
[1]

Nmap Essentials

Harness the power of Nmap, the most versatile
network port scanner on the planet, to secure
large scale networks

David Shaw

BIRMINGHAM - MUMBAI

Nmap Essentials

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2015

Production reference: 1220515

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-406-5

www.packtpub.com

www.packtpub.com

Credits

Author
David Shaw

Reviewers
Rajdeep Bhattacharya

Nikhil Kumar

Aravinda Babu T

Ravi Chandra Vinjanampati

Commissioning Editor
Amarabha Banerjee

Acquisition Editor
Shaon Basu

Content Development Editor
Siddhesh Salvi

Technical Editor
Madhunikita Sunil Chindarkar

Copy Editor
Trishya Hajare

Project Coordinator
Nidhi Joshi

Proofreaders
Stephen Copestake

Safis Editing

Indexer
Hemangini Bari

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

About the Author

David Shaw has extensive experience in many areas of information security.
He began working in the trenches of perimeter analysis and conducting external
threat research for large financial institutions. After switching to offensive security,
he joined Redspin to conduct application security assessments and network
penetration tests.

David is currently the Chief Technology Officer and Vice President of Professional
Services at Redspin, specializing in external and application security, and managing
a team of highly skilled engineers. He has particular interests in complex threat
modeling and unconventional attack vectors, and has been a speaker at THOTCON,
NolaCon, ToorCon, LayerOne, DEF CON, BSides Las Vegas, BSides Los Angeles,
and BSides Seattle.

About the Reviewers

Rajdeep Bhattacharya is a Principal Server Engineer at Nimbuzz Technologies,
located in Gurgaon, India. He has been working on the security and scalability of
different products for Nimbuzz. Currently, he is working on the behavior-driven
development approach and the performance optimization of various caching layers.
In his spare time, he enjoys listening to music, travelling, cooking, and playing
table tennis.

Nikhil Kumar is an Information Security Analyst at Biz2Credit Inc. He is a
Certified Ethical Hacker, and has a bachelor's and master's degree in computer
science. He has written many articles on web application security, security coding
practices, web application firewalls, and so on.

He has discovered multiple vulnerabilities in big hotshot applications, including
Apple, Microsoft, and so on.

He is currently pursuing the OSCP certification.

Nikhil can be contacted on LinkedIn at https://in.linkedin.com/in/nikhil73.

I would like to thank my family for their support. I would also like
to thank my friends, mentor Jatin Jain, and Swati Bhardwaj who
helped me in every situation. Next, I would like to thank everybody
at Packt Publishing for giving me this opportunity.

https://in.linkedin.com/in/nikhil73

Aravinda Babu T is a senior staff member at Fornetix. In this role, he focuses on
architecture and the development of encryption key orchestration technologies.
He previously worked as an advisory software engineer in IBM Software Labs
for the power servers division, and as an open source contributor in ONF for the
wireless and mobility group. He has 14 years of experience in network security,
datacom, and mobile technologies. He has also worked at Nokia, Motorola, and IBM
previously. His experience includes mobile middleware, wireless LAN switches,
UTM appliances, and HPC servers.

Ravi Chandra Vinjanampati has been working in the infosec domain for the
past 7 years. He holds a GCIH certification, has worked with global finance giants in
the past, and is currently working with an engineering company.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit
www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version at
www.PacktPub.com and as a print book customer, you are entitled to a discount on
the eBook copy. Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface	 v
Chapter 1: Introduction to Nmap	 1

Nmap's humble beginnings	 1
The many uses of Nmap	 2
Installing Nmap	 3
Building Nmap from source	 4
Summary	 5

Chapter 2: Network Fundamentals	 7
The structure of the Internet	 7
The OSI model	 8
Port scanning	 10
TCP and UDP	 10
Service banners	 11
Summary	 13

Chapter 3: Nmap Basics	 15
How to choose a target	 15
Running a default scan	 17
Service version scans	 18
Logging scans	 19
Specified scan ranges	 21
Understanding the reason flag	 21
Summary	 23

Table of Contents

[ii]

Chapter 4: Advanced Nmap Scans	 25
Host detection methods	 25
Running a ping agnostic scan	 27
Scanning UDP services	 28
Special TCP scans	 29
Operating system detection	 31
Increasing verbosity in scans	 32
Packet tracing	 33
Summary	 34

Chapter 5: Performance Optimization	 35
Nmap timing optimization	 35
Customized host group sizes	 38
Increasing and decreasing parallelism	 38
Dealing with stuck hosts	 39
Delaying and increasing probe rates	 41
Summary	 42

Chapter 6: Introduction to the Nmap Scripting Engine	 43
The history of the NSE	 43
The inner working of the NSE	 44
Finding Nmap scripts	 46
Running Nmap scripts	 48
Summary	 51

Chapter 7: Writing Nmap Scripts	 53
Anatomy of an Nmap script	 53
Defining an Nmap script – script headers	 54
Triggering functions – the rule	 57
Defining a script's action	 57
Summary	 61

Chapter 8: Additional Nmap Tools	 63
Attacking services with Ncrack	 63
Host detection with Nping	 66
File transfers and backdoors with Ncat	 67
Comparing Nmap results with Ndiff	 71
Summary	 72

Table of Contents

[iii]

Chapter 9: Vulnerability Assessments and Tools	 73
Conducting vulnerability scans with Nessus	 73
Assessing web server issues with Nikto	 77
Identifying sensitive web directories with DirBuster	 79
Getting started with intercepting proxies	 80
Summary	 82

Chapter 10: Penetration Testing with Metasploit	 83
Installing Metasploit	 83
Scanning with Metasploit	 87
Attacking services with Metasploit	 89
What to learn next	 90
Summary	 91

Index	 93

[v]

Preface
This book is designed to teach readers how to run Nmap, one of the most powerful
network security tools ever created. I'm excited to walk you through learning this
tool, as well as the various different elements that come with it—for example, the
Nmap Scripting Engine and other tools like Ncat and Ncrack. Throughout this book,
we'll be walking through techniques, tips, and tricks to help you learn the essentials
of Nmap in a fast and efficient manner!

What this book covers
Chapter 1, Introduction to Nmap, reviews the history of Nmap, what the tool does,
when it will be used, how the product evolved, and how to install Nmap on
Windows, Linux, and OS X.

Chapter 2, Network Fundamentals, is about how networks work and why a
port scanner is important. It overviews TCP, UDP, port scanning, common ports,
and service banners.

Chapter 3, Nmap Basics, covers how to run basic or normal Nmap scans without
complex flags.

Chapter 4, Advanced Nmap Scans, is about the advanced flags in Nmap that can
designate different types of scans.

Chapter 5, Performance Optimization, is about how to optimize timing, parallelism,
and so on, in Nmap in order to complete scans efficiently.

Chapter 6, Introduction to the Nmap Scripting Engine, is about the Nmap scripting
engine—what it is, how it works, what programming language it uses, and popular
Nmap scripts to use.

Preface

[vi]

Chapter 7, Writing Nmap Scripts, teaches the reader how to create a basic Nmap
script in Lua.

Chapter 8, Additional Nmap Tools, covers the other tools that come with the Nmap
suite—Nrack, Nping, and Ncat.

Chapter 9, Vulnerability Assessments and Tools, explains the relationships between
Nmap and other tools commonly used in professional vulnerability assessments.

Chapter 10, Penetration Testing with Metasploit, is about the interaction of Nmap with
penetration testing tools such as Metasploit.

What you need for this book
In order to follow along with this book, you need to have a working computer
running either Windows, Linux, or Mac OS X. We'll be installing Nmap and
VirtualBox as part of running through this book; these are two free pieces of software
that can help us run network scans. Additionally, an Internet or local network
connection is valuable for trying out scans.

Who this book is for
This book is aimed at beginners who have experience as a system administrator or of
network engineering, and wish to get started with Nmap. Advanced users can use
this book as a reference, or to understand when certain key aspects of the software
should be used.

The style and approach of this book is like an easy-to-follow guide full of real-world
examples that demonstrate how and when to use different aspects of the Nmap suite.
Clear and concise writing makes this introductory-level book an ideal guide to start
with. Each topic covers examples from the real world, enabling the reader to easily
progress from an Nmap beginner to an advanced user.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles, and an explanation of
their meaning.

Preface

[vii]

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"If you want to make Nmap less verbose than normal, you can also use the
--reduce-verbosity flag."

A block of code is set as follows:

 action = function(host, port)
 local robots = http.get(host, port, "/robots.txt")

 if robots.status == 200 then
 return "robots.txt status 200"
 else
 return "robots.txt status: " .. robots.status
 end
 end

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Once the scan is completed, clicking on Vulnerabilities shows the current list of
vulnerabilities detected on the target scope."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

www.packtpub.com/authors

Preface

[viii]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you have purchased.
If you purchased this book elsewhere, you can visit http://www.packtpub.com/
support and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website, or added
to any list of existing errata, under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works, in any form, on the Internet,
please provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[ix]

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Introduction to Nmap
Before we get started with the technical intricacies of mastering Nmap, it's a good
idea to understand how Nmap itself began and evolved as a project. This tool has
been around for almost twenty years, and is a well-loved and often-used component
across many technical industries.

In this chapter, we will cover:

•	 How the Nmap project began
•	 The evolution of the tool itself
•	 New add-ons to the Nmap suite
•	 How to install Nmap on Windows, OS X, and Linux

Nmap's humble beginnings
Nmap started from humble beginnings. Unlike the commercial security tools that
are released today, the very first Nmap was only about 2,000 lines of code—and
was released in 1997 in issue 51 of Phrack, a hacker "zine" that was started in 1985.
Nmap's timeline is a fascinating one, and its growth has been phenomenal. The
general timeline of Nmap development is as follows:

•	 At the time of release, Nmap did not have very many features; in fact, it was
bare bones. There was no version number attached to this release of Nmap
because the developers did not plan to release any future versions. Nmap
was designed only to scan for open ports on a target machine, and only
worked when run from a Linux host and compiled with gcc.

Introduction to Nmap

[2]

•	 Only four days after the initial release of Nmap, though, a slightly improved
version was released (also through Phrack)—version 1.25. It was becoming
very clear, even in the infancy of the now-famous tool, that there was an
extremely high demand for a high-performance port scanner. Although
there had previously been ways to detect open ports, Nmap made it
straightforward to assess a third-party host over the Internet or across a local
network. The hacker community was intrigued.

•	 By March 1998, about six months after the initial Nmap release, the scanner
had become the de facto port scanner of the underground hacker community
and blossoming information security industry. Renaud Deraison asked
permission to use the scanner code in a new vulnerability assessment engine
he was creating, and (after receiving permission) Nmap scanning technology
became integrated with the very first version of Nessus.

•	 By September 2003, when Nmap 3.45 was released, there had been many
major changes to the project. Fyodor, the primary developer, is now working
on maintaining Nmap full-time. The tool has many new features—such as
service detection, OS detection, timing configuration, and optimization flags
(all of which will be covered later in this book)—and has truly reached a
state of maturity.

•	 In December 2006, one of the most important aspects of the Nmap project was
integrated into all Nmap builds: Nmap Scripting Engine (NSE). The NSE
allows users of Nmap to write their own modules (in a programming language
called Lua) to trigger on certain ports being open, or certain services—or even
specific versions of services—found listening. This release allows the elevation
of Nmap from a simple networking tool to a fully robust and customizable
vulnerability assessment engine, suitable for a wide variety of tasks.

The many uses of Nmap
Although port scanning is obviously very important for security professionals—after
all, without understanding what network ports are open, it would be impossible
to assess the security of a system—Nmap is also very valuable for other types of
information technology professionals.

System administrators use Nmap to determine which of their systems are online,
so they can understand if there are problems or inconsistencies on their network.
Similarly, using OS detection and service detection, these administrators are able to
easily verify that all systems are running the same (hopefully current) versions of
operating systems and network-enabled software.

Chapter 1

[3]

Because of its ability to change timing, as well as set specific flags on different
packets (for example, the Xmas Tree scan), developers can turn to Nmap for help
in testing embedded network stacks, in order to verify that the aggressive network
traffic won't have unintended outcomes that may crash a system.

Lastly—and perhaps most importantly—students of network and computer
engineering are major users of Nmap. Because it is a free and open source software,
there is no barrier to get the software and run it immediately. Even amateur users
scanning their own small home networks can learn an immense amount about how
their computers and networks work and are configured by seeing what services are
online. Although there are Windows and OS X ports, Nmap is also a great introduction
to running straightforward (but advanced) tools on the Linux command line.

Installing Nmap
On most modern operating systems (Windows, OS X, and most distributions
of Linux), installing Nmap is a very easy task. The official Nmap website
(http://insecure.org/) distributes downloadable installers for Windows
and Mac OS X that are very easy to run.

For Windows, a full walk-through of the installation process is available at
http://nmap.org/book/inst-windows.html.

For Mac OS X, a full walk-through of the installation process is available at
http://nmap.org/book/inst-macosx.html.

To install Nmap for Linux, there are several options. The most recent "bleeding
edge" builds are always available to install from source (see the following
paragraph). There are RPMs that can be downloaded from the http://insecure.
org/ website, but most Linux distributions already have Nmap in their standard
packages' repositories.

To install from a repository on Debian/Ubuntu is very straightforward. First, run sudo
apt-get update to verify that all 'apt sources' lists are up to date. Then, it is as simple
as sudo apt-get install Nmap to download and install a working version of Nmap!

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

http://insecure.org/
http://nmap.org/book/inst-windows.html
http://nmap.org/book/inst-macosx.html
http://insecure.org/
http://insecure.org/
http://www.packtpub.com
http://www.packtpub.com/support

Introduction to Nmap

[4]

Building Nmap from source
To install Nmap from source, three steps must be taken:

1.	 Download the source code.
2.	 Compile the code.
3.	 Install the compiled tool.

Downloading the code with a tool such as wget is very simple; all we need to do is
type wget http://nmap.org/dist/nmap-6.47.tar.bz2 (or whatever is the current
version of Nmap).

Once the tool is downloaded, it must be removed from its tarball—or compressed—
state. This is done using the tar command by typing tar xvf nmap-6.47.tar.bz2.

At this stage, we now have a new directory filled with Nmap source code. If we
change the directory by typing cd nmap-6.47, we are then able to compile this code.
For those users that are familiar with installing tools on Linux, the next step will be
familiar. We need to ./configure make and sudo make install in order to install
Nmap on our system.

Chapter 1

[5]

The "Nmap dragon" is a famous piece of ASCII art that is displayed during the
./configure step of Nmap source code compilation.

Once Nmap is successfully installed, you can verify that it works—and see which
options it was compiled with—by typing nmap -V. We'll cover the different flags that
you can pass to Nmap in the subsequent chapters.

Summary
After reading this chapter, you should have a solid understanding of the wonderful
background that Nmap brings to the information security world. Starting as a small
project, the Nmap project is now one of the pillars of several industries.

If you have followed the installation instructions, you should now have a fully
functional copy of Nmap ready to work with throughout the rest of the chapters.
If not, now would be a great time to go ahead and install the tool so that you are
ready to start scanning, auditing, and assessing!

In the next chapter, we will learn the basics of TCP/IP networking in order to
better understand how Nmap is able to assess open ports, and find out which
services and operating systems are running.

[7]

Network Fundamentals
Before it's possible for us to use Nmap as a tool, we first need to understand the very
basics of how it works. In order to scan networks (including the Internet), we must
initially understand the concepts on which all networks are built. Although this book
will not describe in-depth networking concepts—you won't become a packet ninja by
learning to use Nmap—we do need to ensure that we can interpret the scan results
from standard and advanced Nmap scans. Without the fundamentals of networking,
we will not be able to scan at all!

The following topics will be covered in this chapter:

•	 How networks work
•	 The difference between TCP and UDP
•	 An introduction to ports
•	 How port scanning works
•	 How service version detection and banner grabbing work

The structure of the Internet
Before we go into some of the complexities of networked software, it's important to
understand how the Internet itself is designed. In many ways, the Internet functions
the same as a large network that you might have at your home or office—the
difference, of course, is that instead of workstations, the Internet has Internet-facing
services. Most homes, for example, have many computers that are on the same Local
Area Network (LAN), but only one IP address on the Internet. If someone were to
scan this network from their Internet-connected device, they would only see Internet-
facing services—not each family member's individual computer. This is important to
note because across the Internet, only ports that are forwarded to a machine may be
accessible on a given IP address. There are some exceptions to this rule that we will
look at later.

Network Fundamentals

[8]

When scanning a computer on your LAN, however, you will generally be able
to see all the ports that are open. This is because when packets are traveling on a
local network, rather than over the Internet, you have direct access to the target
machine—you don't have to pass through a router or switch that would block all
of these ports over the Internet. This is why, for example, when hosting a server
at a LAN party, no one has to forward any ports in a third-party device.

When conducting scans throughout the rest of this book, please keep in mind that
there are several different elements that may help or stop the scan from detecting
every service that is listening. We'll go through some of the pitfalls in later chapters,
and give useful work-arounds whenever possible.

The OSI model
To understand how packets—which are the bits of information that travel from one
machine to another—run networks, it's a good idea to have a basic idea of the Open
Systems Interconnection (OSI) model. This is a conceptual way to think about how
networks work on different layers. It's easy to understand that physically, networks
are just pieces of hardware with electrical signals running across them; it's actually
much more difficult to conceptualize the logical networks that developers and
network operations staff (as well as computers) work with.

The simplest explanation is that different protocols and bits of information work
on different layers of the model, and work off of each other. The following diagram
briefly explains which layer performs which role, so that we can understand how
service banners and ports work later in this chapter.

Chapter 2

[9]

It isn't necessary to understand all the intricacies of the OSI model or low-level
networking in order to use Nmap effectively, and to interpret scan results that are
accurate. It is necessary, however, to realize that not all networking information is
created equally—some information is readily accessible at certain times, while it is
more difficult to access certain data at other times. If you're interested in learning
more about networking from an in-depth perspective, it's worth checking out tools
such as Wireshark that can capture packets or view them in transit.

Network Fundamentals

[10]

Port scanning
Nmap is a port scanner, but we haven't yet covered what a port actually is.
As the name somewhat implies, a port is a way to access a networked service on a
computer. Each computer has 65,535 ports that can be either open, or closed at any
time. Some services such as HTTP (that serves web pages) or FTP (that allows file
transfer) have ports that are associated with them by default. HTTP runs on port 80,
FTP runs on port 21, and so on. There are huge lists of commonly used ports that
we can reference later—fortunately for us, Nmap has these lists included with its
distribution package.

One way to conceptualize a port is to think about an apartment building. In this
analogy, one apartment building would be an IP address—each apartment within
the building would be a different port. In this case, the building would have to have
65,535 apartments—quite a big property!

When you visit an IP address, it's just like delivering a pizza to the apartment
building; you know where it is in the world, but you don't know exactly where you
need to be. That's where ports come in! A port is analogous to an apartment number;
using a port number, we will know that we're going to 5505 Internet St, Apartment
443, to deliver HTTPS traffic!

Ports are commonly identified by putting a colon after an IP address. If you see an
address that looks something like 127.0.0.1:22, then you can safely assume that you
are being pointed to the IP address 127.0.0.1 and port 22.

TCP and UDP
One area that is important to understand about networking is the two primary
protocols that networked services can use: TCP and UDP. Services can listen on these
ports using either of the protocol—and many a times do. TCP (frequently shown
as TCP/IP) is used for connections that need things to be ordered specifically—for
example, loading a web page. UDP, however, is a connectionless protocol; being
connectionless means that UDP connections work like a fire hose of data moving
from one IP address (the source address) to another (the destination address).
Because of the way the Internet works, though—it is a large packet-switched
network—these packets don't always arrive in order. For something like loading a
web page, this would be a huge problem. For other uses, however, it makes perfect
sense to have data arrive in whatever order it received.

Chapter 2

[11]

Voice over IP (VoIP) calls, for example, usually use the UDP protocol. It's more
important for the data to get to its source, even if a packet is missed or out of order.
This way, while there might be a small audible hiccup in the connection, it would not
lag while waiting for the data to load. Most of the services that we'll examine in this
book are TCP-based, but it's certainly possible to use Nmap to scan UDP services as
well (using the -sU flag). UDP does not receive a reply upon successful transmission
of a packet, though; so it can be very time-consuming to find out if a service is
actually listening on a given UDP port, or simply not replying at all.

Service banners
Now that we understand the very basics of how networks, ports, TCP, and
UDP work, we can start to learn the intricacies of Nmap—a powerful tool that
leverages various different elements of how computers and networks communicate,
to help give us useful information about what services various different computers
are running.

The most common use of Nmap—and its original design—was a simple port
scanner. A port scanner is simply a piece of software that attempts to connect to
each specific target port and see if that port is open—determining whether or not a
TCP three-way handshake can be established.

A TCP three-way handshake is a simple way to establish a network-based
connection before applications begin to communicate with one another. The
structure is very simple—and don't worry if these flags don't mean much to
you right now. The three-way handshake, as you might expect, consists of three
steps between two speakers (let's call them Alice and Bob). The handshake works
as follows:

•	 Alice is requesting a connection with Bob. Alice sends a SYN to Bob at the
specified port.

•	 If Bob wants to establish this connection, Bob sends a response to Alice of
SYN/ACK.

•	 Alice receives the SYN/ACK, and verifies that the connection is established
by sending Bob an ACK.

Network Fundamentals

[12]

You can visually understand how this works by referring to the following diagram:

Once you understand how a connection on a certain port is established, it is
relatively easy to understand how the most basic Nmap port scan—a SYN scan—
works. Nmap sends a SYN request to every port in scope (usually either the most
common 1,000 ports, or the full 65,535 ports on a host) and waits for a SYN/ACK
response. If a SYN/ACK response is received, then there is a service listening on that
open port. Congratulations! We've now covered how basic port scans work. There
are many different types of scans—not just SYN scans—but the basic idea of the
request/response model should now be fairly clear.

When we're scanning ports, though, we're usually interested in more than just
whether or not a port is online. Although most web servers listen on port 80 (which
is the HTTP assigned port), someone could just as easily put a web server on port
12345 or 1337. More than just understanding if a port is open, it's important to
understand what service is actually listening.

Fortunately for us, Nmap comes with a service version detection module built
in. This functionality works by creating a connection to the actual service listening,
and looking for a service banner. Nearly every network-based service is identifiable
by its initial service banner; even if it's not, though, protocol detection allows Nmap
to identify the protocol, if not the exact server version that is running. We will
learn how to conduct basic scans—including service version detection—in the
next chapter.

Chapter 2

[13]

Summary
After reading this chapter, you should have a fundamental understanding of
how computer networks work. Specifically, it's important to understand how TCP
and UDP differ and how port scanning itself functions. Now that you know that
the Internet works as a very large computer network—and that you can also scan
machines locally on your LAN—you should have a solid foundation to continue
learning how Nmap works, and the advanced features that you can use in a
plethora of situations.

In the next chapter, we will learn how to conduct a basic Nmap scan in order to get
results in the most common situations. This next chapter will get you on your feet
and scanning different types of ports and services!

[15]

Nmap Basics
Now that we understand how networks work, it's time to jump into actually using
Nmap to scan computers and networks. This chapter aims to cover several topics
that will get you up and running in order to actually scan some of these things.

In this chapter, we will cover:

•	 How to choose a target
•	 How to run a default scan
•	 How to check service versions
•	 How to log scans (and what the different log types mean)
•	 How to specify special scan ranges
•	 How to learn the reasoning for Nmap results

How to choose a target
Although it is generally accepted that scanning computers over the Internet is not
a crime, it's also not appreciated by system administrators. There are thousands of
scans every second, across all areas of the Internet—but that doesn't mean that you
won't get an abuse complaint (or worse) if you scan the wrong machine. Make sure
that any target you choose is aware of (and consents to) whatever scan you may
decide to conduct. There are a few ways that you can make your own targets—which
some readers might find easier than using free ones online.

The most simple target, and easiest to set up, is to just use another computer on your
local area network. You can use your router (usually located at 192.168.1.1 for home
routers), another machine on your network (which we'll talk about finding), or even
buy a cheap laptop to use as a test lab.

Nmap Basics

[16]

If you do not have access to another machine to scan or do not feel comfortable
(or authorized) to scan another machine, you can create your own by virtualizing
a machine. Although you'll need to be somewhat familiar with installing Linux
to make this work, there are free software solutions (such as VirtualBox) and
commercial software solutions (such as VMWare or Parallels) to virtualize machines
for you. If you decide to take this route to scan targets in this book, I recommend you
to install Ubuntu or Debian—you can scan from these machines too! In addition to
creating your own virtual server, it's possible to buy a Virtual Private Server (VPS)
from cloud hosting providers without spending a lot of money. Common providers
include Linode, DigitalOcean (which, at the time of writing, has VPSes for only $5
per month), Amazon Web Services (AWS), Rackspace, and so on. The advantage
of running one of these cloud-based servers is that you can also get experience in
running a fully fledged Linux server. If you are so inclined, you can even host web,
email, FTP, or any other service on this server as well!

Lastly, if you do not want to host your own virtual machine, don't have any other
machines on your network, and do not want to pay for a virtual private server; you
can either scan your own machine (which isn't quite as exciting), or use a free service
provided by the Nmap team at http://scanme.nmap.org/.

This site gives you full permission to scan, so you do not have to worry about being
rude or annoying to any network administrators. On the other hand, it's impossible
to actually change any of the services listening on this host, so you can never really
change the results you're getting. Using your own computer ("localhost" or 127.0.0.1)
can sometimes be a better choice, as you'll be able to run services and see different
ports detected.

For the purposes of scanning examples in this book, we will use http://scanme.
nmap.org/ and various additional virtual machines that were set up for the explicit
purpose of being scanned. Remember: do not scan without permission!

http://scanme.nmap.org/
http://scanme.nmap.org/
http://scanme.nmap.org/

Chapter 3

[17]

Running a default scan
Once Nmap is installed and you've chosen a target, it's relatively straightforward
to run a scan with the default settings. The command is as straightforward as
nmap scanme.nmap.org (assuming http://scanme.nmap.org/ is the target
of this particular scan).

As you can see in the preceding screenshot, running a default scan is very easy.
Normally, Nmap uses a SYN scan as the default scan type; but because we did not
run the scan with root privileges via sudo, Nmap reverts to a "connect" scan instead.
We'll get into the differences of specific scan types in Chapter 4, Advanced Nmap Scans.

For now, you can see that we've detected three open services. The leftmost column
shows the port number and protocol (in this case, 22/tcp, 80/tcp and 9929/tcp)
that the port is open and what the service is. When we run Nmap without specifying
anything in addition (such as the scan we just ran), the SERVICE column is filled out
based on the port specification in /etc/services (on Linux), rather than actually
analyzing the protocol. If we want to check the actual service version (by checking
banners), we need to specify a different type of scan: the service version scan.

http://scanme.nmap.org/

Nmap Basics

[18]

Service version scans
Running a service version scan is very simple; all we need to do is add an additional
flag, -sV. This means that we're conducting a service version scan, which can
demonstrate which version of each software is running. This is particularly useful if
someone is running a service on a non-default port (that does not match up with
/etc/services)—in such instances, it's even more important to be able to figure
out exactly what's running.

When we run this follow-up scan, you will see that the results are slightly different:

You can see in the preceding screenshot that significantly more information is now
being put into the scan results; in this case, we can see the actual patch versions of
the OpenSSH, HTTP, and Nping echo services.

In the context of a security assessment, you can see how useful this would be! If you
are looking for vulnerabilities in certain versions of software, it's critical to be able to
tell exactly what version is running. Vulnerabilities are often only found in specific
versions of software (such as between 1.0.1 and 1.0.4), so the granularity of what
we see here is very important. It's important to note, however, that if the system
administrator restricts the service version, then it is not possible to tell exactly what's
running. From a defensive perspective, that is very important!

Chapter 3

[19]

You might also have noticed that at the top of the scan, before the results, the text
Not shown: 997 filtered ports is displayed. Nmap doesn't show all the closed
ports in scans, since that would clutter the scan results itself. It's possible to see these
(and to see whether they are listed as closed or filtered) by increasing the verbosity
of the scan—which we'll get to in Chapter 4, Advanced Nmap Scans. However, more
importantly, you should remember that there are 65,535 ports that can be opened or
closed on every single machine. If we add 997 to the three ports that we already saw
were open, we only get 1,000—only a tiny fraction of the total number of ports!

By default, Nmap will only scan the top 1,000 ports that are usually open.
This doesn't correspond to the first 1,000 ports, but rather the ones that are most
commonly open. You can get the same result by using the --top-ports 1000
flag or specifying a different number (such as --top-ports 200, for example).

Logging scans
Although seeing the results of scans on a case by case basis is very helpful in the
short term; for longer assessment times (or for larger scans that would scroll off the
screen), it's a good idea to log scans to file.

Nmap supports three different types of logging. Each type has a different flag to
log that specific log type, and different purposes. Fortunately for us, the Nmap
development team was smart enough to think ahead; using the -oA (output all) flag,
it's possible to output all three log files. The second parameter to this flag is simply the
base name of the logs. They will automatically have their own unique file extension.

Nmap Basics

[20]

As you can see in the preceding screenshot, Nmap automatically saves all three
log file extensions (.xml, .nmap, and .gnmap) with the base file name specified in
the -oA flag.

As you can see, after running a scan with the -oA logbase flag, there are now three
files in the current directory. We now have a .xml file, which contains the results of
the scan (as well as timing details) in XML format, and a .nmap file, which is a human
readable output of the scan. In other words, basically the same output that you see on
your screen when a scan is run—and also, perhaps most interestingly, a .gnmap file.
The .gnmap file stands for grep-able nmap output, which is designed to easily be used
by the Linux command line tool grep. In other words, it's very easy to search.

You can easily see in the preceding example that when grepping for "open," we were
given the line of the .gnmap file that had open ports. Since we were only scanning
one host, the host returned must be the one we scanned—scanme.nmap.org —but
in larger scans, it can be extremely useful to figure out which hosts have any open
ports (and which we can safely ignore).

Chapter 3

[21]

Secondly, we did a grep for 443/open. This grep didn't return anything (since port
443 was not open in this scan), but you can see how using a greppable output like
this can quickly and efficiently determine which hosts had certain ports online. When
we talk about active exploitation through Nmap, we'll be able to better understand
just how valuable information like this can be.

Specified scan ranges
We learned earlier that by default, Nmap only scans the top 1000 ports. However,
services can be put online on any of the 65,535 ports that exist—not just the most
common ones. Many system administrators and network engineers run services on
very high ports such as 65,001, so that they aren't detected by normal scans. Security
through obscurity, though, never really works!

It's possible to specify a specific port range by using the -p flag. So, if you want to
only scan port 80 on scanme.nmap.org, you can type nmap -p 80 scanme.nmap.
org. The port specification flag works for ranges too—so, in another example, nmap
-p1-1024 scanme.nmap.org will scan ports 1 to 1024 (all privileged ports) on the
target host.

There's also a useful trick to scan all 65,535 ports on a machine: instead of typing -p1-
65535, you can simply use the shortcut -p-. The Nmap developers were kind and
insightful enough to realize that typing the number "65,535" a lot gets quite tiring!

Although we're currently only scanning one host, it's worth noting that there are
several ways to specify multiple IP addresses or hostnames as well. CIDR notation
(192.168.1.0/24), lists of IP addresses (1.2.3.4,1.2.3.5,1.2.3.6), and targets files (-iL
targets.txt) are all valid ways to specify hosts to scan. They will all be scanned
with the same scan type, and the timing involved is optimized by Nmap itself. We'll
talk more about optimizing this process in Chapter 5, Performance Optimization.

Understanding the reason flag
Since we've already covered basic networking—including the TCP three-way
handshake—in Chapter 2, Network Fundamentals, you already know what it means for
a port to be open, and how that can usually be determined. However, in certain edge
cases (and especially for the filtered ports), understanding Nmap's logic behind
open, closed, and filtered ports can be extremely useful to understand.

Nmap Basics

[22]

You can determine how Nmap reaches its conclusions by using the --reason flag.

As demonstrated in the preceding screenshot, a fourth column is now added to the
scan after the --reason flag is invoked. In this case, we can clearly see that the three
services that were identified as online were done so because of syn-ack, indicating
a SYN/ACK response to a SYN request—once we see that a service on a given port
is attempting to complete the TCP three-way handshake, we know that there is
something listening.

Chapter 3

[23]

Summary
After reading this chapter, you should be able to conduct many different and
interesting types of scans. You should also know how to change the ports you're
scanning and how to scan multiple hosts at once. You've learned that grabbing
service banners can help you see which versions of software are running, and how
to output various different types of log files. Lastly, you should now be able to
understand the network-based reasons for why Nmap is flagging results in certain
ways. There's a long way to go to become a true Nmap master, but you've conquered
the basics of getting a scan under way. In the next chapter, we will learn how to
conduct advanced Nmap scans in order to get results in more complex situations.
This next chapter will allow you to scan in even strange or hostile environments,
which security professionals often encounter during the course of an engagement.

[25]

Advanced Nmap Scans
You should now be completely able to run Nmap scans against a variety of hosts.
That's great! Knowing how to run a basic scan will get you through many situations,
but there are a few notable exceptions—and different scan types—that are vital to
become a power user.

We will now specifically cover different methods for host detection (so that you
know what to scan), how to run scans against devices that are trying to hide
themselves, scanning UDP, different verbosity options, and so on.

In this chapter, we will cover:

•	 Running a ping sweep
•	 Running a ping agnostic scan
•	 Scanning UDP services
•	 Running different TCP flags on scans—such as the Xmas Tree scan
•	 Operating system detection
•	 Increasing verbosity in Nmap output
•	 Showing packet tracing in scans

Host detection methods
In order to scan a host effectively, it's important to first understand how to detect
hosts that are "alive" or online. Because many system administrators try to hide their
systems from the Internet, certain hosts will appear to be offline until further probed.
Fortunately for us, Nmap has several ways to detect which hosts are online.

Advanced Nmap Scans

[26]

The most straightforward way to detect hosts is to run a ping sweep. A ping—or an
ICMP echo request that machines are designed to respond to—is a simple "are you
there?" question and answer conversation.

Pings were named after sonar—the underwater "pings" that submarines send to
detect other ships and submersibles in the area—and work in a similar way for
computers. While you can test the ping command very easily by simply typing ping
google.com, using Nmap for ping sweeps can allow significant efficiency gains
across larger target network scopes.

It's easy to run a ping only sweep with Nmap using the -sn flag. This makes sure to
run only a ping sweep, rather than a full port scan—which is excellent just to find out
which hosts are online.

In the preceding screenshot, which was run as a -sn, (ping sweep) scan, you can
clearly see that out of the 256 IP addresses scanned, 18 were "up," or responding
to a ping.

Sometimes, however, you need to take this scanning methodology a step further.
In order to "hide" from scans, system administrators will often make their systems
ignore ping requests. This is often an effective way to hide from network scans!

Chapter 4

[27]

Running a ping agnostic scan
When a system is hiding from ping sweeps, it can be difficult to know what's online.
Fortunately, Nmap provides a ping agnostic method for scanning that can be very
beneficial to figure out some of these issues.

When Nmap runs a "normal" scan, it will first run a ping sweep and then follow
up with actual port scans (of whatever port ranges specified). If hosts are not
responding to a ping, they won't be fully scanned—which means that even if they
have services online, those services will not be detected. When running a port scan,
missing services or hosts is a very serious problem!

By running a scan with the -Pn flag, Nmap will completely skip running the initial
ping sweep, and will scan all hosts in the specified target range. Although this
generally takes longer to run—since scanning hosts that are really offline is a big waste
of time—it is extremely useful to find hosts that may otherwise have been missed.

You can easily see in the preceding screenshot that dshaw.net—my personal web
page, which for the purposes of this scan was configured to not respond to a ping—
was still scanned in this ping agnostic scan. When scanning large ranges—such as a
Class B network—being able to detect hosts that are trying to appear offline can be
invaluable to the security professional.

Although it's not a specific type of scan, it can also be useful to use the Nmap's -sL
flag—or the ability to conduct a simple list scan—to either ping or scan the target
ranges. This is useful to get reverse DNS lookups, and to understand how many
hosts are online in a specified range.

Advanced Nmap Scans

[28]

By scanning—or rather by not scanning—this way, excellent results can be achieved.

In the preceding screenshot, you can see that the range Nmap "list scanned"
points to the 1e100.net domains, which are owned by Google. This is called zero
packet reconnaissance, since no probes were actually sent to any of the domains
in question, but full DNS PTR record lookups were achieved.

The last great Nmap feature that assists in host detection and discovery is the
TCP SYN ping scan. Instead of sending an ICMP ping request (which many
administrators disable responses to), the TCP SYN scan can treat hosts online if they
respond to a SYN request at a given port. For example, if you're scanning a block
of IP addresses that usually run SSL web servers, invoking the -PS 443 flag would
treat hosts online if there is a response to attempt a connection on port 443. This is
extraordinarily useful, and is one of the most valuable features in the Nmap host
detection arsenal.

Scanning UDP services
So far we've mentioned UDP services, but haven't talked about how to actually scan
them. UDP services are connectionless, which makes scanning them more difficult
than traditional port scans—sometimes connections need to be protocol based
in order to receive any response, and even when most services receive an actual
response, it can take a large amount of time—in other words, scanning UDP services
is generally slower and less reliable than their TCP counterparts.

Chapter 4

[29]

That said, though, it's very important to be able to scan services that only listen on
UDP. Many VPNs, for example, have their listening ports as UDP only. NTP and
DNS, similarly, often listen exclusively on UDP ports. For this reason, it's important
to understand how to scan them.

The caveat here is that it's generally best to do the first "round" of scanning as TCP
only and the second sweep as UDP. This is important because having an entire scan
forced to wait for UDP responses can make what should have been a five-minute
scan, take more than five hours!

The flag to scan UDP services is to simply invoke -sU. Make sure you do so with
caution, and when you have plenty of time to spare while waiting for scans!

As an additional note, UDP scanning does require root privileges in
order to run.

This scan of tick.ucla.edu, a public NTP server, shows that port 123—Network
Time Protocol (NTP)—is accepting connections from anywhere on the Internet.

Special TCP scans
We've already covered the two basic scan types that Nmap suggests—TCP connect
scans (-sT) and the SYN stealth scan (-sS). These "full" and "half" connection scans
will get you through almost any situation, and are absolutely the "go-to" scan types
for almost every security professional, system administrator, network engineer,
and hobbyist.

Advanced Nmap Scans

[30]

However, despite the flexibility that these types of scans can produce, there are
occasional reasons to try different flags on packets. For these scans, we will introduce
three new scan types: FIN, Xmas Tree, and Null scans.

The driving concept behind running these scans is that a closed port will attempt
to reset the connection by issuing a RST (reset) packet, whereas an open port will
just drop the connection entirely. This is useful because many Intrusion Detection
Systems (IDS) are on the lookout for SYN scans—and the stealthy penetration tester
never wants to get caught!

The first of these three new options, the FIN scan, starts by sending a FIN packet to
each port.

As you can see in the preceding example scan, when running a FIN scan (-sF)
against my own web server, there was no response to the FIN request—this makes
sense because there is an active service running on port 80 of dshaw.net.

The next scan type is called the Xmas Tree scan—so-called because it is as if a packet
is lit up like a Christmas tree! The Xmas Tree scan (-sX) works by flagging FIN,
URG, and PUSH flags on a packet header.

The last of these three scan types is the null scan, which sets no flags on the packet
header sent to the target port. This scan can be launched by using the -sN option.
Make sure that if you're launching a null scan, you capitalize N—otherwise, you'll
be accidentally running a ping swing (which we covered in Host detection methods
section).

Although these scan types can often be very useful, it's worth noting that FIN, Xmas,
and NULL scans are known to not work against Microsoft Windows hosts.

Chapter 4

[31]

Operating system detection
While it's very useful to be able to scan ports—and to use different packet headers in
order to produce the best, most accurate results—there are a few things that simple
port scanning cannot always achieve reliably. One of the most important of these
elements is operating system detection.

When attempting to identify and attack a target, one of the most useful pieces of
information is what operating system that machine is running. Because many pieces
of software can run on multiple operating systems, this was traditionally a "hard"
thing to solve. However, the developers at Nmap—with the help of the information
security community at large—have been able to compile a database of the most
common (and even some very rare) operating system fingerprints, which can
consistently help to identify what operating system a target is running. It's an easy
flag to remember—you simply have to invoke a scan with the -O flag.

As you can see, this scan of a Cisco security appliance easily identified several parts
of the key information. First, we can see the MAC address—and who creates that
device. Remember, though, that as we learned in Chapter 2, Network Fundamentals, we
can only see MAC addresses if we're scanning on a local area network—not over the
Internet. Secondly, we can see the OS CPE—and even the OS details: a Cisco SA520
firewall, running the Linux 2.6 kernel. This is absolutely one of the most valuable
pieces of information we can pull out of a port scan.

Advanced Nmap Scans

[32]

Although it would be wonderful if operating system detection was always as
straightforward and concise as it is in this example, which is not the case. The good
news, though, is that once you start an operating system scan, Nmap will attempt to
gauge how confident it is in the results it gives. In the following example, you can
see that although Nmap isn't completely sure what operating system my machine is
running (which makes sense when you consider how frequently patches change the
way the underlying OS works), it can still give us a pretty good idea!

Increasing verbosity in scans
As you have probably noticed throughout the book, more information is almost
always better when running scans. Fortunately, Nmap developers allow us to
quickly and easily retrieve information about a scan while it's running, by starting
the scan with increased verbosity.

Verbosity lets timing, parallelism, and internal debugging information to display
straight to the console while scans run. This can be great to figure out when we need
to try to optimize scans in one of the several ways (which we'll learn about in the
next chapter). When running a scan in increased verbosity, you can also hit Enter to
see how far the scan has progressed, and how far it has to go before completing its
current target file. There are several different levels of verbosity, but I usually use the
third-level.

Chapter 4

[33]

The first level of verbosity gives a very basic information about a scan's progress,
and can be invoked by using the -v flag. The second level of verbosity gives more
information, including some network and packet information, and can be invoked by
using -vv as a flag. Lastly, triple verbosity—which gives out the most information of
a scan—can be invoked with the -vvv flag. If you want to make Nmap less verbose
than normal, you can also use the --reduce-verbosity flag.

You can see in the preceding screenshot that on this single-port scan, there is
significantly more timing and packet information shown. This can be extremely
useful, especially during long scans—such as those that include over 1,000 hosts—to
understand better what Nmap is doing at the time. More importantly, this information
can be used to determine if timing, parallelism, or other performance adjustments need
to be made. For example, if a scan is progressing normally, but only a few hosts are
being completed at a time, we know to increase parallelism to make the overall scan
go faster. If, however, we're receiving network timeout errors, we know that we're
scanning too fast—in that case, we'd want to use a slower timing flag.

Packet tracing
Similar to increasing the verbosity of a scan, it is invaluable to understand the
network hops that occur between hosts—and to see the actual network traffic
passing through. Although it's possible to use system tools such as traceroute
and tcpdump to find out where on a network target servers land, it can be a
painful (and time-consuming) process to do this to many hosts simultaneously.

Advanced Nmap Scans

[34]

Instead of using outside tools, Nmap allows packet tracing for each scan—which
shows the exact information we need. Instead of looking at this as a security feature
(although it certainly does have security-related uses), it's best to think of this as a
tool for system administrators and network engineers.

This packet tracing example shows tcpdump-style output from Nmap to target
machines. Although it doesn't provide excessive value in this simple one-port
scan, the information can be great to understand network congestion, packet drop,
offline hosts, and so on, on larger scans.

Summary
In this chapter, we covered how to choose a target, run a default scan, check service
versions, log scans (and what the different log types mean), specify special scan
ranges, and learn the reasoning for Nmap results.

In the next chapter, we will talk about how to ensure your scans are running at
peak performance. Nmap has several features that can help scans run quickly, and
deliver the results as accurately as possible. Each of these timing, parallelism, and
performance improvements will be categorized and explained in the next chapter.

[35]

Performance Optimization
We are now completely able to scan many different types of hosts, and overcome
a plethora of methods that system administrators and network engineers use to
defend or mask their machines. Excellent! At this juncture, we will begin to look at
some of the broader strokes that Nmap can address: specifically, the difficulty we
may encounter if we attempt to scan large swaths of IP addresses that may create
performance disruptions.

Unfortunately, using advanced Nmap options, which we learned about in the
last chapter, can make scans take significantly longer time than we may have.
Performance optimization techniques are some of the least used but most useful
Nmap flags, so it's worth it to learn them well—and to employ them when needed.

In this chapter, we will cover:

•	 Basic Nmap timing optimization
•	 Customized host group sizes
•	 How to increase or decrease Nmap's parallelism
•	 How to deal with stuck hosts
•	 How to delay (or increase the rate of) individual packets

Nmap timing optimization
The easiest way to make a scan run faster is to use the built-in timing flags.
These flags are invoked using -T and a number from 1 (slowest) to 5 (fastest).
The default scanning speed is -T3, right in the middle.

Performance Optimization

[36]

There are a few risks to use significantly faster scanning, since it creates certain
unreliable aspects in the scan. Particularly, if your network interface is known
to be reliable, these options should be used with caution!

The default timing flags change six different elements—many of which we'll go into
specific detail, later in this chapter. Specifically, the timing flags change the individual
values of initial_rtt_timeout, min_rtt_timeout, max_rtt_timeout, max_
parallelism, scan_delay, and max_scan_delay. Don't worry if these flags sound
strange to you—we'll cover the different ones you need to know in enough detail that
you should be able to debug a large variety of network and performance issues.

The preceding screenshot, downloaded from http://www.professormesser.com/,
shows how the -T flags optimize in various different ways. The most important
distinctions are the parallel to serial transition between -T3 and -T2 (meaning
that hosts are no longer scanned at the same time), and the significant time out
differences across the board.

System administrators also make the target less vulnerable by increasing the time to
respond, as much of the time host information can be read from TTL values, as well.

Running an "insane" scan can clearly make a large network block go faster, but it's
interesting to note that on the other end of the spectrum, "sneaky" and "paranoid"
scans (-T1 and -T0) can be very effective at "hiding" port scans.

http://www.professormesser.com/

Chapter 5

[37]

If we are working on a penetration testing engagement with intrusion detection
systems and intrusion prevention systems running, it can be very beneficial to run
these slow scans.

As you can see in the preceding screenshot, a -T5 scan against scanme.nmap.org
(including all ports) took only one minute (and one second), as is visible in the
output from the time command and Nmap's own timing calculator. On the other
hand, running a -T1 scan—otherwise called "sneaky"—takes significantly longer.

In order to show the true effect of a long-term slow scan, we ran a -T1 scan against
the same host—you can see here that after sixteen hours, the scan was still only 2.75%
done—that is a very slow scan! It's easy to see how we wouldn't want these scanning
options to go through a large block of IP addresses, but that to be extra stealthy on a
client engagement (such as one running an IDS or IPS), it could be invaluable.

Performance Optimization

[38]

Customized host group sizes
In order to scan hosts efficiently, Nmap uses groups of hosts that it scans at the
same time. Assuming your Internet connection (and computer processing power) is
sufficient, it's generally better to increase the host group sizes to finish large scans
quickly. For example, if you're scanning 1,000 hosts with a host group size of 250, it
will only take four "sweeps" to complete the full scan in parallel.

However, one should carefully weigh what they're looking to achieve by changing
the host group sizes. The benefit of scanning many hosts at once is clear, but the
downside may not be—if you're scanning a large group, you have to wait for the
entire host group to be finished scanning before seeing any results and moving onto
another group. If you are trying to see results quickly, a smaller host group would be
better for your specific scan.

By default, Nmap tries to take a dynamic middle-ground approach to host
group sizes: it dynamically changes the host groups to accommodate a verbose
scan (so we can see what's happening) and efficiency (so the full scan finishes
quickly). Nmap starts host groups as low as 4 or 5, and increases them to as high
as 1024—all automatically.

If you're looking for fine-tuned control, however, there are two host group flags you
should keep in mind: --min-hostgroup and --max-hostgroup. If you're planning to
scan a full class C network, for example, specifying a group size of 256 would finish
this run-through in one large, parallel pass—greatly increasing the efficiency of the
scanning engine.

It's worth noting that host group specification does not work for host discovery
scans, including ping sweeps—Nmap will automatically use very large (usually
4096) host groups in order to make these run efficiently.

Increasing and decreasing parallelism
Although the host group size customization we just learned about can help increase
or decrease parallelism in full scans, it doesn't deal with the numbers of probes that
are being sent out at a time. The actual parallelism flags, however, can help us deal
with that!

Chapter 5

[39]

As with many things, Nmap will attempt to automatically create the most efficient
scanning groups, which is great for almost all instances. In my experience, changing
the number of simultaneous probes being sent out without having a serious
education in networking can result in disaster—but that's not always the case.

By increasing the value of --min-parallelism—say up to 10 or 12—you can force
Nmap to scan at least that fast. Nmap will still make the scan run faster if it needs to,
which reduces some of the risk.

On the other hand, it's possible to set the value of --max-parallelism as low as 1.
This is very useful; in the sense that you can force Nmap to send out only one probe
at a time, but also force the tool to run extremely slowly (as you might imagine). We
can use tricks like this to fool security systems, or to ensure that the reliability of our
scans are never impacted by network-related issues.

If you see hosts that appear to not be finishing, or you're very concerned with the
number of hosts that are scanned in a current group, adjusting parallelism can be
very useful.

Dealing with stuck hosts
Unfortunately, when dealing with large blocks of IP addresses—which is a very
common occurrence if you're scanning a large enterprise, whether for internal
security purposes or as a client engagement—it isn't uncommon to deal with
stuck hosts.

When a host gets stuck, it means that something is stopping the scan from
completing at a normal rate. This could be caused by something benign such as
a network hiccup on either end of the connection, or something more intentional
such as a security software that is intentionally making the target host respond
very slowly or inconsistently—effectively breaking the scan.

Performance Optimization

[40]

For the purposes of demonstration, I am going to start a ping agnostic (-Pn) scan
against a host that doesn't exist on my network. There's no way you can get results
from it, but it can still take a very long time to scan.

You can see in the preceding screenshot that it took 1,051 seconds—or seventeen
minutes—to scan this non-existent host. Nmap did the best it could to change RTT
variables in an attempt to compensate for any network problems, but in the end it took
a very long time to realize that nothing was there. Think about what would happen if
you were scanning a Class B network! We would be waiting for days, weeks, or years
for the scan to complete. No one wants to watch an unresponsive Nmap screen!

Chapter 5

[41]

In this second scan against a host that doesn't exist, we kept the same flags, but
changed --host-timeout to 1 minute. As you can see, after 60 seconds, Nmap gave
up on the host and finished the scan—one seventeenth of the time it would have
taken to complete!

The --host-timeout flag is very useful, especially in large scans, but make sure
that you don't set the time too low—or Nmap will give up on hosts that it was still
actively scanning! In many assessments, my team will set --host-timeout to 10
minutes, which generally is enough time for many port scans to complete without
any error per host. Combined with parallelism and host group customization, setting
a host time out flag can save significant amounts of time on larger target hosts.

Delaying and increasing probe rates
The last important timing improvement flag to understand is delaying and
increasing rates directly. This is probably the most fine-tuned of the performance
optimization, and should generally only be used if there is a specific problem you
are trying to solve, or a situation you are trying to create.

The first of these flags, --scan-delay, specifies the amount of time that Nmap
should wait, not doing anything, between probes. This can be extremely useful in
slowing scans down (and sometimes speeding them up, with a low scan-delay).
Again, the most common usage of slowing down scans is to avoid detection of a
target administrator or security system, or to try to avoid network throttling issues.
Since many systems use the rate at which requests are being made to determine
whether or not the machine is under attack, this can be a very stealthy technique
without very much effort on the part of the tester. It's also useful to note that --max-
scan-delay can be used in conjunction with other timing flags to supersede them,
and ensure that scan delays are never slower than a certain amount of time.

Performance Optimization

[42]

You can see in the preceding screenshot that increasing --scan-delay to 5 seconds
made a four-port scan (plus ping sweep) take 41 seconds. Not great for efficiency,
but perfect to conceal what's happening!

Lastly, direct control of Nmap's rates can also be set using a combination of --min-
rate and --max-rate, which controls the packets per second sent over the network.
It's worth noting that Nmap's internal controls for these settings are very good, but
on occasion, more fine-tuned control is necessary. By setting flags such as --min-
rate 1 and --max-rate 100", we can allow Nmap's built-in timing engine to
control efficiency—but never send more than 100 packets per second or less than 1
per second. As with many of these flags, it's important to never set the minimum
value too high or the maximum value too low!

Summary
This chapter taught us some very valuable timing flags—Nmap is versatile enough
to include many options that can help us make sure we have complete control over
timing, in order to maximize efficiency and overcome potential pitfalls.

In this chapter, we covered basic Nmap timing optimization, customized host group
sizes, how to increase or decrease Nmap's parallelism, how to deal with stuck hosts,
and how to delay (or increase the rate of) individual packets.

In the next chapter, we will talk about one of the most interesting and powerful
features of Nmap: the Nmap Scripting Engine (NSE). We'll talk about what the
NSE is, what it can do, and how to invoke interesting scripts using it.

[43]

Introduction to the Nmap
Scripting Engine

Although being able to conduct port scans is an integral part of using the Nmap suite
of tools, the developers of Nmap created a very powerful engine that's built into the
tool: the Nmap Scripting Engine (NSE). This chapter introduces the NSE, and covers
all the topics needed to use reliably-written scripts in the Nmap script repository, in
order to conduct reconnaissance scans that include much more than just what ports
are open and which services are listening.

In this chapter, we will cover:

•	 The history of the NSE
•	 How the NSE works
•	 How to find existing scripts to use
•	 How to run scripts using the NSE

The history of the NSE
By the mid-2000s, Nmap had established itself as the clear leader in port scanning
tools—and security tools in general—whether open source or not. Although it's a
constant battle to continually innovate and optimize, Nmap can only be considered
as an extremely successful project.

Due to its popularity, and the fact that it's an open source project with a relatively
high profile, Nmap was selected to participate in Google Summer of Code several
times. Google Summer of Code is a software development internship/association
project, during which students are selected and put on open source software teams
to build new features into existing projects.

Introduction to the Nmap Scripting Engine

[44]

In May 2006—when the currently released version of Nmap was only 4.0—Nmap
was selected for its second Summer of Code season. The previous year, in 2005,
several improvements had been made through the students' coding for the Nmap
project: the students had written a contemporary implementation of Netcat (called
Ncat), upgraded the OS detection for Nmap to its second (and much better)
generation, and created a small, simplified GUI that would later become Zenmap.

For this second run through, after an extremely successful first summer, the
participant developers were even more ambitious. Since Nmap clearly had an
excellent set of features, why not make those features extendable by the greater
community? New vulnerabilities and scanning techniques were being pioneered on
a very frequent basis, and full Nmap releases couldn't keep up with the things that
security professionals needed to assess. Every time a new vulnerability came out,
security professionals (and malicious hackers!) would scan for vulnerable services
with Nmap, but could only test whether software versions were vulnerable by using
manual analysis: clearly, not a very efficient use of time.

Because of the new resources granted by Google Summer of Code developers, an
arbitrary scripting framework was created that allows users to trigger additional
checks based on certain open ports or services. This means, for example, that if
you're looking for a specific file on all web servers—robots.txt, for example—
you can easily create a script that can check for it on all HTTP and HTTPS services.
The NSE (and the inclusion of Nmap scripts in default installations of Nmap) truly
revolutionized the versatility of the tool suite.

After months of hard work, the NSE was released in December 2006, packaged with
Nmap release 4.21ALPHA1. The scripts that come packaged with the NSE have
continued to grow in complexity and usability, and are excellent resources to turn
Nmap into a fully-featured security tool suite.

The inner working of the NSE
The NSE is a framework that runs code written in the programming language
Lua with specific flags that the engine can parse. Lua is a lightweight, fast, and
interpreted programming language—one that has the most fame for scripting user
interfaces for computer games such as World of Warcraft—that has a similar syntax to
other contemporary interpreted languages.

Chapter 6

[45]

If you've ever seen code written in Python or Ruby, Lua won't seem too alien to you.

The preceding screenshot shows an Nmap script that identifies information about
Bitcoins (written by Patrik Karlsson). Don't worry if you don't understand it yet—
that's something we will cover in Chapter 7, Writing Nmap Scripts—but you can
see that the code used to generate a relatively complex Nmap script looks very
simple. This is the whole point of the NSE! Where security engineers and system
administrators used to have to export Nmap results, find the information they are
looking for and then use third-party tools to assist them; they are now able to either
find a script that serves their purposes, or write a simple one themselves. Many
penetration testers can leverage the Nmap scripting language to even weaponize
the tool for security exploits—which we will cover in more detail in Chapter 10,
Penetration Testing with Metasploit.

Introduction to the Nmap Scripting Engine

[46]

Finding Nmap scripts
Many Nmap scripts come with Nmap, and are already prepackaged on your
system. Still, though, it can be difficult to determine which scripts you'd like to run
for each particular scan—or assessment—that you may be on. Fortunately, the NSE
documentation portal is one of the most in-depth and well-documented aspects of
the entire Nmap project.

By going to http://nmap.org/nsedoc/, you can see all of the
scripts that are part of the official Nmap script repository.

http://nmap.org/nsedoc/

Chapter 6

[47]

The preceding screenshot shows the Nmap Scripting Engine Documentation
(NSEDoc) reference portal web page, as well as all the official Nmap scripts at the
time of writing this book. Each script has a small paragraph next to its name, which
gives a brief description of what it is designed to do. At the time of writing, there are
490 and 113 Nmap scripts that are part of the official documentation—that's quite a
lot you can do with the NSE!

These scripts are broken down into several categories, each with their own specific
use case. It's worth noting that sometimes these scripts can be in several categories,
depending on the full functionality of the script. The categories and their definitions
are as follows:

•	 Auth: These scripts attempt to authenticate to services, and can verify
found credentials

•	 Broadcast: These scripts broadcast certain protocols in order to find out
whether or not they are listening

•	 Brute: These scripts attempt brute force or dictionary-based attacks against
network services

•	 Default: This is the default category of scripts that may run when a
scan is initiated

•	 Discovery: These scripts attempt to enumerate sensitive information from
hosts and network services

•	 Denial of Service (DoS): These scripts may cause disruption to the service
that is being scanned

•	 Exploit: These scripts attempt to execute an exploit that exploits a given
vulnerability

•	 External: These scripts query third-party databases, such as DNS blacklists,
to gather additional information about targets

•	 Fuzzer: These scripts send random "garbage" information to services in order
to attempt to find flaws in the software

•	 Intrusive: These scripts are an umbrella category for any script that may
cause damage or be intrusive to the service itself

•	 Malware: These scripts attempt to find instances of the known malware.
•	 Safe: These scripts are verified to not cause harm to servers
•	 Version: These scripts attempt to identify specific versions—as well as

information disclosures—from specific services in a more in-depth way
than normal service version detection

•	 Vuln: These scripts identify the known vulnerabilities in services

Introduction to the Nmap Scripting Engine

[48]

It's important to know which categories you want to run, since several of these
categories—specifically DoS, exploit, and intrusive—can be dangerous to run
against weak or production systems. The inclusion of these Nmap scripts in security
assessments can easily increase the utility of Nmap in a very significant way.

Running Nmap scripts
Running Nmap scripts is easy—and some, the "default" category, will even run
on their own as a part of a normal scan. Some scripts are designed to simply give
additional information about a target, while others will go so far as to actively exploit
it (the "exploit" category) or even take it offline (the "DoS" category).

The first step to run an Nmap script that's part of the actually NSEDoc repository is
to verify that the script is stored locally. Unlike the Nmap tool itself, the Nmap script
repository is frequently updated—so it's in your best interest to always verify that you
have the most updated version. You can update the NSE scripts by running Nmap
with the flag --script-updatedb, which updates the script database.

Chapter 6

[49]

Once the script database is updated, you can select scripts by using the --script
tag. You can either select specific scripts for a given purpose, or you can select broad
categories of scripts. Fortunately, the Nmap developers allow categories of scripts to
be selected at once. For example, let's say that we wanted to run all scripts that are
default, but also all scripts that are intrusive; we can run a scan using the --script
default or intrusive flag:

You can see in the preceding screenshot that running default scripts here clearly
flagged several findings immediately. If you were to run the same scan with -vv to
have double-verbose mode enabled on the scan, you would also be able to see the
number of scripts loaded against the given target (in this case, 93). In this particular
instance, the http-title script showed the HTML title (Go ahead and ScanMe!) in
the scan results itself.

Introduction to the Nmap Scripting Engine

[50]

If selecting scans by category or categories is too much, you can also select scans by
their specific name, or use wildcards. For example, if I wanted to scan a web server
and load all the HTTP modules in the default scan repository, I would scan with the
--script "http-*" flag:

You can see that launching a scan with the "http-*" wildcard script name works
in loading every script, but there are a few errors coming up. Certain scripts take
parameters, so if loading many scripts, it's important to understand which ones are
being loaded. The scripts that could accurately fire at HTTP ports will still launch,
but those that require additional information would fail (and not return any useful
information). To provide additional information to Nmap scripts, you can provide
arguments with the --script-args flag.

Lastly, it's possible to combine different options to launch scripts by including
different tags in parenthetical. For example, if you wanted to launch scripts that
fit into the categories of default, safe, or intrusive—but specifically did not want to
launch any scripts that launch against web servers—you could start a scan with the
--script (default, safe, or intrusive) flag and not "http-*". Always remember to
keep in mind that the or flag is not an exclusive or— meaning that scripts in both
categories will still run—but and must be in both sections.

Chapter 6

[51]

Although the Nmap script repository is very thorough, it's always worth looking
elsewhere on the Internet if a specific script that you think would be useful is not
published. Many blogs from security researchers will have NSE scripts for a specific
purpose, and before trying to write your own, it's absolutely worth it to check a
search engine first!

Summary
This chapter introduced the NSE, which can be one of the most useful, versatile, and
engaging features of the Nmap tool suite. We should now be able to launch scans
that do more than just port and service versions—Nmap scripts can actually interact
with the services listening, and in some cases can even exploit vulnerabilities!

In this chapter ,we covered the history of the NSE, how NSE works, how to find
existing scripts to use, and how to run scripts using the NSE.

In the next chapter, we will learn how to write a basic Nmap script using Lua.
Although many, many scripts already exist for a huge variety of tasks, custom
in-house uses may require writing one of our own.

[53]

Writing Nmap Scripts
Now that we have covered how the NSE works, it's time to learn how to write
our first Nmap script. Because of the versatile and extremely customized nature
of writing Nmap scripts, there are several different ways to produce a script that
performs various functions—and also many pros and cons to write your own script.

While creating an Nmap script from scratch may not always be the fastest way to
get things done (as there is almost always a script that already exists for whatever
purpose you may need), there are certain situations during which leveraging the
powerful built-in functions of the Nmap scripting engine leads to exactly the right
circumstances to write your own script.

In this chapter, we will cover the following topics:

•	 The anatomy of an Nmap script
•	 Writing the Nmap script's head
•	 Creating a rule
•	 Defining a script's action
•	 Debugging Nmap scripts

Anatomy of an Nmap script
An Nmap script is comprised of several unique sections, each of which define
different areas for the script to execute, or for Nmap to interpret expected output.
There are several primary areas that we must always include in any script we
create, in order to ensure that the script will run effectively (and that Nmap will be
able to understand how to interpret the data).

Writing Nmap Scripts

[54]

Although Nmap scripts are written in Lua, an interpreted programming language,
it's important to remember that these scripts are not stand-alone executables that
can be run on their own. Rather than running a script with Nmap as a requirement,
it's better to think of Nmap scripts as simply sets of instructions for a unique Nmap
programming language.

An Nmap script is comprised of three unique sections:

•	 The head: This section of an Nmap script includes documentation and
categorization for the script so that Nmap and the NSE database can
successfully categorize the script into the appropriate areas.

•	 The rule: This section of the script defines exactly where and how an
Nmap script is executed. Because the script is leveraging the data of the
Nmap scan as it runs, certain elements can trigger the script to run. This is
effectively a trigger that evaluates whether or not the script should execute.

•	 The action: Lastly, this section of an Nmap script is where (you guessed it!)
the action takes place. This is the part of the script that is doing a lot of the
processing, after the head has defined the script and the rule has triggered
the action.

Now that we've learned how an Nmap script is composed, it's time that we got to
work and started writing one. Because each and every Nmap script is so unique,
we are going to recreate a script that already works—but the one that shows how
powerful the NSE can be.

Our case study for this script will be to write a simple, easy-to-follow Nmap script
that uses Nmap's built-in functionality (combined with the power of the NSE)
to determine whether a web server has a robots.txt file. The robots.txt files
indicate which areas of a website should (and should not) be indexed by web
crawlers and search engines, and often have sensitive directories listed with an
instruction to not index them. For this reason, they're very interesting for security
professionals and penetration testers—since it's exactly those sensitive files and
directories that we're looking for!

Defining an Nmap script – script headers
Each Nmap script must be created with certain required variables defined at the
beginning of the script. Any Nmap prerequisites that are needed for successful
execution, definitions of how the script is categorized (for example, whether or not it
is intrusive, safe, contains an exploit, and so on), and the license are also among the
things necessary in the header.

Chapter 7

[55]

The preceding screenshot illustrates the various sections necessary for an Nmap
script, each of which are critical to the successful execution of the program. Let's walk
through these elements in order to determine what the author of the script is doing.

First, several variables (defined by the local prefix) are defined. Several
requirements are made in order to ensure that each of the Nmap elements
are included appropriately.

Next, a longer variable—the description—is created. This is a multiline Lua variable,
which is encapsulated in [[and]] brackets. This area is supposed to include a basic
description of the Nmap script so that when run programmatically, it is possible to
choose the correct script.

Writing Nmap Scripts

[56]

Below the description variable is a fully commented text block that defines the usage
of the script. In Lua, the -- preamble comments out that line of code, making it not run
when the script is executed. You can easily see how the @usage block is formatted—
simply showing how the script should be run, and any arguments it may accept—and
how the @output block is formatted below. These blocks show how to run the script
correctly, how to pass arguments on the command line (if any are required), and what
output you should expect from the script in question.

Below the commented out block are several other variable definitions that Nmap
parses. Specifically, the author block (which is how you would like to be credited
for the script), the license block (which is generally listed as the same as Nmap for
distribution purposes, but can be specified in certain ways if you want to protect
certain elements of your script), and the categories array (which lists the categories
that the script should fall into). You want to make sure that, for example, if your
script is intrusive, you label it as such.

For our script, we only need a few required includes, which make our header
relatively short. Let's create our head section, looking something like the following
(of course, feel free to modify your script however you like!):

 local http = require "http"
 local nmap = require "nmap"

 description = [[
 Checks to see if robots.txt exists on a web server.
]]

 author = "Nmap Essentials readers"
 license = "Same as Nmap--See http://nmap.org/book/man-
 legal.html"
 categories = {"default", "discovery", "safe"}

Very simple! We need the HTTP module in order to perform an HTTP GET
request to robots.txt in question (on an open port 80), and of course we need
the Nmap include in order to leverage the Nmap scripting engine. You can see
that our description is very straightforward, and we defined the author, license,
and categories in order to help our users determine when the script is safe and
effective to run.

Now that the head of our script is complete, let's turn to the rule.

Chapter 7

[57]

Triggering functions – the rule
The rule or portrule section of an Nmap script determines when the action should
take place (which we'll cover in the next section). It's important to define this clearly so
that we are confident that our script will run every time we need it to (based on port
number and version). There are two ways to accomplish this type of rule: standard
portrule documentation, and a helper library built in the NSE called shortport.

Defining a rule is actually very simple, depending on what we're looking for. In the
case of our robots.txt detection script (aptly named robots.nse), we just want to
trigger on port 80 to see if robots.txt exists.

If we were writing a production script, rather than a proof of concept, it would
probably be a good idea to use shortport's port or service functionality to trigger on
port 80, or any web server that Nmap detects through its underlying functionality.
However, in our case, we can simply define something much easier to digest:

 portrule = function(host, port)
 return port.state == "open"
 end

As you can see, this is a very minimal portrule that will return true when port.
state is open. These are built-in Nmap functionalities, and when the script is
running, each port is checked against the portrule.

While our portrule is intentionally very easy to understand, many production scripts
have very complicated portrules that are designed to trigger different elements of
analysis, based on specific version and configuration settings. To learn more about
advanced portrule and the shortport library, you can read the full overviews at the
Nmap Scripting Engine Documentation (NSEDoc) portal.

Defining a script's action
After we define the portrule, the only step left is to define the action that executes
when the portrule returns true. In our case, we want to check whether robots.txt
exists on the web server we're scanning.

In order to determine whether the server exists, there's a little bit about the
Hypertext Transfer Protocol (HTTP) that we need to learn. First of all, the way
to request a page is through an HTTP GET request. For example, if we wanted to
go to http://google.com/images, our browser would send a request containing
GET /images to the server at Google.com.

http://google.com/images

Writing Nmap Scripts

[58]

If the status of the GET request is OK, the web server returns the status code 200. If
there is a server-side error, a 500 error will return. If the page is moved, an error in
the range of 300 will return. Lastly (for our purposes), if there is an authorization
error or file-not-found error, the server will return 403 or 404 respectively.

In order to define our action function, we need to perform the following steps:

1.	 Request the robots.txt page.
2.	 Find out whether it's there or not.

The following action segments define this request:

 action = function(host, port)
 local robots = http.get(host, port, "/robots.txt")

 if robots.status == 200 then
 return "robots.txt status 200"
 else
 return "robots.txt status: " .. robots.status
 end
 end

As you can see in the preceding code snippet, this is a very simple action section.
Let's walk through the process step by step:

1.	 First, we define the action function that takes the parameter's host and port.
These are automatically passed to the action block once the portrule triggers.

2.	 Next, we define a local variable (called robots), which is the HTTP result
of the NSE's http.get request. In this instance, we're performing a GET
to the host and port that we're currently scanning and making a request to
/robots.txt.

3.	 Once we receive the HTTP data, we can easily make an if statement to
determine whether the status is a 200 OK response or something else.
We could have combined this with a shorter if statement (rather than an
if/else), but it's useful to see how to have multiple possibilities for output.

4.	 If the output is not 200, we go to the else statement and see what the status
is. For example, if the status is 404, we know that it simply doesn't exist; if we
get a 500 server error or a 403 not authorized, however, it might be worth
looking into a greater depth:

Chapter 7

[59]

As you can see, running this script (and any custom Nmap script) is very
straightforward. When scanning scanme.nmap.org, you can clearly see that there
is no robots.txt—we're just receiving a 404 error. If we scan a service that does
have a robots.txt page—I created a test case on http://dshaw.net/ for this
purpose—we see a different result.

In this instance, we can clearly see that the 200 status—HTTP OK—means that
robots.txt does exist:

http://dshaw.net/

Writing Nmap Scripts

[60]

If this were a production Nmap script, it would probably be worth it to change
the return associated with a 200 OK response to show more information such as
disallowed files and directories. However, don't spend time on this particular script!
There is already a great HTTP robots.txt script (and many more) in the official
Nmap repository.

One last set of flags that can be very useful to write, understand, and debug Nmap
scripts are the --script-trace and -d (debug) flags. The --script-trace flag
shows the information on the wire about all the different requests that the script is
making on its own, which is very useful to determine what exactly is happening:

You can see in the preceding screenshot that while there may be a little bit of
information overload, you can see exactly what the Nmap script is doing by using
the --script-trace flag. The -d flag, to debug, works similarly: if you're writing a
script and you encounter errors, try debugging it with the -d flag. You'd be surprised
at the great things you can learn!

Chapter 7

[61]

Summary
This chapter showed us how to write our very own Nmap scripts! The NSE is a
powerful (and sometimes complicated) tool, which can aid Nmap users in a variety of
interesting and automated tasks. The script we wrote as a proof of concept can easily
detect whether a robots.txt file exists on a server, but the possibilities to write Nmap
scripts—either for internal use, or to detect specific vulnerabilities—are nearly endless!

In the next chapter, we will learn how to use tools that come in packages with the
Nmap tool suite, as well as some useful tips and tricks to get the most out of them.

[63]

Additional Nmap Tools
We have now successfully written our first Nmap script, and launched a variety of
scans against a plethora of different target types (and defenses). However, scanning
a host is only a small part of the full power of the Nmap suite.

In addition to creating a powerful scanning tool and the NSE, Nmap developers have
included several additional tools—including Ncrack, Nping, Ncat, and Ndiff—into
default install bundles of Nmap. These tools can help analyze existing scans, pivot to
other hosts, transfer files, or compare scan results over time.

In this chapter, we will cover the following topics:

•	 Attacking services with Ncrack
•	 Host detection with Nping
•	 File transfers and backdoors with Ncat
•	 Comparing Nmap results with Ndiff

Attacking services with Ncrack
One of the most aggressive tools included in the Nmap suite is Ncrack—a tool for
aggressively brute-forcing (or "cracking") network services. While it's not unique
in its functionality (as there are many software tools that can brute force network
accounts), the ability to easily (and natively) integrate with Nmap (and Nmap
results) makes it ideal for use after scans.

Before using Ncrack, we need to ensure that it's installed. Although most Nmap tools
come installed with Nmap suite packages, since Ncrack is technically
(at the time of writing) an alpha build, it is not included in many installations.

Additional Nmap Tools

[64]

Documentation and the most recent download link is available at
http://nmap.org/ncrack/.

Installation, like many Nmap tools, is extraordinarily simple; perform the
following steps:

1.	 wget http://nmap.org/ncrack/dist/ncrack-0.4ALPHA.tar.gz

2.	 tar -xzf ncrack-0.4ALPHA.tar.gz

3.	 cd ncrack-0.4ALPHA

4.	 ./configure

5.	 make ; sudo make install

You will be able to see the output of the preceding steps as shown in the
following screenshot:

Upon configuration, you may notice a scorpion ASCII art (as shown in the preceding
screenshot). This art pays homage to the Nmap dragon that you may remember from
when we first installed Nmap, several chapters ago!

Once Ncrack is installed, there are several useful and interesting ways we can invoke
it to do our bidding.

http://nmap.org/ncrack/

Chapter 8

[65]

The most straightforward way to run Ncrack is very simple; as shown in the
preceding screenshot, one may simply run ncrack followed by the protocol URI
and hostname (or IP address) of the targeted service. Used in this way, we can
attack services (such as SSH) by running ncrack ssh://TARGET.

Ncrack is most effective when used with a known username. For example,
if we knew that a given system had a root login that allowed password
authentication, we would run ncrack --user root ssh://TARGET to brute
force against that username.

Although this functionality is very useful, it is by no means unique; many tools,
such as Hydra and Medusa can run brute force attacks. The true benefits of Ncrack
are revealed when Ncrack is run based on the results from an Nmap scan.

Let's say that we are conducting a penetration test or security assessment on
a series of hosts across a Class C (/24) network. If, for example, 200 hosts are
online—and each one has between five and ten services listening—you're looking
at a lot of different brute force attempts to implement over the command line.
Ncrack, however, can do this for you.

Just as Nmap can export different log types, Ncrack can read them as input—and
automatically attack the services in question. For example, if we have an -oX flag
(XML output) from an Nmap scan, Ncrack can use -iX to input that same list as a
target file:

Additional Nmap Tools

[66]

We can easily see that by scanning nmap.scanme.org and exporting an XML file,
we can easily import it to Ncrack. Although this is just one host, you can imagine
how much time we would save if we used this for a large network! It's also worth
noting that services that either don't support login, or that Ncrack doesn't know
how to use, are by default excluded from the scan. In this case, nping-echo was
excluded due to not having a login prompt.

There are a few flags that are absolutely necessary to run Ncrack effectively, in
addition to specifying target files. The two most important flags for Ncrack are -U
and -P flags, which each point to a text file containing usernames and passwords.

There are a plethora of other flags, configuration settings, and uses for Ncrack—all
of which can be found on the very useful main page.

Before using Ncrack, a word of caution: while port scanning with Nmap can be
irritating to many system administrators (and is, in fact, illegal in some areas),
attempting to compromise a service using Ncrack is illegal and should only be done
with explicit permission of the system owner. If you're trying to perform a security
assessment on your own assets or if you have a signed consent form (such as in
the case of a penetration test), you'll be okay—but do not attempt to compromise
arbitrary hosts on the Internet!

Host detection with Nping
Much like Ncrack, Nping was added into the Nmap suite only very recently—its first
iteration was created in August 2009 (along with Ncrack), and was first included in
the actual Nmap suite in March 2010.

Although you might not expect it from its name, Nping does much more than ICMP
echo requests (what we typically call a ping)—primarily, it can also execute ARP
probes and TCP or UDP requests to given ports, in order to find out if those hosts
are online based on the response. For example, if we want to debug certain network
connections, we can easily use Nping to determine what's happening on the wire.
The following screenshot shows a basic Nping command:

Chapter 8

[67]

In the preceding screenshot, we ran Nping with two checks per port (-c 2, where
"c" stands for "count"), and scanned ports on dshaw.net—80. In this case, 80 is
an open port (it is running my web server), and we can clearly see the responses
we're expecting. As we remember from earlier chapters, we can now see exactly
what is happening as the TCP handshake is attempted through network connection
information (packets sent and received). If we were debugging a network connection,
we would also specify -v to see even more packet information.

One of the most unique features of Nping is its built-in echo mode. The echo mode
allows Nping to work as both a server and a client, and sends packets back and
forth. By showing the entirety of a network connection (the packets that the client
is sending, in their original state, and the packets as they are received by a server),
it is extremely easy to detect network address translation, interfering intrusion
prevention systems, packet shaping, and so on.

For a full list of Nping echo commands, as well as a variety of
intended uses, view the Nmap documentation portal (NSEDoc),
which has a comprehensive tutorial located at http://nmap.
org/book/nping-man-echo-mode.html.

File transfers and backdoors with Ncat
For those who may not be familiar, a wonderful network administration tool was
unveiled in 1995; it was called Netcat. This had a variety of uses, from file transfers, to
network monitoring, to chat servers—even so functional as to create a backdoor—by
mirroring its input to a specified network address of the user's choice. Netcat was
in many ways a very lightweight port scanner—by using a quick shell script, it was
extremely easy to check whether certain ports were responding on a given host.

Netcat is still in heavy use today, but the Nmap development team saw some pretty
serious improvements—both in stability and usability—that they can make to the
software. As such, in 2009, Ncat was released as a part of the Nmap suite.

Unlike Netcat, Ncat has SSL support (natively), great connection redirection
reliability, and several other built-in features that make it a great tool in a security
administrator's toolbox.

Ncat has two modes: the "listen" mode, which listens on a provided port for
incoming connections, and the "connect" mode, through which commands are sent
and feedback is received. In the connect mode, we can use Ncat to connect to a
variety of services, including HTTP-based web servers.

http://nmap.org/book/nping-man-echo-mode.html
http://nmap.org/book/nping-man-echo-mode.html

Additional Nmap Tools

[68]

Sending the GET / HTTP/1.0 request after invoking Ncat via ncat nmap.org 80
yields the following output:

Although it clearly doesn't render as well as a web browser like Chrome or Firefox
would, you can see the HTTP/HTML response from the web server quite clearly.
This same functionality of Ncat can also be used to connect to many different types
of services, including SMTP, FTP, POP3, and so on. When trying to send different
inputs to different protocols, Ncat can be invaluable!

Ncat is also very useful when conducting a penetration test or security assessment,
as it can be used as both a method for data exfiltration, and as a way to have a
persistent backdoor into a compromised system.

The ability to send a file through Ncat uses both the "listen" and "connect"
functionalities of the tool. The following screenshot shows a very basic Ncat command:

Chapter 8

[69]

To begin, we set up an Ncat listener using the -l or listen flag. Since we are
expecting a file, we can pipe the output to received.txt. We always want to make
sure that we are outputting the type of file that we're expecting so that we don't have
to deal with changing file types at a later date. When setting up the listener, we can
also set up a specific port (which is useful on penetration tests); but in this case, we
left the default port of 31337 intact.

We can see in the preceding screenshot that somewhere else (not in the listener) we
have a file called send.txt with the this is the file that we are going to
send! content. Sending the file is easy! All we need to do is invoke Ncat, point it
at a localhost (again, we're using the default port of 31337 so no port specification
is necessary), and pipe the input from send.txt. The following screenshot
demonstrates opening a received text file:

As we can see in the preceding screenshot, Ncat will automatically close out once the
file is received. Once we actually receive the file, it's as simple as "cat"-ing the file we
received to see that it is in fact the same content as the one we sent.

Additional Nmap Tools

[70]

Lastly, Ncat can also be used as a backdoor, in order to create persistent access to a
compromised system. The following screenshot shows this basic functionality:

As seen in the preceding screenshot, establishing a shell connection via Ncat is
very simple. We used ncat -l -e /bin/bash to listen on the default, and executed
/bin/bash (our shell) when a client connected. It's worth noting that in this form,
the backdoor is not persistent—meaning that it will not stay listening after the
client has disconnected. The following screenshot demonstrates the ability to run
Linux commands on a remote system through Ncat:

Chapter 8

[71]

In order to connect to the shell, as shown in the preceding screenshot, we can simply
invoke ncat localhost (since the port is still default) and have a bash shell spawn
our prompt. In this case, we ran whoami and received back dshaw, then executed a
ls command and received a directory listing of the remote directory. While other
backdoor access methods may be more reliable or complicated, it is hard to think
of one more simple!

Comparing Nmap results with Ndiff
The last tool that comes packed with the Nmap suite is Ndiff. For those unfamiliar
with the traditional *NIX tool "diff," it is designed to visually show the differences
between two separate files of text. In other words, if you (for example) want to see
which lines of code changed when a patch was applied, you can "diff" the new patch
and the old code, and visually see the differences. The following screenshot shows a
basic Nmap command:

In the preceding screenshot, we launched a scan against my web server—dshaw.net—
for ports 80 and 81. We named our first scan scan1.xml and ran another scan against
the same host—we called it scan2.xml. The only difference is that I used Ncat
(which we learned about earlier in this chapter) to open up port 81 to the Internet.

Additional Nmap Tools

[72]

In order to compare the results, we simply have to call ndiff scan1.xml scan2.
xml—very straightforward. The following screenshot demonstrates this command:

As you can clearly see in the preceding screenshot, the Ndiff output—which uses
the same format as the traditional "diff" tool—shows + and – to indicate which
lines are new or old. Since it parses through the actual XML file, rather than just the
text output, Ndiff can successfully determine when new hosts were added in their
entirety, rather than just being in a different place in the output. In this case, it's
very clear that port 81 (with only a default "service" tag, rather than actual version
scanning) was open in the second scan, but not the first. This tool is very useful for
system administrators who want to view the state of their network over time.

Summary
This chapter gave an overview of the additional tools that ship with the Nmap
suite, and the various tasks that we can accomplish using them. Although Nmap
itself is wonderful, in order to have the full breadth of Nmap's usefulness, we
need to use some of the packaged tools as well.

In the next chapter, we will learn how to use Nmap with other tools outside of
the Nmap suite, in order to conduct a fully functional security assessment, or
penetration tests.

[73]

Vulnerability Assessments
and Tools

After learning all the additional tools that come packaged with the Nmap suite, it is a
good idea for us to take a look at some third-party tools that can assist in conducting
a vulnerability assessment. Vulnerability assessments, more than just a simple port
scan, are comprehensive reports that detail the full range of vulnerabilities that may
exist on a given target scope.

Some of the tools we'll learn about in this chapter interact very well with Nmap,
while others are simply follow-up tools to use after the initial Nmap scan.

In this chapter, we will cover the following topics:

•	 Conducting a vulnerability scan with Nessus
•	 Assessing web server issues with Nikto
•	 Identifying sensitive web directories with DirBuster
•	 Getting started with intercepting proxies

Conducting vulnerability scans with Nessus
One of the most common pieces of software to use in conjunction with a port
scanner is a vulnerability scanner. This scanner takes the role of port scanning
one level higher; rather than identifying open ports and services, it cross-references
these versions with a (usually proprietary) database of vulnerabilities in order to
show whether a given service is vulnerable to attack.

These scanners are the key elements in vulnerability assessments, as they reduce the
burden of the security engineer; instead of having to manually identify weaknesses,
a scanner (that is frequently updated) can do much of that work.

Vulnerability Assessments and Tools

[74]

Although Nessus was originally started (in 1998) as a free security scanner, it has
since then been closed off to the public due to Tenable (the company Nessus' creator
founded) selling the licenses instead. While many security companies pay for these
licenses, you can try out a fork of the Nessus project (OpenVAS) for free.

Using Nessus is fairly straightforward. Although many security tools run on the
command line (including some that we'll review later in this chapter), Nessus uses a
web-based user interface that is very intuitive to use. The basic usage consists of:

•	 Selecting a target list (Nmap can help with this)
•	 Selecting a scan type
•	 Running the scan
•	 Interpreting results

The following screenshot shows the Nessus "templates" page:

Chapter 9

[75]

As we can see in the preceding screenshot, logging into Nessus and selecting New
Scan allows us to choose from a variety of premade scan types—while it also allows
us to select Policies for custom scan types. For the purpose of this scan, I have
created a special scan type that will scan all ports (just like Nmap!) and then cross-
reference any vulnerabilities it detects.

In order to launch the scan, we must select the targets we're looking to scan. Just
like during our Nmap test scans, we'll scan scanme.nmap.org. Note that conducting
a vulnerability scan on an unwilling target can be very upsetting to system
administrators, and is illegal in many parts of the world:

Vulnerability Assessments and Tools

[76]

The Nessus graphical user interface is very simple to use; simply add the host
to "targets," and give the scan a name. In large penetration tests, many security
assessors will specifically parse out online hosts (or hosts with services listening)
from the Nmap results, in order to not waste Nessus time on hosts that are either
offline or do not have any services listening. The following screenshot shows a
vulnerability scan in Nessus:

Chapter 9

[77]

Once the scan is completed, clicking on Vulnerabilities shows the current list of
vulnerabilities detected on the target scope. As expected, scanme.nmap.org has
very few vulnerabilities (the Nmap team knows a lot about security!), but there
are still a few "informational" findings that crop up in order to give the most
information possible to the assessor. In this case, it appears that some configurations
(such as the Apache web server information) allow information disclosure.

Nessus is a powerful tool, but the NSE is quickly becoming a formidable
competitor—by being able to script out all of the same checks that Nessus has
built-in. The advantage Nessus holds, however, is that Tenable has a full team
of security engineers writing new plugins almost constantly; with Nmap scripts,
someone needs to create a script, upload it to the web, and distribute it to many
users before it can be used in practice.

Custom checks are another feature that Nessus can support. Much like the NSE,
Nessus users may use a powerful scripting tool called the Nessus Attack Scripting
Language (NASL). NASL scripts can be written by anyone, and provide the full
power of the Nessus engine—without necessarily running a full Nessus scan against
a given host. Full NASL documentation can be accessed on the Tenable website.

Assessing web server issues with Nikto
Nikto is an open source tool that allows security assessors to evaluate the
configuration of web servers. Unlike Nmap or Nessus, Nikto is designed exclusively
for web-based configuration evaluations. As a general rule, it's a good idea to run
Nikto (or a similar web scanner) on web services that are identified as part of a
penetration test or vulnerability assessment. Nikto can be accessed from its web page
at https://cirt.net/Nikto2.

The installation of Nikto is a fairly straightforward process, similar to the other tools
we've used throughout this book:

1.	 wget https://github.com/sullo/nikto/archive/master.zip

2.	 unzip master.zip

3.	 cd nikto-master/program

4.	 Nikto is now ready to use!

https://cirt.net/Nikto2

Vulnerability Assessments and Tools

[78]

Nikto, like many early security tools, is a Perl script—which means that as long as Perl
is available on your system, Nikto is good to go! In order to demonstrate how Nikto
works, we will run a simple scan against our favorite host, scanme.nmap.org. To run
this scan, we invoke Nikto using the -h (host) flag: nikto -h scanme.nmap.org.

You can see in the preceding screenshot that as Nikto runs, it identifies many issues
(including some of the issues we identified with Nmap and Nessus), as well as a
few different configuration options—such as the lack of certain security headers, the
existence of certain web directories, and so on.

In the event of actual web server vulnerabilities, Nikto can be invaluable to detect
exploitable attack vectors. As time goes on, the NSE is taking more and more of these
checks from Nikto and integrating them directly into Nmap—but at its core, Nmap is
still a port scanner; detecting vulnerabilities is a bonus, not the primary purpose.

Chapter 9

[79]

Identifying sensitive web directories
with DirBuster
Although Nikto can identify potentially sensitive directories and web server
misconfigurations, its primary purpose is not to find hidden files. DirBuster,
however, exists entirely to find the hidden files and directories on web servers.
Using Java (so the Java Runtime Environment must be installed), DirBuster can
send many, many requests to a web server in order to completely enumerate any
directories that may be interesting to any sort of an assessor. From a self-testing
perspective, running DirBuster can be very useful to verify that there are no
sensitive files left on your own web server!

Technically, DirBuster as a stand-alone product is considered as end of life by
OWASP, the organization that runs the project. The codebase has been ported to
the OWASP Zed Attack Proxy (ZAP) project (which we'll talk about in the next
section), but DirBuster can still be run in stand-alone mode—which is very common
in the information security consulting industry. You can download DirBuster at the
following URL: http://sourceforge.net/projects/dirbuster/.

In its normal use case, DirBuster is a Graphical User Interface (GUI)-based
software—however, the most common usage in the security industry is to use the
-H flag, which runs DirBuster in headless mode. This mode means that the software
runs on the command line, allowing easier scripting to run the software, as well as
the ability to run DirBuster from "staging" servers, which are usually only accessed
over SSH. Fortunately, we've become very comfortable with the command line while
learning about Nmap, so this shouldn't be a problem!

Running DirBuster can be a little bit daunting for newcomers, but it's actually very
simple: running java -jar [Dirbuster file].jar -H -u http://scanme.
nmap.org will run the software against scanme.nmap.org. We invoke it using
java -jar because we're running a JAR file (a packaged Java program), -H for
headless mode (as we learned above), and -u before the URL of the base site we're
looking to scan. Although we can scan sites with permission, DirBuster generally
takes a little while to run—since it has to check many, many potential directories to
give a comprehensive list. Once DirBuster is finished running or it is stopped with
the "control-C" stop mechanism, a report is written to a text file in the directory
DirBuster ran. This automatic log generation is very useful, since DirBuster can often
find a large amount of sensitive directories.

It's interesting to note that you can specify the list that DirBuster uses to check for
directories, and it's a good idea to make sure this list is always up-to-date. It's a good
idea to check around the Internet for updated lists, especially as DirBuster itself is
technically no longer actively maintained.

http://sourceforge.net/projects/dirbuster/

Vulnerability Assessments and Tools

[80]

Getting started with intercepting proxies
We've now learned how to conduct full vulnerability scans using Nessus, find web
server misconfigurations using Nikto, and identify sensitive files and directories
using DirBuster. However, none of these tools show us how a web application may
actually be communicating with a potential client browser. In order to see this level
of communication, we need to use what's called an intercepting proxy.

You've probably heard of a proxy before—something you can bounce your web
traffic off, in order to have a different source IP address or to avoid certain types of
firewalls—but an intercepting proxy is something different altogether. While you're
still bouncing your traffic somewhere else, in the case of an intercepting proxy,
you're proxying to yourself and then using a piece of software to potentially modify
that request.

One of the most common intercepting proxies in the security industry is Burp
Suite, which has a "community" edition (free) and a "professional" edition (paid).
A popular alternative to Burp Suite is OWASP ZAP, but for the purposes of
demonstrating an intercepting proxy, Burp Suite does the job just fine. You can
download the free edition of Burp Suite at the following URL:

http://portswigger.net/burp/download.html

The first step to set up an intercepting proxy is configuring a web browser to point at
the proxy. Each proxy is different, but Burp Suite uses port 8080 as the default. This is
usually in the web browser's settings, generally under the Network tab. Once proxying
is set up, simply browsing to any page will allow the request to be intercepted.

As an example, we've set up Burp Suite to intercept requests, and attempted to use
Firefox to browse to scanme.nmap.org:

http://portswigger.net/burp/download.html

Chapter 9

[81]

Because we have proxying to Burp Suite configured, we can immediately see that our
request ("GET /") is being intercepted by Burp Suite. This is useful in and of itself,
as it allows us to see exactly what our web browser is doing with the request, but
there are even more functionalities to intercepting proxies. More than just seeing the
requests, we can actually modify them on the wire! The following screenshot shows
Burp Suite intercepting a request:

In the preceding screenshot, you can see that we changed our request from GET / to
GET /TEST, which changes the request to the web server before the server receives it.
Although this change is just a simple GET parameter change, this functionality is very
useful when assessing web applications. For example, it can sometimes be possible
to send the POST requests for other users' data by changing a variable, where simply
browsing to a different URL with a web browser would not produce the intended
effect. In terms of assessing web applications, an intercepting proxy is at the forefront
of cutting-edge tools. The following screenshot shows a web browser interpreting the
request's result:

Vulnerability Assessments and Tools

[82]

You can see that once we clicked the Forward button in Burp Suite, allowing the
modified request to continue on to the server, our browser got a response that /TEST
was not found on the server. This 404 error was produced because the request was
changed on the wire, and the new file does not exist.

Burp Suite is a powerful tool, with many features—and worthy of a whole book
to itself, which is also available. If you have an interest in web application security,
I strongly recommend using and learning more about Burp Suite.

Summary
This chapter took us from understanding how to run port scans, to learning how
other security tools fit into the security professional's daily life. We have learned
how to conduct vulnerability scans and assessments with Nessus, evaluate web
server configurations with Nikto, find hidden files and directories using DirBuster,
and intercept and modify requests to web applications using Burp Suite.

Although there is still a lot to learn about the security world, we have now gotten
to the point where conducting a vulnerability assessment is within our reach!

In the next chapter, we will learn the basics of conducting a penetration test using
Metasploit, and how Nmap and Metasploit can be used in conjunction to produce
an excellent attack platform.

[83]

Penetration Testing with
Metasploit

A vulnerability assessment is only part of a full security sweep. After vulnerabilities
are identified or misconfigurations are discovered, the security assessor should strive
to actually exploit these vulnerabilities. The reasons for taking the assessment to the
exploitation stage are numerous, but the most important parts are to eliminate false
positive findings and to demonstrate the full criticality of potentially severe findings.

There is very little that will catch a Director of IT or CIO's attention faster than
exfiltrating sensitive data from a supposedly secured system!

Metasploit is a very effective attack platform, with many modules being added to
the system at a very quick rate. Leveraging the power of Metasploit with scanning
tools such as Nmap, and vulnerability scanners such as Nessus, can complete the
Trifecta of a well-prepared security tool suite.

In this chapter, we will cover the following topics:

•	 Installing Metasploit
•	 Scanning with Metasploit
•	 Attacking services with Metasploit
•	 What to learn next

Installing Metasploit
Before we can begin using Metasploit, we need to install it to our system.
Unlike Nmap, installing Metasploit can be a little bit trickier—but it's nothing
that a little careful work can't overcome!

Penetration Testing with Metasploit

[84]

The first step is to make sure that all the dependencies that Metasploit requires
are installed. To do so is relatively simple, we just need to run sudo apt-get
install build-essential libreadline-dev libssl-dev libpq5 libpq-
dev libreadline5 libsqlite3-dev libpcap-dev openjdk-7-jre git-core
autoconf postgresql pgadmin3 curl zlib1g-dev libxml2-dev libxslt1-dev
vncviewer libyaml-dev curl zlib1g-dev:

As you can see in the preceding screenshot, most Linux machines will need to install
several packages from this list that aren't included by default. Don't worry if you
don't know what these individual packages do—we just need them installed so that
Metasploit can function correctly.

Chapter 10

[85]

In addition to installing various packages, we need to make sure that we have an
up-to-date version of Ruby installed. Using a tool called "RVM" makes this relatively
straightforward; full documentation of RVM is available at http://rvm.io. At the
time of writing, we are installing Ruby 2.1.5 to run Metasploit:

Once Ruby is installed, the only other requirements are Nmap (which we've already
installed), configuring Postgres, and installing Metasploit itself.

Configuring Postgres is very straightforward: as root, simply run su postgres to
assume that user role, and run the following two commands:

 createuser msf -P -S -R -D
 createdb -O msf msf

http://rvm.io

Penetration Testing with Metasploit

[86]

Once the Postgres database is configured, we can start working with Metasploit
itself. The first step is to clone the Git repository to get the code locally, which can
be achieved by running git clone https://github.com/rapid7/metasploit-
framework.git.

Once the files have been created (in a directory called "metasploit-framework"),
we can cd into that directory and run bundle install, in order to make sure Ruby
gem dependencies are up-to-date. If the gems are out-of-date, bundle update will
verify that the latest specified versions are running:

At this stage, Metasploit is installed! We have no need to compile anything, since
Metasploit is written in Ruby (which is an interpreted language, rather than
a compiled one). To start Metasploit, simply run ./msfconsole while in the
metasploit-framework directory—and that's all it takes!

Chapter 10

[87]

Scanning with Metasploit
While Nmap's primary strength lies in performing fast, scalable port scans, and
Nessus's forte is conducting in-depth vulnerability scans and misconfiguration
detection checks, Metasploit excels in actually exploiting vulnerabilities on a
one-off basis. In a security assessment, Metasploit is generally brought to the table
as a last step: once the vulnerabilities are enumerated from other tools, Metasploit
can actually exploit them. Sensitive data, compromised machines, and more, can
easily be exfiltrated using Metasploit and a variety of tools that come packaged
with the framework.

Metasploit can easily have a whole book dedicated to its usage—and, in fact, it
does—but we'll go over the basic scanning and exploitation techniques so that
you can implement it into your everyday processes, without too much of a hassle.

The easiest way to launch a scan for a particular vulnerability (or information
gathering technique) is simply to use it. The way to specify a use command is
simply run use primary/secondary/module in Metasploit. The following
screenshot shows us setting up an HTTP version scan in Metasploit:

Penetration Testing with Metasploit

[88]

As you can easily see in the preceding screenshot, we've decided to use the
auxiliary/scanner/http/http_version module to check HTTP versions.
Once we have the module selected, we check what options are available by running
"show options." In this case, we need to specify that rhosts should be our target web
server. Because this is plural (hosts, not 'host'), you can tell that we can theoretically
scan an Internet range from this directive. A brief description is also written in
the Description tab of this window. The following screenshot shows options for a
Metasploit scan:

The preceding screenshot illustrates that running the module is simple—done just
by invoking the run command—and we get the results we're looking for! In this
case, we receive nginx as the version for my web server.

It's worth noting that there are many auxiliary modules, especially "scanners"
for various different vulnerabilities and exploits. You don't always have to
actually attack a service in order to find out whether it's vulnerable!

Chapter 10

[89]

Attacking services with Metasploit
As we learned earlier in this chapter, Metasploit's claim to fame is as an attack
platform. Every day, Metasploit modules are being written and submitted to the
Metasploit project; each of which can either perform a scan or, more often, actually
attack a given vulnerability.

Metasploit's ability to act as an attack was revolutionary when it first debuted: rather
than searching for proofs of concepts—or writing their own, after a vulnerability was
announced—security professionals were immediately able to use a reliable platform
with vetted modules to launch their attacks. Metasploit is written in Ruby, so it's
portable to almost any platform—and since all the modules run on the framework,
there is no reason to hope a proof of concept will run on whatever type of machine
the user happens to currently be using.

The first step to launch a successful attack is using the "search" feature of
Metasploit to look for a given module. There are a lot of ways you can use the search
functionality, but for our purposes, we're just going to look for something relatively
straightforward: MS08-067, a well-known vulnerability in Windows that can give us
quite a lot of access if we use it correctly!

Penetration Testing with Metasploit

[90]

We can select the module by invoking use, and then set the options we need by
listing them out with show options. It's worth noting in the preceding screenshot
that each Metasploit module can have a rank—in our case, the matching module
came back "great." Great! Lastly, you might notice that the initial response from
Metasploit is that we don't have a database connected, so we're using slow search.
While it's true that connecting the Postgres database that we made earlier to
Metasploit would make a lot of sense, it's not always the fastest way to proceed if
we're just looking to run a quick exploit.

After setting our target with rhost, we can run the exploit by typing exploit. Note
that this is different than simply running a scan—Metasploit wants to ensure that
you're well aware that you're launching an exploit.

When the exploit is successfully run, you will open a meterpreter session. You can
always view open sessions by running the sessions command.

Meterpreter is a powerful tool that lives in the memory of a compromised machine.
From Meterpreter, it is possible to run a large variety of commands—including
attacks from Metasploit itself—in order to exfiltrate data to another system, or to
pivot further into a compromised network. A chain of Meterpreter shells can easily
compromise an entire network, and exfiltrate all sensitive data back to the source of
the attacks—in this case, us!

What to learn next
Like a security program itself, learning about information security is always a
process—never a finished state. Although we have learned the basics of networking;
how to become a power user of Nmap (and the other tools in the Nmap suite); how
to conduct a vulnerability scan; and, now, how to conduct a penetration test—there
are millions of other topics available to pursue.

While there's no set curriculum to become a security professional or to continue
one's education in the field, there are many more books on the subject—and many
different topics to cover. I strongly recommend you to look into The Web Application
Hacker's Handbook, if web application assessments is interesting to you. There are also
countless books on Metasploit, Burp Suite Professional, exploit development, reverse
engineering, malware analysis, and many more topics that you can explore.

Never stop learning!

Chapter 10

[91]

Summary
In this chapter, we learned how to install Metasploit, conduct scans for specific
vulnerabilities or information leaks using Metasploit, and actually exploit these
vulnerabilities in order to conduct a successful attack. From there, we learned about
Meterpreter, including how to view sessions and the ability to pivot further into a
target network.

Metasploit is a powerful framework used to exploit network-based vulnerabilities,
and it deserves a front-row seat to any security assessment.

Thank you for taking the time to read this book. While we have made every
effort to keep the information in this book as up-to-date as possible, the security
world—especially the world of security tools—is always changing. Please feel
free to reach out to me for updated information, should it become necessary.
Happy hacking!

[93]

Index
Symbol
.gnmap file 20

A
Amazon Web Services (AWS) 16

B
backdoor

Ncat, using as 70, 71
bleeding edge 3
Burp Suite

URL 80

C
categories, Nmap scripts

auth 47
broadcast 47
brute 47
default 47
Denial of Service (DoS) 47
discovery 47
exploit 47
external 47
fuzzer 47
intrusive 47
malware 47
safe 47
version 47
vuln 47

customized host group sizes 38

D
default scan

running 17
DirBuster

about 79
sensitive web directories,

identifying with 79
URL 79

F
file transfers

performing, Ncat used 67-69
FIN scan 30

G
grep-able nmap output 20

H
host detection

Nping used 66, 67
methods 25, 26

Hydra 65
Hypertext Transfer Protocol (HTTP) 57

I
information security 90
intercepting proxies

defining 80-82
Intrusion Detection Systems (IDS) 30

[94]

L
Local Area Network (LAN) 7
Lua 2

M
Medusa 65
Metasploit

about 83
installing 83-86
scanning with 87
services, attacking with 89, 90

Meterpreter 90

N
Ncat

using, as backdoor 70, 71
using, for file transfers 67-69

Ncrack
services, attacking with 63-66
URL 64

Ndiff
Nmap results, comparing with 71, 72

Nessus
using 74
vulnerability scans, conducting with 73-77

Nessus Attack Scripting
Language (NASL) 77

Network Time Protocol (NTP) 29
Nikto

about 77
installing 77
URL 77
web server issues, assessing with 77, 78

Nmap
about 1
building, from source 4, 5
for Mac OS X 3
for Windows 3
installing 3
timeline, of development 1, 2
URL 3
uses 2, 3

Nmap scans
about 25
host detection methods 25, 26
operating system detection 31
packet tracing 33
ping agnostic scan, running 27, 28
special TCP scans 29, 30
UDP services, scanning 28, 29
verbosity, increasing 32, 33

Nmap script
action section 54
action, defining 57-60
anatomy 53, 54
defining 54-56
finding 46, 47
functions, triggering 57
head section 54
rule section 54
running 48-51
script headers 54-56

Nmap Scripting Engine Documentation
(NSEDoc) portal 57

Nmap Scripting Engine (NSE)
about 2, 43
history 43, 44
working 44, 45

Nmap timing optimization 35-37
Nping

host detection, performing with 66, 67
URL, for echo commands 67

Null scan 30

O
Open Systems Interconnection

(OSI) model 8, 9
operating system detection 31

P
packet tracing, scan 33
parallelism

decreasing 39
increasing 38

[95]

ping agnostic scan
running 27

port scanning 10
Postgres

configuring 85
probe rates

delaying 41, 42
increasing 41, 42

R
reason flag

defining 21, 22
RVM

URL 85

S
scans

logging 19-21
sensitive web directories

identifying, with DirBuster 79
service banners 11, 12
services

attacking, Metasploit used 89, 90
attacking, Ncrack used 63-66

service version scan
running 18, 19

shortport 57
specified scan ranges

defining 21
structure, Internet 7, 8
stuck hosts

dealing with 39-41
SYN/ACK response 22
SYN request 22

T
target

selecting 15, 16
TCP 10
tcpdump 33
TCP scans 29, 30
TCP three-way handshake 11
traceroute 33

U
UDP services

about 10
scanning 28, 29

V
verbosity, in scans

increasing 32, 33
Virtual Private Server (VPS) 16
Voice over IP (VoIP) 11
vulnerability scans

conducting, Nessus used 73-77

W
web server issues

assessing, Nikto used 77, 78

X
Xmas Tree scan 30

Z
Zed Attack Proxy (ZAP) 79
zero packet reconnaissance 28

Thank you for buying
Nmap Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Nmap 6: Network Exploration and
Security Auditing Cookbook
ISBN: 978-1-84951-748-5 Paperback: 318 pages

A complete guide to mastering Nmap 6 and its
scripting engine, covering practical tasks for
penetration testers and system administrators

1.	 Master the power of Nmap 6.

2.	 Learn how the Nmap Scripting Engine
works and develop your own scripts!.

3.	 100% practical tasks, relevant and explained
step-by-step with exact commands and
optional arguments description.

Penetration Testing with Perl
ISBN: 978-1-78328-345-3 Paperback: 332 pages

Harness the power of Perl to perform professional
penetration testing

1.	 Write your own custom information
security tools using Perl and
object-oriented Perl modules.

2.	 Apply powerful Perl Regular Expression
syntax to finely tune intelligence
gathering techniques.

3.	 Develop a clear understanding of how
common attacking tools can function
during a penetration test.

Please check www.PacktPub.com for information on our titles

Building Virtual Pentesting Labs
for Advanced Penetration Testing
ISBN: 978-1-78328-477-1 Paperback: 430 pages

Build intricate virtual architecture to practice any
penetration testing technique virtually

1.	 Build and enhance your existing pentesting
methods and skills.

2.	 Get a solid methodology and approach
to testing.

3.	 Step-by-step tutorial helping you build
complex virtual architecture.

Expert Metasploit Penetration
Testing [Video]
ISBN: 978-1-78216-366-4 Duration: 01:53 hours

Enhance your knowledge of penetration testing
using Metasploit

1.	 Step-by-step demonstration of the Metasploit
framework using real-time examples, diagrams,
and presentations for theoretical topics.

2.	 Includes a detailed understanding of the
framework internals and how they work.

3.	 Covers all three phases of penetration
testing in detail including additional tools,
such as Armitage, Nmap, and Nessus.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to Nmap
	Nmap's humble beginnings
	The many uses of Nmap
	Installing Nmap
	Building Nmap from source
	Summary

	Chapter 2: Network Fundamentals
	The structure of the Internet
	The OSI model
	Port scanning
	TCP and UDP
	Service banners
	Summary

	Chapter 3: Nmap Basics
	How to choose a target
	Running a default scan
	Service version scans
	Logging scans
	Specified scan ranges
	Understanding the reason flag
	Summary

	Chapter 4: Advanced Nmap Scans
	Host detection methods
	Running a ping agnostic scan
	Scanning UDP services
	Special TCP scans
	Operating system detection
	Increasing verbosity in scans
	Packet tracing
	Summary

	Chapter 5: Performance Optimization
	Nmap timing optimization
	Customized host group sizes
	Increasing and decreasing parallelism
	Dealing with stuck hosts
	Delaying and increasing probe rates
	Summary

	Chapter 6: Introduction to the Nmap Scripting Engine
	The history of the NSE
	The inner working of the NSE
	Finding Nmap scripts
	Running Nmap scripts
	Summary

	Chapter 7: Writing Nmap Scripts
	Anatomy of an Nmap script
	Defining an Nmap script: script headers
	Triggering functions: the rule
	Defining a script's action
	Summary

	Chapter 8: Additional Nmap Tools
	Attacking services with Ncrack
	Host detection with Nping
	File transfers and backdoors with Ncat
	Comparing Nmap results with Ndiff
	Summary

	Chapter 9: Vulnerability Assessments and Tools
	Conducting vulnerability scans with Nessus
	Assessing web server issues with Nikto
	Identifying sensitive web directories
with DirBuster
	Getting started with intercepting proxies
	Summary

	Chapter 10: Penetration Testing with Metasploit
	Installing Metasploit
	Scanning with Metasploit
	Attacking services with Metasploit
	What to learn next
	Summary

	Index

