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Foreword

Modern society depends on the continuous availability of the networked computer
systems and useful services they offer through the Internet. Almost every activity
in modern society is mediated through the Internet’s services. However, with the
increasing use of the Internet and proliferation of Internet-based technologies,
computer systems are being targeted by attackers to cause malfunction in particular
services or transactions without physical interference into systems. Attacks on a
computer system are activities that feed through the Internet to the target, causing
detached services and media used by services, and compromise security in terms of
confidentiality, availability, and integrity. Providing for these three characteristics is
the main goal of a secure and stable computer system.

Data mining techniques are used to extract valid, novel, and potentially useful
and meaningful patterns from large datasets with respect to a domain of interest.
Network traffic is comprised of a collection of packets or NetFlow records that
are described in terms of properties such as the duration of each packet or record,
protocol type, and number of data bytes transferred from a source to a destination.
As a packet or record is generated, or during its travel, an attacker may attempt to
compromise that packet or record by inserting or modifying the header or content.
It is crucial to ensure useful services in the presence of attacks. However, no
one can make a networked computer system completely attack-free. This book
introduces fundamental concepts of network traffic anomalies and mechanisms
to detect them in both offline and online modes. The network security research
community lacks real-time network traffic datasets to evaluate a newly designed
mechanism or system. This book introduces a systematic approach to generate real-
time network traffic datasets. It also focuses on different techniques and systems
such as statistical, classification, knowledge base, cluster and outlier detection, soft
computing, and combination learners to counter large-scale network attacks. This
book also discusses intrusion prevention mechanisms that attempt to block the
entry of attackers into a networked system. This book also discuss how to generate
alarms for further diagnosis even after an attacker has intruded. In addition, this
book presents tools for both attackers and defenders, with view to motivating the
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viii Foreword

development of new defensive tools. Analysis of network attack tools is important
to understand attack behavior in terms of real-time parameters. Of course, network
defense tools can be used to protect networks from attacks. Evaluation of a detection
mechanism or system is crucial before deployment in real networks. This book
provides a good discussion of evaluation measures commonly used by the network
security community. Finally, it contains discussion of current issues and challenges
that are yet to be overcome by network traffic security solution providers.

Jorhat, India Monowar H. Bhuyan
Napaam, India Dhruba K. Bhattacharyya
Colorado Springs, USA Jugal K. Kalita



Preface

With rapid developments in network technologies and widespread use of Internet
services, the volume of worldwide network traffic is growing rapidly day by day.
This continued growth of network traffic increases the number of anomalies that
arise due to misconfiguration of network devices and port scans in preparation of
future attacks, viruses, and worms that consume resources and bandwidth, making
network services unavailable. These anomalies generate a large amount of network
as well as Internet traffic. Therefore, detection and diagnosis of such anomalies are
crucial tasks for network operators to ensure that resources and services are available
to those who need them. Data mining is used in domains such as the business world,
biomedical sciences, physical sciences, and engineering to make new discoveries
from the large amounts of data that are being collected continuously. In the last
few decades, many data-driven anomaly detection techniques have been developed
to thwart anomalies, but most methods have limitations that deter their use in real
environments. Because legitimate traffic needs to travel over the network, quickly
and accurately, identifying anomalies in network-wide traffic is really important and
demands development of effective and efficient detection techniques.

Unlike common network security books, this book focuses on network traffic
anomaly detection and prevention with details of hands-on experience in generating
real-life network intrusion datasets. Anomalies are patterns of interest to network
defenders, who want to extract them from large-scale network traffic. Data mining
techniques are useful in identifying anomalous patterns from large datasets. This
book discusses the basic concepts of networks and causes that lead to network
traffic anomalies. We present a network attack taxonomy based on attack behavior.
This book also discusses generic architectures of anomaly-based network intrusion
detection systems that use supervised, semi-supervised, and unsupervised machine
learning techniques with details of each component. This book also discusses
datasets that are needed by the research community in anomaly-based network
intrusion detection systems, noting that the community lacks real-life and up-to-date
network intrusion datasets. The book presents a step-by-step hands-on approach
to generate real-life network intrusion datasets. Researchers may use the steps
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x Preface

provided either to generate a new real-life dataset or use them for evaluating
anomaly detection techniques and systems. A network anomaly detection system
generates an alert when it finds an anomaly in the network. This book introduces the
basic concept of alerts and presents alert management techniques. It also includes
a discussion of network anomaly prevention techniques, followed by concepts of
network intrusion prevention. Practical tools are necessary to capture, monitor, and
analyze network traffic for detection and prevention of network traffic anomalies. An
attacker must always find vulnerabilities in a host or in a network to be able to mount
an attack. This book presents a systematic approach discussing how to design a tool
for network traffic analysis. It also includes evaluation metrics which are necessary
for measuring performance of a detection technique or a system. Finally, this book
enumerates current issues and challenges to attract readers who want to engage in
further research in network traffic anomaly detection and prevention. We believe
that this book will help individuals who want to pursue research in this general area.

Jorhat, India Monowar H. Bhuyan
Napaam, India Dhruba K. Bhattacharyya
Colorado Springs, USA Jugal K. Kalita
May 2017
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Chapter 1
Introduction

With advances in network technologies, the variety and volume, Internet services
that are provided by commercial, nonprofit or governmental organizations undergo
constant growth, causing commensurate and often exposure expansion in network
traffic. This continued growth is accompanied by an increasing number of anomalies
such as misconfigurations of network devices, port scans in preparation for future
attacks, viruses and worms that consume resources and spread automatically, and
denial of service (DoS) attacks that make network services unavailable. These
anomalies drive a large fraction of Internet traffic that is unwanted and prevent
legitimate users from accessing network resources in an optimal manner. Therefore,
detecting and diagnosing these benign nuisances or actual threats to the well-being
of the network services are crucial tasks for network operators to ensure that Internet
resources remain available to those who need them and when they need them.
Because legitimate traffic must be able to travel efficiently, quickly, and accurately,
identifying anomalies in network traffic is important, requiring development of good
detection techniques. Thus, anomalies are patterns of crucial interest to network
defenders, who want to extract them quick from vast amount of network traffic
data, with the goal of blocking them or preventing them in future. Data mining
techniques have been popular in recent years, in detecting these harmful patterns
in large volumes of data. Data mining is used in many other application areas as
well, e.g., the business world, medical sciences, physical sciences, and engineering
to make new discoveries. Extensive studies have been performed in applying
data mining techniques to network traffic anomaly detection and prevention, but
most methods [5, 15, 24] have limitations that make it difficult to use them in
real environments. This book explores the application of data mining techniques
in detection and prevention of network traffic anomalies. In addition, this book
also explores different network anomaly detection and prevention tools from the
perspective of both attackers and network defenders.

© Springer International Publishing AG 2017
M.H. Bhuyan et al., Network Traffic Anomaly Detection and Prevention,
Computer Communications and Networks, DOI 10.1007/978-3-319-65188-0_1
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2 1 Introduction

Fig. 1.1 A typical view of an enterprise network with DMZ

1.1 Modern Networks and the Internet

A network is a group of computer systems that are connected together to allow
sharing of resources including files, printers and storage media, and sharing of
services such as Web and DNS services. There are two main aspects to setting up a
network: (a) the hardware used to connect the systems together and (b) the software
installed on the hosts to allow them to communicate [20]. A typical view of a large
network with a demilitarized zone (DMZ) is given in Fig. 1.1. A demilitarized zone
is a network segment located between a secure local network and insecure external
networks (i.e., Internet). A DMZ usually contains servers that provide services to
users on the external network such as Web, mail, and DNS servers, which must be
hardened systems. Two firewalls are typically installed to form the DMZ.

A typical network involves several hosts connected through network devices
so that users can share data and resources with each other. A device or system
that is connected to the network is known as a host. The workstation is a general
purpose host with high-end configuration used for business, technical, and scientific
applications. The server is a special host that contains more disk space and memory
than are found on clients (viz., hosts, workstations). A server has special software
installed that allows it to provide the intended function. It provides services such as
file and print services, serving Web pages to clients, controlling remote access and
security to clients. The Internet is the worldwide network of computers accessible
to anyone through protocols such as HTTP, FTP, and SMTP. Day by day, computer
users have become increasingly dependent on the Internet as users of many useful
and entertainment services that are available. Some statistics on the world’s Internet
users are given in Fig. 1.2, as reported by the International Telecommunication
Union (ITU).1

1http://www.itu.int/en/Pages/default.aspx.

http://www.itu.int/en/Pages/default.aspx
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Fig. 1.2 The growth of world’s Internet users

Network vulnerabilities are the inherent weaknesses in the design, configuration,
or implementation of a computer network that render it susceptible to security
threats. The growth of network vulnerabilities as reported in [23] is shown in
Fig. 1.3. Threats may arise from exploitation of design flaws in the hardware and
software components of computer network systems [21]. Systems may also be
incorrectly configured and therefore vulnerable to attack. Vulnerabilities of this kind
generally occur from inexperience, insufficient training, or careless half-done work
by network administrators. Another source of vulnerability is poor management
such as inadequate policies and procedures and insufficient checks of the network
systems.

1.2 Network Traffic and Its Characteristics

Network traffic is defined as data present in a network when it is in active mode. In
a computer network, at each and every moment, communication devices request
access to resources for services and providers of services respond to them. A
resource may not be available at the exact moment when a request is made. There
is constant information exchange throughout the network in the form of requests,
services, release and control data. Here, data actually means the millions or billions
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Fig. 1.3 The growth of reported network vulnerabilities

of packets or small units of data moving around the network. The volume of
packets represents the load in the network, resulting in congestion in the network
if it goes beyond the limits of communication devices [16]. An enterprise network
must control the traffic behavior within its bounds to ensure that resources are
used optimally. Controlling network traffic requires limiting bandwidth to certain
applications, guaranteeing minimum bandwidth to others and assigning high or low
priorities to various types of traffic. This is known as traffic management.

Traffic analysis is usually used to characterize healthy traffic to analyze if
resources are being used efficiently. There are mainly two types of traffic based on
the monitoring points. They are LAN (Local Area Network) traffic and WAN (Wide
Area Network) traffic. LAN interconnects devices within limited geographical areas
and provides fast data transfer rate with high accuracy. WAN interconnects different
small area networks such as LANs. These LANs cover large physical areas with
lower data transfer rate in comparison to LAN. In comparison to LAN traffic, WAN
traffic varies from time to time as the use of network resources or services changes
[16]. WAN traffic may be classified as Random traffic, Internet traffic and Bursty
traffic. Random traffic seems to occur within certain random time intervals. Internet
traffic follows the Poisson model. Finally, Bursty traffic has sudden bursts over
either long or short periods of time.

Network traffic characteristics play an important role in detection or identi-
fication of maliciousness of traffic. Network traffic analysis may be possible at
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both packet or NetFlow level. NetFlow is an IP (Internet Protocol) traffic flow
technology introduced by Cisco2 for collecting and monitoring traffic data generated
by NetFlow-enabled routers or switches. NetFlow traffic analysis is faster than
packet level analysis of traffic. It is due to fewer parameters associated with NetFlow
traffic. Some important characteristics that are used to describe network traffic are
(a) time duration or session duration; (b) dimensionality in terms of number of
packet or flow level parameters, which is usually high; (c) large in volume of traffic;
(d) noisy; and (e) traffic rate.

1.3 Network Traffic Anomalies

Traffic anomalies are instances in data that do not conform to the behavior exhibited
by normal traffic. Traffic anomalies in a network can be defined as any network
events or operations that deviate from normal network behavior. They happen due
to the growing number of network-based attacks or intrusions. The recent growth of
Internet threats3 is given in Fig. 1.4. Network threats may occur due to many reasons
including (i) malicious activities that take advantage of normal network services,
(ii) network overload, (iii) device malfunction, and (iv) compromises in different
network parameters such as protocol, port.

Fig. 1.4 The growth of Internet security threats

2http://www.cisco.com.
3http://www.verizon.com/enterprise/databreach.

http://www.cisco.com
http://www.verizon.com/enterprise/databreach
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1.4 Sophistication in Network Anomalies and Their
Detection

Anomaly detection attempts to find in network traffic data patterns, which do not
conform to expected normal behavior. The importance of anomaly detection is
due to the fact that anomalies in data translate to significant (and often critical)
actionable information in a wide variety of application domains [11]. For example,
an anomalous traffic pattern in a computer network could mean that a hacked
computer is sending out sensitive data to an unauthorized host. Anomalies in a
network may be caused by different reasons. As stated in [21], there are two
broad categories of network anomalies: (a) performance-related anomalies and (b)
security-related anomalies. Various examples of performance-related anomalies are
broadcast storms caused when network nodes send large amount of data to all other
nodes, transient congestions that happen suddenly and fast for a short time, babbling
nodes that sent out data increasingly, paging across the network, and file server
failure. Security-related network anomalies may be due to malicious activities of the
intruder(s) by intentional flooding of the network with unnecessary traffic to hijack
the bandwidth so that legitimate users are unable to receive service(s). Our book is
concerned with security-related network anomalies only. Currently, anomaly-based
network intrusion detection is the most successful intrusion detection technique.
It is currently a principal focus of research and development in the field of
intrusion detection. Various systems with ANIDS (anomaly-based network intrusion
detection system) capabilities are becoming available, and many new schemes are
being explored. However, the subject is far from mature, and key issues remain to
be solved before wide-scale deployment of ANIDS platforms becomes practicable.

Advances in networking technology have enabled us to connect distant corners
of the globe through the Internet for sharing vast amount of information. However,
as mentioned earlier along with this advancement, threats from spammers, attackers,
and criminal enterprises are also growing in warp speed [15]. Normally, an intrusion
attempts to compromise the confidentiality, integrity, or availability of a system, by
bypassing the security mechanisms of a host or a network. As a result, security
experts use intrusion detection technology to keep secure the infrastructure of large
enterprises. An intrusion detection system (IDS) may be defined [2] as follows.

Definition 1.1 An intrusion detection system (IDS) is a software and/or hardware
system that monitors events occurring in a computer system or a network and
analyzes them for signs of intrusion by unwanted traffic, i.e., malicious.

Intrusion detection systems are divided into two broad categories: misuse
detection [18] and anomaly detection [22] systems. Misuse detection can detect
only known attacks based on signatures they have already created and stored. Thus,
dynamic signature updation is important, and this is why new attack definitions
are frequently released by IDS vendors. However, misuse-based systems cannot
cope with the rapidly growing number of vulnerabilities and exploits. On the other
hand, anomaly-based detection systems are designed to capture any deviation from
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the profiles of normal behavior. They are more suitable than misuse detection for
detecting unknown or novel attacks without any prior knowledge. But normally such
systems generate a large number of false alarms.

There are four commonly used machine learning approaches for detecting
intrusions or anomalies in network traffic [5]: (i) supervised, (ii) semi-supervised,
(iii) unsupervised, and (iv) hybrid. In the supervised approach [10, 12, 25], a
predictive model is developed based on a training dataset that contains normal and
attack data instances. Any unseen data instance is compared against the model to
determine which class it belongs to. In the semi-supervised approach [3, 7, 26], the
training data instances contain only the normal class. Data instances are not labeled
for the attack class. Many approaches are used to build the model for the class
corresponding to normal behavior. This model is used to identify anomalies in the
test data. In the unsupervised approach [4, 9, 13, 17], the model does not require any
training data and thus is potentially most widely applicable. However, due to lack of
labeled data, the results may be less useful. Finally, the hybrid approach [1, 14, 27]
normally exploits the features of all of the above to get effective and efficient
performance in detecting network anomalies on a large scale. All techniques usually
make the implicit assumption that normal instances are far more frequent than
anomalies in the test data. If this assumption is not true, such techniques suffer from
high false alarm rates. The first two cases require training on labeled instances for
finding anomalies. But getting a large amount of labeled normal and attack training
instances may not be practical in many or most situations. In addition, generating
a set of true normal instances with all the variations is an extremely difficult task.
This book discusses the development of some effective and excellent network traffic
anomaly detection methods to detect known as well as unknown attacks with high
detection rate and low false-positive rate compared to competing methods.

1.5 Network Traffic Anomaly Prevention

Prevention of network anomalies in high-speed networks is a challenging task. Net-
work intrusion prevention systems (NIPS) are proactive mechanisms for preventing
malicious network traffic before entering the network. These systems drop malicious
traffic automatically before it causes any harm to the network rather than raising
an alarm afterward. Similar to firewalls, NIPS systems are effective and scalable
because they perform deep packet inspection to ensure the legitimacy of the network
traffic when it enters the network. Similar to IDSs, IPSs are also classified into two
types: signature-based NIPS and anomaly-based NIPS [6]. A signature-based NIPS
uses predefined signatures of known attacks. The prevention mechanism matches
the signatures by using a high-speed pattern matching algorithm. On the other hand,
an anomaly-based NIPS is designed to protect against zero-day attacks, which are
new and unknown malicious traffic.
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1.6 Data Mining Fundamentals

Data mining has gained a great deal of attention in the information industry and in
the society as a whole in recent years due to the wide availability of huge amounts
of data and the imminent need for turning such data into useful information and
knowledge. Based on Tan et al. [8, 19], data mining is defined as follows.

Definition 1.2 Data mining is the process of automatically discovering useful
information in large repositories. Data mining techniques are deployed to scour
large databases in order to find novel and useful patterns that might otherwise remain
unknown.

The term Knowledge Discovery in Databases (KDD) refers to the process of
converting raw data into useful information or knowledge. Data mining is a step in
the KDD process and applies a variety algorithms for extracting patterns from data.
In addition, the KDD process has additional steps including data preparation, data
selection, data cleaning, incorporation of appropriate prior knowledge, and proper
interpretation of the results of mining to ensure useful knowledge is derived from
the data.

1.7 Data Mining in Network Traffic Anomaly Detection
and Prevention

In general, data mining tasks are partitioned into two major categories: predictive
and descriptive. Predictive mining performs inference on the current data in order
to make future predictions. Descriptive mining characterizes the general properties
of the data and underlying relationships among them. Some of the most important
data mining tasks [8, 19] are discussed below.

1. Classification and Regression: Classification is the process of classifying a data
instance into one of several predefined categorical classes based on the training
set containing known observations. A regression task begins with data instances
for which the numerical target values are known. The relationships between
predictors and the target are summarized in a regression model that can be
applied to new data instances in which the target values are unknown.

2. Cluster Analysis: Cluster analysis seeks to find groups of closely related data
objects based on relationships among them. The greater the similarity within a
group and the greater the difference between groups, the better is the clustering.

3. Association Analysis: Association analysis is the task of efficiently discovering
the most important and the most strongly associated feature patterns in data. The
discovered patterns are represented in the form of implication rules.

4. Evolution Analysis: Data evolution analysis describes and models regularities or
trends in objects whose behavior changes over time.



1.8 Contributions of This Book 9

5. Outlier Detection: Outlier detection refers to finding those observations whose
characteristics are significantly different from the rest of the data. These obser-
vations are known as outliers.

Three useful data mining tasks for identification and prevention of network traffic
anomalies are clustering, classification, and outlier mining. Recently, there has been
a realization that data mining can have significant impact on network security,
especially network traffic analysis. Because most security systems are developed
based on the interestingness of traffic patterns, it is important to discover interesting
patterns correctly from large datasets as well as efficiently analyze them using
effective data mining techniques. Data mining, if used properly, can detect and
prevent known as well as unknown attacks.

1.8 Contributions of This Book

To detect and prevent network traffic anomalies, we must have a good understanding
of the basics of networking. Thus, this book discusses the basic concepts of networks
and causes that lead to network traffic anomalies. This book presents data mining
techniques that have been used to successfully detect and prevent network traffic
anomalies. It includes a taxonomy of network attacks followed by a discussion of
the motivations that may prompt an attack. It introduces generic architectures of
various anomaly-based network intrusion detection systems (ANIDSs) with pros
and cons.

This book also discusses our hands-on experience in generating large real-
life network intrusion datasets. It is necessary for the network security research
community to evaluate recently developed detection and prevention techniques and
systems using large intrusion datasets, and learning how to create their own intrusion
datasets will be useful to such researchers. The book presents various network traffic
anomaly detection techniques and systems under several categories such as sta-
tistical approaches, classification, clustering and outlier detection, soft computing,
knowledge-based approaches, and combination learners. To better understand these
techniques and systems, we also include detailed analysis of each category with
pros and cons. The reader will be able to acquire knowledge about how to design
an intrusion detection technique and incorporate it in a system. The book introduces
at least one generic design for network traffic anomaly detection techniques and
systems. Heterogeneous ANIDSs generate alerts, and proper analysis of each alert
to detect and prevent actual attacks is really important. So, this book covers alert
management and alert correlation techniques for automatic analysis of raw alerts
without any specific prior knowledge of the actual alert. The reader will be able to
learn how to analyze and correlate alerts without prior information. The reader will
learn about the specific tools that may help to protect networks from attacks and
sometimes even prevent attacks from happening. The book also discusses how an
attacker initiates an attack using different tools. Finally, the reader will be briefed
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on current research issues and challenges that still need to be addressed to protect
networks from attacks. Thus, this book provides a comprehensive discussion on
network traffic anomaly detection and prevention from basic concepts to in-depth
analysis in a single volume. The main contributions of this book are as follows.

• Networks and Network Traffic Anomalies: This book covers basic concepts of
networks, properties of network traffic, and traffic management in high-speed
networks. It presents the types of anomalies that occur due to misconfiguration
of networks or misuse of network access rights. It presents the motivations of
attackers, followed by a taxonomy of network attacks, along with enumeration of
different network vulnerabilities. A generic architecture of each anomaly-based
network intrusion detection system (ANIDS) is provided with detailed discussion
of each component. In addition, the book discusses different aspects of network
traffic anomaly detection.

• Hands-on Approach to Generate Real-life Intrusion Datasets: To evaluate net-
work traffic anomaly detection techniques and systems, we should have real-life
benchmark intrusion datasets and also datasets that reflect the traffic our specific
networks encounter. New and updated datasets with instances of recent attacks
are necessary to the network security research community to keep their defense
mechanisms up-to-date. So, this book discusses a systematic hands-on approach
that are used to generate large network intrusion datasets. This book also
discusses existing datasets in three different categories: (a) synthetic datasets, (b)
benchmark datasets, and (c) real-life datasets. Then explains how to launch real-
life attacks, capture traffic, perform feature extraction, feature correlation, and
label traffic instances as normal or attack to generate the final datasets. We have
prepared three different datasets using our environment, viz., (a) TUIDS intrusion
dataset (b) coordinated scan dataset, and (c) DDoS flooding attack dataset. These
datasets are available for performance evaluation of techniques for detection and
prevention of network attacks.

• Network Traffic Anomaly Detection Techniques and Systems: This book presents
a detailed study of network anomaly detection techniques and systems under
six different categories: statistical approaches, classification, clustering and
outlier detection, soft computing, knowledge-based, and combination learners.
This book provides at least one generic design for each detection technique
and system. We identify common pitfalls in network traffic anomaly detection
techniques and systems. In addition, we compare various network traffic anomaly
detection techniques and systems by considering several performance param-
eters. Such comparison is helpful in choosing a specific method to use for a
specific purpose, as well as to extend and adapt them as needed.

• Alert Management and Network Anomaly Prevention Techniques: IDSs generate
intrusion alerts. We should analyze each raw alert to extract actual attack
information. This book presents preliminary concepts on alert management and
anomaly prevention techniques. This book also discusses alert preprocessing,
alert correlation, and alert post-processing to achieve network defender’s goals
quickly. An intrusion prevention system is a highly refined firewall, able to deny
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access to hostile traffic while allowing legitimate traffic to pass through. We
present some network anomaly prevention techniques to help network defenders
prevent attacks before they start to damage the entire network.

• Practical Tools: Practical tools are necessary to capture, monitor, and analyze
network traffic for detection and prevention of attacks. Similarly, attackers
also use tools to find vulnerabilities in networks or hosts. We discuss our
hands-on approach to develop a network traffic monitoring and analysis tool
for both attackers and network defenders. In addition, we enumerate existing
tools for attackers and network defenders and compare them based on relevant
characteristics.

• Evaluation Criteria: Evaluation measures are important components of a detec-
tion technique or a system. Evaluation measures are used to determine the
quality of a detection technique or a system. We discuss various evaluation
criteria such as accuracy, performance, completeness, timeliness, reliability,
quality, and Rapid Update Cycle (RUC) area for network anomaly detection and
prevention. Accuracy can be measured using different metrics such as sensitivity
and specificity, Receiver Operating Characteristics (ROC) curve (also area under
ROC curve, i.e., AUC), misclassification rate, confusion matrix, precision, recall,
and F-measure. This book covers all these evaluation metrics and explains the use
of each with examples.

• Issues and Challenges: This book enumerates open issues and challenges in
network traffic anomaly detection and prevention. This will help researchers
who want to pursue future work in this area. It also covers how attackers’
sophistication is increasing as the modern Internet grows in size and utility.

1.9 Organization of the Book

The structure of the book mimics the list of contributions above in that related
contributions are organized into coherent chapters and parts. This book has four
major parts with a total of eight chapters, organized as follows.

• In Part I, there are two chapters that discuss the basic concepts and fundamental
terms related to networks and network traffic anomalies. Chapter 1 is the current
chapter, where we discuss key terms in network traffic anomaly detection and
prevention. It also discusses how data mining techniques can be applied to
detect and prevent network anomalies. Chapter 2 introduces the basic concepts
of networks, layered architectures, and sources of vulnerabilities because an
understanding of these topics is necessary to detect network traffic anomalies.
This chapter also provides the background needed to describe network traf-
fic anomaly detection and prevention. Topics include anomalies in networks,
anomaly detection and prevention, classification of ANIDSs, aspects of network
anomalies, and network attacks.
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• In Part II, there is only one chapter. Chapter 3 introduces our hands-on experience
using a testbed to generate real-life network intrusion datasets. It discusses the
importance of datasets, requirements that datasets should satisfy, and existing
datasets. We describe how to generate legitimate and attack traffic considering
different network environments or scenarios. The chapter explains how to go
about capturing traffic, identifying raw parameters, extracting and correlating
features, and labeling each record as normal or attack at both packet and
flow levels. We have created three datasets for the network security research
community, as mentioned earlier in the contributions of this book in Sect. 1.8.

• Part III of this book contains three chapters. This part covers topics such as
design, architecture, monitoring and analysis for detection, and prevention of
network traffic anomalies. It also covers tools for network defenders as well as
for attackers and how these tools work to achieve a particular goal. Chapter 4
presents a variety of network traffic anomaly detection techniques and systems.
This chapter also provides detailed design of at least one generic technique and
a well-regarded system in each category. It discusses highly cited techniques
and systems with pros and cons and gives a detailed comparison in terms of
several parameters. Our discussion is organized as per the developed taxonomy.
Chapter 5 discusses alert management and network anomaly prevention tech-
niques. To find actual details of a network attack, alert analysis is important.
We cover alert correlation techniques, network anomaly prevention techniques,
and systems, with pros and cons and detailed comparison in terms of relevant
parameters. Chapter 6 discusses tools for network defenders as well as attackers.
The description is practical based on our hands-on experience for each. This
chapter also covers how to develop a tool to detect network anomalies in real-life
high-speed networks.

• Part IV contains two chapters. The detection and prevention techniques and
systems discussed in the previous chapters need to be evaluated in terms of appro-
priate metrics. Chapter 7 discusses evaluation measures for network anomaly
detection and prevention. Each metric is illustrated using examples. Finally,
Chapter 8 summarizes the work described in detail in the previous chapters
followed by a presentation of open issues and challenges in network traffic
anomaly detection and prevention. The chapter also presents future research
directions in the network anomaly detection and prevention domain, outlying
work that needs to be done in the years to come.
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Chapter 2
Networks and Network Traffic Anomalies

Before discussing the actual detection and prevention of network traffic anomalies,
we must introduce fundamental concepts on networks, network traffic, and traffic
measurement. Therefore, this chapter is comprised of two parts. The first part
discusses components of networks, topologies, and layered architectures followed
by protocols used, metrics to quantify network performance, and ideas in network
traffic management. It also introduces how we represent normal and attack traffic.
The second part of this chapter discusses network anomalies, causes of anomalies,
and sources of anomalies followed by a taxonomy of network attacks, a note on
precursors to network anomalies, and other aspects of network traffic anomalies.

2.1 Networking Fundamentals

A network is an interconnection of a set of devices, hosts, nodes, and end-computing
devices that can communicate among themselves. For successful communication, it
is necessary to follow certain rules to ensure efficient communication among the
interconnected devices. Such a set of rules is known as a protocol. A modern data
communication system needs many such protocols to communicate with each other
over heterogeneous networks. This interconnection of one device to many other
devices is known as networking. An example of network is given in Fig. 2.1.

2.1.1 Components of a Network

A network contains both hardware and software components to communicate
between stations.
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Fig. 2.1 An example of network

2.1.1.1 Software Components

Software components are used to share files, programs, printers, and operating
systems. We introduce two examples:

• Local operating system: It is the master software system running on a personal
computer (PC), and it controls access to the CPU shared files, printers, disk
storage, and processes running on the computer. Examples include Windows XP,
Windows 7, Windows 10, Linux, and MAC OS.
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• Network operating system: This is an operating system normally installed on a
router, switch, or firewall to support communication over the network.

2.1.1.2 Hardware Components

The primary focus of computer networks is on its hardware components which
enable the PCs to receive services. The following are a few of the essential hardware
components needed to run a network:

• Network interface card (NIC): Each PC in a network has an expansion card called
the network interface card. The NIC prepares and sends data, receives data, and
controls data flow between the PCs within the network. On the sender side, the
NIC passes frames of data to the physical layer that transmits the data to the
physical link. In contrast, on the receiving side, the NIC passes bits received
from the physical layer and processes them based on its contents.

• Transmission media: These are used to interconnect PCs in a network. Transmis-
sion media consist of twisted-pair cables, coaxial cables, and fiber-optics cables.

• Clients: Clients are PCs of normal specification that are used to access the
network and the shared resources. Clients usually send requests and receive
services from the server.

• Servers: Servers are high-end PCs that hold shared files, programs, and a network
operating system. A server provides access to network resources to all users.
There are many kinds of servers such as file servers, mail servers, print servers,
database servers, web servers, and many more.

• Network connecting devices: Network connecting devices include NICs, hubs,
switches, repeaters, bridges, and routers. These devices are used to connect two
or more PCs through transmission media.

2.1.2 Network Criteria

A network must be able to meet certain criteria to provide services to the PCs
connected in a network. The most important criteria among them are performance,
reliability, and security:

(a) Performance: Performance can be measured in many ways. It can be measured
in terms of transit time, response time, throughput, and delay. Transit time is the
amount of time required for a message to travel from one device to another.
Response time is the time elapsed between when a query is sent and when
a response is received. Other factors that can impact on performance are as
follows:

(i) Number of users
(ii) Types of transmission media
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(iii) Ability of connecting hardware
(iv) Efficiency of software

Throughput is the amount of useful data transmitted per unit time. It is equal
to the bandwidth if there is no protocol involved. However, in most practical
cases, throughput is always less than the bandwidth due to two reasons: protocol
overhead and protocol waiting time. Delay is the amount of time taken by
a packet to reach destination from source. It is also known as the round-trip
time (RTT) or latency. It has additional components such as processing delay,
queuing delay, transmission delay, and propagation delay.

(b) Reliability: A network needs to be reliable, characterized by low frequency of
failure. It can be measured by the number of failures that occur and the amount
of time taken to recover from a failure.

(c) Security: Security refers to protection of data when it is transmitted over the
network from access by unauthorized users. This is the main focus of this book.

2.1.3 Types of Connections

A network is composed of two or more devices connected through links. A link is a
communication pathway to transfer data from one device to another. There are two
possible ways to connect the devices:

• Point-to-point connection: A point-to-point connection provides a dedicated link
between two devices, as shown in Fig. 2.2a. The entire capacity of the link is
reserved for transmission between these two devices only.

• Multipoint connection: Multipoint connection, also known as multi-drop con-
nection, shares a specific link with multiple devices, as shown in Fig. 2.2b. If
multiple devices share the same link simultaneously, it is known as a spatially
shared connection. But if users share turn by turn, then it is known as a time-
sharing connection.

2.1.4 Network Topologies

The topology of a network is a geometric representation showing the relationship
among all the links and linked devices (usually called nodes or PCs or hosts) to
one another. In data communication, two or more devices are connected to form a
link whereas two or more links form a topology. Topologies can be of two types:
(a) physical and (b) logical. A physical topology represents the geometric shape of
the configuration among the connected devices in the network. A logical topology
represents the way of data flow from one system to another. The logical topology
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Fig. 2.2 Types of network connection (a) Point-to-Point and (b) Multi-point

Fig. 2.3 Illustration of bus topology

may not be the same as the physical topology of the network. It may be dynamically
configured in the routers. There are five basic topologies, viz., bus, ring, star, mesh,
and tree:

• Bus topology: A bus network has a multipoint connection where nodes are
connected to a single cable called the bus. The bus topology has one medium
shared by all nodes. The bus topology is usually used when a network installation
is small, simple, or temporary as shown in Fig. 2.3. It is widely used in LAN. The
speed of the bus topology is slow because only one PC can send a message at a
time. A PC must wait until the bus is free before it can transmit. IEEE 802.3
is a broadcast bus network operating in the range 10 Mbps-10 Gbps. Token bus
networks are defined by the IEEE 802.4 standard.

• Ring topology: A ring topology also has a multipoint connection, where all nodes
are interconnected and work in tandem to form a closed loop. Each node in
the ring contains a repeater. A signal is passed along the ring in one direction
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Fig. 2.4 Illustration of ring topology

Fig. 2.5 Illustration of star
topology

until it reaches the destination. When a node receives a signal, it regenerates
the bits and passes them along. For example, IEEE 803.5 token ring and FDDI
(Fiber Distributed Data Interface) ring use this network topology. An example
ring topology is shown in Fig. 2.4.

• Star topology: The star topology maintains a dedicated point-to-point link only to
the central controller. The controller is either a hub or a switch. If it is a switch, it
is known as a star switched network. A star topology does not allow direct traffic
between nodes. The controller facilitates exchange of information. If one node
wants to send data to another, it sends the data to the controller that transmits the
data to the node in turn, as shown in Fig. 2.5.

• Mesh topology: A mesh topology maintains a set of dedicated point-to-point
connections in such a way that each node can directly reach another node in
the network. The presence of dedicated connections means that a link carries
traffic only between the two devices it connects. Therefore, a fully connected
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Fig. 2.6 Illustration of mesh
topology

Fig. 2.7 Illustration of tree topology

mesh network has 1
2
n.n C 1/ physical channels to link n nodes. To be able to

handle these links, every node on the network must have n�1 input/output ports.
An example of mesh topology is given in Fig. 2.6.

• Tree topology: The tree topology is a variation of the star topology. As in the
star topology, nodes in a tree are linked to a central controller that controls
the traffic to the network. However, not every node needs to be plugged into
the centralized controller. The central hub of the network is an active hub that
contains a repeater. It amplifies the signal to increase the distance the signal can
travel. The secondary hub is either active or passive. A passive hub provides
a simple physical connection between the attached nodes. An example of tree
topology is given in Fig. 2.7.
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2.1.5 Types of Networks

Based on size and geographical coverage, networks are classified as given in
Fig. 2.8. The distances among the PCs that are connected as a network determine
the type of network, viz., local area network (LAN), metropolitan area network
(MAN), and wide area network (WAN). Each is described below:

• Local area network (LAN): A LAN is the most popular and useful class of
networks, designed to operate over a small physical area such as an office, a
factory, an organization, or a group of buildings within a few kilometers of each
other. A LAN is easy to design and troubleshoot. The exchange of information
and sharing of resources between the PCs are straightforward within a LAN.
Each PC in a LAN has an identifier, an address that uniquely identifies it as a
host within the LAN. A packet sent by a host carries the address of the source
as well as that of the destination. A LAN has several significant features such as
(a) its components can use different technologies, (b) the size and coverage areas
are usually small, (c) it can have different topologies such as star, ring, and bus
within the LAN. With advances in technology, LAN speed is always increasing.
It starts with 10 Mbps and can go up to 10 Gbps. An example of LAN is given in
Fig. 2.9.

• Metropolitan area network (MAN): A MAN is a bigger version of a LAN and
normally uses similar technology. It is designed to extend over an entire city or
a metropolitan area. It may connect a number of LANs into a larger network
so that resources can be shared LAN to LAN as well as host to host as shown

Fig. 2.8 Illustration of network categories

Fig. 2.9 LAN with switch
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Fig. 2.10 Illustration of MAN

in Fig. 2.10. A MAN can cover approximately 30 to 100 kilometers, connecting
multiple networks that are located at different locations in a city or town.

• Wide area network (WAN): A WAN covers a wide geographical area that may
span a town, a state, a country, or even the world. Usually a LAN interconnects
different hosts but a WAN connects switches, routers, or modems. All hosts are
connected by a communication subnet, where the subnet carries the messages
from host to host. An example of wide area network is given in Fig. 2.11.

• Wireless network: A wireless network is convenient where wired connectivity
fails or is difficult to construct practically. There is a growing segment of
computer industry that requires wireless connectivity. Wireless networks have
a wide range of applications in real-world products used every day such as in
inside homes, cars, or planes, in mobile phone networks and military stations in
remote areas, and many more. Wireless LAN is becoming very popular and an
example of wireless network is shown in Fig. 2.11.

• Internetwork: The internetwork or the Internet is a collection of two or more
networks located around the world, connected by gateways. Each gateway has
a routing table containing information about the networks that are connected to
the gateway. Several networks may be connected to one gateway. A common
form of the Internet is a collection of LANs connected by a WAN. An Internet
is a switched network where a switch connects at least two links together. The
most common types of switched networks are (a) packet-switched and (b) circuit-
switched. An example of an internetwork is shown in Fig. 2.11.
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Fig. 2.11 Illustration of WAN, wireless network, and internetwork

2.1.6 Connection-Oriented and Connectionless Services

Two types of services are mainly offered to the network layers above them. They
are (a) connection-oriented service and (b) connectionless service:

• Connection-oriented service: A connection-oriented service is similar to the one
provided by the telephone system. Users of a connection-oriented service have to
undertake a sequence of operations. They are: (i) establish a connection, (ii) use
the connection, and (iii) release the connection. After establishing a connection,
the sender and receiver can discuss and negotiate the parameters to be used such
as maximum message size, quality of service, and other issues and then actually
take part in the communication provided by the service.

• Connectionless service: A connectionless service is similar to the postal service.
Each message carries full address of the destination. Each message is routed
independently from source to destination through the system. It is possible that
the order in which messages are sent and the order in which the messages are
received between the same sender and same recipient are different.
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Table 2.1 Service primitives Name Meaning

LISTEN Wait for an incoming connection

CONNECT Establish connection

RECEIVE Wait for a message

SEND Send the message

DISCONNECT Terminate the connection

2.1.7 Service Primitives

The term primitive means an operation. A service is specified using a set of prim-
itives. A user can execute these primitives to access the service. The primitives for
connection-oriented services are different from those for connectionless services.
The service primitives required to implement a client-server environment are given
in Table 2.1.

2.1.8 Relationship Between Services and Protocols

Services and protocols are completely different concepts in computer networks:

• Service: It is defined as a set of operations that a network layer can provide to the
layer above it. A service defines states and operations of a layer which is ready
to provide the service but does not specify anything about the implementation of
these operations.

• Protocol: This is a set of rules which governs the format and meaning of frames,
packets, or messages that are exchanged between the peer entities. The entities
use protocols to implement their services. A service is free to change the protocol
used if the service states and operations can be ensured.

2.1.9 Reference Models

A network architecture or network reference model is a formal, logical structure
that defines how network devices and software interact and function. It defines com-
munication protocols, message formats, and standards required for interoperability.
Network architectures are designed by standards organizations and manufacturers.
The International Organization for Standardization (ISO) has designed the Open
System Interconnection (OSI) architecture. In this chapter, we discuss the two
popular reference models: (i) the OSI reference model and (ii) the TCP/IP reference
model.
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2.1.9.1 The OSI Reference Model

The users of a computer network may be spread over many physical locations across
the globe. Therefore, to ensure nationwide and worldwide data communication, it
is necessary to develop a system for communication that is compatible with each
other. As a result, an international world-wide group has been formed to develop
and maintain standards. Thus, standards fit into a framework developed by this
organization called the International Organization for Standardization (ISO). This
framework is a model for Open System Interconnection (OSI) and is usually referred
to as the OSI reference model.

The most redeeming feature of the OSI reference model is that it is formally
defined and it codifies the concept of layered network architectures. It uses well-
defined operationally descriptive layers that describe what happens at each stage in
data transmission. This layering concept is extremely important because networks
are nontrivial systems. An outline of the OSI reference model is given in Fig. 2.12.

Fig. 2.12 The OSI reference model
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Table 2.2 Functions of layers in OSI reference model

Name of the

Level layer Functions

1 Physical • Establish and detach connections, define voltage and data rates,
convert data bits into electrical signal

• Decide whether transmission is simplex, half-duplex, or full
duplex

2 Data link • Synchronize, detect error, and correct
• Wait for acknowledgment for each transmitted frame

3 Network • Route essential signals
• Divide outgoing message into packets.
• Act as network controller for routing data

4 Transport • Decide whether transmission should be parallel or single path,
and then multiplex, split or segment the data is required

• Break data into smaller units for efficient handling

5 Session • Manage synchronized conversation between two systems
• Control logging on and off, user authentication, billing, and

session management

6 Presentation • Concerned with the syntax and semantics of the information
transmitted

• Known as translating layer

7 Application • Retransfer files of information
• Assist in LOGIN, check password, and so on

The OSI reference model is also known as the seven-layer model for data
communication. The layers are physical, data link, network, transport, session,
presentation, and application. Functions of the layers are described in Table 2.2.

2.1.9.2 The TCP/IP Reference Model

This model was developed for the ARPANET and it is used on the Internet.
ARPANET was a research project on network interconnection sponsored by the US
Department of Defense. It was a collaborative effort among many universities and
government organizations that used leased telephone lines. Later, satellite and radio
networks were added to it. Such inclusion could not be handled by the existing
network protocols at that time. Therefore, a new architecture was needed and
developed. It is called the TCP/IP reference model and it uses the Transmission
Control Protocol (TCP) and the Internet Protocol (IP). When designing this model,
certain goals were set to be achieved. These are given below:

(a) The protocol should have the ability to connect multiple networks together in a
seamless way.

(b) The network should be able to survive even with the loss of subnet hardware
with existing communication continuing to completion.
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(c) It should be a flexible architecture that can deal successfully with the divergent
requirements of various applications.

Since TCP/IP was initially developed for military use, it was robust to failures
and flexible enough to be used by diverse networks. TCP/IP is the most popular
and widely used protocol for interconnecting computers and it is the protocol of the
Internet. This reference model has only four layers as given in Fig. 2.13. They are
the internet layer, transport layer, application layer, and host-to-network layer. Each
layer is described below:

(a) Internet layer: The main task of the internet layer is to allow a host to insert
packets into any network and then ensure that they travel independently to the
destination. This layer defines the packet format and protocol called the Internet
Protocol (IP). The internet layer is entrusted with the delivery of IP packets to
their destinations. So, routing of packets and congestion control are important
issues in this layer. Hence, it is similar to the network layer in OSI reference
model.

(b) Transport layer: The layer above the internet layer is known as the transport
layer. It allows the entities on the source and destination machines to com-
municate with each other. Two end-to-end protocols have been defined in this
layer, viz., Transmission Control Protocol (TCP) and User Datagram Protocol
(UDP). These protocols allow a byte stream transmitted from one machine to
be delivered to the other machine without introducing errors. They also control
flow of packets between the source and destination.

(c) Application layer: The TCP/IP model does not have session and presentation
layers, though they are of little importance in most applications. The layer

OSI model TCP/IP model

ApplicationApplication

Presentation

Session

TransportTransport

InternetNetwork

Data link

Physical

Host-to-
network

These two layers
are not present

in this model

Fig. 2.13 The TCP/IP reference model
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Table 2.3 Layer-specific protocols in both OSI and TCP/IP reference models

OSI model TCP/IP model Protocols

Application layer Application layer BitTorrent, BootP, DNS, DHCP, FTP, HTTP,
HTTPS, NTP, SSH, SMTP, SNMP, Telnet,
TFTP, XMPP, SIP, RDP, POP3, IMAP

Presentation layer TLS

Session layer NetBEUI, NetBIOS, NFS, NCP

Transport layer Transport layer SCTP, TCP, UDP, SSL

Network layer Internet layer ICMP, IGMP, IP4, IP6, IPX, OSPF

Data link layer Host-to-network
layer

Ethernet, Token Ring, FDDI, HDLC, IEEE
802.11, IEEE 802.16, VLAN, X.25, ARP,
RARP

Physical layer IEEE 1394, Etherloop, Bluetooth,
1000BASE-SX, ISDN, DSL, SONET/SDH,
RS-449

above the transport layer is called the application layer. It contains all high-level
protocols.

(d) Host-to-network layer: This is the lowest layer in the TCP/IP reference model.
The host connects to the network using a protocol, so that it can send the IP
packets over it. This protocol varies from host-to-host and network-to-network.

Based on the specification given above, several protocols have been developed
to support communication between two hosts. Out of them, a few protocols in both
OSI and TCP/IP reference models are given in Table 2.3. In the table, empty cells
indicate that the two layers are absent in the TCP/IP reference model.

2.1.10 Protocols

To establish a connection between two hosts or networks for communication, it
is necessary to follow a certain method or a set of rules, known as a protocol. It
is likely to be effective if and only if a protocol can communicate with multiple
devices or hosts or networks, a feat which is difficult in real time. Several protocols
are used to communicate between devices, and each protocol has its own features,
advantages, as well as disadvantages. The choice of protocols significantly affects
network functioning and performance. This section explores some popular protocols
that are commonly used during network traffic analysis.
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Version
Header
Length Types of Service Total length

Flags Fragment offset

Time-to-live Protocol Header Checksum

Source IP address

Destination IP address

Option + Padding

Identification

0 4 8 16 31 bits

Fig. 2.14 IP header format

2.1.10.1 Internet Protocol (IP)

The Internet Protocol, defined in RFC 791, is used to transmit data from one device
to another. It is a connectionless protocol, signifying that it cannot give guarantee
for delivery. To ensure delivery, it performs fragmentation and reassembling of
IP packets at the source and destination ends, respectively. Fragmentation is
required because of the existence of a maximum transmission unit (MTU) size for
transmission. Another major task of the IP is IP addressing. A detailed discussion on
IP addressing can be found at [1]. The IP packet header format is given in Fig. 2.14.

2.1.10.2 Transmission Control Protocol (TCP)

The Transmission Control Protocol, defined in RFC 793, is a connection-oriented
protocol that uses IP as the transport protocol. Before transmitting any data, this
protocol establishes an acknowledged connection session. TCP provides several
redeeming features such as reliability, flow control, sequencing, and error detection
and correction. Once it finishes the data transmission, the connection is closed. The
source host retransmits the data if it does not receive any acknowledgment of receipt
within a time interval. This is known as the TCP connection timeout. The TCP
header format is given in Fig. 2.15.

2.1.10.3 User Datagram Protocol (UDP)

User Datagram Protocol, defined in RFC 768, is a connectionless protocol that
also uses IP as a transport protocol. UDP is a fire and forget protocol. UDP never
checks whether the data is delivered to the destination or not, a task which is left to
the upper-layer protocols. UDP has several features including low overhead and is
economical in terms of bandwidth and processing effort. The UDP header format is
given in Fig. 2.16.
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Source Port

0 4 8 16 31 bits

Destination Port

Sequence number

Acknowledgment number

Data offset Reserved Control bits Window

Checksum Urgent pointer

PaddingOptions

Data

Urgent bit
(URG)

Acknowledg
ement (ACK)

Push bit
(PSH)

Reset bit
(RST)

Synchronize bit
(SYN)

Finish bit
(FIN)

Fig. 2.15 TCP header format

Source port

0 4 8 16 31 bits

UDP length

Data (if any)

UDP checksum

Destination port

Fig. 2.16 UDP header format

2.1.10.4 Internet Control Message Protocol (ICMP)

ICMP, defined in RFC 792, is used to check error and perform as a reporting IP
layer. ICMP has several functions. The most widespread use of the ICMP is found
in the ping utility. Ping simply sends ICMP echo requests to a remote host and
gets back reply through the ICMP echo reply message if the host is alive, i.e., it is
working as expected. By using this simple process, ICMP can verify the protocol
suite configuration at both source and destination ends.

ICMP can also facilitate the sending of return error messages such as destination
unreachable when the destination cannot be contacted and time exceeded when
time-to-live (TTL) value is exceeded. However, the ICMP is not limited to only these
two utilities. It provides a source quench to control data transfer rate by requesting
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Data

Type

0 4 8 16 31 bits

Code ICMP header checksum

Fig. 2.17 ICMP header format

a message to be sent to the source end. So, it reduces packet drop significantly at the
receiving end. The ICMP header format is given in Fig. 2.17.

2.1.10.5 Transport Layer Security (TLS)

To ensure privacy when client-server communication takes place for exchange of
data, the TLS protocol is used to avoid any eavesdropping or intercepting. The TLS
protocol is a successor of SSH. It has two parts, viz., (a) TLS record protocol and (b)
TLS handshake protocol. The TLS record protocol uses a reliable transport protocol
such as TCP and ensures that the connection made is private using data encryption.
The TLS handshake protocol is used for authentication between client and server.

2.1.10.6 Address Resolution Protocol (ARP)

ARP, defined in RFC 826, is used to resolve an IP address to a MAC (Medium
Access Control) address. Each host can be identified using its IP address. If any
host wants to connect to another host, it immediately checks the ARP cache table
to check if there is any entry for it. The ARP cache table contains three parameters,
viz., IP address, MAC address, and entry type (static or dynamic). If there is an entry
in the ARP cache table, the host broadcasts the message to the network. Only the
target host that matches the IP sends reply directly to the source. A dynamic entry
into the ARP cache table updates the entry automatically, but a static entry can be
updated using an available command. A static entry is a permanent entry into the
ARP cache table, but it can be removed using a command.

2.1.10.7 Reverse Address Resolution Protocol (RARP)

RARP, defined in RFC 903, performs similar operations like ARP but in the reverse
order, i.e., resolves MAC addresses to IP addresses. The RARP is able to learn the
IP address from a router or Domain Name System (DNS) server. It is necessary for
reverse lookup of IP addresses in the DNS server.
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2.1.10.8 Simple Mail Transfer Protocol (SMTP)

SMTP is specified in RFC 821. It describes how mail is sent to hosts. SMTP ensures
and delivers error-free messages to the destination because it uses the TCP. It is not a
sophisticated protocol. SMTP requires that the destination host is always available.
A mail system spools the incoming mail messages and the user can read them later.
The SMTP is used to send and receive mail, but POP3 and IMAP are used only for
receiving mail.

2.1.10.9 Hypertext Transfer Protocol

HTTP is defined in RFC 2068. It is used to provide service in response to a client’s
request. HTTP clients (i.e., Web browsers) make requests using the HTTP format
to the HTTP server (i.e., Web server). The clients make requests in the form of a
special language, viz., the hypertext markup language (HTML). HTTP uses uniform
resource locators (URLs) such as http://www.microsoft.com, to identify which page
needs to be downloaded from the server. An extended and widely used version of
the HTTP is HTTPS (Secure HTTP). HTTPS uses an approach called Secure Socket
Layer (SSL) to encrypt the message when it sends it to the server and vice versa.

2.1.10.10 Telnet

Telnet is defined in RFC 854. It is a virtual terminal protocol that allows a session
to be opened on a remote host. Once the connection is established, it allows the
source agent (human or program) to execute commands on the remote host. Telnet
can access multiuser systems such as mainframes and minicomputers on a terminal
session. For several decades, telnet has been used in UNIX operating systems to
provide services to users. Several managed network devices such as switches and
routers also use telnet to communicate through the terminal. The main disadvantage
of telnet is that it is not secure.

2.1.10.11 Simple Network Management Protocol (SNMP)

SNMP is a protocol that facilitates network management functions. However, it is
not a network management system (NMS). It has a centrally managed component
known as the SNMP manager that acts as a common communication point for all the
SNMP-enabled devices on the network. For each device on the network that needs
to be managed and monitored using SNMP, it is necessary to configure an SNMP
agent with the SNMP manager’s IP address. The SNMP manager communicates
with the agents to retrieve information using a message known as trap. The function
of the SNMP is illustrated in Fig. 2.18.

http://www.microsoft.com
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Fig. 2.18 How SNMP works

Fig. 2.19 Categories of network connecting devices

2.1.11 Network Connecting Devices

Devices that connect network components making communication possible can be
classified as given in Fig. 2.19:

• Hub: It is a device that connects multiple PCs through transmission media. When
a hub receives a request from a host, it transmits the data to the entire network.
Each PC decides whether the broadcast data is for it or not. A hub works in the
physical layer of the OSI reference model.

• Repeater: A repeater is a device similar to a hub, but it has additional features.
It also works in the physical layer. Repeaters are used when amplification of the
input signal is necessary. This amplification is required due to transmission of
signals over long distances, when attenuation, delay, distortion, and noise lead to
loss of data.
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• Bridge: Bridges are used to connect two LANs. A bridge operates in the physical
layer as well as in the data link layer. It regenerates a signal after it receives it.
As a data link layer device, it can check the MAC addresses of the source and
destination contained in a frame. There are mainly two kinds of bridges, viz.,
transparent bridges and routing bridges. A transparent bridge is a bridge in which
the stations are not all aware of the existence of the bridge. A transparent bridge
keeps a table of addresses in memory to determine where to send the data. The
duties of a transparent bridge include filtering, forwarding, and blocking frames.

In case of routing bridges, a sending station defines the bridges that must be
visited by the frames. The addresses of these bridges are included in the frame.
Hence, a bridge contains not only the source and destination addresses but also
the bridge addresses. Source routing bridges are used to avoid a problem called
looping. These bridges were designed for token ring LANs.

• Switches: A switch is a device that provides bridging functionality with greater
efficiency. A switch acts as a multi-port bridge to connect devices in a LAN. The
switch has a buffer to store packets for each link to which it is connected. When
it receives a packet, it stores the packet in the buffer of the receiving link and
finds the outgoing link. If the outgoing link is free, the switch sends the frame to
that particular link. There are two types of switches, viz., store-and-forward and
cut-through. A store-and-forward switch stores the frame in the input buffer until
the whole packet arrives. In contrast, a cut-through switch forwards the packet to
the outgoing buffer as soon as the destination address is found.

Based on the working principles of switches, they are further classified into
two categories: layer-2 switches and layer-3 switches. A layer-2 switch works
in physical and data link layers. A layer-2 switch is basically a bridge. It has a
large number of ports and it is designed for better performance. A switch can
connect many LANs due to the large number of ports it contains. One port can
be allocated to one host in the LAN. Hence, each station has its separate identity.
So, there is no competing traffic and as a result, there is no collision. A layer-3
switch works in the network layer and is especially used for routing. To address
two important limitations of layer-2 switches, viz., (i) broadcast overhead and
(ii) lack of support for multiple links, layer-3 switches have come to the market
with appropriate solutions. A layer-3 switch can logically break a large LAN into
several sub-networks that are connected by routers. It improves the performance
further. If it takes k inputs, then it generates same number of outputs. A three-
bit number is used to decide the internal path over which the input is passed to
output.

• Routers: A router is a device that connects two or more networks in which
data flow from source to destination is based on information contained in its
routing table. A routing table has information for all possible paths that an
Internet datagram should follow during travel from source to destination. The
software in a router includes an operating system and a routing protocol. Routers
use physical and logical addressing to connect two or more logically separate
networks. They build this connection by organizing a large network into logical
network segments called subnets. Each subnet is given a logical address. Data
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is grouped into packets. Each packet has a physical as well as a logical address.
The network address allows routers to calculate the optimal path to a workstation
or a computer. Routing of each packet is either static or dynamic. A static
routing table maintains alternate routes to use if a router finds a particular router
unavailable. A dynamic routing table provides more flexibility to respond to both
error and congestion conditions. Intelligent routers are bundled with intrusion
prevention solutions.

• Gateways: A gateway is a device that can interpret and translate among the
different protocols that are used on different networks. It is a powerful and
intelligent device for heterogeneous communication. A gateway is comprised
of software, hardware, or a combination of both. A gateway operates across
all seven layers of OSI model. A gateway can actually convert data from one
network to another network even though their protocols are different. Some
advantages of using gateways include the facts that (i) a gateway works as
a proxy server for authentication and (ii) a gateway facilitates heterogeneous
communication. Gateways are slow because they need intensive data conversion
during communication.

2.1.12 Network Performance

Measuring network performance is important when working in a real environ-
ment. Many hosts and complex networks work together to exchange information
between them within an internetwork. Frequently, this complexity may lead to
poor performance. So, it is absolutely necessary to tune live network performance
by applying different mechanisms. We discuss five different aspects for network
performance. They are (a) measurement of network performance, (b) limitations of
network performance, (c) performance-oriented system design, (d) fast processing
of Transport Protocol Data Unit (TPDU), and (e) protocols for high-performance
networks:

(a) Measurement of network performance: To maintain and improve network
performance, the performance of the network must be measured periodically by
the network administrator or network engineer. Round-Trip Time (RTT), packet
loss, throughput, and availability are the basic measurements one can perform in
a network. The basic steps are: (i) measure the relevant network parameters and
performance, (ii) understand the bottlenecks, and (iii) change one parameter at
a time and observe the performance.

(b) Limitations of network performance: Problems like temporary resource over-
loads can cause congestion in the network. If more traffic suddenly arrives at a
router than the router can handle, congestion builds up and performance suffers.
When there is a structural imbalance, like a high-speed line connected to a
low-end PC, performance also suffers. Overloads can also be synchronously
triggered. These packets are eventually retransmitted, causing delay, wasting
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bandwidth, and resulting in reduced overall performance. Another tuning issue
is setting time-outs correctly. For better quality, we have to keep in mind the
bandwidth-delay product. It is the capacity in bits of the pipe from the sender to
the receiver and back. The transmission time is another performance issue for
time-crucial applications like audio and video.

(c) Performance-oriented system design: Measuring and tuning can improve net-
work performance considerably, but they cannot be substitute for good design.
So, we need to consider the system design, not just the network design, since
software and operating system are often more important than the routers and
interface boards. These are some observations that should impact on a good
design such as: (i) keep in mind that CPU speed is more important than network
speed, (ii) reduce packet count to reduce software overhead, (iii) minimize
context switches because of their translation overhead, (iv) minimize copying
of packets or datagrams, (v) increase bandwidth but not lower delay, (vi) avoid
congestion because it is better than recovering from it, and (vii) avoid time-outs.

(d) Fast processing of TPDU: The key task to fast Transport Protocol Data Unit
(TPDU) processing is to separate out the normal cases and handle them
separately. On the receiver side, the connection record for an incoming TPDU
has to be looked up. Once a sequence of special TPDUs is obtained to get into
the established state, TPDU processing becomes straightforward until one side
closes the connection.

(e) Protocols for high-performance networks: The major performance bottleneck in
networks is that growth of communication speed is much higher than that of the
processing speed. Therefore, when a packet travels over the network, the travel
time may exceed the packet’s lifetime, i.e., it may fail to reach its destination.
The protocol designer for high-speed networks needs to take care of not only
bandwidth optimization but also keep this in mind.

2.1.13 Network Traffic Management

Network traffic management aims to control network traffic by limiting bandwidth
to certain applications, guaranteeing minimum bandwidth to others, and marking
the traffic instances as high or low priority.

2.1.13.1 Steps in Traffic Management

Network traffic management requires a sequence of activities to accomplish appro-
priate control over the traffic. The usual steps for traffic management are given in
Fig. 2.20.
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Fig. 2.20 Steps in network
traffic management

2.1.13.2 Techniques for Traffic Measurement

Network traffic measurement is important to understand current network status. The
main reasons to measure network traffic are given below:

• Service monitoring: Monitoring of services is necessary from time to time to
ensure that the services to be provided by hosts in the network are working
correctly.

• Network planning: Depending on demand for services and other communication,
it needs to be decided when more capacity may be required to ensure smooth
functioning.

• Cost recovery: Since cost is always an issue, we must maintain quantitative
information on session and volume of traffic to provide the total cost to planners
and administrators.

• Research usage: The important issues that must be considered for performance
improvement need to be observed and measured to allow for changes or tune-up
of the existing network.

There are two approaches to measure network traffic. They are (a) active
measurement and (b) passive measurement:

• Active measurement: From the name itself, one can surmise that this involves
direct measurement of the activities at runtime. For example, one can measure
packet loss, delay, and throughput based on the active network activities.

• Passive measurement: This approach involves measuring network activities
indirectly using software or hardware tools. It may use historical data to predict
current traffic measurements. The main techniques to achieve this are (a) packet
monitoring, (b) using router or switch statistics, and (c) analysis using router or
server logs.
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2.1.13.3 Types of Network Traffic

Based on the nature of the network itself, network traffic can be classified into two
categories: (i) LAN traffic and (ii) WAN traffic:

• LAN traffic: LAN traffic is self-similar in nature. In other words, if we plot an
hour’s worth of traffic at several distinct time points, we likely to find almost
similar patterns [36]. The traffic variation repeats after a regular time interval. It
follows normal probability distribution.

• WAN traffic: WAN traffic pattern varies from time to time. For example, it may
be (i) random traffic, (ii) Poisson traffic, or (iii) bursty traffic. Random traffic
does not follow any fixed pattern. Poisson traffic shows trend similar to what is
found on the Internet. The Poisson model estimates the probability of packets
that should be present in the network after a given time if the arrival rate of the
packets is specified. Attack traffic normally follows Poisson traffic’s properties.
The bursty traffic rate stays constant except for sudden bursts. The length of a
burst may be short or long in nature. Bursty traffic may be attack traffic.

2.2 Network Traffic Anomalies

Anomalies are instances of data that do not conform to normal behavior. Instances
may be called objects, points, events, vectors, or samples by various authors.
Anomalies in networks can be defined as network events or operations that deviate
from normal network behavior. They may occur due to reasons such as (i) malicious
activities that misuse normal network services, (ii) overloading of networking
infrastructure, (iii) malfunctioning of network devices, and (iv) compromises made
when setting network parameters. Network anomalies are broadly categorized
into two types [66]: (a) performance-related anomalies and (b) security-related
anomalies. We discuss each of these with sources and causes.

2.3 Types of Anomalies

Anomalies in networks can be understood in the context of security and per-
formance. In either case, some flaws or security holes remain knowingly or
unknowingly and attackers find and exploit them. Anomalies can be classified into
two major classes. They are (a) performance-related anomalies and (b) security-
related anomalies. We discuss each below.
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2.3.1 Performance-Related Anomalies

Anomalies may cause network or system failures or performance degradation.
Typical examples of performance-related anomalies are file server failures, paging
across the network, broadcast storms, babbling nodes, and transient congestion.
A broadcast storm is caused when one or more computers broadcast a very
high amount of traffic, consuming a large amount of network resources. In bus
technology, two hosts may communicate unnecessarily and make the bus always
busy. This is also an example of the babbling nodes problem. Transient congestion
is caused by dropping of excess packets created by protocols like TCP packets,
which overload the link bandwidth reducing transmission rates in the network. As a
result, the network cannot transmit normal traffic. Performance-related anomalies
may occur due to vulnerabilities in a network or a system. In a networked
system, vulnerabilities are inherent weaknesses in the design, implementation and
management of the system, rendering the systems susceptible to threats [39]. It is
not possible to list all the sources of network-based system vulnerabilities. Many
common sources of network vulnerabilities are pointed out below:

1. Poor design: Design flaws in a hardware or software system may lead to threats
to the system. For example, a sendmail flaw in earlier versions of UNIX enabled
hackers to gain privileged access to the system.

2. Incorrect implementation: Incorrect or erroneous configuration of the system,
leading to vulnerabilities, may occur due to lack of experience, insufficient
training, or sloppy work. For example, configuring a system that does not have
restricted access privileges on system files may allow these files to be altered by
unauthorized users.

3. Poor security management: Use of inadequate management procedures is another
source of network vulnerabilities. For example, a lack of guarantee that security
procedures are being followed and that no single person has total control of a
system may lead to vulnerabilities.

4. Vulnerability in Internet technology: Internet technology has been and contin-
ues to be vulnerable. Every day, there are reports of all sorts of loopholes,
weaknesses, and gaping holes in both software and hardware technologies. Such
vulnerabilities have led to attacks such as the CodeRed worm and the Slammer
worm.

5. The nature of intruder activity: Hacker technologies are developing faster than
the rest of the technology and are flourishing. For example, W32=Mydoom:n@M
MŠ1812A23B5D92 is a new malware threat.1

6. The difficulty in fixing vulnerable systems: It is often difficult to fix a vulnerable
system within a stipulated time period. For example, there is concern about
the ability of system administrators to cope with the number of patches issued

1http://www.mcafee.com/us/mcafee-labs.aspx

http://www.mcafee.com/us/mcafee-labs.aspx
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for system vulnerabilities. As the number of vulnerabilities rises, system and
network administrators face a more difficult situation.

7. Social engineering: Social engineering involves a hacker’s use of psychological
tricks on legitimate users of a computer system. For example, the hacker may
meet potential victims in a social networking environment and try to gain
information such as username and password that one needs to enter the system.
So, social engineering can be used to collect information that may be used to
cause a potential threat.

Thus, there are many causes for traffic anomalies that provide attackers with
opportunities to exploit network-based vulnerabilities. Many are difficult to fix
quickly. As noted earlier, some examples of vulnerabilities are network config-
uration, malfunctioning hardware, flawed parameter setting, detailed logging and
monitoring without protection, and communication and wireless vulnerabilities. In
the next section, we discuss security-related network anomalies and possible sources
and causes of network vulnerabilities. Security-related anomalies are our prime
focus in this book.

2.3.2 Security-Related Anomalies

Security-related anomalies occur when the network traffic does not conform to the
normal and expected behavior. Network attacks include denial of service (DoS),
distributed DoS, probe, user to root, remote to local, and coordinated scan attacks.
The main causes of network attacks or intrusions are malicious entities or agents,
who hijack network bandwidth by flooding the network with unnecessary traffic,
thus starving legitimate users. Malicious activities in a network are of various
types such as point anomaly, contextual anomaly, and collective anomaly [15]. We
describe these briefly below:

1. Point anomaly: When an instance of data is found to be anomalous with respect
to the rest of data, it is known as point anomaly. For example, one instance of an
individual typing in a wrong password is a point anomaly, which may or may not
mean much in the overall context. A single instance of credit card fraud is also a
point anomaly.

2. Contextual anomaly: A data instance which has been found anomalous in a
specific context is known as a contextual anomaly. Context is induced by the
structure of the dataset. Context in data and behavioral attributes of users can
be used to establish contextual anomalies. For example, providing a malformed
email address or uniform resource locator (URL) in some situations may simply
be a minor nuisance but in other cases may lead to more serious problems.

3. Collective anomalies: A collection of related data instances found to be anoma-
lous with respect to the entire dataset constitutes collective anomalies. In such a
case, a collection of events is an anomaly, but the individual events may not be
anomalies when they occur alone. For example, if there is someone who tries to
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Fig. 2.21 Illustration of point, contextual, and collective anomalies

log in with the wrong password for a dozen accounts, it is likely to be a potential
intruder, but typing the password wrong 1, 2, or 3 times for a single account may
be simply a case forgotten password.

We illustrate each type of anomaly in terms of fraudulent credit card transactions
given in Fig. 2.21. The anomalies occur while it deviates the usual pattern for credit
card transactions, i.e., the usual transactional amount INR 30;000.

2.4 Network Attacks

A network attack exploits one or more vulnerabilities in a computer or network
and attempts to break into or compromise the security of the system. One who
performs or attempts an attack or intrusion into a system is an attacker or intruder.
Anderson [3] classifies attackers or intruders into two types: external and internal.
External intruders are unauthorized users of the systems or machines they attack,
whereas internal intruders have permission to access the system but do not have
privileges to access the system as root or superuser. Internal intruders are further
divided into masquerade intruders and clandestine intruders. A masquerade intruder
logs in as another user with legitimate access to sensitive data, whereas a clandestine
intruder, the most dangerous, has the power to turn off audit control for themselves.
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An attack or intrusion is perpetrated by an inside or outside intruder of a system to
gain unauthorized entry and control of the security mechanism of the system.

2.5 Attack Taxonomy

An attack or intrusion is usually a sequence of operations that starts with the goal
of placing a backdoor for exploiting in a network or a computer system and to
eventually cause damage by stealing private information or by disrupting service
[41]. Several network attack taxonomies are available in the literature [28, 32, 51,
69]. The taxonomy of intrusions or attacks [26, 37] in computer systems that we
adopt is summarized in Table 2.4.

Network attacks are also classified as active or passive. Passive attacks are
designed to monitor and record traffic on the network. They are usually employed to
gather information that can be used later in active attacks. They are very difficult to
detect, because there is usually no overt activity that can be monitored or detected.
Examples of passive attacks are packet sniffing or traffic analysis. In contrast, active
attacks employ more overt actions on the network or system. They can be much
more devastating to a network.

2.6 Motivations of Attackers

The precursors to an attack are usually a series of events used to trigger an attack.
A network attacker executes a series of steps to achieve the desired goal. The order
and duration of these steps are dependent on factors such as the attacker’s skill level,
the type of vulnerability to exploit, prior knowledge, and the location of the attacker.
An attacker generally follows the steps shown in Fig. 2.22 to launch an attack.

Performing reconnaissance means that the attacker uses certain techniques to
gather information about the strengths and positioning of enemy forces using
scanning and enumeration of services. Once the vulnerabilities are identified, the
attacker attempts to exploit them when launching the attack. The attacker can gain
access as a regular user and then as root user to a system. Finally, to place backdoors
on the system for further exploits, the attacker maintains access and cleans up any
evidence left in the system.

2.7 Traffic Monitoring and Analysis

Network traffic monitoring is usually performed at the intra-domain level in every
large-scale autonomous system (AS) because the network topology is completely
known and the AS is under the control of a single network operator, who can
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Table 2.4 Taxonomy of computer attacks: characteristics and examples

Attack

name Characteristics Examples

Virus (i) A self-replicating program that infects the system without
any knowledge or permission from the user. (ii) Increases the
infection rate of a network file system if the system is
accessed by another computer

Trivial.88.D,
Polyboot.B,
Tuareg

Worm (i) A self-replicating program that propagates through network
services on computer systems without user intervention. (ii)
Can highly harm network by consuming network bandwidth

SQL Slammer,
Mydoom,
CodeRed Nimda

Trojan (i) A malicious program that cannot replicate itself but can
cause serious security problems in the computer system. (ii)
Appears as a useful program but in reality it has secret code
that can create a backdoor to the system, allowing it to do
anything on the system easily, and can be called as the hacker
gets control on the system without user permission

Mail Bomb,
phishing attack

Denial of
service
(DoS)

(i) Attempts to block access to system or network resources.
(ii) The loss of service is the inability of a particular network
or a host service such as email to function. (iii) It is
implemented by either forcing the targeted computer(s) to
reset or consuming resources. (iv) Legitimate users can no
longer communicate adequately due to nonavailability of
service or because of obstructed communication media

Buffer overflow,
ping of death
(PoD), TCP SYN,
smurf, teardrop

General
network
attack

(i) Any process used to maliciously attempt to compromise
the security of the network ranging from the data link layer to
the application layer by various means such as manipulation
of network protocols. (ii) Illegally using user accounts and
privileges, performing actions that consume large amount of
network resources and bandwidth, and performing actions that
prevent legitimate authorized users from accessing network
services and resources

Packet injection,
SYN flood

Physical
attack

Attempts to damage the physical components of networks or
computers

Cold boot, evil
maid

Password
attack

Aims to gain a password within a short period of time and is
usually indicated by a series of log-in failures

Dictionary attack,
SQL injection
attack

Information
gathering
attack

Gathers information or finds known vulnerabilities by
scanning or probing computers or networks

SYS scan, FIN
scan, XMAS scan

User to root
(U2R)
attack

(i) It is able to exploit vulnerabilities to gain privileges of
superuser of the system while starting as a normal user on the
system. (ii) Vulnerabilities include sniffing passwords,
dictionary attack, or social engineering

Rootkit,
loadmodule, perl

(continued)
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Table 2.4 (continued)

Attack

name Characteristics Examples

Remote to
local (R2L)
attack

(i) Ability to send packets to a remote system over a network
without having any account on that system, gain access either
as a user or as a root to the system and do harmful operations.
(ii) Ability to perform attack against public services (such as
HTTP and FTP) or during the connection for protected
services (such as POP and IMAP)

Warezclient,
warezmaster,
imap, ftp_write,
multihop, phf,
spy

Probe (i) Scans the networks to identify valid IP addresses and to
collect information about host (e.g., what services they offer,
operating system used). (ii) Provides information to an
attacker with the list of potential vulnerabilities that can later
be used to launch an attack against selected systems and
services

IPsweep,
portsweep

Fig. 2.22 Steps in
performing an attack Perform Reconnaissance

Scan

Launch Attack

Gain Access

Gain Root Privileges

Maintain Access

Placement of Backdoors

Enumeration Services

therefore manipulate his network and traffic without restrictions [67]. Network
administrators usually deploy the monitoring systems in the intra-domain Internet
to capture, analyze, and decide whether an instance is normal or anomalous. A view
of a deployed monitoring system with DMZ2 is shown in Fig. 2.23.

2A demilitarized zone is a network segment located between a secure local network and insecure
external networks (Internet). A DMZ usually contains servers that provide services to users on the
external network, such as Web, mail, and DNS servers. These servers must be hardened systems.
Two firewalls are typically installed to form the DMZ.
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Fig. 2.23 A typical view of monitoring system deployment with DMZ

2.8 Anomaly Detection and ANIDSs

Network anomaly detection is crucial for securing a network or a host. It allows
for timely mitigation when anomalous traffic instances appear. Anomalies may
be caused due to many reasons as discussed above. Specifically, security-related
anomalies occur due to malicious activity (e.g., scanning, denial of service, and
probe) initiated by the attackers or intruders at different times. They are usually due
to misconfiguration of a network or a host and may have serious consequences. A
network anomaly detection system captures and analyzes traffic and reports alarms
when an anomaly is detected and updates profiles of normal as well as attack
instances.

An anomaly-based network intrusion detection system (ANIDS) is a system for
detecting network anomalies by monitoring network traffic and classifying them as
either normal or anomalous. The classification may be based on heuristics or may
look for patterns or signatures, attempting to detect anomalies that are not found in
normal system operation. An ANIDS should ideally be able to detect known as well
as unknown attacks without any prior knowledge.
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2.9 Classification of ANIDSs

Intrusion detection has been studied for at least 20 years. Intrusions can be detected
because an intruder’s behavior is noticeably different from that of a legitimate user.
In addition, many unauthorized actions are inherently detectable [49]. ANIDSs
are deployed as a second line of defense along with other preventive security
mechanisms such as user authentication and access control. ANIDSs are classified
into two types based on location of deployment in real time.

A host-based IDS (HIDS) monitors and analyzes the internals of a computing
system rather than its external interfaces. It monitors all or parts of the dynamic
behavior and the states of a computer system [68]. A HIDS may detect internal
activity such as which program accesses what resources and makes attempts at
illegitimate access. An example is a word processor that suddenly and inexplicably
starts modifying the system password database. Similarly, a HIDS might look at
the state of a system and other stored information whether it is in RAM or in
the file system or in log files or elsewhere. One can think of a HIDS as an agent
that monitors whether anything or anyone internal or external has circumvented the
security policy that the operating system tries to enforce.

A network-based IDS (NIDS) detects intrusions in network traffic. Intrusions
typically occur as anomalous patterns. These anomalies are primarily caused by
attacks launched by outside attackers who want to gain unauthorized access to
computers on the network to steal information or to disrupt the network. Some
techniques model the network traffic in a sequential fashion and detect anomalous
sub-sequences [68]. In a typical setting, a network is connected to the rest of the
world through the Internet. The NIDS reads all incoming packets or flows, trying to
find suspicious patterns. For example, if a large number of TCP connection requests
to a large number of different ports are observed within a short time, one could
assume that there is someone committing a ‘port scan’ at some of the computer(s)
in the network. Various kinds of port scans and tools used to launch them are
discussed in detail in [9]. Port scans mostly try to detect incoming shell codes in
the same manner that an ordinary intrusion detection system does. In addition to
inspecting the incoming network traffic, a NIDS also provides valuable information
about intrusion from outgoing as well as local traffic. Some attacks might even be
staged from inside of a monitored network or network segment and, therefore, not
regarded as incoming traffic at all. The data available for intrusion detection systems
can be at different levels of granularity, e.g., packet level traces or IPFIX records.
The data is high dimensional, typically, with a mix of categorical and continuous
attributes.

Misuse-based intrusion detection normally searches for known intrusive patterns
but anomaly-based intrusion detection tries to identify unusual patterns. Today,
researchers mostly concentrate on anomaly-based network intrusion detection
because it can detect known as well as unknown attacks. In practice, this usually
assumes that there are programs that can detect intrusion type that are known a
priori and unknown ones are detected using anomaly detection.

There are several reasons that make intrusion detection a necessary part of
the entire defense system. First, many traditional systems and applications were
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developed without security in mind. Such systems and applications were designed
many years ago or in a laboratory to work in an environment, where security was
never a major issue. However, the same systems and applications when deployed
in the current network scenario become major security headaches. For example, a
system may be perfectly secure when it is isolated but becomes vulnerable when
it is connected to the Internet. Intrusion detection provides a way to identify and
thus allow response to attacks against these systems. Second, due to limitations
of information security and software engineering practices, computer systems and
applications may have design flaws or bugs that could be used by an intruder to
attack systems or applications. As a result, certain preventive mechanisms (e.g.,
firewalls) may not be as effective as expected. Intrusion detection techniques are
classified into three types based on the detection mechanism [15, 50, 62]. This
classification scheme is described below:

1. Misuse-based: This type of detection is based on a set of rules or signatures for
known attacks and can detect all known attacks based on reference data. How to
write a signature that encompasses all possible variations of a pertinent attack is
a challenging task.

2. Anomaly-based: The principal assumption is that all intrusive activities are
necessarily anomalous. Such a method builds a normal activity profile and checks
whether the system state varies from the established profile by a statistically
significant amount to report intrusion attempts. Anomalous activities that are not
intrusive may also be flagged as intrusive. These are false positives. One should
select threshold levels so that the above two situations do not cause the system to
malfunction considerably. Anomaly-based intrusion detection is computationally
expensive because of overhead and the need to update several system profile
matrices.

3. Hybrid: This detection mechanism exploits the benefits of both misuse and
anomaly-based detection techniques. It also attempts to detect known as well
as unknown attacks.

In addition to the above, an anomaly detection system works in any of four
modes, viz., (i) supervised, (ii) semi-supervised, (iii) unsupervised, and (iv) hybrid
based on the availability of labeled data.

2.9.1 Supervised ANIDS

A supervised ANIDS detects network anomalies using prior knowledge. It builds
a predictive model for both normal and anomalous classes and compares any new
instance with the predictive model to determine which class it belongs to. Thus, to
provide an appropriate solution in network anomaly detection, we need the concept
of normal behavior of the network traffic. An event or an object is detected as
anomalous if its degree of deviation with respect to the profile or behavior of the
system, specified by the normality model, is high enough. We define a supervised
system as follows.
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Definition 2.1 Let us consider an anomaly detection system I that uses a supervised
approach. It can be thought of as a pair I D .M; D/, where M is the model of normal
behavior of the system and D is a proximity measure that allows one to compute,
given an activity record, the degree of deviation that such activities have from the
model M. Thus, each system has two main modules: (i) a modeling module and (ii) a
detection module. One trains the system for both normal and attack classes to obtain
the model M. The obtained model is subsequently used by the detection module
to evaluate new events or objects or traffic as normal or anomalous or outliers. In
particular, the modeling module needs to be adaptive to cope with the dynamic
scenarios.

A generic architecture for a supervised ANIDS is given in Fig. 2.24. A brief
description of each component of the above system is given below:

(a) Traffic capturing: Traffic capturing is an important module in any NIDS. In
this module, live network traffic is captured using the libpcap [34] library, an
open source C library offering an interface for capturing link-layer frames over a
wide range of system architectures. It provides a high-level common application
programming interface (API) to the different packet capture frameworks of
various operating systems. The resulting abstraction layer allows programmers
to rapidly develop highly portable applications.

Libpcap defines a standard format for files in which captured frames are
stored. This format also known as the tcpdump format is currently a de facto
standard widely used in public network traffic archives. Modern kernel-level capture

Fig. 2.24 A generic architecture of supervised ANIDS
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Fig. 2.25 Hierarchy of network traffic capturing components

frameworks on UNIX operating systems are mostly based on BSD or Berkeley
Packet Filter (BPF) [19, 47]. BPF is a software device that taps network interfaces,
copying packets into kernel buffers and filtering out unwanted packets directly
in interrupt context. Definition of packets to be filtered can be written in a
simple human readable format using Boolean operators and can be compiled into
pseudo-code and passed to the BPF device driver by a system call. The pseudo-
code is interpreted by the BPF pseudo-Machine, a lightweight high-performance
state machine specifically designed for packet filtering. Libpcap also allows a
programmer to write applications that transparently support a rich set of constructs
to build detailed filtering expressions for most network protocols. Libpcap calls can
use these Boolean expressions, which can read directly from the user’s command
line, compile into pseudo-code, and pass to Berkeley Packet Filter. Libpcap and
BPF interact to allow network packet data to traverse several layers to finally be
processed and transformed into capture files (i.e., tcpdump format) or to samples
for statistical analysis.

The raw network traffic is captured at both packet and flow levels. Packet level
traffic can be captured using popular tools such as Gulp (Lossless Gigabit Remote
Packet Capture With Linux)3 and Wireshark4 and then preprocessed before sending
to the detection engine. In addition, flow-level traffic can be captured using some
other tools, e.g., NFDUMP,5 NFSEN,6 and ntop. The hierarchy of network traffic
capturing components is given in Fig. 2.25.

3http://staff.washington.edu/corey/gulp/
4http://www.wireshark.org/
5http://nfdump.sourceforge.net/
6http://nfsen.sourceforge.net/

http://staff.washington.edu/corey/gulp/
http://www.wireshark.org/
http://nfdump.sourceforge.net/
http://nfsen.sourceforge.net/
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(b) Preprocessor: In order to evaluate an IDS, an unbiased intrusion dataset in a
standard format is required. Generally, a captured live packet contains a lot of
raw data, some of which may not be relevant in the context of an IDS. Therefore,
filtration of irrelevant parameters during capture and extraction of features from
the filtered data are important preprocessing functions of an IDS. In addition
to these, data type conversion, normalization, and discretization are also useful
functions of this module depending on the anomaly detection mechanism used
in the IDS:

1. Feature extraction: Feature extraction from raw data is an important step for
anomaly-based network intrusion detection. The evaluation of any intrusion
detection algorithm on real-time network data is difficult, mainly due to the high
cost of obtaining proper labeling of network connections. The extracted features
are of four types [37, 38] as follows:

• Basic features: These can be derived from packet headers without inspecting
the payload. The protocol type, services used, flag, source bytes, and destina-
tion bytes are examples of basic features.

• Content-based features: Domain knowledge is used to assess the payload of
the original Transmission Control Protocol (TCP) packets. An example of this
type of features is the number of failed log-in attempts.

• Time-based features: These features are estimated by capturing properties that
hold over a t-second time window. One example of such a feature is the
number of connections to the same host during the t-second time interval.

• Connection-based features: These features are computed over a historical
window estimated over the last n packets. An example of such a feature is
the number of packets flowing from source to destination within a specified
time period.

2. Data type conversion: Both features and raw data may include numeric as well as
categorical data. For example, the protocol feature takes values such as tcp, icmp,
telnet, and udp. Therefore, to apply a clustering technique based on a proximity
measure that works either with numeric or categorical data and not both to detect
network anomalies, it may be necessary to convert the data.

3. Normalization: In an intrusion dataset, all parameters or field values may not
be of equal importance, or their value ranges may be very different. In such
cases, normalization is considered useful before applying an anomaly detection
mechanism.

4. Discretization: The network intrusion data contains continuous valued attributes
such as the number of packets, the number of bytes, and the duration of each
connection. These attributes may need to be transformed into binary features or
range-based features before any standard association mining algorithms can be
applied. The transformation can be performed using a variety of supervised and
unsupervised discretization techniques. For example, using the output scores of
the anomaly detector as its ground truth, MINDS (Minnesota INtrusion Detection
System) [23] employs a supervised binning strategy to discretize attributes.
Initially, all distinct values of continuous attributes are put into one bin. The
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worst bin in terms of purity is selected for partitioning until the desired number
of bins is reached. The discretization of numeric attributes contributes to the
comprehension of the final results.

These traffic features are designed to assess attacks, which span intervals longer
than 2 s. It is well-known that features constructed from the data content of the
connections are more important when detecting R2L (remote to local) and U2R
(user to root) attack types in the KDD99 intrusion dataset [38]. The time-based
and connection-based features are more important for detection of denial of service
(DoS) and probing attack types [42].

(c) Anomaly detection engine: This is the heart of any network anomaly detection
system. It attempts to detect the occurrence of any intrusion either online or
offline. In general, any network traffic data needs preprocessing before it is
sent to the detection engine. If the attack belongs to a known type, it can be
detected using a misuse detection approach. Unknown attacks can be detected
with the anomaly-based approach using an appropriate matching mechanism
or a classifier. The following are some important requirements that a matching
mechanism must satisfy:

• Matching determines whether the new instance belongs to a known class
defined by a high-dimensional profile or not. Matching may be inexact. The
membership of a test instance to a given predefined class represented by its
profile depends on (i) the proximity computed between the profile and the
new test instance using a relevant subspace of features and (ii) a user-defined
proximity threshold. Thus, the selection of an appropriate proximity measure
and an appropriate threshold is crucial here.

• Matching must be fast.
• Effective organization of the profiles may facilitate faster search during

matching.

(d) Alarm: This module is responsible for generation of alarm based on the
indication received from the anomaly detection engine. In addition to indicating
the occurrence of an attack, alarms are useful for post-diagnosis or alarm
correlation analysis [59] of the performance of the detection system. Alarms
should indicate (i) the causes that raised the alarm, (ii) the source IP/Port address
and target IP/Port address associated with the attack, and (iii) any background
information to justify why it is a putative alarm.

(e) Human analyst: A human analyst is responsible for analysis and interpretation
and for taking necessary action based on the alarm information provided by the
detection engine. The analyst also takes necessary steps to diagnose the alarm
information as a post-processing activity to support reference or profile updation
with the help of security manager.

(f) Post-processing: This is an important module in a NIDS. This module pro-
cesses the generated alarms for diagnosis of actual attacks. Appropriate post-
processing activities can help reduce the false positive rate significantly.
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Fig. 2.26 Types of reference
data used in supervised
ANIDS

Fig. 2.27 Steps in updation of configuration data in ANIDS

(g) Security manager: Stored intrusion signatures are updated by the security man-
ager (SM) as and when new intrusions become known. The analysis of novel
intrusions is a highly complex task. The security manager has multifaceted roles
to play such as (i) analysis of alarm data, (ii) recognition novel intrusion(s), and
(iii) updation of the signature or profile base.

(h) Reference data: The reference data stores information about signatures or
profiles of known intrusions or normal behavior. Reference data must be stored
in an efficient manner. Possible types of reference data used in the generic
architecture of a NIDS are shown in Fig. 2.26. In the case of ANIDS, it is mostly
profiles. The processing elements update the profiles as new knowledge about
the observed behavior becomes available. These updates are performed in a
batch-oriented fashion by resolving conflicts, if they arise.

Intermediate results such as partially created intrusion signatures are stored as
configuration data. The space needed to store such information is usually quite
large. The main steps for updation of configuration data are given in Fig. 2.27.
Intermediate results need to be integrated with existing knowledge to produce
consistent, up-to-date results.

There are two major issues that arise in supervised anomaly detection. First,
the anomalous instances are far fewer in number compared to normal instances
in the training data. Issues that arise due to unbalanced class distributions have
been addressed in the data mining literature [35]. Second, obtaining accurate and
representative labels, especially for the anomaly class, is usually challenging. A
number of proposed techniques inject artificial anomalies in a normal dataset to
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obtain a larger labeled training dataset [65]. Other than these two issues, the
supervised anomaly detection problem is similar to building predictive models.

2.9.2 Semi-supervised ANIDS

A semi-supervised ANIDS trains using labeled instances only for the normal class
[75]. Since they do not require labels for the anomaly class, it is more readily used
compared to supervised approaches. We define a semi-supervised system as follows.

Definition 2.2 Let I be a semi-supervised anomaly-based detection system. It can
be thought of as a pair I D .M; D/, where M is the model of normal behavior
of the system and D is a proximity measure that allows one to compute, given an
activity record, the degree of deviation that such activities have from the model M.
As discussed in the context of supervised ANIDS, each system has primarily two
modules. The modeling module trains to get the normality model M and detect new
traffic as normal or anomalous.

For example, in spacecraft fault detection [24], an anomaly scenario may signify
an accident, which is not easy to model. The typical approach used in such
techniques is to build a model for the class corresponding to normal behavior and
use the model to identify anomalies in the test data. However, semi-supervised
learning uses normal data during training and the rest of the approach is the same as
supervised approach.

2.9.3 Unsupervised ANIDS

An unsupervised ANIDS can be used for novel intrusion detection without prior
knowledge using purely normal data. Unsupervised network anomaly detection
works well due to two major reasons: (i) nonavailability of labeled or purely normal
data and (ii) the expense of manual classification of a large volume of network
traffic. When collecting normal traffic data, it is extremely difficult to guarantee that
there is no anomalous instance. Clustering is a widely used method for unsupervised
anomaly-based intrusion detection [12, 13, 29, 56, 74]. From classical data mining,
we know that clustering is a method of grouping of objects based on similarity
among the objects. The similarity within a cluster is high, whereas dissimilarity
among clusters is high. Clustering is a method of unsupervised exploration of the
data that is performed on unlabeled data [72]. Unsupervised anomaly detection
clusters test data into groups of similar instances which may be either normal or
anomalous. We define an unsupervised system as follows.

Definition 2.3 Let I be an unsupervised anomaly-based detection system. It can be
thought of as a pair I D .M; D/, where M D fG; Ag, G represents groups of traffic
based on proximity measure D, and A is the estimated score computed from each
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group. The system I labels each traffic instance as normal or anomalous w.r.t. the
estimated score, A.

A generic architecture of an unsupervised ANIDS is given in Fig. 2.28. This
includes almost all the modules found in a supervised ANIDS except the anomaly
detection engine and the labeling technique. We discuss the modules below:

(a) Unsupervised engine: This module is the heart of an anomaly detection
system. It consists of two modules, viz., detection and labeling. Based on the
approach used, the detection module either groups similar instances or identifies
exceptional instances in input data. The labeling module works after completion
of the detection module to label each instance either as normal or anomalous
based on the characteristics of each individual group such as size, compactness,
the dominating subset of features, and outlier score of each instance.

(b) Labeling strategy: A clustering method merely groups the data without any
interpretation of the nature of the groups. To support appropriate interpretation
of the groups, labeling techniques are used. Labeling of clusters is a difficult
issue. A labeling strategy typically makes the following assumptions [54]:

• The number of normal instances vastly outnumbers the number of anomalous
instances.

• Anomalies themselves are qualitatively different from normal instances.
• Similarity among the instances of an anomalous group is higher than the

same among instances in a normal group.

Fig. 2.28 A generic architecture of unsupervised ANIDS
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Unsupervised anomaly detection approaches work without any training data. In
other words, these models are trained on unlabeled or unclassified data, and they
attempt to find intrusions lurking inside the data. The biggest advantage of the
anomaly detection approach is the detection of unknown intrusions without any
previous knowledge. In order to label clusters, an unsupervised ANIDS models
normal behavior by using certain assumptions [54] presented above. If these
assumptions hold, intrusive instances can be identified based on characteristics of
the group the instances belong to. However, these assumptions are not always true,
especially in the case of DDoS attacks [10]. Therefore, accurate labeling of an
instance is a significant and crucial issue in an unsupervised ANIDS.

2.9.4 Hybrid ANIDS

A hybrid ANIDS combines both supervised and unsupervised approaches of
network anomaly detection. Such approaches can detect known as well as unknown
attacks. One type of hybrid approach attempts to identify known attacks based on a
supervised model with reference to a set of sample training data using an appropriate
matching mechanism. The test instances that neither belong to normal nor any of the
known attack instances are handled by the unsupervised model for the identification
of new normal or novel intrusions. Several successful efforts have been proposed
by researchers to develop hybrid ANIDSs [4, 60, 73]. A hybrid system is defined as
follows.

Definition 2.4 Let I be a hybrid anomaly-based detection system. It can be thought
of as a pair I D .M; D/, where M D fB; Ug, B represents the supervised module
that uses proximity measure D to detect known attacks, and U is the unsupervised
module which uses estimated score computed from each group to detect unknown
attacks.

A generic architecture of a hybrid ANIDS is given in Fig. 2.29. The modules in
this architecture are the same as in supervised and unsupervised ANIDSs discussed
above, except the detection engine. This detection engine is a combination of
a supervised module and an unsupervised module. As shown in the figure, the
unsupervised module is used for only undetected test instances forwarded by the
supervised module. Once a novel intrusion is identified and confirmed, its reference
(i.e., rule or signature) is built and inserted into the rule-base for future reference of
the supervised module.

The performance of an individual approach, either supervised or unsupervised, is
not equally good for detection of all categories of attack as well as normal instances.
There is the possibility of obtaining good detection accuracy for all categories in a
dataset by using an appropriate combination of multiple well-performing detection
approaches. The objective of such a combination is to provide the best performance
from each participating approach for all attack classes. The selection of a supervised
or unsupervised method at a particular level for a given dataset is a critical issue for
the hybrid ANIDS.
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Fig. 2.29 A generic architecture of a hybrid ANIDS

2.10 Aspects of Network Traffic Anomaly Detection

In this section, we present some important aspects of anomaly-based network
intrusion detection that we should be aware of. The network intrusion detection
problem is a classification or clustering problem formulated with the following
components [15]: (i) types of input data, (ii) appropriate proximity measures,
(iii) labeling of data, (iv) identification of relevant features, and (v) reporting of
anomalies. We discuss each of these topics in brief.

2.10.1 Types of Input Data

A key aspect of any anomaly-based network intrusion detection technique is the
nature of the input data used for analysis. Input is generally a collection of data
instances, also referred to as objects, records, points, vectors, patterns, events, cases,
samples, observations, entities [64]. Each data instance can be described using a set
of attributes of binary, categorical or numeric type. Each data instance may consist
of only one attribute (univariate) or multiple attributes (multivariate). In the case
of multivariate data instances, all attributes may be of the same type or may be
a mixture of data types. The nature of attributes determines the applicability of
anomaly detection techniques.
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2.10.2 Appropriateness of Proximity Measures

Proximity (similarity or dissimilarity) measures are necessary to solve many pattern
recognition problems in classification and clustering. Distance is a quantitative
degree of how far apart two objects are. Distance measures that satisfy metric
properties [64] are simply called metric, while other nonmetric distance measures
are occasionally called divergence. The choice of a proximity measure depends on
the measurement type or representation of objects.

Generally, a proximity measure is a function that takes an object pair as argument
and returns a numerical value that becomes higher as the objects become more alike.
A proximity measure is usually defined as follows.

Definition 2.5 A proximity measure D is a function X � X ! R that has the
following properties [43].

– Positivity: 8x;y 2 X; D.x; y/ � 0

– Symmetry: 8x;y 2 X; D.x; y/ D D.y; x/

– Maximality: 8x;y 2 X; D.x; x/ � D.x; y/

where X is the data space (also called the universe) and x; y are a pair of k-
dimensional objects.

The most common proximity measures for numeric [14, 17, 44], categorical
[11], and mixed type [25] data are listed in Table 2.5. For numeric data, it is
assumed that the data is represented as real vectors. The attributes take their values
from a continuous domain. In Table 2.5, we assume that there are two objects,
x D x1; x2; x3 � � � xd, y D y1; y2; y3 � � � yd, and

P�1 represents the data covariance
with d number of attributes, i.e., dimensions.

For categorical data, computing similarity or proximity measures is not straight-
forward owing to the fact that there is no explicit notion of ordering among
categorical values. The simplest way to find the similarity between two categorical
attributes is to assign a similarity of 1 if the values are identical and a similarity
of 0 if the values are not identical. In Table 2.5, Dk.xk; yk/ represents per-attribute
similarity. The attribute weight wk for attribute k is computed as shown in the
table. Consider a categorical dataset X containing n objects, defined over a set of
d categorical attributes where Ak denotes the kth attribute. Dk.xk; yk/ is the per-
attribute proximity between two values for the categorical attribute Ak. Note that
xk; yk 2 Ak. In Table 2.5, IOF denotes inverse occurrence frequency and OF
denotes occurrence frequency [11].

Finally, mixed type data includes both categorical and numeric values. A
common practice in clustering a mixed dataset is to transform categorical values
into numeric values and then use a numeric clustering algorithm. Another approach
is to compare the categorical values directly, in which two distinct values result
in a distance of 1 while identical values result in a distance of 0. Of course, other
transformations for categorical data can be used as well. Two well-known proximity
measures, general similarity coefficient and general distance coefficient [25], for
mixed type data are shown in Table 2.5. Such methods may not take into account
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the similarity information embedded in categorical values. Consequently, clustering
may not faithfully reveal the similarity structure in the dataset [25, 30].

Information theory is a self-contained formal mathematical theory, which is
again branch of probability theory [18]. Information theoretic measures can be used
for comparing clusters, when the measures are computed after clusters have been
formed. Suppose two clusters C1 and C2 are obtained from a cluster-based network
anomaly detection method, and then entropy, joint entropy, conditional entropy, and
mutual information (MI) are defined via the marginal and joint distributions of data
items in C1 and C2, respectively.

Entropy; H.C1/ D �

RX

iD1

ai

N
log

ai

N

Joint Entropy; H.C1; C2/ D �

RX

iD1

CX

jD1

nij

N
log

nij

N

Conditional Entropy; H.C1jC2/ D �

RX

iD1

CX

jD1

nij

N
log

nij=N

bj=N

Mutual Information; I.C1; C2/ D

RX

iD1

CX

jD1

nij

N
log

nij=N

aibj=N2

where N is the total number of data items in a cluster, nij is the number of data items
common to clusters C1 and C2, R is the total number of rows or data instances, C
is the total number of columns or features, ai is the row sum, and bj is the column
sum. Mutual information can be employed as the most basic similarity measure in
information theory. Several normalized versions of the mutual information (NMI)
are given in Table 2.6. All these normalized variants are bounded in the range [0, 1].
1 means that two clusters C1 and C2 are identical and 0 means they are independent,
sharing no information with each other.

2.10.3 Labeling of Data

The label associated with a data instance denotes if the instance is normal or
anomalous. It should be noted that obtaining accurate labeled data of both normal
or anomalous types is often very difficult and expensive. Labeling is often done
manually by human experts and hence substantial effort is required to obtain the
labeled training dataset [15]. Moreover, anomalous behavior is often dynamic in
nature, e.g., new types of anomalies may arise, for which there is no labeled training
data.
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Table 2.6 Information theoretic similarity measures

Reference Measure Formula Range

Banerjee et al. [6] Mutual Information (MI) I(C1, C2) [0, min{H(C1),
H(C2)}]

Yao [71] Normalized Mutual Informa-
tion (NMI) – joint

I.C1;C2/

H.C1;C2/
[0, 1]

Kvalseth [40] Normalized Mutual Informa-
tion (NMI) – max

I.C1;C2/

maxfH.C1/;H.C2/g
[0, 1]

Kvalseth [40] Normalized Mutual Informa-
tion (NMI) – sum

2I.C1;C2/

H.C1/CH.C2/
[0, 1]

Strehl and Ghosh [61] Normalized Mutual Informa-
tion (NMI) – sqrt

I.C1;C2/
p

H.C1/H.C2/
[0, 1]

Liu et al. [46], Kvalseth
[40]

Normalized Mutual Informa-
tion (NMI) – min

I.C1;C2/

minfH.C1/;H.C2/g
[0, 1]

2.10.4 Relevant Feature Selection

Feature selection plays an important role in detecting network anomalies. Feature
selection methods are used in the intrusion detection domain for eliminating unim-
portant or irrelevant features. Feature selection reduces computational complexity,
removes information redundancy, increases the accuracy of the detection algorithm,
facilitates data understanding, and improves generalization. The feature selection
process includes three major steps: (a) subset generation, (b) subset evaluation,
and (c) validation. Three different approaches for subset generation are: complete,
heuristic, and random. Evaluation functions are categorized into five [20] distinct
categories: score-based, entropy or mutual information-based, correlation-based,
consistency-based, and detection accuracy-based. Simulation and real-world imple-
mentation are two ways to validate the evaluated subset. A conceptual framework
of the feature selection process is shown in Fig. 2.30.

Feature selection algorithms have been classified into three types: wrapper,
filter, and hybrid [16]. While wrapper methods try to optimize some predefined
criteria with respect to the feature set as part of the selection process, filter methods
rely on the general characteristics of the training data to select features that are
independent of each other and are highly dependent on the output. A hybrid feature
selection method attempts to exploit the salient features of both wrapper and filter
methods [16].

An example of a wrapper-based feature selection method is represented in [45],
where the authors propose an algorithm to build a lightweight IDS using modified
Random Mutation Hill Climbing (RMHC) as a search strategy to specify a candidate
subset for evaluation and using a modified linear support vector machine (SVM)-
based iterative procedure as a wrapper approach to obtain an optimum feature
subset. The authors establish the effectiveness of their method in terms of efficiency
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Fig. 2.30 Framework of
feature selection process

in intrusion detection without compromising the detection rate. An example filter
model for feature selection is given in [48], where the authors use correlation based
and minimal redundancy-maximal-relevance measures. They evaluate their method
on benchmark intrusion datasets for classification accuracy. Several other methods
for feature selection are found in [2, 37, 52, 63].

2.10.5 Reporting Anomalies

An important aspect of any anomaly detection technique is the manner in which
anomalies are reported [15]. Typically, the outputs produced by anomaly detection
techniques are of two types: (a) a score, which is a value that combines (i)
distance or deviation with reference to a set of profiles or signatures, (ii) influence
of the majority in its neighborhood, and (iii) distinct dominance of the relevant
subspace (as discussed in Sect. 2.10.4), and (b) a label, which is a value (normal
or anomalous) given to each test instance. Usually the labeling of an instance
depends on (i) the size of groups generated by an unsupervised technique, (ii) the
compactness of the group(s), (iii) majority voting based on the outputs given by
multiple indices (several example indices are given in Table 2.7), or (iv) distinct
dominance of a subset of features.
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Table 2.7 Cluster validity measures

Name

Reference of index Formula Remark(s)

Dunn [22] Dunn index DI D dmin
dmax

, where dmin denotes
the smallest distance between two
objects from different clusters, dmax

the largest distance within the same
cluster

(i) Can identify dense
and well-separated clus-
ters. (ii) High Dunn
index is more desired
for a clustering algo-
rithm. (iii) May not per-
form well with noisy
data

Davies et al.
[21]

Davies
Bouldin’s
index

DB D 1
n

Pn
iD1;i¤j max.

�jC�j

d.ci ;cj/
/,

where n is the number of clusters; �i

is the average distance of all patterns
in cluster i to their cluster center,
ci; �j is the average distance of all
patterns in cluster j to their cluster
center, cj; and d.ci; cj/ represents the
proximity between the cluster centers
ci and cj

(i) Validation is
performed using
cluster quantities and
features inherent to
the dataset. (ii) For
compact clustering, DB
values should be as
minimum as possible.
(iii) It is not designed
to accommodate
overlapping clusters

Hubert and
Schultz [31]

C-index C D S�Smin
Smax�Smin

, where S is the sum
of distances over all pairs of objects
from the same cluster, n is the number
of those pairs, Smin and Smax are the
sum of n smallest distances and n
largest distances, respectively

It needs to be minimized
for better clustering

Baker and
Hubert [5]

Gamma index G D SC � S�

SC C S�

, where (S+) rep-
resents the number of times that a
pair of samples not clustered together
have a larger separation than a pair
that were in the same clusters; .S�/

represents reverse outcome

This measure is widely
used for hierarchical
clustering

Rohlf [57] G+ index G C D
2.S�/

n�.n�1/
, where .S�/ is

defined as for gamma index and n is
the number of within cluster distances

It uses the minimum
value to determine the
number of clusters in the
data

Rousseeuw
[58]

Silhouette
index

SI D bi�ai
maxfai;big

, where ai is the aver-
age dissimilarity of the ith-object to
all other objects in the same cluster;
bi is the minimum of average dissimi-
larity of the ith-object to all objects in
other cluster;

This index cannot be
applied to datasets with
sub-clusters

Goodman
and Kruskal
[27]

Goodman-
Kruskal
index

GK D Nc�Nd
NcCNd

, where Nc and Nd are
the numbers of concordant and dis-
concordant quadruples, respectively

(i) It is robust in outliers
detection. (ii) It requires
high computation com-
plexity in comparison to
C-index

(continued)
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Table 2.7 (continued)

Name

Reference of index Formula Remark(s)

Jaccard [33] Jaccard index JI D a
aCbCc , where a denotes the

number of pairs of points with the
same label in C and assigned to the
same cluster in k, b denotes the num-
ber of pairs with the same label, but
in different clusters and c denotes the
number of pairs in the same cluster,
but with different class labels

It uses less informa-
tion than the Rand index
measure

Rand [55] Rand index RI D aCd
aCbCcCd , where d denotes the

number of pairs with a different label
in C that were assigned to a different
cluster in k, rest are same with JI

It gives equal weights to
false positives and false
negatives during com-
putation

Bezdek [8] Partition coef-
ficient

PC D 1
n

PN
iD1

Pnc
jD1 u2

ij, where nc

is the number of clusters, N is the
number of objects in the dataset, uij

is the degree of membership

(i) It finds the number of
overlaps between clus-
ters, (ii) It lacks connec-
tion with dataset

Bezdek [7] Classification
entropy

CE D 1
N

Pk
iD1

Pn
jD1 uij log.uij/,

same with partition coefficient
It measures the fuzzi-
ness of the cluster parti-
tions

Xie and
Beni [70]

Xie-Beni
index

XB D �
N:dmin

, where � D �i
ni

, is called
compactness of cluster i. Since ni is
the number of points in cluster i, � ,
is the average variation in cluster i;
dmin D minjjki � kjjj

(i) It combines the prop-
erties of membership
degree and the geomet-
ric structure of dataset.
(ii) Smaller XB means
more compact and bet-
ter separated clusters

2.10.6 Post-processing Anomalies

Post-processing of anomalies is another important module in anomaly detection
for high-speed networks. As technologies advance rapidly, gigabyte Ethernet and
optical switching are being deployed in border routers, and as a result, the rates of
packet forwarding at these aggregation routers are outpacing the performance gains
in personal computer hardware. Therefore, post-processing has become important
[53]. For example, Plonka [53] post-processes NetFlow traffic to detect abuse on
a large-scale network in real time. This tool is known as FlowScan. The post-
processing ensures discovery of the actual network traffic anomalies.
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2.11 Chapter Summary

In this chapter, we have introduced fundamental concepts in anomalies that com-
monly arise in networks. We note that there are two major categories of network
anomalies, viz., performance-related anomalies and security-related anomalies. We
describe network vulnerabilities that exist with their possible sources. An attacker
exploits these vulnerabilities to cause network failure or degrade performance. In
addition, we discuss sources of security-related anomalies, types of network attacks,
steps to launch an attack, and a taxonomy of attacks. We also introduce the main
categories of network anomaly detection methods with architectures, components,
and pros and cons. These concepts are used in detection and prevention methods
discussed in subsequent chapters.
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Chapter 3
A Systematic Hands-On Approach to Generate
Real-Life Intrusion Datasets

To evaluate a network anomaly detection or prevention, it is essential to test using
benchmark network traffic datasets. This chapter aims to provide a systematic
hands-on approach to generate real-life intrusion dataset. It is organized in three
major sections. Section 3.1 provides the basic concepts. Section 3.2 introduces
several benchmark and real-life datasets. Finally, Sect. 3.3 provides a systematic
approach toward generation of an unbiased real-life intrusion datasets. We establish
the importance of intrusion datasets in the development and validation of a
detection mechanism or a system, identify a set of requirements for effective dataset
generation, and discuss several attack scenarios.

3.1 Introduction

In network intrusion detection, particularly when using anomaly-based detection,
it is difficult to accurately evaluate, compare, and deploy a system that is expected
to detect novel attacks due to scarcity of adequate datasets. Before deploying in
any real-world environment, an anomaly-based network intrusion detection system
(ANIDS) needs to be tested and evaluated using real and labeled network traffic
traces with a comprehensive set of intrusions or attacks. To generate such a dataset
is a challenging task, since not many such datasets are available. Therefore, the
detection methods and systems are evaluated only with a few publicly available
datasets that lack comprehensiveness and completeness. For example, Cooperative
Association for Internet Data Analysis (CAIDA) distributed denial of service
(DDoS) 2007, Lawrence Berkeley National Laboratory (LBNL), and ICSI datasets
are heavily anonymized without payload information and decreasing research
utility. Researchers also frequently use a single NetFlow-based intrusion dataset
found at [33] with limited number of attacks.
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3.1.1 Importance of Datasets

In network traffic anomaly detection, it is always important to test and evaluate
detection methods and systems using datasets as network scenarios evolve. We
enumerate the following reasons to justify the importance of a dataset:

• Repeatability of experiments: Researchers should be able to repeat experiments
with the dataset and get similar results, when using the same approach. This is
important because the proposed method should cope with the evolving nature of
attacks and network scenarios.

• Validation of new approaches: New methods and algorithms are being contin-
uously developed to detect network anomalies. It is necessary that every new
approach be validated.

• Comparison of different approaches: State-of-the-art network anomaly detection
methods must not only be validated but also show improvements over older
methods in performance in a quantifiable manner. For example, the DARPA 1998
dataset [18] is commonly used for performance evaluation of anomaly detection
systems [16].

• Parameters tuning: To properly obtain the model to classify the normal traffic
from malicious traffic, it is necessary to tune model parameters. Network
anomaly detection generally assumes the normality model to identify malicious
traffic. For example, Cemerlic et al. [5] and Thomas et al. [37] use the attack-free
part of the DARPA 1999 dataset for training to estimate parameter values.

• Dimensionality or the number of features: An optimal set of features or attributes
should be considered to represent normal as well as all possible attack instances.

3.1.2 Requirements

Although good datasets are necessary for validating and evaluating IDSs, generating
such datasets is a time-consuming task. A dataset generation approach should meet
the following requirements:

• Real world: A dataset should be generated by monitoring the daily situation in a
realistic way, such as the daily network traffic of an organization.

• Completeness in labeling: The labeling of traffic as benign or malicious must be
backed by proper evidence for each instance. The aim these days should be to
provide labeled datasets at both packet and flow levels for each piece of benign
and malicious traffic.

• Correctness in labeling: Given a dataset, labeling of each traffic instance must
be correct. This means that our knowledge of security events represented by the
data has to be certain.

• Sufficient trace size: The generated dataset should be unbiased in terms of size in
both benign and malicious traffic instances.
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• Concrete feature extraction: Extraction of an optimal set of concrete features
when generating a dataset is important because such features play an important
role during validating a detection mechanism.

• Diverse attack scenarios: With the increasing frequency, size, variety, and
complexity of attacks, intrusion threats have become more complex including
the selection of targeted services and applications. When contemplating attack
scenarios for dataset generation, it is important to tilt toward a diverse set of
multistage attacks that are recent.

• Ratio between normal and attack traffic: Most existing datasets have been created
based on the following assumptions.

– Anomalous traffic is statistically different from normal traffic [10].
– The majority of network traffic instances is normal [29].

Unlike most traditional intrusion datasets, DDoS attacks do not follow these
assumptions because they change attack traffic rate dynamically and employ
considered multistage attacks.

3.2 Existing Datasets

As discussed earlier, datasets play an important role in the testing and validation of
network anomaly detection methods or systems. A good quality dataset allows us to
identify the ability of a method or a system to detect anomalous behavior, when
deployed in real operating environments. Several datasets are publicly available
for testing and evaluation of network anomaly detection methods and systems. A
taxonomy of network intrusion datasets is shown in Fig. 3.1. We briefly discuss each
of them below.

3.2.1 Synthetic Datasets

Synthetic datasets are generated to meet specific needs or certain conditions or tests
that real data satisfy. Such datasets are useful when designing any prototype system
for theoretical analysis so that the design can be refined. As stated previously, a
synthetic dataset can be used to test and create many different types of test scenarios.
This enables designers to build realistic behavior profiles for normal users and
attackers based on the dataset to validate an IDS. This provides initial validation of
a specific method or a system; if the results prove to be satisfactory, the developers
then continue to evaluate a method or a system in a specific domain.
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Fig. 3.1 A taxonomy of network intrusion datasets

3.2.2 Benchmark Datasets

We discuss seven publicly available benchmark datasets generated using simulated
environments in large networks, executing different attack scenarios.

3.2.2.1 KDDcup99 Dataset

Since 1999, the KDDcup99 dataset [14] has been the most widely used dataset
for evaluation of network-based anomaly detection methods and systems. This
dataset was prepared by Stolfo et al. [34] and is built upon the data captured
in the DARPA98 IDS evaluation program. The KDD training dataset consists of
approximately 4;900;000 single connection vectors, each of which contains 41

features and is labeled as either normal or attack of a specific attack type. The test
dataset contains about 300;000 samples with a total 24 training attack types, with an
additional 14 attack types in the test dataset only [11]. The represented attacks are
mainly four types: denial of service, remote to local, user to root, and surveillance
or probing.

• Denial of service (DoS): An attacker attempts to prevent valid users from using a
service provided by a system. Examples include SYN flood, smurf, and teardrop
attacks.

• Remote to local (r2l): Attackers try to gain entrance to a victim machine without
having an account on it. An example is the password guessing attack.

• User to root (u2r): Attackers have access to a local victim machine and attempt
to gain privilege of a superuser. Examples include buffer overflow attacks.
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• Probe: Attackers attempt to acquire information about the target host. Some
examples of probe attacks are port-scans and ping-sweep attacks.

In this dataset, background traffic was simulated and the attacks were all known.
The training set, consisting of 7 weeks of labeled data, is available to the developers
of intrusion detection systems. The testing set also consists of simulated background
traffic and known attacks, including some attacks that are not present in the training
set. The distribution of normal and attack traffic for this dataset is reported in
Table 3.1. We also identify the services associated with each category of attacks
[9, 15] and summarize them in Table 3.2.

3.2.2.2 NSL-KDD Dataset

Analysis of the KDD dataset showed that there were two important issues with
the dataset which highly affect the performance of evaluated systems resulting in
poor evaluation of anomaly detection methods [36]. To address these issues, a new
dataset known as NSL-KDD [25], consisting of selected records of the complete
KDD dataset, was introduced. This dataset is publicly available for researchers1 and
has the following advantages over the original KDD dataset:

• It does not include redundant records in the training set, so classifiers will not be
biased toward more frequent records.

• There are no duplicate records in the test set. Therefore, the performance of
learners is not biased by the methods which have better detection rates on
frequent records.

• The number of selected records from each difficulty level is inversely propor-
tional to the percentage of records in the original KDD dataset. As a result, the
classification rates of various machine learning methods vary in a wider range,
which makes it more efficient to have an accurate evaluation of various learning
techniques.

• The number of records in the training and testing sets is reasonable, which
makes it affordable to run experiments on the complete set without the need
to randomly select a small portion. Consequently, evaluation results of different
research groups are consistent and comparable.

The NSL-KDD dataset consists of two parts: (i) KDDTrainC and (ii) KDDTestC.
The distribution of attack and normal instances in the NSL-KDD dataset is shown
in Table 3.3.

1http://www.iscx.ca/NSL-KDD/

http://www.iscx.ca/NSL-KDD/
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Table 3.3 Distribution of normal and attack traffic instances in NSL-KDD dataset

Dataset DoS u2r r2l Probe Normal Total

KDDTrainC 45;927 52 995 11;656 67;343 125;973

KDDTestC 7;458 67 2;887 2;422 9;710 22;544

3.2.2.3 DARPA 2000 Dataset

A DARPA2 evaluation project [23] targeted the detection of complex attacks that
contain multiple steps. Two attack scenarios were simulated in the DARPA 2000
evaluation contest, namely, Lincoln Laboratory scenario DDoS (LLDOS) 1:0 and
LLDOS 2:0. To achieve variations, these two attack scenarios were carried out
over several network and audit scenarios. These sessions were grouped into four
attack phases: (a) probing, (b) breaking into the system by exploiting vulnerability,
(c) installing DDoS software for the compromised system, and (d) launching
DDoS attack against another target. LLDOS 2:0 is different from LLDOS 1:0

in that attacks are more stealthy and thus harder to detect. Since this dataset
contains multistage attack scenarios, it is also commonly used for evaluation of alert
correlation techniques.

3.2.2.4 DEFCON Dataset

The DEFCON3 dataset is another commonly used dataset for evaluation of IDSs
[8]. It contains network traffic captured during a hacker competition called Capture
The Flag (CTF), in which competing teams are divided into two groups: attackers
and defenders. The traffic produced during CTF is very different from real-
world network traffic since it contains only intrusive traffic without any normal
background traffic. Due to this limitation, DEFCON dataset has been found useful
only in evaluating alert correlation techniques.

3.2.2.5 CAIDA Dataset

CAIDA4 (Center for Applied Internet Data Analysis) collects many different types
of data and makes them available to the research community. CAIDA datasets
[4] are very specific to particular events or attacks. Most of its longer traces are
anonymized backbone traces without their payload. The CAIDA DDoS 2007 attack
dataset contains 1 h of anonymized traffic traces from DDoS attacks on August

2http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/index.html
3http://cctf.shmoo.com/data/
4http://www.caida.org/home/

http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/index.html
http://cctf.shmoo.com/data/
http://www.caida.org/home/
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4, 2007, which attempted to consume a large amount of network resources when
connecting to Internet servers. The traffic traces contain only attack traffic to the
victim and responses from the victim with 5 min split form. All traffic traces are in
pcap (tcpdump) format. The creators removed non-attack traffic as much as possible
when creating the CAIDA DDoS 2007 dataset.

3.2.2.6 LBNL Dataset

LBNL’s internal enterprise traffic traces are full header network traces [17] without
payload. This dataset suffers from heavy anonymization to the extent that scanning
traffic was extracted and separately anonymized to remove any information which
could identify individual IPs. The background and attack traffic in the LBNL dataset
are described below:

• LBNL background traffic: This dataset can be obtained from the Lawrence
Berkeley National Laboratory (LBNL) in the USA. Traffic in this dataset is
comprised of packet level incoming, outgoing, and internally routed traffic
streams at the LBNL edge routers. Traffic was anonymized using the tcpmkpub
tool [28]. The main applications observed in the internal and external traffic
are Web, email, and name services. Other applications like Windows services,
network file services, and backup were used by internal hosts. The details of each
service and information on each packet and other relevant description are given
in [27]. The background network traffic statistics of LBNL dataset are given in
Table 3.4.

• LBNL attack traffic: This dataset identifies attack traffic by isolating scans
in aggregate traffic traces. Scans are identified by flagging those hosts which
unsuccessfully probe more than 20 hosts, out of which 16 hosts are probed in
ascending or descending IP order [28]. Malicious traffic mostly consists of failed
incoming TCP SYN requests, i.e., TCP port scans targeted toward LBNL hosts.
However, there are also some outgoing TCP scans in the dataset. Most UDP
traffic observed in the data (incoming and outgoing) is comprised of successful
connections, i.e., host replies for the received UDP flows. Clearly, the attack
rate is significantly lower than the background traffic rate. Details of the attack
traffic in this dataset are shown in Table 3.4. Complexity and privacy were
two main reservations of the participants of the endpoint data collection study.
To address these reservations, the dataset creators developed a custom multi-

Table 3.4 Background and attack traffic information for the LBNL datasets

Background traffic Attack traffic

Date Duration (mins) LBNL hosts Remote hosts rate (packet/sec) rate (packet/sec)

10/04/2004 10 min 4,767 4,342 8.47 0.41

12/15/2004 60 min 5,761 10,478 3.5 0.061

12/16/2004 60 min 5,210 7,138 243.83 72
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Table 3.5 Background traffic information for four endpoints with high and low rates

Endpoint ID Endpoint type Duration (months) Total sessions Mean session rate (/sec)

3 Home 3 3,73,009 1.92

4 Home 2 4,44,345 5.28

6 University 9 60,979 0.19

10 University 13 1,52,048 0.21

Table 3.6 Endpoint attack traffic for two high-rate and two low-rate worms

Malware Release date Avg. scan rate (/sec) Port (s) used

Dloader-NY Jul 2005 46.84 sps TCP 1,35,139

Forbot-FU Sept 2005 32.53 sps TCP 445

Rbot-AQJ Oct 2005 0.68 sps TCP 1,39,769

MyDoom-A Jan 2006 0.14 sps TCP 3127–3198

threaded MS Windows tool using the Winpcap API [3] for data collection.
To reduce packet logging complexity at the endpoints, they only logged very
elementary session-level information (bidirectional communication between two
IP addresses on different ports) for the TCP and UDP packets. To ensure user
privacy, an anonymization policy was used to anonymize all traffic instances.

3.2.2.7 Endpoint Dataset

The background and attack traffic for the endpoint datasets are explained below.

• Endpoint background traffic: In the endpoint context, we see in Table 3.5 that
home computers generate significantly higher traffic volumes than office and
university computers because (i) they are generally shared between multiple
users, and (ii) they run peer-to-peer and multimedia applications. The large traffic
volumes of home computers are also evident from their high mean number of
sessions per second. To generate attack traffic, the developers infected Virtual
Machines (VMs) on the endpoints with different malware, viz., Zotob.G, Forbot-
FU, Sdbot-AFR, Dloader-NY, So-Big.E@mm, MyDoom.A@mm, Blaster, Rbot-
AQJ, and RBOT.CCC. Details of the malware can be found in [35]. Character-
istics of the attack traffic in this dataset are given in Table 3.6. These malwares
have diverse scanning rates and attack ports or applications.

• Endpoint attack traffic: The attack traffic logged at the endpoints is mostly
comprised of outgoing port scans. Note that this is the opposite of the LBNL
dataset, in which most attack traffic is inbound. Moreover, the attack traffic rates
at the endpoints are generally much higher than the background traffic rates of
the LBNL datasets. This diversity in attack direction and rates provides a sound
basis for performance comparison among scan detectors. For each malware,
attack traffic of 15 min duration was inserted in the background traffic for each
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endpoint at a random time instance. This operation was repeated to insert 100
nonoverlapping attacks of each worm inside each endpoint’s background traffic.

3.2.3 Real-Life Datasets

We discuss three real-life datasets created by collecting network traffic on several
consecutive days during a week or a month. The details include both normal as
well as attack traffic in appropriate proportions in the authors’ respective campus
networks (i.e., testbed).

3.2.3.1 UNIBS Dataset

The UNIBS packet traces [38] were collected on the edge router of the campus
network of the University of Brescia in Italy, on three consecutive working days.
The dataset includes traffic captured or collected and stored using 20 workstations,
each running the GT (Ground Truth) client daemon. The dataset creators collected
the traffic by running tcpdump on the faculty router, which was a dual Xeon Linux
box that connected the local network to the Internet through a dedicated 100 Mb/s
uplink. They captured and stored the traces on a dedicated disk of a workstation
connected to the router through a dedicated ATA controller.

3.2.3.2 ISCX-UNB Dataset

Real packet traces [30] were analyzed to create profiles for agents that generate real
traffic for HTTP, SMTP, SSH, IMAP, POP3, and FTP protocols. Various multistage
attack scenarios were explored to generate malicious traffic.

3.2.3.3 KU Dataset

The Kyoto University dataset5 is a collection of network traffic data obtained from
honeypots. The raw dataset obtained from the honeypot system consisted of 24

statistical features, out of which 14 significant features were extracted [31]. The
dataset developers extracted ten additional features that could be used to investigate
network events inside the university more effectively. However, they used 14

conventional features only during training and testing.

5http://www.takakura.com/kyoto_data

http://www.takakura.com/kyoto_data
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3.2.4 Discussion

The datasets described above are valuable assets for the intrusion detection com-
munity. However, the benchmark datasets suffer from the fact that they are not
good representatives of real-world traffic. For example, the DARPA dataset has
been questioned about the realism of the background traffic [19, 21] because
it is synthetically generated. In addition to the difficulty of simulating real-life
network traffic, there are additional challenges in IDS evaluation [22]. These include
difficulties in collecting attack scripts and victim software, differing requirements
for testing signature-based vs. anomaly-based IDSs and host-based vs. network-
based IDSs.

3.3 Hands-On for Real-Life Dataset Generation

As noted above, the generation of an unbiased real-life intrusion dataset incorporat-
ing a large number of real-world attacks is important to evaluate network anomaly
detection methods and systems. In this chapter, we describe the generation of three
real-life network intrusion datasets6 including (a) a TUIDS (Tezpur University
Intrusion Detection System) intrusion dataset, (b) a TUIDS coordinated port scan
dataset, and (c) a TUIDS DDoS dataset at both packet and flow levels [12].
The resulting details and supporting infrastructure is discussed in the following
subsections.

3.3.1 Testbed Network Architecture

The TUIDS testbed network consists of 250 hosts, 15 Layer 2(L2) switches, 8
Layer 3 (L3) switches, 3 wireless controllers, and 4 routers that compose 5 different
networks inside the Tezpur University campus. The architectures of the TUIDS
testbed and TUIDS testbed for DDoS dataset generation are given in Figs. 3.2
and 3.3, respectively. The hosts are divided into several VLANs, each VLAN
belonging to an L3 switch or an L2 switch inside the network. All servers are
installed inside a DMZ (demilitarized zone)7 to provide an additional layer of
protection in the security system of an organization.

6http://agnigarh.tezu.ernet.in/~dkb/resources.html
7A demilitarized zone is a network segment located between a secure local network and unsecure
external networks (Internet). A DMZ usually contains servers that provide services to users on the
external network, such as Web, mail, and DNS servers, that are hardened systems. Typically, two
firewalls are installed to form the DMZ.

http://agnigarh.tezu.ernet.in/~dkb/resources.html
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Fig. 3.2 Testbed network architecture used during TUIDS dataset generation

Fig. 3.3 Testbed network architecture used during DDoS dataset generation
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Table 3.7 Servers and their services running on the testbed network

Server Operating system Services Provider

Main server Ubuntu 10.10 Web, eMail Apache 2.4.3, Dovecot 2.1.14

Network file server Ubuntu 10.10 Samba Samba 4.0.2

Telnet server Ubuntu 10.10 Telnet telnet-0.17-36bulid1

FTP server Ubuntu 10.10 ftp vsFTPd 2.3.0

Windows server Windows server 2003 Web IIS v7.5

MySQL server Ubuntu 10.10 Database MySQL 5.5.30

3.3.2 Network Traffic Generation

To generate real-life normal and attack traffic, we configured several hosts, work-
stations, and servers in the TUIDS testbed network. The network consists of six
interconnected Ubuntu 10.10 workstations. On each workstation, we have installed
several servers including a network file server (Samba), a mail server (Dovecot),
a telnet server, an FTP server, a Web server, and an SQL server with PHP
compatibility. We also installed and configured 4 Windows Servers 2003 to exploit
a diverse set of known vulnerabilities against the testbed environment. Servers and
their services running in our testbed are summarized in Table 3.7.

The normal network traffic is generated based on the day-to-day activities of
users and especially generated traffic from configured servers. It is important to
generate different types of normal traffic. So, we capture traffic from students,
faculty members, system administrators, and office staff on different days within
the university. The attack traffic is generated by launching attacks within the testbed
network in three different subsets, viz., a TUIDS intrusion dataset, a coordinated
scan dataset, and a DDoS dataset. The attacks launched in the generation of these
real-life datasets are summarized in Table 3.8.

As seen in the table above, 22 distinct attack types (1–22 in Table 3.8) were used
to generate the attack traffic for the TUIDS intrusion dataset; six attacks (17–22 in
Table 3.8) were used to generate the attack traffic for the coordinated scan dataset
and finally six attacks (23–28 in Table 3.8) were used to generate the attack traffic
for a DDoS dataset with combination of TCP, UDP, and ICMP protocols.

3.3.3 Attack Scenarios

The attack scenarios start with information gathering techniques collecting target
network IP ranges, identities of name servers, mail servers, user email accounts,
etc. This is achieved by querying the DNS for resource records using network
administrative tools like nslookup and dig. nslookup and dig commands work as
follows.
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Table 3.8 List of real-life attacks and their generation tools

Attack name Generation tool Attack name Generation tool

1.bonk targa2.c 15.linux-icmp linux-icmp.c

2.jolt targa2.c 16.syn flood synflood.c

3.land targa2.c 17.window-scan nmap/rnmap

4.saihyousen targa2.c 18.syn-scan nmap/rnmap

5.teardrop targa2.c 19.xmasstree-scan nmap/rnmap

6.newtear targa2.c 20.fin-scan nmap/rnmap

7.1234 targa2.c 21.null-scan nmap/rnmap

8.winnuke targa2.c 22.udp-scan nmap/rnmap

9.oshare targa2.c 23.syn-flood(DDoS) LOIC

10.nestea targa2.c 24.rst-flood(DDoS) Trinity v3

11.syndrop targa2.c 25.udp-flood(DDoS) LOIC

12.smurf smurf4.c 26.ping-flood(DDoS) DDoS ping v2.0

13.opentear opentear.c 27.fraggle udp-flood(DDoS) Trinoo

14.fraggle fraggle.c 28.smurf icmp-flood(DDoS) TFN2K

Command: root@monowar-TravelMate-5744Z:/mhb] nslookup google.co.in
Meaning: Find out “A” details of a domain

Command: root@monowar-TravelMate-5744Z:/mhb] dig springlink.com
Meaning: Find out “A” details of a domain

We consider six attack scenarios when collecting real-life network traffic for
dataset generation.

3.3.3.1 Scenario 1: Denial of Service Using Targa

This attack scenario is designed toward performing attacks on a target using the
targa8 tool until it is successful. Targa is a very powerful tool to quickly damage
a particular network belonging to an organization within short time interval. Targa
is program in C that can be used to launch eleven different denial of service
(DoS) attacks. It was developed by Mixter and initial version is available at https://
dl.packetstormsecurity.net/DoS/targa.c for download. But the revised version is
available at ftp://ftp.ntua.gr/mirror/technotronic/denial/targa2.c for download. The
attacker has both option to launch individual attacks and as a whole all attacks at a
time. targa:c is the original version of the program that contains only eight varieties
of DoS attacks. But targa2:c contains eleven different DoS attacks. To compile
targa2:c, it needs arpa, netinet, time, unistd, netdb, string, and sys C libraries.

8http://packetstormsecurity.com/

https://dl.packetstormsecurity.net/DoS/targa.c
https://dl.packetstormsecurity.net/DoS/targa.c
ftp://ftp.ntua.gr/mirror/technotronic/denial/targa2.c
http://packetstormsecurity.com/


86 3 A Systematic Hands-On Approach to Generate Real-Life Intrusion Datasets

To compile and execute the targa2.c, you can use the following commands:

root@monowar-TravelMate-5744Z:/targa]make targa2
cc targa2.c -o targa2
root@monowar-TravelMate-5744Z:/targa]./targa2
targa 2.0 by Mixter
usage: ./targa <startIP> <endIP> Œ-t type� Œ-n repeats�
type ./targa - -h to get more help

As seen in the output of the above command, targa2 needs three parameters
such as:

• IP range where attack traffic will send
• Type of attack that you want to launch
• Number of times you want to repeat a particular attack to the target

We ran targa2 by specifying different parameter values such as IP ranges, attacks
to run, and number of times to repeat the attack. Targa2 attack tool works as follows
for various attacks.

Command: root@monowar-TravelMate-5744Z:/targa]./targa2 172.16.153.15
172.16.25.231 -t0 1
Meaning: It runs all the attacks once with IP range provided in the command.

Command: root@monowar-TravelMate-5744Z:/targa]./targa2 172.16.153.15
172.16.25.231 -t1 5
Meaning: It runs bonk attack and repeats five times in the specified IP range
provided in the command. Bonk basically manipulates fragment offset field in
TCP/IP packets. By manipulating this number, it causes the attempted machine to
reorganize a packet that is too large to be reassembled.

Command: root@monowar-TravelMate-5744Z:/targa]./targa2 172.16.153.15
172.16.25.231 -t2 5
Meaning: It runs jolt attack and repeats five times in the specified IP range
provided in the command. Jolt communicated the target machine with a very large,
fragmented ICMP packets. It fragments the ICMP packets in such a way to that the
target machine is incompatible to reorganize them for use.

Command: root@monowar-TravelMate-5744Z:/targa]./targa2 172.16.153.15
172.16.25.231 -t3 5
Meaning: It runs land attack and repeats five times in the specified IP range provided
in the command. This attack is launched by sending a TCP SYN spoofed packet with
the IP address of the target host and an open port using as source and destination
port both. Land makes the attempted machine to respond to itself in continuous.
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Command: root@monowar-TravelMate-5744Z:/targa]./targa2 172.16.153.15
172.16.25.231 -t4 5
Meaning: It runs nestea attack and repeats five times in the specified IP range
provided in the command. It launches IP fragments to a machine which is connected
to the Internet or a network. Nestea is specific to the Linux operating system and
exploits a bug (commonly known as the “off by one IP header” bug) in the Linux
refragmentation code.

Command: root@monowar-TravelMate-5744Z:/targa]./targa2 172.16.153.15
172.16.25.231 -t5 5
Meaning: It runs newtear attack and repeats five times in the specified IP range
provided in the command. Newtear attempts to exploit a problem with a smarter
way. The Microsoft TCP/IP stack handles exceptions caused due to misformed UDP
header information, which changes padding length and increases the UDP header
length field to twice the size of the packet.

Command: root@monowar-TravelMate-5744Z:/targa]./targa2 172.16.153.15
172.16.25.231 -t6 5
Meaning: It runs syndrop attack and repeats five times in the specified IP range
provided in the command. When a system reconstructs a packet, it performs a loop
to store it in a new buffer. Actually, they control the size of the packet only if it is
too big. If the size of the packet is too small, it can cause a kernel problem, which
may lead to crash of the system.

Command: root@monowar-TravelMate-5744Z:/targa]./targa2 172.16.153.15
172.16.25.231 -t7 5
Meaning: It runs teardrop attack and repeats five times in the specified IP range
provided in the command. Teardrop exploits an overlapping IP fragment bug that
causes the TCP/IP fragmentation reassembly code to improperly handle overlapping
IP fragments. The fragmentation offset of the second segment is smaller than the
size of the first and the offset plus the size of the second. This means that the second
fragment contains the first.

Command: root@monowar-TravelMate-5744Z:/targa]./targa2 172.16.153.15
172.16.25.231 -t8 5
Meaning: It runs winnuke attack and repeats five times in the specified IP range
provided in the command. Winnuke is a window-based attack by sending OOB
(out-of-band) data to an IP address of a Windows-based machine connected to the
Internet or network. This attack program connects through port 139, but other ports
are also vulnerable if they are open. Upon receiving OOB data, the victim Windows
machine cannot handle it and results with an exhibition of odd behavior.

Command: root@monowar-TravelMate-5744Z:/targa]./targa2 172.16.153.15
172.16.25.231 -t9 5
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Meaning: It runs 1234 attack and repeats five times in the specified IP range pro-
vided in the command. 1234 attack is launched by sending an oversize ping packet
which cannot be handled by the network software. As a result the victim machine
becomes very slow and ultimately it hangs. It may also result with loss of data.

Command: root@monowar-TravelMate-5744Z:/targa]./targa2 172.16.153.15
172.16.25.231 -t10 5
Meaning: It runs saihyousen attack and repeats five times in the specified IP range
provided in the command. This attack is responsible for some firewalls to crash. It
is launched by sending a stream of UDP packets. Saihyousen attack can consume
all of the available resources and eventually cause a very messy reboot if this occurs
continuously for about 10–30 s after the machine is frozen.

Command: root@monowar-TravelMate-5744Z:/targa]./targa2 172.16.153.15
172.16.25.231 -t11 5
Meaning: It runs oshare attack and repeats five times in the specified IP range
provided in the command. Oshare is a DoS attack. It is caused by sending a
novel packet structure. The consequences of these attacks can be different such
as complete system crash, CPU load increasing, or momentary delays, depending
upon the configuration of the computer. This will cause effect almost all versions
of Windows 98 and NT-based systems with varying degrees related to the involved
hardware.

3.3.3.2 Scenario 2: Probing Using NMAP

In this scenario, we attempt to acquire information about the target host and then
launch the attack by exploiting the vulnerabilities found using the nmap9 tool. nmap
is also known as network mapper, a free open-source port scanning tool for both
attacker and network administrator. It is basically used to identify the host alive and
services they are offering. It supports a large number of scans such as UDP, TCP
connect, TCP Syn, FTP proxy, ICMP, FIN, ACK sweep, Xmas tree, SYN sweep,
IP protocol, and NULL scan. nmap accepts several commands to discover host or
services, but a few of them are explained below.

Command: root@monowar-TravelMate-5744Z:/nmap]nmap -v 172.16.5.19
Meaning: Scan a host or an IP address (IPv4) with more information.

Command: root@monowar-TravelMate-5744Z:/nmap]nmap -sS -PN -p 1-65535
172.16.*.*
Meaning: It scans whole IP range (IPv4) with port range (1-65535). It skips ping
scan due to -PN option and assume that host is up.

9http://nmap.org/

http://nmap.org/
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Command: root@monowar-TravelMate-5744Z:/nmap]nmap -sP 172.16.*.*
Meaning: It scans whole IP range to discover alive host.

3.3.3.3 Scenario 3: Coordinated Scan Using RNMAP

This scenario starts with a goal to perform coordinated port scans to single and
multiple targets. Tasks are distributed among multiple hosts for individual actions
which may be synchronized. We use the rnmap10 tool to launch coordinated scans in
our testbed network during the collection of traffic. rnmap is also known as remote
nmap that contains both client and server programs. Clients are connected with
centralized server to launch port scanning using nmap tool. Client version of rnmap
is shown in Fig. 3.4

Fig. 3.4 Client version of rnmap(remote nmap) tool

10http://rnmap.sourceforge.net/

http://rnmap.sourceforge.net/
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3.3.3.4 Scenario 4: User to Root Using Brute Force SSH

These attacks are very common against networks as they tend to break into accounts
with weak username and password combinations. This attack has been designed
with the goal of acquiring an SSH account by running a dictionary brute force attack
against our central server. We use the brutessh11 tool and a customized dictionary
list. The dictionary consists of over 6;100 alphanumeric entries of varying length.
We executed the attack for 60 min, during which superuser credentials were returned
from the server. This ID and password combination was used to download other
users’ credentials immediately. It combines the username and password to get into
the SSH server. It is a multi-threading program that uses 12 threads by default to
accomplish the task. It has four different options:
-h: destination host
-u: username to force
-d: password file
-t: number of threads (default 12)
Command: root@monowar-TravelMate-5744Z:/brutessh]./brutessh.py
-h 172.16.5.19 -u root -d mypass.txt
Meaning: It tries to authenticate superuser password of the target host by matching
with mypass.txt.

3.3.3.5 Scenario 5: Distributed Denial of Service Using Agent-Handler
Network

This scenario mainly attempts to exploit an agent-handler network to launch the
DDoS attack in the TUIDS testbed network. The agent-handler network consists of
clients, handlers, and agents. The handlers are software packages that are used by
the attacker to communicate indirectly with the agents. The agent software exists in
compromised systems that will eventually carry out the attack on the victim system.
The attacker may communicate with any number of handlers, thus making sure that
the agents are up and running. We use Trinity v3, TFN2K, Trinoo, and DDoS ping
2.0 to launch the attacks in our testbed.

Trinity v3 [6] is a DDoS attack launching tool that usually controlled by IRC
bots with the help of agents. The agent binary is installed in the Linux system and
connects to the IRC server through port number 6,667. It has an agent known as
x-force. Trinity v3 can be launched by using the following command.

Command: root@monowar-TravelMate-5744Z:/brutessh]./trinity trnd usr1
172.16.23.44 1000
Meaning: It sends random flags flooding traffic to the target 172.16.23.44 for 1000 s.
usr1 is the agent’s password.

11http://www.securitytube-tools.net/

http://www.securitytube-tools.net/
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Trinity can use any of the following flood types during execution based on the
command request:

tudp: UDP flood
tfrag: fragment flood
tsyn: SYN flood
trst: RST flood
trnd: random flags flood
tack: ACk flood
testab: establish flood
tnull: null flood

TFN2K [6] is a tool for launching DDoS attacks in distributed mode. It was
written by Mixter and available for download at http://packetstormsecurity.com/. It
has two parts: server and client. The server runs on a host that waiting for accepting
commands from clients. To see the different options, type the following command:

Command: root@monowar-TravelMate-5744Z:/tfn2k]./tfn
usage: ./tfn <options>
Œ-P protocol� Protocol for server communication. Can be ICMP, UDP or TCP. Uses
a random protocol as default
Œ-D n� Send out n bogus requests for each real one to decoy targets
Œ-S host/ip� Specify your source IP. Randomly spoofed by default, you need to use
your real IP if you are behind spoof filtering routers
Œ-f hostlist� Filename containing a list of hosts with TFN servers to contact
Œ-h hostname� To contact only a single host running a TFN server
Œ-i target string� Contains options/targets separated by “@”; see below
Œ-p port� A TCP destination port can be specified for SYN floods
<-c command ID> 0 - Halt all current floods on server(s) immediately
1 - Change IP antispoof-level (evade rfc2267 filtering)
usage: -i 0 (fully spoofed) to -i 3 (/24 host bytes spoofed).
2 - Change packet size, usage: -i <packet size in bytes>
3 - Bind root-shell to a port, usage: -i <remote port>
4 - UDP flood, usage: -i victim@victim2@victim3@. . .
5 - TCP/SYN flood, usage: -i victim@. . . Œ-p destination port�
6 - ICMP/PING flood, usage: -i victim@. . .
7 - ICMP/SMURF flood, usage: -i victim@broadcast@broadcast2@. . .
8 - MIX flood (UDP/TCP/ICMP interchanged), usage: -i victim@. . .
9 - TARGA3 flood (IP stack penetration), usage: -i victim@. . .
10 - Blindly execute remote shell command, usage -i command

Command: root@monowar-TravelMate-5744Z:/tfn2k]./td
Meaning: Run the server host and make ready server for accepting command from
client host.

http://packetstormsecurity.com/
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Command: root@monowar-TravelMate-5744Z:/tfn2k]./tfn -h 14.243.26.30 -c8
23.246.65.23
Meaning: TFN2K sends mixed flood traffic UDP/TCP/ICMP interchangeably to the
target host.

Following command stops the attack from further sending malicious traffic to the
target.
Command: root@monowar-TravelMate-5744Z:/tfn2k]./tfn -h 14.243.26.30 -c0
Meaning: Stops the attack

In this tool, it verifies password when it tries to start and stop the attacks. This
password is same with the password given during installation.

Trinoo [6] is another tool for launching DDoS attacks. TFN2K is stealthy in
nature because it uses ICMP protocol. So, there are no ports to detect compromised
host. Trinoo uses TCP and UDP protocols and it uses the following ports:

• Attacker to master: 27665/TCP
• Master to daemon: 27444/UDP
• Daemon to master: 31335/UDP

In trinoo, daemons are stored on the systems that actually launch the attack;
however, master controls the daemon systems. At this point, it states below how to
control master and daemon. The following are the commands used to control the
master:

• Die: Halts the master
• Quit: Logs off of the master
• Mtimer N: DoS time sets for n number of seconds. It may be between 1 and 1999,

if the value is less than one, it defaults to 300, and if it is greater than 2000, it
defaults to 500.

• Dos IP: It launches a DoS attack against the specified IP address
• Die pass: Disables all broadcast hosts
• Mping: Sends a ping message to every active host on the broadcast address
• Mdos <ip1:ip2:ip3>: Similar to DoS IP, but it sends multiple DoS attack

commands to each host.
• Info: Shows the version number and information about the program
• Msize: Sets the size of the buffer used during the DoS attacks
• Nslookup host: Performs a name server lookup of the specified host
• Killdead: Sends a message to all hosts with the goal of finding hosts that do not

respond and removing them from the list
• Usebackup: Switches the program to use the file created by the kill dead

command, which contains only the active hosts
• Bcast: Lists all active hosts
• Help Œcmd�: Specifies additional information about a given command
• Mstop: Attempts to stop a DoS attack. This feature is listed in the help command.
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Fig. 3.5 DDoSPing 2.0 tool

The following are the commands used to access the trinoo daemons:

• aaa pass IP: Performs a DoS attack against the specified IP address
• bbb pass N: Sets the time limit for the DoS attack
• d1e pass: Used to shut down the daemons
• rsz N: Sets the size of the buffer that is used for the DoS attacks
• xyz pass 123:ip1:ip2:ip3: Performs DoS attacks against multiple IP addresses

DDoSping 2.0 [6] is a tool for scanning various DDoS agents that runs on the
windows platform. Examples of DDoS agents are Trinoo, TFN2K, and Stacheldraht.
The GUI for DDoSPing 2.0 is shown in Fig. 3.5.

Once it detects DDoS agents, the network administrator or network defender can
take immediate action against those agents to keep always secure entire network.

3.3.3.6 Scenario 6: Distributed Denial of Service Using IRC Botnet

Botnets are emerging threats to all organizations because they can compromise a
network and steal important information and distribute malware. Botnets combine
individual malicious behaviors into a single platform by simplifying the actions
needed to be performed by users to initiate sophisticated attacks against computers
or networks around the world. These behaviors include coordinated scanning,
distributed denial of service (DDoS) activities, direct attacks, indirect attacks, and
other deceitful activities taking place across the Internet.
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The main goal of this scenario is to perform distributed attacks using infected
hosts on the testbed. Internet relay chat (IRC) bot network allows users to create
public, private, and secret channels. For this, we use a LOIC12 and an IRC-
based DDoS attack generation tool. The IRC systems have several other significant
advantages for launching DDoS attacks. Among the three important benefits are (i)
they afford a high degree of anonymity, (ii) they are difficult to detect, and (iii) they
provide a strong, guaranteed delivery system. Furthermore, the attacker no longer
needs to maintain a list of agents, since he can simply log on to the IRC server and
see a list of all available agents. The IRC channels receive communications from the
agent software regarding the status of the agents (i.e., up or down) and participate
in notifying the attackers regarding the status of the agents.

LOIC is a power tool for launching DDoS attacks through IRC botnet. It was
developed by Praetox Technologies. It can send large sequence of UDP, TCP, or
HTTP requests to the target server. It uses anonymous group of attacks and has an
option to count the client to the IRC. So, it controls through IRC protocol. GUI for
LOIC is shown in Fig. 3.6.

Fig. 3.6 LOIC tool

12http://sourceforge.net/projects/loic/

http://sourceforge.net/projects/loic/
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It works in three steps:

• Run the tool.
• Enter the URL of the website in the URL field and click on Lock O. Then, select

attack method (TCP, UDP, or HTTP).
• Change other parameters as per choice or leave it to the default. Now click on the

Big Button labeled as IMMA CHARGIN MAH LAZER. Then it immediately
mounts the attack to the target.

3.3.4 Capturing Traffic

The key tasks in network traffic monitoring are lossless packet capturing and precise
time stamping. Therefore, software or hardware is required with a guarantee that
all traffic is captured and stored. The real network traffic is captured by using
Libpcap [13] library, an open-source C library offering an interface for capturing
link-layer frames over a wide range of system architectures. It provides a high-
level common Application Programming Interface (API) to the different packet
capture frameworks of various operating systems. The offered abstraction layer
allows programmers to rapidly develop highly portable applications. A hierarchy
of network traffic capturing components is given in Fig. 3.7 [7].

Libpcap defines a common standard format for files in which captured frames
are stored, also known as the tcpdump format, currently a de facto standard used
widely in public network traffic archives. Modern kernel-level capture frameworks
on UNIX operating systems are mostly based on the BSD (or Berkeley) Packet
Filter (BPF) [20]. The BPF is a software device that taps network interfaces,

Fig. 3.7 Hierarchy of network traffic capturing components
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copying packets into kernel buffers and filtering out unwanted packets directly in
interrupt context. Definitions of packets to be filtered can be written in a simple
human readable format using Boolean operators and can be compiled into a pseudo-
code to be passed to the BPF device driver by a system call. The pseudo-code
is interpreted by the BPF Pseudo-Machine, a lightweight, high-performance, state
machine specifically designed for packet filtering. Libpcap also allows programmers
to write applications that transparently support a rich set of constructs to build
detailed filtering expressions for most network protocols. A few Libpcap system
calls can be read (these Boolean expressions) directly from user’s command line,
compiled into pseudo-code, and passed to the Berkeley Packet Filter. Libpcap and
the BPF interact to allow network packet data to traverse several layers to finally be
processed and transformed into capture files (i.e., tcpdump format) or into samples
for statistical analysis.

With the goal of preparing both packet and flow-level datasets, we capture
both packet and NetFlow traffic from different locations in the TUIDS testbed.
The capturing period started at 08:00:05am on Monday February 21, 2011, and
continuously ran for an exact duration of 7 days, ending at 08:00:05am on Sunday
February 27. Attacks were executed during this period for the TUIDS intrusion and
the coordinated scan datasets. DDoS traffic was also collected for the same amount
of time but during October 2012 with several variations of real-time DDoS attacks.
Figure 3.8 illustrates the protocol composition and the average throughput during
the last hour of data capture for the TUIDS intrusion dataset seen in our lab.

We use a tool known as Lossless Gigabit Remote Packet Capture with Linux
(Gulp13) for capturing packet level traffic in a mirror port as shown in the TUIDS
testbed architecture. Gulp reads packets directly from the network card and writes
to the disk at a high rate of packet capture without dropping packets. For low-rate
packets, Gulp flushes the ring buffer if it has not written anything in the last second.
Gulp writes into even block boundaries for excellent writing performance when the
data rate increases. It stops filling the ring buffer after receiving an interrupt, but it
would write into the disk whatever remains in the ring buffer. Example commands
of Gulp are given below.

Command: gulp -i eth1 > pcapfile1
Meaning: It captures the raw traffic from default ethernet and storing into pcapfile1.

Command: gulp -i eth1 -d > pcapfile1
Meaning: Capture and GRE-decapsulate an ERSPAN feed and save the result to
disk.

Command: gulp -i eth1 -d | tcpdump -r - -s0 -w pcapfile1
Meaning: Capture, decapsulate, and then filter with tcpdump before saving.

13http://staff.washington.edu/corey/gulp/

http://staff.washington.edu/corey/gulp/
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Fig. 3.8 (a) Composition of protocols and (b) Average throughput during last hour of data capture
for the TUIDS intrusion dataset seen in our lab’s traffic

Command: gulp -i eth1 -d | taskset -c 2 tcpdump -r - -s0 -w pcapfile1.
Meaning: If you have more than 2 CPUs, run tcpdump and gulp on different ones.

Command: gulp -i eth1 > pcapfile1; gulp -d -i - < pcapfile1 > pcapfile2
Meaning: Capture everything to disk; then decapsulate offline.

Command: gulp -i eth1 -d | /usr/sbin/wireshark -i - -k
Meaning: Capture, decapsulate, and feed into wireshark.

Command: gulp -i eth1 -C 10 -W 10 -o pcapdir
Meaning: Capture to 1000MB files, keeping just the most recent 10 (files).

In the last few years, NetFlow has become the most popular approach for IP
network monitoring, since it helps cope with the scalability issues introduced by
increasing network speeds. Now major vendors offer flow-enabled devices. An
example is a Cisco router with NetFlow. A NetFlow is a stream of packets that
arrives on a source interface with the key values shown in Fig. 3.9. A key is an
identified value for a field within the packet. Cisco routers have NetFlow features
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Fig. 3.9 Common NetFlow parameters

that can be enabled to generate NetFlow records. The principle of NetFlow is as
follows. When the router receives a packet, its NetFlow module scans the source
IP address, the destination IP address, the source port number, the destination port
number, the protocol type, the type of service (ToS) bit in IP header, and the input or
output interface number on the router of the IP packet, to judge whether it belongs
to a NetFlow record that already exists in the cache. If so, it updates the NetFlow
record; otherwise, a new NetFlow record is generated in the cache. The expired
NetFlow records in the cache are exported periodically to a destination IP address
using a UDP port.

For capturing NetFlow traffic, we need a NetFlow collector that can listen to a
specific UDP port to collect traffic. The NetFlow collector captures exported traffic
from multiple routers and periodically stores it in summarized or aggregated format
into a round robin database (RRD). The following tools are used to capture and
visualize the NetFlow traffic.

(a) NFDUMP: This tool captures and displays NetFlow traffic. All versions of
nfdump support NetFlow v5, v7, and v9. nfcapd is a NetFlow capture daemon
that reads the NetFlow data from the routers and stores the data into files
periodically. It automatically rotates files every n minutes (by default it is
5 min). We need one nfcapd process for each NetFlow stream. Nfdump reads
the NetFlow data from the files stored by nfcapd. The syntax is similar to that
of tcpdump. Nfdump displays NetFlow data and can create top N statistics for
flows based on the parameters selected. The main goal is to analyze NetFlow
data from the past as well as to track interesting traffic patterns continuously
from high-speed networks. The amount of time from the past is limited only
by the disk space available for all NetFlow data. The internal architecture of
nfdump is given in Fig. 3.10.
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Fig. 3.10 Internal architecture of nfdump

Nfdump has four fixed output formats: raw, line, long, and extended. In addition,
the user may specify any desired output format by customizing it. The default
format is line, unless specified. The raw format displays each record in multiple
lines and prints any available information in the traffic record. Example commands
for nfdump are given below.

Command: nfdump -r /and/dir/nfcapd.200407110845 -c 100 ‘tcp and ( src ip
172.16.17.18 or dst ip 172.16.17.19 )’
Meaning: Stores the first 100 NetFlow records that matches the given filter.

Command: nfdump -r /and/dir/nfcapd.200407110845 -S -n 20
Meaning: It generates top 20 statistics of NetFlow records.

Command: nfdump -M /to/and/dir1:dir2 -R
nfcapd.200407110845:
nfcapd.200407110945 -S -n 20
Meaning: It generates the top 20 statistics from 08:45 to 09:45 from 3 sources.

(b) NFSEN: nfsen is a graphical Web-based front end tool for visualization of
NetFlow traffic. nfsen facilitates the visualization of several traffic statistics,
e.g., flow-wise statistics for various features, navigation through the NetFlow
traffic, processes within a time span, and continuous profiles. It can also add
own plugins to process NetFlow traffic in a customized manner at a regular
time interval (Fig. 3.11).
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Fig. 3.11 NFSEN web interface

Fig. 3.12 Number of flows per second in TUIDS intrusion datasets during the capture period

Normal traffic is captured by restricting it to the internal networks, where 80% of
the hosts are connected to the router, including wireless networks. We assume that
normal traffic follows the normal probability distribution. Attack traffic is captured
as we launch various attacks in the testbed for a week. For DDoS attacks, we
used packet-craft14 to generate customized packets. Figures 3.12 and 3.13 show the
number of flows per second and also the protocol-wise distribution of flows during
the capturing period, respectively.

14http://www.packet-craft.net/

http://www.packet-craft.net/
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Fig. 3.13 Protocol-wise distribution of flow per second in TUIDS intrusion dataset during the
capture period

3.3.5 Feature Extraction

We use wireshark and Java routines for filtering unwanted packets (such as packets
with routing protocols, and packets with application layer protocols) as well as
irrelevant information from the captured packets. Finally, we retrieve all relevant
information from each packet using Java routines and store it in comma-separated
form in a text file. The details of parameters identified for packet level data are
shown in Table 3.9.



102 3 A Systematic Hands-On Approach to Generate Real-Life Intrusion Datasets

Table 3.9 Parameters identified for packet level data

Sl. No. Parameter name Description

1 Time Time since occurrence of first frame

2 Frame-no Frame number

3 Frame-len Length of a frame

4 Capture-len Capture length

5 TTL Time to live

6 Protocol Protocols (such as, TCP, UDP, ICMP etc.)

7 Src-ip Source IP address

8 Dst-ip Destination IP address

9 Src-port Source port

10 Dst-port Destination port

11 Len Data length

12 Seq-no Sequence number

13 Header-len Header length

14 CWR Congestion window record

15 ECN Explicit congestion notification

16 URG Urgent TCP flag

17 ACK Acknowledgment flag

18 PSH Push flag

19 RST Reset flag

20 SYN TCP syn flag

21 FIN TCP fin flag

22 Win size Window size

23 MSS Maximum segment size

We developed several C routines and used them for filtering NetFlow data and for
extracting features from the captured data. A detailed list of parameters identified
for flow-level data is given in Table 3.10.

We capture raw traffic (both packet and flows), preprocess, and extract various
types of features. We introduce a framework for fast, distributed feature extraction
from raw network traffic, correlation computation, and data labeling, as shown
in Fig. 3.14. We extract four types of features, basic, content-based, time-based,
and connection-based, from the raw network traffic. We use T D 5 seconds as
the time window for extraction of both time-based and connection-based traffic
features. S1 and S2 are servers used for preprocessing, attack labeling, and profile
generation. WS1 and WS2 are high-end workstations used for basic feature extraction
and merging packet and NetFlow traffic. N1; N2; � � �N6 are independent nodes used
for protocol-specific feature extraction. The lists of extracted features at both packet
and flow levels for the intrusion datasets are presented in Table 3.11 and Table 3.12,
respectively. The list of features available in the KDDcup99 intrusion dataset is also
shown in Table 3.13.
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Table 3.10 Parameters identified for flow-level data

Sl. No. Parameter name Description

1 Flow-start Starting of flow

2 Duration Total life time of a flow

3 Proto Protocol, i.e., TCP, UDP, ICMP, etc.

3 Src-ip Source IP address

4 Src-port Source port

5 Dest-ip Destination IP address

6 Dest-port Destination port

7 Flags TCP flags

8 ToS Type of Service

9 Packets Packets per flow

10 Bytes Bytes per flow

11 Pps Packet per second

12 Bps Bit per second

13 Bpp Byte per packet

Fig. 3.14 Distributed, protocol-specific feature extraction, correlation, and labeling framework

3.3.6 Data Processing and Labeling

As mentioned in the previous section, both packet and flow-level traffic features
are extracted separately within a time interval when features are extracted. So, it
is important to correlate each feature (i.e., basic, content-based, time-based, and
connection-based) to a time interval. Once correlation is performed for both packet
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Table 3.11 List of packet level features in TUIDS intrusion dataset

Label/feature name Type Description

Basic features

1. Duration C Length (number of seconds) of the connection

2. Protocol-type D Type of protocol, e.g., tcp, udp, etc.

3. Src-ip C Source host IP address

4. Dest-ip C Destination IP address

5. Src-port C Source host port number

6. Dest-port C Destination host port number

7. Service D Network service at the destination, e.g., http, telnet, etc.

8. num-bytes-src-dst C The number of data bytes flowing from source to
destination

9. num-bytes-dst-src C The number of data bytes flowing from destination to
source

10. Fr-no C Frame number

11. Fr-len C Frame length

12. Cap-len C Captured frame length

13. Head-len C Header length of the packet

14. Frag-off D Fragment offset: “1” for the second packet overwrite
everything; “0” otherwise

15. TTL C Time to live: “0” discards the packet

16. Seq-no C Sequence number of the packet

17. CWR D Congestion window record

18. ECN D Explicit congestion notification

19. URG D Urgent TCP flag

20. ACK D Acknowledgment flag value

21. PSH D Push TCP flag

22. RST D Reset TCP flag

23. SYN D Syn TCP flag

24. FIN D Fin TCP flag

25. Land D 1 if connection is from/to the same host/port; 0 otherwise

Content-based features

26. Mss-src-dest-requested C Maximum segment size from source to destination
requested

27. Mss-dest-src-requested C Maximum segment size from destination to source
requested

28. Ttt-len-src-dst C Time to live length from source to destination

29. Ttt-len-dst-src C Time to live length from destination to source

30. Conn-status C Status of the connection (e.g., “1” for complete, “0” for
reset)

(continued)
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Table 3.11 (continued)

Label/feature name Type Description

Time-based features

31. count-fr-dest C Number of frames received by unique destinations in the
last T seconds from the same source

32. count-fr-src C Number of frames received from unique sources in the last
T seconds from the same destination

33. count-serv-src C Number of frames from the source to the same destination
port in the last T seconds

34. count-serv-dest C Number of frames from destination to the same source port
in the last T seconds

35. num-pushed-src-dst C The number of pushed packets flowing from source to
destination

36. num-pushed-dst-src C The number of pushed packets flowing from destination to
source

37. num-SYN-FIN-src-dst C The number of SYN/FIN packets flowing from source to
destination

38. num-SYN-FIN-dst-src C The number of SYN/FIN packets flowing from destination
to source

39. num-FIN-src-dst C The number of FIN packets flowing from source to
destination

40. num-FIN-dst-src C The number of FIN packets flowing from destination to
source

Connection-based features

41. count-dest-conn C Number of frames to unique destinations in the last N
packets from the same source

42. count-src-conn C Number of frames from unique sources in the last N
packets to the same destination

43. count-serv-srcconn C Number of frames from the source to the same destination
port in the last N packets

44. count-serv-destconn C Number of frames from the destination to the same source
port in the last N packets

45. num-packets-src-dst C The number of packets flowing from source to destination

46. num-packets-dst-src C The number of packets flowing from destination to source

47. num-acks-src-dst C The number of acknowledgement packets flowing from
source to destination

48. num-acks-dst-src C The number of acknowledgement packets flowing from
destination to source

49. num-retransmit-src-dst C The number of retransmitted packets flowing from source
to destination

50. num-retransmit-dst-src C The number of retransmitted packets flowing from
destination to source

C Continuous, D Discrete
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Table 3.12 List of flow-level features in TUIDS intrusion dataset

Label/feature name Type Description

Basic features

1. Duration C Length (number of seconds) of the flow

2. Protocol-type D Type of protocol, e.g., TCP, UDP, ICMP

3. Src-ip C Source host IP address

4. Dest-ip C Destination IP address

5. Src-port C Source host port number

6. Dest-port C Destination host port number

7. ToS D Type of service

8. URG D TCP urgent flag

9. ACK D TCP acknowledgment flag

10. PSH D TCP push flag

11. RST D TCP reset flag

12. SYN D TCP SYN flag

13. FIN D TCP FIN flag

14. Src-bytes C Number of data bytes transfered from source to destination

15. Dest-bytes C Number of data bytes transfered from destination to source

16. Land D 1 if connection is from/to the same host/port; 0 otherwise

Time-based features

17. count-dest C Number of flows to unique destination IPs in the last T seconds
from the same source

18. count-src C Number of flows from unique source IPs in the last T seconds to
the same destination

19. count-serv-src C Number of flows from the source to the same destination port in
the last T seconds

20. count-serv-dest C Number of flows from the destination to the same source port in
the last T seconds

Connection-based features

21. count-dest-conn C Number of flows to unique destination IPs in the last N flows
from the same source

22. count-src-conn C Number of flows from unique source IPs in the last N flows to the
same destination

24. count-serv-srcconn C Number of flows from the source IP to the same destination port
in the last N flows

25. count-serv-destconn C Number of flows to the destination IP to the same source port in
the last N flows

C Continuous, D Discrete

and flow-level traffic, labeling of each feature data as normal or anomalous is
important. The labeling process enriches the feature data with information such
as (i) the type and structure of malicious or anomalous data and (ii) dependencies
among different isolated malicious activities. The correlation and labeling of each
feature traffic as normal or anomalous is made using Algorithm 1. However, both
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Table 3.13 List of features in the KDDcup99 intrusion dataset

Label/feature name Type Description

Basic features

1. Duration C Length (number of seconds) of the connection

2. Protocol-type D Type of protocol, e.g., tcp, udp, etc.

3. Service D Network service at the destination, e.g., http, telnet, etc.

4. Flag D Normal or error status of the connection

5. Src-bytes C Number of data bytes from source to destination

6. Dst-bytes C Number of data bytes from destination to source

7. Land D 1 if connection is from/to the same host/port; 0 otherwise

8. Wrong-fragment C Number of “wrong” fragments

9. Urgen C Number of urgent packets

Content-based features

10. Hot C Number of “hot” indicators (hot: number of directory
accesses, create and execute program)

11. Num-failed-logins C Number of failed login attempts

12. Logged-in D 1 if successfully logged-in; 0 otherwise

13. Num-compromised C Number of “compromised” conditions (compromised
condition: number of file/path not found errors and jumping
commands)

14. Root-shell D 1 if root-shell is obtained; 0 otherwise

15. Su-attempted D 1 if “su root” command attempted; 0 otherwise

16. Num-root C Number of “root” accesses

17. Num-file-creations C Number of file creation operations

18. Num-shells C Number of shell prompts

19. Num-access-files C Number of operations on access control files

20. Num-outbound-cmds C Number of outbound commands in an ftp session

21. Is-host-login D 1 if login belongs to the “hot” list; 0 otherwise

22. Is-guest-login D 1 if the login is a “guest” login; 0 otherwise

Time-based features

23. Count C Number of connections to the same host as the current
connection in the past 2 seconds

24. Srv-count C Number of connections to the same service as the current
connection in the past 2 seconds (same-host connections)

25. Serror-rate C % of connections that have “SYN” errors (same-host
connections)

26. Srv-serror-rate C % of connections that have “SYN” errors (same-service
connections)

27. Rerror-rate C % of connections that have “REJ” errors (same-host
connections)

28. Srv-rerror-rate C % of connections that have “REJ” errors (same-service
connections)

29. Same-srv-rate C % of connections to the same service (same-host connections)

30. Diff-srv-rate C % of connections to different services (same-host
connections)

31. Srv-diff-host-rate C % of connections to different hosts (same-service
connections)
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Table 3.13 (continued)

Label/feature name Type Description

Connection-based features

32. Dst-host-count C Count of destination hosts

33. Dst-host-srv-count C Srv_count for destination host

34. Dst-host-same-srv-rate C Same_srv_rate for destination host

35. Dst-host-diff-srv-rate C Diff_srv_rate for destination host

36. Dst-host-same-src-port-rate C Same_src_port_rate for destination host

37. Dst-host-srv-diff-host-rate C Diff_host_rate for destination host

38. Dst-host-serror-rate C Serror_rate for destination host

39. Dst-host-srv-serror-rate C Srv_serror_rate for destination host

40. Dst-host-rerror-rate C Rerror_rate for destination host

41. Dst-host-srv-rerror-rate C Srv_rerror_rate for destination host

C Continuous, D Discrete

Algorithm 1 : FC and labeling (F)
Require: extracted feature set, F D f˛1; ˇ1; �1; ı1g
Ensure: correlated and labelled feature data, X
1: initialize X
2: call FeatureExtraction./, F f˛1; ˇ1; �1; ı1g, F the procedure FeatureExtraction() extracts

the features separately for all cases
3: for i 1 to jNj do F N is the total traffic instances
4: for i 1 to jFj do F F is the total traffic features
5: if .unique.src:ip^ dst:ip// then
6: store XŒij� ˛1.ij/; ˇ1.ij/

7: end if
8: if ..T DD 5s/^ .LnP DD 100// then F T is the time window, LnP is the last n

packets
9: Store XŒij� �1.ij/; ı1.ij/

10: end if
11: end for
12: XŒij� fnormal; attackg F label each traffic feature instance based on the duration of the

collected traffic
13: end for

normal and anomalous traffic are collected separately in several sessions within a
week. We remove normal traffic from anomalous traces as much as possible.

The overall traffic composition with protocol distribution in the generated
datasets is summarized in Table 3.14. The traffic includes the TUIDS intrusion
dataset, the TUIDS coordinated scan dataset, and the TUIDS DDoS dataset. The
final labeled feature datasets for each category with the distribution of normal
and attack information are summarized in Table 3.15. All datasets are prepared at
both packet and flow levels and are presented in terms of training and testing in
Table 3.15.
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Table 3.14 TUIDS dataset traffic composition

Protocol Size (MB) (%)

(a) Total traffic composition

IP 66,784.29 99.99

ARP 3.96 0.005

IPv6 0.00 0.00

IPX 0.00 0.00

STP 0.00 0.00

Other 0.00 0.00

(b) TCP/UDP/ICMP traffic composition

TCP 49,049.29 73.44

UDP 14,940.53 22.37

ICMP 2,798.43 4.19

ICMPv6 0.00 0.00

Other 0.00 0.00

3.3.7 Comparison with Other Public Datasets

Several real network traffic traces are readily available to the research community
as reported in Sect. 3.2. Although these traffic traces are invaluable to the research
community, most, if not all, fail to satisfy one or more requirements described
in Sect. 3.1. This book attempts to resolve the issues seen in other datasets by
presenting a systematic approach to generate real-life network intrusion datasets.
Table 3.16 summarizes a comparison between the prior datasets and the dataset
generated through the application of our systematic approach to fulfill the principal
objectives outlined for qualifying datasets.

Most datasets are unlabeled as labeling is laborious and requires a comprehensive
search to tag anomalous traffic. Although an IDS helps by reducing the work, there
is no guarantee that all anomalous activities are labeled. This has been a major issue
with all datasets and one of the reasons behind the post-insertion of attack traffic in
the DARPA 1999 dataset, so that anomalous traffic can be labeled in a deterministic
manner. Having seen the inconsistencies produced by traffic merging, this chapter
has adopted a different approach to provide the same level of deterministic behavior
with respect to anomalous traffic by conducting anomalous activity within the
capturing period using available network resources. Through the use of logging,
all ill-intended activities can be effectively labeled.

The extent and scope of network traffic capture becomes relevant in situations
where the information contained in the traces may breach the privacy of individuals
or organizations. In order to prevent privacy issues, almost all publicly available
datasets remove any identifying information such as payload, protocol, destination,
and flags. In addition, the data is anonymized where necessary header information
is cropped or flows are just summarized.
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Table 3.15 Distribution of normal and attack connection instances in real-life packet and flow-
level TUIDS datasets

Dataset type
Connection type Training dataset Testing dataset

(a) TUIDS intrusion dataset

Packet level

Normal 71,785 58.87% 47,895 55.52%

DoS 42,592 34.93% 30,613 35.49%

Probe 7,550 6.19% 7,757 8.99%

Total 121,927 – 86,265 –

Flow level

Normal 23,120 43.75% 16,770 41.17%

DoS 21,441 40.57% 14,475 35.54%

Probe 8,282 15.67% 9,480 23.28%

Total 52,843 – 40,725 –

(b) TUIDS coordinated scan dataset

Packet level

Normal 65,285 90.14% 41,095 84.95%

Probe 7,140 9.86% 7,283 15.05%

Total 72,425 – 48,378 –

Flow level

Normal 20,180 73.44% 15,853 65.52%

Probe 7,297 26.56% 8,357 34.52%

Total 27,477 – 24,210 –

(c) TUIDS DDoS dataset

Packet level

Normal 46,513 68.62% 44,328 60.50%

Flooding attacks 21,273 31.38% 28,936 39.49%

Total 67,786 – 73,264 –

Flow level

Normal 27,411 57.67% 28,841 61.38%

Flooding attacks 20,117 42.33% 18,150 38.62%

Total 47,528 – 46,991 –

In addition to anomalous traffic, traces must contain background traffic. Most
captured datasets have little control over the anomalous activities included in
the traces. However, a major concern with evaluating anomaly-based detection
approaches is the requirement that anomalous traffic must be present on a certain
scale. Anomalous traffic also tends to become outdated with the introduction of
more sophisticated attacks. So, we have generated more up-to-date datasets that
reflect the current trends and are tailored to evaluate certain characteristics of
detection mechanisms which are unique to themselves.
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Table 3.16 Comparison of existing datasets and their characteristics

No. of No. of Some
Dataset u v w instances attributes x y z references

Synthetic No No Yes user
dependent

user
dependent

Not
known

any user
depen-
dent

[1, 2]

KDDcup99 Yes No Yes 805;050 41 BCTW P C1 [24, 26, 40,
41]

NSL-KDD Yes No Yes 148;517 41 BCTW P C1 [36]

DARPA 2000 Yes No No Huge Not known Raw Raw C2 [30]

DEFCON No No No Huge Not known Raw P C2 [30]

CAIDA Yes Yes No Huge Not known Raw P C1 [30]

LBNL Yes Yes No Huge Not known Raw P C2 [39]

ISCX-UNB Yes Yes Yes Huge Not known Raw P A [30]

KU Yes Yes No Huge 24 BTW P C1 [32]

TUIDS Yes Yes Yes Huge 50,24 BCTW P,F C1 [1, 2]

u realistic network configuration, v indicates realistic traffic, w describes the label information, x
types of features extracted as basic features (B), content-based features (C), time-based features
(T), and window-based features(W), y explains the types of data as packet based (P) or flow based
(F) or hybrid (H) or others (O), z represents the attack category as C1-all attacks, C2-denial of
service, C3-probe, C4-user to root, C5-remote to local, and A-application layer attacks

3.4 Observations and Chapter Summary

Several questions may be raised with respect to what constitutes a perfect dataset
when dealing with the dataset generation task. These include qualities of normal,
anomalous, or realistic traffic included in the dataset. We provide a path and a
template to generate a dataset that simultaneously exhibits the appropriate levels
of normality, anomalousness, and realism while avoiding the various weak points of
currently available datasets, pointed out earlier. Quantitative measurements can be
obtained only when specific methods are applied to the dataset.

The following are the major observations and requirements when generating an
unbiased real-life dataset for intrusion detection:

• The dataset should not exhibit any unintended property in both normal and
anomalous traffic.

• The dataset should be labeled correctly.
• The dataset should cover all possible current network scenarios.
• The dataset should be entirely non-anonymized.
• In most benchmark datasets, the two basic assumptions described in Sect. 3.1 are

valid, but this biasness should be avoided as much as possible.
• Several datasets lack traffic features, although it is important to extract traffic

features with their relevancy for a particular attack.
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Despite the enormous efforts needed to create unbiased datasets, there will
always be deficiencies in any one particular dataset. Therefore, it is very important
to generate dynamic datasets which not only reflect the traffic compositions and
intrusions types of the time but are also modifiable, extensible, and reproducible.
Therefore, new datasets must be generated from time to time for the purpose of
analysis, testing, and evaluation of network intrusion detection methods and systems
from multiple perspectives.

In this chapter, we have discussed a systematic hands-on approach to gener-
ate real-life network intrusion datasets using both packet and flow-level traffic
information. Three different categories of datasets have been generated using the
TUIDS testbed. They are (i) TUIDS intrusion dataset, (ii) TUIDS coordinated
scan dataset, and (iii) TUIDS DDoS dataset. We incorporate maximum number
of possible attacks and scenarios during the generation of the datasets in our
testbed network. These datasets will immensely help the network security research
community to evaluate the performance of newly developed methods for network
intrusion detection. Once the dataset is built, it is necessary to use it for validation of
different mechanisms for the detection of network attacks. So, we discuss different
types of detection mechanisms in the next chapter.
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Chapter 4
Network Traffic Anomaly Detection Techniques
and Systems

To develop a network traffic anomaly detection technique and system, it is indeed
necessary to know the basic properties of network-wide traffic. This chapter starts
with a discussion of the basic properties of network-wide traffic with an example.
This chapter is organized into six major sections to describe different network
anomaly detection techniques and systems. They are statistical techniques and
systems, classification-based techniques and systems, clustering and outlier-based
techniques and systems, soft computing-based techniques and systems, knowledge-
based techniques and systems, and techniques and systems based on combination
learners. Finally, it presents the strengths and weaknesses of each category of
detection techniques and systems with a detailed comparison.

4.1 Network-Wide Traffic: An Overview

Due to increasing use of cloud-based services, it is indeed necessary to protect an
enterprise network from large-scale network anomalies. Detection of exceptional
patterns, i.e., anomalies is really an interesting problem that needs to be addressed
in an enterprise network. Network-wide traffic anomalies disrupt the transmission of
legitimate traffic over the network or Internet. Network-wide traffic is voluminous,
high dimensional, and noisy. Therefore, it is difficult to detect anomalies in such
voluminous data in real-time. Within a short time interval, the traffic may change its
characteristics, this being a crucial property of network-wide traffic. An example of
network-wide traffic is given in Fig. 4.1.
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Fig. 4.1 Network-wide traffic: an example

Fig. 4.2 Classification of
network anomaly detection
techniques (GA genetic
algorithm, ANN artificial
neural network, AIS artificial
immune system)

4.2 Classification of Network Anomaly Detection Techniques
and Systems

A classification scheme for network anomaly detection techniques and systems
based on the nature of algorithms used is shown in Fig. 4.2. It is not straightfor-
ward to come up with appropriate classification for network anomaly detection
techniques and systems, primarily because there is substantial overlap among the
techniques used in the various classes in any particular scheme we may adopt.
We have decided on six distinct classes of techniques and systems. We call
them statistical, classification-based, clustering and outlier-based, soft computing,
knowledge-based, and combination learners. Most techniques have subclasses as
given in Fig. 4.2.
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Here, we distinguish between network anomaly detection techniques and sys-
tems, although such a distinction is difficult to make sometimes. A network intrusion
detection system (NIDS) usually integrates a network intrusion detection technique
within an architecture that comprises other associated subsystems to build a stand-
alone practical system that can perform the entire gamut of activities needed
for intrusion detection. We present several NIDSs with their architectures and
components as we discuss various anomaly detection categories.

4.3 Statistical Techniques and Systems

Statistically speaking, an anomaly is an observation which is suspected of being
partially or wholly irrelevant because it is not generated by the stochastic model
assumed [7]. Normally, statistical techniques fit a statistical model (usually for
normal behavior) to the given data and then apply a statistical inference test to
determine if an unseen instance belongs to this model. Instances that have a low
probability to be generated from the learnt model based on the applied test statistic
are declared as anomalies.

Of the many statistical techniques and NIDSs [27, 33, 49, 91, 96, 97, 139, 153,
154, 161], only a few are described below in brief.

4.3.1 Statistical Techniques

Statistical techniques are usually designed based on network traffic distribution,
assuming the network traffic follows a certain distribution. The simplest way to build
a statistical model is to compute the parameters of a probability density function for
each known class of network traffic and then test an unknown sample to determine
which class it belongs to [98]. When generating a probability density function, it
usually builds two different profiles, one for normal and the other for attack traffic.
It checks whether input traffic belongs to the existing classes or not.

In practice, to estimate probability density function, there are two main tech-
niques, parametric and nonparametric [41]. Parametric techniques assume knowl-
edge of the underlying distribution and estimate the parameters from the given
data [49]. The Gaussian distribution is usually assumed for the normal traffic
data. Parametric techniques estimate certain parameters to fit into the existing
distribution. However, distributions of major real-world data are not similar. So,
such techniques are not used much in reality. Nonparametric techniques do not
generally assume knowledge of the underlying distribution [41]. The density
function is derived based on the network traffic distribution as well as parameter
estimation. As a result, such techniques provide more flexibility than parametric
techniques. A few parametric and nonparametric techniques for network traffic
anomaly detection are described below.



118 4 Network Traffic Anomaly Detection Techniques and Systems

Bayesian networks [54] are capable of detecting anomalies in a multi-class
setting. Several variants of the basic technique have been proposed for network
intrusion detection and for anomaly detection in text data [28]. The basic technique
assumes independence among different attributes. Several variations that capture the
conditional dependencies among different attributes using more complex Bayesian
networks have also been proposed. For example, Kruegel et al. [81] introduce an
event classification-based intrusion detection scheme using Bayesian networks. The
Bayesian decision process improves detection decision to significantly reduce the
rate of false alarms. Manikopoulos and Papavassiliou [97] introduce a hierarchical
multitier multi-window statistical anomaly detection system to operate automati-
cally, adaptively, and proactively. It can work with both wired and wireless ad hoc
networks. This system uses statistical modeling and neural network classification to
detect network anomalies and faults. The system achieves high detection rate along
with low misclassification rate when the anomaly traffic intensity is at 5% of the
background traffic, but the detection rate is lower at lower attack intensity levels
such as 1% and 2%.

Association rule mining [3], conceptually a simple method based on counting
of co-occurrences of items in transactions databases, has been used for one-class
anomaly detection by generating rules from the data in an unsupervised fashion.
The most difficult and dominating part of an association rule discovery algorithm
is to find the itemsets that have strong support. Mahoney and Chan [96] present
an algorithm known as LERAD that learns rules for finding rare events in time-
series data with long-range dependencies and finds anomalies in network packets
over TCP sessions. LERAD uses an a priori-like algorithm [3] that finds conditional
rules over nominal attributes in a time series, e.g., a sequence of inbound client
packets. The antecedent of a created rule is a conjunction of equalities, and the
consequent is a set of allowed values, e.g., if port=80 and word3=HTTP/1.0, then
word1=GET or POST. A value is allowed if it is observed in at least one training
instance satisfying the antecedent. The idea is to identify rare anomalous events:
those which have not occurred for a long time and which have high anomaly score.
LERAD is a two-pass algorithm. In the first pass, a candidate rule set is generated
from a random sample of training data comprised of attack-free network traffic. In
the second pass, rules are trained by obtaining the set of allowed values for each
antecedent. Li et al. [88] introduce a multivariate probabilistic calibration model
for network anomaly detection and localization. It uses t-distribution to model the
normal traffic. The algorithm’s effectiveness demonstrated in terms of theoretical
and experimental analysis. It works well even in the presence of high noise and is
sensitive to parameters.

Song et al. [139] propose a conditional anomaly detection method for computing
differences among attributes and present three different expectation-maximization
algorithms for learning the model. They assume that the data attributes are parti-
tioned into indicator attributes and environmental attributes based on the decision
taken by the user regarding which attributes indicate an anomaly. The method learns
the typical indicator attribute values and observes subsequent data points and labels
them as anomalous or not, based on the degree the indicator attribute values differ
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from the usual indicator attribute values. However, if the indicator attribute values
are not conditioned on environmental attributes values, the indicator attributes are
ignored effectively. The precision and recall of this method are greater than 90%.

Lu and Ghorbani [91] present a network signal modeling technique for anomaly
detection by combining wavelet approximation and system identification theory.
They define and generate 15 relevant traffic features as input signals to the system
and model daily traffic based on these features. The output of the system is the
deviation of the current input signal from the normal or regular signal behavior.
Residuals are passed to the IDS engine to take decisions and obtain 95% accuracy
in the daily traffic. In addition, a nonparametric adaptive cumulative sum (CUSUM)
method for detecting network intrusions is discussed in [161].

4.3.2 Statistical Systems

As mentioned earlier, a NIDS includes one or more intrusion detection techniques
that are integrated with other required subsystems necessary to create a practical
system. An example of a statistical IDS is HIDE [169]. HIDE is an anomaly-based
network intrusion detection system that uses statistical models and neural network
classifiers to detect intrusions. HIDE is a distributed system, which consists of
several tiers with each tier containing several intrusion detection agents (IDAs).
IDAs are IDS components that monitor the activities of a host or a network. The
probe layer (i.e., top layer as shown in Fig. 4.3) collects network traffic at a host
or in a network, abstracts the traffic into a set of statistical variables to reflect
network status, and periodically generates reports to the event preprocessor. The
event preprocessor layer receives reports from both the probe and IDAs of lower
tiers and converts the information into the format required by the statistical model.

Fig. 4.3 Architecture of HIDE system
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The statistical processor maintains a reference model of typical network activities,
compares reports from the event preprocessor with the reference models, and forms
a stimulus vector to feed into the neural network classifier. The neural network
classifier analyzes the stimulus vector from the statistical model to decide whether
the network traffic is normal. The post-processor generates reports for the agents at
higher tiers. A major attraction of HIDE is its ability to detect UDP flooding attacks
even with attack intensity as low as 10% of background traffic.

A payload-based anomaly detector for intrusion detection known as PAYL is
proposed in [153]. PAYL attempts to detect the first occurrence of a worm, either
at a network system gateway or with an internal network from a rogue device
and to prevent its propagation. It employs a language-independent n-gram-based
statistical model of sampled data streams. In fact, PAYL uses only a 1-gram model
(i.e., it looks at the distribution of values contained within a single byte) which
requires a linear scan of the data stream and a small 256-element histogram. In
other words, for each ASCII character in the range 0–255, it computes its mean
frequency as well as the variance and standard deviation. Since payloads (i.e.,
arriving or departing contents) at different ports differ in length, PAYL computes
these statistics for each specific observed payload length for each port open in
the system. It first observes many exemplar payloads during the training phase
and computes the payload profiles for each port for each payload length. During
detection, each incoming payload is scanned, and statistics are computed. The
new payload distribution is compared against the model created during training.
If there is a significant difference, PAYL concludes that the packet is anomalous and
generates an alert. The authors found that this simple approach works surprisingly
well.

N@G (Network at Guard) [143] is a hybrid IDS that exploits both misuse and
anomaly approaches. N@G has both network and host sensors. Anomaly-based
intrusion detection is pursued using the chi-square technique on various network
protocol parameters. It has four detection methodologies, viz., traffic capturing,
signature-based detection, network access policy violation, and protocol anomaly
detection as a part of its network sensor. It includes audit trails, log analysis,
statistical analysis, and host access policies as components of the host sensor. The
system has a separate IDS server, i.e., a management console to aggregate alerts
from the various sensors with a user interface, a middle-tier, and a data management
component. It provides real-time protection against malicious changes to network
settings on client computers, which includes unsolicited changes to the Windows
Hosts file and Windows Messenger service.

Flow-based statistical aggregation scheme (FSAS) [138] is a flow-based statis-
tical IDS. It comprises of two modules: feature generator and flow-based detector.
In the feature generator, the event preprocessor module collects the network traffic
of a host or a network. The event handlers generate reports to the flow management
module. The flow management module efficiently determines if a packet is part
of an existing flow or it should generate a new flow key. By inspecting flow
keys, this module aggregates flows together and dynamically updates per-flow
accounting measurements. The event time module periodically calls the feature



4.4 Classification-Based Techniques and Systems 121

extraction module to convert the statistics regarding flows into the format required
by the statistical model. The neural network classifier classifies the score vectors to
prioritize flows with the amount of maliciousness. The higher the maliciousness of
a flow, the higher is the possibility of the flow being an attacker.

Advantages of statistical network anomaly detection include the following:

• They do not require prior knowledge of normal activities of the target system.
Instead, they have the ability to learn the expected behavior of the system from
observations.

• Statistical techniques can provide accurate notification or alarm generation for
malicious activities occurring over long periods of time, subject to setting of
appropriate thresholding or parameter tuning.

• They analyze the traffic based on the theory of abrupt changes, i.e., they monitor
the traffic for a long time and report an alarm if any abrupt change (i.e., significant
deviation) occurs.

Drawbacks of the statistical model for network anomaly detection include the
following:

• They are susceptible to being trained by an attacker in such a way that the
network traffic generated during the attack is considered normal.

• Setting the values of the different parameters or metrics is a difficult task,
especially because the balance between false positives and false negatives is
an issue. Moreover, a statistical distribution per variable is assumed, but not all
behaviors can be modeled using stochastic methods. Furthermore, most schemes
rely on the assumption of a quasi-stationary process [112], which is not always
realistic.

• It takes a long time to report an anomaly for the first time because the building
of the models requires extended time.

• Several hypothesis testing statistics can be applied to detect anomalies. Choosing
the best statistic is often not straightforward. In particular, as stated in [154],
constructing hypothesis tests for complex distributions that are required to fit
high-dimensional datasets is nontrivial.

• Histogram-based techniques are relatively simple to implement, but a key
shortcoming of such techniques for multivariate data is that they are not able
to capture interactions among the attributes.

A comparison of a few statistical network anomaly detection techniques is given
in Table 4.1.

4.4 Classification-Based Techniques and Systems

Classification is the problem of identifying which of a set of categories a new
observation belongs to, on the basis of a training set of data containing observations
whose category is known. Assuming we have two classes whose instances are shown
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Fig. 4.4 Linear and nonlinear classification in 2-D. (a) Linear separation. (b) Nonlinear separation

as C and � and each object can be defined in terms of two attributes or features
x1 and x2, linear classification tries to find a line between the classes as shown in
Fig. 4.4a. The classification boundary may be nonlinear as in Fig. 4.4b. In anomaly
detection, the data is high dimensional, not just two. The attributes are usually
mixed, numeric, and categorial as discussed earlier.

4.4.1 Classification-Based Techniques

Classification techniques are based on establishing an explicit or implicit model
that enables categorization of network traffic patterns into several classes [37, 55,
75, 92, 122, 146]. A singular characteristic of these techniques is that they need
labeled data to train the behavioral model, a procedure that places high demands
on resources [149]. In many cases, the applicability of machine learning principles
such as classification coincides with that of statistical techniques, although the
former technique is focused on building a model that improves its performance on
the basis of previous results [58]. Several classification-based techniques (e.g., k-
nearest neighbor, support vector machines, and decision trees) have been applied to
network-wide traffic anomaly detection.

Network defenders and researchers have developed many techniques to detect
anomalies in network-wide traffic. Port scan is an information gathering technique
that searches for hostile open door or port, through which an attacker gains access
to computers [39]. Coordinated scans are distributed in nature, where the attackers
try to gain access from multiple machines at the same time. To keep secure an
enterprise network, detection of such scanning is really important at early stage,
i.e., before losing control of a machine. This is because cyber threats are becoming
more sophisticated and more numerous, leading to more substantial damages to
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systems within short periods of time [35, 100]. Two types of correlations are used
in a coordinated scan attack, viz., action correlation and task correlation [21, 74].
How actions performed by one user affects another user is obtained during action
correlation. For example, a particular action performed by one user may facilitate
another user who performs the actual attack. In the other type of correlation, tasks
divided among multiple users are discovered.

Network administrators or defenders are interested in detecting coordinated scan
attacks for a system in an enterprise network due to the following reasons:

• To detect coordinated scan attacks just like the detection of other attacks
• To make it difficult for an attacker who may think it is easy and who wants to

remain undetected
• To obviate the potential seriousness of the actual attacks

A coordinated port scan is a part of a coordinated attack. Here, tasks are
distributed among multiple hosts for individual actions, which may be synchronized.
A port scan is an information gathering method used by an opponent to gain
information about responding computers and open ports on a target network host.
An opponent initiates the exploration of multiple hosts to scan a portion of the
target network, which they want to compromise after getting relevant information
from the target host. Intrusion Detection Systems (IDSs) are normally configured to
recognize and report single source port scan activity. So, they cannot usually detect
multiple source scans that collaborate with several hosts during scanning.

A computer contains 65,536 standardly defined ports [99]. They can be classified
into three large ranges: (a) well-known ports (0–1,023), (b) registered ports (1,024–
49,151), and (c) dynamic and/or private ports (49,152–65,535). Normally, a port
scan helps the attacker in finding those ports that are available to launch attacks, but
it does not directly harm the system. Essentially, a port scan sends a packet with
a message to the target host one at a time and listens for an answer. The response
indicates whether the port is being used. This is a probe for weaknesses to launch
future attacks. TCP and UDP ports are usually used for port scanning, but only
TCP port scanning returns good feedback to the attacker because it is a connection-
oriented protocol. UDP port scanning may not readily give relevant information to
the attacker because it is a connectionless protocol. In addition, a UDP port may
be easily blocked by network defenders or network administrators. The following
are the various types of port scans [16] which are used to probe weaknesses from a
networked host (shown in Fig. 4.5):

• Stealth scan: Auditing tools cannot detect this type of scanning because of com-
plicated design architectures. Such a scan sends TCP packets to the destination
host with stealth flags. Some of the flags are SYN, FIN, and NULL.

• SOCKS port probe: It allows sharing of Internet connections on multiple hosts.
Attackers scan these ports because a large percentage of users misconfigure
SOCKS ports, potentially permitting arbitrarily chosen sources and destinations
to communicate. It also allows the attackers to access other Internet hosts while
hiding their true locations.
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Fig. 4.5 Types of port scans

• Bounce scan: An FTP bounce scan attack takes advantage of a vulnerability
of the FTP protocol itself. Email servers and HTTP proxies are the common
applications that allow bounce scans.

• TCP scan: This type of scanning is used by a smart attacker because it
never establishes a connection permanently. The attacker can launch an attack
immediately if a remote port accepts the connection request. Normally, this
type of connection request cannot be logged by a server’s logging system due
to its smart connection attempt. Some TCP scans are TCP Connect(), reverse
identification, Internet protocol (IP) header dump scan, SYN, FIN, ACK, XMAS,
NULL, and TCP fragment.

• UDP scan: A UDP scan attempts to discover open ports related to the UDP
protocol. However, UDP is a connectionless protocol, and, thus, it is not often
used by attackers since it can be easily blocked.

The list of port scan types discussed above along with firewall detection
possibilities during the scanning process is given in Table 4.2. As seen from the
table that most of scans are not detected at firewall level.

As discussed earlier, a coordinated port scan is composed of multiple scans from
multiple sources where there is a single instigator behind the set of sources. The
task of distributed information gathering is accomplished using either a many-to-
one or a many-to-many model [52, 71]. The attacker uses multiple hosts to execute
information-gathering techniques in two ways: rate limited and random or nonlinear.
In a rate-limited information-gathering technique, the number of packets sent by
a host to scan is limited [16, 47, 164]. This is based on the Berkeley Software
Distribution (FreeBSD) implementation of UNIX where separate rate limits are
maintained for open ports as well as closed ports. For example, TCP RST is rate
limited. “ICMP port unreachable” is also rate limited. On the other hand, a random
or nonlinear gathering technique refers to randomization of the destination IP-port
pairs among the sources, as well as randomization of the time delay for each probe
packet. A coordinated attack has a more generic form of a distributed scan [141].
It is defined as multistep exploitation using parallel sessions with the objective
of obscuring the unified nature of the attack, allowing the attackers to proceed
more quickly. Bhuyan et al. [18] introduce a coordinated scan detection technique
known as AOCD(adaptive outlier-based coordinated scan detection). A framework
of AOCD is given in Fig. 4.6.
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Table 4.2 Port scan types and their firewall level detection possibilities

Port scanning technique Protocol TCP flag
Target reply
(open port)

Target reply
(closed port)

Firewall level
detection
possibility

TCP Connect() TCP SYN ACK RST Yes

Reverse ident TCP No No No No

SYN scan TCP SYN ACK RST Yes

IP header dump scan TCP No No No No

SYNjACK scan TCP SYNjACK RST RST Yes

FIN scan TCP FIN No RST No

ACK scan TCP ACK No RST No

NULL scan TCP No No RST No

XMAS scan TCP All flags No RST No

TCP fragment TCP No No No No

UDP scan UDP No No Port unreachable No

FTP bounce scan FTP Arbitrary
flag set

No No No

Ping scan ICMP No Echo reply No Yes

List scan TCP No No No No

Protocol scan IP No – – No

TCP window scan TCP ACK RST RST No

Fig. 4.6 A framework for AOCD: FCM is the fuzzy C-means clustering algorithm for sample
clustering and F0 is the PCA-based feature selection technique for each sample as well as testing
instances
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AOCD aims to detect anomalous patterns, i.e., coordinated port scans using
an adaptive outlier-based approach with reference to profiles. Initially, they select
random samples, x1; x2; � � � xs using a linear congruential generator from the dataset
x for training purpose. It is a maximum length pseudo random sequence generator
[132] and can be defined as xn D .axn�1 C b/ mod m, where xn is the nth number of
the sequence, xn�1 is the previous number of the sequence. a; b; and m are secrets;
a is the multiplier, b is the increment, and m is the period length when m is prime,
the maximum period length is .m � 1/.

They cluster each sample into k classes using the Fuzzy C-means [12] clustering
technique. They obtain the following clusters from all samples: C11; C12; C13; � � �

C1k, C21; C22; C23; � � �C2k, � � � Cs1; Cs2; Cs3; � � �Csk. The method compares a range-
based profile for each cluster and matches each profile with others to remove
redundancy. These profiles are used as references during score computation. Finally,
the method computes score for each candidate object and reports as normal or outlier
(i.e., attack) w.r.t. a threshold, ı2. This technique demonstrates that AOCD can detect
coordinated scan attacks effectively at early stage.

Abbes et al. [1] introduce an approach that uses decision trees with protocol
analysis for effective intrusion detection. They construct an adaptive decision tree
for each application layer protocol. Detection of anomalies classifies data records
into two classes: benign and anomalous or malignant. The anomalies include a large
variety of types such as DoS, scans, and botnets. Thus, multi-class classifiers are a
natural choice, but like any classifier they require expensive hand-labeled datasets
and are also not able to identify unknown attacks. Wagner et al. [152] use one-
class classifiers that can detect new anomalies, i.e., data points that do not belong
to the learned class. In particular, they use a one-class SVM classifier proposed by
Schölkopf et al. [129]. In such a classifier, the training data is presumed to belong to
only one class, and the learning goal during training is to determine a function which
is positive when applied to points on the circumscribed boundary around the training
points and negative outside. This is also called semi-supervised classification. Such
an SVM classifier can be used to identify outliers and anomalies. The authors
develop a special kernel function that projects data points to a higher dimension
before classification. Their kernel function takes into consideration properties of
NetFlow data and enables determination of similarity between two windows of IP
flow records. They obtain 92% accuracy on average for all attacks classes.

Leckie and Kotagiri [84] present an algorithm based on a probabilistic model.
For each IP address in the monitored network, the algorithm generates a probability
P.djs/ that represents how likely it is that a source will contact that particular
destination IP, where d is the destination IP and s is the source, based on how
commonly that destination IP is contacted by other sources, P.d/. Similarly, it also
computes a probability for each port that represents how likely a source will contact
a particular destination port, P.pjs/ where p is the destination port. A limitation of
this approach is that P.d/ is based on the prior distribution of sources that have
accessed that IP address. This implies that if the probabilities for this approach
are generated based on a sample of network data and if the monitored network
is scanned, the resulting distributions may include scans as well as normal traffic.
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Another limitation of this approach is that it assumes that an attacker accesses the
destinations at random; this may not be always true. Kim et al. [79] aim to detect
network port scans using anomaly detection. First, the method performs statistical
tests to analyze traffic rates. Then, it makes use of two dynamic chi-square tests
to detect anomalous packets. It models network traffic as a marked point process
and introduces a general port scan model. The authors present simulation results
to detect ten malicious vertical scans with true positive rate greater than 90% and
false-positive rate smaller than 15% for both the static and dynamic tests using the
port scan model and statistical tests.

Gates et al. [59] analyze Cisco NetFlow data for port scan attacks. The method
extracts the events (bursts of network activities surrounded by quiescent periods)
for each source, and the flows in each event are then sorted according to destination
IP and destination port. It attempts to calculate six characteristics for each event
based on statistical analysis of port scans. It estimates a probability using logistic
regression with these six characteristics as input variables to predict whether the
events contain a scan or not. The main drawback of the method is that it is non-
real time. Udhayan et al. [150] report a heuristic approach for detecting port scan
attacks. One possible solution to curb a zombie army or a malicious botnet attack is
by detecting and blocking or dropping reconnaissance scans, i.e., port scans. They
derive a set of heuristics to detect these scans, some quite crafty. The hierarchies are
written into the firewall and are triggered immediately after a port scan is detected,
to drop packets with the IP address of the source of port scan for a predetermined
period. This detection approach is more user friendly than other approaches like
SNORT [125].

Gyorgy et al. [65] propose a model known as off-the-shelf classifier. Initially, it
transforms network trace data into a feature dataset with label information. Then, it
selects Ripper, a fast rule-based classifier, which is capable of learning rules from
multimodal datasets, with results that are easy to interpret. The authors successfully
demonstrate that data mining models can encapsulate expert knowledge to create an
adaptive algorithm that can substantially outperform the state of the art for heuristic-
based scan detection in both precision and recall. This technique is also capable
of detecting the scanners at an early stage. Treurniet [148] introduces a new scan
detection technique that improves the understanding of Internet traffic. The author
creates a session model using the behavior of packet level data between host pairs
identified and activities between them. In a dataset collected over 24 h, 78% of the
instances were identified as reconnaissance activities, out of which 80% were slower
scans.

Heberlein et al. [67] present a system known as Network Security Moni-
tor(NSM), which pioneered the implementation of threshold-based scan detection
[74]. This tool has three parts: data capture, data analysis, and support. The data
analysis is the core part of the NSM. It collects data in different forms such as
statistical, session, full content, and alert. Statistical data represent the aggregation
of network traffic, protocol breakdowns, and distribution. Session data represent the
connection pairs and conversation between two hosts. Full content data represent
the log of every single bit of network traffic. Alert data represent the data collected
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by an IDS. It recognizes a source as anomalous and potentially malicious if it is
found to contact more than 15 other IP addresses during an unspecified period of
time. It also identifies a source as anomalous if it tries to contact an IP address that
does not contain a responding computer on the monitored network. With this last
heuristic, it assumes that an external source would contact an internal IP address
only for a reason backed by knowledge of the existence of a service at an internal
IP address such as an FTP server or a mail server. NSM is neither a security event
management system nor an intrusion prevention system. Roesch [125] presents a
signature-based intrusion detection system known as SNORT. It uses a preprocessor
that extracts port scans, based on either invalid flag combination (e.g., NULL scans,
Xmas scans, and SYN-FIN scans) or on exceeding a threshold. SNORT uses a
preprocessor, called portscan that watches connections to determine whether a scan
is occurring. By default, SNORT is configured to generate an alarm only if it has
detected SYN packets sent to at least five different IP addresses within 60 s or 20
different ports within 60 s, although this can be adjusted manually. By having such
a high threshold, the number of false positives is reduced. However, a careful scan
at a rate lower than the threshold can easily go undetected.

Paxson [114] introduces a detection system known as Bro that also attempts
to detect scans based on a thresholding approach. Network scans are detected
when a single source contacts multiple destinations (>some threshold). It also
detects vertical scans when a single source contacts too many different ports. It
assumes that the external site has initiated the conversation in both cases. However,
a major limitation of this method is the increased number of false positives. Bro
uses payload as well as packet level information. Jung et al. [74] describe an
approach called Threshold Random Walk (TRW) based on sequential hypothesis
testing. It detects port scans using an Oracle database that contains the assigned
IP addresses and ports inside a network after performing an analysis of return
traffic. When a connection request is received, the source IP is entered into a list,
along with each destination to which this source has attempted a connection. If the
current connection is to a destination which is already in the list, the connection
is ignored. If it is to a new destination, it is added to the list, and a measure that
determines whether the connection is scanning or not is computed and updated
based on the status of the connection. The entire source is flagged as either scanning
or not scanning depending on whether the measure has exceeded the maximum
threshold or has dropped below the minimum threshold, respectively. It has been
observed that benign activity rarely results in connections to hosts or services that
are not available, whereas scanning activity often makes such connections, with the
probability of connecting to a legitimate service dependent on the density of the
target network.

Romig [127] develops a flow analysis tool called flow-dscan. This tool examines
flows for floods and port scans. Floods are identified by an excessive number of
packets per flow. Port scans are identified by a source IP address contacting more
than a certain threshold number of destination IP addresses or destination ports (only
ports less than 1,024 are examined) on a single IP address. To minimize the false
alarm rate, this approach makes use of a suppress list consisting of IP addresses.
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Zhang and Fang [167] propose a new port scan detection approach known as time-
based flow size distribution sequential hypothesis testing (TFDS) for high-speed
transit networks where only unidirectional flow information is available. TFDS
uses the main ideas of sequential hypothesis testing to detect scanners that exhibit
abnormal access patterns in terms of flow size distribution (FSD) entropy. This work
makes a comparison with the state-of-the-art backbone port scan detection method
TAPS [140] in terms of efficiency and effectiveness using real backbone packet trace
and finds that TFDS performs much better than TAPS.

Gadge and Patil [56] propose a method to identify possible port scans and try to
gather additional information about the scanner or attacker, such as probable loca-
tion and operating system. The scan detection system collects all the information
and stores it to generate reports in terms of bar graphs. Analysis of the stored data
can be performed in terms of time and day, by which type of scan was performed,
from which IP the scan was performed, different ports, etc. Based on the analysis of
the various parameters used, it can recognize and report the type of attack or scan
performed during a time window. This method can detect scans coming from most
common scanners such as Angry IP, nmap, and MegaPing.

Classification-based anomaly detection techniques usually give better results
than unsupervised methods (e.g., clustering based) because of the use of labeled
training examples. In traditional classification, new information can be incorporated
by retraining with the entire dataset. However, this is time-consuming. Incremental
classification algorithms [142] make such training more efficiently. Although
classification-based methods are popular, they cannot detect or predict an unknown
attack or event until relevant training information is fed for retraining. For a
comparison of several classification-based network anomaly detection techniques,
see Table 4.3.

Several authors have used a combination of classifiers and clustering for network
intrusion detection leveraging the advantages of the two techniques. For example,
Gaddam et al. [55] present a method to detect anomalous activities based on
a combined approach that uses the k-means clustering algorithm and the ID3
algorithm for decision tree learning [123]. In addition to descriptive features, each
data instance includes a label saying whether the instance is normal or anomalous.
The first stage of the algorithm partitions the training data into k clusters using
Euclidean distance similarity. Obviously, the clustering algorithm does not consider
the labels on instances. The second stage of the algorithm builds a decision tree on
the instances in a cluster. It does so for each cluster so that k separate decision trees
are built. The purpose of building decision trees is to overcome two problems that
k-means faces: a) forced assignment, if the value of k is lower than the number of
natural groups, dissimilar instances are forced into the same cluster, and b) class
dominance, which arises when a cluster contains a large number of instances from
one class and fewer numbers of instances from other classes. The hypothesis is
that a decision tree trained on each cluster learns the subgroupings (if any) present
within each cluster by partitioning the instances over the feature space. To obtain
a final decision on classification of a test instance, the decisions of the k-means
and ID3 algorithms are combined using two rules: (a) the nearest neighbor rule
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Table 4.3 Comparison of classification-based network anomaly detection techniques

Author (s)
Year of
publication

No. of
parameters w x y Data types Dataset used z

Detection
method

Tong et al.
[146]

2005 4 O N P Numeric DARPA99,
TCPSTAT

C1 KPCC model

Gaddam
et al. [55]

2007 3 C N P Numeric NAD, DED,
MSD

C1 k-meansCID3

Khan et al.
[76]

2007 3 C N P Numeric DARPA98 C1 DGSOTCSVM

Das et al.
[37]

2008 3 O N P Categorical KDDcup99 C1 APD algorithm

Lu and
Tong [92]

2009 2 O N P Numeric DARPA99 C1 CUSUM-EM

Qadeer
et al. [122]

2010 – C R P – Real time C2 Packet analysis
tool

Wagner
et al.[152]

2011 2 C R F Numeric Flow Traces C2 Kernel OCSVM

Muda et al.
[102]

2011 2 O N O Numeric KDDcup99 C1 KMNB
algorithm

Kang et al.
[75]

2012 2 O N P Numeric DARPA98 C1 Differentiated
SVDD

w indicates centralized (C) or distributed (D) or others (O), x the nature of detection as real time
(R) or non-real time (N), y characterizes packet-based (P) or flow-based (F) or hybrid (H) or others
(O), z represents the list of attacks handled: C1 all attacks, C2 denial of service, C3 probe, C4 user
to root, and C5 remote to local

and (b) the nearest consensus rule. The authors claim that the detection accuracy of
the k-means+ID3 method is very high with an extremely low false-positive rate on
network anomaly data.

Support vector machines (SVMs) are very successful maximum margin linear
classifiers [160]. However, SVMs take a long time for training when the dataset
is very large. Khan et al. [76] reduce the training time for SVMs when classifying
large intrusion datasets by using a hierarchical clustering method called dynamically
growing self-organizing tree (DGSOT) intertwined with the SVMs. DGSOT, which
is based on artificial neural networks, is used to find the boundary points between
two classes. The boundary points are the most qualified points to train SVMs. An
SVM computes the maximal margins separating the two classes of data points. Only
points closest to the margins, called support vectors, affect the computation of these
margins. Other points can be discarded without affecting the final results. Khan
et al. approximate the support vectors by using DGSOT. They use clustering in
parallel with the training of SVMs, without waiting till the end of the building of
the tree to start training the SVM. The authors find that their approach significantly
improves training time for the SVMs without sacrificing generalization accuracy, in
the context of network anomaly detection.
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Fig. 4.7 Architecture of ADAM system

4.4.2 Classification-Based Systems

An example of a classification-based IDS is automated data analysis and mining
(ADAM) [36] that provides a testbed for detecting anomalous instances. An
architecture diagram of ADAM is shown in Fig. 4.7. ADAM exploits a combination
of classification techniques and association rule mining to discover attacks in a
tcpdump audit trail. First, ADAM builds a repository of “normal” frequent itemsets
from attack-free periods. Second, ADAM runs a sliding window-based online
algorithm that finds frequent itemsets in the connections and compares them with
those stored in the normal itemset repository, discarding those that are deemed
normal. ADAM uses a classifier which has been trained to classify suspicious
connections as either a known type of attack or an unknown type or a false alarm.

Dependable Network Intrusion Detection System (DNIDS) [82] is a
classification-based IDS. This IDS uses the combined strangeness and isolation
measure of the k-nearest neighbor (CSI-KNN) algorithm developed as a part of the
system. DNIDS can effectively detect network intrusion while providing continued
service under attack. The intrusion detection algorithm analyzes characteristics
of network data by employing two measures: strangeness and isolation. These
measures are used by a correlation unit to raise intrusion alert along with the
confidence information. For faster information, DNIDS exploits multiple CSF-KNN
classifiers in parallel. It also includes an intrusion tolerance mechanism to monitor
the hosts and the classifiers running on them, so that failure of any component can
be handled carefully. Sensors capture network packets from a network segment
and transform them into connection-based vectors. The detector is a collection of
CSI-KNN classifiers that analyze the vectors supplied by the sensors. The manager,
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alert agents, and maintenance agents are designed for intrusion tolerance and are
installed on a secure administrative server called Station. The manager executes the
tasks of generating mobile agents and dispatching them for task execution.

Some advantages of classification-based anomaly detection techniques are the
following:

• These techniques are usually trained on the actual traffic data. Thus, the
performance is usually good.

• Efficiency of training a classification algorithm depends on the algorithm itself.
Algorithms like decision trees and random forests are quite efficient.

• They have a high detection rate for known attacks subject to appropriate threshold
setting.

Though such techniques are popular, they have the disadvantages including the
following:

• The techniques cannot detect or predict unknown attack or event until relevant
training information is fed.

• All anomaly classes need to be known a priori. This may be difficult in practice.

4.5 Clustering and Outlier-Based Techniques and Systems

Clustering is the task of assigning a set of objects into groups called clusters so that
the objects in the same cluster are more similar in some sense to each other than to
those in other clusters. Clustering is used in exploratory data mining. For example,
if we have a set of unlabeled objects in two dimensions, we may be able to cluster
them into five clusters by drawing circles or ellipses around them, as in Fig. 4.8a.
Outliers are those points in a dataset that are highly unlikely to occur, given a model
of the data, as in Fig. 4.8b. Examples of outliers in a simple dataset are seen in [15].
Clustering and outlier finding are examples of unsupervised machine learning.

Fig. 4.8 Clustering and outliers in 2-D, where Cis are clusters in (a) and Ois are outliers in (b)
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Clustering can be performed in network anomaly detection in an offline environ-
ment. Such an approach adds additional depth to the administrators’ defenses and
allows them to more accurately determine threats against their network through the
use of multiple methods on data from multiple sources. Hence, the extensive amount
of activities that may be needed to detect intrusion near real time in an online NIDS
may be obviated, achieving efficiency [85].

4.5.1 Clustering-Based Techniques

Clustering techniques are frequently used in anomaly detection. These include
single-link clustering algorithms, k-means (squared error clustering), and hierar-
chical clustering algorithms to mention a few [26, 87, 104, 125, 163, 168].

Sequeira and Zaki [135] present an anomaly-based intrusion detection system
known as ADMIT that detects intruders by creating user profiles. It keeps track of
the sequence of commands a user uses as he/she uses a computer. A user profile is
represented by clustering the sequences of user commands. The data collection and
processing are thus host-based. The system clusters a user’s command sequence
using LCS (the longest common subsequence) as the similarity metric. It uses a
dynamic clustering algorithm that creates an initial set of clusters and then refines
them by splitting and merging as necessary. When a new user types a sequence of
commands, it compares the sequence to profiles of users it already has. If it is a
long sequence, it is broken up to a number of smaller sequences. A sequence that
is not similar to a normal user’s profile is considered anomalous. One anomalous
sequence is tolerated as noise, but a sequence of anomalous sequences typed by one
single user causes the user to be marked as masquerader or concept drift. The system
can also use incremental clustering to detect masqueraders.

Zhang et al. [168] report a distributed intrusion detection algorithm that clusters
the data twice. The first clustering chooses candidate anomalies at agent IDSs, which
are placed in a distributed manner in a network, and a second clustering computation
attempts to identify true attacks at the central IDS. The first clustering algorithm is
essentially the same as the one proposed by [50]. At each agent IDS, small clusters
are assumed to contain anomalies, and all small clusters are merged to form a
single candidate cluster containing all anomalies. The candidate anomalies from
various agent IDSs are sent to the central IDS, which clusters again using a simple
single-link hierarchical clustering algorithm. It chooses the smallest k clusters as
containing true anomalies. They obtain 90% attack detection rate on test intrusion
data.

Bhuyan et al. [17] present an unsupervised network anomaly detection method
for large intrusion datasets. It exploits tree-based subspace clustering and an
ensemble-based cluster labeling technique to achieve better detection rate over real-
life network traffic data for the detection of known as well as unknown attacks. It can
detect network anomalies without relying on existing signatures, training, or labeled
data. The proposed approach runs in two consecutive phases for analyzing network
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Fig. 4.9 High-level description of the unsupervised network anomaly detection method

traffic in contiguous time slots of fixed length. Figure 4.9 provides a conceptual
framework of the proposed unsupervised network anomaly detection method.

In the first phase, a tree-based subspace clustering technique (TreeCLUSS)
generates clusters in high-dimensional large datasets. It is well known that network
intrusion datasets are high dimensional and large. The authors apply this technique
over a subset of features. TreeCLUSS uses the MMIFS technique [5] for finding
a highly relevant feature set. It uses a subset of features during cluster formation
without using any class labels. They analyze the stability of the cluster results
obtained. Cluster stability analysis for real-life data is not a trivial task. It is
performed using an ensemble of several index measures, viz., Dunn index [45],
C-index (C) [69], Davies-Bouldin index (DB) [38], Silhouette index (S) [128], and
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Xie-Beni index (XB) [156]. They choose a stable set of clusters when a certain
number of clusters produce better result after multiple execution of this module. In
the second phase, they apply a cluster labeling technique (CLUSSLab) to label the
stable clusters using a multi-objective approach. CLUSSLab takes into account the
following features: cluster size, compactness obtained from the ensemble of five
index measures, a dominating feature subset (DFS) obtained for each cluster based
on an unsupervised feature clustering technique, and an outlier score (OS) obtained
based on the RODD technique [15]. Finally, they label each cluster as normal or
anomalous based on the described measures. They obtain 98% detection rate on
average in detecting network anomalies.

Some advantages of using clustering are given below:

• For a partitioning approach, if k can be provided accurately, then the task is easy.
• Incremental clustering (in supervised mode) techniques are effective for fast

response generation.
• In a large datasets, grouping first a number of clusters before detecting network

anomalies is useful, because it reduces the computational complexity during
intrusion detection.

• It provides stable performance in comparison to classifiers or statistical methods.

Drawbacks of clustering-based techniques include the following:

• Most techniques are able to handle continuous attributes only.
• In clustering-based intrusion detection techniques, an assumption is that the

larger clusters are normal and smaller clusters are attack or intrusion [119].
Without this assumption, it is difficult to evaluate the technique.

• The use of an inappropriate proximity measure affects the detection rate nega-
tively.

• Dynamic updation of profiles is time-consuming.

4.5.2 Outlier-Based Techniques

Several outlier-based network anomaly identification techniques are available in
[63]. When we use outlier-based algorithms, the assumption is that anomalies are
uncommon events in a network. Intrusion datasets usually contain mixed, numeric,
and categorial attributes. Many early outlier detection algorithms worked with
continuous attributes only. They ignored categorial attributes or modeled them in
manners that caused considerable loss of information.

To overcome this problem, Otey et al. [108] develop a distance measure for data
containing a mix of categorical and continuous attributes and use it for outlier-based
anomaly detection. They define an anomaly score which can be used to identify
outliers in mixed attribute space by considering dependencies among attributes of
different types. Their anomaly score function is based on a global model of the data
that can be easily constructed by combining local models built independently at
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Fig. 4.10 A framework for outlier-based network anomaly detection. The framework takes feature
dataset X as input. It initially selects a relevant and optimal feature subset using the IGFS algorithm.
TreeCLUS uses this feature subset to form clusters, C1; C2; � � � ; Ck. Once cluster formation is
over, it generates mean-based profiles, �1; �2; � � � ; �k for each cluster. Finally, ROS0 computes the
outlier score for each test object, xc, and reports as normal or anomalous based on a user-defined
threshold, �

each node. They develop an efficient one-pass approximation algorithm for anomaly
detection that works efficiently in distributed detection environments with very
little loss of detection accuracy. Each node computes its own outliers, and the
internode communication needed to compute global outliers is not significant. In
addition, the authors show that their approach works well in dynamic network traffic
situations where data, in addition to being streaming, also changes in nature as time
progresses leading to concept drift. Bhuyan et al. [13] introduce a multi-step outlier-
based technique to detect network-wide traffic anomalies. It works by identifying
reference points and by ranking based on outlier scores of candidate objects. The
technique has four parts including feature selection, clustering, profile generation,
and outlier detection. Figure 4.10 shows the framework for outlier-based technique
to network anomaly detection.

The authors consider seven different classes of outliers the methods can detect as
shown in Fig. 4.11. These seven classes were introduced in [14] by us, and they are
defined formally as follows:

Definition 4.1 Outlier Score—An outlier score ROS0 with respect to a reference
point is defined as a summarized value that combines distance and maximum
frequency of class occurrence with respect to k0-nearest neighbors of each candidate
data object (see formula in Eq. (4.1)).

Definition 4.2 Distinct Inlierness—An object Oi is defined as a distinct inlier if it
conforms to normal objects, i.e., ROS0.Oi; Ci/� � for all i.
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Fig. 4.11 Illustration of seven different cases: N1 and N2 are two normal clusters, O1 is the distinct
outlier, O2, the distinct inlier, O3, the equidistance outlier, O4, the border inlier, O5, a chain of
outliers, O6 is another set of outlier objects with higher compactness among the objects, and O7 is
an outlier case of “stay together”

Definition 4.3 Border Inlierness—An object Oi is defined as a border object in a
class Ci, if ROS0.Oi; Ci/ < � .

Definition 4.4 Outlier—An object Oi is defined as an outlier w.r.t. any normal class
Ci and the corresponding profile Ri iff (i) ROS0.Oi; Ci/ � � , and (ii) dist.Oi; Ri/ >

˛0, where ˛0 is a proximity-based threshold and dist is proximity measure.

Definition 4.5 Distinct Outlierness—An object Oi is defined as a distinct outlier iff
it deviates exceptionally from the normal objects, i.e., from the generic class Ci. In
other words, ROS0.Oi; Ci/� � for all i.

Definition 4.6 Equidistant Outlierness—An object Oi is defined as equidistant
outlier from classes Ci and Cj, if dist.Oi; Ci/ D dist.Oi; Cj/ but ROS0.Oi; Ci/ > � .

Definition 4.7 Chain Outlierness—A set of objects, Oi; OiC1; OiC2 � � � is defined
as a chain of outliers if ROS0 (OiCl; Ci) � � , where l D 0; 1; 2; � � � ; z.

Let Si be the number of classes to which each of k0-nearest neighbor data objects
belongs. k0 plays an important role in score computation. Let xc be a data object in Xc

and dist.xc; Ri/ be the distance between the data object xc and the reference points
Ri, where c D 1; 2; 3; � � � n, dist is a proximity measure used, and Xc represents
the whole candidate dataset. The technique works well with any commonly used
proximity measure. The outlier score for a data object xc is given in Eq. (4.1).
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Here,
max

1�i�k0
Si

k0
is the maximum probability that a data object belongs to a

particular class. The remaining part is the summarized value of the distance measure
with k0-nearest neighbors over the relevant feature subset. The candidate data objects
are ranked based on outlier score values. Objects with scores higher than a user-
defined threshold � are considered anomalous or outliers.

Some of the advantages of outlier-based anomaly detection are the following:

• It is easy to detect outliers when the datasets are smaller in size.
• Bursty and isolated attacks can be identified efficiently using this method.

Drawbacks of outlier-based anomaly detection include the following:

• Most techniques use both clustering and outlier detection. In such cases the
complexity may be high in comparison to other techniques.

• The techniques are highly parameter dependent.

A comparison of a few clustering and outlier-based network anomaly detection
techniques is given in Table 4.4.

4.5.3 Clustering and Outlier-Based Systems

Worms are often intelligent enough to hide their activities and evade detection by
IDSs. Zhuang et al. [171] propose a method called PAIDS (proximity-assisted IDS)
to identify the new worms as they begin to spread. PAIDS works differently from
other IDSs and has been designed to work collaboratively with existing IDSs such as
anomaly-based IDSs for enhanced performance. The goal of the designers of PAIDS
is to identify new and intelligent fast-propagating worms and thwarting their spread,
particularly as the worm is just beginning to spread. Neither signature-based nor
anomaly-based techniques can achieve such capabilities. Zhuang et al.’s approach
is based mainly on the observation that during the starting phase of a new worm,
the infected hosts are clustered in terms of geography, IP address, and maybe, even
DNSes used.

MINDS (Minnesota Intrusion Detection System) [48] is a data mining-based
system for detecting network intrusions. The architecture of MINDS is given in
Fig. 4.12. It accepts NetFlow data collected through flow tools as input. Flow tools
only capture packet header information and build one way sessions of flows. The
analyst uses MINDS to analyze these data files in batch mode. The reason for
running the system in batch mode is not due to the time it takes to analyze these
files but because it is convenient for the analyst to do so. Before data is fed into
the anomaly detection module, a data filtering step is executed to remove network
traffic in which the analyst is not interested.
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Fig. 4.12 Architecture of MINDS system

The first step of MINDS is to extract important features that are used. Then,
it summarizes the features based on time windows. After the feature construction
step, the known attack detection module is used to detect network connections that
correspond to attacks for which signatures are available and to remove them from
further analysis. Next, an outlier technique is activated to assign an anomaly score to
each network connection. A human analyst then looks at only the most anomalous
connections to determine if they are actual attacks or represent other interesting
behavior. The association pattern analysis module of this system is dedicated to
summarize the network connections as per the assigned anomaly rank. The analyst
provides feedback after analyzing the summaries created and decides whether these
summaries are helpful in creating new rules that may be used in known attack
detection.

4.6 Soft Computing Techniques and Systems

Soft computing techniques are suitable for network anomaly detection because
often one cannot find exact solutions. Soft computing is usually thought of as
encompassing methods such as genetic algorithms (GA), artificial neural networks
(ANN), fuzzy sets, rough sets, ant colony algorithms, and artificial immune systems.
We describe several soft computing techniques and systems for network anomaly
detection below.
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4.6.1 GA-Based Techniques

Genetic algorithms (GA) are population-based adaptive heuristic search techniques
based on evolutionary ideas. The approach begins with conversion of a problem into
a framework that uses a chromosome-like data structure. Balajinath and Raghavan
[11] present a genetic intrusion detector (GBID) based on learning of individual user
behavior. User behavior is described as 3-tuple <matching index, entropy index,
newness index> and is learnt using a genetic algorithm. This behavior profile is
used to detect intrusion based on past behavior.

Khan [77] uses genetic algorithms to develop rules for network intrusion detec-
tion. A chromosome in an individual contains genes corresponding to attributes such
as the service, flags, logged in or not, and super-user attempts. Khan concludes that
attacks that are common can be detected more accurately compared to uncommon
attributes.

4.6.2 ANN-Based Techniques

Artificial neural networks (ANN) are motivated by the recognition that the human
brain computes in an entirely different way from the conventional digital computer
[66]. The brain organizes its constituents, known as neurons, so as to perform certain
computations (e.g., pattern recognition, perception, and motor control) many times
faster than the fastest digital computer. To achieve good performance, real neural
networks employ massive interconnections of neurons. Neural networks acquire
knowledge of the environment through a process of learning, which systematically
changes the interconnection strengths or synaptic weights of the network to attain a
desired design objective.

Cannady’s approach [24] autonomously learns new attacks rapidly using modi-
fied reinforcement learning. His approach uses feedback for signature update when
a new attack is encountered and achieves satisfactory results. An improved approach
to detect network anomalies using a hierarchy of neural networks is introduced in
[86]. The neural networks are trained using data that spans the entire normal space
and are able to recognize unknown attacks effectively.

Liu et al. [89] report a real-time solution to detect known and new attacks
in network traffic using unsupervised neural nets. It uses a hierarchical intrusion
detection model using principal components analysis (PCA) neural networks to
overcome the shortcomings of single-level structures. Sun et al. [144] present
a wavelet neural network (WNN)-based intrusion detection method. It reduces
the number of the basic wavelet functions by analyzing the sparseness property
of sample data to optimize the wavelet network to a large extent. The learning
algorithm trains the network using gradient descent. Yong and Feng [159] use
recurrent multilayered perceptrons (RMLP) [111], a dynamic extension of well-
known feed-forward layered networks to classify network data into anomalous and
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normal. An RMLP network has the ability to encode temporal information. They
develop an incremental kernel principal components algorithm to preprocess the
data that goes into the neural network and obtain effective results.

4.6.3 Fuzzy Set Theoretic Techniques

Fuzzy network intrusion detection systems exploit fuzzy rules to determine the
likelihood of specific or general network attacks [42, 60]. A fuzzy input set can
be defined for traffic in a specific network.

Tajbakhsh et al. [145] describe a novel method for building classifiers using fuzzy
association rules and use it for network intrusion detection. The fuzzy association
rule sets are used to describe different classes: normal and anomalous. Such fuzzy
association rules are class association rules where the consequents are specified
classes. Whether a training instance belongs to a specific class is determined
using matching metrics proposed by the authors. The fuzzy association rules are
induced using normal training samples. A test sample is classified as normal if the
compatibility of the rule set generated is above a certain threshold; those with lower
compatibility are considered anomalous. The authors also propose a new method to
speed up the rule induction algorithm by reducing items from extracted rules.

Mabu et al. report a novel fuzzy class-association-rule mining method based on
genetic network programming (GNP) for detecting network intrusions [93]. GNP is
an evolutionary optimization technique, which uses directed graph structures instead
of strings in standard genetic algorithms, leading to enhanced representation ability
with compact descriptions derived from possible node reusability in a graph. Xian
et al. [155] present a novel unsupervised fuzzy clustering method based on clonal
selection for anomaly detection. The method is able to obtain global optimal clusters
more quickly than competing algorithms with greater accuracy.

4.6.4 Rough Set-Based Techniques

A rough set is an approximation of a crisp set (i.e., a regular set) in terms of a pair
of sets that are its lower and upper approximations. In the standard and original
version of rough set theory [113], the two approximations are crisp sets, but in other
variations the approximating sets may be fuzzy sets. The mathematical framework
of rough set theory enables modeling of relationships with a minimum number of
rules.

Rough sets have two useful features [23]: (i) enabling learning with small-
size training datasets and (ii) overall simplicity. They can be applied to anomaly
detection by modeling normal behavior in network traffic. For example, Chimphlee
et al. [34] present a Fuzzy Rough C-means clustering technique for network
intrusion detection by integrating fuzzy set theory and rough set theory to achieve
high detection rate.
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Adetunmbi et al. [2] use rough sets and a k-NN classifier to detect network
intrusions with high detection rate and low false alarm rate. Chen et al. present a
two-step classifier for network intrusion detection [31]. Initially, it uses rough set
theory for feature reduction and then a support vector machine classifier for final
classification. They obtain 89% accuracy on network anomaly data.

4.6.5 Ant Colony and Artificial Immune Systems

Ant colony optimization [43] and related algorithms are probabilistic techniques for
solving computational problems which can be reformulated to find optimal paths
through graphs. The algorithms are based on the behavior of ants seeking a path
between their colony and a source of food.

Gao et al. [57] use ant colony optimization for feature selection for an SVM
classifier for network intrusion detection. The features are represented as graph
nodes with the edges between them denoting the addition of the next feature. Ants
traverse the graph to add nodes until the stopping criterion is encountered.

Artificial immune systems (AIS) represent a computational method inspired by
the principles of the human immune system. The human immune system is adept at
performing anomaly detection. Visconti and Tahayori [151] present a performance-
based AIS for detecting individual anomalous behavior. It monitors the system by
analyzing the set of parameters to provide general information on its state. Interval
type-2 fuzzy set paradigm is used to dynamically generate system status.

4.6.6 Soft Computing Systems

RT-UNNID [4] is an IDS developed based on ANN. This system is capable of
intelligent real-time intrusion detection using unsupervised neural networks (UNN).
The architecture of RT-UNNID is given in Fig. 4.13. The first module captures
and preprocesses the real-time network traffic data for the TCP, UDP, and ICMP
protocols. It also extracts the numeric features and converts them into binary or
normalized form. The converted data is sent to the UNN-based detection engine
that uses adaptive resonance theory(ART) and self-organizing map(SOM) [25, 80]
neural networks. Finally, the output of the detection engine is sent to the responder
for recording in the user’s system log file and to generate alarm when detecting
attacks. RT-UNNID can work in real time to detect known and unknown attacks in
network traffic with high detection rate.

NSOM (network self-organizing maps) [83] is a network IDS developed using
self-organizing maps (SOM). It detects anomalies by quantifying the usual or
acceptable behavior and flags irregular behavior as potentially intrusive. To classify
real-time traffic, it uses a structured SOM. It continuously collects network data
from a network port, preprocesses that data, and selects the features necessary for
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Fig. 4.13 Architecture of
RT-UNNID system

classification. Then it starts the classification process—a chunk of packets at a
time—and then sends the resulting classification to a graphical tool that portrays
the activities that are taking place on the network port dynamically as it receives
more packets. The hypothesis is that routine traffic that represents normal behavior
would be clustered around one or more cluster centers, and any irregular traffic
representing abnormal and possibly suspicious behavior would be clustered in
addition to the normal traffic clustering. The system is capable of classifying regular
vs. irregular and possibly intrusive network traffic for a given host.

POSEIDON (Payl Over Som for Intrusion DetectiON) [19] is a two-tier network
intrusion detection system. The first tier consists of a self-organizing map (SOM)
and is used exclusively to classify payload data. The second tier consists of a light
modification of the PAYL system [153]. Tests using the DARPA99 dataset show a
higher detection rate and lower number of false positives than PAYL and PHAD
[95].

NFIDS [101] is a neuro-fuzzy anomaly-based network intrusion detection
system. It comprises three tiers. Tier I contains several intrusion detection agents
(IDAs). IDAs are IDS components that monitor the activities of a host or a network
and report the abnormal behavior to Tier II. Tier II agents detect the network status
of a LAN based on the network traffic that they observe as well as the reports from
the Tier I agents within the LAN. Tier III combines higher-level reports, correlates
data, and sends alarms to the user interface. There are four main types of agents
in this system: TCPAgent, which monitors TCP connections between hosts and
on the network; UDPAgent, which looks for unusual traffic involving UDP data;
ICMPAgent, which monitors ICMP traffic; and PortAgent, which looks for unusual
services in the network.
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FIRE (fuzzy intrusion recognition engine) [42] is an anomaly-based intrusion
detection system that uses fuzzy logic to assess whether malicious activity is taking
place on a network. The system combines simple network traffic metrics with fuzzy
rules to determine the likelihood of specific or general network attacks. Once the
metrics are available, they are evaluated using a fuzzy set theoretic approach. The
system takes on fuzzy network traffic profiles as inputs to its rule set and report
maliciousness.

Advantages of soft computing-based anomaly detection techniques include the
following:

• Due to the adaptive nature of ANNs, it is possible to train and test instances
incrementally. Multilevel neural network techniques are more efficient than
single-level neural networks.

• Unsupervised learning using competitive neural networks is effective in data
clustering, feature extraction, and similarity detection.

• Rough sets are useful in resolving inconsistency in the dataset and to generate a
minimal, nonredundant, and consistent rule set.

Some of the disadvantages of soft computing techniques are pointed below:

• Over-fitting may happen during neural network training.
• If a credible amount of normal traffic data is not available, the training of the

techniques becomes very difficult.
• Most methods have scalability problems.
• Rough set-based rule generation suffers from proof of completeness.
• In fuzzy association rule-based techniques, reduced, relevant rule subset identifi-

cation and dynamic rule updation at runtime are a difficult task.

Table 4.5 gives a comparison of several soft computing-based anomaly detection
techniques.

4.7 Knowledge-Based Techniques and Systems

In knowledge-based techniques, network or host events are checked against pre-
defined rules or patterns of attack. The goal is to represent the known attacks
in a generalized fashion so that handling of actual occurrences becomes easier.
Examples of knowledge-based methods are expert systems, rule-based, ontology-
based, logic-based, and state-transition analysis [106, 120, 133, 157].

These techniques search for instances of known attacks, by attempting to match
with predetermined attack representations. The search begins like other intrusion
detection techniques, with a complete lack of knowledge. Subsequent matching of
activities against a known attack helps acquire knowledge and enter into a region
with higher confidence. Finally, it can be shown that an event or activity has reached
maximum anomaly score.

A few prominent knowledge-based network anomaly detection techniques and
NIDS are given below:
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4.7.1 Expert Systems and Rule-Based Techniques

The expert system approach is one of the most widely used knowledge-based
methods [6, 40]. An expert system, in the traditional sense, is a rule-based system,
with or without an associated knowledge base. An expert system has a rule engine
that matches rules against the current state of the system and depending on the
results of matching, fires one or more rules.

To scale to large networks that collect flow statistics ubiquitously, Duffield et al.
[44] use the machine learning algorithm called Adaboost [130] to translate packet
level signatures to work with flow-level statistics. The algorithm is used to correlate
packet and flow information. In particular, the authors associate packet level network
alarms with a feature vector they create from flow records on the same traffic. They
create a set of rules using flow information with features similar to those used in
Snort rules. They also add numerical features such as the number of packets of a
specific kind flowing within a certain time period. Duffield et al. train Adaboost
on concurrent flow and packet traces. They evaluate the system using real-time
network traffic data with more than a billion flows over 29 days and show that their
performance is comparable to Snort’s with flow data.

Prayote and Compton [121] present an approach to anomaly detection that
attempts to address the brittleness problem in which an expert system makes a
decision that human common sense would recognize as impossible. They use a
technique called prudence [46], in which for every rule, the upper and lower bounds
of each numerical variable in the data seen by the rule are recorded, as well as a list
of values seen for enumerated variables. The expert system raises a warning when
a new value or a value outside the range is seen in a data instance. They improve
the approach by using a simple probabilistic technique to decide if a value is an
outlier. When working with network anomaly data, the authors partition the problem
space into smaller subspaces of homogeneous traffic, each of which is represented
with a separate model in terms of rules. The authors find that this approach works
reasonably well for new subspaces when little data has been observed. They claim
0% false-negative rate in addition to very low false-positive rate.

Scheirer and Chuah [131] report a syntax-based scheme that uses variable-
length partition with multiple break marks to detect many polymorphic worms.
The prototype is the first NIDS that provides semantics-aware capability and can
capture polymorphic shell codes with additional stack sequences and mathematical
operations.

4.7.2 Ontology and Logic-Based Techniques

It is possible to model attack signatures using expressive logic structure in real time
by incorporating constraints and statistical properties. Naldurg et al. [103] present
a framework for intrusion detection based on temporal logic specification. Intrusion
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patterns are specified as formulae in an expressively rich and efficiently monitorable
logic called EAGLE and evaluated using DARPA log files.

Estevez-Tapiador et al. [51] describe a finite state machine (FSM) methodology,
where a sequence of states and transitions among them are used to model network
protocols. If the specifications are complete enough, the model is able to detect
illegitimate behavioral patterns effectively. Shabtai et al. [136] describe an approach
for detecting previously un-encountered malware targeting mobile devices. Time-
stamped security data is continuously monitored within the target mobile devices
like smart phones and PDAs. Then it is processed by the knowledge-based
temporal abstraction (KBTA) methodology. The authors evaluate the KBTA model
using a lightweight host-based intrusion detection system, combined with central
management capabilities for Android-based mobile phones.

Hung and Liu [70] use ontologies as a way of describing the knowledge of a
domain, expressing the intrusion detection system much more in terms of the end
user domain. Ontologies are used as a conceptual modeling tool, allowing a non-
expert person to model an intrusion detection application using the concepts of
intrusion detection more intuitively.

A comparison of knowledge-based anomaly detection techniques is given in
Table 4.6.

The main advantages of knowledge-based anomaly detection methods include
the following:

• These techniques are robust and flexible.
• These techniques have high detection rate, if a substantial knowledge base can

be acquired properly about attacks as well as normal instances.

Some disadvantages of knowledge-based techniques are listed below:

Table 4.6 Comparison of knowledge-based network anomaly detection techniques

Author (s)
Year of
publication

No. of
parameters w x y

Data
types

Dataset
used z Detection method

Noel et al.
[106]

2002 – O N O – – – Attack guilt
model

Sekar et al.
[133]

2002 3 O N P Numeric DARPA99 C1 Specification-
based model

Tapiador et al.
[51]

2003 3 C N P Numeric Real-life C2 Markov chain
model

Hung and Liu
[70]

2008 – O N P Numeric KDDcup99 C1 Ontology-based

Shabtai et al.
[136]

2010 2 O N O – Real-life C2 Incremental
KBTA

w indicates centralized (C) or distributed (D) or others (O), x the nature of detection as real time
(R) or non-real time (N), y characterizes packet-based (P) or flow-based (F) or hybrid (H) or others
(O), z represents the list of attacks handled: C1-all attacks, C2-denial of service, C3-probe, C4-user
to root, and C5-remote to local
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Fig. 4.14 Architecture of STAT system

• The development of high-quality knowledge is often difficult and time-
consuming.

• Due to nonavailability of biased normal and attack data, such a method may
generate a large number of false alarms.

• Such a method may not be able to detect rare or unknown attacks.
• Dynamic updation of rule or knowledge base is a costly affair.

4.7.3 Knowledge-Based Systems

An example knowledge-based system is STAT (state transition analysis tool) [72].
Its architecture is given in Fig. 4.14. It models traffic data as a series of state changes
that lead from secure state to a compromised target state. STAT is composed of
three main components: knowledge base, inference engine, and decision engine.
The audit data preprocessor reformats the raw audit data to send as input to the
inference engine. The inference engine monitors the state transitions extracted from
the preprocessed audit data and then compares these states with the states available
within the knowledge base. The decision engine monitors the improvement of the
inference engine for matching accuracy of the state transitions. It also specifies the
action(s) to be taken based on results of the inference engine and the decision table.
Finally, the decision results are sent to the SSO (Site Security Officer) interface for
action. It can detect cooperative attackers and attacks across user sessions well.

SNORT [125] is a quintessentially popular rule-based IDS. This open-source
IDS matches each packet it observes against a set of rules. The antecedent of a
Snort rule is a Boolean formula composed of predicates that look for specific values
of fields present in IP headers, in transport headers, and in the payload. Thus, Snort
rules identify attack packets based on IP addresses, TCP or UDP port numbers,
ICMP codes or types, and contents of strings in the packet payload. Snort’s rules
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are arranged into priority classes based on potential impact of alerts that match
the rules. Snort’s rules have evolved over its history of 15 years. Each Snort rule
has associated documentation with the potential for false positives and negatives,
together with corrective actions to be taken when the rule raises an alert. Snort rules
are simple and easily understandable. Users can contribute rules when they observe
new types of anomalous or malicious traffic. Currently, Snort has over 20;000 rules,
inclusive of those submitted by users.

An intrusion detection system like Snort can run on a general purpose computer
and can try to inspect all packets that go through the network. However, monitoring
packets comprehensively in a large network is obviously an expensive task since it
requires fast inspection on a large number of network interfaces. Many hundreds of
rules may have to be matched concurrently, making scaling almost impossible.

4.8 Combination Learners: Techniques and Systems

In this section, we present a few techniques and systems which use combinations of
multiple techniques, usually classifiers.

4.8.1 Ensemble-Based Techniques

The idea behind the ensemble methodology is to weigh several individual classifiers
and combine them to obtain an overall classifier that outperforms every one of
them [20, 61, 107, 118, 126]. These techniques weigh the individual opinions
and combine them to reach a final decision. The ensemble-based methods are
categorized based on the approaches used. Three main approaches to develop
ensembles are (i) bagging, (ii) boosting, and (iii) stack generalization. Bagging
(bootstrap aggregating) increases classification accuracy by creating an improved
composite classifier into a single prediction by combining the outputs of learnt
classifiers. Boosting builds an ensemble incrementally by training misclassified
instances obtained from the previous model. Stack generalization achieves the high
generalization accuracy by using output probabilities for every class label from the
base-level classifiers.

Chebrolu et al. [30] present an ensemble approach by combining two classifiers,
Bayesian networks (BN) and Classification and Regression Trees (CART) [22, 54].
A hybrid architecture for combining different feature selection algorithms for real-
world intrusion detection is also incorporated for getting better results. Perdisci et al.
[117] construct a high-speed payload anomaly IDS using an ensemble of one-class
SVM classifiers intended to be accurate and hard to evade.

Folino et al. [53] introduce a distributed data mining algorithm to improve
detection accuracy when classifying malicious or unauthorized network activity
using genetic programming (GP) extended with the ensemble paradigm. Their
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Fig. 4.15 Architecture of Octopus-IIDS system

data is distributed across multiple autonomous sites, and the learner component
acquires useful knowledge from data in a cooperative way and uses network profiles
to predict abnormal behavior with better accuracy. Nguyen et al. [105] build an
individual classifier using both the input feature space and an additional subset of
features given by k-means clustering. The ensemble combination is calculated based
on the classification ability of classifiers on different local data segments given by
k-means clustering.

4.8.2 Ensemble-Based Systems

The paradigm of multiple classifier systems (MCS) has also been used to build mis-
use detection IDSs. Classifiers trained on different feature subsets are combined to
achieve better classification accuracy than the individual classifiers. In such a NIDS,
network traffic is serially processed by each classifier. At each stage, a classifier
may either decide for one attack class or send the pattern to another stage, which
is trained on more difficult cases. Reported results show that an MCS improves
the performance of IDSs based on statistical pattern recognition techniques. For
example, Octopus-IIDS [94] is an ensemble-based IDS. The architecture of this
system is shown in Fig. 4.15. It is developed using two types of neural networks
(Kohonen and Support Vector Machines). The system is composed of two layers:
classifier and anomaly detection. The classifier is responsible for capturing and
preprocessing of network traffic data. It classifies the data into four main categories:
DoS, probe, U2R, and R2L. A specific class of attack is identified in the anomaly
detection layer. The authors claim that the IDS works effectively in small-scale
networks.



4.8 Combination Learners: Techniques and Systems 153

CAMNEP [124] is a fast prototype agent-based NIDS designed for high-
speed networks. It integrates several anomaly detection techniques and operates
on a collective trust model within a group of collaborative detection agents. The
anomalies are used as input for trust modeling. Aggregation is performed by
extended trust models of generalized situated identities, represented by a set of
observable features. The system is able to perform real-time surveillance of gigabit
networks.

McPAD (multiple classifier payload-based anomaly detector) [116] is an effec-
tive payload-based anomaly detection system that consists of an ensemble of
one-class classifiers. It is very accurate in detecting network attacks that bear some
form of shell-code in the malicious payload. This detector performs well even in
the case of polymorphic attacks. Furthermore, the authors tested their IDS with
advanced polymorphic blending attacks and showed that even in the presence of
such sophisticated attacks, it is able to obtain a low false-positive rate.

An ensemble technique is good because it obtains higher accuracy than the
individual techniques. The following are the major advantages:

• Even if the individual classifiers are weak, the ensemble methods perform well
by combining multiple classifiers.

• Ensemble methods can scale for large datasets.
• Ensemble classifiers need a set of controlling parameters that are comprehensive

and can be easily tuned.
• Among existing approaches, Adaboost and Stack generalization are more effec-

tive because they can exploit the diversity in predictions by multiple base-level
classifiers.

Here are some disadvantages of ensemble-based techniques:

• Selecting a subset of consistently performing and unbiased classifiers from a pool
of classifiers is difficult.

• It is difficult to obtain real-time performance.

A comparison of ensemble-based network anomaly detection techniques is given
in Table 4.7.

4.8.3 Fusion-Based Techniques

A classification technique may have to work with several disparate data sources. A
suitable combination of these data sources may be used to train a classifier. This is
known as data fusion. Several fusion-based techniques have been applied to network
anomaly detection [62, 110, 137, 158, 170]. Such techniques may perform fusion at
(i) data level, (ii) feature level, and (iii) decision level. Some methods only address
the issue of operating in a space of high dimensionality with features divided into
semantic groups. Others attempt to combine classifiers trained on different features
divided based on hierarchical abstraction levels or the type of information contained.
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Giacinto et al. [62] develop a pattern recognition approach to network intrusion
detection employing a fusion of multiple classifiers. Five different decision fusion
methods are assessed by experiments, and their performance compared. Shifflet
[137] discusses a platform that enables a multitude of techniques to work together
toward creating a more realistic fusion model of the state of a network, able to
detect malicious activity effectively. A heterogeneous data-level fusion for network
anomaly detection is added by Chatzigiannakis et al. [29]. They use the Dempster-
Shafer theory of evidence and principal components analysis for developing the
technique.

dLEARNIN [110] is an ensemble of classifiers that combines information from
multiple sources. It is explicitly tuned to minimize the cost of errors. dLEARNIN
is shown to achieve state-of-the-art performance, better than competing algorithms.
The cost minimization strategy, dCMS, attempts to minimize the cost to a significant
level. Gong et al. [64] contribute a neural network-based data fusion method for
intrusion data analysis and pruning to filter information from multiple sensors to get
high detection accuracy.

4.8.4 Fusion-Based Systems

HMMPayl [8] is an example of fusion-based IDS, where the payload is represented
as a sequence of bytes and the analysis is performed using hidden Markov models
(HMM). The algorithm extracts features and uses HMM to guarantee the same
expressive power as that of n-gram analysis while overcoming its computational
complexity. HMMPayl follows the Multiple Classifiers System paradigm to provide
better classification accuracy, to increase the difficulty of evading the IDS, and to
mitigate the weaknesses due to a nonoptimal choice of HMM parameters.

Some advantages of fusion techniques are given below:

• Data fusion is effective in increasing timeliness of attack identification and in
reducing false alarm rates.

• Decision-level fusion with appropriate training data usually yields high detection
rate.

Some of the drawbacks are given below:

• The computational cost is high for rigorous training on the samples.
• Feature-level fusion is a time-consuming task. The biases of the base classifiers

affect the fusion process.
• Building a single hypotheses for different classifiers is a difficult task.

A comparison of fusion-based network anomaly detection is given in Table 4.8.
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4.8.5 Hybrid Techniques

Most current network intrusion detection systems employ either misuse detection or
anomaly detection. However, misuse detection cannot detect unknown intrusions,
and anomaly detection usually has high false-positive rate [9]. To overcome the
limitations of the techniques, hybrid methods are developed by exploiting features
from several network anomaly detection approaches [10, 109, 165]. Hybridization
of several methods increases performance of IDSs.

A hybrid approach to host security that prevents binary code injection attacks
known as the FLIPS (Feedback Learning IPS) model is proposed by [90]. It
incorporates three major components: an anomaly-based classifier, a signature-
based filtering scheme, and a supervision framework that employs Instruction
Set Randomization (ISR). Capturing the injected code allows FLIPS to construct
signatures for zero-day exploits. Peddabachigari et al. [115] present a hybrid
approach that combines decision trees (DT) and SVMs as a hybrid hierarchical
intelligent system model (DTSVM) for intrusion detection. It maximizes detection
accuracy and minimizes computational complexity.

Zhang et al. [166] propose a systematic framework that applies a data mining
algorithm called random forests to build a misuse, anomaly, and hybrid network-
based IDS. The hybrid detection system improves detection performance by
combining the advantages of both misuse and anomaly detection. Tong et al. [147]
discuss a hybrid RBF/Elman neural network model that can be employed for both
anomaly detection and misuse detection. It can detect temporally dispersed and
collaborative attacks effectively because of its memory of past events.

4.8.6 Hybrid Systems

An intelligent hybrid IDS model based on neural networks is reported in [162]. The
model is flexible, extended to meet different network environments, and improves
detection performance and accuracy. Selim et al. [134] report a hybrid intelligent
IDS to improve the detection rate for known and unknown attacks. It consists
of multiple levels: hybrid neural networks and decision trees. The technique is
evaluated using the NSL-KDD dataset and results were promising.

RT-MOVICAB-IDS, a hybrid intelligent IDS, is introduced in [68]. It combines
ANN and CBR (case-based reasoning) within a multi-agent system (MAS) to
detect intrusion in dynamic computer networks. The dynamic real-time multi-
agent architecture allows the addition of prediction agents (both reactive and
deliberative). In particular, two of the deliberative agents deployed in the system
incorporate a temporal-bounded CBR system. This upgraded CBR is based on an
anytime approximation, which allows the adaptation of this paradigm to real-time
requirements.
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Advantages of hybrid techniques include the following:

• Such a method exploits major features of both signature and anomaly-based
network anomaly detection.

• Such methods can handle both known and unknown attacks.

Drawbacks include the following:

• Lack of appropriate hybridization may lead to high computational cost.
• Dynamic updation of rule or profile or signature still remains difficult.

Table 4.9 gives a comparison of a few hybrid network anomaly detection
techniques.

We perform a comparison of the anomaly-based network intrusion detection
systems that we have discussed throughout this chapter based on parameters such
as mode of detection (host-based, network-based, or both), detection approach
(misuse, anomaly, or both), nature of detection (online or offline), nature of
processing (centralized or distributed), data gathering mechanism (centralized or
distributed), and approach of analysis. A comparison chart is given in Table 4.10.

4.9 Observations and Chapter Summary

This chapter presents several network traffic anomaly detection techniques and
systems under different categories. Though many techniques and systems have
been developed for detection of network-wide traffic anomaly detection, it is still
necessary to develop effective and efficient techniques and systems to handle the
growing threats of cyber attacks. We observe the following few points:

• Each detection technique and system works well in certain scenarios. But no
technique or system is capable of working well in all scenarios. It is because the
nature of network traffic changes constantly, and the performance of a technique
depends on the deployment point in the network.

• Statistical techniques and systems work well if the predicted model is built by
observing the real-time traffic of an enterprise network. For example, normal
traffic follows the Gaussian distribution, and attack traffic usually follows the
Poisson distribution. But obtaining a density function that works well and finding
parameter values that are optimal are difficult.

• Classification, clustering, and outlier-based techniques mostly all require an
appropriate proximity measure. For high-dimensional datasets, it is difficult
to compute proximity considering all features and get good results efficiently.
Therefore it is necessary to reduce the number of features. Identification of
a suitable subset of features in a large high-dimensional dataset is expensive
and time-consuming. For real-time network traffic anomaly detection, time
complexity is important and should be low. Training is a crucial in building a
system that detects anomalies in network-wide traffic. If training is offline, it
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Table 4.10 Comparison of existing NIDSs

Name of IDS Year of publication a b c d e Approach

STAT [72] 1995 H M R C C Knowledge-based

FIRE [42] 2000 N A N C C Fuzzy Logic

ADAM [36] 2001 N A R C C Classification

HIDE [169] 2001 N A R C D Statistical

NSOM [83] 2002 N A R C C Neural network

MINDS [48] 2003 N A R C C Clustering and
outlier-based

NFIDS [101] 2003 N A N C C Neuro fuzzy logic

N@G [143] 2003 H B R C C Statistical

FSAS [138] 2006 N A R C C Statistical

POSEIDON [19] 2006 N A R C C SOM & modified PAYL

RT-UNNID [4] 2006 N A R C C Neural network

DNIDS [82] 2007 N A R C C CSI-KNN based

CAMNEP [124] 2008 N A R C C Agent-based trust and
reputation

McPAD [116] 2009 N A N C C Multiple classifier

Octopus-IIDS [94] 2010 N A N C C Neural network & SVM

HMMPayl [8] 2011 N A R C C HMM model

RT-MOVICAB-IDS [68] 2011 N A R C C Hybrid IDS

a represents the types of detection such as host-based (H) or network-based (N) or hybrid (H), b
indicates the class of detection mechanism as misuse (M) or anomaly (A) or both (B), c denotes the
nature of detection as real time (R) or non-real time (N), d characterizes the nature of processing
as centralized (C) or distributed (D), e indicates the data gathering mechanism as centralized (C)
or distributed (D)

does not affect detection efficiency. Training usually involves high cost. Testing
or detecting should be preferably online.

• Knowledge-based techniques and systems build a rule database based on the
existing attack information, and then it detects anomalies with respect to the
built rule set. Building an optimal, nonredundant, and consistent rule database
is a challenging task, considering all types of attacks.

• Soft computing techniques are applied when the decision of identifying an
element of network traffic as anomalous or normal is not certain. Developing
a membership function to rank network traffic elements as anomaly or legitimate
allows one to make decisions in uncertain situations.

• Finally, combination learners are techniques to combine different methods at
different levels such as feature, decision, and data. But such approaches are time-
consuming and are generally not suitable for real-time detection.

This chapter has discussed network-wide traffic anomaly detection techniques
and systems with pros and cons. We analyze detection techniques in terms of various
performance parameters. We also discuss several systems that have been built for
deployment as a detection system in enterprise networks.
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Chapter 5
Alert Management and Anomaly Prevention
Techniques

As an ANIDS (anomaly-based network intrusion detection system) or IDS (intru-
sion detection system) monitors network-wide traffic, it generates warning messages
(i.e., alerts) that indicate attack or suspicious or legitimate events. Due to widespread
deployment of IDSs, they may generate an overwhelming number of alerts with true
alerts mixed with false alerts. So, management of such alerts is indeed necessary
to get to the origin of an attack, so that survival measures may be taken at the
earliest. This chapter focuses on alert management and network anomaly prevention
techniques. Alert management contains several components, viz., alert clustering,
alert merging, alert frequency, alert link, alert association, intention recognition,
and alert correlation. However, network traffic anomaly prevention techniques
include basic concepts of ANIPS (anomaly-based network intrusion prevention
system), attack coverage, features of ANIPS, and selection of the right ANIPS
for deployment. Finally, the chapter presents the pros and cons of both alert
management and anomaly-based network intrusion prevention techniques.

5.1 Alert Management

Since an intrusion detection system (IDS) is deployed in an alive network, it is
likely to generate alerts for mostly malicious events. But it may also generate alerts
for events that are incorrectly detected as malicious. So, proper diagnosis of alerts
is a major issue in network-wide traffic intrusion detection. An architecture for alert
generation and management is given in Fig. 5.1 [31].

This architecture has four different levels, viz., improving IDSs, deployment
environment, alert post-processing, and involvement of an analyst.

1. Level 1—Improving IDSs: In this step, most IDSs focus on how a detection
engine can efficiently detect network anomalies with a low false-positive rate. In
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Fig. 5.1 An architecture for alert generation and management

anomaly-based network intrusion detection, the detection engine uses a simple
pattern matching mechanism whose parameters have been optimized.

2. Level 2—Deployment environment: ANIDSs have limited detection ability, which
may also depend on where exactly these are deployed. At the outset, an ANIDS
may not be able to differentiate well between legitimate traffic and anomalous
traffic with certainty. With the passage of time, an ANIDS may gain knowledge
of the deployment environment and reduce the rate of false alarms are to better
understanding of the environment.

3. Level 3—Alert post-processing: Alert post-processing examines alerts generated
from the IDS and attempts to improve the function of the IDS. It evaluates the
quality of the alerts based on different parameters that affect the normal activity
of a network. It can be achieved using data mining and other techniques that
correlate alerts at different levels, thus creating what is called an alert correlation
system.

4. Level 4—System manager: A system security manager analyzes the alerts in real
time or within a short-time interval. But system manager involvement is rare if
the detection mechanisms are fast.

Different IDSs have been developed and deployed in different environments to
provide robust defense of networks. An IDS is useful because it generates alert
based on the abnormal activity in the network. In practice, in an organization’s
security operation center, the security manager audits the alerts typically 24 h a
day, 7 days a week, so that the security manager can respond to intrusion at the
earliest. The security manager uses a knowledge base to distinguish between false
and true positives among intrusion alerts [46]. To build this knowledge base, it needs
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to collect pre-classified examples of both categories of alerts (i.e., legitimate and
malicious). But obtaining pure pre-classified alerts is difficult. A security manager
reports security incidents and investigates intrusions or configuration problems
based on the alert classes it knows about. It also may try to modify bad alert
signatures or apply filters to remove alerts based on pre-defined criteria. Alert
management has three major functioning components, viz., (i) alert correlation, (ii)
alert merging, and (iii) alert clustering [36]. Each component is described below.
Before an in-depth discussion of each component of alert management, we provide
a few definitions for better understandability of contents that follow.

Definition 5.1 Alert: An alert is a warning message generated by an IDS. It may
indicate an attack or suspicious event.

Definition 5.2 Event: An alert is an action directed at a target which is intended to
result in a change of state of the target. An event may generate no alerts, a single
alert, or many alerts.

Definition 5.3 Synthetic alert: An alert that can be produced by the detection
engine itself, when an attack signature is fired.

Definition 5.4 Alert feature: A specific field of information contained within an
alert representing an item of interest. Some examples of normal alert features are
time, alert name, source, and destination.

Definition 5.5 Alert group: A set of alerts which may be matched to an attack
signature in any order.

Definition 5.6 Alert propagation: The act of generating repeated alerts that match
a signature which is not complete. It may be used to provide better overall attack
detection.

Definition 5.7 Alert sequence: An alert sequence is a set of alerts whose elements
must be matched to an attack signature in a specific temporal order.

Definition 5.8 Alert stream: The flow of alerts of all IDS as well as alerts that may
be generated by the system itself, when a signature is fired. An alert stream consists
of the alerts gathered from the database in an offline context.

Definition 5.9 Component alert: An alert that matches a portion of a signature
and is associated with a specific instance of a signature, possibly including IDS-
generated alerts.

Definition 5.10 Alert cluster: An alert cluster is a group of alerts that are related
by one or more common features, such as time, source, or destination.

Definition 5.11 Alert correlation: The discovery and/or establishment of either
mutual or causal relationships between alerts, usually in order to logically group
alerts based on relationship to attacks or actions on a system or network.

Definition 5.12 IDS sensor: Sensors are the basic detection components of an IDS.
Their basic role is to provide either alerts or intrusion-related data directly to a
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higher-level analysis component within the same IDS. The distinction between a full
IDS and sensors is normally defined in terms of information flow. Any component
providing information to an analysis system can be termed a sensor for that analysis
system. In a normal IDS analysis system, any IDS providing information can be
classed a sensor.

5.1.1 Alert Correlation

Alert correlation is an analysis process for alerts obtained from different IDS sensors
to provide a compact report on the security status of the network under surveillance.
Correlation process provides a summary of security activities on the network where
IDSs have been deployed with sensors. It consists several components that transform
intrusion detection sensor alerts into intrusion reports. Because alerts may be caused
by different types of attacks, such as single level and multilevel with different
depths, the correlation process cannot treat all alerts equally with equal importance.
Therefore, it is really necessary to provide different components to concentrate on
different aspects of the overall correlation task.

There are several alert correlation mechanisms available in the literature [4, 46,
49]. Each mechanism contains a different set of components, a few of which are
given in Table 5.1.

As the components of alert correlation vary for different approaches, we attempt
to present a coherent of overall picture. We classify the components as alert nor-
malization, preprocessing, correlation techniques, post-processing, and validation.
In the next few sections, we discuss each stage.

Table 5.1 Alert correlation process
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5.1.1.1 Alert Normalization

IDS sensors generate alerts and encode them in different formats. These alerts are
usually received by the correlation process from different sensors. The primary
objective of alert normalization is to translate features of each sensor alert into
a generic format to reduce the number of alerts to be correlated. The Internet
Engineering Task Force (IETF) has proposed a generic representation of intrusion
alerts to develop a standard known as Intrusion Detection Message Exchange
Format (IDMEF) [11]. As defined at [11], IDMEF “defines data formats and
exchange procedures for sharing information of interest to intrusion detection and
response systems and to the management systems that may need to interact with
them” [11]. A simplified version of IDMEF is given in Fig. 5.2.

This IDMEF format defines the semantics of only a few attributes. The format
is mostly concerned with the syntactic rules. Network defenders usually choose
different names for the same attack to provide additional fields in the reports they
generate. As a result, the same alerts may be filed differently.

An IDMEF message is classified into heartbeat and alert. A heartbeat message
is sent by an analyzer in a periodic fashion indicating that it is up and running. An
alert message is composed of nine different components:

• CreateTime: The time when the alert was generated.
• DetectTime: The time when the event(s) leading up to the alert was (were)

detected. This could be different from CreateTime in specific situations.
• AnalyzerTime: Current time on the analyzer.
• Analyzer: Identification information for the analyzer that generated the alert.
• Source: The source that triggered the alert. It is also composed of four aggregate

classes: node, user, process, and service.
• Target: The main target of the alert. It has the same aggregate classes as the

source has with on an additional class named FileList.
• Classification: Information that describes the alert.
• Assessment: Impact, action and response against the generated alerts with proper

evaluation.
• Additional data: Additional information that does not fit into the data model.

MessageId is used to uniquely identify itself. There are three subclasses of the
alert class. They are ToolAlert, OverflowAlert, and CorrelationAlert. Each subclass
is dedicated for a specific purpose. The ToolAlert class signifies the attack tool used
by the attackers. The OverflowAlert class stores the information regarding buffer
overflow attacks. Finally, CorrelationAlert class merges the alerts together to form
groups. IDMEF messages represented in the XML DTD [11, 21] and an IDMEF
alert are as follows:
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IDMEF-Message

Analyzer Analyzer

CreateTime CreateTime

AdditionalData

Node

Node

User

User

Process

Process

Service

Service

File List

Cassification

Assessment

AdditionalData

ToolAlert OverflowAlert CorrelationAlert

DetectTime

AnalyzerTime

MessageID

Alert Heartbeat

Source

Target

Fig. 5.2 A simple version of IDMEF message format [11]

1. IDMEF message in XML DTD format
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2. IDMEF alert format

There are several techniques to normalize the alerts. A sample pseudo-code for
normalization process [46] is given below.

global normal_db, alertname_db
normalize(raw_alert)
alert  new alert
alert.alertid  get_unique_id()
alert.name  get alertname from alertname_db using
(raw_alert.name, raw_alert.sensortype) as key
mappings  get all m: mapping from normalization_db
where m.sensor = raw_alert.sensor
for each m: mapping in mappings:

alert_attri  m.alert_attri
raw_attri  m.raw_attri
alert.alert_attri  raw_alert.raw_attri
pass alert to next correlation component

Normally each raw alert is translated into a standardized alert format. Its name
and attributes are copied to the appropriate fields of the alert as defined by the
attribute mappings in the normalization database. The primary attributes considered
for alert normalization are given in Table 5.2.

If different types of sensor are used in an IDS for alert generation, a single sensor
format may not have been used. So, normalization is required, but in this case, there
is no need to have a normalization component. Most datasets are composed of data
from several sensors. For generalization, it may be necessary to normalize the alerts
so that the number of alerts is the same as the number of input alerts.

5.1.1.2 Preprocessing

Alert preprocessing is applied to the raw alerts to convert them into a generic format.
It also reduces the number of alerts to be correlated. False alerts also need to be
handled at an early stage. This reduces negative impact on the correlation results.
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Table 5.2 Alert attributes with description

Alert attribute Description

Alertid A unique ID identifying the alert

Analyzertime The time when the IDS sent alert

Attackernodes The set of nodes where the attack originated

Attackgraph A graph showing the progress of complex attacks

Consequence A set of systems that are affected by this attack

Createtime The time when the IDS generated the alert

Detecttime The time when the IDS detected the attack

End_time The time when the attack ended

Name The name of the attack

Priority A value indicating how important the attack is

Receivedtime The time the alert was received by the correlator

Reference A set of references to other alerts

Sensornode The node at which the IDS that generated the alert runs

Start_time The time when the attack started

Type The attack type (DoS, Reconnaissance, Breakin)

Verified If the attack was successful (true, false, unknown)

Victimnodes The set of nodes that were victims of the attack

Victimprocess The full path of the process that was attacked

Victimservice Port number and protocol of the service that was attacked

Several components may initiate an attack, but in alert processing four major
components are used to describe the attack source. They are the node, the user, the
process, and the network service that originated the attack. The attacker usually
includes infected files attached to any of the components on the target. During
the correlation process, it requires at least one nonempty field for processing. In
host-based alerts, the node field provides the address of the attack source and
target, where the sensor is located. In network-based alerts, the node information
provides source and destination IP addresses. However, an alert can be amplified
with additional information based on a standardized alert name, which is assigned
by the normalization component. A sample pseudo-code [46] for preprocessing of
alert based on the sensor data is given in Fig. 5.3.

Based on the information provided by the preprocessing module, Table 5.3 shows
the alerts for the example attacks.

5.1.1.3 Correlation Techniques

Alerts are mostly generated by IDSs independently, but they may have some
logical connections with each other. Alerts may exhibit an attack that involves
multiple stages in compromising a large-scale network. The correlation techniques
try to reconstruct the attack scenarios from alerts obtained from the IDSs. Alert
correlation techniques can be classified as (a) similarity based, (b) statistical based,
(c) knowledge based, and (d) hybrid.
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Fig. 5.3 A sample pseudo-code for preprocessing of alerts [46]

Table 5.3 Example attacks: effect of preprocessing of an alert

Alert ID Name Sensor StartEnd Source Target Tag

8 Local exploit H 22.222.2 10.0.0.1 10.0.0.1,
Apache

9 Bad request A 28.528.5 10.0.0.1 10.0.0.1,
Apache

9 Local exploit A 22.222.2 10.0.0.1 10.0.0.1, lin-
uxconf

(a) Similarity-based techniques: Such technique works using the principle of
similarity, where it selects a relevant feature set, such as source IP, destination
IP, and port numbers for correlation. Alerts with a high degree of similarity are
correlated.

An example of similarity-based alert correlation technique is reported by
Valdes and Skinner [45]. They consider a few features from the standard
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template proposed by IETF [11]. They define a similarity function to measure
the feature correlation level between features of the alerts. A new alert is
compared with the existing alerts based on the similarity value of each feature
to decide either to correlate or to create a real new alert. The similarity score
or value is computed based on a user-defined threshold. If dissimilar, the alert
is added to the meta-alert list. The meta-alert list is composed of alerts from
heterogeneous sensors.

Measuring feature similarity among alerts is the primary concern in this
approach. They consider four different metrics for measuring the similarity
between two alerts. They are feature overlap, feature similarity, expectation of
similarity, and minimum similarity. Each metric is briefly described below.

– Feature overlap: Each alert has some features. A new alert and existing
alerts may share some common features such as source address, destination
address, flag, time information, and types of attack. Only common features
are used in measuring the similarity of two alerts.

– Feature similarity: The value of similarity scores based on common feature
of alerts depends on the type of information. For example, similarity of two
source addresses can be estimated based on the higher bits of IP addresses,
while similarity between attack classes is computed based on an incident
class similarity matrix.

– Expectation of similarity: This measure is used to normalize overall similar-
ity. Two features will match if they are related. For example, in a probing
attack, an attacker is trying to connect different hosts, and therefore, the
contribution of similarity of destination host is low.

– Minimum similarity: The minimum similarity is the degree of similarity that
must be met by certain features of each alert. It is a minor requirement and
is not a sufficient criterion for alert correlation. If the degree of similarity is
lower than the minimum similarity, the alert will not be correlated regardless
the value of the overall similarity.

The overall similarity between two alerts can be computed using the following
formula.

Sim.Xi; Y/ D

P
j EjSim.Xi

j ; Yj/
P

j Ej
(5.1)

where, Xi is the candidate meta alert i for matching; Y is the new alert; j is the
index over the alert features; Ej is the expectation of similarity for feature j; and
Xj and Yj are the values for feature j in alerts X and Y , respectively. The main
aim is to find an i such that Sim.Xi; Y/ is maximum. If Sim.Xi; Y/ is greater than
or equal to minimum similarity, Xi and Y will be correlated; otherwise, Y will
become a new meta-alert. There are other techniques [8, 22], which are based
on the mechanism of similarity.
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The main advantages of similarity-based correlation techniques are:

– It is good to discover simple attacks with a small number of features.
– They work well for a known set of alerts with a known feature set.

The shortcomings of similarity-based correlation techniques are:

– They are suitable for known alerts only.
– Similarity-based techniques are not able to discover causality among alerts

and other statistical relationships.
– It is limited in discovering complicated attacks.

(a) Statistical-based techniques: Statistical algorithms are dependent on the
attributes for which statistical properties can be computed. Similar attacks have
similar statistical attributes, and so, they can be categorized easily. To discover
attack steps, these techniques store causal relationships between incidents
and analyze them with frequencies of occurrence during a certain interval
of time [3]. Results may be correlated to different attack stages. Statistical
algorithms do not have any prior knowledge of the attack scenarios. Combining
data of different sensors becomes impossible if the sensor is incomplete or
abnormal [28]. Statistical computation can be of three different categories,
viz., (i) detection of repeated and repetition patterns; (ii) estimation of causal
relationships between alerts, predicting next alert occurrence, and detecting
attacks; and (iii) combining reliability by mixing completely similar alerts.
Maggi and Zanero [25] use different statistical tests for alert correlation.
They use Granger causality test [42] for alert correlation and find better
results without configuring complex parameters. The advantages of statistical
techniques are:

– Without knowledge of attack scenarios, a statistical technique can identify
the correlation between alerts based on the statistical attributes.

A few disadvantages are given below:

– Not able to discover dependencies
– Difficult to estimate correlation parameters
– Not able to discover structural cause relationships between alerts

(a) Knowledge-based techniques: Such technique is designed based on a knowledge
base of attack definitions. The required knowledge can be classified as [28]
(i) pre-requisites and consequences and (ii) attack scenarios. With the use
of prerequisites and consequences, each incident is connected to each other
by a network of conjunctions and disjunctions. Network attack scenarios are
likely to be included in such a description. At a higher level, such a technique
correlates alerts based on the feature similarities. It combines alerts based
on predefined attack patterns at a lower level. In scenario-based algorithms,
previous knowledge is necessary for determining prerequisites and incident
results. Each attack must follow one by one the necessary steps to achieve
success. Low-level alerts can be compared with predefined intrusion steps and
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a sequence of alerts correlated to each attack. So, definitions of different attack
scenarios must exist in a knowledge base. Once a new alert is created, it is
compared to the available scenarios, and those whose probability of match is
more than predefined threshold are attached to a scenario. Otherwise, if the alert
is compatible with one of the possible scenario definitions inside the knowledge
base, a new current scenario is generated using this alert. These techniques
correlate based on known attack scenarios, where an attack scenario is specified
either by an attack language such as STATL [14] or LAMBDA [10] or learned
from the training datasets using a data mining approach [12].

Eckmann et al. [14] present a state transition-based attack language known
as STATL. An analyst uses it to describe a sequence of actions that an
attacker can perform to compromise the system. STATL has its own syntax
and semantics that include lexical elements, data types, scenarios, front matter,
states, transitions, EventSpecs, NamedSigActions, code blocks, timers, asser-
tions, and annotations. States and transitions are the two main components.
A state represents the status of the attack in a particular stage in case of
multistage attack scenarios. Each state has a name and optional elements such
as annotations, assertion, and a code block. A transition is a connection between
two states. A transition may have annotations and a code block and must specify
a transition type and an event type to match. The event type of a transition can be
specified either directly by the EventSpecs, which define what events to match
and under what conditions, or by the NamedSigAction, which is a reference
to a named EventSpec. STATL uses its syntax and semantics to specify the
attack scenarios and to correlate alerts that match these predefined scenarios. An
example of ftp-write attack scenario can be described using STATL specification
as given in Fig. 5.4 [14].

The objective of using the STATL language for alert correlation is to
find a sequence of alerts that match the predefined scenarios. Based on the
precondition and post-condition relationship between two alerts, the language
statements are used to construct attack scenarios [7, 10, 14]. However, there are
additional mechanisms such as the ones introduced in [1, 27] that a reader may
want to explore further.

The main advantage of these techniques is:

– A knowledge base is usually built based on known attack scenarios.

The main disadvantages of these techniques are:

– One needs to manually define prerequisites.
– It is not able to deal with new patterns of alerts.
– It is difficult to update the correlation knowledge.
– It is not able to discover structure and statistical relationships
– It is impractical for use in large scale or real time due high computational

expense.

(a) Hybrid techniques: These techniques combine features of all other techniques
for alert correlation. Wang et al. [47] present an alert correlation method that
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Fig. 5.4 An example of ftp-write attack scenario described using STATL specification [46]

hypothesizes the missed alerts and finds them. The approach uses three different
types of information, viz., vulnerabilities, their dependencies, and network
connectivity. First, it creates an attack graph AG based on the information
considered. The authors suggest the building of a queue graph QG also.
The method correlates alerts based on the attack graph AG. This method
demonstrates the efficiency of the correlation process.

Each security condition is considered a variable and each exploit is stored
in a queue of length one. Each alert generated by the NIDS is first compared
with an exploit and placed in the concern queue. Correlations are collected as
a directed graph known as the result graph. A breadth-first search is performed
in the attack graph based on the directed edges because each edge represents
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one exploit. For each edge, a forward pointer is created to connect the concern
queue and the variable. This process is performed for each search. Later the
backward edges are used for correlation purposes and forward edges were used
for prediction purposes.

The missing alerts cause inconsistency between the knowledge encoded and
AGs and facts represented by received alerts. The missing alerts can be plausibly
hypothesized. A queue is kept in the memory for matching recent known
exploits. Both new and in memory alerts are explicitly recorded. This method
filters those alerts that do not match existing vulnerabilities. It hypothesized
that these alerts are related to unknown and new vulnerabilities. If these fall
into the wrong hands, they would be very valuable tools for an attacker. There
are several hybrid alert correlation mechanisms available [3, 16, 35] that reflect
in different levels of performance.

The advantages of hybrid alert correlation techniques are the following:

– They use the best features of both knowledge-based and similarity-based
alert correlation techniques.

– Such techniques utilize the most common features of each alert in performing
correlations.

The disadvantages of hybrid alert correlation techniques include the follow-
ing:

– The use of such alerts may lead to complex architectures.
– Sometimes such a technique increases complexity due to use of a large

number of alert features.

5.1.1.4 Post-Processing

A NIDS produces a large number of alerts each day. Several are generated based
on failed attacks and false alarms triggered by legitimate traffic. So, it is indeed
necessary to perform post-processing of intrusion alerts. Without post-processing, it
may really be a difficult task to effectively recognize a particular attack. There are
certain procedures to perform alert post-processing such as alert prioritization and
intention recognition.

(a) Alert prioritization: Alert prioritization categorizes and assigns priorities to
alerts based on importance. It is efficient. Porras et al. [32] present an alert
correlation and incident ranking mechanism known as M-correlator. To better
represent intrusion alerts for incident ranking, M-correlator creates an incident
handling fact base that matches the alert content against mission specifications
and dependencies of an incident with the configuration of the target host.
The incident handling fact base defines entries including incident codes,
COST codes, descriptions, incident classes, bound ports, vulnerable OSes and
hardware, and applications. These entries help in computing incident ranking.
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Fig. 5.5 Components of
incident ranking

The M-correlator model assesses a security incident based on the incident
ranking score. It is estimated with respect to three different components: alert
outcome, relevance, and security incident priority (see in Fig. 5.5).

• Alert outcome: The alert outcome indicates that the incident has happened
and also assumes that the INFOSEC device has correctly reported the
incident. INFOSEC device provides the incident report along with a level
of possibility.

• Relevance: Relevance indicates an appraisal of the likelihood of a successful
intrusion. The M-correlator model computes the incident relevance score
based on the attributes stored in the incident. It takes into account the
topology of the target host including (a) the type and version of the operating
system, (b) the type of hardware of the target host, (c) the service suite that is
installed on the target host, (d) the network services that are enabled on the
target host, and (e) the applications that are installed on the target host.

The resultant incident relevance score values are between 0 and 255. 0

specifies that vulnerabilities required for the successful intrusion were not
matched to the target host. It might reduce the overall score of incident
ranking. A relevance score value close to 255 indicates the opposite situation.

• Security incident priority: The security incident priority is defined with
respect to a security stream and a mission, where stream is the set of incident
events fe1; e2; e3; � � � ; eng. The main objectives of prioritization is to catch
a set of events with high impact (HI), e.g., HI = eh1 ; eh2 ; � � � ; ehn � Stream
such that 8ThreatRank.ej; Mission/ > Tacceptable with ej � HI. The mission
has an objective to bring together and use the network assets. The mission
specification has two major parts. The first part is the list of the most critical
assets and services of the protected network, including critical computing
assets, critical network services, sensitive data assets, and important user
accounts. The second part is the type of incident, which is of major concern
to the analyst. Examples of incident types are PRIVILEGE VIOLATION,
PROBE, and DENIAL-OF-SERVICE. An analyst can specify low, medium-
low, medium-high, and high interest for a particular incident.

The incident ranking is defined as an assessment and ranking of
events fe1; e2; � � � ; eng with respect to mission profile (MP), MP D

fCRassets; CRresources; CRusers; Incidentweightg and the probability of success,
which is estimated based on alert outcome and relevance.
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Fig. 5.6 Incident ranking
estimation using M-correlator

The incident ranking is computed based on Bayes framework that is used
to build belief propagation tree [44]. In the Bayes framework, each node
maintains a table of conditional probabilities that represents the relationship
between the child node and its parent node. The parent node contains the
likelihood value of each node. Finally, the belief in hypothesis at the root
node is estimated based on propagated belief in the hypothesis and the
conditional probability tables at other nodes. The process of incident ranking
estimation using the M-correlator is shown in Fig. 5.6 in terms of the incident
rank tree containing outcome, priority, and relevance. Let Hi represent the ith
hypothesis state of the root node and Si, i D 1; 2; 3 represent the hypothesis
state of its ith child nodes. The incident rank P.HijS1; S2; S3/ is given below.

P.HijS1; S2; S3/ D
P.Hi/

Q3
kD1 P.SkjHi/

P.S1; S2; S3/
(5.2)

Each node’s outcome, priority, and relevance can be estimated in a similar
way with respect to the belief in a hypothesis.

An alert priority computation model similar to the M-correlator is pro-
posed by Qin et al. [33], which is designed based on the Bayesian network
framework. They use alert prioritization for scenario analysis instead of
incident ranking. Lippman et al. [24] present an alert prioritization mech-
anism that uses vulnerability information to prioritize intrusion alerts. These
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alert prioritization methods need additional information about the protected
network to produce meaningful results when estimating alert ranking or
priority.

5.1.1.5 Alert Prioritization Metrics

Alert prioritization is made based on alert priority score metrics. An alert score
is likely to be better if it takes into consideration a large number of attributes as
indication of alerts. A few alert score metrics [2] are described below.

1. Applicability metric: It identifies whether a raised alert for an attack is applica-
ble to the current network environment. This requires information from different
knowledge bases, such as a vulnerability knowledge base, and the set of running
services, applications, and operating systems. Appropriate alert attributes help
identify potential attacks. The vulnerability base indicates whether the attack is
applicable to the current environment.

2. Victim metric: It specifies the properties of critical machines, services, appli-
cations, accounts, and directories in the current network environment. The main
objective of this metric is to increase the alert score for anomalous activities to
differentiate among them properly. Based on Eq. 5.2, it estimates the weighted
projection of the alert metric to those alerts that are critical in nature:

I.M/ D
Y

x�fserv;app;acct;dirgrunningonM

(5.3)

where I represents the condition of the victim host running in the protected
environment. The value of I is computed in the range between 0 and 1. 0 indicates
that the reported alert does not have any importance with respect to the host,
service, account, and directory. A value closer to 1 represents that an attack is
targeting the system or a host in the network.

3. Sensor status metric: The sensor-based status metric is computed based on the
Bayesian detection rate (BDR) formula. BDR estimates true positive probability
p.AjI/ that an alert is raised when the attack I is detected:

P.AjI/ D
P.I/P.AjI/

P.I/P.AjI/C P.:I/P.Aj:I/
(5.4)

where A indicates that the alert has been raised, :A indicates that no alert has
been raised. I represents that an attack has occurred, and :I indicates that no
attack has occurred. The sensor states will be high if the location of the sensor
is critical, its accuracy is high, and it is well configured and up-to-date. In such
case, the alert confidence becomes high when an alert is generated from such
sensors.
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4. Attack security metric: This metric measures the risk level posed by a particular
vulnerability. There are several attack security score metrics for known attacks
such as MITRE, CVE, and Securia. It varies from organization to organization.

5. Service vulnerability metric: This metric is designed based on the services
that an attacker is targeting. A unified score is computed representing both the
strengths and weaknesses of the target host service.

6. Social activity metric: This metric is designed by exploiting features of a social
network. Each node of the social network has an address, a target address, an
attack ID, and the sites the users visited. Based on these alert attributes, it can be
used to find hidden participants in a communication session.

5.1.1.6 Intention Recognition

Intention recognition of an attacker infers by collecting an intruder’s behavior by
observing regular activities and actions. It can be used to give an early warning and
prevent an intrusion before it can damage the system or host. It is a very difficult
task to recognize the behavior of attackers because attack behavior is unpredictable.
Attack behavior changes with time and environment. For intention recognition, it is
necessary to know the intruder’s strategic plan. Intruder’s strategy can be extracted
using alert correlation.

Each intruder must perform several actions to achieve its goal. Modeling of
multistage attack scenarios is a challenge. Alert correlation provides a facility
to reconstruct typical attack scenarios. The next step should be alert correlation
analysis that results in the intruder’s behavior or strategy with respect to the target
host.

Cuppen et al. [9] introduce an objective model to recognize the intruder’s anoma-
lous intention. This model has two fields: objective name and set of conditions,
also known as state-condition. A state-condition represents the set of conditions
that must be met to achieve the attacker’s objective or goal set. This method still
works based on the correlation of alerts with objectives. Geib and Goodman [18]
present an intention recognition method for detecting and preventing attackers from
attacking a target host or network at an early stage through plan recognition. The
authors define a plan recognition system that can handle the following cases:

• Observation of state change: A state change in a protected system must indicate
that there may have been some malicious actions during a certain period.

• Unobserved action: It is always possible that an attack might enter a host or
network without being discovered by an IDS. A plan recognition system may be
able to report the occurrence of unknown actions that are not detected by an IDS.

• Partially ordered plan: An attacker may be able to use several alternative
sequences of actions to achieve its goals. A plan recognition system has to be
designed in such a way that it is able to recognize different possible attack
sequences created by the attacker.
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• Multiple concurrent goals: An attacker may have multiple goals to achieve after
getting certain level of access to the victim host or network. The plan recognition
system may be able to discover multiple such goals.

• Actions used for multiple effects: An attacker may perform a single action that
may have multiple effects. So, it is a critical requirement for a plan recognition
system to be able to handle such a situation without affecting the target system.

• Failure to observe: When an abnormal activity happens, there are normally
other activities that follow. Sometimes such activities that follow may not be
recognized easily. A plan recognition system may be able to discover such
activities that are part of a complex attack plan.

• Impact of world state on adopted plans: Important resources of the networks
are targeted by an attacker by gaining knowledge of the network structure either
directly or indirectly. A plan recognition system may also be able to get help
from knowledge of network structure when protecting the network.

• Consideration of multiple possible hypotheses: An attacker’s plan may be
flexible in nature. For example, a single action may have multiple effects, and
alternately multiple actions may fulfill a single goal. It is important for the plan
recognition system to rank each action plan of the attacker.

5.1.2 Alert Validation (Verification)

It is a technique to verify a NIDS generated alert, i.e., to recognize if any changes
have been taken place in the network or not. It can be determined based on an alert
verification mechanism. Two major verification mechanisms are available. They are
active verification and passive verification. Active verification mechanisms work in
online mode and identify the location of an alarm and its effect in the network.
Zhou et al. [51] analyze a protocol to verify the success of an attack on its target.
They assume that an attack changes the behavior of victim programs that violate the
protocol. The main idea to recognize the changes wrought by successful attack.

5.1.3 Alert Merging (Aggregation)

The main task of alert merging is data reduction by combining multiple alerts. It
is necessary because a single attack generates multiple alerts as well as a large
number of duplicate alerts. Alerts are merged based on alert attributes such as time
stamp, source IP, destination IP, port(s), username, process name, attack class, and
server ID. These attributes are defined in IDMEF (Intrusion Detection Message
Exchange Format) attributes and can be fused together [32, 33, 36]. A similar
method is proposed by Debar and Wespi [13], where they introduce an aggregation
and correlation component (ACC) to discover duplicate relationships. A duplicate
definition file is generated to store duplicate alerts that use the same reference alerts
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when alerts are merged into a single alert. Sadoddin et al. [37, 38] consider three
generic patterns to model every single-step attack.

• A one-to-many single step attack is represented as A�< to indicate a set of alerts
with same source IP but multiple destination IPs.

• A many-to-one attack is an abstraction of similar types of alerts with a single
destination IP and multiple source IPs. It is represented as A�>.

• A multi-one-to-one attack indicates alerts with the same source IP and the same
destination IP and is represented by A�D.

5.1.4 Alert Clustering

An alert clustering technique uses a set of unlabeled alerts and generates clusters of
similar type. A cluster may represent true or false alerts, which needs to be assigned
later based on alert cluster properties. Julisch [22] uses clustering algorithms to
create clusters of NIDS alerts. According to Julisch, majority of alerts are triggered
due to misconfiguration of software. A way to identify this cause is known as root
cause discovery. Learning the root cause of false alerts allows future alerts to be
classified as true or false.

5.1.5 Alert Correlation Architectures

An alert correlation architecture may be classified as centralized or hierarchical. The
alert correlation architecture is agent based. In a centralized architecture, all alerts
are usually sent to the correlation center for processing. The center analyzes the
alerts and presents the output to the next level. Alternatively, alerts may be locally
correlated first and then sent to the centralized correlator for global correlation.

(a) Centralized correlation: Carey et al. [5] present a prototype for IDS interoper-
ability. Each correlation framework has three major components.

• Alert agent: It is available within a NIDS and performs translation of alert
messages to IDMEF format. Finally it passes the messages to the control unit
for further processing.

• Control unit: It takes IDMEF messages, preprocesses, and stores them in a
database.

• Administrative control: The alerts stored in a database are processed centrally
in offline mode and are correlated.

(b) Hierarchical correlation: This correlation architecture is designed hierarchi-
cally and separated into local analysis, regional analysis, and global analysis
[34]. The detection agents are installed locally to identify anomalous behavior
in a network. The correlator engine is responsible for a region and sends its
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report to the intrusion detection manager, which combines the outputs of local
agents deployed in different locations. The following are the major components
of an intrusion detection agent:

• Detection module: This module uses three different levels of detection
engines, viz., signature, profile, and MIB engines. The signature engine
generates alarms based on known signatures, whereas the profile engine
generates alarms based on anomalousness with respect to the legitimate user
and network behaviors. The MIB engine checks the value of MIB objects
and compares with the MIB profiles.

• Knowledge base: It stores attack signatures and user and network MIB
profiles.

• Response module: It decides the type of countermeasures that need to be
taken after detection.

• Control module: It updates the knowledge-base and detection engine based
on alert information serviced by the correlator agents.

• Alarm engine: It sends alarms to the detection engine.
• SNMP interface: It uses SNMP packets to transport information between

the intrusion detection agent and the correlator. The intrusion detection
correlator is designed to correlate alarms received from intrusion detection
agents. It communicates with the intrusion detection correlator manager for
global correlation among alarms. The major components of an intrusion
detection correlator engine are the following:

– Alarm correlation module: It receives alarm information from different
agents.

– Security correlation engine: It identifies and predicts intrusions and their
trends based on the correlated alarms received from intrusion detection
agents.

– Knowledge database: It keeps information necessary for the correlation
algorithm to work.

– Intrusion response module: For a specific domain, it generates responses
based on the defined security policies.

– Knowledge controller: It manages the knowledge database as updates or
changes take place.

5.1.6 Validation of Alert Correlation Systems

Validation is an important part of an alert correlator system. An experimental
approach to validation of a correlation system is introduced by Haines et al. [19].
The authors define three major dimensions to recognize attacks and identify the
target.
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• Prioritization: It assigns weights to each alert based on the probability that it may
indicate an attack and dispensation of the target.

• Multistep correlation: The alert correlator can reconstruct a multistep attack
scenario by correlating different individual attack steps. This step is important
to infer attack intention and their effective response.

• Multi-sensor correlation: It combines multiple alerts received from different
sensors to create an overall picture of the system.

The authors demonstrate that most alert correlation models are able to reduce
alert volume significantly as well as obtain high-level reasoning results such as
multistage attack recognition.

5.2 Network Intrusion Prevention Techniques

Network intrusion prevention systems (NIPS) have gained in popularity because
security professionals are increasingly focusing on stopping potential attacks before
they become a threat to a host or network. A NIPS can be thought of as a refined
firewall that is able to deny entrance to hostile traffic, while legitimate traffic is
allowed to enter the network.

5.2.1 Understanding NIPS

To avoid complete failure of networks due to attacks, a NIPS may be deployed to
achieve the following objectives:

• A high level of performance,
• Multi-method event detection,
• Up-to-the second intelligence,
• Continuous monitoring.

5.2.1.1 Types of NIPS

Like IDSs, IPSs can be classified as host-based IPS and network-based IPS based
on deployment location.

1. Host-based IPS (HIPS): An HIPS is usually deployed as an agent in each host of
the network to prevent entry of attack into the individual host. The agent binds
closely to the operating system kernel and services, monitoring and intercepting
system calls to the kernel or APIs in order to prevent attacks as well as log
them. Since a host-based IPS obstructs all requests to the host it protects, it must
satisfy certain strict perquisites. For example, it must be reliable, should not affect
overall performance of the network, and must not block legitimate traffic.
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The main disadvantage of a host-based IPS is its integration with the operating
system. On the flip side, operating system upgrades can cause problems.

2. Network-based IPS (NIPS): A Network-based IPS is deployed in a network to
monitor the in-out traffic of the network to identify possible attacks and prevent
them at the entry point. The network has to be configured in such a way that
all traffic must go through the NIPS. A NIPS has two interfaces, internal and
external. Packets at any interface are forwarded to the detection engine to check
as malicious or legitimate.

A NIPS is placed inside the network and all packets pass through it. Once a
packet has been detected as malicious before it is passed to the internal interface
and on to the protected network, it can be dropped and flagged as suspicious. So,
all subsequent such packets that are part of that session can be dropped at the
entry point with small additional processing.

5.2.1.2 NIPS vs. Firewall

Both NIPS and firewall are crucial for protection of enterprise networks from large-
scale attacks. It is because of the following reasons:

• A NIPS analyzes a stream of traffic (i.e., packet payload) to identify the attacks
and prevent them at entry point. Figure 5.7 shows how a NIPS inspects the packet
payload and how a firewall inspects the packet header.

• A firewall is designed to inspect the packet header information irrespective
of packet payload to identify attacks. The packet header information usually
includes source IP, destination IP, port numbers, protocol type, and so on.

An IPS sensor may be connected to the network in one of the following ways:

• Inline: The IPS is placed behind a firewall, router, or switch, so that all traffic
passes through it.

• Network tap: It is a hardware device that allows access to the traffic flowing
through the network.

• Switch span port: This port is monitored continuously because all traffic that
passes through it flows through the switch.

Common places to place IPS sensors are the following:

• Perimeter or DMZ,
• Core or data center network,
• Extranets,
• Wireless access points,
• Virtualization platforms,
• Critical network segments.
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Fig. 5.7 How NIPS and
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5.2.2 Criteria for NIPS Selection

A NIPS can be chosen based on the characteristics that are important in a certain
environment.

• Detection: Whether an NIPS can detect malicious traffic based on signature
based, anomaly based, or both.

• Scalability: A NIPS must have the ability to expand the configuration to support
additional bandwidth and technologies.

• Compliance: A NIPS must satisfy any relevant governmental or industry compli-
ance regulations that affect an organization.

• Performance: A NIPS should perform well after updating of any software
components. An updated version must work without replacing any hardware.

• Viability: A company that developed the NIPS can continue to provide excellent
long-term support to the customer.

• Manageability: A NIPS should be easily manageable so that system administrator
can configure it as per requirement of the organization.

• Support: A vendor must be chosen based on the support provided, because the
organization using NIPS may need support in good or bad times.

• Cost: It is based on what an individual organization can afford.
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Fig. 5.8 NIPS: A generic architecture

5.2.3 Prevention Techniques

Both intrusion detection systems (IDS) and intrusion prevention systems (IPS)
play crucial roles in the protection of enterprise networks from different types of
attacks. An IPS follows a proactive technique, so that when an attack is detected,
the IPS blocks immediately and logs the offending data. In some instances, an IPS
imitates techniques used by an IDS such as the detection mechanism, the nature of
the monitoring sensors, and the alert mechanism [41]. A generic architecture of a
network-based IPS is given in Fig. 5.8.

The data collection sensor is one of the parts that may act fussy in all classes
of IPSs. It is because the capacity and performance of sensor are usually limited
in the amount of traffic that it can be processed. The use of data collection sensor
makes it easy to monitor the network and generate alert incident responses, notify
administrators, or block traffic quickly. There is a challenge in evaluating the
log files because a data sensor generates huge number of log files by logging
data transactions, logging attacker traffic, logging victim traffic, logging summary
reports, and logging failure reports [40].

One major problem faced by detection using an IPS is that it is difficult to
analyze traffic in real time, especially in high-speed networks. Network intrusion
prevention techniques are classified into three major classes including signature
or pattern-based prevention techniques, anomaly-based prevention techniques, and
behavior-based techniques [43].

1. Pattern-based prevention techniques: Pattern-based techniques, also known as
signature-based techniques, are used to identify a specific pattern, which is not
behaving legitimately. It is again classified into two mechanisms, viz., pattern
detection and deobfuscation techniques [6, 30, 48]. A pattern detection technique
uses a pattern matching language that enables one to define a flexible string
matching patterns. On the other hand, deobfuscation focuses on extracting the
concrete syntax of the program.
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2. Anomaly-based prevention techniques: This is also known as profile-based
prevention, because we must build profiles that define normal or legitimate
activity. So, anything that deviates from the legitimate profiles immediately
generates alerts [23, 50].

3. Behavior-based prevention techniques: This is similar to pattern prevention
techniques, where the behavior defines the amount of suspiciousness [17].

5.3 Chapter Summary

This chapter has examined various alert-related measures and network intrusion
prevention techniques. There are several alert management techniques available
in the literature. We cover most common mechanisms where alerts are managed
efficiently in terms of storage, processing, and analysis. Topics one needs to know to
understand alert management well include alert normalization, alert representation,
alert correlation, alert validation and alert merging, alert clustering, and alert
correlation architectures. In the second part of the chapter, we cover the basic
concept of NIPS, types of NIPS, comparison of NIPS with firewall, and network
intrusion prevention techniques. We make the following observations:

• Normalizing alerts based on alert attributes is challenging. It is because there is
a possibility of loss of data during normalization. So, it may impact on analysis.

• Validation of an alert after all operation is an issue yet to be addressed properly.
• Deployment of a NIPS in a real high-speed network is also a challenging task.

We hope that the reader is able to gain a good understanding of alert management
and network intrusion prevention techniques with their applicability by the end of
this chapter.
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Chapter 6
Practical Tools for Attackers and Defenders

A tool is usually developed for a specific purpose with respect to a specific task. For
example, nmap is a security scanning tool to discover open host or network services.
Network security tools provide methods to network attackers as well as network
defenders to identify vulnerabilities and open network services. This chapter is
composed of three major parts, discussing practical tools for both network attackers
and defenders. In the first part, we discuss tools an attacker may use to launch an
attack in real-time environment. In the second part, tools for network defenders to
protect enterprise networks are covered. Such tools are used by network defenders
to minimize occurrences of precursors of attacks. In the last part, we discuss an
approach to develop a real-time network traffic monitoring and analysis tool. We
include code for launching of attack, sniffing of traffic, and visualization them to
distinguish attacks. The developed tool can detect attacks and mitigate the same
in real time within a short time interval. Network attackers intentionally try to
identify loopholes and open services and also gain related information for launching
a successful attack.

6.1 Steps to Launch an Attack

Attackers attempt to discover vulnerabilities and loopholes of target hosts or target
networks before launching an attack. Attackers scan the network to discover open
services and major loopholes of hosts or systems. This information is exploited
to launch an attack using malicious code available on the Internet. It may first
compromise a single host of the network and then exploit more loopholes to disrupt
the entire network within a certain time interval, which may be short or long.
Attackers usually use five major steps to launch an attack on a target host or target
network. Each step is discussed below briefly.
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Fig. 6.1 Steps to launch an attack

1. Information Gathering: The attacker attempts to gather vulnerability information
from the network with the hope that some of the information can be used to aid
in the ensuing attack.

2. Accessing Vulnerability: Based on the vulnerabilities learned in the previous step,
the attacker attempts to compromise some nodes in the network by exploiting
malicious code, as a precursor to the launching of attack(s).

3. Launching Attack: The attacker launches the attack on the victim machine(s)
using the compromised nodes.

4. Maintaining Access: After gaining access, the attacker must maintain the access
for a long time to attain objectives. Attacker’s vulnerability for detection
increases in this phase.

5. Clean up Footprints: Finally, the attacker attempts to eliminate the attack history
by cleaning up all the registry or log files from the victim machine(s).

An illustration of these steps is shown in Fig. 6.1.
One can also use attack launching tools such as Dsniff [8], IRPAS [30], Ettercap

[20], and Libnet [23] to generate MAC attacks, ARP attacks, or VLAN attacks.
The main purpose of the attacker is to disrupt services provided by the network
either by consuming resources or consuming bandwidth. These types of attacks can
be launched by flooding legitimate requests such as TCP SYN Flooding, ICMP
flooding, and UDP flooding.
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6.2 Impact of Network Security Tools

To detect an attack, one must know the characteristics of an attack and its behavior in
a network. The network administrator needs a visualization or monitoring system to
observe differences between the characteristics of abnormal traffic and the normal
[11]. An attack can be detected from the traffic volume by looking up the packet
header or network flow information. However, such detection usually requires
processing huge volumes of data in near real time. Obviously, designing a real-
time defense mechanism that can identify all attacks is a challenging and quite
likely impossible task. Most detection methods need some prior information about
attack characteristics to use during the detection process. The evaluation of these
intrusion detection mechanisms or systems is performed using misclassification
rate or false alarm rate. To obtain satisfactory results, an IDS designer needs to
be careful in choosing an approach, matching mechanism or heuristic, or making
assumptions. Approaches that have been able to obtain acceptable results include
statistical [29], soft computing [7], probabilistic [13], knowledge-based [9], and
hybrid [1]. A detailed discussion of these approaches is available in [3, 4].

To launch an attack, the attacker must know weaknesses or vulnerabilities in
the network. Actual attacks exploit these vulnerabilities. The vulnerabilities can be
obtained by scanning the network in an information gathering step. After gathering
vulnerability information, the attacker tries to exploit the weakness(es) of the
security system to launch an attack. There are different methods for launching an
attack. For example, one may use Trojans or worms to generate an attack in a system
or a network. Also, scanning or information gathering may be coordinated with an
attack and performed simultaneously. One can also use attack launching tools to
generate attacks in a network. The main purpose of the attacker is to disrupt services
provided by the network either by consuming resources or consuming bandwidth.
These types of attacks can be launched using flooding of legitimate requests such as
TCP SYN Flooding, ICMP flooding, and UDP flooding.

At the current time, there are many attack launching tools and systems to generate
network attacks in the public domain. These tools can be used on any one of the
network layers in the TCP/IP network model to launch an attack, but most are
used in network and transport layers. Common application layer attacks include
HTTP-, FTP-, SMTP-, and DNS-related attacks. Most application layer attacks
are generated by malware (e.g., Trojans, viruses, worms, and backdoors). HTTP-
related attacks such as DDoS using HTTP GET request, Cross-Site Scripting (XSS),
and SQL Injection are very common attacks on this layer. Modern tools such as
slowhttptest and AppDDoS are now available to generate such attacks. In addition
to these, some popularly used data link layer tools such as Dsniff [8], IRPAS [30],
Ettercap [20], Libnet [23], and Gobbler are used to generate MAC attacks, ARP
attacks, and VLAN attacks.

Identification of known as well as unknown anomalies with high detection
accuracy and with minimum false alarms is the major concern in today’s security
environment. Hackers have a number of offensive tools to launch attacks on a
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network. Similarly, there are modern security tools and systems to detect intrusions
occurring in a network. To detect an attack, most systems capture network traffic,
extract or select relevant features, and then analyze the traffic information over a
relevant subspace of features, with or without the knowledge of previous references.
Snort is a well-known lightweight packet sniffer as well as a detection system. It
can watch for activities such as Queso TCP/IP fingerprinting scans, Nmap scans,
or various types of probes. With the help of these sniffing or attack tools, it is
very easy for hackers to steal network information. So, it is the responsibility of
network defenders to build protection mechanisms incorporating attack launching
and detection software tools that are available. Usually, antivirus software tools and
spam detectors are recommended for network security, at a minimum. A network
intrusion detection system is deployed to protect a network from attackers or
intruders.

6.3 Taxonomy of Network Security Tools

People use different attack tools to disrupt a network for different purposes.
As mentioned earlier, attackers generally target Websites or databases as well
as enterprise networks by gathering information based on their weaknesses. In
general, attackers use relevant tools for the class of attack they desire to launch.
A large number of defense tools have also been made available by various network
security research groups as well as security professionals. These tools have different
purposes, capabilities, and interfaces.

We categorize existing tools into two major categories: tools for attackers and
tools for network defenders. A taxonomy of the tools used in network security is
shown in Fig. 6.2. For each basic category, we show subcategories considering their
general characteristics.

6.4 Tools for Attackers

There are many tools available in the areas of network security to discover
vulnerability, launching attacks, monitoring networks traffic, analysis, and visu-
alization. We classify them into two major classes, tools for attackers and tools
for defenders. Several tools are commonly used in both classes. For example,
information gathering tools are commonly used by both attackers and defenders.
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Fig. 6.2 Taxonomy of network security tools

6.4.1 Information Gathering Tools

Before launching an attack, attackers need to understand the environment where
the attack is to be launched. To do so, attackers first gather information about the
network such as open port numbers of machines, operating systems, and so forth.
After gathering information, attackers find weaknesses in the network using various
tools. Information gathering tools are further classified as sniffing tools and network
mapping/scanning tools.

6.4.1.1 Sniffing Tools

A sniffing tool aims to capture, examine, analyze, and visualize packets or frames
traversing across the network. To support extraction of additional packet features
and for subsequent analysis, it also requires the protocol information during
visualization. Some packet sniffing tools are discussed below (Table 6.1):

(a) Angst: Angst runs on Linux and OpenBSD and is an active packet sniffer that
can capture data on switched networks by injecting data into the network.
Angst is able to flood a network using random MAC addresses, by causing
switches to transmit packets toward all ports.
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Table 6.1 Comparison of sniffing tools

Tool’s

name Input Protocol Purpose Effectiveness Sources

Ethereal I C/HT/S Capturing Powerful, user
friendly

www.ethereal.com.

Tcpdump I C/U/IC Capturing Less intrusive
than Ethereal

www.tcpdump.org

Net2pcap I C/U/IC Capturing Linux based,
auditable

www.secdev.org

Snoop N C/U/IC
/Te/F

Capturing No packet loss,
supports more
than 12 options

www.softpanorama.org

Angst H/p C Sniffing Easy to use,
aggressive

www.angst.sourceforge.
net

Ngrep I C/U/IC Capturing Multi-platform,
handle large data

www.ngrep.sourceforge.
net

Ettercap I C/U Man-in-
middle
attack

Efficient, support
more that 35
options

www.ettercap.sourceforge.
net

Dsniff I F/Te/S/HT/P Password
sniff

Unix based www.naughty.monkey.org

Cain &
Abel

I Password
recovery

Easily accessible www.oxid.it

Aimsniff H C/U/HT Easy
accessible

Linux based www.sourceforge.net

Tcptrace F C Analysis of
traffic

High applicability www.tcptrace.org

Tcptrack I/p C TCP
connection
analysis

Linux based www.rhythm.cx

Hexinject I/p C Packet
inspector and
sniffer

Linux based www.hexinject.
sourceforge.net

Argus F C/U Analysis of
audit data

Muti-platform,
real-time
processing

www.qosient.com/argus

Karpski I C/U Packet
analyzer

Easy sniffer,
limited
applicability

www.softlist.net

Junkie I C/U/HT
/D/IC

Packet sniffer
and analyzer

Easy sniffer,
limited
applicability

www.performancevision.
com

IPgrab I/p Display
packet header

Displays packet
details

www.ipgrab.sourceforge.
net

Nast I C/U traffic
analysis

supports more
than 12 options

www.nast.berlios.de

(continued)
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Table 6.1 (continued)

Tool’s

name Input Protocol Purpose Effectiveness Sources

GULP I C/U/IC Packet captur-
ing/visualization

Very efficient,
easily accessible

www.staff.
washington.edu/corey

Libpcap I C/U/IC Packet capturing High performance www.tcpdump.org

NFSEN I C/U Flow captur-
ing/visualization

Easy navigation of
NetFlow data

www.nfsen.
sourceforge.net

NFDUMP I C/U Flow captur-
ing/visualization

Powerful packet
analyzer

www.nfdump.
sourceforge.net

I Interface ID, N Network IP, H Host IP, p port, F Traffic captured file, C TCP, U UDP, IC ICMP,
IG IGMP, HT HTTP, S SMTP, F FTP, P POP, Te Telnet, D DNS

(b) Aimsniff : It is a simple tool to capture IP address of an AOL Instant Messenger
user while a direct connection is established between the user with the others.
Once the connection is established, one is able to simply click on the sniff
button to capture the IP address.

(c) Argus: Argus runs on several operating systems, such as Linux, Solaris, MAC
OS X, FreeBSD, OpenBSD, NetBSD, AIX, IRIX, Windows, and OpenWrt.
It can process either live traffic or captured traffic files and can output status
reports on flows detected in the stream of packets. Its reports reflect flow
semantics. This tool provides information on almost all packet parameters,
such as reachability, availability, connectivity, duration, rate, load, loss, jitter,
retransmission, and delay metrics for all network flows.

(d) Aldebaran: It is an advanced libpcap-based sniffing and filtering tool for the
TCP protocol. It provides basic information about the source and destination
addresses and ports but no information regarding flags. One can use it to
monitor data sent by connections as well as to sniff passwords. Based on
libpcap rules, one can use it to sniff packet headers as well as payload contents
and can transmit captured traffic to another host via UDP. Aldebaran also
allows (i) to encrypt the content saved in dump files, (ii) to analyze interface
traffic, and (iii) to report packet statistics, viz., packet count, size, and average
speed in HTML or as a plain text file.

(e) Cain & Abel: It is a multipurpose sniffer tool that runs on Windows NT, 2000,
and XP and allows for password recovery for a number of protocols, including
MSN messenger and RADIUS shared keys. It can also launch man-in-the-
middle attacks for SSHv1 traffic.

(f) Dsniff : Dsniff is a collection of tools that enable active sniffing on a network.
It can perform man-in-the-middle attacks against SSHv1 and HTTPS sessions.
It can also sniff switched networks by actively injecting data into the network
and redirecting traffic.

(g) Ettercap: Ettercap is a very good sniffer that runs on almost all platforms. More
of an active hacking tool, Ettercap uses an ncurses interface and is able to
decode several protocols. Ettercap operates in multipurpose mode: sniffer and

www.staff.washington.edu/corey
www.staff.washington.edu/corey
www.tcpdump.org
www.nfsen.sourceforge.net
www.nfsen.sourceforge.net
www.nfdump.sourceforge.net
www.nfdump.sourceforge.net
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interceptor or logger mode for switched LANs. Ettercap can collect passwords
for multiple applications, kill connections, inject packets, inject commands into
active connections, and has additional plugins.

(h) Ethereal: Ethereal is a sniffing and traffic analyzing software tool for Windows,
Unix, and Unix-like OSs, released under the GNU license scheme. It includes
two primary library utilities, (i) GTK+, a GUI based library, and (ii) libpcap,
a packet capture and filtering library. Ethereal is also capable of reading the
output of tcpdump and can apply tcpdump filters to select and display records
satisfying certain parameters. Ethereal offers decoding options for a large
number (�400) of protocols and is useful in network forensics. It supports
preliminary inspection of attacks in the network.

(i) GULP: It is used to capture very high volume of network traffic efficiently from
the network firehose. It overcomes the packet loss problem of tcpdump and
records a large amount of data that are stored in secondary storage for further
processing. It can capture packets from multiple CPUs for better performance
and writes the captured data in pcap files.

(j) Hexinject: Hexinject is a powerful, versatile packet injector and sniffer. It
provides command-line access to raw networks and facilitates the creation of
powerful shell scripts capable of reading, intercepting, and modifying network
traffic in a transparent manner.

(k) IPgrab: This packet sniffing tool provides facility for network debugging at
multiple layers, such as data link, network, and transport layers. It outputs
detailed header field information for all layers.

(l) Junkie: Junkie is designed for real-time packet sniffing and analyzing. So, it
stands somewhere between Wireshark and tcpdump. Features of junkie include
IP reassembly, TCP reordering, and parsing of protocols like HTTP, DNS, or
SIP and are extendable to C.

(m) Karpski: This is a user-friendly tool with limited sniffing and scanning
capabilities. It provides flexibility to include protocol definitions dynamically
and also can serve as an attack launching tool against addresses on a local
network.

(n) Nfsen: Nfsen is used to visualize NetFlow flow data and to display the captured
data such as flows, packets, and bytes in graphical interface. Also, we can
visualize protocol-specific flows in a graphical format using nfsen.

(o) Nfdump: It is used to collect and process the NetFlow data. It reads NetFlow
data from the files created by nfcapd. It organizes captured data in a time-based
fashion, typically for 5 min, and stores them for further processing. Analyzing
data can be done for a single file or by concatenating several files for a single
run. The output is either ASCII text or binary data, when saved into a file, ready
to be processed again with the same tool.

(p) Nast: Nast uses libnet and libpcap to sniff packets in normal mode or in
promiscuous mode to analyze them. It captures packet header parameters,
payload information, and saves them in a file in ASCII or ASCII-hex format.

(q) Nstreams: It is a tool to display and analyze network streams generated by users
between several networks and between networks and the outside. Nstreams
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also can output optionally the ipchains or ipfw rules matching these streams. It
parses outputs generated by tcpdump or files generated using tcpdump with -w
option.

(r) Net2pcap: It is a simple tool to read packet traffic from an interface and to
transform into a pcap file. Net2pcap is a Linux tool which does not use any
library during the transformation. However, it is partially dependent on libc, a
Linux library utility. The command %tcpdump -w capfile almost does the same
task as Net2pcap. However, Net2pcap is usually used to capture and represent
network traffic in a hostile environment to support subsequent analysis.

(s) Ngrep: Ngrep provides filtering facility on packets payloads. It also supports
sniffing with the help of tcpdump and libpcap.

(t) Snoop: It is a Linux-based tool that works like tcpdump. However, the format
of a snoop file is different from the pcap format and is defined in RFC 1761.
An important feature of this tool is that when writing to an intermediate file,
it reduces the possibility of packet loss under busy trace conditions. Snoop
allows one to filter, read, as well as to interpret packet data. To observe the
traffic between two systems, say X and Y , the following command is used to
execute the tool.
% snoop X, Y

(u) ScoopLM: This is a Windows 2000-based sniffing tool for capturing
LM/NTLM authentication information on the network. Such information
can later be used by a tool such as BeatLM to crack authentication data.

(v) Tcpdump: Tcpdump is a premier packet analyzer for information security
professionals. It enables one to capture, save, and view packet data. This tool
works on most flavors of the Unix operating system. One can also use third-
party open-source software, e.g., wireshark to open and visualize tcpdump
captured traffic.

(w) Tcptrace: It is a powerful tool to analyze tcpdump files and to generate
various types of outputs including connection-specific information, such as the
number of bytes and segments sent and received, elapsed time, retransmissions,
round trip times, window advertisements, and throughput. It accepts a wide
range of input files generated by several capture tools such as tcpdump,
snoop, etherpeek, HP Net Metrix, and WinDump. It also provides a graphical
presentation of traffic characteristics for further analysis.

(x) Tcptrack: It can sniff and display TCP connection information, as seen in the
network interface. Tcptrack has the following functions: (i) watch passively
for connections on the network interface, (ii) keep track of their state, and (iii)
display a list of connections. It displays source IP, destination IP, source port,
destination port, connection state, idle time, and bandwidth usage.

We have seen that most discussed sniffing tools are not equally important for
one’s purposes all the time. Their usefulness and importance are measured based on
user’s requirements and purposes. One cannot use Cain & Abel for capturing live
network traffic since it performs only password cracking. Most people use tcpdump
and libpcap as network sniffing tools that can capture all the information of a packet
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Fig. 6.3 Different types of port scans

and store them in a file. One can also use NFSEN and NFDUMP tools for NetFlow
traffic capturing, whereas GULP is used for packet level traffic capturing. One can
also use tcpdump as an implicit tool for packet as well as NetFlow capturing.

6.4.1.2 Network Scanning and Mapping Tools

A network scanning tool aims to identify active hosts on a network, either (i) to
attack them or (ii) to assess vulnerabilities in the network. It provides an overall
status report regarding network hosts, ports, IPs, etc. The four possible types of port
scans are (i) one-to-one, (ii) one-to-many, (iii) many-to-one, and (iv) many-to-many
as shown in Fig. 6.3. Below, we present a few network vulnerability scanning tools.

(a) Amap: Amap detects an application protocol without depending on the
TCP/UDP ports it is bound to. It identifies applications running on a specific
port by sending trigger packets, which are typically used for application
protocol handshakes. Most network daemons only respond to the correct
handshake (e.g., SSL). Amap considers the responses and looks for matches.
This tool supports TCP and UDP protocols, regular and SSL-enabled ASCII,
and binary protocols and has a wide list of options to control its behavior. It
accepts an nmap machine readable output file and logs to a file and screen.
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(b) DMitry: DMitry (Deepmagic Information Gathering Tool) is a command-line
network scanning tool hard coded in C and works on UNIX or Linux platform.
It performs well in scanning simple networks.

(c) Ike-scan: This tool assists in discovery, fingerprinting, and testing of IPSec VPN
servers based on the IKE protocol. Ike-scan works on Linux, Unix, Mac OS, and
Windows environment under the GPL license.

(d) Nmap: This network mapping tool facilitates network exploration and security
auditing. It can scan large networks fast, especially against single hosts. It is
effective in using raw IP packets to identify a large number of useful parameters,
such as available hosts, services offered by the hosts, OSs running, and the
use of packet filters or firewalls. In addition to its use in security audits,
network administrators can use it for routine tasks such as maintaining network
inventory, manage service upgrade schedules, and monitoring host or service
uptime.

(e) Paketto: It is a set of tools to assist in manipulating TCP/IP networks based on
nontraditional strategies. These tools provide tapping functionality within the
existing infrastructure and also extend protocols beyond their original intention.
Example tools include (i) scanrand, which facilitates fast discovery of network
services and topologies; (ii) minewt, which serves as a user space NAT/MAT
router; (iii) linkcat, which offers a Ethernet link to stdio; (iv) paratrace,
which helps trace network paths without spawning new connections; and (v)
phentropy, which uses OpenQVIS to render arbitrary amounts of entropy from
data sources in 3-D phase space.

(f) rnmap: rnmap (Remote Network Mapper) is a scanning tool that works in client-
server mode. Each client is usually connected to the centralized server and
performs the scanning operations on a particular host or a system. It uses nmap
for actual scanning operations.

(g) Ttlscan: This tool uses libnet and libpcap utilities to identify a host by sending
TCP SYN packets to each port of the host. It sniffs the response from the host
and uses it to identify hosts with services by forwarding packets to another host
behind a firewall. It can detect the OS and its version running on a host behind
the firewall by reading specific header parameters such as TTL, window size,
and IP ID.

(h) Unicornscan: This is an asynchronous scanner as well as a payload sender.
This scalable and flexible tool gathers and collects information quickly. For
fast response, it uses a distributed TCP/IP stack and provides a user-friendly
interface to introduce a stimulus into a TCP/IP-enabled device or network and
measuring the response. The main features of this tool include asynchronous
protocol-specific UDP scanning, asynchronous stateless TCP scanning with
wide variations in TCP flags, and asynchronous stateless TCP banner grabbing.

(i) Vmap: This version mapper tool allows one to identify the version of a daemon
by fingerprinting its characteristics, based on its responses to bogus commands.
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Table 6.2 Comparison of scanning tools

Tool’s name Input Protocol Purpose Effectiveness Sources

Nmap IP/p C/U Scanning Very powerful,
easily accessible

www.insecure.org

Rnmap IP/p C/U Scanning Very powerful,
easily accessible

www.rnmap.
sourceforge.net/

Amap IP/p C/U Scanning Powerful
application
mapper

www.freeworld.thc.org

Vmap T C/U Version
mapping

Few options, easy
to use

www.tools.l0t3k.net

Unicornscan T/p C/U Scanning Supports more
than 15 options

www.unicornscan.org

Ttlscan T/p C Scanning Linux based www.freebsd.org

Ike-scan T C/U Host discovery Supports more
than 50 options

www.stearns.org

Paketto IN C Scanning Very fast scanner www.packages.com

DMitry CL C Scanning Simple scanner www.mor-pah.net

ZMap IN C/UDP Scanning Fast scanner www.github.com/zmap

IP IP address(es), T Target IP, p port, IN Interface ID, C TCP, U UDP, CL Command-line

(j) ZMap: ZMap is a fast network scanning tool designed for Internet-wide
network surveys. It perform scanning of the entire public IPv4 address space
within 45 min. If the connection is 10gigE speed and PF_RING, then ZMap
performs the scan operations of IPv4 address space in under 5 min. It works on
GNU/Linux, Mac OS, and BSD.

Table 6.2 shows the platforms on which these tools work and the sources from where
they can be obtained. Almost all these tools are Linux based.

For scanning a large network, one can use nmap as the most effective tool.
Nmap has the ability to scan a large network to determine multiple parameters such
as active hosts and ports, operating systems, protocols, timing and performance,
firewall/IDS evaluation and spoofing, and IPv6 scanning. Because of its multiple
functionalities, network administrators find it very useful when monitoring a large
network. Amap and Vmap do not support most of the functionalities performed
by nmap. Attackers use nmap to find the vulnerabilities of a host to compromise
it for constructing botnet during DDoS attack generation using the agent-handler
architecture.

6.4.2 Attack Generation Tools

A large number of network security tools that use cryptographic mechanisms for
attack launching are available on the Web. People can freely download these tools
and can use them for malicious activities such as Trojan propagation, network

www.insecure.org
www.rnmap.sourceforge.net/
www.rnmap.sourceforge.net/
www.freeworld.thc.org
www.tools.l0t3k.net
www.unicornscan.org
www.freebsd.org
www.stearns.org
www.packages.com
www.mor-pah.net
www.github.com/zmap
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mapping, probe attacks, buffer overflow attacks, DoS/DDoS attacks, and application
layer attacks. Such tools can be used to launch layer-specific and protocol-specific
attacks, such as HTTP-, SMTP-, FTP-, or SNMP-related attacks. Other tools can be
used to launch DoS/DDoS attacks, which can disrupt the services of a network or a
Website very quickly. Some tools are used in wired networks to capture and exploit
valuable information, while others are used in wireless networks.

6.4.2.1 Trojans

Trojans are malicious executable programs developed to break the security system
of a computer or a network. A Trojan resides in a system as a benign program. Once
the user attempts to open the file, the Trojan is executed, and some dangerous action
is performed. Victims generally unknowingly download the Trojan from multiple
sources such as from (i) the Internet, (ii) an FTP archive, (iii) via peer-to-peer file
exchange using IRC, and (iv) Internet messaging. Typically, Trojans are of seven
distinct types. We introduce each type with example.

T1: Remote access Trojans: These are malware programs that use backdoors to
control the target machine with administrative privilege. Remote access Trojans
are downloaded invisibly with a user request for a program such as a game or an
email attachment. Once the attacker compromises a machine, the Trojan uses
this machine to compromise more machines to construct a botnet for launching
a DoS or DDoS attack. An example of remote access Trojan is danger.

T2: Sending Trojans: This Trojan type aims to capture and provide sensitive infor-
mation such as passwords, credit card information, log files, email addresses,
and IM contact lists to the attacker. In order to collect such information, such
Trojans attempt to install a keylogger to capture and transmit all recorded
keystrokes to the attacker. Examples of this type of Trojans are, namely,
Badtrans.B email virus and Eblast.

T3: Destructive Trojans: This Trojan type is very destructive for a computer and is
often programmed to delete automatically some essential executable programs,
configuration, and dynamic link library (DLL) files. Such a Trojan acts either
(i) as per the instructions of a back-end server or (ii) based on pre-installed or
programmed instructions, to strike on a specific day, at a specific time. Two
common examples of this type are Bugbear virus and Goner worm.

T4: Proxy Trojans: This Trojan type attempts to use a victim’s computer as a proxy
server. A Trojan of this kind compromises a computer and attempts to perform
malicious activities such as fraudulent credit card transactions and launching
of malicious attacks against other networks. Examples of proxy Trojans are
TrojanProxy:Win32 and Paramo.F.

T5: FTP Trojans: This type of Trojan attempts to open port 21 and establish a
connection from the victim computer to the attacker using the File Transfer
Protocol (FTP). An example of FTP Trojan is FTP99cmp.
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T6: Security software disable Trojans: Such Trojans attempt to destroy or to thwart
defense mechanisms or protection programs such as antivirus programs or fire-
walls. Often such a Trojan is combined with another type of Trojan as a payload.
Some examples are Trojan.Win32.KillAV.ctp and Trojan.Win32.Disable.b.

T7: DoS Trojans: Such Trojans attempt to flood a network instantly with useless
traffic, so that it cannot provide any service. Some examples of this category of
Trojan are Ping of Death and teardrop.

6.4.2.2 DoS/DDoS Attacks

Denial of service (DoS) is a commonly found yet serious class of attacks caused by
an explicit attempt by an attacker to prevent or block legitimate users of a service
from using desired resources. Such an attack occurs in both distributed as well as
in a centralized setting. Some common examples of this class of attacks are: SYN
flooding, smurf, fraggle, jolt, land, and Ping of Death.

A distributed denial of service (DDoS) attack is a coordinated attempt on the
availability of services of a victim system or a group of systems or on network
resources, launched indirectly from a large number of compromised machines on the
Internet. Typically, a DDoS attacker adopts an m:1 scheme, i.e., many compromised
machines are used to attack a single victim machine or an m:n approach that
makes it very difficult to detect or prevent. A DDoS attacker normally initiates
such a coordinated attack using either an architecture based on agent handlers
or Internet relay chat (IRC). The attacking hosts are usually personal computers
with broadband connections to the Internet. These computers are compromised by
viruses or Trojan programs called bots. The compromised computers are usually
referred to as zombies. The actions of these zombies are controlled by remote
perpetrators often through (i) Botnet commands and (ii) a control channel such as
IRC. Generally, a DDoS attack can be launched using any one of the following
ways.

(i) By degree of automation: The attack generation steps such as recruit, exploit,
infect, and use phase can be performed in three possible ways: manual,
automatic, and semiautomatic.

(ii) By exploited vulnerability: The attacker exploits the vulnerability of a security
system to deny the services provided by the system. In semantic attacks,
it exploits a specific feature or implementation bug of some protocols or
applications installed on the victim machine to overload the resources used
by that machine. Example of such attack is TCP SYN attack.

(iii) By attack network used: To launch a DDoS attack, an attacker may use either
an agent-handler network or an IRC network.

(iv) By attack rate dynamics: Depending on the number of agents used to generate
a DDoS attack, the attack rate may be either constant rate or variable rate.
Besides these, increasing rate attack and fluctuating rate attack can also be
found based on rate change mechanism.
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Fig. 6.4 DDoS attack statistics [26]

(v) By victim type: DDoS attacks can be generated based on four different victims,
such as application attack, host attack, network attack, and infrastructure
attack.

(vi) By impact: The impact of a DDoS attack may be either disruptive or degrading.
(vii) By agent: A DDoS attack can be generated by a constant agent set or a variable

agent set.

Some statistics on DDoS attacks are shown in Fig. 6.4. Out of several DoS and
DDoS attack generation tools, a few tools are explained below (Table 6.3).

(a) Burbonic: This DoS exploit attempts to victimize a Windows 2000 machine by
sending randomly a large number of TCP packets with random settings with
the purpose of increasing the load on the machines so that it leads to a crash.

(b) Blast20: This TCP service stress tool is able to identify potential weaknesses
in the network servers quickly. An example use of this tool is shown below.
% blast targetIP port start_ size end_size /b (i.e. begin text) “GET/SOME TEXT” /e (i.e. end

text) “URL”

The command is used to send some attack packets of size minimum start_size
bytes to maximum end_size bytes to a server address “http://” in the specified
target IP.

(c) BlackEnergy: This Web-based DDoS attack tool, an HTTP-based botnet, uses
an IRC-based command and control method.

(d) Crazy Pinger: It attempts to launch an attack by sending a large number of
ICMP packets to a victim machine or to a large remote network.

(e) FSMax: It is a server stress testing tool. To test a server in evaluating buffer
overflows that may be exploited during an attack, it accepts a text file as input
and takes a server through a sequence of tests based on the input.
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Table 6.3 Comparison of attacking tools

Tool’s name Input Protocol Purpose Effectiveness Sources

Jolt T IC DoS Uses 100% cpu time www.flylib.com

Burbonic T C DoS Multi-platform, easily
accessible

www.packetstormsecurity.
org/

Targa T C/U/IC DoS Very efficient www.packetstormsecurity.
org/

Blas20 T C DoS Multi-platform, perform
quick damage of a
system

Crazy Pinger V IC DoS Multi-platform, easily
accessible

www.softwaretopic.informer.
com

UDPFlood V U DoS Windows based, less
powerful

www.foundstone.com

FSMax F DoS Windows based, efficient
for server testing

www.brothersoft.com

Nemsey T/p C DoS Windows based packetstormsecurity.org/

Panther T/p U DoS Easily accessible www.bestspywarescanner.
net

Land &
LaTierra

T C DoS Powerful for land attack

Slowloris T HT DoS Powerful for HTTP
attack

www.ha.ckers.org/slowloris/

Blackenergy S C/U/IC DDoS Simple and powerful for
DDoS

www.airdemon.net

HOIC T HT DDoS Very effective for DDoS www.rapidshare.com

Shaft V U/C/IC DDoS Multi-platform, high
applicability

Knight V C/U DDoS Less powerful www.cert.org

Kaiten V U/C DDoS Windows based www.mcafee.com

RefRef T DDoS Effective for DDoS www.hackingalert.net

Hgod T/p C/U/IC DDoS Easily accessible www.flylib.com

LOIC T/p C/U/IC DDoS Very effective, powerful
for flooding attack

www.sourceforge.net

Trinoo T/p U DDoS Multi-platform, easy to
use

www.nanog.org

TFN T U/C/IC DDoS Multi-platform, effective
for flooding attacks

www.codeforge.com

TFN2K T U/C/IC DDoS Simple and easy to
execute

www.goitworld.com

Stachaldraht T C DDoS Multi-platform, supports
more features

www.packetstormsecurity.
org

Mstream T C DDoS Multi-platform and more
primitive

www.ks.uiuc.edu

Trinity T C/U DDoS Very effective to
compromise hosts

www.garykessler.net

T Target IP, V Victim IP, C TCP, U UDP, IC ICMP, F Input text file, p Port, HT HTTP, S Server IP

www.flylib.com
www.packetstormsecurity.org/
www.packetstormsecurity.org/
www.packetstormsecurity.org/
www.packetstormsecurity.org/
www.softwaretopic.informer. com
www.softwaretopic.informer. com
www.foundstone.com
www.brothersoft.com
packetstormsecurity.org/
www.bestspywarescanner.net
www.bestspywarescanner.net
www.ha.ckers.org/slowloris/
www.airdemon.net
www.rapidshare.com
www.cert.org
www.mcafee.com
www.hackingalert.net
www.flylib.com
www.sourceforge.net
www.nanog.org
www.codeforge.com
www.goitworld.com
www.packetstormsecurity.org
www.packetstormsecurity.org
www.ks.uiuc.edu
www.garykessler.net


6.4 Tools for Attackers 217

(f) HOIC: It is an HTTP-based DDoS tool that focuses on creation of high-speed
multi-threads to generate HTTP flood traffic. It is able to flood simultaneously
up to 256 Websites. The built-in scripting system in this tool allows the
attacker to deploy boosters, which are scripts designed to thwart DDoS counter
measures.

(g) Hgod: This is a Windows XP-based tool that spoofs source IPs and can
specify protocol and port numbers for an attack. By default, it is used for TCP
SYN flooding. An example of TCP SYN flooding attack command against
192.168.10.10 on port 80 with a spoofed address of 192.168.10.9 is shown
below.
%hgod 192.168.10.10 80 -s 192.168.10

(h) Jolt: This DoS attack tool sends a large number of fragmented ICMP packets
to a target machine running Windows 95 or NT in such a manner that the target
machine fails to reassemble them for use, and as a result, it freezes up and
cannot accept any input from the keyboard or mouse. However, this attack does
not cause any significant damage to the victim system, and the machine can be
recovered with a simple reboot.

(i) Knight: This IRC-based tool can launch multiple DDoS attacks for SYN flood,
UDP flood, and urgent pointer flood on Windows machines.

(j) Kaiten: This is an IRC-based attack tool and is able to launch multiple attacks,
viz., UDP flood, TCP flood, SYN flood, and PUSH+SYN flood attacks. It uses
random source addresses.

(k) LOIC: It is an anonymous attacking tool via IRC. It operates in three modes
based on the protocols TCP, UDP, and HTTP. It exists in two versions: binary
and Web-based. It uses multiple threads to launch an attack.

(l) Nemsey: The presence of this tool implies that a computer is insecure and
infected with malicious software. It attempts to launch an attack with attacker
specified number of packets and sizes including information such as protocol
and port.

(m) Panther: This UDP-based DoS attack tool can flood a specified IP address at a
specified port instantly.

(n) RefRef : RefRef is used to exploit existing SQL injection vulnerabilities using
features included in MySql such as SELECT permissions to create a DoS
attacks on the associated SQL server. It sends malformed SQL queries carrying
payloads which force servers to exhaust their own resources. It works with a
Perl compiler to launch an attack.

(o) Stacheldraht: This DDoS attacking tool is a hybridization of TFN and Trinoo,
with some additional features, such as encrypted transmission between the
components and automatic updation of the daemons.

(p) Slowloris: It creates a large number of connections to a target victim Web
server by sending partial requests and attempts to hold them open for a long
duration. As a consequence, the victim servers maintain these connections as
open, consuming their maximum concurrent connection pool, which eventually
compels them to deny additional legitimate connection attempts from clients.
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(q) Shaft: It is variant of Trinoo, which provides statistics on TCP, UDP, and
ICMP flooding attacks. These help the attackers identify the victim machine’s
status (i.e., completely down or alive) or to decide termination of zombies in
addition to the attack.

(r) Targa: Targa is a collection of 16 different DoS attack programs. One can
launch these attacks individually as well as in a group and can damage a
network instantly.

(s) Trinoo: This is an effective DDoS attack tool that uses a master host and several
broadcast hosts. It issues commands using TCP connection to the master host,
and the master instructs the broadcast hosts via UDP to flood at specific target
IP at random ports with UDP packets. To launch an attack using this tool, an
attacker should possess prior access to the host to install a TRINOO master or
broadcast, either by passing or by compromising the existing security system.

(t) TFN: Like Trinoo, TFN is comprised of a client host and several daemon hosts.
It is very effective in launching DDoS attacks, viz., ICMP flood, UDP flood,
SYN flood, and smurf attacks. TFN2K, a variant of TFN, also includes some
special features, such as encryption and decryption, stealth attacks, DoS attacks
to crash a specified target host, and to communicate shell commands to the
daemons.

(u) UDPFlood: This tool can flood a specific IP at a specific port instantly with
UDP packets. The flooding rate, maximum duration, and maximum number
of packets can be specified in this tool. It can also be used for testing the
performance of a server.

A large number of attacking tools are available in the Internet, and most of them
are powerful enough to crash networks and Websites. Among them, we found LOIC
and HOIC are able to launch DDoS attacks within a very short time interval. LOIC
supports TCP, UDP, and HTTP protocols to construct attack packets, whereas HOIC
supports only the HTTP protocol. Though TFN, Trinoo, and Stacheldraht are used
to launch DDoS attacks, they are not as powerful as LOIC. It should be noted that
the use of LOIC to launch an attack in a public network is a crime.

6.4.2.3 Packet Forging Attack Tools

Packet forging tools are useful in forging or manipulating packet information. An
attacker can generate traffic with manipulated IP addresses based on this category
of tools. We describe some commonly found packet forging tools (Table 6.4).

(a) Aicmpsend: This ICMP packet sending tool supports several features including
ICMP flooding and spoofing. It allows one to implement all the ICMP flags
and codes.

(b) Arp-sk: ARP Swiss Knife (Arp-sk) allows one (i) to create totally arbitrary
ARP requests, (ii) to manipulate ARP packets, and (iii) to test network security
and connectivity.
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Table 6.4 Comparison of packet forging attack tools

Tool’s name Input Protocol Purpose Effectiveness Sources

Packeth S/D U/C/IC Packet generator Supports many
features

www.sourceforge.net

Packit I C/U/IC Packet analysis
and injection

Supports more than
60 options

www.packetfactory.
openwall.ne

Packet
excalibur

Multi-platform www.freecode.com

Nemesis H IC/IG/C/U Packet
crafting/injection

multi-platform,
powerful

www.sourceforge.net

Tcpinject H C Packet generator Linux based, easy
accessible

www.
packetstormsecurity.org

Libnet H C Packet injection Portable, efficient,
and easy to use

www.packetfactory.net/
libnet

SendIP H C/U Packet generator Supports so many
options

www.softpedia.com

IPsocery H C/U/IC/IG Packet generator Easy to use www.tools.l0t3k.net

Pacgen H C/U Packet generator Simple packet
generator

www.sourceforge.net

Arp-sk H A ARP packet
generator

Sensitive for ARP
attack

www.arp-sk.org

ARP-SPOOF T A Packet intercept Efficient for ARP
cache poisoning

www.sourceforge.net

Libpal H C/U/IC Packet intercept User friendly www.sourceforge.net

Aicmspend T IC ICMP packet
flooding

Supports many
features

www.
packetstormsecurity.nl

S Source IP, D Destination IP, I Interface ID, H Host IP, T Target IP, C TCP, U UDP, IC ICMP, IG
IGMP, A ARP

(c) Arpspoof : This tool is also known as ARP cache poisoning. It allows one
to spoof the contents of an ARP table on a remote computer on the LAN.
Two addresses are used to establish connection between two computers on an
IP/Ethernet network: (i) MAC address, which is used on a local area network
before packets go out of the gateway, and (ii) IP address, which is used to surf
the Internet through a gateway.

(d) IPsorcery: This TCP/IP packet generating tool has the ability to send TCP,
UDP, and ICMP packets using the GTK+ interface.

(e) Libpal: This user-friendly packet assembly library provides utilities to build
and send forged Ethernet, IP, ICMP, TCP, and UDP packets. It uses a struct to
represent a packet.

(f) Libpal: This user-friendly packet assembly library provides utilities to build
and send forged Ethernet, IP, ICMP, TCP, and UDP packets. It uses a struct to
represent a packet.

(g) Libnet: This tool provides facilities to the application programmer including
construction and injection of network packets through a portable and high-
level API. To support underlying packet creation and injection functionality, it
uses the libnet utility.

www.sourceforge.net
www.packetfactory.openwall.ne
www.packetfactory.openwall.ne
www.freecode.com
www.sourceforge.net
www.packetstormsecurity.org
www.packetstormsecurity.org
www.packetfactory.net/libnet
www.packetfactory.net/libnet
www.softpedia.com
www.tools.l0t3k.net
www.sourceforge.net
www.arp-sk.org
www.sourceforge.net
www.sourceforge.net
www.packetstormsecurity.nl
www.packetstormsecurity.nl
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(h) Nemesis: This Unix-like and Windows-based network packet crafting and
injection tool is useful for testing any NIDS, firewall, IP stack, and a variety
of other tasks. This command-line driven tool also provides an option for
scripting. Nemesis allows an attacker to craft and inject a large variety of
packets. Especially in IP and the Ethernet injection modes, it allows one to
craft and inject almost any custom packets.

(i) Pacgen: This Linux-based Ethernet IP TCP/UDP packet generating tool allows
an attacker to generate custom packets with configurable Ethernet, IP, TCP,
and UDP layers as well as custom payloads. It also includes additional features
such as packet count and programmable time interval between packets sent.

(j) Packit: This network auditing tool allows one to customize, inject, monitor, and
manipulate IP traffic. It is useful in various ways such as (i) to test a NIDS, (ii)
to evaluate the performance of a firewall, (iii) to scan the network, and (iv) to
simulate the network traffic and (v) in TCP/IP auditing.

(k) Packeth: Packeth is a Linux-based tool with graphical user interface. It can
send any packet or sequence of packets using raw sockets on the Ethernet.
It provides a large number of options such as incorrect checksum and wrong
header length.

(l) Packet excalibur: This forging tool allows one to (i) sniff packets, (ii) build and
receive custom packets, and (iii) to spoof packets. It has a graphical interface
to build scripts as a text file and to define additional protocols.

(m) Tcpinject: This forging tool allows one to transmit a wide variety of TCP/IP
packets by specifying multiple parameters, such as source IP, destination IP,
source port, destination port, packet size, payload, TCP control flags, and TCP
window size.

(n) SendIP: This command line forging tool allows one to send arbitrary IP packets
with a large number of options to specify the content of every header of a
specific packet. Any data can be added to the packet during transmission.

Based on the study of packet forging tools, we note that Nemesis is widely used
to generate custom packets using different protocols. It supports most protocols such
as ARP, DNS, ICMP, IGMP, IP, OSPF, RIP, TCP, and UDP, making it much more
effective than other tools. Other advantages of this tool include the facts that (i)
anyone can generate custom packets from the command prompt or shell script of a
system and (ii) attackers find it very useful to generate attack packets.

6.4.2.4 Application Layer Attack Tools

In an application layer attack, the attacker uses legitimate application layer HTTP
requests from legitimately connected network machines to overwhelm a Web server
[27]. The application layer attack may be of different types such as session flooding
attack, request flooding attack, or an asymmetric attack [21, 32]. Application layer
DDoS attacks are more subtle than network layer attacks, and the detection of
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application layer attacks is challenging since they use legitimate protocols and
legitimate connections. Application layer attacks are of four types.

(a) HTTP-related attacks: In this attack, a massive amount of HTTP request is sent
to overwhelm the target site in a very short time frame. Some commonly used
tools of this category are Code Red Worm and its mutations, Nimda Worm and
its mutations, Cross-site scripting attacks, Malicious URLs, and AppDDoS.

(b) SMTP-related attacks: The SMTP protocol is used to transmit emails over
the Internet. The attacker tries to attack a mail server using this Internet mail
transfer protocol. Some example attack tools of this category are SMTP mail
flooding, SMTP worms and their mutations, extended relay attacks, and firewall
traversal attacks.

(c) FTP-related attacks: The first step of this attack is to initiate a legitimate FTP
connection and then send some attack packets to the victim. Examples include
FTP bounce attacks, FTP port injection attacks, passive FTP attacks, and TCP
segmentation attacks.

(d) SNMP-related attacks: The main goal of an SNMP attack is to change the
configuration of a system and then monitor the state or availability of the system.
Examples of this category of attacks include SNMP flooding attacks, default
community attacks, and SNMP put attacks.

6.4.2.5 Fingerprinting Attack Tools

Fingerprinting tools are used to identify specific features of a network protocol
implementation by analyzing its input and output behavior. The identified features
include protocol version, vendor information, and configurable parameters. Fin-
gerprinting tools are used to identify the operating system running on a remote
machine and can also be used for other purposes. Existing fingerprinting tools
are implemented for the key Internet protocols such as ICMP, TCP, TELNET, and
HTTP [2, 24, 28]. Network administrators can use remote fingerprinting to collect
information to facilitate management, and an intrusion detection system can capture
the abnormal behavior of attackers or worms by analyzing their fingerprints [25].

(a) AmapV4.8: The Amap fingerprinting tool identifies applications and services by
creating bogus communication without listening on default ports. It maintains a
database of all the known applications, including non-ASCI-based applications
and enterprise services.

(b) CronOS: This fingerprinting tool is used to determine the operating system of
a target machine. This tool is embedded in Namp-CronOS, and it has three
options to perform different operations. The S option guessed the time-out of
SYN_RCVD states, the I option determines the last ACK state time-out, and
the f option uses FIN_WAIT_1 state time-out for fingerprinting.

(c) Disco: The Disco fingerprinting tool is used to discover unique IP addresses on
a network. In addition to IP discovery, it also fingerprints TCP SYN packets.
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(d) Nmap: Nmap is one of the best fingerprinting tools for both Unix and Windows
operating systems. It is very useful in network mapping as well as for
information gathering from a remote machine on a network as described in
Sect. 6.4.1.1.

(e) P0f : P0f is a passive OS fingerprinting tool that uses active fingerprinting
performed by Nmap. The only difference is that passive fingerprinting simply
sniffs the network and classifies the host based on the observed traffic. This
is more difficult than active fingerprinting, since one has to accept whatever
communication happens rather than designing custom probes.

(f) Queso: This utility runs on Linux and Solaris operating systems. It is used
to remotely determine the operating system’s version and manufacture’s infor-
mation by analyzing network packets. It provides precise information about a
network or a system by scanning the network.

(g) Sprint: This fingerprinting tool is used to identify the operating system running
on a machine. In addition, sprint also has the ability to calculate up times
and contains advanced banner grepping functionality. Sprint, when run with
-n switch, simulates netcraft.

(h) Xprobe: This OS fingerprinting tool is used to find the operating system run
by a remote machine. Xprobe is as simple as Nmap, and it exploits the ICMP
protocol in its fingerprinting approach.

Among the above discussed fingerprinting tools, Nmap is the best due to its
multiple functionalities and greater effectiveness compared to others. P0f supports
passive scanning, whereas Xprobe and Queso1 are used for remote operations.
Nmap provides detailed information on a network or a host with the maximum
amount of vulnerability information. Table 6.5 shows the platforms used as sources
for these tools.

6.4.2.6 User Attack Tools

In user attacks [17], the attacker either (i) attempts as a normal legitimate user to
gain the privileges of a root or superuser or (ii) attempts to access a local machine
by exploiting its vulnerabilities without having an account on that machine. Both
types of attempts are very difficult to detect because their behavior resembles normal
characteristics. We discuss these attacks by category along with launching tools for
these attacks.

(a) U2R attack: In this attack, as shown in Fig. 6.5, the attacker initially attempts
to gain access to the local victim machine as a legitimate user by some means.
The means may be a password sniffing attempt, dictionary attack, or any social
engineering approach. The attacker then explores the possible vulnerabilities
or bugs associated with the operating system running in the victim machine

1http://spot-act.heck.in/queso-scanner-v-0-5.xhtml

http://spot-act.heck.in/queso-scanner-v-0-5.xhtml
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Table 6.5 Comparison of fingerprinting tools

Tool’s
name Input Protocol Purpose Effectiveness Sources

Nmap H/N C/U Network scanning Easily accessible,
powerful, widely
used

www.nmap.org

P0f H C Remote network
identification

Passive
fingerprinting,
difficult to use

www.lcamtuf.coredump.
cx

Xprobe T C/U Port scanning Simple as nmap,
powerful

www.sourceforge.net

CronOS T C OS identification Linux based pen-testing.sans.org

Queso H C/U OS fingerprinting Multi-platform,
widely used

www.tools.l0t3k.net

AmapV4.8 T/p C/U Host and port
scanning

Powerful
application mapper

www.linux.softpedia.com

Disco C IP discovery and
Fingerprinting

Support large
number of features

www.tools.l0t3k.net

Sprint H C OS identification Simple and efficient www.safemode.org

H Host IP, N Network IP, T Target IP, C TCP, U UDP, p Port

Fig. 6.5 Steps in U2R attack

to perform the transition from user to superuser or root level. Once the root
privileges are acquired, the attacker possesses full control of the victim machine
to install backdoor entries for future exploits, manipulate system files to gather
information, and other damaging actions. Two well-known U2R attack tools are
described next.

www.nmap.org
www.lcamtuf.coredump.cx
www.lcamtuf.coredump.cx
www.sourceforge.net
pen-testing.sans.org
www.tools.l0t3k.net
www.linux.softpedia.com
www.tools.l0t3k.net
www.safemode.org
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Fig. 6.6 Steps in R2L attack

• Sqlattack: Here, the attacker creates a TCP connection with the SQL database
server on a Unix machine. The database shell exits when a special escape
sequence is issued and the root shell of the machine is started by running the
Perlmagic2 script.

• Yaga: This tool is used to create a new administrator account by compro-
mising registry files. The attacker edits the registry file to crash some system
services on the victim machine and create a new administrator account.

(b) R2L attack: In this attack, a remote attacker, without having an account on a
local machine, attempts to send packets to that machine by gaining local access,
based on the vulnerabilities of that machine. To gain access to the local machine,
the attacker attempts various ways as shown in Fig. 6.6. Two such ways are (i)
using online and offline dictionary attacks to acquire the password to access the
machine and (ii) making repeated guesses at possible usernames and passwords.
The attacker also attempts to take the advantage of those legitimate users who
are often casual in choosing their passwords. Below are two R2L attack tools:

• Netcat: This R2L attack tool uses a Trojan program to install and run Netcat
on the victim machine on port number 53. The Netcat program works as a
backdoor to access the machine using Netcat port without any username and
password.

• ntfsdos: Here, the attacker gains the console of a WinNT machine by running
ntfsdos. The program mounts the machine’s disk drives. Thus the attacker
can copy secret files on the secondary media.

2http://www.perlmagic.org/

http://www.perlmagic.org/
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Table 6.6 Comparison of other tools

Tool’s
name Input Protocol Purpose Effectiveness Sources

Ping H IC Host
discovery

Commonly used,
easily accessible

www.download.cnet.com

Hping2 T IC/C/U Port scanning Supports so many
features

www.hping.org.

Hping3 T IC/C/U Port scanning Powerful for
network testing

www.hping.org.

Traceroute H IC/C/U Route
discovery

Multi-platform,
easily accessible

www.brothersoft.com

Tctrace H C Route
discovery

Multi-platform,
easily accessible

www.tcptrace.org/

Tcptrace
route I C DNS lookup Powerful for route

discovery
www.michael.toren.net/

Traceproto H C/U/IC Route
discovery

Effective for firewall
testing

www.traceproto.
sourceforge.net

Fping T IC Target host
discovery

More powerful than
ping

www.softpedia.com

Arping S A Send ARP
request

Linux based,
efficient

www.linux.softpedia.com

H Host IP, T Target IP, I Interface ID, S Source IP, C TCP, U UDP, IC ICMP, A ARP

6.4.2.7 Other Attack Tools

In addition to the tools reported in the preceding sections, there are other tools that
have direct or indirect use in the attack launching process. We discuss some of them
to increase the awareness of learners and security researchers (Table 6.6).

(a) Arping: The arping tool is used in the Linux platform to send ARP request
messages to a destination host in a LAN. It is used to test whether an IP address
is in use or not.

(b) Fping: Fping uses ICMP protocol to determine whether a host is active or not.
Fping is more powerful than ping because it can scan any number of hosts or a
file containing the list of hosts. Instead of trying one host until it times out or
replies, fping sends out a ping packet and moves to the next host in a round-
robin fashion. If a host replies, it is noted and removed from the list of hosts to
check. If a host does not respond within a certain time limit and/or retry limit,
it is considered unreachable. Unlike ping, fping is meant to be used in scripts,
and its output is easy to parse.

(c) Hping2: It is used to send custom TCP/IP packets and display reply messages
received from the target. It handles fragmentation and arbitrary packet size and
can be used to transfer files. It performs testing of firewall rules, port scanning,
protocol-based network performance testing, and path MTU discovery.

(d) Hping3: This tool works almost like Hping2 and can handle fragmentation with
arbitrary packet sizes. It finds the sequence number for reply packets from the

www.download.cnet.com
www.hping.org
www.hping.org
www.brothersoft.com
www.tcptrace.org/
www.michael.toren.net/
www.traceproto.sourceforge.net
www.traceproto.sourceforge.net
www.softpedia.com
www.linux.softpedia.com


226 6 Practical Tools for Attackers and Defenders

source port. It starts with a base source port number and increases this number
when each packet is sent. The default base source port is random. The source
port number may be kept constant for each sent packet.

(e) Ping: This tool is used to test network connectivity or reachability of a host on
an IP network. Ping is a pioneering tool developed to check the connectivity of
a computer, router, or the Internet. The ping request is sent to a particular host
or to a network using command prompt. As a reply, it displays the response of
the destination host and how long it takes to receive a reply. It uses the ICMP
protocol, which has low priority and slower speed than the regular network
traffic.

(f) Traceroute: Traceroute is used to show the route between two systems in a
network. It also lists all intermediate routers from the source end to destination
end. Using this tool, one determines how systems are connected to each other
or how an Internet service provider connects to the Internet to provide services.
The traceroute program is available on most computers including most Unix
systems, Mac OS, and Windows OS.

(g) Tctrace: Though Tctrace is similar to traceroute, it uses TCP SYN packets to
trace. This makes it possible for one to trace through firewalls if one knows a
TCP service that is allowed to pass from the outside.

(h) Tcptraceroute: Tcptraceroute sends either UDP or ICMP ECHO request packets
using a TTL field, which is incremented by one with each hop until the
destination is reached. It shows the path that a packet has traversed to reach
the destination. However, the widespread use of firewalls filters tcptraceroute
packets as a result of which, it may not be able to complete the path to the
destination.

(i) Traceproto: Traceproto is almost similar to traceroute, but this tool allows the
user to choose protocols to be traced. It currently allows TCP, UDP, and ICMP
protocol trace. It can be used to test and bypass firewalls, packet filters, and
check if ports are open. Traceproto is actually a traceroute replacement tool
written in C.

6.5 Tools for Defenders

Defenders use both categories of tools because it is usually required to evaluate any
network traffic anomaly detection technique or system in a realistic environment.
Most commonly found and useful defender tools are listed below.

6.5.1 Network Traffic Monitoring and Visualization Tools

Monitoring of network traffic is an essential activity for network defenders to
observe, analyze, and finally to identify any anomalies occurring in the network.
To support such activities of the network defenders as well as to assist in the
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meaningful interpretation of the outcomes of their analysis, network monitoring
and analysis tools have been playing an important role [15, 16]. Rapid incidences of
malicious attempts to compromise the confidentiality, integrity, and access control
mechanisms of a system or to prevent legitimate users of a service from accessing
the requested resources have led to an increased demand for developing useful tools
to visualize network traffic in a meaningful manner to support subsequent analysis.
We present some of these tools under two distinct categories, visualization [12, 31]
and analysis.

An effective network traffic (both packet and NetFlow traffic) visualization tool
can be of significant help for the network defenders in monitoring and analysis
tasks. Appropriate visualization not only supports meaningful interpretation of the
analysis results but also assists the security managers in identifying anomalous
patterns. It also helps in taking appropriate action to mitigate attacks before they
propagate and infect other parts of the network. Some visualization tools are
discussed below.

(a) EtherApe: EtherApe allows to sniff live packets and to monitor captured data in
the Unix environment.

(b) NetViewer: This tool not only supports observing the captured live traffic in
an aggregate way but also helps in identifying network anomalies. In addition,
NetViewer supports visualization of useful traffic characteristics in tuning of
defense mechanisms.

(c) NetGrok: It is a real-time network visualization tool that aids in presenting a
graphical layout and a tree map to support visual organization of the network
data. It can visualize live packets, capture trace, and helps in filtering activities.

(d) Network traffic monitor: This tool can present and scan detailed traffic scenarios
since the inception of an application process and also allows analyzing traffic
details.

(e) Rumint: This tool enables out to visualize live captured traffic as well as save it
as pcap file in the Windows environment.

(f) Tnv: This time-based traffic visualization tool presents packet details and
links among local and remote hosts. It assists in learning the normal patterns
in a network, investigating packet details, and network troubleshooting. Tnv
provides multiple services to support inspection and analysis activities: (i)
opening and reading libpcap files, (ii) capturing live packets, and (iii) saving
captured data in a MYSQL database.

(g) VizNet: It helps visualize the performance of a network based on bandwidth
utilization.

Most of the visualization tools discussed above support both visualization and
analysis of network traffic (Table 6.7).

To visualize a network, one can use EtherApe in Unix or NetViewer in Windows
platform. For real-time visualization of live traffic for intrusion detection, NetViewer
is the best due to its ability to detect anomalous network traffic. Network defenders
need real-time visualization tools that can detect abnormal behaviors of network
traffic and immediately generate alert messages to inform the administrator.
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Table 6.7 Comparison of visualization tools

Tool’s name Input Protocol Purpose Effectiveness Sources

Tnv F C/U/ IC Traffic visualization Supported by all
OSs

www.tnv.
sourceforge.net

Network
Traffic
Monitor
1.02 H C/U/IC Live traffic

monitoring
Easy accessible,
efficient for
visualization

www.monitor-
network-traffic.
winsite.com

Rumint H C/U/IC/IG Visualize life traffic Extremely flexible www.rumint.org

EtherApe H C Traffic flow
visualization

Very simple and
powerful

www.brothersoft.
com

Netgrok H C/U/IC Real-time traffic
visualization

Multi-platform and
easy accessible

www.softpedia.com

Netviewer H C/U Traffic analysis Powerful defense
tool

www.brothersoft.
com

VizNet H C/U Traffic analysis and
visualization

Efficient for
visualization

www.viznet.ac.uk

H Host IP, F Captured data file, C TCP, U UDP, IC ICMP, IG IGMP

6.5.2 Network Traffic Analysis Tools

Network traffic analysis tools are used to capture, preprocess, and analyze traffic
to detect anomalies. To capture live network traffic from a high-speed network,
a packet or flow snipping tool is needed. Some network traffic analysis tools are
discussed below (Table 6.8).

(a) w3af : It is a powerful and flexible tool for finding and exploiting web applica-
tion vulnerabilities. w3af is like metasploit, but it is for web-based applications.

(b) prtg: PRTG is a network traffic monitoring and analysis tool to ensure services,
device accessibility, and applications. It can perform scanning of all IT infras-
tructures.

(c) Nagios: Nagios is a powerful, scalable, and flexible tool for monitoring and
analysis of network traffic to identify network outages and protocol failures.

(d) OpenNMS: OpenNMS is a highly integrated open-source tool for monitoring
and analyzing network traffic to report any network performance and service
problems. It ensures appropriate services and availability and accessibility of
resources in time.

(e) Capsa: Capsa is an extremely powerful, comprehensive, and portable packet
capturing and analysis tool to assess live network traffic. It generates reports for
further action. It has a number of features including (i) real-time packet capture,
(ii) multiple network behavior monitoring, (iii) advanced protocol analysis, and
(iv) extensive statistics for each host. It provides a high-level window view of
the entire network.

www.tnv.sourceforge.net
www.tnv.sourceforge.net
www.monitor-network-traffic.winsite.com
www.monitor-network-traffic.winsite.com
www.monitor-network-traffic.winsite.com
www.rumint.org
www.brothersoft.com
www.brothersoft.com
www.softpedia.com
www.brothersoft.com
www.brothersoft.com
www.viznet.ac.uk
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Table 6.8 Comparison of network traffic analysis tools

Tool’s name Input Protocol Purpose Effectiveness Sources

w3af F/IL HT Finding web
application
vulnerabilities

Powerful, flexible,
and easy to use

www.w3af.org

prtg F/IL HT/D/S Monitor and analyze
traffic

Flexible and easy
to use

www.paessler.com/prtg

Nagios F/IL C/S Monitor and analyze
traffic

Flexible and
scalable

www.nagios.com

OpenNMS F/IL HT/S Network traffic
monitoring and
analysis

Flexible and
extensible
architecture

www.opennms.org

Capsa F/IL C/U/IC
/HT/D/S

Monitor and analyze
traffic

Portable and
comprehensive

www.colasoft.com/capsa

Splunk F/IL C/U/S Secure monitoring
and analysis of
traffic

Can identify
external and
internal threats

www.splunk.com

NetXMS F/IL S/HTTP Monitor and analyze
traffic

Multi-platform
and easy to use

www.netxms.org

H Host IP, F Captured data file, C TCP, U UDP, IC ICMP, IG IGMP, HT HTTP, HTTPS, D DNS,
IL Interface, CL Command-line, S SNMP

(f) NetXMS: NetXMS is an open-source multi-platform network management and
monitoring system. It provides event management, alert management, perfor-
mance management, report generation, and graph generation for all layers.

(g) Splunk: Splunk is a leading tool for operational intelligence. It facilitates traffic
monitoring, visualization, and analysis to identify the threats to availability. It
works in both Unix and Linux platforms.

6.6 Approach to Develop a Real-Time Network Traffic
Monitoring and Analysis Tool

We believe that an interested technical reader’s understanding will be enhanced if
he/she is able to build a practical system himself/herself.

A denial of dervice (DoS) attack attempts to make machines or network’s
resources unavailable to its intended users either temporarily or indefinitely, inter-
rupting or suspending services of a host connected to the Internet. Normally, DoS
attacks are generated by a single host or a small number of hosts at the same location.
On the other hand, a DDoS attack is a combination of DoS attacks where attacks are
generated by a large number of hosts. These hosts may be amplifiers or reflectors
or even may be zombies. They usually send the traffic to the target or victim host
through the reflectors. For examples, DDoS attacks in 2000 to well-known Websites
such as CNN, Amazon, and Yahoo stopped normal services of these victims for
hours [5, 10].

www.w3af.org
www.paessler.com/prtg
www.nagios.com
www.opennms.org
www.colasoft.com/capsa
www.splunk.com
www.netxms.org
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Most existing network defense techniques and tools still heavily rely on actual
security analysts (SA). These techniques involve SAs to analyze and detect network
attacks manually. To enhance the human perception and understanding of all kinds
of network attacks, network traffic visualization has become important in recent
years to speed up the attack detection process.

We design a tool for information gathering, generation of attack traffic, capturing
live traffic, and monitoring and analysis, known as KUD-Vis to generate and
detect DDoS attacks. Our tool has the following characteristics: (a) information
gathering using rnmap, (b) generation of attack traffic using Targa in a distributed
mode, (c) packet capture using jpcap library, (d) examination of all packets at the
monitoring host (in promiscuous mode), (e) use of memory efficient data structures,
(f) generation of statistical summaries that can be retained for further analysis, and
(g) generation of an undirected graph to visualize the network traffic (Table 6.9).

6.6.1 KUD-Vis: Information Gathering

To discover vulnerabilities in the network, we use the KUD-vis tool. It executes
rnmap (remote nmap) [22], for both client and server. Any client can connect to the
server for initiating scan operation to the target host or network. A remote nmap
client is shown in Fig. 6.7.

The output of remote nmap is captured and used in the next steps.

6.6.2 KUD-Vis: Attack Traffic Generation

Based on the traffic vulnerabilities found in a host or network, KUD-vis initiates
an attack to the target. KUD-vis analyzes the vulnerabilities gained in the previous
step and decides immediately to initiate an attack to the target. KUD-vis exploits
features of the system vulnerabilities when it generates attack traffic.

6.6.3 KUD-Vis: Capturing Traffic

We configure our network to redirect traffic in such a way that all traffic is forwarded
to a particular port. As a result, KUD-Vis can capture each traffic record and
visualize records for detection of DDoS attacks. KUD-Vis uses the jNetPcap [14]
library for capturing and processing traffic. After capturing network traffic, it filters
out the IP packets for subsequent consideration. It uses routers to extract various
types of features from the IP packets and finally constructs a 5 min traffic feature
sample. Each such sample is further divided into subsamples of 5 s. These samples
are formatted for visualization. Due to lightweight nature of the system, KUD-Vis
can visualize the traffic quickly to support attack detection.
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Table 6.9 Category-wise tools information

Category Tool name Source

Trojans NukeNabbler http://community.norton.com

AIMSpy http://www.securitystronghold.com

NetSpy http://www.netspy-trojan-horse.downloads

Information
gathering tools

ASS http://www.manpages.ubuntu.com

NMap http://www.nmap.org

p0f http://www.lcamtuf.coredump.cx/p0f.shtml

MingSweeper http://www.hoobie.net/mingsweeper

THC Amap http://www.freeworld.thc.org/thc-amap

Angry IP Scanner http://www.angryziber.com/w/Download

DoS attack tools Targa http://www.security-science.com/

Burbonic http://www.softpedia.com

Blast20 http://seomagz.com/2010/03/dos-denial-of-
service-attack-tools-ethical-hacking-session-3/

Spoofing attack tools Engage Packet
Builder

http://www.engage-packet-builder.software.
informer.com/

Hping http://www.hping.org

Nemesis http://www.nemesis.sourceforge.net

PacketExcalibur http://www.linux.softpedia.com

Scapy http://www.softpedia.com

TCP session
hijacking tools

Firesheep http://www.codebutler.github.com/firesheep/

Hunt http://www.packetstormsecurity.org/sniffers/hunt

Juggernaut http://www.tools.l0t3k.net/Hijacking/1.2.tar.gz

TTY Watcher http://www.security-science.com

IP Watcher http://www.download.cnet.com

Hjksuit-v0.1.99 http://www.tools.l0t3k.net/Hijacking/hjksuite-0.
1.99.tar.gz

Probe attack tools Solarwind http://www.solarwinds.com

Network Probe http://www.softpedia.com

NMap http://nmap.org

Spoofing attack tools
in wireless

Kismet http://www.linux.die.ne

libpcap http://www.sourceforge.net/projects/libpcap

libnet http://www.libnet.sourceforge.net

libdnet http://www.libdnet.sourceforge.net/

libradiate http://www.packetfactory.net/projects/libradiate

Application layer
attack tools

HOIC https://www.rapidshare.com

LOIC http://www.softpedia.com

RefRef http://www.softpedia.com

(continued)

http://community.norton.com
http://www.securitystronghold.com
http://www.netspy-trojan-horse.downloads
http://www.manpages.ubuntu.com
http://www.nmap.org
http://www.lcamtuf.coredump.cx/p0f.shtml
http://www.hoobie.net/ mingsweeper
http://www.freeworld.thc.org/thc-amap
http://www.angryziber.com/w/Download
http://www.security-science.com/
http://www.softpedia.com
http://seomagz.com/2010/03/dos-denial-of-service-attack-tools-ethical-hacking-session-3/
http://seomagz.com/2010/03/dos-denial-of-service-attack-tools-ethical-hacking-session-3/
http://www.engage-packet-builder.software.informer.com/
http://www.engage-packet-builder.software.informer.com/
http://www.hping.org
http://www.nemesis.sourceforge. net
http://www.linux.softpedia.com
http://www.softpedia.com
http://www.codebutler.github.com/firesheep/
http://www.packetstormsecurity. org/sniffers/hunt
http://www.tools.l0t3k.net/Hijacking/1.2.tar.gz
http://www.security-science.com
http://www.download.cnet.com
http://www.tools.l0t3k.net/ Hijacking/hjksuite-0.1.99.tar.gz
http://www.tools.l0t3k.net/ Hijacking/hjksuite-0.1.99.tar.gz
http://www.solarwinds.com
http://www.softpedia.com
http://nmap.org
http://www.linux.die.ne
http://www.sourceforge.net/projects/libpcap
http://www.libnet.sourceforge.net
http://www.libdnet.sourceforge.net/
http://www.packetfactory.net/projects/ libradiate
https://www.rapidshare.com
http://www.softpedia.com
http://www.softpedia.com
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Table 6.9 (continued)

Category Tool name Source

Network monitoring tools w3af http://w3af.org/

PRTG https://www.paessler.com/prtg

Nagios https://www.nagios.org/

OpenNMS https://www.opennms.org/en

Capsa http://www.colasoft.com/capsa/

The Dude https://mikrotik.com/thedude

Splunk https://www.splunk.com/

NetXMS https://www.netxms.org/

Fig. 6.7 Remote nmap [22]

http://w3af.org/
https://www.paessler.com/prtg
https://www.nagios.org/
https://www.opennms.org/en
http://www.colasoft.com/capsa/
https://mikrotik.com/thedude
https://www.splunk.com/
https://www.netxms.org/
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Fig. 6.8 KUD-Vis: working in offline mode using CAIDA DDoS 2007 dataset

6.6.4 KUD-Vis: Monitoring and Analysis

For analysis of captured traffic, we collect subsamples of interval 5 s for early
visualization of the traffic details. Algorithm 1 shows the major steps used by the
KUD-Vis system for network traffic visualization and analysis. It works in two
modes, online() and offline(). In the online() mode, it captures, preprocesses, and
splits the traffic instances and visualizes them for attack detection. But in offline()
mode, it just visualizes the already stored preprocessed traffic instances for attack
detection. So, cost of computation in the online() mode is more than in the offline
mode to provide near real-time performance.

To test the performance of the KUD-Vis tool, we have tested it in two modes:
offline and online. In offline mode, we used two benchmark datasets: (i) MIT
Lincoln Laboratory [18] and (ii) CAIDA DDoS 2007 [6]. The MIT Lincoln
Laboratory dataset is real time and contains pure normal data. This dataset was
acquired as a tcpdump trace over a period of several weeks. It does not contain
any attack traffic. The CAIDA DDoS 2007 dataset contains 1 h of anonymized
traffic traces from a DDoS attack launched on August 4, 2007. This dataset includes
mainly two types of attacks: consumption of computing resources and consumption
of network bandwidth. While the data was collected, the servers were connected
to the Internet. Figure 6.8 shows the main window of KUD-Vis in offline mode,
and Fig. 6.9 shows the visualized network traffic in offline mode, when it uses the
CAIDA DDoS 2017 datasets.

We also evaluate the KUD-Vis tool using the MIT Lincoln Laboratory dataset to
differentiate between normal and attack traffic. Figure 6.10 shows the main window
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Algorithm 1 KUD-Vis (online, offline)
Require: mode F defines the mode of capturing packet
Ensure: The visualized Graph
1: if mode ¤ online then
2: call online( )
3: else
4: call offline( )
5: end if
6: function ONLINE( )
7: Initialize storePacketŒ60� F It is an array of linked list to store packets as they arrive, and

60 arrays each storing 5 sec data, total 5mins, device
8: Find all the network devices connected to the machine
9: device = get the choice of device from the list

10: Open the device for capturing in promiscuous mode
11: for i 0; 59 do
12: storePacketŒi� = CAPTURE( device)
13: end for
14: ANALYSE(storePacket)
15: NODEVISUALGRAPH(storePacket)
16: exit
17: end function
18: function NODEVISUALGRAPH(storePacket)
19: Initialize graph F an undirected graph where vertices are devices on the network and

edges represent communication between them, vertex F linked list of devices i.e. IP
addresses, edges F a linked list each having value (vi, vj) where vi, vj 2 vertex

20: for i 0, to size of storePacket do
21: for all packet in storePacketŒi� do
22: if packet is an IP packet then
23: if packet:sourceIP not in vertex then
24: add packet:sourceIP to vertex
25: end if
26: if packet:destinationIP not in vertex then
27: add packet:destinationIP to vertex
28: end if
29: if .packet:sourceIP; packet:destinatio� nIP/ not in edges then
30: add .packet:sourceIP; packet:desti� nationIP/

31: end if
32: end if
33: end for
34: end for
35: graph:addVertex.vertex/

36: graph:addEdges.edges/
37: return graph
38: end function
39: function OFFLINE( )
40: Initialize storePacketŒ60� F It is an array of linked list to store packets as they arrive,

time D 5000 (It is time in milliseconds, 5000 represents 5 sec), i D 0 (for accessing the array)
41: get the pcap file from user, i.e. pcapFile

(continued)
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42: open pcapFile to read packets
43: for all packets in pcapFile do
44: if packet:timestamp > time then
45: time D timeC 5000

46: iCC
47: end if
48: add packet to storePacketŒ0�

49: end for
50: ANALYSE(storePacket)
51: NODEVISUALGRAPH(storePacket)
52: exit
53: end function

Fig. 6.9 KUD-Vis: visualization of network traffic available at CAIDA DDoS 2007 dataset

of KUD-Vis in offline mode, and Fig. 6.11 shows the visualized network traffic in
offline mode using the MIT Lincoln Laboratory dataset.

In the online mode, we use the live network of Kaziranga University campus
while executing attacks. Figure 6.12 shows the main window of our system in
online mode using the KUD dataset. Simply, we capture traffic for only 40 s.
Figures 6.13, 6.14, 6.15, 6.16, 6.17, and 6.18 show the window in analysis mode
and represent graphs for UniqueIP, SourceIP, DestinationIP, UniqueTCPPorts,
UniqueUDPPorts, and Protocols, respectively. Figure 6.19 shows the traffic visu-
alization when executing attacks in our networks. We see that the visualization, all
hosts in the network are not shown. It shows only those hosts that are active and
either sending or receiving packets including the target.

As per Moore et al. [19], we generate low-rate DDoS attack traffic for evaluation
of the KUD-Vis system. The attack traffic is generated at the rate of more than 3000

and less than 5000 packets per 5 s. This number varies depending on the dataset.
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Fig. 6.10 KUD-Vis: working in offline mode using MIT Lincoln Laboratory dataset

Fig. 6.11 KUD-Vis: visualization of network traffic using MIT Lincoln Laboratory dataset

Based on our experiments, we observe that KUD-Vis indicates an alarm when
threshold �1 � 3000 packets per seconds within a 2 second interval transmission
over the network. The KUD-Vis system represents a significant development in view
of the following points.
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Fig. 6.12 KUD-Vis: working in online mode

Fig. 6.13 Number of unique IP addresses

• KUD-Vis is cost-effective and can operate in both online and offline modes.
• It is fast and scalable.
• Accurate identification of low-rate DDoS attack is a difficult task. However,

KUD-Vis is able to detect low-rate DDoS attacks effectively.
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Fig. 6.14 Packets sent to different destination from particular sources

Fig. 6.15 Packets sent from different sources to a particular destination

6.7 Chapter Summary

This chapter has presented major tools that can be used by attackers as well as
defenders, as initially given in Fig. 6.2. Even though several tools are available for
the research community, the appropriate use of such tools is a major concern in real-
time network security infrastructure. This chapter started with a brief description of
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Fig. 6.16 Number of unique TCP ports

Fig. 6.17 Number of unique UDP ports

network attacks, security tools, their characteristics, and steps to launch an attack
in a real-time environment. We covered the popular tools for launching of network
attacks as well as for defending a network from attacks. Based on our detailed study
of relevant issues, we make the following observations.



240 6 Practical Tools for Attackers and Defenders

Fig. 6.18 Number of packets per protocol

Fig. 6.19 KUD-Vis: visualization of traffic for our network

• Most currently available tools are limited in their abilities usually with a small
number of features. So, development of an integrated tool to support capture,
preprocessing, analysis, and visualization of both packet and NetFlow traffic
remains a crucial need.
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• Successful functioning of most attack detection tools is dependent on the setting
of suitable values to necessary parameters. These parameters usually need to be
adjusted for the environment where the tools are installed.

• It seems that existing tools cannot perform coordinated scan operations effi-
ciently when time is of essence, especially in enterprise networks.

• Existing DDoS attacks generation tools are usually restricted to a limited number
of attacks and their variations. It is difficult to customize such tools for multiple
scenarios.

• Most existing attack generation tools do not support multilayer attack scenarios.
• Existing tools are unable to correlate between packet level traffic and NetFlow

level traffic well.

Finally, we discussed an approach to developing a real-time network traffic
monitoring and analysis tool. This tool is illustrated in a step by step manner in
terms of design and accompanying code. We believe that this discussion may be of
value to a researcher or practitioner who may try to develop a tool on his/her own.
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Chapter 7
Evaluation Criteria

Performance evaluation is a major part of any network traffic anomaly detection
technique or system. Without proper evaluation, it is difficult to make the case that
a detection mechanism can be deployed in a real-time environment. An evaluation
of a method or a system in terms of accuracy or quality provides a snapshot of its
performance in time. As time passes, new vulnerabilities may evolve, and current
evaluations may become irrelevant. The evaluation of an intrusion detection system
(IDS) involves activities such as collection of attack traces, construction of a proper
IDS evaluation environment and adoption of solid evaluation methodologies. In this
chapter, we introduce commonly used performance evaluation measures for IDS
evaluation. The main measures include accuracy, performance, completeness, time-
liness, reliability, quality and AUC area. It is beneficial to identify the advantages
and disadvantages of different detection methods or systems.

7.1 Accuracy

Accuracy is a metric that measures how correctly an IDS works, measuring the
percentage of detection and failure as well as the number of false alarms that the
system produces [1, 5]. If a system has 90% accuracy, it means that it correctly
classifies 90 instances out of 100 as belonging to their actual classes. While there
is a big diversity of attacks in intrusion detection, the main objective is that the
system be able to detect an attack correctly. In general, the actual percentage of
abnormal data is much smaller than that of the normal [2, 4, 7]. There are also a
lot of different ways to intrude into a network or a system. Consequently, intrusions
are harder to detect than normal traffic, resulting in excessive false alarms as the
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Fig. 7.1 Taxonomy of evaluation measures

biggest problem facing IDSs. Figure 7.1 shows the taxonomy of evaluation measures
for network anomaly detection. This taxonomy represents mainly three different
dimensions of evaluation, namely, correctness, efficiency, and characteristics of the
data. The following are some accuracy measures.

7.2 Data Quality

Data quality is a major component to evaluate any network traffic anomaly detection
techniques and systems. Because without good quality of data, usually it fails to test
any detection and prevention techniques and systems. It is comprised of four parts
including quality, validity, reliability, and completeness.

7.2.1 Quality

Evaluating the quality of data (used to evaluate an ANIDS) is another important
task in ANIDS evaluation. The quality of the data is influenced by several factors,
such as (i) source of data (should be from reliable and legitimate), (ii) selection of
samples (should be unbiased), (iii) sample size (neither over nor under-sampling),
(iv) time of data (should be frequently updated real-time data), (v) complexity of
data (should be simple enough to be handled easily by the detection mechanism),
and so on.

7.2.2 Reliability

Data reliability plays an important role in network traffic anomaly detection and
prevention techniques and systems. Reliability refers to the data elements used
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for evaluation of a system, and results should be accurate and consistent and
must meet the expected purpose. Data reliability depends on quality, validity, and
completeness.

7.2.3 Validity

Data quality and validity provide better information regarding the actual network
traffic recorded for evaluation. Because parameters are crucial component for each
step of designing to implementation of a detection and prevention technique and
system. However, if data quality is not validated irrespective of techniques, then
result obtained from such data would have more limitations in terms of quantifying
any conclusion.

7.2.4 Completeness

The completeness criterion represents the space of the vulnerabilities and attacks
that can be covered by an IDS. This criterion is very hard to assess because
omniscience about attacks or abuses of privilege is impossible. The completeness
of an IDS is judged against a complete set of known attacks. The ability of an IDS
is considered complete, if it covers all the known vulnerabilities and attacks.

7.3 Correctness

For any network anomaly detection and prevention techniques and systems, it is
always necessary to ensure the correctness of the technique or system in terms of
several evaluation measures such as ROC curve, AUC area, precision, recall, F-
measure, confusion matrix, misclassification rate, sensitivity, and specificity.

7.3.1 ROC Curve

The Receiver Operating Characteristics (ROC) analysis originates from signal
processing theory. Its applicability is not limited only to intrusion detection but
extends to a large number of practical fields such as medical diagnosis, radiology,
bioinformatics as well as artificial intelligence and data mining. In intrusion
detection, ROC curves are used on the one hand to visualize the relation between
TP and FP rates of a classifier while tuning it and on the other hand to compare the
accuracies of two or more classifiers. The ROC space [6, 8] uses the orthogonal
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Fig. 7.2 Illustration of ROC measure where A, B, C represents the accuracy of a detection method
or a system in ascending order

coordinate system to visualize the classifier accuracy. Figure 7.2 illustrates the
ROC approach normally used for network anomaly detection methods and systems
evaluation.

To understand the ROC curve, one should remember the following important
points when evaluating a detection method or system [6, 8]:

• The lower-left point (0,0) characterizes an IDS that classifies all the data as
normal all the time. Obviously in such a situation, the classifier has a zero false
alarm rate but does not really detect anything.

• The upper-right point (1,1) characterizes an IDS that generates an alarm for each
data point that is encountered. Consequently, it has a 100% detection rate and
100% false alarm rate as well.

• A line defined by connecting (0, 0) and (1,1), the two previous points, represents a
classifier that uses a randomized decision engine for detecting the intrusions. Any
point on this line can be obtained by a linear combination of the two previously
mentioned strategies. Thus, the ROC curve of an IDS is always situated above
this diagonal.

• The upper-left point (0,1) represents the ideal case when there is a 100%
detection rate while having a 0% false alarm rate. Thus, the closer a point in
the ROC space is to the ideal case, the more efficient the classifier is.
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7.3.2 AUC Area

The most common measure of total detection accuracy is the magnitude of the area
under the curve or AUC. It summarizes the total accuracy of the detector in a way
that accounts for both the gains in the true positive (TP) rate and the losses in the
false-positive (FP) rate. The value of AUC always ranges from 0:5 to 1:0, because
the very worst ROC curve lies along the positive diagonal of ROC curve and has an
area of 0.5. The very best ROC curve, passing through the “northwest” corner point
(0,1), has an area of 1 or the unit square.

To find the AUC, simply calculate the trapezoidal area under each vertical slice
of an empirical (unsmoothed) ROC curve having a straight-line segment as its top;
then sum all the individual areas. For instance, if a binary detector produces only
a single data point, then there will be two trapezoidal regions total for which to
calculate area (one to the left of the point and one to the right of the point).

One drawback of the AUC measure is that given a single AUC number, one
cannot reconstruct the shape of the curve which produced it. It is ambiguous
precisely because it abstracts away the two-dimensional shape of the curve. If there
is a specific use in mind for the signal detector, this may not be the best measure
to use, because it gives only a very general picture of total accuracy (similar to an
average accuracy over all possible modes of the detector). An ROC curve with a
higher AUC may actually perform worse under some conditions than another ROC
curve with a smaller AUC number.

However, when comparing together two or more ROC curves using the AUC
measure, the curve with the greater AUC is truly more accurate (when averaged
over all detection thresholds). However, we must keep in mind that sometimes it is
more important for a curve to be above another (to dominate) over certain entire
regions of the graph than for one curve to have a greater AUC than another.

7.3.3 Precision, Recall, and F-Measure

Precision is a measure of how well a system identifies attacks or normals. A flagging
is accurate if the identified instance indeed comes from a malicious user; this is
referred to as true positive. The final quantity of interest is recall, a measure of how
many instances are identified correctly (see Fig. 7.3). Precision and recall are often
inversely proportional to each other, and there is normally a trade-off between these
two ratios. An algorithm that produces low precision and low recall is most likely
defective with conceptual errors in the underlying theory. The types of attacks that
are not identified can indicate which areas of the algorithm need more attention.
Exposing these flaws and establishing the causes assist future improvement.

The F-measure combines these two measures as the harmonic mean of precision
and recall [3, 11]. If we want to use only one accuracy metric as an evaluation
criterion, F-measure is the most preferable. Note that when precision and recall both
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Fig. 7.3 Confusion matrix and related evaluation measures

reach 100%, the F-measure is the maximum, i.e., 1 meaning that the classifier has
0% false alarms and detects 100% of the attacks. Thus, a good classifier is expected
to obtain F-measure as high as possible.

7.3.4 Confusion Matrix

The confusion matrix is an evaluation method that can be applied to any kind of
classification problem. The size of this matrix depends on the number of distinct
classes to be detected. The aim is to compare the actual class labels against the
predicted ones as shown in Fig. 7.3. The diagonal represents correct classification.
The confusion matrix for intrusion detection is defined as a 2-by-2 matrix, since
there are only two classes known as intrusion and normal [2, 3, 11]. Thus, the TNs
and TPs that represent the correctly predicted cases lie on the matrix diagonal, while
the FNs and FPs are on the right and left sides. As a side effect of creating the
confusion matrix, all four values are displayed in a way that the relation between
them can be easily understood.

7.3.5 Misclassification Rate

This measure attempts to estimate the probability of disagreement between the true
and predicted cases by dividing the sum of FN and FP by the total number of cases
observed, i.e., (TP+FP+FN+TN). In other words, misclassification rate is defined as
(FN+FP)/(TP+FP+FN+TN).
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7.3.6 Sensitivity and Specificity

These two measures [10] attempt to measure the accuracy of classification for a
two-class problem. When an IDS classifies data, its decision can be either right or
wrong. It usually generates true for right and false for wrong, respectively.

If S is a detector and Dt is the set of test instances, there are four possible out-
comes described using the confusion matrix given in Fig. 7.3. When an anomalous
test instance (p) is predicted as anomalous (Y) by the detector S, it is counted as true
positive (TP); if it is predicted as normal (N), it is counted as false negative (FN). On
the other hand, if a normal (n) test instance is predicted as normal (N), it is known
as true negative (TN), while it is a false positive (FP) if it is predicted as anomalous
(Y) [3, 10, 11].

The true positive rate (TPR) is the proportion of anomalous instances classified
correctly to the total number of anomalous instances present in the test data. TPR is
also known as sensitivity. The false-positive rate (FPR) is the proportion of normal
instances incorrectly classified as anomalous to the total number of normal instances
contained in the test data. The true negative rate (TNR) is also called specificity.
TPR, FPR, TNR, and the false-negative rate (FNR) can be defined for the normal
class. We illustrate all measures related to the confusion matrix in Fig. 7.4.

Sensitivity is also known as the hit rate. Between sensitivity and specificity,
sensitivity is set at high priority when the system is to be protected at all cost,
and specificity gets more priority when efficiency is of major concern [10].
Consequently, the aim of an IDS is to produce as many TPs and TNs as possible
while trying to reduce number of both FPs and FNs. The majority of evaluation
criteria use these variables and the relations among them to model the accuracy of
the IDSs.

Fig. 7.4 Illustration of confusion matrix and related evaluation measures
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7.4 Efficiency

Efficiency refers to the performance of a technique or a system on how they
fulfill the expected outcome within a stipulated time period. Following components
ensures the efficiency of any detection and prevention techniques or systems. It also
ensures fastest result with consistency and within bounded time period.

7.4.1 Stability

An anomaly detection system should perform consistently in different network
scenarios and in different circumstances. It should consistently report identical
events in a similar manner. Allowing the users to configure different alerts to provide
different messages in different network environments may lead to an unstable
system.

7.4.2 Timeliness

An IDS that performs its analysis as quickly as possible enables the human analyst
or the response engine to promptly react before much damage is done. This prevents
the attacker from subverting the audit source or the IDS itself. The response
generated by the system while combating an attack is very important. Since the
data must be processed to discover intrusions, there is always a delay between the
actual moment of the attack and the response of the system. This is called total
delay, the time which the attack took place and the time of response, respectively.
Thus, the total delay is the difference between tattack and tresponse. The smaller the
total delay, the better an IDS is with respect to its response. No matter if an IDS is
anomaly-based or signature-based, there is always a gap between the starting time
of an attack and its detection.

7.4.3 Performance

The evaluation of an IDS’s performance is an important task. It involves many
issues that go beyond the IDS itself. Such issues include the hardware platform,
the operating system, or even the deployment environment of the IDS. For a
NIDS, the most important evaluation criterion for its performance is the system’s
ability to process traffic on a high-speed network with minimum packet loss when
working real time. In real network traffic, the packets can be of various sizes;
however, the effectiveness of a NIDS depends on its ability to handle packets of
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any size. In addition to the processing speed, the CPU and memory usage can also
serve as measurements of a NIDS’s performance [9]. These are usually used as
indirect measures that take into account the time and space complexities of intrusion
detection algorithms. Finally, the performance of a NIDS is highly dependent upon
(i) its individual configuration, (ii) the network it is monitoring, and (iii) its position
in that network.

7.4.4 Update Profile

Once new vulnerabilities or exploits are discovered, signatures or profiles must
be updated for future detection. However, writing new or modified profiles or
signatures accurately and compactly without conflict is a challenge, considering the
current high-speed network scenario.

7.4.5 Interoperability

An effective intrusion detection mechanism is supposed to be capable of correlating
information from multiple sources, such as system logs, other HIDSs, NIDSs,
firewall logs, and any other sources of relevant information available. This helps
maintain interoperability, when an organization installs a range of HIDSs or NIDSs
from various vendors.

7.4.6 Unknown Attack

New vulnerabilities are evolving almost every day. An anomaly-based network
intrusion detection system should be capable of identifying unknown attacks, in
addition to known attacks. The IDS should show consistent abilities in detecting
unknown or even modified intrusion patterns.

7.5 Information Provided to Analyst

Alerts generated by an IDS should be meaningful enough to clearly identify the
reasons behind the event to be raised and the reasons this event is of interest. It
should also assist the analyst in determining the relevance and appropriate reaction
to a particular alert. The alert should also specify the source of the alert and the
target system.
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7.6 Chapter Summary

This chapter presents evaluation measures for network traffic anomaly detec-
tion methods and systems. Evaluation measures include accuracy, performance,
completeness, timeliness, reliability, and quality. Accuracy is further discussed in
terms of sensitivity and specificity, ROC curves, AUC area, misclassification rate,
confusion matrix, precision, recall, and F-measure. The use of these measures
for ANIDS evaluation has advantages such as the following: (i) Accuracy is
mainly effective in identifying false alarm rate of a detection method or system.
(ii) Performance is evaluated based on the individual network configuration and
position of the ANIDS in the network. Before deployment of a detection method or
system, it is indeed necessary to evaluate it in realistic environments. So, evaluation
measure needs to be chosen based on the nature of the network, the location of
the ANIDS, the speed, the bandwidth capability of the network, and the size of the
network in terms of devices, servers, appliances, etc.
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Chapter 8
Open Issues, Challenges, and Conclusion

It is hoped that this book increases awareness of the reader of threats that have
come into existence recently and techniques, systems, and tools for detecting such
threats. Any antivirus or defense software can only detect the threats if and only if
the defender software understands how attackers get entry into a system and what
tools they use to compromise a network or system. This chapter is focused on the
open issues and challenges faced by the ANIDS research community.

8.1 Open Issues and Challenges

Even though many network traffic anomaly detection techniques, systems, and tools
have been developed for protection of enterprise networks from different intelligent
attacks, there are still a number of open issues and challenges. The most common
bottleneck is defining boundaries for legitimate traffic while detecting network
traffic anomalies, because they vary as a function of network size, architecture,
environment, and organization. Tuning such parameters to detect network traffic
anomalies is a difficult task. Another common issue is nonavailability of suitable
performance metrics to evaluate detection techniques or systems. For evaluation
of detection techniques or systems, common metrics are accuracy, performance,
completeness, timeliness, and data quality.

Network traffic anomaly detection techniques and systems should be evaluated
against valid, unbiased, and high-quality data. But getting such data with necessary
variations is expensive and difficult. Without validating a detection technique
or system, we cannot deploy the detection system in real-time environment of
a network we are trying to protect. On the other hand, formally proving that
a detection system behaves correctly is expensive, with respect to a particular
environment [1, 2]. Generation of unbiased, realistic, and comprehensive datasets
is still a challenge. Our study on network traffic anomaly detection techniques,
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systems, and tools has demonstrated that there is still a need to ensure scalability,
high performance, and robustness when designing a detection technique or system
or tool. We identify and enumerate some important issues and challenges based on
our understanding of various dimensions of network traffic anomalies.

8.1.1 Reducing False Alarm Rate

An ANIDS or detection technique should ideally avoid a high rate of false alarms.
However, it is not possible to escape totally from false alarms, even though it needs
to be a good in any environment. The ANIDS should also facilitate adaptability at
runtime. These are challenging tasks for the ANIDS development community.

8.1.2 Runtime Limitations

How to work properly at runtime in a real network environment remains a challenge
from the perspective of data size as well. A real-time ANIDS should ideally be able
to capture and inspect each packet without losing any packets in the process. For
high-speed networks, it is difficult to capture all packets from live networks.

8.1.3 Reducing Environment Dependency

The performance of most ANIDSs and network intrusion detection techniques
depends on the nature of the environment. Ideally, a system or technique should
be independent of the environment. In other words, it should perform more or less
at the same level in any environment in which it is installed.

8.1.4 Adaptability of ANIDS

The nature of anomalies keeps changing over time as intruders adapt their network
attacks to evade existing intrusion detection solutions. So, adaptability of an ANIDS
or detection method is necessary to update with the current anomalies encountered
in the local network or the Internet.
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8.1.5 Dynamic Updation of Profiles

Dynamic updation of profiles in an anomaly-based NIDS without introduction of
conflicts among existing profiles and without compromising detection performance
is an important task. The profile database needs to be updated maintaining consis-
tency whenever a new kind of attack is detected and addressed by the system.

8.1.6 Generation of Unbiased and Realistic Intrusion Datasets

Preparing an unbiased network intrusion dataset with all normal variations in
profiles is another challenging task. The number of normal instances is usually large,
and their proportion with attack instances is very skewed in the existing publicly
available intrusion datasets. Only a few intrusion datasets with sufficient amount
of attack information are available publicly. Thus, there is an overarching need for
benchmark intrusion datasets for evaluating ANIDSs and detection techniques.

8.1.7 Reducing Computational Complexity

Reducing computational complexity in preprocessing, training, and deployment is
another task that needs to be addressed.

8.1.8 Detection and Handling Large-Scale Attacks

Due to continuous improvements in attack technology, state-of-the-arts attackers
are able to compromise target systems or networks in a distributed manner within a
short time interval. So, an ANIDS should not only be able to detect such attacks at an
early stage but also limit the rate at which bad packets arrive without compromising
access by legitimate users.

8.1.9 Reducing Dimensionality in Datasets

Network traffic datasets are high dimensional and large in volume. Some traffic
features may have no variation in values, but the network may be functionally
dependent on them. So, developing an effective technique to select optimal features
to detect network traffic anomalies without compromising performance is another
issue that needs to be addressed.
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8.1.10 Multilayer DDoS Attack Detection

Attacker attempts to compromise the target host or network by considering network,
transport, and application layers; possibility for detection of such attacks is low.
Because cross-layer attacks are more intelligent than stand-alone attacks. So,
detection of such attacks with low rate of false alarm is really difficult.

8.1.11 Traceback of Attacker Identity

Traceback and detect the source of attack(s) in real time with high accuracy is
another important open challenge.

8.1.12 Dynamic and Adaptive Learning

Use of dynamic and adaptive learning that works with minimum knowledge for
novel attack classification in real time is another challenge.

8.1.13 Protection Against IoT-Based DDoS Attacks

Protection of resources from IoT -enabled DDoS attacks is a challenge, which may
be highly intensive as recently experienced of the order of 1:5 TB DDoS attacks.

8.2 Conclusion

In this book, we focus on network traffic anomaly detection and prevention
techniques, systems, and tools with an attempt to provide a detailed experience
to readers from novice to advanced level. We have discussed the characteristics
of network traffic anomalies that result from the presence of malicious activities
on the network. This book also provides a detailed discussion on vulnerabilities in
a functioning real network at each layer that may be present due to weaknesses
in protocol or design of the network. We have discussed a systematic approach
to generate large and realistic network traffic datasets that contain both packet-
and flow-level features. We have discussed network anomaly detection techniques
and systems such as statistical, classification, clustering and outlier detection,
soft computing, knowledge-based, and combination learners. We also provide
advantages and disadvantages of each detection technique or system. Such analysis
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might result in increasing readers’ understanding of each class of techniques and
systems. To help understand how attacks are related to one another, we have
introduced an attack taxonomy hoping that readers will get clear ideas about the
attacks with their characteristics. ANIDSs generate different types of alerts that
need to be handled promptly, within short time interval. We have discussed the basic
concept of alert and alert management. We hope that post-diagnosis of such alarms
might increase the efficiency of detection techniques and systems. We also have
presented different network intrusion prevention techniques and systems to help
readers in developing a better understanding. We believe that a diligent reader will
have acquired an adequate amount of knowledge regarding different attacks. We
also have discussed several tools for both attackers and defenders. We also outlined
how to develop a real-life network traffic monitoring and analysis tool for detection
of network anomalies. Finally, we have briefly presented open issues and challenges
in this chapter to help interested readers develop the ability to motivate by providing
up-to-date as well as future solutions for the protection of enterprise networks.
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