 in markers.texi>

Chapter 31: Markers 639

(copy-marker 90000)

⇒ #<marker at 24080 in markers.texi>

An error is signaled if marker is neither a marker nor an integer.

Two distinct markers are considered equal (even though not eq) to each other if they
have the same position and buffer, or if they both point nowhere.

(setq p (point-marker))

⇒ #<marker at 2139 in markers.texi>

(setq q (copy-marker p))

⇒ #<marker at 2139 in markers.texi>

(eq p q)

⇒ nil

(equal p q)

⇒ t

31.4 Information from Markers

This section describes the functions for accessing the components of a marker object.

[Function]marker-position marker
This function returns the position that marker points to, or nil if it points nowhere.

[Function]marker-buffer marker
This function returns the buffer that marker points into, or nil if it points nowhere.

(setq m (make-marker))

⇒ #<marker in no buffer>

(marker-position m)

⇒ nil

(marker-buffer m)

⇒ nil

(set-marker m 3770 (current-buffer))

⇒ #<marker at 3770 in markers.texi>

(marker-buffer m)

⇒ #<buffer markers.texi>

(marker-position m)

⇒ 3770

31.5 Marker Insertion Types

When you insert text directly at the place where a marker points, there are two possible
ways to relocate that marker: it can point before the inserted text, or point after it. You
can specify which one a given marker should do by setting its insertion type. Note that use
of insert-before-markers ignores markers’ insertion types, always relocating a marker to
point after the inserted text.

Chapter 31: Markers 640

[Function]set-marker-insertion-type marker type
This function sets the insertion type of marker marker to type. If type is t, marker
will advance when text is inserted at its position. If type is nil, marker does not
advance when text is inserted there.

[Function]marker-insertion-type marker
This function reports the current insertion type of marker.

Most functions that create markers, without an argument allowing to specify the inser-
tion type, create them with insertion type nil. Also, the mark has, by default, insertion
type nil.

31.6 Moving Marker Positions

This section describes how to change the position of an existing marker. When you do this,
be sure you know whether the marker is used outside of your program, and, if so, what
effects will result from moving it—otherwise, confusing things may happen in other parts
of Emacs.

[Function]set-marker marker position &optional buffer
This function moves marker to position in buffer. If buffer is not provided, it defaults
to the current buffer.

If position is less than 1, set-marker moves marker to the beginning of the buffer.
If position is greater than the size of the buffer (see Section 30.1 [Point], page 623),
set-marker moves marker to the end of the buffer. If position is nil or a marker
that points nowhere, then marker is set to point nowhere.

The value returned is marker.

(setq m (point-marker))

⇒ #<marker at 4714 in markers.texi>

(set-marker m 55)

⇒ #<marker at 55 in markers.texi>

(setq b (get-buffer "foo"))

⇒ #<buffer foo>

(set-marker m 0 b)

⇒ #<marker at 1 in foo>

[Function]move-marker marker position &optional buffer
This is another name for set-marker.

31.7 The Mark

Each buffer has a special marker, which is designated the mark. When a buffer is newly
created, this marker exists but does not point anywhere; this means that the mark “doesn’t
exist” in that buffer yet. Subsequent commands can set the mark.

The mark specifies a position to bound a range of text for many commands, such as
kill-region and indent-rigidly. These commands typically act on the text between
point and the mark, which is called the region. If you are writing a command that operates
on the region, don’t examine the mark directly; instead, use interactive with the ‘r’

Chapter 31: Markers 641

specification. This provides the values of point and the mark as arguments to the command
in an interactive call, but permits other Lisp programs to specify arguments explicitly. See
Section 21.2.2 [Interactive Codes], page 324.

Some commands set the mark as a side-effect. Commands should do this only if it has
a potential use to the user, and never for their own internal purposes. For example, the
replace-regexp command sets the mark to the value of point before doing any replace-
ments, because this enables the user to move back there conveniently after the replace is
finished.

Once the mark “exists” in a buffer, it normally never ceases to exist. However, it may
become inactive, if Transient Mark mode is enabled. The buffer-local variable mark-active,
if non-nil, means that the mark is active. A command can call the function deactivate-

mark to deactivate the mark directly, or it can request deactivation of the mark upon return
to the editor command loop by setting the variable deactivate-mark to a non-nil value.

If Transient Mark mode is enabled, certain editing commands that normally apply to
text near point, apply instead to the region when the mark is active. This is the main
motivation for using Transient Mark mode. (Another is that this enables highlighting of
the region when the mark is active. See Chapter 38 [Display], page 822.)

In addition to the mark, each buffer has a mark ring which is a list of markers contain-
ing previous values of the mark. When editing commands change the mark, they should
normally save the old value of the mark on the mark ring. The variable mark-ring-max

specifies the maximum number of entries in the mark ring; once the list becomes this long,
adding a new element deletes the last element.

There is also a separate global mark ring, but that is used only in a few particular
user-level commands, and is not relevant to Lisp programming. So we do not describe it
here.

[Function]mark &optional force
This function returns the current buffer’s mark position as an integer, or nil if no
mark has ever been set in this buffer.

If Transient Mark mode is enabled, and mark-even-if-inactive is nil, mark signals
an error if the mark is inactive. However, if force is non-nil, then mark disregards
inactivity of the mark, and returns the mark position (or nil) anyway.

[Function]mark-marker
This function returns the marker that represents the current buffer’s mark. It is not
a copy, it is the marker used internally. Therefore, changing this marker’s position
will directly affect the buffer’s mark. Don’t do that unless that is the effect you want.

(setq m (mark-marker))

⇒ #<marker at 3420 in markers.texi>

(set-marker m 100)

⇒ #<marker at 100 in markers.texi>

(mark-marker)

⇒ #<marker at 100 in markers.texi>

Like any marker, this marker can be set to point at any buffer you like. If you make
it point at any buffer other than the one of which it is the mark, it will yield perfectly
consistent, but rather odd, results. We recommend that you not do it!

Chapter 31: Markers 642

[Function]set-mark position
This function sets the mark to position, and activates the mark. The old value of the
mark is not pushed onto the mark ring.

Please note: Use this function only if you want the user to see that the mark has
moved, and you want the previous mark position to be lost. Normally, when a new
mark is set, the old one should go on the mark-ring. For this reason, most applica-
tions should use push-mark and pop-mark, not set-mark.

Novice Emacs Lisp programmers often try to use the mark for the wrong purposes.
The mark saves a location for the user’s convenience. An editing command should
not alter the mark unless altering the mark is part of the user-level functionality of
the command. (And, in that case, this effect should be documented.) To remember a
location for internal use in the Lisp program, store it in a Lisp variable. For example:

(let ((beg (point)))

(forward-line 1)

(delete-region beg (point))).

[Function]push-mark &optional position nomsg activate
This function sets the current buffer’s mark to position, and pushes a copy of the
previous mark onto mark-ring. If position is nil, then the value of point is used.

The function push-mark normally does not activate the mark. To do that, specify t

for the argument activate.

A ‘Mark set’ message is displayed unless nomsg is non-nil.

[Function]pop-mark
This function pops off the top element of mark-ring and makes that mark become
the buffer’s actual mark. This does not move point in the buffer, and it does nothing
if mark-ring is empty. It deactivates the mark.

[User Option]transient-mark-mode
This variable, if non-nil, enables Transient Mark mode. In Transient Mark mode,
every buffer-modifying primitive sets deactivate-mark. As a consequence, most
commands that modify the buffer also deactivate the mark.

When Transient Mark mode is enabled and the mark is active, many commands that
normally apply to the text near point instead apply to the region. Such commands
should use the function use-region-p to test whether they should operate on the
region. See Section 31.8 [The Region], page 644.

Lisp programs can set transient-mark-mode to non-nil, non-t values to enable
Transient Mark mode temporarily. If the value is lambda, Transient Mark mode is
automatically turned off after any action, such as buffer modification, that would
normally deactivate the mark. If the value is (only . oldval), then transient-

mark-mode is set to the value oldval after any subsequent command that moves point
and is not shift-translated (see Section 21.8.1 [Key Sequence Input], page 349), or
after any other action that would normally deactivate the mark.

[User Option]mark-even-if-inactive
If this is non-nil, Lisp programs and the Emacs user can use the mark even when it is
inactive. This option affects the behavior of Transient Mark mode. When the option

Chapter 31: Markers 643

is non-nil, deactivation of the mark turns off region highlighting, but commands that
use the mark behave as if the mark were still active.

[Variable]deactivate-mark
If an editor command sets this variable non-nil, then the editor command loop
deactivates the mark after the command returns (if Transient Mark mode is enabled).
All the primitives that change the buffer set deactivate-mark, to deactivate the mark
when the command is finished.

To write Lisp code that modifies the buffer without causing deactivation of the mark
at the end of the command, bind deactivate-mark to nil around the code that does
the modification. For example:

(let (deactivate-mark)

(insert " "))

[Function]deactivate-mark &optional force
If Transient Mark mode is enabled or force is non-nil, this function deactivates the
mark and runs the normal hook deactivate-mark-hook. Otherwise, it does nothing.

[Variable]mark-active
The mark is active when this variable is non-nil. This variable is always buffer-local
in each buffer. Do not use the value of this variable to decide whether a command
that normally operates on text near point should operate on the region instead. Use
the function use-region-p for that (see Section 31.8 [The Region], page 644).

[Variable]activate-mark-hook
[Variable]deactivate-mark-hook

These normal hooks are run, respectively, when the mark becomes active and when
it becomes inactive. The hook activate-mark-hook is also run at the end of the
command loop if the mark is active and it is possible that the region may have
changed.

[Function]handle-shift-selection
This function implements the “shift-selection” behavior of point-motion commands.
See Section “Shift Selection” in The GNU Emacs Manual. It is called automati-
cally by the Emacs command loop whenever a command with a ‘^’ character in its
interactive spec is invoked, before the command itself is executed (see Section 21.2.2
[Interactive Codes], page 324).

If shift-select-mode is non-nil and the current command was invoked via shift
translation (see Section 21.8.1 [Key Sequence Input], page 349), this function sets the
mark and temporarily activates the region, unless the region was already temporarily
activated in this way. Otherwise, if the region has been activated temporarily, it
deactivates the mark and restores the variable transient-mark-mode to its earlier
value.

[Variable]mark-ring
The value of this buffer-local variable is the list of saved former marks of the current
buffer, most recent first.

Chapter 31: Markers 644

mark-ring

⇒ (#<marker at 11050 in markers.texi>

#<marker at 10832 in markers.texi>

...)

[User Option]mark-ring-max
The value of this variable is the maximum size of mark-ring. If more marks than
this are pushed onto the mark-ring, push-mark discards an old mark when it adds a
new one.

31.8 The Region

The text between point and the mark is known as the region. Various functions operate on
text delimited by point and the mark, but only those functions specifically related to the
region itself are described here.

The next two functions signal an error if the mark does not point anywhere. If Transient
Mark mode is enabled and mark-even-if-inactive is nil, they also signal an error if the
mark is inactive.

[Function]region-beginning
This function returns the position of the beginning of the region (as an integer). This
is the position of either point or the mark, whichever is smaller.

[Function]region-end
This function returns the position of the end of the region (as an integer). This is the
position of either point or the mark, whichever is larger.

Instead of using region-beginning and region-end, a command designed to operate on
a region should normally use interactive with the ‘r’ specification to find the beginning
and end of the region. This lets other Lisp programs specify the bounds explicitly as
arguments. See Section 21.2.2 [Interactive Codes], page 324.

[Function]use-region-p
This function returns t if Transient Mark mode is enabled, the mark is active, and
there is a valid region in the buffer. This function is intended to be used by commands
that operate on the region, instead of on text near point, when the mark is active.

A region is valid if it has a non-zero size, or if the user option use-empty-active-

region is non-nil (by default, it is nil). The function region-active-p is similar
to use-region-p, but considers all regions as valid. In most cases, you should not
use region-active-p, since if the region is empty it is often more appropriate to
operate on point.

Chapter 32: Text 645

32 Text

This chapter describes the functions that deal with the text in a buffer. Most examine,
insert, or delete text in the current buffer, often operating at point or on text adjacent to
point. Many are interactive. All the functions that change the text provide for undoing the
changes (see Section 32.9 [Undo], page 660).

Many text-related functions operate on a region of text defined by two buffer positions
passed in arguments named start and end. These arguments should be either markers (see
Chapter 31 [Markers], page 636) or numeric character positions (see Chapter 30 [Positions],
page 623). The order of these arguments does not matter; it is all right for start to be
the end of the region and end the beginning. For example, (delete-region 1 10) and
(delete-region 10 1) are equivalent. An args-out-of-range error is signaled if either
start or end is outside the accessible portion of the buffer. In an interactive call, point and
the mark are used for these arguments.

Throughout this chapter, “text” refers to the characters in the buffer, together with their
properties (when relevant). Keep in mind that point is always between two characters, and
the cursor appears on the character after point.

32.1 Examining Text Near Point

Many functions are provided to look at the characters around point. Several simple functions
are described here. See also looking-at in Section 34.4 [Regexp Search], page 744.

In the following four functions, “beginning” or “end” of buffer refers to the beginning or
end of the accessible portion.

[Function]char-after &optional position
This function returns the character in the current buffer at (i.e., immediately after)
position position. If position is out of range for this purpose, either before the begin-
ning of the buffer, or at or beyond the end, then the value is nil. The default for
position is point.

In the following example, assume that the first character in the buffer is ‘@’:

(string (char-after 1))

⇒ "@"

[Function]char-before &optional position
This function returns the character in the current buffer immediately before position
position. If position is out of range for this purpose, either at or before the beginning
of the buffer, or beyond the end, then the value is nil. The default for position is
point.

[Function]following-char
This function returns the character following point in the current buffer. This is
similar to (char-after (point)). However, if point is at the end of the buffer, then
following-char returns 0.

Remember that point is always between characters, and the cursor normally appears
over the character following point. Therefore, the character returned by following-

char is the character the cursor is over.

In this example, point is between the ‘a’ and the ‘c’.

Chapter 32: Text 646

---------- Buffer: foo ----------

Gentlemen may cry ‘‘Pea?ce! Peace!,’’

but there is no peace.

---------- Buffer: foo ----------

(string (preceding-char))

⇒ "a"

(string (following-char))

⇒ "c"

[Function]preceding-char
This function returns the character preceding point in the current buffer. See above,
under following-char, for an example. If point is at the beginning of the buffer,
preceding-char returns 0.

[Function]bobp
This function returns t if point is at the beginning of the buffer. If narrowing is
in effect, this means the beginning of the accessible portion of the text. See also
point-min in Section 30.1 [Point], page 623.

[Function]eobp
This function returns t if point is at the end of the buffer. If narrowing is in effect,
this means the end of accessible portion of the text. See also point-max in See
Section 30.1 [Point], page 623.

[Function]bolp
This function returns t if point is at the beginning of a line. See Section 30.2.4 [Text
Lines], page 626. The beginning of the buffer (or of its accessible portion) always
counts as the beginning of a line.

[Function]eolp
This function returns t if point is at the end of a line. The end of the buffer (or of
its accessible portion) is always considered the end of a line.

32.2 Examining Buffer Contents

This section describes functions that allow a Lisp program to convert any portion of the
text in the buffer into a string.

[Function]buffer-substring start end
This function returns a string containing a copy of the text of the region defined by
positions start and end in the current buffer. If the arguments are not positions in the
accessible portion of the buffer, buffer-substring signals an args-out-of-range

error.

Here’s an example which assumes Font-Lock mode is not enabled:

---------- Buffer: foo ----------

This is the contents of buffer foo

---------- Buffer: foo ----------

Chapter 32: Text 647

(buffer-substring 1 10)

⇒ "This is t"

(buffer-substring (point-max) 10)

⇒ "he contents of buffer foo\n"

If the text being copied has any text properties, these are copied into the string along
with the characters they belong to. See Section 32.19 [Text Properties], page 680.
However, overlays (see Section 38.9 [Overlays], page 839) in the buffer and their
properties are ignored, not copied.

For example, if Font-Lock mode is enabled, you might get results like these:

(buffer-substring 1 10)

⇒ #("This is t" 0 1 (fontified t) 1 9 (fontified t))

[Function]buffer-substring-no-properties start end
This is like buffer-substring, except that it does not copy text properties, just the
characters themselves. See Section 32.19 [Text Properties], page 680.

[Function]buffer-string
This function returns the contents of the entire accessible portion of the current buffer,
as a string.

[Function]filter-buffer-substring start end &optional delete
This function passes the buffer text between start and end through the filter functions
specified by the wrapper hook filter-buffer-substring-functions, and returns
the result. The obsolete variable buffer-substring-filters is also consulted. If
both of these variables are nil, the value is the unaltered text from the buffer, i.e.,
what buffer-substring would return.

If delete is non-nil, this function deletes the text between start and end after copying
it, like delete-and-extract-region.

Lisp code should use this function instead of buffer-substring, buffer-substring-
no-properties, or delete-and-extract-region when copying into user-accessible
data structures such as the kill-ring, X clipboard, and registers. Major and minor
modes can add functions to filter-buffer-substring-functions to alter such text
as it is copied out of the buffer.

[Variable]filter-buffer-substring-functions
This variable is a wrapper hook (see Section 23.1.1 [Running Hooks], page 404), whose
members should be functions that accept four arguments: fun, start, end, and delete.
fun is a function that takes three arguments (start, end, and delete), and returns a
string. In both cases, the start, end, and delete arguments are the same as those of
filter-buffer-substring.

The first hook function is passed a fun that is equivalent to the default operation of
filter-buffer-substring, i.e., it returns the buffer-substring between start and end
(processed by any buffer-substring-filters) and optionally deletes the original
text from the buffer. In most cases, the hook function will call fun once, and then do
its own processing of the result. The next hook function receives a fun equivalent to
this, and so on. The actual return value is the result of all the hook functions acting
in sequence.

Chapter 32: Text 648

[Variable]buffer-substring-filters
This variable is obsoleted by filter-buffer-substring-functions, but is still sup-
ported for backward compatibility. Its value should should be a list of functions
which accept a single string argument and return another string. filter-buffer-

substring passes the buffer substring to the first function in this list, and the return
value of each function is passed to the next function. The return value of the last
function is passed to filter-buffer-substring-functions.

[Function]current-word &optional strict really-word
This function returns the symbol (or word) at or near point, as a string. The return
value includes no text properties.

If the optional argument really-word is non-nil, it finds a word; otherwise, it finds a
symbol (which includes both word characters and symbol constituent characters).

If the optional argument strict is non-nil, then point must be in or next to the symbol
or word—if no symbol or word is there, the function returns nil. Otherwise, a nearby
symbol or word on the same line is acceptable.

[Function]thing-at-point thing
Return the thing around or next to point, as a string.

The argument thing is a symbol which specifies a kind of syntactic entity. Possibilities
include symbol, list, sexp, defun, filename, url, word, sentence, whitespace,
line, page, and others.

---------- Buffer: foo ----------

Gentlemen may cry ‘‘Pea?ce! Peace!,’’

but there is no peace.

---------- Buffer: foo ----------

(thing-at-point ’word)

⇒ "Peace"

(thing-at-point ’line)

⇒ "Gentlemen may cry ‘‘Peace! Peace!,’’\n"

(thing-at-point ’whitespace)

⇒ nil

32.3 Comparing Text

This function lets you compare portions of the text in a buffer, without copying them into
strings first.

[Function]compare-buffer-substrings buffer1 start1 end1 buffer2 start2 end2
This function lets you compare two substrings of the same buffer or two different
buffers. The first three arguments specify one substring, giving a buffer (or a buffer
name) and two positions within the buffer. The last three arguments specify the other
substring in the same way. You can use nil for buffer1, buffer2, or both to stand for
the current buffer.

The value is negative if the first substring is less, positive if the first is greater, and
zero if they are equal. The absolute value of the result is one plus the index of the
first differing characters within the substrings.

Chapter 32: Text 649

This function ignores case when comparing characters if case-fold-search is non-
nil. It always ignores text properties.

Suppose the current buffer contains the text ‘foobarbar haha!rara!’; then in this
example the two substrings are ‘rbar ’ and ‘rara!’. The value is 2 because the first
substring is greater at the second character.

(compare-buffer-substrings nil 6 11 nil 16 21)

⇒ 2

32.4 Inserting Text

Insertion means adding new text to a buffer. The inserted text goes at point—between the
character before point and the character after point. Some insertion functions leave point
before the inserted text, while other functions leave it after. We call the former insertion
after point and the latter insertion before point.

Insertion moves markers located at positions after the insertion point, so that they stay
with the surrounding text (see Chapter 31 [Markers], page 636). When a marker points
at the place of insertion, insertion may or may not relocate the marker, depending on the
marker’s insertion type (see Section 31.5 [Marker Insertion Types], page 639). Certain
special functions such as insert-before-markers relocate all such markers to point after
the inserted text, regardless of the markers’ insertion type.

Insertion functions signal an error if the current buffer is read-only or if they insert
within read-only text.

These functions copy text characters from strings and buffers along with their properties.
The inserted characters have exactly the same properties as the characters they were copied
from. By contrast, characters specified as separate arguments, not part of a string or buffer,
inherit their text properties from the neighboring text.

The insertion functions convert text from unibyte to multibyte in order to insert in a
multibyte buffer, and vice versa—if the text comes from a string or from a buffer. However,
they do not convert unibyte character codes 128 through 255 to multibyte characters, not
even if the current buffer is a multibyte buffer. See Section 33.2 [Converting Representa-
tions], page 706.

[Function]insert &rest args
This function inserts the strings and/or characters args into the current buffer, at
point, moving point forward. In other words, it inserts the text before point. An
error is signaled unless all args are either strings or characters. The value is nil.

[Function]insert-before-markers &rest args
This function inserts the strings and/or characters args into the current buffer, at
point, moving point forward. An error is signaled unless all args are either strings or
characters. The value is nil.

This function is unlike the other insertion functions in that it relocates markers ini-
tially pointing at the insertion point, to point after the inserted text. If an overlay
begins at the insertion point, the inserted text falls outside the overlay; if a nonempty
overlay ends at the insertion point, the inserted text falls inside that overlay.

Chapter 32: Text 650

[Command]insert-char character &optional count inherit
This command inserts count instances of character into the current buffer before
point. The argument count must be an integer, and character must be a character.

If called interactively, this command prompts for character using its Unicode name
or its code point. See Section “Inserting Text” in The GNU Emacs Manual.

This function does not convert unibyte character codes 128 through 255 to multibyte
characters, not even if the current buffer is a multibyte buffer. See Section 33.2
[Converting Representations], page 706.

If inherit is non-nil, the inserted characters inherit sticky text properties from the two
characters before and after the insertion point. See Section 32.19.6 [Sticky Properties],
page 691.

[Function]insert-buffer-substring from-buffer-or-name &optional start end
This function inserts a portion of buffer from-buffer-or-name (which must already
exist) into the current buffer before point. The text inserted is the region between
start and end. (These arguments default to the beginning and end of the accessible
portion of that buffer.) This function returns nil.

In this example, the form is executed with buffer ‘bar’ as the current buffer. We
assume that buffer ‘bar’ is initially empty.

---------- Buffer: foo ----------

We hold these truths to be self-evident, that all

---------- Buffer: foo ----------

(insert-buffer-substring "foo" 1 20)

⇒ nil

---------- Buffer: bar ----------

We hold these truth?
---------- Buffer: bar ----------

[Function]insert-buffer-substring-no-properties from-buffer-or-name
&optional start end

This is like insert-buffer-substring except that it does not copy any text prop-
erties.

See Section 32.19.6 [Sticky Properties], page 691, for other insertion functions that inherit
text properties from the nearby text in addition to inserting it. Whitespace inserted by
indentation functions also inherits text properties.

32.5 User-Level Insertion Commands

This section describes higher-level commands for inserting text, commands intended pri-
marily for the user but useful also in Lisp programs.

[Command]insert-buffer from-buffer-or-name
This command inserts the entire accessible contents of from-buffer-or-name (which
must exist) into the current buffer after point. It leaves the mark after the inserted
text. The value is nil.

Chapter 32: Text 651

[Command]self-insert-command count
This command inserts the last character typed; it does so count times, before point,
and returns nil. Most printing characters are bound to this command. In routine use,
self-insert-command is the most frequently called function in Emacs, but programs
rarely use it except to install it on a keymap.

In an interactive call, count is the numeric prefix argument.

Self-insertion translates the input character through translation-table-for-input.
See Section 33.8 [Translation of Characters], page 714.

This command calls auto-fill-function whenever that is non-nil and the character
inserted is in the table auto-fill-chars (see Section 32.14 [Auto Filling], page 669).

This command performs abbrev expansion if Abbrev mode is enabled and the in-
serted character does not have word-constituent syntax. (See Chapter 36 [Abbrevs],
page 773, and Section 35.2.1 [Syntax Class Table], page 758.) It is also responsible
for calling blink-paren-function when the inserted character has close parenthesis
syntax (see Section 38.19 [Blinking], page 899).

The final thing this command does is to run the hook post-self-insert-hook. You
could use this to automatically reindent text as it is typed, for example.

Do not try substituting your own definition of self-insert-command for the standard
one. The editor command loop handles this function specially.

[Command]newline &optional number-of-newlines
This command inserts newlines into the current buffer before point. If number-of-
newlines is supplied, that many newline characters are inserted.

This function calls auto-fill-function if the current column number is greater than
the value of fill-column and number-of-newlines is nil. Typically what auto-fill-
function does is insert a newline; thus, the overall result in this case is to insert two
newlines at different places: one at point, and another earlier in the line. newline

does not auto-fill if number-of-newlines is non-nil.

This command indents to the left margin if that is not zero. See Section 32.12
[Margins], page 666.

The value returned is nil. In an interactive call, count is the numeric prefix argument.

[Variable]overwrite-mode
This variable controls whether overwrite mode is in effect. The value should be
overwrite-mode-textual, overwrite-mode-binary, or nil. overwrite-mode-

textual specifies textual overwrite mode (treats newlines and tabs specially), and
overwrite-mode-binary specifies binary overwrite mode (treats newlines and tabs
like any other characters).

32.6 Deleting Text

Deletion means removing part of the text in a buffer, without saving it in the kill ring (see
Section 32.8 [The Kill Ring], page 655). Deleted text can’t be yanked, but can be reinserted
using the undo mechanism (see Section 32.9 [Undo], page 660). Some deletion functions do
save text in the kill ring in some special cases.

All of the deletion functions operate on the current buffer.

Chapter 32: Text 652

[Command]erase-buffer
This function deletes the entire text of the current buffer (not just the accessible por-
tion), leaving it empty. If the buffer is read-only, it signals a buffer-read-only error;
if some of the text in it is read-only, it signals a text-read-only error. Otherwise,
it deletes the text without asking for any confirmation. It returns nil.

Normally, deleting a large amount of text from a buffer inhibits further auto-saving
of that buffer “because it has shrunk”. However, erase-buffer does not do this, the
idea being that the future text is not really related to the former text, and its size
should not be compared with that of the former text.

[Command]delete-region start end
This command deletes the text between positions start and end in the current buffer,
and returns nil. If point was inside the deleted region, its value afterward is start.
Otherwise, point relocates with the surrounding text, as markers do.

[Function]delete-and-extract-region start end
This function deletes the text between positions start and end in the current buffer,
and returns a string containing the text just deleted.

If point was inside the deleted region, its value afterward is start. Otherwise, point
relocates with the surrounding text, as markers do.

[Command]delete-char count &optional killp
This command deletes count characters directly after point, or before point if count
is negative. If killp is non-nil, then it saves the deleted characters in the kill ring.

In an interactive call, count is the numeric prefix argument, and killp is the unpro-
cessed prefix argument. Therefore, if a prefix argument is supplied, the text is saved
in the kill ring. If no prefix argument is supplied, then one character is deleted, but
not saved in the kill ring.

The value returned is always nil.

[Command]delete-backward-char count &optional killp
This command deletes count characters directly before point, or after point if count
is negative. If killp is non-nil, then it saves the deleted characters in the kill ring.

In an interactive call, count is the numeric prefix argument, and killp is the unpro-
cessed prefix argument. Therefore, if a prefix argument is supplied, the text is saved
in the kill ring. If no prefix argument is supplied, then one character is deleted, but
not saved in the kill ring.

The value returned is always nil.

[Command]backward-delete-char-untabify count &optional killp
This command deletes count characters backward, changing tabs into spaces. When
the next character to be deleted is a tab, it is first replaced with the proper number
of spaces to preserve alignment and then one of those spaces is deleted instead of the
tab. If killp is non-nil, then the command saves the deleted characters in the kill
ring.

Conversion of tabs to spaces happens only if count is positive. If it is negative, exactly
−count characters after point are deleted.

Chapter 32: Text 653

In an interactive call, count is the numeric prefix argument, and killp is the unpro-
cessed prefix argument. Therefore, if a prefix argument is supplied, the text is saved
in the kill ring. If no prefix argument is supplied, then one character is deleted, but
not saved in the kill ring.

The value returned is always nil.

[User Option]backward-delete-char-untabify-method
This option specifies how backward-delete-char-untabify should deal with white-
space. Possible values include untabify, the default, meaning convert a tab to many
spaces and delete one; hungry, meaning delete all tabs and spaces before point with
one command; all meaning delete all tabs, spaces and newlines before point, and
nil, meaning do nothing special for whitespace characters.

32.7 User-Level Deletion Commands

This section describes higher-level commands for deleting text, commands intended primar-
ily for the user but useful also in Lisp programs.

[Command]delete-horizontal-space &optional backward-only
This function deletes all spaces and tabs around point. It returns nil.

If backward-only is non-nil, the function deletes spaces and tabs before point, but
not after point.

In the following examples, we call delete-horizontal-space four times, once on
each line, with point between the second and third characters on the line each time.

---------- Buffer: foo ----------

I ?thought
I ? thought

We? thought

Yo?u thought

---------- Buffer: foo ----------

(delete-horizontal-space) ; Four times.
⇒ nil

---------- Buffer: foo ----------

Ithought

Ithought

Wethought

You thought

---------- Buffer: foo ----------

[Command]delete-indentation &optional join-following-p
This function joins the line point is on to the previous line, deleting any whitespace
at the join and in some cases replacing it with one space. If join-following-p is non-
nil, delete-indentation joins this line to the following line instead. The function
returns nil.

Chapter 32: Text 654

If there is a fill prefix, and the second of the lines being joined starts with the pre-
fix, then delete-indentation deletes the fill prefix before joining the lines. See
Section 32.12 [Margins], page 666.

In the example below, point is located on the line starting ‘events’, and it makes no
difference if there are trailing spaces in the preceding line.

---------- Buffer: foo ----------

When in the course of human

? events, it becomes necessary

---------- Buffer: foo ----------

(delete-indentation)
⇒ nil

---------- Buffer: foo ----------

When in the course of human? events, it becomes necessary

---------- Buffer: foo ----------

After the lines are joined, the function fixup-whitespace is responsible for deciding
whether to leave a space at the junction.

[Command]fixup-whitespace
This function replaces all the horizontal whitespace surrounding point with either one
space or no space, according to the context. It returns nil.

At the beginning or end of a line, the appropriate amount of space is none. Before
a character with close parenthesis syntax, or after a character with open parenthesis
or expression-prefix syntax, no space is also appropriate. Otherwise, one space is
appropriate. See Section 35.2.1 [Syntax Class Table], page 758.

In the example below, fixup-whitespace is called the first time with point before
the word ‘spaces’ in the first line. For the second invocation, point is directly after
the ‘(’.

---------- Buffer: foo ----------

This has too many ?spaces
This has too many spaces at the start of (? this list)

---------- Buffer: foo ----------

(fixup-whitespace)
⇒ nil

(fixup-whitespace)
⇒ nil

---------- Buffer: foo ----------

This has too many spaces

This has too many spaces at the start of (this list)

---------- Buffer: foo ----------

[Command]just-one-space &optional n
This command replaces any spaces and tabs around point with a single space, or n
spaces if n is specified. It returns nil.

[Command]delete-blank-lines
This function deletes blank lines surrounding point. If point is on a blank line with
one or more blank lines before or after it, then all but one of them are deleted. If

Chapter 32: Text 655

point is on an isolated blank line, then it is deleted. If point is on a nonblank line,
the command deletes all blank lines immediately following it.

A blank line is defined as a line containing only tabs and spaces.

delete-blank-lines returns nil.

32.8 The Kill Ring

Kill functions delete text like the deletion functions, but save it so that the user can reinsert
it by yanking. Most of these functions have ‘kill-’ in their name. By contrast, the functions
whose names start with ‘delete-’ normally do not save text for yanking (though they can
still be undone); these are “deletion” functions.

Most of the kill commands are primarily for interactive use, and are not described here.
What we do describe are the functions provided for use in writing such commands. You
can use these functions to write commands for killing text. When you need to delete text
for internal purposes within a Lisp function, you should normally use deletion functions, so
as not to disturb the kill ring contents. See Section 32.6 [Deletion], page 651.

Killed text is saved for later yanking in the kill ring. This is a list that holds a number
of recent kills, not just the last text kill. We call this a “ring” because yanking treats it as
having elements in a cyclic order. The list is kept in the variable kill-ring, and can be
operated on with the usual functions for lists; there are also specialized functions, described
in this section, that treat it as a ring.

Some people think this use of the word “kill” is unfortunate, since it refers to operations
that specifically do not destroy the entities “killed”. This is in sharp contrast to ordinary life,
in which death is permanent and “killed” entities do not come back to life. Therefore, other
metaphors have been proposed. For example, the term “cut ring” makes sense to people
who, in pre-computer days, used scissors and paste to cut up and rearrange manuscripts.
However, it would be difficult to change the terminology now.

32.8.1 Kill Ring Concepts

The kill ring records killed text as strings in a list, most recent first. A short kill ring, for
example, might look like this:

("some text" "a different piece of text" "even older text")

When the list reaches kill-ring-max entries in length, adding a new entry automatically
deletes the last entry.

When kill commands are interwoven with other commands, each kill command makes
a new entry in the kill ring. Multiple kill commands in succession build up a single kill
ring entry, which would be yanked as a unit; the second and subsequent consecutive kill
commands add text to the entry made by the first one.

For yanking, one entry in the kill ring is designated the “front” of the ring. Some yank
commands “rotate” the ring by designating a different element as the “front”. But this
virtual rotation doesn’t change the list itself—the most recent entry always comes first in
the list.

32.8.2 Functions for Killing

kill-region is the usual subroutine for killing text. Any command that calls this function
is a “kill command” (and should probably have ‘kill’ in its name). kill-region puts the

Chapter 32: Text 656

newly killed text in a new element at the beginning of the kill ring or adds it to the most
recent element. It determines automatically (using last-command) whether the previous
command was a kill command, and if so appends the killed text to the most recent entry.

[Command]kill-region start end
This function kills the text in the region defined by start and end. The text is deleted
but saved in the kill ring, along with its text properties. The value is always nil.

In an interactive call, start and end are point and the mark.

If the buffer or text is read-only, kill-region modifies the kill ring just the same,
then signals an error without modifying the buffer. This is convenient because it lets
the user use a series of kill commands to copy text from a read-only buffer into the
kill ring.

[User Option]kill-read-only-ok
If this option is non-nil, kill-region does not signal an error if the buffer or text
is read-only. Instead, it simply returns, updating the kill ring but not changing the
buffer.

[Command]copy-region-as-kill start end
This command saves the region defined by start and end on the kill ring (including
text properties), but does not delete the text from the buffer. It returns nil.

The command does not set this-command to kill-region, so a subsequent kill com-
mand does not append to the same kill ring entry.

In Lisp programs, it is better to use kill-new or kill-append instead of this com-
mand. See Section 32.8.5 [Low-Level Kill Ring], page 658.

32.8.3 Yanking

Yanking means inserting text from the kill ring, but it does not insert the text blindly. The
yank command, and related commands, use insert-for-yank to perform special processing
on the text before it is inserted.

[Function]insert-for-yank string
This function works like insert, except that it processes the text in string ac-
cording to the yank-handler text property, as well as the variables yank-handled-
properties and yank-excluded-properties (see below), before inserting the result
into the current buffer.

[Function]insert-buffer-substring-as-yank buf &optional start end
This function resembles insert-buffer-substring, except that it processes the text
according to yank-handled-properties and yank-excluded-properties. (It does
not handle the yank-handler property, which does not normally occur in buffer text
anyway.)

If you put a yank-handler text property on all or part of a string, that alters how
insert-for-yank inserts the string. If different parts of the string have different yank-

handler values (comparison being done with eq), each substring is handled separately.
The property value must be a list of one to four elements, with the following format (where
elements after the first may be omitted):

Chapter 32: Text 657

(function param noexclude undo)

Here is what the elements do:

function When function is non-nil, it is called instead of insert to insert the string,
with one argument—the string to insert.

param If param is present and non-nil, it replaces string (or the substring of string
being processed) as the object passed to function (or insert). For example,
if function is yank-rectangle, param should be a list of strings to insert as a
rectangle.

noexclude If noexclude is present and non-nil, that disables the normal action of yank-
handled-properties and yank-excluded-properties on the inserted string.

undo If undo is present and non-nil, it is a function that will be called by yank-pop

to undo the insertion of the current object. It is called with two arguments,
the start and end of the current region. function can set yank-undo-function
to override the undo value.

[User Option]yank-handled-properties
This variable specifies special text property handling conditions for yanked text. It
takes effect after the text has been inserted (either normally, or via the yank-handler
property), and prior to yank-excluded-properties taking effect.

The value should be an alist of elements (prop . fun). Each alist element is handled
in order. The inserted text is scanned for stretches of text having text properties eq
to prop; for each such stretch, fun is called with three arguments: the value of the
property, and the start and end positions of the text.

[User Option]yank-excluded-properties
The value of this variable is the list of properties to remove from inserted text. Its
default value contains properties that might lead to annoying results, such as causing
the text to respond to the mouse or specifying key bindings. It takes effect after
yank-handled-properties.

32.8.4 Functions for Yanking

This section describes higher-level commands for yanking, which are intended primarily
for the user but useful also in Lisp programs. Both yank and yank-pop honor the yank-

excluded-properties variable and yank-handler text property (see Section 32.8.3 [Yank-
ing], page 656).

[Command]yank &optional arg
This command inserts before point the text at the front of the kill ring. It sets the
mark at the beginning of that text, using push-mark (see Section 31.7 [The Mark],
page 640), and puts point at the end.

If arg is a non-nil list (which occurs interactively when the user types C-u with
no digits), then yank inserts the text as described above, but puts point before the
yanked text and sets the mark after it.

If arg is a number, then yank inserts the argth most recently killed text—the argth
element of the kill ring list, counted cyclically from the front, which is considered the
first element for this purpose.

Chapter 32: Text 658

yank does not alter the contents of the kill ring, unless it used text provided by
another program, in which case it pushes that text onto the kill ring. However if arg
is an integer different from one, it rotates the kill ring to place the yanked string at
the front.

yank returns nil.

[Command]yank-pop &optional arg
This command replaces the just-yanked entry from the kill ring with a different entry
from the kill ring.

This is allowed only immediately after a yank or another yank-pop. At such a time,
the region contains text that was just inserted by yanking. yank-pop deletes that
text and inserts in its place a different piece of killed text. It does not add the deleted
text to the kill ring, since it is already in the kill ring somewhere. It does however
rotate the kill ring to place the newly yanked string at the front.

If arg is nil, then the replacement text is the previous element of the kill ring. If
arg is numeric, the replacement is the argth previous kill. If arg is negative, a more
recent kill is the replacement.

The sequence of kills in the kill ring wraps around, so that after the oldest one comes
the newest one, and before the newest one goes the oldest.

The return value is always nil.

[Variable]yank-undo-function
If this variable is non-nil, the function yank-pop uses its value instead of delete-
region to delete the text inserted by the previous yank or yank-pop command. The
value must be a function of two arguments, the start and end of the current region.

The function insert-for-yank automatically sets this variable according to the undo
element of the yank-handler text property, if there is one.

32.8.5 Low-Level Kill Ring

These functions and variables provide access to the kill ring at a lower level, but are still
convenient for use in Lisp programs, because they take care of interaction with window
system selections (see Section 29.18 [Window System Selections], page 615).

[Function]current-kill n &optional do-not-move
The function current-kill rotates the yanking pointer, which designates the “front”
of the kill ring, by n places (from newer kills to older ones), and returns the text at
that place in the ring.

If the optional second argument do-not-move is non-nil, then current-kill doesn’t
alter the yanking pointer; it just returns the nth kill, counting from the current
yanking pointer.

If n is zero, indicating a request for the latest kill, current-kill calls the value of
interprogram-paste-function (documented below) before consulting the kill ring.
If that value is a function and calling it returns a string or a list of several string,
current-kill pushes the strings onto the kill ring and returns the first string. It also
sets the yanking pointer to point to the kill-ring entry of the first string returned by
interprogram-paste-function, regardless of the value of do-not-move. Otherwise,

Chapter 32: Text 659

current-kill does not treat a zero value for n specially: it returns the entry pointed
at by the yanking pointer and does not move the yanking pointer.

[Function]kill-new string &optional replace
This function pushes the text string onto the kill ring and makes the yanking pointer
point to it. It discards the oldest entry if appropriate. It also invokes the value of
interprogram-cut-function (see below).

If replace is non-nil, then kill-new replaces the first element of the kill ring with
string, rather than pushing string onto the kill ring.

[Function]kill-append string before-p
This function appends the text string to the first entry in the kill ring and makes the
yanking pointer point to the combined entry. Normally string goes at the end of the
entry, but if before-p is non-nil, it goes at the beginning. This function also invokes
the value of interprogram-cut-function (see below).

[Variable]interprogram-paste-function
This variable provides a way of transferring killed text from other programs, when
you are using a window system. Its value should be nil or a function of no arguments.

If the value is a function, current-kill calls it to get the “most recent kill”. If the
function returns a non-nil value, then that value is used as the “most recent kill”. If
it returns nil, then the front of the kill ring is used.

To facilitate support for window systems that support multiple selections, this func-
tion may also return a list of strings. In that case, the first string is used as the “most
recent kill”, and all the other strings are pushed onto the kill ring, for easy access by
yank-pop.

The normal use of this function is to get the window system’s clipboard as the most
recent kill, even if the selection belongs to another application. See Section 29.18
[Window System Selections], page 615. However, if the clipboard contents come from
the current Emacs session, this function should return nil.

[Variable]interprogram-cut-function
This variable provides a way of communicating killed text to other programs, when
you are using a window system. Its value should be nil or a function of one required
argument.

If the value is a function, kill-new and kill-append call it with the new first element
of the kill ring as the argument.

The normal use of this function is to put newly killed text in the window system’s
clipboard. See Section 29.18 [Window System Selections], page 615.

32.8.6 Internals of the Kill Ring

The variable kill-ring holds the kill ring contents, in the form of a list of strings. The
most recent kill is always at the front of the list.

The kill-ring-yank-pointer variable points to a link in the kill ring list, whose car
is the text to yank next. We say it identifies the “front” of the ring. Moving kill-ring-

yank-pointer to a different link is called rotating the kill ring. We call the kill ring a

Chapter 32: Text 660

“ring” because the functions that move the yank pointer wrap around from the end of the
list to the beginning, or vice-versa. Rotation of the kill ring is virtual; it does not change
the value of kill-ring.

Both kill-ring and kill-ring-yank-pointer are Lisp variables whose values are nor-
mally lists. The word “pointer” in the name of the kill-ring-yank-pointer indicates
that the variable’s purpose is to identify one element of the list for use by the next yank
command.

The value of kill-ring-yank-pointer is always eq to one of the links in the kill ring
list. The element it identifies is the car of that link. Kill commands, which change the kill
ring, also set this variable to the value of kill-ring. The effect is to rotate the ring so
that the newly killed text is at the front.

Here is a diagram that shows the variable kill-ring-yank-pointer pointing to the sec-
ond entry in the kill ring ("some text" "a different piece of text" "yet older text").

kill-ring ---- kill-ring-yank-pointer

| |

| v

| --- --- --- --- --- ---

--> | | |------> | | |--> | | |--> nil

--- --- --- --- --- ---

| | |

| | |

| | -->"yet older text"

| |

| --> "a different piece of text"

|

--> "some text"

This state of affairs might occur after C-y (yank) immediately followed by M-y (yank-pop).

[Variable]kill-ring
This variable holds the list of killed text sequences, most recently killed first.

[Variable]kill-ring-yank-pointer
This variable’s value indicates which element of the kill ring is at the “front” of the
ring for yanking. More precisely, the value is a tail of the value of kill-ring, and its
car is the kill string that C-y should yank.

[User Option]kill-ring-max
The value of this variable is the maximum length to which the kill ring can grow,
before elements are thrown away at the end. The default value for kill-ring-max is
60.

32.9 Undo

Most buffers have an undo list, which records all changes made to the buffer’s text so that
they can be undone. (The buffers that don’t have one are usually special-purpose buffers
for which Emacs assumes that undoing is not useful. In particular, any buffer whose name
begins with a space has its undo recording off by default; see Section 27.3 [Buffer Names],

Chapter 32: Text 661

page 524.) All the primitives that modify the text in the buffer automatically add elements
to the front of the undo list, which is in the variable buffer-undo-list.

[Variable]buffer-undo-list
This buffer-local variable’s value is the undo list of the current buffer. A value of t
disables the recording of undo information.

Here are the kinds of elements an undo list can have:

position This kind of element records a previous value of point; undoing this element
moves point to position. Ordinary cursor motion does not make any sort of
undo record, but deletion operations use these entries to record where point
was before the command.

(beg . end)

This kind of element indicates how to delete text that was inserted. Upon
insertion, the text occupied the range beg–end in the buffer.

(text . position)

This kind of element indicates how to reinsert text that was deleted. The
deleted text itself is the string text. The place to reinsert it is (abs position).
If position is positive, point was at the beginning of the deleted text, otherwise
it was at the end.

(t sec-high sec-low microsec picosec)

This kind of element indicates that an unmodified buffer became modified.
The list (sec-high sec-low microsec picosec) represents the visited file’s
modification time as of when it was previously visited or saved, using the same
format as current-time; see Section 39.5 [Time of Day], page 923. primitive-
undo uses those values to determine whether to mark the buffer as unmodified
once again; it does so only if the file’s modification time matches those numbers.

(nil property value beg . end)

This kind of element records a change in a text property. Here’s how you might
undo the change:

(put-text-property beg end property value)

(marker . adjustment)

This kind of element records the fact that the marker marker was relocated
due to deletion of surrounding text, and that it moved adjustment character
positions. Undoing this element moves marker − adjustment characters.

(apply funname . args)

This is an extensible undo item, which is undone by calling funname with
arguments args.

(apply delta beg end funname . args)

This is an extensible undo item, which records a change limited to the range
beg to end, which increased the size of the buffer by delta. It is undone by
calling funname with arguments args.

This kind of element enables undo limited to a region to determine whether the
element pertains to that region.

Chapter 32: Text 662

nil This element is a boundary. The elements between two boundaries are called
a change group; normally, each change group corresponds to one keyboard
command, and undo commands normally undo an entire group as a unit.

[Function]undo-boundary
This function places a boundary element in the undo list. The undo command stops
at such a boundary, and successive undo commands undo to earlier and earlier bound-
aries. This function returns nil.

The editor command loop automatically calls undo-boundary just before executing
each key sequence, so that each undo normally undoes the effects of one command.
As an exception, the command self-insert-command, which produces self-inserting
input characters (see Section 32.5 [Commands for Insertion], page 650), may remove
the boundary inserted by the command loop: a boundary is accepted for the first
such character, the next 19 consecutive self-inserting input characters do not have
boundaries, and then the 20th does; and so on as long as the self-inserting characters
continue. Hence, sequences of consecutive character insertions can be undone as a
group.

All buffer modifications add a boundary whenever the previous undoable change was
made in some other buffer. This is to ensure that each command makes a boundary
in each buffer where it makes changes.

Calling this function explicitly is useful for splitting the effects of a command into
more than one unit. For example, query-replace calls undo-boundary after each
replacement, so that the user can undo individual replacements one by one.

[Variable]undo-in-progress
This variable is normally nil, but the undo commands bind it to t. This is so
that various kinds of change hooks can tell when they’re being called for the sake of
undoing.

[Function]primitive-undo count list
This is the basic function for undoing elements of an undo list. It undoes the first
count elements of list, returning the rest of list.

primitive-undo adds elements to the buffer’s undo list when it changes the buffer.
Undo commands avoid confusion by saving the undo list value at the beginning of a
sequence of undo operations. Then the undo operations use and update the saved
value. The new elements added by undoing are not part of this saved value, so they
don’t interfere with continuing to undo.

This function does not bind undo-in-progress.

32.10 Maintaining Undo Lists

This section describes how to enable and disable undo information for a given buffer. It
also explains how the undo list is truncated automatically so it doesn’t get too big.

Recording of undo information in a newly created buffer is normally enabled to start
with; but if the buffer name starts with a space, the undo recording is initially disabled.
You can explicitly enable or disable undo recording with the following two functions, or by
setting buffer-undo-list yourself.

Chapter 32: Text 663

[Command]buffer-enable-undo &optional buffer-or-name
This command enables recording undo information for buffer buffer-or-name, so that
subsequent changes can be undone. If no argument is supplied, then the current
buffer is used. This function does nothing if undo recording is already enabled in the
buffer. It returns nil.

In an interactive call, buffer-or-name is the current buffer. You cannot specify any
other buffer.

[Command]buffer-disable-undo &optional buffer-or-name
This function discards the undo list of buffer-or-name, and disables further recording
of undo information. As a result, it is no longer possible to undo either previous
changes or any subsequent changes. If the undo list of buffer-or-name is already
disabled, this function has no effect.

This function returns nil.

As editing continues, undo lists get longer and longer. To prevent them from using up all
available memory space, garbage collection trims them back to size limits you can set. (For
this purpose, the “size” of an undo list measures the cons cells that make up the list, plus
the strings of deleted text.) Three variables control the range of acceptable sizes: undo-

limit, undo-strong-limit and undo-outer-limit. In these variables, size is counted as
the number of bytes occupied, which includes both saved text and other data.

[User Option]undo-limit
This is the soft limit for the acceptable size of an undo list. The change group at
which this size is exceeded is the last one kept.

[User Option]undo-strong-limit
This is the upper limit for the acceptable size of an undo list. The change group at
which this size is exceeded is discarded itself (along with all older change groups).
There is one exception: the very latest change group is only discarded if it exceeds
undo-outer-limit.

[User Option]undo-outer-limit
If at garbage collection time the undo info for the current command exceeds this limit,
Emacs discards the info and displays a warning. This is a last ditch limit to prevent
memory overflow.

[User Option]undo-ask-before-discard
If this variable is non-nil, when the undo info exceeds undo-outer-limit, Emacs
asks in the echo area whether to discard the info. The default value is nil, which
means to discard it automatically.

This option is mainly intended for debugging. Garbage collection is inhibited while
the question is asked, which means that Emacs might leak memory if the user waits
too long before answering the question.

Chapter 32: Text 664

32.11 Filling

Filling means adjusting the lengths of lines (by moving the line breaks) so that they are
nearly (but no greater than) a specified maximum width. Additionally, lines can be justified,
which means inserting spaces to make the left and/or right margins line up precisely. The
width is controlled by the variable fill-column. For ease of reading, lines should be no
longer than 70 or so columns.

You can use Auto Fill mode (see Section 32.14 [Auto Filling], page 669) to fill text
automatically as you insert it, but changes to existing text may leave it improperly filled.
Then you must fill the text explicitly.

Most of the commands in this section return values that are not meaningful. All the
functions that do filling take note of the current left margin, current right margin, and
current justification style (see Section 32.12 [Margins], page 666). If the current justification
style is none, the filling functions don’t actually do anything.

Several of the filling functions have an argument justify. If it is non-nil, that requests
some kind of justification. It can be left, right, full, or center, to request a specific
style of justification. If it is t, that means to use the current justification style for this part
of the text (see current-justification, below). Any other value is treated as full.

When you call the filling functions interactively, using a prefix argument implies the
value full for justify.

[Command]fill-paragraph &optional justify region
This command fills the paragraph at or after point. If justify is non-nil, each line is
justified as well. It uses the ordinary paragraph motion commands to find paragraph
boundaries. See Section “Paragraphs” in The GNU Emacs Manual.

When region is non-nil, then if Transient Mark mode is enabled and the mark is
active, this command calls fill-region to fill all the paragraphs in the region, instead
of filling only the current paragraph. When this command is called interactively,
region is t.

[Command]fill-region start end &optional justify nosqueeze to-eop
This command fills each of the paragraphs in the region from start to end. It justifies
as well if justify is non-nil.

If nosqueeze is non-nil, that means to leave whitespace other than line breaks un-
touched. If to-eop is non-nil, that means to keep filling to the end of the paragraph—
or the next hard newline, if use-hard-newlines is enabled (see below).

The variable paragraph-separate controls how to distinguish paragraphs. See
Section 34.8 [Standard Regexps], page 756.

[Command]fill-individual-paragraphs start end &optional justify
citation-regexp

This command fills each paragraph in the region according to its individual fill prefix.
Thus, if the lines of a paragraph were indented with spaces, the filled paragraph will
remain indented in the same fashion.

The first two arguments, start and end, are the beginning and end of the region to be
filled. The third and fourth arguments, justify and citation-regexp, are optional. If
justify is non-nil, the paragraphs are justified as well as filled. If citation-regexp is

Chapter 32: Text 665

non-nil, it means the function is operating on a mail message and therefore should
not fill the header lines. If citation-regexp is a string, it is used as a regular expression;
if it matches the beginning of a line, that line is treated as a citation marker.

Ordinarily, fill-individual-paragraphs regards each change in indentation as
starting a new paragraph. If fill-individual-varying-indent is non-nil, then
only separator lines separate paragraphs. That mode can handle indented paragraphs
with additional indentation on the first line.

[User Option]fill-individual-varying-indent
This variable alters the action of fill-individual-paragraphs as described above.

[Command]fill-region-as-paragraph start end &optional justify nosqueeze
squeeze-after

This command considers a region of text as a single paragraph and fills it. If the
region was made up of many paragraphs, the blank lines between paragraphs are
removed. This function justifies as well as filling when justify is non-nil.

If nosqueeze is non-nil, that means to leave whitespace other than line breaks un-
touched. If squeeze-after is non-nil, it specifies a position in the region, and means
don’t canonicalize spaces before that position.

In Adaptive Fill mode, this command calls fill-context-prefix to choose a fill
prefix by default. See Section 32.13 [Adaptive Fill], page 668.

[Command]justify-current-line &optional how eop nosqueeze
This command inserts spaces between the words of the current line so that the line
ends exactly at fill-column. It returns nil.

The argument how, if non-nil specifies explicitly the style of justification. It can
be left, right, full, center, or none. If it is t, that means to do follow speci-
fied justification style (see current-justification, below). nil means to do full
justification.

If eop is non-nil, that means do only left-justification if current-justification
specifies full justification. This is used for the last line of a paragraph; even if the
paragraph as a whole is fully justified, the last line should not be.

If nosqueeze is non-nil, that means do not change interior whitespace.

[User Option]default-justification
This variable’s value specifies the style of justification to use for text that doesn’t
specify a style with a text property. The possible values are left, right, full,
center, or none. The default value is left.

[Function]current-justification
This function returns the proper justification style to use for filling the text around
point.

This returns the value of the justification text property at point, or the variable
default-justification if there is no such text property. However, it returns nil rather
than none to mean “don’t justify”.

Chapter 32: Text 666

[User Option]sentence-end-double-space
If this variable is non-nil, a period followed by just one space does not count as the
end of a sentence, and the filling functions avoid breaking the line at such a place.

[User Option]sentence-end-without-period
If this variable is non-nil, a sentence can end without a period. This is used for
languages like Thai, where sentences end with a double space but without a period.

[User Option]sentence-end-without-space
If this variable is non-nil, it should be a string of characters that can end a sentence
without following spaces.

[Variable]fill-paragraph-function
This variable provides a way to override the filling of paragraphs. If its value is non-
nil, fill-paragraph calls this function to do the work. If the function returns a
non-nil value, fill-paragraph assumes the job is done, and immediately returns
that value.

The usual use of this feature is to fill comments in programming language modes. If
the function needs to fill a paragraph in the usual way, it can do so as follows:

(let ((fill-paragraph-function nil))

(fill-paragraph arg))

[Variable]fill-forward-paragraph-function
This variable provides a way to override how the filling functions, such as fill-

region and fill-paragraph, move forward to the next paragraph. Its value should
be a function, which is called with a single argument n, the number of paragraphs
to move, and should return the difference between n and the number of paragraphs
actually moved. The default value of this variable is forward-paragraph. See Section
“Paragraphs” in The GNU Emacs Manual.

[Variable]use-hard-newlines
If this variable is non-nil, the filling functions do not delete newlines that have the
hard text property. These “hard newlines” act as paragraph separators.

32.12 Margins for Filling

[User Option]fill-prefix
This buffer-local variable, if non-nil, specifies a string of text that appears at the
beginning of normal text lines and should be disregarded when filling them. Any line
that fails to start with the fill prefix is considered the start of a paragraph; so is any
line that starts with the fill prefix followed by additional whitespace. Lines that start
with the fill prefix but no additional whitespace are ordinary text lines that can be
filled together. The resulting filled lines also start with the fill prefix.

The fill prefix follows the left margin whitespace, if any.

[User Option]fill-column
This buffer-local variable specifies the maximum width of filled lines. Its value should
be an integer, which is a number of columns. All the filling, justification, and centering

Chapter 32: Text 667

commands are affected by this variable, including Auto Fill mode (see Section 32.14
[Auto Filling], page 669).

As a practical matter, if you are writing text for other people to read, you should set
fill-column to no more than 70. Otherwise the line will be too long for people to
read comfortably, and this can make the text seem clumsy.

The default value for fill-column is 70.

[Command]set-left-margin from to margin
This sets the left-margin property on the text from from to to to the value margin.
If Auto Fill mode is enabled, this command also refills the region to fit the new
margin.

[Command]set-right-margin from to margin
This sets the right-margin property on the text from from to to to the value margin.
If Auto Fill mode is enabled, this command also refills the region to fit the new margin.

[Function]current-left-margin
This function returns the proper left margin value to use for filling the text around
point. The value is the sum of the left-margin property of the character at the start
of the current line (or zero if none), and the value of the variable left-margin.

[Function]current-fill-column
This function returns the proper fill column value to use for filling the text around
point. The value is the value of the fill-column variable, minus the value of the
right-margin property of the character after point.

[Command]move-to-left-margin &optional n force
This function moves point to the left margin of the current line. The column moved
to is determined by calling the function current-left-margin. If the argument n is
non-nil, move-to-left-margin moves forward n−1 lines first.

If force is non-nil, that says to fix the line’s indentation if that doesn’t match the
left margin value.

[Function]delete-to-left-margin &optional from to
This function removes left margin indentation from the text between from and to.
The amount of indentation to delete is determined by calling current-left-margin.
In no case does this function delete non-whitespace. If from and to are omitted, they
default to the whole buffer.

[Function]indent-to-left-margin
This function adjusts the indentation at the beginning of the current line to the value
specified by the variable left-margin. (That may involve either inserting or deleting
whitespace.) This function is value of indent-line-function in Paragraph-Indent
Text mode.

[User Option]left-margin
This variable specifies the base left margin column. In Fundamental mode, C-j in-
dents to this column. This variable automatically becomes buffer-local when set in
any fashion.

Chapter 32: Text 668

[User Option]fill-nobreak-predicate
This variable gives major modes a way to specify not to break a line at certain places.
Its value should be a list of functions. Whenever filling considers breaking the line at
a certain place in the buffer, it calls each of these functions with no arguments and
with point located at that place. If any of the functions returns non-nil, then the
line won’t be broken there.

32.13 Adaptive Fill Mode

When Adaptive Fill Mode is enabled, Emacs determines the fill prefix automatically from
the text in each paragraph being filled rather than using a predetermined value. During
filling, this fill prefix gets inserted at the start of the second and subsequent lines of the
paragraph as described in Section 32.11 [Filling], page 664, and in Section 32.14 [Auto
Filling], page 669.

[User Option]adaptive-fill-mode
Adaptive Fill mode is enabled when this variable is non-nil. It is t by default.

[Function]fill-context-prefix from to
This function implements the heart of Adaptive Fill mode; it chooses a fill prefix
based on the text between from and to, typically the start and end of a paragraph.
It does this by looking at the first two lines of the paragraph, based on the variables
described below.

Usually, this function returns the fill prefix, a string. However, before doing this,
the function makes a final check (not specially mentioned in the following) that a
line starting with this prefix wouldn’t look like the start of a paragraph. Should this
happen, the function signals the anomaly by returning nil instead.

In detail, fill-context-prefix does this:

1. It takes a candidate for the fill prefix from the first line—it tries first the function
in adaptive-fill-function (if any), then the regular expression adaptive-

fill-regexp (see below). The first non-nil result of these, or the empty string
if they’re both nil, becomes the first line’s candidate.

2. If the paragraph has as yet only one line, the function tests the validity of the
prefix candidate just found. The function then returns the candidate if it’s valid,
or a string of spaces otherwise. (see the description of adaptive-fill-first-
line-regexp below).

3. When the paragraph already has two lines, the function next looks for a prefix
candidate on the second line, in just the same way it did for the first line. If it
doesn’t find one, it returns nil.

4. The function now compares the two candidate prefixes heuristically: if the non-
whitespace characters in the line 2 candidate occur in the same order in the line
1 candidate, the function returns the line 2 candidate. Otherwise, it returns the
largest initial substring which is common to both candidates (which might be
the empty string).

Chapter 32: Text 669

[User Option]adaptive-fill-regexp
Adaptive Fill mode matches this regular expression against the text starting after
the left margin whitespace (if any) on a line; the characters it matches are that line’s
candidate for the fill prefix.

The default value matches whitespace with certain punctuation characters intermin-
gled.

[User Option]adaptive-fill-first-line-regexp
Used only in one-line paragraphs, this regular expression acts as an additional check
of the validity of the one available candidate fill prefix: the candidate must match
this regular expression, or match comment-start-skip. If it doesn’t, fill-context-
prefix replaces the candidate with a string of spaces “of the same width” as it.

The default value of this variable is "\\‘[\t]*\\’", which matches only a string
of whitespace. The effect of this default is to force the fill prefixes found in one-line
paragraphs always to be pure whitespace.

[User Option]adaptive-fill-function
You can specify more complex ways of choosing a fill prefix automatically by setting
this variable to a function. The function is called with point after the left margin (if
any) of a line, and it must preserve point. It should return either “that line’s” fill
prefix or nil, meaning it has failed to determine a prefix.

32.14 Auto Filling

Auto Fill mode is a minor mode that fills lines automatically as text is inserted. This section
describes the hook used by Auto Fill mode. For a description of functions that you can call
explicitly to fill and justify existing text, see Section 32.11 [Filling], page 664.

Auto Fill mode also enables the functions that change the margins and justification style
to refill portions of the text. See Section 32.12 [Margins], page 666.

[Variable]auto-fill-function
The value of this buffer-local variable should be a function (of no arguments) to be
called after self-inserting a character from the table auto-fill-chars. It may be
nil, in which case nothing special is done in that case.

The value of auto-fill-function is do-auto-fill when Auto-Fill mode is enabled.
That is a function whose sole purpose is to implement the usual strategy for breaking
a line.

[Variable]normal-auto-fill-function
This variable specifies the function to use for auto-fill-function, if and when Auto
Fill is turned on. Major modes can set buffer-local values for this variable to alter
how Auto Fill works.

[Variable]auto-fill-chars
A char table of characters which invoke auto-fill-function when self-inserted—
space and newline in most language environments. They have an entry t in the
table.

Chapter 32: Text 670

32.15 Sorting Text

The sorting functions described in this section all rearrange text in a buffer. This is in
contrast to the function sort, which rearranges the order of the elements of a list (see
Section 5.6.3 [Rearrangement], page 76). The values returned by these functions are not
meaningful.

[Function]sort-subr reverse nextrecfun endrecfun &optional startkeyfun endkeyfun
predicate

This function is the general text-sorting routine that subdivides a buffer into records
and then sorts them. Most of the commands in this section use this function.

To understand how sort-subr works, consider the whole accessible portion of the
buffer as being divided into disjoint pieces called sort records. The records may or
may not be contiguous, but they must not overlap. A portion of each sort record
(perhaps all of it) is designated as the sort key. Sorting rearranges the records in
order by their sort keys.

Usually, the records are rearranged in order of ascending sort key. If the first argument
to the sort-subr function, reverse, is non-nil, the sort records are rearranged in order
of descending sort key.

The next four arguments to sort-subr are functions that are called to move point
across a sort record. They are called many times from within sort-subr.

1. nextrecfun is called with point at the end of a record. This function moves point
to the start of the next record. The first record is assumed to start at the position
of point when sort-subr is called. Therefore, you should usually move point to
the beginning of the buffer before calling sort-subr.

This function can indicate there are no more sort records by leaving point at the
end of the buffer.

2. endrecfun is called with point within a record. It moves point to the end of the
record.

3. startkeyfun is called to move point from the start of a record to the start of the
sort key. This argument is optional; if it is omitted, the whole record is the sort
key. If supplied, the function should either return a non-nil value to be used as
the sort key, or return nil to indicate that the sort key is in the buffer starting
at point. In the latter case, endkeyfun is called to find the end of the sort key.

4. endkeyfun is called to move point from the start of the sort key to the end of
the sort key. This argument is optional. If startkeyfun returns nil and this
argument is omitted (or nil), then the sort key extends to the end of the record.
There is no need for endkeyfun if startkeyfun returns a non-nil value.

The argument predicate is the function to use to compare keys. If keys are numbers,
it defaults to <; otherwise it defaults to string<.

As an example of sort-subr, here is the complete function definition for sort-lines:

Chapter 32: Text 671

;; Note that the first two lines of doc string
;; are effectively one line when viewed by a user.
(defun sort-lines (reverse beg end)

"Sort lines in region alphabetically;\

argument means descending order.

Called from a program, there are three arguments:

REVERSE (non-nil means reverse order),\

BEG and END (region to sort).

The variable ‘sort-fold-case’ determines\

whether alphabetic case affects

the sort order."

(interactive "P\nr")

(save-excursion

(save-restriction

(narrow-to-region beg end)

(goto-char (point-min))

(let ((inhibit-field-text-motion t))

(sort-subr reverse ’forward-line ’end-of-line)))))

Here forward-line moves point to the start of the next record, and end-of-line

moves point to the end of record. We do not pass the arguments startkeyfun and
endkeyfun, because the entire record is used as the sort key.

The sort-paragraphs function is very much the same, except that its sort-subr

call looks like this:

(sort-subr reverse

(function

(lambda ()

(while (and (not (eobp))

(looking-at paragraph-separate))

(forward-line 1))))

’forward-paragraph)

Markers pointing into any sort records are left with no useful position after sort-subr
returns.

[User Option]sort-fold-case
If this variable is non-nil, sort-subr and the other buffer sorting functions ignore
case when comparing strings.

[Command]sort-regexp-fields reverse record-regexp key-regexp start end
This command sorts the region between start and end alphabetically as specified
by record-regexp and key-regexp. If reverse is a negative integer, then sorting is in
reverse order.

Alphabetical sorting means that two sort keys are compared by comparing the first
characters of each, the second characters of each, and so on. If a mismatch is found,
it means that the sort keys are unequal; the sort key whose character is less at the
point of first mismatch is the lesser sort key. The individual characters are compared
according to their numerical character codes in the Emacs character set.

Chapter 32: Text 672

The value of the record-regexp argument specifies how to divide the buffer into sort
records. At the end of each record, a search is done for this regular expression, and the
text that matches it is taken as the next record. For example, the regular expression
‘^.+$’, which matches lines with at least one character besides a newline, would make
each such line into a sort record. See Section 34.3 [Regular Expressions], page 734,
for a description of the syntax and meaning of regular expressions.

The value of the key-regexp argument specifies what part of each record is the sort
key. The key-regexp could match the whole record, or only a part. In the latter case,
the rest of the record has no effect on the sorted order of records, but it is carried
along when the record moves to its new position.

The key-regexp argument can refer to the text matched by a subexpression of record-
regexp, or it can be a regular expression on its own.

If key-regexp is:

‘\digit’ then the text matched by the digitth ‘\(...\)’ parenthesis grouping in
record-regexp is the sort key.

‘\&’ then the whole record is the sort key.

a regular expression
then sort-regexp-fields searches for a match for the regular expression
within the record. If such a match is found, it is the sort key. If there
is no match for key-regexp within a record then that record is ignored,
which means its position in the buffer is not changed. (The other records
may move around it.)

For example, if you plan to sort all the lines in the region by the first word on each line
starting with the letter ‘f’, you should set record-regexp to ‘^.*$’ and set key-regexp
to ‘\<f\w*\>’. The resulting expression looks like this:

(sort-regexp-fields nil "^.*$" "\\<f\\w*\\>"

(region-beginning)

(region-end))

If you call sort-regexp-fields interactively, it prompts for record-regexp and key-
regexp in the minibuffer.

[Command]sort-lines reverse start end
This command alphabetically sorts lines in the region between start and end. If
reverse is non-nil, the sort is in reverse order.

[Command]sort-paragraphs reverse start end
This command alphabetically sorts paragraphs in the region between start and end.
If reverse is non-nil, the sort is in reverse order.

[Command]sort-pages reverse start end
This command alphabetically sorts pages in the region between start and end. If
reverse is non-nil, the sort is in reverse order.

[Command]sort-fields field start end
This command sorts lines in the region between start and end, comparing them
alphabetically by the fieldth field of each line. Fields are separated by whitespace

Chapter 32: Text 673

and numbered starting from 1. If field is negative, sorting is by the −fieldth field
from the end of the line. This command is useful for sorting tables.

[Command]sort-numeric-fields field start end
This command sorts lines in the region between start and end, comparing them
numerically by the fieldth field of each line. Fields are separated by whitespace and
numbered starting from 1. The specified field must contain a number in each line of
the region. Numbers starting with 0 are treated as octal, and numbers starting with
‘0x’ are treated as hexadecimal.

If field is negative, sorting is by the −fieldth field from the end of the line. This
command is useful for sorting tables.

[User Option]sort-numeric-base
This variable specifies the default radix for sort-numeric-fields to parse numbers.

[Command]sort-columns reverse &optional beg end
This command sorts the lines in the region between beg and end, comparing them
alphabetically by a certain range of columns. The column positions of beg and end
bound the range of columns to sort on.

If reverse is non-nil, the sort is in reverse order.

One unusual thing about this command is that the entire line containing position beg,
and the entire line containing position end, are included in the region sorted.

Note that sort-columns rejects text that contains tabs, because tabs could be split
across the specified columns. Use M-x untabify to convert tabs to spaces before
sorting.

When possible, this command actually works by calling the sort utility program.

32.16 Counting Columns

The column functions convert between a character position (counting characters from the
beginning of the buffer) and a column position (counting screen characters from the begin-
ning of a line).

These functions count each character according to the number of columns it occupies
on the screen. This means control characters count as occupying 2 or 4 columns, de-
pending upon the value of ctl-arrow, and tabs count as occupying a number of columns
that depends on the value of tab-width and on the column where the tab begins. See
Section 38.20.1 [Usual Display], page 900.

Column number computations ignore the width of the window and the amount of hor-
izontal scrolling. Consequently, a column value can be arbitrarily high. The first (or
leftmost) column is numbered 0. They also ignore overlays and text properties, aside from
invisibility.

[Function]current-column
This function returns the horizontal position of point, measured in columns, counting
from 0 at the left margin. The column position is the sum of the widths of all the
displayed representations of the characters between the start of the current line and
point.

Chapter 32: Text 674

For an example of using current-column, see the description of count-lines in
Section 30.2.4 [Text Lines], page 626.

[Command]move-to-column column &optional force
This function moves point to column in the current line. The calculation of col-
umn takes into account the widths of the displayed representations of the characters
between the start of the line and point.

When called interactively, column is the value of prefix numeric argument. If column
is not an integer, an error is signaled.

If column column is beyond the end of the line, point moves to the end of the line. If
column is negative, point moves to the beginning of the line.

If it is impossible to move to column column because that is in the middle of a multi-
column character such as a tab, point moves to the end of that character. However, if
force is non-nil, and column is in the middle of a tab, then move-to-column converts
the tab into spaces so that it can move precisely to column column. Other multi-
column characters can cause anomalies despite force, since there is no way to split
them.

The argument force also has an effect if the line isn’t long enough to reach column
column; if it is t, that means to add whitespace at the end of the line to reach that
column.

The return value is the column number actually moved to.

32.17 Indentation

The indentation functions are used to examine, move to, and change whitespace that is at
the beginning of a line. Some of the functions can also change whitespace elsewhere on a
line. Columns and indentation count from zero at the left margin.

32.17.1 Indentation Primitives

This section describes the primitive functions used to count and insert indentation. The
functions in the following sections use these primitives. See Section 38.10 [Width], page 846,
for related functions.

[Function]current-indentation
This function returns the indentation of the current line, which is the horizontal
position of the first nonblank character. If the contents are entirely blank, then this
is the horizontal position of the end of the line.

[Command]indent-to column &optional minimum
This function indents from point with tabs and spaces until column is reached. If
minimum is specified and non-nil, then at least that many spaces are inserted even
if this requires going beyond column. Otherwise the function does nothing if point is
already beyond column. The value is the column at which the inserted indentation
ends.

The inserted whitespace characters inherit text properties from the surrounding text
(usually, from the preceding text only). See Section 32.19.6 [Sticky Properties],
page 691.

Chapter 32: Text 675

[User Option]indent-tabs-mode
If this variable is non-nil, indentation functions can insert tabs as well as spaces.
Otherwise, they insert only spaces. Setting this variable automatically makes it buffer-
local in the current buffer.

32.17.2 Indentation Controlled by Major Mode

An important function of each major mode is to customize the TAB key to indent properly
for the language being edited. This section describes the mechanism of the TAB key and
how to control it. The functions in this section return unpredictable values.

[Command]indent-for-tab-command &optional rigid
This is the command bound to TAB in most editing modes. Its usual action is to
indent the current line, but it can alternatively insert a tab character or indent a
region.

Here is what it does:

• First, it checks whether Transient Mark mode is enabled and the region is ac-
tive. If so, it called indent-region to indent all the text in the region (see
Section 32.17.3 [Region Indent], page 676).

• Otherwise, if the indentation function in indent-line-function is indent-to-
left-margin (a trivial command that inserts a tab character), or if the variable
tab-always-indent specifies that a tab character ought to be inserted (see be-
low), then it inserts a tab character.

• Otherwise, it indents the current line; this is done by calling the function in
indent-line-function. If the line is already indented, and the value of tab-
always-indent is complete (see below), it tries completing the text at point.

If rigid is non-nil (interactively, with a prefix argument), then after this command
indents a line or inserts a tab, it also rigidly indents the entire balanced expression
which starts at the beginning of the current line, in order to reflect the new indenta-
tion. This argument is ignored if the command indents the region.

[Variable]indent-line-function
This variable’s value is the function to be used by indent-for-tab-command, and
various other indentation commands, to indent the current line. It is usually assigned
by the major mode; for instance, Lisp mode sets it to lisp-indent-line, C mode
sets it to c-indent-line, and so on. The default value is indent-relative. See
Section 23.7 [Auto-Indentation], page 448.

[Command]indent-according-to-mode
This command calls the function in indent-line-function to indent the current
line in a way appropriate for the current major mode.

[Command]newline-and-indent
This function inserts a newline, then indents the new line (the one following the
newline just inserted) according to the major mode. It does indentation by calling
indent-according-to-mode.

Chapter 32: Text 676

[Command]reindent-then-newline-and-indent
This command reindents the current line, inserts a newline at point, and then indents
the new line (the one following the newline just inserted). It does indentation on both
lines by calling indent-according-to-mode.

[User Option]tab-always-indent
This variable can be used to customize the behavior of the TAB (indent-for-tab-
command) command. If the value is t (the default), the command normally just
indents the current line. If the value is nil, the command indents the current line
only if point is at the left margin or in the line’s indentation; otherwise, it inserts a
tab character. If the value is complete, the command first tries to indent the current
line, and if the line was already indented, it calls completion-at-point to complete
the text at point (see Section 20.6.8 [Completion in Buffers], page 313).

32.17.3 Indenting an Entire Region

This section describes commands that indent all the lines in the region. They return un-
predictable values.

[Command]indent-region start end &optional to-column
This command indents each nonblank line starting between start (inclusive) and end
(exclusive). If to-column is nil, indent-region indents each nonblank line by calling
the current mode’s indentation function, the value of indent-line-function.

If to-column is non-nil, it should be an integer specifying the number of columns
of indentation; then this function gives each line exactly that much indentation, by
either adding or deleting whitespace.

If there is a fill prefix, indent-region indents each line by making it start with the
fill prefix.

[Variable]indent-region-function
The value of this variable is a function that can be used by indent-region as a
short cut. It should take two arguments, the start and end of the region. You should
design the function so that it will produce the same results as indenting the lines of
the region one by one, but presumably faster.

If the value is nil, there is no short cut, and indent-region actually works line by
line.

A short-cut function is useful in modes such as C mode and Lisp mode, where the
indent-line-function must scan from the beginning of the function definition: ap-
plying it to each line would be quadratic in time. The short cut can update the scan
information as it moves through the lines indenting them; this takes linear time. In
a mode where indenting a line individually is fast, there is no need for a short cut.

indent-region with a non-nil argument to-column has a different meaning and does
not use this variable.

[Command]indent-rigidly start end count
This command indents all lines starting between start (inclusive) and end (exclusive)
sideways by count columns. This “preserves the shape” of the affected region, moving

Chapter 32: Text 677

it as a rigid unit. Consequently, this command is useful not only for indenting regions
of unindented text, but also for indenting regions of formatted code.

For example, if count is 3, this command adds 3 columns of indentation to each of
the lines beginning in the region specified.

In Mail mode, C-c C-y (mail-yank-original) uses indent-rigidly to indent the
text copied from the message being replied to.

[Command]indent-code-rigidly start end columns &optional nochange-regexp
This is like indent-rigidly, except that it doesn’t alter lines that start within strings
or comments.

In addition, it doesn’t alter a line if nochange-regexp matches at the beginning of the
line (if nochange-regexp is non-nil).

32.17.4 Indentation Relative to Previous Lines

This section describes two commands that indent the current line based on the contents of
previous lines.

[Command]indent-relative &optional unindented-ok
This command inserts whitespace at point, extending to the same column as the
next indent point of the previous nonblank line. An indent point is a non-whitespace
character following whitespace. The next indent point is the first one at a column
greater than the current column of point. For example, if point is underneath and to
the left of the first non-blank character of a line of text, it moves to that column by
inserting whitespace.

If the previous nonblank line has no next indent point (i.e., none at a great enough
column position), indent-relative either does nothing (if unindented-ok is non-nil)
or calls tab-to-tab-stop. Thus, if point is underneath and to the right of the last
column of a short line of text, this command ordinarily moves point to the next tab
stop by inserting whitespace.

The return value of indent-relative is unpredictable.

In the following example, point is at the beginning of the second line:

This line is indented twelve spaces.

?The quick brown fox jumped.

Evaluation of the expression (indent-relative nil) produces the following:

This line is indented twelve spaces.

?The quick brown fox jumped.

In this next example, point is between the ‘m’ and ‘p’ of ‘jumped’:

This line is indented twelve spaces.

The quick brown fox jum?ped.

Evaluation of the expression (indent-relative nil) produces the following:

This line is indented twelve spaces.

The quick brown fox jum ?ped.

Chapter 32: Text 678

[Command]indent-relative-maybe
This command indents the current line like the previous nonblank line, by calling
indent-relative with t as the unindented-ok argument. The return value is unpre-
dictable.

If the previous nonblank line has no indent points beyond the current column, this
command does nothing.

32.17.5 Adjustable “Tab Stops”

This section explains the mechanism for user-specified “tab stops” and the mechanisms that
use and set them. The name “tab stops” is used because the feature is similar to that of
the tab stops on a typewriter. The feature works by inserting an appropriate number of
spaces and tab characters to reach the next tab stop column; it does not affect the display
of tab characters in the buffer (see Section 38.20.1 [Usual Display], page 900). Note that
the TAB character as input uses this tab stop feature only in a few major modes, such as
Text mode. See Section “Tab Stops” in The GNU Emacs Manual.

[Command]tab-to-tab-stop
This command inserts spaces or tabs before point, up to the next tab stop column
defined by tab-stop-list. It searches the list for an element greater than the current
column number, and uses that element as the column to indent to. It does nothing if
no such element is found.

[User Option]tab-stop-list
This variable is the list of tab stop columns used by tab-to-tab-stops. The elements
should be integers in increasing order. The tab stop columns need not be evenly
spaced.

Use M-x edit-tab-stops to edit the location of tab stops interactively.

32.17.6 Indentation-Based Motion Commands

These commands, primarily for interactive use, act based on the indentation in the text.

[Command]back-to-indentation
This command moves point to the first non-whitespace character in the current line
(which is the line in which point is located). It returns nil.

[Command]backward-to-indentation &optional arg
This command moves point backward arg lines and then to the first nonblank char-
acter on that line. It returns nil. If arg is omitted or nil, it defaults to 1.

[Command]forward-to-indentation &optional arg
This command moves point forward arg lines and then to the first nonblank character
on that line. It returns nil. If arg is omitted or nil, it defaults to 1.

32.18 Case Changes

The case change commands described here work on text in the current buffer. See Section 4.8
[Case Conversion], page 59, for case conversion functions that work on strings and char-
acters. See Section 4.9 [Case Tables], page 61, for how to customize which characters are
upper or lower case and how to convert them.

Chapter 32: Text 679

[Command]capitalize-region start end
This function capitalizes all words in the region defined by start and end. To capitalize
means to convert each word’s first character to upper case and convert the rest of
each word to lower case. The function returns nil.

If one end of the region is in the middle of a word, the part of the word within the
region is treated as an entire word.

When capitalize-region is called interactively, start and end are point and the
mark, with the smallest first.

---------- Buffer: foo ----------

This is the contents of the 5th foo.

---------- Buffer: foo ----------

(capitalize-region 1 44)

⇒ nil

---------- Buffer: foo ----------

This Is The Contents Of The 5th Foo.

---------- Buffer: foo ----------

[Command]downcase-region start end
This function converts all of the letters in the region defined by start and end to lower
case. The function returns nil.

When downcase-region is called interactively, start and end are point and the mark,
with the smallest first.

[Command]upcase-region start end
This function converts all of the letters in the region defined by start and end to
upper case. The function returns nil.

When upcase-region is called interactively, start and end are point and the mark,
with the smallest first.

[Command]capitalize-word count
This function capitalizes count words after point, moving point over as it does. To
capitalize means to convert each word’s first character to upper case and convert the
rest of each word to lower case. If count is negative, the function capitalizes the
−count previous words but does not move point. The value is nil.

If point is in the middle of a word, the part of the word before point is ignored when
moving forward. The rest is treated as an entire word.

When capitalize-word is called interactively, count is set to the numeric prefix
argument.

[Command]downcase-word count
This function converts the count words after point to all lower case, moving point
over as it does. If count is negative, it converts the −count previous words but does
not move point. The value is nil.

When downcase-word is called interactively, count is set to the numeric prefix argu-
ment.

Chapter 32: Text 680

[Command]upcase-word count
This function converts the count words after point to all upper case, moving point
over as it does. If count is negative, it converts the −count previous words but does
not move point. The value is nil.

When upcase-word is called interactively, count is set to the numeric prefix argument.

32.19 Text Properties

Each character position in a buffer or a string can have a text property list, much like the
property list of a symbol (see Section 5.9 [Property Lists], page 86). The properties belong
to a particular character at a particular place, such as, the letter ‘T’ at the beginning of
this sentence or the first ‘o’ in ‘foo’—if the same character occurs in two different places,
the two occurrences in general have different properties.

Each property has a name and a value. Both of these can be any Lisp object, but the
name is normally a symbol. Typically each property name symbol is used for a particular
purpose; for instance, the text property face specifies the faces for displaying the character
(see Section 32.19.4 [Special Properties], page 685). The usual way to access the property
list is to specify a name and ask what value corresponds to it.

If a character has a category property, we call it the property category of the character.
It should be a symbol. The properties of the symbol serve as defaults for the properties of
the character.

Copying text between strings and buffers preserves the properties along with the char-
acters; this includes such diverse functions as substring, insert, and buffer-substring.

32.19.1 Examining Text Properties

The simplest way to examine text properties is to ask for the value of a particular property
of a particular character. For that, use get-text-property. Use text-properties-at to
get the entire property list of a character. See Section 32.19.3 [Property Search], page 683,
for functions to examine the properties of a number of characters at once.

These functions handle both strings and buffers. Keep in mind that positions in a string
start from 0, whereas positions in a buffer start from 1.

[Function]get-text-property pos prop &optional object
This function returns the value of the prop property of the character after position
pos in object (a buffer or string). The argument object is optional and defaults to
the current buffer.

If there is no prop property strictly speaking, but the character has a property cat-
egory that is a symbol, then get-text-property returns the prop property of that
symbol.

[Function]get-char-property position prop &optional object
This function is like get-text-property, except that it checks overlays first and then
text properties. See Section 38.9 [Overlays], page 839.

The argument object may be a string, a buffer, or a window. If it is a window, then
the buffer displayed in that window is used for text properties and overlays, but only
the overlays active for that window are considered. If object is a buffer, then overlays

Chapter 32: Text 681

in that buffer are considered first, in order of decreasing priority, followed by the text
properties. If object is a string, only text properties are considered, since strings
never have overlays.

[Function]get-char-property-and-overlay position prop &optional object
This is like get-char-property, but gives extra information about the overlay that
the property value comes from.

Its value is a cons cell whose car is the property value, the same value get-char-

property would return with the same arguments. Its cdr is the overlay in which the
property was found, or nil, if it was found as a text property or not found at all.

If position is at the end of object, both the car and the cdr of the value are nil.

[Variable]char-property-alias-alist
This variable holds an alist which maps property names to a list of alternative prop-
erty names. If a character does not specify a direct value for a property, the alter-
native property names are consulted in order; the first non-nil value is used. This
variable takes precedence over default-text-properties, and category properties
take precedence over this variable.

[Function]text-properties-at position &optional object
This function returns the entire property list of the character at position in the string
or buffer object. If object is nil, it defaults to the current buffer.

[Variable]default-text-properties
This variable holds a property list giving default values for text properties. Whenever
a character does not specify a value for a property, neither directly, through a category
symbol, or through char-property-alias-alist, the value stored in this list is used
instead. Here is an example:

(setq default-text-properties ’(foo 69)

char-property-alias-alist nil)

;; Make sure character 1 has no properties of its own.
(set-text-properties 1 2 nil)

;; What we get, when we ask, is the default value.
(get-text-property 1 ’foo)

⇒ 69

32.19.2 Changing Text Properties

The primitives for changing properties apply to a specified range of text in a buffer or string.
The function set-text-properties (see end of section) sets the entire property list of the
text in that range; more often, it is useful to add, change, or delete just certain properties
specified by name.

Since text properties are considered part of the contents of the buffer (or string), and
can affect how a buffer looks on the screen, any change in buffer text properties marks the
buffer as modified. Buffer text property changes are undoable also (see Section 32.9 [Undo],
page 660). Positions in a string start from 0, whereas positions in a buffer start from 1.

[Function]put-text-property start end prop value &optional object
This function sets the prop property to value for the text between start and end in
the string or buffer object. If object is nil, it defaults to the current buffer.

Chapter 32: Text 682

[Function]add-text-properties start end props &optional object
This function adds or overrides text properties for the text between start and end in
the string or buffer object. If object is nil, it defaults to the current buffer.

The argument props specifies which properties to add. It should have the form of a
property list (see Section 5.9 [Property Lists], page 86): a list whose elements include
the property names followed alternately by the corresponding values.

The return value is t if the function actually changed some property’s value; nil
otherwise (if props is nil or its values agree with those in the text).

For example, here is how to set the comment and face properties of a range of text:

(add-text-properties start end

’(comment t face highlight))

[Function]remove-text-properties start end props &optional object
This function deletes specified text properties from the text between start and end in
the string or buffer object. If object is nil, it defaults to the current buffer.

The argument props specifies which properties to delete. It should have the form of
a property list (see Section 5.9 [Property Lists], page 86): a list whose elements are
property names alternating with corresponding values. But only the names matter—
the values that accompany them are ignored. For example, here’s how to remove the
face property.

(remove-text-properties start end ’(face nil))

The return value is t if the function actually changed some property’s value; nil
otherwise (if props is nil or if no character in the specified text had any of those
properties).

To remove all text properties from certain text, use set-text-properties and specify
nil for the new property list.

[Function]remove-list-of-text-properties start end list-of-properties
&optional object

Like remove-text-properties except that list-of-properties is a list of property
names only, not an alternating list of property names and values.

[Function]set-text-properties start end props &optional object
This function completely replaces the text property list for the text between start and
end in the string or buffer object. If object is nil, it defaults to the current buffer.

The argument props is the new property list. It should be a list whose elements are
property names alternating with corresponding values.

After set-text-properties returns, all the characters in the specified range have
identical properties.

If props is nil, the effect is to get rid of all properties from the specified range of
text. Here’s an example:

(set-text-properties start end nil)

Do not rely on the return value of this function.

The easiest way to make a string with text properties is with propertize:

Chapter 32: Text 683

[Function]propertize string &rest properties
This function returns a copy of string which has the text properties properties. These
properties apply to all the characters in the string that is returned. Here is an example
that constructs a string with a face property and a mouse-face property:

(propertize "foo" ’face ’italic

’mouse-face ’bold-italic)
⇒ #("foo" 0 3 (mouse-face bold-italic face italic))

To put different properties on various parts of a string, you can construct each part
with propertize and then combine them with concat:

(concat

(propertize "foo" ’face ’italic

’mouse-face ’bold-italic)

" and "

(propertize "bar" ’face ’italic

’mouse-face ’bold-italic))
⇒ #("foo and bar"

0 3 (face italic mouse-face bold-italic)

3 8 nil

8 11 (face italic mouse-face bold-italic))

See Section 32.2 [Buffer Contents], page 646, for the function buffer-substring-no-

properties, which copies text from the buffer but does not copy its properties.

32.19.3 Text Property Search Functions

In typical use of text properties, most of the time several or many consecutive characters
have the same value for a property. Rather than writing your programs to examine char-
acters one by one, it is much faster to process chunks of text that have the same property
value.

Here are functions you can use to do this. They use eq for comparing property values.
In all cases, object defaults to the current buffer.

For good performance, it’s very important to use the limit argument to these functions,
especially the ones that search for a single property—otherwise, they may spend a long time
scanning to the end of the buffer, if the property you are interested in does not change.

These functions do not move point; instead, they return a position (or nil). Remember
that a position is always between two characters; the position returned by these functions
is between two characters with different properties.

[Function]next-property-change pos &optional object limit
The function scans the text forward from position pos in the string or buffer object
until it finds a change in some text property, then returns the position of the change.
In other words, it returns the position of the first character beyond pos whose prop-
erties are not identical to those of the character just after pos.

If limit is non-nil, then the scan ends at position limit. If there is no property change
before that point, this function returns limit.

The value is nil if the properties remain unchanged all the way to the end of object
and limit is nil. If the value is non-nil, it is a position greater than or equal to pos.
The value equals pos only when limit equals pos.

Here is an example of how to scan the buffer by chunks of text within which all
properties are constant:

Chapter 32: Text 684

(while (not (eobp))

(let ((plist (text-properties-at (point)))

(next-change

(or (next-property-change (point) (current-buffer))

(point-max))))

Process text from point to next-change . . .
(goto-char next-change)))

[Function]previous-property-change pos &optional object limit
This is like next-property-change, but scans back from pos instead of forward. If
the value is non-nil, it is a position less than or equal to pos; it equals pos only if
limit equals pos.

[Function]next-single-property-change pos prop &optional object limit
The function scans text for a change in the prop property, then returns the position
of the change. The scan goes forward from position pos in the string or buffer object.
In other words, this function returns the position of the first character beyond pos
whose prop property differs from that of the character just after pos.

If limit is non-nil, then the scan ends at position limit. If there is no property change
before that point, next-single-property-change returns limit.

The value is nil if the property remains unchanged all the way to the end of object
and limit is nil. If the value is non-nil, it is a position greater than or equal to pos;
it equals pos only if limit equals pos.

[Function]previous-single-property-change pos prop &optional object limit
This is like next-single-property-change, but scans back from pos instead of for-
ward. If the value is non-nil, it is a position less than or equal to pos; it equals pos
only if limit equals pos.

[Function]next-char-property-change pos &optional limit
This is like next-property-change except that it considers overlay properties as
well as text properties, and if no change is found before the end of the buffer, it
returns the maximum buffer position rather than nil (in this sense, it resembles the
corresponding overlay function next-overlay-change, rather than next-property-

change). There is no object operand because this function operates only on the
current buffer. It returns the next address at which either kind of property changes.

[Function]previous-char-property-change pos &optional limit
This is like next-char-property-change, but scans back from pos instead of forward,
and returns the minimum buffer position if no change is found.

[Function]next-single-char-property-change pos prop &optional object limit
This is like next-single-property-change except that it considers overlay proper-
ties as well as text properties, and if no change is found before the end of the object,
it returns the maximum valid position in object rather than nil. Unlike next-char-
property-change, this function does have an object operand; if object is not a buffer,
only text-properties are considered.

Chapter 32: Text 685

[Function]previous-single-char-property-change pos prop &optional object
limit

This is like next-single-char-property-change, but scans back from pos instead
of forward, and returns the minimum valid position in object if no change is found.

[Function]text-property-any start end prop value &optional object
This function returns non-nil if at least one character between start and end has a
property prop whose value is value. More precisely, it returns the position of the first
such character. Otherwise, it returns nil.

The optional fifth argument, object, specifies the string or buffer to scan. Positions
are relative to object. The default for object is the current buffer.

[Function]text-property-not-all start end prop value &optional object
This function returns non-nil if at least one character between start and end does
not have a property prop with value value. More precisely, it returns the position of
the first such character. Otherwise, it returns nil.

The optional fifth argument, object, specifies the string or buffer to scan. Positions
are relative to object. The default for object is the current buffer.

32.19.4 Properties with Special Meanings

Here is a table of text property names that have special built-in meanings. The follow-
ing sections list a few additional special property names that control filling and property
inheritance. All other names have no standard meaning, and you can use them as you like.

Note: the properties composition, display, invisible and intangible can also cause
point to move to an acceptable place, after each Emacs command. See Section 21.6 [Ad-
justing Point], page 333.

category If a character has a category property, we call it the property category of
the character. It should be a symbol. The properties of this symbol serve as
defaults for the properties of the character.

face The face property controls the appearance of the character, such as its font
and color. See Section 38.12 [Faces], page 848. The value of the property can
be the following:

• A face name (a symbol or string).

• A property list of face attributes. This has the form (keyword value . . .),
where each keyword is a face attribute name and value is a meaningful
value for that attribute. With this feature, you do not need to create a
face each time you want to specify a particular attribute for certain text.

• A list of faces. This specifies a face which is an aggregate of the attributes
of each of the listed faces. Faces occurring earlier in the list have higher
priority. Each list element must have one of the two above forms (i.e.,
either a face name or a property list of face attributes).

Font Lock mode (see Section 23.6 [Font Lock Mode], page 437) works in most
buffers by dynamically updating the face property of characters based on the
context.

Chapter 32: Text 686

font-lock-face

This property specifies a value for the face property that Font Lock mode
should apply to the underlying text. It is one of the fontification methods used
by Font Lock mode, and is useful for special modes that implement their own
highlighting. See Section 23.6.6 [Precalculated Fontification], page 444. When
Font Lock mode is disabled, font-lock-face has no effect.

mouse-face

This property is used instead of face when the mouse is on or near the character.
For this purpose, “near” means that all text between the character and where
the mouse is have the same mouse-face property value.

Emacs ignores all face attributes from the mouse-face property that alter the
text size (e.g., :height, :weight, and :slant). Those attributes are always
the same as for the unhighlighted text.

fontified

This property says whether the text is ready for display. If nil, Emacs’s
redisplay routine calls the functions in fontification-functions (see
Section 38.12.7 [Auto Faces], page 860) to prepare this part of the buffer before
it is displayed. It is used internally by the “just in time” font locking code.

display This property activates various features that change the way text is displayed.
For example, it can make text appear taller or shorter, higher or lower, wider
or narrow, or replaced with an image. See Section 38.15 [Display Property],
page 874.

help-echo

If text has a string as its help-echo property, then when you move the mouse
onto that text, Emacs displays that string in the echo area, or in the tooltip
window (see Section “Tooltips” in The GNU Emacs Manual).

If the value of the help-echo property is a function, that function is called
with three arguments, window, object and pos and should return a help string
or nil for none. The first argument, window is the window in which the help
was found. The second, object, is the buffer, overlay or string which had the
help-echo property. The pos argument is as follows:

• If object is a buffer, pos is the position in the buffer.

• If object is an overlay, that overlay has a help-echo property, and pos is
the position in the overlay’s buffer.

• If object is a string (an overlay string or a string displayed with the display
property), pos is the position in that string.

If the value of the help-echo property is neither a function nor a string, it is
evaluated to obtain a help string.

You can alter the way help text is displayed by setting the variable show-help-
function (see [Help display], page 690).

This feature is used in the mode line and for other active text.

keymap The keymap property specifies an additional keymap for commands. When this
keymap applies, it is used for key lookup before the minor mode keymaps and

Chapter 32: Text 687

before the buffer’s local map. See Section 22.7 [Active Keymaps], page 373. If
the property value is a symbol, the symbol’s function definition is used as the
keymap.

The property’s value for the character before point applies if it is non-nil and
rear-sticky, and the property’s value for the character after point applies if it
is non-nil and front-sticky. (For mouse clicks, the position of the click is used
instead of the position of point.)

local-map

This property works like keymap except that it specifies a keymap to use instead
of the buffer’s local map. For most purposes (perhaps all purposes), it is better
to use the keymap property.

syntax-table

The syntax-table property overrides what the syntax table says about this
particular character. See Section 35.4 [Syntax Properties], page 764.

read-only

If a character has the property read-only, then modifying that character is
not allowed. Any command that would do so gets an error, text-read-only.
If the property value is a string, that string is used as the error message.

Insertion next to a read-only character is an error if inserting ordinary text
there would inherit the read-only property due to stickiness. Thus, you can
control permission to insert next to read-only text by controlling the stickiness.
See Section 32.19.6 [Sticky Properties], page 691.

Since changing properties counts as modifying the buffer, it is not possible to
remove a read-only property unless you know the special trick: bind inhibit-

read-only to a non-nil value and then remove the property. See Section 27.7
[Read Only Buffers], page 529.

invisible

A non-nil invisible property can make a character invisible on the screen.
See Section 38.6 [Invisible Text], page 832, for details.

intangible

If a group of consecutive characters have equal and non-nil intangible prop-
erties, then you cannot place point between them. If you try to move point
forward into the group, point actually moves to the end of the group. If you
try to move point backward into the group, point actually moves to the start
of the group.

If consecutive characters have unequal non-nil intangible properties, they
belong to separate groups; each group is separately treated as described above.

When the variable inhibit-point-motion-hooks is non-nil, the intangible
property is ignored.

Beware: this property operates at a very low level, and affects a lot of code in
unexpected ways. So use it with extreme caution. A common misuse is to put
an intangible property on invisible text, which is actually unnecessary since the
command loop will move point outside of the invisible text at the end of each
command anyway. See Section 21.6 [Adjusting Point], page 333.

Chapter 32: Text 688

field Consecutive characters with the same field property constitute a field. Some
motion functions including forward-word and beginning-of-line stop mov-
ing at a field boundary. See Section 32.19.9 [Fields], page 695.

cursor Normally, the cursor is displayed at the beginning or the end of any overlay and
text property strings present at the current buffer position. You can place the
cursor on any desired character of these strings by giving that character a non-
nil cursor text property. In addition, if the value of the cursor property is an
integer number, it specifies the number of buffer’s character positions, starting
with the position where the overlay or the display property begins, for which
the cursor should be displayed on that character. Specifically, if the value of the
cursor property of a character is the number n, the cursor will be displayed on
this character for any buffer position in the range [ovpos..ovpos+n), where ov-
pos is the overlay’s starting position given by overlay-start (see Section 38.9.1
[Managing Overlays], page 839), or the position where the display text prop-
erty begins in the buffer.

In other words, the string character with the cursor property of any non-nil
value is the character where to display the cursor. The value of the property
says for which buffer positions to display the cursor there. If the value is an
integer number n, the cursor is displayed there when point is anywhere between
the beginning of the overlay or display property and n positions after that. If
the value is anything else and non-nil, the cursor is displayed there only when
point is at the beginning of the display property or at overlay-start.

When the buffer has many overlay strings (e.g., see Section 38.9.2 [Overlay
Properties], page 842) or display properties that are strings, it is a good idea
to use the cursor property on these strings to cue the Emacs display about
the places where to put the cursor while traversing these strings. This directly
communicates to the display engine where the Lisp program wants to put the
cursor, or where the user would expect the cursor.

pointer This specifies a specific pointer shape when the mouse pointer is over this text
or image. See Section 29.17 [Pointer Shape], page 614, for possible pointer
shapes.

line-spacing

A newline can have a line-spacing text or overlay property that controls the
height of the display line ending with that newline. The property value overrides
the default frame line spacing and the buffer local line-spacing variable. See
Section 38.11 [Line Height], page 847.

line-height

A newline can have a line-height text or overlay property that controls the
total height of the display line ending in that newline. See Section 38.11 [Line
Height], page 847.

wrap-prefix

If text has a wrap-prefix property, the prefix it defines will be added at display
time to the beginning of every continuation line due to text wrapping (so if lines
are truncated, the wrap-prefix is never used). It may be a string or an image (see

Chapter 32: Text 689

Section 38.15.4 [Other Display Specs], page 877), or a stretch of whitespace such
as specified by the :width or :align-to display properties (see Section 38.15.2
[Specified Space], page 875).

A wrap-prefix may also be specified for an entire buffer using the wrap-prefix
buffer-local variable (however, a wrap-prefix text-property takes precedence
over the value of the wrap-prefix variable). See Section 38.3 [Truncation],
page 823.

line-prefix

If text has a line-prefix property, the prefix it defines will be added at display
time to the beginning of every non-continuation line. It may be a string or an
image (see Section 38.15.4 [Other Display Specs], page 877), or a stretch of
whitespace such as specified by the :width or :align-to display properties
(see Section 38.15.2 [Specified Space], page 875).

A line-prefix may also be specified for an entire buffer using the line-prefix

buffer-local variable (however, a line-prefix text-property takes precedence
over the value of the line-prefix variable). See Section 38.3 [Truncation],
page 823.

modification-hooks

If a character has the property modification-hooks, then its value should be
a list of functions; modifying that character calls all of those functions before
the actual modification. Each function receives two arguments: the beginning
and end of the part of the buffer being modified. Note that if a particular
modification hook function appears on several characters being modified by a
single primitive, you can’t predict how many times the function will be called.
Furthermore, insertion will not modify any existing character, so this hook will
only be run when removing some characters, replacing them with others, or
changing their text-properties.

If these functions modify the buffer, they should bind inhibit-modification-

hooks to t around doing so, to avoid confusing the internal mechanism that
calls these hooks.

Overlays also support the modification-hooks property, but the details are
somewhat different (see Section 38.9.2 [Overlay Properties], page 842).

insert-in-front-hooks

insert-behind-hooks

The operation of inserting text in a buffer also calls the functions listed in
the insert-in-front-hooks property of the following character and in the
insert-behind-hooks property of the preceding character. These functions
receive two arguments, the beginning and end of the inserted text. The func-
tions are called after the actual insertion takes place.

See also Section 32.27 [Change Hooks], page 703, for other hooks that are called
when you change text in a buffer.

Chapter 32: Text 690

point-entered

point-left

The special properties point-entered and point-left record hook functions
that report motion of point. Each time point moves, Emacs compares these
two property values:

• the point-left property of the character after the old location, and

• the point-entered property of the character after the new location.

If these two values differ, each of them is called (if not nil) with two arguments:
the old value of point, and the new one.

The same comparison is made for the characters before the old and new lo-
cations. The result may be to execute two point-left functions (which may
be the same function) and/or two point-entered functions (which may be
the same function). In any case, all the point-left functions are called first,
followed by all the point-entered functions.

It is possible to use char-after to examine characters at various buffer posi-
tions without moving point to those positions. Only an actual change in the
value of point runs these hook functions.

The variable inhibit-point-motion-hooks can inhibit running the point-

left and point-entered hooks, see [Inhibit point motion hooks], page 690.

composition

This text property is used to display a sequence of characters as a single glyph
composed from components. But the value of the property itself is completely
internal to Emacs and should not be manipulated directly by, for instance,
put-text-property.

[Variable]inhibit-point-motion-hooks
When this variable is non-nil, point-left and point-entered hooks are not run,
and the intangible property has no effect. Do not set this variable globally; bind it
with let.

[Variable]show-help-function
If this variable is non-nil, it specifies a function called to display help strings. These
may be help-echo properties, menu help strings (see Section 22.17.1.1 [Simple Menu
Items], page 391, see Section 22.17.1.2 [Extended Menu Items], page 392), or tool bar
help strings (see Section 22.17.6 [Tool Bar], page 398). The specified function is called
with one argument, the help string to display. Tooltip mode (see Section “Tooltips”
in The GNU Emacs Manual) provides an example.

32.19.5 Formatted Text Properties

These text properties affect the behavior of the fill commands. They are used for repre-
senting formatted text. See Section 32.11 [Filling], page 664, and Section 32.12 [Margins],
page 666.

hard If a newline character has this property, it is a “hard” newline. The fill com-
mands do not alter hard newlines and do not move words across them. How-
ever, this property takes effect only if the use-hard-newlines minor mode is
enabled. See Section “Hard and Soft Newlines” in The GNU Emacs Manual.

Chapter 32: Text 691

right-margin

This property specifies an extra right margin for filling this part of the text.

left-margin

This property specifies an extra left margin for filling this part of the text.

justification

This property specifies the style of justification for filling this part of the text.

32.19.6 Stickiness of Text Properties

Self-inserting characters normally take on the same properties as the preceding character.
This is called inheritance of properties.

A Lisp program can do insertion with inheritance or without, depending on the choice
of insertion primitive. The ordinary text insertion functions, such as insert, do not inherit
any properties. They insert text with precisely the properties of the string being inserted,
and no others. This is correct for programs that copy text from one context to another—for
example, into or out of the kill ring. To insert with inheritance, use the special primitives
described in this section. Self-inserting characters inherit properties because they work
using these primitives.

When you do insertion with inheritance, which properties are inherited, and from where,
depends on which properties are sticky. Insertion after a character inherits those of its
properties that are rear-sticky. Insertion before a character inherits those of its properties
that are front-sticky. When both sides offer different sticky values for the same property,
the previous character’s value takes precedence.

By default, a text property is rear-sticky but not front-sticky; thus, the default is to
inherit all the properties of the preceding character, and nothing from the following char-
acter.

You can control the stickiness of various text properties with two specific text proper-
ties, front-sticky and rear-nonsticky, and with the variable text-property-default-
nonsticky. You can use the variable to specify a different default for a given property. You
can use those two text properties to make any specific properties sticky or nonsticky in any
particular part of the text.

If a character’s front-sticky property is t, then all its properties are front-sticky. If the
front-sticky property is a list, then the sticky properties of the character are those whose
names are in the list. For example, if a character has a front-sticky property whose value
is (face read-only), then insertion before the character can inherit its face property and
its read-only property, but no others.

The rear-nonsticky property works the opposite way. Most properties are rear-sticky
by default, so the rear-nonsticky property says which properties are not rear-sticky. If
a character’s rear-nonsticky property is t, then none of its properties are rear-sticky. If
the rear-nonsticky property is a list, properties are rear-sticky unless their names are in
the list.

[Variable]text-property-default-nonsticky
This variable holds an alist which defines the default rear-stickiness of various text
properties. Each element has the form (property . nonstickiness), and it defines
the stickiness of a particular text property, property.

Chapter 32: Text 692

If nonstickiness is non-nil, this means that the property property is rear-nonsticky
by default. Since all properties are front-nonsticky by default, this makes property
nonsticky in both directions by default.

The text properties front-sticky and rear-nonsticky, when used, take precedence
over the default nonstickiness specified in text-property-default-nonsticky.

Here are the functions that insert text with inheritance of properties:

[Function]insert-and-inherit &rest strings
Insert the strings strings, just like the function insert, but inherit any sticky prop-
erties from the adjoining text.

[Function]insert-before-markers-and-inherit &rest strings
Insert the strings strings, just like the function insert-before-markers, but inherit
any sticky properties from the adjoining text.

See Section 32.4 [Insertion], page 649, for the ordinary insertion functions which do not
inherit.

32.19.7 Lazy Computation of Text Properties

Instead of computing text properties for all the text in the buffer, you can arrange to
compute the text properties for parts of the text when and if something depends on them.

The primitive that extracts text from the buffer along with its properties is buffer-

substring. Before examining the properties, this function runs the abnormal hook buffer-
access-fontify-functions.

[Variable]buffer-access-fontify-functions
This variable holds a list of functions for computing text properties. Before buffer-
substring copies the text and text properties for a portion of the buffer, it calls all
the functions in this list. Each of the functions receives two arguments that specify
the range of the buffer being accessed. (The buffer itself is always the current buffer.)

The function buffer-substring-no-properties does not call these functions, since it
ignores text properties anyway.

In order to prevent the hook functions from being called more than once for the same
part of the buffer, you can use the variable buffer-access-fontified-property.

[Variable]buffer-access-fontified-property
If this variable’s value is non-nil, it is a symbol which is used as a text property
name. A non-nil value for that text property means, “the other text properties for
this character have already been computed”.

If all the characters in the range specified for buffer-substring have a non-nil value
for this property, buffer-substring does not call the buffer-access-fontify-

functions functions. It assumes these characters already have the right text proper-
ties, and just copies the properties they already have.

The normal way to use this feature is that the buffer-access-fontify-functions

functions add this property, as well as others, to the characters they operate on. That
way, they avoid being called over and over for the same text.

Chapter 32: Text 693

32.19.8 Defining Clickable Text

Clickable text is text that can be clicked, with either the mouse or via a keyboard command,
to produce some result. Many major modes use clickable text to implement textual hyper-
links, or links for short.

The easiest way to insert and manipulate links is to use the button package. See
Section 38.17 [Buttons], page 890. In this section, we will explain how to manually set
up clickable text in a buffer, using text properties. For simplicity, we will refer to the
clickable text as a link.

Implementing a link involves three separate steps: (1) indicating clickability when the
mouse moves over the link; (2) making RET or Mouse-2 on that link do something; and (3)
setting up a follow-link condition so that the link obeys mouse-1-click-follows-link.

To indicate clickability, add the mouse-face text property to the text of the link; then
Emacs will highlight the link when the mouse moves over it. In addition, you should define
a tooltip or echo area message, using the help-echo text property. See Section 32.19.4
[Special Properties], page 685. For instance, here is how Dired indicates that file names are
clickable:

(if (dired-move-to-filename)

(add-text-properties

(point)

(save-excursion

(dired-move-to-end-of-filename)

(point))

’(mouse-face highlight

help-echo "mouse-2: visit this file in other window")))

To make the link clickable, bind RET and Mouse-2 to commands that perform the de-
sired action. Each command should check to see whether it was called on a link, and act
accordingly. For instance, Dired’s major mode keymap binds Mouse-2 to the following
command:

(defun dired-mouse-find-file-other-window (event)

"In Dired, visit the file or directory name you click on."

(interactive "e")

(let ((window (posn-window (event-end event)))

(pos (posn-point (event-end event)))

file)

(if (not (windowp window))

(error "No file chosen"))

(with-current-buffer (window-buffer window)

(goto-char pos)

(setq file (dired-get-file-for-visit)))

(if (file-directory-p file)

(or (and (cdr dired-subdir-alist)

(dired-goto-subdir file))

(progn

(select-window window)

(dired-other-window file)))

(select-window window)

(find-file-other-window (file-name-sans-versions file t)))))

This command uses the functions posn-window and posn-point to determine where the
click occurred, and dired-get-file-for-visit to determine which file to visit.

Chapter 32: Text 694

Instead of binding the mouse command in a major mode keymap, you can bind it within
the link text, using the keymap text property (see Section 32.19.4 [Special Properties],
page 685). For instance:

(let ((map (make-sparse-keymap)))

(define-key map [mouse-2] ’operate-this-button)

(put-text-property link-start link-end ’keymap map))

With this method, you can easily define different commands for different links. Furthermore,
the global definition of RET and Mouse-2 remain available for the rest of the text in the
buffer.

The basic Emacs command for clicking on links is Mouse-2. However, for compatibility
with other graphical applications, Emacs also recognizes Mouse-1 clicks on links, provided
the user clicks on the link quickly without moving the mouse. This behavior is controlled
by the user option mouse-1-click-follows-link. See Section “Mouse References” in The
GNU Emacs Manual.

To set up the link so that it obeys mouse-1-click-follows-link, you must either (1)
apply a follow-link text or overlay property to the link text, or (2) bind the follow-link
event to a keymap (which can be a major mode keymap or a local keymap specified via
the keymap text property). The value of the follow-link property, or the binding for the
follow-link event, acts as a “condition” for the link action. This condition tells Emacs
two things: the circumstances under which a Mouse-1 click should be regarded as occurring
“inside” the link, and how to compute an “action code” that says what to translate the
Mouse-1 click into. The link action condition can be one of the following:

mouse-face

If the condition is the symbol mouse-face, a position is inside a link if there is
a non-nil mouse-face property at that position. The action code is always t.

For example, here is how Info mode handles Mouse-1:
(define-key Info-mode-map [follow-link] ’mouse-face)

a function If the condition is a function, func, then a position pos is inside a link if (func
pos) evaluates to non-nil. The value returned by func serves as the action
code.

For example, here is how pcvs enables Mouse-1 to follow links on file names
only:

(define-key map [follow-link]

(lambda (pos)

(eq (get-char-property pos ’face) ’cvs-filename-face)))

anything else
If the condition value is anything else, then the position is inside a link and
the condition itself is the action code. Clearly, you should specify this kind of
condition only when applying the condition via a text or property overlay on
the link text (so that it does not apply to the entire buffer).

The action code tells Mouse-1 how to follow the link:

a string or vector
If the action code is a string or vector, the Mouse-1 event is translated into the
first element of the string or vector; i.e., the action of the Mouse-1 click is the

Chapter 32: Text 695

local or global binding of that character or symbol. Thus, if the action code is
"foo", Mouse-1 translates into f. If it is [foo], Mouse-1 translates into foo.

anything else
For any other non-nil action code, the Mouse-1 event is translated into a
Mouse-2 event at the same position.

To define Mouse-1 to activate a button defined with define-button-type, give the
button a follow-link property. The property value should be a link action condition, as
described above. See Section 38.17 [Buttons], page 890. For example, here is how Help
mode handles Mouse-1:

(define-button-type ’help-xref

’follow-link t

’action #’help-button-action)

To define Mouse-1 on a widget defined with define-widget, give the widget a :follow-
link property. The property value should be a link action condition, as described above.
For example, here is how the link widget specifies that a Mouse-1 click shall be translated
to RET:

(define-widget ’link ’item

"An embedded link."

:button-prefix ’widget-link-prefix

:button-suffix ’widget-link-suffix

:follow-link "\C-m"

:help-echo "Follow the link."

:format "%[%t%]")

[Function]mouse-on-link-p pos
This function returns non-nil if position pos in the current buffer is on a link. pos
can also be a mouse event location, as returned by event-start (see Section 21.7.13
[Accessing Mouse], page 345).

32.19.9 Defining and Using Fields

A field is a range of consecutive characters in the buffer that are identified by having the
same value (comparing with eq) of the field property (either a text-property or an overlay
property). This section describes special functions that are available for operating on fields.

You specify a field with a buffer position, pos. We think of each field as containing a
range of buffer positions, so the position you specify stands for the field containing that
position.

When the characters before and after pos are part of the same field, there is no doubt
which field contains pos: the one those characters both belong to. When pos is at a bound-
ary between fields, which field it belongs to depends on the stickiness of the field properties
of the two surrounding characters (see Section 32.19.6 [Sticky Properties], page 691). The
field whose property would be inherited by text inserted at pos is the field that contains
pos.

There is an anomalous case where newly inserted text at pos would not inherit the field
property from either side. This happens if the previous character’s field property is not
rear-sticky, and the following character’s field property is not front-sticky. In this case,
pos belongs to neither the preceding field nor the following field; the field functions treat it
as belonging to an empty field whose beginning and end are both at pos.

Chapter 32: Text 696

In all of these functions, if pos is omitted or nil, the value of point is used by default.
If narrowing is in effect, then pos should fall within the accessible portion. See Section 30.4
[Narrowing], page 633.

[Function]field-beginning &optional pos escape-from-edge limit
This function returns the beginning of the field specified by pos.

If pos is at the beginning of its field, and escape-from-edge is non-nil, then the return
value is always the beginning of the preceding field that ends at pos, regardless of the
stickiness of the field properties around pos.

If limit is non-nil, it is a buffer position; if the beginning of the field is before limit,
then limit will be returned instead.

[Function]field-end &optional pos escape-from-edge limit
This function returns the end of the field specified by pos.

If pos is at the end of its field, and escape-from-edge is non-nil, then the return value
is always the end of the following field that begins at pos, regardless of the stickiness
of the field properties around pos.

If limit is non-nil, it is a buffer position; if the end of the field is after limit, then
limit will be returned instead.

[Function]field-string &optional pos
This function returns the contents of the field specified by pos, as a string.

[Function]field-string-no-properties &optional pos
This function returns the contents of the field specified by pos, as a string, discarding
text properties.

[Function]delete-field &optional pos
This function deletes the text of the field specified by pos.

[Function]constrain-to-field new-pos old-pos &optional escape-from-edge
only-in-line inhibit-capture-property

This function “constrains” new-pos to the field that old-pos belongs to—in other
words, it returns the position closest to new-pos that is in the same field as old-pos.

If new-pos is nil, then constrain-to-field uses the value of point instead, and
moves point to the resulting position in addition to returning that position.

If old-pos is at the boundary of two fields, then the acceptable final positions depend
on the argument escape-from-edge. If escape-from-edge is nil, then new-pos must
be in the field whose field property equals what new characters inserted at old-
pos would inherit. (This depends on the stickiness of the field property for the
characters before and after old-pos.) If escape-from-edge is non-nil, new-pos can
be anywhere in the two adjacent fields. Additionally, if two fields are separated by
another field with the special value boundary, then any point within this special field
is also considered to be “on the boundary”.

Commands like C-a with no argument, that normally move backward to a specific
kind of location and stay there once there, probably should specify nil for escape-
from-edge. Other motion commands that check fields should probably pass t.

Chapter 32: Text 697

If the optional argument only-in-line is non-nil, and constraining new-pos in the
usual way would move it to a different line, new-pos is returned unconstrained. This
used in commands that move by line, such as next-line and beginning-of-line,
so that they respect field boundaries only in the case where they can still move to the
right line.

If the optional argument inhibit-capture-property is non-nil, and old-pos has a non-
nil property of that name, then any field boundaries are ignored.

You can cause constrain-to-field to ignore all field boundaries (and so never con-
strain anything) by binding the variable inhibit-field-text-motion to a non-nil
value.

32.19.10 Why Text Properties are not Intervals

Some editors that support adding attributes to text in the buffer do so by letting the
user specify “intervals” within the text, and adding the properties to the intervals. Those
editors permit the user or the programmer to determine where individual intervals start and
end. We deliberately provided a different sort of interface in Emacs Lisp to avoid certain
paradoxical behavior associated with text modification.

If the actual subdivision into intervals is meaningful, that means you can distinguish
between a buffer that is just one interval with a certain property, and a buffer containing
the same text subdivided into two intervals, both of which have that property.

Suppose you take the buffer with just one interval and kill part of the text. The text
remaining in the buffer is one interval, and the copy in the kill ring (and the undo list)
becomes a separate interval. Then if you yank back the killed text, you get two intervals
with the same properties. Thus, editing does not preserve the distinction between one
interval and two.

Suppose we “fix” this problem by coalescing the two intervals when the text is inserted.
That works fine if the buffer originally was a single interval. But suppose instead that we
have two adjacent intervals with the same properties, and we kill the text of one interval
and yank it back. The same interval-coalescence feature that rescues the other case causes
trouble in this one: after yanking, we have just one interval. One again, editing does not
preserve the distinction between one interval and two.

Insertion of text at the border between intervals also raises questions that have no
satisfactory answer.

However, it is easy to arrange for editing to behave consistently for questions of the
form, “What are the properties of this character?” So we have decided these are the only
questions that make sense; we have not implemented asking questions about where intervals
start or end.

In practice, you can usually use the text property search functions in place of explicit
interval boundaries. You can think of them as finding the boundaries of intervals, assuming
that intervals are always coalesced whenever possible. See Section 32.19.3 [Property Search],
page 683.

Emacs also provides explicit intervals as a presentation feature; see Section 38.9 [Over-
lays], page 839.

Chapter 32: Text 698

32.20 Substituting for a Character Code

The following functions replace characters within a specified region based on their character
codes.

[Function]subst-char-in-region start end old-char new-char &optional noundo
This function replaces all occurrences of the character old-char with the character
new-char in the region of the current buffer defined by start and end.

If noundo is non-nil, then subst-char-in-region does not record the change for
undo and does not mark the buffer as modified. This was useful for controlling the
old selective display feature (see Section 38.7 [Selective Display], page 835).

subst-char-in-region does not move point and returns nil.

---------- Buffer: foo ----------

This is the contents of the buffer before.

---------- Buffer: foo ----------

(subst-char-in-region 1 20 ?i ?X)

⇒ nil

---------- Buffer: foo ----------

ThXs Xs the contents of the buffer before.

---------- Buffer: foo ----------

[Command]translate-region start end table
This function applies a translation table to the characters in the buffer between po-
sitions start and end.

The translation table table is a string or a char-table; (aref table ochar) gives the
translated character corresponding to ochar. If table is a string, any characters with
codes larger than the length of table are not altered by the translation.

The return value of translate-region is the number of characters that were actually
changed by the translation. This does not count characters that were mapped into
themselves in the translation table.

32.21 Registers

A register is a sort of variable used in Emacs editing that can hold a variety of different
kinds of values. Each register is named by a single character. All ASCII characters and
their meta variants (but with the exception of C-g) can be used to name registers. Thus,
there are 255 possible registers. A register is designated in Emacs Lisp by the character
that is its name.

[Variable]register-alist
This variable is an alist of elements of the form (name . contents). Normally, there
is one element for each Emacs register that has been used.

The object name is a character (an integer) identifying the register.

The contents of a register can have several possible types:

Chapter 32: Text 699

a number A number stands for itself. If insert-register finds a number in the register,
it converts the number to decimal.

a marker A marker represents a buffer position to jump to.

a string A string is text saved in the register.

a rectangle
A rectangle is represented by a list of strings.

(window-configuration position)

This represents a window configuration to restore in one frame, and a position
to jump to in the current buffer.

(frame-configuration position)

This represents a frame configuration to restore, and a position to jump to in
the current buffer.

(file filename)
This represents a file to visit; jumping to this value visits file filename.

(file-query filename position)
This represents a file to visit and a position in it; jumping to this value visits file
filename and goes to buffer position position. Restoring this type of position
asks the user for confirmation first.

The functions in this section return unpredictable values unless otherwise stated.

[Function]get-register reg
This function returns the contents of the register reg, or nil if it has no contents.

[Function]set-register reg value
This function sets the contents of register reg to value. A register can be set to any
value, but the other register functions expect only certain data types. The return
value is value.

[Command]view-register reg
This command displays what is contained in register reg.

[Command]insert-register reg &optional beforep
This command inserts contents of register reg into the current buffer.

Normally, this command puts point before the inserted text, and the mark after it.
However, if the optional second argument beforep is non-nil, it puts the mark before
and point after. You can pass a non-nil second argument beforep to this function
interactively by supplying any prefix argument.

If the register contains a rectangle, then the rectangle is inserted with its upper left
corner at point. This means that text is inserted in the current line and underneath
it on successive lines.

If the register contains something other than saved text (a string) or a rectangle (a
list), currently useless things happen. This may be changed in the future.

Chapter 32: Text 700

32.22 Transposition of Text

This function can be used to transpose stretches of text:

[Function]transpose-regions start1 end1 start2 end2 &optional leave-markers
This function exchanges two nonoverlapping portions of the buffer. Arguments start1
and end1 specify the bounds of one portion and arguments start2 and end2 specify
the bounds of the other portion.

Normally, transpose-regions relocates markers with the transposed text; a marker
previously positioned within one of the two transposed portions moves along with
that portion, thus remaining between the same two characters in their new position.
However, if leave-markers is non-nil, transpose-regions does not do this—it leaves
all markers unrelocated.

32.23 Base 64 Encoding

Base 64 code is used in email to encode a sequence of 8-bit bytes as a longer sequence of
ASCII graphic characters. It is defined in Internet RFC12045. This section describes the
functions for converting to and from this code.

[Command]base64-encode-region beg end &optional no-line-break
This function converts the region from beg to end into base 64 code. It returns
the length of the encoded text. An error is signaled if a character in the region is
multibyte, i.e., in a multibyte buffer the region must contain only characters from the
charsets ascii, eight-bit-control and eight-bit-graphic.

Normally, this function inserts newline characters into the encoded text, to avoid
overlong lines. However, if the optional argument no-line-break is non-nil, these
newlines are not added, so the output is just one long line.

[Function]base64-encode-string string &optional no-line-break
This function converts the string string into base 64 code. It returns a string con-
taining the encoded text. As for base64-encode-region, an error is signaled if a
character in the string is multibyte.

Normally, this function inserts newline characters into the encoded text, to avoid
overlong lines. However, if the optional argument no-line-break is non-nil, these
newlines are not added, so the result string is just one long line.

[Command]base64-decode-region beg end
This function converts the region from beg to end from base 64 code into the corre-
sponding decoded text. It returns the length of the decoded text.

The decoding functions ignore newline characters in the encoded text.

[Function]base64-decode-string string
This function converts the string string from base 64 code into the corresponding
decoded text. It returns a unibyte string containing the decoded text.

The decoding functions ignore newline characters in the encoded text.

1 An RFC, an acronym for Request for Comments, is a numbered Internet informational document
describing a standard. RFCs are usually written by technical experts acting on their own initiative, and
are traditionally written in a pragmatic, experience-driven manner.

Chapter 32: Text 701

32.24 Checksum/Hash

Emacs has built-in support for computing cryptographic hashes. A cryptographic hash, or
checksum, is a digital “fingerprint” of a piece of data (e.g., a block of text) which can be
used to check that you have an unaltered copy of that data.

Emacs supports several common cryptographic hash algorithms: MD5, SHA-1, SHA-
2, SHA-224, SHA-256, SHA-384 and SHA-512. MD5 is the oldest of these algorithms,
and is commonly used in message digests to check the integrity of messages transmitted
over a network. MD5 is not “collision resistant” (i.e., it is possible to deliberately design
different pieces of data which have the same MD5 hash), so you should not used it for
anything security-related. A similar theoretical weakness also exists in SHA-1. Therefore,
for security-related applications you should use the other hash types, such as SHA-2.

[Function]secure-hash algorithm object &optional start end binary
This function returns a hash for object. The argument algorithm is a symbol stating
which hash to compute: one of md5, sha1, sha224, sha256, sha384 or sha512. The
argument object should be a buffer or a string.

The optional arguments start and end are character positions specifying the portion
of object to compute the message digest for. If they are nil or omitted, the hash is
computed for the whole of object.

If the argument binary is omitted or nil, the function returns the text form of the
hash, as an ordinary Lisp string. If binary is non-nil, it returns the hash in binary
form, as a sequence of bytes stored in a unibyte string.

This function does not compute the hash directly from the internal representation of
object’s text (see Section 33.1 [Text Representations], page 705). Instead, it encodes
the text using a coding system (see Section 33.9 [Coding Systems], page 716), and
computes the hash from that encoded text. If object is a buffer, the coding system
used is the one which would be chosen by default for writing the text into a file. If
object is a string, the user’s preferred coding system is used (see Section “Recognize
Coding” in GNU Emacs Manual).

[Function]md5 object &optional start end coding-system noerror
This function returns an MD5 hash. It is semi-obsolete, since for most purposes it is
equivalent to calling secure-hash with md5 as the algorithm argument. The object,
start and end arguments have the same meanings as in secure-hash.

If coding-system is non-nil, it specifies a coding system to use to encode the text; if
omitted or nil, the default coding system is used, like in secure-hash.

Normally, md5 signals an error if the text can’t be encoded using the specified or
chosen coding system. However, if noerror is non-nil, it silently uses raw-text

coding instead.

32.25 Parsing HTML and XML

When Emacs is compiled with libxml2 support, the following functions are available to
parse HTML or XML text into Lisp object trees.

Chapter 32: Text 702

[Function]libxml-parse-html-region start end &optional base-url
This function parses the text between start and end as HTML, and returns a list
representing the HTML parse tree. It attempts to handle “real world” HTML by
robustly coping with syntax mistakes.

The optional argument base-url, if non-nil, should be a string specifying the base
URL for relative URLs occurring in links.

In the parse tree, each HTML node is represented by a list in which the first element is
a symbol representing the node name, the second element is an alist of node attributes,
and the remaining elements are the subnodes.

The following example demonstrates this. Given this (malformed) HTML document:

<html><head></head><body width=101><div class=thing>Foo<div>Yes

A call to libxml-parse-html-region returns this:

(html ()

(head ())

(body ((width . "101"))

(div ((class . "thing"))

"Foo"

(div ()

"Yes"))))

[Function]libxml-parse-xml-region start end &optional base-url
This function is the same as libxml-parse-html-region, except that it parses the
text as XML rather than HTML (so it is stricter about syntax).

32.26 Atomic Change Groups

In database terminology, an atomic change is an indivisible change—it can succeed entirely
or it can fail entirely, but it cannot partly succeed. A Lisp program can make a series of
changes to one or several buffers as an atomic change group, meaning that either the entire
series of changes will be installed in their buffers or, in case of an error, none of them will
be.

To do this for one buffer, the one already current, simply write a call to atomic-change-
group around the code that makes the changes, like this:

(atomic-change-group

(insert foo)

(delete-region x y))

If an error (or other nonlocal exit) occurs inside the body of atomic-change-group, it
unmakes all the changes in that buffer that were during the execution of the body. This
kind of change group has no effect on any other buffers—any such changes remain.

If you need something more sophisticated, such as to make changes in various buffers
constitute one atomic group, you must directly call lower-level functions that atomic-

change-group uses.

[Function]prepare-change-group &optional buffer
This function sets up a change group for buffer buffer, which defaults to the current
buffer. It returns a “handle” that represents the change group. You must use this
handle to activate the change group and subsequently to finish it.

Chapter 32: Text 703

To use the change group, you must activate it. You must do this before making any
changes in the text of buffer.

[Function]activate-change-group handle
This function activates the change group that handle designates.

After you activate the change group, any changes you make in that buffer become part
of it. Once you have made all the desired changes in the buffer, you must finish the change
group. There are two ways to do this: you can either accept (and finalize) all the changes,
or cancel them all.

[Function]accept-change-group handle
This function accepts all the changes in the change group specified by handle, making
them final.

[Function]cancel-change-group handle
This function cancels and undoes all the changes in the change group specified by
handle.

Your code should use unwind-protect to make sure the group is always finished. The call
to activate-change-group should be inside the unwind-protect, in case the user types
C-g just after it runs. (This is one reason why prepare-change-group and activate-

change-group are separate functions, because normally you would call prepare-change-
group before the start of that unwind-protect.) Once you finish the group, don’t use the
handle again—in particular, don’t try to finish the same group twice.

To make a multibuffer change group, call prepare-change-group once for each buffer
you want to cover, then use nconc to combine the returned values, like this:

(nconc (prepare-change-group buffer-1)

(prepare-change-group buffer-2))

You can then activate the multibuffer change group with a single call to activate-

change-group, and finish it with a single call to accept-change-group or cancel-change-
group.

Nested use of several change groups for the same buffer works as you would expect.
Non-nested use of change groups for the same buffer will get Emacs confused, so don’t let it
happen; the first change group you start for any given buffer should be the last one finished.

32.27 Change Hooks

These hook variables let you arrange to take notice of all changes in all buffers (or in a par-
ticular buffer, if you make them buffer-local). See also Section 32.19.4 [Special Properties],
page 685, for how to detect changes to specific parts of the text.

The functions you use in these hooks should save and restore the match data if they do
anything that uses regular expressions; otherwise, they will interfere in bizarre ways with
the editing operations that call them.

[Variable]before-change-functions
This variable holds a list of functions to call before any buffer modification. Each
function gets two arguments, the beginning and end of the region that is about to
change, represented as integers. The buffer that is about to change is always the
current buffer.

Chapter 32: Text 704

[Variable]after-change-functions
This variable holds a list of functions to call after any buffer modification. Each
function receives three arguments: the beginning and end of the region just changed,
and the length of the text that existed before the change. All three arguments are
integers. The buffer that has been changed is always the current buffer.

The length of the old text is the difference between the buffer positions before and
after that text as it was before the change. As for the changed text, its length is
simply the difference between the first two arguments.

Output of messages into the *Messages* buffer does not call these functions.

[Macro]combine-after-change-calls body. . .
The macro executes body normally, but arranges to call the after-change functions
just once for a series of several changes—if that seems safe.

If a program makes several text changes in the same area of the buffer, using the
macro combine-after-change-calls around that part of the program can make it
run considerably faster when after-change hooks are in use. When the after-change
hooks are ultimately called, the arguments specify a portion of the buffer including
all of the changes made within the combine-after-change-calls body.

Warning: You must not alter the values of after-change-functions within the body
of a combine-after-change-calls form.

Warning: if the changes you combine occur in widely scattered parts of the buffer,
this will still work, but it is not advisable, because it may lead to inefficient behavior
for some change hook functions.

[Variable]first-change-hook
This variable is a normal hook that is run whenever a buffer is changed that was
previously in the unmodified state.

[Variable]inhibit-modification-hooks
If this variable is non-nil, all of the change hooks are disabled; none of them run.
This affects all the hook variables described above in this section, as well as the hooks
attached to certain special text properties (see Section 32.19.4 [Special Properties],
page 685) and overlay properties (see Section 38.9.2 [Overlay Properties], page 842).

Also, this variable is bound to non-nil while running those same hook variables,
so that by default modifying the buffer from a modification hook does not cause
other modification hooks to be run. If you do want modification hooks to be run
in a particular piece of code that is itself run from a modification hook, then rebind
locally inhibit-modification-hooks to nil.

Chapter 33: Non-ASCII Characters 705

33 Non-ASCII Characters

This chapter covers the special issues relating to characters and how they are stored in
strings and buffers.

33.1 Text Representations

Emacs buffers and strings support a large repertoire of characters from many different
scripts, allowing users to type and display text in almost any known written language.

To support this multitude of characters and scripts, Emacs closely follows the Unicode
Standard. The Unicode Standard assigns a unique number, called a codepoint, to each and
every character. The range of codepoints defined by Unicode, or the Unicode codespace,
is 0..#x10FFFF (in hexadecimal notation), inclusive. Emacs extends this range with code-
points in the range #x110000..#x3FFFFF, which it uses for representing characters that
are not unified with Unicode and raw 8-bit bytes that cannot be interpreted as characters.
Thus, a character codepoint in Emacs is a 22-bit integer number.

To conserve memory, Emacs does not hold fixed-length 22-bit numbers that are code-
points of text characters within buffers and strings. Rather, Emacs uses a variable-length
internal representation of characters, that stores each character as a sequence of 1 to 5 8-bit
bytes, depending on the magnitude of its codepoint1. For example, any ASCII character
takes up only 1 byte, a Latin-1 character takes up 2 bytes, etc. We call this representation
of text multibyte.

Outside Emacs, characters can be represented in many different encodings, such as ISO-
8859-1, GB-2312, Big-5, etc. Emacs converts between these external encodings and its
internal representation, as appropriate, when it reads text into a buffer or a string, or when
it writes text to a disk file or passes it to some other process.

Occasionally, Emacs needs to hold and manipulate encoded text or binary non-text data
in its buffers or strings. For example, when Emacs visits a file, it first reads the file’s text
verbatim into a buffer, and only then converts it to the internal representation. Before the
conversion, the buffer holds encoded text.

Encoded text is not really text, as far as Emacs is concerned, but rather a sequence of raw
8-bit bytes. We call buffers and strings that hold encoded text unibyte buffers and strings,
because Emacs treats them as a sequence of individual bytes. Usually, Emacs displays
unibyte buffers and strings as octal codes such as \237. We recommend that you never use
unibyte buffers and strings except for manipulating encoded text or binary non-text data.

In a buffer, the buffer-local value of the variable enable-multibyte-characters speci-
fies the representation used. The representation for a string is determined and recorded in
the string when the string is constructed.

[Variable]enable-multibyte-characters
This variable specifies the current buffer’s text representation. If it is non-nil, the
buffer contains multibyte text; otherwise, it contains unibyte encoded text or binary
non-text data.

1 This internal representation is based on one of the encodings defined by the Unicode Standard, called
UTF-8, for representing any Unicode codepoint, but Emacs extends UTF-8 to represent the additional
codepoints it uses for raw 8-bit bytes and characters not unified with Unicode.

Chapter 33: Non-ASCII Characters 706

You cannot set this variable directly; instead, use the function set-buffer-

multibyte to change a buffer’s representation.

[Function]position-bytes position
Buffer positions are measured in character units. This function returns the byte-
position corresponding to buffer position position in the current buffer. This is 1 at
the start of the buffer, and counts upward in bytes. If position is out of range, the
value is nil.

[Function]byte-to-position byte-position
Return the buffer position, in character units, corresponding to given byte-position
in the current buffer. If byte-position is out of range, the value is nil. In a multibyte
buffer, an arbitrary value of byte-position can be not at character boundary, but
inside a multibyte sequence representing a single character; in this case, this function
returns the buffer position of the character whose multibyte sequence includes byte-
position. In other words, the value does not change for all byte positions that belong
to the same character.

[Function]multibyte-string-p string
Return t if string is a multibyte string, nil otherwise.

[Function]string-bytes string
This function returns the number of bytes in string. If string is a multibyte string,
this can be greater than (length string).

[Function]unibyte-string &rest bytes
This function concatenates all its argument bytes and makes the result a unibyte
string.

33.2 Converting Text Representations

Emacs can convert unibyte text to multibyte; it can also convert multibyte text to unibyte,
provided that the multibyte text contains only ASCII and 8-bit raw bytes. In general, these
conversions happen when inserting text into a buffer, or when putting text from several
strings together in one string. You can also explicitly convert a string’s contents to either
representation.

Emacs chooses the representation for a string based on the text from which it is con-
structed. The general rule is to convert unibyte text to multibyte text when combining it
with other multibyte text, because the multibyte representation is more general and can
hold whatever characters the unibyte text has.

When inserting text into a buffer, Emacs converts the text to the buffer’s representation,
as specified by enable-multibyte-characters in that buffer. In particular, when you
insert multibyte text into a unibyte buffer, Emacs converts the text to unibyte, even though
this conversion cannot in general preserve all the characters that might be in the multibyte
text. The other natural alternative, to convert the buffer contents to multibyte, is not
acceptable because the buffer’s representation is a choice made by the user that cannot be
overridden automatically.

Chapter 33: Non-ASCII Characters 707

Converting unibyte text to multibyte text leaves ASCII characters unchanged, and con-
verts bytes with codes 128 through 255 to the multibyte representation of raw eight-bit
bytes.

Converting multibyte text to unibyte converts all ASCII and eight-bit characters to their
single-byte form, but loses information for non-ASCII characters by discarding all but the
low 8 bits of each character’s codepoint. Converting unibyte text to multibyte and back to
unibyte reproduces the original unibyte text.

The next two functions either return the argument string, or a newly created string with
no text properties.

[Function]string-to-multibyte string
This function returns a multibyte string containing the same sequence of characters
as string. If string is a multibyte string, it is returned unchanged. The function
assumes that string includes only ASCII characters and raw 8-bit bytes; the latter are
converted to their multibyte representation corresponding to the codepoints #x3FFF80
through #x3FFFFF, inclusive (see Section 33.1 [Text Representations], page 705).

[Function]string-to-unibyte string
This function returns a unibyte string containing the same sequence of characters as
string. It signals an error if string contains a non-ASCII character. If string is a
unibyte string, it is returned unchanged. Use this function for string arguments that
contain only ASCII and eight-bit characters.

[Function]byte-to-string byte
This function returns a unibyte string containing a single byte of character data,
character. It signals an error if character is not an integer between 0 and 255.

[Function]multibyte-char-to-unibyte char
This converts the multibyte character char to a unibyte character, and returns that
character. If char is neither ASCII nor eight-bit, the function returns -1.

[Function]unibyte-char-to-multibyte char
This convert the unibyte character char to a multibyte character, assuming char is
either ASCII or raw 8-bit byte.

33.3 Selecting a Representation

Sometimes it is useful to examine an existing buffer or string as multibyte when it was
unibyte, or vice versa.

[Function]set-buffer-multibyte multibyte
Set the representation type of the current buffer. If multibyte is non-nil, the buffer
becomes multibyte. If multibyte is nil, the buffer becomes unibyte.

This function leaves the buffer contents unchanged when viewed as a sequence of bytes.
As a consequence, it can change the contents viewed as characters; for instance, a se-
quence of three bytes which is treated as one character in multibyte representation will
count as three characters in unibyte representation. Eight-bit characters representing
raw bytes are an exception. They are represented by one byte in a unibyte buffer,

Chapter 33: Non-ASCII Characters 708

but when the buffer is set to multibyte, they are converted to two-byte sequences,
and vice versa.

This function sets enable-multibyte-characters to record which representation is
in use. It also adjusts various data in the buffer (including overlays, text properties
and markers) so that they cover the same text as they did before.

This function signals an error if the buffer is narrowed, since the narrowing might
have occurred in the middle of multibyte character sequences.

This function also signals an error if the buffer is an indirect buffer. An indirect buffer
always inherits the representation of its base buffer.

[Function]string-as-unibyte string
If string is already a unibyte string, this function returns string itself. Otherwise,
it returns a new string with the same bytes as string, but treating each byte as a
separate character (so that the value may have more characters than string); as an
exception, each eight-bit character representing a raw byte is converted into a single
byte. The newly-created string contains no text properties.

[Function]string-as-multibyte string
If string is a multibyte string, this function returns string itself. Otherwise, it returns
a new string with the same bytes as string, but treating each multibyte sequence
as one character. This means that the value may have fewer characters than string
has. If a byte sequence in string is invalid as a multibyte representation of a single
character, each byte in the sequence is treated as a raw 8-bit byte. The newly-created
string contains no text properties.

33.4 Character Codes

The unibyte and multibyte text representations use different character codes. The valid
character codes for unibyte representation range from 0 to #xFF (255)—the values that can
fit in one byte. The valid character codes for multibyte representation range from 0 to
#x3FFFFF. In this code space, values 0 through #x7F (127) are for ASCII characters, and
values #x80 (128) through #x3FFF7F (4194175) are for non-ASCII characters.

Emacs character codes are a superset of the Unicode standard. Values 0 through
#x10FFFF (1114111) correspond to Unicode characters of the same codepoint; values
#x110000 (1114112) through #x3FFF7F (4194175) represent characters that are not unified
with Unicode; and values #x3FFF80 (4194176) through #x3FFFFF (4194303) represent
eight-bit raw bytes.

[Function]characterp charcode
This returns t if charcode is a valid character, and nil otherwise.

(characterp 65)

⇒ t

(characterp 4194303)

⇒ t

(characterp 4194304)

⇒ nil

Chapter 33: Non-ASCII Characters 709

[Function]max-char
This function returns the largest value that a valid character codepoint can have.

(characterp (max-char))

⇒ t

(characterp (1+ (max-char)))

⇒ nil

[Function]get-byte &optional pos string
This function returns the byte at character position pos in the current buffer. If
the current buffer is unibyte, this is literally the byte at that position. If the buffer
is multibyte, byte values of ASCII characters are the same as character codepoints,
whereas eight-bit raw bytes are converted to their 8-bit codes. The function signals
an error if the character at pos is non-ASCII.

The optional argument string means to get a byte value from that string instead of
the current buffer.

33.5 Character Properties

A character property is a named attribute of a character that specifies how the character
behaves and how it should be handled during text processing and display. Thus, character
properties are an important part of specifying the character’s semantics.

On the whole, Emacs follows the Unicode Standard in its implementation of character
properties. In particular, Emacs supports the Unicode Character Property Model, and the
Emacs character property database is derived from the Unicode Character Database (UCD).
See the Character Properties chapter of the Unicode Standard, for a detailed description
of Unicode character properties and their meaning. This section assumes you are already
familiar with that chapter of the Unicode Standard, and want to apply that knowledge to
Emacs Lisp programs.

In Emacs, each property has a name, which is a symbol, and a set of possible values,
whose types depend on the property; if a character does not have a certain property, the
value is nil. As a general rule, the names of character properties in Emacs are produced
from the corresponding Unicode properties by downcasing them and replacing each ‘_’
character with a dash ‘-’. For example, Canonical_Combining_Class becomes canonical-
combining-class. However, sometimes we shorten the names to make their use easier.

Some codepoints are left unassigned by the UCD—they don’t correspond to any char-
acter. The Unicode Standard defines default values of properties for such codepoints; they
are mentioned below for each property.

Here is the full list of value types for all the character properties that Emacs knows
about:

name Corresponds to the Name Unicode property. The value is a string consisting of
upper-case Latin letters A to Z, digits, spaces, and hyphen ‘-’ characters. For
unassigned codepoints, the value is an empty string.

general-category

Corresponds to the General_Category Unicode property. The value is a symbol
whose name is a 2-letter abbreviation of the character’s classification. For
unassigned codepoints, the value is Cn.

http://www.unicode.org/reports/tr23/
http://www.unicode.org/versions/Unicode5.0.0/ch04.pdf

Chapter 33: Non-ASCII Characters 710

canonical-combining-class

Corresponds to the Canonical_Combining_Class Unicode property. The value
is an integer number. For unassigned codepoints, the value is zero.

bidi-class

Corresponds to the Unicode Bidi_Class property. The value is a symbol whose
name is the Unicode directional type of the character. Emacs uses this property
when it reorders bidirectional text for display (see Section 38.23 [Bidirectional
Display], page 906). For unassigned codepoints, the value depends on the code
blocks to which the codepoint belongs: most unassigned codepoints get the
value of L (strong L), but some get values of AL (Arabic letter) or R (strong R).

decomposition

Corresponds to the Unicode properties Decomposition_Type and
Decomposition_Value. The value is a list, whose first element may be a
symbol representing a compatibility formatting tag, such as small2; the other
elements are characters that give the compatibility decomposition sequence of
this character. For unassigned codepoints, the value is the character itself.

decimal-digit-value

Corresponds to the Unicode Numeric_Value property for characters whose
Numeric_Type is ‘Digit’. The value is an integer number. For unassigned
codepoints, the value is nil, which means NaN, or “not-a-number”.

digit-value

Corresponds to the Unicode Numeric_Value property for characters whose
Numeric_Type is ‘Decimal’. The value is an integer number. Examples of such
characters include compatibility subscript and superscript digits, for which the
value is the corresponding number. For unassigned codepoints, the value is nil,
which means NaN.

numeric-value

Corresponds to the Unicode Numeric_Value property for characters whose
Numeric_Type is ‘Numeric’. The value of this property is an integer or a
floating-point number. Examples of characters that have this property include
fractions, subscripts, superscripts, Roman numerals, currency numerators, and
encircled numbers. For example, the value of this property for the character
U+2155 (vulgar fraction one fifth) is 0.2. For unassigned codepoints,
the value is nil, which means NaN.

mirrored Corresponds to the Unicode Bidi_Mirrored property. The value of this prop-
erty is a symbol, either Y or N. For unassigned codepoints, the value is N.

mirroring

Corresponds to the Unicode Bidi_Mirroring_Glyph property. The value of this
property is a character whose glyph represents the mirror image of the char-
acter’s glyph, or nil if there’s no defined mirroring glyph. All the characters
whose mirrored property is N have nil as their mirroring property; however,

2 The Unicode specification writes these tag names inside ‘<..>’ brackets, but the tag names in Emacs do
not include the brackets; e.g., Unicode specifies ‘<small>’ where Emacs uses ‘small’.

Chapter 33: Non-ASCII Characters 711

some characters whose mirrored property is Y also have nil for mirroring,
because no appropriate characters exist with mirrored glyphs. Emacs uses
this property to display mirror images of characters when appropriate (see
Section 38.23 [Bidirectional Display], page 906). For unassigned codepoints,
the value is nil.

old-name Corresponds to the Unicode Unicode_1_Name property. The value is a string.
For unassigned codepoints, the value is an empty string.

iso-10646-comment

Corresponds to the Unicode ISO_Comment property. The value is a string. For
unassigned codepoints, the value is an empty string.

uppercase

Corresponds to the Unicode Simple_Uppercase_Mapping property. The value
of this property is a single character. For unassigned codepoints, the value is
nil, which means the character itself.

lowercase

Corresponds to the Unicode Simple_Lowercase_Mapping property. The value
of this property is a single character. For unassigned codepoints, the value is
nil, which means the character itself.

titlecase

Corresponds to the Unicode Simple_Titlecase_Mapping property. Title case
is a special form of a character used when the first character of a word needs to
be capitalized. The value of this property is a single character. For unassigned
codepoints, the value is nil, which means the character itself.

[Function]get-char-code-property char propname
This function returns the value of char’s propname property.

(get-char-code-property ? ’general-category)

⇒ Zs

(get-char-code-property ?1 ’general-category)

⇒ Nd

;; subscript 4

(get-char-code-property ?\u2084 ’digit-value)

⇒ 4

;; one fifth

(get-char-code-property ?\u2155 ’numeric-value)

⇒ 0.2

;; Roman IV

(get-char-code-property ?\u2163 ’numeric-value)

⇒ 4

[Function]char-code-property-description prop value
This function returns the description string of property prop’s value, or nil if value
has no description.

(char-code-property-description ’general-category ’Zs)

⇒ "Separator, Space"

Chapter 33: Non-ASCII Characters 712

(char-code-property-description ’general-category ’Nd)

⇒ "Number, Decimal Digit"

(char-code-property-description ’numeric-value ’1/5)

⇒ nil

[Function]put-char-code-property char propname value
This function stores value as the value of the property propname for the character
char.

[Variable]unicode-category-table
The value of this variable is a char-table (see Section 6.6 [Char-Tables], page 94) that
specifies, for each character, its Unicode General_Category property as a symbol.

[Variable]char-script-table
The value of this variable is a char-table that specifies, for each character, a symbol
whose name is the script to which the character belongs, according to the Unicode
Standard classification of the Unicode code space into script-specific blocks. This
char-table has a single extra slot whose value is the list of all script symbols.

[Variable]char-width-table
The value of this variable is a char-table that specifies the width of each character in
columns that it will occupy on the screen.

[Variable]printable-chars
The value of this variable is a char-table that specifies, for each character, whether it
is printable or not. That is, if evaluating (aref printable-chars char) results in
t, the character is printable, and if it results in nil, it is not.

33.6 Character Sets

An Emacs character set, or charset, is a set of characters in which each character is assigned a
numeric code point. (The Unicode Standard calls this a coded character set.) Each Emacs
charset has a name which is a symbol. A single character can belong to any number of
different character sets, but it will generally have a different code point in each charset.
Examples of character sets include ascii, iso-8859-1, greek-iso8859-7, and windows-

1255. The code point assigned to a character in a charset is usually different from its code
point used in Emacs buffers and strings.

Emacs defines several special character sets. The character set unicode includes all the
characters whose Emacs code points are in the range 0..#x10FFFF. The character set emacs
includes all ASCII and non-ASCII characters. Finally, the eight-bit charset includes the
8-bit raw bytes; Emacs uses it to represent raw bytes encountered in text.

[Function]charsetp object
Returns t if object is a symbol that names a character set, nil otherwise.

[Variable]charset-list
The value is a list of all defined character set names.

[Function]charset-priority-list &optional highestp
This function returns a list of all defined character sets ordered by their priority. If
highestp is non-nil, the function returns a single character set of the highest priority.

Chapter 33: Non-ASCII Characters 713

[Function]set-charset-priority &rest charsets
This function makes charsets the highest priority character sets.

[Function]char-charset character &optional restriction
This function returns the name of the character set of highest priority that character
belongs to. ASCII characters are an exception: for them, this function always returns
ascii.

If restriction is non-nil, it should be a list of charsets to search. Alternatively, it can
be a coding system, in which case the returned charset must be supported by that
coding system (see Section 33.9 [Coding Systems], page 716).

[Function]charset-plist charset
This function returns the property list of the character set charset. Although charset
is a symbol, this is not the same as the property list of that symbol. Charset properties
include important information about the charset, such as its documentation string,
short name, etc.

[Function]put-charset-property charset propname value
This function sets the propname property of charset to the given value.

[Function]get-charset-property charset propname
This function returns the value of charsets property propname.

[Command]list-charset-chars charset
This command displays a list of characters in the character set charset.

Emacs can convert between its internal representation of a character and the character’s
codepoint in a specific charset. The following two functions support these conversions.

[Function]decode-char charset code-point
This function decodes a character that is assigned a code-point in charset, to the
corresponding Emacs character, and returns it. If charset doesn’t contain a character
of that code point, the value is nil. If code-point doesn’t fit in a Lisp integer (see
Section 3.1 [Integer Basics], page 33), it can be specified as a cons cell (high . low),
where low are the lower 16 bits of the value and high are the high 16 bits.

[Function]encode-char char charset
This function returns the code point assigned to the character char in charset. If the
result does not fit in a Lisp integer, it is returned as a cons cell (high . low) that
fits the second argument of decode-char above. If charset doesn’t have a codepoint
for char, the value is nil.

The following function comes in handy for applying a certain function to all or part of
the characters in a charset:

[Function]map-charset-chars function charset &optional arg from-code to-code
Call function for characters in charset. function is called with two arguments. The
first one is a cons cell (from . to), where from and to indicate a range of characters
contained in charset. The second argument passed to function is arg.

Chapter 33: Non-ASCII Characters 714

By default, the range of codepoints passed to function includes all the characters
in charset, but optional arguments from-code and to-code limit that to the range
of characters between these two codepoints of charset. If either of them is nil, it
defaults to the first or last codepoint of charset, respectively.

33.7 Scanning for Character Sets

Sometimes it is useful to find out which character set a particular character belongs to.
One use for this is in determining which coding systems (see Section 33.9 [Coding Systems],
page 716) are capable of representing all of the text in question; another is to determine
the font(s) for displaying that text.

[Function]charset-after &optional pos
This function returns the charset of highest priority containing the character at po-
sition pos in the current buffer. If pos is omitted or nil, it defaults to the current
value of point. If pos is out of range, the value is nil.

[Function]find-charset-region beg end &optional translation
This function returns a list of the character sets of highest priority that contain
characters in the current buffer between positions beg and end.

The optional argument translation specifies a translation table to use for scanning the
text (see Section 33.8 [Translation of Characters], page 714). If it is non-nil, then
each character in the region is translated through this table, and the value returned
describes the translated characters instead of the characters actually in the buffer.

[Function]find-charset-string string &optional translation
This function returns a list of character sets of highest priority that contain characters
in string. It is just like find-charset-region, except that it applies to the contents
of string instead of part of the current buffer.

33.8 Translation of Characters

A translation table is a char-table (see Section 6.6 [Char-Tables], page 94) that specifies a
mapping of characters into characters. These tables are used in encoding and decoding, and
for other purposes. Some coding systems specify their own particular translation tables;
there are also default translation tables which apply to all other coding systems.

A translation table has two extra slots. The first is either nil or a translation table
that performs the reverse translation; the second is the maximum number of characters to
look up for translating sequences of characters (see the description of make-translation-
table-from-alist below).

[Function]make-translation-table &rest translations
This function returns a translation table based on the argument translations. Each
element of translations should be a list of elements of the form (from . to); this says
to translate the character from into to.

The arguments and the forms in each argument are processed in order, and if a
previous form already translates to to some other character, say to-alt, from is also
translated to to-alt.

Chapter 33: Non-ASCII Characters 715

During decoding, the translation table’s translations are applied to the characters that
result from ordinary decoding. If a coding system has the property :decode-translation-

table, that specifies the translation table to use, or a list of translation tables to apply in
sequence. (This is a property of the coding system, as returned by coding-system-get,
not a property of the symbol that is the coding system’s name. See Section 33.9.1 [Basic
Concepts of Coding Systems], page 716.) Finally, if standard-translation-table-for-
decode is non-nil, the resulting characters are translated by that table.

During encoding, the translation table’s translations are applied to the characters in
the buffer, and the result of translation is actually encoded. If a coding system has prop-
erty :encode-translation-table, that specifies the translation table to use, or a list of
translation tables to apply in sequence. In addition, if the variable standard-translation-
table-for-encode is non-nil, it specifies the translation table to use for translating the
result.

[Variable]standard-translation-table-for-decode
This is the default translation table for decoding. If a coding systems specifies its own
translation tables, the table that is the value of this variable, if non-nil, is applied
after them.

[Variable]standard-translation-table-for-encode
This is the default translation table for encoding. If a coding systems specifies its own
translation tables, the table that is the value of this variable, if non-nil, is applied
after them.

[Variable]translation-table-for-input
Self-inserting characters are translated through this translation table before they are
inserted. Search commands also translate their input through this table, so they can
compare more reliably with what’s in the buffer.

This variable automatically becomes buffer-local when set.

[Function]make-translation-table-from-vector vec
This function returns a translation table made from vec that is an array of 256
elements to map bytes (values 0 through #xFF) to characters. Elements may be nil
for untranslated bytes. The returned table has a translation table for reverse mapping
in the first extra slot, and the value 1 in the second extra slot.

This function provides an easy way to make a private coding system that maps each
byte to a specific character. You can specify the returned table and the reverse
translation table using the properties :decode-translation-table and :encode-

translation-table respectively in the props argument to define-coding-system.

[Function]make-translation-table-from-alist alist
This function is similar to make-translation-table but returns a complex trans-
lation table rather than a simple one-to-one mapping. Each element of alist is of
the form (from . to), where from and to are either characters or vectors specifying
a sequence of characters. If from is a character, that character is translated to to
(i.e., to a character or a character sequence). If from is a vector of characters, that
sequence is translated to to. The returned table has a translation table for reverse
mapping in the first extra slot, and the maximum length of all the from character
sequences in the second extra slot.

Chapter 33: Non-ASCII Characters 716

33.9 Coding Systems

When Emacs reads or writes a file, and when Emacs sends text to a subprocess or receives
text from a subprocess, it normally performs character code conversion and end-of-line
conversion as specified by a particular coding system.

How to define a coding system is an arcane matter, and is not documented here.

33.9.1 Basic Concepts of Coding Systems

Character code conversion involves conversion between the internal representation of charac-
ters used inside Emacs and some other encoding. Emacs supports many different encodings,
in that it can convert to and from them. For example, it can convert text to or from en-
codings such as Latin 1, Latin 2, Latin 3, Latin 4, Latin 5, and several variants of ISO
2022. In some cases, Emacs supports several alternative encodings for the same charac-
ters; for example, there are three coding systems for the Cyrillic (Russian) alphabet: ISO,
Alternativnyj, and KOI8.

Every coding system specifies a particular set of character code conversions, but the cod-
ing system undecided is special: it leaves the choice unspecified, to be chosen heuristically
for each file, based on the file’s data.

In general, a coding system doesn’t guarantee roundtrip identity: decoding a byte se-
quence using coding system, then encoding the resulting text in the same coding system,
can produce a different byte sequence. But some coding systems do guarantee that the byte
sequence will be the same as what you originally decoded. Here are a few examples:

iso-8859-1, utf-8, big5, shift jis, euc-jp

Encoding buffer text and then decoding the result can also fail to reproduce the original
text. For instance, if you encode a character with a coding system which does not support
that character, the result is unpredictable, and thus decoding it using the same coding
system may produce a different text. Currently, Emacs can’t report errors that result from
encoding unsupported characters.

End of line conversion handles three different conventions used on various systems for
representing end of line in files. The Unix convention, used on GNU and Unix systems, is to
use the linefeed character (also called newline). The DOS convention, used on MS-Windows
and MS-DOS systems, is to use a carriage-return and a linefeed at the end of a line. The
Mac convention is to use just carriage-return.

Base coding systems such as latin-1 leave the end-of-line conversion unspecified, to be
chosen based on the data. Variant coding systems such as latin-1-unix, latin-1-dos and
latin-1-mac specify the end-of-line conversion explicitly as well. Most base coding systems
have three corresponding variants whose names are formed by adding ‘-unix’, ‘-dos’ and
‘-mac’.

The coding system raw-text is special in that it prevents character code conversion,
and causes the buffer visited with this coding system to be a unibyte buffer. For historical
reasons, you can save both unibyte and multibyte text with this coding system. When you
use raw-text to encode multibyte text, it does perform one character code conversion: it
converts eight-bit characters to their single-byte external representation. raw-text does
not specify the end-of-line conversion, allowing that to be determined as usual by the data,
and has the usual three variants which specify the end-of-line conversion.

Chapter 33: Non-ASCII Characters 717

no-conversion (and its alias binary) is equivalent to raw-text-unix: it specifies no
conversion of either character codes or end-of-line.

The coding system utf-8-emacs specifies that the data is represented in the internal
Emacs encoding (see Section 33.1 [Text Representations], page 705). This is like raw-text
in that no code conversion happens, but different in that the result is multibyte data. The
name emacs-internal is an alias for utf-8-emacs.

[Function]coding-system-get coding-system property
This function returns the specified property of the coding system coding-system.
Most coding system properties exist for internal purposes, but one that you might
find useful is :mime-charset. That property’s value is the name used in MIME for
the character coding which this coding system can read and write. Examples:

(coding-system-get ’iso-latin-1 :mime-charset)

⇒ iso-8859-1

(coding-system-get ’iso-2022-cn :mime-charset)

⇒ iso-2022-cn

(coding-system-get ’cyrillic-koi8 :mime-charset)

⇒ koi8-r

The value of the :mime-charset property is also defined as an alias for the coding
system.

[Function]coding-system-aliases coding-system
This function returns the list of aliases of coding-system.

33.9.2 Encoding and I/O

The principal purpose of coding systems is for use in reading and writing files. The function
insert-file-contents uses a coding system to decode the file data, and write-region

uses one to encode the buffer contents.

You can specify the coding system to use either explicitly (see Section 33.9.6 [Specifying
Coding Systems], page 725), or implicitly using a default mechanism (see Section 33.9.5
[Default Coding Systems], page 722). But these methods may not completely specify what
to do. For example, they may choose a coding system such as undefined which leaves the
character code conversion to be determined from the data. In these cases, the I/O operation
finishes the job of choosing a coding system. Very often you will want to find out afterwards
which coding system was chosen.

[Variable]buffer-file-coding-system
This buffer-local variable records the coding system used for saving the buffer and
for writing part of the buffer with write-region. If the text to be written cannot
be safely encoded using the coding system specified by this variable, these operations
select an alternative encoding by calling the function select-safe-coding-system

(see Section 33.9.4 [User-Chosen Coding Systems], page 721). If selecting a different
encoding requires to ask the user to specify a coding system, buffer-file-coding-
system is updated to the newly selected coding system.

buffer-file-coding-system does not affect sending text to a subprocess.

Chapter 33: Non-ASCII Characters 718

[Variable]save-buffer-coding-system
This variable specifies the coding system for saving the buffer (by overriding buffer-

file-coding-system). Note that it is not used for write-region.

When a command to save the buffer starts out to use buffer-file-coding-system

(or save-buffer-coding-system), and that coding system cannot handle the ac-
tual text in the buffer, the command asks the user to choose another coding system
(by calling select-safe-coding-system). After that happens, the command also
updates buffer-file-coding-system to represent the coding system that the user
specified.

[Variable]last-coding-system-used
I/O operations for files and subprocesses set this variable to the coding system name
that was used. The explicit encoding and decoding functions (see Section 33.9.7
[Explicit Encoding], page 726) set it too.

Warning: Since receiving subprocess output sets this variable, it can change whenever
Emacs waits; therefore, you should copy the value shortly after the function call that
stores the value you are interested in.

The variable selection-coding-system specifies how to encode selections for the win-
dow system. See Section 29.18 [Window System Selections], page 615.

[Variable]file-name-coding-system
The variable file-name-coding-system specifies the coding system to use for en-
coding file names. Emacs encodes file names using that coding system for all file
operations. If file-name-coding-system is nil, Emacs uses a default coding system
determined by the selected language environment. In the default language environ-
ment, any non-ASCII characters in file names are not encoded specially; they appear
in the file system using the internal Emacs representation.

Warning: if you change file-name-coding-system (or the language environment) in
the middle of an Emacs session, problems can result if you have already visited files whose
names were encoded using the earlier coding system and are handled differently under the
new coding system. If you try to save one of these buffers under the visited file name, saving
may use the wrong file name, or it may get an error. If such a problem happens, use C-x

C-w to specify a new file name for that buffer.

33.9.3 Coding Systems in Lisp

Here are the Lisp facilities for working with coding systems:

[Function]coding-system-list &optional base-only
This function returns a list of all coding system names (symbols). If base-only is
non-nil, the value includes only the base coding systems. Otherwise, it includes alias
and variant coding systems as well.

[Function]coding-system-p object
This function returns t if object is a coding system name or nil.

Chapter 33: Non-ASCII Characters 719

[Function]check-coding-system coding-system
This function checks the validity of coding-system. If that is valid, it returns coding-
system. If coding-system is nil, the function return nil. For any other values, it
signals an error whose error-symbol is coding-system-error (see Section 10.5.3.1
[Signaling Errors], page 132).

[Function]coding-system-eol-type coding-system
This function returns the type of end-of-line (a.k.a. eol) conversion used by coding-
system. If coding-system specifies a certain eol conversion, the return value is an
integer 0, 1, or 2, standing for unix, dos, and mac, respectively. If coding-system
doesn’t specify eol conversion explicitly, the return value is a vector of coding systems,
each one with one of the possible eol conversion types, like this:

(coding-system-eol-type ’latin-1)

⇒ [latin-1-unix latin-1-dos latin-1-mac]

If this function returns a vector, Emacs will decide, as part of the text encoding or
decoding process, what eol conversion to use. For decoding, the end-of-line format
of the text is auto-detected, and the eol conversion is set to match it (e.g., DOS-
style CRLF format will imply dos eol conversion). For encoding, the eol conversion is
taken from the appropriate default coding system (e.g., default value of buffer-file-
coding-system for buffer-file-coding-system), or from the default eol conversion
appropriate for the underlying platform.

[Function]coding-system-change-eol-conversion coding-system eol-type
This function returns a coding system which is like coding-system except for its eol
conversion, which is specified by eol-type. eol-type should be unix, dos, mac, or
nil. If it is nil, the returned coding system determines the end-of-line conversion
from the data.

eol-type may also be 0, 1 or 2, standing for unix, dos and mac, respectively.

[Function]coding-system-change-text-conversion eol-coding text-coding
This function returns a coding system which uses the end-of-line conversion of eol-
coding, and the text conversion of text-coding. If text-coding is nil, it returns
undecided, or one of its variants according to eol-coding.

[Function]find-coding-systems-region from to
This function returns a list of coding systems that could be used to encode a text
between from and to. All coding systems in the list can safely encode any multibyte
characters in that portion of the text.

If the text contains no multibyte characters, the function returns the list (undecided).

[Function]find-coding-systems-string string
This function returns a list of coding systems that could be used to encode the text
of string. All coding systems in the list can safely encode any multibyte characters in
string. If the text contains no multibyte characters, this returns the list (undecided).

[Function]find-coding-systems-for-charsets charsets
This function returns a list of coding systems that could be used to encode all the
character sets in the list charsets.

Chapter 33: Non-ASCII Characters 720

[Function]check-coding-systems-region start end coding-system-list
This function checks whether coding systems in the list coding-system-list can
encode all the characters in the region between start and end. If all of the coding sys-
tems in the list can encode the specified text, the function returns nil. If some coding
systems cannot encode some of the characters, the value is an alist, each element of
which has the form (coding-system1 pos1 pos2 ...), meaning that coding-system1
cannot encode characters at buffer positions pos1, pos2,

start may be a string, in which case end is ignored and the returned value references
string indices instead of buffer positions.

[Function]detect-coding-region start end &optional highest
This function chooses a plausible coding system for decoding the text from start to
end. This text should be a byte sequence, i.e., unibyte text or multibyte text with
only ASCII and eight-bit characters (see Section 33.9.7 [Explicit Encoding], page 726).

Normally this function returns a list of coding systems that could handle decoding
the text that was scanned. They are listed in order of decreasing priority. But if
highest is non-nil, then the return value is just one coding system, the one that is
highest in priority.

If the region contains only ASCII characters except for such ISO-2022 control charac-
ters ISO-2022 as ESC, the value is undecided or (undecided), or a variant specifying
end-of-line conversion, if that can be deduced from the text.

If the region contains null bytes, the value is no-conversion, even if the region
contains text encoded in some coding system.

[Function]detect-coding-string string &optional highest
This function is like detect-coding-region except that it operates on the contents
of string instead of bytes in the buffer.

[Variable]inhibit-null-byte-detection
If this variable has a non-nil value, null bytes are ignored when detecting the encoding
of a region or a string. This allows to correctly detect the encoding of text that
contains null bytes, such as Info files with Index nodes.

[Variable]inhibit-iso-escape-detection
If this variable has a non-nil value, ISO-2022 escape sequences are ignored when
detecting the encoding of a region or a string. The result is that no text is ever
detected as encoded in some ISO-2022 encoding, and all escape sequences become
visible in a buffer. Warning: Use this variable with extreme caution, because many
files in the Emacs distribution use ISO-2022 encoding.

[Function]coding-system-charset-list coding-system
This function returns the list of character sets (see Section 33.6 [Character Sets],
page 712) supported by coding-system. Some coding systems that support too many
character sets to list them all yield special values:

• If coding-system supports all the ISO-2022 charsets, the value is iso-2022.

• If coding-system supports all Emacs characters, the value is (emacs).

• If coding-system supports all emacs-mule characters, the value is emacs-mule.

• If coding-system supports all Unicode characters, the value is (unicode).

Chapter 33: Non-ASCII Characters 721

See [Process Information], page 792, in particular the description of the functions
process-coding-system and set-process-coding-system, for how to examine or set
the coding systems used for I/O to a subprocess.

33.9.4 User-Chosen Coding Systems

[Function]select-safe-coding-system from to &optional default-coding-system
accept-default-p file

This function selects a coding system for encoding specified text, asking the user
to choose if necessary. Normally the specified text is the text in the current buffer
between from and to. If from is a string, the string specifies the text to encode, and
to is ignored.

If the specified text includes raw bytes (see Section 33.1 [Text Representations],
page 705), select-safe-coding-system suggests raw-text for its encoding.

If default-coding-system is non-nil, that is the first coding system to try; if that
can handle the text, select-safe-coding-system returns that coding system. It
can also be a list of coding systems; then the function tries each of them one by
one. After trying all of them, it next tries the current buffer’s value of buffer-
file-coding-system (if it is not undecided), then the default value of buffer-

file-coding-system and finally the user’s most preferred coding system, which the
user can set using the command prefer-coding-system (see Section “Recognizing
Coding Systems” in The GNU Emacs Manual).

If one of those coding systems can safely encode all the specified text, select-safe-
coding-system chooses it and returns it. Otherwise, it asks the user to choose from
a list of coding systems which can encode all the text, and returns the user’s choice.

default-coding-system can also be a list whose first element is t and whose other
elements are coding systems. Then, if no coding system in the list can handle the
text, select-safe-coding-system queries the user immediately, without trying any
of the three alternatives described above.

The optional argument accept-default-p, if non-nil, should be a function to determine
whether a coding system selected without user interaction is acceptable. select-

safe-coding-system calls this function with one argument, the base coding system
of the selected coding system. If accept-default-p returns nil, select-safe-coding-
system rejects the silently selected coding system, and asks the user to select a coding
system from a list of possible candidates.

If the variable select-safe-coding-system-accept-default-p is non-nil, it
should be a function taking a single argument. It is used in place of accept-default-p,
overriding any value supplied for this argument.

As a final step, before returning the chosen coding system, select-safe-coding-
system checks whether that coding system is consistent with what would be selected
if the contents of the region were read from a file. (If not, this could lead to data
corruption in a file subsequently re-visited and edited.) Normally, select-safe-

coding-system uses buffer-file-name as the file for this purpose, but if file is
non-nil, it uses that file instead (this can be relevant for write-region and similar
functions). If it detects an apparent inconsistency, select-safe-coding-system

queries the user before selecting the coding system.

Chapter 33: Non-ASCII Characters 722

Here are two functions you can use to let the user specify a coding system, with com-
pletion. See Section 20.6 [Completion], page 298.

[Function]read-coding-system prompt &optional default
This function reads a coding system using the minibuffer, prompting with string
prompt, and returns the coding system name as a symbol. If the user enters null
input, default specifies which coding system to return. It should be a symbol or a
string.

[Function]read-non-nil-coding-system prompt
This function reads a coding system using the minibuffer, prompting with string
prompt, and returns the coding system name as a symbol. If the user tries to enter
null input, it asks the user to try again. See Section 33.9 [Coding Systems], page 716.

33.9.5 Default Coding Systems

This section describes variables that specify the default coding system for certain files or
when running certain subprograms, and the function that I/O operations use to access
them.

The idea of these variables is that you set them once and for all to the defaults you want,
and then do not change them again. To specify a particular coding system for a particular
operation in a Lisp program, don’t change these variables; instead, override them using
coding-system-for-read and coding-system-for-write (see Section 33.9.6 [Specifying
Coding Systems], page 725).

[User Option]auto-coding-regexp-alist
This variable is an alist of text patterns and corresponding coding systems. Each
element has the form (regexp . coding-system); a file whose first few kilobytes
match regexp is decoded with coding-system when its contents are read into a buffer.
The settings in this alist take priority over coding: tags in the files and the contents
of file-coding-system-alist (see below). The default value is set so that Emacs
automatically recognizes mail files in Babyl format and reads them with no code
conversions.

[User Option]file-coding-system-alist
This variable is an alist that specifies the coding systems to use for reading and writing
particular files. Each element has the form (pattern . coding), where pattern is a
regular expression that matches certain file names. The element applies to file names
that match pattern.

The cdr of the element, coding, should be either a coding system, a cons cell con-
taining two coding systems, or a function name (a symbol with a function definition).
If coding is a coding system, that coding system is used for both reading the file and
writing it. If coding is a cons cell containing two coding systems, its car specifies
the coding system for decoding, and its cdr specifies the coding system for encoding.

If coding is a function name, the function should take one argument, a list of all ar-
guments passed to find-operation-coding-system. It must return a coding system
or a cons cell containing two coding systems. This value has the same meaning as
described above.

Chapter 33: Non-ASCII Characters 723

If coding (or what returned by the above function) is undecided, the normal code-
detection is performed.

[User Option]auto-coding-alist
This variable is an alist that specifies the coding systems to use for reading and writing
particular files. Its form is like that of file-coding-system-alist, but, unlike the
latter, this variable takes priority over any coding: tags in the file.

[Variable]process-coding-system-alist
This variable is an alist specifying which coding systems to use for a subprocess,
depending on which program is running in the subprocess. It works like file-coding-
system-alist, except that pattern is matched against the program name used to
start the subprocess. The coding system or systems specified in this alist are used
to initialize the coding systems used for I/O to the subprocess, but you can specify
other coding systems later using set-process-coding-system.

Warning: Coding systems such as undecided, which determine the coding system from
the data, do not work entirely reliably with asynchronous subprocess output. This is because
Emacs handles asynchronous subprocess output in batches, as it arrives. If the coding
system leaves the character code conversion unspecified, or leaves the end-of-line conversion
unspecified, Emacs must try to detect the proper conversion from one batch at a time, and
this does not always work.

Therefore, with an asynchronous subprocess, if at all possible, use a coding system which
determines both the character code conversion and the end of line conversion—that is, one
like latin-1-unix, rather than undecided or latin-1.

[Variable]network-coding-system-alist
This variable is an alist that specifies the coding system to use for network streams.
It works much like file-coding-system-alist, with the difference that the pattern
in an element may be either a port number or a regular expression. If it is a regular
expression, it is matched against the network service name used to open the network
stream.

[Variable]default-process-coding-system
This variable specifies the coding systems to use for subprocess (and network stream)
input and output, when nothing else specifies what to do.

The value should be a cons cell of the form (input-coding . output-coding). Here
input-coding applies to input from the subprocess, and output-coding applies to
output to it.

[User Option]auto-coding-functions
This variable holds a list of functions that try to determine a coding system for a file
based on its undecoded contents.

Each function in this list should be written to look at text in the current buffer, but
should not modify it in any way. The buffer will contain undecoded text of parts
of the file. Each function should take one argument, size, which tells it how many
characters to look at, starting from point. If the function succeeds in determining a
coding system for the file, it should return that coding system. Otherwise, it should
return nil.

Chapter 33: Non-ASCII Characters 724

If a file has a ‘coding:’ tag, that takes precedence, so these functions won’t be called.

[Function]find-auto-coding filename size
This function tries to determine a suitable coding system for filename. It examines
the buffer visiting the named file, using the variables documented above in sequence,
until it finds a match for one of the rules specified by these variables. It then returns
a cons cell of the form (coding . source), where coding is the coding system to use
and source is a symbol, one of auto-coding-alist, auto-coding-regexp-alist,
:coding, or auto-coding-functions, indicating which one supplied the matching
rule. The value :coding means the coding system was specified by the coding: tag
in the file (see Section “coding tag” in The GNU Emacs Manual). The order of looking
for a matching rule is auto-coding-alist first, then auto-coding-regexp-alist,
then the coding: tag, and lastly auto-coding-functions. If no matching rule was
found, the function returns nil.

The second argument size is the size of text, in characters, following point. The
function examines text only within size characters after point. Normally, the buffer
should be positioned at the beginning when this function is called, because one of the
places for the coding: tag is the first one or two lines of the file; in that case, size
should be the size of the buffer.

[Function]set-auto-coding filename size
This function returns a suitable coding system for file filename. It uses find-auto-
coding to find the coding system. If no coding system could be determined, the
function returns nil. The meaning of the argument size is like in find-auto-coding.

[Function]find-operation-coding-system operation &rest arguments
This function returns the coding system to use (by default) for performing operation
with arguments. The value has this form:

(decoding-system . encoding-system)

The first element, decoding-system, is the coding system to use for decoding (in case
operation does decoding), and encoding-system is the coding system for encoding (in
case operation does encoding).

The argument operation is a symbol; it should be one of write-region, start-

process, call-process, call-process-region, insert-file-contents, or open-
network-stream. These are the names of the Emacs I/O primitives that can do
character code and eol conversion.

The remaining arguments should be the same arguments that might be given to the
corresponding I/O primitive. Depending on the primitive, one of those arguments is
selected as the target. For example, if operation does file I/O, whichever argument
specifies the file name is the target. For subprocess primitives, the process name is
the target. For open-network-stream, the target is the service name or port number.

Depending on operation, this function looks up the target in file-coding-system-

alist, process-coding-system-alist, or network-coding-system-alist. If the
target is found in the alist, find-operation-coding-system returns its association
in the alist; otherwise it returns nil.

If operation is insert-file-contents, the argument corresponding to the target may
be a cons cell of the form (filename . buffer)). In that case, filename is a file name

Chapter 33: Non-ASCII Characters 725

to look up in file-coding-system-alist, and buffer is a buffer that contains the
file’s contents (not yet decoded). If file-coding-system-alist specifies a function
to call for this file, and that function needs to examine the file’s contents (as it usually
does), it should examine the contents of buffer instead of reading the file.

33.9.6 Specifying a Coding System for One Operation

You can specify the coding system for a specific operation by binding the variables coding-
system-for-read and/or coding-system-for-write.

[Variable]coding-system-for-read
If this variable is non-nil, it specifies the coding system to use for reading a file, or
for input from a synchronous subprocess.

It also applies to any asynchronous subprocess or network stream, but in a different
way: the value of coding-system-for-read when you start the subprocess or open
the network stream specifies the input decoding method for that subprocess or net-
work stream. It remains in use for that subprocess or network stream unless and until
overridden.

The right way to use this variable is to bind it with let for a specific I/O operation.
Its global value is normally nil, and you should not globally set it to any other value.
Here is an example of the right way to use the variable:

;; Read the file with no character code conversion.
;; Assume crlf represents end-of-line.
(let ((coding-system-for-read ’emacs-mule-dos))

(insert-file-contents filename))

When its value is non-nil, this variable takes precedence over all other methods of
specifying a coding system to use for input, including file-coding-system-alist,
process-coding-system-alist and network-coding-system-alist.

[Variable]coding-system-for-write
This works much like coding-system-for-read, except that it applies to output
rather than input. It affects writing to files, as well as sending output to subprocesses
and net connections.

When a single operation does both input and output, as do call-process-region

and start-process, both coding-system-for-read and coding-system-for-

write affect it.

[User Option]inhibit-eol-conversion
When this variable is non-nil, no end-of-line conversion is done, no matter which
coding system is specified. This applies to all the Emacs I/O and subprocess primi-
tives, and to the explicit encoding and decoding functions (see Section 33.9.7 [Explicit
Encoding], page 726).

Sometimes, you need to prefer several coding systems for some operation, rather than
fix a single one. Emacs lets you specify a priority order for using coding systems. This
ordering affects the sorting of lists of coding systems returned by functions such as find-
coding-systems-region (see Section 33.9.3 [Lisp and Coding Systems], page 718).

Chapter 33: Non-ASCII Characters 726

[Function]coding-system-priority-list &optional highestp
This function returns the list of coding systems in the order of their current priorities.
Optional argument highestp, if non-nil, means return only the highest priority coding
system.

[Function]set-coding-system-priority &rest coding-systems
This function puts coding-systems at the beginning of the priority list for coding
systems, thus making their priority higher than all the rest.

[Macro]with-coding-priority coding-systems &rest body. . .
This macro execute body, like progn does (see Section 10.1 [Sequencing], page 122),
with coding-systems at the front of the priority list for coding systems. coding-systems
should be a list of coding systems to prefer during execution of body.

33.9.7 Explicit Encoding and Decoding

All the operations that transfer text in and out of Emacs have the ability to use a coding
system to encode or decode the text. You can also explicitly encode and decode text using
the functions in this section.

The result of encoding, and the input to decoding, are not ordinary text. They logically
consist of a series of byte values; that is, a series of ASCII and eight-bit characters. In unibyte
buffers and strings, these characters have codes in the range 0 through #xFF (255). In a
multibyte buffer or string, eight-bit characters have character codes higher than #xFF (see
Section 33.1 [Text Representations], page 705), but Emacs transparently converts them to
their single-byte values when you encode or decode such text.

The usual way to read a file into a buffer as a sequence of bytes, so you can decode the
contents explicitly, is with insert-file-contents-literally (see Section 25.3 [Reading
from Files], page 475); alternatively, specify a non-nil rawfile argument when visiting a file
with find-file-noselect. These methods result in a unibyte buffer.

The usual way to use the byte sequence that results from explicitly encoding text is to
copy it to a file or process—for example, to write it with write-region (see Section 25.4
[Writing to Files], page 476), and suppress encoding by binding coding-system-for-write
to no-conversion.

Here are the functions to perform explicit encoding or decoding. The encoding functions
produce sequences of bytes; the decoding functions are meant to operate on sequences of
bytes. All of these functions discard text properties. They also set last-coding-system-
used to the precise coding system they used.

[Command]encode-coding-region start end coding-system &optional destination
This command encodes the text from start to end according to coding system coding-
system. Normally, the encoded text replaces the original text in the buffer, but the
optional argument destination can change that. If destination is a buffer, the encoded
text is inserted in that buffer after point (point does not move); if it is t, the command
returns the encoded text as a unibyte string without inserting it.

If encoded text is inserted in some buffer, this command returns the length of the
encoded text.

Chapter 33: Non-ASCII Characters 727

The result of encoding is logically a sequence of bytes, but the buffer remains multi-
byte if it was multibyte before, and any 8-bit bytes are converted to their multibyte
representation (see Section 33.1 [Text Representations], page 705).

Do not use undecided for coding-system when encoding text, since that may lead
to unexpected results. Instead, use select-safe-coding-system (see Section 33.9.4
[User-Chosen Coding Systems], page 721) to suggest a suitable encoding, if there’s no
obvious pertinent value for coding-system.

[Function]encode-coding-string string coding-system &optional nocopy buffer
This function encodes the text in string according to coding system coding-system.
It returns a new string containing the encoded text, except when nocopy is non-nil,
in which case the function may return string itself if the encoding operation is trivial.
The result of encoding is a unibyte string.

[Command]decode-coding-region start end coding-system &optional destination
This command decodes the text from start to end according to coding system coding-
system. To make explicit decoding useful, the text before decoding ought to be a
sequence of byte values, but both multibyte and unibyte buffers are acceptable (in
the multibyte case, the raw byte values should be represented as eight-bit characters).
Normally, the decoded text replaces the original text in the buffer, but the optional
argument destination can change that. If destination is a buffer, the decoded text
is inserted in that buffer after point (point does not move); if it is t, the command
returns the decoded text as a multibyte string without inserting it.

If decoded text is inserted in some buffer, this command returns the length of the
decoded text.

This command puts a charset text property on the decoded text. The value of the
property states the character set used to decode the original text.

[Function]decode-coding-string string coding-system &optional nocopy buffer
This function decodes the text in string according to coding-system. It returns a new
string containing the decoded text, except when nocopy is non-nil, in which case the
function may return string itself if the decoding operation is trivial. To make explicit
decoding useful, the contents of string ought to be a unibyte string with a sequence
of byte values, but a multibyte string is also acceptable (assuming it contains 8-bit
bytes in their multibyte form).

If optional argument buffer specifies a buffer, the decoded text is inserted in that
buffer after point (point does not move). In this case, the return value is the length
of the decoded text.

This function puts a charset text property on the decoded text. The value of the
property states the character set used to decode the original text:

(decode-coding-string "Gr\374ss Gott" ’latin-1)

⇒ #("Grüss Gott" 0 9 (charset iso-8859-1))

[Function]decode-coding-inserted-region from to filename &optional visit beg
end replace

This function decodes the text from from to to as if it were being read from file
filename using insert-file-contents using the rest of the arguments provided.

Chapter 33: Non-ASCII Characters 728

The normal way to use this function is after reading text from a file without decoding,
if you decide you would rather have decoded it. Instead of deleting the text and
reading it again, this time with decoding, you can call this function.

33.9.8 Terminal I/O Encoding

Emacs can decode keyboard input using a coding system, and encode terminal output.
This is useful for terminals that transmit or display text using a particular encoding such
as Latin-1. Emacs does not set last-coding-system-used for encoding or decoding of
terminal I/O.

[Function]keyboard-coding-system &optional terminal
This function returns the coding system that is in use for decoding keyboard input
from terminal—or nil if no coding system is to be used for that terminal. If terminal
is omitted or nil, it means the selected frame’s terminal. See Section 29.2 [Multiple
Terminals], page 591.

[Command]set-keyboard-coding-system coding-system &optional terminal
This command specifies coding-system as the coding system to use for decoding key-
board input from terminal. If coding-system is nil, that means do not decode key-
board input. If terminal is a frame, it means that frame’s terminal; if it is nil, that
means the currently selected frame’s terminal. See Section 29.2 [Multiple Terminals],
page 591.

[Function]terminal-coding-system &optional terminal
This function returns the coding system that is in use for encoding terminal output
from terminal—or nil if the output is not encoded. If terminal is a frame, it means
that frame’s terminal; if it is nil, that means the currently selected frame’s terminal.

[Command]set-terminal-coding-system coding-system &optional terminal
This command specifies coding-system as the coding system to use for encoding ter-
minal output from terminal. If coding-system is nil, terminal output is not encoded.
If terminal is a frame, it means that frame’s terminal; if it is nil, that means the
currently selected frame’s terminal.

33.9.9 MS-DOS File Types

On MS-DOS and Microsoft Windows, Emacs guesses the appropriate end-of-line conversion
for a file by looking at the file’s name. This feature classifies files as text files and binary
files. By “binary file” we mean a file of literal byte values that are not necessarily meant to
be characters; Emacs does no end-of-line conversion and no character code conversion for
them. On the other hand, the bytes in a text file are intended to represent characters; when
you create a new file whose name implies that it is a text file, Emacs uses DOS end-of-line
conversion.

[Variable]buffer-file-type
This variable, automatically buffer-local in each buffer, records the file type of the
buffer’s visited file. When a buffer does not specify a coding system with buffer-

file-coding-system, this variable is used to determine which coding system to use
when writing the contents of the buffer. It should be nil for text, t for binary. If it
is t, the coding system is no-conversion. Otherwise, undecided-dos is used.

Chapter 33: Non-ASCII Characters 729

Normally this variable is set by visiting a file; it is set to nil if the file was visited
without any actual conversion.

Its default value is used to decide how to handle files for which file-name-buffer-

file-type-alist says nothing about the type: If the default value is non-nil, then
these files are treated as binary: the coding system no-conversion is used. Other-
wise, nothing special is done for them—the coding system is deduced solely from the
file contents, in the usual Emacs fashion.

[User Option]file-name-buffer-file-type-alist
This variable holds an alist for recognizing text and binary files. Each element has
the form (regexp . type), where regexp is matched against the file name, and type
may be nil for text, t for binary, or a function to call to compute which. If it is a
function, then it is called with a single argument (the file name) and should return t

or nil.

When running on MS-DOS or MS-Windows, Emacs checks this alist to decide which
coding system to use when reading a file. For a text file, undecided-dos is used. For
a binary file, no-conversion is used.

If no element in this alist matches a given file name, then the default value of buffer-
file-type says how to treat the file.

33.10 Input Methods

Input methods provide convenient ways of entering non-ASCII characters from the keyboard.
Unlike coding systems, which translate non-ASCII characters to and from encodings meant
to be read by programs, input methods provide human-friendly commands. (See Section
“Input Methods” in The GNU Emacs Manual, for information on how users use input
methods to enter text.) How to define input methods is not yet documented in this manual,
but here we describe how to use them.

Each input method has a name, which is currently a string; in the future, symbols may
also be usable as input method names.

[Variable]current-input-method
This variable holds the name of the input method now active in the current buffer.
(It automatically becomes local in each buffer when set in any fashion.) It is nil if
no input method is active in the buffer now.

[User Option]default-input-method
This variable holds the default input method for commands that choose an input
method. Unlike current-input-method, this variable is normally global.

[Command]set-input-method input-method
This command activates input method input-method for the current buffer. It also
sets default-input-method to input-method. If input-method is nil, this command
deactivates any input method for the current buffer.

[Function]read-input-method-name prompt &optional default inhibit-null
This function reads an input method name with the minibuffer, prompting with
prompt. If default is non-nil, that is returned by default, if the user enters empty
input. However, if inhibit-null is non-nil, empty input signals an error.

Chapter 33: Non-ASCII Characters 730

The returned value is a string.

[Variable]input-method-alist
This variable defines all the supported input methods. Each element defines one input
method, and should have the form:

(input-method language-env activate-func

title description args...)

Here input-method is the input method name, a string; language-env is another string,
the name of the language environment this input method is recommended for. (That
serves only for documentation purposes.)

activate-func is a function to call to activate this method. The args, if any, are
passed as arguments to activate-func. All told, the arguments to activate-func are
input-method and the args.

title is a string to display in the mode line while this method is active. description is
a string describing this method and what it is good for.

The fundamental interface to input methods is through the variable input-method-

function. See Section 21.8.2 [Reading One Event], page 351, and Section 21.8.4 [Invoking
the Input Method], page 354.

33.11 Locales

POSIX defines a concept of “locales” which control which language to use in language-
related features. These Emacs variables control how Emacs interacts with these features.

[Variable]locale-coding-system
This variable specifies the coding system to use for decoding system error messages
and—on X Window system only—keyboard input, for encoding the format argument
to format-time-string, and for decoding the return value of format-time-string.

[Variable]system-messages-locale
This variable specifies the locale to use for generating system error messages. Chang-
ing the locale can cause messages to come out in a different language or in a different
orthography. If the variable is nil, the locale is specified by environment variables in
the usual POSIX fashion.

[Variable]system-time-locale
This variable specifies the locale to use for formatting time values. Changing the locale
can cause messages to appear according to the conventions of a different language.
If the variable is nil, the locale is specified by environment variables in the usual
POSIX fashion.

[Function]locale-info item
This function returns locale data item for the current POSIX locale, if available. item
should be one of these symbols:

codeset Return the character set as a string (locale item CODESET).

days Return a 7-element vector of day names (locale items DAY_1 through
DAY_7);

Chapter 33: Non-ASCII Characters 731

months Return a 12-element vector of month names (locale items MON_1 through
MON_12).

paper Return a list (width height) for the default paper size measured in mil-
limeters (locale items PAPER_WIDTH and PAPER_HEIGHT).

If the system can’t provide the requested information, or if item is not one of those
symbols, the value is nil. All strings in the return value are decoded using locale-

coding-system. See Section “Locales” in The GNU Libc Manual, for more informa-
tion about locales and locale items.

Chapter 34: Searching and Matching 732

34 Searching and Matching

GNU Emacs provides two ways to search through a buffer for specified text: exact string
searches and regular expression searches. After a regular expression search, you can examine
the match data to determine which text matched the whole regular expression or various
portions of it.

The ‘skip-chars...’ functions also perform a kind of searching. See Section 30.2.7
[Skipping Characters], page 631. To search for changes in character properties, see
Section 32.19.3 [Property Search], page 683.

34.1 Searching for Strings

These are the primitive functions for searching through the text in a buffer. They are meant
for use in programs, but you may call them interactively. If you do so, they prompt for the
search string; the arguments limit and noerror are nil, and repeat is 1. For more details
on interactive searching, see Section “Searching and Replacement” in The GNU Emacs
Manual.

These search functions convert the search string to multibyte if the buffer is multibyte;
they convert the search string to unibyte if the buffer is unibyte. See Section 33.1 [Text
Representations], page 705.

[Command]search-forward string &optional limit noerror repeat
This function searches forward from point for an exact match for string. If successful,
it sets point to the end of the occurrence found, and returns the new value of point.
If no match is found, the value and side effects depend on noerror (see below).

In the following example, point is initially at the beginning of the line. Then (search-

forward "fox") moves point after the last letter of ‘fox’:

---------- Buffer: foo ----------

?The quick brown fox jumped over the lazy dog.

---------- Buffer: foo ----------

(search-forward "fox")

⇒ 20

---------- Buffer: foo ----------

The quick brown fox? jumped over the lazy dog.

---------- Buffer: foo ----------

The argument limit specifies the bound to the search, and should be a position in the
current buffer. No match extending after that position is accepted. If limit is omitted
or nil, it defaults to the end of the accessible portion of the buffer.

What happens when the search fails depends on the value of noerror. If noerror is
nil, a search-failed error is signaled. If noerror is t, search-forward returns nil
and does nothing. If noerror is neither nil nor t, then search-forward moves point
to the upper bound and returns nil.

The argument noerror only affects valid searches which fail to find a match. Invalid
arguments cause errors regardless of noerror.

Chapter 34: Searching and Matching 733

If repeat is a positive number n, it serves as a repeat count: the search is repeated n
times, each time starting at the end of the previous time’s match. If these successive
searches succeed, the function succeeds, moving point and returning its new value.
Otherwise the search fails, with results depending on the value of noerror, as described
above. If repeat is a negative number -n, it serves as a repeat count of n for a search
in the opposite (backward) direction.

[Command]search-backward string &optional limit noerror repeat
This function searches backward from point for string. It is like search-forward,
except that it searches backwards rather than forwards. Backward searches leave
point at the beginning of the match.

[Command]word-search-forward string &optional limit noerror repeat
This function searches forward from point for a “word” match for string. If it finds
a match, it sets point to the end of the match found, and returns the new value of
point.

Word matching regards string as a sequence of words, disregarding punctuation that
separates them. It searches the buffer for the same sequence of words. Each word
must be distinct in the buffer (searching for the word ‘ball’ does not match the word
‘balls’), but the details of punctuation and spacing are ignored (searching for ‘ball
boy’ does match ‘ball. Boy!’).

In this example, point is initially at the beginning of the buffer; the search leaves it
between the ‘y’ and the ‘!’.

---------- Buffer: foo ----------

?He said "Please! Find

the ball boy!"

---------- Buffer: foo ----------

(word-search-forward "Please find the ball, boy.")

⇒ 36

---------- Buffer: foo ----------

He said "Please! Find

the ball boy?!"
---------- Buffer: foo ----------

If limit is non-nil, it must be a position in the current buffer; it specifies the upper
bound to the search. The match found must not extend after that position.

If noerror is nil, then word-search-forward signals an error if the search fails. If
noerror is t, then it returns nil instead of signaling an error. If noerror is neither
nil nor t, it moves point to limit (or the end of the accessible portion of the buffer)
and returns nil.

If repeat is non-nil, then the search is repeated that many times. Point is positioned
at the end of the last match.

Internal, word-search-forward and related functions use the function word-search-

regexp to convert string to a regular expression that ignores punctuation.

Chapter 34: Searching and Matching 734

[Command]word-search-forward-lax string &optional limit noerror repeat
This command is identical to word-search-forward, except that the end of string
need not match a word boundary, unless string ends in whitespace. For instance,
searching for ‘ball boy’ matches ‘ball boyee’, but does not match ‘aball boy’.

[Command]word-search-backward string &optional limit noerror repeat
This function searches backward from point for a word match to string. This function
is just like word-search-forward except that it searches backward and normally
leaves point at the beginning of the match.

[Command]word-search-backward-lax string &optional limit noerror repeat
This command is identical to word-search-backward, except that the end of string
need not match a word boundary, unless string ends in whitespace.

34.2 Searching and Case

By default, searches in Emacs ignore the case of the text they are searching through; if you
specify searching for ‘FOO’, then ‘Foo’ or ‘foo’ is also considered a match. This applies to
regular expressions, too; thus, ‘[aB]’ would match ‘a’ or ‘A’ or ‘b’ or ‘B’.

If you do not want this feature, set the variable case-fold-search to nil. Then all
letters must match exactly, including case. This is a buffer-local variable; altering the vari-
able affects only the current buffer. (See Section 11.10.1 [Intro to Buffer-Local], page 154.)
Alternatively, you may change the default value. In Lisp code, you will more typically use
let to bind case-fold-search to the desired value.

Note that the user-level incremental search feature handles case distinctions differently.
When the search string contains only lower case letters, the search ignores case, but when
the search string contains one or more upper case letters, the search becomes case-sensitive.
But this has nothing to do with the searching functions used in Lisp code. See Section
“Incremental Search” in The GNU Emacs Manual.

[User Option]case-fold-search
This buffer-local variable determines whether searches should ignore case. If the
variable is nil they do not ignore case; otherwise (and by default) they do ignore
case.

[User Option]case-replace
This variable determines whether the higher-level replacement functions should pre-
serve case. If the variable is nil, that means to use the replacement text verbatim.
A non-nil value means to convert the case of the replacement text according to the
text being replaced.

This variable is used by passing it as an argument to the function replace-match.
See Section 34.6.1 [Replacing Match], page 748.

34.3 Regular Expressions

A regular expression, or regexp for short, is a pattern that denotes a (possibly infinite) set
of strings. Searching for matches for a regexp is a very powerful operation. This section
explains how to write regexps; the following section says how to search for them.

Chapter 34: Searching and Matching 735

For interactive development of regular expressions, you can use the M-x re-builder

command. It provides a convenient interface for creating regular expressions, by giving
immediate visual feedback in a separate buffer. As you edit the regexp, all its matches in
the target buffer are highlighted. Each parenthesized sub-expression of the regexp is shown
in a distinct face, which makes it easier to verify even very complex regexps.

34.3.1 Syntax of Regular Expressions

Regular expressions have a syntax in which a few characters are special constructs and the
rest are ordinary. An ordinary character is a simple regular expression that matches that
character and nothing else. The special characters are ‘.’, ‘*’, ‘+’, ‘?’, ‘[’, ‘^’, ‘$’, and ‘\’; no
new special characters will be defined in the future. The character ‘]’ is special if it ends a
character alternative (see later). The character ‘-’ is special inside a character alternative.
A ‘[:’ and balancing ‘:]’ enclose a character class inside a character alternative. Any other
character appearing in a regular expression is ordinary, unless a ‘\’ precedes it.

For example, ‘f’ is not a special character, so it is ordinary, and therefore ‘f’ is a regular
expression that matches the string ‘f’ and no other string. (It does not match the string
‘fg’, but it does match a part of that string.) Likewise, ‘o’ is a regular expression that
matches only ‘o’.

Any two regular expressions a and b can be concatenated. The result is a regular
expression that matches a string if a matches some amount of the beginning of that string
and b matches the rest of the string.

As a simple example, we can concatenate the regular expressions ‘f’ and ‘o’ to get the
regular expression ‘fo’, which matches only the string ‘fo’. Still trivial. To do something
more powerful, you need to use one of the special regular expression constructs.

34.3.1.1 Special Characters in Regular Expressions

Here is a list of the characters that are special in a regular expression.

‘.’ (Period)
is a special character that matches any single character except a newline. Using
concatenation, we can make regular expressions like ‘a.b’, which matches any
three-character string that begins with ‘a’ and ends with ‘b’.

‘*’ is not a construct by itself; it is a postfix operator that means to match the
preceding regular expression repetitively as many times as possible. Thus, ‘o*’
matches any number of ‘o’s (including no ‘o’s).

‘*’ always applies to the smallest possible preceding expression. Thus, ‘fo*’
has a repeating ‘o’, not a repeating ‘fo’. It matches ‘f’, ‘fo’, ‘foo’, and so on.

The matcher processes a ‘*’ construct by matching, immediately, as many rep-
etitions as can be found. Then it continues with the rest of the pattern. If that
fails, backtracking occurs, discarding some of the matches of the ‘*’-modified
construct in the hope that that will make it possible to match the rest of the
pattern. For example, in matching ‘ca*ar’ against the string ‘caaar’, the ‘a*’
first tries to match all three ‘a’s; but the rest of the pattern is ‘ar’ and there is
only ‘r’ left to match, so this try fails. The next alternative is for ‘a*’ to match
only two ‘a’s. With this choice, the rest of the regexp matches successfully.

Chapter 34: Searching and Matching 736

Warning: Nested repetition operators can run for an indefinitely
long time, if they lead to ambiguous matching. For example, try-
ing to match the regular expression ‘\(x+y*\)*a’ against the string
‘xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxz’ could take hours before it
ultimately fails. Emacs must try each way of grouping the ‘x’s before
concluding that none of them can work. Even worse, ‘\(x*\)*’ can match
the null string in infinitely many ways, so it causes an infinite loop. To avoid
these problems, check nested repetitions carefully, to make sure that they do
not cause combinatorial explosions in backtracking.

‘+’ is a postfix operator, similar to ‘*’ except that it must match the preceding
expression at least once. So, for example, ‘ca+r’ matches the strings ‘car’ and
‘caaaar’ but not the string ‘cr’, whereas ‘ca*r’ matches all three strings.

‘?’ is a postfix operator, similar to ‘*’ except that it must match the preceding
expression either once or not at all. For example, ‘ca?r’ matches ‘car’ or ‘cr’;
nothing else.

‘*?’, ‘+?’, ‘??’
These are “non-greedy” variants of the operators ‘*’, ‘+’ and ‘?’. Where those
operators match the largest possible substring (consistent with matching the en-
tire containing expression), the non-greedy variants match the smallest possible
substring (consistent with matching the entire containing expression).

For example, the regular expression ‘c[ad]*a’ when applied to the string
‘cdaaada’ matches the whole string; but the regular expression ‘c[ad]*?a’,
applied to that same string, matches just ‘cda’. (The smallest possible match
here for ‘[ad]*?’ that permits the whole expression to match is ‘d’.)

‘[...]’ is a character alternative, which begins with ‘[’ and is terminated by ‘]’. In the
simplest case, the characters between the two brackets are what this character
alternative can match.

Thus, ‘[ad]’ matches either one ‘a’ or one ‘d’, and ‘[ad]*’ matches any string
composed of just ‘a’s and ‘d’s (including the empty string). It follows that
‘c[ad]*r’ matches ‘cr’, ‘car’, ‘cdr’, ‘caddaar’, etc.

You can also include character ranges in a character alternative, by writing the
starting and ending characters with a ‘-’ between them. Thus, ‘[a-z]’ matches
any lower-case ASCII letter. Ranges may be intermixed freely with individual
characters, as in ‘[a-z$%.]’, which matches any lower case ASCII letter or ‘$’,
‘%’ or period.

If case-fold-search is non-nil, ‘[a-z]’ also matches upper-case letters. Note
that a range like ‘[a-z]’ is not affected by the locale’s collation sequence, it
always represents a sequence in ASCII order.

Note also that the usual regexp special characters are not special inside a char-
acter alternative. A completely different set of characters is special inside char-
acter alternatives: ‘]’, ‘-’ and ‘^’.

To include a ‘]’ in a character alternative, you must make it the first character.
For example, ‘[]a]’ matches ‘]’ or ‘a’. To include a ‘-’, write ‘-’ as the first or
last character of the character alternative, or put it after a range. Thus, ‘[]-]’

Chapter 34: Searching and Matching 737

matches both ‘]’ and ‘-’. (As explained below, you cannot use ‘\]’ to include
a ‘]’ inside a character alternative, since ‘\’ is not special there.)

To include ‘^’ in a character alternative, put it anywhere but at the beginning.

If a range starts with a unibyte character c and ends with a multibyte char-
acter c2, the range is divided into two parts: one spans the unibyte characters
‘c..?\377’, the other the multibyte characters ‘c1..c2’, where c1 is the first
character of the charset to which c2 belongs.

A character alternative can also specify named character classes (see
Section 34.3.1.2 [Char Classes], page 738). This is a POSIX feature. For
example, ‘[[:ascii:]]’ matches any ASCII character. Using a character class
is equivalent to mentioning each of the characters in that class; but the latter
is not feasible in practice, since some classes include thousands of different
characters.

‘[^ ...]’ ‘[^’ begins a complemented character alternative. This matches any character
except the ones specified. Thus, ‘[^a-z0-9A-Z]’ matches all characters except
letters and digits.

‘^’ is not special in a character alternative unless it is the first character. The
character following the ‘^’ is treated as if it were first (in other words, ‘-’ and
‘]’ are not special there).

A complemented character alternative can match a newline, unless newline is
mentioned as one of the characters not to match. This is in contrast to the
handling of regexps in programs such as grep.

You can specify named character classes, just like in character alternatives.
For instance, ‘[^[:ascii:]]’ matches any non-ASCII character. See
Section 34.3.1.2 [Char Classes], page 738.

‘^’ When matching a buffer, ‘^’ matches the empty string, but only at the beginning
of a line in the text being matched (or the beginning of the accessible portion
of the buffer). Otherwise it fails to match anything. Thus, ‘^foo’ matches a
‘foo’ that occurs at the beginning of a line.

When matching a string instead of a buffer, ‘^’ matches at the beginning of the
string or after a newline character.

For historical compatibility reasons, ‘^’ can be used only at the beginning of
the regular expression, or after ‘\(’, ‘\(?:’ or ‘\|’.

‘$’ is similar to ‘^’ but matches only at the end of a line (or the end of the accessible
portion of the buffer). Thus, ‘x+$’ matches a string of one ‘x’ or more at the
end of a line.

When matching a string instead of a buffer, ‘$’ matches at the end of the string
or before a newline character.

For historical compatibility reasons, ‘$’ can be used only at the end of the
regular expression, or before ‘\)’ or ‘\|’.

‘\’ has two functions: it quotes the special characters (including ‘\’), and it intro-
duces additional special constructs.

Chapter 34: Searching and Matching 738

Because ‘\’ quotes special characters, ‘\$’ is a regular expression that matches
only ‘$’, and ‘\[’ is a regular expression that matches only ‘[’, and so on.

Note that ‘\’ also has special meaning in the read syntax of Lisp strings (see
Section 2.3.8 [String Type], page 18), and must be quoted with ‘\’. For exam-
ple, the regular expression that matches the ‘\’ character is ‘\\’. To write a
Lisp string that contains the characters ‘\\’, Lisp syntax requires you to quote
each ‘\’ with another ‘\’. Therefore, the read syntax for a regular expression
matching ‘\’ is "\\\\".

Please note: For historical compatibility, special characters are treated as ordinary ones
if they are in contexts where their special meanings make no sense. For example, ‘*foo’
treats ‘*’ as ordinary since there is no preceding expression on which the ‘*’ can act. It is
poor practice to depend on this behavior; quote the special character anyway, regardless of
where it appears.

As a ‘\’ is not special inside a character alternative, it can never remove the special
meaning of ‘-’ or ‘]’. So you should not quote these characters when they have no special
meaning either. This would not clarify anything, since backslashes can legitimately precede
these characters where they have special meaning, as in ‘[^\]’ ("[^\\]" for Lisp string
syntax), which matches any single character except a backslash.

In practice, most ‘]’ that occur in regular expressions close a character alternative and
hence are special. However, occasionally a regular expression may try to match a complex
pattern of literal ‘[’ and ‘]’. In such situations, it sometimes may be necessary to carefully
parse the regexp from the start to determine which square brackets enclose a character al-
ternative. For example, ‘[^][]]’ consists of the complemented character alternative ‘[^][]’
(which matches any single character that is not a square bracket), followed by a literal ‘]’.

The exact rules are that at the beginning of a regexp, ‘[’ is special and ‘]’ not. This lasts
until the first unquoted ‘[’, after which we are in a character alternative; ‘[’ is no longer
special (except when it starts a character class) but ‘]’ is special, unless it immediately
follows the special ‘[’ or that ‘[’ followed by a ‘^’. This lasts until the next special ‘]’
that does not end a character class. This ends the character alternative and restores the
ordinary syntax of regular expressions; an unquoted ‘[’ is special again and a ‘]’ not.

34.3.1.2 Character Classes

Here is a table of the classes you can use in a character alternative, and what they mean:

‘[:ascii:]’
This matches any ASCII character (codes 0–127).

‘[:alnum:]’
This matches any letter or digit. (At present, for multibyte characters, it
matches anything that has word syntax.)

‘[:alpha:]’
This matches any letter. (At present, for multibyte characters, it matches
anything that has word syntax.)

‘[:blank:]’
This matches space and tab only.

Chapter 34: Searching and Matching 739

‘[:cntrl:]’
This matches any ASCII control character.

‘[:digit:]’
This matches ‘0’ through ‘9’. Thus, ‘[-+[:digit:]]’ matches any digit, as well
as ‘+’ and ‘-’.

‘[:graph:]’
This matches graphic characters—everything except ASCII control characters,
space, and the delete character.

‘[:lower:]’
This matches any lower-case letter, as determined by the current case table (see
Section 4.9 [Case Tables], page 61). If case-fold-search is non-nil, this also
matches any upper-case letter.

‘[:multibyte:]’
This matches any multibyte character (see Section 33.1 [Text Representations],
page 705).

‘[:nonascii:]’
This matches any non-ASCII character.

‘[:print:]’
This matches printing characters—everything except ASCII control characters
and the delete character.

‘[:punct:]’
This matches any punctuation character. (At present, for multibyte characters,
it matches anything that has non-word syntax.)

‘[:space:]’
This matches any character that has whitespace syntax (see Section 35.2.1
[Syntax Class Table], page 758).

‘[:unibyte:]’
This matches any unibyte character (see Section 33.1 [Text Representations],
page 705).

‘[:upper:]’
This matches any upper-case letter, as determined by the current case table
(see Section 4.9 [Case Tables], page 61). If case-fold-search is non-nil, this
also matches any lower-case letter.

‘[:word:]’
This matches any character that has word syntax (see Section 35.2.1 [Syntax
Class Table], page 758).

‘[:xdigit:]’
This matches the hexadecimal digits: ‘0’ through ‘9’, ‘a’ through ‘f’ and ‘A’
through ‘F’.

Chapter 34: Searching and Matching 740

34.3.1.3 Backslash Constructs in Regular Expressions

For the most part, ‘\’ followed by any character matches only that character. However,
there are several exceptions: certain two-character sequences starting with ‘\’ that have
special meanings. (The character after the ‘\’ in such a sequence is always ordinary when
used on its own.) Here is a table of the special ‘\’ constructs.

‘\|’ specifies an alternative. Two regular expressions a and b with ‘\|’ in between
form an expression that matches anything that either a or b matches.

Thus, ‘foo\|bar’ matches either ‘foo’ or ‘bar’ but no other string.

‘\|’ applies to the largest possible surrounding expressions. Only a surrounding
‘\(... \)’ grouping can limit the grouping power of ‘\|’.

If you need full backtracking capability to handle multiple uses of ‘\|’, use
the POSIX regular expression functions (see Section 34.5 [POSIX Regexps],
page 747).

‘\{m\}’ is a postfix operator that repeats the previous pattern exactly m times. Thus,
‘x\{5\}’ matches the string ‘xxxxx’ and nothing else. ‘c[ad]\{3\}r’ matches
string such as ‘caaar’, ‘cdddr’, ‘cadar’, and so on.

‘\{m,n\}’ is a more general postfix operator that specifies repetition with a minimum of
m repeats and a maximum of n repeats. If m is omitted, the minimum is 0; if
n is omitted, there is no maximum.

For example, ‘c[ad]\{1,2\}r’ matches the strings ‘car’, ‘cdr’, ‘caar’, ‘cadr’,
‘cdar’, and ‘cddr’, and nothing else.
‘\{0,1\}’ or ‘\{,1\}’ is equivalent to ‘?’.
‘\{0,\}’ or ‘\{,\}’ is equivalent to ‘*’.
‘\{1,\}’ is equivalent to ‘+’.

‘\(... \)’
is a grouping construct that serves three purposes:

1. To enclose a set of ‘\|’ alternatives for other operations. Thus, the regular
expression ‘\(foo\|bar\)x’ matches either ‘foox’ or ‘barx’.

2. To enclose a complicated expression for the postfix operators ‘*’, ‘+’ and
‘?’ to operate on. Thus, ‘ba\(na\)*’ matches ‘ba’, ‘bana’, ‘banana’,
‘bananana’, etc., with any number (zero or more) of ‘na’ strings.

3. To record a matched substring for future reference with ‘\digit’ (see be-
low).

This last application is not a consequence of the idea of a parenthetical grouping;
it is a separate feature that was assigned as a second meaning to the same ‘\(
... \)’ construct because, in practice, there was usually no conflict between
the two meanings. But occasionally there is a conflict, and that led to the
introduction of shy groups.

‘\(?: ... \)’
is the shy group construct. A shy group serves the first two purposes of an
ordinary group (controlling the nesting of other operators), but it does not get
a number, so you cannot refer back to its value with ‘\digit’. Shy groups are

Chapter 34: Searching and Matching 741

particularly useful for mechanically-constructed regular expressions, because
they can be added automatically without altering the numbering of ordinary,
non-shy groups.

Shy groups are also called non-capturing or unnumbered groups.

‘\(?num: ... \)’
is the explicitly numbered group construct. Normal groups get their number
implicitly, based on their position, which can be inconvenient. This construct
allows you to force a particular group number. There is no particular restriction
on the numbering, e.g., you can have several groups with the same number in
which case the last one to match (i.e., the rightmost match) will win. Implicitly
numbered groups always get the smallest integer larger than the one of any
previous group.

‘\digit’ matches the same text that matched the digitth occurrence of a grouping (‘\(
... \)’) construct.

In other words, after the end of a group, the matcher remembers the beginning
and end of the text matched by that group. Later on in the regular expression
you can use ‘\’ followed by digit to match that same text, whatever it may have
been.

The strings matching the first nine grouping constructs appearing in the entire
regular expression passed to a search or matching function are assigned num-
bers 1 through 9 in the order that the open parentheses appear in the regular
expression. So you can use ‘\1’ through ‘\9’ to refer to the text matched by
the corresponding grouping constructs.

For example, ‘\(.*\)\1’ matches any newline-free string that is composed of
two identical halves. The ‘\(.*\)’ matches the first half, which may be any-
thing, but the ‘\1’ that follows must match the same exact text.

If a ‘\(... \)’ construct matches more than once (which can happen, for
instance, if it is followed by ‘*’), only the last match is recorded.

If a particular grouping construct in the regular expression was never
matched—for instance, if it appears inside of an alternative that wasn’t used,
or inside of a repetition that repeated zero times—then the corresponding
‘\digit’ construct never matches anything. To use an artificial example,
‘\(foo\(b*\)\|lose\)\2’ cannot match ‘lose’: the second alternative inside
the larger group matches it, but then ‘\2’ is undefined and can’t match
anything. But it can match ‘foobb’, because the first alternative matches
‘foob’ and ‘\2’ matches ‘b’.

‘\w’ matches any word-constituent character. The editor syntax table determines
which characters these are. See Chapter 35 [Syntax Tables], page 757.

‘\W’ matches any character that is not a word constituent.

‘\scode’ matches any character whose syntax is code. Here code is a character that
represents a syntax code: thus, ‘w’ for word constituent, ‘-’ for whitespace, ‘(’
for open parenthesis, etc. To represent whitespace syntax, use either ‘-’ or a
space character. See Section 35.2.1 [Syntax Class Table], page 758, for a list of
syntax codes and the characters that stand for them.

Chapter 34: Searching and Matching 742

‘\Scode’ matches any character whose syntax is not code.

‘\cc’ matches any character whose category is c. Here c is a character that repre-
sents a category: thus, ‘c’ for Chinese characters or ‘g’ for Greek characters in
the standard category table. You can see the list of all the currently defined
categories with M-x describe-categories RET. You can also define your own
categories in addition to the standard ones using the define-category function
(see Section 35.8 [Categories], page 770).

‘\Cc’ matches any character whose category is not c.

The following regular expression constructs match the empty string—that is, they don’t
use up any characters—but whether they match depends on the context. For all, the
beginning and end of the accessible portion of the buffer are treated as if they were the
actual beginning and end of the buffer.

‘\‘’ matches the empty string, but only at the beginning of the buffer or string
being matched against.

‘\’’ matches the empty string, but only at the end of the buffer or string being
matched against.

‘\=’ matches the empty string, but only at point. (This construct is not defined
when matching against a string.)

‘\b’ matches the empty string, but only at the beginning or end of a word. Thus,
‘\bfoo\b’ matches any occurrence of ‘foo’ as a separate word. ‘\bballs?\b’
matches ‘ball’ or ‘balls’ as a separate word.

‘\b’ matches at the beginning or end of the buffer (or string) regardless of what
text appears next to it.

‘\B’ matches the empty string, but not at the beginning or end of a word, nor at
the beginning or end of the buffer (or string).

‘\<’ matches the empty string, but only at the beginning of a word. ‘\<’ matches
at the beginning of the buffer (or string) only if a word-constituent character
follows.

‘\>’ matches the empty string, but only at the end of a word. ‘\>’ matches at the
end of the buffer (or string) only if the contents end with a word-constituent
character.

‘_<’ matches the empty string, but only at the beginning of a symbol. A symbol is a
sequence of one or more word or symbol constituent characters. ‘_<’ matches
at the beginning of the buffer (or string) only if a symbol-constituent character
follows.

‘_>’ matches the empty string, but only at the end of a symbol. ‘_>’ matches at the
end of the buffer (or string) only if the contents end with a symbol-constituent
character.

Not every string is a valid regular expression. For example, a string that ends inside a
character alternative without a terminating ‘]’ is invalid, and so is a string that ends with
a single ‘\’. If an invalid regular expression is passed to any of the search functions, an
invalid-regexp error is signaled.

Chapter 34: Searching and Matching 743

34.3.2 Complex Regexp Example

Here is a complicated regexp which was formerly used by Emacs to recognize the end of a
sentence together with any whitespace that follows. (Nowadays Emacs uses a similar but
more complex default regexp constructed by the function sentence-end. See Section 34.8
[Standard Regexps], page 756.)

Below, we show first the regexp as a string in Lisp syntax (to distinguish spaces from tab
characters), and then the result of evaluating it. The string constant begins and ends with
a double-quote. ‘\"’ stands for a double-quote as part of the string, ‘\\’ for a backslash as
part of the string, ‘\t’ for a tab and ‘\n’ for a newline.

"[.?!][]\"’)}]*\\($\\| $\\|\t\\| \\)[\t\n]*"

⇒ "[.?!][]\"’)}]*\\($\\| $\\| \\| \\)[

]*"

In the output, tab and newline appear as themselves.

This regular expression contains four parts in succession and can be deciphered as follows:

[.?!] The first part of the pattern is a character alternative that matches any one
of three characters: period, question mark, and exclamation mark. The match
must begin with one of these three characters. (This is one point where the
new default regexp used by Emacs differs from the old. The new value also
allows some non-ASCII characters that end a sentence without any following
whitespace.)

[]\"’)}]*

The second part of the pattern matches any closing braces and quotation marks,
zero or more of them, that may follow the period, question mark or exclamation
mark. The \" is Lisp syntax for a double-quote in a string. The ‘*’ at the
end indicates that the immediately preceding regular expression (a character
alternative, in this case) may be repeated zero or more times.

\\($\\| $\\|\t\\| \\)

The third part of the pattern matches the whitespace that follows the end of a
sentence: the end of a line (optionally with a space), or a tab, or two spaces.
The double backslashes mark the parentheses and vertical bars as regular ex-
pression syntax; the parentheses delimit a group and the vertical bars separate
alternatives. The dollar sign is used to match the end of a line.

[\t\n]* Finally, the last part of the pattern matches any additional whitespace beyond
the minimum needed to end a sentence.

34.3.3 Regular Expression Functions

These functions operate on regular expressions.

[Function]regexp-quote string
This function returns a regular expression whose only exact match is string. Using
this regular expression in looking-at will succeed only if the next characters in the
buffer are string ; using it in a search function will succeed if the text being searched
contains string. See Section 34.4 [Regexp Search], page 744.

This allows you to request an exact string match or search when calling a function
that wants a regular expression.

Chapter 34: Searching and Matching 744

(regexp-quote "^The cat$")

⇒ "\\^The cat\\$"

One use of regexp-quote is to combine an exact string match with context described
as a regular expression. For example, this searches for the string that is the value of
string, surrounded by whitespace:

(re-search-forward

(concat "\\s-" (regexp-quote string) "\\s-"))

[Function]regexp-opt strings &optional paren
This function returns an efficient regular expression that will match any of the strings
in the list strings. This is useful when you need to make matching or searching as
fast as possible—for example, for Font Lock mode1.

If the optional argument paren is non-nil, then the returned regular expression is
always enclosed by at least one parentheses-grouping construct. If paren is words,
then that construct is additionally surrounded by ‘\<’ and ‘\>’; alternatively, if paren
is symbols, then that construct is additionally surrounded by ‘_<’ and ‘_>’ (symbols
is often appropriate when matching programming-language keywords and the like).

This simplified definition of regexp-opt produces a regular expression which is equiv-
alent to the actual value (but not as efficient):

(defun regexp-opt (strings &optional paren)

(let ((open-paren (if paren "\\(" ""))

(close-paren (if paren "\\)" "")))

(concat open-paren

(mapconcat ’regexp-quote strings "\\|")

close-paren)))

[Function]regexp-opt-depth regexp
This function returns the total number of grouping constructs (parenthesized expres-
sions) in regexp. This does not include shy groups (see Section 34.3.1.3 [Regexp
Backslash], page 740).

[Function]regexp-opt-charset chars
This function returns a regular expression matching a character in the list of characters
chars.

(regexp-opt-charset ’(?a ?b ?c ?d ?e))

⇒ "[a-e]"

34.4 Regular Expression Searching

In GNU Emacs, you can search for the next match for a regular expression either incremen-
tally or not. For incremental search commands, see Section “Regular Expression Search” in
The GNU Emacs Manual. Here we describe only the search functions useful in programs.
The principal one is re-search-forward.

1 Note that regexp-opt does not guarantee that its result is absolutely the most efficient form possible.
A hand-tuned regular expression can sometimes be slightly more efficient, but is almost never worth the
effort.

Chapter 34: Searching and Matching 745

These search functions convert the regular expression to multibyte if the buffer is multi-
byte; they convert the regular expression to unibyte if the buffer is unibyte. See Section 33.1
[Text Representations], page 705.

[Command]re-search-forward regexp &optional limit noerror repeat
This function searches forward in the current buffer for a string of text that is matched
by the regular expression regexp. The function skips over any amount of text that
is not matched by regexp, and leaves point at the end of the first match found. It
returns the new value of point.

If limit is non-nil, it must be a position in the current buffer. It specifies the upper
bound to the search. No match extending after that position is accepted.

If repeat is supplied, it must be a positive number; the search is repeated that many
times; each repetition starts at the end of the previous match. If all these successive
searches succeed, the search succeeds, moving point and returning its new value.
Otherwise the search fails. What re-search-forward does when the search fails
depends on the value of noerror:

nil Signal a search-failed error.

t Do nothing and return nil.

anything else
Move point to limit (or the end of the accessible portion of the buffer)
and return nil.

In the following example, point is initially before the ‘T’. Evaluating the search call
moves point to the end of that line (between the ‘t’ of ‘hat’ and the newline).

---------- Buffer: foo ----------

I read "?The cat in the hat

comes back" twice.

---------- Buffer: foo ----------

(re-search-forward "[a-z]+" nil t 5)

⇒ 27

---------- Buffer: foo ----------

I read "The cat in the hat?
comes back" twice.

---------- Buffer: foo ----------

[Command]re-search-backward regexp &optional limit noerror repeat
This function searches backward in the current buffer for a string of text that is
matched by the regular expression regexp, leaving point at the beginning of the first
text found.

This function is analogous to re-search-forward, but they are not simple mirror
images. re-search-forward finds the match whose beginning is as close as possible
to the starting point. If re-search-backward were a perfect mirror image, it would
find the match whose end is as close as possible. However, in fact it finds the match
whose beginning is as close as possible (and yet ends before the starting point). The

Chapter 34: Searching and Matching 746

reason for this is that matching a regular expression at a given spot always works
from beginning to end, and starts at a specified beginning position.

A true mirror-image of re-search-forward would require a special feature for match-
ing regular expressions from end to beginning. It’s not worth the trouble of imple-
menting that.

[Function]string-match regexp string &optional start
This function returns the index of the start of the first match for the regular expression
regexp in string, or nil if there is no match. If start is non-nil, the search starts at
that index in string.

For example,

(string-match

"quick" "The quick brown fox jumped quickly.")

⇒ 4

(string-match

"quick" "The quick brown fox jumped quickly." 8)

⇒ 27

The index of the first character of the string is 0, the index of the second character is
1, and so on.

After this function returns, the index of the first character beyond the match is
available as (match-end 0). See Section 34.6 [Match Data], page 748.

(string-match

"quick" "The quick brown fox jumped quickly." 8)

⇒ 27

(match-end 0)

⇒ 32

[Function]string-match-p regexp string &optional start
This predicate function does what string-match does, but it avoids modifying the
match data.

[Function]looking-at regexp
This function determines whether the text in the current buffer directly following point
matches the regular expression regexp. “Directly following” means precisely that: the
search is “anchored” and it can succeed only starting with the first character following
point. The result is t if so, nil otherwise.

This function does not move point, but it does update the match data. See
Section 34.6 [Match Data], page 748. If you need to test for a match without
modifying the match data, use looking-at-p, described below.

In this example, point is located directly before the ‘T’. If it were anywhere else, the
result would be nil.

Chapter 34: Searching and Matching 747

---------- Buffer: foo ----------

I read "?The cat in the hat

comes back" twice.

---------- Buffer: foo ----------

(looking-at "The cat in the hat$")

⇒ t

[Function]looking-back regexp &optional limit greedy
This function returns t if regexp matches the text immediately before point (i.e.,
ending at point), and nil otherwise.

Because regular expression matching works only going forward, this is implemented
by searching backwards from point for a match that ends at point. That can be quite
slow if it has to search a long distance. You can bound the time required by specifying
limit, which says not to search before limit. In this case, the match that is found must
begin at or after limit.

If greedy is non-nil, this function extends the match backwards as far as possible,
stopping when a single additional previous character cannot be part of a match for
regexp. When the match is extended, its starting position is allowed to occur before
limit.

---------- Buffer: foo ----------

I read "?The cat in the hat

comes back" twice.

---------- Buffer: foo ----------

(looking-back "read \"" 3)

⇒ t

(looking-back "read \"" 4)

⇒ nil

As a general recommendation, try to avoid using looking-back wherever possible,
since it is slow. For this reason, there are no plans to add a looking-back-p function.

[Function]looking-at-p regexp
This predicate function works like looking-at, but without updating the match data.

[Variable]search-spaces-regexp
If this variable is non-nil, it should be a regular expression that says how to search for
whitespace. In that case, any group of spaces in a regular expression being searched
for stands for use of this regular expression. However, spaces inside of constructs such
as ‘[...]’ and ‘*’, ‘+’, ‘?’ are not affected by search-spaces-regexp.

Since this variable affects all regular expression search and match constructs, you
should bind it temporarily for as small as possible a part of the code.

34.5 POSIX Regular Expression Searching

The usual regular expression functions do backtracking when necessary to handle the ‘\|’
and repetition constructs, but they continue this only until they find some match. Then
they succeed and report the first match found.

Chapter 34: Searching and Matching 748

This section describes alternative search functions which perform the full backtracking
specified by the POSIX standard for regular expression matching. They continue back-
tracking until they have tried all possibilities and found all matches, so they can report
the longest match, as required by POSIX. This is much slower, so use these functions only
when you really need the longest match.

The POSIX search and match functions do not properly support the non-greedy repe-
tition operators (see Section 34.3.1.1 [Regexp Special], page 735). This is because POSIX
backtracking conflicts with the semantics of non-greedy repetition.

[Command]posix-search-forward regexp &optional limit noerror repeat
This is like re-search-forward except that it performs the full backtracking specified
by the POSIX standard for regular expression matching.

[Command]posix-search-backward regexp &optional limit noerror repeat
This is like re-search-backward except that it performs the full backtracking spec-
ified by the POSIX standard for regular expression matching.

[Function]posix-looking-at regexp
This is like looking-at except that it performs the full backtracking specified by the
POSIX standard for regular expression matching.

[Function]posix-string-match regexp string &optional start
This is like string-match except that it performs the full backtracking specified by
the POSIX standard for regular expression matching.

34.6 The Match Data

Emacs keeps track of the start and end positions of the segments of text found during a
search; this is called the match data. Thanks to the match data, you can search for a
complex pattern, such as a date in a mail message, and then extract parts of the match
under control of the pattern.

Because the match data normally describe the most recent search only, you must be
careful not to do another search inadvertently between the search you wish to refer back
to and the use of the match data. If you can’t avoid another intervening search, you must
save and restore the match data around it, to prevent it from being overwritten.

Notice that all functions are allowed to overwrite the match data unless they’re explicitly
documented not to do so. A consequence is that functions that are run implicitly in the
background (see Section 39.10 [Timers], page 930, and Section 39.11 [Idle Timers], page 932)
should likely save and restore the match data explicitly.

34.6.1 Replacing the Text that Matched

This function replaces all or part of the text matched by the last search. It works by means
of the match data.

[Function]replace-match replacement &optional fixedcase literal string subexp
This function performs a replacement operation on a buffer or string.

If you did the last search in a buffer, you should omit the string argument or specify
nil for it, and make sure that the current buffer is the one in which you performed

Chapter 34: Searching and Matching 749

the last search. Then this function edits the buffer, replacing the matched text with
replacement. It leaves point at the end of the replacement text, and returns t.

If you performed the last search on a string, pass the same string as string. Then this
function returns a new string, in which the matched text is replaced by replacement.

If fixedcase is non-nil, then replace-match uses the replacement text without case
conversion; otherwise, it converts the replacement text depending upon the capital-
ization of the text to be replaced. If the original text is all upper case, this converts
the replacement text to upper case. If all words of the original text are capitalized,
this capitalizes all the words of the replacement text. If all the words are one-letter
and they are all upper case, they are treated as capitalized words rather than all-
upper-case words.

If literal is non-nil, then replacement is inserted exactly as it is, the only alterations
being case changes as needed. If it is nil (the default), then the character ‘\’ is
treated specially. If a ‘\’ appears in replacement, then it must be part of one of the
following sequences:

‘\&’ This stands for the entire text being replaced.

‘\n’, where n is a digit
This stands for the text that matched the nth subexpression in the
original regexp. Subexpressions are those expressions grouped inside
‘\(...\)’. If the nth subexpression never matched, an empty string is
substituted.

‘\\’ This stands for a single ‘\’ in the replacement text.

‘\?’ This stands for itself (for compatibility with replace-regexp and related
commands; see Section “Regexp Replace” in The GNU Emacs Manual).

Any other character following ‘\’ signals an error.

The substitutions performed by ‘\&’ and ‘\n’ occur after case conversion, if any.
Therefore, the strings they substitute are never case-converted.

If subexp is non-nil, that says to replace just subexpression number subexp of the
regexp that was matched, not the entire match. For example, after matching ‘foo
\(ba*r\)’, calling replace-match with 1 as subexp means to replace just the text
that matched ‘\(ba*r\)’.

[Function]match-substitute-replacement replacement &optional fixedcase
literal string subexp

This function returns the text that would be inserted into the buffer by replace-

match, but without modifying the buffer. It is useful if you want to present the
user with actual replacement result, with constructs like ‘\n’ or ‘\&’ substituted with
matched groups. Arguments replacement and optional fixedcase, literal, string and
subexp have the same meaning as for replace-match.

34.6.2 Simple Match Data Access

This section explains how to use the match data to find out what was matched by the last
search or match operation, if it succeeded.

Chapter 34: Searching and Matching 750

You can ask about the entire matching text, or about a particular parenthetical subex-
pression of a regular expression. The count argument in the functions below specifies which.
If count is zero, you are asking about the entire match. If count is positive, it specifies which
subexpression you want.

Recall that the subexpressions of a regular expression are those expressions grouped
with escaped parentheses, ‘\(...\)’. The countth subexpression is found by counting oc-
currences of ‘\(’ from the beginning of the whole regular expression. The first subexpression
is numbered 1, the second 2, and so on. Only regular expressions can have subexpressions—
after a simple string search, the only information available is about the entire match.

Every successful search sets the match data. Therefore, you should query the match data
immediately after searching, before calling any other function that might perform another
search. Alternatively, you may save and restore the match data (see Section 34.6.4 [Saving
Match Data], page 752) around the call to functions that could perform another search. Or
use the functions that explicitly do not modify the match data; e.g., string-match-p.

A search which fails may or may not alter the match data. In the current implementation,
it does not, but we may change it in the future. Don’t try to rely on the value of the match
data after a failing search.

[Function]match-string count &optional in-string
This function returns, as a string, the text matched in the last search or match
operation. It returns the entire text if count is zero, or just the portion corresponding
to the countth parenthetical subexpression, if count is positive.

If the last such operation was done against a string with string-match, then you
should pass the same string as the argument in-string. After a buffer search or
match, you should omit in-string or pass nil for it; but you should make sure that the
current buffer when you call match-string is the one in which you did the searching
or matching. Failure to follow this advice will lead to incorrect results.

The value is nil if count is out of range, or for a subexpression inside a ‘\|’ alternative
that wasn’t used or a repetition that repeated zero times.

[Function]match-string-no-properties count &optional in-string
This function is like match-string except that the result has no text properties.

[Function]match-beginning count
This function returns the position of the start of the text matched by the last regular
expression searched for, or a subexpression of it.

If count is zero, then the value is the position of the start of the entire match. Oth-
erwise, count specifies a subexpression in the regular expression, and the value of the
function is the starting position of the match for that subexpression.

The value is nil for a subexpression inside a ‘\|’ alternative that wasn’t used or a
repetition that repeated zero times.

[Function]match-end count
This function is like match-beginning except that it returns the position of the end
of the match, rather than the position of the beginning.

Chapter 34: Searching and Matching 751

Here is an example of using the match data, with a comment showing the positions
within the text:

(string-match "\\(qu\\)\\(ick\\)"

"The quick fox jumped quickly.")

;0123456789

⇒ 4

(match-string 0 "The quick fox jumped quickly.")

⇒ "quick"

(match-string 1 "The quick fox jumped quickly.")

⇒ "qu"

(match-string 2 "The quick fox jumped quickly.")

⇒ "ick"

(match-beginning 1) ; The beginning of the match
⇒ 4 ; with ‘qu’ is at index 4.

(match-beginning 2) ; The beginning of the match
⇒ 6 ; with ‘ick’ is at index 6.

(match-end 1) ; The end of the match
⇒ 6 ; with ‘qu’ is at index 6.

(match-end 2) ; The end of the match
⇒ 9 ; with ‘ick’ is at index 9.

Here is another example. Point is initially located at the beginning of the line. Searching
moves point to between the space and the word ‘in’. The beginning of the entire match
is at the 9th character of the buffer (‘T’), and the beginning of the match for the first
subexpression is at the 13th character (‘c’).

(list

(re-search-forward "The \\(cat \\)")

(match-beginning 0)

(match-beginning 1))

⇒ (17 9 13)

---------- Buffer: foo ----------

I read "The cat ?in the hat comes back" twice.

^ ^

9 13

---------- Buffer: foo ----------

(In this case, the index returned is a buffer position; the first character of the buffer counts
as 1.)

34.6.3 Accessing the Entire Match Data

The functions match-data and set-match-data read or write the entire match data, all at
once.

Chapter 34: Searching and Matching 752

[Function]match-data &optional integers reuse reseat
This function returns a list of positions (markers or integers) that record all the
information on the text that the last search matched. Element zero is the position of
the beginning of the match for the whole expression; element one is the position of
the end of the match for the expression. The next two elements are the positions of
the beginning and end of the match for the first subexpression, and so on. In general,
element number 2n corresponds to (match-beginning n); and element number 2n+1
corresponds to (match-end n).

Normally all the elements are markers or nil, but if integers is non-nil, that means
to use integers instead of markers. (In that case, the buffer itself is appended as
an additional element at the end of the list, to facilitate complete restoration of the
match data.) If the last match was done on a string with string-match, then integers
are always used, since markers can’t point into a string.

If reuse is non-nil, it should be a list. In that case, match-data stores the match
data in reuse. That is, reuse is destructively modified. reuse does not need to have
the right length. If it is not long enough to contain the match data, it is extended.
If it is too long, the length of reuse stays the same, but the elements that were not
used are set to nil. The purpose of this feature is to reduce the need for garbage
collection.

If reseat is non-nil, all markers on the reuse list are reseated to point to nowhere.

As always, there must be no possibility of intervening searches between the call to a
search function and the call to match-data that is intended to access the match data
for that search.

(match-data)

⇒ (#<marker at 9 in foo>

#<marker at 17 in foo>

#<marker at 13 in foo>

#<marker at 17 in foo>)

[Function]set-match-data match-list &optional reseat
This function sets the match data from the elements of match-list, which should be
a list that was the value of a previous call to match-data. (More precisely, anything
that has the same format will work.)

If match-list refers to a buffer that doesn’t exist, you don’t get an error; that sets the
match data in a meaningless but harmless way.

If reseat is non-nil, all markers on thematch-list list are reseated to point to nowhere.

store-match-data is a semi-obsolete alias for set-match-data.

34.6.4 Saving and Restoring the Match Data

When you call a function that may search, you may need to save and restore the match
data around that call, if you want to preserve the match data from an earlier search for
later use. Here is an example that shows the problem that arises if you fail to save the
match data:

Chapter 34: Searching and Matching 753

(re-search-forward "The \\(cat \\)")

⇒ 48

(foo) ; foo does more searching.
(match-end 0)

⇒ 61 ; Unexpected result—not 48!

You can save and restore the match data with save-match-data:

[Macro]save-match-data body. . .
This macro executes body, saving and restoring the match data around it. The return
value is the value of the last form in body.

You could use set-match-data together with match-data to imitate the effect of the
special form save-match-data. Here is how:

(let ((data (match-data)))

(unwind-protect

... ; Ok to change the original match data.
(set-match-data data)))

Emacs automatically saves and restores the match data when it runs process filter func-
tions (see Section 37.9.2 [Filter Functions], page 796) and process sentinels (see Section 37.10
[Sentinels], page 799).

34.7 Search and Replace

If you want to find all matches for a regexp in part of the buffer, and replace them, the best
way is to write an explicit loop using re-search-forward and replace-match, like this:

(while (re-search-forward "foo[\t]+bar" nil t)

(replace-match "foobar"))

See Section 34.6.1 [Replacing the Text that Matched], page 748, for a description of
replace-match.

However, replacing matches in a string is more complex, especially if you want to do it
efficiently. So Emacs provides a function to do this.

[Function]replace-regexp-in-string regexp rep string &optional fixedcase
literal subexp start

This function copies string and searches it for matches for regexp, and replaces them
with rep. It returns the modified copy. If start is non-nil, the search for matches
starts at that index in string, so matches starting before that index are not changed.

This function uses replace-match to do the replacement, and it passes the optional
arguments fixedcase, literal and subexp along to replace-match.

Instead of a string, rep can be a function. In that case, replace-regexp-in-string
calls rep for each match, passing the text of the match as its sole argument. It collects
the value rep returns and passes that to replace-match as the replacement string.
The match data at this point are the result of matching regexp against a substring
of string.

If you want to write a command along the lines of query-replace, you can use perform-
replace to do the work.

Chapter 34: Searching and Matching 754

[Function]perform-replace from-string replacements query-flag regexp-flag
delimited-flag &optional repeat-count map start end

This function is the guts of query-replace and related commands. It searches for
occurrences of from-string in the text between positions start and end and replaces
some or all of them. If start is nil (or omitted), point is used instead, and the end
of the buffer’s accessible portion is used for end.

If query-flag is nil, it replaces all occurrences; otherwise, it asks the user what to do
about each one.

If regexp-flag is non-nil, then from-string is considered a regular expression; oth-
erwise, it must match literally. If delimited-flag is non-nil, then only replacements
surrounded by word boundaries are considered.

The argument replacements specifies what to replace occurrences with. If it is a
string, that string is used. It can also be a list of strings, to be used in cyclic order.

If replacements is a cons cell, (function . data), this means to call function after
each match to get the replacement text. This function is called with two arguments:
data, and the number of replacements already made.

If repeat-count is non-nil, it should be an integer. Then it specifies how many times
to use each of the strings in the replacements list before advancing cyclically to the
next one.

If from-string contains upper-case letters, then perform-replace binds case-fold-
search to nil, and it uses the replacements without altering their case.

Normally, the keymap query-replace-map defines the possible user responses for
queries. The argument map, if non-nil, specifies a keymap to use instead of query-
replace-map.

This function uses one of two functions to search for the next occurrence of from-
string. These functions are specified by the values of two variables: replace-re-

search-function and replace-search-function. The former is called when the
argument regexp-flag is non-nil, the latter when it is nil.

[Variable]query-replace-map
This variable holds a special keymap that defines the valid user responses for perform-
replace and the commands that use it, as well as y-or-n-p and map-y-or-n-p. This
map is unusual in two ways:

• The “key bindings” are not commands, just symbols that are meaningful to the
functions that use this map.

• Prefix keys are not supported; each key binding must be for a single-event key
sequence. This is because the functions don’t use read-key-sequence to get the
input; instead, they read a single event and look it up “by hand”.

Here are the meaningful “bindings” for query-replace-map. Several of them are mean-
ingful only for query-replace and friends.

act Do take the action being considered—in other words, “yes”.

skip Do not take action for this question—in other words, “no”.

exit Answer this question “no”, and give up on the entire series of questions, assum-
ing that the answers will be “no”.

Chapter 34: Searching and Matching 755

exit-prefix

Like exit, but add the key that was pressed to unread-comment-events.

act-and-exit

Answer this question “yes”, and give up on the entire series of questions, as-
suming that subsequent answers will be “no”.

act-and-show

Answer this question “yes”, but show the results—don’t advance yet to the
next question.

automatic

Answer this question and all subsequent questions in the series with “yes”,
without further user interaction.

backup Move back to the previous place that a question was asked about.

edit Enter a recursive edit to deal with this question—instead of any other action
that would normally be taken.

edit-replacement

Edit the replacement for this question in the minibuffer.

delete-and-edit

Delete the text being considered, then enter a recursive edit to replace it.

recenter

scroll-up

scroll-down

scroll-other-window

scroll-other-window-down

Perform the specified window scroll operation, then ask the same question again.
Only y-or-n-p and related functions use this answer.

quit Perform a quit right away. Only y-or-n-p and related functions use this answer.

help Display some help, then ask again.

[Variable]multi-query-replace-map
This variable holds a keymap that extends query-replace-map by providing ad-
ditional keybindings that are useful in multi-buffer replacements. The additional
“bindings” are:

automatic-all

Answer this question and all subsequent questions in the series with “yes”,
without further user interaction, for all remaining buffers.

exit-current

Answer this question “no”, and give up on the entire series of questions
for the current buffer. Continue to the next buffer in the sequence.

[Variable]replace-search-function
This variable specifies a function that perform-replace calls to search for the next
string to replace. Its default value is search-forward. Any other value should name
a function of 3 arguments: the first 3 arguments of search-forward (see Section 34.1
[String Search], page 732).

Chapter 34: Searching and Matching 756

[Variable]replace-re-search-function
This variable specifies a function that perform-replace calls to search for the next
regexp to replace. Its default value is re-search-forward. Any other value should
name a function of 3 arguments: the first 3 arguments of re-search-forward (see
Section 34.4 [Regexp Search], page 744).

34.8 Standard Regular Expressions Used in Editing

This section describes some variables that hold regular expressions used for certain purposes
in editing:

[User Option]page-delimiter
This is the regular expression describing line-beginnings that separate pages. The
default value is "^\014" (i.e., "^^L" or "^\C-l"); this matches a line that starts with
a formfeed character.

The following two regular expressions should not assume the match always starts at the
beginning of a line; they should not use ‘^’ to anchor the match. Most often, the paragraph
commands do check for a match only at the beginning of a line, which means that ‘^’ would
be superfluous. When there is a nonzero left margin, they accept matches that start after
the left margin. In that case, a ‘^’ would be incorrect. However, a ‘^’ is harmless in modes
where a left margin is never used.

[User Option]paragraph-separate
This is the regular expression for recognizing the beginning of a line that separates
paragraphs. (If you change this, you may have to change paragraph-start also.) The
default value is "[\t\f]*$", which matches a line that consists entirely of spaces,
tabs, and form feeds (after its left margin).

[User Option]paragraph-start
This is the regular expression for recognizing the beginning of a line that starts or
separates paragraphs. The default value is "\f\\|[\t]*$", which matches a line
containing only whitespace or starting with a form feed (after its left margin).

[User Option]sentence-end
If non-nil, the value should be a regular expression describing the end of a sentence,
including the whitespace following the sentence. (All paragraph boundaries also end
sentences, regardless.)

If the value is nil, as it is by default, then the function sentence-end constructs the
regexp. That is why you should always call the function sentence-end to obtain the
regexp to be used to recognize the end of a sentence.

[Function]sentence-end
This function returns the value of the variable sentence-end, if non-nil. Other-
wise it returns a default value based on the values of the variables sentence-end-

double-space (see [Definition of sentence-end-double-space], page 666), sentence-
end-without-period, and sentence-end-without-space.

Chapter 35: Syntax Tables 757

35 Syntax Tables

A syntax table specifies the syntactic role of each character in a buffer. It can be used
to determine where words, symbols, and other syntactic constructs begin and end. This
information is used by many Emacs facilities, including Font Lock mode (see Section 23.6
[Font Lock Mode], page 437) and the various complex movement commands (see Section 30.2
[Motion], page 624).

35.1 Syntax Table Concepts

A syntax table is a data structure which can be used to look up the syntax class and other
syntactic properties of each character. Syntax tables are used by Lisp programs for scanning
and moving across text.

Internally, a syntax table is a char-table (see Section 6.6 [Char-Tables], page 94). The
element at index c describes the character with code c; its value is a cons cell which
specifies the syntax of the character in question. See Section 35.7 [Syntax Table Internals],
page 769, for details. However, instead of using aset and aref to modify and inspect syntax
table contents, you should usually use the higher-level functions char-syntax and modify-

syntax-entry, which are described in Section 35.3 [Syntax Table Functions], page 762.

[Function]syntax-table-p object
This function returns t if object is a syntax table.

Each buffer has its own major mode, and each major mode has its own idea of the syntax
class of various characters. For example, in Lisp mode, the character ‘;’ begins a comment,
but in C mode, it terminates a statement. To support these variations, the syntax table is
local to each buffer. Typically, each major mode has its own syntax table, which it installs
in all buffers that use that mode. For example, the variable emacs-lisp-mode-syntax-

table holds the syntax table used by Emacs Lisp mode, and c-mode-syntax-table holds
the syntax table used by C mode. Changing a major mode’s syntax table alters the syntax
in all of that mode’s buffers, as well as in any buffers subsequently put in that mode.
Occasionally, several similar modes share one syntax table. See Section 23.2.9 [Example
Major Modes], page 419, for an example of how to set up a syntax table.

A syntax table can inherit from another syntax table, which is called its parent syntax
table. A syntax table can leave the syntax class of some characters unspecified, by giving
them the “inherit” syntax class; such a character then acquires the syntax class specified by
the parent syntax table (see Section 35.2.1 [Syntax Class Table], page 758). Emacs defines
a standard syntax table, which is the default parent syntax table, and is also the syntax
table used by Fundamental mode.

[Function]standard-syntax-table
This function returns the standard syntax table, which is the syntax table used in
Fundamental mode.

Syntax tables are not used by the Emacs Lisp reader, which has its own built-in syntactic
rules which cannot be changed. (Some Lisp systems provide ways to redefine the read
syntax, but we decided to leave this feature out of Emacs Lisp for simplicity.)

Chapter 35: Syntax Tables 758

35.2 Syntax Descriptors

The syntax class of a character describes its syntactic role. Each syntax table specifies the
syntax class of each character. There is no necessary relationship between the class of a
character in one syntax table and its class in any other table.

Each syntax class is designated by a mnemonic character, which serves as the name of the
class when you need to specify a class. Usually, this designator character is one that is often
assigned that class; however, its meaning as a designator is unvarying and independent of
what syntax that character currently has. Thus, ‘\’ as a designator character always means
“escape character” syntax, regardless of whether the ‘\’ character actually has that syntax
in the current syntax table.

A syntax descriptor is a Lisp string that describes the syntax class and other syntactic
properties of a character. When you want to modify the syntax of a character, that is done
by calling the function modify-syntax-entry and passing a syntax descriptor as one of its
arguments (see Section 35.3 [Syntax Table Functions], page 762).

The first character in a syntax descriptor must be a syntax class designator character.
The second character, if present, specifies a matching character (e.g., in Lisp, the match-
ing character for ‘(’ is ‘)’); a space specifies that there is no matching character. Then
come characters specifying additional syntax properties (see Section 35.2.2 [Syntax Flags],
page 761).

If no matching character or flags are needed, only one character (specifying the syntax
class) is sufficient.

For example, the syntax descriptor for the character ‘*’ in C mode is ". 23" (i.e., punctu-
ation, matching character slot unused, second character of a comment-starter, first character
of a comment-ender), and the entry for ‘/’ is ‘. 14’ (i.e., punctuation, matching character
slot unused, first character of a comment-starter, second character of a comment-ender).

Emacs also defines raw syntax descriptors, which are used to describe syntax classes at
a lower level. See Section 35.7 [Syntax Table Internals], page 769.

35.2.1 Table of Syntax Classes

Here is a table of syntax classes, the characters that designate them, their meanings, and
examples of their use.

Whitespace characters: ‘ ’ or ‘-’
Characters that separate symbols and words from each other. Typically, white-
space characters have no other syntactic significance, and multiple whitespace
characters are syntactically equivalent to a single one. Space, tab, and formfeed
are classified as whitespace in almost all major modes.

This syntax class can be designated by either ‘ ’ or ‘-’. Both designators are
equivalent.

Word constituents: ‘w’
Parts of words in human languages. These are typically used in variable and
command names in programs. All upper- and lower-case letters, and the digits,
are typically word constituents.

Chapter 35: Syntax Tables 759

Symbol constituents: ‘_’
Extra characters used in variable and command names along with word con-
stituents. Examples include the characters ‘$&*+-_<>’ in Lisp mode, which may
be part of a symbol name even though they are not part of English words. In
standard C, the only non-word-constituent character that is valid in symbols is
underscore (‘_’).

Punctuation characters: ‘.’
Characters used as punctuation in a human language, or used in a programming
language to separate symbols from one another. Some programming language
modes, such as Emacs Lisp mode, have no characters in this class since the
few characters that are not symbol or word constituents all have other uses.
Other programming language modes, such as C mode, use punctuation syntax
for operators.

Open parenthesis characters: ‘(’
Close parenthesis characters: ‘)’

Characters used in dissimilar pairs to surround sentences or expressions. Such
a grouping is begun with an open parenthesis character and terminated with a
close. Each open parenthesis character matches a particular close parenthesis
character, and vice versa. Normally, Emacs indicates momentarily the match-
ing open parenthesis when you insert a close parenthesis. See Section 38.19
[Blinking], page 899.

In human languages, and in C code, the parenthesis pairs are ‘()’, ‘[]’, and
‘{}’. In Emacs Lisp, the delimiters for lists and vectors (‘()’ and ‘[]’) are
classified as parenthesis characters.

String quotes: ‘"’
Characters used to delimit string constants. The same string quote character
appears at the beginning and the end of a string. Such quoted strings do not
nest.

The parsing facilities of Emacs consider a string as a single token. The usual
syntactic meanings of the characters in the string are suppressed.

The Lisp modes have two string quote characters: double-quote (‘"’) and ver-
tical bar (‘|’). ‘|’ is not used in Emacs Lisp, but it is used in Common Lisp. C
also has two string quote characters: double-quote for strings, and single-quote
(‘’’) for character constants.

Human text has no string quote characters. We do not want quotation marks
to turn off the usual syntactic properties of other characters in the quotation.

Escape-syntax characters: ‘\’
Characters that start an escape sequence, such as is used in string and character
constants. The character ‘\’ belongs to this class in both C and Lisp. (In C, it
is used thus only inside strings, but it turns out to cause no trouble to treat it
this way throughout C code.)

Characters in this class count as part of words if words-include-escapes is
non-nil. See Section 30.2.2 [Word Motion], page 625.

Chapter 35: Syntax Tables 760

Character quotes: ‘/’
Characters used to quote the following character so that it loses its normal syn-
tactic meaning. This differs from an escape character in that only the character
immediately following is ever affected.

Characters in this class count as part of words if words-include-escapes is
non-nil. See Section 30.2.2 [Word Motion], page 625.

This class is used for backslash in TEX mode.

Paired delimiters: ‘$’
Similar to string quote characters, except that the syntactic properties of the
characters between the delimiters are not suppressed. Only TEX mode uses a
paired delimiter presently—the ‘$’ that both enters and leaves math mode.

Expression prefixes: ‘’’
Characters used for syntactic operators that are considered as part of an ex-
pression if they appear next to one. In Lisp modes, these characters include
the apostrophe, ‘’’ (used for quoting), the comma, ‘,’ (used in macros), and ‘#’
(used in the read syntax for certain data types).

Comment starters: ‘<’
Comment enders: ‘>’

Characters used in various languages to delimit comments. Human text has
no comment characters. In Lisp, the semicolon (‘;’) starts a comment and a
newline or formfeed ends one.

Inherit standard syntax: ‘@’
This syntax class does not specify a particular syntax. It says to look in the
standard syntax table to find the syntax of this character.

Generic comment delimiters: ‘!’
Characters that start or end a special kind of comment. Any generic comment
delimiter matches any generic comment delimiter, but they cannot match a
comment starter or comment ender; generic comment delimiters can only match
each other.

This syntax class is primarily meant for use with the syntax-table text prop-
erty (see Section 35.4 [Syntax Properties], page 764). You can mark any range
of characters as forming a comment, by giving the first and last characters of
the range syntax-table properties identifying them as generic comment de-
limiters.

Generic string delimiters: ‘|’
Characters that start or end a string. This class differs from the string quote
class in that any generic string delimiter can match any other generic string
delimiter; but they do not match ordinary string quote characters.

This syntax class is primarily meant for use with the syntax-table text prop-
erty (see Section 35.4 [Syntax Properties], page 764). You can mark any range
of characters as forming a string constant, by giving the first and last charac-
ters of the range syntax-table properties identifying them as generic string
delimiters.

Chapter 35: Syntax Tables 761

35.2.2 Syntax Flags

In addition to the classes, entries for characters in a syntax table can specify flags. There
are eight possible flags, represented by the characters ‘1’, ‘2’, ‘3’, ‘4’, ‘b’, ‘c’, ‘n’, and ‘p’.

All the flags except ‘p’ are used to describe comment delimiters. The digit flags are
used for comment delimiters made up of 2 characters. They indicate that a character can
also be part of a comment sequence, in addition to the syntactic properties associated with
its character class. The flags are independent of the class and each other for the sake of
characters such as ‘*’ in C mode, which is a punctuation character, and the second character
of a start-of-comment sequence (‘/*’), and the first character of an end-of-comment sequence
(‘*/’). The flags ‘b’, ‘c’, and ‘n’ are used to qualify the corresponding comment delimiter.

Here is a table of the possible flags for a character c, and what they mean:

• ‘1’ means c is the start of a two-character comment-start sequence.

• ‘2’ means c is the second character of such a sequence.

• ‘3’ means c is the start of a two-character comment-end sequence.

• ‘4’ means c is the second character of such a sequence.

• ‘b’ means that c as a comment delimiter belongs to the alternative “b” comment style.
For a two-character comment starter, this flag is only significant on the second char,
and for a 2-character comment ender it is only significant on the first char.

• ‘c’ means that c as a comment delimiter belongs to the alternative “c” comment style.
For a two-character comment delimiter, ‘c’ on either character makes it of style “c”.

• ‘n’ on a comment delimiter character specifies that this kind of comment can be nested.
For a two-character comment delimiter, ‘n’ on either character makes it nestable.

Emacs supports several comment styles simultaneously in any one syntax table. A
comment style is a set of flags ‘b’, ‘c’, and ‘n’, so there can be up to 8 different comment
styles. Each comment delimiter has a style and only matches comment delimiters of
the same style. Thus if a comment starts with the comment-start sequence of style
“bn”, it will extend until the next matching comment-end sequence of style “bn”.

The appropriate comment syntax settings for C++ can be as follows:

‘/’ ‘124’

‘*’ ‘23b’

newline ‘>’

This defines four comment-delimiting sequences:

‘/*’ This is a comment-start sequence for “b” style because the second charac-
ter, ‘*’, has the ‘b’ flag.

‘//’ This is a comment-start sequence for “a” style because the second charac-
ter, ‘/’, does not have the ‘b’ flag.

‘*/’ This is a comment-end sequence for “b” style because the first character,
‘*’, has the ‘b’ flag.

newline This is a comment-end sequence for “a” style, because the newline character
does not have the ‘b’ flag.

Chapter 35: Syntax Tables 762

• ‘p’ identifies an additional “prefix character” for Lisp syntax. These characters are
treated as whitespace when they appear between expressions. When they appear within
an expression, they are handled according to their usual syntax classes.

The function backward-prefix-chars moves back over these characters, as well as
over characters whose primary syntax class is prefix (‘’’). See Section 35.5 [Motion
and Syntax], page 765.

35.3 Syntax Table Functions

In this section we describe functions for creating, accessing and altering syntax tables.

[Function]make-syntax-table &optional table
This function creates a new syntax table. If table is non-nil, the parent of the new
syntax table is table; otherwise, the parent is the standard syntax table.

In the new syntax table, all characters are initially given the “inherit” (‘@’) syntax
class, i.e., their syntax is inherited from the parent table (see Section 35.2.1 [Syntax
Class Table], page 758).

[Function]copy-syntax-table &optional table
This function constructs a copy of table and returns it. If table is omitted or nil, it
returns a copy of the standard syntax table. Otherwise, an error is signaled if table
is not a syntax table.

[Command]modify-syntax-entry char syntax-descriptor &optional table
This function sets the syntax entry for char according to syntax-descriptor. char
must be a character, or a cons cell of the form (min . max); in the latter case, the
function sets the syntax entries for all characters in the range between min and max,
inclusive.

The syntax is changed only for table, which defaults to the current buffer’s syntax
table, and not in any other syntax table.

The argument syntax-descriptor is a syntax descriptor, i.e., a string whose first charac-
ter is a syntax class designator and whose second and subsequent characters optionally
specify a matching character and syntax flags. See Section 35.2 [Syntax Descriptors],
page 758. An error is signaled if syntax-descriptor is not a valid syntax descriptor.

This function always returns nil. The old syntax information in the table for this
character is discarded.

Examples:

;; Put the space character in class whitespace.
(modify-syntax-entry ?\s " ")

⇒ nil

;; Make ‘$’ an open parenthesis character,
;; with ‘^’ as its matching close.
(modify-syntax-entry ?$ "(^")

⇒ nil

Chapter 35: Syntax Tables 763

;; Make ‘^’ a close parenthesis character,
;; with ‘$’ as its matching open.
(modify-syntax-entry ?^ ")$")

⇒ nil

;; Make ‘/’ a punctuation character,
;; the first character of a start-comment sequence,
;; and the second character of an end-comment sequence.
;; This is used in C mode.
(modify-syntax-entry ?/ ". 14")

⇒ nil

[Function]char-syntax character
This function returns the syntax class of character, represented by its designator
character (see Section 35.2.1 [Syntax Class Table], page 758). This returns only the
class, not its matching character or syntax flags.

The following examples apply to C mode. (We use string to make it easier to see
the character returned by char-syntax.)

;; Space characters have whitespace syntax class.

(string (char-syntax ?\s))

⇒ " "

;; Forward slash characters have punctuation syntax.

;; Note that this char-syntax call does not reveal

;; that it is also part of comment-start and -end sequences.

(string (char-syntax ?/))

⇒ "."

;; Open parenthesis characters have open parenthesis syntax.

;; Note that this char-syntax call does not reveal that

;; it has a matching character, ‘)’.

(string (char-syntax ?\())

⇒ "("

[Function]set-syntax-table table
This function makes table the syntax table for the current buffer. It returns table.

[Function]syntax-table
This function returns the current syntax table, which is the table for the current
buffer.

[Macro]with-syntax-table table body. . .
This macro executes body using table as the current syntax table. It returns the
value of the last form in body, after restoring the old current syntax table.

Since each buffer has its own current syntax table, we should make that more precise:
with-syntax-table temporarily alters the current syntax table of whichever buffer
is current at the time the macro execution starts. Other buffers are not affected.

Chapter 35: Syntax Tables 764

35.4 Syntax Properties

When the syntax table is not flexible enough to specify the syntax of a language, you can
override the syntax table for specific character occurrences in the buffer, by applying a
syntax-table text property. See Section 32.19 [Text Properties], page 680, for how to
apply text properties.

The valid values of syntax-table text property are:

syntax-table
If the property value is a syntax table, that table is used instead of the current
buffer’s syntax table to determine the syntax for the underlying text character.

(syntax-code . matching-char)

A cons cell of this format is a raw syntax descriptor (see Section 35.7 [Syn-
tax Table Internals], page 769), which directly specifies a syntax class for the
underlying text character.

nil If the property is nil, the character’s syntax is determined from the current
syntax table in the usual way.

[Variable]parse-sexp-lookup-properties
If this is non-nil, the syntax scanning functions, like forward-sexp, pay attention
to syntax text properties. Otherwise they use only the current syntax table.

[Variable]syntax-propertize-function
This variable, if non-nil, should store a function for applying syntax-table proper-
ties to a specified stretch of text. It is intended to be used by major modes to install
a function which applies syntax-table properties in some mode-appropriate way.

The function is called by syntax-ppss (see Section 35.6.2 [Position Parse], page 766),
and by Font Lock mode during syntactic fontification (see Section 23.6.8 [Syntactic
Font Lock], page 445). It is called with two arguments, start and end, which are the
starting and ending positions of the text on which it should act. It is allowed to call
syntax-ppss on any position before end. However, it should not call syntax-ppss-
flush-cache; so, it is not allowed to call syntax-ppss on some position and later
modify the buffer at an earlier position.

[Variable]syntax-propertize-extend-region-functions
This abnormal hook is run by the syntax parsing code prior to calling syntax-

propertize-function. Its role is to help locate safe starting and ending buffer
positions for passing to syntax-propertize-function. For example, a major mode
can add a function to this hook to identify multi-line syntactic constructs, and ensure
that the boundaries do not fall in the middle of one.

Each function in this hook should accept two arguments, start and end. It should
return either a cons cell of two adjusted buffer positions, (new-start . new-end), or
nil if no adjustment is necessary. The hook functions are run in turn, repeatedly,
until they all return nil.

Chapter 35: Syntax Tables 765

35.5 Motion and Syntax

This section describes functions for moving across characters that have certain syntax
classes.

[Function]skip-syntax-forward syntaxes &optional limit
This function moves point forward across characters having syntax classes mentioned
in syntaxes (a string of syntax class characters). It stops when it encounters the end
of the buffer, or position limit (if specified), or a character it is not supposed to skip.

If syntaxes starts with ‘^’, then the function skips characters whose syntax is not in
syntaxes.

The return value is the distance traveled, which is a nonnegative integer.

[Function]skip-syntax-backward syntaxes &optional limit
This function moves point backward across characters whose syntax classes are men-
tioned in syntaxes. It stops when it encounters the beginning of the buffer, or position
limit (if specified), or a character it is not supposed to skip.

If syntaxes starts with ‘^’, then the function skips characters whose syntax is not in
syntaxes.

The return value indicates the distance traveled. It is an integer that is zero or less.

[Function]backward-prefix-chars
This function moves point backward over any number of characters with expression
prefix syntax. This includes both characters in the expression prefix syntax class, and
characters with the ‘p’ flag.

35.6 Parsing Expressions

This section describes functions for parsing and scanning balanced expressions. We will refer
to such expressions as sexps, following the terminology of Lisp, even though these functions
can act on languages other than Lisp. Basically, a sexp is either a balanced parenthetical
grouping, a string, or a “symbol” (i.e., a sequence of characters whose syntax is either word
constituent or symbol constituent). However, characters in the expression prefix syntax
class (see Section 35.2.1 [Syntax Class Table], page 758) are treated as part of the sexp if
they appear next to it.

The syntax table controls the interpretation of characters, so these functions can be
used for Lisp expressions when in Lisp mode and for C expressions when in C mode. See
Section 30.2.6 [List Motion], page 630, for convenient higher-level functions for moving over
balanced expressions.

A character’s syntax controls how it changes the state of the parser, rather than describ-
ing the state itself. For example, a string delimiter character toggles the parser state be-
tween “in-string” and “in-code”, but the syntax of characters does not directly say whether
they are inside a string. For example (note that 15 is the syntax code for generic string
delimiters),

(put-text-property 1 9 ’syntax-table ’(15 . nil))

does not tell Emacs that the first eight chars of the current buffer are a string, but rather
that they are all string delimiters. As a result, Emacs treats them as four consecutive empty
string constants.

Chapter 35: Syntax Tables 766

35.6.1 Motion Commands Based on Parsing

This section describes simple point-motion functions that operate based on parsing expres-
sions.

[Function]scan-lists from count depth
This function scans forward count balanced parenthetical groupings from position
from. It returns the position where the scan stops. If count is negative, the scan
moves backwards.

If depth is nonzero, treat the starting position as being depth parentheses deep. The
scanner moves forward or backward through the buffer until the depth changes to
zero count times. Hence, a positive value for depth has the effect of moving out depth
levels of parenthesis from the starting position, while a negative depth has the effect
of moving deeper by -depth levels of parenthesis.

Scanning ignores comments if parse-sexp-ignore-comments is non-nil.

If the scan reaches the beginning or end of the accessible part of the buffer before it
has scanned over count parenthetical groupings, the return value is nil if the depth
at that point is zero; if the depth is non-zero, a scan-error error is signaled.

[Function]scan-sexps from count
This function scans forward count sexps from position from. It returns the position
where the scan stops. If count is negative, the scan moves backwards.

Scanning ignores comments if parse-sexp-ignore-comments is non-nil.

If the scan reaches the beginning or end of (the accessible part of) the buffer while in
the middle of a parenthetical grouping, an error is signaled. If it reaches the beginning
or end between groupings but before count is used up, nil is returned.

[Function]forward-comment count
This function moves point forward across count complete comments (that is, includ-
ing the starting delimiter and the terminating delimiter if any), plus any whitespace
encountered on the way. It moves backward if count is negative. If it encounters any-
thing other than a comment or whitespace, it stops, leaving point at the place where
it stopped. This includes (for instance) finding the end of a comment when moving
forward and expecting the beginning of one. The function also stops immediately
after moving over the specified number of complete comments. If count comments
are found as expected, with nothing except whitespace between them, it returns t;
otherwise it returns nil.

This function cannot tell whether the “comments” it traverses are embedded within
a string. If they look like comments, it treats them as comments.

To move forward over all comments and whitespace following point, use (forward-

comment (buffer-size)). (buffer-size) is a good argument to use, because the
number of comments in the buffer cannot exceed that many.

35.6.2 Finding the Parse State for a Position

For syntactic analysis, such as in indentation, often the useful thing is to compute the syn-
tactic state corresponding to a given buffer position. This function does that conveniently.

Chapter 35: Syntax Tables 767

[Function]syntax-ppss &optional pos
This function returns the parser state that the parser would reach at position pos
starting from the beginning of the buffer. See the next section for for a description of
the parser state.

The return value is the same as if you call the low-level parsing function parse-

partial-sexp to parse from the beginning of the buffer to pos (see Section 35.6.4
[Low-Level Parsing], page 768). However, syntax-ppss uses a cache to speed up
the computation. Due to this optimization, the second value (previous complete
subexpression) and sixth value (minimum parenthesis depth) in the returned parser
state are not meaningful.

This function has a side effect: it adds a buffer-local entry to before-change-

functions (see Section 32.27 [Change Hooks], page 703) for syntax-ppss-flush-

cache (see below). This entry keeps the cache consistent as the buffer is modified.
However, the cache might not be updated if syntax-ppss is called while before-

change-functions is temporarily let-bound, or if the buffer is modified without run-
ning the hook, such as when using inhibit-modification-hooks. In those cases, it
is necessary to call syntax-ppss-flush-cache explicitly.

[Function]syntax-ppss-flush-cache beg &rest ignored-args
This function flushes the cache used by syntax-ppss, starting at position beg. The
remaining arguments, ignored-args, are ignored; this function accepts them so that it
can be directly used on hooks such as before-change-functions (see Section 32.27
[Change Hooks], page 703).

Major modes can make syntax-ppss run faster by specifying where it needs to start
parsing.

[Variable]syntax-begin-function
If this is non-nil, it should be a function that moves to an earlier buffer position
where the parser state is equivalent to nil—in other words, a position outside of
any comment, string, or parenthesis. syntax-ppss uses it to further optimize its
computations, when the cache gives no help.

35.6.3 Parser State

A parser state is a list of ten elements describing the state of the syntactic parser, after it
parses the text between a specified starting point and a specified end point in the buffer.
Parsing functions such as syntax-ppss return a parser state as the value. Some parsing
functions accept a parser state as an argument, for resuming parsing.

Here are the meanings of the elements of the parser state:

0. The depth in parentheses, counting from 0. Warning: this can be negative if there are
more close parens than open parens between the parser’s starting point and end point.

1. The character position of the start of the innermost parenthetical grouping containing
the stopping point; nil if none.

2. The character position of the start of the last complete subexpression terminated; nil
if none.

3. Non-nil if inside a string. More precisely, this is the character that will terminate the
string, or t if a generic string delimiter character should terminate it.

Chapter 35: Syntax Tables 768

4. t if inside a non-nestable comment (of any comment style; see Section 35.2.2 [Syntax
Flags], page 761); or the comment nesting level if inside a comment that can be nested.

5. t if the end point is just after a quote character.

6. The minimum parenthesis depth encountered during this scan.

7. What kind of comment is active: nil if not in a comment or in a comment of style
‘a’; 1 for a comment of style ‘b’; 2 for a comment of style ‘c’; and syntax-table for a
comment that should be ended by a generic comment delimiter character.

8. The string or comment start position. While inside a comment, this is the position
where the comment began; while inside a string, this is the position where the string
began. When outside of strings and comments, this element is nil.

9. Internal data for continuing the parsing. The meaning of this data is subject to change;
it is used if you pass this list as the state argument to another call.

Elements 1, 2, and 6 are ignored in a state which you pass as an argument to continue
parsing, and elements 8 and 9 are used only in trivial cases. Those elements are mainly
used internally by the parser code.

One additional piece of useful information is available from a parser state using this
function:

[Function]syntax-ppss-toplevel-pos state
This function extracts, from parser state state, the last position scanned in the parse
which was at top level in grammatical structure. “At top level” means outside of any
parentheses, comments, or strings.

The value is nil if state represents a parse which has arrived at a top level position.

35.6.4 Low-Level Parsing

The most basic way to use the expression parser is to tell it to start at a given position with
a certain state, and parse up to a specified end position.

[Function]parse-partial-sexp start limit &optional target-depth stop-before
state stop-comment

This function parses a sexp in the current buffer starting at start, not scanning past
limit. It stops at position limit or when certain criteria described below are met, and
sets point to the location where parsing stops. It returns a parser state describing
the status of the parse at the point where it stops.

If the third argument target-depth is non-nil, parsing stops if the depth in parentheses
becomes equal to target-depth. The depth starts at 0, or at whatever is given in state.

If the fourth argument stop-before is non-nil, parsing stops when it comes to any
character that starts a sexp. If stop-comment is non-nil, parsing stops when it
comes to the start of a comment. If stop-comment is the symbol syntax-table,
parsing stops after the start of a comment or a string, or the end of a comment or a
string, whichever comes first.

If state is nil, start is assumed to be at the top level of parenthesis structure, such
as the beginning of a function definition. Alternatively, you might wish to resume
parsing in the middle of the structure. To do this, you must provide a state argument
that describes the initial status of parsing. The value returned by a previous call to
parse-partial-sexp will do nicely.

Chapter 35: Syntax Tables 769

35.6.5 Parameters to Control Parsing

[Variable]multibyte-syntax-as-symbol
If this variable is non-nil, scan-sexps treats all non-ASCII characters as symbol
constituents regardless of what the syntax table says about them. (However, text
properties can still override the syntax.)

[User Option]parse-sexp-ignore-comments
If the value is non-nil, then comments are treated as whitespace by the functions in
this section and by forward-sexp, scan-lists and scan-sexps.

The behavior of parse-partial-sexp is also affected by parse-sexp-lookup-

properties (see Section 35.4 [Syntax Properties], page 764).

You can use forward-comment to move forward or backward over one comment or several
comments.

35.7 Syntax Table Internals

Syntax tables are implemented as char-tables (see Section 6.6 [Char-Tables], page 94), but
most Lisp programs don’t work directly with their elements. Syntax tables do not store
syntax data as syntax descriptors (see Section 35.2 [Syntax Descriptors], page 758); they
use an internal format, which is documented in this section. This internal format can also
be assigned as syntax properties (see Section 35.4 [Syntax Properties], page 764).

Each entry in a syntax table is a raw syntax descriptor: a cons cell of the form (syntax-

code . matching-char). syntax-code is an integer which encodes the syntax class and
syntax flags, according to the table below. matching-char, if non-nil, specifies a matching
character (similar to the second character in a syntax descriptor).

Here are the syntax codes corresponding to the various syntax classes:

Code Class Code Class
0 whitespace 8 paired delimiter
1 punctuation 9 escape
2 word 10 character quote
3 symbol 11 comment-start
4 open parenthesis 12 comment-end
5 close parenthesis 13 inherit
6 expression prefix 14 generic comment
7 string quote 15 generic string

For example, in the standard syntax table, the entry for ‘(’ is (4 . 41). 41 is the character
code for ‘)’.

Syntax flags are encoded in higher order bits, starting 16 bits from the least significant
bit. This table gives the power of two which corresponds to each syntax flag.

Prefix Flag Prefix Flag
‘1’ (lsh 1 16) ‘p’ (lsh 1 20)

‘2’ (lsh 1 17) ‘b’ (lsh 1 21)

‘3’ (lsh 1 18) ‘n’ (lsh 1 22)

‘4’ (lsh 1 19)

Chapter 35: Syntax Tables 770

[Function]string-to-syntax desc
Given a syntax descriptor desc (a string), this function returns the corresponding raw
syntax descriptor.

[Function]syntax-after pos
This function returns the raw syntax descriptor for the character in the buffer after
position pos, taking account of syntax properties as well as the syntax table. If pos
is outside the buffer’s accessible portion (see Section 30.4 [Narrowing], page 633), the
return value is nil.

[Function]syntax-class syntax
This function returns the syntax code for the raw syntax descriptor syntax. More
precisely, it takes the raw syntax descriptor’s syntax-code component, masks off the
high 16 bits which record the syntax flags, and returns the resulting integer.

If syntax is nil, the return value is returns nil. This is so that the expression

(syntax-class (syntax-after pos))

evaluates to nil if pos is outside the buffer’s accessible portion, without throwing
errors or returning an incorrect code.

35.8 Categories

Categories provide an alternate way of classifying characters syntactically. You can define
several categories as needed, then independently assign each character to one or more cat-
egories. Unlike syntax classes, categories are not mutually exclusive; it is normal for one
character to belong to several categories.

Each buffer has a category table which records which categories are defined and also
which characters belong to each category. Each category table defines its own categories,
but normally these are initialized by copying from the standard categories table, so that
the standard categories are available in all modes.

Each category has a name, which is an ASCII printing character in the range ‘ ’ to ‘~’.
You specify the name of a category when you define it with define-category.

The category table is actually a char-table (see Section 6.6 [Char-Tables], page 94). The
element of the category table at index c is a category set—a bool-vector—that indicates
which categories character c belongs to. In this category set, if the element at index cat is
t, that means category cat is a member of the set, and that character c belongs to category
cat.

For the next three functions, the optional argument table defaults to the current buffer’s
category table.

[Function]define-category char docstring &optional table
This function defines a new category, with name char and documentation docstring,
for the category table table.

Here’s an example of defining a new category for characters that have strong right-
to-left directionality (see Section 38.23 [Bidirectional Display], page 906) and using it
in a special category table:

Chapter 35: Syntax Tables 771

(defvar special-category-table-for-bidi

(let ((category-table (make-category-table))

(uniprop-table (unicode-property-table-internal ’bidi-class)))

(define-category ?R "Characters of bidi-class R, AL, or RLO"

category-table)

(map-char-table

#’(lambda (key val)

(if (memq val ’(R AL RLO))

(modify-category-entry key ?R category-table)))

uniprop-table)

category-table))

[Function]category-docstring category &optional table
This function returns the documentation string of category category in category table
table.

(category-docstring ?a)

⇒ "ASCII"

(category-docstring ?l)

⇒ "Latin"

[Function]get-unused-category &optional table
This function returns a category name (a character) which is not currently defined in
table. If all possible categories are in use in table, it returns nil.

[Function]category-table
This function returns the current buffer’s category table.

[Function]category-table-p object
This function returns t if object is a category table, otherwise nil.

[Function]standard-category-table
This function returns the standard category table.

[Function]copy-category-table &optional table
This function constructs a copy of table and returns it. If table is not supplied (or is
nil), it returns a copy of the standard category table. Otherwise, an error is signaled
if table is not a category table.

[Function]set-category-table table
This function makes table the category table for the current buffer. It returns table.

[Function]make-category-table
This creates and returns an empty category table. In an empty category table, no
categories have been allocated, and no characters belong to any categories.

[Function]make-category-set categories
This function returns a new category set—a bool-vector—whose initial contents are
the categories listed in the string categories. The elements of categories should be
category names; the new category set has t for each of those categories, and nil for
all other categories.

Chapter 35: Syntax Tables 772

(make-category-set "al")

⇒ #&128"\0\0\0\0\0\0\0\0\0\0\0\0\2\20\0\0"

[Function]char-category-set char
This function returns the category set for character char in the current buffer’s cate-
gory table. This is the bool-vector which records which categories the character char
belongs to. The function char-category-set does not allocate storage, because it
returns the same bool-vector that exists in the category table.

(char-category-set ?a)

⇒ #&128"\0\0\0\0\0\0\0\0\0\0\0\0\2\20\0\0"

[Function]category-set-mnemonics category-set
This function converts the category set category-set into a string containing the char-
acters that designate the categories that are members of the set.

(category-set-mnemonics (char-category-set ?a))

⇒ "al"

[Function]modify-category-entry char category &optional table reset
This function modifies the category set of char in category table table (which defaults
to the current buffer’s category table). char can be a character, or a cons cell of the
form (min . max); in the latter case, the function modifies the category sets of all
characters in the range between min and max, inclusive.

Normally, it modifies a category set by adding category to it. But if reset is non-nil,
then it deletes category instead.

[Command]describe-categories &optional buffer-or-name
This function describes the category specifications in the current category table. It
inserts the descriptions in a buffer, and then displays that buffer. If buffer-or-name
is non-nil, it describes the category table of that buffer instead.

Chapter 36: Abbrevs and Abbrev Expansion 773

36 Abbrevs and Abbrev Expansion

An abbreviation or abbrev is a string of characters that may be expanded to a longer string.
The user can insert the abbrev string and find it replaced automatically with the expansion
of the abbrev. This saves typing.

The set of abbrevs currently in effect is recorded in an abbrev table. Each buffer has a
local abbrev table, but normally all buffers in the same major mode share one abbrev table.
There is also a global abbrev table. Normally both are used.

An abbrev table is represented as an obarray. See Section 8.3 [Creating Symbols],
page 106, for information about obarrays. Each abbreviation is represented by a sym-
bol in the obarray. The symbol’s name is the abbreviation; its value is the expansion;
its function definition is the hook function for performing the expansion (see Section 36.2
[Defining Abbrevs], page 774); and its property list cell contains various additional proper-
ties, including the use count and the number of times the abbreviation has been expanded
(see Section 36.6 [Abbrev Properties], page 778).

Certain abbrevs, called system abbrevs, are defined by a major mode instead of the user.
A system abbrev is identified by its non-nil :system property (see Section 36.6 [Abbrev
Properties], page 778). When abbrevs are saved to an abbrev file, system abbrevs are
omitted. See Section 36.3 [Abbrev Files], page 775.

Because the symbols used for abbrevs are not interned in the usual obarray, they will
never appear as the result of reading a Lisp expression; in fact, normally they are never used
except by the code that handles abbrevs. Therefore, it is safe to use them in a nonstandard
way.

If the minor mode Abbrev mode is enabled, the buffer-local variable abbrev-mode is non-
nil, and abbrevs are automatically expanded in the buffer. For the user-level commands
for abbrevs, see Section “Abbrev Mode” in The GNU Emacs Manual.

36.1 Abbrev Tables

This section describes how to create and manipulate abbrev tables.

[Function]make-abbrev-table &optional props
This function creates and returns a new, empty abbrev table—an obarray containing
no symbols. It is a vector filled with zeros. props is a property list that is applied to
the new table (see Section 36.7 [Abbrev Table Properties], page 779).

[Function]abbrev-table-p object
This function returns a non-nil value if object is an abbrev table.

[Function]clear-abbrev-table abbrev-table
This function undefines all the abbrevs in abbrev-table, leaving it empty.

[Function]copy-abbrev-table abbrev-table
This function returns a copy of abbrev-table—a new abbrev table containing the same
abbrev definitions. It does not copy any property lists; only the names, values, and
functions.

Chapter 36: Abbrevs and Abbrev Expansion 774

[Function]define-abbrev-table tabname definitions &optional docstring &rest
props

This function defines tabname (a symbol) as an abbrev table name, i.e., as a variable
whose value is an abbrev table. It defines abbrevs in the table according to definitions,
a list of elements of the form (abbrevname expansion [hook] [props...]). These
elements are passed as arguments to define-abbrev.

The optional string docstring is the documentation string of the variable tabname.
The property list props is applied to the abbrev table (see Section 36.7 [Abbrev Table
Properties], page 779).

If this function is called more than once for the same tabname, subsequent calls add
the definitions in definitions to tabname, rather than overwriting the entire original
contents. (A subsequent call only overrides abbrevs explicitly redefined or undefined
in definitions.)

[Variable]abbrev-table-name-list
This is a list of symbols whose values are abbrev tables. define-abbrev-table adds
the new abbrev table name to this list.

[Function]insert-abbrev-table-description name &optional human
This function inserts before point a description of the abbrev table named name. The
argument name is a symbol whose value is an abbrev table.

If human is non-nil, the description is human-oriented. System abbrevs are listed
and identified as such. Otherwise the description is a Lisp expression—a call to
define-abbrev-table that would define name as it is currently defined, but without
the system abbrevs. (The mode or package using name is supposed to add these to
name separately.)

36.2 Defining Abbrevs

define-abbrev is the low-level basic function for defining an abbrev in an abbrev table.

When a major mode defines a system abbrev, it should call define-abbrev and specify
t for the :system property. Be aware that any saved non-“system” abbrevs are restored
at startup, i.e., before some major modes are loaded. Therefore, major modes should not
assume that their abbrev tables are empty when they are first loaded.

[Function]define-abbrev abbrev-table name expansion &optional hook &rest
props

This function defines an abbrev named name, in abbrev-table, to expand to expansion
and call hook, with properties props (see Section 36.6 [Abbrev Properties], page 778).
The return value is name. The :system property in props is treated specially here:
if it has the value force, then it will overwrite an existing definition even for a non-
“system” abbrev of the same name.

name should be a string. The argument expansion is normally the desired expansion
(a string), or nil to undefine the abbrev. If it is anything but a string or nil, then
the abbreviation “expands” solely by running hook.

The argument hook is a function or nil. If hook is non-nil, then it is called with no
arguments after the abbrev is replaced with expansion; point is located at the end of
expansion when hook is called.

Chapter 36: Abbrevs and Abbrev Expansion 775

If hook is a non-nil symbol whose no-self-insert property is non-nil, hook can
explicitly control whether to insert the self-inserting input character that triggered
the expansion. If hook returns non-nil in this case, that inhibits insertion of the
character. By contrast, if hook returns nil, expand-abbrev (or abbrev-insert)
also returns nil, as if expansion had not really occurred.

Normally, define-abbrev sets the variable abbrevs-changed to t, if it actually
changes the abbrev. This is so that some commands will offer to save the abbrevs. It
does not do this for a system abbrev, since those aren’t saved anyway.

[User Option]only-global-abbrevs
If this variable is non-nil, it means that the user plans to use global abbrevs only. This
tells the commands that define mode-specific abbrevs to define global ones instead.
This variable does not alter the behavior of the functions in this section; it is examined
by their callers.

36.3 Saving Abbrevs in Files

A file of saved abbrev definitions is actually a file of Lisp code. The abbrevs are saved in the
form of a Lisp program to define the same abbrev tables with the same contents. Therefore,
you can load the file with load (see Section 15.1 [How Programs Do Loading], page 215).
However, the function quietly-read-abbrev-file is provided as a more convenient inter-
face. Emacs automatically calls this function at startup.

User-level facilities such as save-some-buffers can save abbrevs in a file automatically,
under the control of variables described here.

[User Option]abbrev-file-name
This is the default file name for reading and saving abbrevs.

[Function]quietly-read-abbrev-file &optional filename
This function reads abbrev definitions from a file named filename, previously written
with write-abbrev-file. If filename is omitted or nil, the file specified in abbrev-

file-name is used.

As the name implies, this function does not display any messages.

[User Option]save-abbrevs
A non-nil value for save-abbrevs means that Emacs should offer to save abbrevs
(if any have changed) when files are saved. If the value is silently, Emacs saves
the abbrevs without asking the user. abbrev-file-name specifies the file to save the
abbrevs in.

[Variable]abbrevs-changed
This variable is set non-nil by defining or altering any abbrevs (except system ab-
brevs). This serves as a flag for various Emacs commands to offer to save your
abbrevs.

[Command]write-abbrev-file &optional filename
Save all abbrev definitions (except system abbrevs), for all abbrev tables listed in
abbrev-table-name-list, in the file filename, in the form of a Lisp program that
when loaded will define the same abbrevs. If filename is nil or omitted, abbrev-
file-name is used. This function returns nil.

Chapter 36: Abbrevs and Abbrev Expansion 776

36.4 Looking Up and Expanding Abbreviations

Abbrevs are usually expanded by certain interactive commands, including self-insert-

command. This section describes the subroutines used in writing such commands, as well as
the variables they use for communication.

[Function]abbrev-symbol abbrev &optional table
This function returns the symbol representing the abbrev named abbrev. It returns
nil if that abbrev is not defined. The optional second argument table is the abbrev
table in which to look it up. If table is nil, this function tries first the current buffer’s
local abbrev table, and second the global abbrev table.

[Function]abbrev-expansion abbrev &optional table
This function returns the string that abbrev would expand into (as defined by the
abbrev tables used for the current buffer). It returns nil if abbrev is not a valid
abbrev. The optional argument table specifies the abbrev table to use, as in abbrev-

symbol.

[Command]expand-abbrev
This command expands the abbrev before point, if any. If point does not follow an
abbrev, this command does nothing. The command returns the abbrev symbol if it
did expansion, nil otherwise.

If the abbrev symbol has a hook function that is a symbol whose no-self-insert

property is non-nil, and if the hook function returns nil as its value, then expand-

abbrev returns nil even though expansion did occur.

[Function]abbrev-insert abbrev &optional name start end
This function inserts the abbrev expansion of abbrev, replacing the text between
start and end. If start is omitted, it defaults to point. name, if non-nil, should be
the name by which this abbrev was found (a string); it is used to figure out whether to
adjust the capitalization of the expansion. The function returns abbrev if the abbrev
was successfully inserted.

[Command]abbrev-prefix-mark &optional arg
This command marks the current location of point as the beginning of an abbrev.
The next call to expand-abbrev will use the text from here to point (where it is then)
as the abbrev to expand, rather than using the previous word as usual.

First, this command expands any abbrev before point, unless arg is non-nil. (In-
teractively, arg is the prefix argument.) Then it inserts a hyphen before point, to
indicate the start of the next abbrev to be expanded. The actual expansion removes
the hyphen.

[User Option]abbrev-all-caps
When this is set non-nil, an abbrev entered entirely in upper case is expanded using
all upper case. Otherwise, an abbrev entered entirely in upper case is expanded by
capitalizing each word of the expansion.

[Variable]abbrev-start-location
The value of this variable is a buffer position (an integer or a marker) for expand-
abbrev to use as the start of the next abbrev to be expanded. The value can also be

Chapter 36: Abbrevs and Abbrev Expansion 777

nil, which means to use the word before point instead. abbrev-start-location is
set to nil each time expand-abbrev is called. This variable is also set by abbrev-

prefix-mark.

[Variable]abbrev-start-location-buffer
The value of this variable is the buffer for which abbrev-start-location has been
set. Trying to expand an abbrev in any other buffer clears abbrev-start-location.
This variable is set by abbrev-prefix-mark.

[Variable]last-abbrev
This is the abbrev-symbol of the most recent abbrev expanded. This information is
left by expand-abbrev for the sake of the unexpand-abbrev command (see Section
“Expanding Abbrevs” in The GNU Emacs Manual).

[Variable]last-abbrev-location
This is the location of the most recent abbrev expanded. This contains information
left by expand-abbrev for the sake of the unexpand-abbrev command.

[Variable]last-abbrev-text
This is the exact expansion text of the most recent abbrev expanded, after case
conversion (if any). Its value is nil if the abbrev has already been unexpanded. This
contains information left by expand-abbrev for the sake of the unexpand-abbrev

command.

[Variable]abbrev-expand-functions
This is a wrapper hook (see Section 23.1.1 [Running Hooks], page 404) run around the
expand-abbrev function. Each function on this hook is called with a single argument:
a function that performs the normal abbrev expansion. The hook function can hence
do anything it wants before and after performing the expansion. It can also choose
not to call its argument, thus overriding the default behavior; or it may even call it
several times. The function should return the abbrev symbol if expansion took place.

The following sample code shows a simple use of abbrev-expand-functions. It assumes
that foo-mode is a mode for editing certain files in which lines that start with ‘#’ are
comments. You want to use Text mode abbrevs for those lines. The regular local abbrev
table, foo-mode-abbrev-table is appropriate for all other lines. See Section 36.5 [Standard
Abbrev Tables], page 778, for the definitions of local-abbrev-table and text-mode-

abbrev-table.

(defun foo-mode-abbrev-expand-function (expand)

(if (not (save-excursion (forward-line 0) (eq (char-after) ?#)))

;; Performs normal expansion.

(funcall expand)

;; We’re inside a comment: use the text-mode abbrevs.

(let ((local-abbrev-table text-mode-abbrev-table))

(funcall expand))))

(add-hook ’foo-mode-hook

#’(lambda ()

(add-hook ’abbrev-expand-functions

’foo-mode-abbrev-expand-function

nil t)))

Chapter 36: Abbrevs and Abbrev Expansion 778

36.5 Standard Abbrev Tables

Here we list the variables that hold the abbrev tables for the preloaded major modes of
Emacs.

[Variable]global-abbrev-table
This is the abbrev table for mode-independent abbrevs. The abbrevs defined in it
apply to all buffers. Each buffer may also have a local abbrev table, whose abbrev
definitions take precedence over those in the global table.

[Variable]local-abbrev-table
The value of this buffer-local variable is the (mode-specific) abbreviation table of the
current buffer. It can also be a list of such tables.

[Variable]abbrev-minor-mode-table-alist
The value of this variable is a list of elements of the form (mode . abbrev-table)

where mode is the name of a variable: if the variable is bound to a non-nil value,
then the abbrev-table is active, otherwise it is ignored. abbrev-table can also be a
list of abbrev tables.

[Variable]fundamental-mode-abbrev-table
This is the local abbrev table used in Fundamental mode; in other words, it is the
local abbrev table in all buffers in Fundamental mode.

[Variable]text-mode-abbrev-table
This is the local abbrev table used in Text mode.

[Variable]lisp-mode-abbrev-table
This is the local abbrev table used in Lisp mode. It is the parent of the local abbrev
table used in Emacs Lisp mode. See Section 36.7 [Abbrev Table Properties], page 779.

36.6 Abbrev Properties

Abbrevs have properties, some of which influence the way they work. You can provide them
as arguments to define-abbrev, and manipulate them with the following functions:

[Function]abbrev-put abbrev prop val
Set the property prop of abbrev to value val.

[Function]abbrev-get abbrev prop
Return the property prop of abbrev, or nil if the abbrev has no such property.

The following properties have special meanings:

:count This property counts the number of times the abbrev has been expanded. If
not explicitly set, it is initialized to 0 by define-abbrev.

:system If non-nil, this property marks the abbrev as a system abbrev. Such abbrevs
are not saved (see Section 36.3 [Abbrev Files], page 775).

:enable-function

If non-nil, this property should be a function of no arguments which returns
nil if the abbrev should not be used and t otherwise.

Chapter 36: Abbrevs and Abbrev Expansion 779

:case-fixed

If non-nil, this property indicates that the case of the abbrev’s name is signif-
icant and should only match a text with the same pattern of capitalization. It
also disables the code that modifies the capitalization of the expansion.

36.7 Abbrev Table Properties

Like abbrevs, abbrev tables have properties, some of which influence the way they work.
You can provide them as arguments to define-abbrev-table, and manipulate them with
the functions:

[Function]abbrev-table-put table prop val
Set the property prop of abbrev table table to value val.

[Function]abbrev-table-get table prop
Return the property prop of abbrev table table, or nil if the abbrev has no such
property.

The following properties have special meaning:

:enable-function

This is like the :enable-function abbrev property except that it applies to
all abbrevs in the table. It is used before even trying to find the abbrev before
point, so it can dynamically modify the abbrev table.

:case-fixed

This is like the :case-fixed abbrev property except that it applies to all ab-
brevs in the table.

:regexp If non-nil, this property is a regular expression that indicates how to extract
the name of the abbrev before point, before looking it up in the table. When
the regular expression matches before point, the abbrev name is expected to
be in submatch 1. If this property is nil, the default is to use backward-word
and forward-word to find the name. This property allows the use of abbrevs
whose name contains characters of non-word syntax.

:parents This property holds a list of tables from which to inherit other abbrevs.

:abbrev-table-modiff

This property holds a counter incremented each time a new abbrev is added to
the table.

Chapter 37: Processes 780

37 Processes

In the terminology of operating systems, a process is a space in which a program can execute.
Emacs runs in a process. Emacs Lisp programs can invoke other programs in processes of
their own. These are called subprocesses or child processes of the Emacs process, which is
their parent process.

A subprocess of Emacs may be synchronous or asynchronous, depending on how it is cre-
ated. When you create a synchronous subprocess, the Lisp program waits for the subprocess
to terminate before continuing execution. When you create an asynchronous subprocess, it
can run in parallel with the Lisp program. This kind of subprocess is represented within
Emacs by a Lisp object which is also called a “process”. Lisp programs can use this object
to communicate with the subprocess or to control it. For example, you can send signals,
obtain status information, receive output from the process, or send input to it.

[Function]processp object
This function returns t if object represents an Emacs subprocess, nil otherwise.

In addition to subprocesses of the current Emacs session, you can also access other
processes running on your machine. See Section 37.12 [System Processes], page 801.

37.1 Functions that Create Subprocesses

There are three primitives that create a new subprocess in which to run a program. One
of them, start-process, creates an asynchronous process and returns a process object
(see Section 37.4 [Asynchronous Processes], page 787). The other two, call-process and
call-process-region, create a synchronous process and do not return a process object (see
Section 37.3 [Synchronous Processes], page 783). There are various higher-level functions
that make use of these primitives to run particular types of process.

Synchronous and asynchronous processes are explained in the following sections. Since
the three functions are all called in a similar fashion, their common arguments are described
here.

In all cases, the function’s program argument specifies the program to be run. An error
is signaled if the file is not found or cannot be executed. If the file name is relative, the
variable exec-path contains a list of directories to search. Emacs initializes exec-path

when it starts up, based on the value of the environment variable PATH. The standard file
name constructs, ‘~’, ‘.’, and ‘..’, are interpreted as usual in exec-path, but environment
variable substitutions (‘$HOME’, etc.) are not recognized; use substitute-in-file-name to
perform them (see Section 25.8.4 [File Name Expansion], page 494). nil in this list refers
to default-directory.

Executing a program can also try adding suffixes to the specified name:

[User Option]exec-suffixes
This variable is a list of suffixes (strings) to try adding to the specified program file
name. The list should include "" if you want the name to be tried exactly as specified.
The default value is system-dependent.

Chapter 37: Processes 781

Please note: The argument program contains only the name of the program; it may not
contain any command-line arguments. You must use a separate argument, args, to provide
those, as described below.

Each of the subprocess-creating functions has a buffer-or-name argument that specifies
where the standard output from the program will go. It should be a buffer or a buffer name;
if it is a buffer name, that will create the buffer if it does not already exist. It can also be
nil, which says to discard the output unless a filter function handles it. (See Section 37.9.2
[Filter Functions], page 796, and Chapter 19 [Read and Print], page 281.) Normally, you
should avoid having multiple processes send output to the same buffer because their output
would be intermixed randomly. For synchronous processes, you can send the output to a
file instead of a buffer.

All three of the subprocess-creating functions have a &rest argument, args. The args
must all be strings, and they are supplied to program as separate command line arguments.
Wildcard characters and other shell constructs have no special meanings in these strings,
since the strings are passed directly to the specified program.

The subprocess inherits its environment from Emacs, but you can specify overrides for
it with process-environment. See Section 39.3 [System Environment], page 919. The
subprocess gets its current directory from the value of default-directory.

[Variable]exec-directory
The value of this variable is a string, the name of a directory that contains programs
that come with GNU Emacs and are intended for Emacs to invoke. The program
movemail is an example of such a program; Rmail uses it to fetch new mail from an
inbox.

[User Option]exec-path
The value of this variable is a list of directories to search for programs to run in
subprocesses. Each element is either the name of a directory (i.e., a string), or nil,
which stands for the default directory (which is the value of default-directory).

The value of exec-path is used by call-process and start-process when the
program argument is not an absolute file name.

Generally, you should not modify exec-path directly. Instead, ensure that your PATH
environment variable is set appropriately before starting Emacs. Trying to modify
exec-path independently of PATH can lead to confusing results.

37.2 Shell Arguments

Lisp programs sometimes need to run a shell and give it a command that contains file names
that were specified by the user. These programs ought to be able to support any valid file
name. But the shell gives special treatment to certain characters, and if these characters
occur in the file name, they will confuse the shell. To handle these characters, use the
function shell-quote-argument:

[Function]shell-quote-argument argument
This function returns a string that represents, in shell syntax, an argument whose
actual contents are argument. It should work reliably to concatenate the return value
into a shell command and then pass it to a shell for execution.

Chapter 37: Processes 782

Precisely what this function does depends on your operating system. The function
is designed to work with the syntax of your system’s standard shell; if you use an
unusual shell, you will need to redefine this function.

;; This example shows the behavior on GNU and Unix systems.
(shell-quote-argument "foo > bar")

⇒ "foo\\ \\>\\ bar"

;; This example shows the behavior on MS-DOS and MS-Windows.
(shell-quote-argument "foo > bar")

⇒ "\"foo > bar\""

Here’s an example of using shell-quote-argument to construct a shell command:

(concat "diff -c "

(shell-quote-argument oldfile)

" "

(shell-quote-argument newfile))

The following two functions are useful for combining a list of individual command-line
argument strings into a single string, and taking a string apart into a list of individual
command-line arguments. These functions are mainly intended for converting user input in
the minibuffer, a Lisp string, into a list of string arguments to be passed to call-process

or start-process, or for converting such lists of arguments into a single Lisp string to be
presented in the minibuffer or echo area.

[Function]split-string-and-unquote string &optional separators
This function splits string into substrings at matches for the regular expression
separators, like split-string does (see Section 4.3 [Creating Strings], page 49); in
addition, it removes quoting from the substrings. It then makes a list of the substrings
and returns it.

If separators is omitted or nil, it defaults to "\\s-+", which is a regular expres-
sion that matches one or more characters with whitespace syntax (see Section 35.2.1
[Syntax Class Table], page 758).

This function supports two types of quoting: enclosing a whole string in double quotes
"...", and quoting individual characters with a backslash escape ‘\’. The latter is
also used in Lisp strings, so this function can handle those as well.

[Function]combine-and-quote-strings list-of-strings &optional separator
This function concatenates list-of-strings into a single string, quoting each string as
necessary. It also sticks the separator string between each pair of strings; if separator
is omitted or nil, it defaults to " ". The return value is the resulting string.

The strings in list-of-strings that need quoting are those that include separator as
their substring. Quoting a string encloses it in double quotes "...". In the simplest
case, if you are consing a command from the individual command-line arguments,
every argument that includes embedded blanks will be quoted.

Chapter 37: Processes 783

37.3 Creating a Synchronous Process

After a synchronous process is created, Emacs waits for the process to terminate before
continuing. Starting Dired on GNU or Unix1 is an example of this: it runs ls in a syn-
chronous process, then modifies the output slightly. Because the process is synchronous,
the entire directory listing arrives in the buffer before Emacs tries to do anything with it.

While Emacs waits for the synchronous subprocess to terminate, the user can quit by
typing C-g. The first C-g tries to kill the subprocess with a SIGINT signal; but it waits
until the subprocess actually terminates before quitting. If during that time the user types
another C-g, that kills the subprocess instantly with SIGKILL and quits immediately (except
on MS-DOS, where killing other processes doesn’t work). See Section 21.11 [Quitting],
page 358.

The synchronous subprocess functions return an indication of how the process termi-
nated.

The output from a synchronous subprocess is generally decoded using a coding system,
much like text read from a file. The input sent to a subprocess by call-process-region is
encoded using a coding system, much like text written into a file. See Section 33.9 [Coding
Systems], page 716.

[Function]call-process program &optional infile destination display &rest args
This function calls program and waits for it to finish.

The current working directory of the subprocess is default-directory.

The standard input for the new process comes from file infile if infile is not nil,
and from the null device otherwise. The argument destination says where to put the
process output. Here are the possibilities:

a buffer Insert the output in that buffer, before point. This includes both the
standard output stream and the standard error stream of the process.

a string Insert the output in a buffer with that name, before point.

t Insert the output in the current buffer, before point.

nil Discard the output.

0 Discard the output, and return nil immediately without waiting for the
subprocess to finish.

In this case, the process is not truly synchronous, since it can run in
parallel with Emacs; but you can think of it as synchronous in that Emacs
is essentially finished with the subprocess as soon as this function returns.

MS-DOS doesn’t support asynchronous subprocesses, so this option
doesn’t work there.

(:file file-name)

Send the output to the file name specified, overwriting it if it already
exists.

1 On other systems, Emacs uses a Lisp emulation of ls; see Section 25.9 [Contents of Directories], page 499.

Chapter 37: Processes 784

(real-destination error-destination)

Keep the standard output stream separate from the standard error
stream; deal with the ordinary output as specified by real-destination,
and dispose of the error output according to error-destination. If
error-destination is nil, that means to discard the error output, t means
mix it with the ordinary output, and a string specifies a file name to
redirect error output into.

You can’t directly specify a buffer to put the error output in; that is too
difficult to implement. But you can achieve this result by sending the
error output to a temporary file and then inserting the file into a buffer.

If display is non-nil, then call-process redisplays the buffer as output is inserted.
(However, if the coding system chosen for decoding output is undecided, meaning
deduce the encoding from the actual data, then redisplay sometimes cannot continue
once non-ASCII characters are encountered. There are fundamental reasons why it is
hard to fix this; see Section 37.9 [Output from Processes], page 795.)

Otherwise the function call-process does no redisplay, and the results become vis-
ible on the screen only when Emacs redisplays that buffer in the normal course of
events.

The remaining arguments, args, are strings that specify command line arguments for
the program.

The value returned by call-process (unless you told it not to wait) indicates the
reason for process termination. A number gives the exit status of the subprocess; 0
means success, and any other value means failure. If the process terminated with a
signal, call-process returns a string describing the signal.

In the examples below, the buffer ‘foo’ is current.

(call-process "pwd" nil t)
⇒ 0

---------- Buffer: foo ----------

/home/lewis/manual

---------- Buffer: foo ----------

(call-process "grep" nil "bar" nil "lewis" "/etc/passwd")
⇒ 0

---------- Buffer: bar ----------

lewis:x:1001:1001:Bil Lewis,,,,:/home/lewis:/bin/bash

---------- Buffer: bar ----------

Here is an example of the use of call-process, as used to be found in the definition
of the insert-directory function:

(call-process insert-directory-program nil t nil switches

(if full-directory-p

(concat (file-name-as-directory file) ".")

file))

Chapter 37: Processes 785

[Function]process-file program &optional infile buffer display &rest args
This function processes files synchronously in a separate process. It is similar to
call-process, but may invoke a file handler based on the value of the variable
default-directory, which specifies the current working directory of the subprocess.

The arguments are handled in almost the same way as for call-process, with the
following differences:

Some file handlers may not support all combinations and forms of the arguments
infile, buffer, and display. For example, some file handlers might behave as if display
were nil, regardless of the value actually passed. As another example, some file
handlers might not support separating standard output and error output by way of
the buffer argument.

If a file handler is invoked, it determines the program to run based on the first
argument program. For instance, suppose that a handler for remote files is invoked.
Then the path that is used for searching for the program might be different from
exec-path.

The second argument infile may invoke a file handler. The file handler could be
different from the handler chosen for the process-file function itself. (For example,
default-directory could be on one remote host, and infile on a different remote
host. Or default-directory could be non-special, whereas infile is on a remote
host.)

If buffer is a list of the form (real-destination error-destination), and error-
destination names a file, then the same remarks as for infile apply.

The remaining arguments (args) will be passed to the process verbatim. Emacs is
not involved in processing file names that are present in args. To avoid confusion, it
may be best to avoid absolute file names in args, but rather to specify all file names
as relative to default-directory. The function file-relative-name is useful for
constructing such relative file names.

[Variable]process-file-side-effects
This variable indicates whether a call of process-file changes remote files.

By default, this variable is always set to t, meaning that a call of process-file could
potentially change any file on a remote host. When set to nil, a file handler could
optimize its behavior with respect to remote file attribute caching.

You should only ever change this variable with a let-binding; never with setq.

[Function]call-process-region start end program &optional delete destination
display &rest args

This function sends the text from start to end as standard input to a process running
program. It deletes the text sent if delete is non-nil; this is useful when destination
is t, to insert the output in the current buffer in place of the input.

The arguments destination and display control what to do with the output from the
subprocess, and whether to update the display as it comes in. For details, see the
description of call-process, above. If destination is the integer 0, call-process-
region discards the output and returns nil immediately, without waiting for the
subprocess to finish (this only works if asynchronous subprocesses are supported; i.e.,
not on MS-DOS).

Chapter 37: Processes 786

The remaining arguments, args, are strings that specify command line arguments for
the program.

The return value of call-process-region is just like that of call-process: nil if
you told it to return without waiting; otherwise, a number or string which indicates
how the subprocess terminated.

In the following example, we use call-process-region to run the cat utility, with
standard input being the first five characters in buffer ‘foo’ (the word ‘input’). cat
copies its standard input into its standard output. Since the argument destination is
t, this output is inserted in the current buffer.

---------- Buffer: foo ----------

input?
---------- Buffer: foo ----------

(call-process-region 1 6 "cat" nil t)
⇒ 0

---------- Buffer: foo ----------

inputinput?
---------- Buffer: foo ----------

For example, the shell-command-on-region command uses call-process-region
in a manner similar to this:

(call-process-region

start end

shell-file-name ; name of program
nil ; do not delete region
buffer ; send output to buffer

nil ; no redisplay during output
"-c" command) ; arguments for the shell

[Function]call-process-shell-command command &optional infile destination
display &rest args

This function executes the shell command command synchronously. The final ar-
guments args are additional arguments to add at the end of command. The other
arguments are handled as in call-process.

[Function]process-file-shell-command command &optional infile destination
display &rest args

This function is like call-process-shell-command, but uses process-file inter-
nally. Depending on default-directory, command can be executed also on remote
hosts.

[Function]shell-command-to-string command
This function executes command (a string) as a shell command, then returns the
command’s output as a string.

[Function]process-lines program &rest args
This function runs program, waits for it to finish, and returns its output as a list of
strings. Each string in the list holds a single line of text output by the program; the
end-of-line characters are stripped from each line. The arguments beyond program,
args, are strings that specify command-line arguments with which to run the program.

Chapter 37: Processes 787

If program exits with a non-zero exit status, this function signals an error.

This function works by calling call-process, so program output is decoded in the
same way as for call-process.

37.4 Creating an Asynchronous Process

In this section, we describe how to create an asynchronous process. After an asynchronous
process is created, it runs in parallel with Emacs, and Emacs can communicate with it using
the functions described in the following sections (see Section 37.7 [Input to Processes],
page 792, and see Section 37.9 [Output from Processes], page 795). Note that process
communication is only partially asynchronous: Emacs sends data to the process only when
certain functions are called, and Emacs accepts data from the process only while waiting
for input or for a time delay.

An asynchronous process is controlled either via a pty (pseudo-terminal) or a pipe. The
choice of pty or pipe is made when creating the process, based on the value of the variable
process-connection-type (see below). Ptys are usually preferable for processes visible to
the user, as in Shell mode, because they allow for job control (C-c, C-z, etc.) between the
process and its children, whereas pipes do not. For subprocesses used for internal purposes
by programs, it is often better to use a pipe, because they are more efficient, and because
they are immune to stray character injections that ptys introduce for large (around 500
byte) messages. Also, the total number of ptys is limited on many systems and it is good
not to waste them.

[Function]start-process name buffer-or-name program &rest args
This function creates a new asynchronous subprocess and starts the program program
running in it. It returns a process object that stands for the new subprocess in Lisp.
The argument name specifies the name for the process object; if a process with this
name already exists, then name is modified (by appending ‘<1>’, etc.) to be unique.
The buffer buffer-or-name is the buffer to associate with the process.

If program is nil, Emacs opens a new pseudoterminal (pty) and associates its input
and output with buffer-or-name, without creating a subprocess. In that case, the
remaining arguments args are ignored.

The remaining arguments, args, are strings that specify command line arguments for
the subprocess.

In the example below, the first process is started and runs (rather, sleeps) for 100
seconds (the output buffer ‘foo’ is created immediately). Meanwhile, the second
process is started, and given the name ‘my-process<1>’ for the sake of uniqueness.
It inserts the directory listing at the end of the buffer ‘foo’, before the first process
finishes. Then it finishes, and a message to that effect is inserted in the buffer. Much
later, the first process finishes, and another message is inserted in the buffer for it.

(start-process "my-process" "foo" "sleep" "100")
⇒ #<process my-process>

Chapter 37: Processes 788

(start-process "my-process" "foo" "ls" "-l" "/bin")
⇒ #<process my-process<1>>

---------- Buffer: foo ----------

total 8336

-rwxr-xr-x 1 root root 971384 Mar 30 10:14 bash

-rwxr-xr-x 1 root root 146920 Jul 5 2011 bsd-csh

...

-rwxr-xr-x 1 root root 696880 Feb 28 15:55 zsh4

Process my-process<1> finished

Process my-process finished

---------- Buffer: foo ----------

[Function]start-file-process name buffer-or-name program &rest args
Like start-process, this function starts a new asynchronous subprocess running
program in it, and returns its process object.

The difference from start-process is that this function may invoked a file handler
based on the value of default-directory. This handler ought to run program,
perhaps on the local host, perhaps on a remote host that corresponds to default-

directory. In the latter case, the local part of default-directory becomes the
working directory of the process.

This function does not try to invoke file name handlers for program or for the program-
args.

Depending on the implementation of the file handler, it might not be possible to
apply process-filter or process-sentinel to the resulting process object. See
Section 37.9.2 [Filter Functions], page 796, and Section 37.10 [Sentinels], page 799.

Some file handlers may not support start-file-process (for example the function
ange-ftp-hook-function). In such cases, this function does nothing and returns
nil.

[Function]start-process-shell-command name buffer-or-name command
This function is like start-process, except that it uses a shell to execute the specified
command. The argument command is a shell command name. The variable shell-

file-name specifies which shell to use.

The point of running a program through the shell, rather than directly with start-

process, is so that you can employ shell features such as wildcards in the arguments.
It follows that if you include any arbitrary user-specified arguments in the command,
you should quote them with shell-quote-argument first, so that any special shell
characters do not have their special shell meanings. See Section 37.2 [Shell Argu-
ments], page 781. Of course, when executing commands based on user input you
should also consider the security implications.

[Function]start-file-process-shell-command name buffer-or-name command
This function is like start-process-shell-command, but uses start-file-process
internally. Because of this, command can also be executed on remote hosts, depending
on default-directory.

Chapter 37: Processes 789

[Variable]process-connection-type
This variable controls the type of device used to communicate with asynchronous
subprocesses. If it is non-nil, then ptys are used, when available. Otherwise, pipes
are used.

The value of process-connection-type takes effect when start-process is called.
So you can specify how to communicate with one subprocess by binding the variable
around the call to start-process.

(let ((process-connection-type nil)) ; use a pipe
(start-process ...))

To determine whether a given subprocess actually got a pipe or a pty, use the function
process-tty-name (see Section 37.6 [Process Information], page 789).

37.5 Deleting Processes

Deleting a process disconnects Emacs immediately from the subprocess. Processes are
deleted automatically after they terminate, but not necessarily right away. You can delete
a process explicitly at any time. If you explicitly delete a terminated process before it
is deleted automatically, no harm results. Deleting a running process sends a signal to
terminate it (and its child processes, if any), and calls the process sentinel if it has one. See
Section 37.10 [Sentinels], page 799.

When a process is deleted, the process object itself continues to exist as long as other
Lisp objects point to it. All the Lisp primitives that work on process objects accept deleted
processes, but those that do I/O or send signals will report an error. The process mark
continues to point to the same place as before, usually into a buffer where output from the
process was being inserted.

[User Option]delete-exited-processes
This variable controls automatic deletion of processes that have terminated (due to
calling exit or to a signal). If it is nil, then they continue to exist until the user
runs list-processes. Otherwise, they are deleted immediately after they exit.

[Function]delete-process process
This function deletes a process, killing it with a SIGKILL signal. The argument may
be a process, the name of a process, a buffer, or the name of a buffer. (A buffer
or buffer-name stands for the process that get-buffer-process returns.) Calling
delete-process on a running process terminates it, updates the process status, and
runs the sentinel (if any) immediately. If the process has already terminated, calling
delete-process has no effect on its status, or on the running of its sentinel (which
will happen sooner or later).

(delete-process "*shell*")
⇒ nil

37.6 Process Information

Several functions return information about processes.

[Command]list-processes &optional query-only buffer
This command displays a listing of all living processes. In addition, it finally deletes
any process whose status was ‘Exited’ or ‘Signaled’. It returns nil.

Chapter 37: Processes 790

The processes are shown in a buffer named *Process List* (unless you specify other-
wise using the optional argument buffer), whose major mode is Process Menu mode.

If query-only is non-nil, it only lists processes whose query flag is non-nil. See
Section 37.11 [Query Before Exit], page 800.

[Function]process-list
This function returns a list of all processes that have not been deleted.

(process-list)
⇒ (#<process display-time> #<process shell>)

[Function]get-process name
This function returns the process named name (a string), or nil if there is none.

(get-process "shell")
⇒ #<process shell>

[Function]process-command process
This function returns the command that was executed to start process. This is a list
of strings, the first string being the program executed and the rest of the strings being
the arguments that were given to the program.

(process-command (get-process "shell"))
⇒ ("bash" "-i")

[Function]process-contact process &optional key
This function returns information about how a network or serial process was set up.
When key is nil, it returns (hostname service) for a network process, and (port

speed) for a serial process. For an ordinary child process, this function always returns
t.

If key is t, the value is the complete status information for the connection, server, or
serial port; that is, the list of keywords and values specified in make-network-process

or make-serial-process, except that some of the values represent the current status
instead of what you specified.

For a network process, the values include (see make-network-process for a complete
list):

:buffer The associated value is the process buffer.

:filter The associated value is the process filter function.

:sentinel

The associated value is the process sentinel function.

:remote In a connection, the address in internal format of the remote peer.

:local The local address, in internal format.

:service In a server, if you specified t for service, this value is the actual port
number.

:local and :remote are included even if they were not specified explicitly in make-

network-process.

For a serial process, see make-serial-process and serial-process-configure for
a list of keys.

If key is a keyword, the function returns the value corresponding to that keyword.

Chapter 37: Processes 791

[Function]process-id process
This function returns the PID of process. This is an integer that distinguishes the
process process from all other processes running on the same computer at the current
time. The PID of a process is chosen by the operating system kernel when the process
is started and remains constant as long as the process exists.

[Function]process-name process
This function returns the name of process, as a string.

[Function]process-status process-name
This function returns the status of process-name as a symbol. The argument process-
name must be a process, a buffer, or a process name (a string).

The possible values for an actual subprocess are:

run for a process that is running.

stop for a process that is stopped but continuable.

exit for a process that has exited.

signal for a process that has received a fatal signal.

open for a network connection that is open.

closed for a network connection that is closed. Once a connection is closed, you
cannot reopen it, though you might be able to open a new connection to
the same place.

connect for a non-blocking connection that is waiting to complete.

failed for a non-blocking connection that has failed to complete.

listen for a network server that is listening.

nil if process-name is not the name of an existing process.

(process-status (get-buffer "*shell*"))
⇒ run

For a network connection, process-status returns one of the symbols open or
closed. The latter means that the other side closed the connection, or Emacs did
delete-process.

[Function]process-live-p process
This function returns non-nil if process is alive. A process is considered alive if its
status is run, open, listen, connect or stop.

[Function]process-type process
This function returns the symbol network for a network connection or server, serial
for a serial port connection, or real for a real subprocess.

[Function]process-exit-status process
This function returns the exit status of process or the signal number that killed it.
(Use the result of process-status to determine which of those it is.) If process has
not yet terminated, the value is 0.

Chapter 37: Processes 792

[Function]process-tty-name process
This function returns the terminal name that process is using for its communica-
tion with Emacs—or nil if it is using pipes instead of a terminal (see process-

connection-type in Section 37.4 [Asynchronous Processes], page 787). If process
represents a program running on a remote host, the terminal name used by that
program on the remote host is provided as process property remote-tty.

[Function]process-coding-system process
This function returns a cons cell (decode . encode), describing the coding systems
in use for decoding output from, and encoding input to, process (see Section 33.9
[Coding Systems], page 716).

[Function]set-process-coding-system process &optional decoding-system
encoding-system

This function specifies the coding systems to use for subsequent output from and input
to process. It will use decoding-system to decode subprocess output, and encoding-
system to encode subprocess input.

Every process also has a property list that you can use to store miscellaneous values
associated with the process.

[Function]process-get process propname
This function returns the value of the propname property of process.

[Function]process-put process propname value
This function sets the value of the propname property of process to value.

[Function]process-plist process
This function returns the process plist of process.

[Function]set-process-plist process plist
This function sets the process plist of process to plist.

37.7 Sending Input to Processes

Asynchronous subprocesses receive input when it is sent to them by Emacs, which is done
with the functions in this section. You must specify the process to send input to, and the
input data to send. The data appears on the “standard input” of the subprocess.

Some operating systems have limited space for buffered input in a pty. On these systems,
Emacs sends an EOF periodically amidst the other characters, to force them through. For
most programs, these EOFs do no harm.

Subprocess input is normally encoded using a coding system before the subprocess re-
ceives it, much like text written into a file. You can use set-process-coding-system to
specify which coding system to use (see Section 37.6 [Process Information], page 789). Oth-
erwise, the coding system comes from coding-system-for-write, if that is non-nil; or
else from the defaulting mechanism (see Section 33.9.5 [Default Coding Systems], page 722).

Sometimes the system is unable to accept input for that process, because the input buffer
is full. When this happens, the send functions wait a short while, accepting output from
subprocesses, and then try again. This gives the subprocess a chance to read more of its

Chapter 37: Processes 793

pending input and make space in the buffer. It also allows filters, sentinels and timers to
run—so take account of that in writing your code.

In these functions, the process argument can be a process or the name of a process, or
a buffer or buffer name (which stands for a process via get-buffer-process). nil means
the current buffer’s process.

[Function]process-send-string process string
This function sends process the contents of string as standard input. It returns nil.
For example, to make a Shell buffer list files:

(process-send-string "shell<1>" "ls\n")
⇒ nil

[Function]process-send-region process start end
This function sends the text in the region defined by start and end as standard input
to process.

An error is signaled unless both start and end are integers or markers that indicate
positions in the current buffer. (It is unimportant which number is larger.)

[Function]process-send-eof &optional process
This function makes process see an end-of-file in its input. The EOF comes after any
text already sent to it. The function returns process.

(process-send-eof "shell")
⇒ "shell"

[Function]process-running-child-p &optional process
This function will tell you whether a process has given control of its terminal to its
own child process. The value is t if this is true, or if Emacs cannot tell; it is nil if
Emacs can be certain that this is not so.

37.8 Sending Signals to Processes

Sending a signal to a subprocess is a way of interrupting its activities. There are several
different signals, each with its own meaning. The set of signals and their names is defined
by the operating system. For example, the signal SIGINT means that the user has typed
C-c, or that some analogous thing has happened.

Each signal has a standard effect on the subprocess. Most signals kill the subprocess,
but some stop (or resume) execution instead. Most signals can optionally be handled by
programs; if the program handles the signal, then we can say nothing in general about its
effects.

You can send signals explicitly by calling the functions in this section. Emacs also sends
signals automatically at certain times: killing a buffer sends a SIGHUP signal to all its asso-
ciated processes; killing Emacs sends a SIGHUP signal to all remaining processes. (SIGHUP
is a signal that usually indicates that the user “hung up the phone”, i.e., disconnected.)

Each of the signal-sending functions takes two optional arguments: process and current-
group.

The argument process must be either a process, a process name, a buffer, a buffer name,
or nil. A buffer or buffer name stands for a process through get-buffer-process. nil

Chapter 37: Processes 794

stands for the process associated with the current buffer. An error is signaled if process
does not identify a process.

The argument current-group is a flag that makes a difference when you are running a
job-control shell as an Emacs subprocess. If it is non-nil, then the signal is sent to the
current process-group of the terminal that Emacs uses to communicate with the subprocess.
If the process is a job-control shell, this means the shell’s current subjob. If it is nil, the
signal is sent to the process group of the immediate subprocess of Emacs. If the subprocess
is a job-control shell, this is the shell itself.

The flag current-group has no effect when a pipe is used to communicate with the
subprocess, because the operating system does not support the distinction in the case of
pipes. For the same reason, job-control shells won’t work when a pipe is used. See process-
connection-type in Section 37.4 [Asynchronous Processes], page 787.

[Function]interrupt-process &optional process current-group
This function interrupts the process process by sending the signal SIGINT. Outside
of Emacs, typing the “interrupt character” (normally C-c on some systems, and DEL

on others) sends this signal. When the argument current-group is non-nil, you can
think of this function as “typing C-c” on the terminal by which Emacs talks to the
subprocess.

[Function]kill-process &optional process current-group
This function kills the process process by sending the signal SIGKILL. This signal
kills the subprocess immediately, and cannot be handled by the subprocess.

[Function]quit-process &optional process current-group
This function sends the signal SIGQUIT to the process process. This signal is the one
sent by the “quit character” (usually C-b or C-\) when you are not inside Emacs.

[Function]stop-process &optional process current-group
This function stops the process process by sending the signal SIGTSTP. Use continue-
process to resume its execution.

Outside of Emacs, on systems with job control, the “stop character” (usually C-

z) normally sends this signal. When current-group is non-nil, you can think of
this function as “typing C-z” on the terminal Emacs uses to communicate with the
subprocess.

[Function]continue-process &optional process current-group
This function resumes execution of the process process by sending it the signal
SIGCONT. This presumes that process was stopped previously.

[Command]signal-process process signal
This function sends a signal to process process. The argument signal specifies which
signal to send; it should be an integer, or a symbol whose name is a signal.

The process argument can be a system process ID (an integer); that allows you to
send signals to processes that are not children of Emacs. See Section 37.12 [System
Processes], page 801.

Chapter 37: Processes 795

37.9 Receiving Output from Processes

There are two ways to receive the output that a subprocess writes to its standard output
stream. The output can be inserted in a buffer, which is called the associated buffer of
the process (see Section 37.9.1 [Process Buffers], page 795), or a function called the filter
function can be called to act on the output. If the process has no buffer and no filter
function, its output is discarded.

When a subprocess terminates, Emacs reads any pending output, then stops reading
output from that subprocess. Therefore, if the subprocess has children that are still live
and still producing output, Emacs won’t receive that output.

Output from a subprocess can arrive only while Emacs is waiting: when reading ter-
minal input (see the function waiting-for-user-input-p), in sit-for and sleep-for

(see Section 21.10 [Waiting], page 357), and in accept-process-output (see Section 37.9.4
[Accepting Output], page 798). This minimizes the problem of timing errors that usually
plague parallel programming. For example, you can safely create a process and only then
specify its buffer or filter function; no output can arrive before you finish, if the code in
between does not call any primitive that waits.

[Variable]process-adaptive-read-buffering
On some systems, when Emacs reads the output from a subprocess, the output data
is read in very small blocks, potentially resulting in very poor performance. This
behavior can be remedied to some extent by setting the variable process-adaptive-
read-buffering to a non-nil value (the default), as it will automatically delay read-
ing from such processes, thus allowing them to produce more output before Emacs
tries to read it.

It is impossible to separate the standard output and standard error streams of the
subprocess, because Emacs normally spawns the subprocess inside a pseudo-TTY, and a
pseudo-TTY has only one output channel. If you want to keep the output to those streams
separate, you should redirect one of them to a file—for example, by using an appropriate
shell command.

37.9.1 Process Buffers

A process can (and usually does) have an associated buffer, which is an ordinary Emacs
buffer that is used for two purposes: storing the output from the process, and deciding when
to kill the process. You can also use the buffer to identify a process to operate on, since in
normal practice only one process is associated with any given buffer. Many applications of
processes also use the buffer for editing input to be sent to the process, but this is not built
into Emacs Lisp.

Unless the process has a filter function (see Section 37.9.2 [Filter Functions], page 796),
its output is inserted in the associated buffer. The position to insert the output is determined
by the process-mark, which is then updated to point to the end of the text just inserted.
Usually, but not always, the process-mark is at the end of the buffer.

Killing the associated buffer of a process also kills the process. Emacs asks for confir-
mation first, if the process’s process-query-on-exit-flag is non-nil (see Section 37.11
[Query Before Exit], page 800). This confirmation is done by the function process-

kill-buffer-query-function, which is run from kill-buffer-query-functions (see
Section 27.10 [Killing Buffers], page 533).

Chapter 37: Processes 796

[Function]process-buffer process
This function returns the associated buffer of the process process.

(process-buffer (get-process "shell"))
⇒ #<buffer *shell*>

[Function]process-mark process
This function returns the process marker for process, which is the marker that says
where to insert output from the process.

If process does not have a buffer, process-mark returns a marker that points nowhere.

Insertion of process output in a buffer uses this marker to decide where to insert, and
updates it to point after the inserted text. That is why successive batches of output
are inserted consecutively.

Filter functions normally should use this marker in the same fashion as is done by
direct insertion of output in the buffer. For an example of a filter function that uses
process-mark, see [Process Filter Example], page 797.

When the user is expected to enter input in the process buffer for transmission to the
process, the process marker separates the new input from previous output.

[Function]set-process-buffer process buffer
This function sets the buffer associated with process to buffer. If buffer is nil, the
process becomes associated with no buffer.

[Function]get-buffer-process buffer-or-name
This function returns a nondeleted process associated with the buffer specified by
buffer-or-name. If there are several processes associated with it, this function chooses
one (currently, the one most recently created, but don’t count on that). Deletion of
a process (see delete-process) makes it ineligible for this function to return.

It is usually a bad idea to have more than one process associated with the same buffer.

(get-buffer-process "*shell*")
⇒ #<process shell>

Killing the process’s buffer deletes the process, which kills the subprocess with a
SIGHUP signal (see Section 37.8 [Signals to Processes], page 793).

37.9.2 Process Filter Functions

A process filter function is a function that receives the standard output from the associated
process. If a process has a filter, then all output from that process is passed to the filter.
The process buffer is used directly for output from the process only when there is no filter.

The filter function can only be called when Emacs is waiting for something, because
process output arrives only at such times. Emacs waits when reading terminal input (see
the function waiting-for-user-input-p), in sit-for and sleep-for (see Section 21.10
[Waiting], page 357), and in accept-process-output (see Section 37.9.4 [Accepting Out-
put], page 798).

A filter function must accept two arguments: the associated process and a string, which
is output just received from it. The function is then free to do whatever it chooses with the
output.

Chapter 37: Processes 797

Quitting is normally inhibited within a filter function—otherwise, the effect of typing
C-g at command level or to quit a user command would be unpredictable. If you want to
permit quitting inside a filter function, bind inhibit-quit to nil. In most cases, the right
way to do this is with the macro with-local-quit. See Section 21.11 [Quitting], page 358.

If an error happens during execution of a filter function, it is caught automatically, so
that it doesn’t stop the execution of whatever program was running when the filter function
was started. However, if debug-on-error is non-nil, errors are not caught. This makes it
possible to use the Lisp debugger to debug the filter function. See Section 18.1 [Debugger],
page 249.

Many filter functions sometimes (or always) insert the output in the process’s buffer,
mimicking the actions of Emacs when there is no filter. Such filter functions need to make
sure that they save the current buffer, select the correct buffer (if different) before inserting
output, and then restore the original buffer. They should also check whether the buffer is
still alive, update the process marker, and in some cases update the value of point. Here is
how to do these things:

(defun ordinary-insertion-filter (proc string)

(when (buffer-live-p (process-buffer proc))

(with-current-buffer (process-buffer proc)

(let ((moving (= (point) (process-mark proc))))

(save-excursion

;; Insert the text, advancing the process marker.
(goto-char (process-mark proc))

(insert string)

(set-marker (process-mark proc) (point)))

(if moving (goto-char (process-mark proc)))))))

To make the filter force the process buffer to be visible whenever new text arrives, you
could insert a line like the following just before the with-current-buffer construct:

(display-buffer (process-buffer proc))

To force point to the end of the new output, no matter where it was previously, eliminate
the variable moving and call goto-char unconditionally.

Note that Emacs automatically saves and restores the match data while executing filter
functions. See Section 34.6 [Match Data], page 748.

The output to the filter may come in chunks of any size. A program that produces the
same output twice in a row may send it as one batch of 200 characters one time, and five
batches of 40 characters the next. If the filter looks for certain text strings in the subprocess
output, make sure to handle the case where one of these strings is split across two or more
batches of output; one way to do this is to insert the received text into a temporary buffer,
which can then be searched.

[Function]set-process-filter process filter
This function gives process the filter function filter. If filter is nil, it gives the process
no filter.

[Function]process-filter process
This function returns the filter function of process, or nil if it has none.

Here is an example of the use of a filter function:

Chapter 37: Processes 798

(defun keep-output (process output)

(setq kept (cons output kept)))
⇒ keep-output

(setq kept nil)
⇒ nil

(set-process-filter (get-process "shell") ’keep-output)
⇒ keep-output

(process-send-string "shell" "ls ~/other\n")
⇒ nil

kept
⇒ ("lewis@slug:$ "

"FINAL-W87-SHORT.MSS backup.otl kolstad.mss~

address.txt backup.psf kolstad.psf

backup.bib~ david.mss resume-Dec-86.mss~

backup.err david.psf resume-Dec.psf

backup.mss dland syllabus.mss

"

"#backups.mss# backup.mss~ kolstad.mss

")

37.9.3 Decoding Process Output

When Emacs writes process output directly into a multibyte buffer, it decodes the output
according to the process output coding system. If the coding system is raw-text or no-

conversion, Emacs converts the unibyte output to multibyte using string-to-multibyte,
and inserts the resulting multibyte text.

You can use set-process-coding-system to specify which coding system to use (see
Section 37.6 [Process Information], page 789). Otherwise, the coding system comes from
coding-system-for-read, if that is non-nil; or else from the defaulting mechanism (see
Section 33.9.5 [Default Coding Systems], page 722). If the text output by a process contains
null bytes, Emacs by default uses no-conversion for it; see Section 33.9.3 [Lisp and Coding
Systems], page 718, for how to control this behavior.

Warning: Coding systems such as undecided, which determine the coding system from
the data, do not work entirely reliably with asynchronous subprocess output. This is because
Emacs has to process asynchronous subprocess output in batches, as it arrives. Emacs
must try to detect the proper coding system from one batch at a time, and this does not
always work. Therefore, if at all possible, specify a coding system that determines both the
character code conversion and the end of line conversion—that is, one like latin-1-unix,
rather than undecided or latin-1.

When Emacs calls a process filter function, it provides the process output as a multi-
byte string or as a unibyte string according to the process’s filter coding system. Emacs
decodes the output according to the process output coding system, which usually produces
a multibyte string, except for coding systems such as binary and raw-text.

37.9.4 Accepting Output from Processes

Output from asynchronous subprocesses normally arrives only while Emacs is waiting for
some sort of external event, such as elapsed time or terminal input. Occasionally it is useful
in a Lisp program to explicitly permit output to arrive at a specific point, or even to wait
until output arrives from a process.

Chapter 37: Processes 799

[Function]accept-process-output &optional process seconds millisec
just-this-one

This function allows Emacs to read pending output from processes. The output is
inserted in the associated buffers or given to their filter functions. If process is non-
nil then this function does not return until some output has been received from
process.

The arguments seconds andmillisec let you specify timeout periods. The former speci-
fies a period measured in seconds and the latter specifies one measured in milliseconds.
The two time periods thus specified are added together, and accept-process-output

returns after that much time, whether or not there has been any subprocess output.

The argument millisec is obsolete (and should not be used), because seconds can be
a floating point number to specify waiting a fractional number of seconds. If seconds
is 0, the function accepts whatever output is pending but does not wait.

If process is a process, and the argument just-this-one is non-nil, only output from
that process is handled, suspending output from other processes until some output
has been received from that process or the timeout expires. If just-this-one is an
integer, also inhibit running timers. This feature is generally not recommended, but
may be necessary for specific applications, such as speech synthesis.

The function accept-process-output returns non-nil if it did get some output, or
nil if the timeout expired before output arrived.

37.10 Sentinels: Detecting Process Status Changes

A process sentinel is a function that is called whenever the associated process changes status
for any reason, including signals (whether sent by Emacs or caused by the process’s own
actions) that terminate, stop, or continue the process. The process sentinel is also called
if the process exits. The sentinel receives two arguments: the process for which the event
occurred, and a string describing the type of event.

The string describing the event looks like one of the following:

• "finished\n".

• "exited abnormally with code exitcode\n".

• "name-of-signal\n".

• "name-of-signal (core dumped)\n".

A sentinel runs only while Emacs is waiting (e.g., for terminal input, or for time to
elapse, or for process output). This avoids the timing errors that could result from running
sentinels at random places in the middle of other Lisp programs. A program can wait, so that
sentinels will run, by calling sit-for or sleep-for (see Section 21.10 [Waiting], page 357),
or accept-process-output (see Section 37.9.4 [Accepting Output], page 798). Emacs also
allows sentinels to run when the command loop is reading input. delete-process calls the
sentinel when it terminates a running process.

Emacs does not keep a queue of multiple reasons to call the sentinel of one process; it
records just the current status and the fact that there has been a change. Therefore two
changes in status, coming in quick succession, can call the sentinel just once. However,
process termination will always run the sentinel exactly once. This is because the process
status can’t change again after termination.

Chapter 37: Processes 800

Emacs explicitly checks for output from the process before running the process sentinel.
Once the sentinel runs due to process termination, no further output can arrive from the
process.

A sentinel that writes the output into the buffer of the process should check whether the
buffer is still alive. If it tries to insert into a dead buffer, it will get an error. If the buffer
is dead, (buffer-name (process-buffer process)) returns nil.

Quitting is normally inhibited within a sentinel—otherwise, the effect of typing C-g at
command level or to quit a user command would be unpredictable. If you want to permit
quitting inside a sentinel, bind inhibit-quit to nil. In most cases, the right way to do
this is with the macro with-local-quit. See Section 21.11 [Quitting], page 358.

If an error happens during execution of a sentinel, it is caught automatically, so that it
doesn’t stop the execution of whatever programs was running when the sentinel was started.
However, if debug-on-error is non-nil, errors are not caught. This makes it possible to
use the Lisp debugger to debug the sentinel. See Section 18.1 [Debugger], page 249.

While a sentinel is running, the process sentinel is temporarily set to nil so that the
sentinel won’t run recursively. For this reason it is not possible for a sentinel to specify a
new sentinel.

Note that Emacs automatically saves and restores the match data while executing sen-
tinels. See Section 34.6 [Match Data], page 748.

[Function]set-process-sentinel process sentinel
This function associates sentinel with process. If sentinel is nil, then the process will
have no sentinel. The default behavior when there is no sentinel is to insert a message
in the process’s buffer when the process status changes.

Changes in process sentinels take effect immediately—if the sentinel is slated to be
run but has not been called yet, and you specify a new sentinel, the eventual call to
the sentinel will use the new one.

(defun msg-me (process event)

(princ

(format "Process: %s had the event ‘%s’" process event)))

(set-process-sentinel (get-process "shell") ’msg-me)
⇒ msg-me

(kill-process (get-process "shell"))

a Process: #<process shell> had the event ‘killed’
⇒ #<process shell>

[Function]process-sentinel process
This function returns the sentinel of process, or nil if it has none.

[Function]waiting-for-user-input-p
While a sentinel or filter function is running, this function returns non-nil if Emacs
was waiting for keyboard input from the user at the time the sentinel or filter function
was called, or nil if it was not.

37.11 Querying Before Exit

When Emacs exits, it terminates all its subprocesses by sending them the SIGHUP signal.
Because subprocesses may be doing valuable work, Emacs normally asks the user to confirm

Chapter 37: Processes 801

that it is ok to terminate them. Each process has a query flag, which, if non-nil, says that
Emacs should ask for confirmation before exiting and thus killing that process. The default
for the query flag is t, meaning do query.

[Function]process-query-on-exit-flag process
This returns the query flag of process.

[Function]set-process-query-on-exit-flag process flag
This function sets the query flag of process to flag. It returns flag.

Here is an example of using set-process-query-on-exit-flag on a shell process to
avoid querying:

(set-process-query-on-exit-flag (get-process "shell") nil)
⇒ nil

37.12 Accessing Other Processes

In addition to accessing and manipulating processes that are subprocesses of the current
Emacs session, Emacs Lisp programs can also access other processes running on the same
machine. We call these system processes, to distinguish them from Emacs subprocesses.

Emacs provides several primitives for accessing system processes. Not all platforms
support these primitives; on those which don’t, these primitives return nil.

[Function]list-system-processes
This function returns a list of all the processes running on the system. Each process
is identified by its PID, a numerical process ID that is assigned by the OS and distin-
guishes the process from all the other processes running on the same machine at the
same time.

[Function]process-attributes pid
This function returns an alist of attributes for the process specified by its process
ID pid. Each association in the alist is of the form (key . value), where key des-
ignates the attribute and value is the value of that attribute. The various attribute
keys that this function can return are listed below. Not all platforms support all of
these attributes; if an attribute is not supported, its association will not appear in
the returned alist. Values that are numbers can be either integer or floating-point,
depending on the magnitude of the value.

euid The effective user ID of the user who invoked the process. The corre-
sponding value is a number. If the process was invoked by the same
user who runs the current Emacs session, the value is identical to what
user-uid returns (see Section 39.4 [User Identification], page 922).

user User name corresponding to the process’s effective user ID, a string.

egid The group ID of the effective user ID, a number.

group Group name corresponding to the effective user’s group ID, a string.

comm The name of the command that runs in the process. This is a string that
usually specifies the name of the executable file of the process, without the
leading directories. However, some special system processes can report
strings that do not correspond to an executable file of a program.

Chapter 37: Processes 802

state The state code of the process. This is a short string that encodes the
scheduling state of the process. Here’s a list of the most frequently seen
codes:

"D" uninterruptible sleep (usually I/O)

"R" running

"S" interruptible sleep (waiting for some event)

"T" stopped, e.g., by a job control signal

"Z" “zombie”: a process that terminated, but was not reaped by
its parent

For the full list of the possible states, see the manual page of the ps

command.

ppid The process ID of the parent process, a number.

pgrp The process group ID of the process, a number.

sess The session ID of the process. This is a number that is the process ID of
the process’s session leader.

ttname A string that is the name of the process’s controlling terminal. On Unix
and GNU systems, this is normally the file name of the corresponding
terminal device, such as /dev/pts65.

tpgid The numerical process group ID of the foreground process group that
uses the process’s terminal.

minflt The number of minor page faults caused by the process since its begin-
ning. (Minor page faults are those that don’t involve reading from disk.)

majflt The number of major page faults caused by the process since its begin-
ning. (Major page faults require a disk to be read, and are thus more
expensive than minor page faults.)

cminflt

cmajflt Like minflt and majflt, but include the number of page faults for all
the child processes of the given process.

utime Time spent by the process in the user context, for running
the application’s code. The corresponding value is in the
(high low microsec picosec) format, the same format used by
functions current-time (see Section 39.5 [Time of Day], page 923) and
file-attributes (see Section 25.6.4 [File Attributes], page 483).

stime Time spent by the process in the system (kernel) context, for processing
system calls. The corresponding value is in the same format as for utime.

time The sum of utime and stime. The corresponding value is in the same
format as for utime.

cutime

cstime

ctime Like utime, stime, and time, but include the times of all the child pro-
cesses of the given process.

Chapter 37: Processes 803

pri The numerical priority of the process.

nice The nice value of the process, a number. (Processes with smaller nice
values get scheduled more favorably.)

thcount The number of threads in the process.

start The time when the process was started, in the same (high low microsec

picosec) format used by file-attributes and current-time.

etime The time elapsed since the process started, in the format (high low mi-

crosec picosec).

vsize The virtual memory size of the process, measured in kilobytes.

rss The size of the process’s resident set, the number of kilobytes occupied
by the process in the machine’s physical memory.

pcpu The percentage of the CPU time used by the process since it started. The
corresponding value is a floating-point number between 0 and 100.

pmem The percentage of the total physical memory installed on the machine
used by the process’s resident set. The value is a floating-point number
between 0 and 100.

args The command-line with which the process was invoked. This is a string
in which individual command-line arguments are separated by blanks;
whitespace characters that are embedded in the arguments are quoted
as appropriate for the system’s shell: escaped by backslash characters on
GNU and Unix, and enclosed in double quote characters on Windows.
Thus, this command-line string can be directly used in primitives such as
shell-command.

37.13 Transaction Queues

You can use a transaction queue to communicate with a subprocess using transactions.
First use tq-create to create a transaction queue communicating with a specified process.
Then you can call tq-enqueue to send a transaction.

[Function]tq-create process
This function creates and returns a transaction queue communicating with process.
The argument process should be a subprocess capable of sending and receiving streams
of bytes. It may be a child process, or it may be a TCP connection to a server, possibly
on another machine.

[Function]tq-enqueue queue question regexp closure fn &optional delay-question
This function sends a transaction to queue queue. Specifying the queue has the effect
of specifying the subprocess to talk to.

The argument question is the outgoing message that starts the transaction. The
argument fn is the function to call when the corresponding answer comes back; it is
called with two arguments: closure, and the answer received.

The argument regexp is a regular expression that should match text at the end of
the entire answer, but nothing before; that’s how tq-enqueue determines where the
answer ends.

Chapter 37: Processes 804

If the argument delay-question is non-nil, delay sending this question until the pro-
cess has finished replying to any previous questions. This produces more reliable
results with some processes.

[Function]tq-close queue
Shut down transaction queue queue, waiting for all pending transactions to complete,
and then terminate the connection or child process.

Transaction queues are implemented by means of a filter function. See Section 37.9.2
[Filter Functions], page 796.

37.14 Network Connections

Emacs Lisp programs can open stream (TCP) and datagram (UDP) network connections
(see Section 37.16 [Datagrams], page 807) to other processes on the same machine or other
machines. A network connection is handled by Lisp much like a subprocess, and is repre-
sented by a process object. However, the process you are communicating with is not a child
of the Emacs process, has no process ID, and you can’t kill it or send it signals. All you
can do is send and receive data. delete-process closes the connection, but does not kill
the program at the other end; that program must decide what to do about closure of the
connection.

Lisp programs can listen for connections by creating network servers. A network server
is also represented by a kind of process object, but unlike a network connection, the network
server never transfers data itself. When it receives a connection request, it creates a new
network connection to represent the connection just made. (The network connection inherits
certain information, including the process plist, from the server.) The network server then
goes back to listening for more connection requests.

Network connections and servers are created by calling make-network-process with
an argument list consisting of keyword/argument pairs, for example :server t to create
a server process, or :type ’datagram to create a datagram connection. See Section 37.17
[Low-Level Network], page 807, for details. You can also use the open-network-stream

function described below.

To distinguish the different types of processes, the process-type function returns the
symbol network for a network connection or server, serial for a serial port connection, or
real for a real subprocess.

The process-status function returns open, closed, connect, or failed for network
connections. For a network server, the status is always listen. None of those values is
possible for a real subprocess. See Section 37.6 [Process Information], page 789.

You can stop and resume operation of a network process by calling stop-process and
continue-process. For a server process, being stopped means not accepting new connec-
tions. (Up to 5 connection requests will be queued for when you resume the server; you can
increase this limit, unless it is imposed by the operating system—see the :server keyword
of make-network-process, Section 37.17.1 [Network Processes], page 807.) For a network
stream connection, being stopped means not processing input (any arriving input waits
until you resume the connection). For a datagram connection, some number of packets may
be queued but input may be lost. You can use the function process-command to determine
whether a network connection or server is stopped; a non-nil value means yes.

Chapter 37: Processes 805

Emacs can create encrypted network connections, using either built-in or external sup-
port. The built-in support uses the GnuTLS (“Transport Layer Security”) library; see the
GnuTLS project page. If your Emacs was compiled with GnuTLS support, the function
gnutls-available-p is defined and returns non-nil. For more details, see Section “Over-
view” in The Emacs-GnuTLS manual. The external support uses the starttls.el library,
which requires a helper utility such as gnutls-cli to be installed on the system. The
open-network-stream function can transparently handle the details of creating encrypted
connections for you, using whatever support is available.

[Function]open-network-stream name buffer host service &rest parameters
This function opens a TCP connection, with optional encryption, and returns a pro-
cess object that represents the connection.

The name argument specifies the name for the process object. It is modified as
necessary to make it unique.

The buffer argument is the buffer to associate with the connection. Output from
the connection is inserted in the buffer, unless you specify a filter function to handle
the output. If buffer is nil, it means that the connection is not associated with any
buffer.

The arguments host and service specify where to connect to; host is the host name
(a string), and service is the name of a defined network service (a string) or a port
number (an integer).

The remaining arguments parameters are keyword/argument pairs that are mainly
relevant to encrypted connections:

:nowait boolean

If non-nil, try to make an asynchronous connection.

:type type

The type of connection. Options are:

plain An ordinary, unencrypted connection.

tls

ssl A TLS (“Transport Layer Security”) connection.

nil

network Start with a plain connection, and if parameters ‘:success’
and ‘:capability-command’ are supplied, try to upgrade to
an encrypted connection via STARTTLS. If that fails, retain
the unencrypted connection.

starttls As for nil, but if STARTTLS fails drop the connection.

shell A shell connection.

:always-query-capabilities boolean

If non-nil, always ask for the server’s capabilities, even when doing a
‘plain’ connection.

:capability-command capability-command

Command string to query the host capabilities.

http://www.gnu.org/software/gnutls/
http://www.gnu.org/software/gnutls/

Chapter 37: Processes 806

:end-of-command regexp

:end-of-capability regexp

Regular expression matching the end of a command, or the end of the
command capability-command. The latter defaults to the former.

:starttls-function function

Function of one argument (the response to capability-command), which
returns either nil, or the command to activate STARTTLS if supported.

:success regexp

Regular expression matching a successful STARTTLS negotiation.

:use-starttls-if-possible boolean

If non-nil, do opportunistic STARTTLS upgrades even if Emacs doesn’t
have built-in TLS support.

:client-certificate list-or-t

Either a list of the form (key-file cert-file), naming the certificate
key file and certificate file itself, or t, meaning to query auth-source for
this information (see Section “Overview” in The Auth-Source Manual).
Only used for TLS or STARTTLS.

:return-list cons-or-nil

The return value of this function. If omitted or nil, return a process
object. Otherwise, a cons of the form (process-object . plist), where
plist has keywords:

:greeting string-or-nil

If non-nil, the greeting string returned by the host.

:capabilities string-or-nil

If non-nil, the host’s capability string.

:type symbol

The connection type: ‘plain’ or ‘tls’.

37.15 Network Servers

You create a server by calling make-network-process (see Section 37.17.1 [Network Pro-
cesses], page 807) with :server t. The server will listen for connection requests from clients.
When it accepts a client connection request, that creates a new network connection, itself
a process object, with the following parameters:

• The connection’s process name is constructed by concatenating the server process’s
name with a client identification string. The client identification string for an IPv4
connection looks like ‘<a.b.c.d:p>’, which represents an address and port number.
Otherwise, it is a unique number in brackets, as in ‘<nnn>’. The number is unique for
each connection in the Emacs session.

• If the server’s filter is non-nil, the connection process does not get a separate process
buffer; otherwise, Emacs creates a new buffer for the purpose. The buffer name is the
server’s buffer name or process name, concatenated with the client identification string.

The server’s process buffer value is never used directly, but the log function can retrieve
it and use it to log connections by inserting text there.

Chapter 37: Processes 807

• The communication type and the process filter and sentinel are inherited from those of
the server. The server never directly uses its filter and sentinel; their sole purpose is to
initialize connections made to the server.

• The connection’s process contact information is set according to the client’s addressing
information (typically an IP address and a port number). This information is associated
with the process-contact keywords :host, :service, :remote.

• The connection’s local address is set up according to the port number used for the
connection.

• The client process’s plist is initialized from the server’s plist.

37.16 Datagrams

A datagram connection communicates with individual packets rather than streams of data.
Each call to process-send sends one datagram packet (see Section 37.7 [Input to Processes],
page 792), and each datagram received results in one call to the filter function.

The datagram connection doesn’t have to talk with the same remote peer all the time.
It has a remote peer address which specifies where to send datagrams to. Each time an
incoming datagram is passed to the filter function, the peer address is set to the address that
datagram came from; that way, if the filter function sends a datagram, it will go back to that
place. You can specify the remote peer address when you create the datagram connection
using the :remote keyword. You can change it later on by calling set-process-datagram-

address.

[Function]process-datagram-address process
If process is a datagram connection or server, this function returns its remote peer
address.

[Function]set-process-datagram-address process address
If process is a datagram connection or server, this function sets its remote peer address
to address.

37.17 Low-Level Network Access

You can also create network connections by operating at a lower level than that of open-
network-stream, using make-network-process.

37.17.1 make-network-process

The basic function for creating network connections and network servers is make-network-
process. It can do either of those jobs, depending on the arguments you give it.

[Function]make-network-process &rest args
This function creates a network connection or server and returns the process object
that represents it. The arguments args are a list of keyword/argument pairs. Omitting
a keyword is always equivalent to specifying it with value nil, except for :coding,
:filter-multibyte, and :reuseaddr. Here are the meaningful keywords (those
corresponding to network options are listed in the following section):

Chapter 37: Processes 808

:name name
Use the string name as the process name. It is modified if necessary to
make it unique.

:type type Specify the communication type. A value of nil specifies a stream connec-
tion (the default); datagram specifies a datagram connection; seqpacket
specifies a “sequenced packet stream” connection. Both connections and
servers can be of these types.

:server server-flag
If server-flag is non-nil, create a server. Otherwise, create a connection.
For a stream type server, server-flag may be an integer, which then spec-
ifies the length of the queue of pending connections to the server. The
default queue length is 5.

:host host Specify the host to connect to. host should be a host name or Internet
address, as a string, or the symbol local to specify the local host. If you
specify host for a server, it must specify a valid address for the local host,
and only clients connecting to that address will be accepted.

:service service
service specifies a port number to connect to; or, for a server, the port
number to listen on. It should be a service name that translates to a port
number, or an integer specifying the port number directly. For a server,
it can also be t, which means to let the system select an unused port
number.

:family family
family specifies the address (and protocol) family for communication. nil
means determine the proper address family automatically for the given
host and service. local specifies a Unix socket, in which case host is
ignored. ipv4 and ipv6 specify to use IPv4 and IPv6, respectively.

:local local-address
For a server process, local-address is the address to listen on. It overrides
family, host and service, so you might as well not specify them.

:remote remote-address
For a connection, remote-address is the address to connect to. It overrides
family, host and service, so you might as well not specify them.

For a datagram server, remote-address specifies the initial setting of the
remote datagram address.

The format of local-address or remote-address depends on the address
family:

- An IPv4 address is represented as a five-element vector of four 8-bit
integers and one 16-bit integer [a b c d p] corresponding to numeric
IPv4 address a.b.c.d and port number p.

- An IPv6 address is represented as a nine-element vector of 16-bit
integers [a b c d e f g h p] corresponding to numeric IPv6 address
a:b:c:d:e:f :g :h and port number p.

Chapter 37: Processes 809

- A local address is represented as a string, which specifies the address
in the local address space.

- An “unsupported family” address is represented by a cons (f . av),
where f is the family number and av is a vector specifying the socket
address using one element per address data byte. Do not rely on
this format in portable code, as it may depend on implementation
defined constants, data sizes, and data structure alignment.

:nowait bool
If bool is non-nil for a stream connection, return without waiting for
the connection to complete. When the connection succeeds or fails,
Emacs will call the sentinel function, with a second argument matching
"open" (if successful) or "failed". The default is to block, so that make-
network-process does not return until the connection has succeeded or
failed.

:stop stopped
If stopped is non-nil, start the network connection or server in the
“stopped” state.

:buffer buffer
Use buffer as the process buffer.

:coding coding
Use coding as the coding system for this process. To specify different
coding systems for decoding data from the connection and for encoding
data sent to it, specify (decoding . encoding) for coding.

If you don’t specify this keyword at all, the default is to determine the
coding systems from the data.

:noquery query-flag
Initialize the process query flag to query-flag. See Section 37.11 [Query
Before Exit], page 800.

:filter filter
Initialize the process filter to filter.

:filter-multibyte multibyte
If multibyte is non-nil, strings given to the process filter are multibyte,
otherwise they are unibyte. The default is the default value of enable-
multibyte-characters.

:sentinel sentinel
Initialize the process sentinel to sentinel.

:log log Initialize the log function of a server process to log. The log function is
called each time the server accepts a network connection from a client.
The arguments passed to the log function are server, connection, and
message; where server is the server process, connection is the new process
for the connection, and message is a string describing what has happened.

:plist plist Initialize the process plist to plist.

Chapter 37: Processes 810

The original argument list, modified with the actual connection information, is avail-
able via the process-contact function.

37.17.2 Network Options

The following network options can be specified when you create a network process. Ex-
cept for :reuseaddr, you can also set or modify these options later, using set-network-

process-option.

For a server process, the options specified with make-network-process are not inherited
by the client connections, so you will need to set the necessary options for each child
connection as it is created.

:bindtodevice device-name
If device-name is a non-empty string identifying a network interface name (see
network-interface-list), only handle packets received on that interface. If
device-name is nil (the default), handle packets received on any interface.

Using this option may require special privileges on some systems.

:broadcast broadcast-flag
If broadcast-flag is non-nil for a datagram process, the process will receive
datagram packet sent to a broadcast address, and be able to send packets to a
broadcast address. This is ignored for a stream connection.

:dontroute dontroute-flag
If dontroute-flag is non-nil, the process can only send to hosts on the same
network as the local host.

:keepalive keepalive-flag
If keepalive-flag is non-nil for a stream connection, enable exchange of low-level
keep-alive messages.

:linger linger-arg
If linger-arg is non-nil, wait for successful transmission of all queued packets
on the connection before it is deleted (see delete-process). If linger-arg is an
integer, it specifies the maximum time in seconds to wait for queued packets
to be sent before closing the connection. The default is nil, which means to
discard unsent queued packets when the process is deleted.

:oobinline oobinline-flag
If oobinline-flag is non-nil for a stream connection, receive out-of-band data
in the normal data stream. Otherwise, ignore out-of-band data.

:priority priority
Set the priority for packets sent on this connection to the integer priority. The
interpretation of this number is protocol specific; such as setting the TOS (type
of service) field on IP packets sent on this connection. It may also have system
dependent effects, such as selecting a specific output queue on the network
interface.

:reuseaddr reuseaddr-flag
If reuseaddr-flag is non-nil (the default) for a stream server process, allow this
server to reuse a specific port number (see :service), unless another process

Chapter 37: Processes 811

on this host is already listening on that port. If reuseaddr-flag is nil, there
may be a period of time after the last use of that port (by any process on the
host) where it is not possible to make a new server on that port.

[Function]set-network-process-option process option value &optional no-error
This function sets or modifies a network option for network process process. The
accepted options and values are as for make-network-process. If no-error is non-
nil, this function returns nil instead of signaling an error if option is not a supported
option. If the function successfully completes, it returns t.

The current setting of an option is available via the process-contact function.

37.17.3 Testing Availability of Network Features

To test for the availability of a given network feature, use featurep like this:

(featurep ’make-network-process ’(keyword value))

The result of this form is t if it works to specify keyword with value value in make-network-

process. Here are some of the keyword—value pairs you can test in this way.

(:nowait t)

Non-nil if non-blocking connect is supported.

(:type datagram)

Non-nil if datagrams are supported.

(:family local)

Non-nil if local (a.k.a. “UNIX domain”) sockets are supported.

(:family ipv6)

Non-nil if IPv6 is supported.

(:service t)

Non-nil if the system can select the port for a server.

To test for the availability of a given network option, use featurep like this:

(featurep ’make-network-process ’keyword)

The accepted keyword values are :bindtodevice, etc. For the complete list, see
Section 37.17.2 [Network Options], page 810. This form returns non-nil if that particular
network option is supported by make-network-process (or set-network-process-

option).

37.18 Misc Network Facilities

These additional functions are useful for creating and operating on network connections.
Note that they are supported only on some systems.

[Function]network-interface-list
This function returns a list describing the network interfaces of the machine you
are using. The value is an alist whose elements have the form (name . address).
address has the same form as the local-address and remote-address arguments to
make-network-process.

Chapter 37: Processes 812

[Function]network-interface-info ifname
This function returns information about the network interface named ifname. The
value is a list of the form (addr bcast netmask hwaddr flags).

addr The Internet protocol address.

bcast The broadcast address.

netmask The network mask.

hwaddr The layer 2 address (Ethernet MAC address, for instance).

flags The current flags of the interface.

[Function]format-network-address address &optional omit-port
This function converts the Lisp representation of a network address to a string.

A five-element vector [a b c d p] represents an IPv4 address a.b.c.d and port number
p. format-network-address converts that to the string "a.b.c.d:p".

A nine-element vector [a b c d e f g h p] represents an IPv6 address along
with a port number. format-network-address converts that to the string
"[a:b:c:d:e:f:g:h]:p".

If the vector does not include the port number, p, or if omit-port is non-nil, the
result does not include the :p suffix.

37.19 Communicating with Serial Ports

Emacs can communicate with serial ports. For interactive use, M-x serial-term opens a
terminal window. In a Lisp program, make-serial-process creates a process object.

The serial port can be configured at run-time, without having to close and re-open it.
The function serial-process-configure lets you change the speed, bytesize, and other
parameters. In a terminal window created by serial-term, you can click on the mode line
for configuration.

A serial connection is represented by a process object, which can be used in a similar
way to a subprocess or network process. You can send and receive data, and configure the
serial port. A serial process object has no process ID, however, and you can’t send signals
to it, and the status codes are different from other types of processes. delete-process on
the process object or kill-buffer on the process buffer close the connection, but this does
not affect the device connected to the serial port.

The function process-type returns the symbol serial for a process object representing
a serial port connection.

Serial ports are available on GNU/Linux, Unix, and MS Windows systems.

[Command]serial-term port speed
Start a terminal-emulator for a serial port in a new buffer. port is the name of the
serial port to connect to. For example, this could be /dev/ttyS0 on Unix. On MS
Windows, this could be COM1, or \\.\COM10 (double the backslashes in Lisp strings).

speed is the speed of the serial port in bits per second. 9600 is a common value. The
buffer is in Term mode; see Section “Term Mode” in The GNU Emacs Manual, for
the commands to use in that buffer. You can change the speed and the configuration
in the mode line menu.

Chapter 37: Processes 813

[Function]make-serial-process &rest args
This function creates a process and a buffer. Arguments are specified as
keyword/argument pairs. Here’s the list of the meaningful keywords, with the first
two (port and speed) being mandatory:

:port port

This is the name of the serial port. On Unix and GNU systems, this is
a file name such as /dev/ttyS0. On Windows, this could be COM1, or
\\.\COM10 for ports higher than COM9 (double the backslashes in Lisp
strings).

:speed speed

The speed of the serial port in bits per second. This function calls
serial-process-configure to handle the speed; see the following doc-
umentation of that function for more details.

:name name

The name of the process. If name is not given, port will serve as the
process name as well.

:buffer buffer

The buffer to associate with the process. The value can be either a buffer
or a string that names a buffer. Process output goes at the end of that
buffer, unless you specify an output stream or filter function to handle
the output. If buffer is not given, the process buffer’s name is taken from
the value of the :name keyword.

:coding coding

If coding is a symbol, it specifies the coding system used for both reading
and writing for this process. If coding is a cons (decoding . encoding),
decoding is used for reading, and encoding is used for writing. If not
specified, the default is to determine the coding systems from the data
itself.

:noquery query-flag

Initialize the process query flag to query-flag. See Section 37.11 [Query
Before Exit], page 800. The flags defaults to nil if unspecified.

:stop bool

Start process in the “stopped” state if bool is non-nil. In the stopped
state, a serial process does not accept incoming data, but you can send
outgoing data. The stopped state is cleared by continue-process and
set by stop-process.

:filter filter

Install filter as the process filter.

:sentinel sentinel

Install sentinel as the process sentinel.

:plist plist

Install plist as the initial plist of the process.

Chapter 37: Processes 814

:bytesize

:parity

:stopbits

:flowcontrol

These are handled by serial-process-configure, which is called by
make-serial-process.

The original argument list, possibly modified by later configuration, is available via
the function process-contact.

Here is an example:

(make-serial-process :port "/dev/ttyS0" :speed 9600)

[Function]serial-process-configure &rest args
This functions configures a serial port connection. Arguments are specified as key-
word/argument pairs. Attributes that are not given are re-initialized from the pro-
cess’s current configuration (available via the function process-contact), or set to
reasonable default values. The following arguments are defined:

:process process

:name name

:buffer buffer

:port port

Any of these arguments can be given to identify the process that is to
be configured. If none of these arguments is given, the current buffer’s
process is used.

:speed speed

The speed of the serial port in bits per second, a.k.a. baud rate. The
value can be any number, but most serial ports work only at a few defined
values between 1200 and 115200, with 9600 being the most common value.
If speed is nil, the function ignores all other arguments and does not
configure the port. This may be useful for special serial ports such as
Bluetooth-to-serial converters, which can only be configured through ‘AT’
commands sent through the connection. The value of nil for speed is
valid only for connections that were already opened by a previous call to
make-serial-process or serial-term.

:bytesize bytesize

The number of bits per byte, which can be 7 or 8. If bytesize is not given
or nil, it defaults to 8.

:parity parity

The value can be nil (don’t use parity), the symbol odd (use odd parity),
or the symbol even (use even parity). If parity is not given, it defaults
to no parity.

:stopbits stopbits

The number of stopbits used to terminate a transmission of each byte.
stopbits can be 1 or 2. If stopbits is not given or nil, it defaults to 1.

Chapter 37: Processes 815

:flowcontrol flowcontrol

The type of flow control to use for this connection, which is either nil

(don’t use flow control), the symbol hw (use RTS/CTS hardware flow
control), or the symbol sw (use XON/XOFF software flow control). If
flowcontrol is not given, it defaults to no flow control.

Internally, make-serial-process calls serial-process-configure for the initial
configuration of the serial port.

37.20 Packing and Unpacking Byte Arrays

This section describes how to pack and unpack arrays of bytes, usually for binary network
protocols. These functions convert byte arrays to alists, and vice versa. The byte array
can be represented as a unibyte string or as a vector of integers, while the alist associates
symbols either with fixed-size objects or with recursive sub-alists. To use the functions
referred to in this section, load the bindat library.

Conversion from byte arrays to nested alists is also known as deserializing or unpacking,
while going in the opposite direction is also known as serializing or packing.

37.20.1 Describing Data Layout

To control unpacking and packing, you write a data layout specification, a special nested list
describing named and typed fields. This specification controls the length of each field to be
processed, and how to pack or unpack it. We normally keep bindat specs in variables whose
names end in ‘-bindat-spec’; that kind of name is automatically recognized as “risky”.

A field’s type describes the size (in bytes) of the object that the field represents and, in
the case of multibyte fields, how the bytes are ordered within the field. The two possible
orderings are “big endian” (also known as “network byte ordering”) and “little endian”.
For instance, the number #x23cd (decimal 9165) in big endian would be the two bytes #x23
#xcd; and in little endian, #xcd #x23. Here are the possible type values:

u8

byte Unsigned byte, with length 1.

u16

word

short Unsigned integer in network byte order, with length 2.

u24 Unsigned integer in network byte order, with length 3.

u32

dword

long Unsigned integer in network byte order, with length 4. Note: These values may
be limited by Emacs’s integer implementation limits.

u16r

u24r

u32r Unsigned integer in little endian order, with length 2, 3 and 4, respectively.

str len String of length len.

strz len Zero-terminated string, in a fixed-size field with length len.

Chapter 37: Processes 816

vec len [type]

Vector of len elements of type type, defaulting to bytes. The type is any of the
simple types above, or another vector specified as a list of the form (vec len

[type]).

ip Four-byte vector representing an Internet address. For example: [127 0 0 1]

for localhost.

bits len List of set bits in len bytes. The bytes are taken in big endian order and the bits
are numbered starting with 8 * len − 1 and ending with zero. For example:
bits 2 unpacks #x28 #x1c to (2 3 4 11 13) and #x1c #x28 to (3 5 10 11 12).

(eval form)

form is a Lisp expression evaluated at the moment the field is unpacked or
packed. The result of the evaluation should be one of the above-listed type
specifications.

For a fixed-size field, the length len is given as an integer specifying the number of bytes
in the field.

When the length of a field is not fixed, it typically depends on the value of a preceding
field. In this case, the length len can be given either as a list (name ...) identifying a
field name in the format specified for bindat-get-field below, or by an expression (eval

form) where form should evaluate to an integer, specifying the field length.

A field specification generally has the form ([name] handler), where name is optional.
Don’t use names that are symbols meaningful as type specifications (above) or handler spec-
ifications (below), since that would be ambiguous. name can be a symbol or an expression
(eval form), in which case form should evaluate to a symbol.

handler describes how to unpack or pack the field and can be one of the following:

type Unpack/pack this field according to the type specification type.

eval form Evaluate form, a Lisp expression, for side-effect only. If the field name is spec-
ified, the value is bound to that field name.

fill len Skip len bytes. In packing, this leaves them unchanged, which normally means
they remain zero. In unpacking, this means they are ignored.

align len Skip to the next multiple of len bytes.

struct spec-name

Process spec-name as a sub-specification. This describes a structure nested
within another structure.

union form (tag spec)...

Evaluate form, a Lisp expression, find the first tag that matches it, and process
its associated data layout specification spec. Matching can occur in one of three
ways:

• If a tag has the form (eval expr), evaluate expr with the variable tag

dynamically bound to the value of form. A non-nil result indicates a
match.

• tag matches if it is equal to the value of form.

Chapter 37: Processes 817

• tag matches unconditionally if it is t.

repeat count field-specs...

Process the field-specs recursively, in order, then repeat starting from the first
one, processing all the specifications count times overall. The count is given
using the same formats as a field length—if an eval form is used, it is evaluated
just once. For correct operation, each specification in field-specs must include
a name.

For the (eval form) forms used in a bindat specification, the form can access and update
these dynamically bound variables during evaluation:

last Value of the last field processed.

bindat-raw

The data as a byte array.

bindat-idx

Current index (within bindat-raw) for unpacking or packing.

struct The alist containing the structured data that have been unpacked so far, or
the entire structure being packed. You can use bindat-get-field to access
specific fields of this structure.

count

index Inside a repeat block, these contain the maximum number of repetitions (as
specified by the count parameter), and the current repetition number (counting
from 0). Setting count to zero will terminate the inner-most repeat block after
the current repetition has completed.

37.20.2 Functions to Unpack and Pack Bytes

In the following documentation, spec refers to a data layout specification, bindat-raw to a
byte array, and struct to an alist representing unpacked field data.

[Function]bindat-unpack spec bindat-raw &optional bindat-idx
This function unpacks data from the unibyte string or byte array bindat-raw accord-
ing to spec. Normally, this starts unpacking at the beginning of the byte array, but
if bindat-idx is non-nil, it specifies a zero-based starting position to use instead.

The value is an alist or nested alist in which each element describes one unpacked
field.

[Function]bindat-get-field struct &rest name
This function selects a field’s data from the nested alist struct. Usually struct was
returned by bindat-unpack. If name corresponds to just one argument, that means
to extract a top-level field value. Multiple name arguments specify repeated lookup
of sub-structures. An integer name acts as an array index.

For example, if name is (a b 2 c), that means to find field c in the third element of
subfield b of field a. (This corresponds to struct.a.b[2].c in C.)

Although packing and unpacking operations change the organization of data (in mem-
ory), they preserve the data’s total length, which is the sum of all the fields’ lengths, in

Chapter 37: Processes 818

bytes. This value is not generally inherent in either the specification or alist alone; instead,
both pieces of information contribute to its calculation. Likewise, the length of a string
or array being unpacked may be longer than the data’s total length as described by the
specification.

[Function]bindat-length spec struct
This function returns the total length of the data in struct, according to spec.

[Function]bindat-pack spec struct &optional bindat-raw bindat-idx
This function returns a byte array packed according to spec from the data in the
alist struct. It normally creates and fills a new byte array starting at the beginning.
However, if bindat-raw is non-nil, it specifies a pre-allocated unibyte string or vector
to pack into. If bindat-idx is non-nil, it specifies the starting offset for packing into
bindat-raw.

When pre-allocating, you should make sure (length bindat-raw) meets or exceeds
the total length to avoid an out-of-range error.

[Function]bindat-ip-to-string ip
Convert the Internet address vector ip to a string in the usual dotted notation.

(bindat-ip-to-string [127 0 0 1])

⇒ "127.0.0.1"

37.20.3 Examples of Byte Unpacking and Packing

Here is a complete example of byte unpacking and packing:

(require ’bindat)

(defvar fcookie-index-spec

’((:version u32)

(:count u32)

(:longest u32)

(:shortest u32)

(:flags u32)

(:delim u8)

(:ignored fill 3)

(:offset repeat (:count) (:foo u32)))

"Description of a fortune cookie index file’s contents.")

(defun fcookie (cookies &optional index)

"Display a random fortune cookie from file COOKIES.

Optional second arg INDEX specifies the associated index

filename, by default \"COOKIES.dat\". Display cookie text

in buffer \"*Fortune Cookie: BASENAME*\", where BASENAME

is COOKIES without the directory part."

(interactive "fCookies file: ")

(let* ((info (with-temp-buffer

(insert-file-contents-literally

(or index (concat cookies ".dat")))

Chapter 37: Processes 819

(bindat-unpack fcookie-index-spec

(buffer-string))))

(sel (random (bindat-get-field info :count)))

(beg (cdar (bindat-get-field info :offset sel)))

(end (or (cdar (bindat-get-field info

:offset (1+ sel)))

(nth 7 (file-attributes cookies)))))

(switch-to-buffer

(get-buffer-create

(format "*Fortune Cookie: %s*"

(file-name-nondirectory cookies))))

(erase-buffer)

(insert-file-contents-literally

cookies nil beg (- end 3))))

(defun fcookie-create-index (cookies &optional index delim)

"Scan file COOKIES, and write out its index file.

Optional arg INDEX specifies the index filename, which by

default is \"COOKIES.dat\". Optional arg DELIM specifies the

unibyte character that, when found on a line of its own in

COOKIES, indicates the border between entries."

(interactive "fCookies file: ")

(setq delim (or delim ?%))

(let ((delim-line (format "\n%c\n" delim))

(count 0)

(max 0)

min p q len offsets)

(unless (= 3 (string-bytes delim-line))

(error "Delimiter cannot be represented in one byte"))

(with-temp-buffer

(insert-file-contents-literally cookies)

(while (and (setq p (point))

(search-forward delim-line (point-max) t)

(setq len (- (point) 3 p)))

(setq count (1+ count)

max (max max len)

min (min (or min max) len)

offsets (cons (1- p) offsets))))

(with-temp-buffer

(set-buffer-multibyte nil)

(insert

(bindat-pack

fcookie-index-spec

‘((:version . 2)

(:count . ,count)

(:longest . ,max)

(:shortest . ,min)

Chapter 37: Processes 820

(:flags . 0)

(:delim . ,delim)

(:offset . ,(mapcar (lambda (o)

(list (cons :foo o)))

(nreverse offsets))))))

(let ((coding-system-for-write ’raw-text-unix))

(write-file (or index (concat cookies ".dat")))))))

The following is an example of defining and unpacking a complex structure. Consider
the following C structures:

struct header {

unsigned long dest_ip;

unsigned long src_ip;

unsigned short dest_port;

unsigned short src_port;

};

struct data {

unsigned char type;

unsigned char opcode;

unsigned short length; /* in network byte order */

unsigned char id[8]; /* null-terminated string */

unsigned char data[/* (length + 3) & ~3 */];

};

struct packet {

struct header header;

unsigned long counters[2]; /* in little endian order */

unsigned char items;

unsigned char filler[3];

struct data item[/* items */];

};

The corresponding data layout specification is:

(setq header-spec

’((dest-ip ip)

(src-ip ip)

(dest-port u16)

(src-port u16)))

(setq data-spec

’((type u8)

(opcode u8)

(length u16) ; network byte order

(id strz 8)

(data vec (length))

(align 4)))

Chapter 37: Processes 821

(setq packet-spec

’((header struct header-spec)

(counters vec 2 u32r) ; little endian order

(items u8)

(fill 3)

(item repeat (items)

(struct data-spec))))

A binary data representation is:

(setq binary-data

[192 168 1 100 192 168 1 101 01 28 21 32

160 134 1 0 5 1 0 0 2 0 0 0

2 3 0 5 ?A ?B ?C ?D ?E ?F 0 0 1 2 3 4 5 0 0 0

1 4 0 7 ?B ?C ?D ?E ?F ?G 0 0 6 7 8 9 10 11 12 0])

The corresponding decoded structure is:

(setq decoded (bindat-unpack packet-spec binary-data))

⇒
((header

(dest-ip . [192 168 1 100])

(src-ip . [192 168 1 101])

(dest-port . 284)

(src-port . 5408))

(counters . [100000 261])

(items . 2)

(item ((data . [1 2 3 4 5])

(id . "ABCDEF")

(length . 5)

(opcode . 3)

(type . 2))

((data . [6 7 8 9 10 11 12])

(id . "BCDEFG")

(length . 7)

(opcode . 4)

(type . 1))))

An example of fetching data from this structure:

(bindat-get-field decoded ’item 1 ’id)

⇒ "BCDEFG"

Chapter 38: Emacs Display 822

38 Emacs Display

This chapter describes a number of features related to the display that Emacs presents to
the user.

38.1 Refreshing the Screen

The function redraw-frame clears and redisplays the entire contents of a given frame (see
Chapter 29 [Frames], page 590). This is useful if the screen is corrupted.

[Function]redraw-frame frame
This function clears and redisplays frame frame.

Even more powerful is redraw-display:

[Command]redraw-display
This function clears and redisplays all visible frames.

In Emacs, processing user input takes priority over redisplay. If you call these functions
when input is available, they don’t redisplay immediately, but the requested redisplay does
happen eventually—after all the input has been processed.

On text terminals, suspending and resuming Emacs normally also refreshes the screen.
Some terminal emulators record separate contents for display-oriented programs such as
Emacs and for ordinary sequential display. If you are using such a terminal, you might
want to inhibit the redisplay on resumption.

[User Option]no-redraw-on-reenter
This variable controls whether Emacs redraws the entire screen after it has been
suspended and resumed. Non-nil means there is no need to redraw, nil means
redrawing is needed. The default is nil.

38.2 Forcing Redisplay

Emacs normally tries to redisplay the screen whenever it waits for input. With the following
function, you can request an immediate attempt to redisplay, in the middle of Lisp code,
without actually waiting for input.

[Function]redisplay &optional force
This function tries immediately to redisplay. The optional argument force, if non-
nil, forces the redisplay to be performed, instead of being preempted, even if input is
pending and the variable redisplay-dont-pause is nil (see below). If redisplay-
dont-pause is non-nil (the default), this function redisplays in any case, i.e., force
does nothing.

The function returns t if it actually tried to redisplay, and nil otherwise. A value of t
does not mean that redisplay proceeded to completion; it could have been preempted
by newly arriving input.

[Variable]redisplay-dont-pause
If this variable is nil, arriving input events preempt redisplay; Emacs avoids starting
a redisplay, and stops any redisplay that is in progress, until the input has been

Chapter 38: Emacs Display 823

processed. In particular, (redisplay) returns nil without actually redisplaying, if
there is pending input.

The default value is t, which means that pending input does not preempt redisplay.

[Variable]redisplay-preemption-period
If redisplay-dont-pause is nil, this variable specifies how many seconds Emacs
waits between checks for new input during redisplay; if input arrives during this
interval, redisplay stops and the input is processed. The default value is 0.1; if the
value is nil, Emacs does not check for input during redisplay.

This variable has no effect when redisplay-dont-pause is non-nil (the default).

Although redisplay tries immediately to redisplay, it does not change how Emacs de-
cides which parts of its frame(s) to redisplay. By contrast, the following function adds cer-
tain windows to the pending redisplay work (as if their contents had completely changed),
but does not immediately try to perform redisplay.

[Function]force-window-update &optional object
This function forces some or all windows to be updated the next time Emacs does a
redisplay. If object is a window, that window is to be updated. If object is a buffer
or buffer name, all windows displaying that buffer are to be updated. If object is nil
(or omitted), all windows are to be updated.

This function does not do a redisplay immediately; Emacs does that as it waits for
input, or when the function redisplay is called.

38.3 Truncation

When a line of text extends beyond the right edge of a window, Emacs can continue the line
(make it “wrap” to the next screen line), or truncate the line (limit it to one screen line).
The additional screen lines used to display a long text line are called continuation lines.
Continuation is not the same as filling; continuation happens on the screen only, not in the
buffer contents, and it breaks a line precisely at the right margin, not at a word boundary.
See Section 32.11 [Filling], page 664.

On a graphical display, tiny arrow images in the window fringes indicate truncated
and continued lines (see Section 38.13 [Fringes], page 867). On a text terminal, a ‘$’ in
the rightmost column of the window indicates truncation; a ‘\’ on the rightmost column
indicates a line that “wraps”. (The display table can specify alternate characters to use for
this; see Section 38.20.2 [Display Tables], page 901).

[User Option]truncate-lines
If this buffer-local variable is non-nil, lines that extend beyond the right edge of
the window are truncated; otherwise, they are continued. As a special exception,
the variable truncate-partial-width-windows takes precedence in partial-width
windows (i.e., windows that do not occupy the entire frame width).

[User Option]truncate-partial-width-windows
This variable controls line truncation in partial-width windows. A partial-width win-
dow is one that does not occupy the entire frame width (see Section 28.5 [Splitting

Chapter 38: Emacs Display 824

Windows], page 546). If the value is nil, line truncation is determined by the vari-
able truncate-lines (see above). If the value is an integer n, lines are truncated
if the partial-width window has fewer than n columns, regardless of the value of
truncate-lines; if the partial-width window has n or more columns, line truncation
is determined by truncate-lines. For any other non-nil value, lines are truncated
in every partial-width window, regardless of the value of truncate-lines.

When horizontal scrolling (see Section 28.22 [Horizontal Scrolling], page 580) is in use
in a window, that forces truncation.

[Variable]wrap-prefix
If this buffer-local variable is non-nil, it defines a wrap prefix which Emacs displays
at the start of every continuation line. (If lines are truncated, wrap-prefix is never
used.) Its value may be a string or an image (see Section 38.15.4 [Other Display
Specs], page 877), or a stretch of whitespace such as specified by the :width or
:align-to display properties (see Section 38.15.2 [Specified Space], page 875). The
value is interpreted in the same way as a display text property. See Section 38.15
[Display Property], page 874.

A wrap prefix may also be specified for regions of text, using the wrap-prefix text
or overlay property. This takes precedence over the wrap-prefix variable. See
Section 32.19.4 [Special Properties], page 685.

[Variable]line-prefix
If this buffer-local variable is non-nil, it defines a line prefix which Emacs displays
at the start of every non-continuation line. Its value may be a string or an image
(see Section 38.15.4 [Other Display Specs], page 877), or a stretch of whitespace
such as specified by the :width or :align-to display properties (see Section 38.15.2
[Specified Space], page 875). The value is interpreted in the same way as a display

text property. See Section 38.15 [Display Property], page 874.

A line prefix may also be specified for regions of text using the line-prefix text
or overlay property. This takes precedence over the line-prefix variable. See
Section 32.19.4 [Special Properties], page 685.

If your buffer contains very long lines, and you use continuation to display them, com-
puting the continuation lines can make redisplay slow. The column computation and in-
dentation functions also become slow. Then you might find it advisable to set cache-long-
line-scans to t.

[Variable]cache-long-line-scans
If this variable is non-nil, various indentation and motion functions, and Emacs
redisplay, cache the results of scanning the buffer, and consult the cache to avoid
rescanning regions of the buffer unless they are modified.

Turning on the cache slows down processing of short lines somewhat.

This variable is automatically buffer-local in every buffer.

Chapter 38: Emacs Display 825

38.4 The Echo Area

The echo area is used for displaying error messages (see Section 10.5.3 [Errors], page 132),
for messages made with the message primitive, and for echoing keystrokes. It is not the
same as the minibuffer, despite the fact that the minibuffer appears (when active) in the
same place on the screen as the echo area. See Section “The Minibuffer” in The GNU
Emacs Manual.

Apart from the functions documented in this section, you can print Lisp objects to the
echo area by specifying t as the output stream. See Section 19.4 [Output Streams], page 284.

38.4.1 Displaying Messages in the Echo Area

This section describes the standard functions for displaying messages in the echo area.

[Function]message format-string &rest arguments
This function displays a message in the echo area. format-string is a format string, and
arguments are the objects for its format specifications, like in the format function
(see Section 4.7 [Formatting Strings], page 57). The resulting formatted string is
displayed in the echo area; if it contains face text properties, it is displayed with
the specified faces (see Section 38.12 [Faces], page 848). The string is also added
to the *Messages* buffer, but without text properties (see Section 38.4.3 [Logging
Messages], page 828).

In batch mode, the message is printed to the standard error stream, followed by a
newline.

If format-string is nil or the empty string, message clears the echo area; if the
echo area has been expanded automatically, this brings it back to its normal size.
If the minibuffer is active, this brings the minibuffer contents back onto the screen
immediately.

(message "Minibuffer depth is %d."

(minibuffer-depth))

a Minibuffer depth is 0.

⇒ "Minibuffer depth is 0."

---------- Echo Area ----------

Minibuffer depth is 0.

---------- Echo Area ----------

To automatically display a message in the echo area or in a pop-buffer, depending on
its size, use display-message-or-buffer (see below).

[Macro]with-temp-message message &rest body
This construct displays a message in the echo area temporarily, during the execution
of body. It displays message, executes body, then returns the value of the last body
form while restoring the previous echo area contents.

[Function]message-or-box format-string &rest arguments
This function displays a message like message, but may display it in a dialog box
instead of the echo area. If this function is called in a command that was invoked using
the mouse—more precisely, if last-nonmenu-event (see Section 21.5 [Command Loop

Chapter 38: Emacs Display 826

Info], page 330) is either nil or a list—then it uses a dialog box or pop-up menu to
display the message. Otherwise, it uses the echo area. (This is the same criterion
that y-or-n-p uses to make a similar decision; see Section 20.7 [Yes-or-No Queries],
page 314.)

You can force use of the mouse or of the echo area by binding last-nonmenu-event

to a suitable value around the call.

[Function]message-box format-string &rest arguments
This function displays a message like message, but uses a dialog box (or a pop-up
menu) whenever that is possible. If it is impossible to use a dialog box or pop-up
menu, because the terminal does not support them, then message-box uses the echo
area, like message.

[Function]display-message-or-buffer message &optional buffer-name
not-this-window frame

This function displays the message message, which may be either a string or a buffer.
If it is shorter than the maximum height of the echo area, as defined by max-mini-

window-height, it is displayed in the echo area, using message. Otherwise, display-
buffer is used to show it in a pop-up buffer.

Returns either the string shown in the echo area, or when a pop-up buffer is used,
the window used to display it.

If message is a string, then the optional argument buffer-name is the name of the
buffer used to display it when a pop-up buffer is used, defaulting to *Message*. In
the case where message is a string and displayed in the echo area, it is not specified
whether the contents are inserted into the buffer anyway.

The optional arguments not-this-window and frame are as for display-buffer, and
only used if a buffer is displayed.

[Function]current-message
This function returns the message currently being displayed in the echo area, or nil
if there is none.

38.4.2 Reporting Operation Progress

When an operation can take a while to finish, you should inform the user about the progress
it makes. This way the user can estimate remaining time and clearly see that Emacs is busy
working, not hung. A convenient way to do this is to use a progress reporter.

Here is a working example that does nothing useful:

(let ((progress-reporter

(make-progress-reporter "Collecting mana for Emacs..."

0 500)))

(dotimes (k 500)

(sit-for 0.01)

(progress-reporter-update progress-reporter k))

(progress-reporter-done progress-reporter))

Chapter 38: Emacs Display 827

[Function]make-progress-reporter message &optional min-value max-value
current-value min-change min-time

This function creates and returns a progress reporter object, which you will use as
an argument for the other functions listed below. The idea is to precompute as much
data as possible to make progress reporting very fast.

When this progress reporter is subsequently used, it will display message in the echo
area, followed by progress percentage. message is treated as a simple string. If you
need it to depend on a filename, for instance, use format before calling this function.

The arguments min-value and max-value should be numbers standing for the starting
and final states of the operation. For instance, an operation that “scans” a buffer
should set these to the results of point-min and point-max correspondingly. max-
value should be greater than min-value.

Alternatively, you can set min-value and max-value to nil. In that case, the progress
reporter does not report process percentages; it instead displays a “spinner” that
rotates a notch each time you update the progress reporter.

If min-value and max-value are numbers, you can give the argument current-value a
numerical value specifying the initial progress; if omitted, this defaults to min-value.

The remaining arguments control the rate of echo area updates. The progress reporter
will wait for at leastmin-change more percents of the operation to be completed before
printing next message; the default is one percent. min-time specifies the minimum
time in seconds to pass between successive prints; the default is 0.2 seconds. (On
some operating systems, the progress reporter may handle fractions of seconds with
varying precision).

This function calls progress-reporter-update, so the first message is printed im-
mediately.

[Function]progress-reporter-update reporter &optional value
This function does the main work of reporting progress of your operation. It displays
the message of reporter, followed by progress percentage determined by value. If per-
centage is zero, or close enough according to themin-change andmin-time arguments,
then it is omitted from the output.

reporter must be the result of a call to make-progress-reporter. value specifies
the current state of your operation and must be between min-value and max-value
(inclusive) as passed to make-progress-reporter. For instance, if you scan a buffer,
then value should be the result of a call to point.

This function respects min-change and min-time as passed to make-progress-

reporter and so does not output new messages on every invocation. It is thus very
fast and normally you should not try to reduce the number of calls to it: resulting
overhead will most likely negate your effort.

[Function]progress-reporter-force-update reporter &optional value
new-message

This function is similar to progress-reporter-update except that it prints a message
in the echo area unconditionally.

The first two arguments have the same meaning as for progress-reporter-update.
Optional new-message allows you to change the message of the reporter. Since this

Chapter 38: Emacs Display 828

functions always updates the echo area, such a change will be immediately presented
to the user.

[Function]progress-reporter-done reporter
This function should be called when the operation is finished. It prints the message
of reporter followed by word “done” in the echo area.

You should always call this function and not hope for progress-reporter-update
to print “100%”. Firstly, it may never print it, there are many good reasons for this
not to happen. Secondly, “done” is more explicit.

[Macro]dotimes-with-progress-reporter (var count [result]) message body. . .
This is a convenience macro that works the same way as dotimes does, but also
reports loop progress using the functions described above. It allows you to save some
typing.

You can rewrite the example in the beginning of this node using this macro this way:

(dotimes-with-progress-reporter

(k 500)

"Collecting some mana for Emacs..."

(sit-for 0.01))

38.4.3 Logging Messages in *Messages*

Almost all the messages displayed in the echo area are also recorded in the *Messages*

buffer so that the user can refer back to them. This includes all the messages that are
output with message.

[User Option]message-log-max
This variable specifies how many lines to keep in the *Messages* buffer. The value t
means there is no limit on how many lines to keep. The value nil disables message
logging entirely. Here’s how to display a message and prevent it from being logged:

(let (message-log-max)

(message ...))

To make *Messages* more convenient for the user, the logging facility combines suc-
cessive identical messages. It also combines successive related messages for the sake of two
cases: question followed by answer, and a series of progress messages.

A “question followed by an answer” means two messages like the ones produced by
y-or-n-p: the first is ‘question’, and the second is ‘question...answer’. The first mes-
sage conveys no additional information beyond what’s in the second, so logging the second
message discards the first from the log.

A “series of progress messages” means successive messages like those produced by make-

progress-reporter. They have the form ‘base...how-far’, where base is the same each
time, while how-far varies. Logging each message in the series discards the previous one,
provided they are consecutive.

The functions make-progress-reporter and y-or-n-p don’t have to do anything spe-
cial to activate the message log combination feature. It operates whenever two consecutive
messages are logged that share a common prefix ending in ‘...’.

Chapter 38: Emacs Display 829

38.4.4 Echo Area Customization

These variables control details of how the echo area works.

[Variable]cursor-in-echo-area
This variable controls where the cursor appears when a message is displayed in the
echo area. If it is non-nil, then the cursor appears at the end of the message.
Otherwise, the cursor appears at point—not in the echo area at all.

The value is normally nil; Lisp programs bind it to t for brief periods of time.

[Variable]echo-area-clear-hook
This normal hook is run whenever the echo area is cleared—either by (message nil)

or for any other reason.

[User Option]echo-keystrokes
This variable determines how much time should elapse before command characters
echo. Its value must be an integer or floating point number, which specifies the
number of seconds to wait before echoing. If the user types a prefix key (such as C-x)
and then delays this many seconds before continuing, the prefix key is echoed in the
echo area. (Once echoing begins in a key sequence, all subsequent characters in the
same key sequence are echoed immediately.)

If the value is zero, then command input is not echoed.

[Variable]message-truncate-lines
Normally, displaying a long message resizes the echo area to display the entire message.
But if the variable message-truncate-lines is non-nil, the echo area does not resize,
and the message is truncated to fit it.

The variable max-mini-window-height, which specifies the maximum height for resizing
minibuffer windows, also applies to the echo area (which is really a special use of the
minibuffer window; see Section 20.14 [Minibuffer Misc], page 320).

38.5 Reporting Warnings

Warnings are a facility for a program to inform the user of a possible problem, but continue
running.

38.5.1 Warning Basics

Every warning has a textual message, which explains the problem for the user, and a severity
level which is a symbol. Here are the possible severity levels, in order of decreasing severity,
and their meanings:

:emergency

A problem that will seriously impair Emacs operation soon if you do not attend
to it promptly.

:error A report of data or circumstances that are inherently wrong.

:warning A report of data or circumstances that are not inherently wrong, but raise
suspicion of a possible problem.

Chapter 38: Emacs Display 830

:debug A report of information that may be useful if you are debugging.

When your program encounters invalid input data, it can either signal a Lisp error by
calling error or signal or report a warning with severity :error. Signaling a Lisp error is
the easiest thing to do, but it means the program cannot continue processing. If you want
to take the trouble to implement a way to continue processing despite the bad data, then
reporting a warning of severity :error is the right way to inform the user of the problem.
For instance, the Emacs Lisp byte compiler can report an error that way and continue
compiling other functions. (If the program signals a Lisp error and then handles it with
condition-case, the user won’t see the error message; it could show the message to the
user by reporting it as a warning.)

Each warning has a warning type to classify it. The type is a list of symbols. The
first symbol should be the custom group that you use for the program’s user options.
For example, byte compiler warnings use the warning type (bytecomp). You can also
subcategorize the warnings, if you wish, by using more symbols in the list.

[Function]display-warning type message &optional level buffer-name
This function reports a warning, using message as the message and type as the warn-
ing type. level should be the severity level, with :warning being the default.

buffer-name, if non-nil, specifies the name of the buffer for logging the warning. By
default, it is *Warnings*.

[Function]lwarn type level message &rest args
This function reports a warning using the value of (format message args...) as the
message. In other respects it is equivalent to display-warning.

[Function]warn message &rest args
This function reports a warning using the value of (format message args...) as
the message, (emacs) as the type, and :warning as the severity level. It exists for
compatibility only; we recommend not using it, because you should specify a specific
warning type.

38.5.2 Warning Variables

Programs can customize how their warnings appear by binding the variables described in
this section.

[Variable]warning-levels
This list defines the meaning and severity order of the warning severity levels. Each
element defines one severity level, and they are arranged in order of decreasing severity.

Each element has the form (level string function), where level is the severity
level it defines. string specifies the textual description of this level. string should use
‘%s’ to specify where to put the warning type information, or it can omit the ‘%s’ so
as not to include that information.

The optional function, if non-nil, is a function to call with no arguments, to get the
user’s attention.

Normally you should not change the value of this variable.

Chapter 38: Emacs Display 831

[Variable]warning-prefix-function
If non-nil, the value is a function to generate prefix text for warnings. Programs can
bind the variable to a suitable function. display-warning calls this function with
the warnings buffer current, and the function can insert text in it. That text becomes
the beginning of the warning message.

The function is called with two arguments, the severity level and its entry in warning-

levels. It should return a list to use as the entry (this value need not be an actual
member of warning-levels). By constructing this value, the function can change
the severity of the warning, or specify different handling for a given severity level.

If the variable’s value is nil then there is no function to call.

[Variable]warning-series
Programs can bind this variable to t to say that the next warning should begin a
series. When several warnings form a series, that means to leave point on the first
warning of the series, rather than keep moving it for each warning so that it appears on
the last one. The series ends when the local binding is unbound and warning-series

becomes nil again.

The value can also be a symbol with a function definition. That is equivalent to t,
except that the next warning will also call the function with no arguments with the
warnings buffer current. The function can insert text which will serve as a header for
the series of warnings.

Once a series has begun, the value is a marker which points to the buffer position in
the warnings buffer of the start of the series.

The variable’s normal value is nil, which means to handle each warning separately.

[Variable]warning-fill-prefix
When this variable is non-nil, it specifies a fill prefix to use for filling each warning’s
text.

[Variable]warning-type-format
This variable specifies the format for displaying the warning type in the warning
message. The result of formatting the type this way gets included in the message
under the control of the string in the entry in warning-levels. The default value is
" (%s)". If you bind it to "" then the warning type won’t appear at all.

38.5.3 Warning Options

These variables are used by users to control what happens when a Lisp program reports a
warning.

[User Option]warning-minimum-level
This user option specifies the minimum severity level that should be shown immedi-
ately to the user. The default is :warning, which means to immediately display all
warnings except :debug warnings.

[User Option]warning-minimum-log-level
This user option specifies the minimum severity level that should be logged in the
warnings buffer. The default is :warning, which means to log all warnings except
:debug warnings.

Chapter 38: Emacs Display 832

[User Option]warning-suppress-types
This list specifies which warning types should not be displayed immediately for the
user. Each element of the list should be a list of symbols. If its elements match the
first elements in a warning type, then that warning is not displayed immediately.

[User Option]warning-suppress-log-types
This list specifies which warning types should not be logged in the warnings buffer.
Each element of the list should be a list of symbols. If it matches the first few elements
in a warning type, then that warning is not logged.

38.5.4 Delayed Warnings

Sometimes, you may wish to avoid showing a warning while a command is running, and only
show it only after the end of the command. You can use the variable delayed-warnings-

list for this.

[Variable]delayed-warnings-list
The value of this variable is a list of warnings to be displayed after the current
command has finished. Each element must be a list

(type message [level [buffer-name]])

with the same form, and the same meanings, as the argument list of display-warning
(see Section 38.5.1 [Warning Basics], page 829). Immediately after running post-

command-hook (see Section 21.1 [Command Overview], page 321), the Emacs com-
mand loop displays all the warnings specified by this variable, then resets it to nil.

Programs which need to further customize the delayed warnings mechanism can change
the variable delayed-warnings-hook:

[Variable]delayed-warnings-hook
This is a normal hook which is run by the Emacs command loop, after post-command-
hook, in order to to process and display delayed warnings.

Its default value is a list of two functions:
(collapse-delayed-warnings display-delayed-warnings)

The function collapse-delayed-warnings removes repeated entries from delayed-

warnings-list. The function display-delayed-warnings calls display-warning

on each of the entries in delayed-warnings-list, in turn, and then sets delayed-
warnings-list to nil.

38.6 Invisible Text

You can make characters invisible, so that they do not appear on the screen, with the
invisible property. This can be either a text property (see Section 32.19 [Text Properties],
page 680) or an overlay property (see Section 38.9 [Overlays], page 839). Cursor motion
also partly ignores these characters; if the command loop finds that point is inside a range
of invisible text after a command, it relocates point to the other side of the text.

In the simplest case, any non-nil invisible property makes a character invisible. This
is the default case—if you don’t alter the default value of buffer-invisibility-spec,
this is how the invisible property works. You should normally use t as the value of the
invisible property if you don’t plan to set buffer-invisibility-spec yourself.

Chapter 38: Emacs Display 833

More generally, you can use the variable buffer-invisibility-spec to control which
values of the invisible property make text invisible. This permits you to classify the
text into different subsets in advance, by giving them different invisible values, and
subsequently make various subsets visible or invisible by changing the value of buffer-
invisibility-spec.

Controlling visibility with buffer-invisibility-spec is especially useful in a program
to display the list of entries in a database. It permits the implementation of convenient
filtering commands to view just a part of the entries in the database. Setting this variable
is very fast, much faster than scanning all the text in the buffer looking for properties to
change.

[Variable]buffer-invisibility-spec
This variable specifies which kinds of invisible properties actually make a character
invisible. Setting this variable makes it buffer-local.

t A character is invisible if its invisible property is non-nil. This is the
default.

a list Each element of the list specifies a criterion for invisibility; if a charac-
ter’s invisible property fits any one of these criteria, the character is
invisible. The list can have two kinds of elements:

atom A character is invisible if its invisible property value is
atom or if it is a list with atom as a member; comparison is
done with eq.

(atom . t)

A character is invisible if its invisible property value is
atom or if it is a list with atom as a member; comparison
is done with eq. Moreover, a sequence of such characters
displays as an ellipsis.

Two functions are specifically provided for adding elements to buffer-invisibility-

spec and removing elements from it.

[Function]add-to-invisibility-spec element
This function adds the element element to buffer-invisibility-spec. If buffer-
invisibility-spec was t, it changes to a list, (t), so that text whose invisible

property is t remains invisible.

[Function]remove-from-invisibility-spec element
This removes the element element from buffer-invisibility-spec. This does noth-
ing if element is not in the list.

A convention for use of buffer-invisibility-spec is that a major mode should use
the mode’s own name as an element of buffer-invisibility-spec and as the value of the
invisible property:

;; If you want to display an ellipsis:
(add-to-invisibility-spec ’(my-symbol . t))

;; If you don’t want ellipsis:

Chapter 38: Emacs Display 834

(add-to-invisibility-spec ’my-symbol)

(overlay-put (make-overlay beginning end)

’invisible ’my-symbol)

;; When done with the invisibility:
(remove-from-invisibility-spec ’(my-symbol . t))

;; Or respectively:
(remove-from-invisibility-spec ’my-symbol)

You can check for invisibility using the following function:

[Function]invisible-p pos-or-prop
If pos-or-prop is a marker or number, this function returns a non-nil value if the text
at that position is invisible.

If pos-or-prop is any other kind of Lisp object, that is taken to mean a possible value
of the invisible text or overlay property. In that case, this function returns a non-
nil value if that value would cause text to become invisible, based on the current
value of buffer-invisibility-spec.

Ordinarily, functions that operate on text or move point do not care whether the text is
invisible. The user-level line motion commands ignore invisible newlines if line-move-
ignore-invisible is non-nil (the default), but only because they are explicitly pro-
grammed to do so.

However, if a command ends with point inside or at the boundary of invisible text,
the main editing loop relocates point to one of the two ends of the invisible text. Emacs
chooses the direction of relocation so that it is the same as the overall movement direction
of the command; if in doubt, it prefers a position where an inserted char would not inherit
the invisible property. Additionally, if the text is not replaced by an ellipsis and the
command only moved within the invisible text, then point is moved one extra character so
as to try and reflect the command’s movement by a visible movement of the cursor.

Thus, if the command moved point back to an invisible range (with the usual stickiness),
Emacs moves point back to the beginning of that range. If the command moved point
forward into an invisible range, Emacs moves point forward to the first visible character
that follows the invisible text and then forward one more character.

Incremental search can make invisible overlays visible temporarily and/or permanently
when a match includes invisible text. To enable this, the overlay should have a non-nil
isearch-open-invisible property. The property value should be a function to be called
with the overlay as an argument. This function should make the overlay visible permanently;
it is used when the match overlaps the overlay on exit from the search.

During the search, such overlays are made temporarily visible by temporarily modifying
their invisible and intangible properties. If you want this to be done differently for a certain
overlay, give it an isearch-open-invisible-temporary property which is a function. The
function is called with two arguments: the first is the overlay, and the second is nil to make
the overlay visible, or t to make it invisible again.

Chapter 38: Emacs Display 835

38.7 Selective Display

Selective display refers to a pair of related features for hiding certain lines on the screen.

The first variant, explicit selective display, is designed for use in a Lisp program: it
controls which lines are hidden by altering the text. This kind of hiding in some ways
resembles the effect of the invisible property (see Section 38.6 [Invisible Text], page 832),
but the two features are different and do not work the same way.

In the second variant, the choice of lines to hide is made automatically based on inden-
tation. This variant is designed to be a user-level feature.

The way you control explicit selective display is by replacing a newline (control-j) with
a carriage return (control-m). The text that was formerly a line following that newline is
now hidden. Strictly speaking, it is temporarily no longer a line at all, since only newlines
can separate lines; it is now part of the previous line.

Selective display does not directly affect editing commands. For example, C-f (forward-
char) moves point unhesitatingly into hidden text. However, the replacement of newline
characters with carriage return characters affects some editing commands. For example,
next-line skips hidden lines, since it searches only for newlines. Modes that use selective
display can also define commands that take account of the newlines, or that control which
parts of the text are hidden.

When you write a selectively displayed buffer into a file, all the control-m’s are output
as newlines. This means that when you next read in the file, it looks OK, with nothing
hidden. The selective display effect is seen only within Emacs.

[Variable]selective-display
This buffer-local variable enables selective display. This means that lines, or portions
of lines, may be made hidden.

• If the value of selective-display is t, then the character control-m marks the
start of hidden text; the control-m, and the rest of the line following it, are not
displayed. This is explicit selective display.

• If the value of selective-display is a positive integer, then lines that start with
more than that many columns of indentation are not displayed.

When some portion of a buffer is hidden, the vertical movement commands operate
as if that portion did not exist, allowing a single next-line command to skip any
number of hidden lines. However, character movement commands (such as forward-
char) do not skip the hidden portion, and it is possible (if tricky) to insert or delete
text in an hidden portion.

In the examples below, we show the display appearance of the buffer foo, which
changes with the value of selective-display. The contents of the buffer do not
change.

Chapter 38: Emacs Display 836

(setq selective-display nil)

⇒ nil

---------- Buffer: foo ----------

1 on this column

2on this column

3n this column

3n this column

2on this column

1 on this column

---------- Buffer: foo ----------

(setq selective-display 2)

⇒ 2

---------- Buffer: foo ----------

1 on this column

2on this column

2on this column

1 on this column

---------- Buffer: foo ----------

[User Option]selective-display-ellipses
If this buffer-local variable is non-nil, then Emacs displays ‘...’ at the end of a line
that is followed by hidden text. This example is a continuation of the previous one.

(setq selective-display-ellipses t)

⇒ t

---------- Buffer: foo ----------

1 on this column

2on this column ...

2on this column

1 on this column

---------- Buffer: foo ----------

You can use a display table to substitute other text for the ellipsis (‘...’). See
Section 38.20.2 [Display Tables], page 901.

38.8 Temporary Displays

Temporary displays are used by Lisp programs to put output into a buffer and then present
it to the user for perusal rather than for editing. Many help commands use this feature.

[Macro]with-output-to-temp-buffer buffer-name forms. . .
This function executes forms while arranging to insert any output they print into the
buffer named buffer-name, which is first created if necessary, and put into Help mode.
Finally, the buffer is displayed in some window, but not selected. (See the similar
form with-temp-buffer-window below.)

Chapter 38: Emacs Display 837

If the forms do not change the major mode in the output buffer, so that it is still Help
mode at the end of their execution, then with-output-to-temp-buffer makes this
buffer read-only at the end, and also scans it for function and variable names to make
them into clickable cross-references. See [Tips for Documentation Strings], page 976,
in particular the item on hyperlinks in documentation strings, for more details.

The string buffer-name specifies the temporary buffer, which need not already exist.
The argument must be a string, not a buffer. The buffer is erased initially (with no
questions asked), and it is marked as unmodified after with-output-to-temp-buffer
exits.

with-output-to-temp-buffer binds standard-output to the temporary buffer,
then it evaluates the forms in forms. Output using the Lisp output functions within
forms goes by default to that buffer (but screen display and messages in the echo
area, although they are “output” in the general sense of the word, are not affected).
See Section 19.5 [Output Functions], page 286.

Several hooks are available for customizing the behavior of this construct; they are
listed below.

The value of the last form in forms is returned.

---------- Buffer: foo ----------

This is the contents of foo.

---------- Buffer: foo ----------

(with-output-to-temp-buffer "foo"

(print 20)

(print standard-output))

⇒ #<buffer foo>

---------- Buffer: foo ----------

20

#<buffer foo>

---------- Buffer: foo ----------

[User Option]temp-buffer-show-function
If this variable is non-nil, with-output-to-temp-buffer calls it as a function to
do the job of displaying a help buffer. The function gets one argument, which is the
buffer it should display.

It is a good idea for this function to run temp-buffer-show-hook just as with-

output-to-temp-buffer normally would, inside of save-selected-window and with
the chosen window and buffer selected.

[Variable]temp-buffer-setup-hook
This normal hook is run by with-output-to-temp-buffer before evaluating body.
When the hook runs, the temporary buffer is current. This hook is normally set up
with a function to put the buffer in Help mode.

Chapter 38: Emacs Display 838

[Variable]temp-buffer-show-hook
This normal hook is run by with-output-to-temp-buffer after displaying the tem-
porary buffer. When the hook runs, the temporary buffer is current, and the window
it was displayed in is selected.

[Macro]with-temp-buffer-window buffer-or-name action quit-function forms. . .
This macro is similar to with-output-to-temp-buffer. Like that construct, it ex-
ecutes forms while arranging to insert any output they print into the buffer named
buffer-or-name. Finally, the buffer is displayed in some window, but not selected.
Unlike with-output-to-temp-buffer, this does not switch to Help mode.

The argument buffer-or-name specifies the temporary buffer. It can be either a buffer,
which must already exist, or a string, in which case a buffer of that name is created
if necessary. The buffer is marked as unmodified and read-only when with-temp-

buffer-window exits.

This macro does not call temp-buffer-show-function. Rather, it passes the action
argument to display-buffer in order to display the buffer.

The value of the last form in forms is returned, unless the argument quit-function
is specified. In that case, it is called with two arguments: the window showing the
buffer and the result of forms. The final return value is then whatever quit-function
returns.

This macro uses the normal hooks temp-buffer-window-setup-hook and temp-

buffer-window-show-hook in place of the analogous hooks run by with-output-

to-temp-buffer.

[Function]momentary-string-display string position &optional char message
This function momentarily displays string in the current buffer at position. It has no
effect on the undo list or on the buffer’s modification status.

The momentary display remains until the next input event. If the next input event
is char, momentary-string-display ignores it and returns. Otherwise, that event
remains buffered for subsequent use as input. Thus, typing char will simply remove
the string from the display, while typing (say) C-f will remove the string from the
display and later (presumably) move point forward. The argument char is a space by
default.

The return value of momentary-string-display is not meaningful.

If the string string does not contain control characters, you can do the same job in
a more general way by creating (and then subsequently deleting) an overlay with a
before-string property. See Section 38.9.2 [Overlay Properties], page 842.

If message is non-nil, it is displayed in the echo area while string is displayed in the
buffer. If it is nil, a default message says to type char to continue.

In this example, point is initially located at the beginning of the second line:

---------- Buffer: foo ----------

This is the contents of foo.

?Second line.

---------- Buffer: foo ----------

Chapter 38: Emacs Display 839

(momentary-string-display

"**** Important Message! ****"

(point) ?\r

"Type RET when done reading")

⇒ t

---------- Buffer: foo ----------

This is the contents of foo.

**** Important Message! ****Second line.

---------- Buffer: foo ----------

---------- Echo Area ----------

Type RET when done reading

---------- Echo Area ----------

38.9 Overlays

You can use overlays to alter the appearance of a buffer’s text on the screen, for the sake of
presentation features. An overlay is an object that belongs to a particular buffer, and has
a specified beginning and end. It also has properties that you can examine and set; these
affect the display of the text within the overlay.

The visual effect of an overlay is the same as of the corresponding text property (see
Section 32.19 [Text Properties], page 680). However, due to a different implementation,
overlays generally don’t scale well (many operations take a time that is proportional to
the number of overlays in the buffer). If you need to affect the visual appearance of many
portions in the buffer, we recommend using text properties.

An overlay uses markers to record its beginning and end; thus, editing the text of the
buffer adjusts the beginning and end of each overlay so that it stays with the text. When
you create the overlay, you can specify whether text inserted at the beginning should be
inside the overlay or outside, and likewise for the end of the overlay.

38.9.1 Managing Overlays

This section describes the functions to create, delete and move overlays, and to examine
their contents. Overlay changes are not recorded in the buffer’s undo list, since the overlays
are not part of the buffer’s contents.

[Function]overlayp object
This function returns t if object is an overlay.

[Function]make-overlay start end &optional buffer front-advance rear-advance
This function creates and returns an overlay that belongs to buffer and ranges from
start to end. Both start and end must specify buffer positions; they may be integers
or markers. If buffer is omitted, the overlay is created in the current buffer.

The arguments front-advance and rear-advance specify the marker insertion type for
the start of the overlay and for the end of the overlay, respectively. See Section 31.5
[Marker Insertion Types], page 639. If they are both nil, the default, then the overlay
extends to include any text inserted at the beginning, but not text inserted at the end.

Chapter 38: Emacs Display 840

If front-advance is non-nil, text inserted at the beginning of the overlay is excluded
from the overlay. If rear-advance is non-nil, text inserted at the end of the overlay
is included in the overlay.

[Function]overlay-start overlay
This function returns the position at which overlay starts, as an integer.

[Function]overlay-end overlay
This function returns the position at which overlay ends, as an integer.

[Function]overlay-buffer overlay
This function returns the buffer that overlay belongs to. It returns nil if overlay has
been deleted.

[Function]delete-overlay overlay
This function deletes overlay. The overlay continues to exist as a Lisp object, and its
property list is unchanged, but it ceases to be attached to the buffer it belonged to,
and ceases to have any effect on display.

A deleted overlay is not permanently disconnected. You can give it a position in a
buffer again by calling move-overlay.

[Function]move-overlay overlay start end &optional buffer
This function moves overlay to buffer, and places its bounds at start and end. Both
arguments start and end must specify buffer positions; they may be integers or mark-
ers.

If buffer is omitted, overlay stays in the same buffer it was already associated with;
if overlay was deleted, it goes into the current buffer.

The return value is overlay.

This is the only valid way to change the endpoints of an overlay. Do not try modifying
the markers in the overlay by hand, as that fails to update other vital data structures
and can cause some overlays to be “lost”.

[Function]remove-overlays &optional start end name value
This function removes all the overlays between start and end whose property name
has the value value. It can move the endpoints of the overlays in the region, or split
them.

If name is omitted or nil, it means to delete all overlays in the specified region. If
start and/or end are omitted or nil, that means the beginning and end of the buffer
respectively. Therefore, (remove-overlays) removes all the overlays in the current
buffer.

[Function]copy-overlay overlay
This function returns a copy of overlay. The copy has the same endpoints and prop-
erties as overlay. However, the marker insertion type for the start of the overlay and
for the end of the overlay are set to their default values (see Section 31.5 [Marker
Insertion Types], page 639).

Chapter 38: Emacs Display 841

Here are some examples:

;; Create an overlay.
(setq foo (make-overlay 1 10))

⇒ #<overlay from 1 to 10 in display.texi>

(overlay-start foo)

⇒ 1

(overlay-end foo)

⇒ 10

(overlay-buffer foo)

⇒ #<buffer display.texi>

;; Give it a property we can check later.
(overlay-put foo ’happy t)

⇒ t

;; Verify the property is present.
(overlay-get foo ’happy)

⇒ t

;; Move the overlay.
(move-overlay foo 5 20)

⇒ #<overlay from 5 to 20 in display.texi>

(overlay-start foo)

⇒ 5

(overlay-end foo)

⇒ 20

;; Delete the overlay.
(delete-overlay foo)

⇒ nil

;; Verify it is deleted.
foo

⇒ #<overlay in no buffer>

;; A deleted overlay has no position.
(overlay-start foo)

⇒ nil

(overlay-end foo)

⇒ nil

(overlay-buffer foo)

⇒ nil

;; Undelete the overlay.
(move-overlay foo 1 20)

⇒ #<overlay from 1 to 20 in display.texi>

;; Verify the results.
(overlay-start foo)

⇒ 1

(overlay-end foo)

⇒ 20

(overlay-buffer foo)

⇒ #<buffer display.texi>

Chapter 38: Emacs Display 842

;; Moving and deleting the overlay does not change its properties.
(overlay-get foo ’happy)

⇒ t

Emacs stores the overlays of each buffer in two lists, divided around an arbitrary “center
position”. One list extends backwards through the buffer from that center position, and
the other extends forwards from that center position. The center position can be anywhere
in the buffer.

[Function]overlay-recenter pos
This function recenters the overlays of the current buffer around position pos. That
makes overlay lookup faster for positions near pos, but slower for positions far away
from pos.

A loop that scans the buffer forwards, creating overlays, can run faster if you do
(overlay-recenter (point-max)) first.

38.9.2 Overlay Properties

Overlay properties are like text properties in that the properties that alter how a character
is displayed can come from either source. But in most respects they are different. See
Section 32.19 [Text Properties], page 680, for comparison.

Text properties are considered a part of the text; overlays and their properties are
specifically considered not to be part of the text. Thus, copying text between various buffers
and strings preserves text properties, but does not try to preserve overlays. Changing a
buffer’s text properties marks the buffer as modified, while moving an overlay or changing
its properties does not. Unlike text property changes, overlay property changes are not
recorded in the buffer’s undo list.

Since more than one overlay can specify a property value for the same character, Emacs
lets you specify a priority value of each overlay. You should not make assumptions about
which overlay will prevail when there is a conflict and they have the same priority.

These functions read and set the properties of an overlay:

[Function]overlay-get overlay prop
This function returns the value of property prop recorded in overlay, if any. If overlay
does not record any value for that property, but it does have a category property
which is a symbol, that symbol’s prop property is used. Otherwise, the value is nil.

[Function]overlay-put overlay prop value
This function sets the value of property prop recorded in overlay to value. It returns
value.

[Function]overlay-properties overlay
This returns a copy of the property list of overlay.

See also the function get-char-property which checks both overlay properties and text
properties for a given character. See Section 32.19.1 [Examining Properties], page 680.

Many overlay properties have special meanings; here is a table of them:

Chapter 38: Emacs Display 843

priority This property’s value (which should be a non-negative integer number) deter-
mines the priority of the overlay. No priority, or nil, means zero.

The priority matters when two or more overlays cover the same character and
both specify the same property; the one whose priority value is larger overrides
the other. For the face property, the higher priority overlay’s value does not
completely override the other value; instead, its face attributes override the face
attributes of the lower priority face property.

Currently, all overlays take priority over text properties. Please avoid using
negative priority values, as we have not yet decided just what they should
mean.

window If the window property is non-nil, then the overlay applies only on that window.

category If an overlay has a category property, we call it the category of the overlay.
It should be a symbol. The properties of the symbol serve as defaults for the
properties of the overlay.

face This property controls the way text is displayed—for example, which font and
which colors. See Section 38.12 [Faces], page 848, for more information.

In the simplest case, the value is a face name. It can also be a list; then each
element can be any of these possibilities:

• A face name (a symbol or string).

• A property list of face attributes. This has the form (keyword value . . .),
where each keyword is a face attribute name and value is a meaningful
value for that attribute. With this feature, you do not need to create a
face each time you want to specify a particular attribute for certain text.
See Section 38.12.1 [Face Attributes], page 849.

• A cons cell, of the form (foreground-color . color-name) or
(background-color . color-name). These elements specify just the
foreground color or just the background color.

(foreground-color . color-name) has the same effect as (:foreground
color-name); likewise for the background.

mouse-face

This property is used instead of face when the mouse is within the range of
the overlay. However, Emacs ignores all face attributes from this property that
alter the text size (e.g., :height, :weight, and :slant). Those attributes are
always the same as in the unhighlighted text.

display This property activates various features that change the way text is displayed.
For example, it can make text appear taller or shorter, higher or lower, wider
or narrower, or replaced with an image. See Section 38.15 [Display Property],
page 874.

help-echo

If an overlay has a help-echo property, then when you move the mouse onto
the text in the overlay, Emacs displays a help string in the echo area, or in the
tooltip window. For details see [Text help-echo], page 686.

Chapter 38: Emacs Display 844

field Consecutive characters with the same field property constitute a field. Some
motion functions including forward-word and beginning-of-line stop mov-
ing at a field boundary. See Section 32.19.9 [Fields], page 695.

modification-hooks

This property’s value is a list of functions to be called if any character within
the overlay is changed or if text is inserted strictly within the overlay.

The hook functions are called both before and after each change. If the functions
save the information they receive, and compare notes between calls, they can
determine exactly what change has been made in the buffer text.

When called before a change, each function receives four arguments: the overlay,
nil, and the beginning and end of the text range to be modified.

When called after a change, each function receives five arguments: the overlay,
t, the beginning and end of the text range just modified, and the length of
the pre-change text replaced by that range. (For an insertion, the pre-change
length is zero; for a deletion, that length is the number of characters deleted,
and the post-change beginning and end are equal.)

If these functions modify the buffer, they should bind inhibit-modification-

hooks to t around doing so, to avoid confusing the internal mechanism that
calls these hooks.

Text properties also support the modification-hooks property, but the details
are somewhat different (see Section 32.19.4 [Special Properties], page 685).

insert-in-front-hooks

This property’s value is a list of functions to be called before and after inserting
text right at the beginning of the overlay. The calling conventions are the same
as for the modification-hooks functions.

insert-behind-hooks

This property’s value is a list of functions to be called before and after inserting
text right at the end of the overlay. The calling conventions are the same as for
the modification-hooks functions.

invisible

The invisible property can make the text in the overlay invisible, which
means that it does not appear on the screen. See Section 38.6 [Invisible Text],
page 832, for details.

intangible

The intangible property on an overlay works just like the intangible text
property. See Section 32.19.4 [Special Properties], page 685, for details.

isearch-open-invisible

This property tells incremental search how to make an invisible overlay visible,
permanently, if the final match overlaps it. See Section 38.6 [Invisible Text],
page 832.

isearch-open-invisible-temporary

This property tells incremental search how to make an invisible overlay visible,
temporarily, during the search. See Section 38.6 [Invisible Text], page 832.

Chapter 38: Emacs Display 845

before-string

This property’s value is a string to add to the display at the beginning of the
overlay. The string does not appear in the buffer in any sense—only on the
screen.

after-string

This property’s value is a string to add to the display at the end of the overlay.
The string does not appear in the buffer in any sense—only on the screen.

line-prefix

This property specifies a display spec to prepend to each non-continuation line
at display-time. See Section 38.3 [Truncation], page 823.

wrap-prefix

This property specifies a display spec to prepend to each continuation line at
display-time. See Section 38.3 [Truncation], page 823.

evaporate

If this property is non-nil, the overlay is deleted automatically if it becomes
empty (i.e., if its length becomes zero). If you give an empty overlay a non-nil
evaporate property, that deletes it immediately.

local-map

If this property is non-nil, it specifies a keymap for a portion of the text. The
property’s value replaces the buffer’s local map, when the character after point
is within the overlay. See Section 22.7 [Active Keymaps], page 373.

keymap The keymap property is similar to local-map but overrides the buffer’s local
map (and the map specified by the local-map property) rather than replacing
it.

The local-map and keymap properties do not affect a string displayed by the before-

string, after-string, or display properties. This is only relevant for mouse clicks and
other mouse events that fall on the string, since point is never on the string. To bind
special mouse events for the string, assign it a local-map or keymap text property. See
Section 32.19.4 [Special Properties], page 685.

38.9.3 Searching for Overlays

[Function]overlays-at pos
This function returns a list of all the overlays that cover the character at position pos
in the current buffer. The list is in no particular order. An overlay contains position
pos if it begins at or before pos, and ends after pos.

To illustrate usage, here is a Lisp function that returns a list of the overlays that
specify property prop for the character at point:

(defun find-overlays-specifying (prop)

(let ((overlays (overlays-at (point)))

found)

(while overlays

(let ((overlay (car overlays)))

(if (overlay-get overlay prop)

(setq found (cons overlay found))))

(setq overlays (cdr overlays)))

found))

Chapter 38: Emacs Display 846

[Function]overlays-in beg end
This function returns a list of the overlays that overlap the region beg through end.
“Overlap” means that at least one character is contained within the overlay and also
contained within the specified region; however, empty overlays are included in the
result if they are located at beg, strictly between beg and end, or at end when end
denotes the position at the end of the buffer.

[Function]next-overlay-change pos
This function returns the buffer position of the next beginning or end of an overlay,
after pos. If there is none, it returns (point-max).

[Function]previous-overlay-change pos
This function returns the buffer position of the previous beginning or end of an overlay,
before pos. If there is none, it returns (point-min).

As an example, here’s a simplified (and inefficient) version of the primitive function
next-single-char-property-change (see Section 32.19.3 [Property Search], page 683). It
searches forward from position pos for the next position where the value of a given property
prop, as obtained from either overlays or text properties, changes.

(defun next-single-char-property-change (position prop)

(save-excursion

(goto-char position)

(let ((propval (get-char-property (point) prop)))

(while (and (not (eobp))

(eq (get-char-property (point) prop) propval))

(goto-char (min (next-overlay-change (point))

(next-single-property-change (point) prop)))))

(point)))

38.10 Width

Since not all characters have the same width, these functions let you check the width of
a character. See Section 32.17.1 [Primitive Indent], page 674, and Section 30.2.5 [Screen
Lines], page 627, for related functions.

[Function]char-width char
This function returns the width in columns of the character char, if it were displayed
in the current buffer (i.e., taking into account the buffer’s display table, if any; see
Section 38.20.2 [Display Tables], page 901). The width of a tab character is usually
tab-width (see Section 38.20.1 [Usual Display], page 900).

[Function]string-width string
This function returns the width in columns of the string string, if it were displayed
in the current buffer and the selected window.

[Function]truncate-string-to-width string width &optional start-column
padding ellipsis

This function returns the part of string that fits within width columns, as a new
string.

If string does not reach width, then the result ends where string ends. If one multi-
column character in string extends across the column width, that character is not

Chapter 38: Emacs Display 847

included in the result. Thus, the result can fall short of width but cannot go beyond
it.

The optional argument start-column specifies the starting column. If this is non-
nil, then the first start-column columns of the string are omitted from the value. If
one multi-column character in string extends across the column start-column, that
character is not included.

The optional argument padding, if non-nil, is a padding character added at the
beginning and end of the result string, to extend it to exactly width columns. The
padding character is used at the end of the result if it falls short of width. It is also
used at the beginning of the result if one multi-column character in string extends
across the column start-column.

If ellipsis is non-nil, it should be a string which will replace the end of str (including
any padding) if it extends beyond end-column, unless the display width of str is equal
to or less than the display width of ellipsis. If ellipsis is non-nil and not a string, it
stands for "...".

(truncate-string-to-width "\tab\t" 12 4)

⇒ "ab"

(truncate-string-to-width "\tab\t" 12 4 ?\s)

⇒ " ab "

38.11 Line Height

The total height of each display line consists of the height of the contents of the line, plus
optional additional vertical line spacing above or below the display line.

The height of the line contents is the maximum height of any character or image on that
display line, including the final newline if there is one. (A display line that is continued
doesn’t include a final newline.) That is the default line height, if you do nothing to specify
a greater height. (In the most common case, this equals the height of the default frame
font.)

There are several ways to explicitly specify a larger line height, either by specifying an
absolute height for the display line, or by specifying vertical space. However, no matter
what you specify, the actual line height can never be less than the default.

A newline can have a line-height text or overlay property that controls the total height
of the display line ending in that newline.

If the property value is t, the newline character has no effect on the displayed height
of the line—the visible contents alone determine the height. This is useful for tiling small
images (or image slices) without adding blank areas between the images.

If the property value is a list of the form (height total), that adds extra space below
the display line. First Emacs uses height as a height spec to control extra space above the
line; then it adds enough space below the line to bring the total line height up to total. In
this case, the other ways to specify the line spacing are ignored.

Any other kind of property value is a height spec, which translates into a number—the
specified line height. There are several ways to write a height spec; here’s how each of them
translates into a number:

integer If the height spec is a positive integer, the height value is that integer.

Chapter 38: Emacs Display 848

float If the height spec is a float, float, the numeric height value is float times the
frame’s default line height.

(face . ratio)

If the height spec is a cons of the format shown, the numeric height is ratio
times the height of face face. ratio can be any type of number, or nil which
means a ratio of 1. If face is t, it refers to the current face.

(nil . ratio)

If the height spec is a cons of the format shown, the numeric height is ratio
times the height of the contents of the line.

Thus, any valid height spec determines the height in pixels, one way or another. If the
line contents’ height is less than that, Emacs adds extra vertical space above the line to
achieve the specified total height.

If you don’t specify the line-height property, the line’s height consists of the contents’
height plus the line spacing. There are several ways to specify the line spacing for different
parts of Emacs text.

On graphical terminals, you can specify the line spacing for all lines in a frame, using
the line-spacing frame parameter (see Section 29.3.3.4 [Layout Parameters], page 598).
However, if the default value of line-spacing is non-nil, it overrides the frame’s line-

spacing parameter. An integer value specifies the number of pixels put below lines. A
floating point number specifies the spacing relative to the frame’s default line height.

You can specify the line spacing for all lines in a buffer via the buffer-local line-spacing
variable. An integer value specifies the number of pixels put below lines. A floating point
number specifies the spacing relative to the default frame line height. This overrides line
spacings specified for the frame.

Finally, a newline can have a line-spacing text or overlay property that overrides the
default frame line spacing and the buffer local line-spacing variable, for the display line
ending in that newline.

One way or another, these mechanisms specify a Lisp value for the spacing of each line.
The value is a height spec, and it translates into a Lisp value as described above. However,
in this case the numeric height value specifies the line spacing, rather than the line height.

On text terminals, the line spacing cannot be altered.

38.12 Faces

A face is a collection of graphical attributes for displaying text: font, foreground color,
background color, optional underlining, etc. Faces control how Emacs displays text in
buffers, as well as other parts of the frame such as the mode line.

One way to represent a face is as a property list of attributes, like (:foreground "red"

:weight bold). For example, you can assign such an anonymous face as the value of the
face text property; this causes Emacs to display the underlying text with the specified
attributes. See Section 32.19.4 [Special Properties], page 685.

More commonly, a face is referred to via a face name: a Lisp symbol which is associ-
ated with a set of face attributes. Named faces are defined using the defface macro (see
Section 38.12.2 [Defining Faces], page 852). Emacs defines several standard named faces;
See Section “Standard Faces” in The GNU Emacs Manual.

Chapter 38: Emacs Display 849

Many parts of Emacs require named faces, and do not accept anonymous faces. These
include the functions documented in Section 38.12.3 [Attribute Functions], page 854, and the
variable font-lock-keywords (see Section 23.6.2 [Search-based Fontification], page 438).
Unless otherwise stated, we will use the term face to refer only to named faces.

For backward compatibility, you can also use a string to specify a face name; that is
equivalent to a Lisp symbol with the same name.

[Function]facep object
This function returns a non-nil value if object is a named face: a Lisp symbol or
string which serves as a face name. Otherwise, it returns nil.

By default, each face name corresponds to the same set of attributes in all frames. But
you can also assign a face name a special set of attributes in one frame (see Section 38.12.3
[Attribute Functions], page 854).

38.12.1 Face Attributes

Face attributes determine the visual appearance of a face. The following table lists all the
face attributes, their possible values, and their effects.

Apart from the values given below, each face attribute can have the value unspecified.
This special value means that the face doesn’t specify that attribute directly. An
unspecified attribute tells Emacs to refer instead to a parent face (see the description
:inherit attribute below); or, failing that, to an underlying face (see Section 38.12.4
[Displaying Faces], page 857). The default face must specify all attributes.

Some of these attributes are meaningful only on certain kinds of displays. If your display
cannot handle a certain attribute, the attribute is ignored.

:family Font family or fontset (a string). See Section “Fonts” in The GNU Emacs
Manual, for more information about font families. The function font-family-

list (see below) returns a list of available family names. See Section 38.12.11
[Fontsets], page 863, for information about fontsets.

:foundry The name of the font foundry for the font family specified by the :family

attribute (a string). See Section “Fonts” in The GNU Emacs Manual.

:width Relative character width. This should be one of the symbols ultra-condensed,
extra-condensed, condensed, semi-condensed, normal, semi-expanded,
expanded, extra-expanded, or ultra-expanded.

:height The height of the font. In the simplest case, this is an integer in units of 1/10
point.

The value can also be a floating point number or a function, which specifies the
height relative to an underlying face (see Section 38.12.4 [Displaying Faces],
page 857). If the value is a floating point number, that specifies the amount
by which to scale the height of the underlying face. If the value is a function,
that function is called with one argument, the height of the underlying face,
and returns the height of the new face. If the function is passed an integer
argument, it must return an integer.

The height of the default face must be specified using an integer; floating point
and function values are not allowed.

Chapter 38: Emacs Display 850

:weight Font weight—one of the symbols (from densest to faintest) ultra-bold, extra-
bold, bold, semi-bold, normal, semi-light, light, extra-light, or ultra-
light. On text terminals which support variable-brightness text, any weight
greater than normal is displayed as extra bright, and any weight less than
normal is displayed as half-bright.

:slant Font slant—one of the symbols italic, oblique, normal, reverse-italic,
or reverse-oblique. On text terminals that support variable-brightness text,
slanted text is displayed as half-bright.

:foreground

Foreground color, a string. The value can be a system-defined color name, or
a hexadecimal color specification. See Section 29.20 [Color Names], page 616.
On black-and-white displays, certain shades of gray are implemented by stipple
patterns.

:background

Background color, a string. The value can be a system-defined color name, or
a hexadecimal color specification. See Section 29.20 [Color Names], page 616.

:underline

Whether or not characters should be underlined, and in what way. The possible
values of the :underline attribute are:

nil Don’t underline.

t Underline with the foreground color of the face.

color Underline in color color, a string specifying a color.

(:color color :style style)

color is either a string, or the symbol foreground-color, meaning
the foreground color of the face. Omitting the attribute :color

means to use the foreground color of the face. style should be
a symbol line or wave, meaning to use a straight or wavy line.
Omitting the attribute :style means to use a straight line.

:overline

Whether or not characters should be overlined, and in what color. If the value
is t, overlining uses the foreground color of the face. If the value is a string,
overlining uses that color. The value nil means do not overline.

:strike-through

Whether or not characters should be strike-through, and in what color. The
value is used like that of :overline.

:box Whether or not a box should be drawn around characters, its color, the width
of the box lines, and 3D appearance. Here are the possible values of the :box

attribute, and what they mean:

nil Don’t draw a box.

t Draw a box with lines of width 1, in the foreground color.

color Draw a box with lines of width 1, in color color.

Chapter 38: Emacs Display 851

(:line-width width :color color :style style)

This way you can explicitly specify all aspects of the box. The
value width specifies the width of the lines to draw; it defaults to 1.
A negative width -n means to draw a line of width n that occupies
the space of the underlying text, thus avoiding any increase in the
character height or width.

The value color specifies the color to draw with. The default is the
foreground color of the face for simple boxes, and the background
color of the face for 3D boxes.

The value style specifies whether to draw a 3D box. If it is
released-button, the box looks like a 3D button that is not
being pressed. If it is pressed-button, the box looks like a 3D
button that is being pressed. If it is nil or omitted, a plain 2D
box is used.

:inverse-video

Whether or not characters should be displayed in inverse video. The value
should be t (yes) or nil (no).

:stipple The background stipple, a bitmap.

The value can be a string; that should be the name of a file containing external-
format X bitmap data. The file is found in the directories listed in the variable
x-bitmap-file-path.

Alternatively, the value can specify the bitmap directly, with a list of the form
(width height data). Here, width and height specify the size in pixels, and
data is a string containing the raw bits of the bitmap, row by row. Each row
occupies (width+7)/8 consecutive bytes in the string (which should be a unibyte
string for best results). This means that each row always occupies at least one
whole byte.

If the value is nil, that means use no stipple pattern.

Normally you do not need to set the stipple attribute, because it is used auto-
matically to handle certain shades of gray.

:font The font used to display the face. Its value should be a font object. See
Section 38.12.9 [Font Selection], page 861, for information about font objects.

When specifying this attribute using set-face-attribute (see Section 38.12.3
[Attribute Functions], page 854), you may also supply a font spec, a font entity,
or a string. Emacs converts such values to an appropriate font object, and
stores that font object as the actual attribute value. If you specify a string, the
contents of the string should be a font name (see Section “Fonts” in The GNU
Emacs Manual); if the font name is an XLFD containing wildcards, Emacs
chooses the first font matching those wildcards. Specifying this attribute also
changes the values of the :family, :foundry, :width, :height, :weight, and
:slant attributes.

:inherit The name of a face from which to inherit attributes, or a list of face names.
Attributes from inherited faces are merged into the face like an underlying
face would be, with higher priority than underlying faces (see Section 38.12.4

Chapter 38: Emacs Display 852

[Displaying Faces], page 857). If a list of faces is used, attributes from faces
earlier in the list override those from later faces.

[Function]font-family-list &optional frame
This function returns a list of available font family names. The optional argument
frame specifies the frame on which the text is to be displayed; if it is nil, the selected
frame is used.

[User Option]underline-minimum-offset
This variable specifies the minimum distance between the baseline and the underline,
in pixels, when displaying underlined text.

[User Option]x-bitmap-file-path
This variable specifies a list of directories for searching for bitmap files, for the
:stipple attribute.

[Function]bitmap-spec-p object
This returns t if object is a valid bitmap specification, suitable for use with :stipple

(see above). It returns nil otherwise.

38.12.2 Defining Faces

The usual way to define a face is through the defface macro. This macro defines a face
name, and associates that name with a set of face attributes. It also sets up the face so
that the user can customize it via the Customize interface (see Chapter 14 [Customization],
page 196).

[Macro]defface face spec doc [keyword value]. . .
This macro declares face as a customizable face whose default attributes are given
by spec. You should not quote the symbol face, and it should not end in ‘-face’
(that would be redundant). The argument doc is a documentation string for the
face. The additional keyword arguments have the same meanings as in defgroup and
defcustom (see Section 14.1 [Common Keywords], page 196).

When defface executes, it defines the face according to spec, then uses any cus-
tomizations that were read from the init file (see Section 39.1.2 [Init File], page 913)
to override that specification.

When you evaluate a defface form with C-M-x in Emacs Lisp mode (eval-defun),
a special feature of eval-defun overrides any customizations of the face. This way,
the face reflects exactly what the defface says.

The spec argument is a face specification, which states how the face should appear
on different kinds of terminals. It should be an alist whose elements each have the
form

(display . plist)

display specifies a class of terminals (see below). plist is a property list of face
attributes and their values, specifying how the face appears on such terminals. For
backward compatibility, you can also write an element as (display plist).

Chapter 38: Emacs Display 853

The display part of an element of spec determines which terminals the element
matches. If more than one element of spec matches a given terminal, the first el-
ement that matches is the one used for that terminal. There are three possibilities
for display :

default This element of spec doesn’t match any terminal; instead, it specifies
defaults that apply to all terminals. This element, if used, must be the
first element of spec. Each of the following elements can override any or
all of these defaults.

t This element of spec matches all terminals. Therefore, any subsequent
elements of spec are never used. Normally t is used in the last (or only)
element of spec.

a list If display is a list, each element should have the form (characteristic

value...). Here characteristic specifies a way of classifying terminals,
and the values are possible classifications which display should apply to.
Here are the possible values of characteristic:

type The kind of window system the terminal uses—either
graphic (any graphics-capable display), x, pc (for the
MS-DOS console), w32 (for MS Windows 9X/NT/2K/XP),
or tty (a non-graphics-capable display). See Section 38.22
[Window Systems], page 905.

class What kinds of colors the terminal supports—either color,
grayscale, or mono.

background

The kind of background—either light or dark.

min-colors

An integer that represents the minimum number of colors
the terminal should support. This matches a terminal if its
display-color-cells value is at least the specified integer.

supports Whether or not the terminal can display the face attributes
given in value . . . (see Section 38.12.1 [Face Attributes],
page 849). See [Display Face Attribute Testing], page 620,
for more information on exactly how this testing is done.

If an element of display specifies more than one value for a given
characteristic, any of those values is acceptable. If display has more
than one element, each element should specify a different characteristic;
then each characteristic of the terminal must match one of the values
specified for it in display.

Here’s how the standard face highlight is defined:

(defface highlight

’((((class color) (min-colors 88) (background light))

:background "darkseagreen2")

(((class color) (min-colors 88) (background dark))

Chapter 38: Emacs Display 854

:background "darkolivegreen")

(((class color) (min-colors 16) (background light))

:background "darkseagreen2")

(((class color) (min-colors 16) (background dark))

:background "darkolivegreen")

(((class color) (min-colors 8))

:background "green" :foreground "black")

(t :inverse-video t))

"Basic face for highlighting."

:group ’basic-faces)

Internally, Emacs stores the face’s default specification in its face-defface-spec symbol
property (see Section 8.4 [Symbol Properties], page 108). The saved-face property stores
the face specification saved by the user, using the customization buffer; the customized-

face property stores the face specification customized for the current session, but not saved;
and the theme-face property stores an alist associating the active customization settings
and Custom themes with their specifications for that face. The face’s documentation string
is stored in the face-documentation property. But normally you should not try to set any
of these properties directly. See Section 14.5 [Applying Customizations], page 212, for the
custom-set-faces function, which is used to apply customized face settings.

People are sometimes tempted to create variables whose values specify a face to use. In
the vast majority of cases, this is not necessary; it is preferable to simply use faces directly.

38.12.3 Face Attribute Functions

This section describes the functions for accessing and modifying the attributes of an existing
named face.

[Function]set-face-attribute face frame &rest arguments
This function sets one or more attributes of face for frame. The attributes you specify
this way override whatever the defface says.

The extra arguments arguments specify the attributes to set, and the values for them.
They should consist of alternating attribute names (such as :family or :underline)
and values. Thus,

(set-face-attribute ’foo nil

:width ’extended

:weight ’bold)

sets the attribute :width to extended and the attribute :weight to bold.

If frame is t, this function sets the default attributes for new frames. Default attribute
values specified this way override the defface for newly created frames.

If frame is nil, this function sets the attributes for all existing frames, and the default
for new frames.

[Function]face-attribute face attribute &optional frame inherit
This returns the value of the attribute attribute of face on frame. If frame is nil,
that means the selected frame (see Section 29.9 [Input Focus], page 607).

Chapter 38: Emacs Display 855

If frame is t, this returns whatever new-frames default value you previously specified
with set-face-attribute for the attribute attribute of face. If you have not specified
one, it returns nil.

If inherit is nil, only attributes directly defined by face are considered, so the return
value may be unspecified, or a relative value. If inherit is non-nil, face’s definition
of attribute is merged with the faces specified by its :inherit attribute; however the
return value may still be unspecified or relative. If inherit is a face or a list of faces,
then the result is further merged with that face (or faces), until it becomes specified
and absolute.

To ensure that the return value is always specified and absolute, use a value of default
for inherit; this will resolve any unspecified or relative values by merging with the
default face (which is always completely specified).

For example,

(face-attribute ’bold :weight)

⇒ bold

[Function]face-attribute-relative-p attribute value
This function returns non-nil if value, when used as the value of the face attribute
attribute, is relative. This means it would modify, rather than completely override,
any value that comes from a subsequent face in the face list or that is inherited from
another face.

unspecified is a relative value for all attributes. For :height, floating point and
function values are also relative.

For example:

(face-attribute-relative-p :height 2.0)

⇒ t

[Function]face-all-attributes face &optional frame
This function returns an alist of attributes of face. The elements of the result are
name-value pairs of the form (attr-name . attr-value). Optional argument frame
specifies the frame whose definition of face to return; if omitted or nil, the returned
value describes the default attributes of face for newly created frames.

[Function]merge-face-attribute attribute value1 value2
If value1 is a relative value for the face attribute attribute, returns it merged with
the underlying value value2; otherwise, if value1 is an absolute value for the face
attribute attribute, returns value1 unchanged.

The following commands and functions mostly provide compatibility with old versions
of Emacs. They work by calling set-face-attribute. Values of t and nil for their frame
argument are handled just like set-face-attribute and face-attribute. The commands
read their arguments using the minibuffer, if called interactively.

[Command]set-face-foreground face color &optional frame
[Command]set-face-background face color &optional frame

These set the :foreground attribute (or :background attribute, respectively) of face
to color.

Chapter 38: Emacs Display 856

[Command]set-face-stipple face pattern &optional frame
This sets the :stipple attribute of face to pattern.

[Command]set-face-font face font &optional frame
This sets the :font attribute of face to font.

[Function]set-face-bold-p face bold-p &optional frame
This sets the :weight attribute of face to normal if bold-p is nil, and to bold
otherwise.

[Function]set-face-italic-p face italic-p &optional frame
This sets the :slant attribute of face to normal if italic-p is nil, and to italic
otherwise.

[Function]set-face-underline face underline &optional frame
This sets the :underline attribute of face to underline.

[Function]set-face-inverse-video-p face inverse-video-p &optional frame
This sets the :inverse-video attribute of face to inverse-video-p.

[Command]invert-face face &optional frame
This swaps the foreground and background colors of face face.

The following functions examine the attributes of a face. If you don’t specify frame,
they refer to the selected frame; t refers to the default data for new frames. They return
the symbol unspecified if the face doesn’t define any value for that attribute.

[Function]face-foreground face &optional frame inherit
[Function]face-background face &optional frame inherit

These functions return the foreground color (or background color, respectively) of
face face, as a string.

If inherit is nil, only a color directly defined by the face is returned. If inherit is
non-nil, any faces specified by its :inherit attribute are considered as well, and if
inherit is a face or a list of faces, then they are also considered, until a specified color
is found. To ensure that the return value is always specified, use a value of default
for inherit.

[Function]face-stipple face &optional frame inherit
This function returns the name of the background stipple pattern of face face, or nil
if it doesn’t have one.

If inherit is nil, only a stipple directly defined by the face is returned. If inherit
is non-nil, any faces specified by its :inherit attribute are considered as well, and
if inherit is a face or a list of faces, then they are also considered, until a specified
stipple is found. To ensure that the return value is always specified, use a value of
default for inherit.

[Function]face-font face &optional frame
This function returns the name of the font of face face.

Chapter 38: Emacs Display 857

[Function]face-bold-p face &optional frame
This function returns a non-nil value if the :weight attribute of face is bolder than
normal (i.e., one of semi-bold, bold, extra-bold, or ultra-bold). Otherwise, it
returns nil.

[Function]face-italic-p face &optional frame
This function returns a non-nil value if the :slant attribute of face is italic or
oblique, and nil otherwise.

[Function]face-underline-p face &optional frame
This function returns non-nil if face face specifies a non-nil :underline attribute.

[Function]face-inverse-video-p face &optional frame
This function returns non-nil if face face specifies a non-nil :inverse-video at-
tribute.

38.12.4 Displaying Faces

When Emacs displays a given piece of text, the visual appearance of the text may be
determined by faces drawn from different sources. If these various sources together specify
more than one face for a particular character, Emacs merges the attributes of the various
faces. Here is the order in which Emacs merges the faces, from highest to lowest priority:

• If the text consists of a special glyph, the glyph can specify a particular face. See
Section 38.20.4 [Glyphs], page 903.

• If the text lies within an active region, Emacs highlights it using the region face. See
Section “Standard Faces” in The GNU Emacs Manual.

• If the text lies within an overlay with a non-nil face property, Emacs applies the face(s)
specified by that property. If the overlay has a mouse-face property and the mouse
is “near enough” to the overlay, Emacs applies the face or face attributes specified by
the mouse-face property instead. See Section 38.9.2 [Overlay Properties], page 842.

When multiple overlays cover one character, an overlay with higher priority overrides
those with lower priority. See Section 38.9 [Overlays], page 839.

• If the text contains a face or mouse-face property, Emacs applies the specified faces
and face attributes. See Section 32.19.4 [Special Properties], page 685. (This is how
Font Lock mode faces are applied. See Section 23.6 [Font Lock Mode], page 437.)

• If the text lies within the mode line of the selected window, Emacs applies the mode-

line face. For the mode line of a non-selected window, Emacs applies the mode-line-
inactive face. For a header line, Emacs applies the header-line face.

• If any given attribute has not been specified during the preceding steps, Emacs applies
the attribute of the default face.

At each stage, if a face has a valid :inherit attribute, Emacs treats any attribute with
an unspecified value as having the corresponding value drawn from the parent face(s).
see Section 38.12.1 [Face Attributes], page 849. Note that the parent face(s) may also leave
the attribute unspecified; in that case, the attribute remains unspecified at the next level
of face merging.

Chapter 38: Emacs Display 858

38.12.5 Face Remapping

The variable face-remapping-alist is used for buffer-local or global changes in the ap-
pearance of a face. For instance, it is used to implement the text-scale-adjust command
(see Section “Text Scale” in The GNU Emacs Manual).

[Variable]face-remapping-alist
The value of this variable is an alist whose elements have the form (face .

remapping). This causes Emacs to display any text having the face face with
remapping, rather than the ordinary definition of face.

remapping may be any face specification suitable for a face text property: either
a face (i.e., a face name or a property list of attribute/value pairs), or a list of
faces. For details, see the description of the face text property in Section 32.19.4
[Special Properties], page 685. remapping serves as the complete specification for the
remapped face—it replaces the normal definition of face, instead of modifying it.

If face-remapping-alist is buffer-local, its local value takes effect only within that
buffer.

Note: face remapping is non-recursive. If remapping references the same face name
face, either directly or via the :inherit attribute of some other face in remapping,
that reference uses the normal definition of face. For instance, if the mode-line face
is remapped using this entry in face-remapping-alist:

(mode-line italic mode-line)

then the new definition of the mode-line face inherits from the italic face, and the
normal (non-remapped) definition of mode-line face.

The following functions implement a higher-level interface to face-remapping-alist.
Most Lisp code should use these functions instead of setting face-remapping-alist di-
rectly, to avoid trampling on remappings applied elsewhere. These functions are intended
for buffer-local remappings, so they all make face-remapping-alist buffer-local as a side-
effect. They manage face-remapping-alist entries of the form

(face relative-spec-1 relative-spec-2 ... base-spec)

where, as explained above, each of the relative-spec-N and base-spec is either a face name,
or a property list of attribute/value pairs. Each of the relative remapping entries, relative-
spec-N, is managed by the face-remap-add-relative and face-remap-remove-relative

functions; these are intended for simple modifications like changing the text size. The base
remapping entry, base-spec, has the lowest priority and is managed by the face-remap-

set-base and face-remap-reset-base functions; it is intended for major modes to remap
faces in the buffers they control.

[Function]face-remap-add-relative face &rest specs
This functions adds the face specifications in specs as relative remappings for face
face in the current buffer. The remaining arguments, specs, should form either a list
of face names, or a property list of attribute/value pairs.

The return value is a Lisp object that serves as a “cookie”; you can pass this object as
an argument to face-remap-remove-relative if you need to remove the remapping
later.

Chapter 38: Emacs Display 859

;; Remap the ‘escape-glyph’ face into a combination

;; of the ‘highlight’ and ‘italic’ faces:

(face-remap-add-relative ’escape-glyph ’highlight ’italic)

;; Increase the size of the ‘default’ face by 50%:

(face-remap-add-relative ’default :height 1.5)

[Function]face-remap-remove-relative cookie
This function removes a relative remapping previously added by face-remap-add-

relative. cookie should be the Lisp object returned by face-remap-add-relative

when the remapping was added.

[Function]face-remap-set-base face &rest specs
This function sets the base remapping of face in the current buffer to specs. If specs is
empty, the default base remapping is restored, similar to calling face-remap-reset-

base (see below); note that this is different from specs containing a single value nil,
which has the opposite result (the global definition of face is ignored).

This overwrites the default base-spec, which inherits the global face definition, so it
is up to the caller to add such inheritance if so desired.

[Function]face-remap-reset-base face
This function sets the base remapping of face to its default value, which inherits from
face’s global definition.

38.12.6 Functions for Working with Faces

Here are additional functions for creating and working with faces.

[Function]face-list
This function returns a list of all defined face names.

[Function]face-id face
This function returns the face number of face face. This is a number that uniquely
identifies a face at low levels within Emacs. It is seldom necessary to refer to a face
by its face number.

[Function]face-documentation face
This function returns the documentation string of face face, or nil if none was spec-
ified for it.

[Function]face-equal face1 face2 &optional frame
This returns t if the faces face1 and face2 have the same attributes for display.

[Function]face-differs-from-default-p face &optional frame
This returns non-nil if the face face displays differently from the default face.

A face alias provides an equivalent name for a face. You can define a face alias by
giving the alias symbol the face-alias property, with a value of the target face name. The
following example makes modeline an alias for the mode-line face.

(put ’modeline ’face-alias ’mode-line)

Chapter 38: Emacs Display 860

[Macro]define-obsolete-face-alias obsolete-face current-face when
This macro defines obsolete-face as an alias for current-face, and also marks it
as obsolete, indicating that it may be removed in future. when should be a string
indicating when obsolete-face was made obsolete (usually a version number string).

38.12.7 Automatic Face Assignment

This hook is used for automatically assigning faces to text in the buffer. It is part of the
implementation of Jit-Lock mode, used by Font-Lock.

[Variable]fontification-functions
This variable holds a list of functions that are called by Emacs redisplay as needed,
just before doing redisplay. They are called even when Font Lock Mode isn’t enabled.
When Font Lock Mode is enabled, this variable usually holds just one function, jit-
lock-function.

The functions are called in the order listed, with one argument, a buffer position
pos. Collectively they should attempt to assign faces to the text in the current buffer
starting at pos.

The functions should record the faces they assign by setting the face property. They
should also add a non-nil fontified property to all the text they have assigned faces
to. That property tells redisplay that faces have been assigned to that text already.

It is probably a good idea for the functions to do nothing if the character after
pos already has a non-nil fontified property, but this is not required. If one
function overrides the assignments made by a previous one, the properties after the
last function finishes are the ones that really matter.

For efficiency, we recommend writing these functions so that they usually assign faces
to around 400 to 600 characters at each call.

38.12.8 Basic Faces

If your Emacs Lisp program needs to assign some faces to text, it is often a good idea
to use certain existing faces or inherit from them, rather than defining entirely new faces.
This way, if other users have customized the basic faces to give Emacs a certain look, your
program will “fit in” without additional customization.

Some of the basic faces defined in Emacs are listed below. In addition to these, you
might want to make use of the Font Lock faces for syntactic highlighting, if highlighting is
not already handled by Font Lock mode, or if some Font Lock faces are not in use. See
Section 23.6.7 [Faces for Font Lock], page 444.

default The default face, whose attributes are all specified. All other faces implicitly
inherit from it: any unspecified attribute defaults to the attribute on this face
(see Section 38.12.1 [Face Attributes], page 849).

Chapter 38: Emacs Display 861

bold

italic

bold-italic

underline

fixed-pitch

variable-pitch

These have the attributes indicated by their names (e.g., bold has a bold
:weight attribute), with all other attributes unspecified (and so given by
default).

shadow For “dimmed out” text. For example, it is used for the ignored part of a filename
in the minibuffer (see Section “Minibuffers for File Names” in The GNU Emacs
Manual).

link

link-visited

For clickable text buttons that send the user to a different buffer or “location”.

highlight

For stretches of text that should temporarily stand out. For example, it is
commonly assigned to the mouse-face property for cursor highlighting (see
Section 32.19.4 [Special Properties], page 685).

match For text matching a search command.

error

warning

success For text concerning errors, warnings, or successes. For example, these are used
for messages in *Compilation* buffers.

38.12.9 Font Selection

Before Emacs can draw a character on a graphical display, it must select a font for that
character1. See Section “Fonts” in The GNU Emacs Manual. Normally, Emacs automat-
ically chooses a font based on the faces assigned to that character—specifically, the face
attributes :family, :weight, :slant, and :width (see Section 38.12.1 [Face Attributes],
page 849). The choice of font also depends on the character to be displayed; some fonts can
only display a limited set of characters. If no available font exactly fits the requirements,
Emacs looks for the closest matching font. The variables in this section control how Emacs
makes this selection.

[User Option]face-font-family-alternatives
If a given family is specified but does not exist, this variable specifies alternative font
families to try. Each element should have this form:

(family alternate-families...)

If family is specified but not available, Emacs will try the other families given in
alternate-families, one by one, until it finds a family that does exist.

1 In this context, the term font has nothing to do with Font Lock (see Section 23.6 [Font Lock Mode],
page 437).

Chapter 38: Emacs Display 862

[User Option]face-font-selection-order
If there is no font that exactly matches all desired face attributes (:width, :height,
:weight, and :slant), this variable specifies the order in which these attributes
should be considered when selecting the closest matching font. The value should be a
list containing those four attribute symbols, in order of decreasing importance. The
default is (:width :height :weight :slant).

Font selection first finds the best available matches for the first attribute in the list;
then, among the fonts which are best in that way, it searches for the best matches in
the second attribute, and so on.

The attributes :weight and :width have symbolic values in a range centered around
normal. Matches that are more extreme (farther from normal) are somewhat pre-
ferred to matches that are less extreme (closer to normal); this is designed to ensure
that non-normal faces contrast with normal ones, whenever possible.

One example of a case where this variable makes a difference is when the default font
has no italic equivalent. With the default ordering, the italic face will use a non-
italic font that is similar to the default one. But if you put :slant before :height,
the italic face will use an italic font, even if its height is not quite right.

[User Option]face-font-registry-alternatives
This variable lets you specify alternative font registries to try, if a given registry is
specified and doesn’t exist. Each element should have this form:

(registry alternate-registries...)

If registry is specified but not available, Emacs will try the other registries given in
alternate-registries, one by one, until it finds a registry that does exist.

Emacs can make use of scalable fonts, but by default it does not use them.

[User Option]scalable-fonts-allowed
This variable controls which scalable fonts to use. A value of nil, the default, means
do not use scalable fonts. t means to use any scalable font that seems appropriate
for the text.

Otherwise, the value must be a list of regular expressions. Then a scalable font is
enabled for use if its name matches any regular expression in the list. For example,

(setq scalable-fonts-allowed ’("muleindian-2$"))

allows the use of scalable fonts with registry muleindian-2.

[Variable]face-font-rescale-alist
This variable specifies scaling for certain faces. Its value should be a list of elements
of the form

(fontname-regexp . scale-factor)

If fontname-regexp matches the font name that is about to be used, this says to choose
a larger similar font according to the factor scale-factor. You would use this feature
to normalize the font size if certain fonts are bigger or smaller than their nominal
heights and widths would suggest.

Chapter 38: Emacs Display 863

38.12.10 Looking Up Fonts

[Function]x-list-fonts name &optional reference-face frame maximum width
This function returns a list of available font names that match name. name should
be a string containing a font name in either the Fontconfig, GTK, or XLFD format
(see Section “Fonts” in The GNU Emacs Manual). Within an XLFD string, wildcard
characters may be used: the ‘*’ character matches any substring, and the ‘?’ character
matches any single character. Case is ignored when matching font names.

If the optional arguments reference-face and frame are specified, the returned list
includes only fonts that are the same size as reference-face (a face name) currently is
on the frame frame.

The optional argument maximum sets a limit on how many fonts to return. If it is
non-nil, then the return value is truncated after the first maximum matching fonts.
Specifying a small value for maximum can make this function much faster, in cases
where many fonts match the pattern.

The optional argument width specifies a desired font width. If it is non-nil, the
function only returns those fonts whose characters are (on average) width times as
wide as reference-face.

[Function]x-family-fonts &optional family frame
This function returns a list describing the available fonts for family family on frame.
If family is omitted or nil, this list applies to all families, and therefore, it contains
all available fonts. Otherwise, family must be a string; it may contain the wildcards
‘?’ and ‘*’.

The list describes the display that frame is on; if frame is omitted or nil, it applies
to the selected frame’s display (see Section 29.9 [Input Focus], page 607).

Each element in the list is a vector of the following form:

[family width point-size weight slant

fixed-p full registry-and-encoding]

The first five elements correspond to face attributes; if you specify these attributes
for a face, it will use this font.

The last three elements give additional information about the font. fixed-p is non-nil
if the font is fixed-pitch. full is the full name of the font, and registry-and-encoding
is a string giving the registry and encoding of the font.

38.12.11 Fontsets

A fontset is a list of fonts, each assigned to a range of character codes. An individual
font cannot display the whole range of characters that Emacs supports, but a fontset can.
Fontsets have names, just as fonts do, and you can use a fontset name in place of a font
name when you specify the “font” for a frame or a face. Here is information about defining
a fontset under Lisp program control.

[Function]create-fontset-from-fontset-spec fontset-spec &optional
style-variant-p noerror

This function defines a new fontset according to the specification string fontset-spec.
The string should have this format:

Chapter 38: Emacs Display 864

fontpattern, [charset:font]. . .

Whitespace characters before and after the commas are ignored.

The first part of the string, fontpattern, should have the form of a standard X font
name, except that the last two fields should be ‘fontset-alias’.

The new fontset has two names, one long and one short. The long name is fontpattern
in its entirety. The short name is ‘fontset-alias’. You can refer to the fontset by
either name. If a fontset with the same name already exists, an error is signaled,
unless noerror is non-nil, in which case this function does nothing.

If optional argument style-variant-p is non-nil, that says to create bold, italic and
bold-italic variants of the fontset as well. These variant fontsets do not have a short
name, only a long one, which is made by altering fontpattern to indicate the bold or
italic status.

The specification string also says which fonts to use in the fontset. See below for the
details.

The construct ‘charset:font’ specifies which font to use (in this fontset) for one partic-
ular character set. Here, charset is the name of a character set, and font is the font to use
for that character set. You can use this construct any number of times in the specification
string.

For the remaining character sets, those that you don’t specify explicitly, Emacs chooses
a font based on fontpattern: it replaces ‘fontset-alias’ with a value that names one
character set. For the ASCII character set, ‘fontset-alias’ is replaced with ‘ISO8859-1’.

In addition, when several consecutive fields are wildcards, Emacs collapses them into a
single wildcard. This is to prevent use of auto-scaled fonts. Fonts made by scaling larger
fonts are not usable for editing, and scaling a smaller font is not useful because it is better
to use the smaller font in its own size, which Emacs does.

Thus if fontpattern is this,

-*-fixed-medium-r-normal-*-24-*-*-*-*-*-fontset-24

the font specification for ASCII characters would be this:

-*-fixed-medium-r-normal-*-24-*-ISO8859-1

and the font specification for Chinese GB2312 characters would be this:

-*-fixed-medium-r-normal-*-24-*-gb2312*-*

You may not have any Chinese font matching the above font specification. Most X
distributions include only Chinese fonts that have ‘song ti’ or ‘fangsong ti’ in the family
field. In such a case, ‘Fontset-n’ can be specified as below:

Emacs.Fontset-0: -*-fixed-medium-r-normal-*-24-*-*-*-*-*-fontset-24,\

chinese-gb2312:-*-*-medium-r-normal-*-24-*-gb2312*-*

Then, the font specifications for all but Chinese GB2312 characters have ‘fixed’ in the
family field, and the font specification for Chinese GB2312 characters has a wild card ‘*’
in the family field.

[Function]set-fontset-font name character font-spec &optional frame add
This function modifies the existing fontset name to use the font matching with font-
spec for the character character.

Chapter 38: Emacs Display 865

If name is nil, this function modifies the fontset of the selected frame or that of
frame if frame is not nil.

If name is t, this function modifies the default fontset, whose short name is
‘fontset-default’.

character may be a cons; (from . to), where from and to are character codepoints.
In that case, use font-spec for all characters in the range from and to (inclusive).

character may be a charset. In that case, use font-spec for all character in the charsets.

character may be a script name. In that case, use font-spec for all character in the
charsets.

font-spec may be a cons; (family . registry), where family is a family name of a
font (possibly including a foundry name at the head), registry is a registry name of
a font (possibly including an encoding name at the tail).

font-spec may be a font name string.

The optional argument add, if non-nil, specifies how to add font-spec to the font
specifications previously set. If it is prepend, font-spec is prepended. If it is append,
font-spec is appended. By default, font-spec overrides the previous settings.

For instance, this changes the default fontset to use a font of which family name is
‘Kochi Gothic’ for all characters belonging to the charset japanese-jisx0208.

(set-fontset-font t ’japanese-jisx0208

(font-spec :family "Kochi Gothic"))

[Function]char-displayable-p char
This function returns t if Emacs ought to be able to display char. More precisely, if
the selected frame’s fontset has a font to display the character set that char belongs
to.

Fontsets can specify a font on a per-character basis; when the fontset does that, this
function’s value may not be accurate.

38.12.12 Low-Level Font Representation

Normally, it is not necessary to manipulate fonts directly. In case you need to do so, this
section explains how.

In Emacs Lisp, fonts are represented using three different Lisp object types: font objects,
font specs, and font entities.

[Function]fontp object &optional type
Return t if object is a font object, font spec, or font entity. Otherwise, return nil.

The optional argument type, if non-nil, determines the exact type of Lisp object to
check for. In that case, type should be one of font-object, font-spec, or font-

entity.

A font object is a Lisp object that represents a font that Emacs has opened. Font objects
cannot be modified in Lisp, but they can be inspected.

[Function]font-at position &optional window string
Return the font object that is being used to display the character at position position
in the window window. If window is nil, it defaults to the selected window. If string

Chapter 38: Emacs Display 866

is nil, position specifies a position in the current buffer; otherwise, string should be
a string, and position specifies a position in that string.

A font spec is a Lisp object that contains a set of specifications that can be used to find
a font. More than one font may match the specifications in a font spec.

[Function]font-spec &rest arguments
Return a new font spec using the specifications in arguments, which should come in
property-value pairs. The possible specifications are as follows:

:name The font name (a string), in either XLFD, Fontconfig, or GTK format.
See Section “Fonts” in The GNU Emacs Manual.

:family

:foundry

:weight

:slant

:width These have the same meanings as the face attributes of the same name.
See Section 38.12.1 [Face Attributes], page 849.

:size The font size—either a non-negative integer that specifies the pixel size,
or a floating point number that specifies the point size.

:adstyle Additional typographic style information for the font, such as ‘sans’. The
value should be a string or a symbol.

:registry

The charset registry and encoding of the font, such as ‘iso8859-1’. The
value should be a string or a symbol.

:script The script that the font must support (a symbol).

:otf The font must be an OpenType font that supports these OpenType fea-
tures, provided Emacs is compiled with support for ‘libotf’ (a library
for performing complex text layout in certain scripts). The value must
be a list of the form

(script-tag langsys-tag gsub gpos)

where script-tag is the OpenType script tag symbol; langsys-tag is the
OpenType language system tag symbol, or nil to use the default language
system; gsub is a list of OpenType GSUB feature tag symbols, or nil

if none is required; and gpos is a list of OpenType GPOS feature tag
symbols, or nil if none is required. If gsub or gpos is a list, a nil element
in that list means that the font must not match any of the remaining tag
symbols. The gpos element may be omitted.

[Function]font-put font-spec property value
Set the font property property in the font-spec font-spec to value.

A font entity is a reference to a font that need not be open. Its properties are intermediate
between a font object and a font spec: like a font object, and unlike a font spec, it refers to
a single, specific font. Unlike a font object, creating a font entity does not load the contents
of that font into computer memory.

Chapter 38: Emacs Display 867

[Function]find-font font-spec &optional frame
This function returns a font entity that best matches the font spec font-spec on frame
frame. If frame is nil, it defaults to the selected frame.

[Function]list-fonts font-spec &optional frame num prefer
This function returns a list of all font entities that match the font spec font-spec.

The optional argument frame, if non-nil, specifies the frame on which the fonts are
to be displayed. The optional argument num, if non-nil, should be an integer that
specifies the maximum length of the returned list. The optional argument prefer,
if non-nil, should be another font spec, which is used to control the order of the
returned list; the returned font entities are sorted in order of decreasing “closeness”
to that font spec.

If you call set-face-attribute and pass a font spec, font entity, or font name string
as the value of the :font attribute, Emacs opens the best “matching” font that is available
for display. It then stores the corresponding font object as the actual value of the :font

attribute for that face.

The following functions can be used to obtain information about a font. For these
functions, the font argument can be a font object, a font entity, or a font spec.

[Function]font-get font property
This function returns the value of the font property property for font.

If font is a font spec and the font spec does not specify property, the return value is
nil. If font is a font object or font entity, the value for the :script property may be
a list of scripts supported by the font.

[Function]font-face-attributes font &optional frame
This function returns a list of face attributes corresponding to font. The optional
argument frame specifies the frame on which the font is to be displayed. If it is nil,
the selected frame is used. The return value has the form

(:family family :height height :weight weight

:slant slant :width width)

where the values of family, height, weight, slant, and width are face attribute values.
Some of these key-attribute pairs may be omitted from the list if they are not specified
by font.

[Function]font-xlfd-name font &optional fold-wildcards
This function returns the XLFD (X Logical Font Descriptor), a string, matching font.
See Section “Fonts” in The GNU Emacs Manual, for information about XLFDs. If
the name is too long for an XLFD (which can contain at most 255 characters), the
function returns nil.

If the optional argument fold-wildcards is non-nil, consecutive wildcards in the XLFD
are folded into one.

38.13 Fringes

On graphical displays, Emacs draws fringes next to each window: thin vertical strips down
the sides which can display bitmaps indicating truncation, continuation, horizontal scrolling,
and so on.

Chapter 38: Emacs Display 868

38.13.1 Fringe Size and Position

The following buffer-local variables control the position and width of fringes in windows
showing that buffer.

[Variable]fringes-outside-margins
The fringes normally appear between the display margins and the window text. If
the value is non-nil, they appear outside the display margins. See Section 38.15.5
[Display Margins], page 878.

[Variable]left-fringe-width
This variable, if non-nil, specifies the width of the left fringe in pixels. A value of
nil means to use the left fringe width from the window’s frame.

[Variable]right-fringe-width
This variable, if non-nil, specifies the width of the right fringe in pixels. A value of
nil means to use the right fringe width from the window’s frame.

Any buffer which does not specify values for these variables uses the values specified
by the left-fringe and right-fringe frame parameters (see Section 29.3.3.4 [Layout
Parameters], page 598).

The above variables actually take effect via the function set-window-buffer (see
Section 28.10 [Buffers and Windows], page 558), which calls set-window-fringes as a
subroutine. If you change one of these variables, the fringe display is not updated in
existing windows showing the buffer, unless you call set-window-buffer again in each
affected window. You can also use set-window-fringes to control the fringe display in
individual windows.

[Function]set-window-fringes window left &optional right outside-margins
This function sets the fringe widths of window window. If window is nil, the selected
window is used.

The argument left specifies the width in pixels of the left fringe, and likewise right
for the right fringe. A value of nil for either one stands for the default width. If
outside-margins is non-nil, that specifies that fringes should appear outside of the
display margins.

[Function]window-fringes &optional window
This function returns information about the fringes of a window window. If window
is omitted or nil, the selected window is used. The value has the form (left-width

right-width outside-margins).

38.13.2 Fringe Indicators

Fringe indicators are tiny icons displayed in the window fringe to indicate truncated or
continued lines, buffer boundaries, etc.

[User Option]indicate-empty-lines
When this is non-nil, Emacs displays a special glyph in the fringe of each empty line
at the end of the buffer, on graphical displays. See Section 38.13 [Fringes], page 867.
This variable is automatically buffer-local in every buffer.

Chapter 38: Emacs Display 869

[User Option]indicate-buffer-boundaries
This buffer-local variable controls how the buffer boundaries and window scrolling are
indicated in the window fringes.

Emacs can indicate the buffer boundaries—that is, the first and last line in the
buffer—with angle icons when they appear on the screen. In addition, Emacs can
display an up-arrow in the fringe to show that there is text above the screen, and a
down-arrow to show there is text below the screen.

There are three kinds of basic values:

nil Don’t display any of these fringe icons.

left Display the angle icons and arrows in the left fringe.

right Display the angle icons and arrows in the right fringe.

any non-alist
Display the angle icons in the left fringe and don’t display the arrows.

Otherwise the value should be an alist that specifies which fringe indicators to display
and where. Each element of the alist should have the form (indicator . position).
Here, indicator is one of top, bottom, up, down, and t (which covers all the icons not
yet specified), while position is one of left, right and nil.

For example, ((top . left) (t . right)) places the top angle bitmap in left fringe,
and the bottom angle bitmap as well as both arrow bitmaps in right fringe. To
show the angle bitmaps in the left fringe, and no arrow bitmaps, use ((top . left)

(bottom . left)).

[Variable]fringe-indicator-alist
This buffer-local variable specifies the mapping from logical fringe indicators to the
actual bitmaps displayed in the window fringes. The value is an alist of elements (in-
dicator . bitmaps), where indicator specifies a logical indicator type and bitmaps
specifies the fringe bitmaps to use for that indicator.

Each indicator should be one of the following symbols:

truncation, continuation.
Used for truncation and continuation lines.

up, down, top, bottom, top-bottom
Used when indicate-buffer-boundaries is non-nil: up and down in-
dicate a buffer boundary lying above or below the window edge; top

and bottom indicate the topmost and bottommost buffer text line; and
top-bottom indicates where there is just one line of text in the buffer.

empty-line

Used to indicate empty lines when indicate-empty-lines is non-nil.

overlay-arrow

Used for overlay arrows (see Section 38.13.6 [Overlay Arrow], page 872).

Each bitmaps value may be a list of symbols (left right [left1 right1]). The
left and right symbols specify the bitmaps shown in the left and/or right fringe, for
the specific indicator. left1 and right1 are specific to the bottom and top-bottom

Chapter 38: Emacs Display 870

indicators, and are used to indicate that the last text line has no final newline. Al-
ternatively, bitmaps may be a single symbol which is used in both left and right
fringes.

See Section 38.13.4 [Fringe Bitmaps], page 870, for a list of standard bitmap symbols
and how to define your own. In addition, nil represents the empty bitmap (i.e., an
indicator that is not shown).

When fringe-indicator-alist has a buffer-local value, and there is no bitmap
defined for a logical indicator, or the bitmap is t, the corresponding value from the
default value of fringe-indicator-alist is used.

38.13.3 Fringe Cursors

When a line is exactly as wide as the window, Emacs displays the cursor in the right fringe
instead of using two lines. Different bitmaps are used to represent the cursor in the fringe
depending on the current buffer’s cursor type.

[User Option]overflow-newline-into-fringe
If this is non-nil, lines exactly as wide as the window (not counting the final newline
character) are not continued. Instead, when point is at the end of the line, the cursor
appears in the right fringe.

[Variable]fringe-cursor-alist
This variable specifies the mapping from logical cursor type to the actual fringe bit-
maps displayed in the right fringe. The value is an alist where each element has
the form (cursor-type . bitmap), which means to use the fringe bitmap bitmap to
display cursors of type cursor-type.

Each cursor-type should be one of box, hollow, bar, hbar, or hollow-small. The
first four have the same meanings as in the cursor-type frame parameter (see
Section 29.3.3.7 [Cursor Parameters], page 600). The hollow-small type is used
instead of hollow when the normal hollow-rectangle bitmap is too tall to fit on a
specific display line.

Each bitmap should be a symbol specifying the fringe bitmap to be displayed for that
logical cursor type. See the next subsection for details.

When fringe-cursor-alist has a buffer-local value, and there is no bitmap de-
fined for a cursor type, the corresponding value from the default value of fringes-
indicator-alist is used.

38.13.4 Fringe Bitmaps

The fringe bitmaps are the actual bitmaps which represent the logical fringe indicators
for truncated or continued lines, buffer boundaries, overlay arrows, etc. Each bitmap is
represented by a symbol. These symbols are referred to by the variables fringe-indicator-
alist and fringe-cursor-alist, described in the previous subsections.

Lisp programs can also directly display a bitmap in the left or right fringe, by using a
display property for one of the characters appearing in the line (see Section 38.15.4 [Other
Display Specs], page 877). Such a display specification has the form

(fringe bitmap [face])

Chapter 38: Emacs Display 871

fringe is either the symbol left-fringe or right-fringe. bitmap is a symbol identifying
the bitmap to display. The optional face names a face whose foreground color is used to
display the bitmap; this face is automatically merged with the fringe face.

Here is a list of the standard fringe bitmaps defined in Emacs, and how they are currently
used in Emacs (via fringe-indicator-alist and fringe-cursor-alist):

left-arrow, right-arrow
Used to indicate truncated lines.

left-curly-arrow, right-curly-arrow
Used to indicate continued lines.

right-triangle, left-triangle
The former is used by overlay arrows. The latter is unused.

up-arrow, down-arrow, top-left-angle top-right-angle

bottom-left-angle, bottom-right-angle
top-right-angle, top-left-angle
left-bracket, right-bracket, top-right-angle, top-left-angle

Used to indicate buffer boundaries.

filled-rectangle, hollow-rectangle
filled-square, hollow-square
vertical-bar, horizontal-bar

Used for different types of fringe cursors.

empty-line, exclamation-mark, question-mark, exclamation-mark
Not used by core Emacs features.

The next subsection describes how to define your own fringe bitmaps.

[Function]fringe-bitmaps-at-pos &optional pos window
This function returns the fringe bitmaps of the display line containing position pos in
window window. The return value has the form (left right ov), where left is the
symbol for the fringe bitmap in the left fringe (or nil if no bitmap), right is similar
for the right fringe, and ov is non-nil if there is an overlay arrow in the left fringe.

The value is nil if pos is not visible in window. If window is nil, that stands for the
selected window. If pos is nil, that stands for the value of point in window.

38.13.5 Customizing Fringe Bitmaps

[Function]define-fringe-bitmap bitmap bits &optional height width align
This function defines the symbol bitmap as a new fringe bitmap, or replaces an
existing bitmap with that name.

The argument bits specifies the image to use. It should be either a string or a vector
of integers, where each element (an integer) corresponds to one row of the bitmap.
Each bit of an integer corresponds to one pixel of the bitmap, where the low bit
corresponds to the rightmost pixel of the bitmap.

The height is normally the length of bits. However, you can specify a different height
with non-nil height. The width is normally 8, but you can specify a different width
with non-nil width. The width must be an integer between 1 and 16.

Chapter 38: Emacs Display 872

The argument align specifies the positioning of the bitmap relative to the range of
rows where it is used; the default is to center the bitmap. The allowed values are top,
center, or bottom.

The align argument may also be a list (align periodic) where align is interpreted
as described above. If periodic is non-nil, it specifies that the rows in bits should
be repeated enough times to reach the specified height.

[Function]destroy-fringe-bitmap bitmap
This function destroy the fringe bitmap identified by bitmap. If bitmap identifies a
standard fringe bitmap, it actually restores the standard definition of that bitmap,
instead of eliminating it entirely.

[Function]set-fringe-bitmap-face bitmap &optional face
This sets the face for the fringe bitmap bitmap to face. If face is nil, it selects the
fringe face. The bitmap’s face controls the color to draw it in.

face is merged with the fringe face, so normally face should specify only the fore-
ground color.

38.13.6 The Overlay Arrow

The overlay arrow is useful for directing the user’s attention to a particular line in a buffer.
For example, in the modes used for interface to debuggers, the overlay arrow indicates
the line of code about to be executed. This feature has nothing to do with overlays (see
Section 38.9 [Overlays], page 839).

[Variable]overlay-arrow-string
This variable holds the string to display to call attention to a particular line, or nil
if the arrow feature is not in use. On a graphical display the contents of the string
are ignored; instead a glyph is displayed in the fringe area to the left of the display
area.

[Variable]overlay-arrow-position
This variable holds a marker that indicates where to display the overlay arrow. It
should point at the beginning of a line. On a non-graphical display the arrow text
appears at the beginning of that line, overlaying any text that would otherwise appear.
Since the arrow is usually short, and the line usually begins with indentation, normally
nothing significant is overwritten.

The overlay-arrow string is displayed in any given buffer if the value of overlay-
arrow-position in that buffer points into that buffer. Thus, it is possible to display
multiple overlay arrow strings by creating buffer-local bindings of overlay-arrow-
position. However, it is usually cleaner to use overlay-arrow-variable-list to
achieve this result.

You can do a similar job by creating an overlay with a before-string property. See
Section 38.9.2 [Overlay Properties], page 842.

You can define multiple overlay arrows via the variable overlay-arrow-variable-list.

Chapter 38: Emacs Display 873

[Variable]overlay-arrow-variable-list
This variable’s value is a list of variables, each of which specifies the position of
an overlay arrow. The variable overlay-arrow-position has its normal meaning
because it is on this list.

Each variable on this list can have properties overlay-arrow-string and overlay-

arrow-bitmap that specify an overlay arrow string (for text terminals) or fringe bitmap
(for graphical terminals) to display at the corresponding overlay arrow position. If either
property is not set, the default overlay-arrow-string or overlay-arrow fringe indicator
is used.

38.14 Scroll Bars

Normally the frame parameter vertical-scroll-bars controls whether the windows in
the frame have vertical scroll bars, and whether they are on the left or right. The frame
parameter scroll-bar-width specifies how wide they are (nil meaning the default). See
Section 29.3.3.4 [Layout Parameters], page 598.

[Function]frame-current-scroll-bars &optional frame
This function reports the scroll bar type settings for frame frame. The value is a
cons cell (vertical-type . horizontal-type), where vertical-type is either left,
right, or nil (which means no scroll bar.) horizontal-type is meant to specify the
horizontal scroll bar type, but since they are not implemented, it is always nil.

You can enable or disable scroll bars for a particular buffer, by setting the variable
vertical-scroll-bar. This variable automatically becomes buffer-local when set. The
possible values are left, right, t, which means to use the frame’s default, and nil for no
scroll bar.

You can also control this for individual windows. Call the function set-window-scroll-

bars to specify what to do for a specific window:

[Function]set-window-scroll-bars window width &optional vertical-type
horizontal-type

This function sets the width and type of scroll bars for window window.

width specifies the scroll bar width in pixels (nil means use the width specified for
the frame). vertical-type specifies whether to have a vertical scroll bar and, if so,
where. The possible values are left, right and nil, just like the values of the
vertical-scroll-bars frame parameter.

The argument horizontal-type is meant to specify whether and where to have hori-
zontal scroll bars, but since they are not implemented, it has no effect. If window is
nil, the selected window is used.

[Function]window-scroll-bars &optional window
Report the width and type of scroll bars specified for window. If window is omitted
or nil, the selected window is used. The value is a list of the form (width cols

vertical-type horizontal-type). The value width is the value that was specified
for the width (which may be nil); cols is the number of columns that the scroll bar
actually occupies.

horizontal-type is not actually meaningful.

Chapter 38: Emacs Display 874

If you don’t specify these values for a window with set-window-scroll-bars, the buffer-
local variables scroll-bar-mode and scroll-bar-width in the buffer being displayed con-
trol the window’s vertical scroll bars. The function set-window-buffer examines these
variables. If you change them in a buffer that is already visible in a window, you can make
the window take note of the new values by calling set-window-buffer specifying the same
buffer that is already displayed.

[User Option]scroll-bar-mode
This variable, always local in all buffers, controls whether and where to put scroll
bars in windows displaying the buffer. The possible values are nil for no scroll bar,
left to put a scroll bar on the left, and right to put a scroll bar on the right.

[Function]window-current-scroll-bars &optional window
This function reports the scroll bar type for window window. If window is omitted
or nil, the selected window is used. The value is a cons cell (vertical-type .

horizontal-type). Unlike window-scroll-bars, this reports the scroll bar type
actually used, once frame defaults and scroll-bar-mode are taken into account.

[Variable]scroll-bar-width
This variable, always local in all buffers, specifies the width of the buffer’s scroll bars,
measured in pixels. A value of nil means to use the value specified by the frame.

38.15 The display Property

The display text property (or overlay property) is used to insert images into text, and to
control other aspects of how text displays. The value of the display property should be
a display specification, or a list or vector containing several display specifications. Display
specifications in the same display property value generally apply in parallel to the text
they cover.

If several sources (overlays and/or a text property) specify values for the display prop-
erty, only one of the values takes effect, following the rules of get-char-property. See
Section 32.19.1 [Examining Properties], page 680.

The rest of this section describes several kinds of display specifications and what they
mean.

38.15.1 Display Specs That Replace The Text

Some kinds of display specifications specify something to display instead of the text that
has the property. These are called replacing display specifications. Emacs does not allow
the user to interactively move point into the middle of buffer text that is replaced in this
way.

If a list of display specifications includes more than one replacing display specification,
the first overrides the rest. Replacing display specifications make most other display speci-
fications irrelevant, since those don’t apply to the replacement.

For replacing display specifications, “the text that has the property” means all the
consecutive characters that have the same Lisp object as their display property; these
characters are replaced as a single unit. If two characters have different Lisp objects as
their display properties (i.e., objects which are not eq), they are handled separately.

Chapter 38: Emacs Display 875

Here is an example which illustrates this point. A string serves as a replacing display
specification, which replaces the text that has the property with the specified string (see
Section 38.15.4 [Other Display Specs], page 877). Consider the following function:

(defun foo ()

(dotimes (i 5)

(let ((string (concat "A"))

(start (+ i i (point-min))))

(put-text-property start (1+ start) ’display string)

(put-text-property start (+ 2 start) ’display string))))

This function gives each of the first ten characters in the buffer a display property which is
a string "A", but they don’t all get the same string object. The first two characters get the
same string object, so they are replaced with one ‘A’; the fact that the display property was
assigned in two separate calls to put-text-property is irrelevant. Similarly, the next two
characters get a second string (concat creates a new string object), so they are replaced
with one ‘A’; and so on. Thus, the ten characters appear as five A’s.

38.15.2 Specified Spaces

To display a space of specified width and/or height, use a display specification of the form
(space . props), where props is a property list (a list of alternating properties and values).
You can put this property on one or more consecutive characters; a space of the specified
height and width is displayed in place of all of those characters. These are the properties
you can use in props to specify the weight of the space:

:width width

If width is an integer or floating point number, it specifies that the space width
should be width times the normal character width. width can also be a pixel
width specification (see Section 38.15.3 [Pixel Specification], page 876).

:relative-width factor

Specifies that the width of the stretch should be computed from the first charac-
ter in the group of consecutive characters that have the same display property.
The space width is the width of that character, multiplied by factor.

:align-to hpos

Specifies that the space should be wide enough to reach hpos. If hpos is a
number, it is measured in units of the normal character width. hpos can also be
a pixel width specification (see Section 38.15.3 [Pixel Specification], page 876).

You should use one and only one of the above properties. You can also specify the height
of the space, with these properties:

:height height

Specifies the height of the space. If height is an integer or floating point number,
it specifies that the space height should be height times the normal character
height. The height may also be a pixel height specification (see Section 38.15.3
[Pixel Specification], page 876).

:relative-height factor

Specifies the height of the space, multiplying the ordinary height of the text
having this display specification by factor.

Chapter 38: Emacs Display 876

:ascent ascent

If the value of ascent is a non-negative number no greater than 100, it specifies
that ascent percent of the height of the space should be considered as the
ascent of the space—that is, the part above the baseline. The ascent may also
be specified in pixel units with a pixel ascent specification (see Section 38.15.3
[Pixel Specification], page 876).

Don’t use both :height and :relative-height together.

The :width and :align-to properties are supported on non-graphic terminals, but the
other space properties in this section are not.

Note that space properties are treated as paragraph separators for the purposes of re-
ordering bidirectional text for display. See Section 38.23 [Bidirectional Display], page 906,
for the details.

38.15.3 Pixel Specification for Spaces

The value of the :width, :align-to, :height, and :ascent properties can be a special
kind of expression that is evaluated during redisplay. The result of the evaluation is used
as an absolute number of pixels.

The following expressions are supported:
expr ::= num | (num) | unit | elem | pos | image | form

num ::= integer | float | symbol

unit ::= in | mm | cm | width | height

elem ::= left-fringe | right-fringe | left-margin | right-margin

| scroll-bar | text

pos ::= left | center | right

form ::= (num . expr) | (op expr ...)

op ::= + | -

The form num specifies a fraction of the default frame font height or width. The form
(num) specifies an absolute number of pixels. If num is a symbol, symbol, its buffer-local
variable binding is used.

The in, mm, and cm units specify the number of pixels per inch, millimeter, and centime-
ter, respectively. The width and height units correspond to the default width and height
of the current face. An image specification image corresponds to the width or height of the
image.

The elements left-fringe, right-fringe, left-margin, right-margin, scroll-bar,
and text specify to the width of the corresponding area of the window.

The left, center, and right positions can be used with :align-to to specify a position
relative to the left edge, center, or right edge of the text area.

Any of the above window elements (except text) can also be used with :align-to to
specify that the position is relative to the left edge of the given area. Once the base offset
for a relative position has been set (by the first occurrence of one of these symbols), further
occurrences of these symbols are interpreted as the width of the specified area. For example,
to align to the center of the left-margin, use

:align-to (+ left-margin (0.5 . left-margin))

If no specific base offset is set for alignment, it is always relative to the left edge of the
text area. For example, ‘:align-to 0’ in a header-line aligns with the first text column in
the text area.

Chapter 38: Emacs Display 877

A value of the form (num . expr) stands for the product of the values of num and expr.
For example, (2 . in) specifies a width of 2 inches, while (0.5 . image) specifies half the
width (or height) of the specified image.

The form (+ expr ...) adds up the value of the expressions. The form (- expr ...)

negates or subtracts the value of the expressions.

38.15.4 Other Display Specifications

Here are the other sorts of display specifications that you can use in the display text
property.

string Display string instead of the text that has this property.

Recursive display specifications are not supported—string ’s display properties,
if any, are not used.

(image . image-props)

This kind of display specification is an image descriptor (see Section 38.16
[Images], page 879). When used as a display specification, it means to display
the image instead of the text that has the display specification.

(slice x y width height)

This specification together with image specifies a slice (a partial area) of the
image to display. The elements y and x specify the top left corner of the slice,
within the image; width and height specify the width and height of the slice.
Integer values are numbers of pixels. A floating point number in the range
0.0–1.0 stands for that fraction of the width or height of the entire image.

((margin nil) string)

A display specification of this form means to display string instead of the text
that has the display specification, at the same position as that text. It is
equivalent to using just string, but it is done as a special case of marginal
display (see Section 38.15.5 [Display Margins], page 878).

(left-fringe bitmap [face])
(right-fringe bitmap [face])

This display specification on any character of a line of text causes the specified
bitmap be displayed in the left or right fringes for that line, instead of the
characters that have the display specification. The optional face specifies the
colors to be used for the bitmap. See Section 38.13.4 [Fringe Bitmaps], page 870,
for the details.

(space-width factor)

This display specification affects all the space characters within the text that has
the specification. It displays all of these spaces factor times as wide as normal.
The element factor should be an integer or float. Characters other than spaces
are not affected at all; in particular, this has no effect on tab characters.

(height height)

This display specification makes the text taller or shorter. Here are the possi-
bilities for height:

Chapter 38: Emacs Display 878

(+ n) This means to use a font that is n steps larger. A “step” is defined
by the set of available fonts—specifically, those that match what
was otherwise specified for this text, in all attributes except height.
Each size for which a suitable font is available counts as another
step. n should be an integer.

(- n) This means to use a font that is n steps smaller.

a number, factor
A number, factor, means to use a font that is factor times as tall
as the default font.

a symbol, function
A symbol is a function to compute the height. It is called with the
current height as argument, and should return the new height to
use.

anything else, form
If the height value doesn’t fit the previous possibilities, it is a form.
Emacs evaluates it to get the new height, with the symbol height
bound to the current specified font height.

(raise factor)

This kind of display specification raises or lowers the text it applies to, relative
to the baseline of the line.

factor must be a number, which is interpreted as a multiple of the height of the
affected text. If it is positive, that means to display the characters raised. If it
is negative, that means to display them lower down.

If the text also has a height display specification, that does not affect the
amount of raising or lowering, which is based on the faces used for the text.

You can make any display specification conditional. To do that, package it in another
list of the form (when condition . spec). Then the specification spec applies only when
condition evaluates to a non-nil value. During the evaluation, object is bound to the string
or buffer having the conditional display property. position and buffer-position are
bound to the position within object and the buffer position where the display property
was found, respectively. Both positions can be different when object is a string.

38.15.5 Displaying in the Margins

A buffer can have blank areas called display margins on the left and on the right. Ordinary
text never appears in these areas, but you can put things into the display margins using
the display property. There is currently no way to make text or images in the margin
mouse-sensitive.

The way to display something in the margins is to specify it in a margin display spec-
ification in the display property of some text. This is a replacing display specification,
meaning that the text you put it on does not get displayed; the margin display appears,
but that text does not.

A margin display specification looks like ((margin right-margin) spec) or ((margin
left-margin) spec). Here, spec is another display specification that says what to display
in the margin. Typically it is a string of text to display, or an image descriptor.

Chapter 38: Emacs Display 879

To display something in the margin in association with certain buffer text, without
altering or preventing the display of that text, put a before-string property on the text
and put the margin display specification on the contents of the before-string.

Before the display margins can display anything, you must give them a nonzero width.
The usual way to do that is to set these variables:

[Variable]left-margin-width
This variable specifies the width of the left margin. It is buffer-local in all buffers.

[Variable]right-margin-width
This variable specifies the width of the right margin. It is buffer-local in all buffers.

Setting these variables does not immediately affect the window. These variables are
checked when a new buffer is displayed in the window. Thus, you can make changes take
effect by calling set-window-buffer.

You can also set the margin widths immediately.

[Function]set-window-margins window left &optional right
This function specifies the margin widths for window window. The argument left
controls the left margin and right controls the right margin (default 0).

[Function]window-margins &optional window
This function returns the left and right margins of window as a cons cell of the form
(left . right). If window is nil, the selected window is used.

38.16 Images

To display an image in an Emacs buffer, you must first create an image descriptor, then use
it as a display specifier in the display property of text that is displayed (see Section 38.15
[Display Property], page 874).

Emacs is usually able to display images when it is run on a graphical terminal. Images
cannot be displayed in a text terminal, on certain graphical terminals that lack the support
for this, or if Emacs is compiled without image support. You can use the function display-

images-p to determine if images can in principle be displayed (see Section 29.23 [Display
Feature Testing], page 619).

38.16.1 Image Formats

Emacs can display a number of different image formats. Some of these image formats are
supported only if particular support libraries are installed. On some platforms, Emacs can
load support libraries on demand; if so, the variable dynamic-library-alist can be used
to modify the set of known names for these dynamic libraries. See Section 39.19 [Dynamic
Libraries], page 942.

Supported image formats (and the required support libraries) include PBM and XBM
(which do not depend on support libraries and are always available), XPM (libXpm), GIF
(libgif or libungif), PostScript (gs), JPEG (libjpeg), TIFF (libtiff), PNG (libpng),
and SVG (librsvg).

Each of these image formats is associated with an image type symbol. The symbols for
the above formats are, respectively, pbm, xbm, xpm, gif, postscript, jpeg, tiff, png, and
svg.

Chapter 38: Emacs Display 880

Furthermore, if you build Emacs with ImageMagick (libMagickWand) support, Emacs
can display any image format that ImageMagick can. See Section 38.16.8 [ImageMagick
Images], page 884. All images displayed via ImageMagick have type symbol imagemagick.

[Variable]image-types
This variable contains a list of type symbols for image formats which are potentially
supported in the current configuration.

“Potentially” means that Emacs knows about the image types, not necessarily that
they can be used (for example, they could depend on unavailable dynamic libraries).
To know which image types are really available, use image-type-available-p.

[Function]image-type-available-p type
This function returns non-nil if images of type type can be loaded and displayed.
type must be an image type symbol.

For image types whose support libraries are statically linked, this function always
returns t. For image types whose support libraries are dynamically loaded, it returns
t if the library could be loaded and nil otherwise.

38.16.2 Image Descriptors

An image descriptor is a list which specifies the underlying data for an image, and how
to display it. It is typically used as the value of a display overlay or text property (see
Section 38.15.4 [Other Display Specs], page 877); but See Section 38.16.11 [Showing Images],
page 887, for convenient helper functions to insert images into buffers.

Each image descriptor has the form (image . props), where props is a property list
of alternating keyword symbols and values, including at least the pair :type TYPE which
specifies the image type.

The following is a list of properties that are meaningful for all image types (there are
also properties which are meaningful only for certain image types, as documented in the
following subsections):

:type type

The image type. Every image descriptor must include this property.

:file file

This says to load the image from file file. If file is not an absolute file name, it
is expanded in data-directory.

:data data

This specifies the raw image data. Each image descriptor must have either
:data or :file, but not both.

For most image types, the value of a :data property should be a string contain-
ing the image data. Some image types do not support :data; for some others,
:data alone is not enough, so you need to use other image properties along
with :data. See the following subsections for details.

:margin margin

This specifies how many pixels to add as an extra margin around the image.
The value, margin, must be a non-negative number, or a pair (x . y) of such

Chapter 38: Emacs Display 881

numbers. If it is a pair, x specifies how many pixels to add horizontally, and
y specifies how many pixels to add vertically. If :margin is not specified, the
default is zero.

:ascent ascent

This specifies the amount of the image’s height to use for its ascent—that is,
the part above the baseline. The value, ascent, must be a number in the range
0 to 100, or the symbol center.

If ascent is a number, that percentage of the image’s height is used for its ascent.

If ascent is center, the image is vertically centered around a centerline which
would be the vertical centerline of text drawn at the position of the image,
in the manner specified by the text properties and overlays that apply to the
image.

If this property is omitted, it defaults to 50.

:relief relief

This adds a shadow rectangle around the image. The value, relief, specifies the
width of the shadow lines, in pixels. If relief is negative, shadows are drawn
so that the image appears as a pressed button; otherwise, it appears as an
unpressed button.

:conversion algorithm

This specifies a conversion algorithm that should be applied to the image before
it is displayed; the value, algorithm, specifies which algorithm.

laplace

emboss Specifies the Laplace edge detection algorithm, which blurs out
small differences in color while highlighting larger differences. Peo-
ple sometimes consider this useful for displaying the image for a
“disabled” button.

(edge-detection :matrix matrix :color-adjust adjust)

Specifies a general edge-detection algorithm. matrix must be either
a nine-element list or a nine-element vector of numbers. A pixel at
position x/y in the transformed image is computed from original
pixels around that position. matrix specifies, for each pixel in the
neighborhood of x/y, a factor with which that pixel will influence
the transformed pixel; element 0 specifies the factor for the pixel
at x− 1/y− 1, element 1 the factor for the pixel at x/y− 1 etc., as
shown below:x− 1/y − 1 x/y − 1 x+ 1/y − 1

x− 1/y x/y x+ 1/y
x− 1/y + 1 x/y + 1 x+ 1/y + 1

The resulting pixel is computed from the color intensity of the color
resulting from summing up the RGB values of surrounding pixels,
multiplied by the specified factors, and dividing that sum by the
sum of the factors’ absolute values.

Chapter 38: Emacs Display 882

Laplace edge-detection currently uses a matrix of 1 0 0
0 0 0
0 0 −1

Emboss edge-detection uses a matrix of 2 −1 0

−1 0 1
0 1 −2

disabled Specifies transforming the image so that it looks “disabled”.

:mask mask

If mask is heuristic or (heuristic bg), build a clipping mask for the image,
so that the background of a frame is visible behind the image. If bg is not
specified, or if bg is t, determine the background color of the image by looking
at the four corners of the image, assuming the most frequently occurring color
from the corners is the background color of the image. Otherwise, bg must be
a list (red green blue) specifying the color to assume for the background of
the image.

If mask is nil, remove a mask from the image, if it has one. Images in some
formats include a mask which can be removed by specifying :mask nil.

:pointer shape

This specifies the pointer shape when the mouse pointer is over this image. See
Section 29.17 [Pointer Shape], page 614, for available pointer shapes.

:map map This associates an image map of hot spots with this image.

An image map is an alist where each element has the format (area id plist).
An area is specified as either a rectangle, a circle, or a polygon.

A rectangle is a cons (rect . ((x0 . y0) . (x1 . y1))) which specifies the
pixel coordinates of the upper left and bottom right corners of the rectangle
area.

A circle is a cons (circle . ((x0 . y0) . r)) which specifies the center and
the radius of the circle; r may be a float or integer.

A polygon is a cons (poly . [x0 y0 x1 y1 ...]) where each pair in the vector
describes one corner in the polygon.

When the mouse pointer lies on a hot-spot area of an image, the plist of that
hot-spot is consulted; if it contains a help-echo property, that defines a tool-tip
for the hot-spot, and if it contains a pointer property, that defines the shape of
the mouse cursor when it is on the hot-spot. See Section 29.17 [Pointer Shape],
page 614, for available pointer shapes.

When you click the mouse when the mouse pointer is over a hot-spot, an event
is composed by combining the id of the hot-spot with the mouse event; for
instance, [area4 mouse-1] if the hot-spot’s id is area4.

Chapter 38: Emacs Display 883

[Function]image-mask-p spec &optional frame
This function returns t if image spec has a mask bitmap. frame is the frame on which
the image will be displayed. frame nil or omitted means to use the selected frame
(see Section 29.9 [Input Focus], page 607).

38.16.3 XBM Images

To use XBM format, specify xbm as the image type. This image format doesn’t require an
external library, so images of this type are always supported.

Additional image properties supported for the xbm image type are:

:foreground foreground

The value, foreground, should be a string specifying the image foreground color,
or nil for the default color. This color is used for each pixel in the XBM that
is 1. The default is the frame’s foreground color.

:background background

The value, background, should be a string specifying the image background
color, or nil for the default color. This color is used for each pixel in the XBM
that is 0. The default is the frame’s background color.

If you specify an XBM image using data within Emacs instead of an external file, use
the following three properties:

:data data

The value, data, specifies the contents of the image. There are three formats
you can use for data:

• A vector of strings or bool-vectors, each specifying one line of the image.
Do specify :height and :width.

• A string containing the same byte sequence as an XBM file would contain.
You must not specify :height and :width in this case, because omitting
them is what indicates the data has the format of an XBM file. The file
contents specify the height and width of the image.

• A string or a bool-vector containing the bits of the image (plus perhaps
some extra bits at the end that will not be used). It should contain at least
width * height bits. In this case, you must specify :height and :width,
both to indicate that the string contains just the bits rather than a whole
XBM file, and to specify the size of the image.

:width width

The value, width, specifies the width of the image, in pixels.

:height height

The value, height, specifies the height of the image, in pixels.

38.16.4 XPM Images

To use XPM format, specify xpm as the image type. The additional image property :color-

symbols is also meaningful with the xpm image type:

Chapter 38: Emacs Display 884

:color-symbols symbols

The value, symbols, should be an alist whose elements have the form (name .

color). In each element, name is the name of a color as it appears in the image
file, and color specifies the actual color to use for displaying that name.

38.16.5 GIF Images

For GIF images, specify image type gif.

:index index

You can use :index to specify image number index from a GIF file that contains
more than one image. If the GIF file doesn’t contain an image with the specified
index, the image displays as a hollow box. GIF files with more than one image
can be animated, see Section 38.16.12 [Animated Images], page 889.

38.16.6 TIFF Images

For TIFF images, specify image type tiff.

:index index

You can use :index to specify image number index from a TIFF file that
contains more than one image. If the TIFF file doesn’t contain an image with
the specified index, the image displays as a hollow box.

38.16.7 PostScript Images

To use PostScript for an image, specify image type postscript. This works only if you
have Ghostscript installed. You must always use these three properties:

:pt-width width

The value, width, specifies the width of the image measured in points (1/72
inch). width must be an integer.

:pt-height height

The value, height, specifies the height of the image in points (1/72 inch). height
must be an integer.

:bounding-box box

The value, box, must be a list or vector of four integers, which specifying
the bounding box of the PostScript image, analogous to the ‘BoundingBox’
comment found in PostScript files.

%%BoundingBox: 22 171 567 738

38.16.8 ImageMagick Images

If you build Emacs with ImageMagick support, you can use the ImageMagick library to
load many image formats (see Section “File Conveniences” in The GNU Emacs Manual).
The image type symbol for images loaded via ImageMagick is imagemagick, regardless of
the actual underlying image format.

[Function]imagemagick-types
This function returns a list of image file extensions supported by the current Im-
ageMagick installation. Each list element is a symbol representing an internal Im-
ageMagick name for an image type, such as BMP for .bmp images.

Chapter 38: Emacs Display 885

[User Option]imagemagick-enabled-types
The value of this variable is a list of ImageMagick image types which Emacs may
attempt to render using ImageMagick. Each list element should be one of the symbols
in the list returned by imagemagick-types, or an equivalent string. Alternatively, a
value of t enables ImageMagick for all possible image types. Regardless of the value
of this variable, imagemagick-types-inhibit (see below) takes precedence.

[User Option]imagemagick-types-inhibit
The value of this variable lists the ImageMagick image types which should never be
rendered using ImageMagick, regardless of the value of imagemagick-enabled-types.
A value of t disables ImageMagick entirely.

Images loaded with ImageMagick support the following additional image descriptor prop-
erties:

:background background

background, if non-nil, should be a string specifying a color, which is used as
the image’s background color if the image supports transparency. If the value
is nil, it defaults to the frame’s background color.

:width, :height

The :width and :height keywords are used for scaling the image. If only one
of them is specified, the other one will be calculated so as to preserve the aspect
ratio. If both are specified, aspect ratio may not be preserved.

:rotation

Specifies a rotation angle in degrees.

:index This has the same meaning as it does for GIF images (see Section 38.16.5 [GIF
Images], page 884), i.e., it specifies which image to view inside an image bundle
file format such as DJVM. You can use the image-metadata function to retrieve
the total number of images in an image bundle.

38.16.9 Other Image Types

For PBM images, specify image type pbm. Color, gray-scale and monochromatic images are
supported. For mono PBM images, two additional image properties are supported.

:foreground foreground

The value, foreground, should be a string specifying the image foreground color,
or nil for the default color. This color is used for each pixel in the PBM that
is 1. The default is the frame’s foreground color.

:background background

The value, background, should be a string specifying the image background
color, or nil for the default color. This color is used for each pixel in the PBM
that is 0. The default is the frame’s background color.

For JPEG images, specify image type jpeg.

For TIFF images, specify image type tiff.

For PNG images, specify image type png.

For SVG images, specify image type svg.

Chapter 38: Emacs Display 886

38.16.10 Defining Images

The functions create-image, defimage and find-image provide convenient ways to create
image descriptors.

[Function]create-image file-or-data &optional type data-p &rest props
This function creates and returns an image descriptor which uses the data in file-or-
data. file-or-data can be a file name or a string containing the image data; data-p
should be nil for the former case, non-nil for the latter case.

The optional argument type is a symbol specifying the image type. If type is omitted
or nil, create-image tries to determine the image type from the file’s first few bytes,
or else from the file’s name.

The remaining arguments, props, specify additional image properties—for example,

(create-image "foo.xpm" ’xpm nil :heuristic-mask t)

The function returns nil if images of this type are not supported. Otherwise it
returns an image descriptor.

[Macro]defimage symbol specs &optional doc
This macro defines symbol as an image name. The arguments specs is a list which
specifies how to display the image. The third argument, doc, is an optional documen-
tation string.

Each argument in specs has the form of a property list, and each one should specify
at least the :type property and either the :file or the :data property. The value of
:type should be a symbol specifying the image type, the value of :file is the file to
load the image from, and the value of :data is a string containing the actual image
data. Here is an example:

(defimage test-image

((:type xpm :file "~/test1.xpm")

(:type xbm :file "~/test1.xbm")))

defimage tests each argument, one by one, to see if it is usable—that is, if the type
is supported and the file exists. The first usable argument is used to make an image
descriptor which is stored in symbol.

If none of the alternatives will work, then symbol is defined as nil.

[Function]find-image specs
This function provides a convenient way to find an image satisfying one of a list of
image specifications specs.

Each specification in specs is a property list with contents depending on image
type. All specifications must at least contain the properties :type type and either
:file file or :data DATA, where type is a symbol specifying the image type, e.g.,
xbm, file is the file to load the image from, and data is a string containing the actual
image data. The first specification in the list whose type is supported, and file ex-
ists, is used to construct the image specification to be returned. If no specification is
satisfied, nil is returned.

The image is looked for in image-load-path.

Chapter 38: Emacs Display 887

[Variable]image-load-path
This variable’s value is a list of locations in which to search for image files. If an
element is a string or a variable symbol whose value is a string, the string is taken to
be the name of a directory to search. If an element is a variable symbol whose value
is a list, that is taken to be a list of directory names to search.

The default is to search in the images subdirectory of the directory specified by
data-directory, then the directory specified by data-directory, and finally in the
directories in load-path. Subdirectories are not automatically included in the search,
so if you put an image file in a subdirectory, you have to supply the subdirectory
name explicitly. For example, to find the image images/foo/bar.xpm within data-

directory, you should specify the image as follows:

(defimage foo-image ’((:type xpm :file "foo/bar.xpm")))

[Function]image-load-path-for-library library image &optional path no-error
This function returns a suitable search path for images used by the Lisp package
library.

The function searches for image first using image-load-path, excluding
data-directory/images, and then in load-path, followed by a path suitable for
library, which includes ../../etc/images and ../etc/images relative to the
library file itself, and finally in data-directory/images.

Then this function returns a list of directories which contains first the directory in
which image was found, followed by the value of load-path. If path is given, it is
used instead of load-path.

If no-error is non-nil and a suitable path can’t be found, don’t signal an error.
Instead, return a list of directories as before, except that nil appears in place of the
image directory.

Here is an example of using image-load-path-for-library:

(defvar image-load-path) ; shush compiler

(let* ((load-path (image-load-path-for-library

"mh-e" "mh-logo.xpm"))

(image-load-path (cons (car load-path)

image-load-path)))

(mh-tool-bar-folder-buttons-init))

38.16.11 Showing Images

You can use an image descriptor by setting up the display property yourself, but it is
easier to use the functions in this section.

[Function]insert-image image &optional string area slice
This function inserts image in the current buffer at point. The value image should be
an image descriptor; it could be a value returned by create-image, or the value of a
symbol defined with defimage. The argument string specifies the text to put in the
buffer to hold the image. If it is omitted or nil, insert-image uses " " by default.

The argument area specifies whether to put the image in a margin. If it is left-

margin, the image appears in the left margin; right-margin specifies the right mar-

Chapter 38: Emacs Display 888

gin. If area is nil or omitted, the image is displayed at point within the buffer’s
text.

The argument slice specifies a slice of the image to insert. If slice is nil or omitted the
whole image is inserted. Otherwise, slice is a list (x y width height) which specifies
the x and y positions and width and height of the image area to insert. Integer values
are in units of pixels. A floating point number in the range 0.0–1.0 stands for that
fraction of the width or height of the entire image.

Internally, this function inserts string in the buffer, and gives it a display property
which specifies image. See Section 38.15 [Display Property], page 874.

[Function]insert-sliced-image image &optional string area rows cols
This function inserts image in the current buffer at point, like insert-image, but
splits the image into rowsxcols equally sized slices.

If an image is inserted “sliced”, Emacs displays each slice as a separate image, and
allow more intuitive scrolling up/down, instead of jumping up/down the entire image
when paging through a buffer that displays (large) images.

[Function]put-image image pos &optional string area
This function puts image image in front of pos in the current buffer. The argument
pos should be an integer or a marker. It specifies the buffer position where the image
should appear. The argument string specifies the text that should hold the image as
an alternative to the default.

The argument image must be an image descriptor, perhaps returned by create-image
or stored by defimage.

The argument area specifies whether to put the image in a margin. If it is left-

margin, the image appears in the left margin; right-margin specifies the right mar-
gin. If area is nil or omitted, the image is displayed at point within the buffer’s
text.

Internally, this function creates an overlay, and gives it a before-string property
containing text that has a display property whose value is the image. (Whew!)

[Function]remove-images start end &optional buffer
This function removes images in buffer between positions start and end. If buffer is
omitted or nil, images are removed from the current buffer.

This removes only images that were put into buffer the way put-image does it, not
images that were inserted with insert-image or in other ways.

[Function]image-size spec &optional pixels frame
This function returns the size of an image as a pair (width . height). spec is an
image specification. pixels non-nil means return sizes measured in pixels, otherwise
return sizes measured in canonical character units (fractions of the width/height of
the frame’s default font). frame is the frame on which the image will be displayed.
frame null or omitted means use the selected frame (see Section 29.9 [Input Focus],
page 607).

[Variable]max-image-size
This variable is used to define the maximum size of image that Emacs will load.
Emacs will refuse to load (and display) any image that is larger than this limit.

Chapter 38: Emacs Display 889

If the value is an integer, it directly specifies the maximum image height and width,
measured in pixels. If it is a floating point number, it specifies the maximum image
height and width as a ratio to the frame height and width. If the value is non-numeric,
there is no explicit limit on the size of images.

The purpose of this variable is to prevent unreasonably large images from accidentally
being loaded into Emacs. It only takes effect the first time an image is loaded.
Once an image is placed in the image cache, it can always be displayed, even if the
value of max-image-size is subsequently changed (see Section 38.16.13 [Image Cache],
page 889).

38.16.12 Animated Images

Some image files can contain more than one image. This can be used to create animation.
Currently, Emacs only supports animated GIF files. The following functions related to
animated images are available.

[Function]image-animated-p image
This function returns non-nil if image can be animated. The actual return value is
a cons (nimages . delay), where nimages is the number of frames and delay is the
delay in seconds between them.

[Function]image-animate image &optional index limit
This function animates image. The optional integer index specifies the frame from
which to start (default 0). The optional argument limit controls the length of the
animation. If omitted or nil, the image animates once only; if t it loops forever; if a
number animation stops after that many seconds.

Animation operates by means of a timer. Note that Emacs imposes a minimum frame delay
of 0.01 seconds.

[Function]image-animate-timer image
This function returns the timer responsible for animating image, if there is one.

38.16.13 Image Cache

Emacs caches images so that it can display them again more efficiently. When Emacs
displays an image, it searches the image cache for an existing image specification equal

to the desired specification. If a match is found, the image is displayed from the cache.
Otherwise, Emacs loads the image normally.

[Function]image-flush spec &optional frame
This function removes the image with specification spec from the image cache of frame
frame. Image specifications are compared using equal. If frame is nil, it defaults to
the selected frame. If frame is t, the image is flushed on all existing frames.

In Emacs’s current implementation, each graphical terminal possesses an image cache,
which is shared by all the frames on that terminal (see Section 29.2 [Multiple Termi-
nals], page 591). Thus, refreshing an image in one frame also refreshes it in all other
frames on the same terminal.

Chapter 38: Emacs Display 890

One use for image-flush is to tell Emacs about a change in an image file. If an image
specification contains a :file property, the image is cached based on the file’s contents
when the image is first displayed. Even if the file subsequently changes, Emacs continues
displaying the old version of the image. Calling image-flush flushes the image from the
cache, forcing Emacs to re-read the file the next time it needs to display that image.

Another use for image-flush is for memory conservation. If your Lisp program cre-
ates a large number of temporary images over a period much shorter than image-cache-

eviction-delay (see below), you can opt to flush unused images yourself, instead of waiting
for Emacs to do it automatically.

[Function]clear-image-cache &optional filter
This function clears an image cache, removing all the images stored in it. If filter is
omitted or nil, it clears the cache for the selected frame. If filter is a frame, it clears
the cache for that frame. If filter is t, all image caches are cleared. Otherwise, filter
is taken to be a file name, and all images associated with that file name are removed
from all image caches.

If an image in the image cache has not been displayed for a specified period of time,
Emacs removes it from the cache and frees the associated memory.

[Variable]image-cache-eviction-delay
This variable specifies the number of seconds an image can remain in the cache without
being displayed. When an image is not displayed for this length of time, Emacs
removes it from the image cache.

Under some circumstances, if the number of images in the cache grows too large, the
actual eviction delay may be shorter than this.

If the value is nil, Emacs does not remove images from the cache except when you
explicitly clear it. This mode can be useful for debugging.

38.17 Buttons

The Button package defines functions for inserting and manipulating buttons that can be
activated with the mouse or via keyboard commands. These buttons are typically used for
various kinds of hyperlinks.

A button is essentially a set of text or overlay properties, attached to a stretch of text
in a buffer. These properties are called button properties. One of these properties, the
action property, specifies a function which is called when the user invokes the button using
the keyboard or the mouse. The action function may examine the button and use its other
properties as desired.

In some ways, the Button package duplicates the functionality in the Widget package.
See Section “Introduction” in The Emacs Widget Library . The advantage of the Button
package is that it is faster, smaller, and simpler to program. From the point of view of the
user, the interfaces produced by the two packages are very similar.

38.17.1 Button Properties

Each button has an associated list of properties defining its appearance and behavior, and
other arbitrary properties may be used for application specific purposes. The following
properties have special meaning to the Button package:

Chapter 38: Emacs Display 891

action The function to call when the user invokes the button, which is passed the single
argument button. By default this is ignore, which does nothing.

mouse-action

This is similar to action, and when present, will be used instead of action
for button invocations resulting from mouse-clicks (instead of the user hitting
RET). If not present, mouse-clicks use action instead.

face This is an Emacs face controlling how buttons of this type are displayed; by
default this is the button face.

mouse-face

This is an additional face which controls appearance during mouse-overs
(merged with the usual button face); by default this is the usual Emacs
highlight face.

keymap The button’s keymap, defining bindings active within the button region. By
default this is the usual button region keymap, stored in the variable button-

map, which defines RET and mouse-2 to invoke the button.

type The button type. See Section 38.17.2 [Button Types], page 891.

help-echo

A string displayed by the Emacs tool-tip help system; by default, "mouse-2,
RET: Push this button".

follow-link

The follow-link property, defining how a Mouse-1 click behaves on this button,
See Section 32.19.8 [Clickable Text], page 693.

button All buttons have a non-nil button property, which may be useful in finding
regions of text that comprise buttons (which is what the standard button func-
tions do).

There are other properties defined for the regions of text in a button, but these are not
generally interesting for typical uses.

38.17.2 Button Types

Every button has a button type, which defines default values for the button’s properties.
Button types are arranged in a hierarchy, with specialized types inheriting from more general
types, so that it’s easy to define special-purpose types of buttons for specific tasks.

[Function]define-button-type name &rest properties
Define a ‘button type’ called name (a symbol). The remaining arguments form a
sequence of property value pairs, specifying default property values for buttons with
this type (a button’s type may be set by giving it a type property when creating the
button, using the :type keyword argument).

In addition, the keyword argument :supertype may be used to specify a button-type
from which name inherits its default property values. Note that this inheritance hap-
pens only when name is defined; subsequent changes to a supertype are not reflected
in its subtypes.

Chapter 38: Emacs Display 892

Using define-button-type to define default properties for buttons is not necessary—
buttons without any specified type use the built-in button-type button—but it is encour-
aged, since doing so usually makes the resulting code clearer and more efficient.

38.17.3 Making Buttons

Buttons are associated with a region of text, using an overlay or text properties to hold
button-specific information, all of which are initialized from the button’s type (which de-
faults to the built-in button type button). Like all Emacs text, the appearance of the
button is governed by the face property; by default (via the face property inherited from
the button button-type) this is a simple underline, like a typical web-page link.

For convenience, there are two sorts of button-creation functions, those that add button
properties to an existing region of a buffer, called make-...button, and those that also
insert the button text, called insert-...button.

The button-creation functions all take the &rest argument properties, which should
be a sequence of property value pairs, specifying properties to add to the button; see
Section 38.17.1 [Button Properties], page 890. In addition, the keyword argument
:type may be used to specify a button-type from which to inherit other properties; see
Section 38.17.2 [Button Types], page 891. Any properties not explicitly specified during
creation will be inherited from the button’s type (if the type defines such a property).

The following functions add a button using an overlay (see Section 38.9 [Overlays],
page 839) to hold the button properties:

[Function]make-button beg end &rest properties
This makes a button from beg to end in the current buffer, and returns it.

[Function]insert-button label &rest properties
This insert a button with the label label at point, and returns it.

The following functions are similar, but using text properties (see Section 32.19 [Text
Properties], page 680) to hold the button properties. Such buttons do not add markers
to the buffer, so editing in the buffer does not slow down if there is an extremely large
numbers of buttons. However, if there is an existing face text property on the text (e.g.,
a face assigned by Font Lock mode), the button face may not be visible. Both of these
functions return the starting position of the new button.

[Function]make-text-button beg end &rest properties
This makes a button from beg to end in the current buffer, using text properties.

[Function]insert-text-button label &rest properties
This inserts a button with the label label at point, using text properties.

38.17.4 Manipulating Buttons

These are functions for getting and setting properties of buttons. Often these are used by
a button’s invocation function to determine what to do.

Where a button parameter is specified, it means an object referring to a specific button,
either an overlay (for overlay buttons), or a buffer-position or marker (for text property
buttons). Such an object is passed as the first argument to a button’s invocation function
when it is invoked.

Chapter 38: Emacs Display 893

[Function]button-start button
Return the position at which button starts.

[Function]button-end button
Return the position at which button ends.

[Function]button-get button prop
Get the property of button button named prop.

[Function]button-put button prop val
Set button’s prop property to val.

[Function]button-activate button &optional use-mouse-action
Call button’s action property (i.e., invoke it). If use-mouse-action is non-nil, try to
invoke the button’s mouse-action property instead of action; if the button has no
mouse-action property, use action as normal.

[Function]button-label button
Return button’s text label.

[Function]button-type button
Return button’s button-type.

[Function]button-has-type-p button type
Return t if button has button-type type, or one of type’s subtypes.

[Function]button-at pos
Return the button at position pos in the current buffer, or nil. If the button at pos
is a text property button, the return value is a marker pointing to pos.

[Function]button-type-put type prop val
Set the button-type type’s prop property to val.

[Function]button-type-get type prop
Get the property of button-type type named prop.

[Function]button-type-subtype-p type supertype
Return t if button-type type is a subtype of supertype.

38.17.5 Button Buffer Commands

These are commands and functions for locating and operating on buttons in an Emacs
buffer.

push-button is the command that a user uses to actually ‘push’ a button, and is bound
by default in the button itself to RET and to mouse-2 using a local keymap in the button’s
overlay or text properties. Commands that are useful outside the buttons itself, such as
forward-button and backward-button are additionally available in the keymap stored in
button-buffer-map; a mode which uses buttons may want to use button-buffer-map as
a parent keymap for its keymap.

If the button has a non-nil follow-link property, and mouse-1-click-follows-link is set,
a quick Mouse-1 click will also activate the push-button command. See Section 32.19.8
[Clickable Text], page 693.

Chapter 38: Emacs Display 894

[Command]push-button &optional pos use-mouse-action
Perform the action specified by a button at location pos. pos may be either a buffer
position or a mouse-event. If use-mouse-action is non-nil, or pos is a mouse-event (see
Section 21.7.3 [Mouse Events], page 335), try to invoke the button’s mouse-action
property instead of action; if the button has no mouse-action property, use action
as normal. pos defaults to point, except when push-button is invoked interactively
as the result of a mouse-event, in which case, the mouse event’s position is used. If
there’s no button at pos, do nothing and return nil, otherwise return t.

[Command]forward-button n &optional wrap display-message
Move to the nth next button, or nth previous button if n is negative. If n is zero,
move to the start of any button at point. If wrap is non-nil, moving past either
end of the buffer continues from the other end. If display-message is non-nil, the
button’s help-echo string is displayed. Any button with a non-nil skip property is
skipped over. Returns the button found.

[Command]backward-button n &optional wrap display-message
Move to the nth previous button, or nth next button if n is negative. If n is zero,
move to the start of any button at point. If wrap is non-nil, moving past either
end of the buffer continues from the other end. If display-message is non-nil, the
button’s help-echo string is displayed. Any button with a non-nil skip property is
skipped over. Returns the button found.

[Function]next-button pos &optional count-current
[Function]previous-button pos &optional count-current

Return the next button after (for next-button or before (for previous-button)
position pos in the current buffer. If count-current is non-nil, count any button at
pos in the search, instead of starting at the next button.

38.18 Abstract Display

The Ewoc package constructs buffer text that represents a structure of Lisp objects, and
updates the text to follow changes in that structure. This is like the “view” component in
the “model/view/controller” design paradigm.

An ewoc is a structure that organizes information required to construct buffer text that
represents certain Lisp data. The buffer text of the ewoc has three parts, in order: first,
fixed header text; next, textual descriptions of a series of data elements (Lisp objects that
you specify); and last, fixed footer text. Specifically, an ewoc contains information on:

• The buffer which its text is generated in.

• The text’s start position in the buffer.

• The header and footer strings.

• A doubly-linked chain of nodes, each of which contains:

• A data element, a single Lisp object.

• Links to the preceding and following nodes in the chain.

• A pretty-printer function which is responsible for inserting the textual representation
of a data element value into the current buffer.

Chapter 38: Emacs Display 895

Typically, you define an ewoc with ewoc-create, and then pass the resulting ewoc
structure to other functions in the Ewoc package to build nodes within it, and display it in
the buffer. Once it is displayed in the buffer, other functions determine the correspondence
between buffer positions and nodes, move point from one node’s textual representation to
another, and so forth. See Section 38.18.1 [Abstract Display Functions], page 895.

A node encapsulates a data element much the way a variable holds a value. Normally,
encapsulation occurs as a part of adding a node to the ewoc. You can retrieve the data
element value and place a new value in its place, like so:

(ewoc-data node)

⇒ value

(ewoc-set-data node new-value)

⇒ new-value

You can also use, as the data element value, a Lisp object (list or vector) that is a container
for the “real” value, or an index into some other structure. The example (see Section 38.18.2
[Abstract Display Example], page 897) uses the latter approach.

When the data changes, you will want to update the text in the buffer. You can update
all nodes by calling ewoc-refresh, or just specific nodes using ewoc-invalidate, or all
nodes satisfying a predicate using ewoc-map. Alternatively, you can delete invalid nodes
using ewoc-delete or ewoc-filter, and add new nodes in their place. Deleting a node
from an ewoc deletes its associated textual description from buffer, as well.

38.18.1 Abstract Display Functions

In this subsection, ewoc and node stand for the structures described above (see Section 38.18
[Abstract Display], page 894), while data stands for an arbitrary Lisp object used as a data
element.

[Function]ewoc-create pretty-printer &optional header footer nosep
This constructs and returns a new ewoc, with no nodes (and thus no data elements).
pretty-printer should be a function that takes one argument, a data element of the
sort you plan to use in this ewoc, and inserts its textual description at point using
insert (and never insert-before-markers, because that would interfere with the
Ewoc package’s internal mechanisms).

Normally, a newline is automatically inserted after the header, the footer and every
node’s textual description. If nosep is non-nil, no newline is inserted. This may be
useful for displaying an entire ewoc on a single line, for example, or for making nodes
“invisible” by arranging for pretty-printer to do nothing for those nodes.

An ewoc maintains its text in the buffer that is current when you create it, so switch
to the intended buffer before calling ewoc-create.

[Function]ewoc-buffer ewoc
This returns the buffer where ewoc maintains its text.

[Function]ewoc-get-hf ewoc
This returns a cons cell (header . footer) made from ewoc’s header and footer.

Chapter 38: Emacs Display 896

[Function]ewoc-set-hf ewoc header footer
This sets the header and footer of ewoc to the strings header and footer, respectively.

[Function]ewoc-enter-first ewoc data
[Function]ewoc-enter-last ewoc data

These add a new node encapsulating data, putting it, respectively, at the beginning
or end of ewoc’s chain of nodes.

[Function]ewoc-enter-before ewoc node data
[Function]ewoc-enter-after ewoc node data

These add a new node encapsulating data, adding it to ewoc before or after node,
respectively.

[Function]ewoc-prev ewoc node
[Function]ewoc-next ewoc node

These return, respectively, the previous node and the next node of node in ewoc.

[Function]ewoc-nth ewoc n
This returns the node in ewoc found at zero-based index n. A negative n means count
from the end. ewoc-nth returns nil if n is out of range.

[Function]ewoc-data node
This extracts the data encapsulated by node and returns it.

[Function]ewoc-set-data node data
This sets the data encapsulated by node to data.

[Function]ewoc-locate ewoc &optional pos guess
This determines the node in ewoc which contains point (or pos if specified), and
returns that node. If ewoc has no nodes, it returns nil. If pos is before the first
node, it returns the first node; if pos is after the last node, it returns the last node.
The optional third arg guess should be a node that is likely to be near pos; this
doesn’t alter the result, but makes the function run faster.

[Function]ewoc-location node
This returns the start position of node.

[Function]ewoc-goto-prev ewoc arg
[Function]ewoc-goto-next ewoc arg

These move point to the previous or next, respectively, argth node in ewoc. ewoc-

goto-prev does not move if it is already at the first node or if ewoc is empty, whereas
ewoc-goto-nextmoves past the last node, returning nil. Excepting this special case,
these functions return the node moved to.

[Function]ewoc-goto-node ewoc node
This moves point to the start of node in ewoc.

[Function]ewoc-refresh ewoc
This function regenerates the text of ewoc. It works by deleting the text between the
header and the footer, i.e., all the data elements’ representations, and then calling
the pretty-printer function for each node, one by one, in order.

Chapter 38: Emacs Display 897

[Function]ewoc-invalidate ewoc &rest nodes
This is similar to ewoc-refresh, except that only nodes in ewoc are updated instead
of the entire set.

[Function]ewoc-delete ewoc &rest nodes
This deletes each node in nodes from ewoc.

[Function]ewoc-filter ewoc predicate &rest args
This calls predicate for each data element in ewoc and deletes those nodes for which
predicate returns nil. Any args are passed to predicate.

[Function]ewoc-collect ewoc predicate &rest args
This calls predicate for each data element in ewoc and returns a list of those elements
for which predicate returns non-nil. The elements in the list are ordered as in the
buffer. Any args are passed to predicate.

[Function]ewoc-map map-function ewoc &rest args
This calls map-function for each data element in ewoc and updates those nodes for
which map-function returns non-nil. Any args are passed to map-function.

38.18.2 Abstract Display Example

Here is a simple example using functions of the ewoc package to implement a “color com-
ponents display”, an area in a buffer that represents a vector of three integers (itself repre-
senting a 24-bit RGB value) in various ways.

(setq colorcomp-ewoc nil

colorcomp-data nil

colorcomp-mode-map nil

colorcomp-labels ["Red" "Green" "Blue"])

(defun colorcomp-pp (data)

(if data

(let ((comp (aref colorcomp-data data)))

(insert (aref colorcomp-labels data) "\t: #x"

(format "%02X" comp) " "

(make-string (ash comp -2) ?#) "\n"))

(let ((cstr (format "#%02X%02X%02X"

(aref colorcomp-data 0)

(aref colorcomp-data 1)

(aref colorcomp-data 2)))

(samp " (sample text) "))

(insert "Color\t: "

(propertize samp ’face

‘(foreground-color . ,cstr))

(propertize samp ’face

‘(background-color . ,cstr))

"\n"))))

(defun colorcomp (color)

Chapter 38: Emacs Display 898

"Allow fiddling with COLOR in a new buffer.

The buffer is in Color Components mode."

(interactive "sColor (name or #RGB or #RRGGBB): ")

(when (string= "" color)

(setq color "green"))

(unless (color-values color)

(error "No such color: %S" color))

(switch-to-buffer

(generate-new-buffer (format "originally: %s" color)))

(kill-all-local-variables)

(setq major-mode ’colorcomp-mode

mode-name "Color Components")

(use-local-map colorcomp-mode-map)

(erase-buffer)

(buffer-disable-undo)

(let ((data (apply ’vector (mapcar (lambda (n) (ash n -8))

(color-values color))))

(ewoc (ewoc-create ’colorcomp-pp

"\nColor Components\n\n"

(substitute-command-keys

"\n\\{colorcomp-mode-map}"))))

(set (make-local-variable ’colorcomp-data) data)

(set (make-local-variable ’colorcomp-ewoc) ewoc)

(ewoc-enter-last ewoc 0)

(ewoc-enter-last ewoc 1)

(ewoc-enter-last ewoc 2)

(ewoc-enter-last ewoc nil)))

This example can be extended to be a “color selection widget” (in other words, the
controller part of the “model/view/controller” design paradigm) by defining commands to
modify colorcomp-data and to “finish” the selection process, and a keymap to tie it all
together conveniently.

(defun colorcomp-mod (index limit delta)

(let ((cur (aref colorcomp-data index)))

(unless (= limit cur)

(aset colorcomp-data index (+ cur delta)))

(ewoc-invalidate

colorcomp-ewoc

(ewoc-nth colorcomp-ewoc index)

(ewoc-nth colorcomp-ewoc -1))))

(defun colorcomp-R-more () (interactive) (colorcomp-mod 0 255 1))

(defun colorcomp-G-more () (interactive) (colorcomp-mod 1 255 1))

(defun colorcomp-B-more () (interactive) (colorcomp-mod 2 255 1))

(defun colorcomp-R-less () (interactive) (colorcomp-mod 0 0 -1))

(defun colorcomp-G-less () (interactive) (colorcomp-mod 1 0 -1))

(defun colorcomp-B-less () (interactive) (colorcomp-mod 2 0 -1))

(defun colorcomp-copy-as-kill-and-exit ()

"Copy the color components into the kill ring and kill the buffer.

The string is formatted #RRGGBB (hash followed by six hex digits)."

Chapter 38: Emacs Display 899

(interactive)

(kill-new (format "#%02X%02X%02X"

(aref colorcomp-data 0)

(aref colorcomp-data 1)

(aref colorcomp-data 2)))

(kill-buffer nil))

(setq colorcomp-mode-map

(let ((m (make-sparse-keymap)))

(suppress-keymap m)

(define-key m "i" ’colorcomp-R-less)

(define-key m "o" ’colorcomp-R-more)

(define-key m "k" ’colorcomp-G-less)

(define-key m "l" ’colorcomp-G-more)

(define-key m "," ’colorcomp-B-less)

(define-key m "." ’colorcomp-B-more)

(define-key m " " ’colorcomp-copy-as-kill-and-exit)

m))

Note that we never modify the data in each node, which is fixed when the ewoc is created
to be either nil or an index into the vector colorcomp-data, the actual color components.

38.19 Blinking Parentheses

This section describes the mechanism by which Emacs shows a matching open parenthesis
when the user inserts a close parenthesis.

[Variable]blink-paren-function
The value of this variable should be a function (of no arguments) to be called whenever
a character with close parenthesis syntax is inserted. The value of blink-paren-
function may be nil, in which case nothing is done.

[User Option]blink-matching-paren
If this variable is nil, then blink-matching-open does nothing.

[User Option]blink-matching-paren-distance
This variable specifies the maximum distance to scan for a matching parenthesis
before giving up.

[User Option]blink-matching-delay
This variable specifies the number of seconds for the cursor to remain at the matching
parenthesis. A fraction of a second often gives good results, but the default is 1, which
works on all systems.

[Command]blink-matching-open
This function is the default value of blink-paren-function. It assumes that point
follows a character with close parenthesis syntax and moves the cursor momentarily
to the matching opening character. If that character is not already on the screen, it
displays the character’s context in the echo area. To avoid long delays, this function
does not search farther than blink-matching-paren-distance characters.

Here is an example of calling this function explicitly.
(defun interactive-blink-matching-open ()

"Indicate momentarily the start of sexp before point."

(interactive)

Chapter 38: Emacs Display 900

(let ((blink-matching-paren-distance

(buffer-size))

(blink-matching-paren t))

(blink-matching-open)))

38.20 Character Display

This section describes how characters are actually displayed by Emacs. Typically, a charac-
ter is displayed as a glyph (a graphical symbol which occupies one character position on the
screen), whose appearance corresponds to the character itself. For example, the character
‘a’ (character code 97) is displayed as ‘a’. Some characters, however, are displayed specially.
For example, the formfeed character (character code 12) is usually displayed as a sequence
of two glyphs, ‘^L’, while the newline character (character code 10) starts a new screen line.

You can modify how each character is displayed by defining a display table, which maps
each character code into a sequence of glyphs. See Section 38.20.2 [Display Tables], page 901.

38.20.1 Usual Display Conventions

Here are the conventions for displaying each character code (in the absence of a display
table, which can override these conventions).

• The printable ASCII characters, character codes 32 through 126 (consisting of numerals,
English letters, and symbols like ‘#’) are displayed literally.

• The tab character (character code 9) displays as whitespace stretching up to the next
tab stop column. See Section “Text Display” in The GNU Emacs Manual. The variable
tab-width controls the number of spaces per tab stop (see below).

• The newline character (character code 10) has a special effect: it ends the preceding
line and starts a new line.

• The non-printable ASCII control characters—character codes 0 through 31, as well
as the DEL character (character code 127)—display in one of two ways according to
the variable ctl-arrow. If this variable is non-nil (the default), these characters are
displayed as sequences of two glyphs, where the first glyph is ‘^’ (a display table can
specify a glyph to use instead of ‘^’); e.g., the DEL character is displayed as ‘^?’.

If ctl-arrow is nil, these characters are displayed as octal escapes (see below).

This rule also applies to carriage return (character code 13), if that character appears
in the buffer. But carriage returns usually do not appear in buffer text; they are
eliminated as part of end-of-line conversion (see Section 33.9.1 [Coding System Basics],
page 716).

• Raw bytes are non-ASCII characters with codes 128 through 255 (see Section 33.1 [Text
Representations], page 705). These characters display as octal escapes: sequences of
four glyphs, where the first glyph is the ASCII code for ‘\’, and the others are digit
characters representing the character code in octal. (A display table can specify a glyph
to use instead of ‘\’.)

• Each non-ASCII character with code above 255 is displayed literally, if the terminal
supports it. If the terminal does not support it, the character is said to be glyphless,
and it is usually displayed using a placeholder glyph. For example, if a graphical
terminal has no font for a character, Emacs usually displays a box containing the
character code in hexadecimal. See Section 38.20.5 [Glyphless Chars], page 903.

Chapter 38: Emacs Display 901

The above display conventions apply even when there is a display table, for any character
whose entry in the active display table is nil. Thus, when you set up a display table, you
need only specify the characters for which you want special behavior.

The following variables affect how certain characters are displayed on the screen. Since
they change the number of columns the characters occupy, they also affect the indentation
functions. They also affect how the mode line is displayed; if you want to force redisplay
of the mode line using the new values, call the function force-mode-line-update (see
Section 23.4 [Mode Line Format], page 426).

[User Option]ctl-arrow
This buffer-local variable controls how control characters are displayed. If it is non-
nil, they are displayed as a caret followed by the character: ‘^A’. If it is nil, they
are displayed as octal escapes: a backslash followed by three octal digits, as in ‘\001’.

[User Option]tab-width
The value of this buffer-local variable is the spacing between tab stops used for dis-
playing tab characters in Emacs buffers. The value is in units of columns, and the
default is 8. Note that this feature is completely independent of the user-settable tab
stops used by the command tab-to-tab-stop. See Section 32.17.5 [Indent Tabs],
page 678.

38.20.2 Display Tables

A display table is a special-purpose char-table (see Section 6.6 [Char-Tables], page 94),
with display-table as its subtype, which is used to override the usual character display
conventions. This section describes how to make, inspect, and assign elements to a display
table object.

[Function]make-display-table
This creates and returns a display table. The table initially has nil in all elements.

The ordinary elements of the display table are indexed by character codes; the element
at index c says how to display the character code c. The value should be nil (which means
to display the character c according to the usual display conventions; see Section 38.20.1
[Usual Display], page 900), or a vector of glyph codes (which means to display the character
c as those glyphs; see Section 38.20.4 [Glyphs], page 903).

Warning: if you use the display table to change the display of newline characters, the
whole buffer will be displayed as one long “line”.

The display table also has six “extra slots” which serve special purposes. Here is a table
of their meanings; nil in any slot means to use the default for that slot, as stated below.

0 The glyph for the end of a truncated screen line (the default for this is ‘$’). See
Section 38.20.4 [Glyphs], page 903. On graphical terminals, Emacs uses arrows
in the fringes to indicate truncation, so the display table has no effect.

1 The glyph for the end of a continued line (the default is ‘\’). On graphical
terminals, Emacs uses curved arrows in the fringes to indicate continuation, so
the display table has no effect.

2 The glyph for indicating a character displayed as an octal character code (the
default is ‘\’).

Chapter 38: Emacs Display 902

3 The glyph for indicating a control character (the default is ‘^’).

4 A vector of glyphs for indicating the presence of invisible lines (the default is
‘...’). See Section 38.7 [Selective Display], page 835.

5 The glyph used to draw the border between side-by-side windows (the default
is ‘|’). See Section 28.5 [Splitting Windows], page 546. This takes effect only
when there are no scroll bars; if scroll bars are supported and in use, a scroll
bar separates the two windows.

For example, here is how to construct a display table that mimics the effect of setting
ctl-arrow to a non-nil value (see Section 38.20.4 [Glyphs], page 903, for the function
make-glyph-code):

(setq disptab (make-display-table))

(dotimes (i 32)

(or (= i ?\t)

(= i ?\n)

(aset disptab i

(vector (make-glyph-code ?^ ’escape-glyph)

(make-glyph-code (+ i 64) ’escape-glyph)))))

(aset disptab 127

(vector (make-glyph-code ?^ ’escape-glyph)

(make-glyph-code ?? ’escape-glyph)))))

[Function]display-table-slot display-table slot
This function returns the value of the extra slot slot of display-table. The argument
slot may be a number from 0 to 5 inclusive, or a slot name (symbol). Valid symbols are
truncation, wrap, escape, control, selective-display, and vertical-border.

[Function]set-display-table-slot display-table slot value
This function stores value in the extra slot slot of display-table. The argument slot
may be a number from 0 to 5 inclusive, or a slot name (symbol). Valid symbols are
truncation, wrap, escape, control, selective-display, and vertical-border.

[Function]describe-display-table display-table
This function displays a description of the display table display-table in a help buffer.

[Command]describe-current-display-table
This command displays a description of the current display table in a help buffer.

38.20.3 Active Display Table

Each window can specify a display table, and so can each buffer. The window’s display
table, if there is one, takes precedence over the buffer’s display table. If neither exists,
Emacs tries to use the standard display table; if that is nil, Emacs uses the usual character
display conventions (see Section 38.20.1 [Usual Display], page 900).

Note that display tables affect how the mode line is displayed, so if you want to force
redisplay of the mode line using a new display table, call force-mode-line-update (see
Section 23.4 [Mode Line Format], page 426).

Chapter 38: Emacs Display 903

[Function]window-display-table &optional window
This function returns window ’s display table, or nil if there is none. The default for
window is the selected window.

[Function]set-window-display-table window table
This function sets the display table of window to table. The argument table should
be either a display table or nil.

[Variable]buffer-display-table
This variable is automatically buffer-local in all buffers; its value specifies the buffer’s
display table. If it is nil, there is no buffer display table.

[Variable]standard-display-table
The value of this variable is the standard display table, which is used when Emacs
is displaying a buffer in a window with neither a window display table nor a buffer
display table defined. Its default is nil.

The disp-table library defines several functions for changing the standard display table.

38.20.4 Glyphs

A glyph is a graphical symbol which occupies a single character position on the screen. Each
glyph is represented in Lisp as a glyph code, which specifies a character and optionally a
face to display it in (see Section 38.12 [Faces], page 848). The main use of glyph codes is as
the entries of display tables (see Section 38.20.2 [Display Tables], page 901). The following
functions are used to manipulate glyph codes:

[Function]make-glyph-code char &optional face
This function returns a glyph code representing char char with face face. If face is
omitted or nil, the glyph uses the default face; in that case, the glyph code is an
integer. If face is non-nil, the glyph code is not necessarily an integer object.

[Function]glyph-char glyph
This function returns the character of glyph code glyph.

[Function]glyph-face glyph
This function returns face of glyph code glyph, or nil if glyph uses the default face.

38.20.5 Glyphless Character Display

Glyphless characters are characters which are displayed in a special way, e.g., as a box
containing a hexadecimal code, instead of being displayed literally. These include characters
which are explicitly defined to be glyphless, as well as characters for which there is no
available font (on a graphical display), and characters which cannot be encoded by the
terminal’s coding system (on a text terminal).

[Variable]glyphless-char-display
The value of this variable is a char-table which defines glyphless characters and how
they are displayed. Each entry must be one of the following display methods:

nil Display the character in the usual way.

Chapter 38: Emacs Display 904

zero-width

Don’t display the character.

thin-space

Display a thin space, 1-pixel wide on graphical displays, or 1-character
wide on text terminals.

empty-box

Display an empty box.

hex-code Display a box containing the Unicode codepoint of the character, in hex-
adecimal notation.

an ASCII string
Display a box containing that string.

a cons cell (graphical . text)

Display with graphical on graphical displays, and with text on text ter-
minals. Both graphical and text must be one of the display methods
described above.

The thin-space, empty-box, hex-code, and ASCII string display methods are drawn
with the glyphless-char face.

The char-table has one extra slot, which determines how to display any character that
cannot be displayed with any available font, or cannot be encoded by the terminal’s
coding system. Its value should be one of the above display methods, except zero-
width or a cons cell.

If a character has a non-nil entry in an active display table, the display table takes
effect; in this case, Emacs does not consult glyphless-char-display at all.

[User Option]glyphless-char-display-control
This user option provides a convenient way to set glyphless-char-display for
groups of similar characters. Do not set its value directly from Lisp code; the value
takes effect only via a custom :set function (see Section 14.3 [Variable Definitions],
page 199), which updates glyphless-char-display.

Its value should be an alist of elements (group . method), where group is a symbol
specifying a group of characters, and method is a symbol specifying how to display
them.

group should be one of the following:

c0-control

ASCII control characters U+0000 to U+001F, excluding the newline and tab
characters (normally displayed as escape sequences like ‘^A’; see Section
“How Text Is Displayed” in The GNU Emacs Manual).

c1-control

Non-ASCII, non-printing characters U+0080 to U+009F (normally
displayed as octal escape sequences like ‘\230’).

format-control

Characters of Unicode General Category ‘Cf’, such as ‘U+200E’ (Left-to-
Right Mark), but excluding characters that have graphic images, such as
‘U+00AD’ (Soft Hyphen).

Chapter 38: Emacs Display 905

no-font Characters for there is no suitable font, or which cannot be encoded by
the terminal’s coding system.

The method symbol should be one of zero-width, thin-space, empty-box, or hex-
code. These have the same meanings as in glyphless-char-display, above.

38.21 Beeping

This section describes how to make Emacs ring the bell (or blink the screen) to attract the
user’s attention. Be conservative about how often you do this; frequent bells can become
irritating. Also be careful not to use just beeping when signaling an error is more appropriate
(see Section 10.5.3 [Errors], page 132).

[Function]ding &optional do-not-terminate
This function beeps, or flashes the screen (see visible-bell below). It also termi-
nates any keyboard macro currently executing unless do-not-terminate is non-nil.

[Function]beep &optional do-not-terminate
This is a synonym for ding.

[User Option]visible-bell
This variable determines whether Emacs should flash the screen to represent a bell.
Non-nil means yes, nil means no. This is effective on graphical displays, and on
text terminals provided the terminal’s Termcap entry defines the visible bell capability
(‘vb’).

[Variable]ring-bell-function
If this is non-nil, it specifies how Emacs should “ring the bell”. Its value should be
a function of no arguments. If this is non-nil, it takes precedence over the visible-
bell variable.

38.22 Window Systems

Emacs works with several window systems, most notably the X Window System. Both
Emacs and X use the term “window”, but use it differently. An Emacs frame is a single
window as far as X is concerned; the individual Emacs windows are not known to X at all.

[Variable]window-system
This terminal-local variable tells Lisp programs what window system Emacs is using
for displaying the frame. The possible values are

x Emacs is displaying the frame using X.

w32 Emacs is displaying the frame using native MS-Windows GUI.

ns Emacs is displaying the frame using the Nextstep interface (used on
GNUstep and Mac OS X).

pc Emacs is displaying the frame using MS-DOS direct screen writes.

nil Emacs is displaying the frame on a character-based terminal.

Chapter 38: Emacs Display 906

[Variable]initial-window-system
This variable holds the value of window-system used for the first frame created by
Emacs during startup. (When Emacs is invoked with the --daemon option, it does
not create any initial frames, so initial-window-system is nil. See Section “Initial
Options” in The GNU Emacs Manual.)

[Function]window-system &optional frame
This function returns a symbol whose name tells what window system is used for
displaying frame (which defaults to the currently selected frame). The list of possible
symbols it returns is the same one documented for the variable window-system above.

Do not use window-system and initial-window-system as predicates or boolean flag
variables, if you want to write code that works differently on text terminals and graphic
displays. That is because window-system is not a good indicator of Emacs capabilities on
a given display type. Instead, use display-graphic-p or any of the other display-*-p

predicates described in Section 29.23 [Display Feature Testing], page 619.

[Variable]window-setup-hook
This variable is a normal hook which Emacs runs after handling the initialization
files. Emacs runs this hook after it has completed loading your init file, the default
initialization file (if any), and the terminal-specific Lisp code, and running the hook
term-setup-hook.

This hook is used for internal purposes: setting up communication with the window
system, and creating the initial window. Users should not interfere with it.

38.23 Bidirectional Display

Emacs can display text written in scripts, such as Arabic, Farsi, and Hebrew, whose natural
ordering for horizontal text display runs from right to left. Furthermore, segments of Latin
script and digits embedded in right-to-left text are displayed left-to-right, while segments of
right-to-left script embedded in left-to-right text (e.g., Arabic or Hebrew text in comments
or strings in a program source file) are appropriately displayed right-to-left. We call such
mixtures of left-to-right and right-to-left text bidirectional text. This section describes the
facilities and options for editing and displaying bidirectional text.

Text is stored in Emacs buffers and strings in logical (or reading) order, i.e., the order
in which a human would read each character. In right-to-left and bidirectional text, the
order in which characters are displayed on the screen (called visual order) is not the same
as logical order; the characters’ screen positions do not increase monotonically with string
or buffer position. In performing this bidirectional reordering, Emacs follows the Unicode
Bidirectional Algorithm (a.k.a. UBA), which is described in Annex #9 of the Unicode stan-
dard (http://www.unicode.org/reports/tr9/). Emacs provides a “Full Bidirectionality”
class implementation of the UBA.

[Variable]bidi-display-reordering
If the value of this buffer-local variable is non-nil (the default), Emacs performs
bidirectional reordering for display. The reordering affects buffer text, as well as
display strings and overlay strings from text and overlay properties in the buffer
(see Section 38.9.2 [Overlay Properties], page 842, and see Section 38.15 [Display

http://www.unicode.org/reports/tr9/

Chapter 38: Emacs Display 907

Property], page 874). If the value is nil, Emacs does not perform bidirectional
reordering in the buffer.

The default value of bidi-display-reordering controls the reordering of strings
which are not directly supplied by a buffer, including the text displayed in mode lines
(see Section 23.4 [Mode Line Format], page 426) and header lines (see Section 23.4.7
[Header Lines], page 434).

Emacs never reorders the text of a unibyte buffer, even if bidi-display-reordering is
non-nil in the buffer. This is because unibyte buffers contain raw bytes, not characters, and
thus lack the directionality properties required for reordering. Therefore, to test whether
text in a buffer will be reordered for display, it is not enough to test the value of bidi-
display-reordering alone. The correct test is this:

(if (and enable-multibyte-characters

bidi-display-reordering)

;; Buffer is being reordered for display

)

However, unibyte display and overlay strings are reordered if their parent buffer is re-
ordered. This is because plain-ascii strings are stored by Emacs as unibyte strings. If a
unibyte display or overlay string includes non-ascii characters, these characters are assumed
to have left-to-right direction.

Text covered by display text properties, by overlays with display properties whose
value is a string, and by any other properties that replace buffer text, is treated as a single
unit when it is reordered for display. That is, the entire chunk of text covered by these
properties is reordered together. Moreover, the bidirectional properties of the characters in
such a chunk of text are ignored, and Emacs reorders them as if they were replaced with
a single character U+FFFC, known as the Object Replacement Character. This means that
placing a display property over a portion of text may change the way that the surrounding
text is reordered for display. To prevent this unexpected effect, always place such properties
on text whose directionality is identical with text that surrounds it.

Each paragraph of bidirectional text has a base direction, either right-to-left or left-to-
right. Left-to-right paragraphs are displayed beginning at the left margin of the window, and
are truncated or continued when the text reaches the right margin. Right-to-left paragraphs
are displayed beginning at the right margin, and are continued or truncated at the left
margin.

By default, Emacs determines the base direction of each paragraph by looking at the
text at its beginning. The precise method of determining the base direction is specified by
the UBA; in a nutshell, the first character in a paragraph that has an explicit directionality
determines the base direction of the paragraph. However, sometimes a buffer may need to
force a certain base direction for its paragraphs. For example, buffers containing program
source code should force all paragraphs to be displayed left-to-right. You can use following
variable to do this:

[Variable]bidi-paragraph-direction
If the value of this buffer-local variable is the symbol right-to-left or left-to-

right, all paragraphs in the buffer are assumed to have that specified direction. Any
other value is equivalent to nil (the default), which means to determine the base
direction of each paragraph from its contents.

Chapter 38: Emacs Display 908

Modes for program source code should set this to left-to-right. Prog mode does
this by default, so modes derived from Prog mode do not need to set this explicitly
(see Section 23.2.5 [Basic Major Modes], page 415).

[Function]current-bidi-paragraph-direction &optional buffer
This function returns the paragraph direction at point in the named buffer. The
returned value is a symbol, either left-to-right or right-to-left. If buffer is
omitted or nil, it defaults to the current buffer. If the buffer-local value of the vari-
able bidi-paragraph-direction is non-nil, the returned value will be identical to
that value; otherwise, the returned value reflects the paragraph direction determined
dynamically by Emacs. For buffers whose value of bidi-display-reordering is nil
as well as unibyte buffers, this function always returns left-to-right.

Bidirectional reordering can have surprising and unpleasant effects when two strings with
bidirectional content are juxtaposed in a buffer, or otherwise programmatically concatenated
into a string of text. A typical problematic case is when a buffer consists of sequences of
text “fields” separated by whitespace or punctuation characters, like Buffer Menu mode or
Rmail Summary Mode. Because the punctuation characters used as separators have weak
directionality, they take on the directionality of surrounding text. As result, a numeric field
that follows a field with bidirectional content can be displayed to the left of the preceding
field, messing up the expected layout. There are several ways to avoid this problem:

− Append the special character U+200E, LEFT-TO-RIGHT MARK, or LRM, to the end
of each field that may have bidirectional content, or prepend it to the beginning of the
following field. The function bidi-string-mark-left-to-right, described below,
comes in handy for this purpose. (In a right-to-left paragraph, use U+200F, RIGHT-
TO-LEFT MARK, or RLM, instead.) This is one of the solutions recommended by the
UBA.

− Include the tab character in the field separator. The tab character plays the role of
segment separator in bidirectional reordering, causing the text on either side to be
reordered separately.

− Separate fields with a display property or overlay with a property value of the form
(space . PROPS) (see Section 38.15.2 [Specified Space], page 875). Emacs treats this
display specification as a paragraph separator, and reorders the text on either side
separately.

[Function]bidi-string-mark-left-to-right string
This function returns its argument string, possibly modified, such that the result can
be safely concatenated with another string, or juxtaposed with another string in a
buffer, without disrupting the relative layout of this string and the next one on display.
If the string returned by this function is displayed as part of a left-to-right paragraph,
it will always appear on display to the left of the text that follows it. The function
works by examining the characters of its argument, and if any of those characters
could cause reordering on display, the function appends the LRM character to the
string. The appended LRM character is made invisible by giving it an invisible

text property of t (see Section 38.6 [Invisible Text], page 832).

The reordering algorithm uses the bidirectional properties of the characters stored as
their bidi-class property (see Section 33.5 [Character Properties], page 709). Lisp pro-

Chapter 38: Emacs Display 909

grams can change these properties by calling the put-char-code-property function. How-
ever, doing this requires a thorough understanding of the UBA, and is therefore not recom-
mended. Any changes to the bidirectional properties of a character have global effect: they
affect all Emacs frames and windows.

Similarly, the mirroring property is used to display the appropriate mirrored character
in the reordered text. Lisp programs can affect the mirrored display by changing this
property. Again, any such changes affect all of Emacs display.

Chapter 39: Operating System Interface 910

39 Operating System Interface

This chapter is about starting and getting out of Emacs, access to values in the operating
system environment, and terminal input, output.

See Section E.1 [Building Emacs], page 982, for related information. See Chapter 38
[Display], page 822, for additional operating system status information pertaining to the
terminal and the screen.

39.1 Starting Up Emacs

This section describes what Emacs does when it is started, and how you can customize
these actions.

39.1.1 Summary: Sequence of Actions at Startup

When Emacs is started up, it performs the following operations (see normal-top-level in
startup.el):

1. It adds subdirectories to load-path, by running the file named subdirs.el in each
directory in the list. Normally, this file adds the directory’s subdirectories to the list,
and those are scanned in their turn. The files subdirs.el are normally generated
automatically when Emacs is installed.

2. If the library leim-list.el exists, Emacs loads it. This optional library is intended for
registering input methods; Emacs looks for it in load-path (see Section 15.3 [Library
Search], page 218), skipping those directories containing the standard Emacs libraries
(since leim-list.el should not exist in those directories).

3. It sets the variable before-init-time to the value of current-time (see Section 39.5
[Time of Day], page 923). It also sets after-init-time to nil, which signals to Lisp
programs that Emacs is being initialized.

4. It sets the language environment and the terminal coding system, if requested by
environment variables such as LANG.

5. It does some basic parsing of the command-line arguments.

6. If not running in batch mode, it initializes the window system that the variable
initial-window-system specifies (see Section 38.22 [Window Systems], page 905).
The initialization function for each supported window system is specified by
window-system-initialization-alist. If the value of initial-window-system

is windowsystem, then the appropriate initialization function is defined in the file
term/windowsystem-win.el. This file should have been compiled into the Emacs
executable when it was built.

7. It runs the normal hook before-init-hook.

8. If appropriate, it creates a graphical frame. This is not done if the options ‘--batch’
or ‘--daemon’ were specified.

9. It initializes the initial frame’s faces, and sets up the menu bar and tool bar if needed.
If graphical frames are supported, it sets up the tool bar even if the current frame is
not a graphical one, since a graphical frame may be created later on.

10. It use custom-reevaluate-setting to re-initialize the members of the list custom-

delayed-init-variables. These are any pre-loaded user options whose default value

Chapter 39: Operating System Interface 911

depends on the run-time, rather than build-time, context. See Section E.1 [Building
Emacs], page 982.

11. It loads the library site-start, if it exists. This is not done if the options ‘-Q’ or
‘--no-site-file’ were specified.

12. It loads your init file (see Section 39.1.2 [Init File], page 913). This is not done if the
options ‘-q’, ‘-Q’, or ‘--batch’ were specified. If the ‘-u’ option was specified, Emacs
looks for the init file in that user’s home directory instead.

13. It loads the library default, if it exists. This is not done if inhibit-default-init is
non-nil, nor if the options ‘-q’, ‘-Q’, or ‘--batch’ were specified.

14. It loads your abbrevs from the file specified by abbrev-file-name, if that file exists
and can be read (see Section 36.3 [Abbrev Files], page 775). This is not done if the
option ‘--batch’ was specified.

15. If package-enable-at-startup is non-nil, it calls the function package-initialize

to activate any optional Emacs Lisp package that has been installed. See Section 40.1
[Packaging Basics], page 943.

16. It sets the variable after-init-time to the value of current-time. This variable was
set to nil earlier; setting it to the current time signals that the initialization phase is
over, and, together with before-init-time, provides the measurement of how long it
took.

17. It runs the normal hook after-init-hook.

18. If the buffer *scratch* exists and is still in Fundamental mode (as it should be by
default), it sets its major mode according to initial-major-mode.

19. If started on a text terminal, it loads the terminal-specific Lisp library, which is specified
by the variable term-file-prefix (see Section 39.1.3 [Terminal-Specific], page 914).
This is not done in --batch mode, nor if term-file-prefix is nil.

20. It displays the initial echo area message, unless you have suppressed that with inhibit-

startup-echo-area-message.

21. It processes any command-line options that were not handled earlier.

22. It now exits if the option --batch was specified.

23. If initial-buffer-choice is a string, it visits the file with that name. If the
scratch buffer exists and is empty, it inserts initial-scratch-message into that
buffer.

24. It runs emacs-startup-hook and then term-setup-hook.

25. It calls frame-notice-user-settings, which modifies the parameters of the selected
frame according to whatever the init files specify.

26. It runs window-setup-hook. See Section 38.22 [Window Systems], page 905.

27. It displays the startup screen, which is a special buffer that contains information about
copyleft and basic Emacs usage. This is not done if inhibit-startup-screen or
initial-buffer-choice are non-nil, or if the ‘--no-splash’ or ‘-Q’ command-line
options were specified.

28. If the option --daemon was specified, it calls server-start and detaches from the
controlling terminal. See Section “Emacs Server” in The GNU Emacs Manual.

Chapter 39: Operating System Interface 912

29. If started by the X session manager, it calls emacs-session-restore passing it as
argument the ID of the previous session. See Section 39.17 [Session Management],
page 938.

The following options affect some aspects of the startup sequence.

[User Option]inhibit-startup-screen
This variable, if non-nil, inhibits the startup screen. In that case, Emacs typically
displays the *scratch* buffer; but see initial-buffer-choice, below.

Do not set this variable in the init file of a new user, or in a way that affects more than
one user, as that would prevent new users from receiving information about copyleft
and basic Emacs usage.

inhibit-startup-message and inhibit-splash-screen are aliases for this variable.

[User Option]initial-buffer-choice
If non-nil, this variable is a string that specifies a file or directory for Emacs to
display after starting up, instead of the startup screen.

[User Option]inhibit-startup-echo-area-message
This variable controls the display of the startup echo area message. You can suppress
the startup echo area message by adding text with this form to your init file:

(setq inhibit-startup-echo-area-message

"your-login-name")

Emacs explicitly checks for an expression as shown above in your init file; your login
name must appear in the expression as a Lisp string constant. You can also use
the Customize interface. Other methods of setting inhibit-startup-echo-area-

message to the same value do not inhibit the startup message. This way, you can
easily inhibit the message for yourself if you wish, but thoughtless copying of your
init file will not inhibit the message for someone else.

[User Option]initial-scratch-message
This variable, if non-nil, should be a string, which is inserted into the *scratch*

buffer when Emacs starts up. If it is nil, the *scratch* buffer is empty.

The following command-line options affect some aspects of the startup sequence. See Section
“Initial Options” in The GNU Emacs Manual.

--no-splash

Do not display a splash screen.

--batch Run without an interactive terminal. See Section 39.16 [Batch Mode], page 937.

--daemon Do not initialize any display; just start a server in the background.

--no-init-file

-Q Do not load either the init file, or the default library.

--no-site-file

Do not load the site-start library.

--quick

-Q Equivalent to ‘-q --no-site-file --no-splash’.

Chapter 39: Operating System Interface 913

39.1.2 The Init File

When you start Emacs, it normally attempts to load your init file. This is either a file named
.emacs or .emacs.el in your home directory, or a file named init.el in a subdirectory
named .emacs.d in your home directory.

The command-line switches ‘-q’, ‘-Q’, and ‘-u’ control whether and where to find the
init file; ‘-q’ (and the stronger ‘-Q’) says not to load an init file, while ‘-u user’ says to
load user’s init file instead of yours. See Section “Entering Emacs” in The GNU Emacs
Manual. If neither option is specified, Emacs uses the LOGNAME environment variable, or the
USER (most systems) or USERNAME (MS systems) variable, to find your home directory and
thus your init file; this way, even if you have su’d, Emacs still loads your own init file. If
those environment variables are absent, though, Emacs uses your user-id to find your home
directory.

An Emacs installation may have a default init file, which is a Lisp library named
default.el. Emacs finds this file through the standard search path for libraries (see
Section 15.1 [How Programs Do Loading], page 215). The Emacs distribution does not
come with this file; it is intended for local customizations. If the default init file exists, it is
loaded whenever you start Emacs. But your own personal init file, if any, is loaded first; if
it sets inhibit-default-init to a non-nil value, then Emacs does not subsequently load
the default.el file. In batch mode, or if you specify ‘-q’ (or ‘-Q’), Emacs loads neither
your personal init file nor the default init file.

Another file for site-customization is site-start.el. Emacs loads this before the user’s
init file. You can inhibit the loading of this file with the option ‘--no-site-file’.

[User Option]site-run-file
This variable specifies the site-customization file to load before the user’s init file. Its
normal value is "site-start". The only way you can change it with real effect is to
do so before dumping Emacs.

See Section “Init File Examples” in The GNU Emacs Manual, for examples of how to
make various commonly desired customizations in your .emacs file.

[User Option]inhibit-default-init
If this variable is non-nil, it prevents Emacs from loading the default initialization
library file. The default value is nil.

[Variable]before-init-hook
This normal hook is run, once, just before loading all the init files (site-start.el,
your init file, and default.el). (The only way to change it with real effect is before
dumping Emacs.)

[Variable]after-init-hook
This normal hook is run, once, just after loading all the init files (site-start.el,
your init file, and default.el), before loading the terminal-specific library (if started
on a text terminal) and processing the command-line action arguments.

[Variable]emacs-startup-hook
This normal hook is run, once, just after handling the command line arguments, just
before term-setup-hook. In batch mode, Emacs does not run either of these hooks.

Chapter 39: Operating System Interface 914

[Variable]user-init-file
This variable holds the absolute file name of the user’s init file. If the actual init file
loaded is a compiled file, such as .emacs.elc, the value refers to the corresponding
source file.

[Variable]user-emacs-directory
This variable holds the name of the .emacs.d directory. It is ~/.emacs.d on all
platforms but MS-DOS.

39.1.3 Terminal-Specific Initialization

Each terminal type can have its own Lisp library that Emacs loads when run on that type
of terminal. The library’s name is constructed by concatenating the value of the variable
term-file-prefix and the terminal type (specified by the environment variable TERM).
Normally, term-file-prefix has the value "term/"; changing this is not recommended.
Emacs finds the file in the normal manner, by searching the load-path directories, and
trying the ‘.elc’ and ‘.el’ suffixes.

The usual role of a terminal-specific library is to enable special keys to send sequences
that Emacs can recognize. It may also need to set or add to input-decode-map if the Term-
cap or Terminfo entry does not specify all the terminal’s function keys. See Section 39.12
[Terminal Input], page 934.

When the name of the terminal type contains a hyphen or underscore, and no library
is found whose name is identical to the terminal’s name, Emacs strips from the terminal’s
name the last hyphen or underscore and everything that follows it, and tries again. This
process is repeated until Emacs finds a matching library, or until there are no more hyphens
or underscores in the name (i.e., there is no terminal-specific library). For example, if
the terminal name is ‘xterm-256color’ and there is no term/xterm-256color.el library,
Emacs tries to load term/xterm.el. If necessary, the terminal library can evaluate (getenv
"TERM") to find the full name of the terminal type.

Your init file can prevent the loading of the terminal-specific library by setting the
variable term-file-prefix to nil. This feature is useful when experimenting with your
own peculiar customizations.

You can also arrange to override some of the actions of the terminal-specific library
by setting the variable term-setup-hook. This is a normal hook that Emacs runs at the
end of its initialization, after loading both your init file and any terminal-specific libraries.
You could use this hook to define initializations for terminals that do not have their own
libraries. See Section 23.1 [Hooks], page 404.

[Variable]term-file-prefix
If the value of this variable is non-nil, Emacs loads a terminal-specific initialization
file as follows:

(load (concat term-file-prefix (getenv "TERM")))

You may set the term-file-prefix variable to nil in your init file if you do not
wish to load the terminal-initialization file.

On MS-DOS, Emacs sets the TERM environment variable to ‘internal’.

Chapter 39: Operating System Interface 915

[Variable]term-setup-hook
This variable is a normal hook that Emacs runs after loading your init file, the default
initialization file (if any) and the terminal-specific Lisp file.

You can use term-setup-hook to override the definitions made by a terminal-specific
file.

For a related feature, see Section 38.22 [Window Systems], page 905.

39.1.4 Command-Line Arguments

You can use command-line arguments to request various actions when you start Emacs.
Note that the recommended way of using Emacs is to start it just once, after logging
in, and then do all editing in the same Emacs session (see Section “Entering Emacs” in
The GNU Emacs Manual). For this reason, you might not use command-line arguments
very often; nonetheless, they can be useful when invoking Emacs from session scripts or
debugging Emacs. This section describes how Emacs processes command-line arguments.

[Function]command-line
This function parses the command line that Emacs was called with, processes it, and
(amongst other things) loads the user’s init file and displays the startup messages.

[Variable]command-line-processed
The value of this variable is t once the command line has been processed.

If you redump Emacs by calling dump-emacs, you may wish to set this variable to
nil first in order to cause the new dumped Emacs to process its new command-line
arguments.

[Variable]command-switch-alist
This variable is an alist of user-defined command-line options and associated handler
functions. By default it is empty, but you can add elements if you wish.

A command-line option is an argument on the command line, which has the form:

-option

The elements of the command-switch-alist look like this:

(option . handler-function)

The car, option, is a string, the name of a command-line option (not including the
initial hyphen). The handler-function is called to handle option, and receives the
option name as its sole argument.

In some cases, the option is followed in the command line by an argument. In these
cases, the handler-function can find all the remaining command-line arguments in the
variable command-line-args-left. (The entire list of command-line arguments is in
command-line-args.)

The command-line arguments are parsed by the command-line-1 function in the
startup.el file. See also Section “Command Line Arguments for Emacs Invocation”
in The GNU Emacs Manual.

[Variable]command-line-args
The value of this variable is the list of command-line arguments passed to Emacs.

Chapter 39: Operating System Interface 916

[Variable]command-line-args-left
The value of this variable is the list of command-line arguments that have not yet
been processed.

[Variable]command-line-functions
This variable’s value is a list of functions for handling an unrecognized command-line
argument. Each time the next argument to be processed has no special meaning, the
functions in this list are called, in order of appearance, until one of them returns a
non-nil value.

These functions are called with no arguments. They can access the command-line
argument under consideration through the variable argi, which is bound temporarily
at this point. The remaining arguments (not including the current one) are in the
variable command-line-args-left.

When a function recognizes and processes the argument in argi, it should return a
non-nil value to say it has dealt with that argument. If it has also dealt with some of
the following arguments, it can indicate that by deleting them from command-line-

args-left.

If all of these functions return nil, then the argument is treated as a file name to
visit.

39.2 Getting Out of Emacs

There are two ways to get out of Emacs: you can kill the Emacs job, which exits perma-
nently, or you can suspend it, which permits you to reenter the Emacs process later. (In
a graphical environment, you can of course simply switch to another application without
doing anything special to Emacs, then switch back to Emacs when you want.)

39.2.1 Killing Emacs

Killing Emacs means ending the execution of the Emacs process. If you started Emacs from
a terminal, the parent process normally resumes control. The low-level primitive for killing
Emacs is kill-emacs.

[Command]kill-emacs &optional exit-data
This command calls the hook kill-emacs-hook, then exits the Emacs process and
kills it.

If exit-data is an integer, that is used as the exit status of the Emacs process. (This
is useful primarily in batch operation; see Section 39.16 [Batch Mode], page 937.)

If exit-data is a string, its contents are stuffed into the terminal input buffer so that
the shell (or whatever program next reads input) can read them.

The kill-emacs function is normally called via the higher-level command C-x C-c

(save-buffers-kill-terminal). See Section “Exiting” in The GNU Emacs Manual. It
is also called automatically if Emacs receives a SIGTERM or SIGHUP operating system signal
(e.g., when the controlling terminal is disconnected), or if it receives a SIGINT signal while
running in batch mode (see Section 39.16 [Batch Mode], page 937).

[Variable]kill-emacs-hook
This normal hook is run by kill-emacs, before it kills Emacs.

Chapter 39: Operating System Interface 917

Because kill-emacs can be called in situations where user interaction is impossible
(e.g., when the terminal is disconnected), functions on this hook should not attempt
to interact with the user. If you want to interact with the user when Emacs is shutting
down, use kill-emacs-query-functions, described below.

When Emacs is killed, all the information in the Emacs process, aside from files that
have been saved, is lost. Because killing Emacs inadvertently can lose a lot of work, the
save-buffers-kill-terminal command queries for confirmation if you have buffers that
need saving or subprocesses that are running. It also runs the abnormal hook kill-emacs-

query-functions:

[Variable]kill-emacs-query-functions
When save-buffers-kill-terminal is killing Emacs, it calls the functions in this
hook, after asking the standard questions and before calling kill-emacs. The func-
tions are called in order of appearance, with no arguments. Each function can ask for
additional confirmation from the user. If any of them returns nil, save-buffers-
kill-emacs does not kill Emacs, and does not run the remaining functions in this
hook. Calling kill-emacs directly does not run this hook.

39.2.2 Suspending Emacs

On text terminals, it is possible to suspend Emacs, which means stopping Emacs temporarily
and returning control to its superior process, which is usually the shell. This allows you to
resume editing later in the same Emacs process, with the same buffers, the same kill ring,
the same undo history, and so on. To resume Emacs, use the appropriate command in the
parent shell—most likely fg.

Suspending works only on a terminal device from which the Emacs session was started.
We call that device the controlling terminal of the session. Suspending is not allowed if the
controlling terminal is a graphical terminal. Suspending is usually not relevant in graphical
environments, since you can simply switch to another application without doing anything
special to Emacs.

Some operating systems (those without SIGTSTP, or MS-DOS) do not support suspen-
sion of jobs; on these systems, “suspension” actually creates a new shell temporarily as a
subprocess of Emacs. Then you would exit the shell to return to Emacs.

[Command]suspend-emacs &optional string
This function stops Emacs and returns control to the superior process. If and when
the superior process resumes Emacs, suspend-emacs returns nil to its caller in Lisp.

This function works only on the controlling terminal of the Emacs session; to relin-
quish control of other tty devices, use suspend-tty (see below). If the Emacs session
uses more than one terminal, you must delete the frames on all the other terminals
before suspending Emacs, or this function signals an error. See Section 29.2 [Multiple
Terminals], page 591.

If string is non-nil, its characters are sent to Emacs’s superior shell, to be read as
terminal input. The characters in string are not echoed by the superior shell; only
the results appear.

Chapter 39: Operating System Interface 918

Before suspending, suspend-emacs runs the normal hook suspend-hook. After the
user resumes Emacs, suspend-emacs runs the normal hook suspend-resume-hook.
See Section 23.1 [Hooks], page 404.

The next redisplay after resumption will redraw the entire screen, unless the variable
no-redraw-on-reenter is non-nil. See Section 38.1 [Refresh Screen], page 822.

Here is an example of how you could use these hooks:
(add-hook ’suspend-hook

(lambda () (or (y-or-n-p "Really suspend? ")

(error "Suspend canceled"))))

(add-hook ’suspend-resume-hook (lambda () (message "Resumed!")

(sit-for 2)))

Here is what you would see upon evaluating (suspend-emacs "pwd"):
---------- Buffer: Minibuffer ----------

Really suspend? y

---------- Buffer: Minibuffer ----------

---------- Parent Shell ----------

bash$ /home/username

bash$ fg

---------- Echo Area ----------

Resumed!

Note that ‘pwd’ is not echoed after Emacs is suspended. But it is read and executed
by the shell.

[Variable]suspend-hook
This variable is a normal hook that Emacs runs before suspending.

[Variable]suspend-resume-hook
This variable is a normal hook that Emacs runs on resuming after a suspension.

[Function]suspend-tty &optional tty
If tty specifies a terminal device used by Emacs, this function relinquishes the device
and restores it to its prior state. Frames that used the device continue to exist, but
are not updated and Emacs doesn’t read input from them. tty can be a terminal
object, a frame (meaning the terminal for that frame), or nil (meaning the terminal
for the selected frame). See Section 29.2 [Multiple Terminals], page 591.

If tty is already suspended, this function does nothing.

This function runs the hook suspend-tty-functions, passing the terminal object as
an argument to each function.

[Function]resume-tty &optional tty
This function resumes the previously suspended terminal device tty ; where tty has
the same possible values as it does for suspend-tty.

This function reopens the terminal device, re-initializes it, and redraws it with that
terminal’s selected frame. It then runs the hook resume-tty-functions, passing the
terminal object as an argument to each function.

If the same device is already used by another Emacs terminal, this function signals
an error. If tty is not suspended, this function does nothing.

Chapter 39: Operating System Interface 919

[Function]controlling-tty-p &optional tty
This function returns non-nil if tty is the controlling terminal of the Emacs session;
tty can be a terminal object, a frame (meaning the terminal for that frame), or nil
(meaning the terminal for the selected frame).

[Command]suspend-frame
This command suspends a frame. For GUI frames, it calls iconify-frame (see
Section 29.10 [Visibility of Frames], page 609); for frames on text terminals, it calls
either suspend-emacs or suspend-tty, depending on whether the frame is displayed
on the controlling terminal device or not.

39.3 Operating System Environment

Emacs provides access to variables in the operating system environment through various
functions. These variables include the name of the system, the user’s UID, and so on.

[Variable]system-configuration
This variable holds the standard GNU configuration name for the hardware/software
configuration of your system, as a string. For example, a typical value for a 64-bit
GNU/Linux system is ‘"x86_64-unknown-linux-gnu"’.

[Variable]system-type
The value of this variable is a symbol indicating the type of operating system Emacs
is running on. The possible values are:

aix IBM’s AIX.

berkeley-unix

Berkeley BSD and its variants.

cygwin Cygwin, a Posix layer on top of MS-Windows.

darwin Darwin (Mac OS X).

gnu The GNU system (using the GNU kernel, which consists of the HURD
and Mach).

gnu/linux

A GNU/Linux system—that is, a variant GNU system, using the Linux
kernel. (These systems are the ones people often call “Linux”, but actu-
ally Linux is just the kernel, not the whole system.)

gnu/kfreebsd

A GNU (glibc-based) system with a FreeBSD kernel.

hpux Hewlett-Packard HPUX operating system.

irix Silicon Graphics Irix system.

ms-dos Microsoft’s DOS. Emacs compiled with DJGPP for MS-DOS binds
system-type to ms-dos even when you run it on MS-Windows.

usg-unix-v

AT&T Unix System V.

Chapter 39: Operating System Interface 920

windows-nt

Microsoft Windows NT, 9X and later. The value of system-type is
always windows-nt, e.g., even on Windows 7.

We do not wish to add new symbols to make finer distinctions unless it is absolutely
necessary! In fact, we hope to eliminate some of these alternatives in the future.
If you need to make a finer distinction than system-type allows for, you can test
system-configuration, e.g., against a regexp.

[Function]system-name
This function returns the name of the machine you are running on, as a string.

The symbol system-name is a variable as well as a function. In fact, the function returns
whatever value the variable system-name currently holds. Thus, you can set the variable
system-name in case Emacs is confused about the name of your system. The variable is
also useful for constructing frame titles (see Section 29.5 [Frame Titles], page 605).

[User Option]mail-host-address
If this variable is non-nil, it is used instead of system-name for purposes of generating
email addresses. For example, it is used when constructing the default value of user-
mail-address. See Section 39.4 [User Identification], page 922. (Since this is done
when Emacs starts up, the value actually used is the one saved when Emacs was
dumped. See Section E.1 [Building Emacs], page 982.)

[Command]getenv var &optional frame
This function returns the value of the environment variable var, as a string. var
should be a string. If var is undefined in the environment, getenv returns nil. It
returns ‘""’ if var is set but null. Within Emacs, a list of environment variables and
their values is kept in the variable process-environment.

(getenv "USER")

⇒ "lewis"

The shell command printenv prints all or part of the environment:

bash$ printenv

PATH=/usr/local/bin:/usr/bin:/bin

USER=lewis

TERM=xterm

SHELL=/bin/bash

HOME=/home/lewis

...

[Command]setenv variable &optional value substitute
This command sets the value of the environment variable named variable to value.
variable should be a string. Internally, Emacs Lisp can handle any string. However,
normally variable should be a valid shell identifier, that is, a sequence of letters, digits
and underscores, starting with a letter or underscore. Otherwise, errors may occur
if subprocesses of Emacs try to access the value of variable. If value is omitted or
nil (or, interactively, with a prefix argument), setenv removes variable from the
environment. Otherwise, value should be a string.

Chapter 39: Operating System Interface 921

If the optional argument substitute is non-nil, Emacs calls the function substitute-

env-vars to expand any environment variables in value.

setenv works by modifying process-environment; binding that variable with let

is also reasonable practice.

setenv returns the new value of variable, or nil if it removed variable from the
environment.

[Variable]process-environment
This variable is a list of strings, each describing one environment variable. The
functions getenv and setenv work by means of this variable.

process-environment
⇒ ("PATH=/usr/local/bin:/usr/bin:/bin"

"USER=lewis"

"TERM=xterm"

"SHELL=/bin/bash"

"HOME=/home/lewis"

...)

If process-environment contains “duplicate” elements that specify the same en-
vironment variable, the first of these elements specifies the variable, and the other
“duplicates” are ignored.

[Variable]initial-environment
This variable holds the list of environment variables Emacs inherited from its parent
process when Emacs started.

[Variable]path-separator
This variable holds a string that says which character separates directories in a search
path (as found in an environment variable). Its value is ":" for Unix and GNU
systems, and ";" for MS systems.

[Function]parse-colon-path path
This function takes a search path string such as the value of the PATH environment
variable, and splits it at the separators, returning a list of directory names. nil in
this list means the current directory. Although the function’s name says “colon”, it
actually uses the value of path-separator.

(parse-colon-path ":/foo:/bar")

⇒ (nil "/foo/" "/bar/")

[Variable]invocation-name
This variable holds the program name under which Emacs was invoked. The value is
a string, and does not include a directory name.

[Variable]invocation-directory
This variable holds the directory from which the Emacs executable was invoked, or
nil if that directory cannot be determined.

[Variable]installation-directory
If non-nil, this is a directory within which to look for the lib-src and etc sub-
directories. In an installed Emacs, it is normally nil. It is non-nil when Emacs
can’t find those directories in their standard installed locations, but can find them

Chapter 39: Operating System Interface 922

in a directory related somehow to the one containing the Emacs executable (i.e.,
invocation-directory).

[Function]load-average &optional use-float
This function returns the current 1-minute, 5-minute, and 15-minute system load
averages, in a list. The load average indicates the number of processes trying to run
on the system.

By default, the values are integers that are 100 times the system load averages, but
if use-float is non-nil, then they are returned as floating point numbers without
multiplying by 100.

If it is impossible to obtain the load average, this function signals an error. On some
platforms, access to load averages requires installing Emacs as setuid or setgid so that
it can read kernel information, and that usually isn’t advisable.

If the 1-minute load average is available, but the 5- or 15-minute averages are not,
this function returns a shortened list containing the available averages.

(load-average)

⇒ (169 48 36)

(load-average t)

⇒ (1.69 0.48 0.36)

The shell command uptime returns similar information.

[Function]emacs-pid
This function returns the process ID of the Emacs process, as an integer.

[Variable]tty-erase-char
This variable holds the erase character that was selected in the system’s terminal
driver, before Emacs was started.

39.4 User Identification

[Variable]init-file-user
This variable says which user’s init files should be used by Emacs—or nil if none. ""
stands for the user who originally logged in. The value reflects command-line options
such as ‘-q’ or ‘-u user’.

Lisp packages that load files of customizations, or any other sort of user profile, should
obey this variable in deciding where to find it. They should load the profile of the
user name found in this variable. If init-file-user is nil, meaning that the ‘-q’
option was used, then Lisp packages should not load any customization files or user
profile.

[User Option]user-mail-address
This holds the nominal email address of the user who is using Emacs. Emacs normally
sets this variable to a default value after reading your init files, but not if you have
already set it. So you can set the variable to some other value in your init file if you
do not want to use the default value.

Chapter 39: Operating System Interface 923

[Function]user-login-name &optional uid
This function returns the name under which the user is logged in. It uses the envi-
ronment variables LOGNAME or USER if either is set. Otherwise, the value is based on
the effective UID, not the real UID.

If you specify uid (a number), the result is the user name that corresponds to uid, or
nil if there is no such user.

[Function]user-real-login-name
This function returns the user name corresponding to Emacs’s real UID. This ignores
the effective UID, and the environment variables LOGNAME and USER.

[Function]user-full-name &optional uid
This function returns the full name of the logged-in user—or the value of the envi-
ronment variable NAME, if that is set.

If the Emacs process’s user-id does not correspond to any known user (and provided
NAME is not set), the result is "unknown".

If uid is non-nil, then it should be a number (a user-id) or a string (a login name).
Then user-full-name returns the full name corresponding to that user-id or login
name. If you specify a user-id or login name that isn’t defined, it returns nil.

The symbols user-login-name, user-real-login-name and user-full-name are vari-
ables as well as functions. The functions return the same values that the variables hold.
These variables allow you to “fake out” Emacs by telling the functions what to return.
The variables are also useful for constructing frame titles (see Section 29.5 [Frame Titles],
page 605).

[Function]user-real-uid
This function returns the real UID of the user. The value may be a floating point
number, in the (unlikely) event that the UID is too large to fit in a Lisp integer.

[Function]user-uid
This function returns the effective UID of the user. The value may be a floating point
number.

[Function]system-users
This function returns a list of strings, listing the user names on the system. If Emacs
cannot retrieve this information, the return value is a list containing just the value of
user-real-login-name.

[Function]system-groups
This function returns a list of strings, listing the names of user groups on the system.
If Emacs cannot retrieve this information, the return value is nil.

39.5 Time of Day

This section explains how to determine the current time and time zone.

Most of these functions represent time as a list of either four integers, (sec-high sec-

low microsec picosec), or of three integers, (sec-high sec-low microsec), or of two
integers, (sec-high sec-low). The integers sec-high and sec-low give the high and low

Chapter 39: Operating System Interface 924

bits of an integer number of seconds. This integer number, high ∗ 216 + low, is the number
of seconds from the epoch (0:00 January 1, 1970 UTC) to the specified time. The third
list element microsec, if present, gives the number of microseconds from the start of that
second to the specified time. Similarly, the fourth list element picosec, if present, gives the
number of picoseconds from the start of that microsecond to the specified time.

The return value of current-time represents time using four integers, as do the time-
stamps in the return value of file-attributes (see [Definition of file-attributes], page 484).
In function arguments, e.g., the time-value argument to current-time-string, two-, three-
, and four-integer lists are accepted. You can convert times from the list representation into
standard human-readable strings using current-time, or to other forms using the decode-
time and format-time-string functions documented in the following sections.

[Function]current-time-string &optional time-value
This function returns the current time and date as a human-readable string. The
format does not vary for the initial part of the string, which contains the day of week,
month, day of month, and time of day in that order: the number of characters used
for these fields is always the same, so you can reliably use substring to extract them.
You should count characters from the beginning of the string rather than from the
end, as the year might not have exactly four digits, and additional information may
some day be added at the end.

The argument time-value, if given, specifies a time to format (represented as a list of
integers), instead of the current time.

(current-time-string)

⇒ "Wed Oct 14 22:21:05 1987"

[Function]current-time
This function returns the current time, represented as a list of four integers (sec-

high sec-low microsec picosec). These integers have trailing zeros on systems
that return time with lower resolutions. On all current machines picosec is a multiple
of 1000, but this may change as higher-resolution clocks become available.

[Function]float-time &optional time-value
This function returns the current time as a floating-point number of seconds since the
epoch. The optional argument time-value, if given, specifies a time (represented as a
list of integers) to convert instead of the current time.

Warning : Since the result is floating point, it may not be exact. Do not use this
function if precise time stamps are required.

[Function]current-time-zone &optional time-value
This function returns a list describing the time zone that the user is in.

The value has the form (offset name). Here offset is an integer giving the number
of seconds ahead of UTC (east of Greenwich). A negative value means west of Green-
wich. The second element, name, is a string giving the name of the time zone. Both
elements change when daylight saving time begins or ends; if the user has specified a
time zone that does not use a seasonal time adjustment, then the value is constant
through time.

Chapter 39: Operating System Interface 925

If the operating system doesn’t supply all the information necessary to compute the
value, the unknown elements of the list are nil.

The argument time-value, if given, specifies a time (represented as a list of integers)
to analyze instead of the current time.

The current time zone is determined by the TZ environment variable. See Section 39.3
[System Environment], page 919. For example, you can tell Emacs to use universal time with
(setenv "TZ" "UTC0"). If TZ is not in the environment, Emacs uses a platform-dependent
default time zone.

39.6 Time Conversion

These functions convert time values (lists of two to four integers, as explained in the previous
section) into calendrical information and vice versa.

Many 32-bit operating systems are limited to time values containing 32 bits of informa-
tion; these systems typically handle only the times from 1901-12-13 20:45:52 UTC through
2038-01-19 03:14:07 UTC. However, 64-bit and some 32-bit operating systems have larger
time values, and can represent times far in the past or future.

Time conversion functions always use the Gregorian calendar, even for dates before the
Gregorian calendar was introduced. Year numbers count the number of years since the
year 1 B.C., and do not skip zero as traditional Gregorian years do; for example, the year
number −37 represents the Gregorian year 38 B.C.

[Function]decode-time &optional time
This function converts a time value into calendrical information. If you don’t specify
time, it decodes the current time. The return value is a list of nine elements, as
follows:

(seconds minutes hour day month year dow dst zone)

Here is what the elements mean:

seconds The number of seconds past the minute, as an integer between 0 and 59.
On some operating systems, this is 60 for leap seconds.

minutes The number of minutes past the hour, as an integer between 0 and 59.

hour The hour of the day, as an integer between 0 and 23.

day The day of the month, as an integer between 1 and 31.

month The month of the year, as an integer between 1 and 12.

year The year, an integer typically greater than 1900.

dow The day of week, as an integer between 0 and 6, where 0 stands for
Sunday.

dst t if daylight saving time is effect, otherwise nil.

zone An integer indicating the time zone, as the number of seconds east of
Greenwich.

Common Lisp Note: Common Lisp has different meanings for dow and zone.

Chapter 39: Operating System Interface 926

[Function]encode-time seconds minutes hour day month year &optional zone
This function is the inverse of decode-time. It converts seven items of calendrical
data into a time value. For the meanings of the arguments, see the table above under
decode-time.

Year numbers less than 100 are not treated specially. If you want them to stand for
years above 1900, or years above 2000, you must alter them yourself before you call
encode-time.

The optional argument zone defaults to the current time zone and its daylight saving
time rules. If specified, it can be either a list (as you would get from current-time-

zone), a string as in the TZ environment variable, t for Universal Time, or an integer
(as you would get from decode-time). The specified zone is used without any further
alteration for daylight saving time.

If you pass more than seven arguments to encode-time, the first six are used as
seconds through year, the last argument is used as zone, and the arguments in between
are ignored. This feature makes it possible to use the elements of a list returned by
decode-time as the arguments to encode-time, like this:

(apply ’encode-time (decode-time ...))

You can perform simple date arithmetic by using out-of-range values for the seconds,
minutes, hour, day, and month arguments; for example, day 0 means the day preced-
ing the given month.

The operating system puts limits on the range of possible time values; if you try to
encode a time that is out of range, an error results. For instance, years before 1970
do not work on some systems; on others, years as early as 1901 do work.

39.7 Parsing and Formatting Times

These functions convert time values to text in a string, and vice versa. Time values are lists
of two to four integers (see Section 39.5 [Time of Day], page 923).

[Function]date-to-time string
This function parses the time-string string and returns the corresponding time value.

[Function]format-time-string format-string &optional time universal
This function converts time (or the current time, if time is omitted) to a string
according to format-string. The argument format-string may contain ‘%’-sequences
which say to substitute parts of the time. Here is a table of what the ‘%’-sequences
mean:

‘%a’ This stands for the abbreviated name of the day of week.

‘%A’ This stands for the full name of the day of week.

‘%b’ This stands for the abbreviated name of the month.

‘%B’ This stands for the full name of the month.

‘%c’ This is a synonym for ‘%x %X’.

‘%C’ This has a locale-specific meaning. In the default locale (named C), it is
equivalent to ‘%A, %B %e, %Y’.

Chapter 39: Operating System Interface 927

‘%d’ This stands for the day of month, zero-padded.

‘%D’ This is a synonym for ‘%m/%d/%y’.

‘%e’ This stands for the day of month, blank-padded.

‘%h’ This is a synonym for ‘%b’.

‘%H’ This stands for the hour (00–23).

‘%I’ This stands for the hour (01–12).

‘%j’ This stands for the day of the year (001–366).

‘%k’ This stands for the hour (0–23), blank padded.

‘%l’ This stands for the hour (1–12), blank padded.

‘%m’ This stands for the month (01–12).

‘%M’ This stands for the minute (00–59).

‘%n’ This stands for a newline.

‘%N’ This stands for the nanoseconds (000000000–999999999). To ask for fewer
digits, use ‘%3N’ for milliseconds, ‘%6N’ for microseconds, etc. Any excess
digits are discarded, without rounding.

‘%p’ This stands for ‘AM’ or ‘PM’, as appropriate.

‘%r’ This is a synonym for ‘%I:%M:%S %p’.

‘%R’ This is a synonym for ‘%H:%M’.

‘%S’ This stands for the seconds (00–59).

‘%t’ This stands for a tab character.

‘%T’ This is a synonym for ‘%H:%M:%S’.

‘%U’ This stands for the week of the year (01–52), assuming that weeks start
on Sunday.

‘%w’ This stands for the numeric day of week (0–6). Sunday is day 0.

‘%W’ This stands for the week of the year (01–52), assuming that weeks start
on Monday.

‘%x’ This has a locale-specific meaning. In the default locale (named ‘C’), it
is equivalent to ‘%D’.

‘%X’ This has a locale-specific meaning. In the default locale (named ‘C’), it
is equivalent to ‘%T’.

‘%y’ This stands for the year without century (00–99).

‘%Y’ This stands for the year with century.

‘%Z’ This stands for the time zone abbreviation (e.g., ‘EST’).

‘%z’ This stands for the time zone numerical offset (e.g., ‘-0500’).

Chapter 39: Operating System Interface 928

You can also specify the field width and type of padding for any of these ‘%’-sequences.
This works as in printf: you write the field width as digits in the middle of a ‘%’-
sequences. If you start the field width with ‘0’, it means to pad with zeros. If you
start the field width with ‘_’, it means to pad with spaces.

For example, ‘%S’ specifies the number of seconds since the minute; ‘%03S’ means to
pad this with zeros to 3 positions, ‘%_3S’ to pad with spaces to 3 positions. Plain
‘%3S’ pads with zeros, because that is how ‘%S’ normally pads to two positions.

The characters ‘E’ and ‘O’ act as modifiers when used between ‘%’ and one of the
letters in the table above. ‘E’ specifies using the current locale’s “alternative” version
of the date and time. In a Japanese locale, for example, %Ex might yield a date format
based on the Japanese Emperors’ reigns. ‘E’ is allowed in ‘%Ec’, ‘%EC’, ‘%Ex’, ‘%EX’,
‘%Ey’, and ‘%EY’.

‘O’ means to use the current locale’s “alternative” representation of numbers, instead
of the ordinary decimal digits. This is allowed with most letters, all the ones that
output numbers.

If universal is non-nil, that means to describe the time as Universal Time; nil means
describe it using what Emacs believes is the local time zone (see current-time-zone).

This function uses the C library function strftime (see Section “Formatting Calendar
Time” in The GNU C Library Reference Manual) to do most of the work. In order
to communicate with that function, it first encodes its argument using the coding
system specified by locale-coding-system (see Section 33.11 [Locales], page 730);
after strftime returns the resulting string, format-time-string decodes the string
using that same coding system.

[Function]seconds-to-time seconds
This function converts seconds, a floating point number of seconds since the epoch,
to a time value and returns that. To perform the inverse conversion, use float-time.

[Function]format-seconds format-string seconds
This function converts its argument seconds into a string of years, days, hours, etc.,
according to format-string. The argument format-string may contain ‘%’-sequences
which control the conversion. Here is a table of what the ‘%’-sequences mean:

‘%y’
‘%Y’ The integer number of 365-day years.

‘%d’
‘%D’ The integer number of days.

‘%h’
‘%H’ The integer number of hours.

‘%m’
‘%M’ The integer number of minutes.

‘%s’
‘%S’ The integer number of seconds.

‘%z’ Non-printing control flag. When it is used, other specifiers must be given
in the order of decreasing size, i.e., years before days, hours before min-
utes, etc. Nothing will be produced in the result string to the left of

Chapter 39: Operating System Interface 929

‘%z’ until the first non-zero conversion is encountered. For example, the
default format used by emacs-uptime (see Section 39.8 [Processor Run
Time], page 929) "%Y, %D, %H, %M, %z%S" means that the number of sec-
onds will always be produced, but years, days, hours, and minutes will
only be shown if they are non-zero.

‘%%’ Produces a literal ‘%’.

Upper-case format sequences produce the units in addition to the numbers, lower-case
formats produce only the numbers.

You can also specify the field width by following the ‘%’ with a number; shorter
numbers will be padded with blanks. An optional period before the width requests
zero-padding instead. For example, "%.3Y" might produce "004 years".

Warning: This function works only with values of seconds that don’t exceed most-

positive-fixnum (see Section 3.1 [Integer Basics], page 33).

39.8 Processor Run time

Emacs provides several functions and primitives that return time, both elapsed and proces-
sor time, used by the Emacs process.

[Command]emacs-uptime &optional format
This function returns a string representing the Emacs uptime—the elapsed wall-clock
time this instance of Emacs is running. The string is formatted by format-seconds

according to the optional argument format. For the available format descriptors, see
Section 39.7 [Time Parsing], page 926. If format is nil or omitted, it defaults to "%Y,
%D, %H, %M, %z%S".

When called interactively, it prints the uptime in the echo area.

[Function]get-internal-run-time
This function returns the processor run time used by Emacs as a list of four inte-
gers: (high low microsec picosec), using the same format as current-time (see
Section 39.5 [Time of Day], page 923).

Note that the time returned by this function excludes the time Emacs was not using
the processor, and if the Emacs process has several threads, the returned value is the
sum of the processor times used up by all Emacs threads.

If the system doesn’t provide a way to determine the processor run time, get-

internal-run-time returns the same time as current-time.

[Command]emacs-init-time
This function returns the duration of the Emacs initialization (see Section 39.1.1
[Startup Summary], page 910) in seconds, as a string. When called interactively, it
prints the duration in the echo area.

39.9 Time Calculations

These functions perform calendrical computations using time values (the kind of list that
current-time returns).

Chapter 39: Operating System Interface 930

[Function]time-less-p t1 t2
This returns t if time value t1 is less than time value t2.

[Function]time-subtract t1 t2
This returns the time difference t1 − t2 between two time values, in the same format
as a time value.

[Function]time-add t1 t2
This returns the sum of two time values, one of which ought to represent a time
difference rather than a point in time. Here is how to add a number of seconds to a
time value:

(time-add time (seconds-to-time seconds))

[Function]time-to-days time
This function returns the number of days between the beginning of year 1 and time.

[Function]time-to-day-in-year time
This returns the day number within the year corresponding to time.

[Function]date-leap-year-p year
This function returns t if year is a leap year.

39.10 Timers for Delayed Execution

You can set up a timer to call a function at a specified future time or after a certain length
of idleness.

Emacs cannot run timers at any arbitrary point in a Lisp program; it can run them only
when Emacs could accept output from a subprocess: namely, while waiting or inside certain
primitive functions such as sit-for or read-event which can wait. Therefore, a timer’s
execution may be delayed if Emacs is busy. However, the time of execution is very precise
if Emacs is idle.

Emacs binds inhibit-quit to t before calling the timer function, because quitting out
of many timer functions can leave things in an inconsistent state. This is normally unprob-
lematical because most timer functions don’t do a lot of work. Indeed, for a timer to call a
function that takes substantial time to run is likely to be annoying. If a timer function needs
to allow quitting, it should use with-local-quit (see Section 21.11 [Quitting], page 358).
For example, if a timer function calls accept-process-output to receive output from an
external process, that call should be wrapped inside with-local-quit, to ensure that C-g
works if the external process hangs.

It is usually a bad idea for timer functions to alter buffer contents. When they do, they
usually should call undo-boundary both before and after changing the buffer, to separate
the timer’s changes from user commands’ changes and prevent a single undo entry from
growing to be quite large.

Timer functions should also avoid calling functions that cause Emacs to wait, such as
sit-for (see Section 21.10 [Waiting], page 357). This can lead to unpredictable effects,
since other timers (or even the same timer) can run while waiting. If a timer function needs
to perform an action after a certain time has elapsed, it can do this by scheduling a new
timer.

Chapter 39: Operating System Interface 931

If a timer function calls functions that can change the match data, it should save and
restore the match data. See Section 34.6.4 [Saving Match Data], page 752.

[Command]run-at-time time repeat function &rest args
This sets up a timer that calls the function function with arguments args at time
time. If repeat is a number (integer or floating point), the timer is scheduled to run
again every repeat seconds after time. If repeat is nil, the timer runs only once.

time may specify an absolute or a relative time.

Absolute times may be specified using a string with a limited variety of formats, and
are taken to be times today, even if already in the past. The recognized forms are
‘xxxx’, ‘x:xx’, or ‘xx:xx’ (military time), and ‘xxam’, ‘xxAM’, ‘xxpm’, ‘xxPM’, ‘xx:xxam’,
‘xx:xxAM’, ‘xx:xxpm’, or ‘xx:xxPM’. A period can be used instead of a colon to
separate the hour and minute parts.

To specify a relative time as a string, use numbers followed by units. For example:

‘1 min’ denotes 1 minute from now.

‘1 min 5 sec’
denotes 65 seconds from now.

‘1 min 2 sec 3 hour 4 day 5 week 6 fortnight 7 month 8 year’
denotes exactly 103 months, 123 days, and 10862 seconds from now.

For relative time values, Emacs considers a month to be exactly thirty days, and a
year to be exactly 365.25 days.

Not all convenient formats are strings. If time is a number (integer or floating point),
that specifies a relative time measured in seconds. The result of encode-time can
also be used to specify an absolute value for time.

In most cases, repeat has no effect on when first call takes place—time alone specifies
that. There is one exception: if time is t, then the timer runs whenever the time is a
multiple of repeat seconds after the epoch. This is useful for functions like display-
time.

The function run-at-time returns a timer value that identifies the particular sched-
uled future action. You can use this value to call cancel-timer (see below).

A repeating timer nominally ought to run every repeat seconds, but remember that any
invocation of a timer can be late. Lateness of one repetition has no effect on the scheduled
time of the next repetition. For instance, if Emacs is busy computing for long enough to
cover three scheduled repetitions of the timer, and then starts to wait, it will immediately
call the timer function three times in immediate succession (presuming no other timers
trigger before or between them). If you want a timer to run again no less than n seconds
after the last invocation, don’t use the repeat argument. Instead, the timer function should
explicitly reschedule the timer.

[User Option]timer-max-repeats
This variable’s value specifies the maximum number of times to repeat calling a timer
function in a row, when many previously scheduled calls were unavoidably delayed.

Chapter 39: Operating System Interface 932

[Macro]with-timeout (seconds timeout-forms. . .) body. . .
Execute body, but give up after seconds seconds. If body finishes before the time
is up, with-timeout returns the value of the last form in body. If, however, the
execution of body is cut short by the timeout, then with-timeout executes all the
timeout-forms and returns the value of the last of them.

This macro works by setting a timer to run after seconds seconds. If body finishes be-
fore that time, it cancels the timer. If the timer actually runs, it terminates execution
of body, then executes timeout-forms.

Since timers can run within a Lisp program only when the program calls a primitive
that can wait, with-timeout cannot stop executing body while it is in the midst of a
computation—only when it calls one of those primitives. So use with-timeout only
with a body that waits for input, not one that does a long computation.

The function y-or-n-p-with-timeout provides a simple way to use a timer to avoid
waiting too long for an answer. See Section 20.7 [Yes-or-No Queries], page 314.

[Function]cancel-timer timer
This cancels the requested action for timer, which should be a timer—usually, one
previously returned by run-at-time or run-with-idle-timer. This cancels the
effect of that call to one of these functions; the arrival of the specified time will not
cause anything special to happen.

39.11 Idle Timers

Here is how to set up a timer that runs when Emacs is idle for a certain length of time.
Aside from how to set them up, idle timers work just like ordinary timers.

[Command]run-with-idle-timer secs repeat function &rest args
Set up a timer which runs the next time Emacs is idle for secs seconds. The value of
secs may be an integer or a floating point number; a value of the type returned by
current-idle-time is also allowed.

If repeat is nil, the timer runs just once, the first time Emacs remains idle for a long
enough time. More often repeat is non-nil, which means to run the timer each time
Emacs remains idle for secs seconds.

The function run-with-idle-timer returns a timer value which you can use in calling
cancel-timer (see Section 39.10 [Timers], page 930).

Emacs becomes idle when it starts waiting for user input, and it remains idle until the
user provides some input. If a timer is set for five seconds of idleness, it runs approximately
five seconds after Emacs first becomes idle. Even if repeat is non-nil, this timer will not
run again as long as Emacs remains idle, because the duration of idleness will continue to
increase and will not go down to five seconds again.

Emacs can do various things while idle: garbage collect, autosave or handle data from a
subprocess. But these interludes during idleness do not interfere with idle timers, because
they do not reset the clock of idleness to zero. An idle timer set for 600 seconds will run
when ten minutes have elapsed since the last user command was finished, even if subprocess
output has been accepted thousands of times within those ten minutes, and even if there
have been garbage collections and autosaves.

Chapter 39: Operating System Interface 933

When the user supplies input, Emacs becomes non-idle while executing the input. Then
it becomes idle again, and all the idle timers that are set up to repeat will subsequently run
another time, one by one.

Do not write an idle timer function containing a loop which does a certain amount of
processing each time around, and exits when (input-pending-p) is non-nil. This approach
seems very natural but has two problems:

• It blocks out all process output (since Emacs accepts process output only while waiting).

• It blocks out any idle timers that ought to run during that time.

Similarly, do not write an idle timer function that sets up another idle timer (including
the same idle timer) with secs argument less than or equal to the current idleness time.
Such a timer will run almost immediately, and continue running again and again, instead of
waiting for the next time Emacs becomes idle. The correct approach is to reschedule with
an appropriate increment of the current value of the idleness time, as described below.

[Function]current-idle-time
If Emacs is idle, this function returns the length of time Emacs has been idle, as a
list of four integers: (sec-high sec-low microsec picosec), using the same format
as current-time (see Section 39.5 [Time of Day], page 923).

When Emacs is not idle, current-idle-time returns nil. This is a convenient way
to test whether Emacs is idle.

The main use of current-idle-time is when an idle timer function wants to “take a
break” for a while. It can set up another idle timer to call the same function again, after a
few seconds more idleness. Here’s an example:

(defvar my-resume-timer nil

"Timer for ‘my-timer-function’ to reschedule itself, or nil.")

(defun my-timer-function ()

;; If the user types a command while my-resume-timer
;; is active, the next time this function is called from
;; its main idle timer, deactivate my-resume-timer.
(when my-resume-timer

(cancel-timer my-resume-timer))

...do the work for a while...

(when taking-a-break

(setq my-resume-timer

(run-with-idle-timer

;; Compute an idle time break-length

;; more than the current value.

(time-add (current-idle-time)

(seconds-to-time break-length))

nil

’my-timer-function))))

Chapter 39: Operating System Interface 934

39.12 Terminal Input

This section describes functions and variables for recording or manipulating terminal input.
See Chapter 38 [Display], page 822, for related functions.

39.12.1 Input Modes

[Function]set-input-mode interrupt flow meta &optional quit-char
This function sets the mode for reading keyboard input. If interrupt is non-null, then
Emacs uses input interrupts. If it is nil, then it uses cbreak mode. The default
setting is system-dependent. Some systems always use cbreak mode regardless of
what is specified.

When Emacs communicates directly with X, it ignores this argument and uses inter-
rupts if that is the way it knows how to communicate.

If flow is non-nil, then Emacs uses xon/xoff (C-q, C-s) flow control for output to
the terminal. This has no effect except in cbreak mode.

The argument meta controls support for input character codes above 127. If meta is
t, Emacs converts characters with the 8th bit set into Meta characters. If meta is
nil, Emacs disregards the 8th bit; this is necessary when the terminal uses it as a
parity bit. If meta is neither t nor nil, Emacs uses all 8 bits of input unchanged.
This is good for terminals that use 8-bit character sets.

If quit-char is non-nil, it specifies the character to use for quitting. Normally this
character is C-g. See Section 21.11 [Quitting], page 358.

The current-input-mode function returns the input mode settings Emacs is currently
using.

[Function]current-input-mode
This function returns the current mode for reading keyboard input. It returns a list,
corresponding to the arguments of set-input-mode, of the form (interrupt flow

meta quit) in which:

interrupt is non-nil when Emacs is using interrupt-driven input. If nil, Emacs is
using cbreak mode.

flow is non-nil if Emacs uses xon/xoff (C-q, C-s) flow control for output to
the terminal. This value is meaningful only when interrupt is nil.

meta is t if Emacs treats the eighth bit of input characters as the meta bit;
nil means Emacs clears the eighth bit of every input character; any other
value means Emacs uses all eight bits as the basic character code.

quit is the character Emacs currently uses for quitting, usually C-g.

39.12.2 Recording Input

[Function]recent-keys
This function returns a vector containing the last 300 input events from the keyboard
or mouse. All input events are included, whether or not they were used as parts of
key sequences. Thus, you always get the last 300 input events, not counting events

Chapter 39: Operating System Interface 935

generated by keyboard macros. (These are excluded because they are less interesting
for debugging; it should be enough to see the events that invoked the macros.)

A call to clear-this-command-keys (see Section 21.5 [Command Loop Info],
page 330) causes this function to return an empty vector immediately afterward.

[Command]open-dribble-file filename
This function opens a dribble file named filename. When a dribble file is open, each
input event from the keyboard or mouse (but not those from keyboard macros) is
written in that file. A non-character event is expressed using its printed representation
surrounded by ‘<...>’.

You close the dribble file by calling this function with an argument of nil.

This function is normally used to record the input necessary to trigger an Emacs bug,
for the sake of a bug report.

(open-dribble-file "~/dribble")

⇒ nil

See also the open-termscript function (see Section 39.13 [Terminal Output], page 935).

39.13 Terminal Output

The terminal output functions send output to a text terminal, or keep track of output sent
to the terminal. The variable baud-rate tells you what Emacs thinks is the output speed
of the terminal.

[User Option]baud-rate
This variable’s value is the output speed of the terminal, as far as Emacs knows.
Setting this variable does not change the speed of actual data transmission, but the
value is used for calculations such as padding.

It also affects decisions about whether to scroll part of the screen or repaint on text
terminals. See Section 38.2 [Forcing Redisplay], page 822, for the corresponding
functionality on graphical terminals.

The value is measured in baud.

If you are running across a network, and different parts of the network work at different
baud rates, the value returned by Emacs may be different from the value used by your local
terminal. Some network protocols communicate the local terminal speed to the remote
machine, so that Emacs and other programs can get the proper value, but others do not.
If Emacs has the wrong value, it makes decisions that are less than optimal. To fix the
problem, set baud-rate.

[Function]send-string-to-terminal string &optional terminal
This function sends string to terminal without alteration. Control characters in
string have terminal-dependent effects. This function operates only on text terminals.
terminal may be a terminal object, a frame, or nil for the selected frame’s terminal.
In batch mode, string is sent to stdout when terminal is nil.

One use of this function is to define function keys on terminals that have downloadable
function key definitions. For example, this is how (on certain terminals) to define

Chapter 39: Operating System Interface 936

function key 4 to move forward four characters (by transmitting the characters C-u
C-f to the computer):

(send-string-to-terminal "\eF4\^U\^F")

⇒ nil

[Command]open-termscript filename
This function is used to open a termscript file that will record all the characters sent
by Emacs to the terminal. It returns nil. Termscript files are useful for investigating
problems where Emacs garbles the screen, problems that are due to incorrect Termcap
entries or to undesirable settings of terminal options more often than to actual Emacs
bugs. Once you are certain which characters were actually output, you can determine
reliably whether they correspond to the Termcap specifications in use.

You close the termscript file by calling this function with an argument of nil.

See also open-dribble-file in Section 39.12.2 [Recording Input], page 934.

(open-termscript "../junk/termscript")

⇒ nil

39.14 Sound Output

To play sound using Emacs, use the function play-sound. Only certain systems are sup-
ported; if you call play-sound on a system which cannot really do the job, it gives an
error.

The sound must be stored as a file in RIFF-WAVE format (‘.wav’) or Sun Audio format
(‘.au’).

[Function]play-sound sound
This function plays a specified sound. The argument, sound, has the form (sound

properties...), where the properties consist of alternating keywords (particular
symbols recognized specially) and values corresponding to them.

Here is a table of the keywords that are currently meaningful in sound, and their
meanings:

:file file

This specifies the file containing the sound to play. If the file name is not
absolute, it is expanded against the directory data-directory.

:data data

This specifies the sound to play without need to refer to a file. The value,
data, should be a string containing the same bytes as a sound file. We
recommend using a unibyte string.

:volume volume

This specifies how loud to play the sound. It should be a number in the
range of 0 to 1. The default is to use whatever volume has been specified
before.

:device device

This specifies the system device on which to play the sound, as a string.
The default device is system-dependent.

Chapter 39: Operating System Interface 937

Before actually playing the sound, play-sound calls the functions in the list play-
sound-functions. Each function is called with one argument, sound.

[Command]play-sound-file file &optional volume device
This function is an alternative interface to playing a sound file specifying an optional
volume and device.

[Variable]play-sound-functions
A list of functions to be called before playing a sound. Each function is called with
one argument, a property list that describes the sound.

39.15 Operating on X11 Keysyms

To define system-specific X11 keysyms, set the variable system-key-alist.

[Variable]system-key-alist
This variable’s value should be an alist with one element for each system-specific
keysym. Each element has the form (code . symbol), where code is the numeric
keysym code (not including the “vendor specific” bit, −228), and symbol is the name
for the function key.

For example (168 . mute-acute) defines a system-specific key (used by HP X servers)
whose numeric code is −228 + 168.

It is not crucial to exclude from the alist the keysyms of other X servers; those do no
harm, as long as they don’t conflict with the ones used by the X server actually in
use.

The variable is always local to the current terminal, and cannot be buffer-local. See
Section 29.2 [Multiple Terminals], page 591.

You can specify which keysyms Emacs should use for the Meta, Alt, Hyper, and Super
modifiers by setting these variables:

[Variable]x-alt-keysym
[Variable]x-meta-keysym
[Variable]x-hyper-keysym
[Variable]x-super-keysym

The name of the keysym that should stand for the Alt modifier (respectively, for Meta,
Hyper, and Super). For example, here is how to swap the Meta and Alt modifiers
within Emacs:

(setq x-alt-keysym ’meta)

(setq x-meta-keysym ’alt)

39.16 Batch Mode

The command-line option ‘-batch’ causes Emacs to run noninteractively. In this mode,
Emacs does not read commands from the terminal, it does not alter the terminal modes,
and it does not expect to be outputting to an erasable screen. The idea is that you specify
Lisp programs to run; when they are finished, Emacs should exit. The way to specify the
programs to run is with ‘-l file’, which loads the library named file, or ‘-f function’,
which calls function with no arguments, or ‘--eval form’.

Chapter 39: Operating System Interface 938

Any Lisp program output that would normally go to the echo area, either using message,
or using prin1, etc., with t as the stream, goes instead to Emacs’s standard error descriptor
when in batch mode. Similarly, input that would normally come from the minibuffer is
read from the standard input descriptor. Thus, Emacs behaves much like a noninteractive
application program. (The echo area output that Emacs itself normally generates, such as
command echoing, is suppressed entirely.)

[Variable]noninteractive
This variable is non-nil when Emacs is running in batch mode.

39.17 Session Management

Emacs supports the X Session Management Protocol, which is used to suspend and restart
applications. In the X Window System, a program called the session manager is responsible
for keeping track of the applications that are running. When the X server shuts down, the
session manager asks applications to save their state, and delays the actual shutdown until
they respond. An application can also cancel the shutdown.

When the session manager restarts a suspended session, it directs these applications to
individually reload their saved state. It does this by specifying a special command-line
argument that says what saved session to restore. For Emacs, this argument is ‘--smid
session’.

[Variable]emacs-save-session-functions
Emacs supports saving state via a hook called emacs-save-session-functions.
Emacs runs this hook when the session manager tells it that the window system
is shutting down. The functions are called with no arguments, and with the current
buffer set to a temporary buffer. Each function can use insert to add Lisp code to
this buffer. At the end, Emacs saves the buffer in a file, called the session file.

Subsequently, when the session manager restarts Emacs, it loads the session file au-
tomatically (see Chapter 15 [Loading], page 215). This is performed by a function
named emacs-session-restore, which is called during startup. See Section 39.1.1
[Startup Summary], page 910.

If a function in emacs-save-session-functions returns non-nil, Emacs tells the
session manager to cancel the shutdown.

Here is an example that just inserts some text into *scratch* when Emacs is restarted
by the session manager.

(add-hook ’emacs-save-session-functions ’save-yourself-test)

(defun save-yourself-test ()

(insert "(save-current-buffer

(switch-to-buffer \"*scratch*\")

(insert \"I am restored\"))")

nil)

Chapter 39: Operating System Interface 939

39.18 Desktop Notifications

Emacs is able to send notifications on systems that support the freedesktop.org Desktop No-
tifications Specification. In order to use this functionality, Emacs must have been compiled
with D-Bus support, and the notifications library must be loaded.

[Function]notifications-notify &rest params
This function sends a notification to the desktop via D-Bus, consisting of the parame-
ters specified by the params arguments. These arguments should consist of alternating
keyword and value pairs. The supported keywords and values are as follows:

:title title

The notification title.

:body text

The notification body text. Depending on the implementation of the
notification server, the text could contain HTML markups, like ‘"bold
text"’, hyperlinks, or images.

:app-name name

The name of the application sending the notification. The default is
notifications-application-name.

:replaces-id id

The notification id that this notification replaces. id must be the result
of a previous notifications-notify call.

:app-icon icon-file

The file name of the notification icon. If set to nil, no icon is displayed.
The default is notifications-application-icon.

:actions (key title key title ...)

A list of actions to be applied. key and title are both strings. The default
action (usually invoked by clicking the notification) should have a key
named ‘"default"’. The title can be anything, though implementations
are free not to display it.

:timeout timeout

The timeout time in milliseconds since the display of the notification at
which the notification should automatically close. If -1, the notification’s
expiration time is dependent on the notification server’s settings, and
may vary for the type of notification. If 0, the notification never expires.
Default value is -1.

:urgency urgency

The urgency level. It can be low, normal, or critical.

:action-items

When this keyword is given, the title string of the actions is interpreted
as icon name.

:category category

The type of notification this is, a string.

Chapter 39: Operating System Interface 940

:desktop-entry filename

This specifies the name of the desktop filename representing the calling
program, like ‘"emacs"’.

:image-data (width height rowstride has-alpha bits channels data)

This is a raw data image format that describes the width, height, row-
stride, whether there is an alpha channel, bits per sample, channels and
image data, respectively.

:image-path path

This is represented either as a URI (‘file://’ is the only URI schema
supported right now) or a name in a freedesktop.org-compliant icon theme
from ‘$XDG_DATA_DIRS/icons’.

:sound-file filename

The path to a sound file to play when the notification pops up.

:sound-name name

A themable named sound from the freedesktop.org sound naming spec-
ification from ‘$XDG_DATA_DIRS/sounds’, to play when the notification
pops up. Similar to the icon name, only for sounds. An example would
be ‘"message-new-instant"’.

:suppress-sound

Causes the server to suppress playing any sounds, if it has that ability.

:resident

When set the server will not automatically remove the notification when
an action has been invoked. The notification will remain resident in the
server until it is explicitly removed by the user or by the sender. This hint
is likely only useful when the server has the :persistence capability.

:transient

When set the server will treat the notification as transient and by-pass
the server’s persistence capability, if it should exist.

:x position

:y position

Specifies the X, Y location on the screen that the notification should point
to. Both arguments must be used together.

:on-action function

Function to call when an action is invoked. The notification id and the
key of the action are passed as arguments to the function.

:on-close function

Function to call when the notification has been closed by timeout or by
the user. The function receive the notification id and the closing reason
as arguments:

• expired if the notification has expired

• dismissed if the notification was dismissed by the user

Chapter 39: Operating System Interface 941

• close-notification if the notification was closed by a call to
notifications-close-notification

• undefined if the notification server hasn’t provided a reason

Which parameters are accepted by the notification server can be checked via
notifications-get-capabilities.

This function returns a notification id, an integer, which can be used to manipulate
the notification item with notifications-close-notification or the :replaces-

id argument of another notifications-notify call. For example:

(defun my-on-action-function (id key)

(message "Message %d, key \"%s\" pressed" id key))

⇒ my-on-action-function

(defun my-on-close-function (id reason)

(message "Message %d, closed due to \"%s\"" id reason))

⇒ my-on-close-function

(notifications-notify

:title "Title"

:body "This is important."

:actions ’("Confirm" "I agree" "Refuse" "I disagree")

:on-action ’my-on-action-function

:on-close ’my-on-close-function)

⇒ 22

A message window opens on the desktop. Press "I agree"

⇒ Message 22, key "Confirm" pressed

Message 22, closed due to "dismissed"

[Function]notifications-close-notification id
This function closes a notification with identifier id.

[Function]notifications-get-capabilities
Returns the capabilities of the notification server, a list of strings. The following
capabilities can be expected:

:actions The server will provide the specified actions to the user.

:body Supports body text.

:body-hyperlinks

The server supports hyperlinks in the notifications.

:body-images

The server supports images in the notifications.

:body-markup

Supports markup in the body text.

:icon-multi

The server will render an animation of all the frames in a given image
array.

Chapter 39: Operating System Interface 942

:icon-static

Supports display of exactly 1 frame of any given image array. This value
is mutually exclusive with :icon-multi.

:persistence

The server supports persistence of notifications.

:sound The server supports sounds on notifications.

Further vendor-specific caps start with :x-vendor, like :x-gnome-foo-cap.

39.19 Dynamically Loaded Libraries

A dynamically loaded library is a library that is loaded on demand, when its facilities are
first needed. Emacs supports such on-demand loading of support libraries for some of its
features.

[Variable]dynamic-library-alist
This is an alist of dynamic libraries and external library files implementing them.

Each element is a list of the form (library files...), where the car is a symbol
representing a supported external library, and the rest are strings giving alternate
filenames for that library.

Emacs tries to load the library from the files in the order they appear in the list; if
none is found, the Emacs session won’t have access to that library, and the features
it provides will be unavailable.

Image support on some platforms uses this facility. Here’s an example of setting this
variable for supporting images on MS-Windows:

(setq dynamic-library-alist

’((xpm "libxpm.dll" "xpm4.dll" "libXpm-nox4.dll")

(png "libpng12d.dll" "libpng12.dll" "libpng.dll"

"libpng13d.dll" "libpng13.dll")

(jpeg "jpeg62.dll" "libjpeg.dll" "jpeg-62.dll"

"jpeg.dll")

(tiff "libtiff3.dll" "libtiff.dll")

(gif "giflib4.dll" "libungif4.dll" "libungif.dll")

(svg "librsvg-2-2.dll")

(gdk-pixbuf "libgdk_pixbuf-2.0-0.dll")

(glib "libglib-2.0-0.dll")

(gobject "libgobject-2.0-0.dll")))

Note that image types pbm and xbm do not need entries in this variable because they
do not depend on external libraries and are always available in Emacs.

Also note that this variable is not meant to be a generic facility for accessing external
libraries; only those already known by Emacs can be loaded through it.

This variable is ignored if the given library is statically linked into Emacs.

Chapter 40: Preparing Lisp code for distribution 943

40 Preparing Lisp code for distribution

Emacs provides a standard way to distribute Emacs Lisp code to users. A package is a
collection of one or more files, formatted and bundled in such a way that users can easily
download, install, uninstall, and upgrade it.

The following sections describe how to create a package, and how to put it in a package
archive for others to download. See Section “Packages” in The GNU Emacs Manual, for a
description of user-level features of the packaging system.

40.1 Packaging Basics

A package is either a simple package or a multi-file package. A simple package is stored in
a package archive as a single Emacs Lisp file, while a multi-file package is stored as a tar
file (containing multiple Lisp files, and possibly non-Lisp files such as a manual).

In ordinary usage, the difference between simple packages and multi-file packages is
relatively unimportant; the Package Menu interface makes no distinction between them.
However, the procedure for creating them differs, as explained in the following sections.

Each package (whether simple or multi-file) has certain attributes:

Name A short word (e.g., ‘auctex’). This is usually also the symbol prefix used in the
program (see Section D.1 [Coding Conventions], page 969).

Version A version number, in a form that the function version-to-list understands
(e.g., ‘11.86’). Each release of a package should be accompanied by an increase
in the version number.

Brief description
This is shown when the package is listed in the Package Menu. It should occupy
a single line, ideally in 36 characters or less.

Long description
This is shown in the buffer created by C-h P (describe-package), following the
package’s brief description and installation status. It normally spans multiple
lines, and should fully describe the package’s capabilities and how to begin using
it once it is installed.

Dependencies
A list of other packages (possibly including minimal acceptable version num-
bers) on which this package depends. The list may be empty, meaning this
package has no dependencies. Otherwise, installing this package also automati-
cally installs its dependencies; if any dependency cannot be found, the package
cannot be installed.

Installing a package, either via the command package-install-file, or via the Package
Menu, creates a subdirectory of package-user-dir named name-version, where name is
the package’s name and version its version (e.g., ~/.emacs.d/elpa/auctex-11.86/). We
call this the package’s content directory. It is where Emacs puts the package’s contents (the
single Lisp file for a simple package, or the files extracted from a multi-file package).

Emacs then searches every Lisp file in the content directory for autoload magic comments
(see Section 15.5 [Autoload], page 220). These autoload definitions are saved to a file

Chapter 40: Preparing Lisp code for distribution 944

named name-autoloads.el in the content directory. They are typically used to autoload
the principal user commands defined in the package, but they can also perform other tasks,
such as adding an element to auto-mode-alist (see Section 23.2.2 [Auto Major Mode],
page 411). Note that a package typically does not autoload every function and variable
defined within it—only the handful of commands typically called to begin using the package.
Emacs then byte-compiles every Lisp file in the package.

After installation, the installed package is loaded: Emacs adds the package’s content
directory to load-path, and evaluates the autoload definitions in name-autoloads.el.

Whenever Emacs starts up, it automatically calls the function package-initialize to
load installed packages. This is done after loading the init file and abbrev file (if any)
and before running after-init-hook (see Section 39.1.1 [Startup Summary], page 910).
Automatic package loading is disabled if the user option package-enable-at-startup is
nil.

[Command]package-initialize &optional no-activate
This function initializes Emacs’ internal record of which packages are installed, and
loads them. The user option package-load-list specifies which packages to load;
by default, all installed packages are loaded. See Section “Package Installation” in
The GNU Emacs Manual.

The optional argument no-activate, if non-nil, causes Emacs to update its record of
installed packages without actually loading them; it is for internal use only.

40.2 Simple Packages

A simple package consists of a single Emacs Lisp source file. The file must conform to
the Emacs Lisp library header conventions (see Section D.8 [Library Headers], page 979).
The package’s attributes are taken from the various headers, as illustrated by the following
example:

;;; superfrobnicator.el --- Frobnicate and bifurcate flanges

;; Copyright (C) 2011 Free Software Foundation, Inc.

;; Author: J. R. Hacker <jrh@example.com>

;; Version: 1.3

;; Package-Requires: ((flange "1.0"))

;; Keywords: frobnicate

...

;;; Commentary:

;; This package provides a minor mode to frobnicate and/or

;; bifurcate any flanges you desire. To activate it, just type

...

;;;###autoload

(define-minor-mode superfrobnicator-mode

Chapter 40: Preparing Lisp code for distribution 945

...

The name of the package is the same as the base name of the file, as written on the first
line. Here, it is ‘superfrobnicator’.

The brief description is also taken from the first line. Here, it is ‘Frobnicate and

bifurcate flanges’.

The version number comes from the ‘Package-Version’ header, if it exists, or from the
‘Version’ header otherwise. One or the other must be present. Here, the version number
is 1.3.

If the file has a ‘;;; Commentary:’ section, this section is used as the long description.
(When displaying the description, Emacs omits the ‘;;; Commentary:’ line, as well as the
leading comment characters in the commentary itself.)

If the file has a ‘Package-Requires’ header, that is used as the package dependencies.
In the above example, the package depends on the ‘flange’ package, version 1.0 or higher.
See Section D.8 [Library Headers], page 979, for a description of the ‘Package-Requires’
header. If the header is omitted, the package has no dependencies.

The file ought to also contain one or more autoload magic comments, as explained
in Section 40.1 [Packaging Basics], page 943. In the above example, a magic comment
autoloads superfrobnicator-mode.

See Section 40.4 [Package Archives], page 946, for a explanation of how to add a single-file
package to a package archive.

40.3 Multi-file Packages

A multi-file package is less convenient to create than a single-file package, but it offers more
features: it can include multiple Emacs Lisp files, an Info manual, and other file types (such
as images).

Prior to installation, a multi-file package is stored in a package archive as a tar file. The
tar file must be named name-version.tar, where name is the package name and version
is the version number. Its contents, once extracted, must all appear in a directory named
name-version, the content directory (see Section 40.1 [Packaging Basics], page 943). Files
may also extract into subdirectories of the content directory.

One of the files in the content directory must be named name-pkg.el. It must contain
a single Lisp form, consisting of a call to the function define-package, described below.
This defines the package’s version, brief description, and requirements.

For example, if we distribute version 1.3 of the superfrobnicator as a multi-file package,
the tar file would be superfrobnicator-1.3.tar. Its contents would extract into the
directory superfrobnicator-1.3, and one of these would be the file superfrobnicator-

pkg.el.

[Function]define-package name version &optional docstring requirements
This function defines a package. name is the package name, a string. version is the
version, as a string of a form that can be understood by the function version-to-

list. docstring is the brief description.

requirements is a list of required packages and their versions. Each element in this list
should have the form (dep-name dep-version), where dep-name is a symbol whose

Chapter 40: Preparing Lisp code for distribution 946

name is the dependency’s package name, and dep-version is the dependency’s version
(a string).

If the content directory contains a file named README, this file is used as the long de-
scription.

If the content directory contains a file named dir, this is assumed to be an Info directory
file made with install-info. See Section “Invoking install-info” in Texinfo. The relevant
Info files should also be present in the content directory. In this case, Emacs will automat-
ically add the content directory to Info-directory-list when the package is activated.

Do not include any .elc files in the package. Those are created when the package is
installed. Note that there is no way to control the order in which files are byte-compiled.

Do not include any file named name-autoloads.el. This file is reserved for the pack-
age’s autoload definitions (see Section 40.1 [Packaging Basics], page 943). It is created
automatically when the package is installed, by searching all the Lisp files in the package
for autoload magic comments.

If the multi-file package contains auxiliary data files (such as images), the package’s Lisp
code can refer to these files via the variable load-file-name (see Chapter 15 [Loading],
page 215). Here is an example:

(defconst superfrobnicator-base (file-name-directory load-file-name))

(defun superfrobnicator-fetch-image (file)

(expand-file-name file superfrobnicator-base))

40.4 Creating and Maintaining Package Archives

Via the Package Menu, users may download packages from package archives. Such archives
are specified by the variable package-archives, whose default value contains a single entry:
the archive hosted by the GNU project at elpa.gnu.org. This section describes how to set
up and maintain a package archive.

[User Option]package-archives
The value of this variable is an alist of package archives recognized by the Emacs
package manager.

Each alist element corresponds to one archive, and should have the form (id .

location), where id is the name of the archive (a string) and location is its base
location (a string).

If the base location starts with ‘http:’, it is treated as a HTTP URL, and packages
are downloaded from this archive via HTTP (as is the case for the default GNU
archive).

Otherwise, the base location should be a directory name. In this case, Emacs retrieves
packages from this archive via ordinary file access. Such “local” archives are mainly
useful for testing.

A package archive is simply a directory in which the package files, and associated files,
are stored. If you want the archive to be reachable via HTTP, this directory must be
accessible to a web server. How to accomplish this is beyond the scope of this manual.

A convenient way to set up and update a package archive is via the package-x li-
brary. This is included with Emacs, but not loaded by default; type M-x load-library

elpa.gnu.org

Chapter 40: Preparing Lisp code for distribution 947

RET package-x RET to load it, or add (require ’package-x) to your init file. See Section
“Lisp Libraries” in The GNU Emacs Manual. Once loaded, you can make use of the fol-
lowing:

[User Option]package-archive-upload-base
The value of this variable is the base location of a package archive, as a directory
name. The commands in the package-x library will use this base location.

The directory name should be absolute. You may specify a remote name, such as
/ssh:foo@example.com:/var/www/packages/, if the package archive is on a different
machine. See Section “Remote Files” in The GNU Emacs Manual.

[Command]package-upload-file filename
This command prompts for filename, a file name, and uploads that file to package-

archive-upload-base. The file must be either a simple package (a .el file) or a
multi-file package (a .tar file); otherwise, an error is raised. The package attributes
are automatically extracted, and the archive’s contents list is updated with this in-
formation.

If package-archive-upload-base does not specify a valid directory, the function
prompts interactively for one. If the directory does not exist, it is created. The direc-
tory need not have any initial contents (i.e., you can use this command to populate
an initially empty archive).

[Command]package-upload-buffer
This command is similar to package-upload-file, but instead of prompting for a
package file, it uploads the contents of the current buffer. The current buffer must be
visiting a simple package (a .el file) or a multi-file package (a .tar file); otherwise,
an error is raised.

After you create an archive, remember that it is not accessible in the Package Menu interface
unless it is in package-archives.

Appendix A: Emacs 23 Antinews 948

Appendix A Emacs 23 Antinews

For those users who live backwards in time, here is information about downgrading to Emacs
version 23.4. We hope you will enjoy the greater simplicity that results from the absence of
many Emacs 24.3 features.

A.1 Old Lisp Features in Emacs 23

• Support for lexical scoping has been removed; all variables are dynamically scoped.
The lexical-binding variable has been removed, and so has the lexical argument to
eval. The defvar and defconst forms no longer mark variables as dynamic, since all
variables are dynamic.

Having only dynamic binding follows the spirit of Emacs extensibility, for it allows
any Emacs code to access any defined variable with a minimum of fuss. But See
Section 11.9.2 [Dynamic Binding Tips], page 151, for tips to avoid making your pro-
grams hard to understand.

• Calling a minor mode function from Lisp with a nil or omitted argument does not
enable the minor mode unconditionally; instead, it toggles the minor mode—which is
the straightforward thing to do, since that is the behavior when invoked interactively.
One downside is that it is more troublesome to enable minor modes from hooks; you
have to do something like

(add-hook ’foo-hook (lambda () (bar-mode 1)))

or define turn-on-bar-mode and call that from the hook.

• The prog-mode dummy major mode has been removed. Instead of using it as a crutch
to meet programming mode conventions, you should explicitly ensure that your mode
follows those conventions. See Section 23.2.1 [Major Mode Conventions], page 407.

• Emacs no longer supports bidirectional display and editing. Since there is no need to
worry about the insertion of right-to-left text messing up how lines and paragraphs
are displayed, the function bidi-string-mark-left-to-right has been removed; so
have many other functions and variables related to bidirectional display. Unicode
directionality characters like U+200E ("left-to-right mark") have no special effect on
display.

• Emacs windows now have most of their internal state hidden from Lisp. Internal
windows are no longer visible to Lisp; functions such as window-parent, window pa-
rameters related to window arrangement, and window-local buffer lists have all been
removed. Functions for resizing windows can delete windows if they become too small.

The “action function” feature for controlling buffer display has been removed, includ-
ing display-buffer-overriding-action and related variables, as well as the action
argument to display-buffer and other functions. The way to programmatically con-
trol how Emacs chooses a window to display a buffer is to bind the right combination
of pop-up-frames and other variables.

• The standard completion interface has been simplified, eliminating the completion-

extra-properties variable, the metadata action flag for completion functions, and
the concept of “completion categories”. Lisp programmers may now find the choice of
methods for tuning completion less bewildering, but if a package finds the streamlined

Appendix A: Emacs 23 Antinews 949

interface insufficient for its needs, it must implement its own specialized completion
feature.

• copy-directory now behaves the same whether or not the destination is an existing
directory: if the destination exists, the contents of the first directory are copied into it
(with subdirectories handled recursively), rather than copying the first directory into
a subdirectory.

• The trash arguments for delete-file and delete-directory have been removed.
The variable delete-by-moving-to-trash must now be used with care; whenever it
is non-nil, all calls to delete-file or delete-directory use the trash.

• Because Emacs no longer supports SELinux file contexts, the preserve-selinux-context
argument to copy-file has been removed. The return value of backup-buffer no
longer has an entry for the SELinux file context.

• For mouse click input events in the text area, the Y pixel coordinate in the position
list (see Section 21.7.4 [Click Events], page 336) now counts from the top of the header
line, if there is one, rather than the top of the text area.

• Bindings in menu keymaps (see Section 22.3 [Format of Keymaps], page 367) now
sometimes get an additional cache entry in their definitions, like this:

(type item-name cache . binding)

The cache entry is used internally by Emacs to record equivalent keyboard key se-
quences for invoking the same command; Lisp programs should never use it.

• The gnutls library has been removed, and the function open-network-stream corre-
spondingly simplified. Lisp programs that want an encrypted network connection must
now call external utilities such as starttls or gnutls-cli.

• Tool bars can no longer display separators, which frees up several pixels of space on
each graphical frame.

• As part of the ongoing quest for simplicity, many other functions and variables have
been eliminated.

Appendix B: GNU Free Documentation License 950

Appendix B GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008, 2009 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

http://fsf.org/

Appendix B: GNU Free Documentation License 951

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF

and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

Appendix B: GNU Free Documentation License 952

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

Appendix B: GNU Free Documentation License 953

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix B: GNU Free Documentation License 954

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix B: GNU Free Documentation License 955

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

Appendix B: GNU Free Documentation License 956

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

http://www.gnu.org/copyleft/

Appendix B: GNU Free Documentation License 957

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Appendix C: GNU General Public License 958

Appendix C GNU General Public License

Version 3, 29 June 2007

Copyright c© 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of
works.

The licenses for most software and other practical works are designed to take away your
freedom to share and change the works. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change all versions of a program—to make
sure it remains free software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to any other work
released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for them if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs,
and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking
you to surrender the rights. Therefore, you have certain responsibilities if you distribute
copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must pass on to the recipients the same freedoms that you received. You must make sure
that they, too, receive or can get the source code. And you must show them these terms so
they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copy-
right on the software, and (2) offer you this License giving you legal permission to copy,
distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no
warranty for this free software. For both users’ and authors’ sake, the GPL requires that
modified versions be marked as changed, so that their problems will not be attributed
erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the
software inside them, although the manufacturer can do so. This is fundamentally incom-
patible with the aim of protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to use, which is pre-
cisely where it is most unacceptable. Therefore, we have designed this version of the GPL
to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the
GPL, as needed to protect the freedom of users.

http://fsf.org/

Appendix C: GNU General Public License 959

Finally, every program is threatened constantly by software patents. States should not
allow patents to restrict development and use of software on general-purpose computers, but
in those that do, we wish to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL assures that patents cannot
be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each
licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or
organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting
work is called a “modified version” of the earlier work or a work “based on” the earlier
work.

A “covered work” means either the unmodified Program or a work based on the Pro-
gram.

To “propagate” a work means to do anything with it that, without permission, would
make you directly or secondarily liable for infringement under applicable copyright law,
except executing it on a computer or modifying a private copy. Propagation includes
copying, distribution (with or without modification), making available to the public,
and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make
or receive copies. Mere interaction with a user through a computer network, with no
transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate
copyright notice, and (2) tells the user that there is no warranty for the work (except
to the extent that warranties are provided), that licensees may convey the work under
this License, and how to view a copy of this License. If the interface presents a list
of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modi-
fications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined
by a recognized standards body, or, in the case of interfaces specified for a particular
programming language, one that is widely used among developers working in that
language.

Appendix C: GNU General Public License 960

The “System Libraries” of an executable work include anything, other than the work as
a whole, that (a) is included in the normal form of packaging a Major Component, but
which is not part of that Major Component, and (b) serves only to enable use of the
work with that Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A “Major Component”,
in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a
compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to
modify the work, including scripts to control those activities. However, it does not
include the work’s System Libraries, or general-purpose tools or generally available
free programs which are used unmodified in performing those activities but which are
not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries
and dynamically linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those subprograms
and other parts of the work.

The Corresponding Source need not include anything that users can regenerate auto-
matically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the
Program, and are irrevocable provided the stated conditions are met. This License ex-
plicitly affirms your unlimited permission to run the unmodified Program. The output
from running a covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your rights of fair use
or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without
conditions so long as your license otherwise remains in force. You may convey covered
works to others for the sole purpose of having them make modifications exclusively
for you, or provide you with facilities for running those works, provided that you
comply with the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for you must do
so exclusively on your behalf, under your direction and control, on terms that prohibit
them from making any copies of your copyrighted material outside their relationship
with you.

Conveying under any other circumstances is permitted solely under the conditions
stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under
any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty
adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention
of such measures.

Appendix C: GNU General Public License 961

When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention
to limit operation or modification of the work as a means of enforcing, against the
work’s users, your or third parties’ legal rights to forbid circumvention of technological
measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice; keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code; keep intact all
notices of the absence of any warranty; and give all recipients a copy of this License
along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from
the Program, in the form of source code under the terms of section 4, provided that
you also meet all of these conditions:

a. The work must carry prominent notices stating that you modified it, and giving a
relevant date.

b. The work must carry prominent notices stating that it is released under this Li-
cense and any conditions added under section 7. This requirement modifies the
requirement in section 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who
comes into possession of a copy. This License will therefore apply, along with any
applicable section 7 additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no permission to license
the work in any other way, but it does not invalidate such permission if you have
separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal
Notices; however, if the Program has interactive interfaces that do not display
Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which
are not by their nature extensions of the covered work, and which are not combined
with it such as to form a larger program, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the compilation and its resulting copyright are
not used to limit the access or legal rights of the compilation’s users beyond what the
individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and
5, provided that you also convey the machine-readable Corresponding Source under
the terms of this License, in one of these ways:

Appendix C: GNU General Public License 962

a. Convey the object code in, or embodied in, a physical product (including a phys-
ical distribution medium), accompanied by the Corresponding Source fixed on a
durable physical medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physi-
cal distribution medium), accompanied by a written offer, valid for at least three
years and valid for as long as you offer spare parts or customer support for that
product model, to give anyone who possesses the object code either (1) a copy of
the Corresponding Source for all the software in the product that is covered by this
License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this con-
veying of source, or (2) access to copy the Corresponding Source from a network
server at no charge.

c. Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally
and noncommercially, and only if you received the object code with such an offer,
in accord with subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for
a charge), and offer equivalent access to the Corresponding Source in the same
way through the same place at no further charge. You need not require recipients
to copy the Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source may be on
a different server (operated by you or a third party) that supports equivalent
copying facilities, provided you maintain clear directions next to the object code
saying where to find the Corresponding Source. Regardless of what server hosts
the Corresponding Source, you remain obligated to ensure that it is available for
as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered
to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Cor-
responding Source as a System Library, need not be included in conveying the object
code work.

A “User Product” is either (1) a “consumer product”, which means any tangible per-
sonal property which is normally used for personal, family, or household purposes, or
(2) anything designed or sold for incorporation into a dwelling. In determining whether
a product is a consumer product, doubtful cases shall be resolved in favor of coverage.
For a particular product received by a particular user, “normally used” refers to a
typical or common use of that class of product, regardless of the status of the par-
ticular user or of the way in which the particular user actually uses, or expects or is
expected to use, the product. A product is a consumer product regardless of whether
the product has substantial commercial, industrial or non-consumer uses, unless such
uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, autho-
rization keys, or other information required to install and execute modified versions of a
covered work in that User Product from a modified version of its Corresponding Source.

Appendix C: GNU General Public License 963

The information must suffice to ensure that the continued functioning of the modified
object code is in no case prevented or interfered with solely because modification has
been made.

If you convey an object code work under this section in, or with, or specifically for
use in, a User Product, and the conveying occurs as part of a transaction in which
the right of possession and use of the User Product is transferred to the recipient in
perpetuity or for a fixed term (regardless of how the transaction is characterized),
the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any
third party retains the ability to install modified object code on the User Product (for
example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement
to continue to provide support service, warranty, or updates for a work that has been
modified or installed by the recipient, or for the User Product in which it has been
modified or installed. Access to a network may be denied when the modification itself
materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with
this section must be in a format that is publicly documented (and with an implementa-
tion available to the public in source code form), and must require no special password
or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by mak-
ing exceptions from one or more of its conditions. Additional permissions that are
applicable to the entire Program shall be treated as though they were included in this
License, to the extent that they are valid under applicable law. If additional permis-
sions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard
to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any
additional permissions from that copy, or from any part of it. (Additional permissions
may be written to require their own removal in certain cases when you modify the
work.) You may place additional permissions on material, added by you to a covered
work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered
work, you may (if authorized by the copyright holders of that material) supplement
the terms of this License with terms:

a. Disclaiming warranty or limiting liability differently from the terms of sections 15
and 16 of this License; or

b. Requiring preservation of specified reasonable legal notices or author attributions
in that material or in the Appropriate Legal Notices displayed by works containing
it; or

c. Prohibiting misrepresentation of the origin of that material, or requiring that mod-
ified versions of such material be marked in reasonable ways as different from the
original version; or

Appendix C: GNU General Public License 964

d. Limiting the use for publicity purposes of names of licensors or authors of the
material; or

e. Declining to grant rights under trademark law for use of some trade names, trade-
marks, or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who
conveys the material (or modified versions of it) with contractual assumptions
of liability to the recipient, for any liability that these contractual assumptions
directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within
the meaning of section 10. If the Program as you received it, or any part of it, con-
tains a notice stating that it is governed by this License along with a term that is a
further restriction, you may remove that term. If a license document contains a further
restriction but permits relicensing or conveying under this License, you may add to a
covered work material governed by the terms of that license document, provided that
the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a
notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a sep-
arately written license, or stated as exceptions; the above requirements apply either
way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided un-
der this License. Any attempt otherwise to propagate or modify it is void, and will
automatically terminate your rights under this License (including any patent licenses
granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, you do not qualify to receive new
licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the
Program. Ancillary propagation of a covered work occurring solely as a consequence of
using peer-to-peer transmission to receive a copy likewise does not require acceptance.

Appendix C: GNU General Public License 965

However, nothing other than this License grants you permission to propagate or modify
any covered work. These actions infringe copyright if you do not accept this License.
Therefore, by modifying or propagating a covered work, you indicate your acceptance
of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license
from the original licensors, to run, modify and propagate that work, subject to this
License. You are not responsible for enforcing compliance by third parties with this
License.

An “entity transaction” is a transaction transferring control of an organization, or
substantially all assets of one, or subdividing an organization, or merging organizations.
If propagation of a covered work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever licenses to the work
the party’s predecessor in interest had or could give under the previous paragraph, plus
a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or
affirmed under this License. For example, you may not impose a license fee, royalty, or
other charge for exercise of rights granted under this License, and you may not initiate
litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent
claim is infringed by making, using, selling, offering for sale, or importing the Program
or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the
Program or a work on which the Program is based. The work thus licensed is called
the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by
the contributor, whether already acquired or hereafter acquired, that would be infringed
by some manner, permitted by this License, of making, using, or selling its contributor
version, but do not include claims that would be infringed only as a consequence of
further modification of the contributor version. For purposes of this definition, “con-
trol” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license
under the contributor’s essential patent claims, to make, use, sell, offer for sale, import
and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or com-
mitment, however denominated, not to enforce a patent (such as an express permission
to practice a patent or covenant not to sue for patent infringement). To “grant” such
a patent license to a party means to make such an agreement or commitment not to
enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corre-
sponding Source of the work is not available for anyone to copy, free of charge and under
the terms of this License, through a publicly available network server or other readily
accessible means, then you must either (1) cause the Corresponding Source to be so

Appendix C: GNU General Public License 966

available, or (2) arrange to deprive yourself of the benefit of the patent license for this
particular work, or (3) arrange, in a manner consistent with the requirements of this
License, to extend the patent license to downstream recipients. “Knowingly relying”
means you have actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work in a country,
would infringe one or more identifiable patents in that country that you have reason
to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey,
or propagate by procuring conveyance of, a covered work, and grant a patent license
to some of the parties receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the patent license you grant
is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its cover-
age, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the
rights that are specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is in the business of
distributing software, under which you make payment to the third party based on the
extent of your activity of conveying the work, and under which the third party grants,
to any of the parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work conveyed by you (or
copies made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into that
arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable
patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot convey a covered work so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree to terms that
obligate you to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this License would
be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or
combine any covered work with a work licensed under version 3 of the GNU Affero
General Public License into a single combined work, and to convey the resulting work.
The terms of this License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License, section 13,
concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

Appendix C: GNU General Public License 967

The Free Software Foundation may publish revised and/or new versions of the GNU
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that
a certain numbered version of the GNU General Public License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
numbered version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of the GNU General Public License,
you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU
General Public License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of your
choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IN-
CIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUS-
TAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given
local legal effect according to their terms, reviewing courts shall apply local law that
most closely approximates an absolute waiver of all civil liability in connection with
the Program, unless a warranty or assumption of liability accompanies a copy of the
Program in return for a fee.

Appendix C: GNU General Public License 968

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively state the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or (at

your option) any later version.

This program is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see http://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it
starts in an interactive mode:

program Copyright (C) year name of author

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, your program’s commands might be different; for a
GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to
sign a “copyright disclaimer” for the program, if necessary. For more information on this,
and how to apply and follow the GNU GPL, see http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider it more
useful to permit linking proprietary applications with the library. If this is what you want
to do, use the GNU Lesser General Public License instead of this License. But first, please
read http://www.gnu.org/philosophy/why-not-lgpl.html.

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
http://www.gnu.org/philosophy/why-not-lgpl.html

Appendix D: Tips and Conventions 969

Appendix D Tips and Conventions

This chapter describes no additional features of Emacs Lisp. Instead it gives advice on mak-
ing effective use of the features described in the previous chapters, and describes conventions
Emacs Lisp programmers should follow.

You can automatically check some of the conventions described below by running the
command M-x checkdoc RET when visiting a Lisp file. It cannot check all of the conven-
tions, and not all the warnings it gives necessarily correspond to problems, but it is worth
examining them all.

D.1 Emacs Lisp Coding Conventions

Here are conventions that you should follow when writing Emacs Lisp code intended for
widespread use:

• Simply loading a package should not change Emacs’s editing behavior. Include a com-
mand or commands to enable and disable the feature, or to invoke it.

This convention is mandatory for any file that includes custom definitions. If fixing
such a file to follow this convention requires an incompatible change, go ahead and
make the incompatible change; don’t postpone it.

• You should choose a short word to distinguish your program from other Lisp programs.
The names of all global variables, constants, and functions in your program should begin
with that chosen prefix. Separate the prefix from the rest of the name with a hyphen,
‘-’. This practice helps avoid name conflicts, since all global variables in Emacs Lisp
share the same name space, and all functions share another name space1.

Occasionally, for a command name intended for users to use, it is more convenient
if some words come before the package’s name prefix. And constructs that define
functions, variables, etc., work better if they start with ‘defun’ or ‘defvar’, so put the
name prefix later on in the name.

This recommendation applies even to names for traditional Lisp primitives that are not
primitives in Emacs Lisp—such as copy-list. Believe it or not, there is more than one
plausible way to define copy-list. Play it safe; append your name prefix to produce
a name like foo-copy-list or mylib-copy-list instead.

If you write a function that you think ought to be added to Emacs under a certain
name, such as twiddle-files, don’t call it by that name in your program. Call it
mylib-twiddle-files in your program, and send mail to ‘bug-gnu-emacs@gnu.org’
suggesting we add it to Emacs. If and when we do, we can change the name easily
enough.

If one prefix is insufficient, your package can use two or three alternative common
prefixes, so long as they make sense.

• Put a call to provide at the end of each separate Lisp file. See Section 15.7 [Named
Features], page 224.

• If a file requires certain other Lisp programs to be loaded beforehand, then the com-
ments at the beginning of the file should say so. Also, use require to make sure they
are loaded. See Section 15.7 [Named Features], page 224.

1 The benefits of a Common Lisp-style package system are considered not to outweigh the costs.

Appendix D: Tips and Conventions 970

• If a file foo uses a macro defined in another file bar, but does not use any functions or
variables defined in bar, then foo should contain the following expression:

(eval-when-compile (require ’bar))

This tells Emacs to load bar just before byte-compiling foo, so that the macro definition
is available during compilation. Using eval-when-compile avoids loading bar when
the compiled version of foo is used. It should be called before the first use of the macro
in the file. See Section 13.3 [Compiling Macros], page 189.

• Avoid loading additional libraries at run time unless they are really needed. If your file
simply cannot work without some other library, then just require that library at the
top-level and be done with it. But if your file contains several independent features,
and only one or two require the extra library, then consider putting require statements
inside the relevant functions rather than at the top-level. Or use autoload statements
to load the extra library when needed. This way people who don’t use those aspects
of your file do not need to load the extra library.

• If you need Common Lisp extensions, use the cl-lib library rather than the old cl

library. The latter does not use a clean namespace (i.e., its definitions do not start with
a ‘cl-’ prefix). If your package loads cl at run time, that could cause name clashes for
users who don’t use that package.

There is no problem with using the cl package at compile time, with (eval-when-

compile (require ’cl)). That’s sufficient for using the macros in the cl package,
because the compiler expands them before generating the byte-code. It is still better
to use the more modern cl-lib in this case, though.

• When defining a major mode, please follow the major mode conventions. See
Section 23.2.1 [Major Mode Conventions], page 407.

• When defining a minor mode, please follow the minor mode conventions. See
Section 23.3.1 [Minor Mode Conventions], page 421.

• If the purpose of a function is to tell you whether a certain condition is true or false,
give the function a name that ends in ‘p’ (which stands for “predicate”). If the name
is one word, add just ‘p’; if the name is multiple words, add ‘-p’. Examples are framep
and frame-live-p.

• If the purpose of a variable is to store a single function, give it a name that ends in
‘-function’. If the purpose of a variable is to store a list of functions (i.e., the variable
is a hook), please follow the naming conventions for hooks. See Section 23.1 [Hooks],
page 404.

• If loading the file adds functions to hooks, define a function feature-unload-hook,
where feature is the name of the feature the package provides, and make it undo any
such changes. Using unload-feature to unload the file will run this function. See
Section 15.9 [Unloading], page 227.

• It is a bad idea to define aliases for the Emacs primitives. Normally you should use the
standard names instead. The case where an alias may be useful is where it facilitates
backwards compatibility or portability.

• If a package needs to define an alias or a new function for compatibility with some
other version of Emacs, name it with the package prefix, not with the raw name with
which it occurs in the other version. Here is an example from Gnus, which provides
many examples of such compatibility issues.

Appendix D: Tips and Conventions 971

(defalias ’gnus-point-at-bol

(if (fboundp ’point-at-bol)

’point-at-bol

’line-beginning-position))

• Redefining or advising an Emacs primitive is a bad idea. It may do the right thing
for a particular program, but there is no telling what other programs might break as a
result.

• It is likewise a bad idea for one Lisp package to advise a function in another Lisp
package (see Chapter 17 [Advising Functions], page 239).

• Avoid using eval-after-load in libraries and packages (see Section 15.10 [Hooks for
Loading], page 227). This feature is meant for personal customizations; using it in a
Lisp program is unclean, because it modifies the behavior of another Lisp file in a way
that’s not visible in that file. This is an obstacle for debugging, much like advising a
function in the other package.

• If a file does replace any of the standard functions or library programs of Emacs, promi-
nent comments at the beginning of the file should say which functions are replaced,
and how the behavior of the replacements differs from that of the originals.

• Constructs that define a function or variable should be macros, not functions, and their
names should start with ‘define-’. The macro should receive the name to be defined
as the first argument. That will help various tools find the definition automatically.
Avoid constructing the names in the macro itself, since that would confuse these tools.

• In some other systems there is a convention of choosing variable names that begin and
end with ‘*’. We don’t use that convention in Emacs Lisp, so please don’t use it in
your programs. (Emacs uses such names only for special-purpose buffers.) People will
find Emacs more coherent if all libraries use the same conventions.

• If your program contains non-ASCII characters in string or character constants, you
should make sure Emacs always decodes these characters the same way, regardless of
the user’s settings. The easiest way to do this is to use the coding system utf-8-emacs

(see Section 33.9.1 [Coding System Basics], page 716), and specify that coding in the
‘-*-’ line or the local variables list. See Section “Local Variables in Files” in The GNU
Emacs Manual.

;; XXX.el -*- coding: utf-8-emacs; -*-

• Indent the file using the default indentation parameters.

• Don’t make a habit of putting close-parentheses on lines by themselves; Lisp program-
mers find this disconcerting.

• Please put a copyright notice and copying permission notice on the file if you distribute
copies. See Section D.8 [Library Headers], page 979.

D.2 Key Binding Conventions

• Many special major modes, like Dired, Info, Compilation, and Occur, are designed to
handle read-only text that contains hyper-links. Such a major mode should redefine
mouse-2 and RET to follow the links. It should also set up a follow-link condition,
so that the link obeys mouse-1-click-follows-link. See Section 32.19.8 [Clickable

Appendix D: Tips and Conventions 972

Text], page 693. See Section 38.17 [Buttons], page 890, for an easy method of imple-
menting such clickable links.

• Don’t define C-c letter as a key in Lisp programs. Sequences consisting of C-c and
a letter (either upper or lower case) are reserved for users; they are the only sequences
reserved for users, so do not block them.

Changing all the Emacs major modes to respect this convention was a lot of work;
abandoning this convention would make that work go to waste, and inconvenience
users. Please comply with it.

• Function keys F5 through F9 without modifier keys are also reserved for users to define.

• Sequences consisting of C-c followed by a control character or a digit are reserved for
major modes.

• Sequences consisting of C-c followed by {, }, <, >, : or ; are also reserved for major
modes.

• Sequences consisting of C-c followed by any other punctuation character are allocated
for minor modes. Using them in a major mode is not absolutely prohibited, but if you
do that, the major mode binding may be shadowed from time to time by minor modes.

• Don’t bind C-h following any prefix character (including C-c). If you don’t bind C-h, it
is automatically available as a help character for listing the subcommands of the prefix
character.

• Don’t bind a key sequence ending in ESC except following another ESC. (That is, it is
OK to bind a sequence ending in ESC ESC.)

The reason for this rule is that a non-prefix binding for ESC in any context prevents
recognition of escape sequences as function keys in that context.

• Similarly, don’t bind a key sequence ending in C-g, since that is commonly used to
cancel a key sequence.

• Anything that acts like a temporary mode or state that the user can enter and leave
should define ESC ESC or ESC ESC ESC as a way to escape.

For a state that accepts ordinary Emacs commands, or more generally any kind of state
in which ESC followed by a function key or arrow key is potentially meaningful, then you
must not define ESC ESC, since that would preclude recognizing an escape sequence after
ESC. In these states, you should define ESC ESC ESC as the way to escape. Otherwise,
define ESC ESC instead.

D.3 Emacs Programming Tips

Following these conventions will make your program fit better into Emacs when it runs.

• Don’t use next-line or previous-line in programs; nearly always, forward-line
is more convenient as well as more predictable and robust. See Section 30.2.4 [Text
Lines], page 626.

• Don’t call functions that set the mark, unless setting the mark is one of the intended
features of your program. The mark is a user-level feature, so it is incorrect to change
the mark except to supply a value for the user’s benefit. See Section 31.7 [The Mark],
page 640.

In particular, don’t use any of these functions:

Appendix D: Tips and Conventions 973

• beginning-of-buffer, end-of-buffer

• replace-string, replace-regexp

• insert-file, insert-buffer

If you just want to move point, or replace a certain string, or insert a file or buffer’s
contents, without any of the other features intended for interactive users, you can
replace these functions with one or two lines of simple Lisp code.

• Use lists rather than vectors, except when there is a particular reason to use a vector.
Lisp has more facilities for manipulating lists than for vectors, and working with lists
is usually more convenient.

Vectors are advantageous for tables that are substantial in size and are accessed in
random order (not searched front to back), provided there is no need to insert or delete
elements (only lists allow that).

• The recommended way to show a message in the echo area is with the message function,
not princ. See Section 38.4 [The Echo Area], page 825.

• When you encounter an error condition, call the function error (or signal). The
function error does not return. See Section 10.5.3.1 [Signaling Errors], page 132.

Don’t use message, throw, sleep-for, or beep to report errors.

• An error message should start with a capital letter but should not end with a period.

• A question asked in the minibuffer with yes-or-no-p or y-or-n-p should start with a
capital letter and end with ‘? ’.

• When you mention a default value in a minibuffer prompt, put it and the word
‘default’ inside parentheses. It should look like this:

Enter the answer (default 42):

• In interactive, if you use a Lisp expression to produce a list of arguments, don’t
try to provide the “correct” default values for region or position arguments. Instead,
provide nil for those arguments if they were not specified, and have the function body
compute the default value when the argument is nil. For instance, write this:

(defun foo (pos)

(interactive

(list (if specified specified-pos)))

(unless pos (setq pos default-pos))

...)

rather than this:

(defun foo (pos)

(interactive

(list (if specified specified-pos

default-pos)))

...)

This is so that repetition of the command will recompute these defaults based on the
current circumstances.

You do not need to take such precautions when you use interactive specs ‘d’, ‘m’ and
‘r’, because they make special arrangements to recompute the argument values on
repetition of the command.

Appendix D: Tips and Conventions 974

• Many commands that take a long time to execute display a message that says something
like ‘Operating...’ when they start, and change it to ‘Operating...done’ when they
finish. Please keep the style of these messages uniform: no space around the ellipsis,
and no period after ‘done’. See Section 38.4.2 [Progress], page 826, for an easy way to
generate such messages.

• Try to avoid using recursive edits. Instead, do what the Rmail e command does: use
a new local keymap that contains a command defined to switch back to the old local
keymap. Or simply switch to another buffer and let the user switch back at will. See
Section 21.13 [Recursive Editing], page 361.

D.4 Tips for Making Compiled Code Fast

Here are ways of improving the execution speed of byte-compiled Lisp programs.

• Profile your program, to find out where the time is being spent. See Section 18.5
[Profiling], page 279.

• Use iteration rather than recursion whenever possible. Function calls are slow in Emacs
Lisp even when a compiled function is calling another compiled function.

• Using the primitive list-searching functions memq, member, assq, or assoc is even faster
than explicit iteration. It can be worth rearranging a data structure so that one of
these primitive search functions can be used.

• Certain built-in functions are handled specially in byte-compiled code, avoiding the
need for an ordinary function call. It is a good idea to use these functions rather than
alternatives. To see whether a function is handled specially by the compiler, examine
its byte-compile property. If the property is non-nil, then the function is handled
specially.

For example, the following input will show you that aref is compiled specially (see
Section 6.3 [Array Functions], page 91):

(get ’aref ’byte-compile)

⇒ byte-compile-two-args

Note that in this case (and many others), you must first load the bytecomp library,
which defines the byte-compile property.

• If calling a small function accounts for a substantial part of your program’s running
time, make the function inline. This eliminates the function call overhead. Since
making a function inline reduces the flexibility of changing the program, don’t do it
unless it gives a noticeable speedup in something slow enough that users care about
the speed. See Section 12.11 [Inline Functions], page 183.

D.5 Tips for Avoiding Compiler Warnings

• Try to avoid compiler warnings about undefined free variables, by adding dummy
defvar definitions for these variables, like this:

(defvar foo)

Such a definition has no effect except to tell the compiler not to warn about uses of
the variable foo in this file.

Appendix D: Tips and Conventions 975

• Similarly, to avoid a compiler warning about an undefined function that you know will
be defined, use a declare-function statement (see Section 12.13 [Declaring Functions],
page 185).

• If you use many functions and variables from a certain file, you can add a require for
that package to avoid compilation warnings for them. For instance,

(eval-when-compile

(require ’foo))

• If you bind a variable in one function, and use it or set it in another function, the
compiler warns about the latter function unless the variable has a definition. But
adding a definition would be unclean if the variable has a short name, since Lisp
packages should not define short variable names. The right thing to do is to rename
this variable to start with the name prefix used for the other functions and variables
in your package.

• The last resort for avoiding a warning, when you want to do something that is usually
a mistake but you know is not a mistake in your usage, is to put it inside with-no-

warnings. See Section 16.6 [Compiler Errors], page 234.

D.6 Tips for Documentation Strings

Here are some tips and conventions for the writing of documentation strings. You can check
many of these conventions by running the command M-x checkdoc-minor-mode.

• Every command, function, or variable intended for users to know about should have a
documentation string.

• An internal variable or subroutine of a Lisp program might as well have a documenta-
tion string. Documentation strings take up very little space in a running Emacs.

• Format the documentation string so that it fits in an Emacs window on an 80-column
screen. It is a good idea for most lines to be no wider than 60 characters. The first line
should not be wider than 67 characters or it will look bad in the output of apropos.

You can fill the text if that looks good. However, rather than blindly filling the entire
documentation string, you can often make it much more readable by choosing certain
line breaks with care. Use blank lines between sections if the documentation string is
long.

• The first line of the documentation string should consist of one or two complete sen-
tences that stand on their own as a summary. M-x apropos displays just the first line,
and if that line’s contents don’t stand on their own, the result looks bad. In particular,
start the first line with a capital letter and end it with a period.

For a function, the first line should briefly answer the question, “What does this func-
tion do?” For a variable, the first line should briefly answer the question, “What does
this value mean?”

Don’t limit the documentation string to one line; use as many lines as you need to
explain the details of how to use the function or variable. Please use complete sentences
for the rest of the text too.

• When the user tries to use a disabled command, Emacs displays just the first paragraph
of its documentation string—everything through the first blank line. If you wish, you

Appendix D: Tips and Conventions 976

can choose which information to include before the first blank line so as to make this
display useful.

• The first line should mention all the important arguments of the function, and should
mention them in the order that they are written in a function call. If the function
has many arguments, then it is not feasible to mention them all in the first line; in
that case, the first line should mention the first few arguments, including the most
important arguments.

• When a function’s documentation string mentions the value of an argument of the
function, use the argument name in capital letters as if it were a name for that value.
Thus, the documentation string of the function eval refers to its first argument as
‘FORM’, because the actual argument name is form:

Evaluate FORM and return its value.

Also write metasyntactic variables in capital letters, such as when you show the decom-
position of a list or vector into subunits, some of which may vary. ‘KEY’ and ‘VALUE’ in
the following example illustrate this practice:

The argument TABLE should be an alist whose elements

have the form (KEY . VALUE). Here, KEY is ...

• Never change the case of a Lisp symbol when you mention it in a doc string. If the
symbol’s name is foo, write “foo”, not “Foo” (which is a different symbol).

This might appear to contradict the policy of writing function argument values, but
there is no real contradiction; the argument value is not the same thing as the symbol
that the function uses to hold the value.

If this puts a lower-case letter at the beginning of a sentence and that annoys you,
rewrite the sentence so that the symbol is not at the start of it.

• Do not start or end a documentation string with whitespace.

• Do not indent subsequent lines of a documentation string so that the text is lined up
in the source code with the text of the first line. This looks nice in the source code,
but looks bizarre when users view the documentation. Remember that the indentation
before the starting double-quote is not part of the string!

• When a documentation string refers to a Lisp symbol, write it as it would be printed
(which usually means in lower case), with single-quotes around it. For example:
‘‘lambda’’. There are two exceptions: write t and nil without single-quotes.

Help mode automatically creates a hyperlink when a documentation string uses a sym-
bol name inside single quotes, if the symbol has either a function or a variable definition.
You do not need to do anything special to make use of this feature. However, when a
symbol has both a function definition and a variable definition, and you want to refer
to just one of them, you can specify which one by writing one of the words ‘variable’,
‘option’, ‘function’, or ‘command’, immediately before the symbol name. (Case makes
no difference in recognizing these indicator words.) For example, if you write

This function sets the variable ‘buffer-file-name’.

then the hyperlink will refer only to the variable documentation of buffer-file-name,
and not to its function documentation.

Appendix D: Tips and Conventions 977

If a symbol has a function definition and/or a variable definition, but those are irrelevant
to the use of the symbol that you are documenting, you can write the words ‘symbol’
or ‘program’ before the symbol name to prevent making any hyperlink. For example,

If the argument KIND-OF-RESULT is the symbol ‘list’,

this function returns a list of all the objects

that satisfy the criterion.

does not make a hyperlink to the documentation, irrelevant here, of the function list.

Normally, no hyperlink is made for a variable without variable documentation. You can
force a hyperlink for such variables by preceding them with one of the words ‘variable’
or ‘option’.

Hyperlinks for faces are only made if the face name is preceded or followed by the word
‘face’. In that case, only the face documentation will be shown, even if the symbol is
also defined as a variable or as a function.

To make a hyperlink to Info documentation, write the name of the Info node (or anchor)
in single quotes, preceded by ‘info node’, ‘Info node’, ‘info anchor’ or ‘Info anchor’.
The Info file name defaults to ‘emacs’. For example,

See Info node ‘Font Lock’ and Info node ‘(elisp)Font Lock Basics’.

Finally, to create a hyperlink to URLs, write the URL in single quotes, preceded by
‘URL’. For example,

The home page for the GNU project has more information (see URL

‘http://www.gnu.org/’).

• Don’t write key sequences directly in documentation strings. Instead, use the ‘\\[...]’
construct to stand for them. For example, instead of writing ‘C-f’, write the construct
‘\\[forward-char]’. When Emacs displays the documentation string, it substitutes
whatever key is currently bound to forward-char. (This is normally ‘C-f’, but it may
be some other character if the user has moved key bindings.) See Section 24.3 [Keys
in Documentation], page 462.

• In documentation strings for a major mode, you will want to refer to the key bindings of
that mode’s local map, rather than global ones. Therefore, use the construct ‘\\<...>’
once in the documentation string to specify which key map to use. Do this before the
first use of ‘\\[...]’. The text inside the ‘\\<...>’ should be the name of the variable
containing the local keymap for the major mode.

It is not practical to use ‘\\[...]’ very many times, because display of the documen-
tation string will become slow. So use this to describe the most important commands
in your major mode, and then use ‘\\{...}’ to display the rest of the mode’s keymap.

• For consistency, phrase the verb in the first sentence of a function’s documentation
string as an imperative—for instance, use “Return the cons of A and B.” in preference
to “Returns the cons of A and B.” Usually it looks good to do likewise for the rest
of the first paragraph. Subsequent paragraphs usually look better if each sentence is
indicative and has a proper subject.

• The documentation string for a function that is a yes-or-no predicate should start with
words such as “Return t if”, to indicate explicitly what constitutes “truth”. The word
“return” avoids starting the sentence with lower-case “t”, which could be somewhat
distracting.

Appendix D: Tips and Conventions 978

• If a line in a documentation string begins with an open-parenthesis, write a backslash
before the open-parenthesis, like this:

The argument FOO can be either a number

\(a buffer position) or a string (a file name).

This prevents the open-parenthesis from being treated as the start of a defun (see
Section “Defuns” in The GNU Emacs Manual).

• Write documentation strings in the active voice, not the passive, and in the present
tense, not the future. For instance, use “Return a list containing A and B.” instead of
“A list containing A and B will be returned.”

• Avoid using the word “cause” (or its equivalents) unnecessarily. Instead of, “Cause
Emacs to display text in boldface”, write just “Display text in boldface”.

• Avoid using “iff” (a mathematics term meaning “if and only if”), since many people
are unfamiliar with it and mistake it for a typo. In most cases, the meaning is clear
with just “if”. Otherwise, try to find an alternate phrasing that conveys the meaning.

• When a command is meaningful only in a certain mode or situation, do mention that
in the documentation string. For example, the documentation of dired-find-file is:

In Dired, visit the file or directory named on this line.

• When you define a variable that represents an option users might want to set, use
defcustom. See Section 11.5 [Defining Variables], page 145.

• The documentation string for a variable that is a yes-or-no flag should start with words
such as “Non-nil means”, to make it clear that all non-nil values are equivalent and
indicate explicitly what nil and non-nil mean.

D.7 Tips on Writing Comments

We recommend these conventions for comments:

‘;’ Comments that start with a single semicolon, ‘;’, should all be aligned to the
same column on the right of the source code. Such comments usually explain
how the code on that line does its job. For example:

(setq base-version-list ; there was a base

(assoc (substring fn 0 start-vn) ; version to which

file-version-assoc-list)) ; this looks like

; a subversion

‘;;’ Comments that start with two semicolons, ‘;;’, should be aligned to the same
level of indentation as the code. Such comments usually describe the purpose
of the following lines or the state of the program at that point. For example:

(prog1 (setq auto-fill-function

...

...

;; Update mode line.

(force-mode-line-update)))

We also normally use two semicolons for comments outside functions.
;; This Lisp code is run in Emacs when it is to operate as

;; a server for other processes.

If a function has no documentation string, it should instead have a
two-semicolon comment right before the function, explaining what the function

Appendix D: Tips and Conventions 979

does and how to call it properly. Explain precisely what each argument means
and how the function interprets its possible values. It is much better to
convert such comments to documentation strings, though.

‘;;;’ Comments that start with three semicolons, ‘;;;’, should start at the left mar-
gin. These are used, occasionally, for comments within functions that should
start at the margin. We also use them sometimes for comments that are be-
tween functions—whether to use two or three semicolons depends on whether
the comment should be considered a “heading” by Outline minor mode. By
default, comments starting with at least three semicolons (followed by a sin-
gle space and a non-whitespace character) are considered headings, comments
starting with two or fewer are not.

Another use for triple-semicolon comments is for commenting out lines within a
function. We use three semicolons for this precisely so that they remain at the
left margin. By default, Outline minor mode does not consider a comment to
be a heading (even if it starts with at least three semicolons) if the semicolons
are followed by at least two spaces. Thus, if you add an introductory comment
to the commented out code, make sure to indent it by at least two spaces after
the three semicolons.

(defun foo (a)

;;; This is no longer necessary.

;;; (force-mode-line-update)

(message "Finished with %s" a))

When commenting out entire functions, use two semicolons.

‘;;;;’ Comments that start with four semicolons, ‘;;;;’, should be aligned to the left
margin and are used for headings of major sections of a program. For example:

;;;; The kill ring

Generally speaking, the M-; (comment-dwim) command automatically starts a comment of
the appropriate type; or indents an existing comment to the right place, depending on the
number of semicolons. See Section “Manipulating Comments” in The GNU Emacs Manual.

D.8 Conventional Headers for Emacs Libraries

Emacs has conventions for using special comments in Lisp libraries to divide them into
sections and give information such as who wrote them. Using a standard format for these
items makes it easier for tools (and people) to extract the relevant information. This section
explains these conventions, starting with an example:

;;; foo.el --- Support for the Foo programming language

;; Copyright (C) 2010-2013 Your Name

;; Author: Your Name <yourname@example.com>

;; Maintainer: Someone Else <someone@example.com>

;; Created: 14 Jul 2010

Appendix D: Tips and Conventions 980

;; Keywords: languages

;; This file is not part of GNU Emacs.

;; This file is free software...

...

;; along with this file. If not, see <http://www.gnu.org/licenses/>.

The very first line should have this format:

;;; filename --- description

The description should be contained in one line. If the file needs a ‘-*-’ specification, put
it after description. If this would make the first line too long, use a Local Variables section
at the end of the file.

The copyright notice usually lists your name (if you wrote the file). If you have an
employer who claims copyright on your work, you might need to list them instead. Do
not say that the copyright holder is the Free Software Foundation (or that the file is part
of GNU Emacs) unless your file has been accepted into the Emacs distribution. For more
information on the form of copyright and license notices, see the guide on the GNU website.

After the copyright notice come several header comment lines, each beginning with ‘;;
header-name:’. Here is a table of the conventional possibilities for header-name:

‘Author’ This line states the name and email address of at least the principal author of
the library. If there are multiple authors, list them on continuation lines led by
;; and whitespace (this is easier for tools to parse than having more than one
author on one line). We recommend including a contact email address, of the
form ‘<...>’. For example:

;; Author: Your Name <yourname@example.com>

;; Someone Else <someone@example.com>

;; Another Person <another@example.com>

‘Maintainer’
This header has the same format as the Author header. It lists the person(s)
who currently maintain(s) the file (respond to bug reports, etc.).

If there is no maintainer line, the person(s) in the Author field is/are presumed
to be the maintainers. Some files in Emacs use ‘FSF’ for the maintainer. This
means that the original author is no longer responsible for the file, and that it
is maintained as part of Emacs.

‘Created’ This optional line gives the original creation date of the file, and is for historical
interest only.

‘Version’ If you wish to record version numbers for the individual Lisp program, put them
in this line. Lisp files distributed with Emacs generally do not have a ‘Version’
header, since the version number of Emacs itself serves the same purpose. If
you are distributing a collection of multiple files, we recommend not writing
the version in every file, but only the main one.

‘Keywords’
This line lists keywords for the finder-by-keyword help command. Please use
that command to see a list of the meaningful keywords.

http://www.gnu.org/licenses/gpl-howto.html

Appendix D: Tips and Conventions 981

This field is how people will find your package when they’re looking for things
by topic. To separate the keywords, you can use spaces, commas, or both.

The name of this field is unfortunate, since people often assume it is the place
to write arbitrary keywords that describe their package, rather than just the
relevant Finder keywords.

‘Package-Version’
If ‘Version’ is not suitable for use by the package manager, then a package can
define ‘Package-Version’; it will be used instead. This is handy if ‘Version’ is
an RCS id or something else that cannot be parsed by version-to-list. See
Section 40.1 [Packaging Basics], page 943.

‘Package-Requires’
If this exists, it names packages on which the current package depends for
proper operation. See Section 40.1 [Packaging Basics], page 943. This is used
by the package manager both at download time (to ensure that a complete set
of packages is downloaded) and at activation time (to ensure that a package is
only activated if all its dependencies have been).

Its format is a list of lists. The car of each sub-list is the name of a package, as
a symbol. The cadr of each sub-list is the minimum acceptable version number,
as a string. For instance:

;; Package-Requires: ((gnus "1.0") (bubbles "2.7.2"))

The package code automatically defines a package named ‘emacs’ with the ver-
sion number of the currently running Emacs. This can be used to require a
minimal version of Emacs for a package.

Just about every Lisp library ought to have the ‘Author’ and ‘Keywords’ header comment
lines. Use the others if they are appropriate. You can also put in header lines with other
header names—they have no standard meanings, so they can’t do any harm.

We use additional stylized comments to subdivide the contents of the library file. These
should be separated from anything else by blank lines. Here is a table of them:

‘;;; Commentary:’
This begins introductory comments that explain how the library works. It
should come right after the copying permissions, terminated by a ‘Change Log’,
‘History’ or ‘Code’ comment line. This text is used by the Finder package, so
it should make sense in that context.

‘;;; Change Log:’
This begins an optional log of changes to the file over time. Don’t put too
much information in this section—it is better to keep the detailed logs in a
separate ChangeLog file (as Emacs does), and/or to use a version control system.
‘History’ is an alternative to ‘Change Log’.

‘;;; Code:’
This begins the actual code of the program.

‘;;; filename ends here’
This is the footer line; it appears at the very end of the file. Its purpose is to
enable people to detect truncated versions of the file from the lack of a footer
line.

Appendix E: GNU Emacs Internals 982

Appendix E GNU Emacs Internals

This chapter describes how the runnable Emacs executable is dumped with the preloaded
Lisp libraries in it, how storage is allocated, and some internal aspects of GNU Emacs that
may be of interest to C programmers.

E.1 Building Emacs

This section explains the steps involved in building the Emacs executable. You don’t have
to know this material to build and install Emacs, since the makefiles do all these things
automatically. This information is pertinent to Emacs developers.

Compilation of the C source files in the src directory produces an executable file called
temacs, also called a bare impure Emacs. It contains the Emacs Lisp interpreter and I/O
routines, but not the editing commands.

The command temacs -l loadup would run temacs and direct it to load loadup.el.
The loadup library loads additional Lisp libraries, which set up the normal Emacs editing
environment. After this step, the Emacs executable is no longer bare.

Because it takes some time to load the standard Lisp files, the temacs executable usually
isn’t run directly by users. Instead, as one of the last steps of building Emacs, the com-
mand ‘temacs -batch -l loadup dump’ is run. The special ‘dump’ argument causes temacs
to dump out an executable program, called emacs, which has all the standard Lisp files
preloaded. (The ‘-batch’ argument prevents temacs from trying to initialize any of its
data on the terminal, so that the tables of terminal information are empty in the dumped
Emacs.)

The dumped emacs executable (also called a pure Emacs) is the one which is installed.
The variable preloaded-file-list stores a list of the Lisp files preloaded into the dumped
Emacs. If you port Emacs to a new operating system, and are not able to implement
dumping, then Emacs must load loadup.el each time it starts.

You can specify additional files to preload by writing a library named site-load.el

that loads them. You may need to rebuild Emacs with an added definition

#define SITELOAD_PURESIZE_EXTRA n

to make n added bytes of pure space to hold the additional files; see src/puresize.h. (Try
adding increments of 20000 until it is big enough.) However, the advantage of preloading
additional files decreases as machines get faster. On modern machines, it is usually not
advisable.

After loadup.el reads site-load.el, it finds the documentation strings for primitive
and preloaded functions (and variables) in the file etc/DOC where they are stored, by calling
Snarf-documentation (see [Accessing Documentation], page 462).

You can specify other Lisp expressions to execute just before dumping by putting them
in a library named site-init.el. This file is executed after the documentation strings are
found.

If you want to preload function or variable definitions, there are three ways you can do
this and make their documentation strings accessible when you subsequently run Emacs:

• Arrange to scan these files when producing the etc/DOC file, and load them with site-

load.el.

Appendix E: GNU Emacs Internals 983

• Load the files with site-init.el, then copy the files into the installation directory for
Lisp files when you install Emacs.

• Specify a nil value for byte-compile-dynamic-docstrings as a local variable in each
of these files, and load them with either site-load.el or site-init.el. (This method
has the drawback that the documentation strings take up space in Emacs all the time.)

It is not advisable to put anything in site-load.el or site-init.el that would alter
any of the features that users expect in an ordinary unmodified Emacs. If you feel you must
override normal features for your site, do it with default.el, so that users can override
your changes if they wish. See Section 39.1.1 [Startup Summary], page 910.

In a package that can be preloaded, it is sometimes necessary (or useful) to delay certain
evaluations until Emacs subsequently starts up. The vast majority of such cases relate to the
values of customizable variables. For example, tutorial-directory is a variable defined in
startup.el, which is preloaded. The default value is set based on data-directory. The
variable needs to access the value of data-directory when Emacs starts, not when it is
dumped, because the Emacs executable has probably been installed in a different location
since it was dumped.

[Function]custom-initialize-delay symbol value
This function delays the initialization of symbol to the next Emacs start. You nor-
mally use this function by specifying it as the :initialize property of a customizable
variable. (The argument value is unused, and is provided only for compatibility with
the form Custom expects.)

In the unlikely event that you need a more general functionality than custom-

initialize-delay provides, you can use before-init-hook (see Section 39.1.1 [Startup
Summary], page 910).

[Function]dump-emacs to-file from-file
This function dumps the current state of Emacs into an executable file to-file. It takes
symbols from from-file (this is normally the executable file temacs).

If you want to use this function in an Emacs that was already dumped, you must run
Emacs with ‘-batch’.

E.2 Pure Storage

Emacs Lisp uses two kinds of storage for user-created Lisp objects: normal storage and
pure storage. Normal storage is where all the new data created during an Emacs session
are kept (see Section E.3 [Garbage Collection], page 984). Pure storage is used for certain
data in the preloaded standard Lisp files—data that should never change during actual use
of Emacs.

Pure storage is allocated only while temacs is loading the standard preloaded Lisp li-
braries. In the file emacs, it is marked as read-only (on operating systems that permit
this), so that the memory space can be shared by all the Emacs jobs running on the ma-
chine at once. Pure storage is not expandable; a fixed amount is allocated when Emacs is
compiled, and if that is not sufficient for the preloaded libraries, temacs allocates dynamic
memory for the part that didn’t fit. The resulting image will work, but garbage collection
(see Section E.3 [Garbage Collection], page 984) is disabled in this situation, causing a

Appendix E: GNU Emacs Internals 984

memory leak. Such an overflow normally won’t happen unless you try to preload additional
libraries or add features to the standard ones. Emacs will display a warning about the
overflow when it starts. If this happens, you should increase the compilation parameter
SYSTEM_PURESIZE_EXTRA in the file src/puresize.h and rebuild Emacs.

[Function]purecopy object
This function makes a copy in pure storage of object, and returns it. It copies a string
by simply making a new string with the same characters, but without text properties,
in pure storage. It recursively copies the contents of vectors and cons cells. It does
not make copies of other objects such as symbols, but just returns them unchanged.
It signals an error if asked to copy markers.

This function is a no-op except while Emacs is being built and dumped; it is usually
called only in preloaded Lisp files.

[Variable]pure-bytes-used
The value of this variable is the number of bytes of pure storage allocated so far.
Typically, in a dumped Emacs, this number is very close to the total amount of pure
storage available—if it were not, we would preallocate less.

[Variable]purify-flag
This variable determines whether defun should make a copy of the function definition
in pure storage. If it is non-nil, then the function definition is copied into pure
storage.

This flag is t while loading all of the basic functions for building Emacs initially
(allowing those functions to be shareable and non-collectible). Dumping Emacs as an
executable always writes nil in this variable, regardless of the value it actually has
before and after dumping.

You should not change this flag in a running Emacs.

E.3 Garbage Collection

When a program creates a list or the user defines a new function (such as by loading a
library), that data is placed in normal storage. If normal storage runs low, then Emacs
asks the operating system to allocate more memory. Different types of Lisp objects, such as
symbols, cons cells, small vectors, markers, etc., are segregated in distinct blocks in memory.
(Large vectors, long strings, buffers and certain other editing types, which are fairly large,
are allocated in individual blocks, one per object; small strings are packed into blocks of 8k
bytes, and small vectors are packed into blocks of 4k bytes).

Beyond the basic vector, a lot of objects like window, buffer, and frame are managed as
if they were vectors. The corresponding C data structures include the struct vectorlike_

header field whose next field points to the next object in the chain: header.next.buffer
points to the next buffer (which could be a killed buffer), and header.next.vector points
to the next vector in a free list. If a vector is small (smaller than or equal to VBLOCK_BYTES_
MAX bytes, see alloc.c), then header.next.nbytes contains the vector size in bytes.

It is quite common to use some storage for a while, then release it by (for example)
killing a buffer or deleting the last pointer to an object. Emacs provides a garbage collector
to reclaim this abandoned storage. The garbage collector operates by finding and marking

Appendix E: GNU Emacs Internals 985

all Lisp objects that are still accessible to Lisp programs. To begin with, it assumes all
the symbols, their values and associated function definitions, and any data presently on the
stack, are accessible. Any objects that can be reached indirectly through other accessible
objects are also accessible.

When marking is finished, all objects still unmarked are garbage. No matter what the
Lisp program or the user does, it is impossible to refer to them, since there is no longer a
way to reach them. Their space might as well be reused, since no one will miss them. The
second (“sweep”) phase of the garbage collector arranges to reuse them.

The sweep phase puts unused cons cells onto a free list for future allocation; likewise for
symbols and markers. It compacts the accessible strings so they occupy fewer 8k blocks;
then it frees the other 8k blocks. Unreachable vectors from vector blocks are coalesced to
create largest possible free areas; if a free area spans a complete 4k block, that block is
freed. Otherwise, the free area is recorded in a free list array, where each entry corresponds
to a free list of areas of the same size. Large vectors, buffers, and other large objects are
allocated and freed individually.

Common Lisp note: Unlike other Lisps, GNU Emacs Lisp does not call the
garbage collector when the free list is empty. Instead, it simply requests the
operating system to allocate more storage, and processing continues until gc-
cons-threshold bytes have been used.

This means that you can make sure that the garbage collector will not run
during a certain portion of a Lisp program by calling the garbage collector
explicitly just before it (provided that portion of the program does not use so
much space as to force a second garbage collection).

[Command]garbage-collect
This command runs a garbage collection, and returns information on the amount of
space in use. (Garbage collection can also occur spontaneously if you use more than
gc-cons-threshold bytes of Lisp data since the previous garbage collection.)

garbage-collect returns a list containing the following information:

((used-conses . free-conses)

(used-syms . free-syms)

(used-miscs . free-miscs)

used-string-chars

used-vector-slots

(used-floats . free-floats)

(used-intervals . free-intervals)

(used-strings . free-strings))

Here is an example:

(garbage-collect)

⇒ ((106886 . 13184) (9769 . 0)

(7731 . 4651) 347543 121628

(31 . 94) (1273 . 168)

(25474 . 3569))

Here is a table explaining each element:

Appendix E: GNU Emacs Internals 986

used-conses
The number of cons cells in use.

free-conses
The number of cons cells for which space has been obtained from the
operating system, but that are not currently being used.

used-syms The number of symbols in use.

free-syms The number of symbols for which space has been obtained from the op-
erating system, but that are not currently being used.

used-miscs
The number of miscellaneous objects in use. These include markers and
overlays, plus certain objects not visible to users.

free-miscs The number of miscellaneous objects for which space has been obtained
from the operating system, but that are not currently being used.

used-string-chars
The total size of all strings, in characters.

used-vector-slots
The total number of elements of existing vectors.

used-floats
The number of floats in use.

free-floats The number of floats for which space has been obtained from the operat-
ing system, but that are not currently being used.

used-intervals
The number of intervals in use. Intervals are an internal data structure
used for representing text properties.

free-intervals
The number of intervals for which space has been obtained from the
operating system, but that are not currently being used.

used-strings
The number of strings in use.

free-strings
The number of string headers for which the space was obtained from the
operating system, but which are currently not in use. (A string object
consists of a header and the storage for the string text itself; the latter is
only allocated when the string is created.)

If there was overflow in pure space (see Section E.2 [Pure Storage], page 983),
garbage-collect returns nil, because a real garbage collection cannot be done.

[User Option]garbage-collection-messages
If this variable is non-nil, Emacs displays a message at the beginning and end of
garbage collection. The default value is nil.

Appendix E: GNU Emacs Internals 987

[Variable]post-gc-hook
This is a normal hook that is run at the end of garbage collection. Garbage collection
is inhibited while the hook functions run, so be careful writing them.

[User Option]gc-cons-threshold
The value of this variable is the number of bytes of storage that must be allocated for
Lisp objects after one garbage collection in order to trigger another garbage collection.
A cons cell counts as eight bytes, a string as one byte per character plus a few bytes
of overhead, and so on; space allocated to the contents of buffers does not count.
Note that the subsequent garbage collection does not happen immediately when the
threshold is exhausted, but only the next time the Lisp evaluator is called.

The initial threshold value is 800,000. If you specify a larger value, garbage collection
will happen less often. This reduces the amount of time spent garbage collecting, but
increases total memory use. You may want to do this when running a program that
creates lots of Lisp data.

You can make collections more frequent by specifying a smaller value, down to 10,000.
A value less than 10,000 will remain in effect only until the subsequent garbage col-
lection, at which time garbage-collect will set the threshold back to 10,000.

[User Option]gc-cons-percentage
The value of this variable specifies the amount of consing before a garbage collection
occurs, as a fraction of the current heap size. This criterion and gc-cons-threshold

apply in parallel, and garbage collection occurs only when both criteria are satisfied.

As the heap size increases, the time to perform a garbage collection increases. Thus,
it can be desirable to do them less frequently in proportion.

The value returned by garbage-collect describes the amount of memory used by Lisp
data, broken down by data type. By contrast, the function memory-limit provides infor-
mation on the total amount of memory Emacs is currently using.

[Function]memory-limit
This function returns the address of the last byte Emacs has allocated, divided by
1024. We divide the value by 1024 to make sure it fits in a Lisp integer.

You can use this to get a general idea of how your actions affect the memory usage.

[Variable]memory-full
This variable is t if Emacs is nearly out of memory for Lisp objects, and nil otherwise.

[Function]memory-use-counts
This returns a list of numbers that count the number of objects created in this Emacs
session. Each of these counters increments for a certain kind of object. See the
documentation string for details.

[Variable]gcs-done
This variable contains the total number of garbage collections done so far in this
Emacs session.

[Variable]gc-elapsed
This variable contains the total number of seconds of elapsed time during garbage
collection so far in this Emacs session, as a floating point number.

Appendix E: GNU Emacs Internals 988

E.4 Memory Usage

These functions and variables give information about the total amount of memory allocation
that Emacs has done, broken down by data type. Note the difference between these and the
values returned by garbage-collect; those count objects that currently exist, but these
count the number or size of all allocations, including those for objects that have since been
freed.

[Variable]cons-cells-consed
The total number of cons cells that have been allocated so far in this Emacs session.

[Variable]floats-consed
The total number of floats that have been allocated so far in this Emacs session.

[Variable]vector-cells-consed
The total number of vector cells that have been allocated so far in this Emacs session.

[Variable]symbols-consed
The total number of symbols that have been allocated so far in this Emacs session.

[Variable]string-chars-consed
The total number of string characters that have been allocated so far in this session.

[Variable]misc-objects-consed
The total number of miscellaneous objects that have been allocated so far in this
session. These include markers and overlays, plus certain objects not visible to users.

[Variable]intervals-consed
The total number of intervals that have been allocated so far in this Emacs session.

[Variable]strings-consed
The total number of strings that have been allocated so far in this Emacs session.

E.5 Writing Emacs Primitives

Lisp primitives are Lisp functions implemented in C. The details of interfacing the C
function so that Lisp can call it are handled by a few C macros. The only way to really
understand how to write new C code is to read the source, but we can explain some things
here.

An example of a special form is the definition of or, from eval.c. (An ordinary function
would have the same general appearance.)

DEFUN ("or", For, Sor, 0, UNEVALLED, 0,

doc: /* Eval args until one of them yields non-nil, then return

that value.

The remaining args are not evalled at all.

If all args return nil, return nil.

usage: (or CONDITIONS ...) */)

(Lisp_Object args)

{

register Lisp_Object val = Qnil;

struct gcpro gcpro1;

Appendix E: GNU Emacs Internals 989

GCPRO1 (args);

while (CONSP (args))

{

val = eval_sub (XCAR (args));

if (!NILP (val))

break;

args = XCDR (args);

}

UNGCPRO;

return val;

}

Let’s start with a precise explanation of the arguments to the DEFUN macro. Here is a
template for them:

DEFUN (lname, fname, sname, min, max, interactive, doc)

lname This is the name of the Lisp symbol to define as the function name; in the
example above, it is or.

fname This is the C function name for this function. This is the name that is used in
C code for calling the function. The name is, by convention, ‘F’ prepended to
the Lisp name, with all dashes (‘-’) in the Lisp name changed to underscores.
Thus, to call this function from C code, call For.

sname This is a C variable name to use for a structure that holds the data for the subr
object that represents the function in Lisp. This structure conveys the Lisp
symbol name to the initialization routine that will create the symbol and store
the subr object as its definition. By convention, this name is always fname with
‘F’ replaced with ‘S’.

min This is the minimum number of arguments that the function requires. The
function or allows a minimum of zero arguments.

max This is the maximum number of arguments that the function accepts, if there is
a fixed maximum. Alternatively, it can be UNEVALLED, indicating a special form
that receives unevaluated arguments, or MANY, indicating an unlimited number
of evaluated arguments (the equivalent of &rest). Both UNEVALLED and MANY

are macros. If max is a number, it must be more than min but less than 8.

interactive
This is an interactive specification, a string such as might be used as the ar-
gument of interactive in a Lisp function. In the case of or, it is 0 (a null
pointer), indicating that or cannot be called interactively. A value of "" indi-
cates a function that should receive no arguments when called interactively. If
the value begins with a ‘(’, the string is evaluated as a Lisp form. For examples
of the last two forms, see widen and narrow-to-region in editfns.c.

doc This is the documentation string. It uses C comment syntax rather than C
string syntax because comment syntax requires nothing special to include mul-
tiple lines. The ‘doc:’ identifies the comment that follows as the documentation
string. The ‘/*’ and ‘*/’ delimiters that begin and end the comment are not
part of the documentation string.

Appendix E: GNU Emacs Internals 990

If the last line of the documentation string begins with the keyword ‘usage:’,
the rest of the line is treated as the argument list for documentation purposes.
This way, you can use different argument names in the documentation string
from the ones used in the C code. ‘usage:’ is required if the function has an
unlimited number of arguments.

All the usual rules for documentation strings in Lisp code (see Section D.6
[Documentation Tips], page 975) apply to C code documentation strings too.

After the call to the DEFUN macro, you must write the argument list for the C function,
including the types for the arguments. If the primitive accepts a fixed maximum number of
Lisp arguments, there must be one C argument for each Lisp argument, and each argument
must be of type Lisp_Object. (Various macros and functions for creating values of type
Lisp_Object are declared in the file lisp.h.) If the primitive has no upper limit on the
number of Lisp arguments, it must have exactly two C arguments: the first is the number
of Lisp arguments, and the second is the address of a block containing their values. These
have types int and Lisp_Object * respectively.

Within the function For itself, note the use of the macros GCPRO1 and UNGCPRO. These
macros are defined for the sake of the few platforms which do not use Emacs’ default stack-
marking garbage collector. The GCPRO1macro “protects” a variable from garbage collection,
explicitly informing the garbage collector that that variable and all its contents must be as
accessible. GC protection is necessary in any function which can perform Lisp evaluation
by calling eval_sub or Feval as a subroutine, either directly or indirectly.

It suffices to ensure that at least one pointer to each object is GC-protected. Thus, a
particular local variable can do without protection if it is certain that the object it points to
will be preserved by some other pointer (such as another local variable that has a GCPRO).
Otherwise, the local variable needs a GCPRO.

The macro GCPRO1 protects just one local variable. If you want to protect two variables,
use GCPRO2 instead; repeating GCPRO1 will not work. Macros GCPRO3, GCPRO4, GCPRO5, and
GCPRO6 also exist. All these macros implicitly use local variables such as gcpro1; you must
declare these explicitly, with type struct gcpro. Thus, if you use GCPRO2, you must declare
gcpro1 and gcpro2.

UNGCPRO cancels the protection of the variables that are protected in the current function.
It is necessary to do this explicitly.

You must not use C initializers for static or global variables unless the variables are never
written once Emacs is dumped. These variables with initializers are allocated in an area
of memory that becomes read-only (on certain operating systems) as a result of dumping
Emacs. See Section E.2 [Pure Storage], page 983.

Defining the C function is not enough to make a Lisp primitive available; you must also
create the Lisp symbol for the primitive and store a suitable subr object in its function cell.
The code looks like this:

defsubr (&sname);

Here sname is the name you used as the third argument to DEFUN.

If you add a new primitive to a file that already has Lisp primitives defined in it, find
the function (near the end of the file) named syms_of_something, and add the call to
defsubr there. If the file doesn’t have this function, or if you create a new file, add to it

Appendix E: GNU Emacs Internals 991

a syms_of_filename (e.g., syms_of_myfile). Then find the spot in emacs.c where all of
these functions are called, and add a call to syms_of_filename there.

The function syms_of_filename is also the place to define any C variables that are to
be visible as Lisp variables. DEFVAR_LISP makes a C variable of type Lisp_Object visible
in Lisp. DEFVAR_INT makes a C variable of type int visible in Lisp with a value that is
always an integer. DEFVAR_BOOL makes a C variable of type int visible in Lisp with a value
that is either t or nil. Note that variables defined with DEFVAR_BOOL are automatically
added to the list byte-boolean-vars used by the byte compiler.

If you want to make a Lisp variables that is defined in C behave like one declared with
defcustom, add an appropriate entry to cus-start.el.

If you define a file-scope C variable of type Lisp_Object, you must protect it from
garbage-collection by calling staticpro in syms_of_filename, like this:

staticpro (&variable);

Here is another example function, with more complicated arguments. This comes from
the code in window.c, and it demonstrates the use of macros and functions to manipulate
Lisp objects.

DEFUN ("coordinates-in-window-p", Fcoordinates_in_window_p,

Scoordinates_in_window_p, 2, 2, 0,

doc: /* Return non-nil if COORDINATES are in WINDOW.

...

or ‘right-margin’ is returned. */)

(register Lisp_Object coordinates, Lisp_Object window)

{

struct window *w;

struct frame *f;

int x, y;

Lisp_Object lx, ly;

CHECK_LIVE_WINDOW (window);

w = XWINDOW (window);

f = XFRAME (w->frame);

CHECK_CONS (coordinates);

lx = Fcar (coordinates);

ly = Fcdr (coordinates);

CHECK_NUMBER_OR_FLOAT (lx);

CHECK_NUMBER_OR_FLOAT (ly);

x = FRAME_PIXEL_X_FROM_CANON_X (f, lx) + FRAME_INTERNAL_BORDER_WIDTH(f);

y = FRAME_PIXEL_Y_FROM_CANON_Y (f, ly) + FRAME_INTERNAL_BORDER_WIDTH(f);

switch (coordinates_in_window (w, x, y))

{

case ON_NOTHING: /* NOT in window at all. */

return Qnil;

...

case ON_MODE_LINE: /* In mode line of window. */

return Qmode_line;

...

case ON_SCROLL_BAR: /* On scroll-bar of window. */

/* Historically we are supposed to return nil in this case. */

return Qnil;

Appendix E: GNU Emacs Internals 992

default:

abort ();

}

}

Note that C code cannot call functions by name unless they are defined in C. The way
to call a function written in Lisp is to use Ffuncall, which embodies the Lisp function
funcall. Since the Lisp function funcall accepts an unlimited number of arguments, in C
it takes two: the number of Lisp-level arguments, and a one-dimensional array containing
their values. The first Lisp-level argument is the Lisp function to call, and the rest are the
arguments to pass to it. Since Ffuncall can call the evaluator, you must protect pointers
from garbage collection around the call to Ffuncall.

The C functions call0, call1, call2, and so on, provide handy ways to call a Lisp
function conveniently with a fixed number of arguments. They work by calling Ffuncall.

eval.c is a very good file to look through for examples; lisp.h contains the definitions
for some important macros and functions.

If you define a function which is side-effect free, update the code in byte-opt.el that
binds side-effect-free-fns and side-effect-and-error-free-fns so that the compiler
optimizer knows about it.

E.6 Object Internals

GNU Emacs Lisp manipulates many different types of data. The actual data are stored in
a heap and the only access that programs have to it is through pointers. Each pointer is 32
bits wide on 32-bit machines, and 64 bits wide on 64-bit machines; three of these bits are
used for the tag that identifies the object’s type, and the remainder are used to address the
object.

Because Lisp objects are represented as tagged pointers, it is always possible to determine
the Lisp data type of any object. The C data type Lisp_Object can hold any Lisp object
of any data type. Ordinary variables have type Lisp_Object, which means they can hold
any type of Lisp value; you can determine the actual data type only at run time. The
same is true for function arguments; if you want a function to accept only a certain type
of argument, you must check the type explicitly using a suitable predicate (see Section 2.6
[Type Predicates], page 27).

E.6.1 Buffer Internals

Two structures (see buffer.h) are used to represent buffers in C. The buffer_text struc-
ture contains fields describing the text of a buffer; the buffer structure holds other fields. In
the case of indirect buffers, two or more buffer structures reference the same buffer_text
structure.

Here are some of the fields in struct buffer_text:

beg The address of the buffer contents.

gpt

gpt_byte The character and byte positions of the buffer gap. See Section 27.13 [Buffer
Gap], page 536.

Appendix E: GNU Emacs Internals 993

z

z_byte The character and byte positions of the end of the buffer text.

gap_size The size of buffer’s gap. See Section 27.13 [Buffer Gap], page 536.

modiff

save_modiff

chars_modiff

overlay_modiff

These fields count the number of buffer-modification events performed in this
buffer. modiff is incremented after each buffer-modification event, and is never
otherwise changed; save_modiff contains the value of modiff the last time
the buffer was visited or saved; chars_modiff counts only modifications to
the characters in the buffer, ignoring all other kinds of changes; and overlay_

modiff counts only modifications to the overlays.

beg_unchanged

end_unchanged

The number of characters at the start and end of the text that are known to
be unchanged since the last complete redisplay.

unchanged_modified

overlay_unchanged_modified

The values of modiff and overlay_modiff, respectively, after the last complete
redisplay. If their current values match modiff or overlay_modiff, that means
beg_unchanged and end_unchanged contain no useful information.

markers The markers that refer to this buffer. This is actually a single marker, and
successive elements in its marker chain are the other markers referring to this
buffer text.

intervals

The interval tree which records the text properties of this buffer.

Some of the fields of struct buffer are:

header A struct vectorlike_header structure where header.next points to the next
buffer, in the chain of all buffers (including killed buffers). This chain is used
only for garbage collection, in order to collect killed buffers properly. Note that
vectors, and most kinds of objects allocated as vectors, are all on one chain,
but buffers are on a separate chain of their own.

own_text A struct buffer_text structure that ordinarily holds the buffer contents. In
indirect buffers, this field is not used.

text A pointer to the buffer_text structure for this buffer. In an ordinary buffer,
this is the own_text field above. In an indirect buffer, this is the own_text field
of the base buffer.

pt

pt_byte The character and byte positions of point in a buffer.

Appendix E: GNU Emacs Internals 994

begv

begv_byte

The character and byte positions of the beginning of the accessible range of
text in the buffer.

zv

zv_byte The character and byte positions of the end of the accessible range of text in
the buffer.

base_buffer

In an indirect buffer, this points to the base buffer. In an ordinary buffer, it is
null.

local_flags

This field contains flags indicating that certain variables are local in this buffer.
Such variables are declared in the C code using DEFVAR_PER_BUFFER, and their
buffer-local bindings are stored in fields in the buffer structure itself. (Some of
these fields are described in this table.)

modtime The modification time of the visited file. It is set when the file is written or read.
Before writing the buffer into a file, this field is compared to the modification
time of the file to see if the file has changed on disk. See Section 27.5 [Buffer
Modification], page 527.

auto_save_modified

The time when the buffer was last auto-saved.

last_window_start

The window-start position in the buffer as of the last time the buffer was
displayed in a window.

clip_changed

This flag indicates that narrowing has changed in the buffer. See Section 30.4
[Narrowing], page 633.

prevent_redisplay_optimizations_p

This flag indicates that redisplay optimizations should not be used to display
this buffer.

overlay_center

This field holds the current overlay center position. See Section 38.9.1 [Manag-
ing Overlays], page 839.

overlays_before

overlays_after

These fields hold, respectively, a list of overlays that end at or before the current
overlay center, and a list of overlays that end after the current overlay center.
See Section 38.9.1 [Managing Overlays], page 839. overlays_before is sorted
in order of decreasing end position, and overlays_after is sorted in order of
increasing beginning position.

name A Lisp string that names the buffer. It is guaranteed to be unique. See
Section 27.3 [Buffer Names], page 524.

Appendix E: GNU Emacs Internals 995

save_length

The length of the file this buffer is visiting, when last read or saved. This and
other fields concerned with saving are not kept in the buffer_text structure
because indirect buffers are never saved.

directory

The directory for expanding relative file names. This is the value of the buffer-
local variable default-directory (see Section 25.8.4 [File Name Expansion],
page 494).

filename The name of the file visited in this buffer, or nil. This is the value of the
buffer-local variable buffer-file-name (see Section 27.4 [Buffer File Name],
page 525).

undo_list

backed_up

auto_save_file_name

auto_save_file_format

read_only

file_format

file_truename

invisibility_spec

display_count

display_time

These fields store the values of Lisp variables that are automatically buffer-local
(see Section 11.10 [Buffer-Local Variables], page 154), whose corresponding vari-
able names have the additional prefix buffer- and have underscores replaced
with dashes. For instance, undo_list stores the value of buffer-undo-list.

mark The mark for the buffer. The mark is a marker, hence it is also included on the
list markers. See Section 31.7 [The Mark], page 640.

local_var_alist

The association list describing the buffer-local variable bindings of this buffer,
not including the built-in buffer-local bindings that have special slots in the
buffer object. (Those slots are omitted from this table.) See Section 11.10
[Buffer-Local Variables], page 154.

major_mode

Symbol naming the major mode of this buffer, e.g., lisp-mode.

mode_name

Pretty name of the major mode, e.g., "Lisp".

keymap

abbrev_table

syntax_table

category_table

display_table

These fields store the buffer’s local keymap (see Chapter 22 [Keymaps],
page 366), abbrev table (see Section 36.1 [Abbrev Tables], page 773),

Appendix E: GNU Emacs Internals 996

syntax table (see Chapter 35 [Syntax Tables], page 757), category table (see
Section 35.8 [Categories], page 770), and display table (see Section 38.20.2
[Display Tables], page 901).

downcase_table

upcase_table

case_canon_table

These fields store the conversion tables for converting text to lower case, upper
case, and for canonicalizing text for case-fold search. See Section 4.9 [Case
Tables], page 61.

minor_modes

An alist of the minor modes of this buffer.

pt_marker

begv_marker

zv_marker

These fields are only used in an indirect buffer, or in a buffer that is the base
of an indirect buffer. Each holds a marker that records pt, begv, and zv

respectively, for this buffer when the buffer is not current.

Appendix E: GNU Emacs Internals 997

mode_line_format

header_line_format

case_fold_search

tab_width

fill_column

left_margin

auto_fill_function

truncate_lines

word_wrap

ctl_arrow

bidi_display_reordering

bidi_paragraph_direction

selective_display

selective_display_ellipses

overwrite_mode

abbrev_mode

mark_active

enable_multibyte_characters

buffer_file_coding_system

cache_long_line_scans

point_before_scroll

left_fringe_width

right_fringe_width

fringes_outside_margins

scroll_bar_width

indicate_empty_lines

indicate_buffer_boundaries

fringe_indicator_alist

fringe_cursor_alist

scroll_up_aggressively

scroll_down_aggressively

cursor_type

cursor_in_non_selected_windows

These fields store the values of Lisp variables that are automatically buffer-
local (see Section 11.10 [Buffer-Local Variables], page 154), whose corresponding
variable names have underscores replaced with dashes. For instance, mode_
line_format stores the value of mode-line-format.

last_selected_window

This is the last window that was selected with this buffer in it, or nil if that
window no longer displays this buffer.

E.6.2 Window Internals

The fields of a window (for a complete list, see the definition of struct window in window.h)
include:

frame The frame that this window is on.

mini_p Non-nil if this window is a minibuffer window.

Appendix E: GNU Emacs Internals 998

parent Internally, Emacs arranges windows in a tree; each group of siblings has a parent
window whose area includes all the siblings. This field points to a window’s
parent.

Parent windows do not display buffers, and play little role in display except to
shape their child windows. Emacs Lisp programs usually have no access to the
parent windows; they operate on the windows at the leaves of the tree, which
actually display buffers.

hchild

vchild These fields contain the window’s leftmost child and its topmost child respec-
tively. hchild is used if the window is subdivided horizontally by child windows,
and vchild if it is subdivided vertically. In a live window, only one of hchild,
vchild, and buffer (q.v.) is non-nil.

next

prev The next sibling and previous sibling of this window. next is nil if the window
is the right-most or bottom-most in its group; prev is nil if it is the left-most
or top-most in its group.

left_col The left-hand edge of the window, measured in columns, relative to the leftmost
column in the frame (column 0).

top_line The top edge of the window, measured in lines, relative to the topmost line in
the frame (line 0).

total_cols

total_lines

The width and height of the window, measured in columns and lines respec-
tively. The width includes the scroll bar and fringes, and/or the separator line
on the right of the window (if any).

buffer The buffer that the window is displaying.

start A marker pointing to the position in the buffer that is the first character dis-
played in the window.

pointm This is the value of point in the current buffer when this window is selected;
when it is not selected, it retains its previous value.

force_start

If this flag is non-nil, it says that the window has been scrolled explicitly by
the Lisp program. This affects what the next redisplay does if point is off the
screen: instead of scrolling the window to show the text around point, it moves
point to a location that is on the screen.

frozen_window_start_p

This field is set temporarily to 1 to indicate to redisplay that start of this
window should not be changed, even if point gets invisible.

start_at_line_beg

Non-nil means current value of start was the beginning of a line when it was
chosen.

Appendix E: GNU Emacs Internals 999

use_time This is the last time that the window was selected. The function get-lru-

window uses this field.

sequence_number

A unique number assigned to this window when it was created.

last_modified

The modiff field of the window’s buffer, as of the last time a redisplay completed
in this window.

last_overlay_modified

The overlay_modiff field of the window’s buffer, as of the last time a redisplay
completed in this window.

last_point

The buffer’s value of point, as of the last time a redisplay completed in this
window.

last_had_star

A non-nil value means the window’s buffer was “modified” when the window
was last updated.

vertical_scroll_bar

This window’s vertical scroll bar.

left_margin_cols

right_margin_cols

The widths of the left and right margins in this window. A value of nil means
no margin.

left_fringe_width

right_fringe_width

The widths of the left and right fringes in this window. A value of nil or t

means use the values of the frame.

fringes_outside_margins

A non-nil value means the fringes outside the display margins; othersize they
are between the margin and the text.

window_end_pos

This is computed as z minus the buffer position of the last glyph in the current
matrix of the window. The value is only valid if window_end_valid is not nil.

window_end_bytepos

The byte position corresponding to window_end_pos.

window_end_vpos

The window-relative vertical position of the line containing window_end_pos.

window_end_valid

This field is set to a non-nil value if window_end_pos is truly valid. This is
nil if nontrivial redisplay is pre-empted, since in that case the display that
window_end_pos was computed for did not get onto the screen.

cursor A structure describing where the cursor is in this window.

Appendix E: GNU Emacs Internals 1000

last_cursor

The value of cursor as of the last redisplay that finished.

phys_cursor

A structure describing where the cursor of this window physically is.

phys_cursor_type

phys_cursor_height

phys_cursor_width

The type, height, and width of the cursor that was last displayed on this window.

phys_cursor_on_p

This field is non-zero if the cursor is physically on.

cursor_off_p

Non-zero means the cursor in this window is logically off. This is used for
blinking the cursor.

last_cursor_off_p

This field contains the value of cursor_off_p as of the time of the last redisplay.

must_be_updated_p

This is set to 1 during redisplay when this window must be updated.

hscroll This is the number of columns that the display in the window is scrolled hori-
zontally to the left. Normally, this is 0.

vscroll Vertical scroll amount, in pixels. Normally, this is 0.

dedicated

Non-nil if this window is dedicated to its buffer.

display_table

The window’s display table, or nil if none is specified for it.

update_mode_line

Non-nil means this window’s mode line needs to be updated.

base_line_number

The line number of a certain position in the buffer, or nil. This is used for
displaying the line number of point in the mode line.

base_line_pos

The position in the buffer for which the line number is known, or nil meaning
none is known. If it is a buffer, don’t display the line number as long as the
window shows that buffer.

region_showing

If the region (or part of it) is highlighted in this window, this field holds the
mark position that made one end of that region. Otherwise, this field is nil.

column_number_displayed

The column number currently displayed in this window’s mode line, or nil if
column numbers are not being displayed.

Appendix E: GNU Emacs Internals 1001

current_matrix

desired_matrix

Glyph matrices describing the current and desired display of this window.

E.6.3 Process Internals

The fields of a process (for a complete list, see the definition of struct Lisp_Process in
process.h) include:

name A string, the name of the process.

command A list containing the command arguments that were used to start this process.
For a network or serial process, it is nil if the process is running or t if the
process is stopped.

filter If non-nil, a function used to accept output from the process instead of a buffer.

sentinel If non-nil, a function called whenever the state of the process changes.

buffer The associated buffer of the process.

pid An integer, the operating system’s process ID. Pseudo-processes such as net-
work or serial connections use a value of 0.

childp A flag, t if this is really a child process. For a network or serial connection, it
is a plist based on the arguments to make-network-process or make-serial-
process.

mark A marker indicating the position of the end of the last output from this process
inserted into the buffer. This is often but not always the end of the buffer.

kill_without_query

If this is non-zero, killing Emacs while this process is still running does not ask
for confirmation about killing the process.

raw_status

The raw process status, as returned by the wait system call.

status The process status, as process-status should return it.

tick

update_tick

If these two fields are not equal, a change in the status of the process needs
to be reported, either by running the sentinel or by inserting a message in the
process buffer.

pty_flag Non-nil if communication with the subprocess uses a pty; nil if it uses a pipe.

infd The file descriptor for input from the process.

outfd The file descriptor for output to the process.

tty_name The name of the terminal that the subprocess is using, or nil if it is using
pipes.

decode_coding_system

Coding-system for decoding the input from this process.

Appendix E: GNU Emacs Internals 1002

decoding_buf

A working buffer for decoding.

decoding_carryover

Size of carryover in decoding.

encode_coding_system

Coding-system for encoding the output to this process.

encoding_buf

A working buffer for encoding.

inherit_coding_system_flag

Flag to set coding-system of the process buffer from the coding system used
to decode process output.

type Symbol indicating the type of process: real, network, serial.

Appendix F: Standard Errors 1003

Appendix F Standard Errors

Here is a list of the more important error symbols in standard Emacs, grouped by concept.
The list includes each symbol’s message (on the error-message property of the symbol)
and a cross reference to a description of how the error can occur.

Each error symbol has an error-conditions property that is a list of symbols. Normally
this list includes the error symbol itself and the symbol error. Occasionally it includes ad-
ditional symbols, which are intermediate classifications, narrower than error but broader
than a single error symbol. For example, all the errors in accessing files have the condi-
tion file-error. If we do not say here that a certain error symbol has additional error
conditions, that means it has none.

As a special exception, the error symbol quit does not have the condition error, because
quitting is not considered an error.

Most of these error symbols are defined in C (mainly data.c), but some are defined in
Lisp. For example, the file userlock.el defines the file-locked and file-supersession

errors. Several of the specialized Lisp libraries distributed with Emacs define their own
error symbols. We do not attempt to list of all those here.

See Section 10.5.3 [Errors], page 132, for an explanation of how errors are generated and
handled.

error The message is ‘error’. See Section 10.5.3 [Errors], page 132.

quit The message is ‘Quit’. See Section 21.11 [Quitting], page 358.

args-out-of-range

The message is ‘Args out of range’. This happens when trying to access an
element beyond the range of a sequence, buffer, or other container-like object.
See Chapter 6 [Sequences Arrays Vectors], page 88, and See Chapter 32 [Text],
page 645.

arith-error

The message is ‘Arithmetic error’. This occurs when trying to perform integer
division by zero. See Section 3.5 [Numeric Conversions], page 38, and See
Section 3.6 [Arithmetic Operations], page 39.

beginning-of-buffer

The message is ‘Beginning of buffer’. See Section 30.2.1 [Character Motion],
page 624.

buffer-read-only

The message is ‘Buffer is read-only’. See Section 27.7 [Read Only Buffers],
page 529.

circular-list

The message is ‘List contains a loop’. This happens when a circular struc-
ture is encountered. See Section 2.5 [Circular Objects], page 27.

cl-assertion-failed

The message is ‘Assertion failed’. This happens when the cl-assert macro
fails a test. See Section “Assertions” in Common Lisp Extensions.

Appendix F: Standard Errors 1004

coding-system-error

The message is ‘Invalid coding system’. See Section 33.9.3 [Lisp and Coding
Systems], page 718.

cyclic-function-indirection

The message is ‘Symbol’s chain of function indirections contains a

loop’. See Section 9.1.4 [Function Indirection], page 114.

cyclic-variable-indirection

The message is ‘Symbol’s chain of variable indirections contains a

loop’. See Section 11.13 [Variable Aliases], page 164.

dbus-error

The message is ‘D-Bus error’. This is only defined if Emacs was compiled
with D-Bus support. See Section “Errors and Events” in D-Bus integration in
Emacs.

end-of-buffer

The message is ‘End of buffer’. See Section 30.2.1 [Character Motion],
page 624.

end-of-file

The message is ‘End of file during parsing’. Note that this is not a subcat-
egory of file-error, because it pertains to the Lisp reader, not to file I/O.
See Section 19.3 [Input Functions], page 283.

file-already-exists

This is a subcategory of file-error. See Section 25.4 [Writing to Files],
page 476.

file-date-error

This is a subcategory of file-error. It occurs when copy-file tries and fails
to set the last-modification time of the output file. See Section 25.7 [Changing
Files], page 487.

file-error

We do not list the error-strings of this error and its subcategories, because the
error message is normally constructed from the data items alone when the error
condition file-error is present. Thus, the error-strings are not very relevant.
However, these error symbols do have error-message properties, and if no
data is provided, the error-message property is used. See Chapter 25 [Files],
page 469.

compression-error

This is a subcategory of file-error, which results from problems handling a
compressed file. See Section 15.1 [How Programs Do Loading], page 215.

file-locked

This is a subcategory of file-error. See Section 25.5 [File Locks], page 477.

file-supersession

This is a subcategory of file-error. See Section 27.6 [Modification Time],
page 528.

Appendix F: Standard Errors 1005

ftp-error

This is a subcategory of file-error, which results from problems in accessing
a remote file using ftp. See Section “Remote Files” in The GNU Emacs Manual.

invalid-function

The message is ‘Invalid function’. See Section 9.1.4 [Function Indirection],
page 114.

invalid-read-syntax

The message is ‘Invalid read syntax’. See Section 2.1 [Printed Representa-
tion], page 8.

invalid-regexp

The message is ‘Invalid regexp’. See Section 34.3 [Regular Expressions],
page 734.

mark-inactive

The message is ‘The mark is not active now’. See Section 31.7 [The Mark],
page 640.

no-catch The message is ‘No catch for tag’. See Section 10.5.1 [Catch and Throw],
page 129.

scan-error

The message is ‘Scan error’. This happens when certain syntax-parsing func-
tions find invalid syntax or mismatched parentheses. See Section 30.2.6 [List
Motion], page 630, and See Section 35.6 [Parsing Expressions], page 765.

search-failed

The message is ‘Search failed’. See Chapter 34 [Searching and Matching],
page 732.

setting-constant

The message is ‘Attempt to set a constant symbol’. This happens when at-
tempting to assign values to nil, t, and keyword symbols. See Section 11.2
[Constant Variables], page 141.

text-read-only

The message is ‘Text is read-only’. This is a subcategory of buffer-read-
only. See Section 32.19.4 [Special Properties], page 685.

undefined-color

The message is ‘Undefined color’. See Section 29.20 [Color Names], page 616.

user-error

The message is the empty string. See Section 10.5.3.1 [Signaling Errors],
page 132.

void-function

The message is ‘Symbol’s function definition is void’. See Section 12.8
[Function Cells], page 181.

void-variable

The message is ‘Symbol’s value as variable is void’. See Section 11.7 [Ac-
cessing Variables], page 148.

Appendix F: Standard Errors 1006

wrong-number-of-arguments

The message is ‘Wrong number of arguments’. See Section 9.1.3 [Classifying
Lists], page 114.

wrong-type-argument

The message is ‘Wrong type argument’. See Section 2.6 [Type Predicates],
page 27.

Appendix G: Standard Keymaps 1007

Appendix G Standard Keymaps

In this section we list some of the more general keymaps. Many of these exist when Emacs
is first started, but some are loaded only when the respective feature is accessed.

There are many other, more specialized, maps than these; in particular those associated
with major and minor modes. The minibuffer uses several keymaps (see Section 20.6.3 [Com-
pletion Commands], page 303). For more details on keymaps, see Chapter 22 [Keymaps],
page 366.

2C-mode-map

A sparse keymap for subcommands of the prefix C-x 6.
See Section “Two-Column Editing” in The GNU Emacs Manual.

abbrev-map

A sparse keymap for subcommands of the prefix C-x a.
See Section “Defining Abbrevs” in The GNU Emacs Manual.

button-buffer-map

A sparse keymap useful for buffers containing buffers.
You may want to use this as a parent keymap. See Section 38.17 [Buttons],
page 890.

button-map

A sparse keymap used by buttons.

ctl-x-4-map

A sparse keymap for subcommands of the prefix C-x 4.

ctl-x-5-map

A sparse keymap for subcommands of the prefix C-x 5.

ctl-x-map

A full keymap for C-x commands.

ctl-x-r-map

A sparse keymap for subcommands of the prefix C-x r.
See Section “Registers” in The GNU Emacs Manual.

esc-map A full keymap for ESC (or Meta) commands.

facemenu-keymap

A sparse keymap used for the M-o prefix key.

function-key-map

The parent keymap of all local-function-key-map (q.v.) instances.

global-map

The full keymap containing default global key bindings.
Modes should not modify the Global map.

goto-map A sparse keymap used for the M-g prefix key.

help-map A sparse keymap for the keys following the help character C-h.
See Section 24.5 [Help Functions], page 465.

Appendix G: Standard Keymaps 1008

Helper-help-map

A full keymap used by the help utility package.
It has the same keymap in its value cell and in its function cell.

input-decode-map

The keymap for translating keypad and function keys.
If there are none, then it contains an empty sparse keymap. See Section 22.14
[Translation Keymaps], page 385.

key-translation-map

A keymap for translating keys. This one overrides ordinary key bindings, unlike
local-function-key-map. See Section 22.14 [Translation Keymaps], page 385.

kmacro-keymap

A sparse keymap for keys that follows the C-x C-k prefix search.
See Section “Keyboard Macros” in The GNU Emacs Manual.

local-function-key-map

The keymap for translating key sequences to preferred alternatives.
If there are none, then it contains an empty sparse keymap. See Section 22.14
[Translation Keymaps], page 385.

menu-bar-file-menu

menu-bar-edit-menu

menu-bar-options-menu

global-buffers-menu-map

menu-bar-tools-menu

menu-bar-help-menu

These keymaps display the main, top-level menus in the menu bar.
Some of them contain sub-menus. For example, the Edit menu contains menu-
bar-search-menu, etc. See Section 22.17.5 [Menu Bar], page 397.

minibuffer-inactive-mode-map

A full keymap used in the minibuffer when it is not active.
See Section “Editing in the Minibuffer” in The GNU Emacs Manual.

mode-line-coding-system-map

mode-line-input-method-map

mode-line-column-line-number-mode-map

These keymaps control various areas of the mode line.
See Section 23.4 [Mode Line Format], page 426.

mode-specific-map

The keymap for characters following C-c. Note, this is in the global map. This
map is not actually mode-specific: its name was chosen to be informative in
C-h b (display-bindings), where it describes the main use of the C-c prefix
key.

mouse-appearance-menu-map

A sparse keymap used for the S-mouse-1 key.

mule-keymap

The global keymap used for the C-x RET prefix key.

Appendix G: Standard Keymaps 1009

narrow-map

A sparse keymap for subcommands of the prefix C-x n.

prog-mode-map

The keymap used by Prog mode.
See Section 23.2.5 [Basic Major Modes], page 415.

query-replace-map

multi-query-replace-map

A sparse keymap used for responses in query-replace and related commands;
also for y-or-n-p and map-y-or-n-p. The functions that use this map do
not support prefix keys; they look up one event at a time. multi-query-

replace-map extends query-replace-map for multi-buffer replacements. See
Section 34.7 [Search and Replace], page 753.

search-map

A sparse keymap that provides global bindings for search-related commands.

special-mode-map

The keymap used by Special mode.
See Section 23.2.5 [Basic Major Modes], page 415.

tool-bar-map

The keymap defining the contents of the tool bar.
See Section 22.17.6 [Tool Bar], page 398.

universal-argument-map

A sparse keymap used while processing C-u.
See Section 21.12 [Prefix Command Arguments], page 359.

vc-prefix-map

The global keymap used for the C-x v prefix key.

x-alternatives-map

A sparse keymap used to map certain keys under graphical frames.
The function x-setup-function-keys uses this.

Appendix H: Standard Hooks 1010

Appendix H Standard Hooks

The following is a list of some hook variables that let you provide functions to be called
from within Emacs on suitable occasions.

Most of these variables have names ending with ‘-hook’. They are normal hooks, run by
means of run-hooks. The value of such a hook is a list of functions; the functions are called
with no arguments and their values are completely ignored. The recommended way to put
a new function on such a hook is to call add-hook. See Section 23.1 [Hooks], page 404, for
more information about using hooks.

The variables whose names end in ‘-functions’ are usually abnormal hooks (some old
code may also use the deprecated ‘-hooks’ suffix); their values are lists of functions, but
these functions are called in a special way (they are passed arguments, or their return
values are used). The variables whose names end in ‘-function’ have single functions as
their values.

This is not an exhaustive list, it only covers the more general hooks. For example, every
major mode defines a hook named ‘modename-mode-hook’. The major mode command runs
this normal hook with run-mode-hooks as the very last thing it does. See Section 23.2.6
[Mode Hooks], page 416. Most minor modes have mode hooks too.

A special feature allows you to specify expressions to evaluate if and when a file is loaded
(see Section 15.10 [Hooks for Loading], page 227). That feature is not exactly a hook, but
does a similar job.

activate-mark-hook

deactivate-mark-hook

See Section 31.7 [The Mark], page 640.

after-change-functions

before-change-functions

first-change-hook

See Section 32.27 [Change Hooks], page 703.

after-change-major-mode-hook

change-major-mode-after-body-hook

See Section 23.2.6 [Mode Hooks], page 416.

after-init-hook

before-init-hook

emacs-startup-hook

See Section 39.1.2 [Init File], page 913.

after-insert-file-functions

write-region-annotate-functions

write-region-post-annotation-function

See Section 25.12 [Format Conversion], page 506.

after-make-frame-functions

before-make-frame-hook

See Section 29.1 [Creating Frames], page 591.

Appendix H: Standard Hooks 1011

after-save-hook

before-save-hook

write-contents-functions

write-file-functions

See Section 25.2 [Saving Buffers], page 473.

after-setting-font-hook

Hook run after a frame’s font changes.

auto-save-hook

See Section 26.2 [Auto-Saving], page 516.

before-hack-local-variables-hook

hack-local-variables-hook

See Section 11.11 [File Local Variables], page 160.

buffer-access-fontify-functions

See Section 32.19.7 [Lazy Properties], page 692.

buffer-list-update-hook

Hook run when the buffer list changes.

buffer-quit-function

Function to call to “quit” the current buffer.

change-major-mode-hook

See Section 11.10.2 [Creating Buffer-Local], page 156.

command-line-functions

See Section 39.1.4 [Command-Line Arguments], page 915.

delayed-warnings-hook

The command loop runs this soon after post-command-hook (q.v.).

delete-frame-functions

See Section 29.6 [Deleting Frames], page 606.

delete-terminal-functions

See Section 29.2 [Multiple Terminals], page 591.

pop-up-frame-function

split-window-preferred-function

See Section 28.14 [Choosing Window Options], page 566.

echo-area-clear-hook

See Section 38.4.4 [Echo Area Customization], page 829.

find-file-hook

find-file-not-found-functions

See Section 25.1.1 [Visiting Functions], page 469.

font-lock-extend-after-change-region-function

See Section 23.6.9.2 [Region to Refontify], page 448.

font-lock-extend-region-functions

See Section 23.6.9 [Multiline Font Lock], page 446.

Appendix H: Standard Hooks 1012

font-lock-fontify-buffer-function

font-lock-fontify-region-function

font-lock-mark-block-function

font-lock-unfontify-buffer-function

font-lock-unfontify-region-function

See Section 23.6.4 [Other Font Lock Variables], page 443.

fontification-functions

See Section 38.12.7 [Automatic Face Assignment], page 860.

frame-auto-hide-function

See Section 28.17 [Quitting Windows], page 570.

kill-buffer-hook

kill-buffer-query-functions

See Section 27.10 [Killing Buffers], page 533.

kill-emacs-hook

kill-emacs-query-functions

See Section 39.2.1 [Killing Emacs], page 916.

menu-bar-update-hook

See Section 22.17.5 [Menu Bar], page 397.

minibuffer-setup-hook

minibuffer-exit-hook

See Section 20.14 [Minibuffer Misc], page 320.

mouse-leave-buffer-hook

Hook run when about to switch windows with a mouse command.

mouse-position-function

See Section 29.14 [Mouse Position], page 611.

post-command-hook

pre-command-hook

See Section 21.1 [Command Overview], page 321.

post-gc-hook

See Section E.3 [Garbage Collection], page 984.

post-self-insert-hook

See Section 23.3.2 [Keymaps and Minor Modes], page 423.

suspend-hook

suspend-resume-hook

suspend-tty-functions

resume-tty-functions

See Section 39.2.2 [Suspending Emacs], page 917.

syntax-begin-function

syntax-propertize-extend-region-functions

syntax-propertize-function

font-lock-syntactic-face-function

See Section 23.6.8 [Syntactic Font Lock], page 445. See Section 35.4 [Syntax
Properties], page 764.

Appendix H: Standard Hooks 1013

temp-buffer-setup-hook

temp-buffer-show-function

temp-buffer-show-hook

See Section 38.8 [Temporary Displays], page 836.

term-setup-hook

See Section 39.1.3 [Terminal-Specific], page 914.

window-configuration-change-hook

window-scroll-functions

window-size-change-functions

See Section 28.26 [Window Hooks], page 588.

window-setup-hook

See Section 38.22 [Window Systems], page 905.

window-text-change-functions

Functions to call in redisplay when text in the window might change.

Index 1014

Index

"
‘"’ in printing . 286
‘"’ in strings . 18

#
‘##’ read syntax . 14
‘#$’ . 232
‘#’’ syntax . 180
‘#(’ read syntax . 20
‘#:’ read syntax . 14
‘#@count’ . 232
‘#^’ read syntax . 21
‘#n#’ read syntax . 27
‘#n=’ read syntax . 27

$
‘$’ in display . 823
‘$’ in regexp . 737

%
% . 41
‘%’ in format . 57

&
‘&’ in replacement . 749
&optional . 172
&rest . 172

’
‘’’ for quoting . 118

(
‘(’ in regexp . 740
‘(...)’ in lists . 14
‘(?:’ in regexp . 740

)
‘)’ in regexp . 740

*
* . 40
‘*’ in interactive . 323
‘*’ in regexp . 735
scratch . 412

+
+ . 40
‘+’ in regexp . 736

,
, (with backquote) . 118
,@ (with backquote) . 119

-
- . 40

.
‘.’ in lists . 16
‘.’ in regexp . 735
.emacs . 913

/
/ . 40
/= . 37
/dev/tty . 812

;
‘;’ in comment . 9

<
< . 37
<= . 37

=
= . 37

>
> . 37
>= . 37

?
‘?’ in character constant . 10
? in minibuffer . 295
‘?’ in regexp . 736

@
‘@’ in interactive . 323

Index 1015

[
‘[’ in regexp . 736
[. . .] (Edebug) . 273

]
‘]’ in regexp . 736

^
‘^’ in interactive . 323
‘^’ in regexp . 737

‘
‘ . 118
‘ (list substitution) . 118

\
‘\’ in character constant . 11
‘\’ in display . 823
‘\’ in printing . 286
‘\’ in regexp . 737
‘\’ in replacement . 749
‘\’ in strings . 18
‘\’ in symbols . 13
‘\’’ in regexp . 742
‘\<’ in regexp . 742
‘\=’ in regexp . 742
‘\>’ in regexp . 742
‘_<’ in regexp . 742
‘_>’ in regexp . 742
‘\‘’ in regexp . 742
‘\a’ . 10
‘\b’ . 10
‘\b’ in regexp . 742
‘\B’ in regexp . 742
‘\e’ . 10
‘\f’ . 10
‘\n’ . 10
‘\n’ in print . 289
‘\n’ in replacement . 749
‘\r’ . 10
‘\s’ . 10
‘\s’ in regexp . 741
‘\S’ in regexp . 742
‘\t’ . 10
‘\v’ . 10
‘\w’ in regexp . 741
‘\W’ in regexp . 741

|
‘|’ in regexp . 740

1
1+ . 39
1- . 39
1value . 279

2
2C-mode-map . 372

A
abbrev . 773
abbrev tables in modes . 409
abbrev-all-caps . 776
abbrev-expand-functions 777
abbrev-expansion . 776
abbrev-file-name . 775
abbrev-get . 778
abbrev-insert . 776
abbrev-map . 1007
abbrev-minor-mode-table-alist 778
abbrev-prefix-mark . 776
abbrev-put . 778
abbrev-start-location . 776
abbrev-start-location-buffer 777
abbrev-symbol . 776
abbrev-table-get . 779
abbrev-table-name-list . 774
abbrev-table-p . 773
abbrev-table-put . 779
abbreviate-file-name . 494
abbreviated file names . 494
abbrevs-changed . 775
abnormal hook . 404
abort-recursive-edit . 363
aborting . 362
abs . 38
absolute file name . 492
accept input from processes 798
accept-change-group . 703
accept-process-output . 799
access-file . 480
accessibility of a file . 479
accessible portion (of a buffer) 633
accessible-keymaps . 388
acos . 46
action (button property) . 891
action alist, for display-buffer 562
action function, for display-buffer 562
action, customization keyword 210
activate-change-group . 703
activate-mark-hook . 643
activating advice . 243
active display table . 902
active keymap . 373
active-minibuffer-window 318
ad-activate . 244
ad-activate-all . 244

Index 1016

ad-activate-regexp . 244
ad-add-advice . 243
ad-deactivate . 244
ad-deactivate-all . 244
ad-deactivate-regexp . 244
ad-default-compilation-action 245
ad-disable-advice . 245
ad-disable-regexp . 245
ad-do-it . 242
ad-enable-advice . 245
ad-enable-regexp . 245
ad-get-arg . 247
ad-get-args . 247
ad-return-value . 240
ad-set-arg . 247
ad-set-args . 247
ad-start-advice . 244
ad-stop-advice . 244
ad-unadvise . 242
ad-unadvise-all . 242
ad-update . 244
ad-update-all . 244
ad-update-regexp . 244
adaptive-fill-first-line-regexp 669
adaptive-fill-function . 669
adaptive-fill-mode . 668
adaptive-fill-regexp . 669
add-hook . 406
add-name-to-file . 487
add-text-properties . 682
add-to-history . 297
add-to-invisibility-spec 833
add-to-list . 72
add-to-ordered-list . 73
address field of register . 14
adjust-window-trailing-edge 545
adjusting point . 333
advertised binding . 463
advice, activating . 243
advice, defining . 240
advice, enabling and disabling 245
advice, preactivating . 246
advising functions . 239
after-advice . 240
after-change-functions . 704
after-change-major-mode-hook 417
after-find-file . 472
after-init-hook . 913
after-init-time . 911
after-insert-file-functions 510
after-load-alist . 228
after-load-functions . 228
after-make-frame-functions 591
after-revert-hook . 520
after-save-hook . 475
after-setting-font-hook 1011
after-string (overlay property) 845
alist . 82

alist vs. plist . 86
all-completions . 300
alpha, a frame parameter . 602
alt characters . 13
and . 127
animation . 889
anonymous face . 848
anonymous function . 179
apostrophe for quoting . 118
append . 69
append-to-file . 476
apply . 177
apply, and debugging . 257
apply-partially . 177
apropos . 465
aref . 91
args, customization keyword 209
argument . 169
argument binding . 172
argument lists, features . 172
arguments for shell commands 781
arguments, interactive entry 322
arguments, reading . 291
argv . 916
arith-error example . 136
arith-error in division . 41
arithmetic operations . 39
arithmetic shift . 43
around-advice . 240
array . 90
array elements . 91
arrayp . 91
ASCII character codes . 10
ASCII control characters . 900
ascii-case-table . 62
aset . 91
ash . 43
asin . 46
ask-user-about-lock . 478
ask-user-about-supersession-threat 529
asking the user questions . 314
assoc . 83
assoc-default . 84
assoc-string . 55
association list . 82
assq . 83
assq-delete-all . 85
asynchronous subprocess . 787
atan . 46
atom . 65
atomic changes . 702
atoms . 14
attributes of text . 680
Auto Fill mode . 669
auto-coding-alist . 723
auto-coding-functions . 723
auto-coding-regexp-alist 722
auto-fill-chars . 669

Index 1017

auto-fill-function . 669
auto-hscroll-mode . 580
auto-lower, a frame parameter 599
auto-mode-alist . 412
auto-raise, a frame parameter 599
auto-raise-tool-bar-buttons 400
auto-resize-tool-bars . 400
auto-save-default . 518
auto-save-file-name-p . 516
auto-save-hook . 518
auto-save-interval . 518
auto-save-list-file-name 519
auto-save-list-file-prefix 519
auto-save-mode . 516
auto-save-timeout . 518
auto-save-visited-file-name 517
auto-window-vscroll . 580
autoload . 220
autoload cookie . 221
autoload errors . 221
autoload object . 170
autoload-do-load . 223
autoloadp . 221
automatic face assignment . 860
automatically buffer-local . 155

B
back-to-indentation . 678
background-color, a frame parameter 602
background-mode, a frame parameter 601
backquote (list substitution) 118
backslash in character constants 11
backslash in regular expressions 740
backslash in strings . 18
backslash in symbols . 13
backspace . 10
backtrace . 256
backtrace-debug . 257
backtrace-frame . 257
backtracking . 274
backtracking and POSIX regular expressions . . 747
backtracking and regular expressions 735
backup file . 511
backup files, rename or copy 513
backup-buffer . 511
backup-by-copying . 513
backup-by-copying-when-linked 513
backup-by-copying-when-mismatch 513
backup-by-copying-when-privileged-mismatch

. 513
backup-directory-alist . 512
backup-enable-predicate 512
backup-file-name-p . 515
backup-inhibited . 512
backups and auto-saving . 511
backward-button . 894
backward-char . 625

backward-delete-char-untabify 652
backward-delete-char-untabify-method 653
backward-list . 630
backward-prefix-chars . 765
backward-sexp . 630
backward-to-indentation 678
backward-word . 625
balance-windows . 546
balance-windows-area . 546
balanced parenthesis motion 630
balancing parentheses . 899
balancing window sizes . 546
barf-if-buffer-read-only 530
base 64 encoding . 700
base buffer . 535
base coding system . 716
base direction of a paragraph 907
base for reading an integer . 33
base location, package archive 946
base64-decode-region . 700
base64-decode-string . 700
base64-encode-region . 700
base64-encode-string . 700
basic code (of input character) 333
batch mode . 937
batch-byte-compile . 231
baud, in serial connections . 814
baud-rate . 935
beep . 905
before point, insertion . 649
before-advice . 240
before-change-functions 703
before-hack-local-variables-hook 161
before-init-hook . 913
before-init-time . 910
before-make-frame-hook . 591
before-revert-hook . 520
before-save-hook . 474
before-string (overlay property) 845
beginning of line . 627
beginning of line in regexp . 737
beginning-of-buffer . 626
beginning-of-defun . 631
beginning-of-defun-function 631
beginning-of-line . 626
bell . 905
bell character . 10
benchmark.el . 280
benchmarking . 280
bidi-display-reordering 906
bidi-paragraph-direction 907
bidi-string-mark-left-to-right 908
bidirectional class of characters 710
bidirectional display . 906
bidirectional reordering . 906
big endian . 815
binary coding system . 716
binary files and text files . 728

Index 1018

bindat-get-field . 817
bindat-ip-to-string . 818
bindat-length . 818
bindat-pack . 818
bindat-unpack . 817
binding arguments . 172
binding local variables . 142
binding of a key . 367
bitmap-spec-p . 852
bitmaps, fringe . 870
bitwise arithmetic . 42
blink-cursor-alist . 601
blink-matching-delay . 899
blink-matching-open . 899
blink-matching-paren . 899
blink-matching-paren-distance 899
blink-paren-function . 899
blinking parentheses . 899
bobp . 646
body height of a window . 543
body of a window . 542
body of function . 171
body size of a window . 543
body width of a window . 543
bolp . 646
bool-vector-p . 96
Bool-vectors . 96
boolean . 2
booleanp . 3
border-color, a frame parameter 602
border-width, a frame parameter 598
boundp . 144
box diagrams, for lists . 15
break . 249
breakpoints (Edebug) . 263
bucket (in obarray) . 106
buffer . 521
buffer contents . 645
buffer file name . 525
buffer input stream . 281
buffer internals . 992
buffer list . 530
buffer modification . 527
buffer names . 524
buffer output stream . 284
buffer text notation . 4
buffer, read-only . 529
buffer-access-fontified-property 692
buffer-access-fontify-functions 692
buffer-auto-save-file-format 508
buffer-auto-save-file-name 516
buffer-backed-up . 511
buffer-base-buffer . 536
buffer-chars-modified-tick 528
buffer-disable-undo . 663
buffer-display-count . 559
buffer-display-table . 903
buffer-display-time . 559

buffer-enable-undo . 663
buffer-end . 624
buffer-file-coding-system 717
buffer-file-format . 508
buffer-file-name . 525
buffer-file-number . 526
buffer-file-truename . 525
buffer-file-type . 728
buffer-invisibility-spec 833
buffer-list . 531
buffer-list, a frame parameter 599
buffer-list-update-hook 1011
buffer-live-p . 535
buffer-local variables . 154
buffer-local variables in modes 410
buffer-local-value . 157
buffer-local-variables . 157
buffer-modified-p . 527
buffer-modified-tick . 528
buffer-name . 524
buffer-name-history . 297
buffer-narrowed-p . 634
buffer-offer-save . 535
buffer-predicate, a frame parameter 599
buffer-quit-function . 1011
buffer-read-only . 530
buffer-save-without-query 535
buffer-saved-size . 518
buffer-size . 624
buffer-stale-function . 520
buffer-string . 647
buffer-substring . 646
buffer-substring-filters 648
buffer-substring-no-properties 647
buffer-swap-text . 536
buffer-undo-list . 661
bufferp . 521
buffers without undo information 524
buffers, controlled in windows 558
buffers, creating . 533
buffers, killing . 533
bugs . 1
bugs in this manual . 1
building Emacs . 982
building lists . 68
built-in function . 169
bury-buffer . 532
butlast . 68
button (button property) . 891
button buffer commands . 893
button properties . 890
button types . 891
button-activate . 893
button-at . 893
button-down event . 338
button-end . 893
button-face, customization keyword 210
button-get . 893

Index 1019

button-has-type-p . 893
button-label . 893
button-prefix, customization keyword 210
button-put . 893
button-start . 893
button-suffix, customization keyword 210
button-type . 893
button-type-get . 893
button-type-put . 893
button-type-subtype-p . 893
buttons in buffers . 890
byte compilation . 229
byte compiler warnings, how to avoid 974
byte packing and unpacking 815
byte to string . 707
byte-boolean-vars . 166, 991
byte-code . 229
byte-code function . 235
byte-code-function-p . 170
byte-compile . 230
byte-compile-dynamic . 233
byte-compile-dynamic-docstrings 232
byte-compile-file . 231
byte-compiling macros . 189
byte-compiling require . 224
byte-recompile-directory 231
byte-to-position . 706
byte-to-string . 707
bytes . 48
bytesize, in serial connections 814

C
C-c . 372
C-g . 358
C-h . 372
C-M-x . 259
C-x . 372
C-x 4 . 372
C-x 5 . 372
C-x 6 . 372
C-x RET . 372
C-x v . 372
C-x X = . 268
caar . 67
cache-long-line-scans . 824
cadr . 67
call stack . 256
call-interactively . 328
call-process . 783
call-process, command-line arguments from

minibuffer . 782
call-process-region . 785
call-process-shell-command 786
called-interactively-p . 330
calling a function . 176
cancel-change-group . 703
cancel-debug-on-entry . 252

cancel-timer . 932
capitalization . 60
capitalize . 60
capitalize-region . 679
capitalize-word . 679
car . 65
car-safe . 66
case conversion in buffers . 678
case conversion in Lisp . 59
case in replacements . 748
case-fold-search . 734
case-replace . 734
case-table-p . 62
catch . 130
categories of characters . 770
category (overlay property) 843
category (text property) . 685
category table . 770
category, regexp search for . 742
category-docstring . 771
category-set-mnemonics . 772
category-table . 771
category-table-p . 771
cdar . 68
cddr . 68
cdr . 65
cdr-safe . 66
ceiling . 38
centering point . 578
change hooks . 703
change hooks for a character 689
change-major-mode-after-body-hook 417
change-major-mode-hook . 159
changing key bindings . 381
changing to another buffer . 521
changing window size . 544
char-after . 645
char-before . 645
char-category-set . 772
char-charset . 713
char-code-property-description 711
char-displayable-p . 865
char-equal . 53
char-or-string-p . 49
char-property-alias-alist 681
char-script-table . 712
char-syntax . 763
char-table length . 88
char-table-extra-slot . 95
char-table-p . 95
char-table-parent . 95
char-table-range . 95
char-table-subtype . 95
char-tables . 94
char-to-string . 56
char-width . 846
char-width-table . 712
character alternative (in regexp) 736

Index 1020

character arrays . 48
character case . 59
character categories . 770
character classes in regexp . 738
character code conversion . 716
character codepoint . 705
character codes . 708
character insertion . 651
character printing . 464
character properties . 709
character sets . 712
character to string . 56
character translation tables 714
characterp . 708
characters . 48
characters for interactive codes 324
characters, multi-byte . 705
characters, representation in buffers and strings

. 705
charset . 712
charset, coding systems to encode 719
charset, text property . 727
charset-after . 714
charset-list . 712
charset-plist . 713
charset-priority-list . 712
charsetp . 712
charsets supported by a coding system 720
check-coding-system . 719
check-coding-systems-region 720
checkdoc-minor-mode . 975
child process . 780
child window . 539
circular list . 64
circular structure, read syntax 27
cl . 2
CL note—allocate more storage 985
CL note—case of letters . 13
CL note—default optional arg 172
CL note—integers vrs eq . 37
CL note—interning existing symbol 107
CL note—lack union, intersection 79
CL note—no continuable errors 134
CL note—no setf functions 168
CL note—only throw in Emacs 130
CL note—rplaca vs setcar 74
CL note—special forms compared 117
CL note—symbol in obarrays 106
class of advice . 240
cleanup forms . 139
clear-abbrev-table . 773
clear-image-cache . 890
clear-string . 53
clear-this-command-keys 332
clear-visited-file-modtime 528
click event . 336
clickable buttons in buffers 890
clickable text . 693

clipboard . 615
clipboard support (for MS-Windows) 616
clone-indirect-buffer . 536
closure . 182
closures, example of using . 152
clrhash . 101
coded character set . 712
codepoint, largest value . 709
codes, interactive, description of 324
codespace . 705
coding conventions in Emacs Lisp 969
coding standards . 969
coding system . 716
coding system, automatically determined 722
coding system, validity check 719
coding systems for encoding a string 719
coding systems for encoding region 719
coding systems, priority . 725
coding-system-aliases . 717
coding-system-change-eol-conversion 719
coding-system-change-text-conversion 719
coding-system-charset-list 720
coding-system-eol-type . 719
coding-system-for-read . 725
coding-system-for-write 725
coding-system-get . 717
coding-system-list . 718
coding-system-p . 718
coding-system-priority-list 726
collapse-delayed-warnings 832
color names . 616
color-defined-p . 616
color-gray-p . 617
color-supported-p . 617
color-values . 617
colors on text terminals . 618
columns . 673
COM1 . 812
combine-after-change-calls 704
combine-and-quote-strings 782
command . 170
command descriptions . 4
command history . 364
command in keymap . 378
command loop . 321
command loop, recursive . 361
command-debug-status . 257
command-error-function . 134
command-execute . 328
command-history . 364
command-line . 915
command-line arguments . 915
command-line options . 915
command-line-args . 915
command-line-args-left . 916
command-line-functions . 916
command-line-processed . 915
command-remapping . 385

Index 1021

command-switch-alist . 915
commandp . 328
commandp example . 306
commands, defining . 322
comment syntax . 760
commentary, in a Lisp library 981
comments . 9
comments, Lisp convention for 978
Common Lisp . 1
compare-buffer-substrings 648
compare-strings . 54
compare-window-configurations 585
comparing buffer text . 648
comparing file modification time 528
comparing numbers . 36
compilation (Emacs Lisp) . 229
compilation functions . 229
compile-defun . 230
compile-time constant . 234
compiled function . 235
compiler errors . 234
complete key . 367
completing-read . 301
completing-read-function 303
completion . 298
completion styles . 310
completion table . 299
completion table, modifying 301
completion tables, combining 301
completion, file name . 497
completion-at-point . 313
completion-at-point-functions 313
completion-auto-help . 304
completion-boundaries . 300
completion-category-overrides 311
completion-extra-properties 311
completion-ignore-case . 301
completion-ignored-extensions 498
completion-in-region . 314
completion-regexp-list . 301
completion-styles . 310
completion-styles-alist 310
completion-table-case-fold 301
completion-table-dynamic 313
completion-table-in-turn 301
completion-table-subvert 301
completion-table-with-predicate 301
completion-table-with-quoting 301
completion-table-with-terminator 301
complex arguments . 291
complex command . 364
composite types (customization) 204
composition (text property) 690
composition property, and point display 333
compute-motion . 629
concat . 50
concatenating bidirectional strings 908
concatenating lists . 77

concatenating strings . 50
cond . 124
condition name . 138
condition-case . 135
condition-case-unless-debug 135
conditional evaluation . 123
conditional selection of windows 558
cons . 68
cons cells . 68
cons-cells-consed . 988
consing . 68
consp . 65
constant variables . 141, 146
constrain-to-field . 696
content directory, package . 943
continuation lines . 823
continue-process . 794
control character key constants 381
control character printing . 464
control characters . 12
control characters in display 901
control characters, reading . 354
control structures . 122
Control-X-prefix . 372
controller part, model/view/controller 898
controlling terminal . 917
controlling-tty-p . 919
conventions for writing major modes 407
conventions for writing minor modes 421
conversion of strings . 55
convert-standard-filename 499
converting file names from/to MS-Windows syntax

. 490
converting numbers . 38
coordinate, relative to frame 582
coordinates-in-window-p 583
copy-abbrev-table . 773
copy-alist . 85
copy-category-table . 771
copy-directory . 501
copy-file . 488
copy-hash-table . 103
copy-keymap . 370
copy-marker . 638
copy-overlay . 840
copy-region-as-kill . 656
copy-sequence . 89
copy-syntax-table . 762
copy-tree . 71
copying alists . 85
copying files . 487
copying lists . 69
copying sequences . 89
copying strings . 50
copying vectors . 93
copysign . 35
cos . 46
count-lines . 627

Index 1022

count-loop . 5
count-screen-lines . 628
count-words . 627
counting columns . 673
coverage testing . 279
coverage testing (Edebug) . 268
create-file-buffer . 472
create-fontset-from-fontset-spec 863
create-image . 886
create-lockfiles . 478
creating buffers . 533
creating hash tables . 99
creating keymaps . 369
creating, copying and deleting directories 501
cryptographic hash . 701
ctl-arrow . 901
ctl-x-4-map . 372
ctl-x-5-map . 372
ctl-x-map . 372
ctl-x-r-map . 1007
current binding . 142
current buffer . 521
current buffer mark . 641
current buffer point and mark (Edebug) 270
current buffer position . 623
current command . 331
current stack frame . 253
current-active-maps . 374
current-bidi-paragraph-direction 908
current-buffer . 521
current-case-table . 62
current-column . 673
current-fill-column . 667
current-frame-configuration 611
current-global-map . 375
current-idle-time . 933
current-indentation . 674
current-input-method . 729
current-input-mode . 934
current-justification . 665
current-kill . 658
current-left-margin . 667
current-local-map . 375
current-message . 826
current-minor-mode-maps 376
current-prefix-arg . 361
current-time . 924
current-time-string . 924
current-time-zone . 924
current-window-configuration 584
current-word . 648
currying . 177
cursor . 572
cursor (text property) . 688
cursor position for display properties and overlays

. 688
cursor, and frame parameters 600
cursor, fringe . 870

cursor-color, a frame parameter 602
cursor-in-echo-area . 829
cursor-in-non-selected-windows 600
cursor-type . 600
cursor-type, a frame parameter 600
cust-print . 267
custom-add-frequent-value 202
custom-initialize-delay 983
custom-reevaluate-setting 202
custom-set-faces . 212
custom-set-variables . 212
custom-theme-p . 214
custom-theme-set-faces . 213
custom-theme-set-variables 213
custom-unlispify-remove-prefixes 199
custom-variable-p . 202
customizable variables, how to define 199
customization groups, defining 198
customization item . 196
customization keywords . 196
customization types . 203
customize-package-emacs-version-alist . . . 198
cyclic ordering of windows . 556
cygwin-convert-file-name-from-windows . . . 490
cygwin-convert-file-name-to-windows 490

D
data type . 8
data-directory . 467
datagrams . 807
date-leap-year-p . 930
date-to-time . 926
deactivate-mark . 643
deactivate-mark-hook . 643
deactivating advice . 244
debug . 255
debug-ignored-errors . 250
debug-on-entry . 251
debug-on-error . 249
debug-on-error use . 134
debug-on-event . 250
debug-on-message . 250
debug-on-next-call . 257
debug-on-quit . 251
debug-on-signal . 250
debugger . 256
debugger command list . 253
debugger for Emacs Lisp . 249
debugger-bury-or-kill . 253
debugging errors . 249
debugging invalid Lisp syntax 278
debugging specific functions 251
declare . 184
declare-function . 185, 186
declaring functions . 185
decode process output . 798
decode-char . 713

Index 1023

decode-coding-inserted-region 727
decode-coding-region . 727
decode-coding-string . 727
decode-time . 925
decoding file formats . 506
decoding in coding systems 726
decrement field of register . 14
dedicated window . 570
def-edebug-spec . 271
defadvice . 240
defalias . 175
default argument string . 324
default coding system . 722
default coding system, functions to determine

. 723
default init file . 913
default key binding . 368
default value . 159
default value of char-table . 94
default-boundp . 159
default-directory . 495
default-file-modes . 489
default-frame-alist . 595
default-input-method . 729
default-justification . 665
default-minibuffer-frame 607
default-process-coding-system 723
default-text-properties 681
default-value . 159
default.el . 911
defconst . 146
defcustom . 199
defface . 852
defgroup . 199
defimage . 886
define customization group 198
define customization options 199
define hash comparisons . 102
define-abbrev . 774
define-abbrev-table . 774
define-button-type . 891
define-category . 770
define-derived-mode . 413
define-fringe-bitmap . 871
define-generic-mode . 419
define-globalized-minor-mode 426
define-hash-table-test . 102
define-key . 382
define-key-after . 401
define-minor-mode . 424
define-obsolete-face-alias 860
define-obsolete-function-alias 183
define-obsolete-variable-alias 165
define-package . 945
define-prefix-command . 373
defined-colors . 617
defining a function . 175
defining advice . 240

defining commands . 322
defining customization variables in C 991
defining Lisp variables in C 991
defining menus . 390
defining-kbd-macro . 365
definitions of symbols . 105
defmacro . 190
defsubr, Lisp symbol for a primitive 990
defsubst . 184
deftheme . 213
defun . 175
DEFUN, C macro to define Lisp primitives 989
defun-prompt-regexp . 631
defvar . 145
defvar-local . 157
DEFVAR_INT, DEFVAR_LISP, DEFVAR_BOOL 991
defvaralias . 164
delay-mode-hooks . 416
delayed-warnings-hook 832, 1011
delayed-warnings-list . 832
delete . 81
delete-and-extract-region 652
delete-auto-save-file-if-necessary 518
delete-auto-save-files . 518
delete-backward-char . 652
delete-blank-lines . 654
delete-by-moving-to-trash 488, 501
delete-char . 652
delete-directory . 501
delete-dups . 82
delete-exited-processes 789
delete-field . 696
delete-file . 488
delete-frame . 606
delete-frame event . 341
delete-frame-functions . 606
delete-horizontal-space 653
delete-indentation . 653
delete-minibuffer-contents 319
delete-old-versions . 514
delete-other-windows . 549
delete-overlay . 840
delete-process . 789
delete-region . 652
delete-terminal . 592
delete-terminal-functions 592
delete-to-left-margin . 667
delete-window . 549
delete-windows-on . 549
deleting files . 487
deleting frames . 606
deleting list elements . 79
deleting previous char . 652
deleting processes . 789
deleting text vs killing . 651
deleting whitespace . 653
deleting windows . 549
delq . 79

Index 1024

dependencies . 943
derived mode . 413
derived-mode-p . 415
describe characters and events 464
describe-bindings . 390
describe-buffer-case-table 63
describe-categories . 772
describe-current-display-table 902
describe-display-table . 902
describe-mode . 413
describe-prefix-bindings 466
description for interactive codes 324
description format . 4
deserializing . 815
desktop notifications . 939
desktop save mode . 457
desktop-buffer-mode-handlers 458
desktop-save-buffer . 457
destroy-fringe-bitmap . 872
destructive list operations . 74
detect-coding-region . 720
detect-coding-string . 720
diagrams, boxed, for lists . 15
dialog boxes . 613
digit-argument . 361
ding . 905
dir-locals-class-alist . 164
dir-locals-directory-cache 164
dir-locals-file . 163
dir-locals-set-class-variables 164
dir-locals-set-directory-class 164
directory local variables . 163
directory name . 493
directory part (of file name) 490
directory-file-name . 493
directory-files . 499
directory-files-and-attributes 500
directory-oriented functions 499
dired-kept-versions . 514
disable-command . 364
disable-point-adjustment 333
disable-theme . 214
disabled . 363
disabled command . 363
disabled-command-function 364
disabling advice . 245
disabling undo . 663
disassemble . 236
disassembled byte-code . 236
discard-input . 356
discarding input . 356
display (overlay property) 843
display (text property) . 874
display action . 562
display feature testing . 619
display margins . 878
display message in echo area 825

display properties, and bidi reordering of text
. 907

display property, and point display 333
display specification . 874
display table . 901
display, a frame parameter 596
display, abstract . 894
display, arbitrary objects . 894
display-backing-store . 621
display-buffer . 562
display-buffer-alist . 563
display-buffer-base-action 563
display-buffer-below-selected 565
display-buffer-fallback-action 563
display-buffer-in-previous-window 565
display-buffer-overriding-action 563
display-buffer-pop-up-frame 564
display-buffer-pop-up-window 564
display-buffer-reuse-window 563
display-buffer-same-window 563
display-buffer-use-some-window 565
display-color-cells . 621
display-color-p . 620
display-completion-list 304
display-delayed-warnings 832
display-graphic-p . 620
display-grayscale-p . 620
display-images-p . 620
display-message-or-buffer 826
display-mm-dimensions-alist 621
display-mm-height . 621
display-mm-width . 621
display-mouse-p . 620
display-pixel-height . 620
display-pixel-width . 621
display-planes . 621
display-popup-menus-p . 620
display-save-under . 621
display-screens . 620
display-selections-p . 620
display-supports-face-attributes-p 620
display-table-slot . 902
display-type, a frame parameter 596
display-visual-class . 621
display-warning . 830
displaying a buffer . 560
displays, multiple . 591
dnd-protocol-alist . 616
do-auto-save . 518
doc, customization keyword 210
doc-directory . 462
DOC-version (documentation) file 460
documentation . 460
documentation conventions 459
documentation for major mode 413
documentation notation . 3
documentation of function . 173
documentation strings . 459

Index 1025

documentation strings, conventions and tips . . 975
documentation, keys in . 462
documentation-property . 460
dolist . 129
DOS file types . 728
dotimes . 129
dotimes-with-progress-reporter 828
dotted list . 64
dotted lists (Edebug) . 274
dotted pair notation . 16
double-click events . 339
double-click-fuzz . 340
double-click-time . 340
double-quote in strings . 18
down-list . 630
downcase . 60
downcase-region . 679
downcase-word . 679
downcasing in lookup-key . 350
drag event . 338
drag-n-drop event . 341
dribble file . 935
dump-emacs . 983
dumping Emacs . 982
dynamic binding . 150
dynamic extent . 150
dynamic libraries . 942
dynamic loading of documentation 232
dynamic loading of functions 232
dynamic-library-alist . 942

E
eager macro expansion . 216
easy-menu-define . 402
easy-mmode-define-minor-mode 425
echo area . 825
echo-area-clear-hook . 829
echo-keystrokes . 829
edebug . 264
Edebug debugging facility . 258
Edebug execution modes . 260
Edebug specification list . 272
edebug-all-defs . 276
edebug-all-forms . 276
edebug-continue-kbd-macro 277
edebug-defun . 259
edebug-display-freq-count 268
edebug-eval-macro-args . 272
edebug-eval-top-level-form 259
edebug-global-break-condition 278
edebug-initial-mode . 277
edebug-on-error . 277
edebug-on-quit . 277
edebug-print-circle . 267
edebug-print-length . 267
edebug-print-level . 267
edebug-print-trace-after 268

edebug-print-trace-before 268
edebug-save-displayed-buffer-points 276
edebug-save-windows . 276
edebug-set-global-break-condition 263
edebug-setup-hook . 276
edebug-sit-for-seconds . 261
edebug-temp-display-freq-count 268
edebug-test-coverage . 277
edebug-trace . 268, 277
edebug-tracing . 268
edebug-unwrap-results . 277
edit-and-eval-command . 295
editing types . 23
editor command loop . 321
eight-bit, a charset . 712
electric-future-map . 6
element (of list) . 64
elements of sequences . 89
elp.el . 280
elt . 89
Emacs event standard notation 464
Emacs process run time . 929
emacs, a charset . 712
emacs-build-time . 6
emacs-init-time . 929
emacs-internal coding system 717
emacs-lisp-docstring-fill-column 459
emacs-major-version . 6
emacs-minor-version . 6
emacs-pid . 922
emacs-save-session-functions 938
emacs-session-restore . 938
emacs-startup-hook . 913
emacs-uptime . 929
emacs-version . 6
EMACSLOADPATH environment variable 218
empty list . 16
emulation-mode-map-alists 377
enable-command . 363
enable-local-eval . 163
enable-local-variables . 161
enable-multibyte-characters 705
enable-recursive-minibuffers 319
enable-theme . 214
enabling advice . 245
encode-char . 713
encode-coding-region . 726
encode-coding-string . 727
encode-time . 926
encoding file formats . 506
encoding in coding systems 726
encrypted network connections 804
end of line in regexp . 737
end-of-buffer . 626
end-of-defun . 631
end-of-defun-function . 631
end-of-file . 284
end-of-line . 626

Index 1026

end-of-line conversion . 716
endianness . 815
environment . 112
environment variable access 920
environment variables, subprocesses 781
eobp . 646
EOL conversion . 716
eol conversion of coding system 719
eol type of coding system . 719
eolp . 646
epoch . 923
eq . 30
eql . 37
equal . 31
equal-including-properties 32
equality . 30
erase-buffer . 652
error . 132
error cleanup . 139
error debugging . 249
error description . 136
error display . 825
error handler . 134
error in debug . 255
error message notation . 3
error name . 138
error symbol . 138
error-conditions . 138
error-message-string . 136
errors . 132
ESC . 381
esc-map . 371
ESC-prefix . 371
escape (ASCII character) . 10
escape characters . 289
escape characters in printing 286
escape sequence . 11
eval . 119
eval, and debugging . 257
eval-after-load . 228
eval-and-compile . 233
eval-buffer . 120
eval-buffer (Edebug) . 259
eval-current-buffer . 120
eval-current-buffer (Edebug) 259
eval-defun (Edebug) . 259
eval-expression (Edebug) 260
eval-expression-debug-on-error 250
eval-expression-print-length 290
eval-expression-print-level 290
eval-minibuffer . 295
eval-region . 120
eval-region (Edebug) . 259
eval-when-compile . 233
evaluated expression argument 326
evaluation . 112
evaluation error . 143
evaluation list group . 266

evaluation notation . 3
evaluation of buffer contents 120
evaluation of special forms . 116
evaporate (overlay property) 845
event printing . 464
event type . 343
event, reading only one . 351
event-basic-type . 344
event-click-count . 339
event-convert-list . 344
event-end . 345
event-modifiers . 343
event-start . 345
eventp . 333
events . 333
ewoc . 894
ewoc-buffer . 895
ewoc-collect . 897
ewoc-create . 895
ewoc-data . 896
ewoc-delete . 897
ewoc-enter-after . 896
ewoc-enter-before . 896
ewoc-enter-first . 896
ewoc-enter-last . 896
ewoc-filter . 897
ewoc-get-hf . 895
ewoc-goto-next . 896
ewoc-goto-node . 896
ewoc-goto-prev . 896
ewoc-invalidate . 897
ewoc-locate . 896
ewoc-location . 896
ewoc-map . 897
ewoc-next . 896
ewoc-nth . 896
ewoc-prev . 896
ewoc-refresh . 896
ewoc-set-data . 896
ewoc-set-hf . 896
examining the interactive form 324
examining windows . 558
examples of using interactive 327
excursion . 632
exec-directory . 781
exec-path . 781
exec-suffixes . 780
executable-find . 486
execute program . 780
execute with prefix argument 329
execute-extended-command 329
execute-kbd-macro . 365
executing-kbd-macro . 365
execution speed . 974
exit . 362
exit recursive editing . 362
exit-minibuffer . 317
exit-recursive-edit . 363

Index 1027

exiting Emacs . 916
exp . 46
expand-abbrev . 776
expand-file-name . 494
expansion of file names . 494
expansion of macros . 188
expression . 112
expt . 46
extended menu item . 392
extended-command-history 297
extent . 150
extra slots of char-table . 94
extra-keyboard-modifiers 353

F
face (button property) . 891
face (overlay property) . 843
face (text property) . 685
face alias . 859
face attributes . 849
face codes of text . 685
face name . 848
face specification . 852
face-all-attributes . 855
face-attribute . 854
face-attribute-relative-p 855
face-background . 856
face-bold-p . 857
face-differs-from-default-p 859
face-documentation . 461, 859
face-equal . 859
face-font . 856
face-font-family-alternatives 861
face-font-registry-alternatives 862
face-font-rescale-alist 862
face-font-selection-order 862
face-foreground . 856
face-id . 859
face-inverse-video-p . 857
face-italic-p . 857
face-list . 859
face-name-history . 297
face-remap-add-relative 858
face-remap-remove-relative 859
face-remap-reset-base . 859
face-remap-set-base . 859
face-remapping-alist . 858
face-stipple . 856
face-underline-p . 857
facemenu-keymap . 372
facep . 849
faces . 848
faces for font lock . 444
faces, automatic choice . 860
false . 2
fboundp . 181
fceiling . 42

feature-unload-function 227
featurep . 225
features . 224
features . 226
fetch-bytecode . 233
ffloor . 42
field (overlay property) . 844
field (text property) . 688
field width . 58
field-beginning . 696
field-end . 696
field-string . 696
field-string-no-properties 696
fields . 695
fifo data structure . 98
file accessibility . 479
file age . 480
file attributes . 483
file contents, and default coding system 722
file format conversion . 506
file handler . 502
file hard link . 487
file local variables . 160
file locks . 477
file mode specification error 411
file modes . 483
file modes and MS-DOS . 483
file modes, setting . 488
file modification time . 480
file name abbreviations . 494
file name completion subroutines 497
file name of buffer . 525
file name of directory . 493
file name, and default coding system 722
file names . 490
file names in directory . 499
file open error . 472
file permissions . 483
file permissions, setting . 488
file symbolic links . 481
file types on MS-DOS and Windows 728
file with multiple names . 487
file, information about . 479
file-accessible-directory-p 480
file-already-exists . 488
file-attributes . 484
file-chase-links . 482
file-coding-system-alist 722
file-directory-p . 481
file-equal-p . 481
file-error . 216
file-executable-p . 479
file-exists-p . 479
file-expand-wildcards . 500
file-in-directory-p . 482
file-local-copy . 504
file-local-variables-alist 161
file-locked . 478

Index 1028

file-locked-p . 478
file-modes . 483
file-modes-symbolic-to-number 489
file-name-absolute-p . 492
file-name-all-completions 497
file-name-as-directory . 493
file-name-base . 492
file-name-buffer-file-type-alist 729
file-name-coding-system 718
file-name-completion . 498
file-name-directory . 491
file-name-extension . 491
file-name-handler-alist 502
file-name-history . 297
file-name-nondirectory . 491
file-name-sans-extension 491
file-name-sans-versions 491
file-newer-than-file-p . 480
file-newest-backup . 516
file-nlinks . 483
file-ownership-preserved-p 480
file-precious-flag . 475
file-readable-p . 479
file-regular-p . 481
file-relative-name . 492
file-remote-p . 504
file-selinux-context . 486
file-supersession . 529
file-symlink-p . 481
file-truename . 482
file-writable-p . 480
fill-column . 666
fill-context-prefix . 668
fill-forward-paragraph-function 666
fill-individual-paragraphs 664
fill-individual-varying-indent 665
fill-nobreak-predicate . 668
fill-paragraph . 664
fill-paragraph-function 666
fill-prefix . 666
fill-region . 664
fill-region-as-paragraph 665
fillarray . 92
filling text . 664
filling, automatic . 669
filter function . 796
filter multibyte flag, of process 798
filter-buffer-substring 647
filter-buffer-substring-functions 647
find file in path . 486
find library . 218
find-auto-coding . 724
find-backup-file-name . 515
find-buffer-visiting . 526
find-charset-region . 714
find-charset-string . 714
find-coding-systems-for-charsets 719
find-coding-systems-region 719

find-coding-systems-string 719
find-file . 470
find-file-hook . 471
find-file-literally 470, 472
find-file-name-handler . 504
find-file-noselect . 470
find-file-not-found-functions 471
find-file-other-window . 471
find-file-read-only . 471
find-file-wildcards . 471
find-font . 867
find-image . 886
find-operation-coding-system 724
finding files . 469
finding windows . 557
first-change-hook . 704
fit-frame-to-buffer 546, 604
fit-frame-to-buffer-bottom-margin 604
fit-window-to-buffer . 546
fixed-size window . 544
fixup-whitespace . 654
flags in format specifications 59
float . 38
float-e . 46
float-output-format . 290
float-pi . 46
float-time . 924
floating-point functions . 46
floatp . 36
floats-consed . 988
floor . 38
flowcontrol, in serial connections 814
flushing input . 356
fmakunbound . 181
fn in function’s documentation string 222
focus event . 340
focus-follows-mouse . 609
follow links . 693
follow-link (button property) 891
following-char . 645
font and color, frame parameters 601
font lock faces . 444
Font Lock mode . 437
font, a frame parameter . 602
font-at . 865
font-backend, a frame parameter 601
font-face-attributes . 867
font-family-list . 852
font-get . 867
font-lock-add-keywords . 442
font-lock-beginning-of-syntax-function . . 446
font-lock-builtin-face . 445
font-lock-comment-delimiter-face 445
font-lock-comment-face . 445
font-lock-constant-face 445
font-lock-defaults . 437
font-lock-doc-face . 445

Index 1029

font-lock-extend-after-change-region-

function . 448
font-lock-extra-managed-props 443
font-lock-face (text property) 686
font-lock-fontify-buffer-function 443
font-lock-fontify-region-function 443
font-lock-function-name-face 445
font-lock-keyword-face . 445
font-lock-keywords . 438
font-lock-keywords-case-fold-search 441
font-lock-keywords-only 446
font-lock-mark-block-function 443
font-lock-multiline . 447
font-lock-negation-char-face 445
font-lock-preprocessor-face 445
font-lock-remove-keywords 442
font-lock-string-face . 445
font-lock-syntactic-face-function 446
font-lock-syntax-table . 446
font-lock-type-face . 445
font-lock-unfontify-buffer-function 443
font-lock-unfontify-region-function 443
font-lock-variable-name-face 445
font-lock-warning-face . 445
font-put . 866
font-spec . 866
font-xlfd-name . 867
fontification-functions 860
fontified (text property) . 686
fontp . 865
foo . 4
for . 191
force-mode-line-update . 427
force-window-update . 823
forcing redisplay . 822
foreground-color, a frame parameter 602
form . 112
format . 57
format definition . 506
format of keymaps . 367
format specification . 57
format, customization keyword 210
format-alist . 506
format-find-file . 508
format-insert-file . 508
format-mode-line . 434
format-network-address . 812
format-seconds . 928
format-time-string . 926
format-write-file . 508
formatting strings . 57
formfeed . 10
forward advice . 241
forward-button . 894
forward-char . 624
forward-comment . 766
forward-line . 627
forward-list . 630

forward-sexp . 630
forward-to-indentation . 678
forward-word . 625
frame . 590
frame configuration . 611
frame layout parameters . 598
frame parameters . 594
frame parameters for windowed displays 595
frame size . 603
frame title . 605
frame visibility . 609
frame-alpha-lower-limit 602
frame-auto-hide-function 572
frame-char-height . 603
frame-char-width . 603
frame-current-scroll-bars 873
frame-first-window . 541
frame-height . 603
frame-inherited-parameters 591
frame-list . 606
frame-live-p . 606
frame-parameter . 594
frame-parameters . 594
frame-pixel-height . 603
frame-pixel-width . 603
frame-pointer-visible-p 612
frame-relative coordinate . 582
frame-root-window . 539
frame-selected-window . 556
frame-terminal . 590
frame-title-format . 605
frame-visible-p . 609
frame-width . 603
framep . 590
frames, scanning all . 606
free list . 985
frequency counts . 268
frexp . 35
fringe bitmaps . 870
fringe cursors . 870
fringe indicators . 868
fringe-bitmaps-at-pos . 871
fringe-cursor-alist . 870
fringe-indicator-alist . 869
fringes . 867
fringes, and empty line indication 868
fringes-outside-margins 868
fround . 42
fset . 181
ftp-login . 140
ftruncate . 42
full keymap . 367
full-height window . 543
full-screen frames . 597
full-width window . 543
fullscreen, a frame parameter 597
funcall . 176
funcall, and debugging . 257

Index 1030

function . 180
function aliases . 175
function call . 115
function call debugging . 251
function cell . 104
function cell in autoload . 220
function declaration . 185
function definition . 174
function descriptions . 4
function form evaluation . 115
function input stream . 282
function invocation . 176
function keys . 334
function name . 174
function output stream . 285
function quoting . 180
function safety . 186
function-documentation . 459
function-get . 110
functionals . 178
functionp . 170
functions in modes . 408
functions, making them interactive 322
fundamental-mode . 407
fundamental-mode-abbrev-table 778

G
gamma correction . 601
gap-position . 537
gap-size . 537
garbage collection . 984
garbage collection protection 988
garbage-collect . 985
garbage-collection-messages 986
gc-cons-percentage . 987
gc-cons-threshold . 987
gc-elapsed . 987
GCPRO and UNGCPRO . 990
gcs-done . 987
generate-autoload-cookie 222
generate-new-buffer . 533
generate-new-buffer-name 525
generated-autoload-file 223
generic mode . 419
geometry specification . 604
get . 109
get, defcustom keyword . 200
get-buffer . 524
get-buffer-create . 533
get-buffer-process . 796
get-buffer-window . 559
get-buffer-window-list . 559
get-byte . 709
get-char-code-property . 711
get-char-property . 680
get-char-property-and-overlay 681
get-charset-property . 713

get-device-terminal . 592
get-file-buffer . 526
get-internal-run-time . 929
get-largest-window . 558
get-load-suffixes . 217
get-lru-window . 558
get-process . 790
get-register . 699
get-text-property . 680
get-unused-category . 771
get-window-with-predicate 558
getenv . 920
gethash . 101
GIF . 884
global binding . 142
global break condition . 263
global keymap . 373
global variable . 141
global-abbrev-table . 778
global-buffers-menu-map 1008
global-disable-point-adjustment 333
global-key-binding . 380
global-map . 375
global-mode-string . 431
global-set-key . 387
global-unset-key . 388
glyph . 903
glyph-char . 903
glyph-face . 903
glyphless characters . 903
glyphless-char-display . 903
glyphless-char-display-control 904
goto-char . 624
goto-map . 372
graphical display . 590
graphical terminal . 590
group, customization keyword 196
gv-define-expander . 168
gv-define-setter . 168
gv-define-simple-setter 167
gv-letplace . 168

H
hack-dir-local-variables 163
hack-dir-local-variables-non-file-buffer

. 163
hack-local-variables . 161
hack-local-variables-hook 162
handle-shift-selection . 643
handle-switch-frame . 608
handling errors . 134
hash code . 102
hash notation . 8
hash tables . 99
hash, cryptographic . 701
hash-table-count . 103
hash-table-p . 103

Index 1031

hash-table-rehash-size . 103
hash-table-rehash-threshold 103
hash-table-size . 103
hash-table-test . 103
hash-table-weakness . 103
hashing . 106
header comments . 979
header line (of a window) . 434
header-line prefix key . 350
header-line-format . 434
height of a window . 543
height, a frame parameter 597
help for major mode . 413
help-buffer . 467
help-char . 466
help-command . 465
help-echo (overlay property) 843
help-echo (text property) . 686
help-echo event . 341
help-echo, customization keyword 211
help-event-list . 466
help-form . 466
help-index (button property) 891
help-map . 465
help-setup-xref . 467
Helper-describe-bindings 466
Helper-help . 467
Helper-help-map . 467
hex numbers . 33
hidden buffers . 524
history list . 296
history of commands . 364
history-add-new-input . 297
history-delete-duplicates 297
history-length . 297
HOME environment variable . 780
hook variables, list of . 1010
hooks . 404
hooks for changing a character 689
hooks for loading . 227
hooks for motion of point . 690
hooks for text changes . 703
hooks for window operations 588
horizontal combination . 540
horizontal position . 673
horizontal scrolling . 580
horizontal-scroll-bar prefix key 350
hyper characters . 13
hyperlinks in documentation strings 976

I
icon-left, a frame parameter 596
icon-name, a frame parameter 599
icon-title-format . 605
icon-top, a frame parameter 597
icon-type, a frame parameter 599
iconified frame . 609

iconify-frame . 609
iconify-frame event . 341
identity . 178
idleness . 932
IEEE floating point . 34
if . 123
ignore . 178
ignore-errors . 137
ignore-window-parameters 587
ignored-local-variables 162
image animation . 889
image cache . 889
image descriptor . 880
image formats . 879
image slice . 888
image types . 879
image-animate . 889
image-animate-timer . 889
image-animated-p . 889
image-cache-eviction-delay 890
image-flush . 889
image-load-path . 887
image-load-path-for-library 887
image-mask-p . 883
image-size . 888
image-type-available-p . 880
image-types . 880
ImageMagick images . 884
imagemagick-enabled-types 885
imagemagick-types . 884
imagemagick-types-inhibit 885
images in buffers . 879
images, support for more formats 884
Imenu . 435
imenu-add-to-menubar . 435
imenu-case-fold-search . 436
imenu-create-index-function 436
imenu-extract-index-name-function 436
imenu-generic-expression 435
imenu-prev-index-position-function 436
imenu-syntax-alist . 436
implicit progn . 122
inactive minibuffer . 292
inc . 188
indefinite extent . 150
indefinite scope . 150
indent-according-to-mode 675
indent-code-rigidly . 677
indent-for-tab-command . 675
indent-line-function . 675
indent-region . 676
indent-region-function . 676
indent-relative . 677
indent-relative-maybe . 678
indent-rigidly . 676
indent-tabs-mode . 675
indent-to . 674
indent-to-left-margin . 667

Index 1032

indentation . 674
indicate-buffer-boundaries 869
indicate-empty-lines . 868
indicators, fringe . 868
indirect buffers . 535
indirect specifications . 273
indirect-function . 115
indirect-variable . 165
indirection for functions . 114
infinite loops . 251
infinite recursion . 143
infinity . 34
inheritance, keymap . 370
inheritance, syntax table . 757
inheritance, text property . 691
inhibit-default-init . 913
inhibit-eol-conversion . 725
inhibit-field-text-motion 625
inhibit-file-name-handlers 504
inhibit-file-name-operation 504
inhibit-iso-escape-detection 720
inhibit-local-variables-regexps 161, 411
inhibit-modification-hooks 704
inhibit-null-byte-detection 720
inhibit-point-motion-hooks 690
inhibit-quit . 359
inhibit-read-only . 530
inhibit-splash-screen . 912
inhibit-startup-echo-area-message 912
inhibit-startup-message 912
inhibit-startup-screen . 912
inhibit-x-resources . 619
init file . 913
init-file-user . 922
init.el . 913
initial-buffer-choice . 912
initial-environment . 921
initial-frame-alist . 594
initial-major-mode . 412
initial-scratch-message 912
initial-window-system . 906
initial-window-system, and startup 910
initialization of Emacs . 910
initialize, defcustom keyword 201
inline completion . 313
inline functions . 183
innermost containing parentheses 767
input events . 333
input focus . 607
input methods . 729
input modes . 934
input stream . 281
input-decode-map . 385
input-method-alist . 730
input-method-function . 354
input-pending-p . 356
insert . 649
insert-abbrev-table-description 774

insert-and-inherit . 692
insert-before-markers . 649
insert-before-markers-and-inherit 692
insert-behind-hooks (overlay property) 844
insert-behind-hooks (text property) 689
insert-buffer . 650
insert-buffer-substring 650
insert-buffer-substring-as-yank 656
insert-buffer-substring-no-properties . . . 650
insert-button . 892
insert-char . 650
insert-default-directory 309
insert-directory . 500
insert-directory-program 501
insert-file-contents . 475
insert-file-contents-literally 476
insert-for-yank . 656
insert-image . 887
insert-in-front-hooks (overlay property) . . . 844
insert-in-front-hooks (text property) 689
insert-register . 699
insert-sliced-image . 888
insert-text-button . 892
inserting killed text . 657
insertion before point . 649
insertion of text . 649
insertion type of a marker . 639
inside comment . 768
inside string . 767
installation-directory . 921
instrumenting for Edebug . 259
int-to-string . 55
intangible (overlay property) 844
intangible (text property) 687
integer to decimal . 55
integer to hexadecimal . 58
integer to octal . 58
integer to string . 55
integer-or-marker-p . 637
integerp . 36
integers . 33
integers in specific radix . 33
interactive . 322
interactive call . 327
interactive code description 324
interactive completion . 324
interactive function . 322
interactive, examples of using 327
interactive-form . 324
interactive-form, symbol property 322
intern . 107
intern-soft . 107
internal representation of characters 705
internal windows . 538
internal-border-width, a frame parameter

. 598
internals, of buffer . 992
internals, of process . 1001

Index 1033

internals, of window . 997
interning . 106
interpreter . 112
interpreter-mode-alist . 412
interprogram-cut-function 659
interprogram-paste-function 659
interrupt Lisp functions . 358
interrupt-process . 794
intervals . 697
intervals-consed . 988
invalid prefix key error . 382
invalid-function . 114
invalid-read-syntax . 8
invalid-regexp . 742
invert-face . 856
invisible (overlay property) 844
invisible (text property) . 687
invisible frame . 609
invisible text . 832
invisible-p . 834
invisible/intangible text, and point 333
invocation-directory . 921
invocation-name . 921
isnan . 35
italic text . 850
iteration . 128

J
jit-lock-register . 443
jit-lock-unregister . 444
joining lists . 77
jumbled display of bidirectional text 908
just-one-space . 654
justify-current-line . 665

K
kbd . 366
kbd-macro-termination-hook 365
kept-new-versions . 514
kept-old-versions . 514
key . 366
key binding . 367
key binding, conventions for 971
key lookup . 378
key sequence . 366
key sequence error . 382
key sequence input . 349
key translation function . 386
key-binding . 374
key-description . 464
key-translation-map . 386
keyboard events . 333
keyboard events in strings . 347
keyboard input . 348
keyboard input decoding on X 730
keyboard macro execution . 328

keyboard macro termination 905
keyboard macro, terminating 356
keyboard macros . 364
keyboard macros (Edebug) 261
keyboard-coding-system . 728
keyboard-quit . 359
keyboard-translate . 353
keyboard-translate-table 353
keymap . 366
keymap (button property) . 891
keymap (overlay property) . 845
keymap (text property) . 686
keymap entry . 378
keymap format . 367
keymap in keymap . 378
keymap inheritance . 370
keymap inheritance from multiple maps 371
keymap of character . 686
keymap of character (and overlays) 845
keymap prompt string . 368
keymap-parent . 371
keymap-prompt . 391
keymapp . 369
keymaps for translating events 385
keymaps in modes . 408
keymaps, standard . 1007
keys in documentation strings 462
keys, reserved . 972
keystroke . 366
keyword symbol . 141
keywordp . 142
kill command repetition . 331
kill ring . 655
kill-all-local-variables 158
kill-append . 659
kill-buffer . 534
kill-buffer-hook . 534
kill-buffer-query-functions 534
kill-emacs . 916
kill-emacs-hook . 916
kill-emacs-query-functions 917
kill-local-variable . 158
kill-new . 659
kill-process . 794
kill-read-only-ok . 656
kill-region . 656
kill-ring . 660
kill-ring-max . 660
kill-ring-yank-pointer . 660
killing buffers . 533
killing Emacs . 916
kmacro-keymap . 1008

L
lambda . 180
lambda expression . 171
lambda in debug . 255

Index 1034

lambda in keymap . 378
lambda list . 171
lambda-list (Edebug) . 274
language-change event . 342
largest Lisp integer number . 34
largest window . 558
last . 67
last-abbrev . 777
last-abbrev-location . 777
last-abbrev-text . 777
last-buffer . 532
last-coding-system-used 718
last-command . 330
last-command-event . 332
last-event-frame . 332
last-input-event . 356
last-kbd-macro . 365
last-nonmenu-event . 332
last-prefix-arg . 361
last-repeatable-command 331
lax-plist-get . 87
lax-plist-put . 87
layout on display, and bidirectional text 908
layout parameters of frames 598
lazy loading . 232
lazy-completion-table . 301
ldexp . 35
least recently used window . 557
left, a frame parameter . 596
left-fringe, a frame parameter 598
left-fringe-width . 868
left-margin . 667
left-margin-width . 879
length . 88
let . 143
let* . 143
lexical binding . 150
lexical binding (Edebug) . 265
lexical comparison . 53
lexical environment . 152
lexical scope . 150
lexical-binding . 154
library . 215
library compilation . 231
library header comments . 979
library search . 218
libxml-parse-html-region 702
libxml-parse-xml-region 702
line end conversion . 716
line height . 847
line number . 627
line truncation . 823
line wrapping . 823
line-beginning-position 626
line-end-position . 627
line-height (text property) 688, 847
line-move-ignore-invisible 834
line-number-at-pos . 627

line-prefix . 824
line-spacing . 848
line-spacing (text property) 688, 848
line-spacing, a frame parameter 598
lines . 626
lines in region . 627
link, customization keyword 196
linked list . 14
linking files . 487
Lisp debugger . 249
Lisp expression motion . 630
Lisp history . 1
Lisp library . 215
Lisp nesting error . 121
Lisp object . 8
Lisp package . 943
Lisp printer . 287
Lisp reader . 281
lisp-mode-abbrev-table . 778
lisp-mode.el . 420
list . 68
list all coding systems . 718
list elements . 65
list form evaluation . 114
list in keymap . 378
list length . 88
list motion . 630
list structure . 14, 64
list-buffers-directory . 527
list-charset-chars . 713
list-fonts . 867
list-load-path-shadows . 219
list-processes . 789
list-system-processes . 801
listify-key-sequence . 355
listp . 65
lists . 64
lists and cons cells . 64
lists as sets . 79
literal evaluation . 113
little endian . 815
live buffer . 534
live windows . 538
ln . 488
load . 215
load error with require . 224
load errors . 216
load, customization keyword 197
load-average . 922
load-file . 216
load-file-name . 217
load-file-rep-suffixes . 217
load-history . 226
load-in-progress . 217
load-library . 217
load-path . 218
load-read-function . 217
load-suffixes . 217

Index 1035

load-theme . 214
loading . 215
loading hooks . 227
loadup.el . 982
local binding . 142
local keymap . 373
local variables . 142
local-abbrev-table . 778
local-function-key-map . 385
local-key-binding . 380
local-map (overlay property) 845
local-map (text property) . 687
local-set-key . 388
local-unset-key . 388
local-variable-if-set-p 157
local-variable-p . 157
locale . 730
locale-coding-system . 730
locale-info . 730
locate file in path . 486
locate-file . 486
locate-library . 219
locate-user-emacs-file . 498
lock file . 477
lock-buffer . 478
log . 46
log10 . 46
logand . 44
logb . 35
logging echo-area messages 828
logical arithmetic . 42
logical order . 906
logical shift . 42
logior . 45
lognot . 45
logxor . 45
looking-at . 746
looking-at-p . 747
looking-back . 747
lookup tables . 99
lookup-key . 379
loops, infinite . 251
lower case . 59
lower-frame . 610
lowering a frame . 610
lsh . 42
lwarn . 830

M
M-g . 372
M-o . 372
M-s . 372
M-x . 329
Maclisp . 1
macro . 169
macro argument evaluation 192
macro call . 188

macro call evaluation . 116
macro compilation . 230
macro descriptions . 4
macro expansion . 189
macroexpand . 189
macroexpand-all . 189
macros . 188
macros, at compile time . 234
magic autoload comment . 221
magic file names . 501
magic-fallback-mode-alist 412
magic-mode-alist . 412
mail-host-address . 920
major mode . 407
major mode command . 407
major mode conventions . 407
major mode hook . 410
major mode keymap . 373
major mode, automatic selection 411
major-mode . 407
make-abbrev-table . 773
make-auto-save-file-name 517
make-backup-file-name . 515
make-backup-file-name-function 512
make-backup-files . 511
make-bool-vector . 96
make-button . 892
make-byte-code . 236
make-category-set . 771
make-category-table . 771
make-char-table . 94
make-composed-keymap . 371
make-directory . 501
make-display-table . 901
make-frame . 591
make-frame-invisible . 610
make-frame-on-display . 593
make-frame-visible . 610
make-frame-visible event 341
make-glyph-code . 903
make-hash-table . 99
make-help-screen . 467
make-indirect-buffer . 535
make-keymap . 370
make-list . 69
make-local-variable . 156
make-marker . 638
make-network-process . 807
make-obsolete . 183
make-obsolete-variable . 165
make-overlay . 839
make-progress-reporter . 827
make-ring . 97
make-serial-process . 813
make-sparse-keymap . 369
make-string . 49
make-symbol . 107
make-symbolic-link . 488

Index 1036

make-syntax-table . 762
make-temp-file . 496
make-temp-name . 497
make-text-button . 892
make-translation-table . 714
make-translation-table-from-alist 715
make-translation-table-from-vector 715
make-variable-buffer-local 157
make-vector . 93
makehash . 101
making buttons . 892
makunbound . 144
manipulating buttons . 892
map-char-table . 96
map-charset-chars . 713
map-keymap . 389
map-y-or-n-p . 316
mapatoms . 108
mapc . 179
mapcar . 178
mapconcat . 179
maphash . 102
mapping functions . 178
margins, display . 878
mark . 641
mark excursion . 632
mark ring . 640
mark, the . 640
mark-active . 643
mark-even-if-inactive . 642
mark-marker . 641
mark-ring . 643
mark-ring-max . 644
marker argument . 326
marker garbage collection . 636
marker input stream . 281
marker output stream . 285
marker relocation . 636
marker-buffer . 639
marker-insertion-type . 640
marker-position . 639
markerp . 637
markers . 636
markers as numbers . 636
match data . 748
match, customization keyword 211
match-alternatives, customization keyword

. 209
match-beginning . 750
match-data . 752
match-end . 750
match-string . 750
match-string-no-properties 750
match-substitute-replacement 749
mathematical functions . 46
max . 37
max-char . 709
max-image-size . 888

max-lisp-eval-depth . 120
max-mini-window-height . 320
max-specpdl-size . 143
maximize-window . 546
maximizing windows . 546
maximum Lisp integer number 34
maximum value of character codepoint 709
md5 . 701
MD5 checksum . 701
measuring resource usage . 279
member . 81
member-ignore-case . 82
membership in a list . 79
memory allocation . 984
memory usage . 279, 988
memory-full . 987
memory-limit . 987
memory-use-counts . 987
memq . 79
memql . 80
menu bar . 397
menu bar keymaps . 1008
menu definition example . 396
menu item . 390
menu keymaps . 390
menu prompt string . 390
menu separators . 393
menu-bar prefix key . 350
menu-bar-file-menu . 1008
menu-bar-final-items . 398
menu-bar-help-menu . 1008
menu-bar-lines frame parameter 598
menu-bar-options-menu . 1008
menu-bar-tools-menu . 1008
menu-bar-update-hook . 398
menu-item . 392
menu-prompt-more-char . 396
merge-face-attribute . 855
message . 825
message digest . 701
message, finding what causes a particular message

. 250
message-box . 826
message-log-max . 828
message-or-box . 825
message-truncate-lines . 829
meta character key constants 381
meta character printing . 464
meta characters . 12
meta characters lookup . 368
meta-prefix-char . 381
min . 37
minibuffer . 291
minibuffer completion . 301
minibuffer history . 296
minibuffer input . 362
minibuffer input, and command-line arguments

. 782

Index 1037

minibuffer window, and next-window 556
minibuffer windows . 318
minibuffer, a frame parameter 599
minibuffer-allow-text-properties 294
minibuffer-auto-raise . 610
minibuffer-complete . 304
minibuffer-complete-and-exit 304
minibuffer-complete-word 304
minibuffer-completion-confirm 303
minibuffer-completion-contents 319
minibuffer-completion-help 304
minibuffer-completion-predicate 303
minibuffer-completion-table 303
minibuffer-confirm-exit-commands 303
minibuffer-contents . 319
minibuffer-contents-no-properties 319
minibuffer-depth . 319
minibuffer-exit-hook . 320
minibuffer-frame-alist . 595
minibuffer-help-form . 320
minibuffer-history . 297
minibuffer-inactive-mode 320
minibuffer-local-completion-map 305
minibuffer-local-filename-completion-map

. 305
minibuffer-local-map . 294
minibuffer-local-must-match-map 305
minibuffer-local-ns-map 295
minibuffer-local-shell-command-map 310
minibuffer-message . 320
minibuffer-message-timeout 320
minibuffer-only frame . 595
minibuffer-prompt . 319
minibuffer-prompt-end . 319
minibuffer-prompt-width 319
minibuffer-scroll-window 320
minibuffer-selected-window 320
minibuffer-setup-hook . 320
minibuffer-window . 318
minibuffer-window-active-p 318
minibufferp . 320
minimize-window . 546
minimized frame . 609
minimizing windows . 546
minimum Lisp integer number 34
minor mode . 421
minor mode conventions . 421
minor-mode-alist . 431
minor-mode-key-binding . 380
minor-mode-list . 421
minor-mode-map-alist . 376
minor-mode-overriding-map-alist 376
mirroring of characters . 710
misc-objects-consed . 988
mkdir . 501
mod . 41
mode . 404
mode help . 413

mode hook . 410
mode line . 426
mode line construct . 427
mode loading . 411
mode variable . 421
mode-class (property) . 410
mode-line prefix key . 350
mode-line-buffer-identification 430
mode-line-client . 431
mode-line-coding-system-map 1008
mode-line-column-line-number-mode-map . . 1008
mode-line-format . 429
mode-line-frame-identification 430
mode-line-input-method-map 1008
mode-line-modes . 430
mode-line-modified . 430
mode-line-mule-info . 430
mode-line-position . 430
mode-line-process . 431
mode-line-remote . 430
mode-name . 431
mode-specific-map . 372
model/view/controller . 894
modification flag (of buffer) 527
modification of lists . 76
modification time of buffer . 528
modification time of file . 484
modification-hooks (overlay property) 844
modification-hooks (text property) 689
modifier bits (of input character) 333
modify-all-frames-parameters 594
modify-category-entry . 772
modify-frame-parameters 594
modify-syntax-entry . 762
modulus . 41
momentary-string-display 838
most recently selected windows 555
most-negative-fixnum . 34
most-positive-fixnum . 34
motion by chars, words, lines, lists 624
motion event . 340
mouse click event . 336
mouse drag event . 338
mouse events, data in . 345
mouse events, in special parts of frame 350
mouse events, repeated . 339
mouse motion events . 340
mouse pointer shape . 614
mouse position . 611
mouse position list . 336
mouse position list, accessing 345
mouse tracking . 611
mouse, availability . 620
mouse-1 . 693
mouse-1-click-follows-link 694
mouse-2 . 971
mouse-action (button property) 891
mouse-appearance-menu-map 1008

Index 1038

mouse-color, a frame parameter 602
mouse-face (button property) 891
mouse-face (overlay property) 843
mouse-face (text property) 686
mouse-leave-buffer-hook 1012
mouse-movement-p . 344
mouse-on-link-p . 695
mouse-pixel-position . 612
mouse-position . 611
mouse-position-function 612
mouse-wheel-down-event . 341
mouse-wheel-up-event . 341
move to beginning or end of buffer 625
move-marker . 640
move-overlay . 840
move-to-column . 674
move-to-left-margin . 667
move-to-window-line . 628
movemail . 781
MS-DOS and file modes . 483
MS-DOS file types . 728
MS-Windows file-name syntax 490
mule-keymap . 372
multi-file package . 945
multi-query-replace-map 755
multi-tty . 591
multibyte characters . 705
multibyte text . 705
multibyte-char-to-unibyte 707
multibyte-string-p . 706
multibyte-syntax-as-symbol 769
multiline font lock . 446
multiple terminals . 591
multiple windows . 538
multiple X displays . 591
multiple-frames . 605

N
name, a frame parameter . 596
named function . 174
NaN . 34
narrow-map . 1009
narrow-to-page . 634
narrow-to-region . 633
narrowing . 633
natnump . 36
natural numbers . 36
nbutlast . 68
nconc . 77
negative infinity . 34
negative-argument . 361
network byte ordering . 815
network connection . 804
network connection, encrypted 804
network servers . 806
network service name, and default coding system

. 723

network-coding-system-alist 723
network-interface-info . 812
network-interface-list . 811
new file message . 472
newline . 10
newline . 651
newline and Auto Fill mode 651
newline in print . 288
newline in strings . 18
newline-and-indent . 675
next input . 355
next-button . 894
next-char-property-change 684
next-complete-history-element 318
next-frame . 606
next-history-element . 317
next-matching-history-element 318
next-overlay-change . 846
next-property-change . 683
next-screen-context-lines 578
next-single-char-property-change 684
next-single-property-change 684
next-window . 556
nil . 2
nil as a list . 16
nil in keymap . 378
nil input stream . 282
nil output stream . 285
nlistp . 65
no-byte-compile . 229
no-catch . 131
no-conversion coding system 716
no-redraw-on-reenter . 822
no-self-insert property . 774
non-ASCII characters . 705
non-ASCII text in keybindings 387
non-capturing group . 740
non-greedy repetition characters in regexp 736
nondirectory part (of file name) 490
noninteractive . 938
nonlocal exits . 129
nonprinting characters, reading 354
noreturn . 279
normal hook . 404
normal-auto-fill-function 669
normal-backup-enable-predicate 512
normal-mode . 411
not . 127
not-modified . 528
notation . 3
notifications-close-notification 941
notifications-get-capabilities 941
notifications-notify . 939
nreverse . 77
nth . 67
nthcdr . 67
null . 65
null bytes, and decoding text 720

Index 1039

num-input-keys . 350
num-nonmacro-input-events 352
number comparison . 36
number conversions . 38
number-or-marker-p . 637
number-sequence . 71
number-to-string . 55
numberp . 36
numbers . 33
numeric prefix argument . 359
numeric prefix argument usage 326
numerical RGB color specification 616

O
obarray . 106
obarray . 108
obarray in completion . 299
object . 8
object internals . 992
object to string . 288
octal character code . 11
octal character input . 354
octal escapes . 900
octal numbers . 33
one-window-p . 557
only-global-abbrevs . 775
opacity, frame . 602
open-dribble-file . 935
open-network-stream . 805
open-paren-in-column-0-is-defun-start . . . 631
open-termscript . 936
operating system environment 919
operating system signal . 916
operations (property) . 504
option descriptions . 6
optional arguments . 172
options on command line . 915
options, defcustom keyword 200
or . 127
ordering of windows, cyclic 556
other-buffer . 531
other-window . 557
other-window-scroll-buffer 577
outer-window-id, a frame parameter 600
output from processes . 795
output stream . 284
output-controlling variables 289
overall prompt string . 368
overflow . 33
overflow-newline-into-fringe 870
overlay-arrow-position . 872
overlay-arrow-string . 872
overlay-arrow-variable-list 873
overlay-buffer . 840
overlay-end . 840
overlay-get . 842
overlay-properties . 842

overlay-put . 842
overlay-recenter . 842
overlay-start . 840
overlayp . 839
overlays . 839
overlays-at . 845
overlays-in . 846
overlined text . 850
overriding-local-map . 377
overriding-local-map-menu-flag 377
overriding-terminal-local-map 377
overwrite-mode . 651

P
package . 943
package archive . 946
package attributes . 943
package autoloads . 943
package dependencies . 943
package name . 943
package version . 943
package-archive-upload-base 947
package-archives . 946
package-initialize . 944
package-upload-buffer . 947
package-upload-file . 947
package-version, customization keyword 198
packing . 815
padding . 58
page-delimiter . 756
paragraph-separate . 756
paragraph-start . 756
parent of char-table . 94
parent process . 780
parent window . 539, 540
parenthesis . 14
parenthesis depth . 768
parenthesis matching . 899
parenthesis mismatch, debugging 278
parity, in serial connections 814
parse-colon-path . 921
parse-partial-sexp . 768
parse-sexp-ignore-comments 769
parse-sexp-lookup-properties 764, 769
parser state . 767
parsing buffer text . 757
parsing html . 701
parsing xml . 702
partial application of functions 177
passwords, reading . 317
PATH environment variable . 780
path-separator . 921
pattern matching . 125
PBM . 885
pcase . 125
peculiar error . 138
peeking at input . 355

Index 1040

percent symbol in mode line 427
perform-replace . 754
performance analysis . 268
permanent local variable . 159
permissions, file . 483, 488
piece of advice . 239
pipe . 787
play-sound . 936
play-sound-file . 937
play-sound-functions . 937
plist . 86
plist vs. alist . 86
plist-get . 87
plist-member . 87
plist-put . 87
point . 623
point excursion . 632
point in window . 572
point with narrowing . 623
point-entered (text property) 690
point-left (text property) 690
point-marker . 638
point-max . 624
point-max-marker . 638
point-min . 623
point-min-marker . 638
pointer (text property) . 688
pointer shape . 614
pointers . 14
pop . 66
pop-mark . 642
pop-to-buffer . 561
pop-up-frame-alist . 567
pop-up-frame-function . 567
pop-up-frames . 567
pop-up-windows . 566
port number, and default coding system 723
pos-visible-in-window-p 575
position (in buffer) . 623
position argument . 325
position in window . 572
position of mouse . 611
position-bytes . 706
positive infinity . 34
posix-looking-at . 748
posix-search-backward . 748
posix-search-forward . 748
posix-string-match . 748
posn-actual-col-row . 346
posn-area . 345
posn-at-point . 347
posn-at-x-y . 347
posn-col-row . 346
posn-image . 346
posn-object . 346
posn-object-width-height 346
posn-object-x-y . 346
posn-point . 345

posn-string . 346
posn-timestamp . 346
posn-window . 345
posn-x-y . 345
posnp . 345
post-command-hook . 321
post-gc-hook . 987
post-self-insert-hook . 651
postscript images . 884
pp . 288
pre-command-hook . 321
preactivating advice . 246
preceding-char . 646
precision in format specifications 59
predicates for numbers . 35
prefix argument . 359
prefix argument unreading . 355
prefix command . 373
prefix key . 371
prefix, defgroup keyword . 199
prefix-arg . 361
prefix-help-command . 466
prefix-numeric-value . 361
preloaded Lisp files . 982
preloaded-file-list . 982
preloading additional functions and variables . . 982
prepare-change-group . 702
preventing backtracking . 273
preventing prefix key . 379
preventing quitting . 358
previous complete subexpression 767
previous-button . 894
previous-char-property-change 684
previous-complete-history-element 318
previous-frame . 607
previous-history-element 317
previous-matching-history-element 318
previous-overlay-change 846
previous-property-change 684
previous-single-char-property-change 685
previous-single-property-change 684
previous-window . 557
primary selection . 615
primitive . 169
primitive function . 22
primitive function internals 988
primitive type . 8
primitive-undo . 662
prin1 . 287
prin1-to-string . 288
princ . 288
print . 287
print example . 285
print name cell . 104
print-circle . 290
print-continuous-numbering 290
print-escape-multibyte . 289
print-escape-newlines . 289

Index 1041

print-escape-nonascii . 289
print-gensym . 290
print-length . 290
print-level . 290
print-number-table . 290
print-quoted . 289
printable ASCII characters 900
printable-chars . 712
printed representation . 8
printed representation for characters 10
printing . 281
printing (Edebug) . 267
printing circular structures 267
printing limits . 290
printing notation . 3
priority (overlay property) 843
priority order of coding systems 725
process . 780
process filter . 796
process filter multibyte flag 798
process input . 792
process internals . 1001
process output . 795
process sentinel . 799
process signals . 793
process-adaptive-read-buffering 795
process-attributes . 801
process-buffer . 796
process-coding-system . 792
process-coding-system-alist 723
process-command . 790
process-connection-type 789
process-contact . 790
process-datagram-address 807
process-environment . 921
process-exit-status . 791
process-file . 785
process-file-shell-command 786
process-file-side-effects 785
process-filter . 797
process-get . 792
process-id . 791
process-kill-buffer-query-function 795
process-lines . 786
process-list . 790
process-live-p . 791
process-mark . 796
process-name . 791
process-plist . 792
process-put . 792
process-query-on-exit-flag 801
process-running-child-p 793
process-send-eof . 793
process-send-region . 793
process-send-string . 793
process-sentinel . 800
process-status . 791
process-tty-name . 792

process-type . 791
processor run time . 929
processp . 780
profiling . 279
prog-mode . 415
prog-mode, and bidi-paragraph-direction . . 907
prog-mode-hook . 415
prog1 . 123
prog2 . 123
progn . 122
program arguments . 781
program directories . 781
program name, and default coding system 723
programmed completion . 312
programming conventions . 972
programming types . 9
progress reporting . 826
progress-reporter-done . 828
progress-reporter-force-update 827
progress-reporter-update 827
prompt for file name . 307
prompt string (of menu) . 390
prompt string of keymap . 368
properties of text . 680
propertize . 683
property category of text character 685
property list . 86
property list cell . 104
property lists vs association lists 86
protect C variables from garbage collection 990
protected forms . 139
provide . 225
provide-theme . 213
providing features . 224
pty . 787
pure storage . 983
pure-bytes-used . 984
purecopy . 984
purify-flag . 984
push . 72
push-button . 894
push-mark . 642
put . 109
put-char-code-property . 712
put-charset-property . 713
put-image . 888
put-text-property . 681
puthash . 101

Q
query-replace-history . 297
query-replace-map . 754
querying the user . 314
question mark in character constant 10
quietly-read-abbrev-file 775
quit-flag . 359
quit-process . 794

Index 1042

quit-restore-window . 571
quit-window . 571
quitting . 358
quitting from infinite loop . 251
quote . 118
quote character . 768
quoted character input . 354
quoted-insert suppression 384
quoting and unquoting command-line arguments

. 782
quoting characters in printing 286
quoting using apostrophe . 118

R
radix for reading an integer . 33
raise-frame . 610
raising a frame . 610
random . 47
random numbers . 47
rassoc . 83
rassq . 84
rassq-delete-all . 85
raw prefix argument . 359
raw prefix argument usage . 326
raw syntax descriptor . 769
raw-text coding system . 716
re-builder . 734
re-search-backward . 745
re-search-forward . 745
reactivating advice . 244
read . 284
read command name . 329
read file names . 307
read input . 348
read syntax . 8
read syntax for characters . 10
read-buffer . 305
read-buffer-completion-ignore-case 306
read-buffer-function . 306
read-char . 351
read-char-choice . 352
read-char-exclusive . 352
read-circle . 284
read-coding-system . 722
read-color . 307
read-command . 306
read-directory-name . 309
read-event . 351
read-expression-history 297
read-file-modes . 489
read-file-name . 307
read-file-name-completion-ignore-case . . . 309
read-file-name-function 309
read-from-minibuffer . 292
read-from-string . 284
read-input-method-name . 729
read-kbd-macro . 465

read-key . 352
read-key-sequence . 349
read-key-sequence-vector 350
read-minibuffer . 295
read-no-blanks-input . 294
read-non-nil-coding-system 722
read-only (text property) . 687
read-only buffer . 529
read-only buffers in interactive 323
read-only character . 687
read-only-mode . 530
read-passwd . 317
read-quoted-char . 354
read-quoted-char quitting 358
read-regexp . 293
read-shell-command . 310
read-string . 293
read-variable . 307
reading . 281
reading a single event . 351
reading from files . 475
reading from minibuffer with completion 301
reading interactive arguments 324
reading numbers in hex, octal, and binary 33
reading order . 906
reading symbols . 106
real-last-command . 331
rearrangement of lists . 76
rebinding . 381
recent-auto-save-p . 517
recent-keys . 934
recenter . 578
recenter-positions . 579
recenter-redisplay . 579
recenter-top-bottom . 579
record command history . 328
recording input . 934
recursion . 128
recursion-depth . 363
recursive command loop . 361
recursive editing level . 361
recursive evaluation . 112
recursive minibuffers . 319
recursive-edit . 362
redirect-frame-focus . 609
redisplay . 822
redisplay-dont-pause . 822
redisplay-preemption-period 823
redo . 660
redraw-display . 822
redraw-frame . 822
references, following . 971
regexp . 734
regexp alternative . 740
regexp grouping . 740
regexp searching . 744
regexp-history . 297
regexp-opt . 744

Index 1043

regexp-opt-charset . 744
regexp-opt-depth . 744
regexp-quote . 743
regexps used standardly in editing 756
region (between point and mark) 644
region argument . 326
region-beginning . 644
region-end . 644
register-alist . 698
registers . 698
regular expression . 734
regular expression searching 744
regular expressions, developing 734
reindent-then-newline-and-indent 676
relative file name . 492
remainder . 41
remapping commands . 384
remhash . 101
remote-file-name-inhibit-cache 505
remove . 81
remove-from-invisibility-spec 833
remove-hook . 406
remove-images . 888
remove-list-of-text-properties 682
remove-overlays . 840
remove-text-properties . 682
remq . 80
rename-auto-save-file . 518
rename-buffer . 524
rename-file . 488
repeat events . 339
repeated loading . 223
replace bindings . 383
replace characters . 698
replace matched text . 748
replace-buffer-in-windows 560
replace-match . 748
replace-re-search-function 756
replace-regexp-in-string 753
replace-search-function 755
replacement after search . 753
require . 225
require, customization keyword 197
require-final-newline . 475
requiring features . 224
reserved keys . 972
resize frame . 603
resize window . 544
rest arguments . 172
restore-buffer-modified-p 527
restriction (in a buffer) . 633
resume (cf. no-redraw-on-reenter) 822
resume-tty . 918
resume-tty-functions . 918
rethrow a signal . 136
return (ASCII character) . 10
return value . 169
reverse . 70

reversing a list . 77
revert-buffer . 519
revert-buffer-function . 520
revert-buffer-in-progress-p 520
revert-buffer-insert-file-contents-function

. 520
revert-without-query . 520
rgb value . 617
right-fringe, a frame parameter 598
right-fringe-width . 868
right-margin-width . 879
right-to-left text . 906
ring data structure . 97
ring-bell-function . 905
ring-copy . 97
ring-elements . 97
ring-empty-p . 97
ring-insert . 98
ring-insert-at-beginning 98
ring-length . 97
ring-p . 97
ring-ref . 97
ring-remove . 98
ring-size . 97
risky, defcustom keyword . 201
risky-local-variable-p . 162
rm . 488
root window . 539
round . 39
rounding in conversions . 38
rounding without conversion 42
rplaca . 74
rplacd . 74
run time stack . 256
run-at-time . 931
run-hook-with-args . 405
run-hook-with-args-until-failure 405
run-hook-with-args-until-success 405
run-hook-wrapped . 406
run-hooks . 405
run-mode-hooks . 416
run-with-idle-timer . 932

S
S-expression . 112
safe local variable . 162
safe, defcustom keyword . 201
safe-length . 67
safe-local-eval-forms . 163
safe-local-variable-p . 162
safe-local-variable-values 162
safe-magic (property) . 504
safely encode a string . 719
safely encode characters in a charset 719
safely encode region . 719
safety of functions . 186
same-window-buffer-names 568

Index 1044

same-window-p . 568
same-window-regexps . 568
save-abbrevs . 775
save-buffer . 473
save-buffer-coding-system 718
save-current-buffer . 523
save-excursion . 632
save-match-data . 753
save-restriction . 634
save-selected-window . 555
save-some-buffers . 473
save-window-excursion . 585
saving buffers . 473
saving text properties . 506
saving window information 584
scalability of overlays . 839
scalable-fonts-allowed . 862
scan-lists . 766
scan-sexps . 766
scope . 150
screen layout . 25
screen of terminal . 538
screen size . 603
screen-gamma, a frame parameter 601
scroll bar events, data in . 347
scroll bars . 873
scroll-bar-background, a frame parameter

. 602
scroll-bar-event-ratio . 347
scroll-bar-foreground, a frame parameter

. 602
scroll-bar-mode . 874
scroll-bar-scale . 347
scroll-bar-width . 874
scroll-bar-width, a frame parameter 598
scroll-command property . 578
scroll-conservatively . 577
scroll-down . 576
scroll-down-aggressively 577
scroll-down-command . 577
scroll-error-top-bottom 578
scroll-left . 581
scroll-margin . 577
scroll-other-window . 577
scroll-preserve-screen-position 578
scroll-right . 581
scroll-step . 578
scroll-up . 576
scroll-up-aggressively . 578
scroll-up-command . 576
scrolling textually . 576
search-backward . 733
search-failed . 732
search-forward . 732
search-map . 372
search-spaces-regexp . 747
searching . 732
searching active keymaps for keys 374

searching and case . 734
searching and replacing . 753
searching for regexp . 744
secondary selection . 615
seconds-to-time . 928
secure-hash . 701
select safe coding system . 721
select-frame . 608
select-frame-set-input-focus 608
select-safe-coding-system 721
select-safe-coding-system-accept-default-p

. 721
select-window . 555
selected window . 539
selected-frame . 607
selected-window . 539
selecting a buffer . 521
selecting a window . 555
selection (for window systems) 615
selection-coding-system 615
selective-display . 835
selective-display-ellipses 836
self-evaluating form . 113
self-insert-and-exit . 317
self-insert-command . 651
self-insert-command override 383
self-insert-command, minor modes 423
self-insertion . 651
SELinux context . 485
send-string-to-terminal 935
sending signals . 793
sentence-end . 756
sentence-end-double-space 666
sentence-end-without-period 666
sentence-end-without-space 666
sentinel (of process) . 799
sequence . 88
sequence length . 88
sequencep . 88
serial connections . 812
serial-process-configure 814
serial-term . 812
serializing . 815
session manager . 938
set . 149
set, defcustom keyword . 200
set-advertised-calling-convention 183
set-after, defcustom keyword 201
set-auto-coding . 724
set-auto-mode . 411
set-buffer . 522
set-buffer-auto-saved . 517
set-buffer-major-mode . 412
set-buffer-modified-p . 527
set-buffer-multibyte . 707
set-case-syntax . 63
set-case-syntax-delims . 63
set-case-syntax-pair . 63

Index 1045

set-case-table . 62
set-category-table . 771
set-char-table-extra-slot 95
set-char-table-parent . 95
set-char-table-range . 95
set-charset-priority . 713
set-coding-system-priority 726
set-default . 160
set-default-file-modes . 489
set-display-table-slot . 902
set-face-attribute . 854
set-face-background . 855
set-face-bold-p . 856
set-face-font . 856
set-face-foreground . 855
set-face-inverse-video-p 856
set-face-italic-p . 856
set-face-stipple . 856
set-face-underline . 856
set-file-modes . 488
set-file-selinux-context 490
set-file-times . 490
set-fontset-font . 864
set-frame-configuration 611
set-frame-height . 604
set-frame-parameter . 594
set-frame-position . 603
set-frame-selected-window 556
set-frame-size . 603
set-frame-width . 604
set-fringe-bitmap-face . 872
set-input-method . 729
set-input-mode . 934
set-keyboard-coding-system 728
set-keymap-parent . 371
set-left-margin . 667
set-mark . 642
set-marker . 640
set-marker-insertion-type 640
set-match-data . 752
set-minibuffer-window . 318
set-mouse-pixel-position 612
set-mouse-position . 612
set-network-process-option 811
set-process-buffer . 796
set-process-coding-system 792
set-process-datagram-address 807
set-process-filter . 797
set-process-plist . 792
set-process-query-on-exit-flag 801
set-process-sentinel . 800
set-register . 699
set-right-margin . 667
set-standard-case-table . 62
set-syntax-table . 763
set-temporary-overlay-map 377
set-terminal-coding-system 728
set-terminal-parameter . 605

set-text-properties . 682
set-visited-file-modtime 529
set-visited-file-name . 526
set-window-buffer . 558
set-window-combination-limit 553
set-window-configuration 584
set-window-dedicated-p . 570
set-window-display-table 903
set-window-fringes . 868
set-window-hscroll . 581
set-window-margins . 879
set-window-next-buffers 569
set-window-parameter . 586
set-window-point . 573
set-window-prev-buffers 568
set-window-scroll-bars . 873
set-window-start . 574
set-window-vscroll . 579
setcar . 74
setcdr . 75
setenv . 920
setf . 167
setplist . 109
setq . 149
setq-default . 159
setq-local . 156
sets . 79
setting modes of files . 487
setting-constant error . 141
severity level . 829
sexp . 112
sexp motion . 630
SHA hash . 701
shadowed Lisp files . 219
shadowing of variables . 142
shared structure, read syntax 27
shell command arguments . 781
shell-command-history . 297
shell-command-to-string 786
shell-quote-argument . 781
shift-selection, and interactive spec 323
shift-translation . 350
show-help-function . 690
shrink-window-if-larger-than-buffer 546
shy groups . 740
sibling window . 539
side effect . 112
SIGHUP . 916
SIGINT . 916
signal . 133
signal-process . 794
signaling errors . 132
signals . 793
SIGTERM . 916
SIGTSTP . 917
sigusr1 event . 341
sigusr2 event . 341
simple package . 944

Index 1046

sin . 46
single file package . 944
single-key-description . 464
sit-for . 357
site-init.el . 982
site-lisp directories . 218
site-load.el . 982
site-run-file . 913
site-start.el . 911
size of frame . 603
size of window . 542
skip-chars-backward . 632
skip-chars-forward . 631
skip-syntax-backward . 765
skip-syntax-forward . 765
skipping characters . 631
skipping comments . 769
sleep-for . 357
slice, image . 888
small-temporary-file-directory 497
smallest Lisp integer number 34
smie-bnf->prec2 . 450
smie-close-block . 450
smie-down-list . 450
smie-merge-prec2s . 450
smie-prec2->grammar . 450
smie-precs->prec2 . 450
smie-rule-bolp . 455
smie-rule-hanging-p . 455
smie-rule-next-p . 455
smie-rule-parent . 456
smie-rule-parent-p . 455
smie-rule-prev-p . 455
smie-rule-separator . 456
smie-rule-sibling-p . 456
smie-setup . 449
Snarf-documentation . 462
sort . 78
sort-columns . 673
sort-fields . 672
sort-fold-case . 671
sort-lines . 672
sort-numeric-base . 673
sort-numeric-fields . 673
sort-pages . 672
sort-paragraphs . 672
sort-regexp-fields . 671
sort-subr . 670
sorting lists . 78
sorting text . 670
sound . 936
source breakpoints . 264
space (ASCII character) . 10
space display spec, and bidirectional text 908
spaces, pixel specification . 876
spaces, specified height or width 875
sparse keymap . 367
SPC in minibuffer . 295

special events . 356
special form descriptions . 4
special forms . 116
special forms for control structures 122
special modes . 410
special variables . 154
special-event-map . 377
special-mode . 416
special-variable-p . 154
specify color . 616
speedups . 974
splicing (with backquote) . 119
split-height-threshold . 567
split-string . 51
split-string-and-unquote 782
split-string-default-separators 52
split-width-threshold . 567
split-window . 547
split-window-below . 548
split-window-keep-point 548
split-window-preferred-function 566
split-window-right . 548
split-window-sensibly . 567
splitting windows . 546
sqrt . 46
stable sort . 78
standard colors for character terminals 601
standard errors . 1003
standard hooks . 1010
standard regexps used in editing 756
standard syntax table . 757
standard-case-table . 62
standard-category-table 771
standard-display-table . 903
standard-input . 284
standard-output . 289
standard-syntax-table . 757
standard-translation-table-for-decode . . . 715
standard-translation-table-for-encode . . . 715
standards of coding style . 969
start-file-process . 788
start-file-process-shell-command 788
start-process . 787
start-process, command-line arguments from

minibuffer . 782
start-process-shell-command 788
STARTTLS network connections 804
startup of Emacs . 910
startup.el . 910
staticpro, protection from GC 991
sticky text properties . 691
sticky, a frame parameter 600
stop points . 258
stop-process . 794
stopbits, in serial connections 814
stopping an infinite loop . 251
stopping on events . 263
storage of vector-like Lisp objects 984

Index 1047

store-match-data . 752
store-substring . 52
stream (for printing) . 284
stream (for reading) . 281
strike-through text . 850
string . 49
string equality . 53
string in keymap . 378
string input stream . 282
string length . 88
string search . 732
string to number . 56
string to object . 284
string, number of bytes . 706
string, writing a doc string 459
string-as-multibyte . 708
string-as-unibyte . 708
string-bytes . 706
string-chars-consed . 988
string-equal . 53
string-lessp . 54
string-match . 746
string-match-p . 746
string-or-null-p . 49
string-prefix-p . 54
string-to-char . 56
string-to-int . 56
string-to-multibyte . 707
string-to-number . 56
string-to-syntax . 770
string-to-unibyte . 707
string-width . 846
string< . 53
string= . 53
stringp . 49
strings . 48
strings with keyboard events 347
strings, formatting them . 57
strings-consed . 988
submenu . 395
subprocess . 780
subr . 169
subr-arity . 170
subrp . 170
subst-char-in-region . 698
substitute-command-keys 463
substitute-in-file-name 495
substitute-key-definition 383
substituting keys in documentation 462
substring . 49
substring-no-properties . 50
subtype of char-table . 94
suggestions . 1
super characters . 13
suppress-keymap . 383
suspend (cf. no-redraw-on-reenter) 822
suspend evaluation . 362
suspend-emacs . 917

suspend-frame . 919
suspend-hook . 918
suspend-resume-hook . 918
suspend-tty . 918
suspend-tty-functions . 918
suspending Emacs . 917
swap text between buffers . 536
switch-to-buffer . 560
switch-to-buffer-other-frame 561
switch-to-buffer-other-window 561
switch-to-buffer-preserve-window-point . . 561
switch-to-next-buffer . 569
switch-to-prev-buffer . 569
switch-to-visible-buffer 569
switches on command line . 915
switching to a buffer . 560
sxhash . 102
symbol . 104
symbol components . 104
symbol equality . 106
symbol evaluation . 113
symbol function indirection 114
symbol in keymap . 379
symbol name hashing . 106
symbol property . 108
symbol that evaluates to itself 141
symbol with constant value 141
symbol-file . 226
symbol-function . 181
symbol-name . 107
symbol-plist . 109
symbol-value . 148
symbolp . 104
symbols-consed . 988
synchronous subprocess . 783
syntactic font lock . 445
syntax class . 758
syntax code . 769
syntax descriptor . 758
syntax error (Edebug) . 274
syntax flags . 761
syntax for characters . 10
syntax table . 757
syntax table example . 420
syntax table internals . 769
syntax tables in modes . 409
syntax-after . 770
syntax-begin-function . 767
syntax-class . 770
syntax-ppss . 767
syntax-ppss-flush-cache 767
syntax-ppss-toplevel-pos 768
syntax-propertize-extend-region-functions

. 764
syntax-propertize-function 764
syntax-table . 763
syntax-table (text property) 764
syntax-table-p . 757

Index 1048

system abbrev . 773
system processes . 801
system type and name . 919
system-configuration . 919
system-groups . 923
system-key-alist . 937
system-messages-locale . 730
system-name . 920
system-time-locale . 730
system-type . 919
system-users . 923

T
t . 2
t input stream . 282
t output stream . 285
tab (ASCII character) . 10
tab deletion . 652
TAB in minibuffer . 295
tab-always-indent . 676
tab-stop-list . 678
tab-to-tab-stop . 678
tab-width . 901
tabs stops for indentation . 678
Tabulated List mode . 417
tabulated-list-entries . 417
tabulated-list-format . 417
tabulated-list-init-header 418
tabulated-list-mode . 417
tabulated-list-print . 418
tabulated-list-printer . 418
tabulated-list-revert-hook 418
tabulated-list-sort-key 418
tag on run time stack . 130
tag, customization keyword 196
tan . 46
TCP . 804
temacs . 982
TEMP environment variable . 496
temp-buffer-setup-hook . 837
temp-buffer-show-function 837
temp-buffer-show-hook . 838
temp-buffer-window-setup-hook 838
temp-buffer-window-show-hook 838
temporary-file-directory 496
TERM environment variable . 914
term-file-prefix . 914
term-setup-hook . 915
Termcap . 914
terminal . 590
terminal input . 934
terminal input modes . 934
terminal output . 935
terminal parameters . 604
terminal screen . 538
terminal type . 25
terminal-coding-system . 728

terminal-list . 592
terminal-live-p . 590
terminal-local variables . 592
terminal-name . 592
terminal-parameter . 605
terminal-parameters . 605
terminal-specific initialization 914
termscript file . 936
terpri . 288
test-completion . 300
testcover-mark-all . 279
testcover-next-mark . 279
testcover-start . 279
testing types . 28
text . 645
text area of a window . 542
text conversion of coding system 719
text deletion . 651
text files and binary files . 728
text insertion . 649
text near point . 645
text parsing . 757
text properties . 680
text properties in files . 506
text properties in the mode line 433
text properties, read syntax . 20
text representation . 705
text terminal . 590
text-char-description . 464
text-mode . 415
text-mode-abbrev-table . 778
text-properties-at . 681
text-property-any . 685
text-property-default-nonsticky 691
text-property-not-all . 685
textual order . 122
textual scrolling . 576
thing-at-point . 648
this-command . 331
this-command-keys . 332
this-command-keys-shift-translated 350
this-command-keys-vector 332
this-original-command . 331
three-step-help . 468
throw . 131
throw example . 362
TIFF . 884
tiled windows . 538
time-add . 930
time-less-p . 930
time-subtract . 930
time-to-day-in-year . 930
time-to-days . 930
timer . 930
timer-max-repeats . 931
timestamp of a mouse event 346
timing programs . 280
tips for writing Lisp . 969

Index 1049

title, a frame parameter . 596
TLS network connections . 804
TMP environment variable . 496
TMPDIR environment variable 496
tool bar . 398
tool-bar-add-item . 399
tool-bar-add-item-from-menu 400
tool-bar-border . 401
tool-bar-button-margin . 400
tool-bar-button-relief . 401
tool-bar-lines frame parameter 598
tool-bar-local-item-from-menu 400
tool-bar-map . 399
tool-bar-position frame parameter 598
tooltip . 686
top frame . 610
top, a frame parameter . 596
top-level . 363
top-level form . 215
total height of a window . 543
total width of a window . 543
tq-close . 804
tq-create . 803
tq-enqueue . 803
trace buffer . 267
track-mouse . 611
transaction queue . 803
transcendental functions . 46
transient-mark-mode . 642
translate-region . 698
translation tables . 714
translation-table-for-input 715
transparency, frame . 602
transpose-regions . 700
trash . 488, 501
triple-click events . 339
true . 2
true list . 64
truename (of file) . 482
truncate . 38
truncate-lines . 823
truncate-partial-width-windows 823
truncate-string-to-width 846
truth value . 2
try-completion . 299
tty-color-alist . 618
tty-color-approximate . 618
tty-color-clear . 618
tty-color-define . 618
tty-color-mode, a frame parameter 601
tty-color-translate . 618
tty-erase-char . 922
tty-top-frame . 610
two’s complement . 33
type . 8
type (button property) . 891
type checking . 27
type checking internals . 992

type predicates . 28
type, defcustom keyword . 203
type-of . 30
typographic conventions . 2

U
UDP . 804
umask . 489
unassigned character codepoints 709
unbalanced parentheses . 278
unbinding keys . 388
unbury-buffer . 532
undecided coding-system, when encoding 727
undefined . 380
undefined in keymap . 379
undefined key . 367
underline-minimum-offset 852
underlined text . 850
undo avoidance . 698
undo-ask-before-discard 663
undo-boundary . 662
undo-in-progress . 662
undo-limit . 663
undo-outer-limit . 663
undo-strong-limit . 663
unexec . 983
unhandled-file-name-directory 505
unibyte buffers, and bidi reordering 907
unibyte text . 705
unibyte-char-to-multibyte 707
unibyte-string . 706
Unicode . 705
unicode bidirectional algorithm 906
unicode character escape . 11
unicode general category . 709
unicode, a charset . 712
unicode-category-table . 712
unintern . 108
uninterned symbol . 106
universal-argument . 361
universal-argument-map . 1009
unless . 124
unload-feature . 227
unload-feature-special-hooks 227
unloading packages . 227
unloading packages, preparing for 970
unlock-buffer . 478
unnumbered group . 740
unpacking . 815
unread-command-events . 355
unsafep . 186
unsplittable, a frame parameter 599
unwind-protect . 139
unwinding . 139
up-list . 630
upcase . 60
upcase-initials . 61

Index 1050

upcase-region . 679
upcase-word . 680
update-directory-autoloads 221
update-file-autoloads . 221
upper case . 59
upper case key sequence . 350
use-global-map . 376
use-hard-newlines . 666
use-local-map . 376
use-region-p . 644
user errors, signaling . 133
user groups . 923
user identification . 922
user options, how to define 199
user signals . 341
user-defined error . 138
user-emacs-directory . 914
user-error . 133
user-full-name . 923
user-init-file . 914
user-login-name . 923
user-mail-address . 922
user-position, a frame parameter 597
user-real-login-name . 923
user-real-uid . 923
user-size, a frame parameter 597
user-uid . 923
utf-8-emacs coding system 717

V
valid windows . 538
validity of coding system . 719
value cell . 104
value of expression . 112
value of function . 169
values . 121
variable . 141
variable aliases . 164
variable definition . 145
variable descriptions . 6
variable limit error . 143
variable with constant value 141
variable, buffer-local . 154
variable-documentation . 460
variable-width spaces . 875
variant coding system . 716
vc-mode . 430
vc-prefix-map . 372
vconcat . 93
vector . 93
vector (type) . 92
vector evaluation . 113
vector length . 88
vector-cells-consed . 988
vector-like objects, storage . 984
vectorp . 93
verify-visited-file-modtime 528

version number (in file name) 490
version, customization keyword 198
version-control . 514
vertical combination . 540
vertical fractional scrolling . 579
vertical scroll position . 579
vertical tab . 10
vertical-line prefix key . 350
vertical-motion . 628
vertical-scroll-bar . 873
vertical-scroll-bar prefix key 350
vertical-scroll-bars, a frame parameter . . 598
view part, model/view/controller 894
view-register . 699
virtual buffers . 536
visibility, a frame parameter 599
visible frame . 609
visible-bell . 905
visible-frame-list . 606
visited file . 525
visited file mode . 411
visited-file-modtime . 529
visiting files . 469
visual order . 906
void function . 114
void function cell . 181
void variable . 144
void-function . 181
void-text-area-pointer . 614
void-variable error . 144

W
wait-for-wm, a frame parameter 600
waiting . 357
waiting for command key input 356
waiting-for-user-input-p 800
walk-windows . 557
warn . 830
warning type . 830
warning-fill-prefix . 831
warning-levels . 830
warning-minimum-level . 831
warning-minimum-log-level 831
warning-prefix-function 831
warning-series . 831
warning-suppress-log-types 832
warning-suppress-types . 832
warning-type-format . 831
warnings . 829
wheel-down event . 341
wheel-up event . 341
when . 124
where-is-internal . 389
while . 128
while-no-input . 356
whitespace . 10
wholenump number . 36

Index 1051

widen . 634
widening . 634
width of a window . 543
width, a frame parameter . 597
window . 538
window (overlay property) . 843
window body . 542
window body height . 543
window body size . 543
window body width . 543
window combination . 540
window combination limit . 553
window configuration (Edebug) 270
window configurations . 584
window end position . 573
window excursions . 633
window header line . 434
window height . 543
window history . 568
window in direction . 541
window internals . 997
window layout in a frame . 25
window layout, all frames . 25
window manager interaction, and frame

parameters . 599
window ordering, cyclic . 556
window parameters . 586
window point . 572
window point internals . 998
window position . 572, 582
window position on display 596
window positions and window managers 597
window resizing . 544
window selected within a frame 539
window size . 542
window size on display . 597
window size, changing . 544
window splitting . 546
window start position . 573
window that satisfies a predicate 558
window top line . 573
window tree . 539
window width . 543
window-absolute-pixel-edges 584
window-at . 583
window-body-height . 543
window-body-size . 544
window-body-width . 543
window-buffer . 558
window-child . 541
window-combination-limit 552, 553
window-combination-resize 553
window-combined-p . 541
window-configuration-change-hook 589
window-configuration-frame 585
window-configuration-p . 585
window-current-scroll-bars 874
window-dedicated-p . 570

window-display-table . 903
window-edges . 582
window-end . 573
window-frame . 539
window-fringes . 868
window-full-height-p . 543
window-full-width-p . 543
window-hscroll . 581
window-id, a frame parameter 599
window-in-direction . 541
window-inside-absolute-pixel-edges 584
window-inside-edges . 582
window-inside-pixel-edges 584
window-left-child . 541
window-left-column . 582
window-line-height . 575
window-list . 539
window-live-p . 538
window-margins . 879
window-min-height . 544
window-min-width . 544
window-minibuffer-p . 318
window-next-buffers . 568
window-next-sibling . 541
window-parameter . 586
window-parameters . 586
window-parent . 540
window-persistent-parameters 587
window-pixel-edges . 583
window-point . 572
window-point-insertion-type 573
window-prev-buffers . 568
window-prev-sibling . 541
window-resizable . 545
window-resize . 545
window-scroll-bars . 873
window-scroll-functions 588
window-setup-hook . 906
window-size-change-functions 589
window-size-fixed . 544
window-size-fixed-p . 544
window-start . 573
window-state-get . 586
window-state-put . 586
window-system . 905, 906
window-system-initialization-alist 910
window-text-change-functions 1013
window-text-height . 544
window-top-child . 540
window-top-line . 582
window-total-height . 543
window-total-size . 543
window-total-width . 543
window-tree . 542
window-valid-p . 538
window-vscroll . 579
windowp . 538
Windows file types . 728

Index 1052

windows, controlling precisely 558
with-case-table . 62
with-coding-priority . 726
with-current-buffer . 523
with-demoted-errors . 137
with-help-window . 467
with-local-quit . 359
with-no-warnings . 235
with-output-to-string . 288
with-output-to-temp-buffer 836
with-selected-window . 556
with-syntax-table . 763
with-temp-buffer . 523
with-temp-buffer-window 838
with-temp-file . 477
with-temp-message . 825
with-timeout . 932
with-wrapper-hook . 405
word-search-backward . 734
word-search-backward-lax 734
word-search-forward . 733
word-search-forward-lax 734
word-search-regexp . 733
words in region . 627
words-include-escapes . 625
wrap-prefix . 824
write-abbrev-file . 775
write-char . 288
write-contents-functions 474
write-file . 473
write-file-functions . 474
write-region . 476
write-region-annotate-functions 509
write-region-post-annotation-function . . . 509
writing a documentation string 459
writing Emacs primitives . 988
writing to files . 476
wrong-number-of-arguments 172
wrong-type-argument . 27

X
X Window System . 905
x-alt-keysym . 937
x-alternatives-map . 1009
x-bitmap-file-path . 852
x-close-connection . 593
x-color-defined-p . 616

x-color-values . 617
x-defined-colors . 617
x-display-color-p . 620
x-display-list . 593
x-dnd-known-types . 616
x-dnd-test-function . 616
x-dnd-types-alist . 616
x-family-fonts . 863
x-get-resource . 619
x-get-selection . 615
x-hyper-keysym . 937
x-list-fonts . 863
x-meta-keysym . 937
x-open-connection . 593
x-parse-geometry . 604
x-pointer-shape . 614
x-popup-dialog . 614
x-popup-menu . 612
x-resource-class . 619
x-resource-name . 619
x-sensitive-text-pointer-shape 615
x-server-vendor . 622
x-server-version . 622
x-set-selection . 615
x-setup-function-keys . 1009
x-super-keysym . 937
X11 keysyms . 937
XBM . 883
XPM . 883

Y
y-or-n-p . 314
y-or-n-p-with-timeout . 315
yank . 657
yank suppression . 384
yank-excluded-properties 657
yank-handled-properties 657
yank-pop . 658
yank-undo-function . 658
yanking and text properties 657
yes-or-no questions . 314
yes-or-no-p . 315

Z
zerop . 36

	Introduction
	Caveats
	Lisp History
	Conventions
	Some Terms
	nil and t
	Evaluation Notation
	Printing Notation
	Error Messages
	Buffer Text Notation
	Format of Descriptions
	A Sample Function Description
	A Sample Variable Description

	Version Information
	Acknowledgments

	Lisp Data Types
	Printed Representation and Read Syntax
	Comments
	Programming Types
	Integer Type
	Floating Point Type
	Character Type
	Basic Char Syntax
	General Escape Syntax
	Control-Character Syntax
	Meta-Character Syntax
	Other Character Modifier Bits

	Symbol Type
	Sequence Types
	Cons Cell and List Types
	Drawing Lists as Box Diagrams
	Dotted Pair Notation
	Association List Type

	Array Type
	String Type
	Syntax for Strings
	Non-ASCII Characters in Strings
	Nonprinting Characters in Strings
	Text Properties in Strings

	Vector Type
	Char-Table Type
	Bool-Vector Type
	Hash Table Type
	Function Type
	Macro Type
	Primitive Function Type
	Byte-Code Function Type
	Autoload Type

	Editing Types
	Buffer Type
	Marker Type
	Window Type
	Frame Type
	Terminal Type
	Window Configuration Type
	Frame Configuration Type
	Process Type
	Stream Type
	Keymap Type
	Overlay Type
	Font Type

	Read Syntax for Circular Objects
	Type Predicates
	Equality Predicates

	Numbers
	Integer Basics
	Floating Point Basics
	Type Predicates for Numbers
	Comparison of Numbers
	Numeric Conversions
	Arithmetic Operations
	Rounding Operations
	Bitwise Operations on Integers
	Standard Mathematical Functions
	Random Numbers

	Strings and Characters
	String and Character Basics
	Predicates for Strings
	Creating Strings
	Modifying Strings
	Comparison of Characters and Strings
	Conversion of Characters and Strings
	Formatting Strings
	Case Conversion in Lisp
	The Case Table

	Lists
	Lists and Cons Cells
	Predicates on Lists
	Accessing Elements of Lists
	Building Cons Cells and Lists
	Modifying List Variables
	Modifying Existing List Structure
	Altering List Elements with setcar
	Altering the CDR of a List
	Functions that Rearrange Lists

	Using Lists as Sets
	Association Lists
	Property Lists
	Property Lists and Association Lists
	Property Lists Outside Symbols

	Sequences, Arrays, and Vectors
	Sequences
	Arrays
	Functions that Operate on Arrays
	Vectors
	Functions for Vectors
	Char-Tables
	Bool-vectors
	Managing a Fixed-Size Ring of Objects

	Hash Tables
	Creating Hash Tables
	Hash Table Access
	Defining Hash Comparisons
	Other Hash Table Functions

	Symbols
	Symbol Components
	Defining Symbols
	Creating and Interning Symbols
	Symbol Properties
	Accessing Symbol Properties
	Standard Symbol Properties

	Evaluation
	Kinds of Forms
	Self-Evaluating Forms
	Symbol Forms
	Classification of List Forms
	Symbol Function Indirection
	Evaluation of Function Forms
	Lisp Macro Evaluation
	Special Forms
	Autoloading

	Quoting
	Backquote
	Eval

	Control Structures
	Sequencing
	Conditionals
	Pattern matching case statement

	Constructs for Combining Conditions
	Iteration
	Nonlocal Exits
	Explicit Nonlocal Exits: catch and throw
	Examples of catch and throw
	Errors
	How to Signal an Error
	How Emacs Processes Errors
	Writing Code to Handle Errors
	Error Symbols and Condition Names

	Cleaning Up from Nonlocal Exits

	Variables
	Global Variables
	Variables that Never Change
	Local Variables
	When a Variable is ``Void''
	Defining Global Variables
	Tips for Defining Variables Robustly
	Accessing Variable Values
	Setting Variable Values
	Scoping Rules for Variable Bindings
	Dynamic Binding
	Proper Use of Dynamic Binding
	Lexical Binding
	Using Lexical Binding

	Buffer-Local Variables
	Introduction to Buffer-Local Variables
	Creating and Deleting Buffer-Local Bindings
	The Default Value of a Buffer-Local Variable

	File Local Variables
	Directory Local Variables
	Variable Aliases
	Variables with Restricted Values
	Generalized Variables
	The setf Macro
	Defining new setf forms

	Functions
	What Is a Function?
	Lambda Expressions
	Components of a Lambda Expression
	A Simple Lambda Expression Example
	Other Features of Argument Lists
	Documentation Strings of Functions

	Naming a Function
	Defining Functions
	Calling Functions
	Mapping Functions
	Anonymous Functions
	Accessing Function Cell Contents
	Closures
	Declaring Functions Obsolete
	Inline Functions
	The declare Form
	Telling the Compiler that a Function is Defined
	Determining whether a Function is Safe to Call
	Other Topics Related to Functions

	Macros
	A Simple Example of a Macro
	Expansion of a Macro Call
	Macros and Byte Compilation
	Defining Macros
	Common Problems Using Macros
	Wrong Time
	Evaluating Macro Arguments Repeatedly
	Local Variables in Macro Expansions
	Evaluating Macro Arguments in Expansion
	How Many Times is the Macro Expanded?

	Indenting Macros

	Customization Settings
	Common Item Keywords
	Defining Customization Groups
	Defining Customization Variables
	Customization Types
	Simple Types
	Composite Types
	Splicing into Lists
	Type Keywords
	Defining New Types

	Applying Customizations
	Custom Themes

	Loading
	How Programs Do Loading
	Load Suffixes
	Library Search
	Loading Non-ASCII Characters
	Autoload
	Repeated Loading
	Features
	Which File Defined a Certain Symbol
	Unloading
	Hooks for Loading

	Byte Compilation
	Performance of Byte-Compiled Code
	Byte-Compilation Functions
	Documentation Strings and Compilation
	Dynamic Loading of Individual Functions
	Evaluation During Compilation
	Compiler Errors
	Byte-Code Function Objects
	Disassembled Byte-Code

	Advising Emacs Lisp Functions
	A Simple Advice Example
	Defining Advice
	Around-Advice
	Computed Advice
	Activation of Advice
	Enabling and Disabling Advice
	Preactivation
	Argument Access in Advice
	The Combined Definition

	Debugging Lisp Programs
	The Lisp Debugger
	Entering the Debugger on an Error
	Debugging Infinite Loops
	Entering the Debugger on a Function Call
	Explicit Entry to the Debugger
	Using the Debugger
	Debugger Commands
	Invoking the Debugger
	Internals of the Debugger

	Edebug
	Using Edebug
	Instrumenting for Edebug
	Edebug Execution Modes
	Jumping
	Miscellaneous Edebug Commands
	Breaks
	Edebug Breakpoints
	Global Break Condition
	Source Breakpoints

	Trapping Errors
	Edebug Views
	Evaluation
	Evaluation List Buffer
	Printing in Edebug
	Trace Buffer
	Coverage Testing
	The Outside Context
	Checking Whether to Stop
	Edebug Display Update
	Edebug Recursive Edit

	Edebug and Macros
	Instrumenting Macro Calls
	Specification List
	Backtracking in Specifications
	Specification Examples

	Edebug Options

	Debugging Invalid Lisp Syntax
	Excess Open Parentheses
	Excess Close Parentheses

	Test Coverage
	Profiling

	Reading and Printing Lisp Objects
	Introduction to Reading and Printing
	Input Streams
	Input Functions
	Output Streams
	Output Functions
	Variables Affecting Output

	Minibuffers
	Introduction to Minibuffers
	Reading Text Strings with the Minibuffer
	Reading Lisp Objects with the Minibuffer
	Minibuffer History
	Initial Input
	Completion
	Basic Completion Functions
	Completion and the Minibuffer
	Minibuffer Commands that Do Completion
	High-Level Completion Functions
	Reading File Names
	Completion Variables
	Programmed Completion
	Completion in Ordinary Buffers

	Yes-or-No Queries
	Asking Multiple Y-or-N Questions
	Reading a Password
	Minibuffer Commands
	Minibuffer Windows
	Minibuffer Contents
	Recursive Minibuffers
	Minibuffer Miscellany

	Command Loop
	Command Loop Overview
	Defining Commands
	Using interactive
	Code Characters for interactive
	Examples of Using interactive

	Interactive Call
	Distinguish Interactive Calls
	Information from the Command Loop
	Adjusting Point After Commands
	Input Events
	Keyboard Events
	Function Keys
	Mouse Events
	Click Events
	Drag Events
	Button-Down Events
	Repeat Events
	Motion Events
	Focus Events
	Miscellaneous System Events
	Event Examples
	Classifying Events
	Accessing Mouse Events
	Accessing Scroll Bar Events
	Putting Keyboard Events in Strings

	Reading Input
	Key Sequence Input
	Reading One Event
	Modifying and Translating Input Events
	Invoking the Input Method
	Quoted Character Input
	Miscellaneous Event Input Features

	Special Events
	Waiting for Elapsed Time or Input
	Quitting
	Prefix Command Arguments
	Recursive Editing
	Disabling Commands
	Command History
	Keyboard Macros

	Keymaps
	Key Sequences
	Keymap Basics
	Format of Keymaps
	Creating Keymaps
	Inheritance and Keymaps
	Prefix Keys
	Active Keymaps
	Searching the Active Keymaps
	Controlling the Active Keymaps
	Key Lookup
	Functions for Key Lookup
	Changing Key Bindings
	Remapping Commands
	Keymaps for Translating Sequences of Events
	Interaction with normal keymaps

	Commands for Binding Keys
	Scanning Keymaps
	Menu Keymaps
	Defining Menus
	Simple Menu Items
	Extended Menu Items
	Menu Separators
	Alias Menu Items

	Menus and the Mouse
	Menus and the Keyboard
	Menu Example
	The Menu Bar
	Tool bars
	Modifying Menus
	Easy Menu

	Major and Minor Modes
	Hooks
	Running Hooks
	Setting Hooks

	Major Modes
	Major Mode Conventions
	How Emacs Chooses a Major Mode
	Getting Help about a Major Mode
	Defining Derived Modes
	Basic Major Modes
	Mode Hooks
	Tabulated List mode
	Generic Modes
	Major Mode Examples

	Minor Modes
	Conventions for Writing Minor Modes
	Keymaps and Minor Modes
	Defining Minor Modes

	Mode Line Format
	Mode Line Basics
	The Data Structure of the Mode Line
	The Top Level of Mode Line Control
	Variables Used in the Mode Line
	%-Constructs in the Mode Line
	Properties in the Mode Line
	Window Header Lines
	Emulating Mode Line Formatting

	Imenu
	Font Lock Mode
	Font Lock Basics
	Search-based Fontification
	Customizing Search-Based Fontification
	Other Font Lock Variables
	Levels of Font Lock
	Precalculated Fontification
	Faces for Font Lock
	Syntactic Font Lock
	Multiline Font Lock Constructs
	Font Lock Multiline
	Region to Fontify after a Buffer Change

	Automatic Indentation of code
	Simple Minded Indentation Engine
	SMIE Setup and Features
	Operator Precedence Grammars
	Defining the Grammar of a Language
	Defining Tokens
	Living With a Weak Parser
	Specifying Indentation Rules
	Helper Functions for Indentation Rules
	Sample Indentation Rules

	Desktop Save Mode

	Documentation
	Documentation Basics
	Access to Documentation Strings
	Substituting Key Bindings in Documentation
	Describing Characters for Help Messages
	Help Functions

	Files
	Visiting Files
	Functions for Visiting Files
	Subroutines of Visiting

	Saving Buffers
	Reading from Files
	Writing to Files
	File Locks
	Information about Files
	Testing Accessibility
	Distinguishing Kinds of Files
	Truenames
	Other Information about Files
	How to Locate Files in Standard Places

	Changing File Names and Attributes
	File Names
	File Name Components
	Absolute and Relative File Names
	Directory Names
	Functions that Expand Filenames
	Generating Unique File Names
	File Name Completion
	Standard File Names

	Contents of Directories
	Creating, Copying and Deleting Directories
	Making Certain File Names ``Magic''
	File Format Conversion
	Overview
	Round-Trip Specification
	Piecemeal Specification

	Backups and Auto-Saving
	Backup Files
	Making Backup Files
	Backup by Renaming or by Copying?
	Making and Deleting Numbered Backup Files
	Naming Backup Files

	Auto-Saving
	Reverting

	Buffers
	Buffer Basics
	The Current Buffer
	Buffer Names
	Buffer File Name
	Buffer Modification
	Buffer Modification Time
	Read-Only Buffers
	The Buffer List
	Creating Buffers
	Killing Buffers
	Indirect Buffers
	Swapping Text Between Two Buffers
	The Buffer Gap

	Windows
	Basic Concepts of Emacs Windows
	Windows and Frames
	Window Sizes
	Resizing Windows
	Splitting Windows
	Deleting Windows
	Recombining Windows
	Selecting Windows
	Cyclic Ordering of Windows
	Buffers and Windows
	Switching to a Buffer in a Window
	Choosing a Window for Display
	Action Functions for display-buffer
	Additional Options for Displaying Buffers
	Window History
	Dedicated Windows
	Quitting Windows
	Windows and Point
	The Window Start and End Positions
	Textual Scrolling
	Vertical Fractional Scrolling
	Horizontal Scrolling
	Coordinates and Windows
	Window Configurations
	Window Parameters
	Hooks for Window Scrolling and Changes

	Frames
	Creating Frames
	Multiple Terminals
	Frame Parameters
	Access to Frame Parameters
	Initial Frame Parameters
	Window Frame Parameters
	Basic Parameters
	Position Parameters
	Size Parameters
	Layout Parameters
	Buffer Parameters
	Window Management Parameters
	Cursor Parameters
	Font and Color Parameters

	Frame Size And Position
	Geometry

	Terminal Parameters
	Frame Titles
	Deleting Frames
	Finding All Frames
	Minibuffers and Frames
	Input Focus
	Visibility of Frames
	Raising and Lowering Frames
	Frame Configurations
	Mouse Tracking
	Mouse Position
	Pop-Up Menus
	Dialog Boxes
	Pointer Shape
	Window System Selections
	Drag and Drop
	Color Names
	Text Terminal Colors
	X Resources
	Display Feature Testing

	Positions
	Point
	Motion
	Motion by Characters
	Motion by Words
	Motion to an End of the Buffer
	Motion by Text Lines
	Motion by Screen Lines
	Moving over Balanced Expressions
	Skipping Characters

	Excursions
	Narrowing

	Markers
	Overview of Markers
	Predicates on Markers
	Functions that Create Markers
	Information from Markers
	Marker Insertion Types
	Moving Marker Positions
	The Mark
	The Region

	Text
	Examining Text Near Point
	Examining Buffer Contents
	Comparing Text
	Inserting Text
	User-Level Insertion Commands
	Deleting Text
	User-Level Deletion Commands
	The Kill Ring
	Kill Ring Concepts
	Functions for Killing
	Yanking
	Functions for Yanking
	Low-Level Kill Ring
	Internals of the Kill Ring

	Undo
	Maintaining Undo Lists
	Filling
	Margins for Filling
	Adaptive Fill Mode
	Auto Filling
	Sorting Text
	Counting Columns
	Indentation
	Indentation Primitives
	Indentation Controlled by Major Mode
	Indenting an Entire Region
	Indentation Relative to Previous Lines
	Adjustable ``Tab Stops''
	Indentation-Based Motion Commands

	Case Changes
	Text Properties
	Examining Text Properties
	Changing Text Properties
	Text Property Search Functions
	Properties with Special Meanings
	Formatted Text Properties
	Stickiness of Text Properties
	Lazy Computation of Text Properties
	Defining Clickable Text
	Defining and Using Fields
	Why Text Properties are not Intervals

	Substituting for a Character Code
	Registers
	Transposition of Text
	Base 64 Encoding
	Checksum/Hash
	Parsing HTML and XML
	Atomic Change Groups
	Change Hooks

	Non-ASCII Characters
	Text Representations
	Converting Text Representations
	Selecting a Representation
	Character Codes
	Character Properties
	Character Sets
	Scanning for Character Sets
	Translation of Characters
	Coding Systems
	Basic Concepts of Coding Systems
	Encoding and I/O
	Coding Systems in Lisp
	User-Chosen Coding Systems
	Default Coding Systems
	Specifying a Coding System for One Operation
	Explicit Encoding and Decoding
	Terminal I/O Encoding
	MS-DOS File Types

	Input Methods
	Locales

	Searching and Matching
	Searching for Strings
	Searching and Case
	Regular Expressions
	Syntax of Regular Expressions
	Special Characters in Regular Expressions
	Character Classes
	Backslash Constructs in Regular Expressions

	Complex Regexp Example
	Regular Expression Functions

	Regular Expression Searching
	POSIX Regular Expression Searching
	The Match Data
	Replacing the Text that Matched
	Simple Match Data Access
	Accessing the Entire Match Data
	Saving and Restoring the Match Data

	Search and Replace
	Standard Regular Expressions Used in Editing

	Syntax Tables
	Syntax Table Concepts
	Syntax Descriptors
	Table of Syntax Classes
	Syntax Flags

	Syntax Table Functions
	Syntax Properties
	Motion and Syntax
	Parsing Expressions
	Motion Commands Based on Parsing
	Finding the Parse State for a Position
	Parser State
	Low-Level Parsing
	Parameters to Control Parsing

	Syntax Table Internals
	Categories

	Abbrevs and Abbrev Expansion
	Abbrev Tables
	Defining Abbrevs
	Saving Abbrevs in Files
	Looking Up and Expanding Abbreviations
	Standard Abbrev Tables
	Abbrev Properties
	Abbrev Table Properties

	Processes
	Functions that Create Subprocesses
	Shell Arguments
	Creating a Synchronous Process
	Creating an Asynchronous Process
	Deleting Processes
	Process Information
	Sending Input to Processes
	Sending Signals to Processes
	Receiving Output from Processes
	Process Buffers
	Process Filter Functions
	Decoding Process Output
	Accepting Output from Processes

	Sentinels: Detecting Process Status Changes
	Querying Before Exit
	Accessing Other Processes
	Transaction Queues
	Network Connections
	Network Servers
	Datagrams
	Low-Level Network Access
	make-network-process
	Network Options
	Testing Availability of Network Features

	Misc Network Facilities
	Communicating with Serial Ports
	Packing and Unpacking Byte Arrays
	Describing Data Layout
	Functions to Unpack and Pack Bytes
	Examples of Byte Unpacking and Packing

	Emacs Display
	Refreshing the Screen
	Forcing Redisplay
	Truncation
	The Echo Area
	Displaying Messages in the Echo Area
	Reporting Operation Progress
	Logging Messages in *Messages*
	Echo Area Customization

	Reporting Warnings
	Warning Basics
	Warning Variables
	Warning Options
	Delayed Warnings

	Invisible Text
	Selective Display
	Temporary Displays
	Overlays
	Managing Overlays
	Overlay Properties
	Searching for Overlays

	Width
	Line Height
	Faces
	Face Attributes
	Defining Faces
	Face Attribute Functions
	Displaying Faces
	Face Remapping
	Functions for Working with Faces
	Automatic Face Assignment
	Basic Faces
	Font Selection
	Looking Up Fonts
	Fontsets
	Low-Level Font Representation

	Fringes
	Fringe Size and Position
	Fringe Indicators
	Fringe Cursors
	Fringe Bitmaps
	Customizing Fringe Bitmaps
	The Overlay Arrow

	Scroll Bars
	The display Property
	Display Specs That Replace The Text
	Specified Spaces
	Pixel Specification for Spaces
	Other Display Specifications
	Displaying in the Margins

	Images
	Image Formats
	Image Descriptors
	XBM Images
	XPM Images
	GIF Images
	TIFF Images
	PostScript Images
	ImageMagick Images
	Other Image Types
	Defining Images
	Showing Images
	Animated Images
	Image Cache

	Buttons
	Button Properties
	Button Types
	Making Buttons
	Manipulating Buttons
	Button Buffer Commands

	Abstract Display
	Abstract Display Functions
	Abstract Display Example

	Blinking Parentheses
	Character Display
	Usual Display Conventions
	Display Tables
	Active Display Table
	Glyphs
	Glyphless Character Display

	Beeping
	Window Systems
	Bidirectional Display

	Operating System Interface
	Starting Up Emacs
	Summary: Sequence of Actions at Startup
	The Init File
	Terminal-Specific Initialization
	Command-Line Arguments

	Getting Out of Emacs
	Killing Emacs
	Suspending Emacs

	Operating System Environment
	User Identification
	Time of Day
	Time Conversion
	Parsing and Formatting Times
	Processor Run time
	Time Calculations
	Timers for Delayed Execution
	Idle Timers
	Terminal Input
	Input Modes
	Recording Input

	Terminal Output
	Sound Output
	Operating on X11 Keysyms
	Batch Mode
	Session Management
	Desktop Notifications
	Dynamically Loaded Libraries

	Preparing Lisp code for distribution
	Packaging Basics
	Simple Packages
	Multi-file Packages
	Creating and Maintaining Package Archives

	Emacs 23 Antinews
	Old Lisp Features in Emacs 23

	GNU Free Documentation License
	GNU General Public License
	Tips and Conventions
	Emacs Lisp Coding Conventions
	Key Binding Conventions
	Emacs Programming Tips
	Tips for Making Compiled Code Fast
	Tips for Avoiding Compiler Warnings
	Tips for Documentation Strings
	Tips on Writing Comments
	Conventional Headers for Emacs Libraries

	GNU Emacs Internals
	Building Emacs
	Pure Storage
	Garbage Collection
	Memory Usage
	Writing Emacs Primitives
	Object Internals
	Buffer Internals
	Window Internals
	Process Internals

	Standard Errors
	Standard Keymaps
	Standard Hooks
	Index

