
Security Roadmap
P O S T E R

Securing Web Application
Technologies (SWAT)

C H E C K L I S T
Version 1.2

WhatWorks in
Application Security

Ingraining security into the mind of every developer.

The SWAT Checklist provides an easy-to-reference set of best practices that raise
awareness and help development teams create more secure applications. It’s a fi rst
step toward building a base of security knowledge around web application security.
Use this checklist to identify the minimum standard that is required to neutralize
vulnerabilities in your critical applications.

Securing Web Application Technologies (SWAT) C H E C K L I S T

C W E I D

D A T A P R O T E C T I O N
DESCRIPT IONBEST PRACTICE

For all pages requiring protection by SSL, the same URL should not be
accessible via the non-SSL channel.

CWE-319Disable HTTP access
for all SSL-enabled

resources

The Strict-Transport-Security header ensures that the browser does
not talk to the server over non-SSL. This helps reduce the risk of SSL
stripping attacks as implemented by the sslsniff tool.

Use the Strict-
Transport-Security

header

If encryption keys are exchanged or pre-set in your application, then any
key establishment or exchange must be performed over a secure channel.

Securely exchange
encryption keys

When keys are stored in your system they must be properly secured
and only accessible to the appropriate staff on a need-to-know basis.

CWE-320Set up secure key
management

processes

Weak SSL ciphers must be disabled on all servers. For example, SSL v2
has known weaknesses and is not considered to be secure. Additionally,
some ciphers are cryptographically weak and should be disabled.

Disable weak SSL
ciphers on servers

Conduct an evaluation to ensure that sensitive data is not being
unnecessarily transported or stored. Where possible, use tokenization
to reduce data exposure risks.

Limit the use
and storage of
sensitive data

Browser data caching should be disabled using the cache control HTTP
headers or meta tags within the HTML page. Additionally, sensitive input
fi elds, such as the login form, should have the autocomplete=off setting in
the HTML form to instruct the browser not to cache the credentials.

CWE-524Disable data
caching using cache
control headers and

autocomplete

Ideally, SSL should be used for your entire application. If you have to limit
where it’s used, then SSL must be applied to any authentication pages as
well as to all pages after the user is authenticated. If sensitive information
(e.g., personal information) can be submitted before authentication, those
features must also be sent over SSL.

CWE-311
CWE-319
CWE-523

Use SSL
everywhere

EXAMPLE: Firesheep

User passwords must be stored using secure hashing techniques with
a strong algorithm like SHA-256. Simply hashing the password a single
time does not suffi ciently protect the password. Use iterative hashing
with a random salt to make the hash strong.

CWE-257Store user
passwords using a
strong, iterative,

salted hash EXAMPLE: LinkedIn password leak

SSL certifi cates should be signed by a reputable certifi cate authority.
The name on the certifi cate should match the FQDN of the website.
The certifi cate itself should be valid and not expired.

Use valid SSL
certi� cates from a

reputable CA
EXAMPLE: CA Compromise (http://en.wikipedia.org/wiki/DigiNotar)

A U T H E N T I C A T I O N
BEST PRACTICE

Never allow credentials to be stored directly within the application code.
While it can be convenient to test application code with hardcoded
credentials during development this signifi cantly increases risk and should
be avoided.

CWE-798Don’t hardcode
credentials

EXAMPLE: Hard-coded passwords in networking devices (https://www.us-cert.gov/control_systems/pdf/ICSA-12-243-01.pdf)

DESCRIPT ION C W E I D

Password reset systems are often the weakest link in an application.
These systems are often based on users answering personal questions to
establish their identity and in turn reset the password. The system needs
to be based on questions that are both hard to guess and brute force.
Additionally, any password reset option must not reveal whether or not
an account is valid, preventing username harvesting.

CWE-640Develop a strong
password reset

system

EXAMPLE: Sara Palin password hack (http://en.wikipedia.org/wiki/Sarah_Palin_email_hack)

Account lockout needs to be implemented to prevent brute-force
attacks against both the authentication and password reset functionality.
After several tries on a specifi c user account, the account should be locked
for a period of time or until it is manually unlocked. Additionally, it is best to
continue the same failure message indicating that the credentials are incorrect
or the account is locked to prevent an attacker from harvesting usernames.

CWE-307Implement account
lockout against

brute-force attacks

Messages for authentication errors must be clear and, at the same
time, be written so that sensitive information about the system is not
disclosed. For example, error messages which reveal that the userid is
valid but that the corresponsing password is incorrect confi rms to an
attacker that the account does exist on the system.

Don’t disclose too
much information
in error messages

Modern web applications usually consist of multiple layers. The business
logic tier (processing of information) often connects to the data tier
(database). Connecting to the database, of course, requires authentication.
The authentication credentials in the business logic tier must be stored in a
centralized location that is locked down. Scattering credentials throughout
the source code is not acceptable. Some development frameworks provide a
centralized secure location for storing credentials to the backend database.
These encrypted stores should be leveraged when possible.

CWE-257Store database
credentials securely

If an application becomes compromised it is important that the
application itself and any middleware services be confi gured to run with
minimal privileges. For instance, while the application layer or business layer
needs the ability to read and write data to the underlying database, administrative
credentials that grant access to other databases or tables should not be provided.

CWE-250Applications and
Middleware should
run with minimal

privileges

A password policy should be created and implemented so that
passwords meet specifi c strength criteria.

CWE-521Implement a strong
password policy

EXAMPLE: (http://www.pcworld.com/article/128823/study_weak_passwords_really_do_help_hackers.html)

I N P U T A N D O U T P U T H A N D L I N G
DESCRIPT IONBEST PRACTICE C W E I D

For each user input fi eld, there should be validation on the input
content. Whitelisting input is the preferred approach. Only accept data
that meet a certain criteria. For input that needs more fl exibility, blacklisting can
also be applied where known bad input patterns or characters are blocked.

Prefer whitelists
over blacklists

CWE-159
CWE-144

In order to prevent Cross-Site Request Forgery attacks, you must
embed a random value that is not known to third parties into the
HTML form. This CSRF protection token must be unique to each
request. This prevents a forged CSRF request from being submitted
because the attacker does not know the value of the token.

Use tokens to
prevent forged

requests

CWE-352

For every page in your application set the encoding using HTTP
headers or meta tags within HTML. This ensures that the encoding
of the page is always defi ned and that the browser will not have to determine
the encoding on its own. Setting a consistent encoding like UTF-8 for your
application reduces the overall risk of issues like Cross-Site Scripting.

Set the encoding
for your application

CWE-172

When hosting user uploaded content that can be viewed by other
users, use the X-Content-Type-Options: nosniff header so that
browsers do not try to guess the data type. Sometimes the browser can be
tricked into displaying the data type incorrectly (e.g., showing a GIF fi le as
HTML). Always let the server or application determine the data type.

Use the nosni�
header for uploaded

content

CWE-430

Content Security Policy (CSP) and X-XSS-Protection headers help
defend against many common refl ected Cross-Site Scripting (XSS)
attacks.

Use Content Security
Policy (CSP) or X-XSS-
Protection headers

CWE-79
CWE-692

When accepting fi le uploads from the user make sure to validate the
size of the fi le, the fi le type, and the fi le contents, and ensure that it
is not possible to override the destination path for the fi le.

Validate uploaded
� les

CWE-434
CWE-616
CWE-22

SQL queries should be crafted with user content passed into a bind
variable. Queries written this way are safe against SQL injection
attacks. SQL queries should not be created dynamically using string
concatenation. Similarly, the SQL query string used in a bound or
parameterized query should never be dynamically built from user input.

Use parameterized
SQL queries

CWE-89
CWE-564

EXAMPLE: Sony SQL injection Hack (http://www.infosecurity-magazine.com/view/27930/lulzsec-sony-pictures-hackers-were-school-chums)

Use the X-Frame-Options header to prevent content from being
loaded by a foreign site in a frame. This mitigates Clickjacking
attacks. For older browsers that do not support this header add
framebusting Javascript code to mitigate Clickjacking (although this
method is not foolproof and can be circumvented).

Use the X-Frame-
Options header

CAPEC-103
CWE-693

EXAMPLE: Flash camera and mic hack (http://jeremiahgrossman.blogspot.com/2008/10/clickjacking-web-pages-can-see-and-hear.html)

All output functions must contextually encode data before sending
it to the user. Depending on where the output will end up in the
HTML page, the output must be encoded differently. For example,
data placed in the URL context must be encoded differently than
data placed in JavaScript context within the HTML page.

Conduct contextual
output encoding

CWE-79

EXAMPLE: Resource: (https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet)

The source of the input must be validated. For example, if input
is expected from a POST request do not accept the input variable
from a GET request.

CWE-20
CWE-346

Validate the
source of input

AND

Twitter
@sansappsec
Latest news, promos,
and other information

Website
software-security.sans.org
Free resources, white papers, webcasts, and more

AppSec CyberTalent
Assessment
sans.org/appsec-assessment

Blog
software-security.sans.org/blog

E R R O R H A N D L I N G A N D L O G G I N G
DESCRIPT IONBEST PRACTICE C W E I D

Given the languages and frameworks in use for web application
development, never allow an unhandled exception to occur. Error
handlers should be confi gured to handle unexpected errors and
gracefully return controlled output to the user.

No unhandled
exceptions

CWE-391

Your development framework or platform may generate default
error messages. These should be suppressed or replaced with
customized error messages, as framework-generated messages may
reveal sensitive information to the user.

Suppress
framework-generated

errors

Any authentication activities, whether successful or not, should be
logged.

Log all
authentication

activities

CWE-778

Any activities or occasions where the user’s privilege level changes
should be logged.

Log all privilege
changes

CWE-778

Any administrative activities on the application or any of its
components should be logged.

Log administrative
activities

CWE-778

Any access to sensitive data should be logged. This is particularly
important for corporations that have to meet regulatory
requirements like HIPAA, PCI, or SOX.

Log access to
sensitive data

CWE-778

While logging errors and auditing access are important, sensitive
data should never be logged in an unencrypted form. For example,
under HIPAA and PCI, it would be a violation to log sensitive
data into the log itself unless the log is encrypted on the disk.
Additionally, it can create a serious exposure point should the web
application itself become compromised.

Do not log
inappropriate data

CWE-532

Logs should be stored and maintained appropriately to avoid
information loss or tampering by intruders. Log retention should
also follow the rention policy set forth by the organization to
meet regulatory requirements and provide enough information for
forensic and incident response activities.

Store logs securely CWE-533

Error messages should not reveal details about the internal state of
the application. For example, fi le system path and stack information
should not be exposed to the user through error messages.

CWE-209Display generic
error messages

CWE-209

A C C E S S C O N T R O L

Make use of a Mandatory Access Control system. All access decisions
will be based on the principle of least privilege. If not explicitly allowed
then access should be denied. Additionally, after an account is created,
rights must be specifi cally added to that account to grant access to resources.

Apply the principle
of least privilege

CWE-272
CWE-250

Do not allow direct references to fi les or parameters that can be
manipulated to grant excessive access. Access control decisions
must be based on the authenticed user identity and trusted server-
side information.

Don’t use direct
object references for
access control checks

CWE-284

An unvalidated forward can allow an attacker to access private
content without authentication. Unvalidated redirects allow an
attacker to lure victims into visiting malicious sites. Prevent this
from occurring by conducting the appropriate access control
checks before sending the user to the given location.

Don’t use
unvalidated
forwards or

redirects

CWE-601

DESCRIPT IONBEST PRACTICE C W E I D

Always apply the principle of complete mediation, forcing all requests
through a common security “gate keeper.” This ensures that access
control checks are triggered whether or not the user is authenticated.

CWE-284Apply access control
checks consistently

S E S S I O N M A N A G E M E N T
BEST PRACTICE

Session tokens must be generated by secure random functions and must
be of suffi cient length to withstand analysis and prediction.

CWE-6Ensure that session
identi� ers are

su� ciently random

Session tokens should be regenerated when the user authenticates to
the application and when the user privilege level changes. Additionally, should
the encryption status change, the session token should always be regenerated.

CWE-384Regenerate session
tokens

When a user is not active, the application should automatically log the
user out. Be aware that Ajax applications may make recurring calls to the
application, effectively resetting the timeout counter automatically.

CWE-613Implement an idle
session timeout

Users should be logged out after an extensive amount of time (e.g., 4-8
hours) has passed since they logged in. This helps mitigate the risk of an
attacker using a hijacked session.

CWE-613Implement an
absolute session

timeout
Unless the application requires multiple simultaneous sessions for a
single user, implement features to detect session cloning attempts.
Should any sign of session cloning be detected, the session should be
destroyed, forcing the real user to reauthenticate.

Destroy sessions
at any sign of

tampering

The session cookie should be set with both the HttpOnly and the
Secure fl ags. This ensures that the session id will not be accessible to
client-side scripts and will only be transmitted over SSL.

CWE-79
CWE-614

Use secure cookie
attributes

(i.e., HttpOnly and
Secure � ags)

When the user logs out of the application, the session and corresponding
data on the server must be destroyed. This ensures that the session
cannot be accidentially revived.

CWE-613Invalidate the
session after logout

The cookie domain and path scope should be set to the most restrictive
settings for your application. Any wildcard domain scoped cookie must
have a good justifi cation for its existence.

Set the cookie
domain and path

correctly

The logout button or logout link should be easily accessible to users on
every page after they have authenticated.

Place a logout button
on every page

The session cookie should have a reasonable expiration time.
Non-expiring session cookies should be avoided.

Set the cookie
expiration time

DESCRIPT ION C W E I D

C O N F I G U R AT I O N A N D O P E R AT I O N S

A rigorous change management process must be maintained during
operations. For example, new releases should only be deployed after
proper testing and associated documentation has been completed.

CWE-439Establish a rigorous
change management

process
EXAMPLE: RBS production outage (http://www.computing.co.uk/ctg/analysis/2186972/rbs-wrong-rbs-manager)

Engage the business owner to defi ne security requirements for the application.
This includes items that range from the whitelist validation rules all the way to
nonfunctional requirements like the performance of the login function. Defi ning
these requirements up front ensures that security is baked into the system.

De� ne security
requirements

Automating the deployment of your application, using Continuous
Integration and Continuous Deployment, helps to ensure that changes
are made in a consistent, repeatable manner in all environments.

Automate
application
deployment

Integrating security into the design phase saves money and time.
Conduct a risk review with security professionals and threat model the
application to identify key risks. This helps you integrate appropriate
countermeasures into the design and architecture of the application.

CWE-701
CWE-656

Conduct a
design review

Security-focused code reviews can be one of the most effective ways to
fi nd security bugs. Regularly review your code looking for common issues
like SQL Injection and Cross-Site Scripting.

CWE-702Perform code
reviews

An incident handling plan should be drafted and tested on a regular basis.
The contact list of people to involve in a security incident related to the
application should be well defi ned and kept up to date.

De� ne an incident
handling plan

All components of infrastructure that support the application should be
confi gured according to security best practices and hardening guidelines. In
a typical web application this can include routers, fi rewalls, network switches, operating
systems, web servers, application servers, databases, and application frameworks.

CWE-15
CWE-656

Harden the
infrastructure

Training helps defi ne a common language that the team can use to improve
the security of the application. Education should not be confi ned solely to
software developers, testers, and architects. Anyone associated with the
development process, such as business analysts and project managers, should
all have periodic software security awareness training.

Educate the team
on security

Conduct security testing both during and after development to ensure the
application meets security standards. Testing should also be conducted after major
releases to ensure vulnerabilities did not get introduced during the update process.

Perform security
testing

DESCRIPT IONBEST PRACTICE

C W E I D

SEC642
Advanced Web App Penetration

Testing and Ethical Hacking

SEC542
Web App Penetration Testing

and Ethical Hacking
GWAPT

S P E C I A L I Z A T I O N

DEV541
Secure Coding in Java/JEE

GSSP-JAVA

DEV544
Secure Coding in .NET

GSSP-.NET

DEV543
Secure Coding

in C/C++

S E C U R E C O D I N G

C O R E

DEV522
Defending Web Applications

Security Essentials
GWEB

STH.DEVELOPER
Application

Security Awareness
Modules

Security Awareness
CBT

S A N S A P P S E C C U R R I C U L U M

For all pages requiring protection by SSL, the same URL should not be
accessible via the non-SSL channel.

The Strict-Transport-Security header ensures that the browser does
not talk to the server over non-SSL. This helps reduce the risk of SSL
stripping attacks as implemented by the sslsniff tool.

Securely exchange
encryption keys

Set up secure key
management

processes

Disable weak SSL
ciphers on servers

to reduce data exposure risks.

Limit the use
and storage of
sensitive data

Disable data
caching using cache
control headers and

autocomplete

Ideally, SSL should be used for your entire application. If you have to limit
where it’s used, then SSL must be applied to any authentication pages as
well as to all pages after the user is authenticated. If sensitive information
(e.g., personal information) can be submitted before authentication, those
features must also be sent over SSL.

CWE-311
CWE-319
CWE-523

EXAMPLE: Firesheep

User passwords must be stored using secure hashing techniques with
a strong algorithm like SHA-256. Simply hashing the password a single
time does not suffi ciently protect the password. Use iterative hashing
with a random salt to make the hash strong.

passwords using a
strong, iterative,

salted hash

Use valid SSL
certi� cates from a

reputable CA

credentials during development this signifi cantly increases risk and should
be avoided.

Don’t hardcode
credentials

EXAMPLE: Hard-coded passwords in networking devices (

Password reset systems are often the weakest link in an application.
These systems are often based on users answering personal questions to
establish their identity and in turn reset the password. The system needs
to be based on questions that are both hard to guess and brute force.
Additionally, any password reset option must not reveal whether or not
an account is valid, preventing username harvesting.

Develop a strong
password reset

Sara Palin password hack (http://en.wikipedia.org/wiki/Sarah_Palin_email_hack

Account lockout needs to be implemented to prevent brute-force
attacks against both the authentication and password reset functionality.
After several tries on a specifi c user account, the account should be locked
for a period of time or until it is manually unlocked. Additionally, it is best to
continue the same failure message indicating that the credentials are incorrect
or the account is locked to prevent an attacker from harvesting usernames.

Messages for authentication errors must be clear and, at the same
time, be written so that sensitive information about the system is not
disclosed. For example, error messages which reveal that the userid is
valid but that the corresponsing password is incorrect confi rms to an
attacker that the account does exist on the system.

Modern web applications usually consist of multiple layers. The business
logic tier (processing of information) often connects to the data tier
(database). Connecting to the database, of course, requires authentication.
The authentication credentials in the business logic tier must be stored in a
centralized location that is locked down. Scattering credentials throughout
the source code is not acceptable. Some development frameworks provide a
centralized secure location for storing credentials to the backend database.
These encrypted stores should be leveraged when possible.

If an application becomes compromised it is important that the
application itself and any middleware services be confi gured to run with
minimal privileges. For instance, while the application layer or business layer
needs the ability to read and write data to the underlying database, administrative
credentials that grant access to other databases or tables should not be provided.

A password policy should be created and implemented so that
passwords meet specifi c strength criteria.

http://www.pcworld.com/article/128823/study_weak_passwords_really_do_help_hackers.html

S E S S I O N M A N A G E M E N T

Session tokens must be generated by secure random functions and must
be of suffi cient length to withstand analysis and prediction.

Session tokens should be regenerated when the user authenticates to
the application and when the user privilege level changes. Additionally, should
the encryption status change, the session token should always be regenerated.

When a user is not active, the application should automatically log the
user out. Be aware that Ajax applications may make recurring calls to the
application, effectively resetting the timeout counter automatically.

Users should be logged out after an extensive amount of time (e.g., 4-8
hours) has passed since they logged in. This helps mitigate the risk of an

Unless the application requires multiple simultaneous sessions for a
single user, implement features to detect session cloning attempts.
Should any sign of session cloning be detected, the session should be
destroyed, forcing the real user to reauthenticate.

Use secure cookie
attributes

(i.e., HttpOnly and
Secure � ags)

When the user logs out of the application, the session and corresponding
data on the server must be destroyed. This ensures that the session
cannot be accidentially revived.

session after logout

Set the cookie
domain and path

Place a logout button
on every page

DESCRIPT ION

C O N F I G U R AT I O N A N D O P E R AT I O N S

A rigorous change management process must be maintained during
operations. For example, new releases should only be deployed after
proper testing and associated documentation has been completed.

RBS production outage (http://www.computing.co.uk/ctg/analysis/2186972/rbs-wrong-rbs-manager

Engage the business owner to defi ne security requirements for the application.
This includes items that range from the whitelist validation rules all the way to
nonfunctional requirements like the performance of the login function. Defi ning
these requirements up front ensures that security is baked into the system.

Automating the deployment of your application, using Continuous
Integration and Continuous Deployment, helps to ensure that changes
are made in a consistent, repeatable manner in all environments.

Integrating security into the design phase saves money and time.
Conduct a risk review with security professionals and threat model the
application to identify key risks. This helps you integrate appropriate
countermeasures into the design and architecture of the application.

Security-focused code reviews can be one of the most effective ways to
fi nd security bugs. Regularly review your code looking for common issues
like SQL Injection and Cross-Site Scripting.

software-security.sans.org

AppSec-P-v1.2-11-15

THE MOST TRUSTED SOURCE FOR INFORMATION SECURITY TRAINING , CERT IF ICAT ION , AND RESEARCH

Poster2_AppSec_2016.indd 1 5/4/16 7:21 AM

Why is application
security so important?
Web applications remain the proverbial punching
bag of the Internet, with web application attacks

accounting for 35% of breaches.*
* Verizon Data Breach Investigation Report

WhatWorks
Application
Security
software- secur i ty . sans .org

IN

Why should you have an
application security program?

• LinkedIn
LinkedIn reported that the password hashes of 6.5 million members had been
extracted from their servers. The social media provider used a weak password
storage strategy, allowing unsalted passwords to be hashed using SHA1.
It was estimated that 4 million passwords had been reversed within a few days.
www.computerworld.com/s/article/9227869/Hackers_crack_more_than_60_of_breached_LinkedIn_passwords

• AT&T
AT&T reported that the e-mail addresses of 114,000 iPad owners were
extracted from its website, including the addresses of some notable celebrities.
The cell phone provider used a unique cellular ID number in the URL, which
could be modifi ed to access another user’s email address.
https://threatpost.com/man-convicted-illegally-accessing-att-servers-impersonating-ipad-112012/77236

• Heartland Payment Systems
Heartland Payment Systems disclosed that a SQL Injection vulnerability
resulted in the loss of an estimated 130 million credit card numbers.
Reports were later released that Heartland spent an estimated $140 million
on breach-related expenses.
www.computerworld.com/s/article/9136805/SQL_injection_attacks_led_to_Heartland_Hannaford_breaches

F I X
• Secure Coding Remediation

Confi rm the vulnerabilities identifi ed in the Test
phase and use application security best practices
to fi x those issues. Create security unit-tests to
validate the fi xes, and add the unit tests to the CI
library to prevent a recurrence.

• Virtual Patching
A countermeasure that runs outside of the
application and attempts to block vulnerabilities.
Common examples are Web Application Firewalls
(WAF) and Runtime Application Self-Protection
(RASP) technologies.
F5, ModSecurity, Imperva, Waratek, HP, Contrast,
Prevoty

• Patch Management (e.g., upgrading
third-party components)
Confi rm the vulnerabilities identifi ed in the
component lifecycle management phase and
upgrade the third-party components to the safe
patched version.

D E S I G N
• Security Requirements

Assign a security expert to the project
team, inventory sensitive data that
will be stored and processed by the
application, and work with business
partners to create security-specifi c
use cases and development stories.
SD Elements

• Security Architecture
Perform an attack surface analysis
and build a threat model to identify
vulnerable areas of the design and
architecture.
Microsoft Threat Modeling Tool

• Secure Coding Standards
Create standards that can be used
by development teams to build
secure-by-default applications.
CERT Secure Coding Standards, Apple
Secure Coding Guide

• Secure Coding Libraries
Leverage security frameworks and
APIs to provide critical security
features.
OWASP, Microsoft Web Protection
Library, Apache Shiro,
Spring Security

Reasons to fund an application security program
• Reduce the number and severity of security incidents

• Avoid data loss and regulatory penalties (e.g., PCI, SOX, HIPAA)

• It is up to 30x cheaper to fi x security defects in development vs. production*

• Avoid incident costs, which average $5.4 million per incident in the U.S.**

• Implement appropriate due diligence in relation to peer organizations
(based on comparable spending, maturity models, etc.)

• Conform to industry standards (Critical Security Controls, ITIL, COBIT, etc.)

* NIST, 2002, The Economic Impacts of Inadequate Infrastructure for Software Testing
** Poneman Institute, 2013, Cost of Data Breach Report

• Dynamic Analysis
Identifi es vulnerabilities in a live
application often using automated
scanners.
IBM AppScan, HP Web Inspect,
Acunetix, WhiteHat, NT Objectives,
Qualys, Cenzic

• Fuzz Testing
Testing technique that provides an
application with invalid or corrupted
input values with the intention of
producing a vulnerability.
FuzzDB, OWASP SecLists,
Codenomicon

• Static Analysis
Automated scanning of an
application’s source code to locate
vulnerabilities in the application.
HP Fortify, IBM AppScan Source,
Checkmarx, Veracode, Coverity,
Klocwork, Virtual Forge

T E S T

• Bug Bounty Programs
Program set up by a participating company to
encourage security research and responsible
vulnerability disclosure. These programs
often reward participants with gifts or
monetary prizes.
Facebook, Google, Microsoft, Mozilla, PayPal, etc.
https://bugcrowd.com/list-of-bug-bounty-programs

• Code Reviews
Review source code changes with a subject
matter expert for security implications.
Manually search the application’s source code
for vulnerabilities using customized scripts.
Crucible, Gerrit, BitBucket, GitLab

• Component Lifecyle Management
Implementing a solution to fi nd the use
of third-party components with known
published vulnerabilities. This phase
typically involves taking an inventory of the
components being used by an application and
monitoring vulnerability intelligence feeds.
Sonatype, Black Duck, Palamida,
OWASP Dependency Check

• Penetration Testing
Simulate how an attacker would exploit the
vulnerabilities identifi ed during the dynamic
analysis phase.
Burp Suite, W3AF, Skipfi sh, OWASP ZAP

• Continuous Integration
Include security unit testing along with inte-
gration, functional, and smoke tests on every
code check-in. Execute light-weight static and
dynamic analysis in the CI workfl ow.
Jenkins, Bamboo, Travis, Circle CI

How to evaluate developer security training
 Flexible Delivery
Before selecting a training provider, it
is important to understand how the
training material will be delivered.
Being able to take online training allows
students to take the same course as a
live event, without the hassle or costs of
traveling. This can be a fl exible way to
take a longer course from home or the
offi ce, without affecting work availability.
Another option to consider is taking
several CBT modules, which are small
consumable training videos intended to
raise awareness on one topic at a time.

 Course Content
The application security
landscape is constantly
evolving, which means
training material also
needs to be updated
frequently. Make sure
you ask the training
provider when the last
time the course under
consideration has been
updated, and consider
asking for the name and
bio of the course author.

 Certifi cations
Regardless of how
training is delivered,
it is important for
management to have
an understanding of any
subject matter that may
need more attention.
Make sure the training
provider provides
knowledge checks in the
form of quizzes, pre-
and post-assessments,
or certifi cations.

G O V E R N
• SDLC Integration

Ensure security is integrated into all
phases of the development process
through continuous business,
development, and security collaboration.
Microsoft SDL, NIST 800-64, BSIMM, Open SAMM

• Metrics & Reporting
Provide dashboards and scorecards with
qualitative feedback about the application security
program and operational health of the application.
ThreadFix, Jenkins

• Application Security Training
Software security training with content based on the
role in the development process. Offered in formats
from modular CBT to live, in-person training.
SANS

STH.Developer Training
Online CBT Modules

s e c u r i n g t h ehuman . o rg / d e v e l o p e r

Critical software systems designed to enable business functions are often at the root of
many headlines about data breaches and corporate hacks. STH.Developer provides STH.Developer provides STH.Developer
the pinpoint software security awareness training that your team needs to prevent the
mistakes that occur while software is being developed and deployed.mistakes that occur while software is being developed and deployed.

This framework, a proven and validated This framework, a proven and validated
industry standard for secure web industry standard for secure web
development, consists of an in-depth development, consists of an in-depth
series of modules that provides series of modules that provides
developers with clear technical developers with clear technical
information about these security information about these security
vulnerabilities and how to prevent vulnerabilities and how to prevent
them within their own code.

Video Courseware Demo available at Video Courseware Demo available at
securingthehuman.org/developer/demo-training-labsecuringthehuman.org/developer/demo-training-lab

F I X
• Secure Coding Remediation

Confi rm the vulnerabilities identifi ed in the Test
phase and use application security best practices

OWASP, Microsoft Web Protection
Library, Apache Shiro,
Spring Security

Klocwork, Virtual Forge

• Penetration Testing

• Continuous Integration

qualitative feedback about the application security
program and operational health of the application.

Software security training with content based on the
role in the development process. Offered in formats

What should be
included in your

application security
program? Mobile Application Security Best Practices

• Information Disclosure
Disable mobile operating system features that cache
sensitive information on the device. Common locations
include the the keyboard autocomplete cache, copy
paste buffer, and screenshots taken during application
transitions. These global storage areas are accessible by
malicious applications and could result in the exposure
of sensitive information.

• Transport Layer Protection
Mobile applications that rely on backend web services
to send and receive sensitive information (e.g. customer
data and session tokens) should enforce transport layer
encryption. Performing certifi cate chain validation, using
approved protocols and ciphers, and certifi cate pinning
ensures that data is sent over secure channels.

• Server-side Security
Web services that support mobile applications are
vulnerable to the same types of attacks that have
plagued web applications for years. Protect web
service endpoints with strong authentication and
authorization controls. Perform fuzz testing for
injection issues (e.g. SQL, HTML, OS commands, and
XML). Secure authentication cookies using the secure
and HTTPOnly fl ags.

• Mobile Application Security Assessment Tools
- QARK (Android) https://github.com/linkedin/qark
- iDB Tool (iOS) http://www.idbtool.com

• Security Assessment
Ensure development and security
teams perform a security assessment
prior to publishing a mobile
application.

• Client-side Data Storage
Avoid storing sensitive information
(e.g. PCI, PHI, session tokens) per-
manently on the mobile device fi le
system in locations such as a SQLite
database, log fi le, XML fi le, or HTML5
database. Attackers can easily steal
devices or use malware to extract
information stored in these locations.
Consider retrieving sensitive informa-
tion temporarily from a secure web
service and removing it from the de-
vice when it is no longer needed.

• Weak Cryptography
If sensitive data must be stored on
the device, apply an additional layer
of encryption using an approved
cryptographic algorithm. Do not hard-
code encryption keys in source code
or store them unprotected on the fi le
system. Instead, retrieve encryption
keys from a secure web service and
store them in the keychain.

DevOps Security Best Practices
• Continuous Integration

Building security into continuous integration starts with creating security-
specifi c unit tests for critical sections of code such as authentication, password
management, validation routines, and access control. Execute fast, accurate
static and dynamic analysis scans for dangerous functions, OWASP Top 10
issues, and vulnerable dependencies. Failed tests and high-risk vulnerabilities
found in these scans should cause the build to fail and require immediate
patches before deploying into a testing environment.
- Jenkins https://jenkins-ci.org/
- Bamboo https://www.atlassian.com/software/bamboo/
- Travis https://travis-ci.org/

• Continuous Delivery
Wiring automated security scanning into the continuous delivery process
allows in-depth static and dynamic testing to be completed. The scan results
are fed through pre-defi ned acceptance criteria, with failures resulting in an
unsuccessful build and deployment.
- Gauntlt http://gauntlt.org/
- Mozilla Minon https://wiki.mozilla.org/Security/Projects/Minion
- Yahoo Gryffi n https://github.com/yahoo/gryffi n

• Continuous Deployment
Allowing developers to automate the delivery of changes into production
requires additional compensating controls. Perform comprehensive audit
logging to track the actions made and fi les viewed in production. Implement
detective change control to log and review what fi les are modifi ed. Encrypt
confi dential data in production and enable data loss prevention mechanisms to
stop unauthorized information disclosure.
- Go http://www.go.cd/
- DeployIT http://gallery.xebia.com/component/deployit

• Infrastructure as Code
Writing code to manage the server’s infrastructure, confi guration, and
environment allows new servers to be quickly confi gured. Store infrastructure
code and data in version control to track the history of changes made to the
environment. Perform security reviews of the manifests and cookbooks to
ensure hardened baseline requirements are met.
- Puppet https://puppetlabs.com/
- Chef https://www.chef.io/
- Ansible http://www.ansible.com/

• Container Security
Containers allow isolated images with an application and its dependencies
to be quickly installed and executed. Use signed containers and verify the
signatures to prevent tampered images from entering the environment. Isolate
container images using a virtual machine or separate server, and ensure the
image runs as a non-privileged user account.
- Docker https://www.docker.com/
- Rocket https://coreos.com/blog/rocket/
- Twistlock https://www.twistlock.com/
- Windows Containers https://msdn.microsoft.com/en-us/virtualization/

windowscontainers/containers_welcome

Poster2_AppSec_2016.indd 2 5/4/16 7:21 AM

